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Abstract

Background

The initial endemicity (pre-control prevalence) of onchocerciasis has been shown to be an

important determinant of the feasibility of elimination by mass ivermectin distribution. We

present the first geostatistical map of microfilarial prevalence in the former Onchocerciasis

Control Programme in West Africa (OCP) before commencement of antivectorial and anti-

parasitic interventions.

Methods and Findings

Pre-control microfilarial prevalence data from 737 villages across the 11 constituent coun-

tries in the OCP epidemiological database were used as ground-truth data. These 737 data

points, plus a set of statistically selected environmental covariates, were used in a Bayesian

model-based geostatistical (B-MBG) approach to generate a continuous surface (at pixel

resolution of 5 km x 5km) of microfilarial prevalence in West Africa prior to the commence-

ment of the OCP. Uncertainty in model predictions was measured using a suite of validation

statistics, performed on bootstrap samples of held-out validation data. The mean Pearson’s

correlation between observed and estimated prevalence at validation locations was 0.693;

the mean prediction error (average difference between observed and estimated values)

was 0.77%, and the mean absolute prediction error (average magnitude of difference

between observed and estimated values) was 12.2%. Within OCP boundaries, 17.8 million
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people were deemed to have been at risk, 7.55 million to have been infected, and mean

microfilarial prevalence to have been 45% (range: 2–90%) in 1975.

Conclusions and Significance

This is the first map of initial onchocerciasis prevalence in West Africa using B-MBG. Impor-

tant environmental predictors of infection prevalence were identified and used in a model

out-performing those without spatial random effects or environmental covariates. Results

may be compared with recent epidemiological mapping efforts to find areas of persisting

transmission. These methods may be extended to areas where data are sparse, and may

be used to help inform the feasibility of elimination with current and novel tools.

Author Summary

Onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and transmit-

ted by Simulium blackflies. Operational between 1975 and 2002, the Onchocerciasis Con-

trol Programme in West Africa (OCP) was one of the first large-scale intervention

programmes ever implemented, and was successful in controlling the disease as a problem

of public health importance. Currently, national control programmes in the former OCP

and the World Health Organization African Programme for Onchocerciasis Control

(APOC) are shifting their focus from morbidity control to elimination of the infection

where feasible through community-directed treatment with ivermectin (CDTI). The level

of endemicity (measured as infection prevalence) prior to control interventions has been

shown to be an important determinant of the feasibility of elimination by CDTI. We pres-

ent the first pre-control Bayesian geostatistical map of infection (microfilarial) prevalence

in the OCP with the objectives of: a) identifying important environmental covariates

which help to estimate prevalence in areas without observed survey data; b) understanding

the distribution of areas of initially high endemicity, where the current CDTI strategy may

be insufficient to achieve elimination goals and intensified CDTI or novel/complementary

tools may be required; c) re-estimating the initial numbers of persons at-risk and with

onchocerciasis in 1975.

Introduction

Human onchocerciasis (river blindness) is a parasitic infection caused by the filarial nematode

Onchocerca volvulus. Onchocerciasis belongs to the group of neglected tropical diseases

(NTDs). In January 2012, the London Declaration on NTDs [1], inspired by the World Health

Organization (WHO) Road Map to overcome the impact of these diseases [2], committed to

sustain, expand and extend the necessary supply of drugs and other interventions to help con-

trol onchocerciasis throughout Africa, and achieve elimination in selected African countries by

2020, with global elimination/eradication targeted by 2040 [1, 2, 3]. The life cycle of O. volvulus

depends on transmission by biting flies of the genus Simulium. Persistent infection can lead to

gradual loss of visual acuity, eventually leading to blindness, and to the development of a vari-

ety of severe and debilitating skin lesions [4, 5]. The infection is also a cause of excess human

mortality both indirectly through blindness and directly through (still poorly understood

mechanisms caused by) heavy infection in sighted individuals [6, 7].

Mapping the Prevalence of Onchocerciasis in West Africa

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004328 January 15, 2016 2 / 36

Funding: SJO acknowledges funding from a PhD

studentship (grant number ES/H013822/1) awarded

by the Economic and Social Research Council

(ESRC) of the UK (http://www.esrc.ac.uk). WAS and

MGB gratefully acknowledge funding of the NTD

Modelling Consortium (www.ntdmodelling.org) by the

Bill and Melinda Gates Foundation (www.

gatesfoundation.org) in partnership with the Task

Force for Global Health. MGB thanks the Wellcome

Trust (http://www.wellcome.ac.uk) (Grants 085133/Z/

08/Z and 092677/Z/10/Z), and the Royal Society-

Leverhulme Trust (http://royalsociety.org/) for a

Capacity Building Africa Award. The views, opinions,

assumptions or any other information set out in this

article are solely those of the authors. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://www.esrc.ac.uk
http://www.ntdmodelling.org
http://www.gatesfoundation.org
http://www.gatesfoundation.org
http://www.wellcome.ac.uk
http://royalsociety.org/


Onchocerciasis has previously been highly prevalent across much of sub-Saharan Africa

and in foci in Latin America and the Yemen [8]. Under the umbrella of the WHO, the Oncho-

cerciasis Control Programme in West Africa (OCP) deployed large-scale antivectorial and/or

antiparasitic interventions against onchocerciasis from 1975 to 2002 to control the disease in

initially 7 (original area) and finally 11 (including extension areas) West African countries (Fig

1A) [9]. The implementation of vector control, by weekly larviciding of Simulium damnosum

s.l. breeding sites for a period at least as long as the estimated longevity of the parasite, led to

the interruption of transmission across large swathes of the OCP area [10, 11]. From 1990

onwards, vector control began to be stopped in those basins that had received at least 14 years

of larviciding, and in which the epidemiological and entomological trends were satisfactory

[12]. However, because of invasion by infective flies, some rivers on the border of the original

area continued to be treated beyond the hypothetical period of 14 years, and up to the time the

extension areas were set up. Although onchocerciasis ceased to constitute a public health prob-

lem in the original OCP area, transmission persisted in others, and towards the end of the OCP

in 2002, special intervention zones were established to continue larviciding and/or to intensify

distribution of the microfilaricidal drug ivermectin [13].

Currently, national control programmes in the former OCP and the WHO African Pro-

gramme for Onchocerciasis Control (APOC) are shifting their focus from morbidity control to

elimination of the infection where feasible through community-directed treatment with iver-

mectin (CDTI). Using 15–17 years of annual (or biannual) ivermectin distribution in the

absence of vector control, elimination has been documented in some OCP foci in Mali and

Senegal [14, 15], and some APOC foci in Nigeria [16], providing proof-of-principle for the

goals set by the WHO for elimination of onchocerciasis in selected African countries by the

year 2020 [2]. However, a key question that needs urgent investigation is where else will it be

feasible to achieve the 2020 goals in the former OCP and APOC areas using current interven-

tion strategies, and if not, by when these goals could be achieved, or what other (novel or com-

plementary) strategies are required.

Among the main determinants of the duration of ivermectin-based control and the feasibil-

ity of its elimination is the initial, pre-control, level of endemicity [17, 18]. Endemicity levels

are usually categorised in terms of the community prevalence of infection with O. volvulus

microfilariae, with the community microfilarial load (CMFL) sometimes also used. (A highly

non-linear relationship exists between infection prevalence and infection intensity, such that at

high infection prevalence the CMFL may vary widely.) CMFL is calculated as the geometric

mean number of microfilariae per skin snip in a cohort of adults aged 20 years and over, and is

an indicator of the intensity of infection [19]. CMFL is a more accurate indicator of the true

epidemiological situation in a population than prevalence, as for the reasons mentioned earlier

there can be substantial variability in CMFL values at high prevalences. However, prevalence

data are more widely available. Microfilarial prevalence is positively correlated with transmis-

sion intensity, measured in terms of the annual transmission potential (ATP)—the yearly num-

ber of infective larvae of O. volvulus potentially received by a person maximally exposed to

simuliid bites in the same community, although the relationship between these two variables is

also strongly non-linear [20, 21].

Therefore, and to further understanding of the feasibility of onchocerciasis elimination, we

embarked on the task of mapping the distribution of the baseline microfilarial prevalence in

the former OCP area. Recent modelling studies [18, 22], have indicated that reaching the oper-

ational elimination thresholds suggested by APOC [23] may be feasible, with an annual iver-

mectin distribution strategy, in areas with a baseline microfilarial prevalence less than 60% (the

prevalence value above which there is hyperendemicity), provided that high levels of therapeu-

tic coverage and treatment compliance are maintained. By contrast, in initially highly
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Fig 1. Maps of the Onchocerciasis Control Programme area. A) Map showing the area covered by the
Onchocerciasis Control Programme (OCP) in West Africa. The red dashed line delineates the limit of anti-
vectorial and/or anti-parasitic activities carried out by the OCP between 1975 and 2002. B) Map of the
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hyperendemic areas (prevalence of 80% or above), biannual ivermectin distribution or deploy-

ment of complementary strategies (e.g. focal vector control if possible; delivery of anti-wolba-

chial therapies [24], or others [25]) may be necessary. Mapping of infection prevalence is of

importance not only for targeting current or novel control efforts appropriately, but also, once

local elimination has been achieved or is deemed possible to achieve within proposed time

frameworks, to predict areas at risk of recrudescence from geographically contiguous areas still

harbouring infection. Finally, mapping the baseline prevalence can help to determine the popu-

lation at risk and infected prior to the inception of control interventions, essential denomina-

tors to calculate the initial burden of disease and its changes as a result of such interventions

[26].

The production of continuous prevalence maps is increasingly using model-based geostatis-

tics (MBG) [27], often employing Bayesian inference (B-MBG) for spatial prediction and

robust characterisation of uncertainty surrounding those predictions [28]. Detailed prevalence

maps have been presented for a variety of directly- and indirectly-transmitted human helmin-

thiases, e.g. [29–32], and vector-borne diseases, e.g. [28, 33–35], including lymphatic filariasis

[36]. Zouré et al. (2014) recently presented a model-based geostatistical map of the prevalence

of onchocerciasis in countries covered under APOC [37], based on nodule prevalence data

obtained from Rapid Epidemiological Mapping of Onchocerciasis (REMO). This map marks

substantial progress in mapping the pre-control distribution of onchocerciasis in APOC areas,

but does not consider the potential influence of environmental covariates affecting onchocerci-

asis distribution, particularly in areas still lacking ground-truth data. In the study presented in

this paper, we map the pre-control distribution of onchocerciasis—based on skin snip data for

microfilarial prevalence—in the area of West Africa formerly covered by the OCP, whilst also

extending the geostatistical methods to consider and incorporate important environmental

explanatory covariates.

The overall aims of this study are to: a) present the first geostatistical map of human oncho-

cerciasis (microfilarial) prevalence at the inception of the former OCP in West Africa; b) iden-

tify important environmental covariates that aid estimation in locations for which no data

were collected by the OCP; c) to characterise areas where high transmission occurred prior to

control (areas of initially high onchocerciasis endemicity), and d) estimate the number of peo-

ple living in the OCP area that were at risk and infected with O. volvulus prior to the com-

mencement of the control interventions.

Methods

The methods used in the epidemiological surveys of the OCP have been previously described

[38]. At each survey a complete census of the village was conducted, and approximately 84% of

persons enumerated in the census were examined [39]. The countries participating in the OCP

signed a memorandum of agreement that covered all issues pertaining to the operations and

included clearance for epidemiological, parasitological, and ophthalmological surveys. Addi-

tionally, a committee consisting of the Chief of Units of OCP ensured that the plans and the

operational phases of the OCP. Until 1987 the method of control was almost exclusively anti-vectorial,
through larviciding of vector breeding habitats. From 1987 ivermectin was used extensively, and almost
exclusively in the Western Extension zones. C) Locations of the village surveys which met the criteria for
inclusion in this study. A total of 737 survey sites were selected, from 5,817 surveys. The survey data
displayed are coloured by endemicity class of crude microfilarial prevalence in the population aged�5 years.
For the cut-off values of microfilarial prevalence corresponding to each endemicity category see Main Text
and legend of Fig 3B.

doi:10.1371/journal.pntd.0004328.g001
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methodology of work were correctly followed by the technicians in the field. Communities

were free to participate in the taking of skin snip samples. Therefore, our study satisfies the

requirements for ethical clearance within the memorandum and the data were provided by

BAB (former and last director of the OCP).

Onchocerciasis Prevalence Data

Relevant survey data were extracted from the OCP epidemiological database, which contains

5,816 surveys conducted in 2,581 (geo-referenced) villages across all operational phases of the

OCP in the 11 participating countries in West Africa (see Fig A within S1 File for locations of

all village sites in the OCP epidemiological database). There were 9 operational phases (sum-

marised in Table 1 and depicted in Fig 1B). A total of 737 villages had parasitological surveys

that met the inclusion (pre-control) criteria (see S1 File Text A ‘Data description and pre-con-

trol data selection criteria’ and Fig B therein). Prevalence ranged between 0 and 94.8% with a

mean of 51.7% and a median of 56.4%. With the exception of one village, numbers examined

per village ranged from 23 to 828 with a median of 171. One village had just 5 individuals

examined (prevalence of 40%) but this represented 100% of the recorded population for this

village. The geographical distribution and endemicity of the selected villages are shown in Fig

1C, with the endemicity classes defined as non-endemic/sporadic endemicity<10%; hypoen-

demic onchocerciasis:�10% and<35%; mesoendemic:�35% and< 60%; hyperendemic:

� 60% and< 80%, and highly hyperendemic (or holoendemic):� 80% microfilarial preva-

lence. Although in the OCP it was standard epidemiological practice to adjust microfilarial

prevalence by age and sex according to the OCP reference population [40], in this study we

used crude microfilarial prevalence because counts of persons examined were not available in

the data by age cohort. The correlation coefficient between crude and adjusted prevalence was

0.973 (determination coefficient 0.947, Fig C in S1 File), therefore the use of crude prevalence

was not expected to bias results.

Geographical Limits of the Mapping

We restricted our mapping to the geographic extent visible in Fig 1A, which encompasses the

OCP and immediate surrounding areas in West Africa. Our ground-truth data points, consist-

ing of parasitological survey data from the OCP epidemiological database, were located almost

entirely within the boundaries of the OCP, as depicted in Fig 1C (see also Fig D in S1 File for a

Table 1. Number of pre-control input data points by operational phase of the Onchocerciasis Control Programme inWest Africa and the com-
mencement date of vector larviciding operations.

Phase Name Start of control Type of intervention* No. of pre-control surveys (n = 737)

I February 1975 Larviciding 115

II January 1976 Larviciding 61

III East March 1977 Larviciding 87

III West February 1977 Larviciding 27

IV March 1979 Larviciding 47

Southern Extension February 1988 Larviciding 83

Western Extension 1989 March 1989 Ivermectin –

1990 April 1990 Ivermectin 317

Sierra Leone March 1990 Larviciding + Ivermectin –

* The types of intervention are informed by [9–12].

doi:10.1371/journal.pntd.0004328.t001
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heat map of distance of map pixels to the nearest input, ground-truth data point within the

study area). The OCP boundaries themselves were largely defined according to the primary

objectives of eliminating blinding onchocerciasis (in savannah areas), subsequently protecting

the original area (of 654,000 km2, spread over Burkina Faso, south-eastern Mali, south-western

Niger, and northern Côte d’Ivoire, Ghana, Togo and Benin) from reinvasion by infective flies

[9, 12], which led to the extensions described in Table 1. River basins in which the blackfly vec-

tors of onchocerciasis can breed were identified by the OCP for the different species of the

Simulium damnosum complex [41, 42]. We let the northerly limits of the mapping extend to

extremely arid, desert conditions where transmission of onchocerciasis is known not to occur,

but we do not generate pseudo-absence points in these areas; instead, we allow the model to

generate prevalence values based on the environmental factors associated with the data and dis-

tance from known (ground-truth) data points. The easterly limit extends to the fringes of Nige-

ria, where control is under the auspices of APOC and we do not consider estimation beyond

these areas. (See Text B ‘Parasitological survey methods and geographical limits of the map-

ping’ in S1 File.)

Climatic and Environmental Data

An ensemble of explanatory environmental and climatic covariates which were deemed useful

in the estimation of microfilarial prevalence was identified building on the methodology pre-

sented in a previous mapping study for another filarial infection [36]. Initial inclusion was

broad and partly based on knowledge of parasite and vector ecology (e.g. distance of villages to

fast flowing rivers), as well as variables considered to affect their distribution and life cycle (e.g.

climatic data). Climatic data were extracted fromWorldClim Global Climate Data, http://

www.worldclim.org [43]. Hydrologically-derived variables were extracted and calculated from

the Hydro1K database [44, 45], and an alternative set of hydrologically-derived variables was

extracted from the Rivers of Africa dataset (derived from HydroSheds) [46], which includes

alternative metadata about the stream lines. Normalized Difference Vegetation Index (NDVI)

data were extracted from the Global Inventory Modeling and Mapping Studies (GIMMS) data-

set for the years 1981 to 1986 [47–49] (the earliest data available in this dataset). Data layers,

generated from the MODIS instrument on board the Terra satellites, were also used. These lay-

ers included land surface temperature (day and night), land cover classification, NDVI and

enhanced vegetation index (EVI) [49–53]. A layer of vegetation type based on physiognomy

and floristic composition fromWhite’s Vegetation Map of Africa was also extracted and used

[54]. We initially tested layers for altitude derived from digital elevation models (DEMs) from

different mapping projects, which were extracted from the Global 30 Arc-Second Elevation

(GTOPO30) DEM [55, 56] and the Global Land One-km Base Elevation Project (GLOBE)

[57]. Where necessary, the original data sources were assembled together to form contiguous

coverage of the study area, re-projected to the output map projection (Lambert Azimuthal

Equal Area; Fig E in S1 File), re-sampled to 5km x 5km (25 km2, the resolution of the output

map), cropped to the borders depicted in Fig 1A and, finally, those cells that overlay inland

water bodies were masked as they represented no data values. Each pixel of the output map

(n = 112, 295), therefore, had a value for each of the environmental covariates. The values of

these covariates at each survey village were sampled from these layers. The initial ensemble of

covariates tested and the data sources are summarised in Table 2 and further details of the pro-

cessing of these datasets are described in Text C of S1 File ‘Processing of environmental covari-

ates’. Maps of the covariates that were included in the model are presented in Fig F.1 and Fig

F.2 of S1 File Text D ‘Maps of environmental covariates’.
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Table 2. Sources of spatially-referenced explanatory environmental covariate data considered in this study.

Dataset Layers Included Pixel
resolution

Coverage Projection Datum Temporal
coverage

Source Version Ref

WorldClim Min Temp, Max Temp,
Mean Temp,
Precipitation, Bioclim
1–19

1km Global Geographic WGS84 1950–2000 http://www.
worldclim.org/
bioclim

Version
1.4
(release
3)

[43]

HYDRO1k
Elevation
Derivative
Database

Slope, Aspect,
Compound
Topographic Index,
Stream lines1*,
Drainage basins,
Elevation2, Flow
direction, Flow
accumulation

1km Africa Projected Lambert
Azimuthal
equal-area

NA https://lta.cr.usgs.
gov/HYDRO1K

NA [44,45]

Rivers of Africa
(Derived from
HydroSHEDS)

Stream lines1,Strahler
order, River gradient,
River type

Shapefile Africa Geographic WGS84 2000 http://www.fao.
org/geonetwork/
srv/en/metadata.
show?id=37333

First
Edition

[46]

Global
Inventory
Modeling and
Mapping
Studies
(GIMMS)

Normalised Difference
Vegetation Index3

8km Global Projected Albers
equal-area
conic

1981–2006 http://www.
landcover.org/
data/gimms/index.
shtml *

NA [47–
49]

MODIS
Vegetation
Indices
(MOD13Q1)

250m 16 days
Normalised Difference
Vegetation
Index,250m 16 days
Enhanced Vegetation
Index

250m Global Projected Sinusoidal 2000-Present https://lpdaac.
usgs.gov/
products/modis_
products_table/
mod13q1

Version
005

[50]

MODIS Land
Surface
Temperature &
Emissivity
(MOD11A2)

8-Day daytime 1km
grid land surface
temperature,8-Day
night time 1km grid
land surface
temperature

1km Global Projected Sinusoidal 2000-Present https://lpdaac.
usgs.gov/
products/modis_
products_table/
mod11a2

Version
005

[51]

MODIS Land
Cover Type
Yearly
(MCD12Q1)

Land Cover Type 2
(UMD)

500m Global Projected Sinusoidal 2001–2012 https://lpdaac.
usgs.gov/
products/modis_
products_table/
mcd12q1

Version
051

[52,53]

UNESCO
(White's)
Vegetation Map
of Africa

Vegetation type map 30 arc
seconds

Africa Geographic WGS84 1968–1983 http://geonetwork.
grid.unep.ch/
geonetwork/srv/
en/metadata.
show?uuid=
cc2fbd96-ae4c-
4593-910f-
c103b1b51299

NA [54]

Global 30 Arc-
Second
Elevation
(GTOPO30)

Altitude2 30 arc
seconds

Global Geographic WGS84 1996-Present http://webmap.
ornl.gov/
wcsdown/dataset.
jsp?ds_id=10003

NA [55,56]

Global Land
One-km Base
Elevation
Project
(GLOBE)

Altitude2 30 arc
seconds

Global Geographic WGS84 NA http://www.ngdc.
noaa.gov/mgg/
topo/globe.html

Version
1.0

[57]

(Continued)
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Temporal Trends in the Data

Although the baseline survey data used in this study were collected over a period of 16 years

(1974–1990), exploratory inspection of pre-control prevalence boxplots by year showed that

there was no significant temporal trend. It was, therefore, deemed unnecessary to include the

effect of time as these data were assumed to be representative of the pre-control endemic equi-

librium situation at the beginning of each OCP phase and commencement of intervention by

river basin. Time-varying changes in the environmental covariates were also treated as negligi-

ble. The WorldClim dataset uses interpolated data averaged over 50 years, whilst the MODIS

data, representing 10-day means, were averaged by ecological quarter (1st: Dec–Feb, 2nd:

Mar–May, 3rd: Jun–Aug, 4th: Sep–Nov) across the entire duration of available data at the time

of analysis (February 2000–July 2013). There was no discernable non-linear trend in NDVI

fromMODIS vs. NDVI from the Advanced Very High Resolution Radiometer, which has a

much earlier temporal coverage (from 1981) but a coarser spatial resolution (64km2 pixels).

Therefore, the long-term climatic and environmental data were implicitly assumed to be repre-

sentative of the average conditions present in 1975–1990 even if portions of the covariate data

had been collected prior or subsequent to this date.

Spatial Dependence in the Data and Model-Based Geostatistical
Analysis

A geostatistical model (used to develop a continuous map of pre-control microfilarial preva-

lence across the OCP area) is simply a Generalised Linear Mixed Model (GLMM) with envi-

ronmental covariates to account for the fixed effects, a spatial term that accounts for the spatial

correlation in the data, and a random effect term that accounts for the non-spatial variation in

the data, yielding a Generalised Linear Spatial Model (GLSM).

If we assume that the number of individuals found positive for O. volvulusmicrofilariae at

location xi is Yi out of the total number of people examined by skin snip at such location, ni,

then Yi is a binomial random variable, Yi* Bin(ni, pi) where pi is the proportion of individuals

positive for skin microfilariae at location i.

An exploratory tool widely used in geostatistics is the semivariogram [58]. Under the

assumption of spatial dependence, there is a relationship between the variance of the difference

Table 2. (Continued)

Dataset Layers Included Pixel
resolution

Coverage Projection Datum Temporal
coverage

Source Version Ref

Gridded
Population of
the World
(GPW V3.0)

Population density,
Population count

5km Global Geographic WGS84 1990-Present http://sedac.
ciesin.columbia.
edu/data/set/gpw-
v3-population-
density

Version
3

[69]

Global Rural-
Urban Mapping
Project
(GRUMP) V1.0

Rural-Urban extents Shapefile Global Geographic WGS84 1990-Present http://sedac.
ciesin.columbia.
edu/data/dataset/
grump-v1-urban-
extents

Version
1

[71]

1Environmental covariate layers for Log10 distance to river and distance to river were derived from these vector shapefiles.
2Multiple digital elevation models from these sources were tested and the best performing variables were selected for further testing. See S1 File for

details.
3This dataset is currently unavailable from the Global Land Cover Facility website.

doi:10.1371/journal.pntd.0004328.t002
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between pairs of random variables (in this study microfilarial prevalence) and their separation

distance, d. The empirical variogram represents the relationship between that separation dis-

tance, binned into intervals, and the mean semivariance of infection prevalence between all

pairs of locations within each distance bin (Fig 2A). Firstly, we fitted a theoretical variogram

model to an empirical variogram controlling for the environmental covariates (Fig 2B)—using

an exponential covariance function—to generate sensible prior values to use for the spatial

component of the Bayesian model (see section on ‘Prior Specification‘ below). Second, we used

these in the GLSM to fit a model of linear predictors (the environmental variables as fixed

effects), conditional on some stochastic process S(�), i.e., the unobserved, underlying spatial

process (which enters the model as a location-specific random offset in the linear predictor).

Following [27], modifying the notation in [36], and conditional on S(�), the responses Yi/ni at

locations xi, for i = 1,. . .,k (k = 737 survey villages) are mutually independent random variables

whose conditional expectations, μi = E[(Yi / ni) | S(�)], are given by,

hðmiÞ ¼ SðxiÞ þ
X

p

j¼1

bjdjðxiÞ; ð1Þ

Fig 2. Semi-variogram analysis of spatial trend in the data. A) Empirical variogram assuming a constant mean trend across the study region (i.e. without
the use of environmental covariates). B) The spatial trend present in the data after accounting for the effects of explanatory environmental covariates by
incorporating a spatially-varying mean trend surface. The purple dots are the mean semivariance values between all pairs of villages with separation distance
contained within a discrete distance bin, with the mid point of each bin used to locate the dots on the x-axis. The red solid line is the fitted theoretical
variogrammodel. The dash-dot blue horizontal lines represent the nugget variance τ2, encompassing sources of non-spatial variation. The dash-dot green
horizontal lines represent the sill variance, σ2, which is the estimated variance of the spatial process S(�). The dashed orange vertical lines are the range at
which the variance asymptotically reaches 95% of its sill value and is given by −ln(0.05)ϕ, where ϕ is the range parameter. Beyond this value the covariance
between locations does not significantly depend on separation distance. The grey shaded areas are the Monte Carlo envelopes of variance expected by
chance, obtained by randomly reassigning the values of microfilarial prevalence at data locations and calculating the empirical semivariogram. The empirical
variogram (A) mostly lies outside this region and, therefore, there is therefore a significant spatial trend present in the data. The trend in semivariogram (B) is
fitted to the residuals resulting after adjusting for the set of linear predictors of the environmental covariate model. The reduction in range parameter,
compared to the mean trend shows that the environmental covariates account for some (but not all) of the observed spatial variation. As some of such
variation still lies outside of the Monte-Carlo envelope of spatially random data, there is still a significant spatial trend.

doi:10.1371/journal.pntd.0004328.g002
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where μi is the expected value of microfilarial prevalence at location xi; S(x1),. . .,S(xk) are the

unobserved random variables for the i = 1,. . .,k locations derived from the spatial process, S(�);

dj(xi) represents the value of the j
th environmental variable at location xi; βj is the regression

coefficient of the jth variable, and the link function is denoted by h(�). For binomial data the

link function is the logit function, i.e. h(μ) = log[μ/(1−μ)].

The spatial signal S(�) has expectation E[S(x)] = 0, variance Var[S(x)] = σ2 and covariance

function,

CðdÞ ¼
s2 þ t2 : d ¼ 0

s2rðdÞ : d > 0
g; ð2Þ

(

where σ2 is the ‘sill’ or maximum variance of the spatial process (composed of the sum of the

partial sill―the spatial variance―and the nugget variance, τ2―the non-spatial variance (repre-

senting sources of non-spatial variation in true prevalence such as measurement error derived

from the skin snip method or unmeasured village-specific demographic or socio-economic fac-

tors, among others)―d = kx − x0k is the Euclidean distance between x and x0, and ρ(d) is the

correlation function which controls how the variogram increases from the intercept to its

asymptote. Initial fitting of semivariogram models suggested that the exponential correlation

function gave a good fit to the data for both a mean trend without covariates (Fig 2A) and after

controlling for the effect of environmental covariates (Fig 2B). The exponential correlation

function is given by,

rðdÞ ¼ expð�d=�Þ; ð3Þ

and the semivariance γ(d) of the exponential model with a nugget effect is given by,

gðdÞ ¼ t2 þ s2½1� exp ð�d=�Þ� ð4Þ

where ϕ is the range parameter, determining the rate at which the dependence between S(x)

values decays with distance. Taking −ln(0.05)ϕ gives the distance at which the semivariance

asymptotically reaches 95% of its sill value. The specification of this correlation function deter-

mines the smoothness of the underlying spatial surface (see section on ‘Prior Specification‘

below). We denote the vector of j = 1,. . ., p regression parameters as β and the parameters of

the correlation function as θ. We can use this model specification and the data to make predic-

tions about locations of interest which may not have been sampled, but for which values of the

regression coefficients are available (environmental covariates).

Continuing with the notation of [27], we may specify a vector of prediction at target loca-

tions, T = T(S�), where S� ¼ Sðx�
1
Þ; . . . ; Sðx�mÞ are the values of S(�) at the x

�

un-sampled loca-

tions where predictions are required (in this study, the 25km2 grid covering the study area

that contains observed values of covariates at allm = 112, 295 prediction locations). It is not

possible to calculate the predictive distribution [S�|Y,β,θ] directly, therefore we use Markov

chain Monte Carlo (MCMC) simulation to generate samples from the conditional distribution,

[(S,S
�

)|Y] = [S | Y][S
�

|S,Y]. Because S
�

is conditionally independent of Y and β given S(�), we

generate values by direct simulation from the conditional distribution [S
�

| S, θ]. (See [27] for

further details and extensions to this framework.) The modelling framework was implemented

using the geostatistical modelling software from the package geoRglm (Version 0.9–2) [59] of

the R statistical environment for computing (Version 3.0.1) [60].
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Initial Selection of Environmental/Climatic Covariates

A systematic Bayesian step-wise procedure was used to select the best set of uncorrelated pre-

dictor covariates for use in the geostatistical model. This method builds upon that of Austin

and Tu [61] by fitting univariate Bayesian GLSMmodels for both linear and quadratic func-

tional forms of each of the initial predictor covariates. We tested model fit by means of a K-

folds cross validation, with K = 1,. . ., 10. The data were randomly partitioned into a training

set, consisting of approximately 90% of the data (NTK
= 663), whilst the remaining 10% (NVK

=

74) were held-out and used in the validation exercises. In each K-fold a different set of input

data points was held out, such that each of the 737 data points appeared in one and only one of

the K-fold validation data set. For this reason, NVK¼10
comprised 71 data points and NTK¼10

666

training data points (see Text E ‘K-folds model validation’ and Fig G in S1 File for locations of

data points in each K-fold). Each model was then independently fitted against the 10 training

datasets. The Deviance Information Criterion (DIC), which is a Bayesian measure of model fit

[62], was used to compare how well each covariate was able to estimate prevalence at a set of

held-out validation locations. Ten datasets were chosen as a compromise between number of

bootstraps and computational time.

For both linear and quadratic functional forms of all of the input covariates, using each

bootstrap dataset in turn we calculated the DIC for that model. For each covariate, the func-

tional form yielding the lowest DIC was used to select either linear or quadratic forms for fur-

ther evaluation. The covariates were then ranked by their resulting DIC values (lowest to

highest) and an iterative selection procedure applied to select the best set of uncorrelated covar-

iates. In the first iteration, the overall best-performing covariate (the covariate generating the

lowest DIC) was selected and the correlation between values at all data locations between the

model with this covariate and with all other covariates was computed. Any covariates with a

Pearson’s correlation of> 0.7 were deemed to be collinear and were eliminated from further

model selection. The second iteration started with the next best remaining covariate, i.e. the

covariate yielding the next lowest DIC after the previous round. Collinear covariates were

excluded as before and further iterations continued until all remaining covariates had either

been eliminated or included in the set of uncorrelated covariates used to identify the best per-

forming model via a Bayesian step-wise selection procedure.

Building a Multivariate Model

Given the set of uncorrelated potential predictors identified, we used a standard Bayesian forward

step-wise procedure to build the most parsimonious model that provided the best fit to the

observed data. We started by selecting the model which had the lowest possible DIC, identified

from the previous step. Using this as a baseline model, bivariate models, each using an additional

covariate, were run. Whichever, if any, of the new models had the greatest reduction in DIC from

the baseline was selected to be the new baseline model, and additional covariates were added to

this model. At each step we added the covariate which effected the greatest marginal reduction in

DIC. The step-wise procedure stopped when the addition of further covariates did not reduce (or

increased) the DIC. Table 3 lists the covariates which were included in the final Bayesian GLSM,

their median values and their 75% and 95% Bayesian credible intervals (BCI), respectively con-

taining 75% and 95% of the posterior distribution for each parameter.

Prior Specification

For each of the βj environmental regression parameters, a prior distribution was assigned, such

that bj � N ð0; s2

bj
Þ and s2

bj
was given a value of 10. Pragmatic priors for the spatial correlation
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function parameters (Eq 2) were specified after initial investigation by fitting a theoretical var-

iogram, by maximum likelihood estimation, to the data conditioning on a mean trend model

specified by the environmental covariates (Fig 2B). Slightly at odds with traditional Bayesian

prior selection, the maximum likelihood estimate was used as the mean of the prior for the

range parameter ϕ, to help the model converge better. The prior was specified as a discretised

uniform prior, defined across the interval ϕ'−10< ϕ< ϕ' + 10 with 1,000 discrete support

points, where ϕ' is the maximum likelihood estimate. The upper and lower limits of support

were set to ensure exploration of a wide prior parameter space. The nugget variance, τ2―not a

parameter estimated by the model―was specified as a relative nugget (i.e. as the proportion of

the total variance of the spatial process that is due to non-spatial effects). The relative nugget

was computed using the parameter estimates from the theoretical variogram model fitting pro-

cedure, giving a value of 0.279. The variance Var[S(x)] = σ2 was assumed to follow a chi-

squared distribution, composed of the sum of squares of random normal deviates (from the

mean of this distribution, set to 0), drawn at each data location.

Although initial testing indicated that adequate mixing of most MCMC chains was achieved

with a burn-in of less than 1.5×105 iterations, some bootstrap datasets did not converge, so the

burn-in length was increased to 1.5×106 iterations to ensure that chains reached the posterior

equilibrium distribution. A further 1×106 iterations were run to sample from the posterior dis-

tribution with thinning set to store every 500th subsample to reduce autocorrelation between

successive subsamples, giving a total of 2,000 samples from the posterior distribution. Text F of

S1 File provides further details on ‘MCMC chain diagnostics’ and Fig H and Fig I of S1 File

present trace plots of MCMC chains for model parameters in the final predictive model. Text

G provides further details on ‘Posterior distributions of model parameters’ and Fig J illustrates

their highest posterior density (HPD) plots.

Table 3. Posterior regression coefficient values and Bayesian credible intervals (BCI) for the explanatory environmental covariates included in
the linear predictor model as well as for values of spatial covariance parameters.

Variable Median 95% BCI 75% BCI

Intercept 0.218 (–0.037, 0.495) (0.082, 0.39)

BIO7: Mean temperature annual range 0.136 (–0.071, 0.371) (0.002, 0.267)

BIO7: (Mean temperature annual range)2 -0.087 (–0.22, 0.053) (–0.171, –0.008)

BIO8: Mean temperature of wettest quarter -0.053 (–0.195, 0.103) (–0.151, 0.027)

BIO8: (Mean temperature of wettest quarter)2 -0.048 (–0.1, –0.002) (–0.076, –0.018)

BIO15: Precipitation Seasonality -0.455 (–0.78, –0.143) (–0.638, –0.275)

BIO15: (Precipitation Seasonality)2 -0.134 (–0.34, 0.038) (–0.243, –0.015)

BIO16: Precipitation of wettest quarter 0.013 (–0.192, 0.24) (–0.115, 0.129)

Compound Topographic Index 0.014 (–0.061, 0.109) (–0.033, 0.064)

Log10(Distance to river+1) -0.137 (–0.215, –0.054) (–0.188, –0.094)

Log10(Distance to river+1)2 -0.034 (–0.061, –0.007) (–0.051, –0.019)

NDVI (1st quarter: Dec–Feb) -0.341 (–0.637, –0.035) (–0.511, –0.162)

NDVI (2nd quarter: Mar–May) 0.201 (–0.204, 0.561) (0.001, 0.445)

NDVI (3rd quarter Jun–Aug) 0.101 (–0.098, 0.279) (0.007, 0.229)

NDVI (4th quarter Sep–Nov) 0.023 (–0.237, 0.304) (–0.15, 0.167)

ϕ, range parameter 38.265 (34.341, 41.248) (36.303, 40.187)

σ
2, sill 0.790 (0.707, 0.874) (0.744, 0.845)

Values highlighted in bold denote statistical significance.

doi:10.1371/journal.pntd.0004328.t003
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Model Output

Model outputs consist of a series of realisations from the posterior distribution of microfilarial

prevalence for each map pixel, which may be summarised in a number of ways. The mean of

the posterior distribution was taken as a point estimate for each pixel (Fig 3A), and pixels were

discretized into broad endemicity classes (Fig 3B) following the endemicity classification for

onchocerciasis used by the OCP [63], but also including an extra holoendemic class for very

high prevalence areas (previously defined).

It is also straightforward to derive quantities that may be of operational interest in control

programmes, such as threshold probability maps (Fig 4A–4C) or probability of endemicity

class classification (Fig 4D). We mapped the predictive probability that prevalence did not

exceed the threshold of hypoendemicity (35%), where the burden of onchocerciasis as a public

health problem is relatively low. We also mapped the predictive probability that prevalence

exceeds the epidemiologically important threshold of hyperendemicity (60%), above which

there is a greater than non-linear increase in morbidity experienced by the population, and

annual ivermectin distribution may not be sufficient to reach operational elimination thresh-

olds within the WHO proposed timeframes [22]. To map the predictive probability that preva-

lence does not exceed 35% we approximated from the predictive posterior at each target

location (x
�

) by calculating the proportion of realisations (r) from the predictive posterior that

do not exceed this threshold; ð1=rÞ
Xr

i¼1
Pð0:35 < x�i Þ at each prediction location x

�

, with P

taking a value of 0 or 1 depending on whether the threshold was exceeded or not. This surface

is depicted in Fig 4A. The continuous probability surface that prevalence exceeds 60% is shown

in Fig 4B, and a discretized surface of probability that prevalence exceeds 60% is depicted in

Fig 4C, classed into P< 50%, 50%� P< 75% and P� 75%.

A surface of the probability of endemicity class assignment (Pclass) was also calculated for

each pixel (Fig 4D). Each posterior predictive realisation was assigned to an endemicity class

based on the cut-off values detailed in the legend of Fig 3B. The mean of the posterior of each

pixel was used to assign endemicity class. The probability of that assignment is then the pro-

portion of posterior realisations which were in the same endemicity class. The number of

endemicity classes was reduced to four with cut-off values set as follows: hypoendemic oncho-

cerciasis:<35%; mesoendemic:�35% and<60%; hyperendemic:�60% and<80%, and highly

hyperendemic (or holoendemic):�80% microfilarial prevalence. The latter category, although

not specified in [63], has been used to define more accurately the relationship between the

prevalence of infection and onchocerciasis-associated morbidity, and to investigate the feasibil-

ity of reaching operational elimination thresholds with ivermectin distribution alone [18, 22].

With four endemicity classes the minimum probability of endemicity class membership is

25%.

Uncertainty

A key advantage of the MBG approach is that it permits robust evaluation of the uncertainty

associated with model outputs [58]. Uncertainty may be directly inferred from the posterior

distribution of the predictions, with greater uncertainty indicated by a larger variance of the

posterior distribution at prediction locations. The standard deviation of the posterior predictive

distribution and the population layer were used to calculate a population-weighted index of

uncertainty (Fig 5A) following [64]. Maps displaying the variance of the posterior predictive

distribution at each map pixel were also calculated (Fig 5B) as a visual representation of the

uncertainty surrounding the prediction made at each target location.
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Fig 3. The spatial distribution of onchocerciasis microfilarial prevalence in West Africa. A) The mean of the predictive posterior distribution of
microfilarial prevalence in the population aged� 5 years (Pmf) for each pixel in the study area. There are no pseudo-absence data points in this model (i.e.,
pragmatically-generated points of zero-prevalence in areas of known absence of disease) and, therefore, the grey areas in the north of the map, where
predictions of prevalence are very low, are entirely determined by the value of the environmental covariates (the closest villages are too distal to exert a
spatial effect). The white boundary denotes the limits of the OCP area. B) Endemicity class classifications for the mean of the predictive posterior, based on a
modification of the OCP endemicity categories. Areas where prevalence is very low are shown by sub-dividing the hypoendemic class into two categories, a
non-endemic/sporadic endemicity class, where microfilarial prevalence is <10%, and a hypoendemic class where prevalence�10% but <35%. Other
categories are mesoendemic:�35% and < 60%; hyperendemic:� 60% and < 80%, and highly hyperendemic (or holoendemic):� 80%.

doi:10.1371/journal.pntd.0004328.g003

Fig 4. Predictive inference for threshold exceedance and endemicity class membership. A) The posterior predictive probability that microfilarial
prevalence for each map pixel is less than 35%. The model output is mapped on a continuous scale from 0 to 1, with dark red representing a high degree of
certainty that prevalence does not exceed the threshold of 35%. B) The continuous posterior predictive probability that microfilarial prevalence exceeds the
threshold for hyperendemicity of 60%. C) Model output as in Fig 4B but categorised into broad probability intervals. Maps of this nature may have utility for the
optimal targeting of current and novel control interventions by programmemanagers. Light-grey areas are pixels with a probability < 50% of exceeding the
60% threshold; pink pixels denote that the probability of exceeding hyperendemicity lies between 50% and 75%; deep-red colours represent a
probability > 75% of exceeding this threshold. D) The probability of each map pixel being in the endemicity class to which it was assigned (Pclass). With 4
endemicity classes the probability ranges from a minimum of 0.25 to 1, with a value of one meaning that all realisations from the predictive posterior were
assigned to the same endemicity class. In all panels the red boundary denotes the OCP limits.

doi:10.1371/journal.pntd.0004328.g004
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Model Validation

The ability of the final B-MBG GLSMmodel to estimate the prevalence of O. volvulusmicrofi-

larial infection prior to the inception of the OCP control interventions in the area covered by

the programme was assessed, for comparability with published work, using validation criteria

which have been applied in other mapping exercises using Bayesian inference to generate pre-

dictive distributions. [e.g. 64, 65]. A K-folds cross-validation exercise [66] was performed as

previously described. In each cross-validation (CV) run, a single subsample was retained to use

as the validation dataset whilst the other K − 1 datasets were used for training the model. For

each CV, posterior predictive distributions of microfilarial prevalence were generated at unob-

served validation locations for comparison against the known values. Using K-folds validation,

each datum was used once in the cross validation. A number of validation indicators were then

calculated according to the methodology used by the Malaria Atlas Project (MAP; http://www.

map.ox.ac.uk/).

As a measure of the accuracy of point estimations the following statistics were calculated:

(a) the overall Pearson-product-moment correlation coefficient (r) between observed and esti-

mated values at validation locations (Fig 6A); (b) the mean prediction error; (c) the mean abso-

lute prediction error, and (d) the ability of the model to allocate endemicity class correctly. The

correlation coefficient provides a measure of linear association between observations and esti-

mations. The mean prediction error is a measure of overall bias, i.e. the tendency of the model

to systematically over- (if the value is positive) or under- (if the value is negative) estimate the

true value. The mean absolute prediction error is a measure of overall accuracy, i.e. the magni-

tude of the difference between estimated and observed values [67]. We computed receiver

operating characteristic (ROC) curves [64] and calculated the area under curve (AUC) statistic

for each endemicity class to test congruency between observed endemicity classes and model-

estimated endemicity classes (Fig 6B). Following [64] an AUC greater than 0.7 indicates good

Fig 5. Maps of uncertainty in predictive posterior realisations. A) The population weighted index of uncertainty is calculated as in [61] and is a pragmatic
representation of how important uncertainty in the predictive posteriors is likely to be. The uncertainty index is calculated by taking the log10(pop75 +1)×1/
Pclasswhere pop75 is the population count for 1975 and Pclass is the probability of endemicity class assignment (Fig 4D). B) Map of the variance of predictive
posteriors. Higher values mean more diffuse posterior distributions and hence greater uncertainty in model estimates. The lowest uncertainty is found in
pixels proximal to data locations. In both panels the red boundary denotes the OCP limits.

doi:10.1371/journal.pntd.0004328.g005
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Fig 6. Plots of model performance. A) Scatter-plot of observed versus estimated microfilarial prevalence in those aged� 5 years (Pmf) at validation
locations. The Pearson’s correlation coefficient between observed and estimated values was 0.693. The 1:1 line of perfect correlation is shown for reference.
The data are coloured by the absolute difference between observed and expected values, mapped from a continuum between 0 and 1. B) Receiver
Operating Characteristic (ROC) curves for each endemicity class (black line, hypoendemic; red line, mesoendemic; green line, hyperendemic; blue line,
holoendemic). AUC values for each endemicity class are also displayed on the plot. C) Probability-probability plot of the proportion of true values of Pmf at
validation locations that exceed their predicted probability threshold for a series of probability thresholds from 1% to 100%. Deviation from the 1:1 dashed line
in this plot represents the difference between the distributions of observed and estimated microfilarial prevalence values at validation locations. D) Frequency
histogram of observed and estimated Pmf at validation locations, classified according to their true class (Observed Pmf panel) and estimated endemicity class
(Expected Pmf panel).

doi:10.1371/journal.pntd.0004328.g006
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to excellent ability to discriminate correctly between points within and without an endemicity

class.

Following [68], we tested how closely posterior distributions matched their assumed error

distribution by means of a probability–probability (P-P) plot, which computes the expected

value of microfilarial prevalence at each location, for a series of increasing probability thresh-

olds (a total of 101 thresholds so that the range 0–100% can be explored), and compares them

to the observed prevalence values (Fig 6C). Assuming errors are normally distributed, at a

given probability threshold, the proportion of predicted values exceeding their observed value

across all validation locations (the so-called ‘coverage probability’) should be equal to that

probability threshold and therefore the P-P plot should show values lying perfectly along the

1:1 line. Deviations from this line indicate a tendency of the model to over- or under-represent

uncertainty in point predictions. We also compared the distribution of estimated and observed

prevalences at validation locations using a histogram (Fig 6D).

Estimating Human Population Counts, Numbers at Risk, and Numbers
Infected withO. volvulus in 1975

In order to estimate numbers of persons infected, maps estimating mean endemicity were over-

laid on a population count layer to calculate the number of persons expected to have been

infected with O. volvulusmicrofilariae. The number of persons at risk was assumed to be the

total population aged�5 years living within rural areas as onchocerciasis transmission requires

clean, unpolluted and fast flowing bodies of water as breeding sites for the vectors. (The selec-

tion of the�5-year olds was because this is the age group examined for skin microfilariae in

most surveys. Children younger than 5 years of age are at risk of acquiring onchocerciasis but

there was a need to make the population groups comparable to those for which infection with

O. volvulus is routinely reported.)

Raster global population counts are readily available from the Gridded Population of the

World (GPW) v.3 data (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3) from the

Center for International Earth Science Information Network (CIESIN) within the Earth Insti-

tute at Columbia University [69]. These data were downloaded for 1990 (the earliest available

data) and projected backwards to 1975, on a per-pixel basis, using the relevant national

medium-variant, inter-censal country population growth rates from the United Nations (UN),

World Population Prospects, 2012 Revision (WPP2012) database [70]. As microfilarial preva-

lence is often expressed in terms of the population aged 5 years and older, the proportion of the

population aged 0–4 years in 1975, according to the WPP2012 database, was removed (see

above). The resulting raster was then re-projected and cropped to match the study area output

maps (Fig 7A). Total population counts in the estimated 1975 map were very close to the cen-

sus estimates from the WPP2012 database (Table 4). The area was delineated into rural and

urban areas using the gridded rural-urban extents map (GRUMP v.1) [71]. Pixels falling in

urban extents were considered not-at-risk and were excluded from calculations of at-risk and

infected totals, as these areas are not suitable for simuliid breeding (Fig 7B). We considered

estimates of infection for the total study area (as shown by the extent of the maps), and within

the OCP control area (delineated by the boundary marked in Fig 1A).

Results

Model Parameters

As may be expected from the ecology of onchocerciasis, the log10-transformed distance to

the closest river was a negative and statistically significant environmental predictor of
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onchocerciasis microfilarial prevalence (Table 3), confirming that as distance to rivers

increases, microfilarial prevalence decreases. In addition to this, the only other (negatively

Fig 7. Estimated gridded population counts for 1975 and urban extents mask. A) Each map pixel contains the log10 transformed count of the total
population +1 (to avoid negative values for population counts), aged� 5 years estimated to live in that map pixel in 1975. Summing pixels by country, the
totals show < 0.8% difference to the United NationsWorld Population Prospects (2012 Revision) country census figures for 1975. B) Red pixels delineate
pixels that are classified as urban extents according the Global Rural-Urban Mapping Project (GRUMP V1.0). Estimates in urban pixels and water bodies do
not count towards the population totals of numbers infected shown in Table 4. In both panels the white boundary denotes the OCP limits.

doi:10.1371/journal.pntd.0004328.g007

Table 4. Total population, at-risk population, numbers with onchocerciasis andmeanmicrofilarial prevalence by OCP country in 1975, at the com-
mencement of the programme.

Country 1975 total population count (this
study)

1975 Total UN WPP2012
population count

At risk
population*

Total No.
infectedǂ

Mean
prevalence++

Benin 3,061,326 3,262,959 1,591,242 621,600 51.8%

Burkina Faso 6,269,113 6,154,548 3,710,859 1,382,943 40.7%

Ghana+++ 10,023,764 9,831,636 2,140,328 1,103,260 52.7%

Guinea 4,386,421 4,350,256 1,676,141 694,441 43.9%

Guinea
Bissau

679,563 778,096 106,654 35,042 34.1%

Côte d’Ivoire 6,656,868 6,606,395 2,616,591 1,242,853 52.8%

Mali 6,836,293 6,191,134 3,024,280 1,108,550 37.0%

Niger 5,037,758 5,070,583 227,909 46,299 26.3%

Senegal 4,645,508 4,901,053 122,813 41,388 35.2%

Sierra Leone 2,729,938 2,820,782 1,392,505 708,285 51.3%

Togo 2,149,634 2,410,446 1,161,603 564,466 52.6%

Total 52,476,186 52,377,888 17,770,925 7,549,127 45.2%

* At risk population is defined as the total population aged 5 years and above living in rural areas within the Onchocerciasis Control Programme borders.

Rural areas are defined by the Urban Extents mask (Fig 7B).

ǂ The product of the mean per-pixel microfilarial prevalence and the corresponding pixel at risk-population count. Only pixels within OCP borders count

towards this total.

++ The average mean prevalence values by country, in percent. Country mean prevalence is the average of the per-pixel mean prevalence from the map

output depicted in Fig 3A, within OCP borders (not the ratio between the numbers of infected and the numbers at risk).

+++ The values shown here do not include a large area in southern Ghana later incorporated into the OCP and that mainly comprised forest-type

onchocerciasis.

doi:10.1371/journal.pntd.0004328.t004
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associated) environmental covariates, which were statistically significant at the 95% highest

posterior density (HPD; the shortest interval which contains 95% of the posterior probability),

were: a) the second order polynomial term of log-transformed distance to river; b) the second

order polynomial term of mean temperature of the wettest quarter (BIO8); c) precipitation sea-

sonality (BIO15); and d) NDVI for the December–February ecological quarter. The spatial

terms for the range (ϕ) and for the sill or variance of the spatial process (σ2) were positive and

significant predictors. At the 75% HPD (the interval which contains 75% of the posterior prob-

ability), in addition to the variables mentioned above, the intercept, the mean temperature

annual range, and the NDVI of the second (Mar–May) and third (Jun–Aug) ecological quarters

were positively and statistically significantly associated with microfilarial prevalence, whilst the

second order polynomial terms of the temperature annual range and of the precipitation sea-

sonality were negative and significant predictors.

Model Output: Map of Baseline Microfilarial Prevalence prior to OCP
Interventions

The mean of the predictive posterior microfilarial prevalence in the population aged 5 years

and older is shown in Fig 3A. The mean O. volvulus prevalence in pixels within the boundaries

of the OCP area was 45.2%, ranging between 2.3% and 90.0%. The mean prevalence in map

pixels outside the OCP control programme was 18.2%, ranging between 0.5% and 70.1%. It

should be noted that we do not have ground-truth data points in areas outside the OCP bound-

ary and, therefore, estimates made for such areas are more speculative and rely on data from

within the OCP boundaries and their relationship with environmental covariates.

A surface of mean prevalence discretized into the endemicity levels defined in the Methods

(see ‘Onchocerciasis Prevalence Data‘ section above) is shown in Fig 3B. The map of input data

locations is displayed in Fig 1C.

Map Accuracy and Predictive Probability Maps

The predictive posterior distributions are an inherent realisation of the statistical uncertainty

surrounding the mean estimates. We translated the posterior distributions into operationally

useful maps, depicting areas where the prevalence is below or above a certain threshold. The

probabilities that microfilarial prevalence is below 35% (where disease severity is low), or

exceeds 60% (where disease severity is high) are given in Fig 4A and 4B, respectively. In both

cases, the greatest levels of uncertainty were associated with areas where the posterior predic-

tive mean of prevalence fell in the mesoendemic endemicity class, and in areas where we do

not have ground-truth data points to inform the model, such as areas outside the OCP bound-

aries. Where predictions were either in hypo- or holoendemic classes, the probability of thresh-

old exceedance was either very low or very high, respectively. The effect of the environmental

covariate, distance to river, is visible in these continuous probability threshold maps. The out-

line of the stream network can be seen in Fig 4A as lighter shade in dark areas indicating a low

probability that microfilarial prevalence is< 35% along the stream network. In Fig 4B the river

network is also visible as darker colours in light areas, indicating a higher probability that

microfilarial prevalence exceeds 60% close to the river. Fig 4C describes the probability that

prevalence exceeds the clinically important threshold of 60% microfilarial prevalence, indicat-

ing areas with 0 to 50%, 50 to 75%, and 75 to 100% probability that areas are at least hyperen-

demic. There is a band of high-probability of exceedance of the hyper-endemic threshold

across the core area of the OCP, from Guinea, through Côte d’Ivoire, Ghana and Southern Bur-

kina Faso, to Togo and into Benin. This band also extends into Nigeria, despite there being no

input data points there; a country which was later included in the mass treatment programmes
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under APOC (see Fig 2 and Fig 3 of [37] by way of validation of our results). The average prob-

ability of endemicity class membership across all map pixels was 66% (Fig 4D), with a range of

34% to 100%. This means that on average, 66% of the posterior realisations for any given map

pixel were within the same endemicity class. The most uncertain endemicity class membership

for individual map pixels appears to be in the core areas of the OCP, predominantly in meso-

and hyper-endemic classified pixels. However, examination of the signal to noise ratio (SNR)

map (see S1 File Text H ‘Further maps derived from the predictive posterior distributions’)

indicates that these are the areas with the highest SNR values, as may be expected due to their

proximity to ground-truth data points (Fig L of S1 File). This suggests that the prevalence cut-

off values used to define endemicity classes are less well-suited to this study. Pixels with esti-

mates of prevalence close to endemicity class boundaries will be less easily classified to a given

endemicity class, and instead a more finely discretized map, such as the map in Fig 3A, would

be more informative.

We modelled the probable importance of the uncertainty surrounding endemicity class

membership as in [64], using a population-weighted index of uncertainty. Briefly, in areas

where the probability of endemicity class membership is not well defined (a low probability

within the overall range of 0.25–1 in this study), and the population density is also high, the

possible marginal effect of that uncertainty in the predictive posterior distribution of microfi-

larial prevalence will be high. The population-weighted uncertainty map depicted in Fig 5A,

which has an uncertainty index value scaled between 0 and 1, is highly overdispersed,

with> 90% of the pixels in the map having an uncertainty index of< 0.5 assigned to them.

Model Validation

The overall correlation coefficient, r, between observed and estimated values at validation loca-

tions was 0.693 (Fig 6A). Calculating separately a correlation coefficient, ρ, for each of the 10

K-folds individually, we obtained a range of values varying between 0.566 and 0.806 with a

median of 0.699. The mean prediction error was 0.77% (i.e., overall, observed prevalence was

greater than the estimated prevalence by less than 1%). The mean absolute error indicated that,

on average, there was a difference of 12.3% between the observed and estimated microfilarial

prevalence at validation locations. The variograms depicted in Fig 2 show that there was signifi-

cant spatial dependence in the data (Fig 2A), even after accounting for the effect of environ-

mental covariates (Fig 2B), as with increasing separation distance there was increasing

semivariance that lies outside the envelope of semivariance values expected by chance (the grey

shaded area—a Monte Carlo envelope calculated from random reassignment of prevalence val-

ues to different data locations). The expected onchocerciasis endemicity class exactly matched

the observed endemicity class for 406/737 (52.7%) validation locations and was within one

endemicity class at 711/737 (96.5%) locations, showing good agreement between observed and

estimated classes. Serious misclassification of endemicity class (i.e. classifying a point to a non-

adjacent class) occurred in 26/737 (3.5%) cases. A contingency table by endemicity class is

given in Table 5. AUC statistics for each endemicity class were calculated using ROC curves

(Fig 6B), and with the exception of the mesoendemic class, all other endemicity classes had

good to very good agreement between observed and predicted endemicity classes with AUC

values of 0.85 for hypoendemic; 0.77 for hyperendemic, and 0.81 for holoendemic classes. The

mesoendemic class fell just slightly below the threshold for good predictive capacity, with a

value of 0.68.

Following [64, 65], we also tested how closely posterior distributions matched their assumed

normal error distribution by means of a P-P plot (Fig 6C). The line is close to the 1:1 line of a

perfect error model, but falls below the 1:1 line for values between probability thresholds of
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0.15 to 0.60, meaning that there is a slight bias of the model to overestimate the probability of

taking values closer to the middle of the range of possible prevalence values, whilst slightly

under-representing extreme (very low or very high) microfilarial prevalence values.

This phenomenon can be seen on the histogram in Fig 6D. The histogram of prevalence at

input data locations is negatively skewed, whilst the histogram of estimated prevalence at vali-

dation locations exhibits a smaller degree of skewness, with a greater proportion of estimated

values falling in the meso- and hyper-endemic categories.

Estimated Numbers of People Living in the OCP Area, Infected withO.
volvulus and At-Risk of Onchocerciasis in 1975

The population totals calculated in this study are very close to the country-level census num-

bers provided in [70]. The total gridded population living in OCP countries in 1975 according

to our estimates was 52.5 million, comparing well with the total UN estimate for OCP countries

of 52.4 million persons. We combined the map of mean microfilarial prevalence in those aged

5 years and above with a map of the estimated corresponding population for 1975 to derive

estimates of numbers of people infected with O. volvulus. We estimated that there were 7.55

million persons with onchocerciasis at the outset of the OCP living within the control pro-

gramme’s boundaries (approximately 1.3 million km2 [9]). The total number of persons esti-

mated to be at risk of onchocerciasis within the OCP borders was estimated to be 17.8 million.

Within the study area, there were an additional 11.6 million persons aged 5 years old or more,

living in rural areas in OCP countries, but outside of the control programme’s borders. From

the model estimates, we calculated that an additional 2.8 million of these persons may have

been living with onchocerciasis in these areas. Of these, 1.1 million persons were in Ghana,

where the control programme subsequently extended southwards from the original OCP

boundaries to cover forest areas known to be endemic but not previously covered under the

OCP. The total numbers of persons at-risk and infected, by country, are shown in Table 4.

Discussion

To the best of our knowledge, we have presented the first continuous map of the pre-control

prevalence of O. volvulusmicrofilariae in West Africa, in the region previously covered by the

OCP and, in addition, have identified environmental covariates that aid in the estimation of

onchocerciasis prevalence in un-sampled areas. For instance, our estimated pre-control infec-

tion prevalence distribution in the totality (Liberia) or part (Nigeria) of two non-OCP countries

fares well with that presented, respectively, in [72] and [37]. We have also provided compre-

hensive estimates of the initial numbers of persons infected and at risk of infection, and con-

sider a robust handling of the uncertainty surrounding those estimates. According to our

model, the mean baseline infection prevalence in the rural areas of the OCP was 45%. By

Table 5. Classification of survey villages according to observed and expected (model-derived) endemicity class for all validation locations.

Expected Class Observed Class Total

Hypoendemic Mesoendemic Hyperendemic Holoendemic

Hypoendemic 91 32 9 1 133

Mesoendemic 74 172 123 9 378

Hyperendemic 7 45 134 29 215

Holoendemic 0 0 2 9 11

Total 172 249 268 48 737

doi:10.1371/journal.pntd.0004328.t005
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comparison, Zouré et al. [37] estimated that in APOC areas and for 2011―had control inter-

ventions not been implemented―the average microfilarial prevalence of infection in the entire

rural population would have been 15%. This estimate, based on a conversion of nodule preva-

lence into microfilarial prevalence using the relationship described in Coffeng et al. [73], is

much lower than ours. APOC covers a much larger and more environmentally and geopoliti-

cally heterogeneous area, which may contribute to explain some of the difference in infection

prevalence estimated in the two studies.

Although levels of infection have decreased as a result of the interventions implemented by

the OCP [8–12], and environmental change has occurred in the intervening years since 1975

[74], a map of the baseline levels of prevalence and endemicity provides an indicator of initial

conditions for transmission, which are influential determinants of the feasibility of onchocerci-

asis elimination with ivermectin [17, 18, 22]. This is particularly relevant, since after cessation

of OCP vector control operations in 2002, and subsequently in special intervention zones [13],

blackfly vector populations have recuperated to original levels in many areas and there is evi-

dence of continuing transmission within the former OCP area [75–77].

Representativeness of the Data

The OCP epidemiological dataset represents the most complete source of standardised parasi-

tological survey data for onchocerciasis in West Africa. However, although extensive surveys

were conducted (see Fig A in S1 File for a map of all locations surveyed during the OCP), only

a small fraction of the total population was sampled (the subset of the OCP dataset which was

selected as the most representative of pre-control prevalence consisted of approximately

145,000 persons skin snipped). One of the problems faced when using the OCP data for

mapping purposes, was that the population and epidemiological surveys were not performed at

random, introducing some bias in the data towards areas of higher endemicity. Original pro-

gramme areas were delineated, for the purposes of enabling evaluation of the impact of vector

control, using cartographic and entomological knowledge about the location of rivers, flow

speeds and vector breeding sites. In a limited number of epidemiological settings more detailed

studies were carried out with the objective to map the distribution of onchocerciasis, and vil-

lages were classified as first-line if there were no other settlements between themselves and vec-

tors’ breeding sites [78, 79]. Further surveys were conducted in a selection of villages at regular

intervals up- and down-stream from the breeding site, and a random sample taken from sec-

ond- and third-line villages at increasing distances from the river [79]. Including this informa-

tion in the model when estimating the effect of environmental covariates may have helped

increase predictive accuracy, but it would be difficult to classify map pixels into first-line or

otherwise without complete knowledge of the distribution of all villages across the study area.

It was not necessary at the time to conduct a complete census of the resident population

(although a census was carried out in each survey village) in the OCP area and its extensions,

because control initially relied on vector control (and not on mass distribution of ivermectin,

for which censuses are mandatory).

Use of Environmental Covariates and a Spatial Trend

The use of environmental covariates to improve model accuracy was investigated and a num-

ber of variables associated, or deemed to be potentially associated, with onchocerciasis was

investigated. A model incorporating covariates was found to be a better predictor of onchocer-

ciasis prevalence and endemicity than an intercept-only model, which incorporated only the

spatial trend. Inclusion of covariates improved (reduced) the DIC values in model validation

and improved the correlation between observed and predicted prevalence values at validation
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locations. In addition to the environmental covariates listed in Table 3, we also tested for any

effects of spatial differences between the geographical distributions of different members of the

S. damnosum complex but we could not detect any significant influence of vector taxon on the

model’s predictions. (Had we modelled infection intensity rather than prevalence, an effect of

vector taxon might have become apparent.) However, the value of ϕ	 38 corresponds to a spa-

tial trend that reaches 95% of its maximum semi-variance over a distance of approximately

113km (i.e., for any prediction location, its estimated value is influenced by locations up to

113km apart). The range parameter is consistent with the observation that blackfly vectors can

travel several hundred kilometres from a breeding site [80]. However, Renz et al. (1987) found

biting density to drop to 10% of its original level at distances of 5km from riverine breeding

sites in Sudan-savanna focus of Northern Cameroon [81]. Other studies have shown that peo-

ple may be bitten by female blackflies in locations distant from any known breeding site [82–

84] and that re-invasions of parous flies into areas previously cleared through larviciding can

happen from breeding sites as far as 300km away [85]. This lends strong epidemiological and

ecological support to the operation of a spatial trend operating over this distance.

We extended the methods of Slater et al. [36] to carry out a robust, Bayesian step-wise selec-

tion procedure to identify the best set of uncorrelated explanatory covariates. The chosen

covariates significantly improved the ability of the model to explain the variation in recorded

microfilarial prevalence. The covariates also helped to define natural geographical limits to the

mapping which would otherwise have been impossible, given the bias towards surveyed villages

with a high probability of having onchocerciasis. In other mapping studies, pseudo-absence

points have been introduced into the data in un-sampled areas which are suspected to be non-

endemic, to help delineate risk-free areas. In this study we have avoided this, and instead

allowed the limits to be defined by the environmental predictors and the spatial covariance

function in the model. We found that the model estimated very low prevalence in the very dry

arid areas north of the OCP boundaries, without recourse to including pseudo-absence points.

There is a zone of southeastern Côte d’Ivoire in Figs 3 and 4 where the model predicts non-

endemicity and hypoendemicity with patches of mesoendemicity, although it captures a hyper-

endemic hotspot around the lower Bandama river. The prediction for an area east of this loca-

tion is consistent with a zone where there are very few S. damnosum s.l. breeding sites in the

middle section of the River Comoe and its surrounds (see Figures 2 and 3 of [42]). However,

for the lower Bandama river and the lower Comoe river, a previous study by Dadzie et al.

(1990) [86] found a high prevalence of onchocerciasis in 11 first-line villages in southern Côte

d'Ivoire which, with one exception, were located south of the OCP boundary, but they did

remark that the CMFL values were “relatively low”. Similarly, hyperendemicity in the Cavally

river valley in western Côte d’Ivoire [87], the map for which was erroneously transposed with

the one in [88] was missed by the model. Whilst our map estimates show elevated prevalence

along stream lines in the southeastern Côte d’Ivoire area, the prevalence is not as high as that

found in the Dadzie and co-workers’ study. The villages in that study were all situated� 1km

from known breeding sites in rivers, making this sample not wholly representative of the epide-

miological situation in southern Côte d'Ivoire. The villages in our study are located between 0

and 26km from the nearest river (mean = 5.15km, median = 3.86km), and because our pixel

resolution is of 5km x 5km, our model may have smoothed over some of the highly localised

nature of the elevated endemicity reported in [86]. In addition, the model relied heavily on

only two village data sets in this area with a considerable distance between them on a west to

east axis, both of which were points of non-endemicity (Fig 1C). Nevertheless, that these points

reflected the true situation in the zone between the Bandama and Comoe rivers is supported by

epidemiological data collected in an area due north of Abidjan and due east of Yamoussoukro

in October 2014 that revealed only hypoendemic villages. An additional potential explanation
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is that we may be missing important environmental covariates that would be able to explain

the high endemicity in this particular area. In the southern extremes of the study area the land

type is dense forest, and forest-type onchocerciasis is known to produce high prevalence; we

may be missing some important covariates associated with this bioclime, as most of the area

for which the model produces estimates of initial onchocerciasis prevalence belongs to the

savannah bioclimes. Finally, in areas with ground truth data, the variable distance to river is

helpful for modelling the distribution of endemicity around rivers, but in those without ground

truth data, the model may not be able to predict high endemicity levels on the basis of the envi-

ronmental variables only. Some of these variables are probably not capturing determinants of

high endemicity along river courses, such as the locations and productivity of vector-breeding

grounds. This may require other environmental information such as that used in the remote

sensing model presented in [89].

We confirmed that microfilarial prevalence is statistically significantly and negatively asso-

ciated with increasing distance from rivers in both the linear term (p-value< 0.01) and the

quadratic term (p-value< 0.05). Distance between village and river is an important determi-

nant of vector biting rate [81] and onchocerciasis endemicity when the river contains rapids

and other suitable and identifiable vector breeding sites, according to a classification of first,

second and third line villages [90, 91].

Mean temperature of the wettest quarter (BIO8) was also significantly and negatively corre-

lated with prevalence (p-value< 0.05). Interpretation of this result is rather more difficult

because the wettest quarter is necessarily different across different map pixels, but it suggests

that conditions for blackfly breeding and transmission may be more favourable in areas in

which the majority of precipitation occurs in the cooler parts of the year. This is linked with

precipitation seasonality (BIO15), which was also significantly and negatively correlated with

infection prevalence. Areas with greater intra-annual variability in rainfall (and therefore possi-

bly representative of more seasonal transmission) were negatively associated with prevalence

(the coefficient of variation of precipitation seasonality is the standard deviation of the weekly

precipitation estimates expressed as a percentage of the mean of those estimates). Areas with a

more constant weekly rate of precipitation (perhaps indicative of perennial transmission),

which also occurs during the cooler parts of the year (possibly favouring vector survival), are

positively associated with microfilarial prevalence. This is compounded by the negative param-

eter value for temperature annual range (BIO7). A smaller difference between the highest

weekly maximum temperature and the lowest weekly maximum temperature had a positive

effect on prevalence (presumably through an effect on developmental rates of blackfly imma-

ture stages, and perhaps also of the parasite larval stages within the vectors), which are highly

dependent on temperature [92].

The normalized difference vegetation index (NDVI) for the December–February ecological

quarter was a statistically significant and negative predictor of microfilarial prevalence (p-

value< 0.05). This quarter follows a period of low precipitation within the OCP area during

which the temperature is still relatively mild and the highest NDVI values for this quarter are

found only along the coastal regions, which are unsuitable as blackfly breeding habitats. When

relaxing the BCIs to 75% (i.e. at p-value< 0.25), NDVI for other ecological quarters became

significantly and positively associated with prevalence. In particular, areas with more lush

green vegetation during March–May and June–August were positively associated with oncho-

cerciasis prevalence. These greener areas occur within the OCP boundaries, whereas the desert

areas situated north of the programme boundaries are extremely arid due to lower rainfall and

higher temperatures, with very low NDVI values and negatively associated with the presence of

onchocerciasis. Compound topographic index (a proxy for the slope and relative wetness of the

land) had a weak effect in the model, as did the precipitation of the wettest quarter (BIO16).
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Altitude has been found to be positively correlated with onchocerciasis prevalence in vari-

ous foci of Cameroon [93], Venezuela [94], and Guatemala [95] up to an altitude of 1,500

metres above sea level, and negatively correlated above that altitude, with most of the propor-

tional increase taking place at altitudes up to 500 m [93–95]. However, this association may

also depend on the type of river and its geomorphological substrate, determining vector breed-

ing suitability (and in Venezuela also an association with vector species composition and the

relative vector competence of the various simuliid species for O. volvulus), and not merely on

altitude [96, 97]. In this study, altitude was not found to be a significant predictor of onchocer-

ciasis; however, this could be partly explained because both rainfall and temperature variables

were included in the model, which may remove some of the effect of altitude on prevalence,

and the fact that> 94% of the total land area in the OCP is< 500 metres elevation.

Model Implementation and Validation

In line with other recent approaches to large-scale geostatistical mapping [28–36], we used

MCMCmethods to fit a Bayesian statistical model, which uses linear combinations of the sur-

vey data (microfilarial prevalence) and a spatial covariance function to obtain predictive poste-

rior estimates at un-sampled locations. The distribution of such estimates readily translates

into measures of uncertainty associated with microfilarial prevalence. For those non-surveyed

locations, which are distant from those with data, the posterior distribution tends to be more

diffuse, indicating greater uncertainty.

In this study we used 25km2 map pixels. This was chosen as a compromise between achiev-

ing a desirable degree of spatial resolution and minimising computing time, but led to some

loss of short-scale variation in prevalence below the chosen value. This size of individual map

pixels means that very short-scale variation between closely situated villages is smoothed over

and is likely to be important given the exponentially decaying relationship between distance

from the river and biting density/proportion of parous flies that occurs within this distance

[81]. A consequence of this smoothing effect is that although the predicted surface provides a

robust prediction of endemicity at larger scales, it is less capable of representing variations over

very short distances, and the estimation of extreme values may be truncated. The output range

of prevalence values in those aged 5 years and over in the predictive map was slightly narrower

(from 0.5% to 90%) than the input data (from 0% to 95%), a feature of spatial smoothing also

reported by others [64, 65, 98].

Our validation statistics compare reasonably well with those presented in other mapping

exercises, such as MAP for 2007 [64] and 2010 [65], which also applied MBG procedures but

(in the case of MAP 2007) did not find a strong relationship between malaria prevalence (Plas-

modium falciparum in those aged 2–10 years) and a range of remotely-sensed environmental

covariates. (In their update of global P. falciparum endemicity map for 2010, Gething et al. [65]

succeeded in identifying environmental covariates as predictors of malaria prevalence.)

Although we obtained a lower correlation coefficient (0.69 in our case versus 0.82, for the 2007

version of MAP in Africa [62]), our sample size was 7 times lower (737 versus 5,307 input data

points). The mean prediction error (0.8% vs. 0.8%, indicating a tendency to overestimate prev-

alence by less than 1%), and the mean absolute errors (12% vs. 11%) are comparable. (In the

2010 MAP iteration for Africa, the correlation coefficient between predicted and observed val-

ues was 0.86; the mean prediction error was –0.9%, indicating a tendency to underestimate

prevalence by less than 1%, and the mean absolute error was 12% [65].) The ability to predict

endemicity class correctly was also lower (59% vs. 71% in the 2007 MAP), but there was only a

value of 3.5% for serious estimation errors (i.e. non-adjacent class classification) when using
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four endemicity classes (the hypoendemic class was expanded to include the non-endemic

class). The ability of the model to allocate locations correctly into endemicity class partly

depends on the boundaries and number of categories chosen to represent endemicity levels,

and therefore it is not a wholly unbiased metric of map accuracy. (With n endemicity classes

there are (n – 1)2 – (n – 1) chances for misclassification—allocating to a non-adjacent endemic-

ity class—in the n×nmatrix; hence, the probability of misclassification increases non-linearly,

asymptotically approaching 1, with increasing n).

Population at Risk and Numbers Infected withO. volvulus in 1975

The United Nations estimated the 1975 population for the 11 countries covered by the OCP at

52.4 million [70]. Our back-calculation sets this figure at 52.5 million (only 0.2% higher).

Boatin [9] stated that by the time the OCP ended in 2002, 27 years later, the estimated popula-

tion in the area covered by the programme was over 78 million.

The Third Report of the Expert Committee on Onchocerciasis, published in 1987 [99], indi-

cated that in the OCP area, the number of persons at risk (as assessed in 1984–1985) was 7.2

million, with 2.4 million infected (a ratio of 3:1). Since this assessment was made approximately

10 years after the commencement of antivectorial operations in the seven initial countries of

the OCP (namely, Benin, Burkina Faso, Côte d’Ivoire, Ghana, Mali, Niger and Togo), the

report excluded persons living in previously endemic areas of these countries where transmis-

sion was deemed to be controlled from the calculations of the numbers at risk. In those areas,

the numbers of persons infected with O. volvulus were calculated as 25% of those who would

have been infected at the beginning of the control programme [99]. Consequently, the numbers

infected at the start of the OCP would have been 5.9 million in the initial 7 countries, and 6.8

million adding Guinea, Guinea Bissau, Senegal, and Sierra Leone (which were incorporated

later). According to our mapping exercise, the numbers of persons at risk would have been 2.5

times as large as the number reported in 1987, at 17.8 million (representing the total population

aged 5 years and above living in rural areas within the OCP borders). The number of people

with onchocerciasis would have been 7.55 million, i.e. three times as large as the number docu-

mented in 1987 (which gives directional support to the report’s consideration that the figures

given would have been 25% of those prior to control). The report also acknowledges that the

figures for the prevalence of infection most likely underestimated the true extent of the prob-

lem, as they were obtained by extrapolation from relatively small sample surveys, without accu-

rate knowledge of the local distribution of endemic foci (and certainly without considering

spatial correlation between survey points). Survey villages were selected from historical records,

for their hyperendemicity of onchocerciasis, and other criteria aimed to ensure long-term eval-

uation of vector control. Village selection was somewhat independent of the entomological

evaluation network, and consequently, although successful in evaluating the vector control

campaign, it could not have described the distribution and severity of the disease adequately

and did not allow for correct estimates to be made of the number of people infected with O. vol-

vulus [100].

A study of the distribution of onchocerciasis was conducted in 1987 in the Western Exten-

sion [100], partly conceived to overcome these limitations. After discarding population sizes

greater than 800 inhabitants, the authors calculated a rural population of 4.5 million persons

and reported that, of these, 1.5 million persons were infected. Using the Gridded Population of

the World dataset, and satellite-derived GRUMP data as a clipping mask to remove urban

extents, our model estimated that the rural population at risk within the Western Extension in

1975 would have been 4.5 million, with 1.9 million persons infected. The congruence between

our study and that of [100] is excellent. Another study by De Sole et al. [101] investigated the
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distribution and severity of onchocerciasis in Southern Benin, Togo and Ghana. There is also

excellent concordance between the hyperendemic areas delineated by the maps in our study

and those areas proposed to be at elevated risk of onchocerciasis-associated blindness in the De

Sole et al. [101] study. The district of Pru on the north-western fringes of Lake Volta in Ghana

is particularly congruent between the two studies. Both of the De Sole et al. studies [100, 101]

were carried out in proposed extension areas in order to determine the pre-control geographi-

cal distribution of O. volvulus in such areas. Where this type of surveys was carried out, accu-

rate knowledge of the distribution of pre-control onchocerciasis prevalence was obtained, now

confirmed with the modern mapping methods we have applied. However, in the original OCP

areas, where the main focus was not to determine the distribution of the disease but to identify

vector breeding sites to monitor vector control operations, the pre-control prevalence of

onchocerciasis was greatly underestimated [99].

Finally, Coffeng et al. [26] estimated that before the inception of APOC in 1995 about 32

million people in APOC areas were infected with onchocerciasis (Zouré et al. [37] estimated a

figure of 35.6 million in 2011 had interventions not been implemented). Adding these figures

to our 7.55 million infected prior to the inception of the OCP, we obtained a total value of 40–

43 million people infected in Africa at baseline. This total lends support to the recent estima-

tion of 37 million people infected with O. volvulus in the continent [8, 102], and supersedes the

frequently quoted, but grossly underestimated, previous figure of about 18 million infected

[99].

Directions for Future Work and Concluding Remarks

The Disease Reference Group for Helminth Infections (DRG4) of the UNICEF/UNDP/World

Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR),

recently identified that an essential pre-requisite for statistical and dynamical modelling to

effectively aid and inform helminthiasis control programmes, is that of creating open access,

high quality, epidemiology and control databases [103]. It is the aim of other infectious disease

mapping projects (e.g. Global Atlas of Helminth Infections, http://www.thiswormyworld.org;

Malaria Atlas Project, http://www.map.ox.ac.uk; Global Atlas of Trachoma Prevalence, http://

www.trachomaatlas.org) to become an open-access information resource on the distribution of

these infections, to which the community of public health workers can contribute their own

data. Progress towards this goal has been made particularly for soil-transmitted helminthiases.

Among the questions for onchocerciasis that need addressing, are those concerning: a) how

best to quantify the progress of the aforementioned control programmes, describing in time

and space changes in infection prevalence, intensity, and morbidity after the commencement

of interventions?; b) how to identify in time and space hotspots of persistent transmission and

investigate the causes for such persistence (e.g. poor geographic/therapeutic coverage and com-

pliance vs. decreased drug efficacy)?; c) how best to evaluate the feasibility of local elimination

of the infection reservoir and the probability of recrudescence or reinvasion once interventions

cease? and d) how is the burden of onchocercal disease changing under sustained control [26,

104]?

The DRG4 group also identified, as a modelling research priority, the need for linking MBG

maps with population dynamics frameworks to both update the information on endemicity in

future iterations of the maps; to compare the outputs with those, derived from transmission

models, of long-term projections of the impact of interventions on infection prevalence, inten-

sity, and associated disease [26,103], and to project in which foci the 2020 goals will be achieved

with current tools and where they will not be reached within reasonable time horizons without

implementing novel and/or complementary control interventions. An insightful, albeit
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complex, analysis might be obtained by approaching this question as a spatio-temporal prob-

lem with interventions (of at least two kinds, namely antivectorial and antiparasitic) occurring

at different times in different places.

Finally, it would be possible to extend the geostatistical model developed here to map the

endemicity of onchocerciasis in APOC’s countries. APOC has made remarkable progress using

REMO to guide the implementation of CDTI [105], and model-based geostatistical maps

(based on the spatial dependency component of the model, without inclusion of environmental

covariates), have recently been published [37]. However, application of the methodology

described here may make it possible to refine estimation of infection prevalence at locations for

which no ground-truth data are available by using information from the identified environ-

mental covariates (such as distance to nearest river). It would also be crucial to develop MBG

tools to jointly map onchocerciasis–loiasis endemicity and co-endemicity [34, 106–108] as the

risk of severe adverse effects due to ivermectin treatment in the latter [109, 110] presently hin-

ders progress towards the control and elimination of onchocerciasis in the continent by 2020.
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