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Abstract- This paper discusses the AC fault ride through of two 

terminal modular multilevel converter (MMC) VSC based 

HVDC integration of combined offshore wind and wave farms. 

The combined offshore wind and wave farms are modelled as a 

controllable three phase voltage source connected to a 600MVA, 

460kV/370kV transformer. A 31- level MMC has been selected 

because of acceptable harmonic attributes. Two 300kV DC 

submarine cables with length of 100km have been employed in 

this study. A voltage source has been connected in series with an 

inductive resistive circuit to give a short circuit ratio of 3.5. This 

paper finally presents a comparative simulation analysis of 

hysteresis based and PI based DC voltage controller for fault 

ride through (FRT) capability. The analysis showed that the PI 

method resulted in smaller overshoots and dips. A high 

switching frequency PWM based electromagnetic transient 

(EMT) model in MATLAB/Simulink was developed for the 

analysis.  

Index Terms—PI, Hysteresis, FRT, VSC, HVDC, MMC, 

EMT. 

I. INTRODUCTION 

Wind and wave energy are promising renewable energy 

sources in the United Kingdom [1]. They are predicted to 

form an integral part of the EU electricity mix towards 

ensuring 15% of its electricity demand comes from 

renewables [2]. Emphasis has been placed on the possibility 

of integrating offshore wind power with other renewable 

power sources, particularly wave power [3-4]. Wind power 

suffers from intermittency while wave power suffers from 

variability [5-6].  

There are certain benefits in co-locating wind and wave 

farms [2]. These include effective utilization of space, easier 

procurement of planning permission, reduced installation 

cost, reduced output power variability and minimized 

intermittency [7]. Comparison of the power generation profile 

of a wind farm on its own and that of combined wind and 

wave energy farms, indicates that the power generation of the 

combined arrangement is more reliable than a single wind 

farm [8]. However, the AC grids formed by connecting 

offshore wind and wave farms can be weak [9].  

Due to these weak AC grids, VSC based high voltage 

direct current (HVDC) transmission systems are the adopted 

alternative to conventional high voltage alternating current 

(HVAC) for long distance power transmission of wind and 

wave farms. VSC based HVDC transmission systems possess 

fast modulation and high power transfer capabilities [10].  

In addition, the cost of submarine HVAC transmission is 

higher than HVDC transmission for distances above 55 -70 

km [11]. Other challenges of AC transmission relate to the 

inductance and capacitance of the conductors, which have to 

be compensated above a certain distance [7, 11]. On the other 

hand, HVDC transmission possesses advantages such as: 

asynchronous system interconnections, high power delivery, 

reduced transmission losses and improved dynamic voltage 

stability at the converter station [7, 9]. There are two main 

types of HVDC transmission technologies: Line commutated 

converter (LCC) based HVDC systems and Voltage source 

converter (VSC) based HVDC systems [7, 9, 10].  

2-level and 3-level VSC topologies had been employed for 

HVDC transmission networks until recently. However, their 

applications were restricted to a 400MW rating because of 

high switching losses caused by the use of pulse width 

modulation technique [12]. 

The Modular Multi-level Converter (MMC) topology is a 

new HVDC converter technology which is very promising for 

high voltage applications [13-14]. MMC ensures a high 

quality voltage waveform from switching a number of 

voltage levels producing a smooth step - like output [13]. The 

introduction of MMCs has enabled the increase of converter 

station efficiency [12]. This topology also allows for lower 

switching frequency [12, 13]. The advantages of MMCs are 

derived from their modular structure which enables higher 

voltages from several modules [14], removing the need for 

switches to be connected in series [12]. MMC stations in a 

VSC based transmission system possess stronger capacitive 

features than conventional VSC stations [15].  

Modulation methods employed in multilevel modular 

converters include high frequency carrier based PWM and 

space vector PWM [16-17]. With the MMC-VSC based 

transmission being the preferred choice for UK power 

system, this paper will investigate the comparison of two DC 

chopper controllers for resistor based power dissipation when 

an AC fault occurs.  
In this paper, a comparative study of two controllers for 

chopper resistor based DC overvoltage for fault ride through 

of MMC VSC HVDC systems is presented. The simulation 

study was carried out using MATLAB /SIMULINK to 

demonstrate the effectiveness of both controllers with a 31-

level MMC based VSC-HVDC system. Fig. 1 shows the 

MMC based transmission layout for the study. 
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Fig. 1: MMC based Transmission layout 

II. FAULT RIDE THROUGH 

Despite the benefits in the co-location of wind and wave 

farms, challenges still exist. The main challenge is that both 

power generation technologies are at different developmental 

stages [18]. However, there are also particular challenges in 

implementing the integration. One of the integration 

challenges according to [19-21] include compliance with grid 

code requirements such as voltage and frequency control.  

The grid code requirements relate to: power fluctuations, 

voltage variations, frequency response, power flow, inertia 

response, reactive power capability and fault ride through 

(FRT) capability [22]. Fault ride through capability refers to 

the ability of the converter station to remain connected to the 

DC grid when a fault occurs in the AC network, and is 

challenging to achieve [23, 24].  

HVDC-VSC is a technology capable of operating at low 

AC voltage, compared to its nominal [25-26]. AC faults can 

have a potentially severe impact on HVDC networks, because 

of the tendency of the transient voltage of the capacitors to 

increase [27, 28]. VSC-HVDC networks must have fault ride 

through capability, to deal with AC network disturbances [29] 

Without FRT provision, when a short circuit fault occurs at 

the onshore grid side, an active power imbalance occurs on 

the HVDC network. This effect can cause the network to 

collapse.  

The FRT characteristics of combined offshore wind and 

wave farms, like other conventional power plants, are 

required to comply with grid codes as stated in [20,22]. FRT 

strategies according to literature [30-42] can be divided into 

the following methods:  

 1)    Power reduction; 

 2)    DC chopper based energy storage; 

 3)    DC chopper based resistor. 

The power reduction method refers to a way of minimizing 

the active power injection to accommodate the AC fault’s 

effect on the converters. The reduction method can be 

subdivided into [30-42]: 

 1) Communication between DC grid and wind turbines; 

 2) Voltage / Frequency modulation of converter station; 

 3) Blocking of the converter. 

   The DC chopper based energy storage methods are used for 

back to back power electronic converters. Applications where 

they are employed include: doubly fed induction generators 

and synchronous generators.  

 

The DC chopper based resistor method is the easiest to 

implement and is generally regarded as robust. This strategy 

leaves the wind and wave farms unaffected when there is an 

onshore fault [43]. A DC resistor is used to dissipate the 

excess DC power during AC faults. This method permits 

quicker frequency response and control of unexpected power. 

This method has been considered in this paper to control 

the excess DC voltage caused by a three phase fault in the 

onshore grid with MMC based VSC converters.  

III. SIMULATION MODEL 

A. MMC VSC HVDC transmission system for combined offshore 

wind and wave farms 

The simulation details of a point to point MMC VSC-

HVDC system are presented.  The combined offshore wind 

farm and wave farm are modelled as a controllable three 

phase voltage source connected to a 600MVA, 460kV/370kV 

transformer. A 31- level MMC has been selected because it 

produces fairly acceptable harmonic attributes [44]. 10% 

ripple voltage was applied in the design calculation for the 

sub module capacitors [45]. A VSC-HVDC transmission 

system rated at 1GW, ± 300kV has been considered, as 

suggested by National Grid [46]. Two 300kV DC submarine 

cables and a cable length of 100km have been employed in 

this study. A voltage source has been connected in series with 

an inductive resistive circuit to give a short circuit ratio of 3.5 

and a phase reactor of 15%. The active power from the 

combined offshore wind and wave farms is injected into the 

transmission link through the MMC 1 station. DC link 

voltage is maintained by MMC 2 which also controls the 

onshore AC voltage.  

The nominal DC link voltage was 600kV and the DC cable 

parameters have been defined on a 600kV/1kA (600MW) 

base. DC damping resistors of 600Ω (600MW at 600kV) 

were connected to the two grid side VSC DC terminals 

through controllable power switches (IGBTs). The DC 

voltages at the onshore ends were maintained at 600kV. A 

three phase to ground fault was applied to the onshore AC 

network 1s into the simulation, which lasted for 140ms, in 

accordance with United Kingdom grid code stipulations [47]. 

B. MMC-VSC HVDC control 

The MMC VSC HVDC system has three control loops on 

each side of the AC grid. On the wind and wave farm side, 

the control loops are: the active power and voltage controller 

loops, the inner current control loop and the MMC modulator. 

On the grid side, the control loops are: the DC voltage and 

AC voltage controller loops, the inner current control loop 

and the MMC modulator. Fig. 2 shows the MMC modulator 

implementation.  
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Fig. 2: MMC modulator implementation  

C. Hysteresis based FRT controller 

This control strategy attempts to constrain the DC voltage 

within a hysteresis band around a reference voltage. The 

measured grid DC voltage is compared with the reference 

through hysteresis comparators.  

A fixed band DC voltage FRT controller is employed for 

regulating the voltage. The hysteresis controller produces a 

continuous output voltage spectrum with a wide frequency 

range, which is one of the demerits of this controller [48]. 

The Hysteresis controller has a quick response to fast 

variations in reference voltage. The voltage error ∆ is applied 

and h is the height of the hysteresis loop.  The variable of the 

controller is ɑ. The controller’s characteristic is expressed as 

[49]: 

a =  {
   0     if ∆ <  −

h

2

      1     if  ∆ >   +
h

2
  

 

    In this controller, the switching frequency is varied 
according to the DC grid voltage and the conditions of 
operation. This variable switching frequency has the tendency 
to create harmonics which renders its application restricted to 
low power applications. A hysteresis controller configuration 
has an on or off switch logic.  

D. PI-based FRT controllers 

A PI controller is a commonly used feedback control 

device, which attempts to maintain the control parameters 

around given set points. Set point regulation is normally 

achieved through the use of PI control. PI control effectively 

combines the regulation of proportional and integral control 

to instantaneously keep system changes within specified 

limits. 

 If P is the controller output, ep is the error of the controlled 

variable from the set point, Kp is the proportional gain, Ki is 

the integral gain and Px (0) is the controller’s output at the 

start of the operation. The analytical expression is given in (1) 

below as: 

                   P = Kp ∗ ep + Ki ∫(ep ∗ dt) + Px(0)                 (1) 

   The combined effect of the proportional and integral values 

is critical to the response speed and the steady state error. The 

tuning or adjustment of the proportional and integral values is 

carefully undertaken in order to obtain the required control. 

A PI controller processes the error between the reference 
and DC grid voltages and has the capability of zero error at 
steady state if the reference is a continuous signal [48].  In 
this study the PI controller is tuned via the pole –zero 
placement method. The PI controller parameters must be 
optimally selected in order to ensure that the closed loop 
voltage overshoot is minimized [50].  

E. AC fault ride through simulation configuration 

The configuration parameters listed below have been 

selected in accordance with [32]. The ultimate gain of the PI 

controller (Ku) and the oscillation period (Tu) were 0.00333 

and 0.667 respectively. The values of the PI controller gains 

used were Kp = 0.0015 and Ki = 0.006 while the hysteresis 

limits were ± 0.01pu. The DC voltages at the onshore ends 

were maintained at 1.05pu. A hysteresis band of 1.06pu to 

1.08pu was applied for the hysteresis controller while the set 

point of 1.06pu was employed for the PI controller.  A three 

phase to ground fault was applied to the onshore AC network 

1s after the start of the simulation, which lasted for 140ms.  

F. AC fault ride through methodology 
   The power dissipation method employed in this study, 
involves DC damping resistors placed very close to the DC 
side of the onshore VSC stations. This approach is simple and 
very reliable [51]. When there is a DC over voltage, the DC 
resistors are switched in so that the VSC stations at the 
offshore end can continue operation even during the fault 
condition. This method requires extra cost for the installation 
of the resistors and the switching arrangement.  As long as 
the resistors are sized according to the system rating, the 
trapped DC energy is dissipated by the resistors through the 
power switch control [51].  
   When an AC fault occurs at the onshore station, power 
exchange breaks down between the DC grid and the 
converter. Hence, power produced from the combined wind 
and wave farms should be regulated to respond to the demand 
of the onshore converter. This implies that the tendency of the 
DC link voltage rise to can be counteracted by the shunt 
resistor connected very close to the converter station. 

IV. RESULTS AND DISCUSSION 

The MMC FRT simulation results of this study are shown in 

Figs. 3a- 3d. Figs. 3a and 3b show the results for a PI based 

and a hysteresis based controller for onshore grid voltage. 

Figs. 3c and 3d show the results of a PI based and a hysteresis 

based controller for onshore grid current.  

Comparing Figs. 3(a) with 3(b), the PI based response 

produced a voltage rise to 1.0857 pu while the hysteresis 

controller produced a rise in voltage to 1.1 pu. Thus the PI 

controller achieved a 0.0143 pu (14.3%) reduction in voltage 

overshoot when compared to the hysteresis controller. The 

effect of 14.3% reduction shows that the DC braking resistor 

and VSC controller are subject to less stress with the PI 

controller than the hysteresis controller. Comparing Figs. 3(c) 

with 3(d) the PI based controller resulted in a drop in current 

to -750A, while the hysteresis controller resulted in a drop in 

current to -958A.  

Capacitor Voltage 
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Fig. 3a. Onshore Grid Side DC Voltage (PI) 

    

Fig. 3b. Onshore Grid Side DC Voltage (PI) 

The choice of the DC grid overvoltage control is critical 

due to the responses of the DC voltage and DC current in 

terms of overshoots and dips. Dips and overshoots carry risks 

capable of reducing the life span of transmission cables due 

to insulation failures.  

The selection of the protection method influences the 

failure rate of DC submarine cables [46]. Considering that 

offshore cables are submarine based, there are two main 

indices that must be considered: mean time to failure (MTTF) 

and mean time to repair (MTTR) [46]. With these two 

indices, the availability (A) of the DC cable can be computed 

as indicated in (2) [46]. 

    

Fig. 3c. Onshore Grid Side DC Current (PI) 

       

Fig. 3d. Onshore Grid Side DC Current (Hysteresis) 

                             A =
MTTF

MTTF+MTTR
                               (2)                       

The determination of the indices above defines the 

availability of the transmission scheme. With the reduction in 

overshoot and dips, there will be a minimised MTTR and 

MTTF, which will translate to increased availability of the 

submarine cable for smooth operation of the offshore wind 

and wave farm. Protection of the DC cables is therefore 

crucial for the smooth operation of the transmission system.  
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V. CONCLUSION 

This paper has examined the DC voltage and active power 

balancing of a point to point VSC-based transmission system 

employed for the integration of large offshore wind and wave 

farms. FRT in HVDC transmission is crucial due to the fact 

that commercial HVDC circuit breakers are not yet available. 

FRT capability is also a major technical issue for wind/wave 

farm integration. In this paper, a DC damping resistor has 

been employed for a simulation study, as the most convenient 

method for achieving onshore AC fault ride through. Two 

controller designs have been examined: PI controller and 

hysteresis controller. The comparative study shows that the PI 

controller is suitable for cases where fixed varying switching 

is required for the control parameter. However, the PI 

controller requires effort for tuning and there can be some 

overshoot above the set point. Overall, for the fault ride 

through application, the PI controller responses were superior 

to those of the hysteresis controller. Simulation results in this 

report are useful for studying the behavior of the DC voltage 

overshoots and dips, which are capable of increasing transient 

energy. Voltage overshoot conventionally limits DC voltage 

of DC cables. The reduction in overshoots reduces fatigue on 

the DC cables, which increase the life expectance. 
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