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Summary
In this paper, we present a two-dimensional computational framework for the simula-

tion of fluid-structure interaction problems involving incompressible flexible solids

and multiphase flows, further extending the application range of classical immersed

computational approaches to the context of hydrodynamics. The proposed method

aims to overcome shortcomings such as the restriction of having to deal with similar

density ratios among different phases or the restriction to solve single-phase flows.

First, a variation of classical immersed techniques, pioneered with the immersed

boundary method (IBM), is presented by rearranging the governing equations, which

define the behaviour of the multiple physics involved. The formulation is compatible

with the “one-fluid” formulation for two-phase flows and can deal with large density

ratios with the help of an anisotropic Poisson solver. Second, immersed deformable

structures and fluid phases are modelled in an identical manner except for the com-

putation of the deviatoric stresses. The numerical technique followed in this paper

builds upon the immersed structural potential method developed by the authors, by

adding a level set–based method for the capturing of the fluid-fluid interfaces and an

interface Lagrangian-based meshless technique for the tracking of the fluid-structure

interface. The spatial discretisation is based on the standard marker-and-cell method

used in conjunction with a fractional step approach for the pressure/velocity decou-

pling, a second-order time integrator, and a fixed-point iterative scheme. The paper

presents a wide d range of two-dimensional applications involving multiphase flows

interacting with immersed deformable solids, including benchmarking against both

experimental and alternative numerical schemes.
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1 INTRODUCTION

Within the field of computational fluid-structure interaction (FSI), two families of methodologies can be clearly identi-

fied, namely, body-fitted methods1-5 and immersed methods.6-16 Schemes and algorithms within each family have some

strengths and weaknesses, which have been well documented over the years. Within the group of body-fitted methodologies,
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the main disadvantage is the computational cost related to the update of the mesh and the possible need to resort to remeshing

algorithms. Immersed methods have recently gained popularity as they help to address this specific shortcoming; however, they

can suffer from numerically sub-optimality in the region around the interface (see Gil et al,16 page 8628, figures 9 and 10, for

numerical evidence). Specifically, the use of a single polynomial interpolating function to describe the velocity field across the

interface can only render suboptimal results. Moreover, the continuous nature of the pressure approximation across the inter-

face can also compromise global mass conservation. Traditionally, authors tend to alleviate this shortcoming by resorting to

fine discretisations near the interface. An alternative recent trend to completely overcome these consistency issue is the com-

bination of a local XFEM enrichment with a cut–finite element method (FEM) methodology and a Lagrange multiplier (or a

Nitsche's method) treatment of the interface coupling.17-19

The pioneering IBM was first introduced by Peskin6 to simulate the deformation of heart valves. The distinguishing feature of

this method is the fact that the simulation is carried out on a fixed Eulerian Cartesian grid, which does not conform to that of the

current geometry of the deformed immersed structure. A solid-to-fluid interpolated body force is added to the fluid to account

for the presence of any immersed deformable solid. Early versions of the IBM were limited to the case of immersed solids made

up of fibres satisfying the generalised Hooke's law.7-9,20 The original method was defined on the basis of the finite difference

method, and an approximation of the Dirac delta distribution was used to map information (ie, velocity and forces) between

the Eulerian fluid and the Lagrangian immersed solid.21 The material properties of the immersed continuum have been recently

extended to those of a viscoelastic structure22 or even to those of a fluid23 or a dry foam.24 Furthermore, adaptive remeshing

techniques25 were also introduced to improve the accuracy of the technique in the vicinity of the interface between the different

physics involved in the problem.

Because of a considerable revival of the IBM, the methodology is no longer restricted to modelling simplified fibre-like solids.

More realistic continuum-like structures can also be analysed because of enhancements introduced on the original methodology,

which have led to alternative approaches, such as the extended immersed boundary method originally presented by Wang and

Liu26 and the immersed finite element method (IFEM) pioneered by Zhang et al27 and fully exploited by Liu et al.11 In this

approach, the immersed structure is modelled by means of the FEM, where standard piecewise polynomial shape functions are

used to compute the deformation gradient tensor F within the immersed structure domain. The nodal displacement field of the

immersed finite element mesh is computed after time integration of the nodal velocity field, which is obtained after suitable

interpolation of the velocity field from the background fluid domain with the help of interpolation functions defined on the

fluid. The force field at the nodes of the deformable solid finite element mesh is computed as a result of the spatial integration

of the stress tensor through the use of the spatial gradient of standard nodal finite element shape functions.

Gil et al16 introduced the immersed structural potential method (ISPM) for the solution of single-phase FSI problems interact-

ing with highly deformable structures in the context of haemodynamic applications (ie, low density ratios). This methodology

is in line with but distinct from approaches such as the material point method28 or the force-projection method presented by

Zhao et al.29 The immersed structure is generalised to any continuum described by means of a deviatoric strain energy func-

tional, as in the work of Devendran and Peskin.22 From the spatial discretisation point of view, the structure is modelled as a

collection of integration points, which deform according to the kinematics defined by the background fluid. Tailor-made kernel

functions13 were designed to compute the velocity field and the spatial gradient velocity tensor l directly at an integration point

level. A structure preserving time-integration scheme is then used to compute the deformation gradient tensor F at every inte-

gration point, yielding improved accuracy and stability over previous immersed-based methodologies.13 The update of F from

l prevents the appearance of locking, which is a problem often encountered when using low-order approximations (see Hesch

et al,14 Section 5.3, page 62, for numerical evidence). A similar methodology in the context of fast solid dynamics has been used

by the authors.30-36

For the simulation of multiphase flows, some authors have opted for the Lagrangian smoothed particle hydrodynamics (SPH)

method37 and others for the Eulerian “one-fluid” formulation.38 The latter approach is followed in this paper, where the com-

putational modelling is performed in a similar way to that of a single-phase flow, apart from the treatment of the interface

evolution, which is considered dependent on the flow velocity field. There are two possible descriptions of the interface kine-

matics, namely, the interface can be explicitly “tracked” in a Lagrangian fashion or be “captured” with an implicit marker

function. In the case of using an explicit description, a possible way to follow the interface is through a cloud of interpolation

points or particles, as in the case of the front tracking method.39-41 On the other hand, the most popular implicit descriptions of

the interfaces are established by the volume of fluid method42,43 and the level set method.44,45

The solution of problems involving multiphase flows and immersed structures is a complex problem, which still requires

further research. Classical immersed computational techniques struggle computationally when having to deal efficiently with

problems between phases with large density ratios, as typically encountered in hydrodynamic engineering applications. In this

paper, a unified one-fluid formulation will be presented aiming to address this shortcoming. In this work, the level set method is
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FIGURE 1 The general deformation of a continuum and kinematic strain measure {F,H, J} [Colour figure can be viewed at

wileyonlinelibrary.com]

favoured to capture the fluid interface, as it presents advantages when dealing with topological changes. Moreover, Lagrangian

particles or integration points are used to describe the motion of the immersed flexible body, which facilitates the preservation

of mass. It is noteworthy to highlight that a unified Lagrangian formulation has been recently proposed by Franci et al,46 where

both fluid and solid phases are solved in a similar Lagrangian fashion.

The outline of the paper is as follows. Section 2 introduces the classical Eulerian conservation laws (conservation of linear

momentum and conservation of mass) for multiphase continuum by introducing well-known jump conditions. Constitutive

models for the various phases in the form of a Newtonian fluid and a hyperelastic deformable solid are also presented. Section

3 presents a unified framework for the computational modelling of the multiphase continuum by making use of a smooth

representation of the indicator function. The proposed “one-fluid” model is capable of dealing with multiple fluids as well as

structures. In addition, some of the available techniques for the description of interfaces are briefly revisited, namely, an Eulerian

(capturing) level set method and a Lagrangian (tracking) particle method. Section 4 discusses the details of the numerical

discretisation of the multiphase flow governing equations. An efficient second-order finite volume scheme set in a Cartesian

staggered mesh is chosen for the spatial discretisation in conjunction with a well-established fractional step method for the

fluid-pressure decoupling. The discrete representation of the deformable immersed solid is performed according with the ISPM,

and tension effects are also incorporated. Section 5 presents some hydrodynamics problems, which involve air, water, and

immersed structures, illustrating the capability of the proposed method.

2 GOVERNING EQUATIONS

2.1 Kinematics of a continuum
Let us consider the motion of a continuum from its undeformed (or material) configuration Ω0 ⊂ Rd with boundary 𝜕Ω0 and

outward unit normal N, into its deformed (or spatial) configuration Ωt(t) ⊂ Rd at time t, with boundary 𝜕Ωt(t) and outward unit

normal n, where d represents the number of spatial dimensions (d = 2 for the examples included in this paper). The motion

is described by a time t ∈ [0,T] dependent mapping field 𝚽, which links a material particle from material configuration X to

spatial configuration x according to x(t) = 𝚽(X, t) (see Figure 1).

The following well-known strain measures can be introduced as follows. The two-point deformation gradient tensor or fibre

map F, which relates a fibre of differential length from the material configuration dX to the spatial configuration dx, namely,

dx = FdX, is defined as the material gradient 𝛁0 of the spatial configuration, namely,

F = 𝛁0x = 𝜕Φ(X , t)
𝜕X

. (1)

In addition, the Jacobian J or volume map of the deformation relates differential volume elements in the material configuration

dΩ0 and the spatial configuration dΩ as dΩ = JdΩ0, defined as

J = det F. (2)

Finally, and for completeness, the two-point co-factor or adjoint tensor H can be introduced to map the element area vector

from material configuration dA (colinear with N) to spatial configuration da (colinear with n) as da = HdA, defined as

https://onlinelibrary.wiley.com/


4 YANG ET AL.

H = 1

2
F×F. (3)

where use has been made of the cross product between two second-order tensors as presented by Bonet et al.47 Apart from the

fundamental strain measures {F,H, J} introduced above, the velocity field u of the continuum is defined as the material time

derivative of the mapping 𝚽 as u = 𝜕Φ(X,t)
𝜕t

. Finally, another kinematic entity of interest is the velocity gradient tensor l, which

is defined as the spatial gradient 𝛁 of the velocity field, namely, l = 𝛁u. As it is well known, the evaluation of l requires the

use of the inverse mapping relationship, that is, l = 𝜕u(Φ−1(x,t),t)
𝜕x

.48 This relationship can be alternatively written as

dF
dt

= lF, (4)

which relates the material derivative
d
dt

of the deformation gradient tensor F with the velocity gradient tensor l and F itself.

In the particular case of an incompressible continuum, the Jacobian of the deformation satisfies J = 1 (Lagrangian description)

or, alternatively in an Eulerian description,

l ∶ I = 𝛁 ·u = 0, (5)

where the operator 𝛁· represents the spatial divergence and I is the second-order identity tensor. For the examples presented in

this paper, this kinematic constraint will always apply.

In general, the continuum can contain internal interfaces separating different subdomains or phases (ie, fluid-fluid, solid-solid,

fluid-solid). In this case, suitable jump conditions can be introduced on every interface. In the special case of nonslip conditions

(of interest in this paper) and in the absence of shock waves, the jump conditions for the mapping 𝚽 can be defined (in terms

of 𝚽 or in terms of the velocity field u) as

[[𝚽]] = 0; [[u]] = 0, (6)

where the operator [[·]] represents the jump in the variable of interest across the interface. Similar jump conditions can be

defined for the strain measures F and H, but will not be explored any further in this paper (see previous works34,49 for specific

details on these jump conditions).

2.2 Conservation of mass
The principle of conservation of mass for the continuum in an arbitrary spatial domain Ω (of boundary 𝜕Ω with spatial outward

normal n) can be expressed in a Eulerian integral form as follows:

d
dt∫Ω

𝜌 dΩ = 0, (7)

where 𝜌 is the mass density defined per unit of spatial volume, namely, 𝜌 = 𝜌(x, t). Upon the use of the Reynolds transport

theorem, the differential (or local) form of the above expression (7), in the case of smooth solutions, becomes

𝜕𝜌

𝜕t
+ 𝛁 ·(𝜌u) = 0, (8)

together with the jump conditions (in the case of nonsmooth solutions)34,50

U[[𝜌]] = [[𝜌u]] · n (9)

across a discontinuity surface defined by a normal n and speed U in the spatial or Eulerian space. As expected, substitution of

the nonslip condition (6) into (9) yields U = u · n, which defines the normal speed of the discontinuity front across a sudden

change of density. Furthermore, substitution of the incompressibility constraint (5) into (8) results in
d𝜌
dt

= 0, which confirms

that the density must remain constant throughout the deformation.

2.3 Conservation of linear momentum
The conservation of linear momentum for the continuum in an arbitrary spatial domain Ω (of boundary 𝜕Ω with spatial outward

normal n) can be expressed in an Eulerian integral form as follows:

d
dt∫Ω

𝜌u dΩ = ∫Ω
𝜌g dΩ + ∫𝜕Ω

t da (10)

where t = 𝝈n is the traction vector, g represents a force per unit of mass (ie, gravitational acceleration), and 𝝈 is the

(symmetric) Cauchy stress tensor. It is customary (for incompressible and nearly incompressible materials) to establish an
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additive decomposition of this tensor in terms of a deviatoric contribution 𝝈
′

(eg, 𝝈
′ ∶ I = 0) and a volumetric contribution

defined by −pI (with p being the scalar pressure field). Upon the use of the Reynolds transport theorem, the differential (or

local) form of the above expression (10), in the case of smooth solutions, becomes

𝜕(𝜌u)
𝜕t

+ 𝛁 ·(𝜌u ⊗ u + pI − 𝝈′) = 𝜌g, (11)

together with the jump conditions (for nonsmooth solutions) defined as

U[[𝜌u]] = [[𝜌u ⊗ u + pI − 𝝈′]]n (12)

across a discontinuity surface defined by a normal n and speed U in the spatial or Eulerian space. Proceeding in a similar manner

to above Section 2.2, by means of the substitution of the nonslip condition (6) into (12) and making use of the fact that U = u ·n,

it yields

[[p]] = n · [[𝝈′]]n, (13)

which states that, in the absence of shock waves, the jump in pressure across a discontinuity must be balanced by the normal

component of the deviatoric contribution to the traction vector.

2.4 Conservation of deformation gradient
In the case of deformable solids, previous works34,35 provide additional conservation laws and jump conditons for the fun-

damental strain measures {F,H, J} which, in conjunction with Equations (8) and (11), can render an enhanced system of

conservation laws.* The introduction of additional geometric conservation laws have proven to be very efficient in circumvent-

ing the drawbacks of traditional low-order displacement-based formulations in the context of solid dynamics.33-35,51,52 This can

be straightforwardly translated to the case of FSI applications.13,14,16

For instance, the total Lagrangian conservation law for the deformation gradient F can be written as
𝜕F
𝜕t
−𝛁0 ·(u⊗I) = 0 (refer

to previous works34,35 for further details). When this law is reexpressed by using a mixed Lagrangian-Eulerian formalism, it

reduces to above Equation (4). All in all, in the case of incompressible materials (of interest in this paper), the three Equations (4),

(5), and (11) constitute the final system of equations to be solved in terms of the unknown variables u, p, 𝝈
′
, and F (or l).

2.5 Constitutive equations
For closure of the above system of equations defined in the domain Ω, and in the case of incompressible materials, it is necessary

to introduce appropriate constitutive models to relate 𝝈
′
with F (or l), obeying the principles of objectivity48 and thermodynamic

consistency (via the Colemann-Noll procedure).53

Two prototypical cases will be considered in this paper, although the approach pursued hereafter could be generalised to other

constitutive models. First, for any time-varying Newtonian fluid occupying the domain Ωf (t) ⊂ Ω, the deviatoric component of

the Cauchy stress tensor 𝝈
′

can be written as

𝝈′ = 2𝜇′ ∶ d; 
′ = I − 1

3
(I ⊗ I); d = 1

2

(
l + lT) , (14)

where 𝜇 denotes the shear viscosity of the fluid and d the so-called strain rate tensor. Above Equation (14) can be further

reduced for incompressible fluids (velocity divergence free) to 𝝈
′ = 2𝜇d. This constitutive model will be used for the numerical

simulation presented in this paper to describe the behaviour of all fluid phases occupying the domain Ωf (t) ⊂ Ω (eg, air, water).

Similarly, for deformable solid phases occupying the time-varying domain Ωs(t) = Ω ⧵ Ωf(t), a hyperelastic incompressible

solid will be considered. Specifically, for the numerical simulations presented in this paper the well-known incompressible

neo-Hookean constitutive law will be employed, which is defined as

𝝈′ = GJ−5∕3

′ ∶ b; b = FFT , (15)

where G represents the shear modulus of the material and b is the left Cauchy-Green deformation tensor.48 In this case, it is

interesting to remark that the evaluation of 𝝈
′
requires the knowledge of the deformation gradient tensor F, which can be related

to the spatial velocity field via Equation (4). Following previous work developed by the authors, this will be the approach

pursued in this paper.13,14,16 Traditionally, in immersed computational methodologies, the deformation gradient F is obtained

*This can be useful to define a generalised convex entropy function necessary for the derivation of an alternative system of conservation laws in terms of

entropy conjugates.34,35
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FIGURE 2 Possible distribution of phases within the spatial Eulerian domain Ω. A, Ωs(t) denotes solid and Ωf (t) fluid. B, Ωa(t), a = 1, 2, 3,

represent various phases; in this case, Ω1(t) ∪ Ω2(t) = Ωf (t) and Ω3(t) ≡ Ωs(t)

from Equation (1) directly, after time integration of the velocity field u yields the spatial geometry x.11,26 However, in the case of

using a low-order discretisation scheme, this approach can lead to the appearance of locking behaviour, as reported in previous

works,13,14 which is the reason why the additional Equation (4) is solved in a mixed-type manner.

2.6 Eulerian governing equations
We are now in a position to combine all the equations presented above for the case of an (Eulerian description) comprised of

“possibly” multiple time-varying n-subdomains (ie, air, water, and solid), namely, ∪n
a=1

Ωa(t) = Ω, where the sets Ωa(t), a =
1, … , n are pairwise disjoint (eg, Ωa(t) ∩ Ωb(t) = ∅ for two different phases a ≠ b) (refer to Figure 2).

With respect to the governing equations, the only difference between the various phases stems from the constitutive model

under consideration, which results in different expressions for the spatial divergence of the deviatoric stress tensor (11) (intro-

duced herein as a new force field f). Specifically, for a time-varying phase defined by a subdomain Ωa(t) ⊂ Ω, the deviatoric

force field f can be obtained from Equations (14) and (15) as

f (x) =

{ 𝛁 ·(2𝜇ad) in Ωa(t) ∩ Ωf (t)

𝛁 ·
(
GaJ−5∕3′ ∶ b

)
in Ωa(t) ∩ Ωs(t).

(16)

where 𝜇a or Ga represent the phase material properties. For the complete definition of the initial boundary value problem, initial

and boundary (ie, essential 𝜕ΩD and natural 𝜕ΩN) conditions must be specified (𝜕ΩD ∪ 𝜕ΩN = 𝜕Ω and 𝜕ΩD ∩ 𝜕ΩN = ∅).

Following is the set of balance equations that model the FSI problem:

𝜕(𝜌u)
𝜕t

+ 𝛁 · (𝜌u ⊗ u) = −𝛁 p + f + 𝜌g in Ω × [0,T] (17a)

𝛁 ·u = 0 in Ω × [0,T] (17b)

dF
dt

= lF in Ωs(t) (17c)

dx
dt

= u in Ωs(t) (17d)

u = ū on 𝜕ΩD × [0,T] (17e)

−pI + 𝝈′n = t̄ on 𝜕ΩN × [0,T] (17f)

u = u0 in Ω̄ × {0} (17g)

[[u]] = 0 on 𝜕Ωa(t) ∩ 𝜕Ωb(t) (17h)

[[p]] = n · [[𝝈′]]n on 𝜕Ωa(t) ∩ 𝜕Ωb(t), (17i)

where u0 represents the initial velocity field and ū and t̄ are prescribed boundary velocity and traction vectors, respectively. The

force field f in (17a) is defined according to (16), where Equations (17c) and (17d) are only solved in the presence of a solid

phase. The above set of Equations (16) and (17) define the initial boundary value problem expressed in a “nearly” complete

Eulerian description, apart from Equations (17c) and (17d), which are expressed in a mixed Lagrangian-Eulerian description.

The unknown fields of this set of equations are {u, p} in Ω × [0,T] and {F, x} in Ωs(t). The explicit consideration of the jump

conditions (17h) and (17i) requires the use of classical boundary-fitted FSI schemes to accurately track the evolution of the

interface and fit the computational mesh accordingly.4,5
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3 “ONE-FLUID” MODELLING

3.1 “One-fluid” formulation
In the case of immersed computational methodologies, the explicit use of the jump conditions (17h) and (17i) is avoided by

means of a “smooth regularisation” of the interface. For instance, for the n-phase incompressible fluid-solid continuum Ω
(Eulerian description) defined above, the “smooth” density field 𝜌 can be described as

𝜌(x, t) =
n∑

a=1

𝜌aHa(x, t), (18)

where 𝜌a is the density of the a-phase Ωa(t) (assumed constant for simplicity) and Ha(x, t) is a smooth representation of the

“sharp” indicator function for the a-phase.† It is thus possible to construct an n-dimensional vector field H‡ comprised of all

smooth indicator functions Ha, namely, [H]a = Ha. The use of the vector field H, allows the smooth “capturing” of the transition

between the different phases comprising the continuum. A similar “smooth” representation to that of (18) can be written for the

fluid viscosity field 𝜇 as

𝜇(x, t) =
n∑

a=1

𝜇aHa(x, t), 𝜇a = 0 in Ωa(t) ∩ Ωs(t) (19)

where 𝜇a is the viscosity of the a-phase Ωa(t) (assumed constant for simplicity). Notice that 𝜇a = 0 in the case of a solid

phase. The use of the “smooth” representations (18) and (19) in (17a) replaces the need to use the jump conditions (17h)

and (17i), as they end up inherently included into the formulation (through the spatial gradient of the indicator function).54

This approach is classically known as the “one-fluid” formulation in the context of multiphase flows54 and is pursued in this

paper. This formulation is named “one-fluid” because the underlying governing equations follow a similar pattern to those of

the single-phase Navier-Stokes equations, yet it allows for the possibility of multiple phases including deformable solids. The

formulation can be understood as a combination of the multiphase equations into a single “one-fluid” equation.

The “one-fluid” formulation relies on the correct identification of the interface between the different phases of the continuum

so as to evaluate correctly the vector field H. To identify the motion of an interface, two well-known techniques can be used,

namely, the Lagrangian (tracking) particle method39,40 and the Eulerian (capturing) level set method.55,56 For instance, for a

particle placed initially at location Xs, its spatial position xs at time t can be obtained after time integration of the velocity field

u, noticing that

dxs(Xs, t)
dt

= u(Xs, t) = u(𝚽−1(xs, t), t). (20)

This approach, suitable to monitor interfaces without topological changes, will be preferred in this paper for the tracking

of immersed solid phases. Notice that for the evaluation of (20) a suitable interpolation technique is necessary to transfer the

velocity field from the Eulerian description to the Lagrangian description, which will be presented in a subsequent section.

On the other hand, for fluid-fluid interfaces, this paper will employ the well-known level set method of Osher and Sethian,55

later explored in the previous work56 in the context of multiphase flows. In this Eulerian-based method, a scalar level set function

𝜙a = 𝜙a(x, t) is introduced for the a-phase Ωa(t) as a signed distance function to the time-varying interface Γt
a between this and

the rest of phases comprising the continuum, namely,

𝜙a(x, t) = sgn
(
d(x,Γt

a)
)
, (21)

where d(x,Γt) denotes the distance from x to Γt
a. The interface Γt

a coincides with the zero-contour of the level set function (ie,

Γt
a ≡ xsuch that𝜙a(x, t) = 0). For an incompressible continuum,§ the advection of the level set is achieved by solution of the

evolution or transport equation:

𝜕𝜙a

𝜕t
+ 𝛁 · (u𝜙a) = 0. (22)

The evaluation of a-phase smooth indicator function Ha follows naturally as Ha(x, t) = H(𝜙a(x, t)), where H is a smooth

presentation of the Heaviside step function. In the same manner as the vector field H was previously introduced, it is also

possible to define 𝝓 as the vector field containing the set of n level set functions 𝜙a as [𝝓]a = 𝜙a. It is now possible to present

†The sharp indicator function Ha(x, t) would be defined as Ha(x, t) =
{

1 if x ∈ Ωa
0 elsewhere

.
‡Not to be confused with the co-factor of the deformation, the latter not to be used henceforth.
§The original level set equation reads

𝜕𝜙a
𝜕t

+ u · 𝛁𝜙a = 0.



8 YANG ET AL.

the complete set of equations governing the “one-fluid” formulation for an arbitrary control volume Ω as

∫Ω

𝜕(𝜌u)
𝜕t

dΩ + ∫𝜕Ω
(𝜌u ⊗ u + pI)nda − ∫Ω

( f + 𝜌g)dΩ = 0 in Ω × [0,T] (23a)

𝛁 ·𝝈′ = 𝛁 ·𝜇
(

1

2

(
𝛁u + (𝛁u)T

))
=∶ f in Ω × [0,T] (23b)

∫𝜕Ω
u · n da = 0 in Ω × [0,T] (23c)

dF
dt

= lF in Ωs(t) (23d)

dx
dt

= u in Ωs(t) (23e)

𝛁 ·𝝈′ = 𝛁 ·
(
Gs(det F)−5∕3


′ ∶

(
FFT)) =∶ f in Ωs(t) (23f)

∀a = 1 … n ∫Ω

𝜕𝜙a

𝜕t
dΩ + ∫𝜕Ω

𝜙a (u · n) da = 0 in Ω × [0,T] (23g)

u = ū on 𝜕ΩD × [0,T] (23h)

−pI + 𝝈′n = t̄ on 𝜕ΩN × [0,T] (23i)

u = u0 in Ω̄ × {0} (23j)

𝜙a = [𝝓0]a in Ω̄ × {0}, (23k)

where the smooth fields 𝜌 (23a) and 𝜇 (to be used for the computation of f in (23b)) are defined in (18) and (19) and the essential

(23h) and natural (23i) boundary conditions are incorporated into (23a) wherever necessary. Finally, Equation (23k) represents

the initial conditions for the level set vector field 𝝓. The unknown fields of this set of equations are {u, p,𝝓} in Ω × [0,T] and

{F, x} in Ωs(t). The use of the integral form representation in (23a), (23c), and (23g) is convenient as, firstly, will become the

starting point of the spatial discretisation technique presented in the following section, and secondly, it is usually preferred in

case of using sharp indicator functions for every phase as it avoids their definition in the sense of a distribution.

In traditional immersed computational methodologies (including the pioneering IBM),6-14,16 the immersed body force fIBM is

evaluated as

f IBM = 𝛁 ·(𝝈′
s − 𝝈′

f )
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

f𝜇

+ (𝜌s − 𝜌f )g − (𝜌s − 𝜌f )
du
dt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f 𝜌

in Ωs(t), (24)

which is composed of the following two contributions. Firstly, f𝜇 denotes the difference between the deviatoric stresses of the

deformable solid and those of the underlying fluid. The fluid stress contribution −𝝈f
′ is necessary to counterbalance the “ficti-

tious” viscous effects introduced by the underlying fluid in the overlapping area between solid and fluid. Secondly, f𝜌 gathers

the inertial and body force differences of the solid with the underlying fluid because of nonmatching densities. Notice that both

force contributions f𝜇 and f𝜌 are computed in a fully Lagrangian manner in Ωs(t), requiring appropriate interpolation-spreading

operators.

In the case of the “one-fluid” formulation pursued in this paper, it is noteworthy to observe that “only” the deviatoric stress

force component stemming from the presence of solid deformable phases in Ωs(t), namely, 𝛁 · 𝝈s
′, is computed via a mixed

Lagrangian-Eulerian approach (refer to Equations (23d)-(23f)); elsewhere, a fully Eulerian approach is used. For instance, the

use of an indicator function approach to reconstruct a smooth representation of the density field enables the modelling of both

inertial and gravity effects in a fully Eulerian manner.

For most FSI problems, large values of f𝜇 and f𝜌 can limit the “efficient” use of explicit time-stepping schemes, which

is the case of immersed solids with a large shear modulus or immersed phases with large density ratios (eg, hydrodynamic

applications), respectively. In this paper, we have adopted the approach followed by Gil et al,13,16,57,58 where a fixed-point iteration

strategy was used for the tracking of the deformable solid (23d) and (23e) and the evaluation of its deviatoric force term (23f),

whilst the rest of the terms are treated in a fully implicit Eulerian manner. This strategy has been shown to be appropriate for

the numerical examples presented in this paper. However, for stiffer problems, a fully implicit approach could also be adopted.59

Alternatively, for the FSI problem with small density ratios, a fully explicit approach can be used.60
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4 NUMERICAL TECHNIQUE

4.1 Multiphase Eulerian background solver
The space-time discretisation technique used in this paper is that of Gil et al,13,16 but expanded hereafter to incorporate the

transport of the level set function 𝜙a(x, t) for each a-phase and the definition of the smooth Heaviside function H(𝜙a). The

formulation is briefly described for completeness.

A two-dimensional Cartesian discretisation of the incompressible Eulerian continuum is adopted in conjunction with a stag-

gered low (second) order finite volume approach. Let ΩAx and ΩAy be two families of control volumes associated with the

Cartesian components of the velocity uAx and vAy , with an arrangement similar to that of a marker-and-cell (MAC) grid. Harlow

and Welch61 proposed the use of a special grid for incompressible flow computations. This especially defined grid decomposes

the computational domain into cells with velocities defined on the cell faces and scalar pressure defined at cell centres (see

Figure 3). Here, Ax and Ay denote the fluid cell edges perpendicular to the ox and oy Cartesian axes, respectively, and uAx and

vAy their corresponding normal edge velocities (refer to Figure 3A,B).

Consideration of arbitrary internal control volumes ΩAx and ΩAy and following a standard staggered control volume approach

permits to split the conservation of linear momentum Equation (23a) into

d(𝜌uAx )
dt

ΩAx + ∫𝜕ΩAx

 u · n da − ( f Ax
x + 𝜌gAx

x )ΩAx = 0, (25a)

d(𝜌vAy)
dt

ΩAy + ∫𝜕ΩAy
 v · n da − ( f Ay

y + 𝜌gAy
y )ΩAy = 0, (25b)

where {gAx
x , gAy

y } represents the edge Cartesian components of the body force g, {f Ax
x , f Ay

y } represents the edge Cartesian compo-

nents of the body force f, and ΩAx and ΩAy denote the size of the corresponding control volumes. In addition, {u,v} represent

numerical interface fluxes defined as

 u = 𝜌uu + pex,  v = 𝜌vu + pey, u = [u, v]T , (26)

with {ex, ey} the standard Cartesian basis and where the convective components of the numerical fluxes (26) are obtained using

an appropriate stabilised convective approximation (ie, SMART,62 HLPA,63 or QUICK64), which minimises numerical diffusion,

avoids the creations of spurious oscillations, and reduces the total variation of the solution by accounting for the transportive

nature of the fluid.

In addition to the two families of control volumes defined above, another family, namely, ΩA, is associated with the level set

fields 𝜙A
a describing the interface of each a-phase. These variables are stored, in conjunction with the pressure field pA, at the

cell centroids (see Figure 3C). The discretisation of the level set Equation (22) for the a-phase yields

∀a = 1 … n
d𝜙A

a

dt
ΩA + ∫𝜕ΩA

𝜙a(u · n)da = 0, (27)

where |ΩA| denotes the size of the control volume and the numerical flux is also (consistently) discretised using any of the

stabilised schemes listed above (ie, SMART, HLPA, QUICK). The accurate transport of the level set vector field 𝝓 is necessary

to correctly evaluate the indicator function vector field H in above Equations (25a) and (25b) when evaluating the smooth

density (18) and viscosity (19) fields. Wherever necessary, re-initialisations strategies for the level set fields can be employed

FIGURE 3 The notation used for a standard staggered MAC mesh. A, Control volume ΩAx for velocity u. B, Control volume ΩAy for velocity v;

C, Control volume ΩA for level set 𝜙
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FIGURE 4 Illustration of construction of the indicator function for a circle, centred at [0, 0] with radius r = 1 and representation of the

cross section of the indicator function [Colour figure can be viewed at wileyonlinelibrary.com]

as in the work of Sussman et al56 to guarantee the distance function property of the level set fields. Knowledge of the discrete

level set field 𝜙A
a permits the evaluation of the discrete indicator function field HA

a and thus evaluation of the discrete density

field 𝜌A (18) as 𝜌A =
∑n

a=1 𝜌aHA
a and the discrete viscosity field 𝜇A (19) as 𝜇A =

∑n
a=1 𝜇aHA

a .

Finally, and as presented in the work of Gil et al,16 the divergence free integral constraint (23c) is enforced in every control

volume ΩA following a fractional step approach65

∫𝜕ΩA
u · n da = 0, (28)

so that the discrete pressure field pA can thus be obtained.

4.2 Indicator function
As stated above, the evaluation of the smooth fields 𝜌 and 𝜇 requires the computation of the indicator vector field H. This can

be done in two different manners, depending on the way in which the interface is followed (refer to Equations (20) and (22)).

Firstly, following the work of Sussman et al,56 the components of H (eg, [H]a = Ha) can be defined in terms of a smooth

representation of the Heaviside function H as

Ha(x, t) = H(𝜙a(x, t)) =

⎧⎪⎪⎨⎪⎪⎩

1

2

(
1 + 𝜙a

𝜖
+ 1

𝜋
sin(𝜋 𝜙a

𝜖
)
)

if |𝜙a

𝜖
| ⩽ 1

0 if
𝜙a

𝜖
< −1

1 if
𝜙a

𝜖
> 1

(29)

where 𝜖 is the parameter representing the smearing bandwidth and 𝜙a denotes the corresponding a-phase level set value. The

approximation of the indicator function sharply changes from zero to one over the smearing interface, describing a smooth tran-

sition zone from one phase to the next. Evaluation of the indicator function for the control volume ΩA can be straightforwardly

obtained as HA
a = H(𝜙A

a ) combining Equations (27) and (29).

Alternatively, a smooth indicator function Hs defined for an “immersed” phase Ωs contained within Ω can also be constructed

from the “spreading” operation  to the underlying Eulerian grid of a unit constant field f = 1 defined on Ωs. Provided the phase

Ωs is tracked via integration points (or material particles) xap , the indicator function Hs can then be evaluated at the Eulerian

control volume ΩA as

HA
s = (f = 1)|AΩs

≃ 1|ΩA| ∑ap

Wap𝛿A(xap), (30)

where 𝛿A(xap) is a smooth interpolation kernel functions centred in the centroid of the control volume ΩA and evaluated at the

integration point ap. For the examples presented in this paper, the smooth kernel functions used are those defined in the work

of Gil et al.13,16 Figure 4 illustrates the construction of the indicator function for the specific case of a circle using both a level

set approach (29) and a material particle approach (30). The circle is centred at [0, 0] and has a radius of 1. The cross section of

the constructed indicator function is depicted in Figure 4 (in green).

https://onlinelibrary.wiley.com/
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4.3 Solid Cauchy stresses via immersed structural potential method
The solid phases defined by Ωs are modelled in a Lagrangian manner as a collection of integration points ap, moving from an

initial position Xap to the spatial position xap at time t (20). The velocity of every solid integration point is obtained after suitable

definition of an interpolation operator from the background Eulerian fluid (edges) to the Lagrangian solid (integration points).

Specifically, the velocity u at any integration point ap is evaluated as

uap = [uap , vap]T ; uap =
∑
Ax

uAx𝛿Ax (xap ); vap =
∑
Ay

vAy𝛿Ay (xap), (31)

where 𝛿Ax (xap) and 𝛿Ax (xap) are smooth interpolation kernel functions as defined by Gil et al.13,16 Time integration of above

equation yields the current geometry xap .

As stated above, in conventional immersed methodologies,12,66 the fibre map F is obtained upon material differentiation of

the spatial configuration, namely, F ∶= 𝛁0x. Unfortunately, this leads to lower spatial resolution of structural stresses, the

noncompliance with the kinematic constraint J = 1, and the possible appearance of locking behaviour (see Hesch et al,14

Section 5.3, page 62, for numerical evidence). To overcome these shortcomings, the deformation gradient F is obtained after

time integration of Equation (17c) is performed. With that in mind, the velocity gradient tensor l can be defined in ap as

lap =
⎡⎢⎢⎣
∑
Ax

uAx 𝛁 𝛿Ax (xap),
∑
Ay

vAy 𝛁 𝛿Ay (xap)
⎤⎥⎥⎦

T

, (32)

by taking advantage of the interpolating kernel functions. Finally, a tailor-made structure preserving time integration scheme

for Equation (17c) is presented by Gil et al13,16 to obtain the deformation gradient at ap, namely, Fap . After evaluation of the

deviatoric stress at the integration point 𝝈′ap via (15), a variationally consistent procedure to obtain the body forces {f Ax
x , f Ay

y }
in (25a) and (25b) is derived by Gil et al13,16 and written below as

f Ax
x = 1

ΩAx

∑
ap

Wap𝝈′ap 𝛁 𝛿Ax (xap ); f Ay
y = 1

ΩAy

∑
ap

Wap𝝈′ap 𝛁 𝛿Ay (xap ), (33)

where the details regarding the determination of the weight Wap can be found in the work of Gil et al.13,16 This approach enables

the direct computation of immersed solid body forces at the Eulerian grid from the solid integration points, without having to

resort to the use of an intermediate mesh describing the solid phase. In contrast, conventional immersed methodologies employ a

two-step approach to evaluate the immersed body forces, which relies on the existence of a classical finite element discretisation

of the immersed solid phase in terms of nodes and elements, as presented by Zhang et al12 or Bardenhagen et al.67

4.4 Surface tension
Accurate computation of surface tension effects is one of the most important aspects in the numerical simulation of small scale

multiphase problems.54 Surface tension effects require the modification of the jump conditions (12) and (13) accordingly. In

methods based on the “one-phase” formulation, the surface tension is usually added as a body force concentrated in a band

around the interface at the discrete level,54 defined for the interface of the a-phase as

f = 𝛾𝜅(𝜙a)n(𝜙a)𝛿(𝜙a) (34)

where 𝜅 is the surface curvature, n is the outward unit normal across the interface, 𝛿 is a smooth representation of the Dirac

delta distribution, and 𝛾 is the so-called surface tension coefficient (physical property). Above magnitudes {𝜅,n, 𝛿} are typically

evaluated taking advantage of the level set function, namely,

n = 𝛁𝜙a||𝛁𝜙a|| ; 𝜅 = −𝛁 ·
(

𝛁𝜙a||𝛁𝜙a||
)
, (35)

and in the numerical examples presented in the paper, 𝛿(𝜙a) is defined consistently with (29)56 as

𝛿(𝜙) =
⎧⎪⎨⎪⎩

1

2𝜖
(1 + cos(𝜋 𝜙

𝜖
)) if |𝜙

𝜖
| ⩽ 1

0 if |𝜙
𝜖
| > 1

, (36)

where above Equations (34) and (35) can be straightforwardly adapted to the specific spatial discretisation presented above.



12 YANG ET AL.

4.5 Algorithm
For completeness, the set of discrete equations of the overall “one-fluid” methodology used in this paper is presented below.

Upon the use of a simple fixed-point iterative scheme, the coupled FSI equations can be solved to advance from time step n to

n + 1 in an iterative fashion to ensure the complete coupling of the fluid and solid equations. By computing a residual norm

based on the difference between the divergence of the deviatoric Cauchy stress tensor in two successive iterations k and k + 1,

namely, ||f n+1
k+1 − f n+1

k ||∕||f n||, a convergence criterion can be easily established to progress to the following iteration k+ 2 (if not

yet converged) or time step n+ 2 (if convergence is accomplished). As in the works of Gil et al,13,16 the Navier-Stokes equations

are solved via a fractional step approach, where the unknown pressure field is obtained through an efficient preconditioned

conjugate gradient anisotropic Poisson solver from the Hypre Library.68

Once the velocity field u|n+1
k+1

is known, the level set equations can be straightforwardly updated although a Crank-Nicholson

step leading to the evaluation of the smooth density and viscosity fields as

𝜌A|n+1
k+1

=
n∑

a=1

𝜌aH
(
𝜙A

a |n+1
k+1

)
; 𝜇A|n+1

k+1
=

n∑
a=1

𝜇aH
(
𝜙A

a |n+1
k+1

)
, (37)

which permit the evaluation of the force field {f Ax
x |n+1

k+1
, f Ay

y |n+1
k+1

} in the case of fluid phases, after applying the discrete diver-

gence operator to the deviatoric stress tensor obtained via Equation (14). Consideration of surface tension effects can also be

incorporated at this stage.

Alternatively, in the case of solid phases, integration points are tracked in a Lagrangian manner after suitable interpolation 
of the Eulerian velocity field (and its spatial gradient) as

uap |n+1
k+1

=  (
u|n+1

k+1

) (
xap |n+1

k

)
; lap |n+1

k+1
= 𝛁 (

u|n+1
k+1

) (
xap |n+1

k

)
. (38)

The geometrical position of these integration points can be obtained via trapezoidal integration and the deformation gradient

tensor is evaluated through a structured preserving algorithm described in the works of Gil et al13,16 and formulated below as

Fap |n+1
k+1

= e(Δt lap |n+1
k+1)Fap |n. (39)

Finally, deviatoric stresses (15) and immersed body forces can be computed as

𝝈′ap |n+1
k+1

= (Fap |n+1
k+1

) (40)

and

f Ax
x |n+1

k+1
= 1|ΩAx | ∑ap

Wap𝝈′ap |n+1
k+1

𝛁 𝛿Ax (xap |n+1
k+1

); (41a)

f Ay
y |n+1

k+1
= 1|ΩAy | ∑ap

Wap𝝈′ap |n+1
k+1

𝛁 𝛿Ay (xap |n+1
k+1

). (41b)

At this stage, the new immersed body forces {f Ax
x |n+1

k+1
, f Ay

y |n+1
k+1

} are compared against those in the previous iteration to establish

convergence within the time step.

5 NUMERICAL EXAMPLES

In the following section, a series of two-dimensional numerical examples will be examined to assess the applicability and

robustness of the proposed “one-fluid” algorithm, benchmarking it against available published numerical and experimental

results.

5.1 Two-phase flow benchmark
The aim of this section is to validate the two-phase flow solver in the absence of an immersed deformable structure.

5.1.1 Classical dam break problem
The dam break problem is a well documented example,69-74 which simulates the sudden collapse of a (square shaped) column

of water onto a horizontal surface as a result of the effect of gravity. The general description of the problem is presented in

Figure 5. The main objective of this problem is the simulation of the transient flow of two fluids (ie, air and water) separated

by a sharp interface, where surface tension effects are disregarded. Insofar as the two-phase fluid solver is formulated following

an immersed-based approach, the physical properties of the two fluids are smoothed across the sharp interface. This problem
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FIGURE 5 Schematics of the initial conditions for the dam break problem (a = 1m; b = 5m)

TABLE 1 Physical properties of water and air for the classical dam break problem

Water Density Air Density Water Viscosity Air Viscosity

𝜌w = 1000 kg/m3 𝜌a = 1 kg/m3 𝜇w = 10−3 Pa s 𝜇a = 10−5Pa s

has been thoroughly studied at experimental69,70 and numerical71-74 levels, and it is widely used by the scientific community for

the benchmarking of new algorithms.

For the numerical results presented herein, the side of the (square) water domain is initially prescribed as a = 1m (see

Figure 5). The water phase is fully embedded inside a rectangular domain of base length b = 5m. The height of the underlying

rectangular domain must be chosen large enough so as to not having an effect in the simulation. With that in mind, for the

results presented in this paper, this height was chosen as h = 1.25 m. Nonslip boundary conditions are considered for all the

sides of the rectangular domain. The fluid properties of both phases (water and air will be referred by the subscripts w and a,

respectively) are listed in Table 1 below.

Figure 6 illustrates a sequence of snapshots of the free surface position as a function of time. The predicted heights and the

surge front location of the collapsed water are plotted against the dimensionless time 𝜏 = t
√

h∕g, as reported by Martin and

Moyce.69 In Figure 7, very good agreement can be observed between the numerical simulation obtained using the proposed

algorithm and the experimental70 and published numerical results74 available in the literature. As can be observed, with mesh

refinement, the presented results converge extremely well to the latest experimental data.

5.1.2 Bubble rising in a partially filled container
The second benchmark problem is described by a fluid bubble placed inside a container partially filled with fluid of higher

density. The initially circular bubble of diameter D = 0.04 m is placed inside a computational domain defined by a rectangleΩ =
[0, 3D] × [0, 3.5D]. Initially, a fluid layer of size D corresponding to the fluid of lower density rests above the 2.5D deep higher

density fluid. The bubble is immersed with its centre located at a distance D below the free surface. The geometrical description

of the problem can be found in Figure 8. Nonslip boundary conditions are considered for all the sides of the rectangular domain.

The bubble is considered to be made up of a fluid phase termed “fluid 2” of density 𝜌2, which progressively rises inside the

container, which is partially filled with a fluid phase termed “fluid 1” of density 𝜌1 (with density ratio 𝜌1 = 2𝜌2). The upper

section of the container, of height D = 0.04 m, is considered to be filled with the “fluid 2” phase. The Reynolds number (Re)

and the Weber number (We) are defined by Zhao et al71 as

Re =
𝜌1

√
gD1.5

𝜇1

, We =
𝜌1gD2

𝛾
, (42)

where 𝜌1(𝜌2) is the density of “fluid 1”(“fluid 2”), g is the gravitational acceleration, D is the diameter of the bubble, 𝜇1(𝜇2)
is the dynamic viscosity of “fluid 1”(“fluid 2”), and 𝛾 is the surface tension coefficient. In the following, two test cases are

considered, namely, test case 1 does not consider the surface tension effect whilst test case 2 does (Table 2).

The time sequence of the rising bubble is shown in Figure 9, for the test case without surface tension, and in Figure 10, for

the test case with surface tension. In both figures, numerical results are compared against those reported by Zhao et al.71 In both

simulations, a mesh of 120 × 140 cells was used with Δt = 5 × 10−4s. As it can be observed, an excellent agreement with the

results of Zhao et al71 is shown in both cases, where very noticeable differences are observed in the dynamics of the interface.

5.1.3 Bubble rising in a fully filled container
In this dimensionless problem, we consider the case of a fluid bubble (“fluid 2”) rising inside a container fully filled with a fluid

of higher density (“fluid 1”). This quantitative validation for a two-phase problem was proposed by Hysing et al.75 The initial



14 YANG ET AL.

FIGURE 6 Predicted free surface evolution at different dimensionless time steps 𝜏 obtained for a mesh of 512 × 128 cells with dimensionless

Δ𝜏 = 2 × 10−4. A, 𝜏= 0.0. B, 𝜏 = 1.25. C, 𝜏 = 2.5. D, 𝜏 = 3. The material parameters are as follows: water density 𝜌w = 1000 kg/m3, air density

𝜌a = 1 kg/m3, water viscosity 𝜇w = 10−3 Pa s, and air viscosity 𝜇a = 10−5Pa s (refer to Figure 5 and Table 1)

configuration consists of a circular bubble of radius r = 0.25 centred at [0.5, 0.5] in a rectangular domain Ω = [0, 1] × [0, 2].
The geometrical description of the problem is presented in Figure 11.

The density of the fluid bubble is smaller than that of the surrounding fluid (𝜌2 < 𝜌1). The nonslip boundary condition (u = 0)

is used at the top and bottom boundaries, whereas the free slip condition u · n = 0 is imposed on the vertical walls (being n the

outward unit normal). Computations were conducted until time t = 3. The Reynolds number and the Eotvos number are defined

by Hysing et al75 as

Re =
𝜌1

√
g(2r)2∕3

𝜇1

, E0 =
4𝜌1gr2

𝛾
, (43)

where 𝜌1(𝜌2) is the density of “fluid 1”(“fluid 2”), g is the gravitational acceleration, r is the radius of the bubble, 𝜇1(𝜇2) is

the dynamic viscosity of “fluid 1”(“fluid 2”), and 𝛾 is the surface tension coefficient. Two test cases are analysed, and Table 3

summarises the physical properties considered in both of them.

To benchmark the numerical solution, a series of physical magnitudes of interest are introduced by Hysing et al,75 including

the centre of mass of the bubble, its mean rising velocity, and the so-called circularity of the bubble (to be defined below).
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FIGURE 7 Comparison of the surge front location and the water column height with experimental data and numerical results. The correspoding

dimensionless time refinement is as follows: Δ𝜏 = 8 × 10−4, Δ𝜏 = 4 × 10−4, and Δ𝜏 = 2 × 10−4. The material parameters are as follows: water

density 𝜌w = 1000 kg/m3, air density 𝜌a = 1 kg/m3, water viscosity 𝜇w = 10−3 Pa s, and air viscosity 𝜇a = 10−5Pa s (refer to Figure 5 and Table 1)

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Schematic diagram of the two-dimensional container partially filled with fluid phases 1 and 2

• Centre of mass. The position of the centre of mass is used to track the translation of the bubble as a function of time and is

defined as

xc =
∫Ω2

x dv

∫Ω2
dv

. (44)

https://onlinelibrary.wiley.com/
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FIGURE 9 Time evolution of bubble rising inside a partially filled container. (Re = 200, We = 0). Left, reference solution.71 Right, proposed

method
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FIGURE 10 Time evolution of bubble rising in a partially filled container. (Re = 200, We = 10) Left, reference solution.71 Right, proposed method
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TABLE 2 Dimensionless physical properties

of the two fluids for the test case of a bubble

rising in a partially filled container

Test Case 1 𝜌1∕𝜌2 𝜇1∕𝜇2 Re We

1 1 ∶ 2 1 ∶ 2 200 −
2 1 ∶ 2 1 ∶ 2 200 10

FIGURE 11 Initial configuration and boundary conditions for the problem defined in Section 5.1.3

TABLE 3 Dimensionless physical properties of the two fluids for the two test cases of

a bubble rising in a fully filled container

Test Case 𝜌1 𝜌2 𝜇1 𝜇2 g 𝛾 Re E0 𝜌1∕𝜌2 𝜇1∕𝜇2

Case 1 1000 100 10 1 0.98 24.5 35 10 10 10

Case 2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

• Circularity. The so-called “degree of circularity” of the evolving bubble can be defined as

C = Pa

Pb
=

perimeter of the area - equivalent circle

perimeter of the bubble
= 𝜋Da

Pb
, (45)

where Pa denotes the perimeter of a circular bubble with diameter Da, which has an area equal to that of a deformed bubble

with perimeter Pb. For the initial circular bubble, the circularity is equal to one and it then decreases as the deformation of

the bubble increases because the initial circle encloses a larger area.

• Rising or terminal velocity defined as

uc =
∫Ω2

u dv

∫Ω2
dv

. (46)

The above is the mean velocity with which a bubble is rising or moving. This value is particularly interesting, because it

measures not only the behaviour of the interface tracking algorithm but also the quality of the overall solution.

Apart from the commercial software ANSYS CFX, COMSOL, and ANSYS Fluent, 3 different open-source computer

codes are compared with the proposed method, namely: (a) the TP2D (transport phenomena in 2D) code, developed in the
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FIGURE 12 Quantitative comparison for the centre of mass, circularity, and rise velocity for the bubble rising problem of case 1. The simulation

is performed with 3 levels of refinement, 40 × 80, 80 × 160, and 160 × 320. The corresponding time refinement is as follows: Δt = 3.125 × 10−4s,

Δt = 1.5625 × 10−4s, and Δt = 7.8125 × 10−5s [Colour figure can be viewed at wileyonlinelibrary.com]

Technical University of Dortmund,76 is an FEM-based incompressible flow solver combined with a level set method used

to describe the interface; (b) the FreeLIFE (free-surface library of finite element) software is an FEM-based incompressible

flow solver developed in EPFL Lausanne75; and (c) the MooNMD (Mathematics and object oriented numerics in MagDeburg)

is an FEM-based incompressible solver using the Arbitrary Lagrangian-Eulerian approach developed in Otto-von-Guericke

University Magdeburg.77

Case 1. The solution for test case 1 in comparison with the 3 open-source FEM-based codes (FreeLIFE, MooNMD, and

TP2D) is presented in Figure 12. The bubble, being initially circular, is stretched horizontally and first develops a dimple as

it rises, but after some time proceeds to assume a more stable ellipsoidal shape. No significant differences can be observed

from the proposed solver and the other reference FEM solvers.

https://onlinelibrary.wiley.com/
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FIGURE 13 Numerical simulation of a two-dimensional rising bubble using (A) 6 different codes and (B) proposed methodology. The

simulation is performed with 3 levels of refinement: 40 × 80, 80 × 160, and 160 × 320. The corresponding time refinement is as follows:

Δt = 3.125 × 10−4s, Δt = 1.5625 × 10−4s, and Δt = 7.8125 × 10−5s [Colour figure can be viewed at wileyonlinelibrary.com]

Case 2: Figure 13B shows the final shape of the bubble on a set of 3 mesh refinements. Although the bubble in both test cases

rises with approximately the same speed, the decrease in surface tension causes this bubble to assume a more nonconvex

shape and develop thin filaments, which might eventually break off. The benchmark results simulated using 6 different codes

are taken from the work of Hysing et al75 (see Figure 13). It can be seen that there is no agreement with respect to the thin

filamentary regions. The TP2D and FreeLIFE codes show a break up of the bubble, whilst ANSYS CFX, COMSOL, ANSYS

Fluent, MooNMD, and the proposed method show that the long thin trailing filaments remain intact. Figure 14 shows the

quantitative comparison with other 3 softwares under mesh refinement.

5.2 Elastic solids with multiphase flow
The aim of this section is to validate the two-phase flow solver interacting with a flexible immersed structure of very different

density to that of the underlying fluid.

5.2.1 One flapping membrane
This problem has been extracted from previous work published by Gil et al16 and will be extended to the case of different density

ratios between the different phases involved. Consider an idealised two-dimensional channel Ω = [0, 4] × [0, 1.61] filled with

an incompressible Newtonian viscous fluid with viscosity 𝜇 = 10 dyne/cm2 s and density 𝜌f = 100 g/cm3. A leaflet is inserted

into the channel, as seen in Figure 15. The top and bottom boundaries of the channel are fixed, whereas a pulsatile nonreversible

https://onlinelibrary.wiley.com/
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FIGURE 14 Quantitative comparison for the centre of mass, circularity, and rise velocity for the bubble rising problem of case 2. The simulation

is performed with 3 levels of refinement: 40 × 80, 80 × 160, and 160 × 320. The corresponding time refinement is as follows: Δt = 3.125 × 10−4s,

Δt = 1.5625 × 10−4s, and Δt = 7.8125 × 10−5s [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 Geometry and boundary conditions for an idealised leaflet valve [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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FIGURE 16 Time evolution of a flexible membrane under pulsatile flow and streamlines of the fluid. Density ratio 1 ∶ 25, fluid viscosity 𝜇 = 1

dyne/cm2 s, shear modulus of G = 2.0 × 107 dyne/cm2, 4025 solid integration points, underlying fluid mesh size 160 × 80, Δt = 7.815 × 10−4s

[Colour figure can be viewed at wileyonlinelibrary.com]

inflow is applied at the left boundary using a time-varying amplitude A(t) = 5(sin(2𝜋t+ 1.1)) (the right boundary is considered

to be an outflow). The leaflet is modelled using an incompressible neo-Hookean constitutive material model with shear modulus

G = 2.0 × 107 dyne/cm2. This problem was analysed by Gil et al16 for a leaflet density identical to that of the underlying fluid,

which is a typical situation in biomedical applications. However, here we will consider 3 test cases with different structure

densities of value 𝜌s = 100, 500, 2500 g/cm3. The objective is to observe the different leaflet dynamics and flow patterns that

emerge as a result of this variation in density ratio, namely, 𝜌s∕𝜌f = 1, 5, 25 (for the case where 𝜌s∕𝜌f = 1, results where already

reported by Gil et al16).

For all simulations, the underlying fluid is discretised using a 160 × 80 mesh, whereas 4025 integration points are used

for the solid membrane. Regarding the time step discretisation, a single time step was used for all the simulations, namely,

Δt = 7.815 × 10−4s.

Figure 16 shows the time evolution of both the pulsatile flow and the deformation of the membrane for the case where

𝜌s∕𝜌f = 25. It is clear that these results differ dramatically, both in terms of flow leaflet dynamics and flow patterns, with respect

to those reported in previous works14,16 where a density ratio 𝜌s∕𝜌f = 1 was used. Figure 17 shows the x− and y− components of

the top flap tip position for the membrane for the 3 test cases. It is interesting to observe the important differences registered as

the density ratio changes from 5 to 25. It can be clearly seen that the method is able to successfully model the inclusion of highly

deformable structures into the fluid with a large density ratio. The methodology avoids the need to resort to a prohibitively

expensive mesh moving/remeshing algorithm yet displays a robust treatment of the immersed structure.

5.2.2 Dam break with elastic obstacle
A water column of width a = 14.6 cm and height 2a is placed in the left corner of a rectangular tank of size 4a × 2.5a. A

geometrical representation of the problem is presented in Figure 18. The density and viscosity of the water are taken as 𝜌w = 1.0

g/cm3, 𝜇w = 10−2 Pa s and the density and viscosity of the surrounding air 𝜌a = 1.0 × 10−3 g/cm3, 𝜇a = 10−5 Pa s.

https://onlinelibrary.wiley.com/
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FIGURE 17 x− and y− components of the bottom left point of the membrane with different density ratio 1 ∶ 1, 1 ∶ 5, and 1 ∶ 25. Fluid viscosity

𝜇 = 1 dyne/cm2 s, shear modulus of G = 2.0 × 107 dyne/cm2, 4025 solid integration points, and mesh size 160 × 80, Δt = 7.815 × 10−4s [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 18 Schematics of the dam break problem interacting with an elastic obstacle [Colour figure can be viewed at wileyonlinelibrary.com]

A rectangular incompressible obstacle in the shape of a column of width b = 1.2 cm, height
20

3
b, Young modulus E = 107

g/cm/s2 and 𝜌s = 2.5 g/cm2 is fixed at the centre bottom of the tank. The water column is left to freely move as a result of

the gravity effect and the objective of the problem is to simulate the interaction between the two-phase flow (eg, air and water)

and the immersed deformable structure. As there are no experimental results available for this particular problem, the proposed

methodology will be benchmarked against a variety of alternative numerical schemes available in the literature. Specifically,

the same problem has been analysed with a free surface model by using a monolithic FSI method,78 a partitioned FSI method,79

the particle FEM,80 and the SPH method.81

The time history of the displacement of the obstacle at the upper left corner is depicted and compared in Figure 19 by using

the various methodologies. In addition, results are displayed for the proposed method by using a fluid mesh refinement study,

with meshes of 64 × 40, 128 × 80 and 256 × 160. The corresponding time refinement is as follows: Δt = 1.25 × 10−5s,

Δt = 6.25 × 10−6s, and Δt = 3.125 × 10−6s. The elastic obstacle is modelled by using 245, 1032, and 4025 integration points,

respectively. Results agree well with the different approaches.80

The time history of the problem is displayed in Figures 20 and 21, where the fluid streamlines and vorticity contours are also

shown. These figures are obtained for the finest mesh. As it can be seen, when the water column hits the obstacle, the left upper

https://onlinelibrary.wiley.com/
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FIGURE 19 Dam break with elastic obstacle: history of the x-displacement of the upper left corner of the obstacle. The corresponding time

refinement is as follows: Δt = 1.25 × 10−5s, Δt = 6.25 × 10−6s, and Δt = 3.125 × 10−6s [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 20 Dam break with elastic obstacle: time history and streamlines of the fluid. Water density 𝜌w = 1.0 g/cm3, air density 𝜌a = 1.0 × 10−3

g/cm3, structure density 𝜌s = 2.5 g/cm3, water viscosity 𝜇w = 10−2 dyne/cm2 s, air viscosity 𝜇a = 10−5 dyne/cm2 s, Young modulus E = 107

g/cm/s2, mesh size 256 × 160, 4025 integration points [Colour figure can be viewed at wileyonlinelibrary.com]

corner first deflects to the left, and whilst the water level rises, it progressively moves to the right. The maximum deflection is

obtained at around t = 0.2 s when the water passes the top of the obstacle and is fully attached to the left side of the structure.

As it is expected, the impact of the water column against the elastic obstacle causes the latter to oscillate.

5.2.3 Elastic wall under time-dependent water pressure effects
This problem was first presented by Antoci et al.82 The problem consists of an elastic gate, clamped at its top end, and free at

its bottom end, which interacts with a mass of water initially confined in a free-surface tank behind the gate. Figure 22 shows a

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/


YANG ET AL. 25

FIGURE 21 Dam break with elastic obstacle: time evolution and vorticity contours of the fluid, vorticity contours (−100 < 𝜔 < 100). Water

density 𝜌w = 1.0 g/cm3, air density 𝜌a = 1.0 × ×10−3 g/cm3, structure density 𝜌s = 2.5 g/cm3, water viscosity 𝜇w = 10−2 dyne/cm2 s, air viscosity

𝜇a = 10−5 dyne/cm2 s, Young's modulus E = 107 g/cm/s2, mesh size 256 × 160, 4025 integration points [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 22 Schematics of the tank with immersed elastic gate [Colour figure can be viewed at wileyonlinelibrary.com]

geometrical representation of the problem. The flexible gate, 5-mm thick, is made of rubber with a density of 1100 kg/m3 and

a constant 10 MPa Young modulus.

The simulation is performed by using a mesh of 288 × 160 cells with the elastic gate modelled by means of 4025 integration

points. The time step used for the simulation was Δt = 3.125 × 10−6s. Figure 23 displays the time history of the number of

fixed-point iterations (for a tolerance of 10−6 in the relative norm). As it can be observed, an average value of 4 fixed-point

iterations is depicted per time step. In all the numerical examples presented in this paper, similar behaviour was observed. This

is the same approach adopted in former works.13,16

https://onlinelibrary.wiley.com/
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FIGURE 23 Time history of the number of fixed-point iterations per time step [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 24 Comparison of numerical and experimental results every 0.08 s. Water density 𝜌w = 1.0 × 103 kg/m3, air density 𝜌a = 1.0 kg/m3,

structure density 𝜌s = 1.1 × 103 kg/m3, water viscosity 𝜇w = 10−3 Pa s, air viscosity 𝜇a = 10−5 Pa s, Young modulus E = 10 MPa, mesh size

288 × 160, 4025 integration points for the solid [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 25 Comparison of the horizontal displacement of the free end of the gate. Water density 𝜌w = 1.0 × 103 kg/m3, air density 𝜌a = 1.0

kg/m3, structure density 𝜌s = 1.1 × 103kg/m3, water viscosity 𝜇w = 10−3Pa s, air viscosity 𝜇a = 10−5Pa s, Young's modulus E = 10 MPa, mesh size

288 × 160, 4025 integration points for the solid [Colour figure can be viewed at wileyonlinelibrary.com]

Comparison of a time sequence of snapshots between the numerical solutions obtained from the proposed algorithm and the

experimental results reported by Antoci et al82 is illustrated in Figure 24.

The problem was also simulated numerically in the work of Antoci et al82 by using the SPH method. For comparison purposes

between the different schemes, Figure 25 shows the time evolution of the horizontal displacement at the free end of the flexible

gate. It is clear that the maximum deformation occurs near the free end of the gate, showing excellent agreement with the

experimental results provided by Antoci et al,82 outperforming the results obtained with the SPH approach. The gate reaches its

maximum deformation at time t = 0.15 s, after which the difference between the various techniques increases because of the

higher complexity of the physics of the problem and the various modelling simplifying assumptions introduced.

6 CONCLUSIONS

This paper presents a unified “one-fluid” computational framework for the numerical analysis of two-dimensional multiphase

incompressible FSI problems in the context of hydrodynamics. The proposed method builds on the existing immersed structural

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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potential method developed by Gil et al13,16 to overcome the restriction of having to deal with similar density ratios among

different phases or the restriction to solve single-phase flows. For the description of the various phases, a smooth representation

of the sharp indicator function is used, in conjunction with the level set method for the capturing of the fluid-fluid interfaces

and an interface Lagrangian-based meshless technique for the tracking of the fluid-structure interface. The modelling of fluid

and solid phases only differs in the definition of the deviatoric contribution to the Cauchy stress tensor. In terms of applicability

and reliability, a wide range of benchmark and applications have been presented in the numerical examples, including bubble

dynamics, hydrodynamics, and FSI with free surfaces. These problems are assessed to prove the robustness and flexibility of

the proposed computational methodology. Extension of this framework to a 3-dimensional parallelised version in conjunction

with a more efficient Runge-Kutta–based coupled time integrator along with a complete Eulerian description of the deformable

solid via an extended set of conservation laws are the next steps of our work.
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