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The catechin, epigallocatechin gallate (eGCG), found in green tea, has inhibitory activity against a number of pro-
tein toxins andwas investigated in relation to its impact upon ricin toxin (RT) in vitro. The IC50 for RTwas 0.08±
0.004 ng/mLwhereas the IC50 for RT+ 100 μM eGCGwas 3.02 ± 0.572 ng/mL, indicating that eGCGmediated a
significant (p b 0.0001) reduction in ricin toxicity. This experiment was repeated in the human macrophage cell
line THP-1 and IC50 values were obtained for RT (0.54 ± 0.024 ng/mL) and RT + 100 μM eGCG (0.68 ±
0.235 ng/mL) again using 100 μMeGCGandwas significant (p=0.0013). The documented reduction in ricin tox-
icity mediated by eGCG was found to be eGCG concentration dependent, with 80 and 100 μg/mL (i.e. 178 and
223 μM respectively) of eGCG mediating a significant (p = 0.0472 and 0.0232) reduction in ricin toxicity at 20
and 4 ng/ml of RT in Vero and THP-1 cells (respectively). When viability was measured in THP-1 cells by
propidium iodide exclusion (as opposed to the MTT assays used previously) 10 ng/mL and 5 ng/mL of RT was
used. The addition of 1000 μM and 100 μM eGCGmediated a significant (p = 0.0015 and b0.0001 respectively)
reduction in ricin toxicity relative to an identical concentration of ricin with 1 μg eGCG. Further, eGCG (100 μM)
was found to reduce the binding of RT B chain to lactose-conjugated Sepharose as well as significantly (p =
0.0039) reduce the uptake of RT B chain in Vero cells. This data suggests that eGCG may provide a starting
point to refine biocompatible substances that can reduce the lethality of ricin.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

There is a clear and pressing need for improved first-line treatment
and prophylaxis to combat the ever-increasing threat posed by agents
of bioterrorism. Amongst these agents is ricin toxin (RT), a protein pro-
duced by the castor bean (Ricinus communis). RT is rated by the US Cen-
tres for Disease Control and Prevention as a level B biothreat [1] and has
been used within the last 12 years to incite terror, with the intention of
causing harm, morbidity and mortality within the human population
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[2]. RT is known to be of interest to organizations such as al-Qaeda,
thought to be developing a ricin “bomb” i.e. wrapping ricin powder
round explosive devices as ameans of dissemination [3]. The availability
of RT was underpinned by both the intoxication of Roger Bergendorff in
2008 [4] and the discovery of RT containing letters sent to Bill Frist in
2004, whowas, at the time the US senate majority leader [5]. The tangi-
bility (and consequent potency) of these threats is given greater urgen-
cy by the fact that RT is relatively easy to produce and weaponize in
lethal quantities [2]. There is also no cure for intoxication with medical
support being palliative [6]. The UK and US government exploited these
observations during the production of “compoundW” (RT) prior to the
Biological and Toxin Weapons Convention of 1972 and the Chemical
Weapons Convention of 1973 [7].

RT is composed of two protein chains joined via a single disulfide
bond. The lectinic RT B chain (RTBC) is responsible for the binding of
the toxin to the cell membrane. Binding is achieved via an interaction
between RTBC and a terminal galactose or N-acetyl-galactosamine resi-
dues,which are then internalized [8]. RTBC has a bi-lobal structure, with
each lobe having a lectinic activity [9] andmediates the translocation of
RT A chain (RTAC) to the endoplasmic reticulum (ER) [10]. RTBC is
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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internalized via clathrin, caveolin and non-clathrin mediated endocyto-
sis and the translocation of the RTmolecule to the ER is achieved via the
Golgi body. From the ER, the catalytic RTAC passes into the cytosol to
mediate the depurination (and inactivation) of ribosomes [10,11]. Crit-
ical to RT activity is the ability of RTBC to interact withmembrane com-
ponents, as without RTBC, RTAC (and other type I ribosome-inactivating
protein), is relatively non-toxic [12].

Resources have been directed towards developing treatments (aside
from prophylactic immunization i.e. RiVax) [13], to prevent ricin intox-
ication post-exposure. To date, several strategies have emerged. The
first employs a small molecule to inhibit ricin translocation out of the
endosome i.e. Retro-2 [14]. The second seeks to block ricin uptake or in-
tracellular trafficking via either antibodymediated steric hindrance [15,
16] or by feedingmilk-derivedmaterial (i.e. lactose) to exposed individ-
uals [17]. RTBC has been documented to have a high lactose binding af-
finity and lactose is thought to compete for cell binding sites on RTBC
[17,18]. In addition to the above-mentioned, the inhibition of a variety
of protein toxins such as anthrax [19], tetanus [20], botulinum [21]
and Shiga toxin [22] bypolyphenols (found in tea), has also been report-
ed. One such polyphenol is epigallocatechin gallate (eGCG) [23]. Here
we present an evaluation of the inhibitory effect of eGCG upon RT
in vitro. An evaluation of potential mechanisms of inhibitory activity
was also undertaken and has been discussed.

2. Materials and methods

2.1. General chemicals and reagents

TRITON-X-100, propidium iodide, glycine, paraformaldehyde,
leupeptin hydrochloride, bovine serum albumin (BSA), 1-ethyl-3-(3-
dimethylamino-propyl) phorbol 12-myristate-13-acetate (PMA), the
bicinchoninic acid (BCA) assay kit, 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide (MTT) and anhydrous cell culture grade di-
methyl sulfoxide (DMSO) were from Sigma-Aldrich (Dorset, UK). The
(2R,3R)-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1[2H]-benzopyran-
3,5,7-triol-3-(3,4,5-trihydroxybenzoate) (eGCG) was purchased from
Merck (Calbiochem, Nottingham, UK).

2.2. Texas Red-labeled cRTBC

Labeling was performed using the Texas Red®-X, succinimidyl ester,
mixed isomers (Invitrogen, Paisley, UK) following themanufacturer's in-
structions and as previously described for labeling BSA [24]. Commercial
cRTAC and cRTBC were from Vector labs (Peterborough, UK) and the re-
folded ricin was generated using a previously published protocol [25].
Re-folded ricin holotoxinwas characterized byWestern immunoblotting
against a known quantity of cRTAC and (separately) cRTBC. Where re-
foldedRThas beendocumented in the experimental section the amounts
indicated refer to the amount of RTAC in the preparation and not to the
total mass of protein. This is to control for small inter-batch variability
in RTBC content required for RT refolding [25]. Antibodies: Monoclonal
anti-TGN46 was from AbD Serotech (Kidlington, UK) and the polyclonal
rabbit anti-RTAC and anti-RTBCwere fromAbCam, (Cambridge, UK). The
anti-mouse and anti-rabbit secondary antibodies conjugated with Texas
Red- or Alexafluor-488 were from Invitrogen (Paisley UK). Horseradish
peroxidase-conjugated anti-rabbit and anti-mouse secondary antibodies
for immunoblotting were from GE Healthcare (Little Chalfont, Bucks,
UK).

2.3. Cell culture and microscopy

RPMI 1640medium,Dulbecco'sminimal essentialmedium, glutamax,
penicillin/streptomycin, Dulbecco'smodified Eagle'smediumwithout so-
dium pyruvate with 450 mg/mL glucose, kanamycin and fetal calf serum
(FCS) were from Invitrogen (Paisley, UK). The 6 -well treated cluster
plates and sterile 22 × 22× 0.1mmcoverslipswere from Fisher Scientific
Please cite this article as: P.D.R. Dyer, et al., An in vitro evaluation of epiga
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(Loughborough, UK). Vero cells (ATCC number CCL-81), and THP-1 cells
(ATCCnumber TIB-202),were from theAmerican TypeCulture Collection
(ATCC) (Teddington, UK).
3. Methods

3.1. Cloning and expression of recombinant (r)RTBC

A pUC19-derived plasmid encoding Escherichia coli codon optimized
RTBCwas supplied by Biobasic Inc. (Markham, Ontario Ca) andwas cre-
ated using published sequences [26] RTBCwas amplified from the afore-
mentioned template using the following primers: (forward) ((5′-CAC
CGC TGA TGT TTG TAT GGA TCC T and (reverse) 5′- TCA AAA TAA TGG
TAA CCA TAT TTG). The resulting PCR product was ligated into
pET151/D Topo (Invitrogen, Paisley, UK) following the manufacturer's
instructions. PCR was performed using an Accuzyme PCR kit (Bioline
Reagents Limited, London, UK). Sub-cloning was verified by DNA se-
quencing, performed by the DNA Sequencing and Services at Dundee
University, (Dundee, UK). Protein expression, enrichment from bacteri-
al lysate and characterization by immunoblotting were performed as
previously reported [27].
3.2. Cell culture: immunofluorescent microscopy

This methodology has been extensively described and discussed
previously [24]. Briefly, after being exposed to either Texas Red-
labeled RTBC (50 μg/mL each treatment) or Texas Red-labeled RTBC
with eGCG (100 μMeach treatment), and left for 4 h under standard in-
cubation conditions, the cells were fixed with 2% (w/v) formalin in PBS
at room temperature for 20min, prior to being quenchedwith 5% (w/v)
glycine in PBS containing 0.05% (w/v) TRITON-X-100 which also served
to permeabilized the cells. Following a blocking step using 1% (v/v) FBS
in PBS, the cells were exposed to an anti-TGN46 primary antibody,
(60 min at room temperature) and an Alexafluor® 488-labeled second-
ary antibody. Following a subsequentwash step (3×using PBS) the cells
were mounted in 50% (w/v) glycerol in PBS containing 1% (w/v) n-
propyl gallate. Microscopy was performed using an Eclipse 90i micro-
scope (Nikon UK Ltd., Kingston Upon Thames, Surrey, UK) fitted with
an Apo ×60 objective and a DS-Qi1Mc camera. Image acquisition was
performed using Advanced Research Elements software version 3.2
(Nikon UK Ltd., Kingston Upon Thames, Surrey, UK).
3.3. In vitro toxicity assay

This methodology has been described extensively [28] and assays
were conducted over 48 or 72 h (as stated) with the stated number of
replicates [24,25] Statistical analysis was performed using the Prism
6.0b software package (GraphPad Inc. La Jolla, CA, USA) and t-tests
were unpaired, two-tailed. Where concentrations of eGCG above 10 μM
were used, care was taken to remove the eGCG from the culture and to
wash the culture 3 times with PBS prior to adding MTT. This was neces-
sary to minimize any false positive data resulting from an eGCG interac-
tionwithMTT (data not shown).Where eGCGwas co-administeredwith
RT the two substances were dissolved in complete media and left for
60 min at room temperature to come to equilibrium prior to being
added to the cells. Flow cytometer data was acquired using an Accuri
C6flow cytometer (BDBioscience, OxfordUK). THP-1 cellswere incubat-
ed with RT and eGCG in PBS at the reported concentrations and left for
the specified time prior to being re-suspended in sterile PBS containing
10 ng/mL propidium iodide. The cells were then subject to analysis at
488 nm. The IC50 values for refolded RT are also representative of an ex-
tended data set beyond the number of replicates stated as each batch of
refolded ricin was characterized (in part) by examining its toxicity.
llocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin,
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3.4. RTBC uptake experiments

Here 5 × 105 Vero cells were used to seed individual wells in a
6 -well plate. The cells were then left overnight in complete media
under standard incubation conditions (37 °C in a humidified atmo-
sphere containing 5% (v/v) CO2). The next day, either RTBC
(50 μg/mL) or RTBC plus eGCG (1 mM) were added along with a third
treatment which had only RTBC added and was kept at 0 °C throughout
the experiment. The remaining two plateswere placed back under stan-
dard culture conditions. After 4 h the cells were washed with ice-cold
PBS 3 times and blotted dry, taking care not to disturb the monolayer.
The monolayers were then dissolved in the Laemmli SDS page buffer
containing 10% (v/v) 2-mercaptoethanol and run on a 12% (w/v) SDS
PAGE gel prior to Western blotting using standard conditions. After
the transfer had completed the blots were blocked with PBS containing
0.01% (v/v) TWEEN 20 and 5% (w/v) nonfat dried milk. Blots were then
cut in half to allow them to be separately probedwith antibodies specif-
ic for EEA1 (BD Bioscience; Oxford, UK) and RTBC (AbCam, Cambridge,
UK) usingHRP-conjugated secondary antibodies (GEHealthcare; Bucks,
UK) following standard protocols and following the manufacturer's in-
structions, using the Pierce™ ECL reagent (Thermo Scientific;Waltham,
MA USA).

3.5. In vitro RTBC binding assay

Lactose-conjugated Sepharose (Sigma Chemical Company, Dorset
UK) was washed 3 times in PBS and either recombinant RTBC commer-
cial RTBC (Vector Labs; Peterborough, UK) or commercial RTBC and
Fig. 1. Characterization of RT and RT components. Panel (a) depicts the immunological profile
with antibodies specific for RTAC or RTBC. Panels (b & c) document the in vitro toxicity profile
cRTBC (black triangles, point up) and recombinant RTBC (black triangles, point down), in both
(in each instance n = 8; ±SEM). Data derived from these assays are summarized (Table 1) wh
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eGCG was added. This was washed with 10 column volumes of PBS.
To the beads, 100 μL of Laemmli SDS page buffer containing 10% BME)
was added and this was compared to an equivalent amount of input
protein. Following the sedimentation of the beads at 12,000 × G at
room temperature for 2 min, the supernatant was analyzed by SDS
PAGE and Western blotting. Detection was performed using an anti
RTBC polyclonal antibody (AbCam; Cambridge, UK) and an anti-rabbit,
HRP-conjugated secondary (Invitrogen, Paisley, UK) using Pierce™
ECL reagent (Thermo Scientific; Waltham, MA USA).

3.6. Assessment of protein conformation using circular dichroism (CD)
Spectroscopy

Proteins (0.3 mg/ml in PBS) were analyzed using a Chirascan™ CD
spectrometer, (Applied Photophysics, Surrey, UK), and data was ac-
quired between 190 and 260 nm, (2 s per time point, 1 nm bandwidth)
at 20 °C. Three repeats were taken and 6M guanidine hydrochloride de-
natured samples were used as a control. A 0.1 mm path-length was
used.

4. Results

The characterization of RT, RTBC and RTAC was performed (Fig. 1;
panel a) and with the exception of the re-folded RT preparation, there
was no detectable RTBC in the RTAC preparations and no detectable
RTAC in the RTBC preparations (Fig. 1; panel a). These data (Fig. 1;
panel a) were important for the validation of the re-folded RT. When
the re-folded RT was characterized by immunoblotting, typically a 2:1
of commercially obtained (“c”) RTAC, cRTBC, and refolded RT when probed (individually)
s of refolded ricin holotoxin (black circles joined by a dotted line), cRTAC (black squares),
Vero (panel b) and THP-1 (panel c) cells after 72 h when assessed using the MTT assay
ere calculated IC50 values are recorded.

llocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin,
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ratio of RTBC to RTAC was obtained (data not shown). This was an un-
avoidable consequence of the protocol that was necessary to ensure
that the majority of the RT preparation was heterodimeric [25]. While
this procedure was not optimal, it was necessary, given the current
availability of commercial RT holotoxin in the UK.

To characterize re-folded RT (and its components) in vitro toxicity,
both Vero (African green monkey kidney) and THP-1 (human macro-
phage) cell lines were used. These toxicity data (Fig. 1; panels b &
c) are summarized (in Tables 1 & 2) and in each instance the refolded
RT holotoxin displayed the highest level of toxicity (IC50 Vero 0.08 ±
0.004 ng/mL; THP-1 0.54 ± 0.024 ng/mL), followed by RTAC (IC50 Vero
3.525 ± 1.017 μg/mL; THP-1 0.068 ± 0.001 μg/mL), cRTBC (IC50 Vero
28.625 ± 2.917 μg/mL; THP-1 9.750 ± 0.744 μg/mL) with recombinant
RTBC demonstrating the least toxicity (the IC50 was 100 + μg/mL in
Vero and 100+ μg/mL in THP-1 cells). Having established base-line tox-
icities for re-folded ricin, the effect of a known inhibitor of ricin toxin
(lactose) [17] as well as that of the polyphenol under investigation
(eGCG)was investigated,with lactose serving as a positive control rather
than a gold standard. However, before these interactions could be char-
acterized, baseline toxicities for each of the potential inhibitors were
also measured (Fig. 2; panels a & b) and the IC50 values calculated
(Table 1). Initially RT inhibitionwas assessed using a static concentration
of potential inhibitor in relation to a variable concentration of RT (Fig. 2).
These data are shown for Vero cells (Fig. 2; panel c) and THP-1 cells
(Fig. 2; panel d). Fig. 2 (panel c) documents a statistically significant in-
hibition of RT by: eGCG (43.8 μg/mL (i.e. 100 μM)) (p N 0.0001), when
tested in Vero cells. The addition of lactose (3.42 μg/mL (i.e. 10 μM)) to
RT prior to incubation with Vero cells resulted in an IC50 value that was
greater than 10 ng/mL (RTAC equivalent) under similar assay conditions
to those reported in Fig. 2 (panel d). A similar concentration of lactose
gave rise to an IC50 value of N10 ng/mL (RTAC equivalent) when mea-
sured in THP-1 cells. Similarly Fig. 2 (panel d) documents a statistically
significant inhibition of RT by eGCG (p = 0.0013) when measured
using THP-1 cells.

Given that eGCG could mediate a significant reduction of RT toxicity
when assayed in both Vero and THP-1 cells, at a static concentration of
eGCG, the next logical question was to ask if a variable concentration of
eGCG could exert a dose dependent effect upon the toxicity of a static RT
concentration (Fig. 3). As Vero and THP-1 cells displayed varying sensi-
tivity to RT (Table 2), Vero being approximately 6 times more sensitive
to RT than THP-1 cells, it was surprising to note that the effect of (eGCG
mediated) RT inhibition was more profound within the populations of
Vero cells (Table 2; Fig. 2; panels c & d). A consequence of this was the
choice of static concentrations of RT used to generate Fig. 3. Fig. 3
(panel a) shows the effect of a lethal concentration of RT (20 ng/mL)
when incubated with increasing amounts of eGCG upon Vero viability
after 48 h. Fig. 3 (panel a) reports that in every instance, a statistical dif-
ferencewas observed relative to cells only treatedwith RT. Here 100, 80,
60 and 40 μg/mL of eGCG demonstrated significant (i.e., p = 0.0464,
p= 0.072, p= 0.0233, p= 0.0337 respectively) increases in cell viabil-
ity relative to an untreated RT control. Fig. 2 (panel b) shows the effect
of eGCG (50-200 μg/mL) upon THP-1 cell viability after incubation with
RT (4 ng/mL) at a lower concentration. Again a significant difference in
Table 1
IC 50 values of experimental materials evaluated herein.

THP-1 (72 h) μg/mL Vero (72 h) μg/mL

cRTAC 0.068 ± 0.001 3.525 ± 1.017
cRTBC 9.750 ± 0.744 28.625 ± 2.917
rRTBC 100+ 100+
Lactose 58.625 ± 1.361 61.375 ± 11.361
eGCG 100+ 200+

Table 1 documents the IC50 values characterizing the individual experimental components
used herein with THP-1 and Vero cells after 72 h (n = 6 ± SEM). These data are derived
from Fig. 1 (panels b & c) and Fig. 2 (panels a & b).
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viability is reported at a dose of eGCG of 100 μg/mL (p = 0.0232) and
200 μg/mL (p = 0.0076) relative to the RT only control (Fig. 3; panel
b). In an attempt to further rule out the possibility of false positive
data resulting from an interaction between MTT and eGCG, a flow
cytometer was used tomeasure propidium iodide exclusion (as an indi-
cation of cell viability) from non-activated (monocyte) THP-1 cells
(Fig. 3; panels c and d). This assay used more eGCG than had been pre-
viously assayed (Fig. 2; panels a-d) and shows an increase in cell viabil-
ity (p = b0.0014) (1000 μM eGCG relative to 1 μM eGCG) when THP-1
cells were treated with 10 ng/mL RT (Fig. 3; panel c). When a reduced
concentration of RT was used (5 ng/mL) (Fig. 3; panel c), a statistically
significant increase in cell viability was recorded when a dose of
1000 μM eGCG was compared to 1 μM of eGCG (p N 0.0001).

In an attempt to understand the mechanism(s) driving the observed
reductions in RT toxicity, the effect of eGCG was examined upon RTBC.
The effect of eGCG upon RTBC was documented (Fig. 4; panel a) where
the ability of cRTBC to bind to lactose-conjugated Sepharose with and
without eGCG (100 μM) relative to rRTBC (the negative control) was in-
vestigated. Reduced cRTBC lectinic activity in the presence of eGCG
(100 μM) was recorded. This observation supported the hypothesis that
the reduction in toxicity associated with RT in the presence of eGCG
may be, at least in part, due to an interaction between eGCG and the
RTBC, which resulted in relaxed RTBC conformation (impacting upon
RTBC lectinic activity, cell uptake and RTAC intracellular trafficking).

This hypothesis was tested by monitoring the uptake of RTBC, with
and without eGCG by Vero cells over 4 h (Fig. 4; panel b). On account
of the relatively short timescale used, the dose of eGCG was increased
and the results expressed relative to a housekeeper (early endosomal an-
tigen (EEA) 1), to control for any variability in cell number. Fig. 4 (panel
b) shows that there was a reduction in RTBC uptake by Vero cells (p =
0.0039) incubated with RTBC and 1mM eGCG relative to cells only incu-
bated with RTBC at 37 °C and at 0 °C. The 0 °C control was necessary as it
controlled for non-specific interactions. It was possible that eGCG was
inhibiting endocytosis at such a high concentration rather than reducing
RTBC uptake via the eGCG mediated RTBC conformational relaxation,
however, this point remains to be addressed. What was clear was that
less RTBC was entering the cells at high concentrations of eGCG, which
may account for the reduced toxicity observed earlier (Table 1). Were
this hypothesis true, then it might be predicted that treatment with
eGCG would alter levels of RTBC cellular uptake and Golgi translocation.
The results of testing this hypothesis were documented (Fig. 4; panel c).
Fig. 4 (panel c; micrographs i to iii) was captured in the absence of eGCG
and shows the co-localization of Texas-Red labeled-cRTBCwith a prima-
ry antibody specific for TGN46 (a Golgi marker), whichwas labeled with
a secondary (anti-mouse) antibody conjugated to Alexafluor® 488. In
contrast, Fig. 4 (panels c; micrographs iv–vi) documented no detectable
co-localization between TGN46 and Texas Red-labeled cRTBC in the
presence of eGCG (100 μM). These micrographs support the hypothesis
that eGCG altered the activity of RTBC. Fig. 4 (panel d) shows the CD
spectrum of eGCG at a concentration of 100 μM in PBS. It was of note
that eGCG displayed a profound spectra particularly in the 200–230 nm
band. This CD response of eGCG means that it may hide changes within
the RTBC spectra, if any are present. This negative peak impacts upon
the interpretation of the spectra derived from RTBC (panel e) and its
summative effect suggests that there was a decrease in order, regarding
the secondary (and tertiary) conformation of RTBC (panel e). This may
represent a loss of (α-helical) secondary structure. This data was rein-
forced given the CD spectra of RTBC without eGCG, which remains very
similar to those previously published [29].

5. Discussion

RT toxicity has been assayed using a variety ofmethodologies,which
have utilized many different cell lines. This variety and diversity of
methodology, while underscoring the robust nature of these findings,
makes direct comparisons between this work and those of others
llocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin,
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Table 2
IC50 values describing the toxicity of ricin holotoxin and its inhibition by eGCG and lactose.

THP-1 (75 h) ng/ml p value D RT IC50 Vero (75 h) ng/ml p value D RT IC50

Ricin toxin (RT) 0.54 ± 0.024 – 0.08 ± 0.004 –
Ricin + eGCG 0.68 ± 0.235 0.0013(**) 3.02 ± 0.572 b0.0001(****)
Ricin + Lactose N10 – N100 –

Table 2 documents IC50 values for RT in vitrowith andwithout the proposed inhibitors after 72 h (n=6± SEM). These data are derived from Fig. 1 (panels a & b) and Fig. 2 (panels c & d).
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difficult. Previously, we evaluated commercial RT (isolated from Ricinus
communis) toxicity using B16 cells in vitro [28] after 72 h using the same
experimental parameters as reported here and the results are compara-
ble. The IC50 values published for HUT102 cells [30] are also similar to
the values presented herein, once experimental variables and the sensi-
tivity associated with different cell lines are considered (Tables 1 & 2).

In order to gauge the efficiency of any inhibitory activity exerted by
eGCG, a positive control was established. The literature suggested the
use of lactose [17] as a suitable inhibitor. Above a lactose concentration
of 3.4 μg/mL, some toxicity was documented (Fig. 2; panels a &
b) presumably due to osmotic effects or the effects of lactose upon
non-enzymatic glycosylation [31]. The IC50 resulting from treating
Fig. 2. The effects of potential inhibitors upon RT intoxication. The in vitro toxicity profile of both
a; n=6±SEM)was documented (panel a). A similar characterizationwas performedusing act
lactose (10 μM i.e. 3.42 μg/mL) (black triangles) or eGGC (100 μM i.e. 43.8 μg/mL) (black square
(72 h; n= 6± SEM) (panel c). A similar experiment was performed using activated THP-1 cel
IC50 values are recorded.
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THP-1 cells with escalating doses of RT and 10 μM lactose were beyond
the maximum concentration of RT assayed (10 ng/mL), limited by the
results of the re-folding procedure used to anneal the A and B chains.
RT inhibition by lactosewas also documented in Vero cells andwas sim-
ilar to those documented for THP-1 cells. Supplemental Fig. 1 also shows
the inhibitory effect of lactose in a complex mixture (non-fat dried milk
(NFDM)), which surprisingly hints at limited lactose bioavailability
when NFDM is used in this context.

Treatment of both Vero and THP-1 cells with eGCG resulted in some
toxicity above 10 μg/mL and this was to be expected as eGCG has previ-
ously been reported to induce apoptosis [32] (Fig. 2; panel a & b) and
may be linked to eCGCs ability to switch from acting as a free radical
lactose (white square) and eGGC (white triangle) uponVero cell viability over 72 h (panel
ivated THP-1 cells (panel b). The viability of cells exposed to a static concentration of either
s), and increasing concentrations of RT was documented in Vero cells using theMTT assay
ls (panel d). Data derived from these data sets are summarized (Table 2) where calculated
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Fig. 3. Effect of varying the concentration of eGCGupon RT lethality. Panel (a) documents the effect of varying concentrations of eGCGupon a static concentration (20 ng/mL) of RT in Vero
cells. Cell viability was documented and statistically significant differences in viability were recorded for; 40 (p= 0.0464), 60 (p= 0.0472), 80 (p= 0.0233) and 100 μg/mL (p= 0.0337)
eGCG relative to no eGCG and 20 ng RT. Viability data in response to challenge with 4 ng/mL RT and varying concentrations of eGCG was also recorded using THP-1 cells (panel b).
Statistically significant variation from THP-1 viability after treatment with RT and no eGCG was observed at 100 (p = 0.0232) and 200 (p = 0.0076) μg/mL of eGCG. These data sets
(panels a & b) were acquired over 48 h. These data were acquired using the MTT assay. Flow cytometry and propidium iodide exclusion was also used to measure (non-activated)
THP-1 viability to further control for any interaction between MTT and eGCG (panels c & d). Ricin concentrations of (panel c) 10 ng/mL and (panel d) 5 ng/mL RT were used and data
were gathered after a 72 h exposure to both RT and eGCG. There was a statistically significant difference in cell viability between cells treated with 10 ng/mL RT i.e. with: 1000 μM
eGCG (p = 0.0014), 100 μM eGCG (p = 0.0009) and 10 μM (p = 0.0015) and cells treated with 1 μM eGCG (panel c). A statistically significant amount of RT inhibition (5 ng/mL) was
mediated by 10 and 100 μg/mL eGCG relative to 1 μM eGCG (panel d). The p values were: 1000 μM eGCG (p = 0.0021), 100 μM/mL (p = 0.0021) and 10 μM eGCG (p N 0.0001)
relative to 1 μM. The flow cytometry assays were performed 4 times each and the data represents the mean ± SEM.
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scavenger to a free radical generator as a function of pH [33]. Little inhi-
bition of RT was recorded at an eGCG concentration of 10 μM in either
cell line (data not shown). Consequently a concentration of 100 μM
(43.8 μg/mL) was used. At 100 μM eGCG, Vero cells display significant
Fig. 4. The effect of eGCG upon RTBC activity. Panel (a) depicts the effect of eGCG (100 μM) upo
(b) documents the effect of eGCG upon RTBC uptake by Vero cells over 4 h relative to a 0 °C cont
(1000 μM). Panel (c) documents the effect of 100 μMeGCG upon theGolgi localization of Texas R
show typical co-localization between Texas-Red labeled RTBC and the trans-Golgi specific antibod
detectable co-localization.Micrographswere representative of themajority of thepopulation of c
Panels (d & e) denote the effect of eGCG upon the CD spectra of RTBC. The spectra of eGCG at 100
well as RTBC +100 μM eGCG (dashed line), +10 μM eGCG (dotted line) and+5 μM eGCG (do
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(p b 0.0001) resistance to RT intoxication when IC50 values were com-
pared (Table 2). Similarly eGCG also mediated significant inhibition to
RT intoxication in THP-1 cells (p = 0.0013) upon a comparison of IC50
values relative to RT treated cells alone (Table 2). These data sets were
n RTBC's lectinic activity in relation to RTBC binding to lactose-conjugated Sepharose. Panel
rol. A statistically significant (p= 0.0039) inhibition of RTBC uptake wasmediated by eGCG
ed-labeled RTBC after a 60min (RTBC) pulse and a further 60min chase. Micrographs (i–iii)
y TGN46.Micrographs (iv–vi) demonstrate that in the presence of 100 μMeGCG, there is no
ells observed.Arrowsdenote co-localization and the size bar represents approximately 5 μm.
μM in PBS (dotted line) and 10 μM is shown (panel d) as well as that of RTBC (solid line) as
tted and dashed line) in PBS (panel e).
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reinforced when the effect of eGCG upon RT intoxication was measured
using a static concentration of RT and variable concentrations of eGCG
(Fig. 3; panels a–d). It is of note that protection from RT intoxication
by eGCG was observed in an assay that did not require MTT (Fig. 2;
panels c & d) negating the possibility that the previous data sets could
be subject to false positives as a result of an interaction between eGCG
and MTT. It is also important to note that during the assays reported
herein, the cells were being stressed by both eGCG and RT and it is for
this reason we conjecture that 100% protection from RT intoxication
was not documented.

The reported reduction in RT toxicity in the presence of eGCG re-
quired some mechanistic explanation. It was hypothesized that the re-
duction in RT toxicity was due to an alteration in RTBC conformation
as a result of either a direct or indirect interactionwith eGCG. This inter-
action has not been defined herein. However, others have reported the
ability of thearubigin fractions to bind to both tetanus toxin [20] and
botulinum toxin [34]. Given that in the presence of 100 μM eGCG,
(i) cRTBC loses its ability to efficiently bind to lactose conjugated-
Sepharose (Fig. 4; panel a), (ii) that eGCG reduces RTBC cellular uptake
(Fig. 4; panel b) either via an interaction with RTBC, an interaction with
the cell, reducing endocytic internalization or both, and that (iii) after
exposure of Vero cells to Texas Red-conjugated cRTBC, little Golgi local-
ization was documented, it was possible that an interaction between
eGCG and cRTBC leads to a change in RTBC conformationwhich renders
it less able to bind to sugars (receptors) on the cell membrane. A conse-
quence of impaired RTBC cell bindingwould predict that cellular uptake
Fig. 5. Cartoon depicting the intracellular trafficking of RT with and without an inhibitor (eGC
mediated by eGCG.
These data are adapted from: [16,35].
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was dramatically reduced as it is likely that RTBC would undergo fluid-
phase capture as opposed to a more efficient receptor mediated means
of cellular entry facilitating Golgi localization. This hypothesis is shown
diagrammatically (Fig. 5). It is of note that there was some interaction
between eGCG upon RTAC, which may also hint at the possibility of
eGCG activity post-RTAC cytosolic translocation i.e. once RTAC has
translocated to the cytosol (Fig. 5). However if a synergy between lac-
tose and eGCG is considered, it is unlikely that any effect of eGCG
upon RTAC would be measurable in vitro. This conjecture is based
upon the efficient way lactose prevents RTBC cell uptake and Golgi
translocation i.e. the RTAC would be prevented from reaching the cyto-
sol by virtue of the interaction of both lactose and eGCG with the B
chain. This observation is further underscored by the published
data documenting only 5% of internalized ricin in the Golgi apparatus
[35]. While both eGCG and lactose inhibited RTBCmay well enter the
cell (inefficiently) by fluid phase endocytic capture, it is unlikely that
this cargo could escape endolysosomal translocation and destruc-
tion. These data/observations do lead to questions about the specific-
ity of eGCG with regards to RT A and B chains, however it is worth
mentioning at this juncture that eGCG is not ubiquitously active
against all protein toxins as the cytotoxicity of Clostridium difficile
toxin A is unaffected by 100 μg/mL of eGCG (data not shown) in
Vero cells after 72 h.

The CD spectrum of RTBC has been previously published [29] and
agrees with the spectra of commercial RTBC documented herein
(Fig. 4; panel e). The CD spectra of eGCG (100 μM), was recorded and
G or lactose). This cartoon proposes a mechanism to explain the inhibition of RT toxicity
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surprisingly a negative peakwas evident between 200 and 220 nm. This
observation helps when interpreting the CD spectra of RTBC upon the
addition of eGCG (100 μM), which may have an additive effect. As the
190–210 nm region of the CD spectra is sensitive to alterations in the
amount of helix present, it is likely that upon the addition of eGCG
there was a marked change in the amount of disorder associated with
RTBC i.e. the addition of eGCG results in a decrease in the amount of
α-helix within the RTBC. In addition, there was little significant change
(given the presence of a contribution to the spectra from eGCG), in the
RTBC CD spectra at 232 nm, previously reported to be due to disulfide
bond transition [29]. This may indicate that eGCG was not reducing di-
sulfide bonding or the environments of the disulfide bonds between
RTBC and RTAC during toxicity experiments, which would result in
RTAC behaving like a type I RIP. As no large structural observations
were documented in the spectra of RTAC upon the addition of eGCG
(data not shown), it is difficult to draw any conclusions about the effects
of eGCGupon RTAC structure using thismethodology. Further, an inves-
tigation into the ability of eGCG to inhibit RTAC using an in vitro transla-
tion assay was also inconclusive. Although all of the components of this
assay behaved as the literature would suggest, the assay itself was
inhibited by eGCG at 100 μM (though not at an eGCG concentration of
10 μM) (data not shown). This makes attributing specificity between
an eGCG and RTBC interaction difficult anddoesn't rule out an inhibition
of RTAC by eGCG, contributing to the reduced levels of RT toxicity ob-
served in the presence of eGCG (Table 2). The reduction in biological ac-
tivity observed was not simply a consequence of protein precipitation
and this was reflected not only in the CD data, but also visually during
the execution of experiments. No clouding of solutions or increase in
turbidity was observed at any time in response to the addition of
eGCG. Given that the CD experiments required a protein concentration
of 0.3 mg/mL, if protein precipitation was occurring it would have
been easy to detect (as it is when 6-His tagged recombinant proteins
all too frequently precipitate during dialysis against PBS).

Tetley have estimated that the level of flavonoids in their classic blend
to be approximately 156 mg/cup and that of these flavonoids eGCG was
predominant [36]. This is in contrast to a recent study evaluating the
total flavonoid content of the green tea (16.3 mg/g ± 0.9 mg/g (±SE;
n = 38) while the average for the black teas was lower at 12.9 mg/g ±
0.8 mg/g (±SE; n = 34) [37] Given the eGCG activities recorded here,
it is unlikely that a cup of tea could provide a feasible antidote to RT intox-
ication. Given that lactosewould only be effective prior to the cellular up-
take of RT and the cytosolic translocation of RTAC, and that there are a
significant number of people who are lactose intolerant, these intriguing
results suggest that there may be value in further investigating eGCG's
ability to reduce RTs toxicity with a view to isolating active groups or
moieties within eGCG in order to improve its RT inhibitory potential.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbagen.2016.03.024.
Transparency Document

The Transparency document associated with this article can be
found, in online version.
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