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ABSTRACT 

This document introduces and describes the data processing methods developed for computing 
Fourier amplitude spectra (FAS) in the NGA-West2 project. The products of this study can be 
used to estimate high-frequency attenuation, kappa (κ), to estimate site amplification through 
empirical spectral ratios, as well as to aid in the development of ground-motion models (GMMs) 
based on FAS. To accommodate different potential user objectives, we selected five time 
windows in the acceleration time series (noise, P-wave, S-wave, coda, and the entire record) for 
which we compute the FAS. The processing starts with the time-aligned, instrument-corrected, 
tapered, and filtered acceleration time series. The proposed window selection method is 
developed through trial and error, and tested against a range of ground motions with different 
magnitudes and hypocentral distances from different regions. This document summarizes the 
steps for window selection and FAS computation, and describes the output data format. This 
report will be accompanied by the final products of the PEER NGA-West2 Project, namely, the 
published report describing the database [Ancheta et al. 2013] and the flatfile, which can be 
downloaded in excel format at: http://peer.berkeley.edu/ngawest2/databases/. 
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1 Methodology for Data Processing 

1.1 INTRODUCTION 

The Fourier Amplitude Spectrum (FAS) is used in a number of applications, including spectral 
analysis and inversions, the study of site effects and amplification, the measurement of high-
frequency attenuation (kappa, or κ), and the development of predictive ground motion models 
(GMMs). 

In the past, GMMs were most often developed directly from 5% damped pseudo-
acceleration response spectra (PSa). Recently, more focus has been placed on GMMs that fit 
Fourier rather than response spectra. For instance, within the Next Generation Attenuation 
(NGA) project sponsored by the Pacific Earthquake Engineering Research Center (PEER), FAS 
models were developed to provide GMMs for PSa, (e.g., PEER. [2015]), based on the inverse 
random vibration theory. Often, GMMs developed for a certain host region need to be adjusted 
so that they can be applied to a target region. In such cases, one of the typical adjustments 
needed is to the κ parameter [Anderson and Hough 1984]. Typically, κ is measured on FAS 
using various approaches (as summarized in Ktenidou et al. [2014]). Ktenidou et al. [2016] 
recently studied κ for rock sites in the NGA-East database [Goulet et al. 2014]. 

Based on these experiences, PEER recognizes the importance of computing FAS for the 
NGA-West2 database, which has been used by researchers and practitioners worldwide 
following its publication [Ancheta et al. 2013]. The computation of FAS for the NGA-West2 
database is unique because it includes more than 60,000 records that have been already 
processed with instrument corrections, filtering, and baseline corrections. Furthermore, different 
time windows may be of interest for different studies, so another challenge is that the 
computation of FAS should be performed for different time windows (e.g., P-wave, S-wave, and 
coda, etc.). This report describes the semi-automated procedure developed to compute FAS for 
large databases. It is calibrated so that the majority of visual checks and basic processing can be 
implemented by less experienced analysts. For example, this procedure only requires selecting 
the P- and S-wave onset; the flagging of events requires further inspection by an experienced 
analyst. This windowing procedure is explained in the following sections, followed by a 
description of the FAS computation. 
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1.2 TIME WINDOWS REQUIRED FOR DATA PROCESSING 

Five different time windows were selected from the acceleration time series, as shown 
schematically in Figure 1.1. The first time window includes the entire record (blue box in the 
figure), which contains the pre-event noise recorded before the P-wave onset, along with the P-, 
S-, and coda waves. The second window contains only the pre-event noise (pink box), the third 
the P-waves (yellow box), the fourth the S-waves (green box), and the fifth contains the coda 
waves (gray box). All windows are selected during the processing stage to provide the time 
windows used in the FAS calculation. Not all time windows are available for all records—for 
example, due to late trigger and limitation of record length—but as late S-triggers have been 
rejected in the NGA-West2 dataset, the first (entire) and fourth (S-wave) windows are always 
available for any record herein. All windows are explained in more detail in the following 
sections, following an overview of the semi-automated processing procedure conducted by the 
analyst. 

 
Figure 1.1 The five time windows extracted from a sample time series (Tottori 

earthquake, HYG007). The vertical (UD) component is the bottom trace. 

1.3 OVERVIEW OF THE DATA PROCESSING METHOD 

A brief overview of the data processing method is given in this section, while the details of the 
steps are explained in the following sections. The data processing method consists of the 
following four steps. 

 Step 1: First, the analyst visually inspects the tapered and filtered 
acceleration time histories. If there is a problem (e.g., late trigger), then 
the wave forms are not accepted. Similar quality checks have been done in 
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the NGA-West1 [Chiou et al. 2008] and NGA-West2 projects [Ancheta et 
al. 2013]; therefore, we expect virtually all records to be accepted in this 
process. Since standard PEER processing [Chiou et al. 2008] tapers the 
acceleration time histories at the beginning of the record, late-triggered 
records are often difficult to determine. Therefore, recordings previously 
flagged as late P- or S-wave triggered recordings should be re-examined 
by an experienced analyst. If the analyst believes the S-wave onset to have 
taken place before the actual triggering of the instrument, then the 
recording is flagged for further review; for many applications, the entire S-
wave window is required (e.g., for the estimation of ). This step also 
updates column JL “flag for late S trigger” in the flatfile [Ancheta et al. 
2013]. 

 Step 2: Next, the analyst must select the P-wave onset. The analyst 
inspects the entire time series zooms in on the arrival of the P-wave with 
an enlarged window to facilitate the selection of the first arrival. The 
analyst picks the P-arrival time with a fiducial mark. The processing code 
will then automatically determine the noise window length. If the noise 
window length is too short compared to the pre-tapered record length, the 
processing code flags the record to indicate a possible inadequacy. The 
definition of the noise window flag is described in the following section. 
This step may update column JM “flag for late P trigger” in the flatfile. 

 Step 3: The next screen shows the predicted S-wave first arrival as 
computed by the processing code based on the selected P-wave arrival and 
the hypocentral distance from the flatfile. If, based on that, the analyst 
believes that an error was made in their initial P-wave arrival selection or 
in late P-trigger cases, they have the opportunity to go back to the 
previous step and re-select the first P arrival time. If the estimated and 
selected S-wave first arrivals times are significantly different, then the 
code automatically flags the record as a possible late P trigger. This step 
again may update flatfile column JM. 

 Step 4: Based on the chosen S-wave onset, the code computes the 
expected end of the S-wave window, as well as the beginning and the end 
of the coda window, provided the time series is of sufficient duration. The 
code will automatically flag the record if the coda time window duration is 
too small or does not exist. The definition of the coda flag is described in 
the following section. Even though the analyst cannot modify these 
windows, they may flag the record if they observe a problem, such as the 
existence of an aftershock in the S-wave or coda windows. An experienced 
analyst will then reprocess the record and may modify the choice of time 
windows. 
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1.4 ENTIRE RECORD TIME WINDOW 

The time window for the entire record includes pre-event noise (if available), P-wave (if 
available), S-wave, and coda waves (if available), as shown in Figure 1.1. Before developing 
these time windows, every time series must be reviewed and deemed appropriate or rejected for 
FAS calculation. For example, if the recording is a late S-trigger as determined by the trigger flag 
in the flatfile or by this project, we will not process the recording. Figure 1.2 shows an example 
of late S-triggered records in NGA-West2 database; Figure 1.2(a) shows the unprocessed (un-
tapered) recording, and Figure 1.2(b) shows the processed one with cosine tapering applied at the 
start of the recording. By comparing these figures, it is difficult to determine whether the 
recording is late S-triggered or not by using only the processed recording. Therefore, all rejected 
recordings in this process are further reviewed by experienced analysts. 

  
Figure 1.2 Example of a late S trigger: to be rejected by the user: (a) unprocessed; 

and (b) processed recording of Lytle Creek earthquake, Station 24278, 021 
component. 

1.5 PRE-EVENT NOISE TIME WINDOW 

The time window for the pre-event noise is useful in order to compute the signal-to-noise ratio 
(SNR) of the S-wave or other windows, where SNR can be used to assess if the amplitude of the 
signal is strong enough at a given frequency to use in various applications. However, the 
existence of a noise window is not an absolute necessity for this purpose: the experienced analyst 
can also evaluate the quality of the signal by computing SNR with respect to the P-wave or coda 
window (if those are available), or by the shape of the FAS (as low- and high-frequency noise 
may be identified by increasing amplitude trends in the FAS away from the peak of the 
spectrum). Therefore, late-P-triggered records are not rejected in this study, but the record is 
flagged if a noise window is unavailable or inadequate (less than about 10 sec). 

The start time ( nt ) and end time ( f
nt ) of the pre-event noise are automatically selected 

based on the visual pick of the P-wave arrival time ( Pt ) as follows: 



 

 5 

1.0 secf
n Pt t   (1.1) 

max (0, )f
n n St t D   (1.2) 

where DS is the S-wave duration defined in the following section. Equation (1.1) shows that the 
noise window ends 1.0 sec before the P-wave arrival, which ensures that initial (e.g., emergent) 
P-wave arrivals are generally excluded from the noise window. The maximum duration of the 
pre-event noise window is the same as the S-wave window duration in Equation (1.2) because 
the main objective of this window is to compute SNR of the S-wave FAS. So the noise window 
is defined here (contrary to some studies) by first choosing its end, and then its beginning. The 
typical duration of pre-event noise is 10 sec for most of the processed recordings in the NGA-
West2 database (with M < 5); hence nt  equals 0 for many of these records.  

In selecting the P-wave arrival visually, the analyst inspects all three acceleration 
components. A zoom window option can magnify the 20 sec around the selected P-wave arrival 
time to facilitate precise selection. Figure 1.3 shows the visual inspection of the P-wave arrival 
for the ground motion shown in Figure 1.1. Figures 1.3(a) and 1.3(b) show the entire and the 
magnified time series, respectively. If the analyst believes the P-wave arrival has taken place 
before the start time of the record, then the P-wave arrival selected should be outside of the trace 
and to the left to indicate a negative time value. In that case, the code will automatically flag the 
record. The code also automatically flags the record if pt  ≤ 10 sec, to indicates a possibly 

inadequate (short) noise window length. This is done to notify the database user that FAS of the 
noise window could include insufficient spectral resolution because of the tapers applied at the 
beginning of the record. In general, the beginning taper length in the NGA-West2 project is 1% 
of the entire record length, although shorter tapers were used especially for vertical recordings 
from analog instruments. Figure 1.4 shows an example recording with a pre-event noise, which 
is flagged as 1 based on the following flag definition scheme shown in Equation (1.3): 

999, 0 sec

flag 1, 0 10sec

0, 10 sec

p

p

p

t

t

t

 
  
 

 (1.3) 
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Figure 1.3 Example of visual inspection of P-wave arrival time by (a) the entire, and (b) 

the magnified records. The vertical component is the bottom trace. 
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Figure 1.4 Example of a short noise window with its flag (Niigata earthquake, 

CHBH14). 

1.6 P-WAVE TIME WINDOW 

The start time of the P-wave window is taken as the end of the noise window defined as f
nt  in 

Equation (1.1). The end time of the P-wave window ( f
nt ) is obtained by visual inspection based 

on the S-wave arrival time ( St ) as follows: 

0.5 secf
n St t   (1.4) 

where 0.5 sec is for the noise taper applied at the start of the S-wave window for the FAS 
calculation. The S-wave arrival time is selected visually by the analyst by observing the increase 
in amplitude and increase in low-frequency content on both the acceleration and displacement 
time series. As a selection guide, the theoretical S-wave arrival time ( St ) is also plotted with the 
traces. This is automatically computed based on the selected P-wave arrival time and the 
hypocentral distance as follows: 

8S P S P P ht t t t R      (1.5) 

where Rh is hypocentral distance (in km), and can be obtained from the flatfile [Ancheta et al. 
2013]. P- and S-wave crustal velocities are taken as 6.0 and 3.5 km/sec, respectively, when 
deriving Equation (1.5). If the selected P-wave arrival time is correct, then the S-wave arrival 
time should not differ greatly from the plotted theoretical arrival time, provided the assumed 
crustal velocities are representative. If it does differ significantly, this may mean that the selected 
P-wave arrival time in the previous step was in error. If the analyst believes they can improve 
their selection, they have the option to go back a screen and re-select the P-wave arrival or onset 
time. This leads to an updated theoretical S-wave arrival time and a new check by the analyst. If 
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the theoretical S-wave onset is again not close to the selected S-wave arrival time by the analyst, 
and if the theoretical S-wave arrival occurs later than the selected S arrival, then the problem is 
probably due to a late P-wave trigger. In this case, the code automatically flags the record as a 
possible late P trigger for an experienced analyst to reprocess. In order to automate this flag, an 
acceptable difference in the theoretical and selected S-wave arrival times had to be determined, 
which in turn cannot be constant but must depend on distance. For nearby events, the acceptable 
error must be small (no more than a few seconds); however, for distances of several hundreds of 
kilometers, the acceptable error may be large, e.g., of the order of several seconds. Hence, after 
several tests, the limit for an acceptable difference was set at 30% of the S Pt   in Equation (1.5). 

This step also may update column JM of the flatfile (which is the ‘flag for late P trigger’), 
along with the pre-event noise flag shown in Figure 1.4. Figure 1.5 shows the comparison of St  
and St  for two example recordings. Figure 1.5(a) shows a case where St  matches St  reasonably 
well, whereas Figure 1.5(b) shows a case where these are significantly different. These cases are 
flagged as 0 and 1, respectively, based on the following classification scheme: 

1, 0.3 8
flag

0, 0.3 8
S S h

S S h

t t R

t t R

   
     

 (1.6) 
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Figure 1.5 Comparison of the selected S-wave arrival (red) with the theoretical S 

arrival (yellow) computed from the selected P arrival (blue): (a) the selected 
S arrival matches the theoretical S arrival reasonably well; and (b) the 
selected S arrival occurs significantly earlier than the theoretical, indicating 
a late P-triggered record. 
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1.7 S-WAVE TIME WINDOW 

The start time of the S-wave window ( St ) is taken as the end of the P-wave window ( f
Pt ), 

defined in Equation (1.4). The end time of the S-wave window is defined as: 

f
S S St t D   (1.7) 

where SD  is the estimated duration of the S-waves (from an extended rupture or other paths) at 

the recording station. In this project the automatic selection of the S-wave window for FAS 
computation is an important objective. Therefore, it will satisfy this objective if SD  is estimated 

as reasonably conservative to include all the S-wave arrivals. In general, SD  can be written as 

the sum of two factors: 

S d rup d propD T T    (1.8) 

where d rupT   is the source rupture duration and Td-prop the path duration for the propagation of the 

S-wave from the source to the station. d propT   allows the total observed duration to increase due 

to wave scattering and multiple paths. d rupT   depends on parameters such as moment magnitude, 

fault dimensions, rupture velocity, stress drop, and rupture mechanism. For circular rupture, 

d rupT  is calculated as 1 cf , where cf  is the corner frequency of the event [Brune 1970; 1971]. 

For unilateral rupture, the duration would be twice that value. d propT   depends on the hypocentral 

distance and on the structure of the crust, e.g., mainly lateral variations in SV . 

We compared Equation (1.8) against various sets of recordings in a two-step procedure to 
calibrate the two components. A subset of carefully hand-picked SD  values was created from 

several events in Greece and the NGA-West2 database—with a range of magnitudes and 
distances. Acceleration and displacement time series were inspected visually to estimate SD , 

where displacement time series were mainly reviewed to judge the S-wave duration. More 
weight was assigned to results obtained from stations with 30SV  greater than 300 m/sec, as some 

soft sites may cause an overestimation in the visual S-wave duration (possibly due to the 
generation of strong surface waves in basins). 

In Step 1, we plot SD  against distance, in different magnitude bins, for the Greek and 

NGA-West2 events. Figure 1.6 shows example plots of SD  for the Greek data, which were 

previously studied at one site from a variety of magnitudes and distances [Ktenidou et al. 2013]. 
Hypocentral distance effects on the S-wave duration may be approximated for regions such as 
California [W. J. Silva, personal communication, 2013] as follows: 

0.1 (sec)d prop hT R    (1.9) 
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This expression (i.e., the empirical factor of 0.10) agrees reasonably well with the 
significant durations of 5 75aD   and 5 95aD  , for which Kempton and Stewart [2006] found factors 

of 0.07 and 0.15, respectively. In Figure 1.6, the solid lines correspond to a slope of 0.1, as in 
Equation (1.9). The intercepts of d rupT   are fixed at 10 sec for M < 4.5 and at 15 sec for 4.5 < M 

<6.5 to illustrate the increasing trends of d propT   against hR . The figure shows that d propT   is 

conservatively predicted by Equation (1.9) for this range of magnitudes. 

After having fixed d propT   by Equation (1.9), we then estimated d rupT   in Equation (1.8) 

in Step 2. Assuming Brune’s [1970; 1971] 2 source model and Aki’s [1967] scaling law hold, 

cf  is calculated as follows: 

1

3
6

0

4.9 10cf
M

     
 

 (1.10) 

since 

05.165.1
0 10  MM  (1.11) 

where  is shear-wave velocity at the source and was taken as 3.2 km/sec.  is the stress drop 
and was taken as 60 bar (6 MPa) for an average value in California [Atkinson and Silva 1997]. 
Using Equation (1.10), we calculated d rupT   in Table 1.1 as 1 cf . Figure 1.7 compares the d rupT   

in Table 1.1 to those observed from Greek and NGA-West2 events. It shows that Table 1.1 
underestimated SD  for almost all Greek and NGA-West2 events. Hence the theoretical d rupT   

defined as 1 cf  is not adequate for this study. 

Based on this observation, a longer d rupT   was defined for M < 6.5, following the results 

for the Greek data. For M > 7 events, which are greater than the Greek data magnitude range, the 
theoretical approach to define d rupT   worked well, although it tended to slightly underestimate 

some durations (see Figure 1.7). The theoretical approach (1 cf ) also significantly 

underestimated one distant record of the Denali (M7.9) earthquake in Alaska. To avoid 
underestimation, a more conservative rule for large-magnitude earthquakes was chosen by 
assuming unilateral fault rupture (i.e., 2d rup cT f  ), which is the case for the Denali earthquake 

(e.g., Ozacar and Beck [2003]). Table 1.2 and Figure 1.7 show d rupT   after applying these 

adjustments. 

d rupT   for M < 6.5 is now well constrained. However, for M > 6.5, assuming 

2d rup cT f   led to overestimations of the overall duration except for the Denali recording. 

d rupT   as defined in Table 1.2 also included the coda waves and very often exceeded even the 

entire record duration. Therefore, we modified the large-magnitude rule to 1d rup cT f 
,
 

multiplied with a constant factor of 1.4. This was an attempt to be less conservative and to 
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include all possible later arriving significant S-waves, while reducing the large durations for 
large magnitudes. Table 1.3 shows the modified d rupT   

values, which are also plotted in Figure 

1.7. The figure shows that these are acceptable duration estimates for magnitudes between 3.5 
and 7.9. These values allow coda windows for most recordings with adequate total length, while 
keeping the strongest motion in the S-wave window. 

These values are implemented into the data processing code for the automatic selection of 
the S-wave window. If, based on inspection, the analyst believes these automatically picked 
values to be significantly incorrect for a given record, or if the S-wave window is contaminated 
by an aftershock, then the record is flagged by the analyst for additional processing because the 
only modification the analyst can perform in this step is to correct an erroneous S-wave arrival 
time. An example recoding is presented at the end of this report in Figures 1.12–1.15. 

 

 

 
Figure 1.6 Variation in S-wave duration with magnitude based on visual inspection of 

Greek events (records and durations taken from Ktenidou et al. [2013]). 

0"

5"

10"

15"

20"

25"

30"

35"

0" 50" 100" 150" 200" 250" 300"

M"6.0&6.5"

0"

5"

10"

15"

20"

25"

30"

35"

0" 50" 100" 150" 200" 250" 300"

M"5.5&5.9"

0"

5"

10"

15"

20"

25"

30"

35"

0" 50" 100" 150" 200" 250" 300"

M"5.0&5.5"

0"

5"

10"

15"

20"

25"

30"

35"

0" 50" 100" 150" 200" 250" 300"

M"4.5&5.0"

0"

5"

10"

15"

20"

25"

30"

35"

0" 50" 100" 150" 200" 250" 300"

M"4.0&4.5"

0"

5"

10"

15"

20"

25"

30"

35"

0" 50" 100" 150" 200" 250" 300"

M"3.5&4.0"

Hypocentral distance (km) 

V
is
u
al
ly

 p
ic
ke
d
 S
‐w

in
d
o
w

 d
u
ra

o
n
 (s
) 



 

 13 

 
Figure 1.7 Comparison of various schemes to predict Td-rup with the observed 

durations from data. 

Table 1.1 Source duration versus moment magnitude based on the 
theoretical rupture duration. 

Magnitude (Mw) Source duration (sec) 

M < 5 1 

5 < M < 6.5 3 

6.5 < M < 7.5 10 

7.5 < M < 7.9 30 

 

Table 1.2 Source duration versus moment magnitude after adjustments 
based on the NGA-West2 and Greek data. 

Magnitude (Mw) Source duration (sec) 

M < 4.5 10 

4.5 < M < 6.5  15 

6.5 < M < 7.9 2/fc 

 

Table 1.3 Recommended source duration versus moment magnitude for this study 

Magnitude (Mw) Source duration (sec) 

M < 4.5 10 

4.5 < M < 6.9 15 

6.9 < M < 7.9 1.4/fc 

M < 7.9 33 
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1.8 CODA TIME WINDOW 

One definition of the onset of the coda window is twice the S-wave travel time after the S-wave 
arrival time [Aki 1969; Phillips and Aki 1986; and Kato et al. 1995]. This definition generally 
provides the directionally averaged coda wave due to backscattered waves coming from all 
directions. It also gives a theoretically consistent coda-wave onset. However, it may also allow 
S-waves into the coda window for cases of long source duration and short hypocentral distance. 
Finally, it may also exclude many records for which post-S-wave windows are available, but not 
long enough to include this delayed onset of the window, especially at long hypocentral 
distances. 

As an alternative, the coda window onset definition is defined as beginning immediately 
following the S-wave windows [Novelo-Casanova and Lee 1991; Wong et al. 2001]. This 
definition maximizes the number of coda windows available from the dataset, although some of 
these records may contain late arriving S- and/or surface waves. Further discussion on this issue 
includes Padhy et al. [2011], who discussed the various assumptions made in literature for the 
coda onset, and Satoh et al. [2001], who presented a comparison between early and late coda 
onsets. 

For this project, which had the goal of obtaining as many FAS from coda windows as 
possible, a new approach was devised. In this approach, the end of the coda window is defined to 
make use of as much of the record as is available. Information is provided to the user as to the 
quality of coda onset; by distinguishing between the different definitions, the user can select 
which coda windows to use for their analyses. 

The end of the coda window is generally defined as the end of the record. However, 
given that a few records have unusually long durations, we compared the actual end-of-record 
time ( endt ) with an artificial end-of-record time ( 3end S St t D  ) to avoid choosing the coda 

window at the end of these time histories, since the window will then probably be dominated by 
the least significant ground motion. Hence, the end of the coda window is defined as the 
minimum of these two values: 

 min , 3f
c end S St t t D    (1.12) 

The coda window length ( cD ) is simply chosen to be the same as SD  if possible. When 

this window length is unavailable (i.e., due to overlap with the S-wave window), then the cD  is 

the remaining duration between f
St  and f

ct . Hence, the start time of the coda window ( ct ) is 

taken to be: 

 max ,f f
c c SSt t t D   (1.13) 

and the duration of the coda window is then less than the S-wave duration and given by: 

f
c c c SD t t D    (1.14) 
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We examined these window definitions on several records and confirmed that they work well 
except in those cases where coda windows included S-waves. Such windows were flagged by the 
analysts for further review. 

The processing code automatically flags the record in two cases, depending on the 
location of the coda window in the time series. In the first case, the code compares tc with the 
theoretical value for the coda window onset ( 2theo S ht t R   ). If c theot t , a flag is added; this 

will be included in the final flatfile so that users can choose the definition for the coda window. 
This flag does not lead to reprocessing by an experienced analyst, but it is provided to assist the 
data user in case they wish to exclude coda windows that do not comply with the theoretical coda 
onset definition. Figure 1.8 shows some examples of coda windows. In Figure 1.8(a), the coda 
window starts near the theoretical [Aki 1969] coda arrival, whereas in Figure 1.8(b), it starts at a 
later time. In Figure 1.8(c), the window starts before the theoretical arrival due to the limited 
record length. These different coda window onsets are flagged by the following equation and are 
shown in Figure 1.8. 

1,
flag

0, otherwise
c theot t

 


 (1.15) 

In the second case, a check for possibly inadequate (short) coda window durations is 
performed. A coda window has a length of c SD D , but that duration may not provide adequate 

spectral resolution, especially considering the standard PEER processing [Ancheta et al. 2013] 
cosine tapering at the end of the entire record. The taper at the end of the record is 5% of the 
entire record duration (e.g., 2 sec for a 40 sec-long record and 15 sec for a 300 sec-long record). 
Since the percentage is a constant, we can check cD  against the taper duration ( 0.05tap endD t ). 

We require that the taper duration is not greater than 30% of the coda window length (i.e., Dc ≥ 
Dtap/0.3 = 0.17·tend), and that the coda window length is greater than 10 sec. If these conditions 
are not satisfied, then the record is flagged as having possibly inadequate coda duration, and it is 
reprocessed by an experienced analyst. Figure 1.9 shows an example recording for the coda 
window. Based on the following classification scheme, the recording was flagged as 1 sec during 
the data processing. 

999, no coda window

flag 1, 10 | 0.17

0, otherwise
c c endD D t


   



 (1.16) 

The automatic selection of the coda window cannot be altered by the analyst. If the 
analyst believes these automated values to be incorrect, or if the coda-wave window contains an 
aftershock, the record is flagged for further processing. Figure 1.10 shows an example recording 
that includes a small aftershock in the coda window. The flagged records are then further 
reviewed by experienced analysts. 
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(a) 

 
(b) 

 
(c) 

Figure 1.8 Coda window starts (a) near, (b) after, and (c) earlier than the theoretical 
[Aki 1969] coda arrival time. 
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Figure 1.9 Example of the automatic computation of the coda window duration and 

flag. 

 

 
Figure 1.10 User-defined flag if the S- or coda window is problematic, e.g., contains an 

aftershock. 
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1.9 FLAGGED RECORDS 

Most flagged records are reviewed and reprocessed by experienced analysts, with the exception 
of late S-wave triggers (which are reviewed to confirm before rejection from further processing) 
and late coda onsets (which are accepted). Information from the flags, such as late P/S triggers, 
short-noise/coda windows, coda-waves onsets that do not follow the theoretical onset rule of Aki 
[1969], and various other issues (e.g., aftershocks), can then be included in the FAS flatfile. 
Table 1.4 summarizes all of the flags during data processing. 

Table1.4. Types of flagged records during data processing. 

Name Type Result 

Late S-wave trigger User Rejection (after confirmation) 

Late P-wave trigger Auto (criterion: ) Review 

Short noise window Auto (criterion: 10 sec
P

t  ) Review 

Short coda window 
Auto (criteria: 

10 sec or 0.17

1

( 1)

( )

c c end

tot

D D t

a a a

df D

df k

dt

x j

 

  



) 

Review 

Coda onset prior to 2* S-wave travel 
time 

Auto (criterion: c theot t ) - (for info only) 

Coda contaminated with S-waves; 
aftershock in S-wave or coda 
window; contamination in noise 

User Review 

1.10 DC (MEAN) REMOVAL, TAPERS, ZERO PADDING, AND FAS COMPUTATION 

1.10.1 DC (Mean) Removal and Tapers 

Before calculation of the FAS, the various windowed time series are processed in the time 
domain for DC removal as defined by the following equation: 

a a a    (1.17) 

where a' denotes the acceleration time series after DC removal. a and  denote the windowed 
acceleration time series and the mean offset value, respectively. Cosine tapers are then applied to 
the beginning and end of each time window. Table 1.5 lists the length of cosine tapers applied to 
the acceleration series: recall that in most cases the entire time history has already been tapered 
with 1% and 5% at beginnings and ends. 

 

8/%30 hPS Rt  
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Table 1.5 Cosine taper length applied to windowed accelerations. 

Windowed time histories 
Cosine taper length 

Start time End time 

Entire record 1% of total length 1% of total length 

Pre-event noise 0.5 sec 0.5 sec 

P-wave window 0.5 sec 0.5 sec 

S-wave window 0.5 sec 0.5 sec 

Coda-wave window 0.5 sec 0.5 sec 

1.10.2 Zero Padding and Fourier Spectra 

Following tapering and then DC (mean) removal, a series of zeros is added to the end of the 
records. A common duration (Dtot) is chosen for all windows in the dataset, so that the resulting 
FAS have a common frequency step ( 1 totdf D ). This is convenient for users for two reasons: 

 A common df  for the different time windows of each record (P-, S-, coda, 
and noise) facilitates the computation of SNR, which is a check often 
performed before choosing the useable frequency range of the data. 

 If a user wishes to process a large number of data, providing a common 
df facilitates statistical calculations at chosen frequency values. One need 
only select frequencies without interpolation of the data near the required 
value. This process maintains the variance of the signal and should 
facilitate future analyses. 

In order to decide on the value of Dtot, we sorted all the records in the NGA-West2 flatfile 
based on the time step ( dt ), and listed the longest recordings for the different time steps. Table 
1.6 shows the longest recordings for time steps of 0.0025, 0.0050, 0.0100, and 0.0200 sec, 
respectively. These time steps represent 91% of NGA-West2 database. The longest duration in 
the flatfile is 1010 sec (Table 1.6), which was recorded at Shenxian Station from the Wenchuan 
earthquake. Nearly all (91%) of the recordings will be padded by a series of zeros at the end, to a 
Dtot of 1,310.72 sec, which is a common power of two for these dt  values. This process creates a 
consistent df  of 0.000763 Hz. 

However, some recordings (9%) do not have the instrument sampling dt  as a multiple of 
0.0025 sec. For example, many recordings of the Kocaeli, Turkey, earthquake, have a dt  of 
0.0078 sec. When the recording has a different time step from those listed in Table 1.6, the 
duration is selected as a power of two multiplied with the time step that creates the closest 
duration possible to 1310.72 sec, but shorter. This algorithm is expressed by the following 
equation: 

2K
totD dt  (1.18) 
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where 

 2floor log 1310.72K dt     (1.19) 

For example, if the dt  is 0.0078 sec, K is calculated to be 17, hence totD  becomes 1,022.3616 

sec. This totD  is consistent for these recordings but requires additional interpolation if FAS 

values are compared to other recordings; note that the recordings with different time steps are 
only 9% of total database. 

By using the windowed time series after DC removal, tapering, and zero adding, FAS and 
Fourier Phase Spectra (FPS) are computed as follows: 

k kFAS T C  (1.20) 

where 

    



N

j

kj
Nk jx

N
C

1

111   (1.21) 

  Ni
N e  2  (1.22)  

NdtT   (1.23) 

Ck is the Fourier coefficient for each frequency ( 1)df k  , where df  is the frequency step. The 
term ( )x j  represents a time series, N represents the number of data points in the time series, and 
dt  is the time step of the series. The FPS is calculated from the real and imaginary values of 
Fourier spectra as follows: 

   1tan Im ReFPS C C     (1.24) 

where the phase ranges from – to  in the output. The FAS flatfile will be populated following 
the smoothing and de-sampling procedures used in the NGA-East project [Goulet et al. 2014]. 
Figure 1.11 shows an example of the computed and smoothed FAS for all time windows, using 
the example record of Figure 1.1. The FAS in the figure have units of g’s and have been 
smoothed to show the trends at high frequencies. 

The current NGA-West2 flatfile does not until now include metadata columns with the 
sampling rate of each instrument or the total number of data points of each record. This is 
because up to now the focus of the NGA projects has been to provide users with response 
spectral values. In the framework of the current project, which aims at providing users with time 
series and FAS, columns with sampling rates and numbers of points will be added to the FAS 
flatfile. 
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Figure 1.11 Computed FAS for all time windows shown in the example record of Figure 

1.1 (Tottori earthquake, station HYG007). 

 

Table 1.6 Common duration for FAS calculation (covers 91% of the total 
number of records). 

dt (sec) 
RSN for 
longest 

recordings  

Number of 
points 

Duration 
(sec) 

Duration after 
zero padding 

(sec) 
Power df (Hz) 

0.0025 495 4113 10.2825 1310.72 19 0.000762939 

0.005 4620 202001 1010.005 1310.72 18 0.000762939 

0.01 4614 60001 600.01 1310.72 17 0.000762939 

0.02 8152 7500 150 1310.72 16 0.000762939 

1.11 FREQUENCY RANGE LIMITATIONS AND CONSIDERATIONS 

Finally, we emphasize that, although FAS are computed up to each record’s Nyquist frequency, 
this does not mean that a spectrum is usable within the entire frequency range. The user should 
consult the flatfile for the high-pass frequency for each horizontal component (values HP-H1, 
HP-H2, columns DT-DU) and low-pass frequency (LP-H1, LP-H2 values, columns DV-DW) 
depending on the filtering performed on the traces. The recommended minimum and maximum 
usable frequencies are determined from a previous study by Abrahamson and Silva [1997], and 
are calculated by the following expressions taking into account both components, H1 and H2: 

Lowest Usable Frequency (LUF) = 1.25·max(HP-H1, HP-H2) (1.25) 

Highest Usable Frequency (HUF) = min(LP-H1, LP-H2)/1.25 (1.26) 
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A second caution is that these filters were based on noise in the entire record and are only 
strictly applicable to the entire record spectrum (see Figure 1.11). Shorter time windows may 
have increased levels of noise in the spectrum. Additionally, the user should note those cases in 
the flatfile that contain zero values for LP-H1, LP-H2; zero indicates that the filtering was 
performed prior to PEER acquiring the data; generally, this is Volume II data when the 
unprocessed (Volume I) data were not available. In these cases, the user should assess the usable 
frequencies for those records through visual inspection of the FAS. 

The user will also notice that window lengths (e.g., pre-event noise window) are 
sometimes shorter than 1/LUF. In that case, the FAS at periods longer than the window length 
are generated by adding a series of zeros at the end of the windows. Therefore, in such cases, the 
lowest usable frequency is 1/(window length) rather than the LUF defined by Equation (1.25). 
Finally, the data recorded by the KiK-net and K-Net arrays in Japan have an instrument response 
modified by an anti-alias filter that exhibits decay similar to a three-pole Butterworth filter with a 
corner frequency of 30 Hz [Aoi et al. 2004]. The user should consider that, regardless of the 
filters mentioned in the flatfile, these records have a maximum usable frequency of about 30/1.25 
= 24 Hz, due to the anti-alias filter incorporated in the data acquisition system. This is of great 
importance if such records are used to compute high-frequency parameters such as κ (Ktenidou 
et al., 2014). 

1.12 EXAMINING THE PROPOSED METHOD FOR DIFFERENT HYPOCENTRAL 
DISTANCES 

Example records were processed for a range of regions, magnitudes, and distances, to test the 
proposed methodology using NGA-West2 data. The selected recordings are from the following 
earthquakes: 21305648 California earthquake, 09/06/2003 (M4.0), Tottori, Japan, 10/16/2000 
(M6.6), El Mayor-Cucapah, Mexico, 4/4/2010 (M7.2), and Denali, Alaska, 11/03/2002 (M7.9). 
Tables 1.7–1.10 list the processed records. The hypocentral distances range from 5 to 500 km, in 
order to examine the windowing procedure proposed in this study. Figures 1.12–1.15 show the 
selected time windows for all four earthquakes. These figures demonstrate that obtaining the 
complete set of all five time windows (noise, P-wave, S-wave, coda, and the entire record) 
becomes difficult as magnitude increases. This is expected, because for larger-magnitude 
recordings, the recording generally does not include significant pre-event or coda windows. In 
addition, nearly all large-magnitude recordings in NGA-West2 have shorter lengths due to a 
variety of factors, including analog recording systems, trigger levels, pre-event memory length, 
and total record length criteria established by the strong-motion networks (e.g., GGS\CSMIP and 
UGSS\NSMP). In contrast, the small-to-moderate California dataset was generally obtained from 
continuously recording seismic networks (e.g., CIT\SCSN, BDSN, and the USGS). Therefore, 
these recordings generally have significantly longer pre-event and post-event lengths because 
these lengths were requested by PEER from the data network providers. Hence, the FAS can also 
be calculated for the pre-event and coda windows for these data. In summary, the proposed 
window selection method works well for this range of recordings. 
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(a) 

 
(b) 

 
(c) 



 

 24 

 
(d) 

 
(e) 

Figure 1.12 The automatic choice of windows (after manual P and S onset selections) 
for a series of records of the 21305648 California earthquake at: (a) 
Haviland Hall, U.C. Berkeley, 10 km, (b) Angel Island, 20 km, (c) Mountain 
View; Fire Station 3, 50 km, (d) Mt. St. Helens, 100 km, and (e) Oroville Dam, 
Oroville, 200 km. 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 1.13 The automatic choice of windows (after manual P and S onset selections) 
for a series of records of the Tottori, Japan, earthquake at (a) SMNH01, 6 
km, (b) SMN015, 9 km, (c) OKY004, 20 km, (d) OKYH03, 50 km, and (e) 
HYG007, 100 km. 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 1.14 The automatic choice of windows (after manual P and S onset selections) 
for a series of records of the El Mayor-Cucapah, Mexico, earthquake at: (a) 
Cerro Prieto Geothermal, 10 km, (b) El Centro Array #10, 20 km, (c) 
Elmore's Ranch, 50 km, (d) North Shore Salton Sea 2, 100 km, (e) Redlands 
- Garden & Mariposa, 200 km, and (f) Ground to Air Transmit and Receive 
Compound, 490 km. 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 1.15 The automatic choice of windows (after manual P and S onset selections) 
for a series of records of the Denali, Alaska, earthquake at: (a) Carlo, 70 km, 
(b) PS#10, 85 km, (c) R109, 60 km, (d) PS#08, 115 km, (e) PS#07, 200 km, 
and (f) 8039, 297 km. 
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Table 1.7 Records used for 21305648 California earthquake, 09/06/2003 (M4.0) 

RSN 
Hypocentral 

distance (km) 
Station name File name 

13046 10.15 Haviland Hall, U.C. Berkeley 

BKBRKHLN.AT2 

BKBRKHLE.AT2 

BKBRKHLZ.AT2 

13002 19.75 Angel Island 

NCCAGHNN.AT2 

NCCAGHNE.AT2 

NCCAGHNZ.AT2 

19595 50.31 
Mountain View; Fire Station 3 North 
Rengstorff Ave; one-story; ground 

level 

1775HNN.AT2 

1775HNE.AT2 

1775HNZ.AT2 

19622 98.47 Mt. St. Helens 

NMHHNN.AT2 

NMHHNE.AT2 

NMHHNZ.AT2 

19584 200.13 Oroville Dam, Oroville 

ORVHHN.AT2 

ORVHHE.AT2 

ORVHHZ.AT2 

 

Table 1.8 Records used for Tottori, Japan, earthquake, 10/16/2000 (M6.6). 

RSN 
Hypocentral 

distance (km) 
Station name File name 

3947 5.86 SMNH01 

SMNH01NS.AT2 

SMNH01EW.AT2 

SMNH01UD.AT2 

3943 9.12 SMN015 

SMN015NS.AT2 

SMN015EW.AT2 

SMN015UD.AT2 

3907 19.72 OKY004 

OKY004NS.AT2 

OKY004EW.AT2 

OKY004UD.AT2 

3921 49.82 OKYH03 

OKYH03NS.AT2 

OKYH03EW.AT2 

OKYH03UD.AT2 

3895 99.64 HYG007 

HYG007NS.AT2 

HYG007EW.AT2 

HYG007UD.AT2 
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Table 1.9 Records used for El Mayor-Cucapah, Mexico, earthquake, 4/4/2010 (M7.2). 

RSN 
Hypocentral 

distance (km) 
Station name File name 

5825 12.65 Cerro Prieto Geothermal 
GEO000.AT2 
GEO090.AT2 
GEO--V.AT2 

5991 60.73 El Centro Array #10 
E10320.AT2 
E10230.AT2 
E10-UP.AT2 

8522 104.87 Elmore's Ranch 
CIERRHNN.AT2 
CIERRHNE.AT2 
CIERRHNZ.AT2 

6025 153.58 North Shore Salton Sea 2 
NSS2360.AT2 
NSS2-90.AT2 
NSS2-UP.AT2 

5949 260.49 Redlands - Garden & Mariposa 
23164357.AT2 
23164-87.AT2 
23164-UP.AT2 

8527 547.45 
Ground To Air Transmit And Receive 

Compound 

CGATRHNN.AT2 
CGATRHNE.AT2 
CGATRHNZ.AT2 

 

Table 1.10 Records used for Denali, Alaska, earthquake, 11/03/2002 (M7.9). 

RSN 
Hypocentral 

distance (km) 
Station Name File Name 

2114 68.25 Carl 
CARLO-90.AT2 
CARLO360.AT2 
CARLO-UP.AT2 

2111 84.89 PS10 
PS10-047.AT2 
PS10-317.AT2 
PS10-UP.AT2 

2107 62.59 R109 
R109-90.AT2 
R109360.AT2 
R109-UP.AT2 

2112 115.82 PS08 
PS08-49.AT2 
PS08319.AT2 
PS08-UP.AT2 

3832 201.09 PS07 
PS07-39.AT2 
PS07309.AT2 
PS07-UP.AT2 

2104 296.96 8039 
FS_7-90.AT2 
FS_7360.AT2 
FS_7-UP.AT2 
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1.13 OUTPUT FILE 

This section describes the format of the output files. Fourier amplitude spectra are provided for 
the five time windows and will be used to populate the FAS flatfile. Figures 1.16 and 1.17 show 
examples of the FAS output file format for the entire window and the coda window, respectively. 
Note that the filtered and non-filtered FAS in Figure 1.16 are the same in the output file for the 
entire time history since the filtered recording in NGA-West2 are used without the application of 
any additional filter. The output file for the other four time windows (Figure 1.17) only populates 
the non-filtered FAS column, because the filters were chosen based on the FAS spectrum of the 
entire time series and not on these shorter time windows. 

 

 
Figure 1.16 FAS example output file for an entire recording (Denali, Alaska, earthquake 

at station 8039, UP). 

 
Figure 1.17 FAS example output file for a coda window (Denali, Alaska, earthquake at 

station 8039, UP). 
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1.14 SUMMARY 

This report introduces a semi-automated approach for calculating FAS for the NGA-West2 
acceleration time-history database. We devise and document a method for selecting time 
windows, and evaluate the method with the FAS computed from a suite of sample records with a 
range of different magnitudes and hypocentral distances that span the NGA-West2 dataset. A 
common frequency step ( df ) is used that allows more than 90% of the FAS to be used without 
interpolation to a common frequency. A zoom option facilitates accurate selection of P-arrival 
onset is a newly added feature to the standard PEER data processing code. Flags for late P-
triggering, short-noise time window, short-coda time window, coda onset, and contamination of 
a window (i.e., one that includes an aftershock) have also been added as output metadata of this 
procedure and are to be included in the flatfile. These updates and flags to the data-processing 
code ensure the quality of the FAS database and allow the user to select FAS data in the NGA-
West2 based on these criteria. Lastly, this report documents the output file format. This 
document will be updated if the data processing method is significantly revised. A FAS flatfile 
will be provided for the NGA-West2 database, based on implementation of the results and 
recommendations of this study. 
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