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Abstract 

A study has been made of the decay of the trapped  magnetisation in superconductors when exposed to a 
crossed field.  Numerical results have been compared with the theory of Brandt and Mikitik (4) which 
solves the problem for a thin strip superconductor. FlexPDE with the A formulation and COMSOL with 
the H formulation were both used. Simulations of a strip with a cross section aspect ratio of 20 showed 
good agreement with theory both for the case of a transverse field larger than the transverse penetration 
field and for one smaller. In the latter case the magnetisation saturates as predicted, however the 
simulations show a slow decay after many cycles.   In the case of stacked YBCO tapes the movement of 
flux lines is very small and the effects of the reversible motion were investigated.   This can decrease the 
decay initially for very thin decoupled tapes, but cause a steady decay after very large numbers of cycles.  
Simulations on stacked strips showed that the decay constant increased approximately linearly with the 
number of strips.  When combined with the theory for one tape this can explain the very slow decay 
observed in previous experiments.    
Experimental results were qualitatively in agreement with theory and simulations but showed some 
discrepancies.  However there are a number of differences between the experimental situation and theory 
so good agreement is not expected.  
 
 
1.  Introduction 
In most applications of bulk superconductors using trapped fields the bulk will be exposed to external 
fields which will change in both angle and magnitude.  While changes in in magnitude are easily 
incorporated in the Bean model, changes in angle lead to much more complex situations, in many cases 
involving flux cutting and force free configurations.  However many experimental measurements have 
shown that in general trapped fields are always reduced by the application of crossed fields and  this 
effect may limit the application of bulk superconductors in electrical machines.  Most of the experiments 
were at relatively high fields compared with the crossed fields and directed at elucidating the physics, 
rather than practical applications of bulk superconductors in motors and generators.  In this paper we 
consider geometries in which the induced currents are mostly perpendicular to the fields so that the 
standard Bean model can be applied. 
One of the first observations was that of Sychev et. al. (1), who applied an oscillating field to a wire 
carrying a current  and observed a DC  voltage. Sakamoto et. al. (2) used a thin film carrying a current in 
an applied field and measured the decay of the trapped magnetisation when a transverse field was applied, 
as in this paper.  They showed that the flux lines pivoted about two points alternately and 'walked' out of 
the film, a bit like penguins heading for their breeding grounds in the Antarctic.  They proposed an 
approximate theory which assumed a uniform current density in the film.  The DC voltage generated by 
an AC field was termed the 'dynamic resistance' and the clearest explanation of this in in reference (3), 
albeit,  for a rather different geometry, i.e. a field parallel  to the trapped field in the solenoid. This is 
described in more detail in §2.  A complete theory for a thin strip was published by Brandt and Mikitic 
(4), and this will be compared with modelling and experiments below. 
The discovery of high Tc, superconductors, and their processing into bulk pellets, made experiments much 
easier. Vanderbemden et. al. (5) measured the collapse of the trapped magnetisation where a cross field 
comparable to the trapped field was applied to an YBCO bulk. It was found that the magnetisation was 
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greatly reduced within a few cycles.  The results were compared with a numerical 2D model and were in 
qualitative agreement.  However the decay was a factor of five slower than predicted by simulations.  
Experiments on stacked YBCO tapes showed a remarkably low decay rate, even in cross fields many 
times larger than the parallel field required to penetrate the  YBCO layer (6,7).   On the other hand Celebi 
et. al. performed similar experiments and modelling on stacks of BSCCO tapes and found agreement 
between the decay and the modelling (8).   The experimental situation is therefore somewhat confused.   
The most relevant theory is that of and Brandt and Mikitik (4), although it was developed for a rather 
different context.  In their paper they showed how shaking flux lines could reveal the reversible 
magnetisation by reducing the trapped magnetisation to zero.  However it makes clear the physics of the 
process and the most relevant parameters for the purposes of predicting the decay of a trapped 
magnetisation.  The most important are the aspect ratio and the ratio of the transverse penetration field to 
the applied transverse field. 
 
2. The Dynamic Resistance and Current Distribution 
2.1  The Bean model in slab geometry. 
The principle as described in (2) is illustrated in fig.1.  This shows the Bean model distribution in a slab 
carrying a current less than critical, which then has a parallel field Bo which is larger than the self field,  
applied to it.  The field distribution is in red in fig.1a.    
 
 

 
 Fig.1a   First a current, then Bo, then -Bo are applied.           b) The field -Bo is raised to Bo. 
 
Now suppose we oscillate the applied field by a small amount along the purple dotted lines in fig.1a.  The 
field penetrates from each side, but does not reach the point where J changes sign, the cusp of the field 
distribution.  In this case the loss is just the same as if there were no current flowing. 
However if the amplitude is now increased until the two critical states on the left side merge there is a 
sudden change in the loss.  As Bo is further reduced all the flux up to the right hand cusp moves out of the 
sample to the left, and the field distribution follows the lower blue curve. The cusp is a position where 
E=0 and no flux crosses it. It is a distance x from the centre where x=wI/Ic. 
If we now bring the applied field up to its original value the reverse process takes place.  When the 
critical states on the right merge the field distribution in red moves up until we reach the starting point in 
fig.1a. Flux moves in from the right to fill the material up to the cusp on the left. 
The result is that on each cycle flux is effectively pumped from right to left creating a DC component to 
the electric field, which is termed the 'dynamic resistance'.  The electric centre, where E=0,  switches 
discontinuously between the two cusps of the critical state on each cycle and the flux is transferred from 
right to left on both up and down parts of the cycle.   
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The threshold amplitude at which the change takes place is the current dependent penetration field.   It is 
easily calculated from the Bean model and varies linearly from zero at the critical current to the usual 
penetration field Bp=µojcw where w is the half width and jc the critical current density.  The current 
dependent penetration field is Bp(I)=Bp(1-I/Ic).   In this geometry it can be applied to a slab carrying a 
constant current, or approximately to a solenoid carrying a persistent current.  Note that the penetration of 
the currents due to the applied field is w(1-I/Ic) and is independent of the amplitude of the oscillating field.   
Penetration is small if the current is close to critical, even if the field applied is much greater than the 
penetration field. The magnetic field however penetrates right into the sample.  This apparent 
contradiction is due to the fact that the current plus a small part of the oscillating field current saturates 
the sample with the critical current  so that further changes in field can penetrate the whole sample.  This 
effect is important in the strip geometry used in this paper and discussed below.  
In a solenoid the results are that, since a trapped field implies the wire is carrying its critical current, 
initially the current dependent  penetration field is zero and flux is transferred out on every cycle.  
However this reduces the field in the solenoid, and hence also the current, so that at some point the field 
drops to the current dependent penetration field and no further decay takes place. However if the 
amplitude is greater than Bp=µojcw the solenoid field decays to zero. 
Brandt and Mikitik went to the opposite geometry (4) and considered a long very thin strip of 
superconductor with a perpendicular trapped field exposed to a ripple field in the yz  plane  as in   figs.2-4. 
This is the only geometry which can be entirely explained by the Bean model since all currents are 
perpendicular to the field, except at the ends. 
 
3. The Brandt and Mikitic Theory 
In  ref(4)  Brandt and Mikitic show how the shaking of flux lines by a crossed field leads to the decay of a 
trapped magnetisation.   This is for the case of a long thin strip with the trapped field normal to the strip, 
so is exactly what is needed to explain the decay of the trapped field in superconducting tapes.   One 
difference is that they assume a large constant applied field normal to the tape.  This allows an attractive 
interpretation in terms of flux lines 'walking' out of the sample, a picture first suggested by Sakomoto et. 
al. (2). 
The result is independent of this applied normal field so can be applied to the trapped field in tapes where 
there is no other field in this direction.  This is to be expected since any solution based on the Bean model 
with a constant jc is independent of any applied constant field. 
 
3.1. Current Distributions 
Figure 2 shows the currents in a strip, long in the x direction, with a trapped field in the z direction.   
Figure 3 shows the currents if a field parallel to  the surface is applied, with no trapped field.  The applied 
field is greater than the penetration field in this direction.   

   
Fig 2.  Currents for a trapped Bz                                          Fig.3 .  Currents for a parallel field. 
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Figure 3 shows the currents when a cross field is applied to a sample with a trapped field. Where the 
induced currents are parallel to the trapped currents there is no change, since the currents are already 
critical.   

 
 

Fig. 3.  A trapped field with an applied cross field. 
 
Where the induced currents are antiparallel to the trapped currents, currents in the opposite direction are 
induced.  Although the applied field is greater than the penetration field these do not penetrate to the 
centre, but to a much smaller distance.  This is partly because reversing these currents requires twice the 
field to generate them.  However the penetration distance is much smaller than even that implies.  This 
can be seen from fig.1, which is for a different geometry, but the same argument applies to the generation 
of the critical state.  The cusp where the current reverses is at a distance wI/Ic, from the centre,  so the 
penetration of the oscillating field is w(1-I/Ic) where I is the current generating the trapped field.  Once the 
cross field exceeds the current dependent penetration field, which is when it penetrates this distance, the 
sample is saturated and further increase in field increases the field everywhere uniformly, so there is no 
change in the current distribution. 
 
3.2.The  Vortex Picture. 
Brandt and Mikitik assumed a thin strip in the xy plane and a large applied field in the z direction, the 
direction of the trapped field.   This leads to the 'walking' motion described in (2).  The process is 
illustrated in fig.5.   At the cusps of the current distribution in fg.1 there is no electric field so the flux 
does not move.  This position changes discontinuously on each cycle.  For the strip geometry these points 
are pivot points about which flux lines rotate.   As the pivot point switches from one side to the other the 
flus lines 'walk' out of the sample. For the trapped field situation described in this paper there is no 
imposed large external field so this picture does not work, but the conclusions are the same.  
 
 

 
Fig. 5. A flux line follows 0, 1,2,3 and moves to the right. 
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We define J(x) as the sheet current , i,e the current integrated across the superconductor at a point x.  Jc is 
the maximum sheet current and Jc=2jcd where d is the half width.  The transverse penetration field is 
 Bp=µo jcd=µoJc/2 and the applied transverse field is BT. 

The distance moved per cycle is  Δx = 2J
jcBz

BT − Bp (J )⎡⎣ ⎤⎦  and  the mean velocity gives the DC component 

of the electric field, which reduces the trapped current and field.  The current dependent penetration field 
is Bp (J, x) = µo(Jc− | J(x) | /2) . The trapped moment is Mo=-w2 Jc. 
Up to this point there is a close parallel between the expressions for the current distributions for the cases 
of field parallel and normal to the strip.   The difference arises in calculating the effect of the electric field 
over a cycle on the change in current.  In the case of fig. 1 it is relatively easy to relate the decrease in 
current to the flux transferred, but this is more difficult in the thin strip geometry and requires a numerical 
solution to an integral equation.   The results are shown in fig. 2   of ref. 4 and can be summarised as 
follows.   
Transverse fields much lower than the trapped field are unlikely to be of much practical importance but  
for fields comparable to, but less than, the penetration field Bp, the magnetisation drops within a number 
of cycles,  which is about w/4d,  to a value Ms=Mo(1-BT/Bp).  For transverse fields larger than the 
penetration field Bp the magnetisation decays exponentially with a characteristic number of cycles no 
where  

 no =
wBp

1.28πd BT − Bp( )   (1.1) 

It can be see that for thin tapes with Bp<<BT the decay constant depends on the product of the ratio of  Bp 
to BT multiplied by the aspect ratio. In other words, although in general for a typical puck a transverse 
field greater than the penetration field in the transverse direction will cause a collapse of the 
magnetisation within a few cycles,  if the sample is very thin, as in a tape , the decay is much slower. 
The theory shows it is not possible to model the decay using a thicker film by lowering the current 
density in proportion.  The aspect ratio and ratio of BT to Bp  are two independent parameters. 
Another important result is that the decay time does not depend on the large applied z field which was 
used in the derivation, and to describe the walking motion.  We can therefore apply the theory to a 
trapped magnetisation with no applied field.  There should be no frequency effect, although one was 
observed experimentally in ref (6), even at low frequencies. 
 
4. Comparison  with FE  analysis. 
4.1  Large Transverse Field 
A comparison between the Brandt Mikitik theory and FE modelling was first made with long strip with a 
rectangular cross section.  The width was 10mm and the half thickness 0.5mm.  This used FlexPDE  and 
the A formulation.  This method uses a parameter Ao which is related to the distance the flux lines can 
move reversibly.   It is described in detail in ref. (6).  It uses an average force-displacement curve for the 
interaction between vortices and the pinning centres.   This consists of an initial linear section up to a 
certain displacement, beyond which the force saturates at BJc.  Since the displacement of the flux lines is 
proportional to the vector potential the balance between the Lorentz force and the vector potential leads to 
the partial differential equation curlcurl(A)= µojc(1-exp(-A/Ao)).  The solution to this gives the critical 
state directly without having to invoke a time dependence, or V-I characteristic. The ideal critical state is 
reached in the limit of Ao tending to zero.  For the critical state regime the addition of a uniform constant 
field makes no difference to the equations, so the results are inevitably independent of the applied field 
except in so far as it affects jc.  This is in agreement with the theory. This sample with an aspect ratio of 
20 was thin enough for the theory to apply, but not so thin that it caused difficulties in convergence to a 
solution.  
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Figure 6 shows the decay of the relative magnetisation M/Mo for a cross field of 300mT.  The critical 
current density assumed was 104A/cm2 so the penetration field Bp=63mT.  BT/Bp=4.8.  The magnetisation 
is normalised, and the graph of BT is shown in arbitrary units for illustration. The theoretical characteristic 
decay constant is 0.66 cycles. The agreement between theory and experiment is excellent.   The trapped 
magnetisation vanishes within three cycles 

 
 

Fig.6. Ratio of magnetisation M to initial value Mo for BT =4.7 Bp. 
 

Figure 7a shows the current distribution at the starting point, at a cross field of 300mT, 7b at -300mT and 
7c after six cycles.  Red is plus jc and purple minus jc., The y axis is expanded to equal the x axis for 
clarity. Fig.7e shows the true geometry.  It can be seen the currents correspond qualitatively to those in 
figs. 2-4, but the sheet current varies along the sheet as predicted by the theory. 

 

                
Fig.7.    Current distributions.  a) Start                               b) Apply cross field of 300mT 
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                   c)  Apply -300mT                                                       d) After six cycles 
 

                                       
 

e)  The actual geometry at -300mT 
 
 

Figure 8 shows the flux lines at the start and at 300mT cross field.   It can be seen that because there is no 
applied normal field the 'walking flux line' picture does not work, but the results nevertheless agree with 
the theory.  

                          
Fig.8.    a)  Starting trapped lux lines                                          b)  Flux lines at 300mT cross field 

 
 
4.2 Small Transverse Field 
In figure 9a comparison is made for a lower transverse field BT=0.8 Bp. Again good agreement is seen up 
to 30 cycles.  The simulated magnetisation decays to the predicted value of Mo (1-BT/Bp)=0.2Mo. 
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Figure 9.  Magnetisation decay for lower transverse field (0.8 Bp=10mT) 
 

However for larger numbers of cycles the magnetisation did not stay constant but decayed slowly.  This is 
shown in fig. 10 where 250 cycles are plotted.  
 

 
Fig.10.  Magnetisation decay for BT=10mT and 250 cycles. 
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Figure 11 shows the current distributions. 
 

 

                                    
Fig11.  a) Starting current distribution                                                      b) 10mT cross field  
 
 

                                
                  c) After30 cycles                                                                       d)     After   200 cycles          
 

 

                        
 

e) The actual geometry after 30  cycles 
 

The reason for this decay is not clear but one possibility is that it is connected with the value of the 
parameter Ao. There are two effects.  The first is that if the flux lines are not moving far they do not 
become unpinned so that they just oscillate within their potential wells.  In this case there is no decay of 
the trapped moment.  An extreme case would be if the superconducting atomic layers were decoupled 
from their neighbours.  There is no way that a critical state can be built up within a single atomic layer so 
a field trapped in such a layer would not decay.  A similar but lesser effect will occur in layers of 
thickness comparable to the penetration depth such as in an YBCO tape.  This could cause a slower decay 
in very thin layers than predicted by the Brandt-Mikitik theory.  
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4.3.  The effect of reversible displacements  
Figure 12 compares the solution with Ao at a value small enough to give a good approximation to the 
critical state with one ten times larger.  It can be seen that at low numbers of cycles the large Ao gives a 
larger decay constant.  

 

 
 

Fig.12.  The decay of magnetisation for a small value of Ao (critical state) and one ten times larger 
 
There is however an opposite effect occurring at large numbers of cycles, when the amplitude of the 
vortex oscillation is insufficient to create the critical state.  Figure 13 shows the effect of a larger Ao on 
the decay of magnetisation after 250 cycles and it can be seen that the larger Ao causes a larger decay.  
 

 

 
 

Fig.13.  After many cycles the decay is more for large Ao. 
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This may be explained by finding the minor loops of the vortex oscillation which do not reach the critical 
state.   Figure 14  shows the force-displacement curve with a minor loop after the critical state has been 
built up.   We do not know the shape of such a minor loop in detail but we assume that the initial slope on 
any reversal is the same as the initial slope of the virgin state.  (This is interesting in itself, but seems to 
be true experimentally).  Also for large reverse displacements the curve must tend to minus one.   Using 
an exponential to bridge the gap gives the loops in fig 14.  The loops do not close, and in fact it is very 
difficult to think of any model in which the curves form closed loops if they are to approach plus and 
minus one for large displacements.  It would require a discontinuity where the curve meets the critical 
state.  The result is that the critical state decays until the current is zero.  Only at this point are the minor 
hysteresis loops symmetrical and close.  A similar effect occurs when levitated magnets are oscillated, but 
in  most cases this is a larger scale phenomenon and can be explained in terms of the critical state model. 
This shaking process is common to all hysteretic systems including permanent magnets and plastic 
deformation. It is also used by mechanical engineers to eliminate frictional effects.   Another example of 
this general result  is the decay of the trapped field in a solenoid illustrated in fig.1.  The effects are 
however normally not very great and it remains to be seen if they are relevant to shaking in 
superconductors.  The best measurements of the reversible limit in YBCO are in ref. (10) which found 
distances of only a few nanometres.  This seems a bit small to explain the effects.   

 
 

Fig.14  Minor loops do not close until the magnetisation is reduced to zero. 
 
 

5.Experimental Results 
 
5.1. Bulk Samples 
A number of experimental results were compared with the theory and simulations.  It must be recognised 
that the experimental situation is rather different from the theory.  This is a 2D theory applied to a long 
strip while most experimental samples were roughly square in the xy plane.  Also there were none 
available of the aspect ratio in the simulations above.  Another difference is that  what was measured is 
the peak trapped field rather than the magnetisation, which is more easily  calculated in the theory. The 
peak field is available from the simulations, but has a sharp peak near the centre so it is easy to get an 
inaccurate value experimentally. 
The material is assumed isotropic, which can affect short samples, and also jc is assumed constant and 
uniform whereas in a one micron YBCO film a large part of the current is probably carried on the 
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surfaces.   For all these reasons we can only expect qualitative agreement, but it is still useful to see to 
what extent existing experiments agree with the theory in order to guide a more directed program. 
 
 

  
Fig.15   Flux lines in a puck. 

 
Figure 15 shows the cross section of a puck of diameter 16mm and total thickness 8mm.  for which the 
decay was measured.   

 

 
 

Fig.16  The decay of the central trapped field in the puck. 
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A simulation was done assuming an infinite strip with the same cross section.  The critical current density 
was calculated from the peak surface trapped field and the penetration field derived.  In this case 
Bp=600mT. The transverse field was  BT=120mT. the  ratio is  0.17 so the theory predicts a relative 
saturated magnetisation of 0.83.   The simulation shows a sharp drop over the first few cycles and 
saturation at about 0.5, although it continues to decrease. The experiments show a continuous and much 
slower decrease.   Since the aspect ratio is 0.5 we do not expect the Brandt-Mikitic theory to be accurate, 
but with an aspect ratio of 2 we expect a collapse to the saturation value within a few cycles as observed. .  
 
5.2. A Single Tape 
 

 
 

Fig.17a.  The decay of the peak field a single tape    

 
17b. The first few cycles of fig.17 
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Figs 17a and 17b show the experimental ratio of the trapped central field to the starting value  in a single 
tape in a crossed field of 120mT.  The sample was a 12mmx12mm square of Superpower tape with an Ic 
of 300 A.  If jc is independent of B this implies a penetration field Bp=15.7mT and a trapped central field 
of 134mT.   The experimentally observed trapped field was 30mT.   There are two possible reasons for 
this discrepancy.  One is that in a transport measurement the field is mostly around Bp but the trapped 
field for constant jc is 20 times higher.  This field will reduce jc significantly and lead to a lower trapped 
field than expected.  The second reason is that in a transport measurement the field is parallel to the ab 
planes, but the trapped field is normal to them, so the jc is lower due to its anisotropy. 
If we assume a total layer thickness of 1 micron the jc is 2.5 MA/cm2. The theory predicts a decay 
constant of 225 cycles.  Figure 17 shows a reasonable trapped flux up to about 150 cycles confirming that 
the thin YBCO layer causes a longer decay time. However there is an unexpected rapid drop in field in 
the first few cycles, followed by an exponential decay with a constant of 70 cycles.   It seems likely this 
two step process is also caused by the anisotropy of jc.  Initially the field is parallel to the c direction so jc 
is low, but as soon as the crossed field is applied the field direction is mainly parallel to the tapes so jc 
increases and the decay is slower.  The variation of jc with B could also have an effect, but it is likely to 
be lower. 
 
5.3. Stacked layers 
 
This work was prompted initially by the very slow decay time of a stack of tapes reported in ref (6),  
about 1000 cycles for a stack of sixteen tapes.  Although the stacked tapes shield the interior ones from a 
perpendicular field, a parallel field can penetrate between them, so that to a first approximation they 
behave as single tapes.  The  Brandt-Mikitic theory does not cover multiple decoupled tapes, which will 
apply an inhomogeneous  and changing field to each tape.  A simulation of stacked layers using 
COMSOL and the H formulation. is shown in fig. 18.  The dimensions of the tape were  20mm wide and 
1mm thick.   It can be seen that the layers are behaving qualitatively as independent tapes.    
  

 
Fig 18   The simulated current distribution in stacks of tapes 
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Figure 19 shows the decay of trapped field for the two extremes, one tape and eight tapes. Here the 
average of the trapped field across the tape was measured, rather than the peak central field. It can be seen 
that the decay of the stack of eight tapes is significantly lower. 

 
 
 

 
 
 

Fig.19.    The simulated decay for one layer and eight layers. 
 

Figure 20 shows how the decay constant varies with the number of tapes.  It can be seen that the 
relationship is roughly linear.   

 

 
 

Fig.20  The decay constant as a function of the number of tapes. 
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If we suppose the same holds for the YBCO tapes with a 1 micron layer for which the theory predicts a 
decay constant of 225 cycles the stack of sixteen would have a decay constant of  3600 which is actually 
larger than observed.   However with many layers the field stays parallel to c for much longer so the 
effective jc will be lower and the decay faster.   
 
6. Conclusions 
 
Experiments on the decay of trapped fields in stacks of YBCO tapes exposed to a transverse oscillating 
field had shown a remarkably slow decay constant even when the transverse field is much larger than the 
transverse penetration field (6,7).  Computer simulations based on the critical state, show good agreement 
between the Brandt-Mikitik theory and the decay of the magnetisation in long thin superconductors.   
These worked well for an aspect ratio of 20:1 in the regime where the transverse field was larger than the 
penetration field and the magnetisation decayed exponentially to zero.  However it was not possible to 
simulate the very large aspect ratio of real YBCO tapes.   When the transverse field was smaller than the 
penetration field the simulated magnetisation decreased as expected to the predicted value.  However 
after many cycles the magnetisation did not stay constant but continued to decrease slowly. 
In very thin layers the movement of vortices is much smaller than in bulk and the effect of the reversible 
region was investigated.   While movement is in the reversible range there is no critical state built up and 
so no decay.  This can occur with very thin sheets. On the other hand there is a general principle that 
minor hysteresis loops do not close in the critical state so after many cycles the critical state must decay.  
Whether these effects are large enough to be observed remains to be seen, but they are confirmed in 
principle by simulations. 
The simulations confirm the theoretical prediction that the decay in very thin sheets is slow, even if the 
applied transverse field is much greater than the transverse penetration field.   They also show that the 
decay constant increases roughly in proportion to the number of tapes in a stack.  These results can 
explain qualitatively the very slow decay of the magnetisation in refs (6,7). 
The experimental situation is more complex.   The measured decay constants are qualitatively in 
agreement with both simulations and theory.  In a bulk with Bp>BT the simulation shows a rapid drop over 
two cycles to the saturated value, followed by a slow further decrease.  The theory predicts a similar rapid 
drop to the saturated magnetisation but no further decay.   The experiments show a continuous decay over 
about 30 cycles.  On the other hand for a single YBCO tape with Bp<BT the theory predicts a smooth 
decay with a constant of 200 cycles.   However the experiments show a sharp drop in the first few cycles 
followed by a decay over 70 cycles.  This discrepancy may be due to the anisotropy of jc and the change 
in angle of the field. 
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