Skip navigation

Domestication syndrome is investigated by proteomic analysis between cultivated cassava (Manihot esculenta Crantz) and its wild relatives

Domestication syndrome is investigated by proteomic analysis between cultivated cassava (Manihot esculenta Crantz) and its wild relatives

Zhang, Peng, An, Feifei, Chen, Ting, Stéphanie, Djabou Mouafi Astride, Li, Kaimian, Li, Qing X., Carvalho, Luiz J. C. B., Tomlins, Keith, Li, Jun, Gu, Bi and Chen, Songbi (2016) Domestication syndrome is investigated by proteomic analysis between cultivated cassava (Manihot esculenta Crantz) and its wild relatives. PLoS ONE, 11 (3). e0152154. ISSN 1932-6203 (doi:https://doi.org/10.1371/journal.pone.0152154)

[img]
Preview
PDF (Publisher PDF)
15168_Tomlins_Domestication syndrome is investigated (pub PDF OA) 2015.pdf - Published Version
Available under License Creative Commons Attribution.

Download (9MB) | Preview
[img] PDF (Acceptance letter)
15168_Tomlins_Acceptance letter 2015.pdf - Additional Metadata
Restricted to Repository staff only

Download (40kB)

Abstract

Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena.

Item Type: Article
Additional Information: © 2016 An et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Uncontrolled Keywords: cassava, wild varieties, starch, photosynthesis, genetics
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science > Natural Resources Institute > Food & Markets Department
Last Modified: 17 Jun 2020 02:19
URI: http://gala.gre.ac.uk/id/eprint/15168

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics