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Key Points 38 

Questions: Are cardiovascular risk factors associated with early changes in 39 

brain blood vessel density, size and curvature, brain blood flow, and brain white 40 

matter integrity in young adults?  41 

Results: In individuals with average age of 25, vascular risk factors, including 42 

higher blood pressures and body mass index, were correlated with reduced 43 

blood vessel density, and, reduced brain blood vessel density was associated 44 

with reduced cerebral blood flow and early injury to brain cell connections.  45 

Meaning: In young adults, the structure of brain blood vessels, as well as 46 

cerebral blood flow and lesions of brain white matter, were correlated with risk 47 

factors for vascular disease, suggesting the young adult period may be a target 48 

for primordial prevention of cerebrovascular disease.   49 

  50 
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Abstract 51 

Importance: Risk of stroke and brain atrophy in later life relate to levels of 52 

cardiovascular risk in early adulthood. However, it is unknown whether 53 

cerebrovascular changes are already present in young adults. 54 

Objective: To examine relationships between modifiable cardiovascular risk 55 

factors and cerebrovascular structure, function and white matter integrity in 56 

young adults. 57 

Design, Setting, and Participants: A cross-sectional observational study 58 

completed between August 2014 and May 2016 at the University of Oxford, 59 

United Kingdom. Participants recruited through active and passive recruitment 60 

from the local community, including invitation from the Oxford University 61 

Hospitals Hypertension Service.  62 

Exposures: Clinic and ambulatory blood pressure (mmHg), body mass index 63 

(kg/m2), objective physical activity (hours/week), alcohol intake (drinks/week), 64 

smoking (pack years), peak oxygen uptake (ml/kg/min), peak exercise blood 65 

pressure (mmHg), lipid profile (mg/dL), insulin resistance and use of anti-66 

hypertension medication. 67 

Main Outcomes and Measures: Cerebral vessel density (vessels/cm3), caliber 68 

(μm) and tortuosity, brain white matter hyperintensity lesion count (number), 69 

and in a subgroup (n=52) brain blood arrival time (seconds) and cerebral blood 70 

flow (ml/100g/min) assessed by brain magnetic resonance. 71 

Results 125 participants (mean age 25±5 years, 49% female) were recruited. 72 

Cerebrovascular morphology and white matter hyperintensity count correlated with 73 

cardiovascular risk factors in univariable and multivariable models. In a risk score, for 74 

each healthier modifiable risk factor, characterised as: ambulatory blood pressure 75 
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<130/80mmHg; BMI < 25kg/m2; top tertile of cardiovascular fitness; non-smoker; <8 76 

alcoholic drinks/week; normotensive exercise blood pressure response; cholesterol 77 

<200mg/dL; and fasting glucose <100mg/dL, vessel density increased by 0.3 78 

vessels/cm3 (95%CI 0.1 to 0.5, p=0.003), vessel caliber by 8μm (95%CI 3 to 13, 79 

p=0.01) and white matter hyperintensity lesions reduced by 1.6 lesions (95%CI 0.6 to 80 

2.8, p=0.006). In subgroup analysis, cerebral blood flow varied with vessel density 81 

and increased by 2.5ml/min/100g per risk score (95%CI 0.05 to 4.98, p=0.05). 82 

Conclusions and Relevance In this preliminary study, involving young adults 83 

without clinical evidence of cerebrovascular disease, modifiable cardiovascular 84 

risk factors were associated with MR indices of cerebral vessel structure and 85 

function, and white matter hyperintensities. Further research is needed to 86 

determine the clinical importance of these findings for the primordial prevention 87 

of cerebrovascular disease. 88 

Key words: brain health, cardiovascular risk factors, young adults,  89 

 90 

  91 
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Introduction 92 

A life-course approach to understand risk of cardiovascular disease is well 93 

established1, 2 and it is accepted that changes in cardiac and vascular structure that 94 

underlie this risk emerge very early in life3, 4. Whether modifiable cardiovascular risk 95 

factors, and novel early life exposures such as birth complications, influence the 96 

early cerebrovasculature is less well studied.    97 

 98 

Cardiovascular risk closely relates to cerebrovascular injury and cognitive decline in 99 

older adults5, 6. Markers of cerebral injury in mid-life, including white matter 100 

hyperintensity lesions, predict future stroke, dementia and all-cause mortality7, 8. 101 

Progression of white matter hyperintensity lesions is faster in association with 102 

metabolic dysfunction and hypertension 9. Experimental studies demonstrate 103 

cardiovascular risk factors result in remodelling of the brain vasculature, including 104 

vessel rarefaction, reduced vessel caliber and cerebral blood flow 10. Elevated blood 105 

pressure, dyslipidemia and low fitness in early adulthood are known to predict brain 106 

health in older adult life2, 11, 12. Whether cerebrovascular morphological changes are 107 

already evident in young adults, and correlate with white matter hyperintensity 108 

lesions and risk factors at this age, is unclear.   109 

 110 

Advances in brain MRI allow automated segmentation and analysis of vessel 111 

morphology, white matter hyperintensity lesions13, 14 and blood flow15; thus making it 112 

possible to build a robust and sensitive quantification of brain health for an 113 

individual13, 14. Therefore, the objective of the current study was to use multi-modality 114 

brain imaging to test the hypothesis that cardiovascular risk profiles are already 115 

correlated with variation in vessel morphology and white matter hyperintensity 116 

lesions in young adulthood. 117 

 118 

 119 
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Methods 120 

Study design and participants 121 

This was a cross-sectional observational study completed between August 2014 and 122 

May 2016. The South Central Research Ethics Committee for the National Health 123 

Service Health Research Authority (NHS HRA) approved the study (14/SC/0275). All 124 

participants gave written informed consent. Measurements were completed at the 125 

Oxford Cardiovascular Clinical Research Facility and Oxford Centre of Clinical 126 

Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, United 127 

Kingdom. Image analysis performed using pipelines developed at the Hotchkiss 128 

Brain Institute, University of Calgary and Wellcome Centre for Integrative 129 

Neuroimaging, University of Oxford14-18.  Final data collection was completed on the 130 

31st of May 2016. 131 

 132 

Participants aged 18 to 40 years were recruited through active and passive 133 

recruitment19 including local advertising, invitation from local birth cohort studies and 134 

invitation from the Oxford University Hospital Hypertension Service. Strategies were 135 

designed to recruit adults with a heterogeneity in risk factors known to be present in 136 

young adult populations including traditional risk factors such as hypertension and 137 

more novel factors such as gestational age. Participants were excluded if they had 138 

previous cardiovascular or cerebrovascular events, renal dysfunction or metabolic 139 

disease including diagnosis of hyperlipidaemia. Participants with secondary causes 140 

of hypertension such as renal vascular disease, vascular anomalies or adrenal 141 

dysfunction were excluded following assessment in Oxford University Hospital 142 

Hypertension Service. Recruitment was continued to 125 participants to ensure over 143 

90% power at P=0.05 to identify a 0.70-SD difference in vessel density, vessel 144 

caliber and white matter lesion count between lowest and highest cardiovascular risk 145 

tertile groups. The subgroup of 52 participants with ASL measures provides 80% 146 

power to detect 10% difference in perfusion20.  147 
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Procedures 148 

Cardiovascular Risk Assessment 149 

Participants attended a research clinic in the morning after a 12-hour fast to complete 150 

a detailed cardiovascular risk assessment (Supplementary Data eMethods 1). 151 

Measurements included: body size, fasting blood samples, clinic and 24-hour blood 152 

pressure, as well as peak oxygen uptake and exercise blood pressure (from 153 

cardiopulmonary exercise testing). In addition, participants completed a detailed 154 

lifestyle questionnaire and had seven complete days of objectively measured 155 

physical activity. 156 

 157 

Brain Imaging and Analysis  158 

Individuals underwent multimodality brain MRI scanning (3.0T Trio Tim, Siemens, 159 

Munich, Germany). The MRI protocol included T1-weighted structural, T2-weighted 160 

Fluid-Attenuated Inversion Recovery (FLAIR), Diffusion Tensor Imaging (DTI) and 161 

Time-of-Flight (TOF) MR Arteriogram (MRA) (Supplementary Data eMethods 2). MR 162 

imaging was completed fasted and prior to exercise testing. Complete acquisition 163 

and analysis methods are presented in the on-line supplement. 164 

 165 

T1-weighted images were processed using FMRIB Software Library (FSL) tools21. 166 

Brain vessel segmentation was completed on TOF MRA using previously described 167 

automated segmentation tools (Figure 1)14, 18. Binary segmentations were used to 168 

determine vessel density, caliber and tortuosity.  169 

 170 

White matter hyperintensity (WMH) lesions were segmented using the Brain Intensity 171 

AbNormality Classification Algorithm (BIANCA) a fully-automated, supervised 172 

method for WMH detection13, 22.  BIANCA classifies image voxels based on their 173 

intensity and spatial features, where the intensity features were extracted from T2-174 

weighted FLAIR, T1-weighted and DTI fractional anisotropy (FA) images, FA images 175 
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were generated using DTI tools, FSL topup, FSL eddy and DTIFit21, 23-25. WMH 176 

masks were manually segmented from 10 images to use as the training set for 177 

BIANCA, these were independently verified by a neurologist (TS) and radiologist 178 

(DM) blinded to participant risk profile. Lesion count was selected as the most 179 

sensitive outcome of white matter change in young adults in whom a single lesion, 180 

independent of volume, could be considered abnormal26. Minimum lesion size used 181 

in analysis was 1 mm3.  182 

 183 

A subgroup of 52 participants also had multi-delay vessel-encoded 184 

pseudocontinuous Arterial Spin Labelling (ASL), identical to a previously published 185 

protocol15. Cerebral blood flow and blood arrival time were estimated from ASL 186 

images using a previously described analysis pipeline15, 17. Gray matter masks were 187 

used to calculate the average cerebral blood flow after linear registration of the ASL 188 

MRI to the T1-weighted MRI dataset. 189 

 190 

Statistical Analysis 191 

Existing literature on risk predictors of brain health was used to define an a priori set 192 

of potential correlates of MRI brain health in young adults5, 6, 12, 27-29.  These were 193 

grouped as: 1) non-modifiable, including age, sex, gestational age, and 2) modifiable, 194 

including systolic blood pressure, body mass index (BMI), peak exercise capacity 195 

(oxygen uptake ml/min/kg), peak exercise diastolic blood pressure, weekly vigorous 196 

activity, alcohol consumption, smoking history, lipid profile, glucose and insulin 197 

resistance, and current hypertension medication.  198 

 199 

Univariable analysis was completed to investigate correlation between the defined 200 

cardiovascular risk markers and brain outcomes. Multivariable analysis was 201 

completed using a forced entry linear regression model. To reduce multiple testing 202 

and potential interaction between the variables, the prediction model was restricted 203 
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to a subset of variables (resting systolic blood pressure, body mass index, vigorous 204 

physical activity, alcohol consumption and smoking). This model was adjusted for 205 

non-modifiable factors including age, sex and gestational age.  206 

 207 

To investigate correlation between risk markers and brain outcomes, participants 208 

were scored for positive traits in modifiable risk profiles: BMI <25 kg/m2; highest 209 

tertile cardiovascular fitness and/or physical activity; alcohol <8 drinks/week; non-210 

smoker for > 6 months; blood pressure on awake ambulatory monitoring <130/80 211 

mmHg; a non-hypertensive diastolic response to exercise (peak diastolic blood 212 

pressure <90 mmHg), total cholesterol <200mg/dL; and fasting glucose <100mg/dL5, 213 

6, 12, 27-29.  Two models were created to represent: 1) simple modifiable health score 214 

determined from lifestyle measures recorded in clinic (physical activity, BMI, 215 

smoking, alcohol), and 2) detailed modifiable health score that additionally included 216 

clinical investigations (exercise testing, blood samples and ambulatory blood 217 

pressure). Relationships between scores and brain outcomes were studied using 218 

linear regression adjusted for age and sex.  Secondary sensitivity analysis assessed 219 

minimum number and combinations of factors required to maintain model 220 

significance. 221 

 222 

In addition, univariable analysis was completed to investigate correlation between 223 

vessel morphology and white matter hyperintensity lesion count and in a subgroup 224 

(n=52), blood arrival time and cerebral blood flow. These relationships were further 225 

investigated with fixed entry linear regression models adjusted for modifiable and 226 

non-modifiable factors used in the models above (Supplementary data eTable 2-4).  227 

 228 

Statistical analysis was undertaken using Statistical Product and Service Solutions 229 

(SPSS) Version 22 ( Armonk, New York, U.S). Normality of variables was assessed 230 

by visual assessment of curves. If normally distributed, results are presented as 231 
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mean ± standard deviation for continuous variables, otherwise median and 232 

interquartile range. For categorical variables, number and percentage are presented. 233 

Comparison between groups for continuous variables was performed with a 2-sided, 234 

independent-sample Student’s t test. Multivariable analysis was completed using 235 

forced entry linear regression. All multivariable analyses were adjusted for age and 236 

sex. P-values <0.05 were considered statistically significant and all results were 237 

considered exploratory. Results are presented as point estimate and 95% confidence 238 

intervals stated in units appropriate to the risk factor and brain outcome being 239 

reported. Graphpad Prism 7 software was used for statistical figures and mean with 240 

95% confidence intervals presented.  241 

 242 

Results 243 

125 participants completed the brain MRI protocol and cardiovascular risk 244 

assessment study measures. The mean age of participants was 24.7±5.0 years, 61 245 

participants were female (49%), the mean gestational age was 36.6±4.3 weeks, 246 

educational attainment was high with 86 completing University level education 247 

(68.8%), 29 participants had prior history of hypertension of which 21 were on anti-248 

hypertension medications (16.8%) (Table 1).  249 

 250 

Modifiable risk factors and association with brain vessel structure and white 251 

matter hyperintensity lesions 252 

Univariable correlations between risk factors (SBP, BMI, smoking pack years, Ex 253 

DBP, Cholesterol/HDL ratio, Hypertension treatment) and brain vessel density and 254 

caliber are presented in Table 2. Vessel tortuosity only varied with gestational age in 255 

both univariable and multivariable models (0.005 unit tortuosity change/gestational 256 

week, 95%CI 0.001 to 0.009, p=0.007) (Supplementary Data, eTable 1). In the 257 

multivariable models, systolic blood pressure (-0.2 vessels/cm3 per 10mmHg, 95%CI 258 

-0.004 to -0.4, p=0.04), smoking (2 vessels/cm3 per 10 pack years, 95%CI 0.6 to 3.0, 259 
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p=0.04) and Body Mass Index (-0.1 vessels/cm3 per 1kg/m2, 95%CI -0.01 to -0.15, 260 

p=0.02) remained independent correlates of vessel density, while vessel caliber was 261 

independently correlated with systolic blood pressure (-6μm per 10mmHg, 95%CI -262 

0.5 to -10.0, p=0.03) and smoking (40μm per 10 pack years, 95%CI 2.0 to 80.0, 263 

p=0.04). In univariable models, white matter hyperintensities also correlated with 264 

smoking, exercise diastolic blood pressure and, in addition, alcohol intake 265 

(Supplementary Data, eTable 2). 266 

 267 

Modifiable behavioural risk scores provide an overall assessment of risk profile 268 

based on: high physical activity; not smoking in the last 6 months; body mass index 269 

<25 kg/m2; and alcohol consumption <8 drinks/week demonstrated that vessel 270 

density increased by 0.5 vessels/cm3 for each additional score point (95%CI 0.2 to 271 

0.8, p=0.002) and vessel caliber by 10μm (95%CI 2.0 to 17.0, p=0.01) (Table 3). The 272 

more complex cardiovascular risk model based on a cumulative score across 8 273 

parameters also correlated with vessel morphology. Each increase in score 274 

associated with a 0.3 vessels/cm3 higher vessel density (95%CI 0.1 to 0.5, p=0.003) 275 

and 8μm greater vessel caliber (95%CI 3.0 to 13.0, p=0.01). Similarly, white matter 276 

hyperintensity lesion count correlated with scores in Model 1 and 2, reducing by 2.2 277 

lesions per additional positive score on the simple grading (95%CI -0.5 to 4.0, 278 

p=0.01), and 1.6 fewer white matter hyperintensity lesions per unit of the complex 279 

score (95%CI -0.5 to 3.0, p=0.006). Differences in vessel morphology and white 280 

matter hyperintensity lesions between tertiles of the study group, divided based on 281 

the complex score, are presented in Figure 2. 282 

 283 

In exploratory secondary analysis, a sensitivity analysis was performed removing 284 

individual components from the modifiable health scores. The minimum combination 285 

of components required to maintain significant correlations were 3 factors, with 286 

alcohol consumption and body mass index being essential in each score (data not 287 
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presented).  Models 1 and 2 also correlated with the total volume of white matter 288 

hyperintensity adjusted for brain size with a 61 mm3 reduction in white matter 289 

hyperintensity lesion volume for each additional score on model 1 (95%CI -5 to -117 290 

mm3, p=0.03) and a 51 mm3 lower white matter hyperintensity lesion volume per 291 

additional score on model 2 (95%CI -15 to -87 mm3 p=0.006). 292 

 293 

Vessel Morphology and brain MRI biomarkers of cerebral blood flow, arrival 294 

time and white matter lesion count 295 

To explore whether cerebral blood flow also varied with cardiovascular risk factors, a 296 

subgroup (n=52) analysis was performed in those with cerebral blood flow measures 297 

(mean cerebral blood flow 60 ml/100g/min (SD 11.5) and mean blood arrival time 298 

1.01 seconds (SD 0.08)). In univariable analysis, slower blood arrival time and 299 

reduced cerebral blood flow were correlated with increased BMI (Supplementary 300 

Data, eTable 2). Cerebral blood flow was also lower in correlation with anti-301 

hypertensive medication 11 ml/100g/min (95%CI -3 to -18, p=0.007). When cerebral 302 

blood flow and blood arrival time was modelled using the simple modifiable risk 303 

score, blood arrival time was 0.03 second faster for each additional point (95%CI -304 

0.007 to -0.05,p=0.009) and cerebral blood flow 4 ml/100g/min higher (95%CI 0.5 to 305 

7.6, p=0.03) (Table 3).  306 

 307 

In multivariable analysis, controlling for modifiable risk factors (SBP, BMI, VPA, 308 

smoking, alcohol intake) blood arrival time and cerebral blood flow varied with 309 

cerebral vessel density, with each additional vessel per cm3 correlating with a 0.015 310 

seconds faster blood arrival time (95%CI -0.002 to -0.03, p=0.02) and 3 ml/100g/min 311 

increase in cerebral blood flow (95%CI 0.7 to 5.4, p=0.01). Vessel density was 312 

inversely correlated with white matter hyperintensitivity count with a reduction of 1.5 313 

lesions per unit increase in vessel density per cm3 (95%CI -0.4 to -2.7, p=0.01). 314 

(Supplementary Data eTables 3-4).  315 
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Discussion 316 

This study demonstrates adverse modifiable cardiovascular risk profiles in young 317 

people are associated with differences in brain vessel structure and function as well 318 

as an increased number of white matter hyperintensity lesions. This suggests 319 

cerebrovascular pathology may be accumulating earlier than previously anticipated.  320 

 321 

Modifiable risk factors such as blood pressure, BMI, smoking and lipid profile are 322 

known to drive systemic vascular disease in young people in part through biological 323 

vascular disorders including endothelial dysfunction and oxidative stress30-32. The 324 

current study suggests the cerebrovasculature may be similarly affected. Novel early 325 

life factors, such as preterm birth, have also been linked with early vascular disease33 326 

as the third trimester and early neonatal period are hypothesized to be times of 327 

significant vascular remodelling. Gestational age did predict vessel tortuosity, 328 

consistent with previous reports in infants34, but not other cerebrovascular measures. 329 

Further work is needed to understand whether this was because participants were 330 

largely born late preterm or because cardiovascular risk profile overwhelms this early 331 

exposure.  332 

 333 

To capture the complete risk profile of each participant, ideal modifiable 334 

cardiovascular risk scores were developed. Such scores are established prediction 335 

tools for future cardiovascular and cerebrovascular disease in older populations5, 27, 336 

35.  In this study, the simple risk score correlated with variation in all of the 337 

cerebrovascular measures including vascular structure, brain blood flow and white 338 

matter hyperintensities.  The difference in white matter lesion burden between lowest 339 

and highest modifiable risk scores was around 20%. No longitudinal outcome studies 340 

have tracked white matter hyperintensities from similar age groups but the typical 341 

rate of progression of white matter hyperintensity lesions per year in older 342 

populations is 10 to 20%36, 37. Adverse modifiable cardiovascular risk factors are 343 
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major determinants of this progression38 with small lesions increasing in size or 344 

clustering into confluent lesions39, 40. Accumulation of lesions from an early age might 345 

explain why, by mid-life, white matter hyperintensity lesion volume is an established 346 

predictor of future stroke risk7. If a 20% difference between groups were maintained 347 

into older adult life, this would be associated with a 2 to 3-fold increased risk of 348 

stroke, dementia and all-cause mortality7.  349 

 350 

However, it has been proposed that early small lesions, as observed in this study, 351 

may be reversible41, 42. Reducing multiple risk factors can change risk trajectories and 352 

reduce vascular disease burden43. Individuals with higher cardiovascular fitness have 353 

a greater number of small vessels44 and exercise interventions are associated with 354 

beneficial effects on cerebral perfusion45-48 as well as short-term benefits for brain 355 

volume 49, 50. In addition, sustained lifestyle intervention and active blood pressure 356 

lowering in patients with diabetes, or following a stroke, significantly reduces the 357 

burden of white matter hypertensities and prevents accumulation of new lesions51-54.  358 

These interventions typically achieve 25% improvements in cardiovascular fitness 359 

and 10 mmHg reductions in blood pressure, comparable to differences between high 360 

and low risk groups in this study.   361 

 362 

However, lifestyle-based primary cardiovascular prevention in young people requires 363 

complex intervention design. Recent systematic review of interventions in young 364 

hypertensives demonstrated that the optimal way to intervene is poorly understood 365 

with lack of sustained effect55. The alternative to lifestyle interventions would be 366 

pharmacological treatment. Anti-hypertensive use in this study group was associated 367 

with a trend towards increased brain vessel density17, 18. However, there was not a 368 

proportional increases in cerebral blood flow; a phenomenon previously described in 369 

hypertensives and proposed to be a ‘brain protective’ response, as cerebral vessel 370 

rarefaction drives an increase in blood pressure to maintain cerebral blood flow56. 371 
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Further work to identify optimal interventions in young adults to maintain 372 

autoregulation of cerebral blood flow, while reducing risk, may be required.  373 

 374 

Limitations 375 

This study has several limitations. First, a small sample recruited at a single site 376 

increases risk of bias and the study may be underpowered to identify subtle 377 

correlations with some risk factors. Second, mixed passive and active recruitment 378 

strategies mean the sample is not population-based and could be considered similar 379 

to a convenience sample. Therefore, it is not possible to generalise expected 380 

prevalence of cerebrovascular changes to the wider population. Third, the study is 381 

cross-sectional and causality of the observed relationships cannot be inferred. 382 

Fourth, cerebral blood flow was only available in a subgroup so ability to understand 383 

interactive effects of modifiable risk factors, vascular remodelling and perfusion on 384 

white matter integrity is limited. Fifth, longitudinal follow up will be required to 385 

comment on the clinical significance of the observed findings. As such, this study 386 

should be considered preliminary and exploratory but does support a need for future 387 

work. The complexity of the imaging protocol and associated financial costs may limit 388 

its widespread use but large multi-centre studies with more focused protocols, and 389 

extended follow up, will allow tracking of vascular remodelling and assessment of 390 

impact on white matter and later disease. Randomised control trials will also allow 391 

effects of both lifestyle and pharmacological intervention to be properly evaluated. 392 

Conclusion 393 

In this preliminary study involving young adults without clinical evidence of 394 

cerebrovascular disease, modifiable cardiovascular risk factors were associated with 395 

MRI indices of cerebral vessel structure and function, and white matter 396 

hyperintensities. Further research is needed to determine the clinical importance of 397 

these findings for the primordial prevention of cerebrovascular disease.  398 

 399 
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Table 1. Age, demographics and cardiovascular risk profile of study group. 654 

 
Study Group 
(n=125) 

Demographics  
Age, mean (SD), years 24.7 (5.0) 
Female, n, (%) 61 (49%) 
Gestational Age, mean (SD), weeks 36.6 (4.3) 
Smoking, n, (%) 19 (15.2) 
Smokers’ median pack years (IQR) 2.7 (6.7)  
Alcohol, n, (%) 97 (77.6) 
Alcohol consumers’ median drinks per week (IQR) 4.0 (4.0) 
Hypertension Diagnosis, n, (%) 29 (23.0) 
FHx Stroke or CHD, n, (%) 10 (8) 
Education Level  
Completed University, n, (%) 86 (68.8) 
Anthropometrics  
Height, mean (SD), m 1.73 (0.1) 
Weight, mean (SD), kg 70.9 (13.8) 
BMI, mean (SD), kg/m2 23.6 (3.7) 
Blood pressure, mean (SD), mmHg   
Resting Systolic 122.0 (11.6) 
Resting Diastolic 71.3 (9.55) 
Ambulatory Awake Systolic 129.6 (11.8) 
Ambulatory Awake Diastolic 76.9 (8.0) 
Peak Exercise Systolic 174.8 (25.4) 
Peak Exercise Diastolic 87.1 (12.4) 
Fitness  
Peak VO2, mean (SD), ml/kg/min 37.9 (9.6) 
Peak Respiratory Exchange Ratio, mean (SD) 1.2 (0.06) 
VPA, median (IQR), hours per week 0.74 (1.25) 
MVPA, median (IQR), hours per week 14.73 (6.09) 
Biochemistry  
Total Cholesterol, mean (SD), mg/dL 170.15 (29.0) 
LDL, mean (SD), mg/dL 97.45 (25.9) 
HDL, mean (SD), mg/dL 55.68 (11.2) 
TChol:HDL ratio, mean (SD) 3.18 (0.85) 
Triglyceride, median (IQR), mg/dL  74.4 (54.0) 
Blood Glucose, mean (SD), mg/dL 88.2 (7) 
HOMA-IR, mean (SD) 0.77 (0.46) 
HsCRP, median (IQR), mg/L 0.57 (1.16) 
Brain MRI Outcomes  
Brain vessel density, mean (SD), vessels/cm3 8.3 (1.41) 
Brain vessel calibre, mean (SD), μm 531 (36) 
Brain vessel tortuosity, mean (SD) 1.49 (0.088) 
Brain white matter hyperintensity lesion count, mean (SD) 20.9 (7.9) 

Abbreviations: FHx, Family History, BMI, body mass index; SBP, systolic blood 655 
pressure; DBP, diastolic blood pressure; Alcohol (1 drink per week = 2 units of 656 
alcohol), Peak VO2, Peak Oxygen Uptake; VPA, Vigorous Physical Activity; MVPA, 657 
Moderate to Vigorous Physical Activity; LDL, low density lipoprotein; HDL, high 658 
density lipoprotein; T Chol: total cholesterol; HsCRP, highly sensitive C reactive 659 
protein; HOMA-IR, homeostatic model assessment of insulin resistance. 660 
 661 

  662 
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Table 2.  Univariable correlations and regression models for modifiable risk 663 

factors and brain vessel density and vessel caliber 664 

 665 

The adjusted multivariable models are restricted to simple modifiable factors that can 666 
be assessed during a clinical consultation (resting systolic blood pressure, body 667 
mass index, participation in vigorous physical activity, alcohol consumption and 668 
smoking). The models were controlled for age, sex and gestational age. 669 
Abbreviations and units: SBP, systolic blood pressure (mmHg); BMI, body mass 670 
index (kg/m2); VPA, Vigorous Physical Activity (hours per week); Alcohol (1 drink per 671 
week = 2 units of alcohol); Smoking (pack years); Peak VO2, Peak Oxygen Uptake 672 
(ml/kg/min); Ex DBP, Peak exercise diastolic blood pressure (mmHg), 673 
Cholesterol/HDL ratio, ratio total cholesterol/high density lipoprotein; HOMA-IR, 674 
homeostatic model assessment of insulin resistance, Hypertension Rx participant 675 
taking prescription medications for hypertension (yes/no).  676 
 677 

 Brain Vessel 
Density 
(vessels/cm

3
) 

   Brain 
Vessel 
Caliber (μm) 

   

 Univariable  Adjusted  Univariable  Adjusted  

 Point  
Estimate  
(95 %CI) 

P  
value 

Point  
Estimate 
(95 %CI)) 

P 
value 

Point  
Estimate 
(95 %CI) 

P 
 value 

Point 
Estimate  
(95 %CI) 

P  
Value 

Gestational 
Age, weeks 

-0.001  
(-0.06 to 0.06) 

.98 -0.02 
(-0.08 to 
0.03) 

.42 -0.1  
(-2.0 to 1.0) 

.88 -1.0 
(-3.0 to 
0.5) 

.16 

Resting SBP, 
mmHg 

-0.03  
(-0.004 to -0.05) 

.02 -0.02 
(-0.0004 to -
0.04) 

.046 -0.4  
(-1.0 to 2.0) 

.15 -0.6 
(-0.05 to -
1.0) 

.03 

BMI, kg/m
2
 -0.10  

(-0.02 to -0.16) 
.01 -0.08 

(-0.01 to -
0.15) 

.02 -1.0  
(-3.0 to 1.0) 

.33 -1.0 
(-3.0 to 
1.0) 

.42 

VPA, hours per 
week 

0.10  
(-0.17 to 0.39) 

.42 -0.04 
(-0.28 to 
0.20) 

.75 1.0  
(-6.0 to 8.0) 

.73 -2.0 
(-9.0 to 
4.0) 

.49 

Alcoholic drinks 
per week 

-0.10  
(-0.008 to -
0.025) 

.31 -0.01 
(-0.04 to 
0.02) 

.41 -0.1  
(-1.0 to 1.0) 

.70 -1.0 
(-2.0 to 
0.1) 

.09 

Smoking pack 
years 

0.20  
(0.06 to 0.30) 

.004 0.17 
(0.06 to 
0.28) 

.004 3.0  
(-0.2 to 6.0) 

.06 4.0 
(0.2 to 
8.0) 

.04 

Peak VO2, 

ml/kg/min 
0.01  
(-0.02 to 0.04) 

.5   0.4  
(-0.2 to 1.0) 

.19   

Peak Ex DBP, 
mmHg 

-0.02  
(-0.003 to -0.04) 

.047   -1.0  
(-0.4 to -1.0) 

<.001   

Cholesterol/HDL 
Ratio 

-0.40  
(-0.06 to -0.69) 

.02   -3.0  
(-10.0 to 5.0) 

.52   

HOMA IR -0.56  
(0.04 to -1.17) 

.07   -14.0  
(-30 to 1.0) 

.08   

Hypertension 
Rx 

0.75  
(-0.01 to 1.5) 

.05    10  
(-9.0 to 31.0) 

.27   

Model 
Statistics 

  R
2
=0.20 

p=.009 
   R

2
=0.24 

p=.001 
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Table 3. Modifiable health scores and correlation with brain vessel density, 678 

vessel caliber, brain blood flow and white matter hyperintensity lesion count  679 

 680 
 681 
Model 1 uses a cumulative score for modifiable risk factors that can be assessed in a 682 
single consultation based on 4 factors, given equal weight, with a positive score 683 
assigned for: alcohol consumption <8 drinks/week; participating in >=75 minutes 684 
vigorous physical activity or high moderate to vigorous activity; not smoking in last 6 685 
months; and body mass index <25 kg/m2. Model 2 uses a cumulative score across a 686 
comprehensive assessment of modifiable risk factors including a score for: high 687 
cardiovascular fitness and/or physical activity (measured as being in the top tertile of 688 
peak oxygen uptake (110% predicted peak oxygen uptake or higher) or participating 689 
in >=75 minutes vigorous physical activity); not smoking in last 6 months; ambulatory 690 
awake blood pressure <130/80 mmHg; body mass index <25kg/m2; fasting total 691 
cholesterol <200 mg/dL; fasting blood glucose <100 mg/dL; and  diastolic blood 692 
pressure at peak exercise <=90 mmHg. Models are adjusted for age and sex.  693 

 Model 1   
Simple Modifiable 
Health Score 

 Model 2  
Detailed Modifiable 
Health Score 

 

 Change in point estimate 
per unit increase in score   

(95%CI) 

P Value Change in point 
estimate per unit 
increase in score   

(95%CI) 

P Value 

Brain Vessel Density, 
vessels/cm3 

0.50 (0.19 to 0.81)    
 

.002 0.31 (0.112 to 0.514) .003 

Brain Vessel  
Caliber, μm 

10 (2.0 to 17.0)    
 

.014 8.0 (3.0 to 13.0) 
 

.002 

Brain Vessel Tortuosity 0.004 (-0.02 to 0.02) .97 0.005 (-0.008 to 0.18) .44 

Brain Blood Flow, 
ml/min/100g 

4.0 (0.5 to 7.6) .027 2.47 (-0.05 to 4.98) .05 

Brain Blood Arrival Time, 
seconds 

-0.03 (-0.007 to -0.05) .009 -0.014 (-0.03 to 0.001 .07 

Brain white matter 
hyperintensity lesion 
count, number  

-2.16 (-0.46 to -3.86)    
 

.013 -1.58 (-0.47 to -2.79)   
 

.006 
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Figure 1. Panels A1 and A2 provide a case comparison of the MRI imaging modalities and analysis tools used to assess brain vessel morphology, 694 
white matter lesion count, cerebral perfusion and blood arrival time  695 

 696 

 697 

3D Reconstruction of Brain Vessels 
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arteriogram 
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 698 

Time of Flight (TOF) magnetic resonance arteriogram was used to acquire images of the brain vessels, this was analyzed using automated tools generating 699 

binary segmentations to determine overall vessel density, caliber and tortuosity. 3D reconstructions of segmented brain vessels are provided in column one of 700 

Panels A1 and A2. Three image modalities T2 weighted Fluid Attenuated Inversion Recovery (FLAIR), Diffusion Tensor Imaging (DTI) and T1 weighted 701 

structural images were used to optimise white matter segmentation and white matter hyperintensity lesion quantification using analysis tools from the Brain 702 

Intensity AbNormality Classification Algorithm (BIANCA). BIANCA is a fully automated, supervised method for white matter hyperintensity detection, based on 703 

the k-nearest neighbour (k-NN) algorithm. The BIANCA output is a probability map of the likelihood that the voxel being classified is a lesion. The probability 704 

map is displayed in column 2 of panels A1 and A2, on a spectrum of orange to yellow, and overlaid on an axial FLAIR image for comparison. Voxels likely to 705 

be white matter hyperintensity lesions are demonstrated as bright yellow.  A threshold of 0.9 was applied to define the voxel as lesion or not which was then 706 

fed into cluster analysis to identify individual lesions and quantify white matter hyperintensity volumes. White matter hyperintensity lesions are demonstrated 707 

as bright yellow. In a subgroup of the study population (n=52) pseudocontinuous vessel selective arterial spin labelling (ASL) was acquired to allow the 708 

assessment of blood flow to the brain. This provides two outputs, a measure of blood arrival time (seconds), demonstrated in column 3 and a measure of 709 

volume of blood flow (ml/100g/min) demonstrated in column 4, of Panels A1 and A2.  710 

 711 

Panel A1 and A2 provide a comparison between two cases with visible differences in vessel morphology and white matter intensity lesion count that may be 712 

associated with observed differences in optimal risk profiles. Case A1 is a 21 year old male with BMI 26 kg/m3, resting blood pressure 144/81 mmHg, awake 713 

ambulatory blood pressure 135/74 mmHg, 40 minutes of vigorous activity and 14 hours of moderate to vigorous activity per week measured on trixial 714 

accelerometer, non-smoker with alcohol intake greater than 8 drinks per week, blood pressure at peak exercise measured 200/70 mmHg, total cholesterol 178 715 

mg/dl and fasting blood glucose 77 mg/dl. Case A1 vessel density measures 6.4 vessels/cm3, he has 30 white matter hyperintensity lesions measuring 1mm 716 

or more, cerebral blood flow measuring 62ml/100g/min (lower intensity on colour scale in column 4) and blood arrival time of 1.26 second (more yellow on the 717 

colour scale in column 3). Case A2 is a 24 year old female with BMI 23 kg/m3, resting blood pressure 134/81 mmHg, awake ambulatory blood pressure 718 

122/77 mmHg, recording 20 minutes of vigorous activity and 21 hours of moderate to vigorous activity per week measured on trixial accelerometer, non-719 

smoker with alcohol intake less than 2 drinks per week, blood pressure at peak exercise measured 180/90 mmHg, total cholesterol 127 mg/dl and fasting 720 

blood glucose 84 mg/dl. Case A1 vessel density measures 12.6 vessels/cm3, she has 8 white matter hyperintensity lesions, cerebral blood flow measuring 721 

83ml/100g/min (brighter intensity on colour scale) and blood arrival time of 1.07 second (more orange on the colour scale in column 3).  722 

723 
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Figure 2. Comparison of white matter lesion count and vessel morphology between groups of participants based on their modifiable health score. 724 
 725 

 726 

 727 

 728 

 729 

 730 

Model 2 modifiable health score provided a comprehensive assessment of modifiable risk factors based on a cumulative score for each of the following 731 

factors: high cardiovascular fitness (defined as physical activity measured in the top tertile of peak oxygen uptake (>=110% predicted peak oxygen uptake) or 732 

participating in >=75 minutes vigorous physical activity per week); not smoking in last 6 months; ambulatory awake blood pressure <130/80mmHg; body mass 733 

index <25kg/m2; fasting total cholesterol <200 mg/d;, fasting blood glucose <100 mg/dL; and diastolic blood pressure at peak exercise <= 90mmHg. The 734 

panels in figure 2 present comparisons between groups of participants who in Model 2 score 0 to 5 positive factors (n=47), 6 factors (n=36) and >7 positive 735 

factors (n=42). Participants with >7 factors have a mean vessel density 11% higher than participants with 0 to 5 positive traits (Panel B, 8.6 vessels/cm3 (SD 736 

1.39) vs 7.8 vessels/cm3 (SD 1.21) p=0.007), a mean vessel caliber 3% higher (Panel C, 538μm (SD 21) vs 522μm (SD 45) p=0.02) and on average 20% 737 

lower white matter hyperintensity lesion counts (Panel A, 19.6 lesions (SD 7.8) vs 23.5 lesions (SD 8.6) p=0.03). Panels present group means and 95%CI and 738 

reported group differences are adjusted for age and sex. 739 


