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Abstract 

In previous studies an effect of β-glucan on apoptosis in fish was noted and in this 

investigation we determine the time and concentration dependency of this effect. Primary cell 

cultures of pronephric carp cells were incubated for 6, 24, 48 h with various concentrations 

ranging from 0 – 1000 μg/ml of MacroGard® β-glucan. Apoptosis was monitored via acridine 

orange staining. Results indicate a clear effect of time and concentration on the induction of 

apoptosis in vitro, with only concentration ≥ 500 μg/ml causing significantly higher 

percentages of apoptotic cells. Apoptosis was detected after 6 h. This concentration 

dependent effect has to be considered when studying apoptosis in relation to 

immunostimulation. 
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Introduction 

A cost effective approach to disease prevention in farming of aquatic and terrestrial animals is the 

administration of substances that enhance the immune system. These substances, known as 

immunomodulators or immunostimulants, are utilized to increase general protection against disease or 

to overcome the immunosuppressive effects of stress [1]. Generally substances that have 

immunostimulatory functions act as pathogen associated molecular patterns (PAMPs) and induce an 

immune response by interaction with pattern recognition receptors (PRRs). One such PAMP is β-

glucan, a carbohydrate that is an essential cell wall component of fungi, bacteria, algae, oats and 

barley [2]. β-Glucan is an ideal target for studies on disease prevention since this substance stimulates 

various immune responses and enhances protection against viral and bacterial pathogens [3]. It also 

occurs naturally in the environment and therefore raises less concern in regards to adverse impacts on 

the environment and human health [4].  

In humans β-glucans display various medicinal properties for example, decreases in cholesterol levels, 

enhancement of wound healing, and inhibition of cancer cell growth [5]. In mammals although 

various receptors e.g. complement receptor C3, dectin-1 and TLR1/6 have been described [6], dectin 

1 is considered as major β-glucan receptor [7]. Differential responses are elicited when β-glucan binds 

to dectin-1 alone or together with other receptors such as TLR 2 [8]. However, dectin-1 could not be 

identified in fish and it has been suggested that β-glucan is detected by multiple pattern recognition 

receptors including toll like receptors [9]. In both mammals and fish, β-glucan recognition results in 

the activation of macrophages, which induces phagocytosis, leukocyte migration and the production 

of cytokines (e.g. IL-1, TNFα), nitric oxide (NO) and reactive oxygen species, as well as the 

enhancement of complement activity [9-17]. 

However, the immunostimulating effects of β-glucan have been shown to be dependent on dose, 

duration of administration, environmental temperature and the species. For example, no effect of β-

glucan on stress related parameters were observed in channel catfish (I. punctatus) [18], whilst Jeney 
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and colleagues [1] observed stress reducing effects of dietary β-glucan in rainbow trout (O. mykiss). 

This effect observed by Jeney et al. was however dose dependent and only occurred at 0.1 % β-

glucan, whilst at 2 % β-glucan administered in feed led to a suppressed immune response which 

seemed to render the animals more susceptible to an infection. In fish, studies have shown that β-

glucan dosage in the feed affects the respiratory burst activity of macrophages leading to differences 

in time and height of the peak respiratory burst activity [19]. These possible adverse dose effects of β-

glucan have also been noted in crustaceans. For example, Hauton and Smith [20] noted that in lobster 

an increase in β-glucan concentration decreased the viability of granulocytes.  

The possible mechanisms of the dose dependent effects of β-glucan particularly the reduction of 

immunostimulation at high doses have not been ascertained. However, in a recent detailed study by 

Kepka and coworkers [21] zymosan, a β-1,3-glucan from yeast, induced apoptosis in vitro and in vivo, 

which was linked to the production of ROS in carp leukocytes. Unfortunately the dose dependency of 

this phenomenon was not ascertained. The ability of β-glucan to induce apoptosis-related genes has 

previously been noted in fish by Miest et al. [22]. In fact, the β-glucan induction of apoptosis can be 

beneficial as β-glucan can also affect programmed cell death in human cancer cells. For example, Kim 

et al. [23] have shown that bacteria-derived β-glucan can induce apoptosis and that this form of cell 

death is involved in the tumouricidal effects of β-glucan [24, 25]. 

In this study the dose effect of β-glucan, in the form of MacroGard®, was investigated to ascertain its 

relationship with apoptosis in the pronephric leucocytes of fish. The pronephros was chosen as target 

organ as it fulfills important immune functions such as haematopoiesis, phagocytosis and antigen 

processing in the fish and Verburg-van Kemenade and colleagues [30] identified lymphocytes, 

neutrophilic and basophilic granulocytes and macrophages in suspensions of isolated pronephric cells. 

This heterogenous cell suspension hence allows us to study the effect of MacroGard® on a wide 

variety of immune cells.  

The concentrations of MacroGard® utilised corresponded to concentrations used in other 

investigations involving different experimental animals for example, 1 – 200 µg/ml for mouse 
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macrophages [26], 100 – 800 µg/ml for porcine leucocytes [27], 1 µg/ml for macrophages of rainbow 

trout (Oncorhynchus mykiss) [28], and 0.5 – 500 µg/ml for the phagocytes of turbot (Psetta maxima), 

gilthead sea bream (Sparus aurata) [29] and 500 µg/ml in carp (Cyprinus carpio) [21]. 

 

Materials & Methods 

Common carp (Cyprinus carpio) were obtained from Fair Fisheries, Shropshire, England and reared 

in black 1 m x 0.5 m tanks with 225 litres of 15 °C dechlorinated water at pH 7. The water in each 

tank was circulated and cleaned by a temperature regulating biological pond filter (Eheim). Fish were 

fed daily with commercial dry pelleted food (Tetra Pond feed) and kept on a 12 hour light/dark cycle. 

The head - tail length of the fish ranged from 7.9 to 18.1 cm (mean length 10.6 cm) and weight ranged 

from 8.2 to 89.7 g (mean weight 36.3 g). For organ sampling fish were removed from the tank by 

netting and sacrificed with a lethal dose (~ 0.2 %) of 2-Phenoxyethanol (Sigma Aldrich, P1126) in 

aquarium water. 

A pronephric cell suspension was prepared using a modification of the procedure described by 

Verburg-van Kemenade and coworkers [30]. In brief, the organ was gently disrupted through a sterile 

cell strainer with 100 µm pore diameter (BD Falcon Cell strainer, Scientific Laboratory Supply, 

352360) in 1 ml of modified RPMI medium. The modified cell culture medium (hereafter referred to 

as RPMI+) consisted of RPMI with 0.3 g/L L-glutamine (Sigma Aldrich, R7388) with 0.5 % sterile 

water, 0.05 % pooled carp serum, 0.05 mM β-mercaptoethanol (Sigma Aldrich, M-3148), penicillin 

(50 U/ml), and streptomycin (50 µg/ml) (Sigma Aldrich, P4458). The viability of the cell population 

was ascertained with trypan blue staining and only cell suspensions with a viability of at least 95 % 

were used. The concentration of the cell suspensions was adjusted to 1 x 107 cells/ml with RPMI+ 

medium. Cells were set up in 96 well plates (Sarstedt, UK) with 100 µl per well.  

MacroGard® was provided by Biorigin (Brazil), according to the certificate of analysis the 

MacroGard® batch (batch 250813) consisted of 67.8 % carbohydrates, 5.1 % protein (dry matter), 
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14.2 % lipids, 6.5 % ash and 4.6 % moisture. The microbiological analysis was negative for 

Salmonella sp., Escherichia coli and Coliforms (analysed by Biotech Pharmacon). 

A stock solution of MacroGard® in autoclaved deionized water (sH2O) was sonicated (2 x 30 s at 

power 6, Sonics, vibra-cell). Sterility was ensured by pasteurisation of the solution in a water bath at 

80 ºC for 20 min and left at room temperature to cool down. Concentrations of MacroGard® were 

prepared from the stock solution in sH2O as required. Following concentrations were used: 1, 50, 100, 

250, 500, and 1000 µg/ml, which correspond to 0.6, 30, 60, 150, 300 and 600 µg/ml β-glucan. In 

addition, three controls were set up: an untreated control (i.e. no additives), a control with H2O as 

additive, and a positive UV exposed (324 J/m2) control as described in [31]. Cells where then 

incubated for 6, 24 or 48 h at 20°C, and apoptosis visualized as described in [22] using acridine 

orange.  

Prior to statistical analysis the data were arcsin transformed to meet the assumption of normal 

distribution. The data were analysed for the influence of exposure time (i.e. 6, 24, and 48 h) and the 

various treatments (i.e. controls and MacroGard® concentrations) with 2-way repeated ANOVA. For 

the analysis of the distinct effects the treatments had on apoptosis a 1-way ANOVA was performed 

for the individual time points with a subsequent Turkey’s post-hoc test. Analyses were performed 

using Minitab Release 14 and GraphPad Prism 4.  

Results 

The concentration of MacroGard® (F = 12.39, p < 0.0001) and the exposure time (F = 20.73, p < 

0.0001) had a significant effect on apoptosis levels. Additionally an interaction was found between 

the main effects (F = 1.98, p < 0.05). As this global test indicated that the effect of dose varied with 

time, a series of one-way ANOVAS and post-hoc tests was conducted to examine where these 

differences lie (Figure 1).  
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Figure 1: Time and concentration dependency of MacroGard® influence on apoptosis 

Percentage of apoptotic cells in the cell suspension was analysed with acridine orange. Cell 

suspensions were treated with different concentrations of MacroGard® and incubated over 3 different 

time periods. Significance was defined as p ≤ 0.05. Symbols for significant differences: * = 

significantly different to all other samples with ** = p ≤ 0.01; ### = significantly different to all other 

samples except 1000 μg/ml with p ≤ 0.001; ’’’ = significantly different to all other samples except UV 

with p ≤ 0.001, same letters indicate differences between samples (with a, c, d, f = p ≤ 0.05, b = 

p ≤ 0.01, f, g = p ≤ 0.001). n.a. = not analysed. Data are shown as mean ± SEM with n = 8. A) 

Concentration dependency of MacroGard® effects at different time points. X = water control, ▼ = UV 

control, n = 6 – 8. B). Time dependency of various MacroGard® concentrations.   = UV,  = 1000 

µg/ml,  = 500 µg/ml,  = 250 µg/ml,  = 100 µg/ml,  = 50 μg/ml,  = 1 µg/ml,  = water,  

= 0 µg/ml.  
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At all the time points there was no significant difference detected in apoptosis levels of the two 

negative controls (i.e. untreated and with added water). By running a positive control (i.e. UV 

exposure) alongside the samples it was established that apoptosis could be induced in the tested cell 

population. This UV exposure caused higher percentages of apoptosis positive cells after 6 hours 

(15.8 ± 1.54 %) and 24 hours (32.3 ± 2.8 %) when compared to the non-treated control (both 

p ≤ 0.001). When cells were exposed to MacroGard® for 6 hours none of the tested concentrations (1 

– 500 μg/ml) induced apoptosis in the pronephric carp leucocytes. Most effects were observed after 24 

h of MacroGard® exposure. At this time point 500 μg/ml induced significantly higher apoptosis in the 

cell culture (i.e. 14.5 ± 2.4 %) compared to the non-treated control (5.1 ± 0.7 % apoptosis) (p ≤ 0.01) 

and the 1 μg/ml MacroGard® concentration (7.0 ± 1.1 % apoptosis) (p ≤ 0.05 and 0.001 respectively).  

At 24 h, a concentration of 1000 μg/ml of MacroGard®, included in the experimental design to test if 

concentrations > 500 μg/ml induced significantly higher apoptosis (32.2 ± 5.0 %, p ≤ 0.001), induced 

similar to apoptosis levels as the positive UV control. Because of the relatively high levels of 

apoptosis therefore this concentration was not tested at the other time points utilised. We therefore 

included an additional concentration of 50 μg/ml at the 48 h time point. As at 24 h 500 µg/ml 

MacroGard® induced significantly higher apoptosis levels (39.56 ± 15.57 %, p ≤ 0.05 compared to 

100 µg/ml). Additionally, there was a significant difference between the apoptosis levels caused by 

500 µg/ml at 48 h and 24 h and 6 h (both p ≤ 0.001). None of the other tested concentrations were 

significantly different.   
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Discussion 

The 2010 report by the Food and Agriculture Organisation of the United Nations on fisheries and 

aquaculture [32] stated that aquaculture will overtake capture fisheries as the primary source of food 

fish in the future. However the growth of this food-producing sector is impaired by disease outbreaks, 

which both reduce productivity in fish farms and pose a problem for biosecurity. Immunostimulation 

is an important tool in aquaculture to increase resistance to pathogens [3] especially since substances, 

such as β-glucan, occur naturally in the environment and are thus less likely to raise concerns about 

residues in food fish and the environment [4]. Previous studies on β-glucan have highlighted a time 

and dose dependency of the effects [1, 33-39].  

However for many substances used as immunostimulants, including LPS and β-glucan, effectiveness 

is dose dependent, such that high concentrations often lead to adverse effects, including 

immunosuppression [19, 38, 40, 41]. As a result the resistance of the animals to pathogens is not 

enhanced or is even decreased at high concentrations, and hence it is important for both feed 

manufacturers and fish farmers that the dietary dose of the immunomodulating substance utilized does 

not induce such negative effects. In the present study, as well as in several other studies, it has been 

demonstrated that the effects of β-glucan are dose dependent [20, 29, 35]. For instance the cell 

viability in lobster granulocytes decreased with an increase from 50 to 250 μg/ml in MacroGard® 

concentration [42]. The respiratory burst activity in response to MacroGard® exposure is also 

dependent on the applied concentration as demonstrated by Castro and coworkers [29]. In their report 

concentrations ranging from 0.5 to 5 μg/ml had no effect on the production of ROS while 

concentrations of 7.5 to 500 μg/ml significantly induced the respiratory burst. In addition, the authors 

investigated the stimulatory effects of MacroGard® and found that low concentrations (i.e. 1 – 

2.5 μg/ml) led to higher ROS production after secondary stimulation with another ROS inducing 

agent compared to cell cultures that were not pre-treated with MacroGard®. In the same study higher 

concentrations of MacroGard® (i.e. 10 – 500 μg/ml) inhibited the ROS response to the secondary 

stimulation, which was interpreted by the authors as a sign of exhaustion of the cells. However in 

regard to the findings described in this manuscript it is possible that the lower ROS production could 
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be due to the onset of apoptosis and thus lower cell numbers in the culture. Reactive oxygen species 

are known for their cytotoxicity in fish [43, 44] and hence it is possible that the higher β-glucan 

concentrations induced ROS, causing apoptosis which then results in lower respiratory burst activity 

due to the reduced cell numbers. 

Nonetheless, even though reports have shown that β-glucan has dose-dependent immunostimulating 

and immunosuppressing effects, up to now the mechanisms behind these differential effects have not 

been elucidated. It is interesting however that Kepka et al. [21] showed that in vitro 500 µg/ml 

zymosan and in vivo 40 µg zymosan/g body weight can induce apoptosis in pronephric granulocytes 

and macrophages (in vitro), as well as peritoneal leukocytes (in vivo) in carp.  

The findings of our study and the work conducted by Kepka et al. [21] suggest that some of the 

immunosuppression noted may be associated with the induction of apoptosis in immune cells, which 

are exposed to particular high doses of β-glucan. In our studies the pro-apoptotic effect was noted to 

be time and dose dependent with only concentrations of ≥ 500 μg/ml causing apoptosis in pronephric 

leucocytes in vitro. This is perhaps not surprising as most substances are toxic above a certain 

threshold [45]. This concentration dependency is therefore an important factor to be considered during 

dietary administration of an immunostimulant. In aquaculture situations it is therefore important to 

administer β-glucan at concentrations which are high enough to stimulate the immune response, but 

also low enough to avoid any possible adverse effects due to high doses. This supports our previous 

observations [10, 11, 13, 16, 22] in which we showed that MacroGard® administered at the producer 

recommended (10 - 15 mg/kg  bodyweight) dose does not induce apoptosis in pronephric cells but 

stimulates the immune response. 

 

Acknowledgements 

We would like to thank the technicians at Keele University. For assistance with statistical analysis we 

want to thank Dr. Anthony Polwart and Dr. Daniel Bray. We are grateful to Dr. Rolf Nordmø and 

Biorigin for providing us with MacroGard®. The research leading to these results has received funding 



© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

from the European Community's Seventh Framework Programme ([FP7/2007-2013] under grant 

agreement n° PITN-GA-2008-214505). 

References 

1. Jeney G, Galeotti M, Volpatti D, Jeney Z, Anderson DP. Prevention of stress in rainbow trout 
(Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture. 1997 154:1-15. 

2. Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by β-glucans. 
Physiology & Behavior. 2008 94:276-84. 

3. Sakai M. Current research status of fish immunostimulants. Aquaculture. 1999 172:63-92. 

4. Gannam AL, Schrock RM. Immunostimulants in fish diets. In: Lim C, Webster CD, editors. 
Nutrition and Fish Health: Food Products Press; 2001, p. 235-66. 

5. Petravic-Tominac V, Zechner-Krpan V, Grba S, Srecec S, Panjkota-Krbavcic I, Vidovic L. 
Biological effects of yeast β-glucans. Agriculturae Conspectus Scientificus. 2010 75:149-58. 

6. Dalmo Ra, Bøgwald J. β-Glucans as conductors of immune symphonies. Fish & Shellfish 
Immunology. 2008 25:384-96. 

7. Brown GD, Gordon S. Fungal [beta]-Glucans and Mammalian Immunity. Immunity. 2003 
19:311-5. 

8. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of 
inflammatory responses by dectin-1 and toll-like receptor 2. J Exp Med. 2003 197:1107-17. 

9. Pietretti D, Vera-Jimenez NI, Hoole D, Wiegertjes GF. Oxidative burst and nitric oxide 
responses in carp macrophages induced by zymosan, MacroGard® and selective dectin-1 agonists 
suggest recognition by multiple pattern recognition receptors. Fish & Shellfish Immunology. 2013 
35:847-57. 

10. Pionnier N, Falco A, Miest J, Frost P, Irnazarow I, Shrive A, et al. Dietary β-glucan stimulate 
complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio) during 
an Aeromonas salmonicida infection. Fish & Shellfish Immunology. 2013 34:819-31. 

11. Pionnier N, Falco A, Miest JJ, Shrive AK, Hoole D. Feeding common carp Cyprinus carpio 
with β-glucan supplemented diet stimulates C-reactive protein and complement immune acute phase 
responses following PAMPs injection. Fish & Shellfish Immunology. 2013 39:285-95. 

12. Vera-Jimenez NI, Nielsen ME. Carp head kidney leukocytes display different patterns of 
oxygen radical production after stimulation with PAMPs and DAMPs. Molecular Immunology. 2013 
55:231-6. 

13. Falco A, Miest JJ, Pionnier N, Pietretti D, Forlenza M, Wiegertjes GF, et al. β-Glucan-
supplemented diets increase poly(I:C)-induced gene expression of Mx, possibly via Tlr3-mediated 
recognition mechanism in common carp (Cyprinus carpio). Fish & Shellfish Immunology. 2014 
36:494-502. 

14. Hashimoto T, Ohno N, Adachi Y, Yadomae T. Enhanced production of inducible nitric oxide 
synthase by β-glucans in mice. FEMS Immunology and Medical Microbiology. 1997 19:131-5. 



© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

15. Vetvicka V, Vashishta A, Saraswat-Ohri S, Vetvickova J. Immunological effects of yeast- 
and mushroom-derived β-glucans. Journal of Medicinal Food. 2008 11:615-22. 

16. Falco A, Frost P, Miest J, Pionnier N, Irnazarow I, Hoole D. Reduced inflammatory response 
to Aeromonas salmonicida infection in common carp (Cyprinus carpio L.) fed with β-glucan 
supplements. Fish & Shellfish Immunology. 2012 32:1051-7. 

17. Vera-Jimenez NI, Pietretti D, Wiegertjes GF, Nielsen ME. Comparative study of β-glucan 
induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced 
chemiluminescence assay in common carp (Cyprinus carpio L.). Fish & Shellfish Immunology. 2013 
34:1216-22. 

18. Welker TL, Lim C, Yildirim-Aksoy M, Shelby R, Klesius PH. Immune response and 
resistance to stress and Edwardsiella ictaluri challenge in channel catfish, Ictalurus punctatus, fed 
diets containing commercial whole-cell yeast or yeast subcomponents. Journal of the World 
Aquaculture Society. 2007 38:24-35. 

19. Bonaldo A, Thompson KD, Manfrin A, Adams A, Murano E, Mordenti AL, et al. The 
influence of dietary β-glucans on the adaptive and innate immune responses of European sea bass 
(Dicentrarchus labrax) vaccinated against vibriosis. Italian Journal of Animal Sciences. 2007 6:151-
64. 

20. Hauton C, Smith VJ. In vitro cytotoxicity of crustacean immunostimulants for lobster 
(Homarus gammarus) granulocytes demonstrated using the neutral red uptake assay. Fish & Shellfish 
Immunology. 2004 17:65-73. 

21. Kepka M, Verburg-van Kemenade BM, Homa J, Chadzinska M. Mechanisms involved in 
apoptosis of carp leukocytes upon in vitro an in vivo immunostimulation. Fish & Shellfish 
Immunology. 2014 39:386-95. 

22. Miest JJ, Falco A, Pionnier NPM, Frost P, Irnazarow I, Williams GT, et al. The influence of 
dietary β-glucan, PAMP exposure and Aeromonas salmonicida on apoptosis modulation in common 
carp (Cyprinus carpio). Fish & Shellfish Immunology. 2012 33:846-56. 

23. Kim MJ, Hong SY, Kim SK, Cheong C, Park HJ, Chun HK, et al. β-Glucan enhanced 
apoptosis in human colon cancer cells SNU-C4. Nutrition Research and Practice. 2009 3:180-4. 

24. Kobayashi H, Yoshida R, Kanada Y, Fukuda Y, Yagyu T, Inagaki K, et al. Suppressing 
effects of daily oral supplementation of beta-glucan extracted from Agaricus blazei Murill on 
spontaneous and peritoneal disseminated metastasis in mouse model. Journal of Cancer Research and 
Clinical Oncology. 2005 131:527-38. 

25. Zhang M, Chiu LCM, Cheung PCK, Ooi VEC. Growth-inhibitory effects of a β-glucan from 
the mycelium of Poria cocos on human breast carcinoma MCF-7 cells: Cell-cycle arrest and apoptosis 
induction. Oncol Rep. 2006 15:637-43. 

26. Hetland G, Sandven P. β-1,3-Glucan reduces growth of Mycobacterium tuberculosis in 
macrophage cultures. FEMS Immunology and Medical Microbiology. 2002 33:41-5. 

27. Sonck E, Stuyven E, Goddeeris B, Cox E. The effect of β-glucans on porcine leukocytes. 
Veterinary Immunology and Immunopathology. 2010 135:199-207. 

28. Novoa B, Figueras A, Ashton I, Secombes CJ. In vitro studies on the regulation of rainbow 
trout (Oncorhynchus mykiss) macrophage respiratory burst activity. Developmental & Comparative 
Immunology. 1996 20:207-16. 



© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

29. Castro R, Couso N, Obach A, Lamas JÚS. Effect of different β-glucans on the respiratory 
burst of turbot (Psetta maxima) and gilthead seabream (Sparus aurata) phagocytes. Fish & Shellfish 
Immunology. 1999 9:529-41. 

30. Verburg-van Kemenade B, Groeneveld A, van Rens B, Rombout J. Characterization of 
macrophages and neutrophilic granulocytes from the pronephros of carp (Cyprinus carpio). Journal of 
Experimental Biology. 1994 187:143-58. 

31. Vidal MC, Williams G, Hoole D. Characterisation of a carp cell line for analysis of apoptosis. 
Developmental & Comparative Immunology. 2009 33:801-5. 

32. FAO. The State of World Fisheries and Aquaculture. Rome; 2010, p. 197. 

33. Jørgensen JB, Sharp GJE, Secombes CJ, Robertsen B. Effect of a yeast-cell-wall glucan on 
the bactericidal activity of rainbow trout macrophages. Fish & Shellfish Immunology. 1993 3:267-77. 

34. Volpatti D, D'Angelo L, Jeney G, Jeney Z, Anderson DP, Galeotti M. Nonspecific immune 
response in fish fed glucan diets prior to induced transportation stress. Journal of Applied 
Ichthyology. 1998 14:201-6. 

35. Ai Q, Mai K, Zhang L, Tan B, Zhang W, Xu W, et al. Effects of dietary β-1, 3 glucan on 
innate immune response of large yellow croaker, Pseudosciaena crocea. Fish & Shellfish 
Immunology. 2007 22:394-402. 

36. Gopalakannan A, Arul V. Enhancement of the innate immune system and disease-resistant 
activity in Cyprinus carpio by oral administration of β-glucan and whole cell yeast. Aquaculture 
Research. 2010 41:884-92. 

37. Lin S, Pan Y, Luo L. Effects of dietary β-1, 3-glucan, chitosan or raffinose on the growth, 
innate immunity and resistance of koi (Cyprinus carpio koi). Fish & Shellfish Immunology. 2011. 

38. Misra C, Das B, Mukherjee S, Pattnaik P. Effect of long term administration of dietary β-
glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture. 2006 255:82-94. 

39. Brattgjerd S, Evensen O, Lauve A. Effect of injected yeast glucan on the activity of 
macrophages in Atlantic salmon, Salmo salar L., as evaluated by in vitro hydrogen peroxide 
production and phagocytic capacity. Immunology. 1994 83:288. 

40. Misra CK, Das BK, Mukherjee SC, Meher PK. The immunomodulatory effects of tuftsin on 
the non-specific immune system of Indian Major carp, Labeo rohita. Fish & Shellfish Immunology. 
2006 20:728-38. 

41. Nayak SK, Swain P, Nanda PK, Dash S, Shukla S, Meher PK, et al. Effect of endotoxin on 
the immunity of Indian major carp, Labeo rohita. Fish & Shellfish Immunology. 2008 24:394-9. 

42. Hauton C, Smith VJ. Changes in immune gene expression and resistance to bacterial infection 
in lobster (Homarus gammarus) post-larval stage VI following acute or chronic exposure to immune 
stimulating compounds. Molecular Immunology. 2007 44:443-50. 

43. Risso-de Faverney C, Devaux A, Lafaurie M, Girard JP, Bailly B, Rahmani R. Cadmium 
induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive 
oxygene species. Aquatic Toxicology. 2001 53:65-76. 



© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

44. Xiang L, Shao J. Role of intracellular Ca 2+, reactive oxygen species, mitochondria 
transmembrane potential, and antioxidant enzymes in heavy metal-induced apoptosis in fish cells. 
Bulletin of Environmental Contamination and Toxicology. 2003 71:114-22. 

45. Turner SM. Chemical risk: a primer.  ACS information pamphlet. Washington: American 
Chemical Society, Department of Government Relations and Science Policy; 1996. 

 

 

  


