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SUMMARY

A class of doubly stochastic Poisson processes, which is termed a Markov-modulated Poisson process, is
studied. The maximum likelihood method is used to make inferences about the Markov-modulated Poisson
process. Expressions are derived for the likelihood function and for second-order properties of both counts
and intervals. A simple two-state model is applied to a set of exposure data and to simulated data. Bivariate
generalization of this process is also studied.
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1. INTRODUCTION

Doubly stochastic Poisson processes or Cox processes, in which the rate of occurrent,e 18
determined by a stationary non-negative stochastic process, were mtroduced by Cox' and
have been studied by many authors, including Bartlett,’ ngman Grandell,! Rudemo® and
Snyder and Miller.® Statistical analysis of such processes is usually performed in a rather ad hoc
manner by calculation of their second-order properties, because the likelihood function is not
usually available in a useful form. The purpose of this paper is to describe the properties of aclass
of doubly stochastic Poisson processes, the so-called Markov-modulated Poisson processes
(MMPPs), for which the likelihood can be calculated.

The MMPP is a Cox process in which the arrival rate is modulated or directed by an underlying
continuous-time irreducible Markov process {X(¢)} on a finite state space. In most applications,
only the point process {N(¢)} of occurrences is observed and the underlying Markov process

{X(1)} is unobserved. In modelling rainfall or the occurrence of storms, {X(7)} can be
mterpreted as an env1r0nmemal or climatological process.

Smith and Karr’ used a special MMPP to model summer season ramfall occurrences, Neuts®
discussed the application of this process to queueing models. Meier-Hellstern’ developed an iterative
statistical procedure for fitting MMPPs having two dmval rates. Qur aim is to propose a statistical
analysis based on maximum likelihood estimation'® and second-order properties of the process.

Section 2 describes the process, parameter estimation, and the second-order properties of both
the intervals and counts. Section 3 extends the ideas to bivariate MMPPs. A simulation study in
Section 4 aims to find how much data are needed before the asymptotic properties of likelihood
quantities apply. In Section 5 both univariate and bivariate models are applied to two series of
notional exposures to time-integrated air concentration of radionuclides.
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2. MARKOV-MODULATED POISSON PROCESS

2.1. Likelihood approach

Suppose {N()} is an MMPP whose underlying process {X (1)} is a stationary irreducible
Markov chain with k states, labelled 1.2,....k, and infinitesimal generator O« . We shall
assume {X(¢)} is initially in equilibrium, with equilibrium probabilities = = (), w9y, ).
Conditionally on {X ()}, the point process {N(z)} is a Poisson process with rate Ax(r)» Where
0<Xh <oo,i=1,2,... k and at least one of the A; is positive. That is, whenever the Markov
chain {X(¢)} is in state i, arrivals occur according to a Poisson process of rate A. Let
Ly =diag(A,..., ;). The parameters in L and Q are to be estimated from the observations
of the process {N(r)}, as {X(¢)} is unobserved.

To obtain an expression for the likelihood function, we first define the conditional probabilities™ '’

vij(t) = P{X(1) =j,N(1) = 01X (0) = i, N(0) =0}, ij=1,... k.

*2

Let ¥(¢) be the matrix function with entries 1;;(f). Then a forward argument shows that

W) =expf(Q - Ly = ) EE

n=0

(1)

where (0 — L)? =1.

Suppose N(z) is observed on [0,T], during which period points occur at times
fp <t <--- <. Let m . be the initial probability vector of X(¢). Then the likelihood for (0]
and L given ¢,,...,1, is'"

f(tlv‘- .,f"‘Q,LJ = "'TIiH{\I‘(!i e If— [)L}} lI‘(T _’!n)l' (2)
i=1

where 1is a k x 1 vector of ones and f, = 0. If the eigenvalues of the matrix QO — L are distinct
then Q — L can be expressed as ADA™", where D is the diagonal matrix of eigenvalues of Q — L
and A is a matrix whose columns are the eigenvectors of Q — L. Therefore ¥(¢) can be written as
Aexp{Dt} 47", and (2) reduces to

n
flty, - 6|0, L) = W{H[A exp {D(t; — t;_ 1)}A—‘L]}A exp {D(T —1,)}47'1, (3)
i=1
and computationally this is a useful expression.

In general, numerical maximization of the likelihood (3) requires a search in k* dimensions.
The practical difficulties arising in maximization as well as in the spectral analysis are greatly
reduced if for values of k > 2 we confine the underlying Markov process to possess transitions
only between adjacent states, which is a sensible assumption for many applications.

2.2. Stationarity

Associated with a stationary point process is the stationary process of intervals between
successive points. The subtle connection between stationarity of point processes and interval
stationarity is discussed by Daley and Vere-Jones (reference 11, Chapter 12). The distribution of
this process of intervals is the Palm distribution, sometimes referred to as arbitrary event initial
conditions. The stationary distribution of the point process corresponds to asynchronous
sampling or arbitrary time initial conditions. The arbitrary time initial condition for the point
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process is simply the stationary distribution = of {X(#)}. To see the arbitrary event initial
conditions, we proceed as follows.

Consider the epochs of successive arrivals in our MMPP and assume that ¢ = 0 is an arrival
epoch. Let Z;,i=1,...,n be inter-event times. Define the transition probability distribution
matrix F,, () of the times between events of the process

F(z) = L exp{(Q — L)t}Ldt, z=0,

where F(-) has (,j) element
E-j(Z):P{X(I,,) =jazn“‘~:-ziX(!n-l)=£}’ ?‘!21,

and X(¢) is the state of the underlying Markov chain at ¢. Then it may be verified that®
Foo) = | ew{(@ - DgLdi=(L-0)'L @)
0

is a stochastic matrix with stationary probability vector 7* = wL{rL1)"'. The invertibility of
L — Q follows from the irreducibility of {X(7)} and Perron—Frobenius theory for ML-matrices
(Seneta,'? p. 40). It is clear from the definition of F( - ) that P = F(oc) is the transition probability
matrix of the embedded Markov chain at arrivals. When all \; are positive, P is also irreducible.

Now since {X()} is stationary and irreducible and the intensity of the process is finite, it
follows that, provided Z}‘sl mi(g; + A;) < oo, the Palm probability measure for { X(#)} coincides
with the probability measure for {X(¢)} corresponding to the initial distribution (7} ), where
= mN;/ Zfz; mX and ¢ = —q; = iz Giis (Rudemo," Section 6). That is, the arbitrary
event initial distribution is the stationary distribution of the embedded Markov chain at arrivals.

2.3. Second-order properties of intervals

When ¢t = 0 is an arrival epoch and the process is interval stationary, it follows from (2) that the
joint density of the inter-event times Z,,Z,,...,Z, is

n

[ zlQ L) =7 [H{W(;—)L}} L (5)

i=1
Hence the marginal density and the expectation of the inter-event times Z; are

f(zQ, L) = w"[exp {(Q — L)z} L1,

o0
E(Z)=n" J zexp{(Q - L)z;}L1dz; =" (L — 0)7%Ll1. (6)
0
Note that since 7" is the stationary distribution of Pand P = (L — Q) 'L is a stochastic matrix,
7 (L — Q}'[ =x" and (L - Q) 'L1 = 1. Following the above argument, we can easily show
that

Thus
cov(Zy,Zpo1) =7 (L- Q) {P -1 HL- Q)L (7)

Since limy, . P! = 1" it is clear that cov(Z;,Z;.,) = C; — 0 as h — oo. It may also be
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possible to derive equation (7) using the Laplace—Stieltjes transform of the transition probability
distribution matrix (- ).° When Pis diagonalizable it follows from the spectral representation of
a stochastic matrix that P can be written as

P'=3iBi+---+ BB h=012,...,

where the eigenvalues of P, 3,,. .., Ok, are such that 3 = 1 and |8] < |, 2<i<kand B, = I*
(see, for example, Cinlar,* p. 368). Then the spectral density function of the inter-event times of
the process can be written as

1 - oo — 25, '
flw) =5 [l *HﬂL ~er (Z (fﬁioswﬁ??) B")(L ] Q]All} ] N

i=2

for -m<w<m, where V = Cj is the variance of the inter-event times.

2.4. Second-order properties of counts

The second-order properties of the counting process {N(r)} are best described via those of the
underlying Markov process { X ()} that directs its rate of occurrence. The transition probability
matrix of X (¢) is given by P(z) = exp(Qt). Since the rate of occurrence is directed by {X (1)}, we
can interpret the rate process {A(f)} as a continuous-time Markov chain with states Ax(n-
provided that A is a one-to-one function. Hence {A(¢)} is a stationary irreducible continuous-
time Markov chain with state space § = {A;, Ay,..., A}, transition probability matrix P(t), and
stationary probability distribution .

We derive the counting properties of the rate process {A(z)} first. Suppose the system is in
equilibrium at ¢ = 0. Then for >0,

%
E{A(0)A(D)} =Y ME{A(1)|A(0) = A} P{A(0) = A}

1

=" A ) Py(t)\m = wLP(t)L1.

k
i=1  j=1

Now from stationarity and the equilibrium property it follows that the mean. variance and
autocovariance of {A(r)} are

A=E{A(0)}=nLl, o} =C(0)=nL{I-1a}L1, C(t) ==L{P(t) - 17} L1,

where [ is the k x k identity matrix. The counting process {N(z)} is also stationary with intensity
m(t) = A = m = wL1. The covariance density of a stationary doubly stochastic Poisson process
equals the autocovariance of its occurrence rate,” and so {N()} has covariance density

Y+(t) = C(t) = wL{P(t) — Ix}L1.
For a stationary point process the covariance density is given by (Cox and Lewis,"” p. 74)
Y+ (0) = m{my(t) — m} (9)

where m = m(t) is the overall intensity and m(t) is the conditional intensity of the process.
Therefore the conditional intensity of {N(r)} is

LP(1)L1
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which tends to 7L1 = m as P(t) — 1, using the stationarity of {A()}. This expression for the
conditional intensity function can be used to obtain various other properties of { N (¢)}. It follows
from equations (4.5.16) and (4.5.20) of Cox and Lewis!’ that the spectrum of counts and the
Laplace transform of the variance—time curve for the MMPP are

I
g.lw) = ;{m + 7LP*(iw)L1 + 7LP*(—iw)L1}, w20, (11)
and
. 7Ll 2xLP*(s)L1 2rL1wL1
Vi(s) = & .5‘2( ) = = (12)

where P*(s) is the Laplace transform of the transition probability matrix P(¢). The variance—time
curve V(1) is obtained by inversion of (12). The index of dispersion is I(¢) = ¥ (¢)/mt.

3. BIVARIATE MARKOV-MODULATED POISSON PROCESS

Though for clarity we describe only the bivariate case, the ideas of Section 2 are easily extended to
the case where several MMPPs are observed. A bivariate Markov-modulated Poisson process
comprises two MMPPs {N(”(z)}‘ {N("(t)} that are conditionally mutually independent Poisson
processes given the underlying process.

3.1. Likelihood approach

Let {N(¢)} be a stationary orderly bivariatt MMPP of which the marginal process
{N(”(r)},{N(z)(r)} are univariate MMPPs, assumed to be independent given {X(t)}. Let
Oix . be the infinitesimal generator of X(f) and let the rate of occurrences of the marginal
processes be given by matrices L; = diag (X,... A¢) and L, = diag (\j, ..., A¢). Suppose that n
events are observed in an interval [0, T'] at times #; < --- < t, and S}, ..., S, is a binary sequence
of the types of events of the bivariate process. Now we define the conditional probabilities, as for
the univariate case,

u(t) = P{X(t) = j,N(1) =0,/ = 1,2|X(0) = i, N)(0) =0,/ = 1,2}.
Let ®(¢) be the k x k matrix with entries ¢;;(¢). Then it is straightforward to see that

®(r) = exp[{Q — (Li + Lo)}1].

Hence the likelihood for Q, L, and L, given {t;, S;}, i = 1,...,n can be written as
f({l """ rn;Sls"'sSnlglLlsL?.):Tr H{@{ti—":(—I)L(I)}]@(T*rn)l: (13)
i=1

where 7 and 1 are defined in Section 2, o = 0, and L(+ )« is defined by
2
L) =) §sLj
j=1

§ is a Dirac delta function. That is, L(i) is the matrix of rates of occurrence of the type S; events.
Expression (13) can be maximized numerically.
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3.2. Second-order properties

The superposed process, points of N (1) and N m(z) regardless of their types, is a MMPP with
mean arrival rate

My =my + nm, = ?TLI]. +TI'L21 =T1'L51,

where m; and m, are the mean rates of occurrences of type I and type II events respectively, and
Ly = Ly + L, is the matrix of rates of occurrence of the superposed process. The second-order
properties of this process do not need to be described here, as it is a univariate MMPP. For the
bivariate process, the cross-covariance densities can be defined as (Cox and Isham,' p. 120)

%) = lim (6,6) " cov {ND (1,1 +8,), N (=6,,0)}, 0.

lim
51,61 —0
Then it can be shown, by conditioning on the underlying process, that
W) = 7L{P(t) - I}, 0j=1,2, (14)

with the usual extension when ¢ = 0 for i = j, where P(¢) is the transition probability matrix of
{X(7)}. Now it is fairly straightforward to show, using equation (5.6) of Cox and Isham,'® that
the cross-intensity function of the bivariate MMPP is given by

D= fim &1 (s (46 Gr el R | | oo
h () 51.1;2111062 Pr{NY(t,t+6,) > O|N'"(=6,,0) > 0} = iLj=1,2 (15)

which converges to m; as 1 — oco. The cross-spectrum of counts of the bivariate process is given by

l > —iwt_ (2
A w) = J ey (1) dr

I

= %JOM{WLI{P(!) = In}Ly1 + wL{P(t) — 17} L1} coswedt

l o0
& :;J {rLy{P(t) = 1} Ly1 — L, {P(t) — Im} Ly1} sin weds
=~ 0

= c(w) + ig(w), (16)

since 7}2}( —~t) = 75”(:). The real and imaginary components of this complex-valued function
indicate the relative phases of the fluctuations in the process of events of type [ and type II. If the
underlying process {X(¢)} is reversible then g?)(wj is real. The covariance-time function of the
bivariatt MMPP may then be worked out from (3.18) of Cox and Lewis,'” as

v = K(I = O{FLA{P(Y) - 1w} Lol + 7Ly {P(v) ~ 17} L1} do. (17)

4. NON-REGULAR LIKELIHOOD RATIO STATISTICS

There are model comparisons for MMPPs for which the usual asymptotic properties of
likelihood ratio statistics fail to hold. One form of non-regularity arises when one or more
components of the true parameter lie on the boundary of the parameter space. For example, a
renewal Cox process with Markovian intensity (RCM),’ arises from an MMPP with k = 2 when
Ap = 0. If we wish to test the hypothesis A; = 0 the usual asymptotic distribution of the likelihood
ratio statistic cannot be applied, as one component of the true parameter lies on a boundary.
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Table I. Percentage points of the likelihood ratio statistics for testing \; = 0 for MMPP(2),and A; = \; =0
for the MMPP(3) based on 1000 simulations. Expected number of events for M, M, and M; are 100, 200

and 500
Hy: Ay = 0 for MMPP(2) Hy: A\ = )3 =0 for MMPP(3)
Simulated values Simulated values

Percentage , N , ) B
px 100% M, M, My sxatixi M, M, My ixo+ixi+ixa

70 0-18 026 0-44 0-275 0-28 0-79 1-08 1-06

75 028  0-37 0-55 0-455 0-45 1-07 1-35 1-35

80 0-d6  0-55 0-76 0-708 0-65 1-36 1-79 1-73

85 0-78 078 1-04 1074 1-16 1-81 231 2:23

90 1-110  1:22 1-45 1-642 1-78 251 3-02 2-94

95 1-86 2:27 2:39 2-706 290 3-68 4:25 4-23

99 373 393 4-40 5412 567 5-76 7-58 7-28

Problems of this type have been studied by Moran,'® Self and Liang,'® Smith®® and others. Self
and Liang'® describe the theoretical asymptotic distributions of the likelihood ratio statistic for
such cases. Our aim in this section is to see by simulation how much data are needed before the
asymptotic results apply to MMPPs.

We first consider the case when one parameter is on the boundary. Suppose that we wish to test
the hypothesis Hy: A\; =0 for a two state MMPP, denoted MMPP(2). The results of Self and
Lianglg show that the appropriate asymptotic distribution of the likelihood ratio statistic, W, is
the mixture { x§ + 1 x{, where x3 is the distribution with mass one at zero and 1:1 are mixture
probabilities. We shall compare the simulated distribution of the likelihood ratio statistic with its
theoretical distribution.

One way of stimulating MMPP is to define an event to be either an arrival from N(¢) or a
transition of X(¢). Given that X(¢) is in state i, the next event is an arrival with probability
XA +¢;)7" and a transition to state j with probability qij( N + q;)”', where ¢; = >.i%iqy The
time to the next event is an exponential variate of parameter (\; + g;).

The process is simulated, for some predetermined parameter values, in three intervals in which
the average number of points are M, = 100, M, = 200 and M3 = 500. We present the results of
one such simulation using parameters (g, g, A, A;) = (0-10,0-20,0-0, 1-5). The log-likelihood
functions for the two models are maximized, giving W. Results based on 1000 simulations for
each of M|, M, and M are summarized in Table I, which shows the simulated percentage points
w, of W together with the corresponding theoretical values, where P{W < w,} =p. The
simulated values approach the theoretical ones as the average number of events increases.
Although the simulated w,’s for M5 at p =09 and 095 seem to be a bit away from their
asymptotic values, the simulated levels of significance at 1:642 and 2-706 are 91 per cent and 96
per cent, which is quite reasonable.

Suppose now that we observe a Markov-modulated Poisson process with & = 3, denoted
MMPP(3), in which the transitions are only possible between neighbouring states. Let g5, g1, g3
and g3, be the transition rates and A, A, and A; be the arrival rates, where g, # g3,. We call this
model 1. When A\, = A; = 0 the process reduces to another non-regular case with two parameters
on the boundary of the parameter space. In this case, following Self and Liang,'? the approximate
distribution of the likelihood ratio statistic W for testing A; = Ay = 0is $x§ + {xi + Lx3. Under
the null hypothesis the process has just five parameters (model 2). In order to compare the
significance points of W with the corresponding theoretical asymptotic values, we generate data
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from model 2. Table I gives percentage points w, of W based on 1000 simulations for M;, M, and
M;. The table shows that the percentage points are more accurate for M; than those for M, and
M. The simulated distributions of W for other parameter configurations show the same and are
in good agreement, for M, with the asymptotic theoretical distribution of W. This suggests that
the theoretical results of Self and Liang'® apply to MMPP data with at least about 500 events.

Another form of non-regularity arises when we want to test Hy: A\; = A, for a MMPP(2).
Under the null hypothesis the process is a homogeneous Poisson process and hence some
parameters become unidentifiable. The same problem emerges in testing Hy: A; = Ay = 0 for the
MMPP(3) described earlier. The asymptotic properties of the maximum likelihood estimators for
these particular problems are hard to deal with although the general approach given by Davies®" >
may be of use. For these and other situations Monte Carlo tests seem likely to be valuable tools.

5. DATA ANALYSIS

5.1. Data and models

In this section we apply the models described in Sections 2 and 3 to a set of artificial exposure data
for long-range atmospheric transport of radionucleides. The data were generated in the course of
using a computer model to examine possible long-range exposures to radioactivity due to
accidental releases. ™™ The computer model. described briefly by Davison and Smith.>
simulates the atmospheric transport dispersion and deposition of radionucleides at distances
1001000 km or so away from notional sources in Western Europe, based on ‘present weather’
observations. The data considered here are the times of releases leading to exposures to time-
integrated air concentrations of pollutant at receptors 100 and 300 km north of a notional source
at Ispra in northern Italy. Releases are deemed to occur every three hours throughout 1976. The
times of releases leading to exposures are available in 3 h units for a period of 8640 hours.

5.2. Univariate analysis

The times of exposures are believed to depend on the weather, windy weather being associated
with isolated exposures and calm weather leading to more clustered exposures. In ‘blocking
anticyclones’, such as can occur over the British Isles in the summer, for example, plumes will
move more slowly and hence tend to be wider than in the higher winds associated with the
easterly movement of Atlantic depressions. From Figure 1, which displays the cumulative plots
of two time series of notational exposures, it seems that the points occur mostly in small clusters.
In view of this, we initially interpret the events of exposures as an MMPP(2) whose underlying
process is a stationary Markov chain representing the background state of the environment,
ignoring seasonality, of which the data show no evidence. The parameters of this model are

- A
> —?} L={l /\J‘

0=

The rate process A(z) is a stationary continuous-time Markov chain with state space S = {\;, A}
and generator Q. The transition probability function P(r) = e?" is easily obtained using the

spectral representation of Q. The stationary distribution 7 of the rate process is

™= (q2,q1)(q1 +q2) .

We begin by fitting an MMPP(2) to the data for the first series, at 100 km, for which n = 452.
The first column of Table II gives the maximum likelihood estimates and their standard errors
when this model is fitted by applying routine AMOEBA of Press et al.*® to (3). Standard errors
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Figure 1. Empirical cumulative plots for the number of exposures to time-integrated air concentration of [131(p) at the
two receptors 100,300 km north of Ispra during 1976

are based on the observed information matrix, which was obtained by numerical differentiation.
The mean sojourn times of the rate process in state 1 and state 2 are 1/§, = 24-69and 1/4, = 878
with respective estimated rates A; = 0-005 and A, = 0-582. The standard errors suggest that
A; =0, in which case our model reduces to a special case which is simultaneously a renewal
process and a Cox process.’ This is the RCM model studied by Smith and Karr.” The maximum
likelihood estimates of the parameters of the RCM model and their standard errors, given in
Table II, are very close to those of the MMPP(2).

The null hypothesis Hy: A; = 0 throws one parameter on the boundary of the parameter space.

Table II. Maximum likelihood estimates and their standard errors in parentheses. The final row gives the
values of the log-likelihood /()

100 and 300 km
100 km 300 km Bivariate models
MMPP(2) RCM MMPP(2) RCM MMPP(2) RCM

q 0-041(0-007) 0-047(0-006) 0-030(0-004) 0-030(0-004) 0-038(0-003) 0-046(0-005)
g 0-114(0-017) 0-123(0-017) 0-117(0-014) 0-116(0-019) 0-114(0-016) 0-125(0-015)

A 0-005(0-003) - 0-001(0-002) - 0-006(0-004) -
A 0-582(0-035) 0-575(0-035) 0-575(0-043) 0-576(0-043) 0-593(0-032) 0-584(0-028)

A - - - - 0-001(0-001) -
A3 ~ - - - 0-447(0-031) 0-432(0-025)

1(8) —1029-11 —1030-14 —780-58 —780-76 —822-69 —831-24
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Table III. Estimated and theoretical values of the second moments of intervals

100 km 300 km

MMPP(2) RCM Empirical MMPP(2) RCM Empirical

E(Z) 6-41 632 6.36 8-46 8-55 8-59
V(Z) 239-75 235-83 226-72 499-05 533-63 569-37
cV 241 2-43 2-37 2:64 2:70 276

The appropriate asymptotic distribution for the likelihood ratio statistic is 1 %4 4 % x3," whose 95
per cent significance point is 2-7. The observed value of the likelihood ratio statistic W for testing
A1 = 0 is 2:06, which is significant at about the 7 per cent level. Moreover, when a three-state
model is fitted the log-likelihood increases only by 0-01, which suggests that a two-state model is
adequate.

The expectation of the times between events may be worked out. from (6), as

|
T 2B (g + M) (B - )

~ g3 {B g2+ 22— B) — P(ga + A — @)}
+(0® = B M@+ A — B) g2+ A — @) + g} (18)

E(Z)

(02210 (g2 + Xy — B) — B gy + 2y — @)}

where «, 3 are the roots of the quadratic equation
V= (g1 + G2+ A+ AU+ @i da + gady + Ay = 0.

When A, = 0 (18) simplifies considerably. Similarly £(Z*) and hence the variance V(Z) can be
found. The estimated mean, variance and coefficient of variation CV = V(Z)["?/E(Z) of the
times between events of the process, together with their theoretical counterparts for MMPP(2)
and RCM models, are given in Table III. It is clear that the process is over-dispersed relative to
the Poisson process, for which the coefficient of variation equals one. Finally, the expression for
the spectral density function of the times between events is given in (8). Although we do not show
them, the estimated and theoretical spectrum agree closely and depart only slightly from the
spectrum for a renewal process.

It follows from (10) that the intensity and the conditional intensity of our MMPP(2) are given
by

m =Ll = (g:2A1 + 102)/ (91 + q2), (19)

) q1g2(A; — /\3)33"14” +aqa)t _?
b7 | .,
T { (91 + @) (122 + 320 } (20)

respectively. The conditional intensity function is greater than the unconditional intensity m for
small 7 and decreases exponentially to m unless A; = ),, when my(t) = m, i.e. we have a Poisson
process. Figure 2 shows the theoretical and estimated conditional intensity functions (Cox and
Lewis,”” p. 121) which match very well. Smoothed estimates of m(r) are obtained using a Daniell
weight function. The confidence bands are pointwise simulation envelope based on 39 simula-
tions of the fitted process. Now from (20) or equivalently from (11) the spectral density function
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Figure 2. Estimated and theoretical conditional intensity functions for the times of exposures at 100 km north

of counts for an MMPP(2) can be shown to have the form

m 2q142(M = M)’ }
S lid a1 5 . w30 21
B { (g1 + g2)* + A @ ha + 42M1) “ &l

When A, = A, this reduces to the constant spectrum of counts of a Poisson process.
Finally, (12) and an inverse Laplace transform gives us the variance—time curve and the index
of dispersion of the process as

_ 2mgiq2( M = Xo)’ 1 (g1 +g2)t
V(it) = - 1 - ; 22
& m!+{(41 + @) (@1 +‘I2/\1)}{t (@1 +‘12)( : )} a
2g145(M — X))’ 1 (1 + a2t
I ==/ S ] = hi+92 ; 23
=L {(9‘1 +42)2(91/\2+42)\|)}{l (41 +‘12)‘( ) ) )

The spectrum of counts and the variance—time curve give a satisfactory fit for the data. The value
of I(t) suggests that the process is over-dispersed relative to the Poisson process. Properties of
RCM process can be obtained by setting A; = 0 in expressions (18) to (23).

Also given in Table II are the parameter estimates of MMPP(2) and RCM models, when fitted
to the exposure times at the receptor 300 km away from the source, for which n = 334. The
estimates suggest that the distance does not reduce either the arrival rate or the mean sojourn
times in state 2, but instead that it increases the mean sojourn times in state 1. The second
moment results of the times between events for this series are shown in Table III

5.3. Bivariate analysis

In order to describe the joint properties of the two exposure time series, here we consider a special
bivariate MMPP whose underlying process {X (1)} is an irreducible two-state continuous time
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Figure 3. Estimated and theoretical cross-intensity functions for exposure data sets

Markov chain with transition rates g;,g,. Let {N,(¢)} and {N,(2)} be the marginal processes of
the bivariate MMPP {N(r)} with respective rate matrices

Al AL
L| = /\ L:}_ = A‘ .
2 2

The expressions for the second-order functions: cross-covariance density for ¢ # 0, cross-
intensity function, covariance-time function and cross-spectrum of counts for this bivariate
MMPP, are (from equations (14) to (17))

) Q192(Xy — M) (A3 — Aj) e~ A e
7] (I) = 3
(g1 + 42)
KD () = @A+ 90) | 01920 = M)(S = Aj) et
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(g1 +¢2)° (91 + )
@\ _ M 2q192(A2 = A (A3 = X))
gl (f.u') R bl 5 .
27 | (g1 + 42)* + ) (@100 + 2y)

The transition probability function P(¢) and the stationary distribution 7 show explicitly that
{X(1)} satisfies the detailed balanced conditions and hence is reversible, which leads to a real
cross-spectrum.

This bivariate model is fitted to data on exposures at the receptors 100 and 300 km north of the
notional source at Ispra, Italy. The likelihood (13) is maximized to obtain estimates of 0, L, and
Ly, and the result, given in Table II, is consistent with the univariate case.

To assess goodness of fit we use the second-order functions as for the univariate case. The
estimated and the theoretical cross-intensity functions are shown in Figure 3. The confidence bands
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Figure 4. Estimated and theoretical conditional intensity functions for the pooled process of exposures

are simulation envelopes generated as the pointwise maximum and minimum cross-intensities for
19 simulations from the fitted process. The estimated function h (r) isin good agreement with its
theoretical counterpart. Figure 4 displays the conditional mtensnty A ( ) of the superposed
process, together with a p01ntw1se confidence band based on 19 simulations, which gives an even
better fit. Estimation of hz ( 1) is as proposed by Cox and Lewis (reference 17, Section 6.3).
Smoothed estimates with a Daniell weight function have been used in all cases. The normalized
cross-spectrum and the covariance-time functions give reasonably good fit for the data. The
second-order functions demonstrate the adequacy of fit of the model described here to the
bivariate point process of exposure times at the two receptors.

The null hypothesis Hy: A; = A] = 0 puts two parameters on the bounda.ry of the parameter
space. The test statistic, whose asymptotic null distribution is ; 141 5 xl i Xz, takes the value 17-1,
which is strong evidence of exposures in state 1. However, the likelihood ratio test statistic for
testing Hy: A, = 0 takes the value 16-7 and rejects the null hypothesis at 5 per cent significance
level whereas for testing Hy: A} = 0 it takes 0-2 which is barely significant. This leads us to the
conclusion that the exposures take place in both states at 100 km north of the source but only in
one state at the receptor 300 km away from the source. This is plausible as the frequency of
exposures drops with the distance.

One aspect of the data which is not addressed in our analysis is the discreteness, as the exposure
data are recorded in three-hour intervals. Perhaps a better approach is to model exposure times
as a binary time series generated by an unobserved point process. Modelling exposure times at
number of receptors using discrete-time MMPPs, for which the likelihood and second-order
properties can be calculated in a manner similar to that described in this paper, is currently under
imff:stigatiem.27
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