Skip navigation

Indoor localization using multiple wireless technologies

Indoor localization using multiple wireless technologies

Hossain, A.K.M. Mahtab, Van, Hien Nguyen, Jin, Yunye and Soh, Wee-Seng (2008) Indoor localization using multiple wireless technologies. In: 2007 IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems. IEEE, pp. 1-8. ISBN 978-1-4244-1454-3 ISSN 2155-6806 (Print), 2155-6814 (Online) (doi:

Full text not available from this repository.


Indoor localization techniques using location fingerprints are gaining popularity because of their cost-effectiveness compared to other infrastructure-based location systems. However, their reported accuracy fall short of their counterparts. In this paper, we investigate many aspects of fingerprint-based location systems in order to enhance their accuracy. First, we derive analytically a robust location fingerprint definition, and then verify it experimentally as well. We also devise a way to facilitate under-trained location systems through simple linear regression technique. This technique reduces the training time and effort, and can be particularly useful when the surrounding or setup of the localization area changes. We further show experimentally that because of the positions of some access points or the environmental factors around them, their signal strength correlates nicely with distance. We argue that it would be more beneficial to give special consideration to these access points for location computation, owing to their ability to distinguish locations distinctly in signal space. The probability of encountering such access points will be even higher when we denote a location's signature using the signals of multiple wireless technologies collectively. We present the results of two well- known localization algorithms (K-Nearest Neighbor and Bayesian Probabilistic Model) when the above factors are exploited, using Bluetooth and Wi-Fi signals. We have observed significant improvement in their accuracy when our ideas are implemented.

Item Type: Conference Proceedings
Title of Proceedings: 2007 IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems
Additional Information: Date of Conference: 8-11 Oct. 2007
Uncontrolled Keywords: Location Systems; Location Fingerprint; SSD; Interpolation; Anchors; Localization; Bluetooth; Wi-Fi
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science > School of Computing & Mathematical Sciences (CMS)
Faculty of Engineering & Science
Last Modified: 04 Mar 2022 13:08

Actions (login required)

View Item View Item