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ABSTRACT 

This thesis addresses the issue of efficient dynamic graph drawing for large scale connected 

graphs with around 10,000 vertices. It contains three main contributions. 

Firstly, an efficient method for approximating the n-body calculations used in Force 

Directed Placement (FDP) is described, exploiting use of a multilevel scheme to 

approximate distance between groups of vertices much like the Barnes Hut Octree. The 

method suggests better representation of the graphs underlying relationships. In experiments 

this algorithm, referred to as Multilevel Global Force (MGF), reduces running time by an 

average of 40% compared to the popular Barnes Hut Octree approximation method. 

Secondly, optimisation methods used in static graph drawing (such as multilevel and 

approximation schemes) are adapted for use in dynamic graph drawing, simultaneously 

improving the quality of layouts produced and reducing the complexity such that large 

graphs with thousands of vertices can be drawn in interactive time. 

Thirdly, several techniques are introduced for incorporating graph changes into the dynamic 

graph drawing to differing extents, allowing the viewer to decide whether the ongoing layout 

should preserve the original layout or prioritise the graph changes. 

The works are combined to form an efficient multilevel dynamic graph drawing algorithm. 
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1  Introduction 

In our modern data driven society, how do we keep up with understanding and analysing 

such vast amounts of information? Since the turn of the millennium, the World Wide Web 

has exploded in popularity, not just for offering countless sources for facts and figures but 

as the basis of ever-expanding social networks, passing data through millions of nodes on a 

daily basis. Like this, much of the data that supports the everyday workings of modern lives 

has been increasing, and with it, the demand for visualisation in meaningful and expressive 

ways. 

With the amount of data growing, the methods for visualising the data continue to develop, 

graph drawing being no exception. The research compiled in this thesis aims to investigate; 

How can the complexity and cost of dynamic graph drawing methods be reduced such 

that large dynamic graphs with around 10,000 vertices can be drawn as a smooth 

animation, with minimal cost to the quality of layouts?  

To answer the question, the history of graph drawing algorithms is researched in the 

Literature Review, annotating the evolution of graph drawing algorithms and helping 

understand the difficulties and weaknesses researchers have overcome in the area. In 

particular, interest is given to Force Directed Placement (FDP), one of the more popular 

methods for drawing graphs which offers a variety of optimisation methods. 

The review investigates and implements such research aiming to circumvent the expensive 

calculations associated with the FDP methods and improving the readability of graph 

layouts, particularly for larger graphs. Initially, interest is given to Static Graph Drawing 

from which many Dynamic Graph Drawing algorithms have evolved, and in which many 

optimisations exist which adapt the methods to huge graphs with millions of vertices (in 

particular, multilevel schemes and approximation). 

Dynamic graph drawing algorithms are next visited, with interest in the problems 

encountered with complexity and the solutions used to overcome them. Comparisons are 

made to Static Graph Drawing to show how common weaknesses have been overcome and 

how they can possibly be resolved in dynamic graph drawing. 
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Surprisingly, there has been little to no research in applying the solutions of static graph 

drawing to dynamic graph drawing in the context of drawing large graphs. Implementation 

of a few select published algorithms, notably the Multilevel Spring Embedder and Barnes 

Hut Approximation, help cement a foundation for optimising dynamic graph drawing 

algorithms. These investigations and implementations are described in the contributions 

(Concepts, Chapter 3 ), and are used to illustrate the concepts for a more efficient 

approximation method (Multilevel Global Force, Section 3.6 ) and the adaptation of static 

graph drawing methods to Dynamic Graph Drawing (Dynamic Modified Spring 

Embedder, Section 3.7 ) which is used to bring the solutions of one area to another, 

overcoming weaknesses such as minima and complexity. 

Being able to apply the solutions for one problem to another is only half of the work 

however. Dynamic graphs are different to static graphs in that they change over time, and 

the contributions above need to respect this. Dynamic Matching (Section 3.7.3 ) is a 

potential solution described here, detailing how the dynamic changes are applied and how 

they can be interpolated through multilevel and approximation schemes to differing extents, 

offering visualisation of these changes which can emphasise the changes to a graph or 

preservation of the initial layout. 

Various attempted optimisations of these contributions are also described in contributions, 

and an analysis and comparison of them is described in the Experimentation and Results 

(Chapters 4  5  and 6 ).  

Measuring Layouts is inherently difficult however. Graph drawings are subject to each 

individuals own perceptions which are unlikely to be universal, and so to provide a more 

literal comparison, aesthetics described in Literature as constituting “good layout”  (which 

optimises the amount of data that can be extracted from a drawing) are used as metrics for 

measuring the readability. 

Through these metrics, the contributions are experimented and numerical results collected 

as part of a large Experimental Framework (Section 3.4 ) providing evidence for 

Evaluations (Chapter 7 ) of the suggested concepts and additional optimisations. 
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Comparison is of importance, especially in the context of state-of-the-art methods described 

in Literature, and so each of the works are initial compared to an existing algorithm to better 

show their strengths and weaknesses. 

These thoughts are summarised in the Conclusions (Chapter 8 ) of the thesis, indicating 

which of the algorithms can be used to optimise Dynamic Graph Drawing algorithms for 

calculating layout for larger graphs in a readable and helpful visualisation, and the potential 

use cases where the algorithms and optimisations are best suited. 
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2  Literature Review 

2.1   Overview 

This chapter reviews literature in the area of graph drawing and sets the scope of interest for 

the contributions presented in this thesis. In order to properly introduce the area and the 

state-of-the-art methodologies used within the field, the literature review is split into the 

following sections:  

The discussion starts with some Definitions of common terminology (Section 2.2 ). 

An Introduction (Section 2.3 ) is given to present the area and provide context for the 

literature, narrowing the scope of interest to that which is applicable to the contributions 

made here. The research method used to identify appropriate literature is also described. 

Static Graph Drawing (Section 2.4 ) looks at the evolution of layout generation algorithms, 

from their introduction for visualising small data collections to the current state-of-the-art 

algorithms used to display huge datasets (greater than 100,000 vertices), identifying the 

problems faced, how they are overcome and the optimisation methods used.  

Dynamic Graph Drawing (Section 2.5 ) focuses on layout adjustment techniques for 

collections of data which change over time, aiming to optimise the visualisation of changes 

to a graph while maintaining a readable layout. A description of the typical problems 

encountered and the methods of visualisation used to maximise readability are also given. 

Data visualisation is the primary goal of Graph Drawing, therefore a brief detailing of 

Graph Aesthetics (2.4.3 ) and Metrics for Graph Stability (2.5.1 ) are provided within the 

subsections above to identify the criteria constituting “good” and “bad” graph layout.  

A brief Summary (Section 2.6 ) concludes the notes in the subsections above. 

2.2  Definitions 

Some definitions of common terminology are given below. 
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A Graph is a geometric representation of a relational dataset, typically created with the aim 

of providing improved understanding of data compared to observation of the raw data. 

Graphs which do not change over time are referred to as static graphs, in contrast, dynamic 

graphs change over time and require continuous layout adjustment to visualise changes. 

Although drawing algorithms are often optimised for one or the other, there is overlap 

between the areas, with much of the literature for dynamic graphs originating in static graph 

drawing.  

Throughout this thesis, graphs are referred to in two parts; 

• The graph is a model of the relational data, describing information about the vertices 

and the edges connecting them and does not require a layout (such that discussion 

regards the data and relationships within) 

• The graph layout is the visual representation that is given a graph to help a reader 

extract information from the data, whereby vertices are given some position in a 

plotting and drawn with line segments between them (representing edges) 

A general graph is a graph which has no attributed “type”, that is to say it does not follow 

drawing conventions of any specific type of graph (such as planar or hierarchical graphs). A 

general static graph, G, is defined as a set of vertices, V, and a set of edges, E, whereby each 

edge connects two vertices. 

In the works here, a graph layout is a physical record of the positions each vertex has been 

given for a layout, for example, in a Cartesian coordinate system, a layout will be a list of x, 

y and z positions describing each vertex. 

For the purposes of this thesis the layout of a graph refers to its visualisation, with vertices 

represented as point positions in some drawing area, and edges drawn as straight line 

segments between connected vertices. During description and evaluation, layout is referred 

to in two ways; 

• Local layout refers to the layout of vertices and edges at a detailed level, with more 

regard to the placement and proximity of vertices and edges (given a map for 

example, this would be analogous to concentrating on individual buildings and roads  

between them) 
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• Global layout refers to the layout as a whole, perceiving the graph as the sum of its 

parts with more regard to overall shape and structure (using the same map example, 

this would be analogous to viewing the city as a whole with interest in 

neighbourhoods more than individual houses) 

Dynamic graphs follow the same definitions with the addition of a time component, allowing 

for changes to the graph over time. The visualisation of the layout adjustment is usually 

drawn as an on-line process (see for example Veldhuizen, 2007), in that changes are 

observed as they happen through use of animation or time slices.  

The term meaningful is used to describe graph layout which is deemed appropriate enough 

to represent the information provided, as opposed to a layout which does not help the 

understanding of the data visualised. Although subjective, extensive research has been 

undertaken (see below) to determine which attributes of layouts make for more meaningful 

visualisations. Aesthetic criteria have evolved from these and are optimised in many drawing 

algorithms, aiming to improve the readability of graph layouts (see Section 2.4.3 ).  

For comparison of drawing methods, it is commonplace to identify: 

• the complexity of suggested algorithms 

• analysis of the running time  

• subjective analysis of the layouts 

Throughout the document graphs may be considered large or huge, which refer to the graph 

having greater than about 10,000 and 100,000 vertices respectively. 

2.3  Introduction 

Graph drawing is the task of calculating a layout for a Graph which would otherwise not 

have a visual representation. Force Directed Placement is one of the most popular 

approaches to graph drawing (see Kaufmann and Wagner (2001), Battista et al (1994)) and 

is the primary method investigated here. Other techniques such as Spectral, Tree and 

Orthogonal layout methods are also widely used, often optimising for specific criteria such 

as the ordering of vertices or use of multi-line edges (see Tamassia et al, 1988).  
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Originally used in VLSI and chip placement, Force Directed Placement was first introduced 

into static graph drawing and quickly expanded to dynamic graph drawing (Misue et al, 

1995), providing a bridge between research fields and applying known methods to a largely 

unvisited area.  

The method models a graph as a mechanical system under stresses which iteratively move 

the vertices of a layout into positions which reduce the overall stress of the system. 

The intention of the research reviewed here is to investigate static graph drawing algorithms 

with particular reference to the algorithmic modifications required to deal with larger graphs, 

identifying some of the problems faced with large datasets and the state-of-the-art 

optimisation techniques currently employed to overcome them. Graph aesthetics are also 

visited to define what a ‘good’ graph layout is. 

Investigation of Dynamic graph drawing algorithms follows with interest in their differences 

to static graphs, why few methods have been applied to large datasets and what optimisations 

(if any) exist. Given the communities interest in preserving a reader’s perception of dynamic 

graphs, Metrics for Graph Stability are also investigated.  

2.4  Static Graph Drawing 

Static graph drawing refers to the drawing of unchanging static graphs, for which Force 

Directed Placement (FDP) is one of the most popular layout procedures  (Kaufmann and 

Wagner (2001), Battista et al (1994)) providing high quality results, simple heuristics, and 

interactivity which can be applied to both static and dynamic graph drawing. The approach 

describes the modelling of forces which iteratively change the placement of vertices and 

reduces an energy function relating to the layout of a graph. A graph with high energy is 

expected to have poor layout, and through minimisation of this energy, the layout can be 

improved (Eades (1984), Kamada and Kawai (1989)). Minimisation of the energy function 

is an iterative process which typically involves moving vertices into positons which lower 

the graph energy. 

The Spring Embedder (Eades, 1984) is one of the most common approaches for this, which 

models a graph as a mechanical system with vertices represented as freely moving rings 
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which repulse one another, and edges as springs which pull related vertices closer to one 

another. The two forces are: 

A spring force, ∆=∆ log)( kfa  

and a repulsive force,
2)(

∆
=∆

kfr
. 

The spring force is an approximation on the properties of springs and keeps adjacent vertices 

uniform distances apart. If the distance, Δ, between connected vertices is too large, the spring 

will contract bringing the two vertices closer together, conversely, if too close together the 

spring force will push vertices apart. The repulsive force mimics an inverse square law 

applied between all pairs of non-adjacent vertices, pushing them apart. The closer the 

vertices are to one another, the more violent the separation. Both forces use an ideal edge 

length k and work against each other to move vertices into equilibrium positions between 

them.  

The energy of the system is calculated as the total force between all vertices. From an initial 

random positioning, the system is “let go” and iteratively improved, using the forces to 

displace vertices and reduce the energy of the system. After some number of iterations, the 

energy of the system is expected to have reduced to such an extent that vertices have minimal 

further movement, at which point the layout can be said to have converged. 

In practice, Eades determined that most graphs with less than 30 vertices are drawn well in 

under 100 iterations and remarked that many layouts can be generated with fewer. For many 

of the examples given, the layouts are shown to be aesthetically pleasing, exhibiting few 

edge crossings, uniform edge lengths and uniform density of vertices across the viewing 

area. Some examples show the difficulty of generating layout for dense graphs where the 

number of edges prevent expansion and so resulting in dense “busy” layouts with high 

numbers of edge crossings. In addition, larger graphs require significantly more time to 

suitably expand the layout, often becoming trapped in local minima as parts of the graph are 

unable to pass one another (Eades (1984), Fruchterman and Reingold (1991)). 

Local minima refer to configurations of vertices where lower energy layouts exist but require 

vertices to move into higher energy positions before reaching them. The spring embedder 
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does not allow for “up-hill” moves as they increase energy, thus the layout becomes trapped 

in “local” minima and converges with a layout which may not be optimal (Davidson and 

Harel, 1996). 

Various modifications to the heuristic exist. Kumar and Fowler (1994) detail a spring 

embedder for generating three dimensional drawings. Sugiyama and Misue (1995) describe 

the use of magnetic springs to control orientation of edges to achieve certain aesthetic 

criteria. Huang et al (2010) suggest inclusion of additional forces to expand minimum angles 

between coincident edges in order to provide compromise over achieving aesthetic criteria. 

Bannister et al (2013) provide an added constraint to incorporate social gravity in force 

calculation for visualisation of social networks. 

Kamada and Kawai (1989) suggest an adaptation to the method, replacing repulsive forces 

with springs between all vertices with length equal to the “graph theoretic” distance between 

vertices. The total energy of the system is equal to the total energy of the springs. The 

minimisation of this energy is achieved through estimating a vertex’s position until the 

energy of forces acting upon it are reduced.  

Each vertex, vm (xm, ym), is chosen based on its energy, Δm (as calculated below), and ends 

when this value becomes less than some tolerance (where E is the energy of the system): 
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The method generates high quality layouts exhibiting symmetry, minimisation of edge 

crossings and a high level of congruence between isomorphic graphs (it is commented by 

the authors that Eades’ method does not provide such congruence), but suffers higher 

complexity than the Eades spring embedder with O(n3) calculations. 

An alternate to the Spring Embedder is a method which simulates the heat treatment of 

materials seen through annealing. Davidson and Harel (1996) use simulated annealing to 

model graphs as amorphous solids, using temperature to represent the movement of particles 

in the material. The particles begin with high temperature and are "cooled" to reduce their 

movement and form an ordered crystalline structure synonymous with high quality layout. 
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The temperature provided by Davidson and Harel (1996) represents the energy of vertices 

in the layout, with higher energies allowing for larger movements. An initial temperature is 

generated through random placement of vertices, and vertices are iteratively given new 

positions called “configurations”. Each configuration of vertices is estimated and changes 

the temperature of the graph, if lower, the configuration is accepted, otherwise acceptance 

is probabilistic, allowing for higher temperature configurations to be accepted (offering 

chances to overcome local minima).  

Vertex movement is limited by a cooling schedule, allowing for larger displacement in 

earlier iterations which is steadily reduced over time, “cooling” the layout.  

The number of iterations and consequent running time is dependent on the values given to 

the cooling schedule, with rapid cooling finishing quickly but generating layouts with 

imperfections (such as edge crossings or coincident vertices), or slow cooling improving the 

aesthetic quality of the layout but taking longer.  

The method is flexible, boasting a selection of cost functions to optimise different aesthetic 

criteria, which can be been used for beautification and refinement of layouts (Harel and 

Sardas, 1995). Modifications for optimising three dimensional drawings is provided by Cruz 

and Twarog (1996). 

Combination of Simulated Annealing and the Spring Embedder is presented by Fruchterman 

and Reingold (1991), using the control over vertex movement to overcome local minima in 

the spring embedder. The implementation allows for high energy vertex positions in earlier 

iterations of the algorithm, subsequently reducing the movement until it is less than some 

tolerance as described above (Davidson and Harel, 1996). In contrast, Eades method 

suppresses the movement of vertices by a percentage of the movement. 

Further optimisation is achieved through limiting the distance at which repulsive forces take 

effect, and the use of a grid to approximate repulsive forces and further reduce the 

complexity involved. The algorithm is said to run very quickly and provide equivalent 

layouts to other methodologies, however, as the size of graphs increases, it becomes more 

difficult to generate high quality layouts as conflicting forces push and pull vertices into 

sub-optimal positions.  
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Harel and Koren (2002) provide an alternative to grid approximation methods through 

embedding a number of additional dimensions evenly throughout a graph and using the 

relative positions of vertices (through principal component analysis) to estimate their 

projected placement into a two or three dimensional plane. The use of high-dimensional 

embedding removes the n-body calculations, providing an opportunity to draw larger graphs.  

The number of dimensions used is dependent on the user with higher values extending the 

runtime and lower values decreasing layout quality; a value of 50 is used by the authors. 

An alternate method of graph drawing using stress majorisation described by Gasner et al 

(2005). The method builds on work by Kamada and Kawai (1989), which iteratively solves 

a system of linear equations using the Conjugate Gradient (CG) method, to reduce the stress 

of the system. The approach is shown to reach energy minima much quicker than the 

Kamada and Kawai method, and offers drawings for large graphs with over 10,000 nodes 

quickly.  

2.4.1  Multilevel refinement 

Many of the models and algorithms described for static graph drawing are limited by the 

size of the graph they can visualise, facing problems in overcoming local minima in large 

datasets and exponentially increasing running time. In order to overcome such problems, 

multilevel and multiscale schemes can be used to simplify the structure of a graph, reducing 

its size such that the methods above can be applied to provide improved global layout. 

A multilevel scheme is described by Walshaw (2003) stemming from the author’s previous 

work in graph partitioning (Walshaw et al, 1997). The scheme takes a graph as its input and 

generates a collection of coarser interpretations through identification and collapse of a 

maximal independent edge subset (MIES) (Hendrickson and Leland, 1995) to which FDP 

can be applied. The independent edges are contracted to form “coarse” vertices with 

coincident edges preserved forming a coarser representation of the graph. The process is 

repeated until a graph with two vertices is generated, or the difference between levels (graph 

size) is less than some tolerance. 

Given an original graph G0, the hierarchy of graphs can be defined as GL = {G0, G1, G2 … 

Gn}, each with a set of vertices and edges such that G1 = {V1, E1}. Each graph which is 
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generated will have fewer vertices, with Gn having the least (see Appendix 10.22.3.1 for 

pseudocode). 

Figure 2.1 provides an example of multilevel generation for an example graph G0: 

• Independent edges (denoted as dotted line segments) are identified; 

• These are then contracted, merging the connected vertices into one forming vertices  

of a new graph G1 (reducing the number of vertices from 10 to 7); 

• Edges of the initial graph are preserved and brought into the new graph, connecting 

the new vertices (approximating the relationships of the G0); 

• The process is then repeated on each subsequent graph generating a collection of 

increasing abstract representations of the original until a graph of 2 vertices is found. 

The matching of vertices used to generate each level of the multilevel scheme can be 

represented as a tree showing which vertices in a finer graph are represented by a vertex in 

a coarser graph. 

 

Figure 2.1. Example graph coarsening with matchings’ highlighted by dashed lines (left) and a mapping 
of matchings’ as a tree structure (right) 

The process for generating a multilevel layout then works backwards from the coarsest 

graph: 

• Force directed placement is applied to the coarsest graph, Gn; 

• The generated layout is interpolated to the next coarsest graph, Gn-1, by passing the 

position of a vertices to the matched children vertices it represents, giving the graph 

an initial layout;  

• FDP is applied to Gn-1 to refine the layout;  

• The process is repeated on each subsequently finer graph until the original graph, 

G0, is given a layout, as illustrated in Figure 2.2. 
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Figure 2.2 Interpolation and Refinement of graph layout between three graphs in a multilevel scheme 
using Force Directed Placement. From right to left, a coarsest graph with layout interpolates the 

positions of vertices to the finer graph, which is refined with FDP. The process is then repeated for the 
next two graphs. 

For the application of FDP in each of the coarser graphs, the ideal edge length k must change 

in order to provide a layout which fits into the space currently occupied by the graph. Each 

vertex in a coarser graph may represent many vertices in finer graphs, and so edge lengths 

must be amended to avoid layouts being squashed. Walshaw suggests a simple heuristic to 

calculate k for each level: 

 

 

Where lk  is the ideal edge length of the current finer graph, and 1+lk  is the ideal edge length 

calculated for the previous graph. For the coarsest graph, the value is calculated as: 
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The drawings generated exhibit high quality global layout and untangling, and reduce 

running time by reaching a high quality layout sooner (graphs with hundreds of thousands 

of vertices are reportedly drawn in several minutes). Both global and local layout are 

achieved well, effectively overcoming the problems with minima. An implementation of the 

algorithm running on a GPU can further reduce running time by a factor of up to 20 

(Frishman and Tal, 2007). 

A similar method of multi-scale layout is provided by Hadany and Harel (2001), describing 

an alternate method of generating the collection of coarser graphs. Identification of a 
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maximal independent edge subset is dropped in favour of a cost function determining which 

edges should be contracted through analysis of their attributes (clustering, degree and 

homotopic numbers). The authors aim to better preserve a graph’s attributes and proportions, 

achieving more accurate representations of the original graph. 

The force directed placement algorithm chosen by Hadany and Harel (2001) uses a 

relaxation scheme that employs a steepest descent minimisation procedure to find improved 

vertex positions and reduce the energy of the graph. Unlike Walshaw’s approach, this is first 

applied to the original graph, and interpolated through the coarser graphs, after which it is 

interpolated back through the finer graphs again, refining the layout.  

Further research from Harel and Koren (2001) details an alternate implementation of the 

algorithm with the priority on minimising running time instead of optimising layout. 

An approach embedding multiple dimensions is provided by Gajer et al (2001), describing 

a method for coarsening a graph through identifying maximal independent vertex subsets, 

and using the positions of these vertices to place vertices intelligently into optimised initial 

positions, maximising the angle size between adjacent vertices. The authors describe that 

vertices will be placed in initial positions close to their final positions, such that they can be 

refined using Force Directed Placement. 

A spectral method of drawing graphs is described and implemented by Koren et al (2002) 

through the use of multiscale matrices and eigenvector computation. ACE (Algebraic 

multigrid Computation of Eigenvectors) is an approach which, like previous papers, uses 

multiple levels of abstraction to solve an energy minimisation problem and interpolates a 

solution through the coarser levels, refining the solution whilst doing so. 

ACE treats the minimisation of a graph’s energy as an eigenvector problem, and uses the 

eigenvectors of the Laplacian and mass matrices of a graph to cluster vertices together in a 

multiscale fashion (using an interpolation matrix to move between levels). An iterative 

power method variant is used to find the lowest eigenvalue of a coarsened matrix, and the 

corresponding eigenvector. This solution is then used to partially solve the next level, which 

once solved becomes the partial solution to the next level and so on, being applied iteratively 

until a solution to the original problem is found. 
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An alternate method of multiscale layout is suggested by Hachel and Jünger (2005). The 

Fast Multipole Multilevel Method (FM3) uses a method of coarsening “solar systems” to 

coarsen vertex clusters, choosing a ‘sun’ with neighbouring vertices regarded as ‘planets,’ 

each with ‘moon’ nodes. Each solar system is then collapsed to form coarser nodes. The use 

of ‘solar systems’ allows for initial placement of the vertices relative to their solar system 

(local layout) which can be refined using FDP. Force directed placement is applied to refine 

the layout. 

2.4.2  Approximation 

Even with overcoming minima, Force Directed Placement still suffers from high running 

times associated with the iterative calculation of forces between all pairs of vertices (for 

example Eades, 1984), emulating an n-body problem and making the techniques especially 

costly for large graphs. In dynamic drawing, the result is an increase in the time required to 

generate each frame of a visualisation, resulting in a staggered animation of the drawing 

process. 

Algorithms typically overcome this complexity by reducing the number of “global force” 

calculations through limiting the distance at which forces take effect and/or approximation. 

These approximations take the layout of a graph, and imagines some structure (typically a 

grid) over the layout, treating the vertices in one section as a singular vertex with average 

position and weight. 

A popular method achieving this is the Barnes Hut Octree (Barnes and Hut, 1986), which 

has been effectively applied to multilevel force directed placement (Hu (2005), Hachel and 

Jünger (2005)), improving on a grid based system used previously (Fruchterman and 

Reingold (1991), Walshaw (2003)).  

The octree is generated through a recursive strategy: 

• Given a layout, calculate a bounding box that covers the entire layout; 

• Split the bounding box into 4 or 8 sections (for 2D or 3D dimensions respectively); 

• Iterating over each section, if there is a section with more than one vertex within, 

split that section into 4 or 8 sections; 
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• Continue on each section until each vertex occupies its own section or some limit is 

reached; 

The splits are recorded in a tree representing the proximity of vertices in the drawing area 

as shown for an example graph in Figure 2.3. The generated octree structure is used by: 

• For a vertex in the graph, which inhabits its own ‘section’ of the octree, calculate 

repulsive forces between itself and vertices in neighbouring sections (point a in 

Figure 2.3); 

• If a neighbouring has more than 1 vertex, the average position of the vertices within 

the section is used and treated as a single point with which repulsive force is 

calculated; 

• The repulsive forces are combined to give one direction; 

• Once finished at this level, move to the parent section which contains the current 

section and its siblings; 

• Repeat the process with the siblings of the parent section (points b, c and d in Figure 

2.3); 

• Continue until the bounding box (root of the Octree) is reached, then move on to the 

next vertex. 

Usage results is a drop in complexity from n² to n log n, reducing the running time of 

algorithms but requiring the space decomposition structure be generated in addition to the 

graph, requiring maintenance to maintain accuracy. 



49 

 

 

Figure 2.3. Space decomposition (quadtree) of a simple graph, recursively splitting an area into four 
equal parts until each vertex exists in its own section (left), and accompanying tree structure recording 
the splits for use in calculation global interactions (right). Example usage of the tree for calculating 
repulsive forces 

In addition, Hu describes an issue named the “peripheral effect” observed in the drawings, 

whereby the outer edges of a graph are more compressed than the inner edges (as a result of 

the forces). A resolution is suggested which increases the powers within the repulsive force 

function: changing K²/d to K³/d², and means that the spring forces are more likely to 

overcome the effect of repulsive forces, promoting uniform edge length. 

Layouts for huge graphs are generated much more quickly than Walshaw and with 

comparable quality. In addition, Hu describes an issue named the “peripheral effect” 

observed in the drawings, whereby the outer edges of a graph are more compressed than the 

inner edges (as a result of the forces). A resolution is suggested which increases the powers 

within the repulsive force function: changing K²/d to K³/d², and means that the spring forces 

are more likely to overcome the effect of repulsive forces, promoting uniform edge length. 

2.4.3  Graph Aesthetics 

Graph aesthetics are the attributes of a layout which impact the amount of information an 

observer can absorb, and is one of, if not the most important aspect of information 

visualisation (Tamassia et al, 1988). Many methods and algorithms exist to provide 

improved and adaptable ways of achieving optimal readability of datasets, however, due to 
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the subjectivity of layout analysis, measurable comparison of layout quality is difficult. This 

in turn makes analysis and comparison of drawing methods difficult. 

Definitions of aesthetics and various graph drawing methods pertaining to maximise one or 

more of these are identified by Tamassia et al (1988). The research gives a review of various 

specialist and general graph drawing algorithms, with an analysis of the aesthetics that each 

optimises and a description of standards within the area. The aesthetics are collected from 

discussions in a wide range of earlier graph drawing publications (a taxonomy of which can 

be found in the publication).  

A list of the aesthetics described are given below in Table 2.1, each with a category 

identifying whether the aesthetics affect global (entire graph) or local (some small part of a 

graph) layout, and which graph type each is most relevant to (Flat referring to general graphs 

and Hierarchical referring to tree type graphs).  

Aesthetic Category 

Minimisation of the area occupied by the 

drawing 

Global/Flat 

Balance of the diagram with respect to the 

vertical or horizontal axis 

Global/Flat 

Minimisation of the number of bends along 

the edges 

Global/Flat 

Maximisation of the number of faces drawn as 

convex polygons 

Global/Flat 

Minimisation of crossings between edges Global/Flat 

Vertices with high degree in the centre of the 

drawing 

Local/Flat 

Minimisation of the differences among 

vertices dimensions 

Global/Flat 

Minimisation of the global length of edges Global/Flat 

Minimisation of the length of the longest edge Global/Flat 

Symmetry of children vertices in hierarchies Local/Hierarchical 

Uniform density of vertices in the drawing Global/Flat 
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Verticality of hierarchic structures Local/Hierarchical 

Table 2.1 A table of suggested aesthetic criteria which affect the readability of graph layouts as provided 
by Tamassia et al (1988), further information regarding the origins of these algorithms can be found in 
the publications 

It is remarked that methods for drawing undirected general graphs, specifically force 

directed placement techniques, typically optimise: the uniform density of vertices; 

symmetry; minimisation of bends along edges; and minimisation of the area occupied by the 

graph.  

Due to the subjective and contextual nature of analysing graph layouts, measurement and 

evaluation of each attribute’s effect on readability is difficult, if not impossible. As such, 

empirical investigations are used to investigate their nature through subjects answering 

questions regarding graphs with differing layouts. 

The procedures for many of these studies follow a similar pattern: subjects are given a series 

of questions regarding structure and connectivity within various layouts exhibiting differing 

levels of an aesthetic. The subjects’ response times and correctness are measured, with 

correctness and fast response times believed to suggest increased readability. Similar 

conclusions are reached throughout many of the studies, with variations depending on the 

context (for example, when testing on UML diagrams specifically, the results show 

Orthogonality has more of an impact than in general graphs). A generalised cross analysis 

is provided in Table 2.1. 
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Aesthetic Criteria Definition Evaluations, Effect on Readability 

Minimisation of edge crossings Reducing the number of edge crossings 
exhibited in a layout 

Purchase et al (1995, 1996, 2002) 
Purchase (1997, 2000) 
Ware et al (2002) 

High Impact 

Minimisation of bends Minimisation of the number of bends in 
edges (in layouts not using the straight line 
standard) 

Purchase et al (1995, 1996) 
Purchase (1997, 2000) 
 

High Impact 

Continuity of edges Reducing angular deviation in the edges of 
a path, drawing them as straight as possible 

Ware et al (2002) High Impact 

Orthogonality Maximising the orthogonality of a layout Purchase et al (2002) 
Purchase (1997, 2000) 

Medium Impact 

Symmetry Drawing symmetrical components of a 
graph as similarly as possible 

Purchase et al (1995, 1996, 2002) 
Purchase (1997, 2000) 

Low or No Significant 
Impact 

Minimum angles Increasing the minimum angles between 
coincident edges of a vertex 

Ware et al (2002) 
Purchase (1997, 2000) 
Purchase et al (2002) 

Low or No Significant 
Impact 

Branches The degree of vertices in a path which do 
not belong to the path 

Ware et al (2002) Low or No Significant 
Impact 

Total geometric line length The total line length of the graph Ware et al (2002) Low or No Significant 
Impact 

Table 2.2 Identification of literature empirically evaluating aesthetics expected to affect the readability of two dimensional graphs
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The results of the empirical studies show a preference towards minimisation of edge 

crossings for improving readability of graph layouts. Continuity is demonstrated to have a 

greater effect on reaction times (Ware et al, 2002), but is specific to optimisation of shortest 

paths (generating layouts specific to an action). Minimisation of bends is shown to have the 

second most noticeable effect on readability but only applies to orthogonal drawings.  

Other aesthetics are shown to have very little effect. Bennet et al (2007) provides a more in-

depth cross evaluation and analysis of core aesthetics, identifying heuristics which aim to 

achieve and test their effectiveness on: 

• Visceral, behavioural and reflective levels 

• Symmetry, orientation and contause 

• Conflicting/balancing aesthetics 

Purchase (2002) aids algorithm design with suggestions for metrics of aesthetics, and 

provides cost functions which can be incorporated into genetic and simulated annealing 

algorithms. The metrics for edge crossings are of high interest due to their described high 

impact on layouts, with metrics for Symmetry and Angles noted but lesser used due to their 

lower impact. 

An alternate study uses eye movement to determine how a user reads a graph and reacts to 

aesthetic criteria (Huang and Eades, 2005). The study showed subjects tend to follow edges 

toward a target node and avoid areas densely populated with vertices and edges. Further to 

this and the use of questionnaires, Huang et al (2008) suggest metrics for measuring 

cognitive load of participants in order to aid evaluation of layouts, obtained through subjects 

reporting their “mental load” using a scale of 1 to 9, referring to low and high “mental effort” 

respectively.  

It should be noted that the results of these empirical studies are for smaller graphs where 

identification and visualisation of these attributes are more noticeable. For large and huge 

graphs there is no known literature providing definitions or analysis of aesthetics, partly due 

to the difficulties in identifying criteria for high densities of edges and vertices in the viewing 

platform (Herman et al, 2000). However, attributes may still be applicable to local structures 



54 

 

within a graph (Pfaltz, 1972) and are expected to remain relevant to local layouts and 

approximated global layout quality. 

2.4.4  Overview of Static Graph Drawing 

Force directed placement offers various techniques for graph drawing by treating the graph 

as a mechanical system with some energy, the reduction of which is expected to relate to 

high quality vertex positions. Although providing high quality layouts, the methods suffer 

from high running times and local minima. To overcome these, various approaches have 

been applied to progress the field. 

Multilevel and multiscale techniques provide a means of generating simplifications of a 

graph, allowing for Force Directed Placement to be applied on a global level, improving 

global layout. Local layout can be refined with further FDP. The methods are shown to work 

effectively to overcome minima and provide access to visualising huge graphs (>100,000 

vertices).  Approximation methods are used to overcome the high running times associated 

with FDP, reducing the number of calculations but retaining accuracy. 

Further to the literature covered here, a number of surveys summarising the techniques and 

methods of graph drawing are used by the community. A broad collection of early graph 

drawing algorithms, and analysis of each, is given in Battista et al (1994). Kobourov (2004) 

provides a detailed review of force directed placement algorithms, detailing the most 

common and popular methods available, with a more recent review including multilevel 

schemes in Kobourov (2012). Hu (2011) also provides a recent review and analysis of 

general graph drawing algorithms for large graphs in the context of visualising large 

networks.  

2.5  Dynamic Graph Drawing 

Dynamic graphs are those which change over time, typically including the removal, addition 

or amendment of vertices and edges. These changes may be described as “offline” if known 

beforehand, or “online” if the changes are not known and unpredictable. The contributions 

here focus on “offline” datasets, however the described works are applicable to both.  
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The drawing methods for such graphs optimise the visualisation of the changes to the graph 

and evolution of the layout, typically through the use of frames or animation (Archambault 

et al, 2011). 

Literature regarding dynamic graphs is often split by specific graph types, and uses heuristics 

relating to topology and other known/expected attributes of those graphs, including 

hierarchical graphs (North and Woodhull (2002), Alstrup et al (2005), Gorg et al (2005)), 

planar graphs requiring planarity testing for changes to the graph (Tamassia, 1989) and 

chordal graphs (Ibarra (2001), Hill et al (2005)). Cohen et al (1992) suggest a framework 

for drawing and maintaining dynamic graphs using a collection of such algorithms based on 

the authors’ previous work. 

Misue et al (1995) suggest a concept of the mental map and identify attributes which may 

help preserve it, applying them in a dynamic graph drawing framework. Force-Scan 

approaches use force based shuffling to separate and arrange coincident nodes,  and a variety 

of visual mappings (fisheye, orthogonal fisheye and use of rectangular viewing areas 

(biform)) to transform sections of the graph such that changes are viewed and placed in such 

a way that the remaining layout is unchanged. The conclusions are that they enable the 

mental map to be preserved during layout adjustment.  

Brandes and Wagner (1997) adapt static drawing algorithms to work in a dynamic setting, 

testing two popular layout algorithms: Eades’ Spring Embedder (Eades, 1984) and 

Tamassia’s minimum-bend orthogonal layout model for planar graphs (Tamassia, 1996). 

The authors suggest few changes are required to repurpose the algorithms, primarily 

discussing methods of stabilising the layouts and avoiding the large movements and changes 

that occur in static algorithms, preserving the readability and understanding of the graph. 

The approach is of interest here due to the application of static methods to dynamic graphs, 

setting a benchmark for visualisation using shared methods. 

Similarly, Diehl and Gorg (2002) introduce a method which generates a layout for a 

‘supergraph’ using simulated annealing. The supergraph is generated from a series of graphs 

which show a story of a graph as changes are applied. The graph is given a ‘base layout’ 
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which is applied to all graphs in the series, and are refined using further simulated annealing 

methods. Like the methods above, the approach encourages preservation of a base layout. 

A similar adaptation is described by North and Woodhull (2002), which suggests a dynamic 

graph drawing algorithm based on the static work of Sugiyama et al (1981),  used for on-

line hierarchical drawing (a modification of which is used in the Graphviz and Dynagraph 

packages from Ellson et al, 2004). 

Following the use of Simulated Annealing, Lee et al (2006) present a method for generating 

dynamic graph layout which does not require prior knowledge of graph changes. Following 

from the work by Davidson and Harel (1996), the algorithm uses a collection of parameters 

to control the various aesthetics of the graph in order to maintain a user’s mental map. Using 

a framework provided by Bridgeman and Tamassia (2002), the authors identify those 

parameters which will affect the readers’ perception of the layout and set the appropriate 

cost functions in order to maintain it. The algorithm relies on redrawing the graph when 

changes have been applied, generating a sequence of frames. 

Cohen (1997), and Baur and Schank (2008), describe an extension to the Spring Embedder 

method (Kamada and Kawai, 1989) and provide use of multidimensional scaling techniques 

(MDS) to reduce the “stress” of a system. Xu et al (2011) also make use of dynamic 

multidimensional scaling as a method of layout adjustment, but use the stress of a graph to 

identify the energy of a system as a means of layout analysis. The authors also suggest 

measuring the temporal difference in vertex positions (between frames) and the distances 

between nodes in groups as methods for layout analysis.  

 

Although using different minimisation techniques, the methods follow the spring embedder 

principle and encourage applying spring embedder methods using in static graph drawing, 

to generating layout for the dynamic graphs.  

Further extending the works in static graph drawing, Frishman and Tal (2008) suggest a 

method using multilevel force directed placement for quickly generating high quality layouts 

for frames of a dynamic graph (a frame referencing a change or sequence of changes to the 

layout). Sequential layouts are morphed to provide a smooth transition. Layout is preserved 
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through vertex pinning, whereby only vertices close to the changes to the graph are given 

adjusted layouts.  

The use in this way identifies a leap to using multilevel methods for improving layout, and 

for quickly generating layout. Although generating high quality layouts, the use of applying 

multilevel FDP to generate layouts one at a time is not optimal, especially for fast changing 

graphs which demand for fluid layout adjustment. 

Veldhuizen (2007) suggests a more elegant solution for visualising large dynamic graphs 

using a system of dynamic springs embedded into a multilevel scheme. The approach 

generates layout for all levels of a multilevel scheme simultaneously, ensuring positions of 

vertices in coarser graphs still represent the vertices in finer graphs by connecting them using 

springs (as a type of inter-graph connectivity). Damping and time dilation mechanisms are 

used to ensure graphs evolve at a similar rate.  

The author also uses the Octree approximation to reduce the complexity of the algorithm 

and further reduce the running time. 

Unlike other literature, Veldhuizen’s algorithm is run continuously through animation (as 

opposed to frames) with changes to the graph being visualised immediately. The algorithm 

is also shown (via demonstration videos) to be very quick, showing the generation of layout 

for large graphs (1000 nodes) in just a few seconds. 

A review of the current issues facing the visualisation of large networks is provided in Hu 

(2013), which introduces algorithms deemed state-of-the-art and details the biggest problem 

as size of the graphs involved and the computational time required to generate layouts.   

Of the dynamic graph algorithms identified, most encompass the modification of static force 

directed placement methods to cope with the visualisation of dynamically changing data, 

with a high interest in graph stability for preserving a user’s perception (such as vertex 

movement). Apart from schemes by Frishman and Tal (2008) and Veldhuizen (2007), all 

identified methods are applicable only to small graphs and are still limited by expensive 

calculations and local minima.  
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2.5.1  Metrics for Graph Stability 

Although affected by the aesthetic criteria, dynamic graphs are interpreted differently to 

static graphs due to their changing layout and the added time component, resulting in a host 

of further attributes for determining the readability of a graph. As an example, typical use 

of a static graph may involve identifying the shortest path between two nodes, whereas in 

dynamic graphs, questions may relate more to the movement of vertices and the changes in 

connectivity. 

Changes to a dynamic graph and corresponding layout will likely impact a viewer’s 

perception of the visualisation. This perception is abstract will differ from person to person, 

however there are many attempts at defining it. A common theme across the research below 

is that a user will be looking at changes in the graph, and how those affect the impact on the 

existing layout. As such, this abstract way a user perceives a changing layout is regarded as 

a stability problem. 

Böhringer and Paulisch (1990) refer to the problem of drawing dynamic graphs nicely as the 

stability problem, suggesting a system of constraints to control attributes relating to the 

shape of a graph and positioning of vertices, modified to achieve stability. Lai et al (1991) 

build upon this and suggest models for measuring changes to a user’s perception of changing 

layout and define criteria to describe the shape of the layout: 

• orthogonal ordering – positions of vertices relative to one another, for example, N S 

E W;  

• preservation of locality and the shapes of vertex clusters; 

• topology of a graph and transformation of shapes. 

Later work by the authors provides a framework which apply these models (Misue et al, 

1995), including a selection of layout adjustment methods (based on transformations and 

shuffling) and visualisation techniques to optimise the aesthetics. 

The term “mental map” as used by Misue et al (1995) refers to a viewer’s changing 

interpretation of a dynamic graph as it is amended. Similarly to static graph aesthetics, 

definition of the “mental map” is subjective, with authors providing their own variations on 

which attributes should be optimised to best preserve it.  



59 

 

Friedrich and Eades (2002) build on research by Papakosta and Tollis (1996) and suggest 

criteria relating to the motion of a graph as a means of improving readability, with interest 

in the perception of animation or movement of layouts as rigid three dimensional objects. 

The approach looks at similar shape properties within the graph as described by Lai et al 

(1991): 

• minimise temporary edge crossings; 

• maintain minimal distance between nodes which do not move uniformly;   

• maximise structured movements (movement of vertex clusters as one). 

 

A survey of dynamic graph drawing by Shannon and Quigley (2007) identifies the main 

problems faced with dynamic graph drawing algorithms as:   

• how to model the graph (data structures);  

• the sensitivity of the graph to change;  

• and identification of which aesthetics are preferred by the viewer.  

Discussion on the uses of dynamic graphs is provided by Alberts et al (1998), whom also 

suggest aesthetic criteria for preserving the a users perception while performing tasks such 

as checking connectivity, identifying minimum spanning trees or identifying single source 

shortest paths. 

In terms of criteria which would best optimise the properties these tasks assess, studies 

(Table 2.2) show that for questions regarding the connectivity and shortest paths, 

minimisation of edge crossings and continuity of edges have greatest effect.  

Papakostas and Tollis (1996) propose a method of preserving layout through limitation of 

vertex movement, suggesting readability is affected by the movement of vertices between 

frames, requiring the reader to keep track of multiple vertices moving at once. Purchase et 

al (2007, 2008) evaluates such limitation of vertex movement as a means of altering the 

readability of a dynamic layout and of preserving graph stability, showing that limiting 

vertex movement aids the readability of some graphs for some questions, supporting the 

suggestion that the a users perception of layout is dependent on the context of the data and 

is more down to users’ suggestions as to which aesthetic to control.  
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Further empirical studies investigating the effect of a user’s perception of a layout on 

memorability in dynamic graphs suggest that layout preservation has little effect on the 

readability of graphs on its own (Archambault et al (2011), Archambault et al (2011), 

Archambault et al (2012)). 

Comparison of user generated layouts and automatic layouts is described by Dwyer et al 

(2009), showing that users pay more attention to the layout of cliques over other criteria. In 

contrast to the empirical studies of Purchase (1997, 2000) and Purchase et al (1995, 1996, 

2002), the results show that 77 of 188 subjects paid most attention to cliques as opposed to 

17 of 188 for edge crossings. 

An addition to the concept of the graph stability is the “faithfulness” of a layout, in other 

words: does a visualisation perform the task required of it? Nguyen et al (2012) suggest the 

idea to “fill the missing link” of the stability problem, stating that aesthetic criteria are 

required but not sufficient for measuring the layout of a graph, and that the “faithfulness” 

adds another metric for evaluating algorithms which is better linked to the context of the 

drawing. 

The literature identifies the use of graph stability as a means of describing the usefulness of 

layout for dynamic graphs, and although much research exists, there is an inherent difficulty 

in defining the metrics of graph stability and the attributes which contribute it, and no known 

literature regarding huge datasets. 

2.6  Summary 

Although the scope of the research here is primary algorithmic design, an introduction to the 

“aesthetics” of graph layout is provided, suggesting a means of identifying high quality 

layout through the attributes of the layout as a result of automatic layout algorithms.  

• The aesthetic which is suggested to have greatest effect on the readability of a static 

layout generated by force directed placement is the minimisation of edge crossings, 

suggesting the use of edge crossings as a metric for identifying high quality layouts 

• Identification of the aesthetics which have greatest effect on preservation of the users 

perception of a layout is inconclusive, with results suggesting the specific use and 
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context of the visualisation holds most importance, however cost functions can be 

used for optimising various aesthetic qualities (e.g. optimising shortest paths) 

Graph drawing algorithms are reviewed in two stages, static and dynamic. The research into 

static graph drawing focuses on the development of early force directed placement schemes 

into the multilevel force directed placement algorithm of Hu (2006), providing background 

for the three components of typical algorithms: 

• Spring Embedder (and general Force Directed Placement) – the metaphor used to 

generate layout 

• Multilevel schemes – used to overcome limitations of Force Directed Placement and 

extend its functionality to larger datasets 

• Approximation – used to reduce the complexity of n-body forces 

Dynamic graph drawing identifies the techniques of layout adjustment used to visualise 

changes to a graph, and authors’ methods of maintaining the user’s perception of the graph 

such that the layout is meaningful. Many frameworks are suggested but follow similar 

concerns: 

• Layout changes should not result in the loss of a user’s understanding of the graph; 

• Changes should be visualised in real time; 

• Visualisation of changing layout is often achieved through the use of snapshots over 

time (Archambault et al, 2011) 

Existing dynamic graph drawing literature is largely focused on the development of 

algorithms for smaller graphs and optimisation of graph stability. Few techniques exist for 

larger graphs due to difficulties providing a global and local layout (overcoming minima), 

readability of large collections of information (visualisation of data), and producing fluid 

reaction to changes to a graph quickly (maintain metrics for graph stability and running 

time). Frishman et al (2007) and Veldhuizen (2007) provide methods using a multilevel 

scheme to improve upon layout generation, however, the approaches are largely hardware 

orientated and feature little investigation of updating the multilevel scheme when a graph 

changes. Such issues are the aim of investigation here. 
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3  Concepts 

3.1  Overview 

This chapter details the research for new algorithmic approaches, categorised into sections 

detailing the contributions and methods used, cumulating in a framework for drawing large 

dynamic graphs efficiently. 

Firstly, a Problem Description (Section 3.2 ) is provided, detailing the scope of research 

and the issues to be resolved through completion of the aims and objectives. Following this, 

the motivation behind the algorithm choices is described in Story of Algorithms (Section 

3.3 ). 

The Implementation Methodology (Section 3.4 ) then describes the Experimental 

Framework used to implement, develop and test the contributions of the thesis, followed by 

methods for Measuring Layouts (Section 3.5 ), describing the metrics used by the 

Experimental Framework for analysing and comparing static and dynamic graph layouts 

during experimentation. 

Following these, a method for improving the efficiency of force directed placement is 

described, named Multilevel Global Force (Section 3.6 ) approximation (Crawford. 2013). 

The method exploits a multilevel scheme (Walshaw, 2003) to reduce the cost of 

approximating global forces in force directed placement (Fruchterman and Reingold, 1991). 

The technique reduces the number of calculations and provides approximation which better 

represents the structure of a graph. Additional methods for improving efficiency and better 

encapsulating the structural information of the graph are discussed. 

Methods for applying optimisation of static layouts to dynamic graphs are described in 

Dynamic Graph Drawing (Section 3.7 ), detailing the methods of visualisation and the 

operations available to amend dynamic graphs. A modified dynamic spring embedder, based 

upon a static method described by Fruchterman and Reingold (1991), is introduced, 

providing improved layout convergence and better overcome minima. Adaptation of a 

multilevel scheme is also included with methods for incorporating amendments to the 

dynamic graph into the multilevel matching algorithm in order to incorporate local layout 
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changes into global layouts through Multilevel layout and MGF, described here as Dynamic 

Matching.  

Finally, a Summary (Section 3.8 ) is provided to conclude the chapter in regard to the 

problem description. 

3.2  Problem Description 

Literature and research on static graph drawing for large and huge graphs is extensive and 

well documented with many techniques available for improving efficiency and readability 

of the layouts generated. However, research into dynamic graph drawing is largely focused 

on visualisation of smaller graphs (Tamassia et al, 1988) due to the complexities of existing 

algorithms and difficulty reading large quantities of changing data (Shannon and Quigley, 

2007). Despite the rise in data available for visualisation in recent years (Hu, 2013), few 

algorithms have been developed for visualisation of large dynamic graphs. Additionally, 

analysis of layout quality has been largely focused on smaller graphs (see Section 2.4.3 and 

2.5.1 ), with no identification of which aesthetic criteria affect readability of graphs with 

thousands of vertices.  

The literature review indicates that methods for static and dynamic drawing are similar if 

not the same (Eades (1984), Davidson and Harel (1996)), suggesting the approaches used to 

optimise static graph drawing can be transferred to dynamic drawing (for example, Frishman 

et al, 2007). 

Prior to the extension of such developments, the weaknesses and difficulties associated with 

drawing large dynamic graphs are identified, specifically those not covered by existing 

techniques. The problems as identified from the Literature Review are: 

• Difficulty reading, understanding and following the evolution of large amounts of 

data which change over time;  

• High complexity and costs associated with drawing techniques (making their usage 

unfeasible); 

• Providing global and local layout simultaneously during the drawing process and 

overcoming minima; 
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• Little analysis of aesthetics of large and huge graphs which affect readability or the 

Mental Map. 

Utilising these as a specification, the intended research aims are generated; 

• To provide efficient force calculation of global interactions (Multilevel Global 

Force) 

• Visualization and adjustment of high quality layouts for large graphs such that 

changes can be observed immediately (Dynamic Graph Drawing) 

• Global layout and local layout generation simultaneously via multilevel integration 

(Dynamic Graph Drawing) 

• Definition of aesthetics which affect readability of large and huge graphs 

(Measuring Layouts) 

In summary, the aim of the work is to identify and develop methods to aid the drawing and 

visualization of large and huge dynamic graphs, using multilevel schemes to provide both 

global and local layout, and efficient approximation to reduce cost and improve efficiency 

of generating visualisations. 

3.3  Story of Algorithms 

One of the aims of this thesis is to find ways in which dynamic graph drawing algorithms 

can be optimised for larger graphs. As such, it is preferable to utilise an algorithm that has 

the ability to achieve such results. 

The Spring Embedder is the chosen route for this investigation as it has already proven itself 

capable of being optimised for huge static graphs through means of Multilevel and 

approximation schemes (Walshaw (2003) and Hu (2005)). In addition, the algorithm has 

been introduced to dynamic graph drawing previously (Brandes and Wagner (1997)), 

making it a good candidate for experimentation. 

A particular quality of the Spring Embedder is its iterative approach to generating layout, 

such that the algorithm (as described by Eades (1984)) can be run continuously, which when 

visualised appears as an animation showing progressive changes in vertex positions. 

Although other dynamic drawing algorithms exist, there is little research in enabling them 
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to cope with larger graphs with more than 8000 vertices, unlike the Spring Embedder which 

has previously been optimised for drawing larger static graphs (with up to millions of 

vertices, Walshaw).  

Through implementation of the Multilevel scheme and Octree approximation (to better 

understand the algorithms), similarities between the two became apparent and Multilevel 

Global Forces (MGF) was born, offering further efficiency savings for the Spring Embedder 

and making the algorithm choices much more desirable. An implementation of the Barnes 

Hut Octree, and the Multilevel Spring Embedder were introduced into the Experimental 

Framework for comparison to MGF. 

However, the Spring Embedder alone (as described by Eades (1984)) has difficulty with 

overcoming minima to untangle larger layouts, for which the solution in static graph drawing 

(introducing a cooling schedule to allow high energy movements, Fruchterman and 

Reingold (1991)) is not directly transferrable to dynamic graph drawing. 

The Modified Dynamic Spring Embedder acts as the solution for this; developed through 

implementation and experimentation (following discussion with Danko, Appendix 10.3 ), 

the algorithm provides repulsive and spring forces to overcome minima. As the algorithm is 

an adaptation of the Modified Spring Embedder, the multilevel scheme and Multilevel 

Global Forces became available with few changes necessary.  

To further reduce complexity, other methods for optimising the multilevel structure and 

vertex placement schemes are investigated. 

In order to attain dynamic drawing however, the algorithms should support graph operations. 

This includes applying those changes to any multilevel and approximation schemes, with 

minimal impact to layout and running time. As such, four methods are suggested for 

updating the schemes with the graph changes to different extents; low, medium and high 

level updates, and total re-matching. 

The extent of the update determines if visualising graph changes in layout is priority (high-

level updates and re-matching) or if layout preservation is more a priority (low-level update). 

Mid-level updates are included to add a balance between both. 
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3.4  Implementation Methodology 

In order to test and compare algorithms, and provide a fair and unbiased analysis of the 

contributions in respect to state-of-the-art methods, an Experimentation Framework for 

Graph Drawing is implemented. The framework acts enables implementation of different 

heuristics described in literature and combine them into different algorithmic configurations 

for comparison.  

The aim is to remove environmental (processing power, memory, operating system) and 

implementation (data structures, executing environment) discrepancies which may 

contaminate results.  

Such experimental frameworks are not new and can be found in other research in the area, 

and are used to provide context for the contributions (e.g. Misue et al (1995), Hu (2005), 

and Veldhuizen (2007)).  

3.4.1  Configurations 

An object orientated approach is used to break algorithms into single-purpose components 

which model a specific part of the drawing process such that they can be used independently. 

These can then rebuilt to include new or modified components for experimentation.  

The shared resources (components, data structures and environment) should make 

comparison of the new algorithmic approaches fairer, with significant changes in running 

time and layout quality occurring as a result of algorithm changes.  

In addition to the components, the Experimental Framework allows for applying various 

parameters and values to variables in the algorithms (for example, modifying cooling 

schedules). Experimentation can then identify which values can provide the best 

configurations for the algorithms in particular contexts. 

Suggested configurations for the contributions are described in the Evaluations (Section 7 ). 
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3.4.2  Limitations 

Although there is reuse of components, it’s difficult to ensure they are not bias (for example, 

the Octree uses functions which are not used by other components and could slow down the 

component). Although algorithmic design is similar throughout, there is no perfect 

comparison.  

The use of shared components limits the optimization that can be applied. Specialized 

algorithms which are single purpose can be optimized to a very fine detail, unlike an 

algorithm comprised of shared parts (optimization of which must apply to all algorithms 

using them). 

Even if algorithms are implemented to the most efficient extent possible, comparison 

of algorithms are constricted by analysis; results are provided only for a selection of 

test data expected to provide a general behaviour, which is measured using ‘aesthetics’ 

which are not a perfect representation of a graph layout. As such, the recorded 

performance is unlikely to be 100% perfect. That being said, test data is taken from 

other graph-related areas (Partitioning, see 5.1 ), and includes data from real life 

sources. 

3.4.3  Benefits 

Like any undertaking, there are limitations, however there are a large number of benefits to 

be had from using an Experimentation Framework. The platform allows for: greater control 

over variables; high flexibility in algorithm and experimental design; automation of common 

tasks (particularly useful for repeating tests and collecting data). 

Some of the more practical uses is the ability to access methods and functions, and ability 

to compare them with minor changes to the remaining algorithm, allowing for investigation 

of ideas and curiosities quickly. 

Moreover, implementing the works of others gives better insight into the workings of the 

algorithms they describe, and may highlight some behaviours which are not openly spoken 

about in the publications (for example, the impact of bounding boxes in approximation, 
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Figure 3.1 for example). Being able to follow the works of others builds confidence in the 

contributions here and acts as a guiding hand in the development of new algorithms. 

 

Figure 3.1. Layout generated for sphere using Fruchterman-Reingold Spring Embedder using MGF approximation 
(left) and Octree approximation (right), exhibiting flattening of the graph as it encounters a boundary of the 
approximation structure 

3.5  Measuring Layouts 

Much of the literature in graph drawing provide definitions of aesthetics which are targeted 

in existing drawing algorithms (Tamassia et al, 1988), here the optimisation of aesthetic 

criteria is assumed through reuse of existing drawing methods. Optimisation of aesthetic 

criteria is not investigated here, instead using the metrics for comparing algorithm 

performance and parameter usage. 

Although associated, static and dynamic layout analysis is different, analysis of static graphs 

focus on structural and geometric properties (such as shortest paths and connectivity), 

whereas dynamic layouts are reviewed in regard to the movement and change between 

consecutive frames. Literature however, only investigates these for smaller graphs. As such, 

a method for scaling the attributes to larger graphs through use of a multilevel scheme is 

described below, after which aesthetics of static and dynamic layouts assumed to affect 

readability are described in their respective sub-sections. 

It should be noted, and has been noted previously by various authors (Table 2.2), that 

although the use of “aesthetics” here infers quality in layout, the effectiveness of a layout 

for representing data cannot be completely objective due to each individual’s interpretation 
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of the visualisation. Determining the accuracy of layout in regard to an individual’s 

interpretation is considered outside the scope of the research.  

3.5.1  Local and Global Aesthetics 

Investigation of aesthetics which affect the readability of smaller graphs is well documented 

(see Table 2.2, Literature Review), however there is little investigation into readability of 

layouts for large and huge graphs. As a result, methods providing static layout for larger 

graphs often analyse layout quality with regard to the aesthetics of smaller graphs (Walshaw, 

2003) or provide only a subjective comparison of layouts (Hu, 2005).  

Although such aesthetics are effective at comparing layouts (Walshaw, 2003), larger graphs 

differ due to the vastness of the data making it difficult to observe and understand all the 

data at once, and so may not represent the readability as indicated by empirical testing (see 

Literature Review, Chapter 2 ). For example, tests such as identifying shortest paths (i.e. 

Purchase 2000) between two vertices support the use of edge crossings as a factor in 

readability, however identifying a shortest path between vertices in a large graph is much 

more difficult due to the higher volume of edges. 

Dwyer et al (2009) showed that layouts of a graph drawn by humans have high focus on 

cliques more than edge crossings, suggesting that larger collections of data may be easier to 

analyse and read when broken into more manageable chunks for analysis. Further to this, 

for large collections of data it is expected a user will be more interested in the data as a 

whole (global) layout, only focusing on smaller areas of the layout for specific queries (local 

layout). An example of the author’s interpretation of global and local layout of an example 

graph is provided in Figure 3.2 whereby vertices are grouped to form a global layout. 
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Figure 3.2. A small general graph comprising of three densely connected clusters loosely connected to 
one another (left), showing an interpreted view of the “global layout” whereby the densely connected 
clusters are viewed as individual vertices with edges and reducing the complexity of the diagram. 

In graph drawing, multilevel schemes are used to scale force directed placement techniques 

to global layout through approximating the structure of the graph. Similarly here, a 

multilevel scheme can be used to identify an approximation of the global layout of a graph, 

providing a means of observing the global layout and applying the aesthetics/metrics used 

to analyse smaller graphs. This assumes global layout is approximated in coarser graphs and 

local layout is approximated in the finer graphs, such that aesthetic criteria can be measured 

for analysing different levels of readability in layouts. Figure 3.3 shows an approximation 

of a graph, showing a similar “global layout” to the author’s interpretation in Figure 3.2.  

 

Figure 3.3. The same graph of Figure 3.2 but coarsened using a multilevel scheme to form an 
approximation of the structure, simplifying it to provide a simplified layout similar to the authors 
"global layout". Dotted lines identify those edges which are collapsed to form the vertices in the coarser 
graph (right). 
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The examples of Figure 3.2 and Figure 3.3 are of a small graph whereby the local layout and 

global layout are observable from within the same visualisation. However, for larger graphs 

it is expected that local layout will require the user to explore specific parts of the layout and 

effectively split local and global layouts, suggesting analysis should follow such pattern of 

global and local analysis. 

3.5.2  Aesthetics of Static Graphs 

Research into graph aesthetics and readability provides the basis for optimisation of specific 

attributes of layouts in order to maximize the amount of information which can be read from 

them. Reviews of methods (Tamassia et al, 1988) show many algorithms optimise different 

criteria, with empirical studies identifying which criteria have greatest impact on readability 

(see Literature Review, Table 2.2).  

Although many algorithms use subjective analysis (Eades (1984), Fruchterman and 

Reingold (1991), Davidson and Harel (1996), Hu (2005), Koren et al (2002)), the use of 

aesthetics for analysis and comparison of layout quality is chosen here, specifically: Edge 

Crossings (used by Walshaw, 2003) and Edge Lengths, chosen as they have previously been 

used in the area, they are suggested to have high impact on readability of layouts, and 

because they can be measured numerically (enabling more of a comparison of layouts than 

subjective views). 

The nature of such attributes indicate similarity between layouts of isomorphic graphs, used 

to identify difference in layout quality between algorithms and parameters. Fewer edge 

crossings are expected to indicate more readable layouts (see Literature Review, Table 2.2) 

and ranges in edge lengths indicate the extent of the Peripheral Effect (Hu, 2005). 

It should be noted that the ability to indicate readability in layouts is only assumed due to 

suggestions in literature (see Literature Review, Table 2.2), comparison also requires a 

subjective analysis to confirm the findings. As an example, given two 55x55 grids, one 

drawn with few edge crossings and the other with a fold in the body of the layout resulting 

in significantly more edge crossings (Figure 3.4), the difference is substantial and automatic 

analysis may reject the folded grid as a suitable layout, however, such a fold in layout may 

not alter the understanding of the graph as being a grid.  
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Figure 3.4. Two layouts of a 55x55 vertex grid, the layout on the left shows a significant fold with high 
numbers of edge crossings, whereas the right exhibits a lesser fold with far fewer edge crossings. 

 

3.5.3  Metrics for Graph Stability 

Dynamic layouts are typically visualised as frames or time-slices exhibiting layout changes 

via vertex movement. Frames are generated over time as layout changes, with differences 

between layouts in consecutive frames expected to relate to a user’s interpretation of a 

layout. This interpretation is referred to as the metrics for graph stability (see Literature 

Review, Mental Map), with significant rapid change expected to result in the loss of a user’s 

understanding. There are various definitions attempting to define user perception of layout 

across literature (see Literature Review), however for the purpose of analysis in this research 

the interpretation here is defined as the difference in vertex movement and difference in edge 

crossings between frames (as suggested by Purchase, 2007, 2008).  

By recording the changes in vertex movement and edge crossings, it is believed analysis will 

be able to identify changes in the stability of the graph. Figure 3.5 shows an example which 

models this behaviour, describing a large decrease in edge crossings over the first 10 frames 

which is expected to be difficult for someone to follow. Larger vertex movements and 

changes in edge crossings between frames are expected to make the evolution of a layout 

harder to follow, with smaller movements making it easier to follow.  
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Figure 3.5. Given an example graph with initial random layout, it is expected the changes in edge 
crossings will gradually be reduced over time as Force Directed Placement pull vertices into more 
optimal positions, and if so, such reduction can be visualised and compared as a chart to determine if 
the efficiency of the drawing algorithm. 

3.5.3.1  Layout Generation and Layout Adjustment 

Measuring metrics for graph stability is expected to indicate the change in a layout overtime, 

the extent of which will likely change due to the number and frequency of operations to a 

graph (and an algorithms ability to respond and represent these changes in layout). Changes 

as a result of these operations is described as Layout Adjustment. 

In addition to layout generation, it is of interest to the author to push drawing algorithms to 

an extreme to investigate what would happen to a layout after an extreme number and 

frequency of operations. Such examples can be generated through simple heuristics, 

however the data generated may not be a true representation of real world examples. As 

such, is used as an extreme of Layout Adjustment. The aim is to generate a layout for large 

static graphs (from an initial random layout) using a dynamic graph drawing algorithm, and 

measure the metrics for graph stability over time, identifying how well the algorithm can 

overcome minima and how quickly an optimal layout can be generated. 

3.5.4  Summary of Aesthetics and Layout Quality 

Graph aesthetics known to impact readability are used to measure the quality of layouts such 

that analysis and comparison between algorithms and parameters can be achieved. The aim 
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is to provide a means of quantifying the differences between algorithms with regard to how 

much they increase or decrease the readability of layouts. 

Given the lack of literature governing aesthetics for large graphs, it is expected that 

aesthetics known to impact small graphs can be combined with use of a multilevel scheme 

to provide analysis of approximate global layouts of graphs (similar to its usage with force 

directed placement). 

The metrics used here for measuring the quality of static layouts and individual frames of 

dynamic layouts are: 

• Number of edge crossings; 

• Uniformity of edge lengths. 

Metrics for measuring graph stability are: 

• Movement of vertices between frames; 

• Difference in edge crossings between frames. 

Two methods are suggested for observing performance on changing layouts: 

• Layout Adjustment for layouts with operations being applied to a graph with initial 

layout provided 

• Layout Generation  whereby a graph is given an initial randomised layout, and is 

then improved until an optimal layout is found 

3.6  Multilevel Global Force (MGF) 

Both static and dynamic graph drawing share a history in force directed placement with early 

algorithms being used for both (Eades (1984), Davidson and Harel (1996)). Accordingly, 

and as part of the contribution presented in this thesis,  developments in static graph drawing 

were analysed and a new method introduced to provide an efficiency saving for force 

directed placement techniques which may also be applied to dynamic graph drawing. To 

provide comparison to existing approaches, the method is described for use with static graph 

drawing, with further adaptation for dynamic drawing (Section 3.7.6 ). 
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As indicated by literature, one of the dominant problems facing force directed placement 

techniques is overcoming minima, that is, layouts which require temporary increase in 

energy to achieve lower energies (early algorithms do not allow such increases in graph 

energy, e.g. Eades (1984), Kamada and Kawai (1989)). Cooling schedules combined with 

powerful forces (Fruchterman and Reingold, 1994) are shown to be effective at overcoming 

this, but larger graphs tend to exhibit more minima in which to get stuck, and as a result 

global layout is often poor (high number of edge crossings).   

Multilevel schemes have been shown to overcome this, providing global layout through 

application of Force Directed Placement to approximations of a graph containing fewer 

vertices (Walshaw (2003), Harel and Koren (2001)). Such schemes produce subsequently 

smaller and more approximate graphs on which layout algorithms can be applied, providing 

layouts which are interpolated and then refined using further force directed placement.  

3.6.1  Calculating Approximation 

Typically multilevel schemes are used to generate layout through the following steps (more 

detailed pseudocode can be found in Appendix 10.22.3 ): 

• Calculate a collection of successively coarser graphs 

• calculating a layout for the coarsest graph using Force Directed Placement (FDP) 

•  interpolating the layout into the next finer graph of the sequence 

• Further refinement using FDP.  

Figure 2.1 and Figure 2.3 shows that the both multilevel schemes and Octree approximation 

techniques can be mapped as trees to identify the splits and matches within, however their 

usage is different with one method approximating space and the other approximating graph 

structure.  

By altering the multilevel scheme such that coarser vertices take the average positions of 

their finer counterparts after refinement, the multilevel scheme can be adapted to provide an 

approximation of both structure and layout of a graph.  

Figure 3.6 illustrates the procedure for this on an example graph: 
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• The graph has already been processed and exists within a multilevel scheme, 

whereby the matched independent edges are denoted as dashed lines in each of the 

coarser abstractions; 

• Starting with the original graph G0, for each of the independent edges which have 

been matched, the positions of the two connected vertices are averaged to give a 

centre of mass (similar to the Octree approximation); 

• The centre of mass is then given to the parent vertex which represents the two 

vertices in the coarser graph (G1); 

• This process is then repeated on each of the subsequent coarser graphs, building a 

tree of graph layouts which approximate the layout of the original graph; 

From this, the vertices in the coarser graphs have been given positions which approximate 

the positions of the vertices they represent in the original graph, effectively approximating 

the layout. Note that the shape of the coarse graph in Figure 3.6, which would normally have 

equal edge lengths, is elongated to represent the positions of vertices in the original graph.  

 

Figure 3.6. Combining the approximation of structure as generated by the multilevel scheme with an 
approximation of layout, with an initial graph of 8 vertices coarsened to form a graph of 4 vertices, 
approximating the positions (crosses) of the coarsened vertices (top). The process is repeated for each of 
the coarsened graphs (middle, bottom). 
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In order to use the scheme as approximation of vertex positions, the process is reversed such 

that vertices in coarser graphs take the average position of the vertices they represent 

(children), using a post order traversal of the MGF tree. 

By updating the positions of vertices in coarser graphs, the layout generated by Force 

Directed Placement is overwritten. Those former positions cannot be used for approximation 

due to differences between layout generated through force directed placement and 

approximate positions, as shown in Figure 3.7. As a consequence of this, implementation 

and usage of Multilevel Global Force use an additional set of coordinates for coarser vertices 

due to the need to retain the layout generated for coarser graphs (a description is provided 

in 3.7.6 ). 

 

Figure 3.7. An example of changes in positions between graphs, showing the difference between outdated 
positions generated by Force Directed Placement and an approximation of the position of vertices 

Once all coarser graphs have been updated with approximate positions, the tree becomes 

ready for use in force calculation. Usage is the same as the Octree (providing the ability to 

switch between them without alteration to force directed placement), whereby given a vertex 

v, repulsive forces are calculated between it and its siblings, its parents siblings and so forth 

until the root of the tree is reached, as shown in Figure 3.8.  

Figure 3.8 shows traversal of the multilevel mapping, with repulsive forces approximated 

against vertices in the coarser graph: a, b, and c, acting upon a vertex, v. As vertices v and a 

share the same parent vertex, repulsive forces are calculated between them, after which no 

more sibling exist and traversal of the multilevel mapping tree begins. The parent of v has 

one sibling, b, representing and approximating the position of two vertices in the original 
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graph, and used to approximate the repulsive forces of those against v. Further traversal 

reaches another vertex which has sibling c, representing and approximating the position four 

vertices in the original graph for repulsive calculation. Further traversal is not possible as 

the root of the mapping has no parent or sibling vertices. 

 

Figure 3.8. An example of Multilevel Global Force approximation in approximating global repulsive 
forces (left) and the usage mapped to the MGF tree (left). Repulsive forces are calculated between a 
vertex v, and coarse vertices (approximate positions) a, b and c. The result is reduced number of 
calculations. 

The effect on running time is dependent on the structure of the mapped tree, with Multilevel 

Global Force providing fewer calculations when using a multilevel scheme (Walshaw, 2003) 

than the Octree (Barnes and Hut, 1964). The example above, Figure 3.8, reduces the number 

of calculations acting on a vertex from 7 to 3, whereas the Octree (Figure 2.3) reduces the 

number to 4, totalling  in 24 and 32 repulsive force calculations for the graph (per iteration). 

The structure of the approximation is the basis for the efficiency saving as detailed below. 

3.6.2  Structure of Approximation 

The term “structure” here refers to the tree-like mapping of matches for approximation (as 

shown in Figure 2.1 and Figure 2.3). The connectivity of this tree determines the number of 

calculations made per vertex when approximating inter-vertex interactions.  

The difference in structure and dimensions of the tree alters the directions in which repulsive 

forces are calculated. The Octree provides an equilateral approximation of repulsive forces 

in four or eight directions around the centre of approximation, resulting in a layout which 

expands outward in these directions, whereas an MGF tree constructed via edge contraction 

ultimately provides two directions of approximation (between the two coarsest vertices) 



79 

 

causing stretching on the axis between them. Stretching or deformation as a result of this is 

referred to here as “warping” of the layout (see Figure 3.9). 

 

 

Figure 3.9. Approximation with MGF showing weakened repulsive forces in approximation, resulting in two parts 

of the graph being squashed together to form a crease in the layout. Coloured regions indicate the vertices belonging 

to the two coarsest vertices in the multilevel scheme. 

It should be noted, warping in the Octree is minimised due to the approximation grid being 

placed with the centre atop the centre-of-mass for the graph, however as vertices move 

between splits, warping can become more prevalent due to differences in weights. MGF 

circumvents this by not relying on an external structure atop the layout. 

Other multiscale schemes (Hachel and Jünger (2005), Gajer et al (2001)) could be used to 

generate similar approximation trees with differing dimensions. To investigate the impact 

of structure on layouts and running time, the matching algorithm used here is modified in 

various ways. 

In order to build the most optimal solution, modifications for generating the multilevel 

scheme are investigated in a hope to reduce the complexity (and running time) of graph 

drawing algorithms (enabling larger graphs to be drawn, particularly of use for Dynamic 

Graph Drawing). 

Multimatching is a method which contracts multiple edges connected to a common vertex, 

providing more directions of approximation. The method will generate coarser 

representations of a graph but is expected to reduce warping over edge contraction, and 
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generate layouts similar to those by the Octree. A more in-depth description is provided in 

Appendix 10.20 . 

Brute Matching aims to collapse entire neighbourhoods of vertices, coarsening all edges 

connected to a common vertex. The process is implemented as an extreme Multimatching 

and is expected to provide an irregular matching tree as opposed to one which aims to 

achieve a constant matching value. See Appendix 10.8 for more information. 

Pattern Processing is a more specific matching technique for identifying and processing 

common vertex patterns/structures within a graph which can be given a known or expected 

layout which can be calculated after FDP. This interest here is the use of identifying such 

patterns (for example, leaf vertices) and coarsening them such that they are approximated as 

a single vertex. The removal of the patterns reduces the complexity of a graph, and any 

resulting matching/approximation tree. 

3.6.3  Summary of Multilevel Global Force 

Multilevel Global Force (MGF) approximation refers to the usage of the multilevel scheme 

for approximation of global forces in force directed placement based on the inherent 

relationships within graphs (in contrast to space decomposition techniques). The method can 

be exploited from a multilevel scheme, combining approximation of space and structure 

requiring no additional implementation for its use. 

The method can replace existing methods and is near identical to the Octree method 

currently used in literature (Hu (2006), Hachul and Jünger (2005), Veldhuizen (2007)), and 

makes approximation more flexible, removing the requirement for detached grids being 

placed atop the layout. The expectation is a method of approximation which better represents 

the structure of the graph and does not require the maintenance of space decomposition 

techniques.  

3.7  Dynamic Graph Drawing 

A dynamic graph is a collection of vertices and edges which change over time, with the 

changes not necessarily known beforehand. Dynamic graph drawing is the generation or 
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adjustment of a layout to reflect the changes to a graph as they occur, typically to optimise 

the readability of the drawing through the influence of graph attributes. 

Many of the force directed placement methods identified in the literature survey are shared 

with static graph drawing, however the focus is on gradual development of a layout in 

reaction to changes more than finding an optimal layout as quickly as possible. Few 

techniques exist which allow for the visualization of large graphs (>11000 vertices as 

described by Walshaw, 2003), with those available utilising static methods optimised for 

visualisation and preservation of the graph stability (Frishman and Tal (2008), Papakostas 

and Tollis (1996)). The methods introduced here look to continue this by suggesting drawing 

methods derived from static drawing techniques, altered to optimise for visualisation of 

vertex movements. 

The Spring Embedder is of interest in this research due to its usage in static graph drawing 

and the existing techniques used to overcome local minima and high running times (see 

Literature Review). The subsections below detail the definitions used here regarding 

visualisation of dynamic graphs, including descriptions of the amendments supported. In 

particular there is a new method of dynamic matching for the inclusion of changes to a graph 

into the multilevel structure. In addition, an adaptation of a spring embedder typically used 

in static graph drawing (Fruchterman and Reingold, 1991) and adaptations of a multilevel 

scheme and MGF approximation for use in dynamic graph drawing are provided.  

3.7.1  Visualisation 

Graph layout is visualised as an animation in real time such that modifications to a graph as 

they are made. The animation is composed of frames, with each frame generated per iteration 

of force directed placement, resulting in a collection of static graph layouts. Force directed 

placement is applied continuously, with changes made after each iteration such that they will 

be displayed in the next frame.  

Due to high running times associated with FDP, optimisation of force calculation is required 

to reduce the time to generate frames ensure smooth visualisation. Each frame should result 

in some movement of vertices into lower energy positions, ensuring the differences in layout 

between frames are not so significant that all readability or familiarity is lost.  
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Specifically here, layout generation refers to the process of generating and visualising static 

graph layout from some initial layout, allowing a viewer to observe evolution of a layout 

and identify structures or patterns as it develops. Layout adjustment refers to visualisation 

of changes to a graph as they occur, having been provided an initial layout. As such, changes 

to the graph are expected to alter the layout. Combination of the two, although possible, 

would combine the actions of FDP to both generate level and correct layout, making 

measurement difficult. 

3.7.2  The Dynamic Graph  

The dynamic graph has two components: the base dataset (a typical static graph) and a 

collection of amendments to be applied over some time period. In some cases, the base 

dataset may be an empty graph, or the amendments are unknown beforehand (changes occur 

in an on-line fashion), however, both structures will exist. 

In the experimentation here, the base dataset is treated as a static graph and is provided with 

a layout (through static graph drawing or layout generation) in preparation for anticipated 

amendments (layout amendment). As amendments occur the layout is then adapted by a 

process of continuous force directed placement.  

The amendments, referred to as operations, are included either as a schedule or occur in 

real time through some user input. A description of the available operations are provided in 

Table 3.1 and are standard amongst literature (Misue et al (1995), Böhringer and Paulisch 

(1990), Shannon and Quigley (2007), Papakostas and Tollis (1996), Veldhuizen (2007)). 

3.7.2.1  Graph Modification Operations 

Operations refer to the modification of a graph which can be the addition, removal or 

modification of vertices and edges. Operations are performed over time such that the effect 

can be seen as part of the drawing process, for example, the gradual separation of two 

vertices after removal of an edge connecting them. 

Operation Application Description 

Addition Vertex Adding a new vertex, often accompanied by an edge to 

connect it to the graph immediately 
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Edge Adding a new edge to connect two vertices, providing both 

vertices exist and an edge doesn’t already connect them 

Removal Vertex Removal of a vertex and any edges connecting it to the 

graph 

Edge Removal of an edge between two vertices 

Modification Vertex Modification of a vertex or its attributes such as position, 

weight and label 

Edge Modification of an edge such as its attributes, weight and 

label 

Table 3.1. Operations available for dynamic graphs in this research 

For many of the operations, the graph is queried to determine if the desired change is 

possible, for example, identifying whether an edge already exists. The associated complexity 

of each is dependent on the implementation, the data structures used, the algorithmic design 

and many other factors. More detailed information regarding the complexity here can be 

found in 10.22 . Complex operations, such as the introduction or removal of a sub graph or 

the merging of two graphs can be achieved through combinations of operations. 

It should be known that the effect of each operation on a layout is dependent on many factors 

and is largely unpredictable, for example, removing edges randomly will result in the graph 

becoming increasingly sparse, although some global layout may remain (Figure 3.10 shows 

the graph 3025, which has had edges randomly removed), eventually disintegrating into 

disconnected components. In contrast, adding an edge to connect two distant vertices (Figure 

3.11 shows the graph 3025, which has introduced edges between opposite corners of the 

graph) will drastically alter the global layout, affecting readability in a different way. 
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Figure 3.10. The graph 3025 with few (left) and many (right) edges removed, showing preservation of 
the global layout and degradation of local layouts 

 

Figure 3.11. The graph 3025 with the addition of two edges connecting opposite corners of the graph a 
large change in global layout. The graph appears three dimensional due to the folds, however, remains 
2D. 

In previous literature (Veldhuizen, 2007), amendments to a graph have only been applied to 

the graph being visualised with no update to the multilevel scheme detailed, and updates to 

approximation assumed through their usage. As such, the description of such updates are 

provided in Dynamic Matching. 
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3.7.3  Dynamic Matching 

Performing operations on a graph may provide alterations to layout, but only on a local scale. 

The use of a multilevel scheme can offer layout amendment on a global scale, providing 

visualisation of the impact those changes have on the dataset as a whole. Dynamic Matching 

refers to the process of updating the multilevel structure. 

Although necessary to retain accuracy for high quality layouts, the update of matchings in 

the multilevel scheme is an expensive task requiring the analysis of the current scheme to 

determine whether the changes can be accommodated in the existing structure, or whether 

alterations are required. In addition, the extent and frequency of operations may alter the 

multilevel structure so much that identifying an entirely new matching or staggering 

operations is more efficient.  

The act of updating the multilevel scheme is expensive but may also be essential to ensure 

amendments are incorporated into the global layout generation. Without update the 

multilevel scheme will retain the approximate structure generated from the original graph, 

and this could be expected to result in the generation of “ghost movements” (referring to 

changes in vertex movement as a result of vertices existing in coarser representations, which 

are no longer in the original graph). 

In addition to the update of the multilevel scheme to incorporate changes on a global scale, 

changes may also alter the multilevel matching in a way which adversely affects layout 

quality. It can be expected that addition of edges and vertices will result in the ability to 

make additional branches in the approximation tree, however, removal of vertices and edges 

can result in fragmentation of the matchings whereby so many vertices are unmatched 

(matched only with themselves) that the structure of the tree can no longer be considered a 

good representation of the graph (as shown in Figure 3.12). Although primitive processing 

provides a means of dealing with this (see Section 3.6.2 ), methods are required to provide 

updates to the multilevel scheme which can reduce the effect this may have without other 

techniques required. 
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Figure 3.12. Defragmentation of matching as a result of edge and vertex removal 

As a result, the following techniques are provided for updating the multilevel structure with 

amendments made to a dynamic graph, with illustrations of their usage for the addition of 

two vertices and two edges to an example graph below (Figure 3.13). 

• Low-level – changes are only applied to the original graph with only weightings 

taken into account in the multilevel scheme (Figure 3.14) 

• Mid-level – changes apply to half of the levels of the multilevel scheme, with 

operations being accounted for up to the middle graph, preserving the scheme 

(Figure 3.15) 

• High-level – changes are fully incorporated into the multilevel scheme but the aim 

is to preserve as much of the original scheme as possible (Figure 3.16) 

• Rematch – the entire multilevel scheme is scrapped and generated anew (Figure 

3.17) 
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Figure 3.13. Given an example graph (in this case, part of the London Underground), and generation of 
a multilevel scheme using edge contraction (left), a resulting MGF tree is generated automatically (right) 

 

Figure 3.14. No multilevel update for the addition of two vertices and two edges to the graph in Figure 
3.13, showing the immediate matching of the two edges and their addition into the multilevel scheme by 
sharing the parent of the anchoring vertex 

 

Figure 3.15. Half-update of the multilevel scheme for the addition of two vertices and two edges to the 
graph in Figure 3.13, showing the incorporation of the vertices as typical matchings up to the 3rd (mid) 
level, whereby they are joined with the parent of neighbouring matches (identified through traversal of 
the tree from the anchored vertex) 

 

Figure 3.16. Full update of the tree, and coincidently the same structure as generated by an entirely new 
matching, of two vertices and two edges added to the graph in Figure 3.13. The tree is updated until an 
unmatched coarse vertex is identified with which the new matchings can be matched (found at the 4th 
level). If no matching is available, a new coarsest graph is generated and the matching is matched with 
itself. 

These four update methods are suggested for incorporation of operations into the multilevel 

scheme, offering differing extent of updates for both multilevel and approximation methods. 

They offer different controls over the incorporation of changes in global layouts, with a full 
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update expected to have high impact on global layout, and low-level update expected to 

preserve global layout. 

3.7.4  Dynamic Modified Spring Embedder 

As mentioned previously, the Spring Embedder is the approach of interest here, and 

specifically the modification described by Fruchterman and Reingold (1991), for its ability 

to overcome minima and provide high quality layouts quickly. Although the heuristic 

suggested by Eades (1984) can provide the expected high quality layouts and runs 

continuously, the method is prone to getting trapped in local minima. Additionally, the 

modified spring embedder has previously been used with multilevel schemes and 

approximation, making transition of those into dynamic drawing simpler. 

The Fruchterman-Reingold method is not viable for use in dynamic graph drawing in its 

original form due to the method of calculating vertex displacement. The approach is 

designed to allow for large movements in early iterations, which are achieved through use 

of strong forces to move vertices large distances relative to the ideal edge length. The forces 

are so strong however, that as a vertex moves into a new position in one iteration, opposing 

forces will move the position back in the next. This can result in the oscillation of a vertex 

between positions, with use of a cooling schedule to limit the movement in each iteration, 

so that as forces push the vertex one way, when pushed back the movement is reduced. This 

continues until the movement is less than some tolerance and the algorithm terminates. The 

erratic movement makes visualisation difficult to follow with the cooling resulting in quick 

convergence. After the cooling scheme has finished, any subsequent operations on the graph 

will not result in layout adjustment.  

Methods for resetting the cooling schedule (such as quenching, as described by (Davidson 

and Harel, 1996) allow for the refinement of layout providing the incorporation of dynamic 

operations, however visualisation is similarly erratic making changes difficult to follow. 

Experimentation has shown that replacing the movement limit provided by the cooling 

schedule (a changing value) with a constant value provides continued movement of vertices, 

allowing for continued adaptation of layout and the ability to include further changes. The 

use of a constant value also removes the termination clause allowing for continual layout 



89 

 

development, however oscillation in vertex movement is still exhibited (albeit reduced). The 

greater the limit on vertex movement, the less pronounced the oscillation and the smoother 

visualisation, but the more iterations are required for the layout to converge. 

Delving deeper into the literature led to an implementation for use on GPUs which visualises 

graph generation in the intended fashion, however no research documents accompanied the 

work. Correspondence with the author (Daniel Danko, 2013, Appendix 10.3 ) suggested the 

use of individual cooling schedules for the spring and repulsive forces. Through some brief 

experimentation it was found that removing the cooling schedules altogether in favour of 

separate constants provided a method to stop the oscillation in vertex movement and retain 

sufficient force to provide vertex movement and overcome minima.  Due to the removal of 

the cooling schedule, large initial movements used to escape minima are stopped in favour 

of gradual movement (closer resembling the Eades (1984) implementation). 

Displacement of a vertex v, as a result of a vertex u, can be simplified as: 
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Where coola > coolr to avoid the graph infinitely expanding due to overpowering repulsive 

forces.  

Unlike traditional cooling which would iteratively decrease the cool value (for example, 

λ⋅= coolcool :  where 90.:=λ ), coola and coolr are constants to allow continued vertex 

movement. The cool parameters are provided with different values in order to find an 

equilibrium point at which the oscillation stops and layout is generated until some low 

energy layout is provided. 
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The Dynamic Modified Spring Embedder can be run indefinitely, adjusting layouts as 

operations occur. Pseudocode is provided in Appendix 10.22.4 . 

3.7.5  Multilevel Layout 

As with static drawing algorithms, multilevel schemes are suggested to provide and maintain 

a global layout. However, due to the requirement to visualise changes to vertex movement 

gradually, the same methodology cannot be applied (finding a layout of the coarser graphs 

first and interpolating the completed layout). Instead an adapted approach is required which 

allows layout to be interpolated after each iteration of force directed placement. In essence, 

the suggestion presented here is a method which applies FDP to all levels of the multilevel 

simultaneously. 

Unlike the static implementation, finer vertices are unable to take the position of coarser 

vertices or risk overwriting layout provided by local force directed placement (or conflicting 

movements). Instead, it is suggested that vertex movement is interpolated, rather than vertex 

position, allowing for finer vertices to be provided layout by moving them in the same 

direction as their coarser approximation. 

The change in vertex becomes: 

)..().(.:. Θ+Θ+= parentvvxyzvxyzv  

Interpolation of movement requires vertices in the finer graph to have positions near those 

of its coarser counterparts in order for the movement to be applicable and useful for global 

untangling of the layout. If positions are not similar enough, the movement may result in 

vertices placed in poor positions resulting in high energy positions. Figure 3.17 gives an 

example of the interpolation of movement, whereby when the triangular vertex of a coarse 

graph is moved, the triangular vertices it represents in the finer graph are provided the same 

movement (different shapes are used to identify parent and child vertices between the 

graphs). Figure 3.18 shows the same interpolation of movement, however vertices in the 

finer graph have positions which do not match their coarser parents in the coarse graph, 

resulting in the interpolated movement depreciating the layout, highlighting the importance 

of proximity of vertices in fine and coarse graphs. 
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Figure 3.17. Interpolation of vertex movement between two graphs in the multilevel scheme, 
incorporating the global layout achieved in coarse graphs (top) into finer graphs (bottom). Shapes are 
used to identify parent and child vertices between the two graphs such that two triangular vertices are 
represented by one triangular vertex in the coarse graph. 

 

 

Figure 3.18. Interpolation of movement as provided in Figure 3.17, incorporating the global layout 
achieved in coarse graphs (top) into finer graphs (bottom), however, due to positions of vertices in finer 
graphs not matching those in coarser graphs, interpolation of vertex movement results in poor 
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placement in the coarser graph. Shapes are used to identify parent and child vertices between the two 
graphs such that two triangular vertices are represented by one triangular vertex in the coarse graph. 

Calculation of vertex movement is performed through application of force directed 

placement, however, due to the requirement that changes to layout are visualised gradually, 

vertex movement must remain small enough not to risk altering the layout too quickly. To 

achieve this, force directed placement is applied to each level only once, preventing the 

smaller coarse layouts converge before finer counterparts which take longer to converge.  

The result is a technique which provides a gradual amendment of layout, making generation 

and adjustment easier to follow. 

Although the algorithm is not graceful, the approach provides a heuristic for multilevel 

drawing which can be considered a “brute force” interpretation of the multilevel drawing 

process, open to improvements, adaptations and optimisation. 

3.7.6  Approximation using MGF 

Building upon incorporation of the multilevel scheme, Force Directed Placement can be 

combined with Multilevel Global Force approximation to reduce the running time required 

per generated frame, allowing for large graphs to be visualised smoothly and providing 

improved global representation of operations to the graph. Other methods for approximation 

can be used, for example an Octree (Veldhuizen, 2007), but the nature of Multilevel Global 

Force provides direct incorporation of operations into multilevel and approximation scheme, 

impacting the resulting global force calculation.   

The expected result is a large reduction in running time with minimal changes to layout, and 

in a more practical sense, a simpler implementation (vertex positions do not have to be 

tracked nor do vertices need reassignment to other sections of the approximating grid). 

However, Multilevel Global Force requires alteration for use in dynamic graph drawing 

when multilevel refinement is also used.  

Given a static graph and multilevel scheme, layout is generated for each successive coarse 

graph and interpolated, after which the coarser layout is no longer required and can be 

overwritten by MGF for approximation. In dynamic drawing, layout is interpolated after 

each iteration of Force Directed Placement, requiring the layouts of coarser graphs to remain 
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intact for future amendments to the layout. As a result, coarser positions should not be 

overwritten with an approximation of finer vertex positions, or will result in conflicts in 

positions generated using multilevel FDP and MGF approximation (an example of the 

difference in positions is shown in Figure 3.7).  

A solution is to use two coordinate systems: one to store multilevel layout and another for 

approximation (similar to having two multilevel schemes; and one for multilevel layout and 

another for approximation). A post order traversal of the multilevel scheme (bottom upwards 

from an initial graph to its coarser abstraction) to update the MGF tree will then only update 

those positions designated for approximation, leaving the other for multilevel layout 

generation. 

3.7.7  Summary of Dynamic Graph Drawing 

The aim of the presented research into dynamic drawing methods is to improve the methods 

currently used in order to allow for larger graphs to be visualised. As such the following 

have been proposed and discussed: 

• Visualisation is achieved through frames which can be observed as an animation  

o Layout generation refers to the generation of layout for a graph with no prior 

layout known (initial positions are random)  

o Layout adjustment refers to amendment of an existing layout to provide 

updated visualisation of changes resulting from graph modification  

operations 

• Modifications of a graph with details regarding the extent of the impact on the 

multilevel structure as a result: 

o No-update – changes occur only to the original graph 

o Mid-update – changes occur in half of the multilevel scheme 

o All-update – changes are accounted in all of the multilevel scheme 

o Full-rematch – the multilevel scheme is re-matched and replaced 

• A modification of the Fruchterman and Reingold (1991) spring embedder for use in 

dynamic graph drawing, splitting the calculation of vertex displacement for 

individual forces such that equilibrium between the displacements can be altered to 

provide smooth vertex trajectories 
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o Making use of efficient forces able to better overcome minima 

o Simplified transition of static drawing techniques to dynamic drawing 

• Adaptation of multilevel scheme is suggested providing a “brute force” usage which 

offers global layout generation through interpolation of vertex movement 

• Use of the MGF approximation is described with adaptation for usage with 

multilevel schemes in dynamic drawing 

3.8  Summary  

This chapter covers three main topics of research in which the contributions of the thesis are 

based: Graph Aesthetics, Multilevel Global Force (approximation) and Dynamic Graph 

Drawing. The three subjects are combined to form a framework for experimentation. In 

regard to the problem area identified, the following have been suggested in order to tackle 

some of the challenges identified in literature:  

• An efficient force calculation offering minimal cost (Multilevel Global Force) 

o Combining approximation of space (for example, Octree) and structure (for 

example, multilevel) for calculating global interactions between all pairs of 

vertices efficiently using structural information within the graph 

o Additional methods for altering the structure of the approximation scheme 

and improve incorporation of structural information  

 Multi-matching 

 Pattern processing 

• Optimization of layout visualisation and adjustment for large graphs such that 

changes are visualised immediately (Dynamic Graph Drawing) 

o Definition of Dynamic Graph Modification Operations (addition, removal 

and modification of vertices and edges) and Visualisation through use of 

frames generated per iteration of force directed placement and joined to form 

an animation 

o Adapted Visual Spring Embedder for improved layout convergence and 

better transition of multilevel and approximation (static methods) into 

dynamic drawing methods 
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o Approximation introduction and adaptation (MGF) for either usage on the 

original graph or in combination with a multilevel scheme 

• Global layout and local layout generation simultaneously via multilevel integration 

(Dynamic Graph Drawing) 

o Multilevel adaptation for usage in dynamic graph drawing providing local 

and global layout simultaneously 

o Protocols for efficiently updating multilevel schemes when operations are 

applied to a graph 

• Definition of aesthetics affecting large and huge graphs (Measuring Layouts) 

o Application of graph aesthetics in combination of a multilevel scheme to 

analyse and compare global and local layouts of large graphs 

o Usage of static graph aesthetics as metrics for measuring quality of and 

comparing layouts: 

  number of edge crossings in the layout; 

  average and range of edge lengths in a layout (identifying the 

peripheral effect within layouts) 

o Measuring the metrics for graph stability through monitoring and analysing 

average and maximum vertex movement and edge crossings between frames 

in dynamic drawing 

o Although not a metric of quality, running time is also measured for 

comparison of algorithm performance 
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4  Multilevel Aesthetics: Experimentation and Results 

The experimentation looks to test whether the aesthetic criteria associated with good layouts 

for smaller graphs can be applied to approximation of layouts for larger graphs to indicate the 

quality of global layout. Three approaches to measuring multilevel aesthetics are investigated: 

Global Layout Analysis Analysis of the global layout as modelled by the Multilevel 

scheme, comparing the measured quality (reduction in edge 

crossings between multilevel and single FDP methods) to 

identify if a multilevel abstraction (GN) can be used to measure 

global layout in the original graph layout (G0) 

Local Partition Analysis Analysis of the local layout quality in the partitions of vertices 

which are represented as single vertices in a coarse 

representation of the graph (GN), to identify if the multilevel 

abstraction can be used to better measure local level layout 

numerically in the original graph layout (G0) 

Multilevel Analysis of 

Layout Generation 

Analysis of developing layouts using multilevel abstraction, to 

identify if and how the local and global layouts change for 

differing FDP implementations over time, and if the method can 

offer further insight into the calculation of emerging layouts and 

the relationships between the data within 

 

The quality of the generated layouts are compared on two levels, firstly measuring aesthetics 

for the layout as is (G0), and then for an approximation (GN) of the layout as generated by the 

multilevel scheme (GN = G[ 2|| LG ]).  The results are then compared. Further examination of 

the quality of partitions is also provided, intending to record the quality of local layouts.  

Dynamic layouts are also analysed to determine if the same approach can be taken for dynamic 

graphs, particularly in the interest of the metrics for graph stability. Three drawing methods are 

compared for layout generation: 
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• a spring embedder heuristic (Eades, 1984)  

• adaptation of the modified spring embedder (Section 3.7.4 ) 

• multilevel adaptation of the modified spring embedder (Section 3.7.5 ) 

Each test graph is given an initial random layout, used by each algorithm. Layouts are generated 

over a period of 300 iterations and the quality measured for the layout as is (G0), and an 

approximation of the layout as generated by the multilevel scheme  (GN).Tests are performed 

on the static test graphs and are repeated 5 times.  

4.1  Analysis of Numerical Results 

4.1.1  Global Layout Analysis 

The measured quality of layouts for the test graphs are summarised in Table 4.1. As expected, 

the drop in edge crossings as a result of multilevel usage (G0) is also observed in the 

approximation of layout (GN), with a drop of 81% and 77% respectively. Full results can be 

found in Appendix 10.23.1 . 

The methods tested are as follows: 

• FR - Fruchterman-Reingold Spring Embedder 
• MLFR - Multilevel Fruchterman-Reingold Spring Embedder  

 
 Edge Crossings for G0 Edge Crossings for GN 
Graphs FR MLFR reduction FR MLFR reduction 
3025 11983.60 833.40 93.05% 141.40 15.20 89.25% 
data 113308.60 39032.40 65.55% 220.80 135.40 38.68% 
add32 28507.60 12065.40 57.68% 126.20 34.80 72.42% 
4elt 304280.00 21945.40 92.79% 968.40 126.00 86.99% 
sierpinski10 691717.20 19069.20 97.24% 1033.60 6.80 99.34% 

Table 4.1 Comparison of the number of edge crossings exhibited in the layouts, and approximation of 
layouts, for several test graphs. Two algorithms are used to generate the layouts; Fruchterman-Reingold 
Spring Embedder and Multilevel Fruchterman-Reingold Spring Embedder, with the latter utilising a 
multilevel scheme to improve global layout, reducing the number of edge crossings in the approximate 
layouts.  

The results meet the expectations of the author, the multilevel scheme reduces the edge 

crossings in global layout, and supports analysis of multilevel aesthetics for comparing 

algorithm performance for larger graphs. However, the results here only confirm findings 

which can equally be found by analysing the layout as it is (using a multilevel scheme reduces 
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edge crossings), it is proposed that multilevel aesthetics analysis is more useful for comparing 

layouts from algorithms with unknown behaviours (See Dynamic Multilevel Aesthetics 

Analysis below) in addition to local layout analysis. 

4.1.2  Local Layout Analysis of Partitions 

Measurements recorded for local layout analysis are provided in Table 4.2. The results indicate 

that average edge crossings in local layout partitions show a similar drop to that seen in the 

graphs normal layout in Table 4.1 offering little insight over analysis of the layout as it is.  

 Average Partition Size Average Edge Crossings  
Graph vertices edges FR MLFR reduction 
3025 74.52 146.33 43.48 3.27 92.48% 
data 80.47 425.98 1023.06 618.63 39.53% 
add32 77.32 147.49 129.72 114.86 11.46% 
4elt 142.15 417.88 321.78 34.63 89.24% 
sierpinski10 361.66 723.32 492.75 69.19 85.96% 

Table 4.2. Comparison of the quality of local layout, measured as the edge crossings exhibited in partitions 
of a graph generated by a multilevel scheme. Two algorithms are used to generate layouts for a selection of 
the test graphs, the Fruchterman-Reingold Spring Embedder and the Multilevel Fruchterman-Reingold 
Spring Embedder, expecting both to have similar local quality. 

The range in edge crossings provide a more meaningful picture, displayed in Table 4.3, 

showing that both methods are capable of finding good local layout quality with 0 edge 

crossings, however the multilevel algorithm is capable of reducing the maximum number of 

edge crossings. Although not explicitly achieved through better global layout, it identifies that 

local layout is achieved in both algorithms but the multilevel scheme minimises tangles in some 

areas. 

 FR MFR 
Graph max EC min EC max EC min EC 
3025 168.4 0 33 0 
data 2753.2 0 1823.8 0 
add32 559.8 0 416.6 0 
4elt 1101.2 0 458.6 0 
sierpinski10 1483 0 232.2 0 

Table 4.3 Comparison of the range of edge crossings exhibited in partitions of a graph generated by a 
multilevel scheme. Two algorithms are used to generate layouts for a selection of the test graphs, the 
Fruchterman-Reingold Spring Embedder and the Multilevel Fruchterman-Reingold Spring Embedder, 
expecting both to have similar local quality. 
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4.1.3  Multilevel Analysis of Layout Generation 

Plotting the change in edge crossings for local and global layout are more interesting, as 

depicted in Figure 4.1 and Figure 4.2. 

Figure 4.1 shows the reduction in edge crossings for the graph regular-medium as layout is 

generated from an initial random layout (quality is assessed every 20 frames). The chart shows 

each of the three algorithms effectively reduce the number of edge crossings over 300 frames, 

but allow the reader to the different rates.  

There is little indication as to what’s causing the difference in the data alone, it is expected that 

global layout is generated more quickly for a multilevel algorithm than a standard spring 

embedder, but from the results this is not clear and assessment is based on subjective analysis 

alone. Multilevel analysis provides additional results which can support a more informed 

analysis, for example, Figure 4.2 provides the multilevel analysis for the layouts represented 

in Figure 4.1, showing that the approximate global layout for the Eades Spring Embedder 

contain far more edge crossings. 

 

Figure 4.1. Change in edge crossings for the layouts of the graph regular-medium provided by three 
algorithms, Eades Spring Embedder, Dynamic Fruchterman-Reingold Spring Embedder and a Multilevel 
Dynamic Fruchterman-Reingold Spring Embedder. 

Further inspection of the chart suggests that the Dynamic Spring Embedder is actually more 

adept at finding a global layout than its multilevel counterpart, finding a global minimum in 
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fewer frames. This immediately asks questions which may not have arisen from the standard 

results in Figure 4.1 (such as, why is the performance of the multilevel layout poorer?)1. 

Edge crossings are measured here, however, many aesthetic criteria can be measured in the 

approximate layout, such as edge lengths and average vertex movement. 

 

Figure 4.2. Change in edge crossings for the development of approximate layouts of the graph regular-
medium provided by three algorithms, Eades Spring Embedder, Dynamic Fruchterman-Reingold Spring 
Embedder and a Multilevel Dynamic Fruchterman-Reingold Spring Embedder. 

4.2  Subjective Analysis 

4.2.1  Static Graphs 

Although numerical results are the primary interest in order to facilitate comparison of layouts 

from different algorithms, analysis of the layouts from the authors’ viewpoint is also provided 

to ensure the measured results follow the observable results. As a representation of the methods 

function, analysis of layouts for 3025 are provided as an example (due to its known 55x55 

vertex grid structure).  

                                                 

1 Further investigation shows that the size of the graph means the standard Dynamic Spring Embedder is able to 
find a global and local minimum. Larger graphs prove more difficult for the algorithm, where the Multilevel 
Dynamic Spring Embedder succeeds. 
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The approximation of layout is shown in Figure 4.3, achieved by generating a multilevel 

scheme and approximating vertex positions through a postorder traversal of the matching tree. 

Note that both layouts exhibit zero edge crossings, and how the coarse graph exhibits the same 

elongated layout. Similarly, if a layout was to include an imperfection such as a fold or a twist, 

the approximate layout is expected to also exhibit the imperfection, shown in Figure 4.4. 

 

Figure 4.3. A layout for the graph 3025 (left) generated by a Multilevel Fruchterman-Reingold Spring 
Embedder, and an approximation of the layout generated by a multilevel scheme (right) representing the 
global structure of the graph. 
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Figure 4.4. A layout for the graph 3025 (left) generated by a Multilevel Fruchterman-Reingold Spring 
Embedder exhibiting a severe twist in the layout, and an approximation of the layout generated by a 
multilevel scheme (right) representing the global structure of the graph showing a similar twist. 

The same expectation applies to extreme variations in layout, for example, Figure 4.5 shows a 

layout with little global layout, represented as a tangle of edges in the approximate layout. 

Although a poor layout in comparison to those above, there is still noticeable areas of the graph 

where good local layout has been generated, suggesting that the algorithm used to draw the 

graph has specific trouble with global layout (supporting the numerical analysis above). 

 

Figure 4.5. A layout for the graph 3025 (left) generated by a Fruchterman-Reingold Spring Embedder 
exhibiting poor global layout (folds and twists in the layout), and an approximation of the layout generated 
by a multilevel scheme (right) representing the global structure of the graph showing similar bends and 
twists of the layout. 

Analysing the partitions generated using the multilevel scheme (those groups of vertices 

represented by one vertex in the approximate layout) through Multilevel Analysis provides a 

way of representing this numerically such that it can be compared across algorithms. Figure 

4.6 illustrates such partitions for the layouts in Figure 4.3 and Figure 4.5. 



103 

 

 

Figure 4.6. Two layouts for the graph 3025, generated using the Fruchterman-Reingold Spring Embedder 
(left), and by the Multilevel Fruchterman-Reingold Spring Embedder (right), colored to show the partitions 
used to measure local layout. 

4.2.2  Development of Layout 

Illustrating multilevel analysis for a dynamic drawing algorithm is attempted through use of 

frames in Table 4.4 showing the changes to layout for the graph regular-medium as measured 

in Figure 4.1. 

Column A of Table 4.4 shows the initial positions of vertices within the layout at frame 0 

(before FDP is applied). Note that the vertices in the approximate layout match the positions 

of their coarser counterparts in the actual layout. The number of edge crossings are provided 

under each image for context. Columns B through to E show the improvement of layout after 

10, 40, 200 and 300 iterations.  

As mentioned above, the primary aim of multilevel analysis is numerical foundation for 

assessing algorithms, however, observation of layout and global layout development can 

provide insight into what’s happening during the drawing process. Visualising the drawing 

process only highlights local layout being generated quickly with the majority of frames spent 

overcoming global layout. Comparison of the developing global layout is believed to be useful 

when comparing algorithms due to identifying which is able to better overcome global minima 

(such as the Dynamic Spring Embedder and Multilevel Dynamic Spring Embedder which 

provide unexpected results in Figure 4.2).  
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A (Frame 0) B (Frame 10) C (Frame 40) D (Frame 200) E (Frame 300) 

     
17799 Edge Crossings 3402 Edge Crossings 828 Edge Crossings 122 Edge Crossings 25 Edge Crossings 

     
117 Edge Crossings 74 Edge Crossings 32 Edge Crossings 13 Edge Crossings 0 Edge Crossings 

 

Table 4.4. Figures showing the improvement of layout for the graph regular-medium, with multilevel interpretation of global layout showing the development of 
approximate global layout for the Multilevel Dynamic Fruchterman-Reingold Spring Embedder 
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4.3  Summary 

The experimentation supports use of Multilevel Aesthetic Analysis for comparing algorithms 

as it provides some numerical backing to assessment of algorithm performance and behaviour. 

Investigation into Static and Dynamic graph drawing provides examples for such usage across 

both fields. 

Although promising, the method is likely to be useful for only thorough analysis and 

comparison of layouts. In a largely empty area, the method provides some way of extending 

aesthetics of smaller graphs to larger graphs, however, shows that similar conclusions can be 

achieved by measuring the criteria in the layout as it is. 
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5  Static Graph Drawing: Experimentation and Results 

This chapter describes the experimentation and results specific for Static Graph Drawing, 

aiming to investigate the methods for reducing the complexity of Multilevel Force Directed 

Placement with as little cost to layout quality as possible, as described in Section 3.6 of the 

Concepts chapter. If any efficiency savings are found, the intention is to extend them to 

dynamic graph drawing in order to reduce the running time of the algorithms there, such that 

larger dynamic graphs can be given layout. 

The algorithms which are investigated are: 

Multilevel Spring Embedder with Multilevel 

Global Force Approximation 

Crawford (2012) 

Multilevel Global Force Spring Embedder 

with Multimatching (MM) 

Extends the work of Crawford (2012) 

Aims to optimise the matching scheme used 

to generate the MGF through matching 

groups of vertices instead of edge 

contraction. 

Leaf Placement Scheme (LPS) 

 

Combinations: 

LPS applied after MGF 

LPS followed by MGF refinement 

LPS applied after MGF on each level of the 

multilevel scheme 

LPS applied after MGF on each level of the 

multilevel scheme with further MGF 

refinement 

Extends the work of Crawford (2013). 

Aims at exploiting contraction of loosely 

connected vertices by giving them an 

estimated layout to reduce complexity of 

MGF and/or improve layout quality. 
 

Primitive Matching (PM) Used with MGF. Aims at matching common 

patterns which can be given a calculated 

layout (Stars, Lines, Rings) in an attempt to 

improve layout quality of coarsest graphs of 
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the multilevel scheme (such that it improves 

final layout quality). 

Multilevel Global Force Spring Embedder 

with Approximation Limit (MGFL) 

Investigates limiting the effect of forces in 

MGF, using plotted distance and theoretical 

distance (between vertices in the 

approximation scheme) to reduce 

complexity. 

 

5.1  Test Data – Static Graphs 

The test data used for experimentation is split into two collections: static test graphs and 

dynamic test graphs, derived from examples in literature. 

5.1.1  Static Test Graphs 

Static drawing methods are tested using a collection of large graphs found in literature 

(Walshaw (2003), Hu (2005)), described in Table 5.1. The test graphs are taken from The 

Graph Partitioning Archive maintained by Dr Chris Walshaw, and have previously been used 

in Walshaw (2003) and Hu (2005) to demonstrate the drawing capabilities of their drawing 

algorithms (with the exception of 3025, which is a generated grid of 55x55 vertices). Original 

images of the graphs and their available sources can be found in Appendix 10.21.5 . 

Graph Vertices Edges Average Degree 
3025  3025 5940 3.9 
add32 4960 9462 3.8 
data 2851 15093 10.6 
4elt 15606 45878 5.9 
sierpinski10 88575 177147 4.0 
finan512 74752 261120 7.0 
dime20 224843 336024 3.0 
mesh100 103081 200976 3.9 

 

Table 5.1. A collection of static graphs used for experimentation of static graph drawing methods. The 
number of vertices, edges and the source of each graph are provided. Actual layouts for these graphs are 
provided in Appendix 10.21.5 . 
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Graphs are available from Walshaw’s research website, The Graph Partitioning Archive 

(staffweb.cms.gre.ac.uk/~wc06/partition/), with the exception of 3025 which is a regular 55 by 

55 vertex grid. Graphs are stored using the Chaco format (Hendrickson and Leland, 1995). 

5.1.2  Leafy Test Graphs 

Experimentation of some techniques require additional test graphs in order to test for specific 

behaviour. Leafy graphs are those which exhibit leaf vertices (described in Appendix 10.9 ), 

and are used for testing pattern processing. A collection of leafy graphs are described in Table 

5.2. The graphs were obtained from Dr Chris Walshaw, and are examples of networks and 

sparsely connected graphs, which are typically “leafy”. 

Graph Vertices Edges Leaves 
anna 138 493 25 
david 87 406 10 
dyads_lc 195 203 83 
dyads2_lc 478 922 216 
gd96D 180 228 58 
websiteCMS 498 1871 71 
uk 4824 6837 65 
sn6121 6121 24331 1423 
add20 2395 7462 123 
add32 4960 9462 292 

 

Table 5.2. A collection of graphs known to have one or more "primitive leaf" vertices for experimentation 
with pattern recognition algorithms. The number of vertices, edges and leaf vertices for each graph are 
provided. 

5.1.3  Layout Quality and Metrics 

Layout quality is identified through measurement of graph aesthetics (described in Concepts, 

Chapter 3) and running time is calculated as the entire time spent generating a layout (static) 

or an individual frame (dynamic).  

Edge crossings are the primary measurement for layout quality, acquired by counting the 

intersecting edges in a layout. Edge lengths are also recorded as a secondary measure of quality 

(see Graph Aesthetics, 2.4.3 ).  
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Tests are repeated to measure average performance and layout quality, with each experiment 

indicating the number of repeats (typically 10). Ranges across repeats may also be recorded to 

compare the regularity of layouts for different algorithms. 

Subjective analysis of layouts of layouts is provided for all experimentation, identifying any 

significant differences between methods or irregularities within layouts, and testing 

conclusions made from numerical analysis. 

5.2  Multilevel Global Force (MGF) 

Can the multilevel scheme be exploited for use as accurate approximation of both layout and 

structure, providing a tree for approximating long range global forces in Force Directed Placement? 

Multilevel Global Force (MGF) is implemented through exploitation of an existing multilevel 

scheme. The multilevel scheme used following that described by Walshaw (2003), and is used 

in conjunction with the modified Spring Embedder as described by Fruchterman and Reingold 

(1991).  

Usage of the multilevel scheme and modified spring embedder provides an opportunity to 

compare layouts against those generated by Walshaw (2003) and Hu (2005), who use the same 

methods.  

5.2.1  Comparisons to state-of-the-art 

The comparison to state of the art Octree algorithm by Hu (2006), and the n-body algorithm 

described by Walshaw (2003) is achieved in two parts, firstly a comparison of the results to 

those published in the publications, and then a comparison to implementations of the methods 

using Graph Drawing Framework here (Appendix 33910.22.1 ). The methods are: 

• Multilevel scheme with n-body force calculation (as described by Walshaw, 2003) 
• Multilevel scheme with Octree approximation (as described by Barnes and Hut, 1986, 

and Hu, 2005) 
• Multilevel scheme with Multilevel Global Forces (Crawford, 2013) 

 

Details of implementation are provided in Appendix 10.22 . Implementations here do not 

include additional optimisation methods for reducing running time or generating improved 
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matching/approximation, they include only Force Directed Placement, Multilevel Scheme and 

the described Approximation methods. 

It should be noted that use of the modified spring embedder (Fruchterman and Reingold, 1991) 

limits vertex movement through a cooling schedule until some tolerance is met. As the 

algorithms both use the same tolerance, they finish in the same number of iterations, thus it is 

not accurate to determine if one method of approximation causes faster convergence than 

another. 

5.2.1.1  Numerical Results 

5.2.1.1.1   Comparison of Implemented Multilevel Global Force and Octree 

Comparison of running time shows a significant decrease (on average 41% reduction) in 

running time when using Multilevel Global Force (MGF) over use of Octree (OT), shown in 

Table 5.3. Further analysis of running time (see Appendix10.1 ) identifies that shared processes 

(such as coarsening) run in equivalent time, with differences only in calculation of repulsive 

forces and approximation utilities (such as generation of the approximation structure).  

The methods are represented in the results using the following abbreviations: 

• MGF – Multilevel Spring Embedder (Fruchterman-Reingold) with Multilevel Global 
Force; 

• OT – Multilevel Spring Embedder (Fruchterman-Reingold) with Octree 
approximation. 

 

 Running Time (ms) MGF 
Update 

Octree 
Generation Graph MGF OT Reduction 

4elt 4455.00 7434.64 40.08% 0.0 58.42 
3025 628.00 908.82 30.90% 0.0 12.86 
add32 1302.80 2410.86 45.96% 6.2 27.86 
data 687.80 953.12 27.84% 0.0 10.88 
dime20 97381.60 196802.60 50.52% 62.2 1394.36 
finan512 36486.00 60708.08 39.90% 58.8 407.72 
mesh100 43958.00 77373.42 43.19% 31.2 571.46 
sierpinski10 31789.60 63246.06 49.74% 19.2 539.28 

   41.01%   
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Table 5.3. Comparison of running time for Multilevel Spring Embedder with Multilevel Global Force 
(MGF) or Octree (OT) approximation. The results show a significant 41% decrease in running time from 
usage of MGF, in addition to reduced maintenance running time between MGF Update and Octree 
Generation. Running time is shown in milliseconds. 

Although a clear improvement in running time, the difference in quality of layouts is less 

obvious. Table 5.4 compares the average number of edge crossings exhibited in layouts. The 

results show that in general, there is a noticeable increase (13%) in edge crossings for graphs 

generated using MGF, however the results indicate noticeable fluctuations between graphs, 

with add32 exhibiting 340% increase in edge crossings for use with MGF but a 97% decrease 

for 3025. 

Such differences come from the structure of the multilevel scheme generated (see Section 3.6.2 

), whereby graph substructures and connectivity can impact the matchings found and causing 

warping in the layouts. For example, add32 is known to coarsen to a sparse star type graph, 

resulting in many levels being generated. 

The range in edge crossings, also shown in Table 5.4 gives an indication of the regularity of 

layout quality. Multilevel Global Force provides layouts with little change in edge crossings, 

suggesting similar layouts being generated for a graph. In contrast, layouts generated using the 

Octree provides have a larger range, suggested dissimilar layouts (caused by differences in the 

generated Octree structure for each repeat). 

 Edge Crossings Edge Crossing range 
Graph MGF OT Reduction MGF OT 
4elt 39035.00 29306.40 -33.20% 290 14161 
3025 1.60 410.40 99.61% 32 2052 
add32 39511.80 11558.40 -241.84% 78 3617 
data 43771.40 35433.40 -23.53% 31 2933 
dime20 68879.60 115893.80 41.57% 4625 35211 
finan512 5707612.60 5295335.00 -7.79% 1094 67566 
mesh100 988967.20 953497.60 -3.72% 4453 15250 
sierpinski10 14364.80 37647.20 62.84% 327 3498 

   -13.51   

Table 5.4. Comparison of edge crossings and range in edge length for layouts generated by Multilevel 
Spring Embedder with Multilevel Global Force (MGF) and Octree (OT) approximation. The results show 
that layouts generated using Multilevel Global Force (MGF) have an increase in edge crossings of 13.51%. 

Although showing an increased number of edge crossings on average, the results don’t include 

information regarding the regularity of drawings, which is the regularity of concurrent 
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drawings having the same graph are given the same layout. This is investigated by randomizing 

the number of vertices but preserving the connectivity, then comparing the range in edge 

crossings, further explained in Appendix 10.19 . 

5.2.1.1.2   Comparison to Hu (2005) 

A comparison to some of the algorithms discussed by Hu (2005) is provided below. The 

methods compared are named as follows: 

• MLFDP – Multilevel Spring Embedder described by Walshaw (2003); 
• MSE(r) – Multilevel Spring-Electrical Model using Hybrid coarsening Scheme, 

Octree approximation, and cutoff radius for repulsive forces provided as r, described 
by Hu (2005). The method uses the Fruchterman-Reingold spring embedder; 

• MS(r) – Multilevel Spring-Electrical Model with General Repulsive Force, as 
described for MSE(r) but with use of the Kamada-Kawai spring embedder method; 

• SE – Spring-Electrical Model with Octree approximation. 
 

Of the methods, MSE(∞) bears closest resemblance to the Octree implementation here, 

however Hu incorporates other optimisation methods into the algorithm which are not used 

here. Running time recorded here is converted into seconds to match the times described by 

Hu (2005). 

The running times in Table 5.5 show that for many of the graphs, the results provided by the 

Octree here are similar to those provided by Hu for MSE(∞), somewhat validating the 

implementation of the Octree. Multilevel Global Force provides least running time of all 

methods. Octree implementation provides reduced running time over some Hu methods due to 

differences in experimental environment. 

 Running Time (s) 
Graph MLFDP MSE(2) MSE(∞) MS(4) SE MGF OT 
4elt 24.3 9.4 11.7 102.9 9.2 4.5 7.4 
3025 - - - - - 0.6 0.9 
add32 - 3.1 3.3 44.4 2.6 1.3 2.4 
data - 1.1 1.2 17.8 1.3 0.7 1.0 
dime20 264.3 195.5 290.6 1984.6 277.7 97.4 196.8 
finan512 363.8 56.6 59.8 3714.9 277.7 36.5 60.7 
mesh100 - 91.6 109.4 5807.8 89.5 44.0 77.4 
sierpinski10 - 44.1 65.1 146.8 75.6 31.8 63.2 
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Table 5.5. Comparison of running times for the algorithms tested here (Multilevel Global Force (MGF) and 
Octree (OT)) to those published by Hu (2005). Running times are provided in seconds due to the formatting 
provided by Hu. 

5.2.1.2  Subjective Analysis 

Numerical results alone only suggest the readability of layouts, subjective analysis is used to 

determine if the results above match the authors’ subjective view of the layouts.  

Figure 5.1 provides typical examples for layouts generated for the graph 4elt using Multilevel 

Force Directed Placement, showing differences between layouts generated with Multilevel 

Global Force Approximation (left), Octree Approximation (center) and no approximation 

(left). The most noticeable difference between layouts is Peripheral Effect, a result of 

differences in the repulsive forces. It is noted that the Octree provides layouts closer resembling 

No Approximation, however the readability of both is clouded by folds in the layout. In 

contrast, the layout generated using MGF is elongated, and although similar, is distinct from 

the other layouts with the overlapping branches compressed. 

 

Figure 5.1. Layout generated for 4elt using Fruchterman-Reingold Spring Embedder using MGF 
approximation (left), Octree approximation (centre) and n-body force calculation without approximation 
(right). 

Figure 5.2 shows a similar elongation of the layouts for the graph 3025, showing the extent of 

the warping in layouts generated using MGF (left). In contrast, layouts from the Octree show 

little to no warping as a result of more equal forces, however, if the approximation structure is 

not centered, or there is an uneven distribution of vertices in the drawing area, layouts may 

become warped (right). 
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Figure 5.2. Layout generated for 3025 using Fruchterman-Reingold Spring Embedder using MGF 
approximation (left) and Octree approximation (right) 

The warping in layouts is the result of different repulsive forces, which stretch the layouts 

shown in Figure 5.1 and Figure 5.2. For larger graphs, the number of levels in the multilevel 

approximation structure is increased, resulting in higher numbers of repulsive forces. Figure 

5.3 compares the layout for Sierpinski10, showing that warping on a global scale is reduced, 

however, the additional repulsive forces cause the Peripheral Effect to be much more 

noticeable. In contrast, the Octree layout is much more rigid and flat. Although rough, the 

Octree layout (right) provides a good representation of subgraph structures which are shown in 

a triangular form, whereas the MGF layout represents them more as circles. 
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Figure 5.3. Layout generated for sierpinski10 using Fruchterman-Reingold Spring Embedder using MGF 
approximation (left) and Octree approximation (right) 

Such disregard for local structures may be considered a weakness of the MGF approach, which 

incorporates global layout into their placement, however it can also be regarded as a strength. 

The graph dime20 is one of the larger test graphs and is compared in Figure 5.4. The Peripheral 

Effect is much more noticeable for MGF (left), however the compression on the edges of the 

global layout make it easier to identify a global structure with shape more readable. In contrast, 

the layout generated by Octree provides a more uniform edge length, providing a layout which 

looks rougher but allowing a user to see the layout of smaller structures in the graph. 

 

Figure 5.4. Layout generated for dime20 using Fruchterman-Reingold Spring Embedder using MGF 
approximation (left) and Octree approximation (right). Note the difference of the Peripheral Effect, 
whereby edges for the Octree are more uniform leading to a more expansive and “fluffy” layout, whereas 
the layout achieved with MGF shows noticeably more compression. 

5.2.2  Optimising the Multilevel Structure 

In an attempt to improve the approximation of graph structure, amendments to the matching 

process are investigated to identify if any optimisation can be achieved, aiming to improve the 

representation of the data within the drawings. The primary approaches used depend on 

modifying the matching mechanism used to generate the multilevel scheme follow. 
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5.2.2.1  Multimatching 

Increasing the number of vertices which can be matched together (from edge contraction of 2) 

up to 8 vertices is thought to show any correlation with average or modal vertex degree, 

however the results show little connection. On average, and across all graphs, the quality of 

layouts generated decreased over time (edge crossings increased by 27-50% for values between 

3 and 8). In contrast, there was a minor decrease in running time for larger matching values (an 

average reduction of 5% for Multimatching values of 4 and above). A full description of the 

experimentation and results is provided in Appendix 10.20 . Subjective analysis shows that 

improvement is largely dependent on the graph with no observed correlation to structure or 

connectivity (see Appendix 10.20.2 ). 

5.2.2.2  Brute Matching 

Brute Matching is an extreme version of Multimatching whereby vertices are matched with all 

adjacent unmatched vertices in order to generate an extreme approximation of structure and 

reduced multilevel scheme. A full description of the experimentation and results is provided in 

Appendix 10.8 . The results show negligible change in layout quality on average (the larger 

test graphs show a reduction of up to 16%) but a huge increase in running time (over 500% for 

some larger graphs) as a result of the changing multilevel structure (Section 3.6.2 ). 

5.2.2.3  Pattern Processing 

Pattern Processing is a more specific technique for identifying vertex patterns within a graph 

which can be provided with a calculated known layout, removing the need for expensive force 

directed placement. Two methods are investigated, pattern coarsening within the multilevel 

scheme, and primitive graph identification in coarser graphs as a means of stopping the 

coarsening scheme (similar to the coarsening tolerance). 

The first method uses a Leaf Placement Scheme which gives leaf vertices layout pointing 

outward from the centre of mass (albeit skewed by local masses). Application of the LPS is 

tested in different states: 
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• Only local level with calculated placement, resulting in a 20% increase and 31% 

decrease in running time, and 1% decrease and 54% increase in edge crossings, for 

leafless and leafy graphs respectively; 

• Only local level but refined using FDP, resulting in 60%and 15% increase in running 

time, and a 9% and 13% decrease in edge crossings, for leafless and leafy graphs 

respectively; 

• Throughout the Multilevel scheme with calculated placement, resulting in 25% increase 

and 31% decrease in running time, and a 10% and 86% increase in edge crossings, for 

leafless and leafy graphs respectively; 

• Throughout the multilevel scheme refined using FDP, with 74%and 6% increase in 

running time, and a 16% and 8% decrease in edge crossings for leafless and leafy graphs 

respectively 

The second method identifies primitive graph shapes, where the connectivity within a 

coarsened graph matches one of 3 states (a ring of vertices, a chain of vertices, or a star of 

vertices), providing a known layout (expected to translate to accurate global layout) and 

preventing further coarsening (reducing the levels in the multilevel scheme and resulting FDP). 

The results show an average increase of 0.4% for running time, and a 35.7% increase in edge 

crossings.  

Full description of experimentation and results are provided in Appendix 10.10 . 
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6  Dynamic Graph Drawing: Experimentation and Results 

This chapter describes the experimentation and results specific for Dynamic Graph Drawing, 

aiming to investigate if the efficiency saving and high quality layouts which have been 

achieved in Static Graph Drawing, can be applied to Dynamic Graph Drawing (as described in 

Section N.N of Chapter 3). Four proposed algorithms are evaluated: 

Dynamic Modified Spring Embedder (DSE) Dynamic variant of the MSE. Brings 

advantages of the MSE (notably strong forces 

to overcome minima) to dynamic graphs. 

Multilevel Dynamic Modified Spring 

Embedder (ML DSE) 

Investigates use of ML with DSE to improve 

untangling of vertices and overcoming 

minima in larger graphs. 

Dynamic Spring Embedder with Multilevel 

Global Force (MGF DSE) 

Investigates uses of MGF to DSE and ML 

DSE to reduce their complexity. 

Dynamic Spring Embedder with Dynamic 

Matching (DSE DM) 

Introduces a method for dynamic matching 

to perform operations to dynamic graphs 

whilst being drawn by DSE, ML DSE and 

MGF DSE. Four methods for updating are 

investigated which will update the ML 

scheme in varying depths; 

Low/Medium/High level Updates 

Full Re-matching 

 

The Dynamic Spring Embedder is evaluated in regard to both layout generation and layout 

generation. Multilevel Dynamic Spring Embedder and Dynamic Spring Embedder with 

Multilevel Global Force are evaluated in regard to layout generation alone, with their 

application to layout adjustment evaluated in Dynamic Matching in combination with the 

dynamic update methods. 
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6.1  Test Data – Dynamic Graphs 

There are few mainstream large dynamic graphs existing in the literature, therefore dynamic 

drawing algorithms are tested on graphs generated by heuristics (described in Appendix 10.21 

). Three heuristics are used to provide graphs with repeated sub-structures, each with differing 

degree and in differing sizes (small, medium and large), Table 6.1.   

Graph Vertices Edges 
Average 
Degree Description 

sparse-small 255 508 2.0 Binary trees with differing 
depth, generated 
automatically by computer. 

sparse-medium 1023 2044 2.0 
sparse-large 8191 16380 2.0 
regular-small 256 960 3.8 Regular NxN vertex grids, 

generated automatically by 
computer. 

regular-medium 1024 3968 3.9 
regular-large 8100 32040 4.0 
dense-small 364 13998 38.5 Densely connected graphs 

with high number of edges 
between vertices, generated 
automatically by computer. dense-medium 1093 129620 110.4 

Table 6.1. A collection of static graphs to be used as the base dataset for dynamic graphs for experimenting 
with dynamic drawing algorithms. The number of vertices and edges, the average degree, and a description 
regarding the structure of the graphs are provided. 

In addition to these initial static graphs, a list of amendments are provided for each. Details 

regarding the types of amendments are provided below with details regarding storage and 

application provided in Implementation (10.22 ). 

Two types of gradual layout development is tested here: 

Layout Generation – the generation of layout from initial random positions, with changes 

measured over time for some predefined time period. This does not involve graph 

modifications. 

Layout Adjustment – the application of graph operations to an already defined layout, applied 

periodically over some predefined time period. 

6.1.1  Types of Operations 

Graph modification operations can include any imaginable change to a graph structure, in any 

combination and in any frequency. In literature, modifications typically expand or reduce the 
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size of a graph, adding or removing vertices and edges over some time period. The operations 

defined here follow these two main types and include a mix of the two: 

• growth – increasing the number of vertices and edges 
• shrink – decreasing the number of vertices and edges 
• maintain - Little difference in the number of vertices and edges 

 
Information regarding the generation of operations and the rules in place for emulating 

“realistic application of operations” are described in Implementation (Appendix 10.22 ). 

More advanced operations such as the removal or addition of subgraphs, or merging graphs, 

can be applied using collections of these base modifications, but are not investigated here due 

to the range of possibilities. 

6.1.2  Frequency of Operations 

The frequency of operations describes the rate at which amendments to a graph are made, more 

specifically, the number of operations applied per number of frames. The number of operations 

is generated as some percentage of the initial graph size (vertices and edges), and are applied 

over a period of 200 frames, thus frequency is dependent on the size of the graph. 

Although not explicitly tested here, the frequency of operations impacts layouts, and so the test 

data is chosen to avoid such impacts. Figure 6.1 gives an example of a negative impact on 

layout as a result of edges being added to a graph faster than Force Directed Placement can 

give them layout.  

 

Figure 6.1. Layout provided to the graph regular-large using FRD MGF with single level multilevel update. 
The layout shows that added vertices and edges are not provided with low energy positions before the next 
set of operations occur, causing a build-up represented as a dense area on the graph (right). 
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6.2  Dynamic Spring Embedder 

As performed in Static Graph Drawing, some experimentation is undertaken to determine the 

parameter set for the algorithm. This identifies the general parameters which offer best 

performance between tests.  

6.2.1  Configuration 

Details of the configuration for the Dynamic Spring Embedder are provided in Appendix 10.11 

. 

In summary, experimentation uses default values of 0.5 and 0.9 for the repulsive and spring 

force cooling schedules, which provide highest quality results in general. See Appendix 10.11 

for the data. 

6.2.2  Comparison of Spring Embedder Algorithms 

To determine if the proposed spring embedder adaption is fit for purpose, layouts are generated 

for a collection of small graphs and compared to implementations of other Spring Embedder 

models. The Spring Embedder models used for comparison are:  

• SE - Spring Embedder Heuristic described by Eades (1984) 

• FR1 - Modified Spring Embedder described by Fruchterman and Reingold (1991) 

• FR2 – Modified Spring Embedder described by Fruchterman and Reingold (1991), 

with reduced cooling factor to allow for 300 iterations 

• FRD - Dynamic Spring Embedder using default parameters 

• (Additional adaptations of the Dynamic Spring Embedder using alternate cooling 

schedules are included in the extended results in Appendix 10.25 but do not show 

any benefit over the algorithms above). 

Initial layouts are provided through random placement of vertices within the drawing area. 

Experiments are run for 300 frames (300 iterations of FDP) and quality is assessed every 10 

frames. Tests are repeated 10 times for each graph. 

6.2.2.1  Analysis of Numerical Results 

Analysis of the final layouts shows that the Dynamic Spring Embedder method generates 

drawings with fewer edge crossings on average, applicable to most test graphs except the dense 

graphs which exhibit less edge crossings when drawn with the Eades Spring Embedder. The 
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Fruchterman and Reingold Spring Embedder performs worst in regards to edge crossings, 

exhibiting highest figures for all graphs. 

The cause for the poor behaviour is the cooling schedule, which forces the Force Directed 

Placement to end early (before 50 iterations), while the other two continue to gradually improve 

layout. 

 edge crossings 

 dense regular sparse 
FR 4816331 15929.4 3388.2 
SE 3892754 244.4 49.1 
FRD 4613519 45.7 3.4 

Table 6.2 Number of edge crossings exhibited in layout after 300 iterations of FDP, comparing the Modified 
Spring Embedder of Fruchterman and Reingold (FR), the Eades Spring Embedder (SE), and the proposed 
Dynamic Spring Embedder (FRD)  

By reducing the cooling value used in the Fruchterman and Reingold algorithm, it can be run 

for an extended number of frames before movement stops, shown in Figure 6.2 comparing the 

method to the algorithms above.  

 

 

Figure 6.2. Change in edge crossings exhibited in layouts provided to the collection of test graphs by Eades 
Spring Embedder (SE), Dynamic Spring Embedder (FRD) and Dynamic Spring Embedder Cooling 
Schedule (FRDC) over 300 iterations of FDP application 
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The change in edge crossings is similar for each of the algorithms, with many reaching a 

minimum between 25% and 35% of the initial edge crossings of the randomly positioned 

vertices. 

FR1 shows the steepest drop in edge crossings initially due to the cooling schedule allowing 

for high energy movements which are quickly cooled to rest vertices in place. FR2 shows the 

weakness when changing the cooling schedule, which allows for continuous high energy 

movement (resulting in a slower drop in edge crossings). 

The highest quality final layouts come from FR2 with the modified cooling time, followed by 

FRD. Although providing best layouts on average, the FR1 still retains an inflexible cooling 

schedule which forces reduced movement over time. 

Movement is additionally recorded, however due to differences between algorithms, the precise 

values are not truly comparable. The chart in Figure 6.3 compares SE, FRD and FR1, showing 

the relative change in movement of the graphs. 

 

Figure 6.3. Change in average vertex movement between frames, exhibited in layouts provided to the 
collection of test graphs by Eades Spring Embedder (SE), Dynamic Spring Embedder (FRD) and Dynamic 
Spring Embedder Cooling Schedule (FRDC) over 300 iterations of FDP application 

The SE algorithm has noticeable peaks in its movement, the result of spikes in movement as 

local minima is overcome, and are more noticeable due to the relatively small movement 

occurring between spikes. Movement in FR1 is higher and allows for larger movements 

initially, quickly decreasing to 0. In contrast, the movement in FRD is more continuous, neither 
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cooling nor spiking. The actual values show that the FRD and FR1 algorithms have much 

higher amounts of movement in contrast to SE, but cannot be accurately compared due to the 

different parameter sets used by the algorithms. 

6.2.2.2  Subjective Analysis 

The analysis above shows layouts drawn using the Eades Spring Embedder (SE) are typically 

drawn with higher edge crossings than the Dynamic Spring Embedder (FRD). Figure 6.4 shows 

that for regular-small, the layout generated using SE exhibits tangles commonly seen when 

unable to overcome minima. In contrast, FRD provides layouts with minimal edge crossings, 

but a more prominent peripheral effect (which can be reduced through modifying the 

algorithms configuration, shown in Figure 5.3). Similar conclusions are made for layouts of 

sparse-small in Figure 6.6. 

 

Figure 6.4. Layouts provided to the graph regular-small provided by the Eades Spring Embedder (left), 
Fruchterman-Reingold Spring Embedder (middle) and Dynamic Spring Embedder (right), after 300 
iterations of FDP application 
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Figure 6.5 Reducing the Peripheral Effect of a layout by modifying the configuration of the algorithm 

 

Figure 6.6. Layouts provided to the graph sparse-small provided by the Eades Spring Embedder (left), 
Fruchterman-Reingold Spring Embedder (middle) and Dynamic Spring Embedder (right), after 300 
iterations of FDP application 

The layout provided to leaf vertices in Figure 6.6 shows that for the Fruchterman and Reingold 

Spring Embedder (FR) and FRD, vertices are orientated pointing outwards from the centre of 

mass, whereas for SE the leaf vertices are orientated pointed outward from their anchoring 

vertex, suggesting stronger local layout.  

Layouts for the graph dense-small are shown in Figure 6.7 with the layout generated by the 

Eades Spring Embedder showing the spikes in the vertex movement measured above. It is noted 

by Eades that some graphs are not drawn well, it is expected that there are cases when vertices 

are so close to one another, they cause an exponential rise in vertex movement causing such 

large spikes.   

 

Figure 6.7. Layouts provided to the graph dense-small provided by the Eades Spring Embedder (left), 
Fruchterman-Reingold Spring Embedder (middle) and Dynamic Spring Embedder (right), after 300 
iterations of FDP application 
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Layouts generated by FRD and FR are similar, however during visualisation, the layout of FRD 

appears to move continually as vertices attempt to find positions which reduce the graph 

energy. 

Development of layout for regular-small is provided as an example in Figure 6.8 (layouts for 

other test graphs provided in Appendix 10.24 ). The layout is provided as observed during 

frames from the 10th, 50th, 100th, 200th and 300th iterations of FDP, showing a sharp decrease 

in edge crossings initially, slowing to a more gradual change in edge crossings and movement 

(as represented in Figure 6.8). 

 

 

Figure 6.8. Emergence of layout for the graph regular-small using the proposed Dynamic Spring Embedder. 
From left to right, layout after (A) 10 iterations, (B) 50 iterations, (C) 100 iterations, (D) 200 iterations, and 
(E) 300 iterations. 

During visualisation the initial change in edge crossings is difficult to follow, however after 

the 50th frame changes are much steadier. Due to the drastic change in layout, it is expected 

layout generation can be used to emulate extreme layout adjustment.  

6.2.3  Layout Adjustment 

Is the proposed adaptation to the spring embedder suitable for adjusting and retaining 

readability of layouts for dynamic graphs? 

For the experimentation, each of the test graphs is provided a layout exhibiting minimum edge 

crossings generated prior to the tests. Experiments are run for 300 iterations of FDP following 

the procedure described in Section 6.2 .2. Analysis of the metrics for graph stability is used to 

determine the extent of changes to layout, confirmed by subjective analysis. 

Analysis of Dynamic Spring Embedder is compared to the Eades Spring Embedder as both 

continually develop layout (unlike FR). Collected results are generalised under the three 

classification of amendments: shrink, growth and maintain (described in Section 6.1 ). Analysis 

of running time is not included as there is no optimization of either algorithms. 
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6.2.3.1  Analysis of Numerical Results 

For shrink operations, there is a clear difference between the Dynamic Spring Embedder (FRD) 

and the Eades Spring Embedder (SE), shown in Figure 6.9 the number of edge crossings 

between frames frequently spikes when using FRD whereas the SE method shows a steadier 

decrease. The spikes suggest a large reaction to changes, as the layout quickly tries to find a 

new minimum energy. It is expected that the reaction is due to the relatively high repulsive 

forces when compared to the Spring Embedder, quickly separating connected parts of the 

graph. 

 

Figure 6.9. Change in edge crossings exhibited during layout generation for all test graphs during 
application of shrink operations, comparing the Dynamic Spring Embedder (FRD) and the Eades Spring 
Embedder (SE) 

The chart suggests readability is hard to follow due to large increases in edge crossings, 

however the movement shown in the layout is not as active exhibiting little change to the 

relative movement of vertices within the graph (see Figure 6.10). In contrast, the relative 

movement of the Spring Embedder is high, due to the large movements in reaction to the shrink 

operations.  
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Figure 6.10. Change in average vertex movement exhibited during layout generation for all test graphs 
during application of shrink operations, comparing the Dynamic Spring Embedder (FRD) and the Eades 
Spring Embedder (SE) 

For the growth amendments, both algorithms show increase in edge crossings as new vertices 

and new edges are introduced and overlap the existing layout. Such edge crossings appear as 

spikes in Figure 6.11 which remain high for the SE initially. During the cool down period, both 

algorithms are able to reach a similar minimum. FRD layouts reliably reach minimal edge 

crossings after changes have been applied, suggesting it is better able to overcome minima, but 

results in greater movement in the layout. 
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Figure 6.11. Change in edge crossings exhibited during layout generation for all test graphs during 
application of growth operations, comparing the Dynamic Spring Embedder (FRD) and the Eades Spring 
Embedder (SE) 

Similar to the analysis of the shrink operations above, the chart in Figure 6.12 shows a 

continuous movement of vertices for FRD and large amounts of relative movement for SE. The 

spikes in movement represent the introduction of operations and the correction of layout as 

described above. 

 

Figure 6.12. Change in average vertex movement exhibited during layout generation for all test graphs 
during application of growth operations, comparing the Dynamic Spring Embedder (FRD) and the Eades 
Spring Embedder (SE) 

The maintain operations (which combine the growth and shrink operation sets) follows the 

behaviors of the results above. During the final phase however, leaf vertices are added 

randomly and the SE method shows a significant spike in edge crossings. The cause is similar 

to the effect shown in Figure 6.19 such that repulsive separation forces vertices apart by large 

distances, causing overlap with the rest of the layout. 
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Figure 6.13. Change in edge crossings exhibited during layout generation for all test graphs during 
application of maintain operations set, comparing the Dynamic Spring Embedder (FRD) and the Eades 
Spring Embedder (SE) 

Similar observations are shown for the average vertex movement for both algorithms, whereby 

large spikes occur as leaf vertices are introduced and repelled away from the body of the graph 

(see Figure 6.19 in Subjective Analysis below).  

 

Figure 6.14. Change in average vertex movement exhibited during layout generation for all test graphs 
during application of the maintain operations set, comparing the Dynamic Spring Embedder (FRD) and 
the Eades Spring Embedder (SE) 
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6.2.3.2  Subjective Analysis 

Subjective analysis is provided for the graph regular-small due to its recognisable and 

predictable N·N vertex grid layout. Further analysis for other graphs is provided in Appendix 

10.24.2 . 

Application of shrink operations is depicted in Figure 6.15, showing the change to a layout 

when using the Dynamic Spring Embedder (FRD). The removal of vertices and edges shrinks 

the graph from an initial layout (left) to form a smaller amended layout (right). The 

visualisation of changes is smooth and fluidly, however, singular changes occur quickly and 

are difficult to follow. 

 

Figure 6.15. Application of shrink operations – removal of vertices and edges – to the graph regular-small. 
From left to right, an initial layout is provided to the base graph (A), after which vertices are removed in 
staggered phases (B, C, D) and a final layout generated after all operations have finished in (E). Note that 
the layouts in (D) and (E) are the same, however, shrinking and compression occurs as a result of reduced 
repulsive forces. 

Figure 6.16 provides a comparison of the final layouts generated using Dynamic Spring 

Embedder (FRD, left) and Eades Spring Embedder (SE, right), following application of 

amendments. The layouts are similar with minor differences: the layout provided by SE looks 

more uniform and taut than the FRD layout. 
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Figure 6.16. Layouts for regular-small after application of shrink operations, as drawn using Dynamic 
Spring Embedder (left) and Eades Spring Embedder (right) 

Figure 6.17 illustrates the expansion of regular-small using the growth operations, showing 

preservation of the initial layout as vertices and edges are introduced. The grid structure is 

extended in one direction to form a rectangular structure, with observation of the process 

visualising a smooth transition as new vertices and edges are added, and little change to the 

positions of unaffected vertices. 

 

Figure 6.17. Application of growth operations – addition of vertices and edges – to the graph regular-small. 
From left to right, an initial layout is provided to the base graph (A), after which vertices are added in 
staggered phases (B, C, D, and E). Layout is achieved almost instantly as other vertices are being added, 
leading to a smooth visualization of the extension. 

The final layouts for regular-small after growth operations are illustrated in Figure 6.18, 

showing that the layout provided by the Eades Spring Embedder (right) has a more uniform 

edge length, but appears distorted (“wavy”), whereas the Dynamic Spring Embedder generated 

layout (left) appears more symmetrical and rounded (due to the Peripheral Effect). 

 

Figure 6.18. Layouts for regular-small after application of growth operations, as drawn using Dynamic 
Spring Embedder (left) and Eades Spring Embedder (right) 
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As noted in the quantitative analysis, the maintain operations show that the addition of leaf 

vertices can lead to large repulsive forces separating vertices when using the Eades Spring 

Embedder method. Figure 6.19 depicts such an event, whereby vertices are moved and edges 

are stretched, causing increased edge crossings and deformation of the layout as a result. The 

initial placement of these vertices is also expected to exacerbate the effect, as vertices are 

intentionally drawn close to their anchor. 

 

Figure 6.19. Layout generated for regular-small after application of the maintain amendments, whereby 
vertices become repelled so much they move large distances, resulting in the extended edge lengths and 
poor vertex placement seen in the image 

6.3  Multilevel Dynamic Modified Spring Embedder 

The expectation of the multilevel scheme is to reduce global untangling, resulting in fewer edge 

crossings (as exhibited in static graph drawing, Walshaw, 2003). Comparison is made between 

the Dynamic Spring Embedder (Section 3.7.4 ) and Multilevel Dynamic Spring Embedder 

(Section 3.7.5 ), sharing the same underlying Force Directed Placement. 

Tests are performed using layout generation from an initial randomised layout. The algorithms 

are then run for 300 iterations and repeated 10 times for each test graph. The number of edge 

crossings and edge lengths are measured to compare the quality of layouts generated. 

Layout adjustment is tested as part of the Dynamic Matching subsection (Section 6.5 ). 

6.3.1  Analysis of Numerical Results 

6.3.1.1  Final Layouts 

Comparison of final layout quality is provided in Table 6.3. 



134 

 

 Edge Crossings in Final Layout Range in Edge Length 
Graph FRD FRDML FRD FRDML 
sparse-small 1.6 16.0 12.7860 12.7708 
sparse-medium 22.4 79.8 25.1969 33.0241 
sparse-large 1948.6 1443.4 48.7551 82.2162 
regular-small 0.0 4.4 9.6504 11.5799 
regular-medium 663.2 306.2 12.9208 23.6915 
regular-large 31830.6 12710.4 15.7241 29.5661 
dense-small 4134494.0 3742154.0 3.6427 9.9145 
dense-medium 385933360.4 335259399.8 3.4626 9.1963 

Table 6.3. Comparison of edge crossings and range in edge lengths for layouts to a selection of graphs, 
generated by FRDML and compared to FRD to identify if layout quality improves for larger graphs (as a 
result of global layout being better achieved). 

The results show an average 42% decrease in edge crossings for the larger graphs, but a 410% 

increase in edge crossings for smaller graphs, suggesting the multilevel method is best applied 

for larger graphs only. Further to this, it suggests the multilevel layout conflicts with the local 

layout in these smaller layouts. 

In addition to the change in edge crossings, the range in edge lengths increases as a result of 

using multilevel layout generation, suggesting the movement in coarser layouts causes the 

layout to expand more than normal. 

6.3.1.2  Metrics for Graph Stability 

The numerical analysis above suggests multilevel is best suited for larger graphs, but on 

average is not beneficial to graph drawing. The same applies when comparing the change in 

edge crossings, with Figure 6.20 showing edge crossing for both algorithms quickly drop in 

the first 50 frames to reach a similar minimum. 
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Figure 6.20. Change in edge crossings as layout is generated for general graphs of different sizes, exhibiting 
little difference between using Dynamic Spring Embedder (FRD) and Multilevel Dynamic Spring 
Embedder (FRD ML) 

Comparison in graph size shows that there is a relatively larger drop in edge crossings for larger 

graphs (Figure 6.21). It is noted that this is the same for both FRD and MLFRD with only 

1.88% difference between them (see Appendix 0for more details).  

 

Figure 6.21. Comparison of the change in edge crossings exhibited in layouts for different sizes of graph 
when drawn using Multilevel Dynamic Spring Embedder 

Analysis of average vertex movement offers similar suggestions, with the difference between 

algorithms reach a maximum of 5% difference, illustrated in Figure 6.22. Both algorithms 
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reach a similar point of minimum movement, yet given the curve on the lines, it can be expected 

that MLFRD will settle to higher vertex movement than the FRD counterpart. 

 

Figure 6.22. Change average vertex movement as layout is generated for general graphs of different sizes, 
exhibiting little difference between using Dynamic Spring Embedder (FRD) and Multilevel Dynamic 
Spring Embedder (FRD ML) 

6.3.2  Subjective Analysis 

Although the measured results above suggest little benefit of multilevel refinement in regard 

to edge crossings, the observed results are more promising.  

Figure 6.23 and Figure 6.24 show examples of layouts for the two largest test graphs, regular-

large and sparse-large, comparing layouts generated using the Dynamic Spring Embedder (left) 

and Multilevel Dynamic Spring Embedder (right). Both layouts exhibit noticeable 

improvement in global untangling, achieving fewer folds and overlaps within the layout. 

In contrast Figure 6.25 compares the layouts for a smaller graph (regular-small), showing a 

warped layout as a result of the multilevel refinement, as suggested in the numerical analysis 

above. 

Additional Layouts are included in Appendix 10.27 . 
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Figure 6.23. Comparison of layouts for the graph regular-large, generated using Dynamic Spring Embedder 
(left) and the Dynamic Spring Embedder with Multilevel scheme (right). 

 

Figure 6.24. Comparison of layouts for the graph sparse-large, generated using Dynamic Spring Embedder 
(left) and the Dynamic Spring Embedder with Multilevel scheme (right). 
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Figure 6.25. Comparison of layouts for the graph regular-small, generated using Dynamic Spring Embedder 
(left) and the Dynamic Spring Embedder with Multilevel scheme (right). 

Storyboards depicting the improvement of layout for regular-large with and without use of 

multilevel refinement is provided in Table 6.4. Storyboards for other test graphs drawn using 

FRD are included in Appendix 10.24.1 . 

The most obvious change in development is the movement of related vertices as controlled by 

the coarser multilevel graphs in MLFRD. In contrast, the FRD method places vertices 

individually requiring more development.  

Although improving readability for the author, the changes of layout for larger graphs is 

unhelpful due to the high running times associated with the Spring Embedder.
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Frame 0  Frame 10 Frame 50 Frame 100 Frame 300 

Regular-large using Dynamic Spring Embedder 

    
 

Regular-large using Multilevel Dynamic Spring Embedder 

     

Table 6.4. Comparison of the improvement of layout for the graph regular-large over 300 iterations using the Dynamic Spring Embedder and Multilevel Dynamic 
Spring Embedder , showing the improvement on global layout as a result of multilevel layout refinement
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6.4  Dynamic Modified Spring Embedder with Multilevel Global Force 

Approximation 

As with the multilevel experimentation above, layout generation is applied to graphs from 

an initial randomised placement. Experiments are run for 300 iterations and are repeated 10 

times for each graph, with running time being the priority measurement, and layout quality 

also being measured for comparison. 

For Layout Adjustment, see Dynamic Matching (Section 6.5 ). 

6.4.1  Configuration 

Details of the configuration for the Dynamic Spring Embedder with Multilevel Global 

Forces are provided in Appendix 10.5 . 

In summary, experimentation uses default values of 0.5 and 0.9 (0.7 for graphs with less 

than 1000 vertices) for the repulsive and spring force cooling schedules, which provide 

highest quality results in general. See Appendix 10.5 for the data. 

6.4.2  Analysis of Numerical Results 

Results for MGF approximation show a massive reduction in running time, between 95% 

for smaller graphs and 99.8% for the large test graphs. The reduction means that the dynamic 

spring embedder can be applied on larger graphs without long delays between frames, 

allowing for visualization through animation instead of still frames. 

 Running Time per Iteration (ms) 
Graph FRD FRD MGF 
sparse-small 15.47 0.88 
sparse-medium 239.21 2.94 
sparse-large 21384.07 38.28 
regular-small 18.12 1.01 
regular-medium 341.20 2.69 
regular-large 25656.01 38.17 
dense-small 337.95 1.91 
dense-medium 8329.75 12.97 

Table 6.5. Comparison of running time required to complete one iteration of Dynamic Spring Embedder 
(FRD) and Dynamic Spring Embedder with Multilevel Global Force approximation (FRD MGF) for 
various test graphs 
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Due to the extreme change in running time, smaller graphs change too quickly for any 

meaningful data to be extracted. Discussion regarding minimum and maximum frame rate 

for visualization is described in Appendix 10.17 . 

Although reducing running time, use of MGF causes the number of edge crossing to rise by 

an average of 200% (Table 6.6). Smaller graphs show a larger increase in edge crossings of 

462%, whereas medium have less at 133% increase and large graphs have least with 29% 

increase. This behavior is similar to the results for multilevel refinement, and suggests MGF 

is most useful for larger graphs. 

 Edge Crossings in Final Layout Range in Edge Length 
Graph FRD FRD MGF FRD FRD MGF 
sparse-small 1.6 16.4 12.7860 10.1151 
sparse-medium 22.4 89.4 25.1969 20.5631 
sparse-large 1948.6 2601.4 48.7551 44.7275 
regular-small 0.0 156.6 9.6504 7.9099 
regular-medium 663.2 1371.0 12.9208 11.5247 
regular-large 31830.6 39690.8 15.7241 15.0405 
dense-small 4134494.0 4098098.6 3.6427 3.5225 
dense-medium 385933360.4 362664547.0 3.4626 3.3121 

Table 6.6. Comparison of edge crossings and range in edge lengths exhibited by layouts generated by 
Dynamic Spring Embedder (FRD) and Dynamic Spring Embedder with Multilevel Global Force 
approximation (FRD MGF) algorithms for various test graphs 

It is important to note the difference in running time. Although generating layouts with 

poorer layout in 300 iterations, the time take to apply 1 iteration of Dynamic Spring 

Embedder on the graph regular-large, is the same time taken to perform 558.6 iterations with 

Multilevel Global Force approximation. 

The results also show a minimal difference between range in edge lengths with or without 

use of approximation, suggesting little difference to the Peripheral Effect as a result of MGF 

usage. 

6.4.2.1  Metrics for Graph Stability 

The difference in the change in edge crossings over time between using FRD with and 

without MGF is negligible. This is especially pleasing as the interest is in reducing running 

time while minimizing the effect on layout quality and convergence.  



142 

 

 

Figure 6.26. Change in edge crossings as layout is generated for general graphs of different sizes, 
exhibiting little difference between using the Dynamic Spring Embedder (FRD) and Dynamic Spring 
Embedder with Multilevel Global Force approximation (FRD MGF) 

Although minimal difference for the change in edge crossings, Figure 6.27 shows a 20% 

reduction in vertex movement when using FRD MGF. The drop in movement, and the 

similar rate at which movement is reduced (both algorithms reduce movement at similar 

rates between the 60th and 300th frame), suggests weakened forces being calculated when 

using MGF. 

This may be the cause of the increased edge crossings, as reducing movement will slow the 

improvement of layout. Reconfiguring the MGF forces (described in Section 6.4 ) may 

reduce the difference.  
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Figure 6.27. Change in average vertex movement as layout is generated for general graphs of different 
sizes, exhibiting a 20% decrease from using Dynamic Spring Embedder with Multilevel Global Force 
approximation (FRD MGF) in comparison to Dynamic Spring Embedder (FRD) 

6.4.3  Subjective Analysis 

As exhibited in the layouts generated using a multilevel scheme, the layouts generated for 

smaller graphs exhibit adverse effects on the readability. Figure 6.28 illustrates this by 

comparing layout for regular-small using the Dynamic Spring Embedder (left) and Dynamic 

Spring Embedder with Multilevel Global Force approximation (right), showing a fold in the 

layout caused by reduced displacement (Section 3.6.4.3). 

 

Figure 6.28. Comparison of layouts for the graph regular-small, drawn using Dynamic Spring Embedder 
(left) and Dynamic Spring Embedder with Multilevel Global Force approximation (right), showing a 
fold in the layout as a result of the approximation 
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The effect on larger graphs is less noticeable with layouts having minor observable 

differences, however comparison is difficult due to drawings having poor global layout, 

exhibiting folds and overlapping layout. Although exhibiting poor global layout, the 

drawings for regular-large (Figure 6.29), sparse-large (Figure 6.30) and dense-medium 

(Figure 6.31) are similar to those generated using standard Dynamic Spring Embedder, 

making MGF useful for large graphs by reducing running time without depreciating layout 

quality. 

 

Figure 6.29. Comparison of layouts for the graph regular-large, drawn using Dynamic Spring Embedder 
(left) and Dynamic Spring Embedder with Multilevel Global Force approximation (right) 

 

Figure 6.30. Comparison of layouts for the graph sparse-large, drawn using Dynamic Spring Embedder 
(left) and Dynamic Spring Embedder with Multilevel Global Force approximation (right) 
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Figure 6.31. Comparison of layouts for the graph dense-medium, drawn using Dynamic Spring 
Embedder (left) and Dynamic Spring Embedder with Multilevel Global Force approximation (right) 

6.5  Dynamic Matching 

There are four update methods used to incorporate graph amendments into the multilevel 

schemes used by global layout refinement and global force approximation, each of which 

are expected to have varying impact on layout quality as a result. Experimentation aims to 

answer the following questions: 

Is there measurable difference in layout quality and running time between usages of the 

four update methods for incorporating operations in to the multilevel scheme?  

What does the difference indicate about the methods and operation types? 

The methods are tested on two algorithms: the Multilevel Dynamic Spring Embedder and 

the Dynamic Spring Embedder using Multilevel Global Force, determining the impact on 

layout quality as a result of the amendments impacting coarser representations of a graph 

and the resulting MGF approximation. 

For each of the test graphs, a layout exhibiting minimum edge crossings is generated prior 

to the experiment. Tests are run for 300 iterations of FDP application following the 

described procedure in Section 6.2 . Analysis of the metrics for graph stability is used to 

determine the effect the amendments have on the layout and the extent of changes to layout, 

verified by subjective analysis. 

Information regarding the complexity of operations is provided in Appendix 10.22.4 . 

Additional investigation is given to the effect of updates on differing graph structures in 
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Appendix 10.18 , identifying some of the patterns which can be seen in the results below as 

a result of the test data. 

6.5.1  Multilevel Matching Update 

The primary focus of the experimentation here is to identify if incorporating graph 

operations into the coarser representations of a multilevel scheme increases the impact 

operations have on layouts. Analysis is performed on the results of 3 operations sets 

(outlined in Section 6.1 ) with differing update methods, from minimal (single level) updates 

to full updates of the multilevel scheme. 

6.5.1.1  Quantitative Analysis 

In general, the results show that the impact of the multilevel update is dependent on the type 

of operation. For shrink operations, there is little difference between update methods (Figure 

6.32), with all update types increasing and decreasing edge crossings rapidly with no clear 

method providing consistently low edge crossings. On average, the rematch and high update 

methods result in higher edge crossings, with single and middle update method averaging 

least. 

The impact on movement is summarised for the maintain operations below. 
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Figure 6.32. Comparison of the change in edge crossings for incorporation of shrink operations into 
multilevel layout of the dynamic test graph collection, using the four update methods controlling the 
extent of the update into the multilevel scheme used 

The results may indicate that, from a quantitative and measured standing, shrink operations 

are independent of update methods and cause large changes to layout regardless. In contrast, 

the growth operations show a direct correlation with the update methods. Figure 6.33 shows 

that the greater the propagation of operations through the multilevel scheme, the smaller the 

increase in edge crossings.  

The rematch method provides results on par with the single update method, suggesting that 

preserving the matchings is better for reducing the edge crossings during growth operations, 

than having a multilevel scheme which better represents the structure (see Fragmentation, 

7.3.2 ). 

 

 

Figure 6.33. Comparison of the change in edge crossings for incorporation of growth operations into 
multilevel layout of the dynamic test graph collection, using the four update methods controlling the 
extent of the update into the multilevel scheme used 

To no surprise, the maintain operations follow the same behaviours as the methods above, 

with the mid and high update methods having least impact on edge crossings. During the 

final stage however, the change in edge crossings indicate that the single level update may 

be more beneficial, tying in with the suggestion that targeting specific structures can lead to 

improved performance (as found in Pattern Processing, Section 0). 
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Figure 6.34. Comparison of the change in edge crossings for incorporation of maintain operations into 
multilevel layout of the dynamic test graph collection, using the four update methods controlling the 
extent of the update into the multilevel scheme used 

Movement of vertices between frames shows little difference between shrink and growth 

operations for all updates. The movement as a result of maintain operations is shown in 

Figure 6.35, showing the similarity in movement across update methods. 

Throughout the operations, the high level update results in highest movement, with rematch 

generating least for growth and single for shrink operations. Although suggesting the 

methods are useful for different operation types, there is up to nearly 1000% difference 

between methods for the growth period, and a difference of 40% for shrink periods. Given 

that movement increases by 15% as a result of operations, the relative movement is minimal. 
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Figure 6.35. Comparison of the change in average vertex movement for incorporation of maintain 
operations into multilevel layout of the dynamic test graph collection, using the four update methods 
controlling the extent of the update into the multilevel scheme used 

6.5.1.2  Subjective Analysis 

Due to the number of results, subjective is only provided for the final layouts, and where 

notable behaviours are exhibited, comments are made regarding changes over time which 

cannot be expressed as still images. 

For growth operations on the regular and sparse type graphs, the frequent changes show a 

stacking effect, whereby vertices are added faster than the layout can be generated to place 

them, manifesting as compression at their anchoring points (described in Section 7.3.4 ). 

As a result of the stacking effect, warping is observed during mid and high update methods 

(Figure 6.36 (right) and Figure 6.37 (left)), suggesting fragmentation within the multilevel 

scheme causes coarser graphs to “pull” on the existing layout. In contrast, operations using 

the single and rematch methods extend fluidly and symmetrically from the anchor points.  
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Figure 6.36. Comparison of layout generated for the graph regular-medium using Multilevel Dynamic 
Spring Embedder, using single-level (left) and mid-level (right) update methods for incorporating 
amendments into the multilevel scheme and associated multilevel layout 

 

Figure 6.37. Comparison of layout generated for the graph regular-medium using Multilevel Dynamic 
Spring Embedder, using high-level (left) and rematch (right) update methods for incorporating 
amendments into the multilevel scheme and associated multilevel layout 

For dense graphs, the multilevel update plays a more noticeable role in the placement of 

addition of vertices within the layout. For single level updates (left), additional vertices and 

edges have little effect on the layout and do not escape the denseness of the layout (note 

there is only one noticeable protrusion on the bottom right of the drawing). In contrast, as 

the extent of the update is increased, the protrusions become stretched and clearer to the 
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observer, stretching out from the centre of the graph and becoming more visual as a result 

of the new vertices becoming more prominent in coarser layouts. 

 

Figure 6.38. Comparison of layout generated for the graph dense-small using Multilevel Dynamic Spring 
Embedder, using single-level (left), mid-level (center) and high-level (right) update methods for 
incorporating amendments into the multilevel scheme and associated multilevel layout 

In contrast to the growth operations, the shrink operations show little effect as a result of the 

update methods. Figure 6.39 provides an example of sparse-medium, showing similarity of 

layout between a single level update and a full rematch. Similar behaviour is noted across 

all graphs using shrink operations, whereby removal of vertices causes high movement but 

minimal edge crossings. 

 

Figure 6.39. Comparison of layout generated for the graph sparse-medium using Multilevel Dynamic 
Spring Embedder, using single-level (left) and rematch (right) update methods for incorporating 
amendments into the multilevel scheme and associated multilevel layout 
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6.5.2  Multilevel Global Force Updates 

As with the multilevel refinement method above, the same testing is applied to the Multilevel 

Global Force approximation scheme, the intention of which is to identify if there is any 

impact on layout quality from changing approximation.  

6.5.2.1  Quantitative Analysis 

The results highlight a more noticeable impact on the metrics of graph stability than seen 

when testing the multilevel refinement.  

The chart in Figure 6.40 shows that shrink operations have higher impact on edge crossings 

with single level update (increasing edge crossings by 800%), whereas the rematch method 

includes operations more fluidly, increasing and decreasing operations as seen in Figure 6.40 

for the Spring Embedder alone. 

 

 

Figure 6.40. Comparison of the change in edge crossings for incorporation of shrink operations into 
Multilevel Global Force approximation of the dynamic test graph collection, using the four update 
methods controlling the extent of the update into the multilevel scheme used 

Figure 6.41 illustrates that single level updates cause minimal movement, suggesting the 

vertices cannot move past local minima, causing increased edge crossings. In contrast, the 

rematch method is able to better apply forces to vertices and quickly provide low energy 

positions, increasing movement as the graph increases in size but equally reducing 

movement as minima is found. 
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The mid and high level updates generate larger amounts of movement associated with 

fragmentation in the multilevel scheme, whereby the changes cause ‘loose’ branches of 

vertices with little weight, which are greater affected by the denser branches of the matching 

tree (see Fragmentation, 7.3.2 ). 

 

 

Figure 6.41. Comparison of the change in average vertex movement for incorporation of shrink 
operations into Multilevel Global Force approximation of the dynamic test graph collection, using the 
four update methods controlling the extent of the update into the multilevel scheme used 

Growth operations operate in a similar way, with large differences between the update 

methods. The mid-level updates provide least changes in edge crossings between iterations, 

whereas rematch causes the greatest increase, likely due to the increase in possible 

matchings at the lowest levels. The performance of the mid update is thought to be a result 

of both preserving layout and also incorporating changes (enforcing both local and global 

layouts). 

 

0

50

100

150

200

250

300

350

400

450
0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

C
ha

ng
e 

in
 a

ve
ra

ge
 v

er
te

x 
m

ov
em

en
t

(p
er

ce
nt

ag
e 

of
 in

iti
al

 v
er

te
x 

m
ov

em
en

t)

Iteration of FDP

single

mid

high

rematch



154 

 

 

Figure 6.42. Comparison of the change in edge crossings for incorporation of growth operations into 
Multilevel Global Force approximation of the dynamic test graph collection, using the four update 
methods controlling the extent of the update into the multilevel scheme used 

Movement during growth operations is similar to that of the shrink operations, with the 

exception of mid updates which no longer cause high movement and instead cause least. 

The change may be attributed to many things, but is expected to be primarily from good 

initial placement of vertices as defined by the growth operation set. 

The high movement from the high level update is thought to reflect the large changes in the 

coarsest graphs, whereby adding new vertices causes the coarsest graph to increase from 

two heavy vertices to include multiple lighter vertices which are more susceptible to force. 
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Figure 6.43. Comparison of the change in average vertex movement as a result of  incorporating growth 
operations into Multilevel Global Force approximation of the dynamic test graph collection, using the 
four update methods controlling the extent of the update into the multilevel scheme used 

The maintain operations mirror the performance above for both changes in edge crossings 

and movement, as depicted in Figure 6.44 and Figure 6.45.  

 

 

Figure 6.44. Comparison of the change in edge crossings movement as a result of  incorporating maintain 
operations into Multilevel Global Force approximation of the dynamic test graph collection, using the 
four update methods controlling the extent of the update into the multilevel scheme used 
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Figure 6.45. Comparison of the change in average vertex movement as a result of  incorporating 
maintain operations into Multilevel Global Force approximation of the dynamic test graph collection, 
using the four update methods controlling the extent of the update into the multilevel scheme used 

6.5.2.2  Subjective Analysis  

One of the biggest observed differences of the update methods is the fluffiness of a graph, 

whereby the orientation of vertices can make a graph expand outward from the global centre 

of mass or the local centres. Sparse graphs are best for visualising this, as shown for sparse-

medium in Figure 6.46, the maintain operations are included using mid-level (left) and high-

level (left) updates. 

By including changes at a local level, vertices can be placed well according to their 

surrounding vertices, taking into account both the global and local center of mass. When 

propagated to the higher levels of the approximation, the vertices are more susceptible to, 

and are pushed away from, the global center of mass. The two methods can be useful and 

applied for specific interest in local or global layouts. 
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Figure 6.46. Comparison of layouts for sparse-medium  using Dynamic Spring Embedder with Multilevel 
Global Force approximation after application of maintain operations, using mid-level (left) and high-
level update methods, showing noticeable difference in the spread of vertices as a result of the methods 

The rematch method somewhat circumvents this behaviour by removing the fragmentation 

and providing equal layout as would be expected in a static drawing. The changes to the 

matching tree will be similar to the original due to adjacent vertices being matched, however 

some warping can be seen in the local layout as matchings differ (as depicted in Figure 6.47). 

 

Figure 6.47. Layouts for regular-medium, showing the minor change in vertex positions as a result of the 
Multilevel Global Force structure being altered during the rematch update method. Edges are coloured 
based on their length, with the warping shown as edge lengths changing (and colours changing) 

The stacking behaviour described previously is a noticeable problem in growth operations 

on regular graphs, depicted in Figure 6.48. The addition of vertices with only single level 

updates results in very little placement being applied to vertices due to vertices being added 
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too quickly (left), in contrast using the mid-level updates provided some layout but still 

suffers from warping as forces cannot push the layout out enough (right). 

 

Figure 6.48. Comparison of layout generated for the graph regular-medium using Dynamic Spring 
Embedder with Multilevel Global Force approximation, using single-level (left) and mid-level (right) 
update methods for incorporating amendments into the multilevel scheme and associated 
approximation 

Full and rematch updates improve the incorporation of vertices into the MGF approximation 

structure resulting in improved expansion of the layout.  

 

Figure 6.49. Comparison of layout generated for the graph regular-medium using Dynamic Spring 
Embedder with Multilevel Global Force approximation, using high-level (left) and rematch (right) 
update methods for incorporating growth amendments into the multilevel scheme and associated 
approximation 

Although medium and large graphs are provided with moderate layouts, the smaller graphs 

show little to no benefit from using Multilevel Global Force. As shown for sparse-small 
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below, the layouts generated after the maintain operations have folds regardless of the update 

methods used. 

 

Figure 6.50. Comparison of layout generated for the graph sparse-small using Dynamic Spring 
Embedder with Multilevel Global Force approximation, using single-level (left) and rematch (right) 
update methods for incorporating maintain operation amendments into the multilevel scheme and 
associated approximations 

On denser graphs such as dense-medium which have a largely disorganised layout, the 

updates methods can provide flexibility in how to display some types of updates (particularly 

growth) 

The high level update results in fragmentation which causes the looser vertices to be pushed 

outwards from the existing global layout (as shown in Figure 6.51). In contrast, using the 

single level operations causes the new vertices to be treated as their own subgraphs, with the 

repulsive forces of the original layout pushing them outwards (Figure 6.51 (left)). Rematch 

generates the least visually appealing layout (from the authors perspective), with the new 

subgraphs being affected by both the global and local layouts, somewhat conflicting the 

layout. 
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Figure 6.51. Comparison of layout generated for the graph dense-medium using Dynamic Spring 
Embedder with Multilevel Global Force approximation, using high-level (left), rematch (center) and 
single-level (right) update methods for incorporating growth operation amendments into the multilevel 
scheme and associated approximation 

6.6  Summary 

The experimental methodology is designed to test the fitness for purpose of each of the new 

algorithmic approaches, investigate configurations which provide improved results and 

provide comparison to state-of-the-art techniques. Experimentation is performed on each of 

the algorithms in regard to a benchmark to identify whether the techniques are applicable to 

graph drawing, with results collected for analysis in the Results and Evaluation chapters. 

Each of the experiments are performed using implementation of the proposed and state of 

the art works in a framework using common algorithmic design, data structures and runtime 

environments. The aim of which is to keep comparison of techniques as accurate as possible. 

Although quantitative results are collected for accurate and measurable comparison, results 

assume that the metrics used coincide with the readability and usefulness of layouts. 

Subjective analysis is provided for a broader evaluation of layouts and algorithm 

performance and confirm or refute the quantitative analysis. 

Multilevel Global Force approximation is shown to provide similar results to the Barnes Hut 

Octree, with a noticeable (41%) decrease in running time. In addition, it is believed the 

structural information of the layout is encapsulated and applied during approximation of 
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repulsive forces, making for a more accurate representation of the graph (as opposed to using 

an arbitrary structure placed atop the graph, approximating in N directions outwards).  

Various configurations have been investigated, with a default algorithm identified and 

described in Conclusions. Investigation into additional coarsening methods to improve the 

representation of structures within the graph has also been undertaken. 

During investigation of dynamic drawing, an adaptation of the Fruchterman-Reingold 

Spring Embedder is suggested, applying the force functions used to overcome minima in 

static graph drawing to the dynamic graph drawing area. Multilevel schemes have been 

introduced in combination with the Dynamic Spring Embedder, providing a means to 

improve global layout generation and reducing running time through application of the MGF 

approximation. 

Following the introduction of the multilevel methods, Dynamic Matching methods for 

incorporating amendments to a dynamic graph into the multilevel matching (and thus global 

layout and approximation schemes) has been investigated, highlighting the behaviours 

associated with different types of operations and providing suggestions for which update 

methods are beneficial for dynamic drawing. 
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7  Evaluation 

This chapter evaluates the results collected during experimentation and determines if the 

new algorithmic approaches have been successful in their aims, and if when combined, they 

are able to reduce the complexity of dynamic graph drawing and provide high quality 

drawings for large dynamic graphs.  

7.1  Multilevel Aesthetic Analysis 

Although not directly related to the reducing complexity or improving Layout Quality, the 

method does offer a more detailed means of measuring quality of a layout, particularly 

global layout. 

Within the literature, there is little research regarding analysis (particularly quantitative 

analysis) of layouts for large graphs with other 1,000 vertices. Current methods apply the 

aesthetics known to impact small graphs (e.g. edge crossings by Walshaw, 2003). 

Global Layout Analysis did show that changes in global layout can be measured in the 

approximate layout through measuring differences in edge crossings, however, the reduction 

of edge crossings is also apparent in the layout of the original graph, offering little benefit 

from measuring Multilevel aesthetics. 

Analysis of the layouts for partitions generated by the multilevel scheme provides insight 

into the layouts for groupings of vertices, with the examples in Section 4 showing local 

layout quality is identified in some areas of the example graph. In combination with Global 

Layout Analysis, the approach can give a detailed report of a layout. 

Similarly, usage with metrics for graph stability is also recorded for layout generation using 

algorithms for dynamic graph drawing. The example provided in Section 4  identifies 

differences between the Eades Spring Embedder and Dynamic Spring Embedder, showing 

that the former gets trapped in global minima (higher number of edge crossings in the 

approximate layout) while local layout continues to improve. In contrast, the latter method 

provides fewer edge crossings in the approximate layout, corresponding to improvements in 

the untangling of the graph, confirmed with subjective analysis. 

Multilevel Aesthetic Analysis provides quantitative results which give insight into the 

changes to layout, on the local and global scale, allowing for a more thorough interpretation 
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of developing layouts. The example provided for static layout analysis shows little 

improvement however, with the relative change in edge crossings for the initial layout 

similar to those in the approximate layout. 

The results encourage further investigation into the potential uses of Multilevel Aesthetic 

Analysis, especially in comparing developing layouts (such as those in Dynamic Graph 

Drawing). Although useful for providing numerical comparison, the similarity in results for 

layouts and approximate layout makes usage redundant in combination with subjective 

analysis, which generally provides more detailed conclusions regarding perceived global 

layout. 

7.2  Multilevel Global Force (MGF) Approximation 

The aim of MGF is to reduce the running time associated with the Spring Embedder (or 

other force directed placement method). Previously it has been noted that limiting the 

distance at which repulsive forces take effect (Fruchterman-Reingold, 1991), and use of 

space decomposition approximation (Fruchterman-Reingold (1991) and Hu (2003) may 

result in reduced to running time, and therefore Multilevel Global Force is assessed in 

comparison to these. 

7.2.1  Running Time and Complexity 

The primary investigation comparing running time between Multilevel Global Force and 

Octree usage indicates that a reduction of 40.1% is achieved (Section 5.2.1.1 ). The results 

suggest the reduction becomes more prominent in larger graphs, for example one of the 

smaller test graphs (data) shows a reduction of 27.8% in contrast to one of the larger test 

graphs (dime20) showing a reduction of 50.52%.  

Although several causes may exist, the controlled environment (Appendix 10.22.1 ) and 

decomposition of running time (Appendix 10.1 ) suggests the change in complexity is the 

primary cause. The change reduces complexity from O(n log n) associated with Octree usage 

(Barnes and Hut, 1986) to O(n · (L-1 · m-1) + (|Gc|-1)) for Multilevel Global Force, where 

n is the number of vertices in a graph, L is the number of graphs in the multilevel scheme, 

m is the matching number, and Gc is the coarsest graph in the multilevel scheme. This can 

be simplified to O(n · L) when |Gc| = 2. 
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Other attributes are additionally expected to impact running time and complexity. For 

example Octree incorporates limits for the number of splits generated to prevent an infinite 

tree Hu (2006), a feature Multilevel Global Force does not include. In contrast, the 

generation of the Octree requires additional time to be generated, unlike Multilevel Global 

Force which can be exploited from an existing multilevel scheme. The impact of such 

attributes can be seen in Results and Appendix 10.1 (deconstructing running time), and act 

by altering the value of L, m and |Gc| above. 

7.2.2  Layout Quality 

Analysis of numerical results for layout quality identifies a 13.5% increase in edge crossings 

as a result of using Multilevel Global Force over use of an Octree, implying that layouts are 

more difficult to read, however also show that the range in edge crossings between repeated 

drawings is reduced by 92.48% than the Octree, showing layouts generated using Multilevel 

Global Force are more regular (repeated layouts are measurably similar).  

The increase in edge crossings is associated with the difference between the mapping of 

vertices to approximation (approximation tree structure) used by the Octree and Multilevel 

Global Force. The impact on force calculation is approximation of long range repulsive 

forces in reduced directions (the Octree approximates forces in four directions per split and 

Multilevel Global Force approximates in two), changing the directions of expansion within 

the layout and introducing warping. 

Larger graphs show a lesser effect from warping (a result of vertices with high weight in 

coarser graphs overcoming the high weights of the coarsest graph) but more prominent 

Peripheral Effect (Hu, 2005), whereby the repulsive forces cause expansion outwards from 

points of high mass within the layout (large groupings of vertices) and compression of the 

precipice of sub graph structures (observed as a more defined global structure). 

Further changes in edge crossings come from overlaps in the layout, however, subjective 

analysis identifies a likeness between drawings using Octree and Multilevel Global Force 

approximation methods. 
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7.2.3  Configuration 

As with much literature (Fruchterman and Reingold (1991), Walshaw (2003), and Hu 

(2006)), experimentation is performed to identify and suggest an optimal configuration for 

a proposed algorithm. The methods used to achieve this are largely focused on the structure 

and attributes of the Multilevel Global Force structure and further reducing complexity of 

repulsive force calculation. 

7.2.3.1  Limiting approximation 

Typical implementations of force directed placement (Walshaw (2003) and Hu (2003)) 

include some limitation on global n-body forces (Fruchterman and Reingold, 1991), 

preventing weak interactions between distant vertices. In order to determine the impact on 

layout, two methods are compared for incorporating such function, a limitation on spatial 

distance (r), and a limitation on approximations (a limit on the traversal of the approximation 

tree).  

Comparison of the limitations shows a common and expected behaviour, the larger the 

limitation the greater the impact on layout and running time (disproportionately reduced, see 

below). Both spatial and approximation limit follow the same rate of change as indicated in 

Appendix10.7 , with some difference as a result of spatial distance and traversal of the 

approximation tree. 

Between values of 0 and 30 (representing the extent of traversal from none to 30 levels), an 

optimal value of 15 is suggested for approximation limit (corresponding to traversal to the 

15h coarsest graph), resulting in a 40% decrease in running time and 20% increase in edge 

crossings. A value of 14 is suggested for spatial limit (corresponding to distance equal to 14 

· k).  

Values provided in other publications (most notably Hu, 2005) provide different 

configurations for using spatial limitation, however, are incomparable due to differences in 

implementation. As such, the values suggested may have different impact between 

implementations. 

7.2.3.2  Coarsening Tolerance 

Limiting the number of graphs within a multilevel scheme has had little exposure in previous 

research, described briefly as a means to prevent successive abstractions of a graph with the 
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same structure being generated as part of a multilevel scheme (Walshaw, 2003). 

Investigation into the values suggests that reason for low exposure is the disproportionate 

increase in edge crossings (decrease in layout quality) relative to any benefit obtained 

(reduction in running time).  

A tolerance of 2 vertices between successive abstractions is suggested, providing negligible 

difference to running time and edge crossings across test graphs on average. The value is 

applied during the coarsening scheme (see Section 0) and prevents graphs with a difference 

less than 2 being generated. Higher values show little decrease in running time and 

noticeable increase in edge crossings (a value of 20 results in 5% decrease in running time 

and up to 240% increase in edge crossings). 

Due to no other function being altered, the cause of the increase in edge crossings is 

attributed to the coarsest graph which is generated, and the number of directions in which 

approximation occurs. For example, if a coarsest graph of 100 vertices is generated and 

provided a layout which exhibits a fold, this layout then becomes the foundation for all finer 

graphs. Further subjective analysis supports the conclusion showing folds and overlaps for 

larger graphs. The values provided match the usage described in Literature (Walshaw, 

2003). 

A more adaptive method is suggested in Primitive Graphs (see below). 

7.2.3.3  Multimatching, Primitives and MGF Structure 

The structure of Multilevel Global Force is dependent on the multilevel or multiscale scheme 

used, which here uses edge contraction as described by Walshaw (2003). Other multilevel 

and multiscale methods may use alternate approaches for generating a hierarchy of 

approximate graph structures (such as identifying related vertex clusters, Hachel and Jünger 

(2005) or identifying a Maximal Independent Vertex Subset, Gajer et al (2001)) providing 

alternate approximation tree structures if utilized as Multilevel Global Force.  

Investigation here examines the impact of altering the structure of a multilevel scheme 

described by Walshaw (2003) by adapting the edge contraction method used to generate it. 
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7.2.3.3.1   Multimatching and Brute Coarsening 

Changing the number of vertices being matched during the coarsening process alters the 

number of vertices represented by coarse vertices, and so increases the number of repulsive 

forces applied to a vertex (while simultaneously reducing the number of levels in the 

multilevel scheme). The aim was to determine if such mechanism would prevent the warping 

effect of using Multilevel Global Forces and provide a more uniformly expanded layout 

similar to Octree generated layouts. 

Analysis of the results suggests that Multimatching is able to provide such effect, with some 

layouts showing more equilateral expansion. However, the numerical results suggest that 

there is little benefit from using the techniques for many graphs, with all values increasing 

the number of edge crossings and running time by a minimum of 26.9% and 27.8% 

respectively (achieved using a matching value of 4). 

The increase in edge crossings can be attributed to the change in the approximation of 

repulsive forces in greater number of directions, supported by the subjective analysis which 

shows layouts are expanded outwards and exhibit more overlaps. Although higher number 

of edge crossings, the layouts are still readable and comparable to those achieved using 

standard edge crossings, providing little benefit other than a more equilateral expansion of 

the layout. 

Runtime is altered as a result of changing (see above) whereby the larger number of vertices 

represented by a vertex in a coarse graph increases the number of approximations.  

Due to the higher running times and increase in edge crossings, Multimatching is not 

suggested for use in generating a multilevel scheme for use with Multilevel Global Force 

approximation.  

More advanced methods may be able to identify improved matchings and therefore improve 

layout quality and so further investigation into matching and clustering techniques is 

suggested.  

7.2.3.3.2   Matching Maximal and Average Degree 

Analysis reveals there is little to no improvement to layout quality or running time as a result 

of using matching values equal to the average or maximum degree within each graph.  
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Such a result is surprising as it was expected that better representation of graph structure and 

connectivity would be indicated in layouts, however, matching the average degree increases 

running time and edge crossings by 108.7% and 165.3%, suggesting that the change in the 

number, weight and direction of approximations causes decreased readability. Subjective 

analysis attributes the increase in edge crossings to overlaps within layouts as seen in the 

Multimatching above. 

More notably, matching the maximal degree (brute matching) increases running time by 

1001.5%, caused by a massive increase in the number of calculations for larger graphs in 

the test collection. The calculations come from a high number of levels in the multilevel 

scheme, and higher numbers of vertices being represented by coarse vertices.  Although 

there is a high increase in running time, edge crossings increase by a lesser 38.3%. 

Similar to above, brute and degree matching are not suggested for use with Multilevel Global 

Force generation due to the increased running time and edge crossings. Although subjective 

analysis highlights similar layouts to standard, the rise in running time dampens the little 

benefit to be gained. 

7.2.3.4  Pattern Placement 

Placement of primitive structures moves from the drawing of general graphs to providing 

layout to specific structures, and can be considered a similar mechanism to those used in 

layouts provided to hierarchical graphs. Although specific, investigation here looks at the 

use of identifying and removing such structures in order to reduce the complexity of the 

Multilevel Global Force structure when drawing general graphs. 

Four methods are used to provide guidance over usage and configuration, testing the removal 

and placement of leaf vertices using a Vertex Placement Scheme (Leaf Placement), 

refinement of the calculated layout (FDP refinement), and the impact on these changes to 

only the original graph (Single Level) or throughout the multilevel scheme (Multilevel): 

• A – Single Level Leaf Placement 
• B – Single Level Leaf Placement with FDP refinement 
• C – Multilevel Leaf Placement only 
• D – Multilevel Leaf Placement with FDP refinement 
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Results are recorded for the collection of general graphs and also the collection of leafy 

graphs. It is noted however, that the leafy graphs have much fewer vertices and edges than 

the tested general graphs. 

7.2.3.5  General Graphs 

For general test graphs running time is increased by 25.8% and 3.3% for single and 

multilevel leaf placement (A and C). The 13.1% difference between the single and multilevel 

usage may most noticeably be caused by the O(L) and O( L · (L-1)) reduction in calculations 

per iteration. The significant difference between them correlates to the number of leaf 

vertices per graph, many of the general graphs have no leaf vertices, whereas coarser 

abstractions may include many. 

Although increasing running time, the layout quality remains largely unaffected by leaf 

placement, increasing edge crossings by 1.26% for single level (which can occur naturally 

between layouts). The lack of impact is due to general graphs featuring few to no leaf 

vertices, in contrast, the multilevel leaf placement shows an increase in 15.9% suggesting 

the existence of leaf vertices in coarser abstractions. The increase comes from the observed 

fluffier layouts as a result of finer vertices being placed in higher energy positions as a result 

of the leaf placement in coarse graph. 

Methods using FDP refinement results in a more noticeable application of running time of 

66% and 36% for algorithms B and D. Running time is increased due to application of further 

FDP to general graphs exhibiting leaf vertices (i.e. add32). The reduction supports the 

suggestion above, that coarser graphs exhibit more leaf vertices providing opportunity for 

further saving. 

Although noticeably increasing running time, the number of edge crossings drops by 7.3% 

and 22.8%, suggesting initial leaf placement with refinement thereafter improves the 

measured quality of layouts. Observed layouts can be identified as being fluffy (like above) 

with fewer tangles and overlaps. 

7.2.3.6  Leafy Graphs 

For leafy graphs running time is decreased by 29% and 23% for single and multilevel leaf 

placement. 
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Edge crossings increase by 56.1% and 65.9% or single and leaf placement, a result of high 

number of leaf vertices overlapping the existing layouts. Edge crossings are also increased 

using multilevel placement, contrary to the general graphs above. 

Leaf placement with FDP refinement shows an increase in running time by 15% and 21% 

in running time (B and D). This is different to the results for general graphs which saw a 

reduction for the multilevel usage and is attributed to the increase in leaf vertices, resulting 

in larger number of calculations in FDP.  

Edge crossings are reduced by 12.2% and 6.7% for single and multilevel leaf placement with 

FDP refinement. Although less than the values above, the impact is still higher than 

exhibited for the general graphs, however, the multilevel method provides fewer edge 

crossings (similar to the general graph measurements).  

7.2.3.7  Overall Usage 

It is known through the Vertex Placement Scheme, leaf vertices are likely to be provided 

with poor placement relative to their local layout due to orientation using the centre of mass, 

often overlapping other part of the layout. In addition, the VPS does not provide the 

compression and elongation of edge lengths seen in Force Directed Placement, and so 

layouts do not necessarily fit in. 

The running time features an increase or decrease, associated with the search for leaf vertices 

and the saving when removed from force directed placement (shown as an increase for 

general graphs and decrease for leafy graphs). 

In general, multilevel usage appears beneficial for the drawing process, providing improved 

layout when refined using further Force Directed Placement. The running time associated 

with multilevel usage is less than single level, however still increased above that of the 

default edge contraction algorithm. 

Single level provides some optimization for known leafy graphs only, multilevel provides 

some suggestion of optimization in the multilevel scheme and so where quality is more 

important than running time, multilevel leaf placement is suggested. For smaller leafy 

graphs, the leaf placement algorithm provides an effective way of highlighting the leaf 

vertices and can be modified to allow users to modify the placement of leaf vertices – adding 

a level of interactivity. 
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7.2.3.8  Primitive Graphs 

Use of primitive graph structures as a potential stopping mechanism for multilevel 

generation has been shown beneficial during investigation. Compared to the default value 

of 2 for coarsening tolerance, there is little impact on running time (1.1% increase) and 

layout quality (1.7% increase in edge crossings) during numerical analysis. 

Although it was anticipated some saving would be achieved in running time (as a result of 

the coarsening scheme finishing early), the minor rise indicates that the time spent 

identifying a graph as primitive negates any saving achieved by ending the coarsening 

scheme early.  

Similarly, it was expected that layout would be effected as a result of improved initial 

positions and improved expansion as a result of the altered MGF structure, however the 

results suggest little difference. Subjective analysis indicates that the cause of the change is 

different between graphs, with reduced edge crossings achieved by improving global layout, 

and in others increased as a result of additional directions of approximation. 

Layouts are observed to be fluffier and show less warping due to the layout/direction of 

forces in coarser graphs. As such, primitive graphs are suggested as a stopping mechanism 

and are included as part of the default algorithm. 

7.2.4  Summary of MGF 

The most notable feature of MGF is the decreased running time achieved with minimal 

change to layout quality. Layouts are comparable to those described in Walshaw (2003) and 

Hu (2005), however exhibit warping and more noticeable Peripheral Effect due to the change 

in the direction and weight of repulsive force approximation. Although it is believed 

approximation better represents the structure and connectivity of a layout, determining the 

impact on readability requires studies measuring individuals’ perceptions of a layout. 

Implementation requires only reuse of existing multilevel structures, using a similar 

traversal scheme as that used for the Octree for application of coarse vertex positions as 

approximation, making the scheme easy to implement and transferable with the Octree 

method. A key difference between the two is the use of graph structure as opposed to space, 

this frees approximation from requiring an additional structure with which to map vertices. 
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Although not implemented, it is expected that other multilevel and multiscale methods can 

utilize the approach (Hadany and Harel, 2001, Harel and Koren, 2001, and, Hachel and 

Jünger, 2001) to generate their own approximation structure – specific to the multilevel 

refinement used. 

Default usage combines Multilevel Global Force with the Fruchterman-Reingold Spring 

Embedder (using standard parameters seen in research, i.e. C=0.2). The generation of the 

multilevel/MGF structure is advised to include Primitive Graph as a method for preventing 

similar abstractions (few vertices different) being generated and providing an accurate and 

calculated layout for the coarsest graph. 

If reduced running time is a priority, approximation limit is suggested to prevent only 15 

calculations of repulsive force per vertex (that is, traversal of 15 levels in the MGF tree), 

providing reduced running time and slight increase in edge crossings. Similarly, a spatial 

limitation on the distance of repulsive forces can be used with a value of 14, providing 

similar results. 

In contrast, if high quality layout is considered priority, it is suggested that placement is 

provided using Vertex Placement Scheme in addition to multilevel schemes and FDP 

refinement (Algorithm D). For more interactive modes, vertex placement is suggested on its 

own, allowing users to alter the placement of leaf vertices – if applicable. 

7.3  Dynamic Graph Drawing Methods 

The aim of investigating dynamic drawing methods here is to extend the approaches used in 

static drawing, and provide visualisation of large dynamic graphs. In order to accomplish 

this, an adaptation of the Fruchterman Reingold Spring Embedder is suggested for use of 

the strong force functions used to overcome minima in dynamic drawing. Comparison is 

made to the Eades Spring Embedder to determine the effectiveness.  

Following the adaptation, the multilevel and approximation methods become easier to 

transfer, and are compared in order to identify their effectiveness at improving global layout 

and reducing running times. The introduction of such mechanisms, particularly the use of a 

multilevel scheme, introduces the need for methods to update matchings representing graph 

structures as amendments are made. 
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7.3.1  Dynamic Spring Embedder 

An adaptation of the spring embedder method described by Fruchterman and Reingold 

(1991), altering the method of calculating displacement (and corresponding equilibrium of 

forces) to provide gradual vertex movement similar to that seen by the Eades Spring 

Embedder (Eades, 1984).  

7.3.1.1  Configuration of Displacement 

Displacement by spring and repulsive forces is calculated separately, allowing for the 

equilibrium of forces to be modified such that one force has priority. More specifically, it 

provides a means to balance the displacement such that vertex movement is gradual as 

opposed to large distances observed in static drawing.  

The experimentation shows that by limiting vertex displacement from repulsive forces, 

while keeping the displacement of spring forces unchanged, movement is increased or 

decreased providing freedom to overcome minima or more gradual vertex movement. 

Although a default value of 0.7 is suggested (0.7:1.0 ration between repulsive and spring 

displacement), the nature of dynamic graph drawing (an ongoing process) allows for values 

to be changed during the drawing process to best suit a dataset. 

The default parameter value of 0.7 minimises movement providing smooth vertex 

trajectories, while retaining the force required to overcome minima (providing layouts with 

minimal edge crossings. Due to differences in connectivity, different graph types provide 

different performance between values (see Appendix 10.11 ).  

7.3.1.2  Comparison of Spring Embedders 

Cooling schedules gradually limit vertex movement per iteration of Force Directed 

Placement,  providing a layout (optimal or not) within a finite number of frames, after which 

vertex movement is reduced so much it appears to stop entirely. In contrast, methods which 

do not use cooling schedules allow for an infinite number of frames, allowing for layout to 

continue being developed after the cooled algorithms have stopped, at the cost of having 

reduced movement required to overcome minima quickly. 

The proposed Dynamic Spring Embedder aims to improve upon this by using force functions 

described by Fruchterman and Reingold to better overcome minima and find layouts with 

minimal edge crossings quickly. Configuration of displacement can be altered to enhance 
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this effect and better overcome minima, but at a cost of vertex movement being increased 

(and so harder to follow). 

Although reducing edge crossings and better overcoming minima in comparison to an 

implementation of the Eades Spring Embedder, layouts generated using the Dynamic Spring 

Embedder exhibit high range in edge lengths (Peripheral Effect, Hu, 2005). Further to this, 

the observed layout shows large amounts of movement initially, untangling the layout and 

removing edge crossings but making such changes difficult to follow. The improvement of 

layout from randomised vertex placement is believed to represent a dramatic layout 

adjustment, identifying an algorithms ability to incorporate graph amendments into layout 

(which are not specific to shrink or growth). The results suggest the Dynamic Spring 

Embedder will react quickly to changes, correcting layout as adjustments are made. This 

may better represent the impact of amendments on a graph, but it is expected the change will 

not preserve layout. 

Due to the resulting high quality results and the ability to overcome minima, the Dynamic 

Spring Embedder is considered useful for dynamic graph drawing, particularly for the 

untangling of large graphs. Although promising, it is noted layouts can appear stretched and 

warped as a result of strong forces at the centre of the graph (Peripheral Effect). In addition 

the results only cover layout generation, further investigation into graph and layout 

adjustment is evaluated below. 

7.3.1.3  Layout Adjustment 

Following layout generation, adjustment is tested by amending the graph and measuring the 

resulting changes to the quality of the layout (edge crossings and average vertex movement). 

No known collection of dynamic graphs exist and therefore example datasets are provided, 

featuring three structural types (differing connectivity) with amendments to reduce or 

continue the structural attributes of each (for example, extending an 10x10 grid square to a 

10x20 grid rectangle). 

The results indicate similar performance as indicated for layout generation above, with the 

Dynamic Spring Embedder being better able to overcome minima (represented as spikes in 

edge crossings as amendments are performed followed by an immediate drop to some 

minimum as low energy positions are found). Comparison to the Eades Spring Embedder 

similarly indicates an improvement in overcoming minima. 
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As mentioned above however, the ability to overcome minima results in large amounts of 

movement observed during subjective analysis. Although remaining easy for the author to 

follow what is occurring in the graph, the difference to Eades Spring Embedder (SE) is 

noticeable, with a larger amount of movement in reaction to changes as vertices move into 

lower energy positions. The quantitative analysis of movement suggests relative movement 

is higher for Eades Spring Embedder, providing a false suggestion that movement in greater. 

As such, it is believed that the Dynamic Spring Embedder (FRD) method better incorporates 

amendments into the layout as a result of overcoming any minima that is introduced, 

whereas the SE method better preserves the initial layout of a graph. However the results are 

only accurate for the types of operation performed and provide only a general behaviour. 

Although frequency and types of operation are investigated (see Section 6.5 ), it is not 

possible to emulate every possible combination of operation and so the detailed results 

should be used only as a guide. 

7.3.2  Multilevel Generation  

The analysis of the metrics for graph stability shows little improvement in layout as result 

of multilevel refinement during generation of layouts for the test graphs. Investigation 

reveals that the size of a graph impacts the incorporation of multilevel layout with higher 

numbers of edge crossings measured in smaller graphs, observed as warping within the 

layout as multilevel layout overpowers local refinement. 

Such differences result in poorer measured layout quality, whereby the Dynamic Spring 

Embedder is able to provide adequate layout without multilevel refinement. In contrast, its 

use in larger graphs, which would otherwise remain tangled, has improved measured layout 

as a result of improved global layout, in addition to exhibiting little to no warping. 

Subjective analysis supports this with improvement of layout in larger graphs and warping 

of layouts in smaller graphs. Observing the application of force directed placement reveals 

that the improvement in edge crossings comes from related vertices being moved into lower 

energy global positions, after which the local layouts are refined. 

Due to the increase in edge crossings in smaller graphs, multilevel layout is suggested for 

only medium and above graph sizes (>1000 vertices). Displacement appears to be a viable 
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method of incorporating global layout into a graph in contrast to methods utilising springs 

between levels (Veldhuizen). 

It is noted however, that the global layout provided may not be optimal due to folds still 

prevalent in the layout. This suggests that although displacement provides some global 

layout, a minimum energy global layout may not be found with folds being exhibited in 

layouts (for example, regular-large in Figure 6.29).  

Methods for incorporating multilevel layout already exist within dynamic drawing 

(Veldhuizen and Frishman), however little discussion is provided regarding the limitations 

of the methods used. The results here identify a simple technique for incorporating global 

layout into dynamic layout generation, showing improvement in layouts for large graphs 

and the limitations encountered. 

7.3.3  Multilevel Global Force 

Multilevel Global Force aims to provide reduced running time, similar to the reductions seen 

through its usage in static graph drawing. As expected, a massive decrease in running time 

is observed, from 95% reduction for small graphs to 99.8% for large graphs in comparison 

to the Dynamic Spring Embedder (n-body calculation). Other approximation methods are 

likely to provide similar savings to this, for example the Octree space decomposition, 

however the results of Section 5.2  suggest further reduction in running time can be achieved 

using Multilevel Global Force. 

The saving in running time also identifies a requirement for minimum and maximum frame 

rate for visualisation of the drawing process as an animation. Running time is decreased to 

such an extent that the FPS exceeds that for typical animation, identifying a need to 

incorporate delays between frames in order to prevent accelerated graph drawing. 

As a result of approximation, edge crossings are increased in all layouts – most notably 

462% for smaller graphs and 133% for medium graphs. The cause of such massive increase 

comes from differences in the calculated repulsive force displacement. Altering the default 

values of equilibrium of displacement reduces these edge crossings providing layouts similar 

to those achieved by Dynamic Spring Embedder (see Appendix 10.24 ). 

Although higher edge crossings are reported across all graphs, the change in running time is 

far more advantageous than the increase in edge crossings (1 frame of Dynamic Spring 
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Embedder takes the same time as 631 frames using the same method with Multilevel Global 

Force), allowing for large graphs to be visualised in a fraction of the time (observed as a 

faster convergence of layout). 

7.3.4  Dynamic Matching 

Dynamic matching investigates the effect of altering/updating multilevel matching used in 

the multilevel layout refinement and approximation methods above. 

Due to the large number of variables within the experimentation (such as operation types, 

graph structures and graph size), results for the impact on multilevel layout and 

approximation are analysed in respect to the update methods and operation types only. 

Additional variables are summarised to highlight their impact on results. 

7.3.4.1  Graph Structure 

The graph structure (average degree and repeated sub-graph structures) is shown to effect 

the impact of operations and update methods. More so due to operations sets being 

dependant on the structure – continuing or reducing the connectivity (degree) within the 

graph. For example, sparse graph has the smallest average degree of all the test graphs, 

making it easier for vertices to pass one another and overcome folds (minima) by reducing 

the number of edges and vertices it must move past. 

It is noted the results are generalised across the graph types, however different structures 

may have a different impact and so not follow the general behaviour (similar to being unable 

to emulate all types of operation, it is infeasible to emulate every possible graph). 

7.3.4.2  Frequency of Amendments 

The frequency of operations is the speed at which the changes occur relative to the number 

of frames being generated, with high frequency referring to more amendments being made 

per frame, expected to require longer for a layout to be corrected. The results follow such 

expectation, with higher frequency causing operations to stack over time as force directed 

placement is unable to amend layout before additional operations occur. Such effect can be 

noticed in all sizes of graphs and types of operations, and escalates with graph size due to a 

larger layout to be corrected. 
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7.3.4.3  Fragmentation 

Fragmentation refers to alterations made to the multilevel scheme which leaves vertices 

unmatched, the result of which is multiple vertices existing within coarser graphs which 

represent few vertices in the finer graph (in contrast to other vertices in the coarse graph 

representing significantly higher numbers in the finer graph). The impact of this is 

significant forces being applied to these “light weight” vertices, pushing them far from the 

centre of the graph and causing warping in the layouts. 

Fragmentation is caused by amendments introducing or removing vertices, and update 

methods which are unable to match them within the multilevel scheme (due to a full 

matching already being made). As the number of fragmented vertices increases, theoretically 

the impact would become less as the odds of anchoring vertices being matched decreases, 

allowing for new matches to be made, however are not observed in the results. 

The effect of fragmentation is different between operation types, for shrink operations, the 

reduced weight and connectivity of vertices in coarser graphs causes higher numbers of edge 

crossings as more minima opens up. In contrast, growth operations show reduced number 

of edge crossings as a result of improvement global placement of vertices (light weight 

vertices are easier to move through minima). 

Fragmentation is observed in both multilevel layout refinement and multilevel global force 

approximation. 

7.3.5  Multilevel Updates 

Multilevel refinement is used for generating global layout, the update of which is expected 

to incorporate graph amendments within the layout by differing extents. 

Of all the update methods, the rematch method best preserves the layout between operations. 

Most notably, the rematch method reduces the fragmentation within the multilevel scheme 

(unmatched vertices with low weight in coarser graphs), unlike that seen in mid and high 

level updates. 

In contrast, the single-level update causes the opposite effect, whereby shrink operations 

reduce edge crossings as layout is preserved, but increase edge crossings as growth 
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operations expand the graph, unable to provide good global layout. Mid-level update 

generally performs between single and full update methods. 

Movement throughout all methods shows little difference (<5%) to movement, however, is 

relative to initial movement. More notably, sparse graphs shows erratic movement and 

changes through all update methods and operation types. 

Subjective analysis confirms the suggestions above, with single preservation of layout but 

poor adjustment of new vertices and edges and warping in layouts using mid and high 

updates in regular structures as a result of fragmentation and placement of vertices in coarse 

graphs. 

Layouts for single level and rematch are quite similar (regarding spread of vertices) 

suggesting both provide accurate representation of the layout. However, rematch provides 

improved layout for growth operations.  

7.3.5.1  Multilevel Global Force Updates 

Multilevel Global Force approximates the positions of vertices, the extent of which is 

dependent on the distance as described by a multilevel scheme. The update of the 

approximation is necessary in order to retain an accurate representation of the graph as 

amendments occur, providing calculation of forces which incorporates the amendments 

immediately. 

Unlike above, both shrink and growth operations are impacted by update methods. For 

shrink operations, rematch provides least change in edge crossings and single generates 

highest, whereas for growth operations, mid shows least increase and rematch shows 

highest. 

The cause of the more noticeable impact than using multilevel layout is due to the 

approximation in repulsive forces. Multilevel refinement provides guidance for global 

layout but refinement is still local, however, updates for MGF are incorporated directly into 

local and so updates impact the layout much more. 

Most noticeably, the rematch method provides least change in edge crossings for shrink and 

greatest change in growth, caused by good preservation of layout during vertex removal but 
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larger incorporation of changes in growth (resulting in noticeable changes in edge crossings 

as different minima is identified). 

Movement is affected due to change in approximation (weights and direction), with high 

level updates providing increased movement for all operations. Mid-level update provides 

similar movement from shrink operations but not for growth, and single and rematch 

methods remain with least changes to movement. Initially it is believed that the movement 

is a result of updating the matching, however, rematch does not provide such movement, 

and so the cause is thought to stem from fragmentation. 

Subjective analysis somewhat confirms this, with warping (similar to that seen in Multilevel 

updates) observed for mid-level and full updates. In contrast, single level updates do not 

cause such warping, albeit layout is not achieved for the introduced vertices. 

 

Figure 7.1 Subtle warping of the graph 3025 as a result of regenerating the multilevel scheme for 're-
matching' updates. 

Similarly, rematch has a reduced warping effect, but movement is noticed as edges expand 

and contract in reaction to changes in the multilevel matching and the centre of mass of 

approximations. The effect is more noticeable for dense graphs whereby large movement 

are observed when new matchings caused radical changes to the centre of mass used in 

approximations, a result of the high connectivity in the graph generating an entirely new 

matching. 

Small graphs appear more distorted by MGF as a result of the approximation of forces into 

two directions, and large graphs (and consequently large numbers of operations) show slow 

impact on layout. 

Due to the variety in behaviours, changes should be incorporated using update methods best 

suited for the graph type. For dense graphs, full-level update is suggested to incorporate 
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changes and preserve layout (by preserving the matching), whereas for regular graphs the 

rematch method reduces fragmentation and resulting warping of the layout. 

7.4  Summary 

Some key points are identified: 

Experimental Methodology 

• The methodology aims to infer performance by measuring the test data and metrics 

in comparison to implementation of existing algorithms 

• Implementation provides use of similar structures and algorithm design in the same 

environment, providing a true comparison 

• Implementation only follows the interpreted design described in respective 

publications – the authors of each publication may therefore not have included parts 

essential for achieving the results published 

• Collection and analysis of the results is standard, comparing average performance of 

multiple repeats 

Test Data and Metrics 

• Test data is only used as an example – static graph collections used previously 

• Few large dynamic graphs exist therefore an example collection is used with varying 

connectivity (degree) 

• Edge crossings are shown to be good indicator of the planarity of layouts, which can 

then be compared across algorithms 

o Although not necessarily identifying poor layouts, it provides a means of 

identifying similarity of layouts for a given graph  

• Metrics for graph stability has been useful in mapping change within a layout as a 

result of amendments or layout development 

o Comparison to subjective shows that it does not necessarily encompass all 

aspects of what is happing – specifically the cause of movement in the layout 

and whether it can be followed 

Multilevel Analysis 



182 

 

• Possible use for monitoring development of global layout in dynamic graphs or 

comparing the global layout of two algorithms 

• Beneficial for numerical comparison but similar conclusions can be made through 

subjective analysis 

• Experimentation shows that the results of local analysis is comparable to global 

analysis, and so similar conclusions regarding a layout can be made without 

multilevel analysis 

o Analysis of individual partitions provide identify good local layout but 

similarly, conclusion regarding the final graph may provide similar insight 

Multilevel Global Force Summary 

• MGF reduces running time and provides high quality layouts comparable to those 

generated by current methods (Walshaw and Hu) 

• Changing structure of multilevel scheme (Multimatching and brute matching) offers 

little benefit – highlighting power of weighted matching 

• Primitive processing is beneficial to graphs which feature leaves but requires 

additional running time and offers a useful method for ending matching schemes 

before abstractions become too similar 

Dynamic Graph Drawing 

• Dynamic Spring Embedder offers a way to visualise graphs and provide high quality 

results which can better overcome local minima than the Eades Spring Embedder 

• Other methods exist which incorporate additional features (i.e. magnetised springs 

or intelligent placement) or utilise methods which intend to preserve a user’s initial 

perception of a layout (multilevel dynamic drawing) 

• Multilevel method useful for improving global layout in large graphs as seen in static 

drawing 

• MGF useful for improving running time 

• Dynamic matching provides some guidelines for multilevel updates, generally, stick 

to single or rematch in order to avoid fragmentation of the matching (which results 

in warping as forces and vertex placement is altered) 

 



183 

 

In summary of the evaluation, it is clear that there is scope for further experimentation – 

particularly in the analysis of dynamic drawing algorithms which requires additional 

comparison to other methodologies, and a wider range in test graphs. Similarly, the 

experimentation in graph amendments and impact on multilevel schemes requires additional 

investigation. 
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8  Conclusions 

This dissertation has investigated two notable areas, identifying a new use for multilevel 

schemes to approximate long range repulsive forces using structure as opposed to spatial 

information, and an adaptation of the Fruchterman Reingold Spring-Embedder for iterative 

dynamic drawing, providing smooth vertex trajectories are force functions able to better 

overcome local minima to provide layouts with minimal edge crossings. Brief investigation 

is also provided to identify metrics for monitoring development of global layout in larger 

graphs. 

The aims of the investigations were to assess methods for: 

• An efficient force calculation offering minimal cost, intending to reduce the running 

time associated with spring embedder (Multilevel Global Force) 

• Optimization of layout visualization and adjustment for large graphs such that 

changes are visualized immediately (Dynamic Graph Drawing) 

• Global layout and local layout generation simultaneously via multilevel integration 

(Dynamic Graph Drawing, Multilevel Layout) 

 

8.1  Research Findings 

8.1.1  Implementation 

Being able to compare research through its implementation was extremely useful, both in 

terms of learning and of identifying progression in the development of the theory.  

The shared environment provides confidence that the suggested algorithmic approaches are 

not just theoretical or dependent on the one implementation. 

It is strongly suggested any new researchers to the area look at implementing the works of 

others, if even through paper-based means, to get a better understanding of the works (often 

leading to questions as why something is at it is). 
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8.1.3  Algorithm Performance 

Algorithm Description 

Multilevel Global Force Spring 

Embedder 

The algorithm works best for general graph drawing 

across all test cases. The algorithm outperforms the 

implementation of Multilevel Spring Embedder and 

Efficient Multilevel Spring Embedder in terms of 

running time with minimal cost to layout quality. 

Multilevel Global Force Spring 

Embedder with Multimatching 

There was little benefit to using Multimatching in any 

of its forms, and the results did not follow any 

predictable pattern which could be exploited. 

Multilevel Global Force Spring 

Embedder with Leaf Placement 

Scheme 

The algorithm was most useful during interactive 

drawing, whereby the placement schemes could be 

modified in real time to ‘redraw’ the affected vertices. 

However, there was little benefit generally. 

Multilevel Global Force Spring 

Embedder with Primitive 

Matching 

There was little benefit to primitive matching, with 

negligible improvements to running time or layout 

quality. 

Multilevel Global Force Spring 

Embedder with Approximation 

Limit 

Useful to reduce running times, however the negative 

impact on layout quality makes it useful only for cases 

when running time is of high importance. 

Dynamic Modified Spring 

Embedder 

The algorithm works well for smaller graphs and 

outperforms the Spring Embedder when overcoming 

minima. Best used for general drawing purposes. 

Multilevel Dynamic Modified 

Spring Embedder 

The algorithm improves the quality of layouts for larger 

graphs only, layouts for smaller graphs lose quality as 

multilevel layout overpowers the local placement. 

Dynamic Spring Embedder 

with Multilevel Global Force 

Best in terms of reducing complexity with minimal cost 

to layout quality, however like above, best suited for 

larger graphs as the approximation/multilevel 

overpowers the local layout of smaller graphs. 
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Multilevel Spring Embedder 

with Dynamic Matching and 

Multilevel Global Force 

Dynamic Spring Embedder 

with Dynamic Matching 

The usage of dynamic matching is dependent on the 

requirements of the user. Low level updates are useful 

for preserving the layout of the graph, whereas high 

level updates and rematching are useful for showing the 

impact of changes to the global layout. 

It is suggested high level updates are used by default, in 

order to avoid fragmentation of the multilevel scheme 

and maintaining accurate approximations. Rematch is 

useful for quick changes, and easier to implement, 

however the changes do lead to changing layout as the 

matchings impact global layout and approximated 

forces. 

 

8.1.4  Multilevel Global Force 

Multilevel Global Force provides efficient force calculation reducing the cost required of 

approximation, providing means of generating layouts for larger graphs in reduced time, 

which better encapsulates the structure and connectivity of the graph as approximated by a 

multilevel scheme. Evaluation of Multilevel Global Force (Section 7.2 ) identifies a 

considerable drop in running time (40%) over Octree approximation, and both improvement 

and deterioration to layout quality (20%). Layouts are overall more consistent and 

isomorphic. The application of the approximation method to dynamic graph drawing in 

evaluated in Section 7.3.3 describing large savings in running time (99% over n-body 

calculations). 

Further investigation in Section 7.2.3.3 found little improvement in optimising the 

multilevel structure using Multimatching methods aiming to provide coarser approximation 

of graph structure and layout, suggesting the standard weighted edge contraction 

Further investigation in Section 7.2.3.4 supports usage of pattern placement techniques for 

graphs exhibiting leaf vertices, providing layouts with fewer edge crossings (improving 

readability) and the option of personalised placement of vertices. Building upon this, it is 

shown that identifying primitive graphs can prevent similar abstractions being generated 
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within the multilevel scheme, stopping the coarsening early and providing an initial 

calculated layout.  

Overall, experimentation in Section demonstrates that Multilevel Global Force 

approximation has a beneficial effect on the efficiency of graph drawing, providing 

comparably high quality layouts to the state of the art methods in reduced time. 

8.1.5  Dynamic Graph Drawing 

The proposed modifications for a dynamic spring embedder evaluated in Section 7.3 

provides visualisation of the development and amendment of layouts comparable to the 

Eades Spring Embedder. The modification of the Fruchterman Reingold Spring Embedder 

(Section 3.7 ) extends the force functions typically used in static graph drawing to dynamic 

graph drawing, allowing for minima to be better overcome and generate optimal layouts, 

reducing edge crossings in the generated layouts (Section 7.3 ).  

Configuration of the proposed algorithm is investigated providing a default configuration 

and the ability to modify the forces at play in real time, generating different and more 

meaningful layouts in by altering values (for example, increasing vertex movement to 

overcome tangles in layouts), evaluated in Section 7.3.1.1 . 

Building upon this, multilevel layout refinement is applied providing improved global layout 

to large graphs (Section 7.3.2 ). Although previously applied using cooling schemes and 

complex multilevel spring functions (Veldhuizen 2007), the algorithm provides a simple 

method to refine and interpolate global and local layouts simultaneously.  

Further use of multilevel schemes for approximation using Multilevel Global Force is 

applied and evaluated in Section 7.3.3 , identifying a reduced cost of (running time) of 

calculating repulsive forces, and allowing for larger graphs to be drawn in reduced time, 

providing a faster frame rate for animating the drawing of large graphs over standard spring 

embedders. It is noted that amendments to the configuration of forces is required to gain 

improved layouts over the Dynamic Spring Embedder alone. 

Experimentation of the dynamic graph drawing algorithms (Section 7.3 ) demonstrates the 

effectiveness of incorporating multilevel layout techniques into medium and large graphs 

for improving global layout quality, and huge reductions in running time through use of 

approximation, offering visualisation of much larger graphs. 
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8.1.6  Dynamic Matching 

Dynamic matching identifies some of the problems associated with updating the multilevel 

matching/sparsification (used in multilevel refinement and approximation) with 

amendments to a graph as evaluated in Section 7.3.4 . The research shows the importance 

of reducing fragmentation and retaining the approximate structure of the graph, ensuring 

vertices in coarser graphs are provided position and weight accurate enough to approximate 

layout can be provided and interpolated. 

The investigation shows that update methods have high impact on multilevel global force 

approximation (Section 7.3.5.1 ), a result of the graph amendments being applied to force 

calculations. In contrast, the impact of updates on multilevel refinement has a lesser effect 

(Section 7.3.5 ), with operations showing little effect to graph layout across the update 

methods.  

A common behaviour across the multilevel update methods is the introduction of 

fragmentation which causes warping in layouts (in both layout refinement and 

approximation). The frequency of updates reduces this to a large extent, as noted by layouts 

of large graphs, whereby fragmentation is minimised due to the vast number of calculations 

over short periods, however small and medium graphs are impacted more due to the relative 

sizes of the graphs to the multilevel scheme. 

Overall the experimentation shows that incorporating graph changes into multilevel layout 

and approximation does change the layout in comparison to update methods which do not 

take this into account, offering a more global interpretation of the data.  

8.1.7  Metrics for Graph Aesthetics and Graph Stability 

Measuring the number of edge crossings within a graph layout is a useful mechanism for 

gathering numerical representation of both layout quality and the regularity of drawing 

algorithms for providing consistent layouts. The results are (from the authors’ subjective 

view) a good representation of the layouts general readability within a 2D drawing area.  

Analysis of edge lengths provides a useful insight into the stretching (peripheral effect) 

within a layout, however were lesser used for comparison of algorithms as strict uniformity 

of edge lengths played a less significant part in the authors reading of larger graphs due to 
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the sheer number of edges (stretching and compression actually made some graphs easier to 

read as it highlighted the global structure of the graph).  

Using edge crossings and vertex movement as a means of determining the development of 

a graph layout was very useful, and allowed for a quick and numerical comparison of 

drawing algorithms. Even simple charting of the values over time was useful, giving a good 

sense of feedback to any changes made to the algorithms during their development without 

needing to analyse small multiples (frames) or the animation of the drawing itself (please 

note, numerical analysis is not suggested to replace visual analysis but instead should be 

used in addition too, especially in the case of comparisons). 

In addition to the test data itself, the methods for testing the metrics for graph stability 

showed to be invaluable in learning the behaviours of different drawing algorithms. In 

particular, the use of Layout Generation as extreme layout adjustment gave a window to 

monitor the drawing processes without distractions such as the type and frequency of 

operations. 

8.2  Research Contributions 

The research contributions include a method for reducing the complexity of force calculation 

in n-body systems (Section 3.6 ), investigation of a multilevel dynamic graph drawing 

algorithm (Section 3.7 ) and the incorporation of graph changes into a multilevel scheme 

representing the global structures of a graph (Section 3.7.3 ). Although only used on spring 

embedder examples, it can be adapted to any system which models particles with n-body 

interaction through some relationship to one another. 

The most immediate impact is the ability to generate layouts for larger graphs using more 

structural information which better represents graph structure (Section 7.2 ), however, the 

suggested method for approximation global forces may be applied to other areas. Due to the 

similarity with the Octree, Multilevel Global Force can be adapted for application to other 

areas which work with particle systems, however the method requires some relationship the 

particles with which to generate the approximation structure. 

A spring embedder is proposed to improve upon dynamic layouts for larger graphs (Section 

7.3.1 ). Typically only applicable to smaller graphs, the approach allows for larger 
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collections of data to be visualised and allows for improved visualisation in a world whereby 

the volume of data is getting bigger. Multilevel layout and Multilevel Global Force improve 

upon this by allowing for larger graphs to be provided with improved layout (Sections 7.3.2 

and 7.3.3  respectively). 

The implication of this is the ability to visualise and explore larger collections of data in 

reduced time, providing refined global and local layout for improved readability of layouts 

and better representation of the data. 

A more practical contribution of this thesis is the development of an experimentation 

framework, moreover, highlighting the importance of making comparisons between 

algorithms which are implemented on the same environments using as many common 

variables as possible. By implementing other people’s works, and breaking them into smaller 

specialist components (individual tasks, for example, contraction of edges within the 

multilevel scheme) it allows for various configurations and an ease of experimentation.  It 

also helps authors better understand one another’s code, and will hopefully bring more 

discussion and collaboration between those who attempt to implement one another’s work, 

making for better designed algorithms. 

8.3  Limitations 

A number of limitations need to be considered.  

Firstly, the results collected throughout this thesis relate to attributes of layouts expected to 

relate to their readability (as identified in literature, Section 2.4), as such analysis is largely 

dependent on those attributes and if they are found to be ineffective for representing 

readability (Section 7.1 ), the results become void. Individuals have different perceptions of 

what makes graphs and data readable, and so the collected results may not accurately 

represent the readability for everyone. 

In many cases, results are generalised to provide performance across all graphs. As such, 

some result sets may differ or not follow this. 

The dynamic modified spring embedder is only compared to a basic spring embedder 

(Section 7.3.1.2 ), despite adaptations existing which aim to better preserve graph stability 

or improve initial positions of vertices, or aim to spread impact amendments across a graph. 
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Comparisons across a collection of algorithms can provide better impact to the research area 

but encounters problems with differences in testing environments and interpretations of the 

algorithms described. 

Dynamic graph drawing is limited by a lack of large mainstream dynamic graphs (Section 

2.5 ), in contrast to the large number found in static graph drawing. The generation of data 

sets limits the experimentation and analysis of results to “emulated” graphs, whereby 

amendments aim only to reduce or extend the graph. 

8.4  Future Work 

The new algorithmic approaches described and experimented in this thesis provide only a 

small window of investigation, with many avenues which can be continued.  

As far as the author observes, the most predominant problems in the area are related to an 

uncertainty as to what makes a layout “good”. Research into graph aesthetics gives us a good 

indication, and we can use this to compare our algorithms and the layouts generated, 

however it relies on these initial definitions of “good layout” and does not include the 

context of the data to a reader.  

Further investigation on how people read graphs and which aesthetics improve their 

experience with the visualisation is always welcome, particularly those testing on real 

people. 

In addition to the difficulty of defining good layout quality, dynamic graph drawing of large 

graphs is such a new area that there is little to no research which describes how dynamic 

graphs with more than 10,000 vertices should be drawn over time. The efforts in this thesis, 

and the works of few others (Veldhuizen 2007) aid the drawing of such dynamic graphs, but 

there are no studies which monitor how people view this data, and the patterns or movements 

which maximises the graph stability (in contrast, readability of smaller dynamic graphs have 

been more thoroughly investigated). Some suggestions are made in the Evaluations here, but 

there is more room for work. 

In terms of algorithm design and performance, there are many avenues for additional 

research in Multilevel Global Forces, or even other uses for multilevel scheme as an 

approximation of distances between vertices. 
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Some ideas which directly relate to this thesis include: 

• Multilevel Aesthetic Analysis - as mentioned previously (Section 3.5 ), the approach 

is heavily influenced by the aesthetic attributes used to measure the layouts, and as 

such the development of matching techniques specific to analysis of desired 

attributes is proposed in order to measure approximate and partition layout quality 

for different aesthetic needs – providing means of optimising this in drawing 

algorithms. 

• Comparison of Multilevel and Multiscale Schemes for generating a Multilevel 

Global Force Approximation – generation of the approximation scheme using other 

multilevel and multiscale structures and identify which of those provide improved 

layout readability or greater efficiency saving (regarding Section 3.6.2 ) 

• Comparison of Dynamic Spring Embedders - further investigation to establish the 

advantages and disadvantages of differing dynamic drawing methods, most notably 

those methods used in Dynavis and other graph drawing packages and those which 

optimise for aesthetic criteria 

• Investigation of large graph layouts – the experimentation highlights a need for more 

investigation into what makes “good” layout for larger graphs, and how the 

readability of layouts can be compared (with and without testing through crowd 

based studies) 

 

8.5  Concluding Paragraph 

The algorithms described and implemented in this thesis investigate a wide variety of 

methods for utilising multilevel schemes with simple heuristics to vastly improve the 

running time of current state of the art algorithms (in some cases showing 40% decrease) 

and also the measured readability of the layouts generated by Force Directed Placement 

algorithms, suggesting a route for bringing multiscale force directed placement algorithms 

to dynamic graph drawing. If applied, these may prompt thoughts of reuse in other problems 

being solved using multiscale techniques, offering insight into the substructures the 

techniques are creating and how they can be used to improve the solution.  
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10  Appendix 

10.1  Comparison of Running Time for Multilevel Spring Embedder with Multilevel Global Force and Multilevel Spring 

Embedder with Octree 

The running time is broken into various parts in the subsections below; 

• Gl – The number of graphs in the multilevel scheme 

• Co – time taken to coarsen the graph  

• FDPf – full time taken for all Force Directed Placement 

• FDPr – time taken to calculate repulsive Force Directed Placement 

• FDPa – time taken to calculate attractive (spring) Force Directed Placement 

• d – time taken to calculate vertex displacement 

• I – time taken to interpolate layout between the graphs in the multilevel scheme 

• O – time take to run updates on the approximation to maintain accuracy 

• RT – full running time for the algorithm 

  



201 

 

Multilevel Spring Embedder with Multilevel Global Force  

 Running Time (ms) 
Graph Gl Co FDPf  FDPr FDPa d I O RT 
4elt 24.0 62.80 4392.20 2923.20 1151.20 214.40 0.00 0.00 4455.00 
3025 15.8 15.60 609.20 441.60 96.60 52.40 0.00 0.00 628.00 
add32 77.4 15.60 1277.80 951.20 175.00 76.20 3.20 6.20 1302.80 
data 14.6 9.60 675.00 409.00 234.40 19.00 3.20 0.00 687.80 
dime20 33.0 1034.60 96203.40 69294.20 19295.00 5950.80 81.40 62.20 97381.60 
finan512 138.0 990.20 35402.40 20950.00 12089.60 1759.20 34.60 58.80 36486.00 
mesh100 36.2 640.80 43257.80 28872.20 11107.00 2255.20 28.20 31.20 43958.00 
sierpinski10 26.6 334.00 31408.40 22124.60 6760.20 1682.20 28.00 19.20 31789.60 

 

10.1.1  Multilevel Spring Embedder with Octree Running Time 

 Running Time (ms) 
  Gl Co FDPf  FDPr FDPa d I O RT 
4elt 22.8 61.16 7310.66 5815.00 1178.42 221.18 4.40 58.42 7434.64 
3025 16.0 7.52 888.14 734.90 105.52 31.84 0.30 12.86 908.82 
add32 61.7 14.46 2366.68 2034.04 208.76 93.44 1.86 27.86 2410.86 
data 14.3 14.40 927.84 642.58 241.36 27.58 0.00 10.88 953.12 
dime20 38.6 1052.04 194292.94 166241.96 20125.66 5551.80 63.26 1394.36 196802.60 
finan512 122.0 905.60 59375.90 44635.80 12196.24 1729.70 18.86 407.72 60708.08 
mesh100 40.1 663.42 76108.86 61722.36 10799.84 2461.34 29.68 571.46 77373.42 
sierpinski10 29.2 362.48 62320.10 52578.58 6931.96 1889.54 24.20 539.28 63246.06 
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10.2  Coarsening Tolerance 

A coarsening tolerance is included for preventing the generation of graphs which are too similar in the 

multilevel scheme, that is, several consecutive graphs which hold the same structural information (few 

vertices difference). Such graphs are likely to have similar layout and therefore application of force 

directed placement is wasteful. In addition, the effect on Multilevel Global Force is an increase in the 

number of graphs in the approximation tree, affecting running time, and similar approximations being 

made during calculation of repulsive forces, affecting layout. 

In the literature, Hu (2005) details a hybrid coarsening scheme in order to overcome this issue, 

identifying when approximations of a graph become too similar and switching to an alternate coarsening 

scheme thereafter. The heuristic used by Hu for determining when approximations are too similar is 

used here (information regarding Implementation can be found in Section 10.22 ), however the hybrid 

coarsening scheme is not used as graphs that reach this limit tend to be small enough for a layout to be 

generated by standard Force Directed Placement, therefore further coarsening is not required.  

The use of a tolerance will reduce the dimensions of the Multilevel Global Force structure, therefore 

impacting the number of approximations made during repulsive force calculation (approximation with 

GL levels has complexity O(L · |V| · (m-1) · (|Gl|-1)) where m is the matching number used (typically 

2)).  

The tolerance, tol, is tested with incremental values between 0 and 20, such that if three abstractions 

are generated with fewer then tol vertices difference n consecutive times, the coarsening phase stops 

early. A value of 3 is given to n (Hu, 2005). The tolerance is tested on the static test graphs and are 

repeated 10 times for each value of the tolerance, resulting in 210 layouts {10 * 21} for each graph 

tested. Results for layout quality and running time are analysed and averaged for comparison.  

10.2.1  Analysis of Numerical Results 

The principle effect of altering the tolerance value is on the number of graphs and size of the coarsest 

graph generated through the coarsening process. In summary, as the tolerance increases from 0 to 20, 

the number of graphs in the multilevel scheme decreases by an average of 2.03, and the size of the 

coarsest graph increases by an average of 4.05 vertices. For context, the average number of graphs in 

the multilevel scheme is 15.9. 

Due to these changes, the running time is expected to gradually decrease, shown as a 4.5% decrease 

between values of 0 and 20, in Figure 10.1. Due to the increase in size of the coarsest graph, the reduction 

in running time will begin to equal out and gradually increase as described by the complexity above, 
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however, accurately predicting such changes is difficult due to the random nature of the coarsening 

scheme (not every vertex will necessarily be matched with another). 

 

Figure 10.1. Difference in running time as a result of changing the value of the coarsening tolerance. 

Analysis of the layouts shows that increasing the tolerance can result in a noticeable change in edge 

crossings, with over a 400% increase in edge crossings for some values, shown in Figure 10.2 as 

average1. The average include erratic and dramatic increases in edge crossings which arise from folds 

exhibited by the graph 3025; a graph which normally has planar layout.  Removing the values provides 

the much more regular average depicted as average2 in Figure 10.2, dropping the average increase in 

edge crossings to 50%, still   

The increase in edge crossings is significant in comparison to the reduction in running time, and is 

largely due to the graphs dime20 and sierpinski10, which show an increase in edge crossings of over 

100% between tolerance of 0 and 20 in comparison to 9% for other graphs, as shown for comparison in 

Figure 10.3. Due to the erratic behaviour associated with the graphs 3025, sierpinski10 and dime20, a 

default value for all graphs is best kept low to prevent depreciation of layout quality, as such, a value 

of 1 or 2 is suggested. 
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Figure 10.2. Average change in edge crossings, whereby average1 refers to all the test graph and exhibits erratic and 
dramatic changes, and average2 refers to all graphs except 3025 (the cause of the spikes seen in average1). 

 

Figure 10.3. Average change in edge crossings for all graphs except 3025, represented as average2, and the changes in 
edge crossings for sierpinski10 and dime20, showing the significant increase over the average (of up to 150% increase). 

10.2.2  Subjective Results 

For many graphs, the difference between tolerances is small but gradual, for example, layouts for 4elt 

drawn using a tolerance of 0 and 20 have little differences upon the number of edge crossings, as shown 

in Figure 10.4, whereas changing the value to a 500 (a high value) results in noticeable depreciation of 

layout quality, shown in Figure 10.5. The difference in value appears to have high impact on global 

layout, suggesting that the coarser graphs, and placement of vertices within them, are affected by the 

tolerance.  
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Figure 10.4. Layouts for the graph 4elt showing changes to layout as a result of changing the value of the coarsening 
tolerance to 0 (left) and 20 (right) 

 

Figure 10.5. Layouts for the graph 4elt showing changes to the layout as a result of change the value of the coarsening 
tolerance to 100 (left) and 500 (right) 

A comparison of layouts for dime20 using tolerance of 0 and 20, provided in Figure 10.6, shows a similar 

conclusion, that the tolerance impacts the global layout. Unlike the 4elt example above however, the 

global layout changes with a smaller value for tolerance (20 as opposed to 100), suggesting that the 

effect on layout is related to the weights of vertices in the coarser graph (vertices in the coarsest 

approximation of 4elt have less weight than those in the coarsest approximation of dime20). 
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Figure 10.6. Layouts for the graph dime20, showing changes as a resulting of changing the value of the coarsening 
tolerance to 0 (left) and 20 (right) 

To confirm the observation, a smaller graph (3025, see Figure 10.7) is provided layout using a tolerance 

of 100 and 500, and as expected, the higher tolerance has a reduced effect on graphs with fewer vertices. 

The tolerance of 500 shows that although higher tolerance has reduced effect, higher values will 

inevitably have an effect. 

 

Figure 10.7. Layouts for the graph 3025, showing changes as a resulting of changing the value of the coarsening 
tolerance to 0 (left) and 20 (right). 
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10.3  Correspondence with Daniel Danko 

Correspondence with “Daniel Danko” regarding his video entitled “3elt 3D graph layout on GPU” 
published on Youtube on 27 April 2013.  

Carl Crawford 
hi daniel, the work looks great ^ ^ the speed you get from the GPU is incredible, quick question though; what 
values do you give your cooling schedule in order to get such smooth vertex movement? 

Daniel Danko 
0.5 for attractive forces and 0.9 for repulsive forces but i guess the values can say nothing if you dont know how 
exactly the final force on the node is computed 

Carl Crawford 
Thanks for the reply and the information, it was very helpful although I have chosen alternate values (probably 
due to differences in implementation) the use of individual cooling schedules for both forces, having previously 
used only one for the combined movement, works brilliantly leading to much smoother convergence of layout 
though one more question, if I may, do you have any sources or publications which suggests the use of two 
schedules that would be beneficial to read? thanks again! 

 

No further replies were given and no indication on sources were provided. 

Video available at: http://www.youtube.com/watch?v=15eFkE-rVVk 

Last checked online: 04.02.2014 

http://www.youtube.com/watch?v=15eFkE-rVVk
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10.4  Configuring Multilevel Global Force 

To ensure high quality layouts, a parameter is introduced to alter the equilibrium between repulsive and 

spring forces. The aim is influence layout generation such that one force is given priority, and to find 

which alteration of this equilibrium provides the highest quality results. A similar parameter is used in 

the methods described by Hu (2005) and Walshaw (2003), with earlier and more extensive 

parameterisation in methods modelling Simulated Annealing (Davidson and Harel, 1996). 

The parameter, C, is introduced into the calculation of repulsive forces as described by Walshaw (2003) 

and Hu (2005) as indicated below. A default value of 0.2 is used by Walshaw and Hu, with investigation 

of values for use with Multilevel Global Force through experimentation with values of: 5.0, 1.0, 0.5, 

0.05, 0.005 and 0.0005. It is expected that values below 1.0 reduce the effect of the repulsive forces, 

giving priority to spring force displacement, and values greater than 1.0 resulting in more expansion of 

the layout. 

d
Cwkdkwfr

2

),,( =  

Layouts for static test graphs are generated for the differing values, repeated 10 times for each graph. 

The results are averaged and plotted as line charts, with the chart for edge crossings expected to have a 

prominent peak as a result of instability between forces. 

10.4.1  Numerical Results 

In order to provide some context for the parameters, initial investigation tests 4 medium sized graphs 

to determine how such parameter usage effects both Multilevel Global Force and Octree data structures, 

as well as an n-body Multilevel scheme. The edge crossings of layouts are then generalised (to show 

the difference in edge crossings per parameter as a percentage of edge crossings for the first parameter 

value) in order to compare the drop in layout quality and when such drop occurs across the methods.  

Figure 10.8 shows that for the four graphs, the number of edge crossings exhibited by layouts generated 

by the multilevel method increases dramatically when using a value of 0.032 or above. The change in 

edge crossings for Octree and MGF show a slight increase, however, not as substantial suggesting 

approximation is less effected by the parameter. The value which provides layouts with least edge 

crossings is 0.004 for all methods. The value differs from those used by Walshaw (2003) and Hu (2005), 

both of which use a value of 0.2 after some experimentation, a difference which likely comes from 

differences in the size of the drawing area and calculation of the values of k (which here uses the area 

as opposed to a function of some initial placement described by Walshaw, 2003).  
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Figure 10.8 Generalisation of edge crossings in layouts of multiple graphs for different approximation 
methods 

Further testing investigates values for only Multilevel Global Force, with the number of edges crossings 

for a larger selection of test graphs provided in Table 10.1. The values show similar rises in edge 

crossings as the precursory investigation above, identifying 0.005 as the parameter value with offers 

layouts with fewest edge crossings. 

Specific testing for Multilevel Global Force supports a reduced value of 0.005. 

 Parameter C values 
 0.0005 0.005 0.05 0.50 1.00 5.00 

3025 1095.3 605.3 788.5 1394.6 1808.7 3863.6 
data 36836.4 35579.7 35645.6 36344.5 39961 50384 
add32 16591.9 17553.3 17364.8 16897.4 16028.3 16841.3 
4elt 27763.6 25620.3 26861.2 32897.4 36549.7 51011 
sierpinski10 37189 40144.4 40449 40824.8 40122 40643.8 
finan512 5043279 6068587 6035649 5841397 5930307 5851012 

 

Table 10.1 The number of edge crossings exhibited in a layout for a collection of graphs for differing values 
of the C parameter used in Modified Spring Embedders. The figures show that values in the range of 0.0005 
and 0.05 provide fewest edge crossings for the development environment 

It should be noted that for implementation of space decomposition approximation, higher parameter 

values will cause expansion or movement within the layouts of graphs, and therefore the data structure 

must react if the graph expands beyond the area governed by the structure. If not, vertices outside the 

area will not be accurately modelled by the approximation and layouts may exhibit stretching as a result, 

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0

0.0005 0.001 0.002 0.004 0.008 0.016 0.032 0.064

Ch
an

ge
 in

 E
dg

e 
Cr

os
sin

gs
 (%

)

Value of C

Generalisation of Edge Crossings in layouts of multiple 
graphs for different approximation methods

ML

MGF

OT



210 

 

for example, Figure 10.11 provided in Subjective Analysis below, which shows part of the graph data 

outside of the approximation grid, with those vertices outside featuring compression. 

10.4.2  Subjective Analysis 

The effect on layout matches the number of edge crossings measured for layouts in the numerical 

analysis above, as shown in Figure 10.9. For higher values of C, for example an extreme value of 200.0 

(not included in the testing above), global layout decreases in quality. Local layout is still exhibited 

however which suggests that the parameter has larger effect in the coarser graphs in which vertices have 

higher weights. For the extreme value of 200.0, repulsive forces are so high that springs are unable to 

pull much of the graph into low energy position, but instead of constant expansion. 

Reduction of the value shows quick improvement in local layout and gradual improvement in global 

layout. 

It should be noted however, that edge crossings are expected to indicate layout quality due to their 

impact in smaller graphs, therefore layouts which exhibit fewer edge crossings (such as that generated 

for C=0.0005) are expected to be better than those which may be easier to read for some users (for this 

author, that generated at C=0.05). 
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Figure 10.9 Impact on changing the value of C on graph layout of 3elt 

Another effect of the parameter is that seen during usage of approximation, wherein if the values are 

not sufficient to repulse forces, parts of the graph are unable to escape minima as a result of the grid 

structure as depicted in Figure 10.10. A benefit of gradient based space decomposition, and more so 

of Multilevel Global Force, that the grid type structure differs per vertex and therefore does not provide 

such limit.  
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Figure 10.10 Approximation with differing scaling values (C) on the forces, showing the difference in layout 
as a result of the approximated forces, highlighting the need for configuration 

 

Figure 10.11 Layout of data showing part of the graph outside of the approximation area
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10.5  Configuring Dynamic Spring Embedder: Multilevel Global Force 

Due to the large number of results for parameter testing, a summary of the generalized results is provided here. Unlike the results for FRD, MGF allows for 

larger graphs to be drawn in less time per frame (as with any approximation). As such, the results provide a combination of all graphs sizes for each graph type 

(small, medium and large), identifying whether the values identified previously are still appropriate for larger graphs. 

Regular graphs show a consistent pattern through the graph sizes; edge crossings are reduced for lower values of tr, as shown in the charts below, 

values of 0.3 provide fewer edge crossings with 0.5 coming close second. Values of 0.9 show to have higher number of edge crossings for the 

small, medium and large graph. Given lower edge crossings for lower values of repulsive force, it suggests the regular graph structure is more 

dependent on spring forces for overcoming minima.  

In contrast, the average vertex movement is minimal for higher values in the smaller graphs, with 0.9 showing least movement for small and 

medium graphs, and second least movement for the large. Across the results, the movement decreases in a parabolic fashion, dropping quickly in 

early stages and slowing in the later frames, however, a value of 0.3 shows a more linear decrease in vertex movement over time. 
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Sparse graphs show a less obvious choice for default values of the graph. The number of edge crossings greatly drop for smaller graphs but very gradual 

difference across frames for larger graphs. Across the results for edge crossings, a value of 0.5 appears to provide better quality layouts for the different sizes, 

however, the results for other values change throughout, with the edge crossings for 0.9 showing higher counts for the smaller graph and lower counts for the 

larger graphs. This confirms that graph size, as well as graph structure, are impacted by these values and finding a best value will depend very much on the data 

being visualised. 

For average vertex movement the charts show lower values of tr having a more gradual reduction in movement between frames. This is a bit more sporadic in 

the smaller graphs due to fewer vertices and movement of a single vertex having a higher impact on the result, but is better described in the chart for sparse-

large, which shows lower values (0.3 and 0.5) having a much more gradual change in movement and 0.9 having a much more noticeable drop.  
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The pattern suggests that the higher repulsive forces push vertices into lower energy positions faster, resulting in the decreased movement. However, if this was 

so, one would also expect lower edge crossings as a result, which is not always shown for the values of 0.9 (for small and medium graphs in particular). Once 

again values are dependent on the size of the graphs, and so a value of 0.5 appears to work universally for sparse graphs. 
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Dense graphs have little impact from the change in force equilibrium due to the natural density of edges within the graph, as shown in the charts below – the 

edge crossings show relatively little change as a result of the change in forces. That being said, the difference at its largest is still 1million edge crossings, for 

which the values of 0.3 and 0.5 provide layouts with highest quality.  

The average vertex movement is shown to be more affected, with a value of 0.9 showing continual and stable reduction in movement throughout. Although 

showing continual movement (gradual change), the lowest movement is achieved using a value of 0.3, which shows largest movement initially and lowest 

movement towards the end of the visualisation, suggesting large movements to find lower energy positions. For this reason, a value of 0.3 and 0.9 are suggested, 

however, subjective analysis is required to validate these. 

  

 

For all the graphs tested, values for the equilibrium of forces are sporadic and very much dependent on the type of graph, structure, degree of vertices and the 

density of edges. There does not appear to be one single setting which can be applied for all, however defaults are required, and so an average of 0.5 for tr 
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forces are suggested. Subjective analysis below identifies values which appear better quality or are easier to follow, and identifies the links and differences 

between the authors perception and the measured metrics for graph stability above. 
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10.6  Multilevel Aesthetics: Analysis of Layout Generation  

In addition to regular-medium, analysis of edge crossings in original and coarse graphs for the graph 

sparse-medium suggest similar findings. The edge crossings exhibited in the layout for the original 

graph is shown in Figure 10.12, showing a similar slower convergence to a layout from SE. Due to 

difficulty reading the chart after frame 120, the chart is continued in Figure 10.13 showing the change 

in edge crossings for the last 150 frames. The chart shows the difference in edge crossings, confirming 

the above observation that SE provides layouts which suffer being trapped in minima. 

 

Figure 10.12 Comparison of the change in edge crossings for the graph sparse-medium over the course of 
300 iterations using Eades Spring Embedder (SE), Dynamic Spring Embedder (FRD) and Multilevel 
Dynamic Spring Embedder (MLFRD) 
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Figure 10.13 Comparison of edge crossings for the graph sparse-medium over 150 frames of iteration, after 
an initial 150 frames of force directed placement using Eades Spring Embedder (SE), Dynamic Spring 
Embedder (FRD) and Multilevel Dynamic Spring Embedder (MLFRD) 

As above for regular-medium, multilevel analysis shows that the cause of the edge crossings is likely 

due to poor global layout, with many more edge crossings exhibited in an approximation of the graph 

than by the FRD and MLFRD methods. 

 

Figure 10.14 Comparison of edge crossings in layouts for a coarsened abstraction of sparse-medium, showing 
the global layout as generated for Eades Spring Embedder (SE), Dynamic Spring Embedder (FRD) and 
Multilevel Dynamic Spring Embedder (MLFRD) 
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Unlike the example graphs used above, dense-small is not expected to have a structured global layout 

due to the density of edges in the layout. Figure 10.15 shows that the SE method provides fewer edge 

crossings with the FR and MLFRD methods with a slower convergence (opposite to the behaviour 

above). Multilevel analysis in Figure 10.16 suggests differing results, with the MLFRD method 

providing improved global structure through reduction of edge in the coarser graph. In addition, the 

chart shows that the number of edge crossings exhibited in coarse layout through use of SE fluctuates, 

suggesting constant movement in the layout – to be expected in dense-medium. 

 

 

Figure 10.15 Comparison of the change in edge crossings for the graph dense-small over the course of 300 
iterations using Eades Spring Embedder (SE), Dynamic Spring Embedder (FRD) and Multilevel Dynamic 
Spring Embedder (MLFRD) 
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Figure 10.16 Comparison of edge crossings in layouts for a coarsened abstraction of sparse-medium, showing 
the global layout as generated for Eades Spring Embedder (SE), Dynamic Spring Embedder (FRD) and 
Multilevel Dynamic Spring Embedder (MLFRD) 

Analysis of displacement between frames (average movement) can also be applied, however, due to 

differences between the algorithms a fair comparison cannot be made for the example used here (SE 

uses a value of 1.0 for ideal spring length k following description by Eades, 1984) whereas FR methods 

use a function of the drawing area, see Appendix 10.22 ). Multilevel analysis of vertex displacement is 

expected to provide irregular results due to differences in vertex position, therefore may only be 

beneficial to analyse the layout development of a singular graph (and not useful for comparative 

purposes).  
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10.7  Approximation Limit and Distance Limit in Calculating Repulsive Forces 

In addition to approximation of global forces, the distance at which repulsive forces take effect is limited 

to remove calculation of weak and unnecessary interactions (Fruchterman and Reingold, 1991). The 

method results in fewer calculations by only calculating forces within a radius of a vertex. Similarly, 

experimentation here examines an “approximation limit” to restrict the traversal of the MGF tree during 

repulsive force calculation, limiting the distance at which repulsive forces take effect, using the 

connectivity of a graph as approximated by the multilevel scheme.  

The method aims to answer the following questions; 

Can a limit be imposed on the calculation of long range global forces, preventing interactions 

between weakly connected vertices? What is the effect on the quality layouts? 

Use of an approximation limit assumes that vertices with a high graph conceptual distance between 

them (edges) are spatially distant within the layout, achieved by interpolation and refinement of coarse 

layouts. The limit is enforced by limiting the traversal of the Multilevel Global Force tree during force 

calculation, stopping further calculation when the limit is reached. For example; a limit of 3 means only 

three levels of the tree are traversed, preventing approximations made by further traversal. Details 

regarding Implementation can be found in Implementation.  

Traversal of Multilevel Global Force means that the most distant approximations are achieved at the Lth 

level of the traversal (the number of graphs in the multilevel scheme (GL)), and therefore a maximal 

limit is derived. The approximation limit is tested with incremental values between 1 and 30, with a 

value of 50,000 used for graphs which result in a multilevel scheme with more than 30 levels. Values 

larger than L result in the entire approximation tree being used as if no limit is in place. 

The limit is compared to a spatial limit, r, using incremental values of k such that r = n · k, where n is 

given values between 1 and 30. Limits are tested on static test graphs, with each value tested 10 times 

(repeats) for each graph. The results are analysed and averages compared to determine the change in 

running time and layout quality, identifying whether there is any benefit to using structural information 

to limit the distance at which forces take effect. 

Results are collected using an un-weighted coarsener (one which does not organise by weight), and 

therefore the number of graphs generated for the multilevel scheme is higher than one which may use 

a weighted coarsener. 
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10.7.1  Numerical Results 

Analysis is split into two parts, examination of the approximation limit, and comparison to spatial 

limitation. 

10.7.1.1  Approximation Limit 

Due to the large number of results, a general summary is provided here. Results are described as a 

percentage of those recorded from an algorithm using a value of 50,000 for the approximation limit, 

allowing them to be combined to form a general behaviour for all test graphs (for example, a graph with 

200 edge crossings, which changes to 300 using a lower approximation limit, will be recorded as 50% 

increase – 150% in total). 

Figure 10.17 illustrates the change in runtime as the value of the approximation limit and number of 

calculations is reduced. An initial drop between a value of 50,000 and 30 can be observed due to many 

of the graphs tested having a multilevel scheme with greater than 30 graphs. After the initial drop, the 

difference in runtime is steadily reduced until a lowest decrease of 70% is recorded for the smallest 

value of 3 (limiting to 3 approximations of repulsive forces per vertex – O(3V)).  

 

Figure 10.17. Average change in running time for the test graphs as a result of changes to the value of the approximation 
limit, with change measured as a percentage of the initial running time to provide a general comparable performance. 

The near linear decrease in running time is expected due to the change in complexity, however the effect 
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crossings increase dramatically from 40% increase to 500% increase (read as values of 140% and 

600%). 

 

Figure 10.18. Average change of edge crossings for layouts generated for the test graphs as a result of changes to the 
value of the approximation limit, with change measured as a percentage of the initial running time to provide a general 
comparable performance 

The charts suggest that generally, running time can be decreased by sacrificing layout quality, similar 

the R limitation used by Fruchterman and Reingold (1991), Walshaw (2003) and Hu (2005). Due to 

different graphs resulting in multilevel schemes with differing number of abstractions, analysis of one 

graph is also provided to add context to the usage. The chart in Figure 10.19 shows the change in running 

time and edge crossings for the graph data, which is coarsened to only 17 graphs. 

As a result, values for running time remain constant, with some changes identified for edge crossings 

(attributed to randomness across repeats). The results show that an approximation limit of 9 can be used 

to provide layouts of equal quality to layouts using a maximum value of 17 (or 50,000), providing a 

noticeable decrease in running time of 33.8%.  
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Figure 10.19. Change in edge crossings and running time for a test graph called data, showing the number of levels in 
the multilevel scheme (the maximum value of the approximation limit that will affect either running time or layout 
quality). Note the change in edge crossings fluctuates naturally, and the gradual change in both running time and edge 
crossings after the maximum value is reached. 

10.7.1.2  Comparison to R 

Similar to the analysis above, results are collected and generalised for comparison to a spatial limit of 

r used in existing algorithms (Fruchterman and Reingold (1991), Walshaw (2003), Hu (2005)). Figure 

10.20 shows the difference in running time between usages of r or an approximation limit.  

The chart suggests that the saving of running time is more erratic and unpredictable for use of r than it 

is the approximation limit. The reason is down to differences in vertex positions relative to one another 

between the repeated experimentations, suggesting that use of approximation limit provides an added 

benefit of being able to accurately predict the reduction of running time and resulting changes to layout 

quality for different values. 
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Figure 10.20. Average change in running time for the test graphs as a result of changes to the value of the approximation 
limit and spatial limit (r), with change measured as a percentage of the initial running time to provide a general 
comparable performance. 

The difference in edge crossings show less erratic results, with both methods providing a gradual change 

in quality until a value of 15, where after the quality depreciates quickly. There is a noticeable difference 

in that r provides fewer edge crossings for smaller values than the approximation limit, due to the 

difference between using space or connectivity to approximate forces (the limit uses the connectivity 

of vertices as described by the multilevel scheme, whereby a value of 2 will result in 2 calculations, 

whereas a value of 2 for r may allow for many more calculations dependant on how many vertices are 

within 2·r). 
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Figure 10.21. Average change of edge crossings for layouts generated for the test graphs as a result of changes to the 
value of the approximation limit and spatial limit (r), with change measured as a percentage of the initial running time 
to provide a general comparable performance 

The results provided are general for the graphs tested, many of which result in over 30 levels in the 

multilevel scheme. For graphs with less, the same behaviour is expected however in reduced number of 

graphs and therefore the reaction of layout quality can be estimated before usage. 

Use of approximation limit provides a maximum and minimum value for the limit, with a predictable 

decrease in running time (each value decreases traversal by 1, therefore removes 1 * (m-1) calculations), 

unlike r which is dependent on vertex positions relative to one another. Together the charts in Figure 

10.20 and Figure 10.21 show that use of approximation limit is similar to use of spatial limits on repulsive 

forces, however, the rate of change is less for values of r due to differences between spatial and relational 

approximation.  

10.7.2  Subjective Results 

For both approximation limit and distance limit r, the effect on layouts is similar: the lower the value, 

the poorer the layout quality. Figure 10.22 and Figure 10.23 show the effect of approximation limit and r 

value on the graph 3025. There is little difference between the two, however, the change in quality is 

shown to correlate to the numerical analysis above, whereby lower values lead to more drastic 

deterioration of layout quality whereas as the values increase, the changes are more subtle.  

 

Figure 10.22. Approximation limit on layouts for 3025, showing the effect of using values of 2, 5, 7 and 10 for the 
approximation limit (left to right). 
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Figure 10.23. Spatial limitation (r) on layout for 3025, showing the effect if using values of 2, 5, 10 and 15 for the spatial 
limit (left to right). 

The difference between the two is primarily the extent of the tangling for lower values of either limit. 

The approximation limit shows large amounts of tangling initially, whereas the lower value for r (Figure 

10.22 – value of 2) is similar to that achieved using higher value of limit (Figure 10.22 – value of 5). 

Differences are a result of spatial distance (k) being different to relational distance, whereby a value of 

1 for r can result in several calculations, whereas for limit it results in only 1 (dependant on relative 

positions). 

Figure 10.24 shows the effect of approximation limit on global and local layout of sierpinski10, whereby 

smaller values result in some loss of global structure and a much more noticeable loss of local layouts. 

Typically one might expect a reduction in global layout before loss in local layout, however, due to 

layout being generated through a multilevel scheme (whereby distance between two vertices in the 

coarser graphs represents greater distances in finer graphs), global layout is still achieved. However, 

due to refinement being limited to small areas around each vertex, local layout is shown to be 

compressed whereby forces are not strong enough to expand the graph, causing folds and overlaps in 

the layout. 

 

Figure 10.24. Approximation limit on layout for sierpinski10, using values of 2, 5 and 15 from left to right. 

Similarly for larger graph, Figure 10.25 and Figure 10.26 show the effect or approximation limit and spatial 

limit r on the layouts for finan512. The layouts show improvement in global layout as the values 

increase and allow for greater number of repulsive force calculations, in addition to improvement on a 

local level. 
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Figure 10.25. Approximation limit on layout for finan512, using values of 2, 5, 7 and 15 from left to right. 

 

 

 

Figure 10.26. Spatial limitation (r) on layout for finan512, using values of 1, 2, 5 and 50,000 from left to right. 

10.8  Brute Matching 

The larger a graph, the more running time it takes to apply Force Directed Placement on it to generate 

a layout. The cause of this is due to the high number of calculations associated with the high number of 

vertices, and as such, reducing the number of calculations is key to reducing the running time. 

One attempt at doing so is by reducing the number of calculations performed in the repulsive force 

calculation by reducing the size of the multilevel structure. For dime20, the number of graphs is 

extremely high as a result of brute matching, with 96% of consecutive graphs generated being having 

only 2 vertices different. If stopped at this point, only 19 graphs would be generated (an ideal place to 

utilise the coarsening tolerance). The number of graphs increases the height of the MGF tree and causes 

increased number of approximate calculations per vertex.  

graph max degree M value |GL| rt 
3025 4 5 19 74 
data 17 18 5 92 
add32 31 32 15 124 
4elt 10 11 9 251 



235 

 

finan512 54 55 21 1296 
sierpinski10 4 5 38 1064 
dime20 3 4 545 2189 
mesh100 4 5 446 2445 

Table 10.2 Table showing the maximum degree of a selection of test graphs, showing the choice of matching 
value for Brute Matching and the resulting number of graphs in the Multilevel Scheme using the value. 
The running time for generating the multilevel scheme is also provided. 

If the matching number m above is greater than the maximum vertex degree of a graph, the 

Multimatching scheme is in a state of “brute matching”. Experimentation of brute matching is 

performed to identify if such extremely coarse matchings have any benefit on the running time or layout 

quality of graphs, answering the following question; 

The approach uses a matching number larger than the maximum degree of a vertex within the graph. 

Each test is run 10 times for each graph with analysis of both layout quality and running time with 

comparison to the best and worst case results of Multimatching and standard edge contraction methods. 

The expectation is a much coarser graph layout exhibiting poorer layout quality in comparison to 

standard edge contraction, however, reduced warping and running time as a result of Multilevel Global 

Force structure and multilevel size are anticipated. 

Unlike the Multimatching method described in Appendix 10.20 , the method matches all unmatched 

vertices, and any unmatched vertices are matched with themselves (the method is not repeated with 

decreasing values of m). 

10.8.1  Numerical Results 

Results suggest that running time is extended when using brute matching, a result of the MGF tree being 

much broader and so increasing the number of repulsive force calculations. In contrast, the number of 

edge crossings is relatively similar to standard edge contraction, with some graphs having noticeable 

increases (data and add32 for example) and others have reduced edge crossings (sierpinski10 and 

mesh100 for example). Similarly, on average there is little difference between ranges of edge lengths. 

 Brute Standard 
Graph RT EC ELR RT EC ELR 
3025 1362.0 4.0 0.3958 742.5 0.0 0.4963 
data 913.8 43285.2 1.0979 788.0 36617.5 0.8887 
add32 8613.4 20641.4 3.0049 1297.5 16240.0 2.2534 
4elt 8806.4 23468.6 0.6695 5530.8 25695.0 0.7073 
finan512 562617.3 4937331.0 1.0944 35595.0 5043279.0 0.9266 
sierpinski10 55991.7 34034.7 0.3189 38768.3 37189.0 0.3399 
mesh100 1492556.0 948369.0 0.4133 61184.0 979875.5 0.5329 
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dime20 3072137.0 141034.3 0.3207 87148.0 168011.0 0.5416 

Table 10.3. Results comparing the running time (RT), edge crossings (EC) and range in edge length (ELR) as a result 
of using brute coarsening and standard edge contraction methods 

The cause of the increase in running time for larger graphs can be attributed to the number of graphs 

generated for the multilevel scheme and the number of child vertices per coarse vertices. Overall there 

appears to be little benefit to using brute matching over standard matching techniques. Subjective 

analysis confirms similarity of layout quality to those achieved in multimatching, and suggest that some 

multimatching values provide more appealing layouts.  

10.8.2  Subjective Analysis 

For most of the graphs, the layouts are similar to those generated using Multimatching with a value 

greater than 2, exhibiting similar expansion as a result of approximation in multiple directions. Figure 

10.27 and Figure 10.28 provide examples of layouts generated for 3025 and 4elt, with comparison to those 

generated using standard edge contraction (m2) and an alternate layout generated using Multimatching 

(values of 6 and 7 for 3025 and 4elt respectively). 

 

Figure 10.27. Layouts for 3025 generated using differing matching techniques: brute matching (left), standard edge 
contraction (centre) and multimatching with a matching value of 6 (right). 
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Figure 10.28. Layouts for 4elt, using differing matching techniques: brute matching (left), standard edge contraction 
(centre) and multimatching with a matching value of 7 (right). 

It may be noted that for 3025 and finan512, the layouts generated using brute coarsening feature less 

warping and contraction as a result of MGF structure. However, these layouts are accompanied by 

extended running times, and are not guaranteed for all graphs, as shown for finan512 in Figure 10.29 

which shows poor global layout generated through brute coarsening (despite numerical analysis 

identifying reduced edge crossings). 

 

Figure 10.29. Layouts for finan512, using differing matching techniques: brute matching (left) and multimatching with 
a matching value of 7 (right). 

In general, there is little regular improvement over standard edge contraction, and the extended running 

time makes usage unattractive. 
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10.9  Leaf Placement Scheme 

Primitive Coarsening is investigated by experimenting with a simple primitive, a leaf. A leaf is defined 

as a vertex with a degree of 1, meaning it is connected to only one other vertex, and therefore can be 

given a known layout with the edge pointing outwards from the centre of mass (repulsive forces repulse 

vertices outwards, the single spring connecting it to the graph would prevent it moving away too far). 

In addition to this, a secondary rule of “vertex chains” is used, a collection of vertices connected to one 

another to form a chain of vertices, which similarly, can be given a known layout. Figure 10.30 provides 

an example of leaf vertices (coloured black) attached to a small example graph (left), with an example 

of chains attached to the same graph (right). Primitive coarsening contracts these primitives with the 

anchoring vertex generating a coarsened vertex with weight equal to the weights of the combined 

vertices. 

 

Figure 10.30. Example of leaf vertices (left) and chains (right) exhibited on an example graph. 
 

It should be noted than although chains may appear within a graph, if connecting two clusters of 

vertices, the length of the chain is regarded as an important feature which should preserved. 

Experimentation specifically identifies “loose chains”, those which are anchored on one end and are 

less connected to the structure of the graph. 

The use of primitive processing is included as part of the coarsening phase, whereby before coarsening 

takes effect, a graph is first reviewed to identify any primitives. If found, they are coarsened with their 

“anchoring vertex”, generating a new coarsened graph. Coarsening continues as normal thereafter, 

treating the primitive-free coarser graph as the new original. During layout generation, graphs generated 

through primitive coarsening are processed with leaf vertices given a calculated layout using a Vertex 

Placement Scheme (VPS), see Implementation 10.22 for more information.  

Four algorithms are used to test the effects of primitive coarsening; 
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• Algorithm A - Leaf pre-processing of the original graph only applies the leaf coarsening as a 
pre-process on the original graph (G0), generating a new graph which is then treated as the 
original. After applying force directed placement, the layout is passed back to the original 
graph and leaves are given layout using the VPS. 

• Algorithm B - Leaf pre-processing of the original graph as above but with application of 
Force Directed Placement after leaves have been given an initial layout from the VPS. 

• Algorithm C - Leaf pre-processing at each level of the coarsening scheme as the graph is 
being coarsened. As the graph is being uncoarsened, force directed placement methods are 
applied at each level to the processed graph and then the VPS is used to place the leaf vertices 
(as in Algorithm A but on all graphs in the multilevel scheme). 

• Algorithm D - Leaf pre-processing at each level of the coarsening scheme with force directed 
placement applied after leaves have been given an initial layout using the VPS (as in 
Algorithm B but on all graphs in the multilevel scheme). 

Testing is primarily performed on the leafy test graphs described in Experimental Methodology 10.22.1 

, with testing on some static test graphs for impact on non-leafy graphs. Each of the algorithms above 

is tested on each of the graphs and repeated 10 times. Results are analysed and compared to determine 

the effect of the algorithms on layout and running time for graphs with few leaf vertices and chains, and 

on graphs featuring many.  

Two sets of analysis provided;  

• which if any of the methods provide improved layout of the graph – that is, does any of the 
methods provided improved layout of the graph without leafs (does the coarsening impact 
layout at all) 

• Use of the VPS to provide good layout for vertices, been discussed many places before and is 
more specialized for leafy graphs (the aim here is general graphs), but impact on multilevel 
scheme is of interest, and running time 

10.9.1.1  Numerical Results 

Graph layouts are analyzed in two steps, firstly, the effect of the placement algorithms on running time, 

and secondly the effect of the algorithms on layouts which have had leaves coarsened. The reason for 

this is that the placement algorithm can control edge length and positioning of leaf vertices, and can 

therefore be altered to reduce edge crossings and alter peripheral effect. 

10.9.1.1.1   Running Time 

Collection of running time shows that on average, all algorithms increase running time, the primary 

cause of which is the additional work required to identify and coarsen leafy graphs, and the resulting 

increase in approximate graphs being generated. For example, given an approximate graph of 205 

vertices, 5 of which are leaves, primitive coarsening will coarsen those 5 leaves and generate a new 

graph of 200 vertices. Typical coarsening may coarsen those leaves in addition to the rest of the graph 

resulting in a graph with at least 103 vertices. 
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Some leafy graphs however, show a reduction in running time, achieved by replacing Force Directed 

Placement with the Vertex Placement Scheme. In particular, sn6121 shows a large decrease in running 

for each algorithm, a result of instant layout being provided for a large number of leaf vertices, 

suggesting that a graph which is identified as having many leaves can have running time reduced using 

the algorithms described. 

 Running Time (ms) 
Graph 0 A B C D 
3025 557.8 911.6 1194.4 872.4 1056.2 
data 841.2 918.8 1296.6 1012.8 1094.6 
add20 597.8 869.6 1206.8 797.4 1287.6 
add32 2002.2 1816.0 2428.2 1929 3582.6 
4elt 7778.8 7829.0 11179.2 8790.8 8097.2 
finan512 47227.2 68664.4 78442     
uk 1763.2 1572.6 2130.8 2330.2 4075.8 
anna 75.4 50.6 112.8 69.8 122 
david 39.0 33.6 53.6 34.6 47.6 
dyads_lc 73.6 39.0 71.6 28.2 70.4 
dyads2_lc 166.8 104.0 191.2 102.8 156 
gd96D 99.4 75.6 110.8 40 63.4 
websiteCMS 234.6 223.2 341.6 272 320.8 
sn6121 6289.8 2288.6 3118.2 2704.4 4433 

Table 10.4. Comparison of running time for generating layouts using different Pattern Processing algorithms 
(algorithms A-D) and standard edge contraction (algorithm 0) 

Due to the increase in running time for graphs without leaves, none of the algorithms appear beneficial 

for reducing running time in general, suggesting usage through some decision during the coarsening 

scheme (for example, if a graph has a large number of leaves relative to its size, use Algorithm A – or 

other at users request). The usage however is dependent on the quality of layouts generated. 

10.9.1.1.2   Layout Quality 

Layouts are analysed in two parts: quality of layouts for leafless graphs (top separation of Table 10.5 and 

quality of layouts for leafy graphs (bottom separation of Table 10.5). 

Due to leafless graphs not being given layout by the Vertex Placement Scheme, analysis is not provided 

for Algorithms A and B (however, running time above still increased due to identification of leaves 

used in the coarsening scheme). Algorithms C and D show little difference in edge crossings, with 1.6% 

increase and 4.8% decrease respectively, values which can occur naturally through FDP (for example, 

Algorithm A provides layouts with 23.3% decrease in edge crossings, even though layout is provided 

using standard FDP). 
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For the leafy graphs, Algorithm A is shown to provide layouts with 47.7% more edge crossings, with 

Algorithm B showing a decrease of 11.4%. This suggests that the VPS places vertices such that leaf 

vertices cross parts of the graph, however, refinement allows for improved position of leaf vertices and 

compression of connecting edges. A modified algorithm using local centers of mass (instead of the 

global centre of mass), may provide improved layout. 

Algorithms C and D provide similar results, with a 58% increase and 7.5% reduction in edge crossings 

respectively, supporting the suggestion that placement by VPS followed by refinement by FDP is 

beneficial for layouts. 

 Edge Crossings 
Graph 0 A B C D 
3025 0.0 0.0 0.0 2.4 0.0 
data 41243.0 41673.8 39094.8 42738.0 42140.4 
4elt 26396.4 20514.6 22483.4 26296.4 23339.0 
finan512 4766745.2 4792462.8 4691131.6    
add20 556737.6 623590.6 503615.2 627530.8 458563.8 
add32 11731.8 13642.4 10902.8 16408.6 11320.2 
uk 697.8 650.0 600.4 689.8 353.4 
anna 11512.0 16983.0 7760.8 15195.0 8987.8 
david 11203.0 12287.8 6944.0 12901.0 6833.2 
dyads_lc 11.4 45.6 9.8 51.8 18.8 
dyads2_lc 16101.6 17093.8 15426.6 19940.6 14808.2 
gd96D 217.8 323.8 211.4 307.6 214.2 
websiteCMS 66420.2 94431.6 66673.8 102049.0 66461.6 
sn6121 2039964.2 2069559.2 2193063.0 2203736.0 2069184.8 

Table 10.5. Comparison of edge crossings for layouts generated using different Pattern Processing algorithms 
(algorithms A-D) and standard edge contraction (algorithm 0) 

Similarly to above, the range in edge length is not affected by Algorithm A or B for the leafless graphs 

as they do not exhibit leaf vertices (and are therefore unaffected). Algorithms C and D however show a 

significant decrease of 23.9% and 25.5% respectively, suggesting that by placing leaf vertices in coarser 

graphs using the VPS (alone or for refinement) decreases the range in edge length and possibly the 

Peripheral Effect (see Subjective Analysis for confirmation). In contrast however, leafy graphs are 

shown to extend the range in edge crossings by 18.8% for both Algorithm A and B, and 14.6% and 

4.9% for Algorithms C and D.   

 Range in Edge Length 
Graph 0 A B C D 
3025 0.4304 0.3771 0.4296 0.4366 0.3881 
data 0.8815 0.7921 0.9059 0.8921 0.8933 
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4elt 0.6715 0.6947 0.6793 0.6834 0.7160 
finan512 0.7687 0.7750 0.8015    
add20 0.8976 0.9165 0.8703 0.8275 0.7987 
add32 3.0819 2.8898 2.9289 2.4215 2.4846 
uk 0.5015 0.4630 0.4904 0.5189 0.4908 
anna 0.8991 0.9807 1.0708 0.9258 0.7130 
david 0.4016 1.1817 0.9701 1.1003 0.8630 
dyads_lc 1.3372 1.1844 1.4343 2.0904 1.9929 
dyads2_lc 1.3633 1.3378 1.5624 1.1844 1.0838 
gd96D 1.0321 0.9999 1.1554 0.9903 0.7885 
websiteCMS 1.2028 1.3402 1.1230 0.7999 1.0430 
sn6121 1.3427 1.3660 1.4845 1.1944 1.2792 

Table 10.6. Comparison of the range in edge lengths for layouts generated using different Pattern Processing algorithms 
(algorithms A-D) and standard edge contraction (algorithm 0) 

Although layouts are important, the aim here is to alter the coarsening scheme and simplify graphs for 

multilevel layout refinement and optimising the Multilevel Global Force structure. As such, layouts 

with leafy vertices removed are investigated, provided in Table 10.7. 

The number of edge crossings identifies that for many of the graphs, Algorithm D and Algorithm B 

provides consistently improved layout quality (11.4% and 10.8% reduction in edge crossings 

respectively) for the main body of the test graphs. This suggests that the coarsening of leaf vertices may 

improve the representation of the graph structure, however, refinement using FDP is required to reduce 

edge crossings resulting for placement through the VPS (resulting in 28.8% and 55% for Algorithms A 

and C).  

 Edge Crossings of G0 with leaves removed 
Graph 0 A B C D 
3025 0.0 0.0 0 2.4 0 
data 41243.0 41673.8 39094.8 42738 42140.4 
4elt 26396.4 20514.6 22483.4 26296.4 23339 
finan512 4766745.2 4792462.8 4691132     
add20 556526.8 620978.4 503464.2 626324.6 458362.4 
add32 11659.2 13119.4 10841.6 16220.6 11259.2 
uk 692.2 641.4 598.4 678.4 351.4 
anna 9779.0 16343.6 6601.2 14486.4 7323.8 
david 9929.0 11273.0 5555 11741 5958 
dyads_lc 6.2 19.0 5.6 33.6 7.8 
dyads2_lc 14892.2 16898.8 13725.8 19090.6 13619.6 
gd96D 174.4 244.0 177.6 207.6 161 
websiteCMS 65466.8 93096.0 63187 97803 65096.4 
sn6121 2008486.0 1928729.6 2126240 2067915 1984830 
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Table 10.7. Edge Crossings exhibited in the main connected body of graphs (graphs with leaf vertices removed).  

10.9.1.2  Subjective Analysis 

10.9.1.2.1   Algorithms A and B 

As above, Algorithms A (Leaf placement on the original layout only) and B (Leaf placement on the 

original graph with FDP refinement) are analysed only in regard to leafy graphs due to leafless graphs 

not being given layout by the VPS. Leaf processing is specific for leafy graphs for these two algorithms, 

however, the analysis here aims to look at the effect on global layout and readability in a general sense 

– specifically impact on the multilevel scheme and representation of graph structure. 

The layouts for the graph dyad_lc has some of the most noticeable reactions to the Vertex Placement 

Scheme due to its high number of leaf vertices and small size of the graph, making placement of leaves 

more noticeable, as shown in Figure 10.31.The layout provided by Algorithm A (Figure 10.31 (left)) shows 

the noticeable placement of leaves facing outward form the centre of mass, making the leaves clearer 

than the layout provided by standard edge contraction in Figure 10.31 (right). The layout provided by 

Algorithm B appears as a mid-way layout of Algorithm A and standard edge contraction, providing 

leafy layout which has been contracted as a result of FDP.  

 

Figure 10.31. Comparison of layouts for dyads_lc, using leaf coarsening algorithms A (left), B (centre) and standard 
edge contraction (right). 

Larger graphs appear lesser effected by Algorithm A and B, with leaf placement less noticeable for 

add32 as depicted in Figure 10.32. A noticeable difference between the algorithms is the spread of the 

layouts, with a wider spread of leaves and chains exhibited in layouts generated by standard edge 

contraction.  
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Figure 10.32. Comparison of layouts for add32, using leaf coarsening algorithms A (left), B (centre) and standard edge 
contraction (right). 

In contrast to the examples above, layouts provided for the graph sn6121 show similarity between 

Algorithm A and standard edge contraction (albeit rotated), with both layouts showing a dense network 

of edges with a concave shape. In contrast, layouts provided by Algorithm B show a different shape. 

 

Figure 10.33. Comparison of layouts for sn6121, using leaf coarsening algorithms A (left), B (centre) and standard edge 
contraction (right). 

Overall, the effect of the algorithms is different between graphs. 

10.9.1.2.2   Algorithms C and D 

Algorithms C (multilevel leaf placement) and D (multilevel leaf placement with FDP refinement) are 

based on the multilevel scheme and therefore are analysed in regard to the effect on global layout more 
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than visualisation of leaf vertices. The effect looks to identify any reaction in layouts caused by the 

processing, expected to result in changes in edge crossings and ranges in edge length. 

Using the same examples above, use of the multilevel scheme can be seen to reduce the impact of leaf 

based layout on smaller graphs. In particular, dyads2_lc is show to have less noticeable leaf placement 

than no leaf placement at all, a result of continuing leafs between levels of the multilevel scheme (that 

is, placement of leaf vertices as chains). The resulting layout is shown in Figure 10.34 (left), whereby 

chains are drawn as elongated edges. Similarly to above, Algorithm D provides some refinement using 

FDP, however, due to the limited application, the layout still resembles that generated by Algorithm C.  

 

Figure 10.34. Comparison of layouts for dyads2_lc, using leaf coarsening algorithms C (left), D (centre) and standard 
edge contraction (right). 

In contrast, larger graphs which have a more connected body such as add32 and sn6121 in Figure 10.35 

and Figure 10.36, show layouts which include improved expansion of branch structures (see Figure 10.35 

(left) or highlight some structure not seen in layouts provided by standard edge contraction (see Figure 

10.35 (left) compared to Figure 6.45 (right)). Additional layouts are provided in Appendix 10.9  further 

suggesting that the use of leaf placement in the multilevel scheme provides layouts which are 

subjectively easier to read. 
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Figure 10.35. Comparison of layouts for add32, using leaf coarsening algorithms C (left), D (centre) and standard edge 
contraction (right). 

 

Figure 10.36. Comparison of layouts for sn6121, using leaf coarsening algorithms C (left), D (centre) and standard edge 
contraction (right). 
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10.10  Primitive Graph Coarsening 

It is expected that graphs with differing structures are likely to be coarsened to different primitive graph 

types, for example, it was expected that finan512 would coarsen to a ring due to its ring-like global 

structure (see Figure 10.38). As such the methods used to provide initial layout are recorded and given in 

Table 10.8. The star primitive was the most common method used, with none of the tested graphs being 

coarsened to a chain. It may be noticed that finan512 is also coarsened to a star primitive, showing that 

the global ring structure is not preserved in the coarsest graph. 

 Primitive Usage (of 10 repeats) 
 Star Ring Chain FDP 

3025 8 2 0 0 
data 8 0 0 2 
add32 10 0 0 0 
4elt 8 0 0 2 
dime20 9 1 0 0 
finan512 10 0 0 0 
mesh100 9 0 0 1 
sierpinski10 7 0 0 3 

Table 10.8 Which of the Primitive Graphs each of the test graphs are coarsened to, showing that many 
graphs coarsened down into the star primitive, with few coarsening into Ring or used standard FDP. None 
coarsened into a Chain. 

Graph |GL| |Gl| 
3025 12.8 2.2 
data 12 3 
add32 15.6 3 
4elt 15.2 3 
sierpinski10 18.4 3.6 
finan512 17 3.4 
dime20 19.6 2.6 
mesh100 17.4 2.6 

 

Table 10.9 The number of graphs generated in the multilevel scheme and the size of the coarsest graph, 
showing that even though primitives were used, the coarsest graph is still coarse 

The results show little change between standard coarsening and use of primitives, a result of the 

effectiveness of the standard weighted coarsener. By changing the coarsener or using Multimatching, 

methods known to increase the number of graphs in the multilevel scheme, the value of primitives can 

be seen. For example, by removing the function which organises a graph by weight, graphs such as 

add32 are coarsened to provide a multilevel scheme with many more levels in it (weighted coarsener 
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may produce 12-15 graphs, whereas coarsener alone provides between 100 to 120). The result is 

primitive processing is able to identify larger primitive graphs (for add32, a star of 78 vertices can be 

identified).  

Firstly a look at some examples of Star and Ring placement for a graphs of 100 vertices. 

 

 

Experimentation uses three example primitive graphs; 

• Star – a central vertex with degree (|V|-1) connected to all other vertices in the graph, each 
with degree of 1, connecting in to the centre 

• Ring – a ring of interconnected vertices, each with degree of 2 
• Chain – graph is coarsened down to a chain of vertices, each with degree of 2, except the ends 

which have degree of 1 
 

 

Figure 10.37. Primitive Graphs, featuring a Star (left), a Ring (middle) and a Chain (right). Each exhibiting examples 
of the calculated layouts provided by the Vertex Placement Scheme. 
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Use as a stopping mechanism is as simple as identifying if a newly coarsened graph is a primitive graph. 

After identification, the coarsening scheme is ended and the coarsest “primitive” graph is given a 

calculated layout using the Vertex Placement Scheme, see Implementation 10.22 .  

Results for primitive graphs as a means of ending coarsening schemes are tested on the static test graphs, 

following the same methodology used in Coarsening Tolerance 0. Each test is repeated 10 times, with 

layout quality, running time and the primitive used (if any) recorded. The results are compared to the 

standard Multilevel Global Force Algorithm to determine which of the primitive graphs, if any, 

improved layout quality, with subjective analysis to identify and compare warping. 

10.10.1  Numerical Results 

There is little change between primitives due to the size of the primitive graphs identified (as a result 

of the weighted coarsener). 

Table 10.10 shows that running time is largely unchanged on average, with changes being so small they 

can be regarded as fluctuations observed as a result of different matchings being identified. As such, 

running time of the coarsening process is included, showing that the coarsener takes longer time for 

smaller graphs, whereas larger graphs appear to have a reduction in running time. These changes come 

from use of identifying a primitive and providing them layout. 

 Running Time (ms) 
 Standard Primitive 

Graph All Coarsener All Coarsener 
3025 846.2 43.4 885.0 58.8 
data 1028.6 70.6 1005.8 73.8 
add32 1968.8 64.6 2007.4 69.0 
4elt 7507.8 207.8 8344.8 235.2 
sierpinski10 67074.2 1145.0 68011.4 1443.4 
finan512 69532.6 2015.6 71037.4 2015.8 
dime20 218313.4 3220.2     
mesh100 94864.2 2009.0 84189.0 1762.2 

 

Table 10.10. Comparison of running time for layout generation and coarsening processes using standard edge 
contraction (Standard) and primitive graph processing (Primitive) 

Layout Quality in regard to edge crossings shows little change as well, shown in Table 10.11. The range 

of edge lengths show some increase on average, attributed to the structure of the MGF scheme (due to 

the repulsive approximation calculated in more than two directions, reducing the warping – as shown 

in Multimatching). 
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 Standard Primitive 
Graph Edge Crossings Edge Length Range Edge Crossings Edge Length Range 
3025 0.0 0.4696 0.0 0.4402 
data 42255.2 0.7789 35868.2 0.8598 
add32 12564.8 2.9163 12077.6 3.2129 
4elt 20273.2 0.6604 24905.6 0.6832 
sierpinski10 18717.6 0.2611 19664.2 0.2897 
finan512 4719437.8 0.7856 4736235.6 0.7608 
dime20 74200.2 0.4448     
mesh100 948812.6 0.3940 960406.4 0.3985 

Table 10.11. Comparison of edge crossings and range of edge length for layouts generated using standard edge 
contraction (Standard) and primitive graph processing (Primitive) 

From a numerical standing, there appears to be little overall benefit to primitive graph identification 

and layout. 

10.10.2  Subjective Analysis 

In application, the graph finan512 is often coarsened to a ring or a star, as such, layouts can be provided 

as shown in Figure 10.38. Note due to the small size of the primitive graph, the benefit of using the 

primitive is only achieved in the structure of the MGF. The layout generated features less warping that 

using standard edge crossings, however, the weighting of vertices still cause some deformation (note 

there is some compression). 

 

Figure 10.38. Finan512 showing the primitive ring graph identified during the coarsening process having been given a 
layout generated by the VPS (left), and the resulting layout for the graph (right) 

Layouts for dime20 (Figure 10.39) and add32 (Figure 10.40) show little change between usage of primitive 

(right) or standard edge contraction (left). Subtle changes may be noticed, for example, the increase in 
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edge length range can be seen in the primitive layout for dime20, whereby the compression on the outer 

skirts of the layout is minimised in some parts.  

 

Figure 10.39. Comparison of layouts for graph dime20 drawn using the primitive graph coarsener (left) and standard 
edge contraction (right). 
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Figure 10.40. Comparison of layouts for graph add32 drawn using the primitive graph coarsening process (left) and 
standard edge contraction (right) 
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10.11  Configuring Dynamic Spring Embedder 

For the collection of results, the abbreviations “EC” and “MMT” are used to refer to the number of edge 

crossings for a frame, and the average movement between a frame and a previous frame.  

Figure 10.41 and Figure 10.42 provide an illustration (chart) showing changes to the measured layout 

quality over time for regular-small. The measurements show that a value of 0.5 for tr generates a layout 

with zero edge crossings (on average) within 180 frames. In contrast, no other values are shown to 

provide such layouts, with 0.3 being closest on average. In addition to providing high quality layouts 

for the graph, the change in movement appears to decrease as well, suggesting movement slows as a 

layout is identified. However, a value of 0.3 provides reduced movement with 0.1 providing the least 

movement, requiring subjective analysis to confirm which of the two measurements (edge crossings or 

movement) provides smoothest visualisation and understanding of the development of a layout. 

 

Figure 10.41 Change in edge crossings 300 iterations of force directed placement of graph regular-small, 
showing the difference of the value tr (repulsive force displacement) 
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Figure 10.42 Change in average vertex movement 300 iterations of force directed placement of graph 
regular-small, showing the difference of the value tr (repulsive force displacement) 

Investigation of the value of tr on the metrics for graph stability of the graph sparse-small is provided 

in Figure 10.43 and Figure 10.44. The results suggest that a large value of tr is better for representing 

the sparse graph, with a value of 0.7 providing layout with least edge crossings, however, a value of 0.5 

follows closely behind in regard to rate of convergence. For movement, a value of 0.5 shows a gradual 

reduction as layout is found, in contrast to values of 0.1 which shows increasing movement as layout is 

found and 0.9 which shows a very quick drop to a low amount of movement. As above, subjective 

analysis is required to identify which of the values is easier to read, with a value of 0.7 determined as 

the ideal. 
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Figure 10.43 Change in edge crossings 300 iterations of force directed placement of graph sparse-
small, showing the difference of the value tr (repulsive force displacement) 

 

Figure 10.44 Change in average vertex movement 300 iterations of force directed placement of graph 
sparse-small, showing the difference of the value tr (repulsive force displacement) 

Figure 10.45 and Figure 10.46 shows the measurements of the metrics for graph stability for the graph 

dense-small. The results suggest that a value of 0.9 for tr, provides layouts with the greatest rate of 

convergence and associated vertex movement. Unlike the examples above, the structure of dense graph 

provides layouts with high density of edge crossings and therefore the focus moves from minimal edge 

crossings to least movement (see Subjective Analysis). 

 

Figure 10.45 Change in edge crossings 300 iterations of force directed placement of graph dense-
small, showing the difference of the value tr (repulsive force displacement) 
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Figure 10.46 Change in average vertex movement 300 iterations of force directed placement of graph 
dense-small, showing the difference of the value tr (repulsive force displacement) 

Layouts for the above charts are included below showing the layouts provided and the quality difference 

between them. Layouts for sparse-small show that the force largely changes the clustering of 

leaf like vertices, with many of the graphs showing readable layout. Layouts for regular-small 

show compression and warping as forces are unable to escape each other, with a value of 0.5 

providing highest quality layouts. Dense small shows to have very erratic movement for lower 

values of tr, with a n equilibrium preferred for generating symmetrical/equal layouts (lower 

values for tr show high movement as vertices swap between far and close from the centre of 

mass).
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Table 10.12 Layouts given to the graphs regular-small, sparse-small and dense-small using tr values of  ‘0.1, 0.3, 0.5, 0.7 and 0.9’, showing the impact of changing the 
equilibrium of forces used in force directed placement. Layouts for sparse-small show that the force largely changes the clustering of leaf like vertices, with many of 
the graphs showing readable layout. Layouts for regular-small show compression and warping as forces are unable to escape each other, with a value of 0.5 providing 
highest quality layouts. Dense small shows to have very erratic movement for lower values of tr, with a n equilibrium preferred for generating symmetrical/equal 
layouts (lower values for tr show high movement as vertices swap between far and close from the centre of mass
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10.12  Comparison of Layout Adjustment for Dynamic Spring Embedder and the Eades Spring Embedder Implementation 
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10.13  Dynamic Matching: Multilevel Updates  

10.13.1  Small Graphs 

10.13.1.1  Single, Middle and Full Update Comparison 

Sparse-small : shrink, grow and maintain operations for single, middle and full update methods 
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regular-small : shrink, grow and maintain operations for single, middle and full update methods 
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dense-small : shrink, grow and maintain operations for single, middle and full update methods 
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10.13.1.2  Full and Rematch Update Comparison 

sparse-small : shrink, grow and maintain operations for full and rematch update methods 
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regular-small : shrink, grow and maintain operations for full and rematch update methods 

0

5

10

15

20

0 30 60 90 120 150 180 210 240 270 300 330

Ed
ge

 C
ro

ss
in

gs

Frames (iteration of FDP)

Edge Crossings for sparse-small : maintain

full

rematch

0

0.2

0.4

0.6

0.8

0 30 60 90 120150180210240270300330Ve
rt

ex
 D

isp
la

ce
m

en
t

Frames (iteration of FDP)

Average vertex movement for sparse small: 
maintain

full

rematch



271 

 

  

  

 

0
2
4
6
8

10
12
14

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Ed
ge

 C
ro

ss
in

gs

Frames (iteration of FDP)

Edge Crossings for regular-small: shrink

full

rematch

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Ve
rt

ex
 D

isp
la

ce
m

en
t

Frames (iteration of FDP)

Average vertex movement for regular-small: 
shrink

full

rematch

0

5

10

15

20

25

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Ed
ge

 C
ro

ss
in

gs

Frames (iteration of FDP)

Edge Crossings for regular-small: growth

full

rematch

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Ve
rt

ex
 D

isp
la

ce
m

en
t

Frames (iteration of FDP)

Average vertex movement for regular-small: 
growth

full

rematch



272 

 

  

dense-small : shrink, grow and maintain operations for full and rematch update methods 
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10.13.2  Medium Graphs 

10.13.2.1  Single, Middle and Full Update Comparison 

Sparse-medium 
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Dense-medium 
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10.13.2.2  Full and Rematch Update Comparison 
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Dense-medium 
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10.14  Dynamic Matching: Multilevel Global Force Updates 

10.14.1  Small Graphs 

10.14.1.1  Single, Middle and Full Update Comparison 
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10.14.1.2  Full and Rematch Update Comparison 
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10.14.2  Medium Graphs 

10.14.2.1  Single, Middle and Full Update Comparison 
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10.14.2.2  Full and Rematch Update Comparison 
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10.14.3  Large Graphs 

10.14.3.1  Single, Middle and Full Update Comparison 
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10.14.3.2  Full and Rematch Update Comparison 
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10.15  Comparison of Dynamic Spring Embedder and Multilevel Dynamic Spring Embedder 

10.15.1  Comparison of Metrics for Graph Stability for FRD and FRD ML algorithms 
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10.15.2  Comparison of FRD and FRD-ML layouts (Subjective Analysis) 

Dense-medium 

  

 

Small graphs show poor layout – regular and sparse (dense shows little change) 
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Regular suggests some improvement to medium sized graphs 
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Layout Generation Overview 

Frame 0  Frame 10 Frame 50 Frame 100 Frame 300 

Regular-large using FRD 

 

   
 

Regular-large using FRD ML 

 
    

Sparse-large using FRD 
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Sparse-large using FRD ML 

    
 

Dense medium using FRD 
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Dense-medium using FRD ML 
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10.16  Comparison of Graph Stability for Dynamic Spring Embedder and Dynamic Spring Embedder with Multailevel Global 

Forces – Metrics for Graph Stability 
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10.17  Animation and typical Frame rates for video mediums 

For context, a typical computer monitor has a refresh rate of 60Hz (16.7ms per refresh), analogue TV 

(PAL) runs at 24fps (41.67ms per frame), and a hand drawn animation may run at 24fps, 12fps 

(83.33ms) or 6fps (166.67ms). Other faster methods are being introduced, for example, 1080p HD video 

is described as 60fps (dependent on the codecs used) with others offering up to 300fps.   

10.18  Dynamic Matching: Impact of Graph Type on Multilevel Updates 

It is mentioned above that the shrink operations provide erratic changes to edge crossings with no update 

method showing obvious improvement. Similar behaviour is observed between graph types, suggesting 

that removal of edges has the same impact on all graphs, independent of update method or graph type. 

In contrast, differences can be seen through different update methods for different graph types when 

using the growth operations sets. Figure 10.47 and Figure 10.48 depict the change in edge crossings 

for sparse and regular type graphs as growth operations are applied. The differences are quite clear, the 

sparse structure showing a more erratic behaviour with single/mid/high level updates performing 

similarly and rematch providing a somewhat lesser change per frame during the operations phase (50-

250). 

The regular structured graph shows a much more obvious improvement between update methods (closer 

resembling the general behaviour of growth operations shown above), whereby single provides highest 

change in edge crossings, and high update provides least change. 

 

Figure 10.47 Change in edge crossings for sparse type graphs as growth operations are applied and 
reverberated through the multilevel scheme using the four update methods 
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Figure 10.48 Change in edge crossings for regular type graphs as growth operations are applied and 
reverberated through the multilevel scheme using the four update methods 

The difference indicates that sparse type graphs have less benefit from updating the multilevel scheme, 

whereas regular structured graphs gain a reduced change in edge crossings when incorporating 

amendments into the multilevel scheme. 

Dense has the most persistent graph stability, with shrink and maintain operations being little affected 

by the update methods. As with the regular type graphs, growth shows a more notable difference 

between methods, with rematch and full update resulting in higher number of edge crossings in the 

layout, however, the difference is only 3% of the edge crossings in the initial layout. 

Throughout all graph types, movement is little effected by the update methods with rematch update 

generally providing higher movement. Dense graphs however, show a larger amount of movement than 

that observed in regular and sparse graphs, but is independent of the update methods (as indicated in 

Figure 10.49) movement spikes to 200% however, the update methods all provide such movement – 

indicating that movement is not impacted by the update methods. 
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Figure 10.49 Average vertex movement measured in dense-type graphs during application of growth 
operations, showing that for each of the four update methods, the movement exhibits the same peaks 

 

 

 

10.19  Isomorphic Drawings 

The aim of many drawing algorithms is to provide regular high quality results (Kamada and Kawai 

(1989), Fruchterman and Reingold (1994)), however, force directed placement often results in 

differences in layout as a result of minima in the graph and differences in initial vertex placement. 

Experimentation is therefore performed to identify the similarity of layouts for isomorphic graphs, 

answering the following question:  

Does the use of Multilevel Global Forces in conjunction with a Spring Embedder provide regular 

layouts for isomorphic graphs? 

To test this, each of the static test graphs is reproduced ten times with vertices ordered differently, 

resulting in 10 different graphs with the same structure. Layouts are provided for the graphs (repeated 

5 times) with the average number of edge crossings and an edge range recorded. The result is {5 x 10} 

layouts per test graph.  

The average number of edge crossings and range in edge crossings are compared to determine 

similarity. Layouts which exhibit edge crossings within 1.5 standard deviation of the average number 
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of edge crossings are classified as similar, with any outside requiring further subjective investigation to 

identify the cause of differences in layout. 

10.19.1  Numerical Results 

10.19.1.1  Comparison of MGF to Octree 

Comparison of Multilevel Global Force and Octree data structures provides some initial analysis of 

layout regularity suggesting that MGF reproduces layouts with smaller range in edge crossings between 

them (regular layouts). As indicated in Table 10.13, the results show that the range in edge crossings for 

MGF is much smaller than those generated by Octree approximation, a result of the unchanging 

structure of the MGF tree in comparison to the volatility of vertex movement relative to one another 

(structural versus spatial approximation). 

 Range in Edge Crossings 
Graph MGF OT Reduction 
4elt 290 14161 97.95% 
3025 32 2052 98.44% 
add32 78 3617 97.94% 
data 31 2933 98.94% 
dime20 4625 35211 96.86% 
finan512 1094 67566 98.38% 
mesh100 4453 15250 70.80% 
sierpinski10 327 3498 90.65% 

   92.48% 

Table 10.13. Comparison of the range of edge crossings for layouts generated using Multilevel Global Force (MGF) 
and Octree (OT) approximation, with context of the difference between them (92.48% reduced range). 

10.19.2  Isomorphic Layouts using MGF 

Analysis of the layouts generated for the randomized graphs provide the results in Table 10.14. The results 

indicate that on average there is a large range in the number of edge crossings across the randomized 

graphs (up to 21% below and 49% above average, a range of 70% difference), suggesting poor 

isomorphic drawing. The cause is due to folds in the layouts for 3025, which would normally be drawn 

as planar. By omitting the results for 3025 the range drops dramatically, with all layouts exhibiting edge 

crossings within 10% below average and 12% above average (a range of 22% difference). 

 Edge Crossings 
Graphs average min max avg/min avg/max 
3025 237.2 1.2 961.6 0.5% 405.4% 
data 38747.3 36377.4 39974.8 93.9% 103.2% 
add32 35950.1 32684.0 41835.0 90.9% 116.4% 
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4elt 34202.0 28056.8 41577.2 82% 121.6% 
sierpinski10 15009.5 14511.2 15566.8 96.7% 103.7% 
finan512 5632952.3 5435551.4 5897981.2 96.5% 104.7% 
dime20 81096.3 65180.6 106737.0 80.4% 131.6% 
mesh100 1017924.9 949211.2 1093848.8 93.2% 107.5% 

    79.3% 149.26% 

Table 10.14. Comparison of edge crossings and range of edge crossings for layout provided by Multilevel Global Force 
(MGF), providing the range in regularity of layouts provided using the method. 

With the exception of 3025, the majority of graphs are provided with similar layouts, suggesting that 

layouts for isomorphic drawings will be provided with up to 12% difference of an average layout. In 

addition, comparison to Octree suggests MGF provides noticeably more regular results. 

10.19.3  Subjective Analysis 

Due to the number of layouts generated, differences are compared for only some of the layouts 

generated. An example of the layout for 3025 shows two extent of folds resulting in higher and low 

number of edge crossings. The cause of such a fold is typically the result of a twist in the coarser layouts 

provided by the multilevel scheme, of which refinement is unable to rectify due to high minima in the 

finer graphs. 

 

Figure 10.50. Examples layouts provided for graph 3025 using Multilevel Global Force (MGF), exhibiting a large fold 
in the layout (left) resulting in a large increase in edge crossings, and a minor fold with much fewer edge crossings 
(right) 

The largest range in edge crossings is exhibited by layouts for dime20, and therefore this is the first to 

be analysed. Analysis of the randomised graphs show layouts with least edge crossings were achieved 

for dime20.randomised0, whereas highest edge crossings were exhibited by dime20.randomised7. 

Figure 10.51 provides layouts for the two graphs using the same force directed placement method, 

showing little observable difference (from the authors’ viewpoint). The rise in edge crossings is likely 
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to come from compression seen on the central and left branches and the overlap of smaller structures 

(see bottom centre, whereby a small triangular structure overlaps layout in the left image, but not in the 

right).  

 

Figure 10.51. Comparison of layouts for randomised variations of dime20 (randomised0 and randomised6), showing 
little difference between the graphs. 

Multiple layouts were regenerated for the two graphs, with little difference between them. Occasionally 

some part of the graph overlaps on the rest of the graph, however this is due to randomness within the 

automatic layout process (typically through initial positioning or matching of the multilevel scheme), 

and is believed to be the cause of the differences in numerical analysis.  

Each of the tested graphs are checked to determine if any differences occur from the re-shuffling of the 

graphs, with the common conclusion that the cause of any changes in layout is due to randomness within 

the layout process and not due to the structure of the graph and resulting MGF scheme (if variations in 

layout were caused from structure, the layouts would be regularly different).  

Figure 10.52 shows a large fold in a layout for 4elt (left), showing an alternate layout to that expected for 

the graph (right). As a result, the graph looks almost entirely different due to this change, and is caused 

by a “branch” of vertices overlapping the main body of the graph and expanding as a result. After 

multiple repeats, the abnormal layout could not be replicated. 



328 

 

 

Figure 10.52. Layouts for 4elt exhibiting typical layout and an overlapping layout causing a large increase in edge 
crossings. 

Figure 10.53 shows a common irregularity seen in the layouts generated for sierpinski10 (left), whereby 

parts of the layout fold other themselves. The main structure can still be identified, however the change 

greatly effects the readability of the layout due to the expectation of the layout on the right.  

 

Figure 10.53. Layouts for Sierpinski10 showing a typical layout and a layout exhibiting a large fold, resulting in a large 
increase in edge crossings. 

The rate at which these irregularities in layout occur is unpredictable and differs for different graph 

structures (for example, it was noticed sierpinski10 was more likely to be given layout with a fold than 
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3025, despite the collected results). The similarity of layouts is difficult to measure subjectively, 

however, on average layouts for isomorphic graphs look the same from the author’s point of view. 

10.20  Multimatching 

Multimatching aims to optimise the approximation of graph structure during multilevel generation, 

altering the Multilevel Global Forces. Experimentation looks to investigate the effects on approximation 

and the resulting layout quality. Specifically: 

Can Multimatching be used to provide improved approximation and representation of graph structure 

in multilevel and Multilevel Global Force schemes? 

A description of the Multimatching algorithm and differences to standard Multilevel Global Force 

generation is described in Implementation 10.22 . Experimentation is achieved by testing the matching 

number, m, with incremental values between 2 and 8 for static test graphs, whereby 2 represents 

standard edge contraction. Each test is repeated 10 times, resulting in 60 {(8-2) * 10} results for each 

graph, which are averaged and compared. Running time is also analysed and compared.  

Differences in layout quality are expected as a result of changes to the value of m, with investigation 

identifying any correlation to structural attributes of the graph such as average and modal vertex degree. 

Changes in running time are also expected due to changes in the structure of the tree and the coarseness 

of the generated graphs of the multilevel scheme, but are lesser investigated due to the expected 

differences as a result of the complexity, O(L · |V| · (m-1) · (|Gl|-1)) (as m increases, L will likely 

decrease due to coarser approximations of a graph being made). 

10.20.1  Numerical Results 

On average, the results suggest that as the value of m increases, so do the number of edge crossings and 

therefore the lower quality the layout is perceived to be, as shown in Table 10.15. The deterioration of 

layout may be attributed to coarser approximations of graph structure being generated in the multilevel 

scheme, resulting in refinement of local layout overwriting the interpolated layout. Despite the 

numerical analysis, some layouts are improved from the author’s point of view, as discussed in 

Subjective Analysis.  

 Change in Edge Crossings 
m 3025 add32 data 4elt sierpinski10 finan512 dime20 mesh100 
2 0.0 16240.0 36617.5 25695.0 37189.0 5043279.0 168011.0 979875.5 
3 5.6 26814.0 52163.6 26092.6 40144.4 6068587.4 221637.0 1176769.5 
4 1.0 33959.6 42351.6 25255.2 40449.0 6035649.4 230021.3 1319544.5 
5 12.0 38008.6 47216.2 25277.0 40824.8 5841396.8 229010.3 1302237.0 
6 2.2 42877.8 46833.6 24564.8 40122.0 5930307.4 227756.7 1293845.5 
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7 6.2 50851.2 64430.6 25509.4 40643.8 5851011.6 224438.7 1294489.5 

Table 10.15. Change in edge crossings for layouts of the test graphs for changes of multimatching number 

One of the key aims of Multimatching is to change the structure of MGF, and is therefore expected to 

affect the Peripheral Effect due to the change in the number of directions in which approximation is 

made (children per vertex in the MGF tree). Table 10.16 shows that for many of the graphs, the range in 

edge lengths increases, with only add32 and data providing decrease in the range of edge lengths, 

contrary to what is expected. Due to the results not matching the expected behavior, subjective analysis 

is provided to identify and describe the effect of Multimatching on layouts and the Peripheral Effect. 

 Range in Edge Length from m2 
m 3025 add32 data 4elt sierpinski10 finan512 dime20 mesh100 
2 0.4963 2.2534 0.8887 0.7073 0.3399 0.9266 0.5416 0.5329 
3 0.4951 1.6352 0.8295 0.7084 0.3234 1.0629 0.5554 0.5650 
4 0.5257 1.0013 0.6221 0.7434 0.3194 1.0748 0.5709 0.5767 
5 0.5363 0.5895 0.3878 0.7581 0.3274 1.0773 0.6169 0.6058 
6 0.5429 0.3816 0.2538 0.7572 0.3251 1.0993 0.5846 0.6060 
7 0.5603 0.2729 0.1830 0.7553 0.3278 1.1079 0.6424 0.6150 

Table 10.16. Range in edge length of layouts for changes to the Multimatching number 

Running time, as expected, shows some decrease as the number of graphs in the multilevel scheme is 

reduced, however, use of Multimatching impacts complexity and therefore any reduction in the number 

of graphs is added to the number of children vertices in the MGF tree, resulting in little change to 

running time. Table 10.17 shows that for some graphs, the saving in running time can be as much as 26% 

(4elt) but can also lead to an increase in as much as 50% (dime20), a result of the changing structure. 

 Change in Running Time 
m 3025 add32 data 4elt sierpinski10 finan512 dime20 mesh100 
2 742.5 1297.5 788.0 5530.8 38768.3 35595.0 87148.0 61184.0 
3 799.8 1252.4 728.8 4357.8 40673.8 42245.6 98843.0 46847.0 
4 855.4 1220.4 722.8 4057.0 39631.6 32763.4 86377.0 45459.0 
5 735.0 1249.8 726.8 4253.2 41169.0 32346.0 103012.0 48126.5 
6 709.0 1254.6 726.8 4315.8 46369.0 30953.8 106902.0 48305.5 
7 711.2 1267.0 805.2 4091.2 52938.4 29057.8 130117.7 57850.0 

Table 10.17. Change in running time as a result of changes to multimatching number 

10.20.1.1  Multimatching using the Degree of Vertices 

Average degree for each of the graphs is provided in Section 5.1  (Test Graphs), and is used as a base 

value for the Multimatching. Due to the degree being the number of adjacent vertices, the value is 

incremented by 1 to include the current vertex. Following analysis, there is no clear benefit when using 



331 

 

Multimatching values equal to the average degree of vertices, as summarised in Table 10.18. Subjective 

analysis confirms the findings. 

 m:=degree Standard 
Graph RT EC ELR RT EC ELR 
3025 735.0 12.0 0.5363 742.5 0.0 0.4963 
add32 1249.8 38008.6 0.5895 1297.5 16240.0 2.2534 
data 795 41258.8 0.9875 788.0 36617.5 0.8887 
4elt 4091.2 25509.4 0.7553 5530.8 25695.0 0.7073 
sierpinski10 41169.0 40824.8 0.3274 38768.3 37189.0 0.3399 
finan512 361334.7 4867662 0.8586 35595.0 5043279.0 0.9266 
dime20 86377.0 230021.3 0.5709 87148.0 168011.0 0.5416 
mesh100 48126.5 1302237.0 0.6058 61184.0 979875.5 0.5329 

Table 10.18. Comparison of running time (RT), edge crossings (ER) and range in edge length (ELR) between a 
multimatching value of 2 and Multimatching value equal to the average degree of each test graph 

10.20.2  Subjective Results 

10.20.2.1  Multimatching Effect 

Due to the way in which Multimatching affects the multilevel scheme, there are two primary effects on 

layout quality. Firstly, the number of vertices matched per vertex in the coarser graph means more work 

has to be done to untangle a graph during layout refinement. For a matching number of 7, for every 

vertex in a coarse graph, up to 7 vertices may exist for each, each of which take the initial position of 

the singular vertex and requires refinement to place them. If there are 100 coarse vertices, this could 

lead to 100 groups of 7 vertices attempting to have layout refined, pulling and pushing on each other 

and any connecting vertices. The result is tangles in the layout, as shown for sierpinski10 in Figure 10.54. 
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Figure 10.54. Comparison of layouts for sierpinski10 using a Multimatching value of 2 (left) for standard edge 
contraction and a Multimatching value of 5 (right) 

Secondly and more commonly, Multimatching affects the MGF structure, and as a result, the directions 

in which approximation is made. The higher the multimatching number, the more directions in which 

repulsive forces are approximated, expected to provide a more uniform layout. Figure 6.32 shows the 

most noticeable and appealing impact of this on the graph 3025, which shows a uniform layout that 

matches the known layout of the graph for a multimatching value of 6, removing the warping seen in 

layouts with lesser values. 

 

 

Figure 10.55. Comparison of layouts for 3025 using Multimatching values of 2 (left) and 6 (right), showing a more 
equilateral layout using multimatching 

Figure 10.56 shows that the graph 4elt also exhibits some expansion, particularly of the branches, 

however the layout is still elongated, remaining visually similar to the layouts provided by standard 

matching methods. 
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Figure 10.56. Comparison of layouts for 4elt for differing multimatching values, showing greater expansion of some 
branches for the greater value of 5 (right) than for standard edge contraction using a value of 2 (left) 

10.20.2.2  Multimatching using the Degree of Vertices 

As with the numerical analysis, subjective analysis suggests there is little improvement in layout quality 

for using values equal to the average degree of a graph. Some graphs, such as 3025 (Figure 10.57 show 

improvement in regard to reduced effect of warping, but can be provided with better layouts as a result 

of different Multimatching values. Other graphs show very little change such as add32 (Figure 10.58) or 

extreme deterioration of layout quality, such as sierpinski10 (Figure 10.59). 
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Figure 10.57. Comparison of layouts for the graph 3025 drawn using multimatching values of 2 (right) representing 
standard edge contraction and 5 (value of the average degree, left) 

 

Figure 10.58. Comparison of layouts for the graph add32 drawn using multimatching values of 2 (right) representing 
standard edge contraction and 32 (value of the average degree, left) 
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Figure 10.59. Comparison of layouts for the graph sierpinski10 drawn using multimatching values of 2 (right) 
representing standard edge contraction and 5 (value of the average degree, left) 

 

10.21  Graphs 

10.21.1  Leafy Graphs 

Leafy graphs are sparse graphs with a large number of vertices with a degree of 1, meaning 

that many vertices are connected to only one other vertex. Although there is no definition here 

on which graphs are considered leafy, the term is used to describe any graph which has leaf 

vertices. Generally, the term is used to describe graphs with many leaf vertices. 

10.21.2  Dense Graphs 

Dense graphs are highly connected and have a high number of edges per vertex. Such high 

concentrations of edges increase the energy of force directed placement systems, causing 

conflicting movements and preventing a low energy layout being generated. Reference to dense 

graphs therefore suggests such high numbers of edges that the layout is unlikely to provide a 

good representation of the data. 

10.21.3  Sparse Graphs 

Sparse Graphs are opposite to dense graphs, in that they have fewer edges per vertex. 
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10.21.4  Regular Graphs 

Regular graphs are those which have recurring subgraph structures, and are neither dense nor 
sparse in quality. 

10.21.5  Known Layouts for Test Graphs 

Some of the test graphs used throughout the thesis have a known layout from their source. 

Those that do are provided below. 

 

Figure 10.60 Actual layout for the graph 4elt 

 

Figure 10.61Actual layout for the graph data 
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Figure 10.62 Actual layout for the graph dime20 

 

Figure 10.63 Actual layout for the graph mesh100 
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Figure 10.64 Actual layout for the graph sierpinski10 

10.22  Implementation: Additional Information and Pseudocode 

This chapter details the implementation of the techniques proposed in the Concepts and 

Experimentation chapters (Chapter 3 and 4 respectively) and used during experimentation and analysis. 

Each of the techniques are described in their respective subsections below with pseudo code examples 

provided. An object orientated programming approach is used to split the algorithms into simpler and 

more specific processes.  

To introduce the environment for the implemented works, a description of the Graph Drawing and 

Experimental Framework is provided in Section 10.22.1 , detailing the overall intended framework 

and providing context for usage and the examples given. Following this, implementation of Multilevel 

Global Force is discussed in Section 10.22.3 , with details regarding parameters and coarsening 

methods for use on static graph drawing algorithms. Dynamic Drawing Methods are then described 

in Section 10.22.4  detailing the adaptation of the Spring Embedder for better visualising dynamic 

graphs, use of a multilevel scheme for generating and maintaining global layout and extension of the 

scheme for Multilevel Global Force approximation of long range global forces. Implementation of the 

Dynamic Update methods for use with a multilevel scheme and Multilevel Global Forces are included 

for graph modification (Section 10.22.4.4.2  ). A brief summary of the implementation is provided to 

conclude the chapter in Section 10.22.5 . 
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10.22.1  Graph Drawing and Experimental Framework 

In order to provide a fair environment for comparisons of algorithms, the typical “components” which 

make up a graph drawing algorithm are implemented separately such that they can be “mixed and 

matched”, allowing for comparisons of differing algorithm makeups. A “component” refers to a 

principle part of a drawing algorithm which can be split off into its own sub-process, changes to which 

do not directly affect other sub-processes and data flow; for example, Multilevel Generation processes 

are separate from Force Directed Placement methods. A framework is used to govern and combine 

components, allowing for an experimental environment which can provide access to specific 

components. 

Incorporation of such a framework can be found in existing research in the area, and is used to provide 

context for the intended usage of contributions (e.g. Misue et al (1995), Hu (2005), and Veldhuizen 

(2007)). The framework here is designed primarily for development purposes, providing an interface to 

control, monitor and test implementations of the new algorithmic approaches, while providing methods 

for automatic collection and analysis of numerical results. Although specific to the research here, it is 

expected the framework can be applied by others to simplify development or provide a controlled 

environment for experimentation. Figure 10.65 provides a basic overview of the architecture, splitting 

a typical algorithm into four “major” components, each of which can be split into more specific 

components: 

• Input/Output – governing the methods of input and output, including the incorporation of input 

data into the model for drawing purposes. The component may be thought of as part of the 

model, however, is separated to keep data validation and control of input, separate from the 

model and data structures. In addition, the component is used to control analysis of results.  

• Model – governing the data structures used, generation of multilevel schemes and 

approximation prior to use with drawing methods 

• Automatic layout – the various methods for drawing layouts, including primitive placement 

and initial layout generation methods  

• Visualisation – the display methods for visualizing drawings, providing methods for exploring 

layouts (focus, colouring, interactive controls) in addition to providing a console for use with 

 A controller is used as an interface to the components, combining them into a single package and 

providing a medium for decision making (for example, which automatic layout method to use). 
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Figure 10.65 System Architecture detailing the four main components of the drawing algorithms generated here, 
indicating some of the functionalities available and providing context as to how components may be switched out to 
provide accurate comparison of techniques 

The architecture is applicable to both static and dynamic graph drawing, usage of which is governed by 

the controller. An example of a dynamic drawing algorithm composed of the components is provided 

in Figure 10.66 below, showing the four major components and the selected sub-processes for each, 

with graph modification expected via an Operations file, and utilisation of both multilevel scheme and 

MGF approximation.  
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Figure 10.66 An example of a dynamic drawing algorithm using the framework, indicating usage of operations, 
multilevel scheme, MGF approximation and the intended use of animation for display purposes and the frames. 

Force Directed Placement is left ambiguous, suggesting the drawing method is likely to change 

 

10.22.1.1  Data Structures 

A graph, G0 = (V0, E0) is implemented as a collection of vertices, V0, with each vertex, v, containing 

various attributes. Edges are stored as a collection of adjacent vertices known as the neighbourhood of 

v, Г(v), within each vertex following implementation by Walshaw (2003) and Eades (1984). A graph, 

G0, is therefore composed of a collection of vertices, V0, with edges stored within them. A layout for a 

graph is the mapping of vertices to positions in a drawing area with line segments representing edges 

between them.  

A vertex is implemented as a structure containing the following attributes: 
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Figure 10.67Vertex data structure 

 

10.22.1.2  Multilevel Structure 

Use of Multilevel Global Force and Multilevel schemes requires the pointers to be stored within a vertex 

(as shown in the example above). The pointers refer to the parent and children vertices in coarse and 

finer graphs, providing a means of traversing between levels of the multilevel scheme from any vertex 

within the graph. Storing the information within each vertex generates a double linked list structure.  

10.22.1.3  Chaco and Operations Files 

Static graphs are stored as Chaco files (Hendrickson and Leland, 1995) and may be accompanied by a 

plain text file (.xyz) file storing coordinates of vertices. A Chaco file includes a header identifying the 

number of vertices and edges within the file, with each vertex stored as a new line containing a list of 

adjacent vertex IDs separated by a space. An XYZ file similarly contains a header with the number of 

vertices in the document, with each line holding the coordinates of a vertex. An example of a Chaco 

and an XYZ file are provided below, more information can be found in the publication regarding Chaco 

file format by Hendrickson and Leland (1995). 
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Figure 10.68 Example of Chaco and XYZ files for a simple graph of four vertices 

 

A dynamic graph uses a Chaco file as an initial graph, with modification operations stored as an 

accompanying plain text operations file (.ops). The operations file stores a list of operations, following 

a protocol described in Table 10.19, providing one operation per line, identified by an ID with 

arguments to identify the target(s) of the operation (vertex ID). A dynamic graph need not include an 

operations file, instead receiving amendments in real time (unknown beforehand). 

ID Operation Parameters Description 

0  Add Vertex {ID} or  

{ID1, ID2} 

Vertex with ID is added, and if given, 

connected to vertex ID2 

1 Remove Vertex {ID} Removes vertex with ID 

2 Add Edge {ID1, ID2} Adds an edge between vertices with ID1 and 

ID2 

3 Remove Edge {ID1, ID2} Remove an existing edge between vertices 

ID1 and ID2 

4 Break 

(automatic layout) 

{N} Breaks from operations, running an 

automatic layout algorithm for N iterations 

5 Modification {ID, weight} or 

{ID,X,Y,Z} 

Modify vertex with ID, editing weight or 

position 

 

Table 10.19 Protocol and expected parameters of input for Graph Modification Operations 
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More information regarding implementation of Graph Modification Operations is provided in Section 

10.22.4.4.1  . Other files such as those used to store numerical results differ between experiments but 

are typically stored in a CSV (comma separated values) format.  

It should be noted that after modification, a graph cannot have its layout saved as an XYZ file without 

a new Chaco file being saved due to differences between the graph and its initial state.  

10.22.2  Multilevel Aesthetics 

The graph aesthetic said to have greatest impact on readability of a layout are edge crossings, with 

uniformity of edge lengths also used to identify similarity between layouts and extent of the Peripheral 

Effect. Aesthetics are implemented as described in Concepts (see Section 3.5 ). However, usage of the 

multilevel scheme for analysis of global layout also requires graphs in the multilevel scheme to be 

updated with the average positions of vertices in the finest (original) graph as described below. Once 

updated, methods for analysing layout quality can be applied to any of the graphs in the multilevel 

scheme. 

10.22.2.1  Generating Approximate Positions 

Calculation of approximate positions and application to coarser graphs can be achieved through post 

order traversal of the Multilevel Global Force tree structure as described in Figure 10.69 below. The 

method starts with the second finest graph (G1), wherein vertices take the averaged positions of their 

child vertices. The method is then repeated for the next (coarser) graph in the sequence, and continues 

until all graphs have been given approximate positions.  
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Figure 10.69 Generation of approximate positions of vertices in the multilevel scheme via post order traversal 
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For methods which require preservation of layout in graphs of the multilevel scheme (for example, 

dynamic drawing), the process above can be repeated using a secondary set of coordinates within each 

vertex, accessible in the above method as xyzMGF. 

10.22.3  Multilevel Global Force (MGF) 

Multilevel Global Force is exploited from an existing multilevel scheme, therefore the generation of a 

multilevel scheme is described with examples in the subsection below. Following this, usage of MGF 

in Force Directed Placement is discussed using an example of the Fruchterman-Reingold (1991) Spring 

Embedder. Use of Primitives for modifying multilevel generation and altering MGF structure is then 

described, including pattern identification and Vertex Placement Scheme. 

10.22.3.1  Multilevel Scheme 

A coarse approximation of a graph is generated through identification and collapse of a maximal 

independent edge subset (a collection of edges which are not connected to one another), with each 

collapsed edge forming a new vertex in the coarse graph. The remaining edges of the original graph are 

then incorporated into the coarse graph, preserving the connections between vertices. The process is 

repeated on the coarser graphs until a graph of 2 vertices is generated, or some tolerance between levels 

is met, resulting in a collection of graphs GL = {G0, G1, G2... Gn}. 

Every edge that is collapsed during the coarsening process results in the merging of the two vertices 

connected by it to provide the generated (coarse) vertex with the sum of the weights. The two vertices 

are described as being “matched” with one another. Unmatched vertices are those which are not 

connected to a collapsed edge and are incorporated into the coarse graph on their own. When referenced, 

the collection of matched vertices is called the matching of a graph – indicating the current state of 

vertices (those merged and those not merged). A matching may change during dynamic drawing due to 

the addition and removal of edges and vertices. 

In regard to implementation, the coarsening algorithm is split into sub-processes to achieve the above 

tasks. The coarsener method described in Figure 10.70 acts as a controller for multilevel generation, 

repeating the coarsening process on each graph and storing the coarsened graph for use in Force 

Directed Placement or MGF. The controller is simplistic in operation: if a graph has more vertices than 

a matching number m, the graph is coarsened using the coarsen method, with the generated 

approximation stored in GL, repeating the process for the approximate graph until a graph with fewer 

than m vertices is generated, or some tolerance is met.  

The tolerance refers to the difference between the number of vertices in two consecutive graphs 

becoming smaller than some value, by default 0 (that is generated graphs have no difference between 
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them). To prevent the algorithm ending early, the tolerance must be met three times consecutively. 

Section 10.2  provides experimentation of the tolerance for identifying whether values greater than 0 

are more beneficial for some graphs. 
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Figure 10.70 Coarsener controller for generating graphs for a multilevel scheme 

 

The coarsen function called in the coarsener is comprised of several sub-processes, the two most 

significant being matchVertices for identification and collapse of a maximal independent edge subset, 

and importEdges for preserving the remaining edges. Prior to this, additional functions are used to 

generate the empty shell of a new graph, Gn+1, to shuffle the vertices to avoid bias towards vertices 

which appear earlier in the collection, and a function to organise the shuffled vertices by weight to give 

priority to those vertices with smaller weight (in order to provide uniform vertex weights across coarser 

graphs).  
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Figure 10.71 Coarsen method used to generate a coarse abstraction of a given graph 

 

The most complex process of coarsening is the identification of a maximal matching. An independent 

edge subset identifies edges which do not share vertices (they are not connected to one another). 

Identification of an independent edge can be achieved by identifying vertices connected to one another, 

neither of which are connected to an already identified independent edge. Once achieved, the vertices 

are marked as matched such that any connecting edges cannot be identified as independent. The 

matchVertices function in Figure 10.72 performs this task, temporarily storing matched vertices until 

an independent edge can be confirmed, and then contracting the edge to form a vertex in the coarse 

graph. 

A matching number m is used to determine the number of vertices matched together with a default value 

of 2 used for standard edge contraction. Higher values identify independent edge clusters (those 

connected to the same vertex) and is used in Multimatching (see Section 10.20 ). A maximal matching 

refers to a matching whereby a maximal number of independent edges or edge clusters are identified 

(i.e. there are no remaining unidentified independent edges).  Unmatched vertices which are not 

connected to an independent edge or edge cluster are matched with themselves in the coarse graph. 

After completion, all vertices will be marked as matched, each with a designated parent vertex that has 

the combined weight of the merged vertices which form it. 
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Figure 10.72 Function for matching vertices and identifying a maximal independent edge subset (MIES), a sub-process of 
coarsening 

 

After a maximal matching is found, the vertices are coarsened to form a new coarse graph. Edges which 

have not been matched are preserved and incorporated between the coarser vertices in the coarse graph 

using the importEdges function in Figure 10.73. The approach determines which edges to preserve 

through analysis of parent and child relationships: a vertex and adjacent vertex will have the same parent 
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if matched, therefore preservation of the edge is not required; in contrast, a vertex and adjacent vertex 

with different parents requires the preservation of the edge to connect the parents. If multiple edges 

connect two vertices, only one is used. Weighting can be applied if required but is not used here 

following implementation by Walshaw (2003). 

end
end

)add(.
)add(.

)),(if(
}{

.:
.:

begin)..;for(
}{

begin)for(
)s(importEdge

01

10

10

1

0

verticesparentconnectscurrentlyedgeifcheck

verticesadjacentofverticesparentget

ww
ww

Ewwe

parentuw
parentvw

parentuparentvvu

Vv
G

n

n

Γ

Γ

∉

=

=
≠Γ∈

∈

 

Figure 10.73 Function for incorporating edges of a finer graph Gi into a coarse approximation of that graph Gi+1, a sub-
process of coarsening 

 

After completion of the coarsen function, a coarse graph is returned to the coarsener, which repeats 

the process until the multilevel scheme is generated. 

10.22.3.1.1   Multimatching and Brute matching 

Multimatching uses the same implementation as above, with differing values of m for the desired 

matching number. Similarly, brute matching is achieved by setting the matching number to a value 

greater than the maximum vertex degree within the graph. Neither methods require changes to the 

implementation. 

10.22.3.2  Spring Embedder with Multilevel Global Force 

Multilevel Global Force is designed for application in approximating global repulsive forces in force 

directed placement. Multilevel Global Force is generated as described in the Concepts chapter (Section 

3.6 ), and implemented using a multilevel scheme described by Walshaw (2003) in addition to the 

Fruchterman-Reingold (1991) Spring Embedder as the method of Force Directed Placement. For use as 

approximation however, vertices must point to both parent and children vertices, and graphs in the 
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multilevel scheme must be updated with the approximate positions of vertices in the finer graph using 

the method described in Section 3.6.1 .  The spring embedder is modified such that N-body repulsive 

force calculation is replaced with the use of MGF, which traverses the multilevel scheme using the 

parent-children relationships stored within each vertex. 
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Figure 10.74 Spring Embedder with Multilevel Global Forces for approximating repulsive forces 
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10.22.3.2.1   Approximation Limit 

In addition to the approximation of global repulsive forces, an approximation limit is used to prevent 

repulsive forces between distant approximations. The approach is used for comparison against the 

standard technique of limiting calculation by distance, r, described by Fruchterman and Reingold (1991) 

and used by Hu (2005), however, uses the structural connectivity (distant as derived by the multilevel 

scheme) to inhibit repulsive force calculations. 

The method is applied as a limit and a counter, whereby for each approximation made against the current 

vertex, the counter is incremented. If the limit is reached (counter:=limit), calculation of repulsive 

forces is discontinued, preventing further traversal of the MGF tree.  
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Figure 10.75 Inclusion of an approximation into repulsive force calculation using MGF 

 

10.22.3.3  Multilevel Static Graph Drawing Algorithm 

Use of the multilevel scheme to provide global layout in addition to Multilevel Global Force requires a 

combination of the methods above. The algorithm initially reads in a Chaco file and generates a 

multilevel scheme for the graph, followed by the application of an initial layout to the coarsest graph 

by random placement of vertices within the drawing area. Following this initialization, graphs are 
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provided with a layout using Force Directed Placement, which is then interpolated, resulting in 

refinement of the layout at each level (coarsest to finest). The Multilevel Global Force is then updated 

with positions using the postOrderXYZ function described in in Figure 10.76. The method continues 

until the original graph, Gi, is provided with a layout which is displayed to a computer monitor. 
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Figure 10.76 Multilevel Static Graph Drawing Algorithm design 

10.22.3.4  Primitives 

Primitives are used in two cases –coarsening of primitives and primitive graphs, as described in 

Appendix 10.10 . Both methods are initially applied in the coarsener controller (Figure 10.70) with 

calculated layout provided during application of Force Directed Placement. Figure 10.77 below 

provides an example of the methods usage in coarsening, utilising the isPrimitive function to identify 

if a graph, or coarsened graph, has a known structure which can be given a calculated layout using the 

Vertex Placement Scheme (Section 10.22.3.4.2  ). In addition, the hasLeaves function is used to 

identify and coarsen a graph featuring leaf vertices which can also be given a calculated layout from 

the Vertex Placement Scheme. Specifics of the two methods are provided in the subsections below.  
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Figure 10.77 Incorporation of primitive processing into the coarsening example provided in Figure 10.70 

10.22.3.4.1   Pattern Identification and Coarsening 

Each primitive has some known pattern exhibited by the vertices, the existence of which can be 

confirmed by analysing the connectivity of vertices within the graph. Implementation uses the criteria 

to first identify whether a graph exhibits any primitive, after which, the effects to coarsening are applied. 

Table 10.20 provides a description of the patterns and example pseudo code of their application as 

identification for general connected graphs. The primitives are split into those which may apply to 

vertices within a graph (coarsening) and those classified as primitive graphs (graph). 

 

Primitive Pattern Pseudo code 

Leaf  

(coarsening) 

Any vertex with a degree of 1. 

end
;return)|if(|

begin)for(
truev

Vv
1=Γ

∈
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Chain  

(coarsening) 

Any leaf vertex connected to a 

vertex with a degree of 2. A chain 

can have more than two vertices, 

providing a leaf vertex and all 

connecting vertices having a  

degree of 2. 

end
return

)||,if(
)|if(|

begin)for(

true
uvu

v
Vv

2
1

=ΓΓ∈
=Γ

∈

 

Star  

(graph) 

All vertices have a degree of 1, 

except one vertex with degree |V|-

1 

;return
end

;return)if(
;:

)|if(|
begin)for(
;:

true

falsecentre
centrecentre

v
Vv

centre

1
1

1
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>
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Ring 

(graph) 

Each vertex in the graph has a 

degree of 2 

true

falsev
falsev

Vv

return
end
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Chain  

(graph) 

A graph will exhibit two leaf 

vertices (each with degree of 1) 

with all other vertices exhibiting a 

degree of 2 

;return)if(
end

;return)if(
;:

)|if(|
;return)|if(|

)for(
;:
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v
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Table 10.20 Methods for identifying primitives through pattern recognition 

 

Primitive graphs end the coarsening scheme and therefore require no additional coarsening 

methodologies. However, the primitive coarsening patterns (leaf and chains of vertices) require 

additional coarsening methods. A general coarsening method for both primitives is described in Figure 

10.78 due to shared qualities (leaf vertices).  
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The coarsening method identifies leaf vertices within a graph, then determines if they are part of a chain 

of vertices. If a chain is identified, a recursive function, trail, is used to find the end of the chain - a 

vertex with degree greater than 2 which connects the chain to the body of a graph. For each, the vertices 

which make up the primitive are coarsened to form vertices of a simplified graph. All non-primitive 

vertices are matched with themselves and preserved with connecting edges in the new coarse graph. 

Coarsening then continues as described Figure 10.71 and Figure 10.70. 
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Figure 10.78 Method for pattern coarsening of leaf vertices and chains (primitives) 
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10.22.3.4.2   Vertex Placement Scheme 

The vertex placement scheme is designed to provide primitive vertices with calculated positions. The 

scheme is a collection of methods which can be called upon to provide a layout for the primitive shapes 

described in Table 10.20. Similarly, Table 10.21 provides a list of the patterns used to generate the 

positions and example pseudo code used to calculate layouts for general connected graphs. The methods 

are described for two dimensional drawings only. 

Primitive Layout Pattern Pseudo code 

Leaf 

(coarsening) 

Each leaf is connected by an 

edge which can be orientated 

such that the anchor points 

towards the centre of mass and 

the leaf points outwards away 

from the centre of mass 
end

))/).((.:.
..:

)get(.:vertexcreate
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Chain 

(coarsening) 

Chains are split into leaf nodes, 

beginning from the anchor, using 

the leaf layout method 

recursively to provide layout for 

each vertex in the chain until the 

end leaf is given layout 

Star (graph) The central vertex is placed at 

the centre of the drawing area 

with all other vertices placed 

evenly around it a distance of k 

away 

end
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Ring (graph) Vertices are placed evenly 

around the centre of the drawing 

area, with spacing of k between 

each. Vertices must be in order 

to ensure connected vertices are 

next to each other (achieved by 

organising vertices based on 

connectivity) 

end
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Chain 

(graph) 

Vertices are placed in a long line, 

with the centre of the chain 

located in the centre of the 

drawing area (with even number 

of vertices on each side). 

end
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Table 10.21 Methods for layout calculation for primitive graphs and shapes 

 

The vertex placement scheme is designed for use within the multilevel scheme, prior to application of 

force directed placement. Primitive graphs are provided a layout as soon as the coarsening method ends. 

However, leaf vertices and chains of vertices are provided a layout during multilevel layout generation 

described in Table 10.21, with an example of usage shown in Figure 10.79, showing the use of 
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primitive layout as a method for providing initial layout, and use of primitive layout during multilevel 

layout generation.  

)display(
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Figure 10.79 Alteration of Multilevel Static Drawing algorithm to include Primitive processing 

 

10.22.4  Dynamic Graph Drawing 

The methods used in dynamic graph drawing are largely similar to those used in static drawing above 

using the same underlying spring embedder (same forces and algorithmic design), but including 

adaptations to optimise for visualisation of dynamic graphs. The methods are described below, firstly 

detailing an adaptation of the spring embedder described by Fruchterman and Reingold (1991), 

followed by a description of Multilevel Scheme usage for generating global layout, finishing with the 
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implementation of Dynamic Matching update methods for incorporating operations into the multilevel 

scheme for global layout and approximation. 

10.22.4.1  Dynamic Spring Embedder Adaptation 

The adaptation refers to the alteration of the cooling schedule of the modified spring embedder 

described by Fruchterman and Reingold (1991), optimising the visualisation of the drawing process. 

The approach replaces the cooling schedule with constants to better control the displacement resulting 

from individual forces, and provides much smoother vertex movement over the original (which features 

erratic and energetic vertex movement). The method is therefore similar to the method described by 

Fruchterman and Reingold (1991), however differences can be seen in the calculation of displacement 

as shown in Figure 10.80 below. The method stores the displacement of forces separately (ϴa and ϴr) 

using the constants ta and tr to alter the equilibrium of the forces when combined to generate vertex 

movement. 
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..:.

))][][())][][((:.
begin)for(

end
end

)()(][:][
..:

begin)for(

end
),()(][:][

..:
begin),for(

begin)for(

|][|create
|][|create

.:

.:
}{

Θ+=

⋅ΘΘ+⋅ΘΘ=Θ

∈

∆⋅∆∆+Θ=Θ

−=∆
Γ∈

∆⋅∆∆−Θ=Θ

−=∆
≠∈

∈

Θ

Θ
=

=

vxyzvxyzv
tvvtvvv

Vv

fvv
xyzvxyzu

vu

ufvv
xyzvxyzu

vuVu
Vv

V
V

t
t

aaarrr

aaa

rrr

r

a

r

a

60
90

tioninitialisa

 



361 

 

Figure 10.80 Dynamic Spring Embedder, an adaptation of the Fruchterman-Reingold (1991) static spring embedder for use 
in Dynamic graph drawing 

10.22.4.2  Multilevel Layout Generation 

In order to provide a multilevel layout, an approach similar to the static methodologies is provided. A 

layout is generated for each level of the multilevel scheme as before, however, force directed placement 

is applied once per level (as opposed to iteratively) with the displacement of vertices interpolated 

between layouts, resulting in global movement in addition to local vertex movement. The method, 

described below in Figure 10.81, reuses the spring embedder above using a similar approach to that 

described by Walshaw (2003), however, the force directed placement method is run for 1 iteration per 

level (unlike static drawing which runs FDP until a layout is generated for each level) with the entire 

multilevel scheme repeated to provide a layout. 
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Figure 10.81 Multilevel algorithm for layout generation and adjustment using the Dynamic Spring Embedder Adaptation 

 

The method can be applied to both layout generation and adjustment, however, operations can only be 

applied before or after each iteration of the method in order to prevent interference during calculation 
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of layout changes. Conversely, in order to provide layout generation during graph modification, 

operations provide “breaks”, periods of uninterrupted Force Directed Placement, to ensure layout 

generation is applied and allow the layout can react to the changes. 

10.22.4.2.1   Initial Positions 

Usage of the multilevel scheme for dynamic drawing requires vertices in the original graph to be 

provided with initial positions which coincide with positions of approximate vertices in the coarser 

graphs, in order to prevent conflicting movements as a result of local and global changes to layout. As 

such, a simple heuristic is provided in Figure 10.82, which uses a multilevel scheme to provide initial 

positions of vertices such that closely connected vertices are drawn near one another.  

The method provides an initial random layout to the coarsest graph, with the initial layout interpolated 

to child vertices, using an ideal separation factor described by Walshaw (2003) to place vertices near 

the parent vertex to avoid expensive untangling of the graph and avoiding conflicting movements during 

multilevel layout generation. In addition to separation factor, a scale value is provided to expand the 

layout such that early forces shrink the layout (avoiding expansion which may overpower layout 

generation in initial layouts, resulting in poorer vertex placement). 

end
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Figure 10.82 Method for calculating initial positions of vertices in a multilevel scheme, ensuring vertices are near their 
coarser representations in the multilevel scheme 
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10.22.4.3  Dynamic Spring Embedder with Multilevel Global Force 

Due to the need to preserve coordinates of coarser graphs for global layout, approximate positions used 

for Multilevel Global Force do not overwrite the positions of coarse vertices. As such, the difference 

requires force directed placement to use an additional coordinates system such that approximate 

position and actual position of vertices in the multilevel scheme are stored separately. Consequently, 

the algorithm in Figure 10.80 is altered such that repulsive forces are calculated as indicated in Figure 

10.83. 
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Figure 10.83 Alteration of repulsive force calculation in the Dynamic Spring Embedder for use of Multilevel Global Force 

 
In addition to the alteration to repulsive forces, the method for updating the multilevel scheme with 

approximate vertex positions must also be updated to use the secondary coordinate system as described 

below in Figure 10.84. The method initially uses the “real” positions of vertices in the original graph, 

approximating them for the secondary coordinate system in the parents, then continues to approximate 

the secondary coordinate system thereafter. 
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Figure 10.84 Alteration to post order update of approximate vertex positions 

10.22.4.4  Dynamic Matching 

Dynamic matching is the process of updating the multilevel and multilevel global force schemes with 

any operation performed on the original graph. The implementation is for four basic methods differing 

in the extent of the update, with discussion of each after description of the implemented operations 

available. 

10.22.4.4.1   Operations 

The operations are typical for graph drawing algorithms (Veldhuizen, 2007). For each, it is usual for an 

initial query to determine if the operation can be performed, leading to a worst case linear search of the 

sets (O(n)).However, use of pre-existing programming structures (specifically Hashing mechanisms) 

can largely reduce the complexity of each (O(1)). As a result, a worst case and average case complexity 

is described for each of the operations as a guide on usage. 

Operation Description Pseudo code 
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Modification Modify a vertex weight or position in layout, 

typically achieved through encapsulation of 

attributes (set methods of a vertex). 

Complexity: O(1) average, O(n) worst 

)set(.
)set(.

)if(

weightnewv
xyznewv

Vv∈
 

Add Vertex Create and insert a new vertex v into the vertex 

set (V). Initial position can be given randomly. 

In addition, an edge can also be used to 

immediately connect a vertex to the graph and 

provide position near the anchoring vertex. 

Complexity: O(1) average, O(n) worst 

)add(.
vertexcreate

)if(

vV
v

Vv∉
 

Add Edge Insert a new edge between two vertices, e(v,u). 

Complexity: O(1) average, O(n) worst 
)add(.
)add(.

)),(if(

vu
uv

Euve

Γ
Γ
∉

 

Remove 

Vertex 

Remove a vertex and any edges connecting the 

vertex to the graph. 

Complexity: O(Гv) average, O(n) worst 

)remove(.
end

)remove(.
begin)for(

)if(

vV

vu
vu

Vv

Γ
Γ∈

∈

 

Remove 

Edge 

Remove an edge between two vertices. 

Complexity: O(1) average, O(n) worst 

 

)),(remove(.
)remove(.
)remove(.

)),(if(

uveE
vu
uv

Euve

Γ
Γ
∈

 

 

Table 10.22 Implementation of graph modification operations for dynamic graphs 

 
10.22.4.4.2   Multilevel Update 

Multilevel updates extend the usage of the methods above to impact the graphs of the multilevel scheme 

in one of four ways below with information regarding their implementation; 

• Low (l) – updates are only applied to the original graph, G0, whereby changes do not alter the 

multilevel scheme in any significant way other than to join new vertices or remove them from 

the scheme for the purpose of MGF. Updates can be applied using the operations described in 

Table 10.22 and maintenance via the caretaker method described in Figure 10.85. 
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• Medium (m) – updates are applied to all graphs up to the middle of the multilevel scheme, 

thereafter which changes are joined to the mid-coarsest graph to ensure their inclusion in the 

multilevel scheme 

• High, Full (h) – updates are made to the full multilevel scheme up to the coarsest graph, 

however, the number of graphs in the multilevel scheme is preserved 

• Rematch – The entire multilevel scheme is rebuilt using the coarsening scheme as described 

in Figure 10.70, requiring no additional update methods for modifications (using those 

provided in Table 10.22) 

The update process is split into two main processes: firstly, the possible modifications of the graph are 

described in Table 10.23 together with alterations for the multilevel scheme; and secondly, 

maintenance of the multilevel scheme and the extent of the updates. The adaptation of modifications 

for use in multilevel updates is minor, with most requiring parents or children being removed such that 

the maintenance (caretaker) can be applied to them or alteration to the preserved edges within the 

multilevel scheme. Both caretaker and edge preservation methods are described in the Figures below, 

which details the changes to the modification operations. 

The following methods are used to implement updates to the multilevel scheme, using the graph 

modification methods above as a basis. 

Description of Operation for Multilevel Usage Pseudo code example 

Addition of a new vertex v means an unmatched 

vertex in V, providing no parent. Ensuring the 

parent is null will ensure the caretaker will find 

or generate a parent. 

 

In addition a new vertex connected to a vertex u 

results in a new edge to be preserved in coarser 

graphs.  

 

addition),,ges(preserveEd
;:.

}{

),addVertex(

uv
nullparentv

uv

=
additional

 

Addition of an edge will result in either a new 

matching, arranged by the caretaker, or will 

require preservation of the edge in coarser graphs.  

addition),,ges(preserveEd
)|..|or..if(

}{

),addEdge(

uv
mchildparentuparentuparentv

uv

<≠
additional  
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Removal of a vertex is required from both the 

graph and its parent vertices children collection. 

Further to this, edges between the vertex and 

adjacent vertices are removed in both the original 

graph and possibly in coarser graphs. 

end
removal),,ges(preserveEd

begin)for(
)remove(..

.:
}{

)ex(removeVert

uv
vu

vchildrent
parentvt

Vv

Γ∈

=

∈

additional

 

Removal of an edge will result in one of two 

things;  

 

if the vertices are matched with one another, the 

matching is undone and the parent vertex 

removed from the coarse graph 

 

if the vertices are unmatched, the removal of the 

preserved edge from coarser graphs 
removal),,ges(preserveEd

).remove(.
:.
:.

)..if(
}{

),(removeEdge

uv
else

parentvG
nullparentu
nullparentv

parentuparentv

uv

i 1

additional

+

=
=

=
 

 

Table 10.23 Adaptation of graph modification operations for use as multilevel updates 

The caretaker is a process which maintains the integrity of the multilevel scheme after modification 

operations have been performed. Such tasks included joining changes to the multilevel scheme by 

ensuring all vertices have a parent within the mapping tree, removing any ghost vertices and identifying 

new matches. The process is straightforward and is essentially an update version of the coarsen method 

in Figure 10.71 – matching unmatched vertices and preserving edges between graphs. The method is 

described in Figure 10.85 and is implemented as a collection of patterns, such that if a pattern is 

identified, some known behaviour can be incorporated for the current level. Due to the method’s focus 

on an individual level in the multilevel scheme, updates are designed to provide a means of continuing 

alteration on the next level (for example, a vertex unmatched can be provided with a new parent vertex 

which can be matched on the next coarse level when the caretaker is run again). In addition, the caretaker 

is responsible for incorporating the level limit associated with the four multilevel update methods. 
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Figure 10.85 Caretaker method used to maintain the multilevel scheme after operations have been performed 

 

The caretaker method is split into the following processes to check if any new matches can be made 

(checkMatches), whether any vertices require parents (checkParents) and whether any ghost vertices 

exist (checkGhostVertices). The primary aim of the methods is to retain accuracy of the approximation 

by including or removing vertices and edges where required. After checking the multilevel scheme, if 

the limit is reached, any vertices which remain disconnected from the multilevel scheme are included 

using the join function, described in Figure 10.90 which forces a connection with any adjacent vertex, 

regardless of matching. 
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Figure 10.86 Caretaker sub process - check whether any matches are available for any unmatched vertex 
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Figure 10.87 Caretaker sub process - check if a vertex has been provided with a parent, if not, check any adjacent vertices 
for a parent with only one child, or create a new vertex in the next coarsest graph to act as a parent 
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Figure 10.88 Caretaker sub process - identify any vertices in the coarse graphs which no longer represent vertices in the 
original, and remove them 

 

In addition to the caretaker, a method is used to maintain or remove the preservation of edges through 

the multilevel scheme. Unlike the caretaker however, the process requires analysis of vertex 

neighbourhoods and therefore should only be run when required, on only the vertices involved, in order 

to keep required running time reduced. The process ensures edges are incorporated into the multilevel 

scheme, where required, or are removed if outdated (after vertex or edge removal for example). 
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Figure 10.89 PreserveEdges function used to check the preservation or the removal of edges throughout the multilevel 
scheme 
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Figure 10.90 Join method for use with multilevel update methods, ensuring graph modifications are joined to the existing 
multilevel scheme 

10.22.5  Summary 

Implementation of the new algorithmic approaches into methods for experimentation and results 

collection is provided, with a description of each and inclusion of pseudo code examples. Overall, the 

following methods have been implemented: 

• Data Structures and Input/Output method 

• Multilevel Global Force (MGF) 

o Generation of Multilevel Scheme including Coarsening methods 

o Use of a Coarsening Limit 

o Use of Primitives, including identification and Vertex Placement Scheme 

o PostOrder update method to update approximation of vertex positions 

o Spring Embedder example using MGF 

o Use of an Approximation limit for comparison to Distance limit for repulsive forces 

• Dynamic Graph Drawing Methods 

o Dynamic Spring Embedder Adaptation 

o Incorporation of Multilevel Layout Generation 

o Use of MGF alone and in combination with Multilevel Layout Generation 

o Operations 

o Matching Update Methods for Dynamic Matching in the Multilevel Scheme 

10.23  Multilevel Aesthetics: Detailed Results 

10.23.1  Comparison of G0, and GN and partition layout quality 

10.23.1.1  Layouts for the Modified Spring Embedder without Multilevel Refinement 

 

edge 
crossings 
in G0 

G0 
vertices 

edge 
crossings 

GN 
vertices 

vertices 
per 
partition 
in GN 

edges 
per 
partition 
in GN 

average 
edge 
crossings 
per 
partition 

maximum 
edge 
crossings 
in a 
partition 

minimum 
edge 
crossings 
in a 
partition 

3025 10229.0 3025 123 40 76 149 41.7 152.0 0.0 
3025 12202.0 3025 94 40 76 149 46.6 173.0 0.0 
3025 11304.0 3025 161 40 76 149 42.1 166.0 0.0 
3025 13394.0 3025 208 43 70 138 35.3 151.0 0.0 
3025 12789.0 3025 121 39 78 152 51.7 200.0 0.0 
3025 11983.6 3025 141 40 75 147 43.5 168.4 0.0 
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data 96119.0 2851 261 32 89 472 892.3 2880.0 0.0 
data 102510.0 2851 315 31 92 487 970.2 2715.0 0.0 
data 108293.0 2851 173 33 86 457 1078.9 2665.0 0.0 
data 134667.0 2851 210 31 92 487 1164.6 2680.0 0.0 
data 124954.0 2851 145 34 84 444 1009.4 2826.0 0.0 
data 113308.6 2851 221 32 89 469 1023.1 2753.2 0.0 
add32 30643.0 4960 194 92 54 103 85.7 365.0 0.0 
add32 24605.0 4960 54 57 87 166 173.3 619.0 0.0 
add32 27564.0 4960 99 64 78 148 158.5 561.0 0.0 
add32 33034.0 4960 183 90 55 105 100.3 525.0 0.0 
add32 26692.0 4960 101 66 75 143 130.9 729.0 0.0 
add32 28507.6 4960 126 74 70 133 129.7 559.8 0.0 
4elt 316400.0 15606 1335 108 145 425 278.1 1096.0 0.0 
4elt 348508.0 15606 852 111 141 413 326.4 1030.0 0.0 
4elt 280914.0 15606 863 111 141 413 321.0 971.0 0.0 
4elt 259768.0 15606 851 101 155 454 307.8 1074.0 0.0 
4elt 315810.0 15606 941 106 147 433 375.6 1335.0 0.0 
4elt 304280.0 15606 968 107 145 428 321.8 1101.2 0.0 
sierpinski10 633262.0 88575 1100 245 362 723 485.0 1272.0 0.0 
sierpinski10 639251.0 88575 867 242 366 732 483.0 1884.0 0.0 
sierpinski10 830746.0 88575 1072 243 365 729 547.2 1353.0 0.0 
sierpinski10 730379.0 88575 1032 243 365 729 487.7 1431.0 0.0 
sierpinski10 624948.0 88575 1097 245 362 723 460.8 1475.0 0.0 
sierpinski10 691717.2 88575 1034 244 364 727 492.8 1483.0 0.0 

10.23.1.2  Layouts for Modified Spring Embedder with Multilevel Refinement 

 

edge 
crossings 
in G0 

G0 
vertices 

edge 
crossings 

GN 
vertices 

vertices 
per 
partition 
in GN 

edges 
per 
partition 
in GN 

average 
edge 
crossings 
per 
partition 

maximum 
edge 
crossings 
in a 
partition 

minimum 
edge 
crossings 
in a 
partition 

3025 0.0 3025 0 41 74 145 0.0 0.0 0.0 
3025 0.0 3025 0 40 76 149 0.0 0.0 0.0 
3025 2114.0 3025 48 41 74 145 8.6 107.0 0.0 
3025 2053.0 3025 28 41 74 145 7.7 58.0 0.0 
3025 0.0 3025 0 40 76 149 0.0 0.0 0.0 
3025 833.4 3025 15 41 75 146 3.3 33.0 0.0 
data 40253.0 2851 135 31 92 487 731.8 2594.0 0.0 
data 39242.0 2851 61 32 89 472 678.2 1403.0 0.0 
data 34328.0 2851 310 59 48 256 273.9 935.0 0.0 
data 35035.0 2851 108 34 84 444 608.4 1619.0 0.0 
data 46304.0 2851 63 32 89 472 800.8 2568.0 0.0 
data 39032.4 2851 135 38 80 426 618.6 1823.8 0.0 
add32 12761.0 4960 37 55 90 172 131.5 444.0 0.0 
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add32 12059.0 4960 42 59 84 160 124.4 408.0 0.0 
add32 11547.0 4960 40 96 52 99 72.7 408.0 0.0 
add32 10947.0 4960 17 58 86 163 129.5 390.0 0.0 
add32 13013.0 4960 38 66 75 143 116.2 433.0 0.0 
add32 12065.4 4960 35 67 77 147 114.9 416.6 0.0 
4elt 18130.0 15606 75 108 145 425 32.7 346.0 0.0 
4elt 18036.0 15606 116 110 142 417 30.1 361.0 0.0 
4elt 20284.0 15606 108 111 141 413 41.5 591.0 0.0 
4elt 22003.0 15606 162 111 141 413 32.7 472.0 0.0 
4elt 31274.0 15606 169 109 143 421 36.1 523.0 0.0 
4elt 21945.4 15606 126 110 142 418 34.6 458.6 0.0 
sierpinski10 19246.0 88575 3 236 375 751 73.7 246.0 0.0 
sierpinski10 18439.0 88575 0 248 357 714 65.2 202.0 0.0 
sierpinski10 18591.0 88575 9 248 357 714 65.5 228.0 0.0 
sierpinski10 19311.0 88575 20 245 362 723 68.6 210.0 0.0 
sierpinski10 19759.0 88575 2 248 357 714 72.9 275.0 0.0 
sierpinski10 19069.2 88575 7 245 362 723 69.2 232.2 0.0 

 

10.24  Dynamic Spring Embedder: Development of Layouts 

10.24.1  Layout Generation 

 

Dense small for 10, 50, 100, 200 and 300 frames 

 

Dense Medium 
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Sparse small for 10, 50, 100, 200 and 300 frames 

 

Sparse Medium 

 

Sparse Large 

 

Regular small for 10, 50, 100, 200 and 300 frames 
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Regular Medium 

 

Regular Large 

10.24.2  Layout Modification 

10.24.2.1  Growth 

 

Sparse small showing changes to layout at frames 50, 100, 180, 250, and 300. 

 

Regular small showing changes to layout at frames 50, 100, 180, 250, and 300. 
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Dense small showing changes to layout at frames 50, 100, 180, 250, and 300. 

 

10.24.2.2  Shrink 

 

Sparse small showing changes to layout at frames 50, 100, 180, 250, and 300. 

 

Regular small showing changes to layout at frames 50, 100, 180, 250, and 300. 

 

 

Dense small showing changes to layout at frames 50, 100, 180, 250, and 300. 

 

 



377 

 

10.25  Comparison of Dynamic Spring Embedders  

• FR – Standard Fruchterman and Reingold Modified Spring Embedder 

• SE- Eades Spring Embedder 

• FRDC-cool – Dynamic Spring Embedder using a cooling schedule like that used by FR 

• FRDC-nocool – Dynamic Spring Embedder using no cooling schedule, instead using constants closer resembling SE  

• FRDC-YT – Dynamic Spring Embedder using cooling values as suggested in correspondence with Darko (Appendix 10.3 ) 

 runtime 

 dense regular sparse 
FR 3702.4 2554.2 1668 
SE 78137.4 3981 2197.9 
FRDC-cool 3634.7 1688.2 1667 
FRDC-nocool 3492.8 1567.9 1533.6 
FRDC-YT 3589.9 1685 1674.3 

    
    
 edge crossings 

 dense regular sparse 
FR 4816331 15929.4 3388.2 
SE 3892754 244.4 49.1 
FRDC-cool 5581766 26402.5 7030.7 
FRDC-nocool 4613519 45.7 3.4 
FRDC-YT 5621761 26497.3 7390.7 
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 edge range / average edge 

 dense regular sparse 
FR 3.10969 3.06804 3.06245 
SE - - - 
FRDC-cool 2.49206 2.23015 2.17592 
FRDC-nocool 3.79919 1.54535 5.63744 
FRDC-YT 2.43953 2.20350 2.17534 

 

Graph Stability: 
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10.26  Comparison of Change in Edge Crossings for Dynamic Spring Embedder and Multilevel Dynamic Spring Embedder 

FRD: Dynamic Spring Embedder, MLFRD: Multilevel Dynamic Spring Embedder 
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regular-large sparse-large dense-medium average 
FRD MLFRD FRD MLFRD FRD MLFRD FRD MLFRD 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
5.94 3.75 2.74 3.27 99.81 98.49 36.16 35.17 
2.15 1.70 1.16 1.30 96.59 96.54 33.30 33.18 
1.19 1.11 0.66 0.79 95.09 94.75 32.31 32.22 
0.84 0.84 0.44 0.59 94.17 93.36 31.81 31.59 
0.65 0.69 0.32 0.47 93.40 92.20 31.46 31.12 
0.54 0.59 0.24 0.39 92.97 91.21 31.25 30.73 
0.47 0.52 0.20 0.34 92.57 90.49 31.08 30.45 
0.42 0.47 0.16 0.30 92.29 89.70 30.96 30.16 
0.38 0.44 0.14 0.27 92.03 89.04 30.85 29.92 
0.35 0.40 0.12 0.25 91.90 88.46 30.79 29.70 
0.33 0.37 0.10 0.24 91.61 88.41 30.68 29.67 
0.31 0.35 0.10 0.22 91.51 87.68 30.64 29.42 
0.29 0.33 0.08 0.21 91.37 87.50 30.58 29.35 
0.27 0.31 0.08 0.20 91.30 87.32 30.55 29.27 
0.26 0.29 0.07 0.19 91.10 86.89 30.48 29.12 
0.25 0.28 0.06 0.18 91.03 86.63 30.45 29.03 
0.24 0.27 0.06 0.17 90.89 86.49 30.39 28.97 
0.23 0.25 0.05 0.16 90.91 86.32 30.40 28.91 
0.22 0.24 0.05 0.15 90.95 85.89 30.41 28.76 
0.21 0.23 0.05 0.15 90.83 85.88 30.36 28.75 
0.20 0.22 0.05 0.14 90.78 85.65 30.34 28.67 
0.19 0.21 0.04 0.14 90.75 85.61 30.33 28.65 
0.19 0.20 0.04 0.13 90.56 85.37 30.26 28.57 
0.18 0.19 0.04 0.12 90.62 85.24 30.28 28.52 
0.18 0.19 0.04 0.12 90.51 85.01 30.24 28.44 
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0.17 0.18 0.04 0.12 90.60 84.91 30.27 28.41 
0.17 0.18 0.04 0.12 90.54 84.73 30.25 28.34 
0.16 0.18 0.04 0.11 90.34 84.86 30.18 28.38 
0.16 0.17 0.03 0.11 90.23 84.62 30.14 28.30 
0.16 0.17 0.03 0.10 90.18 84.45 30.12 28.24 

 

10.27  Multilevel Dynamic Spring Embedder: Development of Layouts 
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Dense Small 

 

Dense Medium 

 

Regular Small 
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Regular Medium 

 

Regular Large 
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Sparse Small 

 

Sparse Medium 
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Sparse Large 
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