
A Validation Data-Set and Suggested Validation Protocol for 
Ship Evacuation Models  

EDWIN R. GALEA, STEVEN J. DEERE, ROBERT BROWN and LAZAROS FILIPPIDIS  
Fire Safety Engineering Group 
University of Greenwich 
London SE10 9LS UK 

ABSTRACT 

An evacuation model validation data-set collected as part of the EU FP7 project SAFEGUARD is presented. 
The data was collected from a cruise ship operated by Royal Caribbean International (CS).  The trial was a 
semi-unannounced assembly trial conducted at sea and involved some 2500 passengers.  The trial took 
place at an unspecified time however, passengers were aware that on their voyage an assembly exercise 
would take place.  The validation data-set consists of passenger; response times, starting locations, end 
locations and arrival times in the assembly stations. The validation data were collected using a novel data 
acquisition system consisting of ship-mounted beacons, each emitting unique Infra-Red (IR) signals and IR 
data logging tags worn by each passenger.  The results from blind simulations using maritimeEXODUS for 
the assembly trial are presented and compared with the measured data.  Three objective measures are 
proposed to assess the goodness of fit between the predicted model data and the measured data.  
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INTRODUCTION 

In 2002 the International Maritime Organisation (IMO) introduced guidelines for undertaking full-scale 
evacuation analysis of large passenger ships using ship evacuation models [1].   These guidelines, known as 
IMO MSC Circular 1033, were to be used to certify that passenger ship design was appropriate for full-
scale evacuation.  As part of these guidelines it was identified that appropriate full-scale ship based 
evacuation validation data was not available to assess the suitability of ship evacuation models.  As suitable 
validation data was not available, a series of test cases were developed which verified the capability of 
proposed ship evacuation software tools in undertaking simple simulations.  However, these verification 
cases were not based on experimental data.  Furthermore, successfully undertaking these verification cases 
does not imply that the evacuation model is validated or capable of predicting real evacuation performance.  
In 2007, IMO MSC Circular 1238 (MSC1238) [2], a modified set of protocols for passenger ship 
evacuation analysis and certification were released however, the issue of validation of passenger ship 
evacuation models was not addressed. The IMO Fire Protection (FP) Sub-Committee in their modification 
of MSC Circ. 1033 at the FP51 meeting in February 2007 [3] invited member governments to provide, 
“…further information on additional scenarios for evacuation analysis and full scale data to be used for 
validation and calibration purposes of the draft revised interim guideline.”  The EU framework 7 project 
SAFEGUARD (see http://www.safeguardproject.info/) aims to address this requirement by providing full-
scale data for calibration and validation of ship based evacuation models.   

As part of project SAFEGUARD, a series of five semi-unannounced full-scale assemblies were conducted 
at sea on three different types of passenger vessel.  From these trials five passenger response time data-sets 
were collected and two full-scale validation data-sets.  The response time data-sets have been presented in 
another publication [4] and the first of the validation data-sets has been presented in another paper [5].  In 
this paper we present the second and more comprehensive of the two Safeguard Validation Data-Sets 
(SGVDS) [6].  This data was generated from an assembly trial conducted on a Cruise Ship (CS) operated 
by Royal Caribbean International (SGVDS2). 

The Royal Caribbean vessel can carry approximately 2500 passengers and 842 crew. The vessel performs 
several cruise holidays in the Caribbean and the Baltic Sea. Data was collected on the vessel while it was 
cruising in the Baltic Sea at the end of July 2010, with the assembly trial being performed on the first leg of 
the vessel’s journey, between Harwich in the UK and Copenhagen in Denmark.  The trial took place at an 
unspecified time however passengers were aware that an assembly exercise would take place during the 
first leg of the trip.  The trial was undertaken during the morning on the day after the ship left Harwich and 
involved some 2292 passengers. The ship’s alarm was sounded towards the end of breakfast and 
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passengers, with the help of the crew, moved to their assigned assembly stations. Each passenger was 
designated an assembly station, which was indicated to them on their key card (that provided access to their 
cabins). The data collected during the assembly trial consisted of passenger; response time data, starting 
locations, arrival time at the designated assembly stations and the paths taken.  Some 30 digital video 
cameras were used to collect the response time data.  The other validation data was collected using a novel 
data acquisition system consisting of ship-mounted beacons, each emitting unique Infra-Red (IR) signals 
and IR data logging tags worn by each passenger [6].    Some 106 video cameras were used to capture the 
response times of passengers.  These included the ship’s CCTV system (94 cameras) and specially installed 
digital video cameras (12 cameras). Given the larger size of this ship, a total of 70 IR beacons were 
installed and 1950 tags were worn by passengers. 

The ship validation data-sets that were generated are unique for a number of reasons.  Unlike most 
evacuation model validation data-sets, they incorporate regional information relating to the starting 
locations of the population in addition to the actual response time distribution for the population.  Most 
evacuation validation data-sets lack these essential details allowing modellers the opportunity to tune their 
predictions in order to obtain the best fit to the experimental results.  Furthermore, the trials were conducted 
on a real ship, at sea and were semi-unannounced making the results relevant, credible and realistic.  In 
addition, as the start and end locations for the population are known, it is also possible to utilise the data-set 
to evaluate the capabilities of evacuation model route planning and wayfinding algorithms.  Finally, the two 
data-sets represent the first comprehensive ship evacuation model validation data-sets collected.  

In this paper we present SGVDS2, the blind results from the maritimeEXODUS [7-13] simulation of the 
validation data-set and an assessment of the level of agreement between model predictions and trial data.  
All the data required to define the validation data-set, including the geometry of the vessel is publicly 
available and can be found on the FSEG website, http://fseg.gre.ac.uk/validation/ship_evacuation. 

THE SHIP GEOMETRY 

The CS used in this study consists of 13 decks, of which seven decks are accommodation space consisting 
of passenger cabins.  The other five decks consist of general circulation and entertainment spaces such as; 
restaurants, bars, disco, swimming pools, casino, theatre, cinema, spa/health centre, business centre, leisure 
pursuits (such as gymnasium, climbing wall, crazy golf, cards room) and retail areas.  A CAD file was 
provided (in .dxf format) to define the layout of the ship within the evacuation model.  The ship has 18 
Assembly Stations (AS) distributed over two decks, Deck 5 and 6, of which 10 are external and eight are 
internal.  The 10 external AS, AS b to AS f and AS r to AS v are located on Deck 5.  For the purposes of 
the validation modelling, these are grouped together and identified as AS B and C, with AS B representing 
the actual AS v to r and AS C representing the actual AS b to f.  AS B has three entrances located near the 
atrium amidships, in the shopping mall and just outside the theatre at the fore end of the vessel, while AS C 
has two entrances located outside the theatre in the fore of the vessel and the other located near the atrium 
amidships.  Note that the grouped AS are actually all part of a single space.  

The eight internal AS are located on Deck 5, AS a, and on Deck 6, AS g and AS w.  These AS are located 
in the theatre (AS a) and restaurant areas (AS g and AS W).  Once again, for the purposes of the validation 
modelling, these are grouped together and identified as AS A and D, with AS A representing the actual AS 
a, and AS D representing the actual AS g and AS w.  AS A has two entrances located at the entrance to the 
theatre, while AS D has two entrances located at the atrium (amidships) and from the bar area at the aft of 
the vessel.   

The vessel has seven main vertical zones however only three main vertical passenger staircases were 
available in the trial.  Full details of the vessel layout may be found at: http://bit.ly/1eGeYEa. 

THE SIMULATION SOFTWARE 

The ship evacuation simulation software maritimeEXODUS [7-13], produced by the Fire Safety 
Engineering Group (FSEG) of the University of Greenwich was used to perform the evacuation simulations 
presented in this paper.  The software has been described in detail in many publications [7-13] and so only 
a brief description of the software will be presented here. EXODUS is suite of software to simulate the 
evacuation and circulation of large numbers of people within a variety of complex enclosures.  
maritimeEXODUS is the ship version of the software. The software takes into consideration people-people, 
people-fire and people-structure interactions. It comprises five core interacting sub-models; the Passenger, 
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Movement, Behaviour, Toxicity and Hazard sub-models. The software describing these sub-models is rule-
based, the progressive motion and behaviour of each individual being determined by a set of heuristics or 
rules.  Many of the rules are stochastic in nature and thus if a simulation is repeated without any change in 
its input parameters, a slightly different set of results will be generated.  It is therefore necessary to run the 
software a number of times as part of any analysis. The submodels operate on a region of space defined by 
the geometry of the enclosure.  The geometry can be specified automatically using a DXF file produced by 
a CAD package or manually using the interactive tools provided.  In addition to the representation of the 
structure itself, the abandonment system can also be explicitly represented within the model, enabling 
components of the abandonment system to be modelled individually. 

The software has a number of unique features such as the ability to incorporate the effects of fire products 
(e.g. heat, smoke, toxic and irritant gases) on crew and passengers and the ability to include the impact of 
heel and trim on passenger and crew performance. The software also has the capability to represent the 
performance of both crew and passengers in the operation of watertight doors, vertical ladders, hatches and 
60 degree stairs.  Another feature of the software is the ability to assign passengers and crew a list of tasks 
to perform.  This feature can be used when simulating emergency or normal operating conditions.   The 
version of the software used for this analysis was V5.0 beta (which is now on general release).  

THE INFRA-RED TRACKING SYSTEM 

The system used to track and time the movement of passengers from their starting locations to their 
assigned AS was an Infra-Red (IR) system based on the TagMobile system developed by the RFID Centre 
Ltd.  The RFID Centre worked with FSEG to modify this system to make it more appropriate for use in 
evacuation research applications [6].  The system deployed consisted of a number of IR Beacons 
strategically located throughout the vessel, and IR data logging tags worn by each passenger (see Fig.1a).  
Each beacon generates a unique IR light field.  As a tagged individual passes through the IR field, IR light 
sensors in the tag detect the IR light and log its ID and the time at which it was detected in the tag's internal 
memory.    Following a trial, all the tags must be retrieved in order to determine the occupant's route data.  
The IR beacons are strategically placed at the main locations where passengers congregate and at the 
entrances to each of the AS (see Fig.1b).  In this way, the initial location of each tagged passenger can be 
determined, which AS they go to and at what time they enter the AS.   Testing of the IR tracking system 
demonstrated that the system was able to identify the number of passengers passing a point, even in very 
large crowds and record the time at which they passed the measuring point [6]. 

 

  
(a) (b) 

  

Fig.1. IR beacon and tag (a) and installing IR beacon at the entrance to an external AS (b) 

To test the accuracy of the arrival times derived from the IR system, video cameras were installed at the 
entrance to several of the AS on the CS.  This enabled a comparison of the arrival time derived from the IR 
system with the arrival times manually determined from the video camera record. In addition, this analysis 
allowed for a comparison of the total number of passengers passing through the entrance to the AS as 
counted by the IR system with the actual number that could be seen in the video record.  The comparison 
was carried-out for two locations, both on the ship’s starboard side of Deck 5 – one forward and one near 
midships. The forward location (at Beacon location 73, Camera UOG12) was a doorway with a vestibule 
leading to AS B. The location near midships (at Beacon 50, Camera UOG10) was a doorway that opened 
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directly into the same external AS.  These two locations were selected as they represented examples of 
locations in which the beacons were expected to perform well i.e. location 50 and those which would pose 
a challenge for the beacons i.e. location 73.  Results of the comparisons at Beacon location 73 are provided 
in Fig.2. 

 
Fig.2.  Comparison of passenger arrival times at Beacon 73 (Camera UOG12) 

When analysing the video for both of the above locations, the time at which a passenger passed across the 
door line was taken as their entry time.  Because a comparison was being made to the IR data, times were 
recorded only for passengers that could be clearly seen wearing or holding an IR tag.  In addition, because 
of the way the IR tag data was analysed, the entry times were recorded only for passengers who entered the 
assembly station and remained there.   

It is clearly seen that the IR data collection system matched quite closely with the data manually derived 
from the video record.  The IR system correctly counted the number of passengers through the door (138) 
and timing results consistently lagged the camera results by 5.0 s on average with a standard deviation of 
1.11 s (maximum difference was 10 s and minimum difference was 2 s).  It is noted that the IR system 
accurately counted the number of passengers even in the high density situation encountered at this location.  
Thus the IR measured times can on average be up to 5.0 s behind the actual measured time as derived from 
the video data.  

These results suggest that the IR system provides an accurate measure of the arrival times for passengers 
when compared against a synchronised video system, despite a small lag between the actual arrival time 
and what the IR data collection system actually measures. 

THE INITIAL POPULATION DISTRIBUTION 

The initial distribution of the population was determined through the use of the IR tracking system.  Using 
the IR tag information, the initial location of each tagged passenger was determined using data related to 
the first IR field that the tagged passengers passed through.  Using this information the initial location of 
each tagged passenger can be confined to a region of space on a deck defined by the IR beacons.  Typical 
regions correspond to the physical compartments on the ship, so a region may be a restaurant, or bar area, 
or communal seating area.  The starting deck for the 1779 tagged passengers on the CS is shown in Table 1.  
Also presented in Table 1 are the final AS that passengers starting on each deck ended up in. 
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Table 1: Starting deck location and final assembly station for each passenger in the CS trial 

Deck 2 3 4 5 6 7 8 9 10 11 12 13 Total 

AS A 2 26 59 26 13 33 31 25 12 153 22 0 402 
AS B 1 56 101 45 7 36 38 42 40 178 25 6 575 
AS C 12 41 71 31 11 35 27 29 24 133 21 2 437 
AS D 4 10 52 25 21 35 30 57 28 81 22 0 365 

Total 19 133 283 127 52 139 126 153 104 545 90 8 1779 

 
THE TRIAL RESULTS 

The main results for the assembly trial conducted on the CS are presented and discussed.  These concern 
the measured assembly time for each of the tagged passengers and response time distribution associated 
with each starting region.   

Final locations of tagged passengers at the end of the assembly trial 

Of the 2500 passengers on board the CS, 1779 wore tags and so were tracked throughout the trial.  
Presented in Table 1 are the locations of the tagged passengers on completion of the assembly trial.  For 
example, 402 tagged passengers ended up in AS A, of which two came from Deck 2, 26 came from Deck 3, 
59 came from Deck 4.  The starting region for each passenger is also known.   

Passenger response time distribution 

The passenger response time distribution was determined from data collected from the 106 digital video 
cameras located throughout the vessel.  The response times for 1228 passengers were determined producing 
an overall response time distribution which is presented in Fig.3.  The response time data-set was fitted 
with a log normal curve, with the following key parameters; the minimum and maximum response times 
are 0 s and 1379 s, while the log of the mean response time is 5.012 and the log of the standard deviation is 
0.89.  Since response times were not collected for all the passengers in all the various regions of the ship 
(due to its size) the overall response time distribution is used for SGVDS2. 
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Fig.3. Overall log normal response time distribution for the CS assembly trial 
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Assembly times 

The Captain officially ended the assembly exercise 29 minutes after its start.  The IR data suggests that the 
last tagged passenger arrived in AS A after 1637 s (27 min 17 s).  The arrival curves for each AS and the 
overall arrival curve, generated using the IR data, is presented in Fig.4.  In principle, this data-set is ideal 
for validation purposes, as the starting locations and response times of the population is known.  This 
means that it should be possible to remove most of the uncertainty associated with input parameters 
associated with response time and starting location.  However, there are several complications associated 
with the validation data-set which introduces some degree of uncertainty in the trial results.   

First, of the 2292 passengers on board, 1950 wore the IR tags and participated in the assembly trial.  Of 
these, 171 tagged participants were excluded from the data-set for various reasons e.g. a number of 
participants arrived at the AS after the trial was declared over, several participants had response times 
considerably longer than that measured using the video camera data, another participant took a circuitous 
route to the AS, such as going up stairs for several decks when they should have been going down, etc.  
The 342 passengers that did not have tags were; (1) children under the age of 12 who were not permitted to 
take part in the validation study, (2) passengers who did not take part in the trial and (3) a number of 
passengers who decided not to wear the IR tag or forgot to wear the IR tag while participating in the trial.  
The number in the latter category is believed to be small (through analysis of video footage from the 
entrance to the AS) and estimated to be less than 10% of the number participating who wore tags.  The 
impact of these passengers on the overall results is expected to be small and is ignored.  

Secondly, the exact starting location of the tagged participants was not known, but the region where they 
were located was known.  Spatial regions were between 50m and 95m long; thus not knowing the precise 
starting location of an individual may increase/decrease their arrival time by 50-95 seconds.  

Thirdly, the response time distribution is not associated with a unique individual but represents the overall 
response time distribution for the entire passenger set.  The impact that this will have on an evacuation 
analysis is difficult to estimate as each time the simulation is run, a different random allocation of response 
times is made for all agents. Thus an agent may be allocated a very long response time in one simulation 
and in the next simulation may be allocated a very short response time.  The error associated with the 
random allocation of the global response time may be minimised if the average predicted assembly time 
distribution is considered.  However, MSC 1238 requires that the 95th percentile case is used to represent 
the vessel assembly performance.  All of these factors must be taken into consideration when determining 
how well the evacuation model predicts the assembly exercise.   

Modelling procedures 

The bulk of the parameters used in the simulation are compliant with those specified in MSC1238 [2] with 
the exception of the response time distribution and the initial location of the passengers; these are 
determined from the trial data.  For the CS simulations, the global response time data is used and the initial 
starting locations of the passengers as defined above.  It is noted that as the population demographics used 
in the validation analysis are derived from MSC1238 and not the actual vessels, they may not necessarily 
reflect the actual population demographics of the passengers involved in the trials.  This may introduce 
some error in the overall numerical predictions of the assembly process.  Furthermore, given the starting 
zone that an agent is assigned to, the AS that they will go to is known.  This information is also imposed on 
the simulations presented here.  The agent will go to the correct AS as defined by the trial.   

As is required by MSC1238 [2] a total of 50 repeat simulations are produced, where the starting locations 
of the passengers within the various starting regions are randomised.  In the regulatory analysis, the 95th 
percentile case is selected to represent the prediction of the assembly process, with the Total Assembly 
Time (TAT) derived from the 95th percentile time representing the overall assembly time for the vessel.   
The regulations assume that evacuation models will under-predict the likely total assembly time by 25% 
and so require that an additional 25% safety factor is added to the predicted total assembly time.  The 
purpose of the validation exercise is to determine how well the evacuation software predicts the overall 
assembly process, not simply the TAT.  It is possible that a poor software tool may incorrectly predict the 
overall assembly process but randomly produce a reasonable prediction of the TAT.   

While the TAT may be the only number that the regulatory authority is concerned with, confidence in the 
reliability of the TAT prediction is based on how well the software predicts the overall assembly process.  
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Thus, the validation exercise must evaluate how well the software reproduces the overall assembly process 
(arrival times for each passenger) and not simply the TAT.   Furthermore, just as there is a spread in the 
results for the numerical simulations, there would also be a spread in the experimental results if the 
experiment were repeated, even if all the passengers started from the same locations with the same response 
times as it is unlikely the passengers would do the exact same thing twice.  While we have a range of 
numerical results for the assembly, we only have one experimental result and it is impossible to determine 
if the experimental result is representative of the average result for the experiment or if it is an outlier and 
how wide the range in experimental results is likely to be.   Thus, the best numerical result will be 
compared with the experimental result to determine how well the software predicts the trial assembly.    

From a simple visual observation of the predicted assembly curves it is difficult to identify which of the 50 
curves produces the best level of agreement with the experimental results.  As the regulatory authorities are 
primarily concerned with the prediction of the TAT, the numerical prediction producing the TAT with the 
smallest error is arbitrarily selected to represent the best prediction.  For comparison purposes, the 
numerical prediction producing the TAT with the largest error is also considered.  In addition, a more 
objective method for identifying the numerical prediction which produces the best level of agreement with 
the experimental data is identified later in the paper. 

COMPARING MODEL PREDICTIONS WITH TRIAL RESULTS 

The numerical predictions producing the TAT with the smallest and greatest error are presented in Fig.4. 
along with the experimental data for the CS.  The measured and predicted arrival curves are presented for 
each AS (Fig.4a. to Fig.4d.) and the overall arrival curve (Fig.4e.).   

  
(a) Assembly Station A (b) Assembly Station B 

  
(c) Assembly Station C (d) Assembly Station D 

 
(e) Overall Assembly 

Fig.4. Comparison of model predictions with experimental data for CS 
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As can be seen from Fig.4, the numerical simulations under-predict the TAT for the overall assembly 
process and either under- (negative values) or over-predict (positive values) the assembly time for each AS.  
The simulation producing the best/worst TAT under- or over-predicts the TAT for each AS by; -0.1%/-
16%, 2%/-8%, 12%/-0.3% and 4%/-5% respectively and the overall TAT is under-predicted by -0.1%/-14% 
(see Table 4).  Thus the error in predicting the overall TAT is between -0.1% and -14% while the error in 
predicting the TAT for each assembly station varies from -16% (under-prediction) to 12% (over-
prediction).  

As can be seen by comparing the model predictions for the CS assembly trial (Fig.4.) with the trial results, 
the predictions are quite close to the experimental data.  As described earlier, there are several other 
uncertainties introduced into the experimental data which should be considered when assessing the level of 
agreement between model predictions and experimental data. 

The uncertainty in the exact starting location of the passengers can introduce an error of 50s to 95s in the 
prediction of the assembly times.  This uncertainty alone introduces a possible error of some 6% in the 
overall TAT and an error of some 8% in the prediction of the TAT for each AS.  The error associated with 
using the global response time distribution rather than the actual response time for an agent is difficult to 
estimate but may be appreciable.  Finally, the error associated with the untagged passengers is expected to 
be small, and the 5 s measurement error in the arrival times associated with using the IR system is 
considered insignificant for this trial (less than 0.4% for the TAT).  Taking these uncertainties into 
consideration, the differences in the predicted assembly times appear reasonable.  

It is also noted that the numerical simulations with the best TAT (and also the 95th percentile case) 
correctly identifies that the last AS to assemble is AS A.  Furthermore, there does not appear to be a 
significant difference between the predicted assembly curves for the best and worst TAT.  By sight, the 
predicted and measured assembly curves for the overall assembly appear to be in very good agreement (see 
Fig.4e.).  The predicted arrival curves for each of the AS (Fig.4a. to Fig.4d.) also appear to be in very good 
agreement with the measured curves.  This suggests that the evacuation model is doing a good job of 
predicting the overall assembly process.  Furthermore, the level of agreement with the CS data-set appears 
to be significantly better than that of the RP1 data-set [5].  

VALIDATION METRIC 

While the evacuation simulation software appears to be producing reasonable predictions of the assembly 
process it is desirable to have objective measures of the level of agreement between predicted and 
measured performance rather than subjective assessments.  This is particularly important if the validation 
analysis is to be used by regulatory authorities to determine the suitability of an evacuation modelling tool.  
Thus it is necessary to quantify the level of agreement between predicted and measured performance. 

In [14] several metrics are presented which can be used to quantify the level of agreement between 
predicted and measured values.  However, the mathematical formulations presented in [14] have a number 
of typographical errors [15] and are here presented correctly.  Before presenting the formulation of the 
metrics it is necessary to introduce some terminology.  The series of measured experimental data is 
represented by the n-dimensional vector E = (E1, E2, …. En), where Ei represents the measured assembly 
time for the ith passenger.  Similarly, the series of predicted model data is represented by the vector m = 
(m1, m2, …. mn), where mi represents the predicted assembly time for the ith agent.  The metric used to 
quantify the level of agreement between predicted and measured values consists of three measures (see 
equations 1 to 3).   
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The first is the Euclidean Relative Difference (ERD) defined by equation 1.  This is used to assess the 
average difference between the experimental data (Ei) and the model data (mi).  This equation should return 
a value of 0 if the two curves are identical in magnitude.  The smaller the value for the ERD, the better the 
overall agreement.  An ERD of 0.2 suggests that the average difference between the model and 
experimental data points, taken over all the data points is 20%.   

The second measure is the Euclidean Projection Coefficient (EPC) defined by equation 2.  The EPC 
calculates a factor which when multiplied by each model data point (mi) reduces the distance between the 
model (m) and experimental (E) vectors to its minimum. Thus the EPC provides a measure of the best 
possible level of agreement between the model (m) and experimental (E) curves.  An EPC of 1.0 suggests 
that the difference between the model (m) and experimental (E) vectors are as small as possible.  The third 
measure is the Secant Cosine (SC) defined by equation 3.  Unlike the other two measures, it provides a 
measure of how well the shape of the model data curve matches that of the experimental data curve.  It 
makes use of the secants (which approximate to tangents) through both curves.  An SC of 1.0 suggests that 
the shape of the model (m) curve is identical to that of the experimental (E) curve.   

The t in equation 3 is a measure of the spacing of the data.  For the assembly data presented in Fig.4, the 
spacing of the data is 1 i.e. there is a data point for each passenger/agent that enters an AS.  Thus the 
difference in t consecutive values in equation 3 is 1.  The s in equation 3 is a factor that represents the 
period of noise in the data, or variations in the experimental data resulting from microscopic behaviour not 
possible to reproduce in the model.  Selecting a value of s which is greater than the period of the noise in 
the data provides a means to smooth out the effect of the noise.  However, care must be taken in selecting 
the value of s.  If s is too large the natural variation in the data may be lost, while if s is too small, the 
variation in the data created by noise may dominate the analysis.  Selecting an appropriate value of s is 
dependent on the number of data points in the data-set, given by n.  Thus it is desirable to keep the ratio s/n 
as low as possible. 

For data-sets in which an experimental and model data point are available for each person, if the ERD = 
0.0, then it would not be necessary to consider other measures as the two data-sets would be identical.  In 
all other cases it is necessary to consider the three measures together in order to get a good indication of 
how well the two data-sets match each other.  As the model data curve can cross the experimental data 
curve one or multiple times (as shown in Fig.4.) EPC can return a value close to 1.0 while there is a 
difference between the two curves.  Similarly, the SC can return a value of 1.0 even though the model and 
experimental data curves are off set by a constant value.  In general, for the model and experimental curves 
to be considered a perfect match, it is necessary to have all three measures at their optimal values i.e. ERD 
= 0.0, EPC = 1.0 and SC =1.0.   

Validation Metric applied to maritimeEXODUS predictions of SGVDS2 

If the metric is applied to the data shown in Fig.4. it produces the values presented in Table 2.  First 
consider the data relating to the overall assembly curve for all three cases i.e. best ERD and best/worst 
TAT. The values for the SC suggest that the shape of the overall assembly curve closely (SC ≥ 0.9) 
resembles that of the experimental data, even with s/n as low as 0.01.  This is consistent with the 
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conclusion drawn from a visual inspection of Fig.4e.  Note that an s/n of 0.01 represents 1% of the data-set 
and implies s = 17 for this data-set. Thus for the 1743 point data-set, the gradients used in the evaluation of 
equation 3 are spread over 17 data points, which is considered reasonable.  Furthermore, the ERD for the 
overall assembly is very low (< 0.15) and the EPC is equal to 1.1 suggesting that the overall predicted 
assembly curve is very close to the measured curve, again consistent with a visual inspection of Fig.4e.  It 
is also noted that the overall TAT is within 2.2% of the measured value for the best ERD/TAT and within 
14.4% for the worst TAT. 

Table 2. Metric values for maritimeEXODUS prediction of SGVDS2 

  SC 
n ERD EPC 

% 
diff 

TAT s/n 0.01 0.02 0.03 0.04 0.05 

BEST 
TAT 

Overall 0.9 1.0 1.0 1.0 1.0 1743 0.11 1.1 -0.1 
AS A 0.6 0.9 0.9 0.9 0.9 397 0.14 1.1 -0.1 
AS B 0.9 0.9 1.0 1.0 1.0 561 0.11 1.0 2.2 
AS C 0.7 0.8 0.8 0.9 0.9 434 0.12 1.1 11.8 
AS D 0.5 0.8 0.9 0.9 0.9 351 0.18 1.1 4.1 

Worst 
TAT 

Overall 1.0 1.0 1.0 1.0 1.0 1743 0.12 1.1 -14.4 
AS A 0.7 0.9 0.9 0.9 0.9 397 0.16 1.2 -16.2 
AS B 0.9 1.0 1.0 1.0 1.0 561 0.11 1.0 -8.3 
AS C 0.8 0.9 0.9 1.0 1.0 434 0.11 1.1 -0.3 
AS D 0.6 0.8 0.9 0.9 0.9 351 0.18 1.1 -5.0 

Best 
ERD 

Overall 0.9 1.0 1.0 1.0 1.0 1743 0.08 1.1 -2.2 
AS A 0.8 0.9 0.9 0.9 0.9 397 0.13 1.1 -18.0 
AS B 0.8 0.9 0.9 0.9 1.0 561 0.10 1.0 -5.7 
AS C 0.8 0.8 0.9 0.9 0.9 434 0.10 1.1 9.5 
AS D 0.8 0.9 0.9 0.9 0.9 351 0.15 1.0 8.7 

 
Next consider the shape of the predicted AS arrival curves.  For each of the three cases, the predicted 
assembly curves for each AS show very good agreement with the experimental data.  For an s/n of 0.02, the 
SC values for each AS are close to 1.0 (SC ≥ 0.8).  This suggests that the shapes of the predicted assembly 
curves are in good agreement with the measured curves, again supporting the conclusions of the visual 
inspection.  This s/n value, representing 2% of the data-set, is larger than that for the overall assembly 
curve, but is still considered small.  For the smallest of the AS data-sets (AS D), this represents an s value 
of 7, while for the largest of the AS data-sets (AS B), this represents an s value of 11.  These observations 
are consistent with a visual inspection of Fig.4. which suggests that the shapes of all the predicted AS 
arrival curves are in good agreement with the shape of the measured curves. 

Next consider the magnitude of the difference between the predicted and measured AS arrival curves.  The 
ERD values for each AS are quite low (< 0.20), with that for AS D in all cases being the greatest (0.18).  
Finally, each of the three cases produce good values of EPC, with all values being close to 1.0.  The worst 
value is for AS A for the worst TAT case where EPC is 1.2.  These values suggest that the predicted values 
of all the AS are reasonably close to the measured values, with the worst TAT case producing the poorest 
results. These observations are again consistent with a visual inspection of Fig.4.  Indeed, the metric values 
suggest that AS B produces the best overall agreement with the measured values which is arguably 
supported by a visual inspection of the curves in Fig.4.  

Based on this analysis, a set of acceptance criteria can be defined for SGVDS2 that takes into consideration 
the uncertainties in the experimental data and confirms that the maritimeEXODUS predictions presented in 
Fig.4 are arguably a good match for the experimental data based on a visual inspection.  A general two-step 
validation protocol is suggested based in part on the philosophy of MSC 1238, which currently only 
focuses on the overall assembly time.  In the first step of the validation protocol, the acceptance criteria are 
applied to the model predictions of the overall assembly.  To be deemed acceptable, the model predictions 
must satisfy all elements of the acceptance criteria.  If successful, the second step of the validation protocol 
is considered.  In the second step, the acceptance criteria are applied to each of the four AS with a 

FIRE SAFETY SCIENCE-PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM pp. 1115-1128 
COPYRIGHT © 2014 INTERNATIONAL ASSOCIATION FOR FIRE SAFETY SCIENCE/ DOI: 10.3801/IAFSS.FSS.11-1115

1124



minimum of 10 passes out of a possible 12 being deemed to be acceptable.  Furthermore, no more than one 
failure can occur in any one AS.  The validation protocol and acceptance criteria are applied to the model 
predictions which produce the best ERD.  If the protocol is applied in this manner and the software meets 
the criteria, it demonstrates that the software is capable of producing an acceptable level of agreement with 
the experimental data for the entire assembly process.  The suggested acceptance criteria are as follows: 

(i) ERD ≤ 0.25 
(ii) 0.8 ≤ EPC ≤ 1.2 
(iii) SC ≥ 0.8 with s/n = 0.02 
(iv) Predicted TAT for the overall assembly to be within 15% of the measured value.  This criterion is only 
applied to step 1 of the acceptance process. 

Applying the suggested validation protocol to the maritimeEXODUS data presented in Table 2, we note 
that in the first step the model predictions satisfy all four criteria and hence the second step of the validation 
protocol is considered.  In the second step each AS satisfies all the criteria.  As the model predictions have 
satisfied all four criteria in step 1 and 12 of the 12 criteria in step 2, the model is considered to have 
satisfied the acceptance criteria.  

DISCUSSION 

The results presented in this paper are for blind predictions of the evacuation performance of the CS.  By 
necessity, when used by other researchers, the comparisons will not be blind as the results will have been 
published.  However, this is not considered to detract from the value of the validation data-sets.  Indeed as 
the geometry, starting locations of the population, population response times and population end points are 
specified as part of the validation data-set, and all other model parameters are specified by MSC1238, there 
is little opportunity to tune the evacuation model to produce ideal results.  However, due to the nature of the 
data in the validation data-set, it is possible for users to continually run batches of 50 simulations until an 
appropriate best ERD case is produced i.e. one that satisfies the criteria.  This is due to not knowing the 
exact starting location of each agent and because the precise response time for each agent is not known, 
thus each simulation randomly produces a different allocation of response times and precise starting 
locations, some of which may be more favourable than others.  To explore this possibility two additional 
batches of 50 simulations were produced for SGVDS2 using maritimeEXODUS and the results from the 
metric analysis are presented in Table 3 and 4.   

Table 3. Metric values for maritimeEXODUS prediction of SGVDS2 – batch 2 best ERD 

 SC n ERD EPC % diff 
TAT s/n 0.01 0.02 0.03 0.04 0.05 

Overall 0.8 0.8 0.9 1.0 1.0 1743 0.09 1.0 -7.9 
AS A 0.4 0.4 0.5 0.5 0.6 397 0.16 1.0 -6.6 
AS B 0.9 0.9 0.9 0.9 1.0 561 0.10 1.0 -12.0 
AS C 0.7 0.9 0.9 1.0 1.0 434 0.11 1.0 16.9 
AS D 0.7 0.8 0.9 0.9 1.0 351 0.13 1.0 -1.2 

 

From the results presented in Table 3 and 4, the results for the SC for batch 3 are marginally better than for 
batch 1 (see Table 2) while the results for batch 2 are marginally worse than batch 1.  All the SC values for 
batch 3 satisfy the acceptance criteria, while in batch 2, the SC for AS A fails the criteria.  The ERD values 
for batch 3 and 2 are marginally worse than for batch 1, with all the ERD values satisfying the acceptance 
criteria.  The EPC values for batch 2 are marginally better than those for batch 1, while batch 3 are similar 
to those for batch 1. The largest variation in parameters between the three batches of results occurs for the 
time for the last agent to assemble overall and in each AS i.e. TAT.  In batch 1, the overall TAT is under-
predicted by 2.2%, while in batch 2 it is under-predicted by 7.9% and in batch 3 it is under-predicted by 
7.2%.  The greatest difference in the AS TAT occurs for AS D, where batch 1 over-predicts by 8.7% while 
batch 2 under-predicts the TAT by 1.2% and batch 3 under-predicts by 2.3% - a maximum difference of 
some 11%.  However, as this criteria is only applied to the overall assembly results, all three cases are 
considered acceptable.  Nevertheless, the large variation in the TAT for the AS demonstrates that the TAT 
is not a reliable measure.  Due to the random allocation of precise starting location and response times, it is 
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possible that an agent is assigned a starting location which results in the furthest possible travel distance 
and the longest possible response time creating an abnormally long TAT.  Furthermore, should that agent 
be associated with the AS that takes longest to assemble; it could severely impact the overall TAT.  This is 
why the percentage difference in the TAT criteria should not be applied to individual AS, and if it is used at 
all, it should only be applied to the overall TAT.   

Table 4. Metric values for maritimeEXODUS prediction of SGVDS2 – batch 3 best ERD 

 SC n ERD EPC % diff 
TAT s/n 0.01 0.02 0.03 0.04 0.05 

Overall 1.0 1.0 1.0 1.0 1.0 1743 0.09 1.1 -7.2 
AS A 0.8 0.9 0.9 0.9 0.9 397 0.14 1.1 -10.7 
AS B 0.9 1.0 1.0 1.0 1.0 561 0.09 1.0 -1.8 
AS C 0.8 0.8 0.9 1.0 1.0 434 0.10 1.0 19.3 
AS D 0.8 0.9 0.9 0.9 0.9 351 0.15 1.1 -2.3 

 
Based on the metric values, while there are some differences in the precise values for the three components 
of the metric, the same conclusion with respect to acceptability would be made.  Arguably, the results for 
batch 3 are marginally the best, while the results for batch 2 are marginally the worst.  However, these 
observations cannot be generalised to other software tools and so there is some room for users to optimise 
their results. 

While the best level of agreement between the numerical predictions and the experimental results for the 
overall assembly curve is identified by selecting the curve with the best ERD, the worst level of agreement 
can also be identified by selecting the curve with the worst ERD.   If the validation protocol is applied in 
the worst ERD case (i.e. case producing the largest ERD value) and the software meets the acceptance 
criteria, it demonstrates that the worst of the 50 simulations are deemed to be satisfactory and so it is 
reasonable to expect that all 50 simulations within the batch – at least concerning the prediction of the 
overall assembly - will be acceptable.  Presented in Table 5 are the metric values of the worst ERD case for 
both validation data-sets.  As can be seen both sets meet the acceptance criteria associated with each 
validation data-set.  

Table 5. Metric values for maritimeEXODUS prediction of worst ERD for SGVDS1 and SGVDS2 

  SC 
n ERD EPC 

% 
diff 

TAT s/n 0.01 0.03 0.05 0.07 0.09 

SGVDS1 
Worst 
ERD 

Overall 0.8 0.9 0.9 1.0 1.0 480 0.34 1.1 -29.4 
AS A 0.3 0.5 0.8 0.8 0.8 77 0.39 1.3 -42.4 
AS B 0.4 0.7 0.7 0.8 0.9 142 0.37 1.1 -29.2 
AS C 0.2 0.4 0.6 0.7 0.8 74 0.29 1.3 -28.4 
AS D 0.7 0.8 0.9 0.9 0.9 187 0.57 0.7 -22.3 

SGVDS2 
Worst 
ERD 

s/n 0.01 0.02 0.03 0.04 0.05 n ERD EPC 
% 

diff 
TAT 

Overall 1.0 1.0 1.0 1.0 1.0 1743 0.15 1.1 -11.4 
AS A 0.7 0.8 0.9 0.9 0.9 397 0.19 1.2 -15.6 
AS B 0.9 0.9 1.0 1.0 1.0 561 0.12 1.1 -16.3 
AS C 0.6 0.7 0.8 0.9 0.9 434 0.15 1.1 13.9 
AS D 0.6 0.8 0.9 0.9 0.9 351 0.21 1.2 -5.8 

 
Finally, the validation protocol described above is being applied blind to two other commonly used ship 
evacuation models, EVI [16] and ODIGO [17] (by their developers), as part of the SAFEGUARD project.  
Once this analysis is completed the validation protocol and acceptance criteria for SGVDS1 and SGVDS2 
will be finalised.  A more complete description of the validation data set and the suggested validation 
protocol can be found at: http://bit.ly/1eGeYEa. 

FIRE SAFETY SCIENCE-PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM pp. 1115-1128 
COPYRIGHT © 2014 INTERNATIONAL ASSOCIATION FOR FIRE SAFETY SCIENCE/ DOI: 10.3801/IAFSS.FSS.11-1115

1126



CONCLUSIONS 

Data from a semi-unannounced assembly trial at sea for a cruise ship have been collected consisting of 
passenger; response time data, starting locations, end locations and arrival time at the designated assembly 
stations.  The response time data was collected using digital video cameras while the start and end locations 
and the arrival time for the passengers was collected using a novel Infra-Red (IR) data acquisition system 
consisting of ship-mounted IR beacons and IR data logging tags worn by each passenger.  The collected 
data is used to define two unique validation data-sets for ship evacuation models.  The data-sets are 
considered unique for a number of reasons, primarily because unlike most validation data-sets, they contain 
information defining; occupant response times, starting locations, end locations and final arrival times.  
Furthermore, the trials were conducted on real ships, at sea and were semi-unannounced making the results 
relevant, credible and realistic.  

A validation protocol and acceptance criteria have been proposed based on the collected data.  The 
acceptance criteria are objective and are determined by a metric consisting of three measures, the Euclidean 
Relative Difference, Euclidean Projection Coefficient and Secant Cosine.  Collectively the metric measures 
the magnitude of the distance between the predicted and experimental data and the similarity of the shapes 
of the predicted and experimental arrival time curves.  The proposed acceptance criteria take into 
consideration uncertainties associated with the measured data in each of the data-sets. 

In blind applications of the validation protocol to the maritimeEXODUS ship evacuation software, the 
software was found to satisfy the acceptance criteria for the data-set, suggesting that it is capable of 
predicting the outcome of the assembly process for these two vessels to the specified level of accuracy as 
defined by the acceptance criteria.  This work is being continued with the application of the validation 
protocol to two other evacuation tools, EVI and ODIGO.   

It is proposed that the suggested validation protocol and the acceptance criteria could be used by IMO as 
part of a validation suite to determine acceptability of maritime evacuation models in a future enhancement 
to MSC1238.   In this way we hope to improve the reliability of the assessment of ship evacuation 
capabilities based on computer simulation and hence the safety of all those who travel and work on 
passenger ships. 
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