
1Scientific Reports | 6:35724 | DOI: 10.1038/srep35724

www.nature.com/scientificreports

Asymptotic theory of time-
varying social networks with 
heterogeneous activity and tie 
allocation
Enrico Ubaldi1,2,3, Nicola Perra4,5, Márton Karsai6, Alessandro Vezzani2,7, Raffaella Burioni2,3 & 
Alessandro Vespignani1,5

The dynamic of social networks is driven by the interplay between diverse mechanisms that still 
challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in 
shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially 
active and ii) establish a new social relationships with their alters. Here, we empirically characterise 
these two mechanisms in seven real networks describing temporal human interactions in three 
different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the 
individuals’ social activity and their strategy in choosing ties where to allocate their social interactions 
can be quantitatively described and encoded in a simple stochastic network modelling framework. The 
Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide 
an explicit description of both the system dynamic and the dynamical scaling laws characterising 
crucial aspects about the evolution of the networks. The analytical predictions match with accuracy 
the empirical observations, thus validating the theoretical approach. Our results provide a rigorous 
dynamical system framework that can be extended to include other processes shaping social dynamics 
and to generate data driven predictions for the asymptotic behaviour of social networks.

Unveiling the mechanisms shaping the evolution of social networks is a challenging task that has captured the 
attention of researchers since many decades. Nowadays, the availability of large, high quality and time-resolved 
datasets is providing unparalleled opportunities to deepen our understanding of social dynamics1–5. A close 
inspection of such datasets shows that ties between individuals continuously change in time, and their dynamics 
are driven by different mechanisms that generate complex topological and dynamical features5–10.

The establishment of social ties is costly11–14, but associated to benefits15 for single actors and groups as it 
allows to access and gain social capital16,17. In the development and maintenance of social interactions, individuals 
invest heterogeneously according to diverse strategies. Firstly, not all individuals are equally socially active4,18–22. 
Indeed, people show different propensity to social interactions, resulting in a diverse number of contacts in a 
given observation time18,23. Secondly, individuals may allocate social interactions in different ways, either by 
favouring the strengthening of a limited number of strong ties (bonding capital) or by the exploration of weak ties 
opening access to new information and communities (bridging capital)24–29. Interestingly, recent works showed 
that these traditional findings apply not only to real world social-networks but also in workplaces30,31, online 
social networks32–34 and collaboration networks35–38. The origins of such heterogeneities are rooted in the trade 
off between competing factors, such as the need for close relationships15, the efforts required to keep social ties11, 
and temporal and cognitive constraints12–14. These mechanisms have long been acknowledged as key factors in the 
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description of social networks39–41. In particular, they have been shown to affect their dynamical features4,23,40,42–47, 
and dynamical processes unfolding on their fabric4,39–41,48–54.

Here, we propose a dynamic network model, that generalises the recent modelling scheme of 
activity-driven-networks23,50,55. We introduce a rule of links formation39,41,56–58 that explicitly takes into account 
heterogeneity in social activity and tie allocation. In particular, we propose a general functional form for the 
social allocation mechanism, able to fit empirical observations in seven time-resolved datasets, describing three 
different types of social interactions: scientific collaborations, Twitter mentions, and mobile phone calls. We pro-
vide a thorough statistical characterisation of activity and formation of social ties in each network and we identify 
the basic parameters defining the dynamics of ties’ evolution. Interestingly, we observe, across all the datasets, 
that, the larger the degree, the smaller is the probability of creating a new tie.

Prompted by this statistical analysis, we study the Master Equation (ME) that describes the evolution of the 
network connectivity structure of the proposed model. We solve the ME in the asymptotic regime (large network 
size and long time evolution) thus formally defining the asymptotic form of the degree distribution as well as the 
scaling relations for degree, activity, and the functions characterising the tie formation mechanism. The analytical 
solutions capture very well the empirical behaviour measured in all the analysed datasets. Furthermore, they con-
nect explicitly the evolution of social networks to the parameter regulating the emergence of social ties. The pro-
posed analytical framework is general and can be solved for statistically different activity patterns. The presented 
results have the potential to pave the way for a general asymptotic theory of the dynamics of social networks by 
progressively integrating further social mechanisms.

Results
We analyse seven datasets containing time-stamped information about three different types of social interactions: 
scientific collaborations, Twitter mentions, and mobile phone calls (see the Methods section for the details). We 
considered five scientific collaborations networks obtained from five different journals (PRA, PRB, PRD, PRE, 
and PRL) of the American Physical Society (APS), one Twitter mentions network (TMN), and one mobile phone 
network (MPN). We represent all datasets as time-varying networks, where each node describes an individual 
and each time-resolved link describes a social interaction. The nature of connections is different according to the 
specific dataset. Links might represent a collaboration resulting in a scientific publication, a Twitter mention, or 
a mobile phone call.

In order to characterise the time-varying properties of such networks, we first measure the average activity ai.  
Formally, ai is defined as the fraction of interactions of node i per unit of time and can be easily evaluated by 
counting the number of interaction engaged by the node i in the whole dataset. This quantity describes the pro-
pensity of nodes i to be involved in social interactions. Empirical measurements in a wide set of social networks 
show broad distributions of activity23,31,41,50,51. As shown in Fig. 1[A–D], we confirm these observations in our 
datasets. In particular, we find that in the APS and MPN datasets the activity is well fitted by a truncated power 
law, while in the TMN we find a Log-Normal distribution. We refer the reader to the Methods and Supplementary 
Information (SI) Section 1 for the details.

Ties allocation.  The activity ai sets the clock for the activation of each node. However, when active, nodes 
might allocate their ties either exploring new connections or reinforcing already established one58. In order to 
characterise the mechanism regulating the establishment of ties, we group nodes in classes, labeled b, considering 
their activity a and final degree k (i.e. the cumulative number of distinct individuals contacted by each node at the 
end of the observation period). In other words, we assign nodes to classes b containing actors with statistically 
equivalent characteristics, i.e. nodes that engaged a similar number of interactions and that feature a comparable 
cumulative degree in the observation period (see SI for details). For each bin (class) b, we measure the probability 
pb(k) that, the next social act for nodes that have already contacted k distinct individuals, will result in the estab-
lishment of a new, k +​ 1-th, tie. The pb(k) function describes the social tie allocation process quantifying the incli-
nation for a node to establish (when active) a new connection instead of re-connecting to an already contacted 
alter thus reinforcing a previous link. As shown in Fig. 1[E–H] pb(k) is, in general, a decreasing function of k. This 
observation resonates with previous research and empirical findings suggesting that the number of social interac-
tions of an ego is bounded by cognitive and temporal constrains11–14. Indeed, the larger the number of alters in a 
social circle, the smaller the probability that the next social act will be towards a new tie.

The empirical findings suggest that the mechanism governing the allocation of social ties follow a general form 
that can be written as:
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In this expression, the βb modulates the tendency to explore new connections, while the cb defines the intrinsic 
characteristic limit of the individual to maintain multiple ties. Although one could imagine more complicate ana-
lytical forms, we use this parsimonious approach to characterise the different datasets. Interestingly, we find that 
in the five co-authorship networks and Twitter, the exponent β is the same regardless of the class b. Furthermore, 
the values of cb are typically peaked around a well defined value (see SI for details). More precisely, we can rescale 
the proposed functional form in each class b by defining the variable xb =​ k/cb, yielding

= + .β −p x x( ) (1 ) (2)b b b
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In the presence of a single exponent β characterising the system, as shown in Fig. 1[I–K], all empirical curves 
do collapse on the reference function (1 +​ x)−1. The data collapse however is not occurring in the case of the MPN 
dataset. In the latter we find a more heterogeneous scenario in which different nodes’ classes are characterised by 
different values of βb and cb, see Fig. 1L. Note that in Fig. 1[I–K] some curves deviate from the reference function 
due to a poor statistics of the points (i.e. a small number of measures of the pb(k) for each value of k). We do not 
show the pb(k) estimation error for clarity. Nevertheless, these fluctuations are marginal and due to a limited 
amount of events. In fact, the proposed functional form captures the pb(k) behaviour for the systems’ bulk and 
allows us to develop a model able to correctly predict the network evolution.

The different behavior of pb(k) between the paradigmatic cases of TMN and MPN is explained in Fig. 2A,B. 
The bottom plots show the quality of fit for each value of β and for each bin b (the bluer, the better). In particular 
the scale of blue tones represents χ χ βb( )/ ( )bopt

2 2 , where χ β( )b
2  is the sum of the squared normalized residuals 

found when fitting the empirical pb(k) curve with Eq. ( 1) (in the fitting procedure we keep fixed βb =​ β and we 
optimize over cb), while χ b( )opt

2  is the minimum of χ β( )b
2  as a function of β in the bin b.

Figure 2A, shows a single value of β, β . 0 48opt , to fit most of the curves in the TMN dataset ( βopt is the best 
overall fit of the reinforcement function, see SI for details). On the other hand, in Fig. 2B we find a different 
behavior for the MPN dataset: there is not a single value of β fitting most of the bins. Indeed, as we increase the 
final degree of the bins, the value βb giving the best fit for each bin b lowers. This difference is evidenced in the 
upper plots where we plot the residuals as computed for different sub-sets of nodes bins selected in the system. In 
the MPN dataset the best fits fall in a wide range of β values, from β . 1 2min  to β . 2 5max . To further support 
this result we also show in Fig. 2C,D the box-plots of the optimal values of βb for each bin b. Specifically, we divide 
all the bins in four groups depending on their final degree and display the distribution of the optimal βb for each 
group of bins. In the TMN dataset (Fig. 2C) βopt =​ 0.48 fall in the lower-upper quartiles range for all the groups. 
On the other hand, in the MPN dataset (Fig. 2D) in the high degree bins βopt does not fall in the lower-upper 

Figure 1.  (A–D) The activity distribution F(a) for PRB (A), PRL (B), TMN (C) and the MPN (D) dataset. The 
solid lines represent the fit F(a) with the best functional form for each dataset. The latter are a truncated power 
law for the PRB, PRL and MPN case, while we find a lognormal for the TWT case (see Methods and SI Section 2 
for details). In these plots we show the data starting from the lower bound of the fit, including all the statistically 
significant bins. (E–H) The measured pb(k) curves for selected nodes classes belonging to the PRB (E), PRL (F), 
TMN (G) and MPN (H) datasets. Each data sequence (different colours and markers) corresponds to a selected 
nodes class of the system, with the average activity of the class increasing from the lower to the upper curves. As 
one can see different nodes classes feature a differently behaving attachment rate function pb(k): for some nodes 
the probability to attach to a new node quickly drops to 0 at degree ≲​10 while for some others the attachment 
probability is still ≳​0.1 even at very large degree (k ~ 102). (I–K) We rescale the attachment rate curves of all 
the nodes classes of the PRB (I), PRL (J) and TMN (K) datasets by sending k →​ xb =​ k/cb and then plotting the 
pb(xb)1/β, where β has the same value for every curve (see legends for the β values). For the MPN dataset (L) 
we show the original pb(k) curves belonging to a single nodes class with their fit. The resulting values of βb are 
shown in the legend. The latter are found to fall in the 1.0 ≲​ βi ≲​ 2.5 range.
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quartile interval. Moreover, in the last bin subset βopt falls outside the range of βb values. In the SI we provide 
further details on the fitting procedure.

Dynamic network model.  By leveraging on the empirical evidence gathered, it is possible to define a basic 
generative model of network formation based on two stochastic mechanisms. Let us define the network  con-
taining N nodes. At each time step a node i is active according to a probability ai drawn from distribution 
F(a)23,31,41,50,51. Once active, the node i (assuming that has already contacted k different agents) will contact a new, 
randomly chosen node with probability = + β−p k k c( ) (1 / )i i

i. Otherwise, with probability 1 −​ pi(k), it will inter-
act with an already contacted node chosen at random among its neighbours. Interactions are considered to last 
one single time step. For this model it is possible to write explicitly the Master Equation (ME) describing the 
evolution of the probability distribution Pi(k, t) that a node i has degree k at time t:
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In the above equation the sums in j ~ i and j i  run over the nodes already contacted and not yet contacted by 
i, respectively. kj describes the degree of each node j. Moreover, we work in the a ≪​ 1 approximation, so that we 
assume that only one node is active for each evolution step. The first two terms on the right hand side of (3) 
account for the increment of the number of nodes having degree k − 1. The former occurs when node i having 
degree k −​ 1 gets active and contacts a new node with probability aipi(k − 1). On the other hand the latter one is 
effective when node i gets contacted by node j of degree kj (that never got in contact with i before) that activates 
and attaches to node i with probability ajpj(kj)/(N −​ kj). In the latter, the 1/(N −​ kj) factor accounts for the 

Figure 2.  The heat-map-like quality of fit χ χ βb( )/ ( )bopt
2 2  (bottom plots, see SI for details). We show the 

quality of fit as a function of the exponent β (x-axes) and different nodes bins b sorted by their final degree  
(y-axes) for (A) the TMN and (B) the MPN datasets, respectively. The color-map (see colorbar for values) is 
proportional to χ χ βb( )/ ( )bopt

2 2 , being χ β( )b
2  the sum of the squared residuals of bin b at a given β and χ b( )opt

2  
the minimum value of this sum for bin b. This ratio represents the goodness of fit: the darker, the higher. The 
cyan vertical line is the optimal value of β, βopt, that gives the best overall fit of the pb(k) reinforcement function 
(see SI for details), while the other vertical lines represent the same quantity evaluated in the three black boxes 
corresponding to different final degree intervals. (Top plots) The overall goodness of fit χ2(β) (up-filled curve) 
and the same quantity for the three final degree intervals (see Supplementary Information for details). For (A) 
Twitter we find a single value of βopt =​ 0.48 to fit most of the curves, while in the MPN case (B) a single 
βopt =​ 2.14 does not catch all the curves. We also show a “guide-to-the-eye” to highlight this feature (yellow 
dashed line). In the box-plots on the right we show the distribution of the optimal β for each nodes bin b for the 
TMN dataset (C) and the MPN one (D), having grouped the bins accordingly to their final degree k. The boxes 
extend from the lower to the upper quartile, while whiskers show the range of data (outliers are shown as blue 
points). We also plot the median of each bins group (blue lines inside the boxes) and the overall optimal 
exponent βopt (solid orange lines).
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probability of j to exactly select node i amongst the N −​ kj nodes outside of the j's neighbourhood of size kj. 
Likewise, the third and fourth terms of the r.h.s. of the equation account for the conservation of the number of 
nodes of degree k. This is achieved either when node i gets active and contacts one of its neighbours with proba-
bility ai(1 −​ pi(k)), or when i gets contacted by one of its neighbours. The last line of Eq. (3) accounts for the pos-
sibility in which no node gets active in the current evolution time step, thus conserving the Pi(k, t). Given the 
a ≪​ 1 approximation this term reads ∏ − − ∑a a(1 ) 1j i j j.

Asymptotic theory for networks with βb = β.  Let us focus on networks characterized by a single expo-
nent β. We will consider the large time and degree 1 ≪​ k ≪​ N limits, so that k can be approximated by a continu-
ous variable and N −​ k ≈​ N. Clearly, we expect that such a regime holds for large time but still far from the k ~ N 
saturation regime. By neglecting the sub-leading terms of order 1\t we can thus write the continuous asymptotic 
version of Eq. (3) as
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This equation can be solved explicitly (see SI for details), yielding the asymptotic form:
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where A is a normalisation constant, C a constant and B(ai, ci) a multiplicative factor of the t1/(1+β) term that 
depends on the activity ai and ci of the considered agent. Its implicit expression is given in the SI, however 

∼ β+B a c a( , )i i i
1/(1 ) for large ai.

A first general result concerns the evolution in time of the average degree 〈​k(a, t)〉​ of nodes belonging to a 
given activity class (where we dropped the i index) that follows the scaling laws

∝ .β+k a t at( , ) ( ) (6)
1

1

The growth of the system is thus modulated by the parameter β that sets the strength of the reinforcement 
of ties. In the limit case β =​ 0 the growth would be linear. Indeed, the reinforcement of previously activated ties 
would be zero and nodes would keep connecting randomly to other vertexes, thus increasing their social circle. In 
the opposite limit β →​ ∞​ each node would create, and constantly reinforce, just one tie, i.e. the first established. 
In the six datasets described by a single β value, we observe the range 0.13 ≤​ β ≤​ 0.48 that indicates a sub-linear 
growth of the social system. In Fig. 3 we find a very good agreement between the analytical prediction of Eq. (6) 
and the empirical 〈​k(a, t)〉​ curves, obtaining the first empirical validation of the modelling framework proposed 
and its ability at capturing the network formation dynamics.

Furthermore, Eq. (6) connects, at a given time t, the degree k and the activity a of a given node, as ∝ β+k a
1

1 . 
Thus, given any specific activity distribution F(a), we can infer the functional form of the degree distribution ρ(k) 
by substituting a →​ k1+β, finding:

ρ ∝ .β β+k dk F k k dk( ) ( ) (7)(1 )

It is important stressing that the analytical framework is not limited to a specific functional form of the activ-
ity. Indeed, with an arbitrary functional form of F(a), Eq. (6) gives us the possibility to predict the behaviour and 
parameters of the corresponding degree distribution. In Table 1 we report the degree distribution predicted by 
Eq. (6) for activities following a common set of heavy-tailed distributions, i.e. power-laws, truncated power-laws, 
stretched exponentials, and log-normal, that are usually found in empirical data. In Fig. 3[E–G] we compare the 
degree distributions ρ(k) predicted by Eq. (7) with real data. Interestingly, also in this case the functional form 
obtained from the analytical solutions of the model fits remarkably well the empirical evidence. It is important 
to notice that ρ(k) is also function of the parameter β. In other words, the connectivity patterns emerging from 
social interactions can be inferred knowing the propensity of individuals to be involved in social acts, the activ-
ity, and the strength of the reinforcement towards previously establish ties, β. Finally it is worth remarking that  
Eqs (6 and 7) are not affected by the distribution of ci. This is an important result as it reduces the number of rel-
evant parameters necessary to define the temporal evolution of the system.

Asymptotic theory for networks with distributed β.  As we already mentioned, in the MPN dataset we 
find the evolution of social ties described by a distribution of β rather than a single value of it. This observation 
points to a more heterogeneous distribution of social attitudes with respect to the other six datasets analyzed. 
Arguably, such tendency might be driven by the different functions phone calls serve enabling us to communicate 
with relatives, friends or rather to companies, clients etc. The need to introduce different values of β in the system 
complicates the model beyond analytical tractability (see SI for details). Nevertheless, we find that the leading 
term of the evolving average degree can be described by introducing a simplified model. In this, nodes feature 
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different values of β and undergo a simplified dynamics (see the Methods section and the SI for details) that 
neglects, for every node, the effects of links established by others. In these settings, we can solve the ME and show 
that the minimum value of β, βmin, rules the leading term of the evolving average degree. In other words, we find 
that even in this case 〈​k(a, t)〉​ evolves as in Eq. (6) but with β substituted by βmin. As shown in Fig. 3D the analyt-
ical predictions coming from the simplified model find good agreement with empirical evidences of MPN dataset 
where β . 1 2min  as evidenced in in Fig. 2. It is interesting to notice that the nodes characterized by βmin are those 
with the weak tendency to reinforce already established social ties. They are social explorers58. Notably, our 
results, indicate that they lead the growth of average connectivity of the network.

Discussion
The empirical finding presented here shows clearly that the “cost” associated to the establishment of a new social 
tie (i.e. the 1 −​ p(k) probability to contact an already contacted node instead of a new one) is not constant but 
function of the number of already activated connections. This supports the idea that social capabilities are limited 
by cognitive, temporal or other forms of constraints12–14. By framing such empirical finding in a simple stochastic 
model of network formation, we derived a general asymptotic theory of network dynamics and extracted the 
general scaling laws for the behaviour in time of average degree and degree distribution.

This work introduces some advances in the fields of time-varying networks and more in general in social net-
work modelling. It proposes a thorough measure and characterisation of social tie allocation and defines a general 
functional form for this process that fits seven datasets describing three different types of social acts.

Figure 3.  (A–D) The rescaled 〈​k(at)〉​ curves for selected nodes classes belonging to the PRB (A), PRL (B), 
TWT (C) and MPN (D) datasets. The time of the original data (symbols) is rescaled with the activity value 
t →​ at. We also show the fitting curve 〈​k(t)〉​ ∝​ t1/1+β (blue solid lines) and the expected asymptotic behaviour 
(black dashed lines). In the MPN case (D) we fit using β =​ βmin =​ 1.2. (E–H) The degree distribution ρ(k) for the 
PRB (E), PRL (F), PRA (G) and TMN (H) datasets. The predicted functional form of ρ(k) found in Eq. (7) and 
Table (1) is shown for comparison (red solid lines). As in Fig. 1 we show the data starting from the lower bound 
of the degree distribution, including in the plot all the statistically significant measures of the probability density 
function ρ(k).

PDF F(a) ρ(k)
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Table 1.   The functional form of the activity PDF F(a) and the predicted functional form of the ρ(k) degree 
distribution as found in Eq. (7), i.e. by replacing a → k1+β. This substitution fixes the scale free parameters of 
the resulting distribution, i.e. the exponent of the power-law and of the k terms in the first three cases, and the STD 
σ = σ

+k b1
a  in the Log-Normal case. The free parameters over which we fit the degree distribution are: (i) the cut-off 

τ in the stretched exponential and power-law with cut-off and (ii) the γ mean value in the Log-Normal case. The 
selected PDF are, from top to bottom: power law, stretched exponential (Stret. Exp.), power law with cutoff (Trunc. 
PL) and the Log-Normal distribution.
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Furthermore, the proposed network model can be treated analytically. In particular, the asymptotic solutions 
correctly predicts the growth of average degree, and also provide new insights on social dynamics by explicitly 
connecting individuals’ activity and degree58. Remarkably, this connection does not depend on the functional 
form of the activity distribution so that the analytical results are valid for general activity patterns. Moreover, 
the model allows for the implementation of different functional form of the reinforcement mechanism p(k) 
and can be easily extended to account for more complex rules governing the evolution and emergence of social 
interactions.

The model represents a good test-bed for the study and characterisation of dynamical processes unfolding on 
top time-varying networks. Indeed, it couples two mechanisms that have been shown to deeply affect the outcome 
of dynamical processes: nodes’ activation23,50,59 and social tie allocation41,60,61.

The model comes with some shortcomings. Indeed, it does not capture the modular structure or, more in 
general, correlations beyond the nearest neighbourhood that are typical of many social networks62. In fact, 
individuals tend to organise their social circles in tight, often hierarchical, communities. These features can 
be introduced by means of more refined mechanisms as illustrated in recent work56, but they do not affect the 
results presented here as we focus on local topological quantities. The model does not capture the burstiness 
typical of social acts21,63. We consider a simplified Poissonian scheme of nodes activation. A recent extension of 
the activity driven framework, without the reinforcement mechanism acting on social ties, has been proposed to 
account for non Poissonian node dynamics64. This is the natural starting point to generalise our model to bursty 
activities. Furthermore, the model does not consider the turnover of social ties58. Indeed, in our framework 
once a social connection has been established it cannot be eliminated in favour of others. Clearly, this feature 
is of particular importance when considering social systems evolving on longer time scales, as the scientific 
journals we studied here, and might influence the measurement of the parameters describing evolution of the 
ego-networks.

Notwithstanding these limitations, the modelling framework we proposed paves the way to a deeper under-
standing of the emergence and evolution of social ties. The agreement between the analytical predictions and 
observed behaviours in seven real datasets, describing different types of social interactions, are encouraging steps 
in this direction. Finally, our results are a starting point for the development of predictive tools able to forecast the 
growth and evolution of social systems based not just of regression models or simplified toy models but on a more 
rigorous analysis of ego-network dynamics.

Methods
Datasets.  We analysed seven large-scale time resolved networks describing three different types of social 
interactions.

•	 Five networks from the APS datasets. These consider the co-authorship networks found in the Journals of the 
American Physical Society65. Specifically, the PRA dataset covers the period from Jan. 1970 to Dec. 2006 and 
contains 36,880 papers written by 34,093 authors and connected by 100,683 edges. The PRB dataset refers 
to the Jan. 1970 to Dec. 2007 period and contains 104,047 papers published by 84,367 authors which are 
connected by 416,048 links. The PRD datasets covers the same period as the PRB one and it is composed by 
33,376 papers, 21,202 authors and 60,033 edges. The PRE dataset refers to the Jan. 1993 to Dec. 2006 period 
with 24,204 papers published by 28,188 authors connected by 68,029 edges. Finally, the PRL dataset con-
tains all the 66,422 papers published between Jan. 1960 to Dec. 2006 and written by 78,763 authors forming 
299,017 edges.

•	 One network dataset describing Twitter mentions (TMN), exchanged by users from January to September 
2008. The network has 536,210 nodes performing about 160 M events and connected by 2.6 M edges.

•	 One Network dataset describing the mobile phone calls network (MPN) of 6,779,063 users of a single opera-
tor with about 20% market share in an undisclosed European country from January to July 2008. The datasets 
contains all the phone calls to and from company users thus including the calls towards or from 33,160,589 
users in the country connected by 92,784,825 edges.

Asymptotic solution of the ME for distributed βi values.  The solution of Eq. (4) found in Eq. (5) 
holds if the system feature a single value of β. As already discussed in the MPN dataset we find multiple values of 
β ranging from a minimum value, βmin to a maximum one βmax. To find a prediction of the long time behaviour 
of such a system, let us propose a simplified model in which we focus on a single agent whose parameters are ai, 
βi and ci. In this simplified version the agent can only call other nodes in the network, i.e. we neglect the contri-
bution coming from the incoming calls). In this approximation we have to solve a modified version of Eq. (3), 
obtained by discarding all the terms containing the activity aj of the nodes j ≠​ i. By repeating the same procedure 
above, we get to the continuum limit that reads:

∂
∂

= −











∂
∂

−
∂
∂







βP k t
t

a c
k

P k t
k

P k t
k

( , ) ( , ) 1
2

( , ) ,
(8)

i
i

i i
2

2

i

whose solution is similar to Eq. (5), the only differences being the value of β =​ βi and the behaviour of the B(ai, ci) 
constant (see SI Section 3 for details). Interestingly, even in this case we find an average degree 〈​k(a, t)〉​ growing 

accordingly to the exponent βi, i.e. ∝ β+k a t at( , ) ( ) i
1

1 . Now, let us create a reservoir of N distinct nodes of equal 
activity a and assign to each of them a different value of βi drawn from an arbitrary distribution P(βi). Let us also 



www.nature.com/scientificreports/

8Scientific Reports | 6:35724 | DOI: 10.1038/srep35724

group these nodes in B classes, defined so that each class i contains all the nodes featuring a similar value of β ~ βi. 
If we now let these N nodes evolve following the simplified model above, the average degree of each class i will 

grow as ∝ β+k a t t( , )i i
1

1 . Then, in the long time limit, the minimum value of βi, i.e. βmin, will lead the growth of 
the ensemble’s average degree (see SI for further details), i.e.

∝ .β+k t t( ) (9)
1

1 min

F(a) and ρ(k) distributions from real data.  We implement the method found in ref. 66 to determine the 
most likely functional form of both the activity and degree distributions. The fitting procedure is as follows: for 
each functional form of the distribution considered (power law, log-normal, truncated power law and stretched 
exponential) we first determine the xmin value, i.e. the lower bound to the functional form behaviour. The xmin 
value is defined as the value that minimises the Kolmgorov-Smirnov (KS) distance between the analytical com-
plementary cumulative distribution (CDF) and the CDF of the data. The latter are found for each value of xmin by 
computing the optimal parameters of the distribution using the maximum-likelihood estimator (MLE). Then, 
comparing the CDF(x ≥​ xmin) of the data S(x) with the analytical one S(x), we compute the KS-distance as the 
maximum distance between the two CDF, i.e. = −≥x S x P xKS ( ) max ( ) ( )d x x i imin i min

. Once all the distances are 
computed we determine xmin as the values at which the minimum distance is recorded, i.e. xmin =​ minxKSd(x) (see 
SI and ref. 66 for details). Once we compute all the parameters for all the functional forms analysed we compare 
them with the likelihood ratio test  combined with the p-value that gives the statistical significance of  (see SI 
for details). The result of this procedure gives us the best candidate for the F(a) for each dataset. We find that a 
truncated power law is the best candidate for all the APS datasets together with the MPN one. The only exception 
is the TMN that displays a Log-Normal distribution of activity (see Figs 1 and SI for details). After we estimate the 
functional form and the parameters of the activity distribution F(a), Eq. (7) gives us the possibility to predict both 
the functional form of the degree distribution ρ(k) and the values of the parameters of such a distribution (e.g. the 
α exponent in a power-law with cutoff, see Table 1 for details). The degree distribution can then be fitted by opti-
mising over the non-scale-free parameters for whose values we do not have an analytical or numerical prediction 
(e.g. the cut-off τ in a power-law with cutoff). Indeed, we are missing the value of the constant in front of the 
(at)1/1+β term in the growth of the average degree 〈​k(a, t)〉​ in Eq. (6).
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