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Abstract

A mixed second order stabilised Petrov-Galerkin finite element frame-
work was recently introduced by the authors (C.H.Lee, A.J.Gil and J.Bonet.
“Development of a stabilised Petrov-Galerkin formulation for conservation
laws in Lagrangian fast solid dynamics”, CMAME, 268:40-64, 2014). The
new mixed formulation, written as a system of conservation laws for the
linear momentum and the deformation gradient, performs extremely well
in bending dominated scenarios (even when linear tetrahedral elements are
used) yielding equal order of convergence for displacements and stresses. In
this paper, this formulation is further enhanced for nearly and truly incom-
pressible deformations with three key novelties. First, a new conservation
law for the Jacobian of the deformation is added into the system providing
extra flexibility to the scheme. Second, a variationally consistent Petrov-
Galerkin stabilisation methodology is derived. Third, an adapted fractional
step method is presented for both incompressible and nearly incompressible
materials in the context of nonlinear elastodynamics. For completeness and
ease of understanding, these three improvements are presented both in small
and large strain regimes, studying the eigenstructure of the resulting systems.
A series of numerical examples are presented in order to demonstrate the ro-
bustness of the enhanced methodology with respect to the work previously
published by the authors.
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Incompressible, Locking, Geometric conservation law

1. Introduction

Classical displacement-based finite element formulations [1–7] are typi-
cally employed in industry when simulating complex engineering problems.
For these applications, linear tetrahedral elements tend to be preferred when
dealing with complex three dimensional geometries, due to the maturity
of the existing unstructured mesh generators. However, this methodology
presents a number of well-known shortcomings.

First, reduced order of convergence for derived variables (i.e. second order
for displacements but first order for stresses), requiring some form of stress
recovery procedure if these are of interest [8, 9]. Second, the performance of
these formulations in bending dominated scenarios can be very poor [10, 11]
yielding unacceptable results. Third, the presence of numerical instabilities
in the form of volumetric locking, shear locking and spurious hydrostatic
pressure fluctuations [12, 13] when large Poisson’s ratios are used. This
aspect is particularly relevant in the context of biomedical modelling. Fourth,
from the time discretisation point of view, Newmark-type methods [14] have
a tendency to introduce high frequency noise, especially in the vicinity of
sharp spatial gradients and accuracy is degraded once numerical artificial
damping is employed [15–19]. These schemes are thus not desirable for shock
dominated problems.

Significant efforts have been undertaken to develop effective linear tetra-
hedral formulations for nearly incompressible solids. Multi-field Fraeijs de
Veubeke-Hu-Washizu (FdVHW) type variational principles [20] are among
them, where independent kinematic descriptions are used for the volumet-
ric and deviatoric components of the deformation. The conventional mean
dilatation method [21] is a particular case of Selective Reduced Integration,
where the volumetric deformation is suitably underintegrated [15]. Unfortu-
nately, the mean dilatation approach cannot be employed with linear tetra-
hedrals and authors resort to some form of projection to reduce the number
of volumetric constraints [21–29].

A family of nodally integrated tetrahedral elements was formulated in
[30], where the volumetric strain energy functional was approximated through
averaged nodal pressures. However, the resulting approach was reported to
behave poorly in bending dominated scenarios. To overcome this difficulty,
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reference [11] proposed the nodal based uniform strain tetrahedral element
by applying a nodal averaging process to the whole small strain tensor. Ref-
erence [31] extended this application to the large strain regime with the idea
of employing both a nodal average Jacobian and a nodal average deforma-
tion gradient in the calculation of the stress tensor. As reported in [32–35],
the resulting formulation suffers from artificial mechanisms similar to hour-
glassing unless some form of stabilisation is used. Despite exhibiting very
good behaviour in terms of displacements, this class of averaged nodal strain
tetrahedral formulations tend to exhibit non-physical hydrostatic pressure
fluctuations [32, 36].

In parallel, in Reference [37], a stabilised Petrov-Galerkin (PG) formula-
tion by using the Galerkin Least Squares (GLS) approach is first introduced
for the analysis of the Stokes problem, with equal order of interpolation
for velocity and pressure. The formulation circumvents the Ladyzenskaya-
Babuska-Brezzi (LBB) condition [38, 39], ensuring numerical stability and
optimal convergence.

At present and to the best of our knowledge, most of the proposed schemes
for linear tetrahedral elements are restricted to elastostatics [32, 40–43]. The
development of an effective linear tetrahedral formulation in the range of
fully and nearly incompressible large strain dynamics remains an open issue.

The aim of this paper is to improve the robustness and effectiveness of
the stabilised Petrov-Galerkin (PG) mixed finite element framework recently
presented in [44], extending its applicability to the range of fully and nearly
incompressible materials. This mixed methodology is formulated in the form
of a system of first order conservation laws [10, 44, 45], where the linear
momentum p and the deformation gradient tensor F of the system are re-
garded as the main conservation variables of this mixed p-F approach. In
[44], a robust and stable PG implementation is presented, derived with the
help of the Variational Multi-Scale (VMS) method [46–49]. Unfortunately,
in the case of extreme deformations in the incompressible limit (i.e. refer to
twisting column example in Section 4.4 of this paper), the p-F formulation
lacks robustness.

With this in mind, this mixed PG formulation is first enhanced by in-
troducing a new conservation law for the Jacobian J of the deformation
(volumetric strain in the small strain regime), also known as a Geometric
Conservation Law [50]. The volumetric stress component appearing in the
conservation of linear momentum equation is then evaluated from this new
conservation law, providing more flexibility and robustness to the scheme.
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For computational efficiency, the enhanced p-F -J formulation is imple-
mented in conjunction with an explicit time integrator, where the time step
size is controlled through the Courant-Friedrichs-Lewy number [51] by the
volumetric wave speed cp. In the incompressibility limit, cp can reach very
high values leading to a very inefficient algorithm. Moreover, in the case of
full incompressibility, the explicit p-F -J formulation cannot be used.

In order to address this issue, we then present an alternative adapted
variationally consistent fractional step [52–54] PG formulation. This frac-
tional step approach is very typical in the context of Computational Fluid
Dynamics for incompressible flows [55, 56] and has been already used in the
context of large deformation solid dynamics [57]. In this case, the allowable
time step is found to depend only on the shear wave speed cs, circumventing
the volumetric wave speed constraint.

The outline of the present paper is as follows. In Section 2 we start by in-
troducing the enhanced stabilised PG formulation for linear elastodynamics.
Governing equations, eigenstructure of the problem and the PG stabilisation
is presented. For incompressible or nearly incompressible materials, an al-
ternative fractional step approach is also presented. We then extend these
formulations to nonlinear large strain elastodynamics (see Section 3). The
governing conservation laws are particularised for the case of a nearly in-
compressible Neo-Hookean material and the eigenstructure of the problem is
studied in detail in order to demonstrate the rank-one convexity requirement
[58]. This section ends with the PG stabilisation procedure as well as the
alternative fractional step approach. In Section 4, a series of numerical ex-
amples are presented to assess the robustness of the enhanced formulations
and to draw some comparisons against previous results published by the au-
thors [44]. Finally, Section 5 presents some concluding remarks and current
directions of research.

2. Linear reversible elastodynamics

2.1. Enhanced p-G-j mixed methodology

In the context of small deformations, let us consider the motion of a
continuum defined by a domain v ⊂ R

3 of boundary ∂v with outward unit
normal n. This motion is defined by a displacement field u = u(x, t) where
x represents a material point and t the time. Let us also introduce the
following scalar, vector and second order tensor variables: ρ is the density of
the continuum, p is the linear momentum, G is the displacement gradient
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tensor, j is the volumetric strain, σ is the (symmetric) Cauchy stress tensor,
b is a body force per unit of mass and ET denotes the total energy per unit
of volume. It is then possible to describe the motion of the continuum by
means of a system of first order conservation laws as follows

∂p

∂t
− divσ = ρb, (1a)

∂G

∂t
− div

(
1

ρ
p⊗ I

)

= 0, (1b)

∂j

∂t
− div

(
p

ρ

)

= 0, (1c)

∂ET

∂t
− div

(
1

ρ
σTp−Q

)

= s. (1d)

In above system (1a-1d), div is the divergence operator defined by the tensor
contraction of the last index and I is the identity tensor with Kronecker delta
components [I]ij = δij. Equation (1a) represents the conservation of linear
momentum, (1b) and (1c) represent evolution equations for the displacement
gradient tensor and the volumetric strain, respectively, and equation (1d)
denotes the conservation of the total energy per unit of volume.

In the case of an adiabatic isothermal deformation, the heat flux Q and
the heat source s are neglected and equation (1d) is fully decoupled from the
rest of the system. Form the computational point of view, this equation is
still very useful when evaluating the numerical diffusion (entropy) introduced
by the algorithm. The Cauchy stress tensor σ is considered a function of G
and j, which are evaluated through equations (1b) and (1c), respectively. In
other words, in this mixed formulation, G and j are not explicitly evaluated
through the displacement field, namely ∇u and divu, respectively2. This
enhanced p-G-j mixed methodology will render great benefits when dealing
with bending dominated nearly or truly incompressible deformations.

Finally, the above system (1a-1c) of conservation laws can be written in
a more compact form as

∂U

∂t
+
∂F i

∂xi
= S, i = 1, 2, 3 (2)

where U represents the vector of conservation variables, F i is the flux vector

2∇ is the gradient operator.
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in the spatial direction i and S is a source term3. The components of U , S
and F i can be vectorised leading to 13x1 column vectors as

U =

























p1
p2
p3
G11

G12

G13

G21

G22

G23

G31

G32

G33

j

























, F i =

























−σ1i
−σ2i
−σ3i
−δi1v1
−δi2v1
−δi3v1
−δi1v2
−δi2v2
−δi3v2
−δi1v3
−δi2v3
−δi3v3
−vi

























, S =

























ρb1
ρb2
ρb3
0
0
0
0
0
0
0
0
0
0

























. (3)

For clarity, individual conservations laws will be used for each component of
the vector of conservation variables U as

U =





p

G

j



 , Fn = F ini =





−σn
−1
ρ
p⊗ n

−1
ρ
p · n



 , S =





ρb
0

0



 . (4)

For the closure of the above system (1a-1c), a constitutive law is required
relating σ and G and j. In this case, we employ a linear elastic isotropic
constitutive law of the form

σ = µ

(

G+GT − 2

3
(trG) I

)

︸ ︷︷ ︸

σdev

+ pI
︸︷︷︸

σvol

; p = κj, (5)

where σdev and σvol represent the deviatoric and volumetric components of
the Cauchy stress, p is the hydrostatic pressure and µ and κ are the shear and
bulk moduli, respectively. Above system (2) can be re-written in quasi-linear
format

∂U

∂t
+Ai

∂U

∂xi
= S, i = 1, 2, 3, (6)

3Einstein’s summation will be implied for repeated indices unless otherwise explicitly
stated.
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where the corresponding flux Jacobian matrix An = Aini is evaluated as

An =







−∂(σn)
∂p

−∂(σn)
∂G

−∂(σn)
∂j

−∂( 1

ρ
p⊗n)
∂p

−∂( 1

ρ
p⊗n)
∂G

−∂( 1

ρ
p⊗n)
∂j

−∂( 1

ρ
p·n)
∂p

−∂( 1

ρ
p·n)

∂G
−∂( 1

ρ
p·n)
∂j






=





03×3 −cdevn −κn
−1

ρ
In 03×3×3×3 03×3×1

−1
ρ
n 03×3 0



 ,

(7)
where

[
cdevn

]

ijk
=
[
cdev

]

iljk
nl =

∂
[
σdev

]

il

∂ [G]jk
nl = µ

(

δijnk + δiknj −
2

3
δjkni

)

, (8a)

[In]ijk = δiknj. (8b)

For completeness, the residuals R = [Rp,RG,Rj]
T of the balance principles

(1a-1c) can be defined as

Rp := divσ + ρb− ṗ, (9a)

RG := ∇

(
p

ρ

)

− Ġ, (9b)

Rj := div

(
p

ρ

)

− j̇, (9c)

where ˙(·) indicates derivative with respect to time. These residuals will be
used later in the paper when deriving a stabilised formulation.

2.2. Eigenvalue structure

The study of the eigenvalue structure of the system is important to guar-
antee its hyperbolicity. The eigenvalues and eigenvectors of system (6) can
be evaluated considering plane wave solutions of the form

U = φ(x · n− cαt)Ūα = φ(x · n− cαt)





pα

Gα

jα



 , (10)

where cα are the eigenvalues (wave speeds) corresponding to the eigenvector
Ūα. Substitution of expression (10) into system (6) renders

cαŪα = AnŪα. (11)
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The above system (11) can be expanded as

cαpα = −cdevn Gα − κjαn, (12a)

cαGα =
−1

ρ
pα ⊗ n, (12b)

cαjα =
−1

ρ
pα · n. (12c)

Substitution of equations (12b) and (12c) into (12a) and after making use of
(8a), it renders

ρc2αpα =

[(
4

3
µ+ κ

)

n⊗ n+ µ (I − n⊗ n)

]

pα, (13)

where it can be seen that the system contains three pairs of non-zero eigen-
values corresponding to the volumetric and shear waves as

c1,2 = ±cp, cp =

√
4
3
µ+ κ

ρ
, c3,4 = c5,6 = ±cs, cs =

√
µ

ρ
, (14)

with eigenvectors

Ū1,2 =





n

± 1
ρcp

n⊗ n

± 1
ρcp



 , Ū3,4 =





t1
± 1

ρcs
t1 ⊗ n

0



 , Ū5,6 =





t2
± 1

ρcs
t2 ⊗ n

0



 .

(15)
where t1 and t2 are two arbitrary tangential vectors orthogonal to n. The
rest of the eigenvalues are zero and have null associated velocity components.
As can be observed, both volumetric and shear waves always take real values,
ensuring the hyperbolicity of the system.

For a fully incompressible material, the conservation equation for the
volumetric strain (1c) is replaced by the constraint div(p

ρ
) = 0 and thus,

equation (12c) gets replaced by the constraint pα · n = 0. This constraint,
once substituted into equation (13) yields

ρc2αpα = µpα, (16)

leading to only two pairs of non-zero eigenvalues corresponding to the shear
waves c3,4 = c5,6 = ±cs with eigenvectors Ū3,4 and Ū5,6.
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2.3. Linearised Petrov-Galerkin formulation

A stabilised Petrov-Galerkin (PG) framework incorporating suitable nu-
merical diffusion into the standard Bubnov-Galerkin formulation is presented
next. First, we derive a single variational statement that satisfies the second
law of thermodynamics [59, 60] through the use of work-conjugate principles
[61]. Multiplication of the residuals R = [Rp,RG,Rj]

T with a set of appro-

priate conjugate virtual fields δVst = [δvst, δσst, δqst]
T
and integration over

the domain v gives

δWPG(U , δVst) =

∫

v

δvst ·Rp dv+

∫

v

δσst : RG dv+

∫

v

δqstRj dv = 0. (17)

Note that δvst is the stabilised virtual velocity, δσst is the stabilised vir-
tual Cauchy stress and δqst is the stabilised virtual pressure. Pairs such as
{δvst,Rp}, {δσst,RG} and {δqst,Rj} are said to be dual or work conjugate
with respect to the volume v in the sense that their inner product yields work
rate per unit of volume.

Following the Streamline Upwind Petrov-Galerkin (SUPG) [62–66] ap-
proach, stabilised virtual fields can be defined as

δVst = δV + τ T
A

T
i

∂δV

∂xi
, (18)

where τ is the matrix of stabilisation parameters. We can now particularise
the above expression (18) to the set of conjugate virtual fields of interest in
this paper as

δvst = δv − τpG
ρ

divδσ − τpj
ρ
∇δq, (19a)

δσst = δσ − τGp c
dev : ∇δv, (19b)

δqst = δq − τjp κ divδv, (19c)

where cdev is the tangent deviatoric constitutive tensor (8a) and τpG, τpj, τGp

and τjp are appropriate stabilisation parameters. Substitution of equations
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(19a-19c) into (17) yields

δWPG
δv (U , δv) =

∫

v

(
δv ·Rp − τGp∇δv : cdev : RG − τjp κ (divδv)Rj

)
dv = 0,

(20a)

δWPG
δσ (U , δσ) =

∫

v

(

δσ : RG − τpG
ρ

(divδσ) ·Rp

)

dv = 0, (20b)

δWPG
δq (U , δq) =

∫

v

(

δqRj −
τpj
ρ

(∇δq) ·Rp

)

dv = 0. (20c)

Following a standard finite element isoparametric methodology [61], the con-
servation variables U as well the virtual fields δV can be discretised in
terms of nodal values (Ua, δVa) and suitable shape functions Na, where
a = {1, . . . , n}, n being the total number of nodes of the underlying mesh.
In our case, linear shape functions are preferred guaranteeing thus second or-
der convergence. It is easier to first consider the discretised weak statement
of the linear momentum balance principle δWPG

δv (20a). Given the interpo-
lation of the virtual velocity δv =

∑

aNaδva and the arbitrariness of δva, it
yields ∫

v

Naρv̇ dv =

∫

∂v

Nat
B da+

∫

v

Naρb dv

−
∫

v

[
σdev + τGpc

dev : RG

]

︸ ︷︷ ︸

σdev,st

∇Na dv

−
∫

v

[p+ κτjpRj]
︸ ︷︷ ︸

pst

∇Na dv,

(21)

where tB is the boundary traction vector defined as σn (obtained from ap-
propriate boundary conditions). Observe that the squared bracket terms on
the right-hand side of (21) describe the stabilised deviatoric Cauchy stress
σdev,st and the stabilised pressure pst. More generally, these stabilised kinetic
fields σdev,st and pst can be reinterpreted by using the Variational Multi-Scale
(VMS) method [46–49, 67–70] as

σdev,st := σdev
(
Gst
)
, pst := p

(
jst
)
, (22)

where the stabilised displacement gradient Gst and volumetric strain jst are
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defined as

Gst := G+ τGpRG, (23a)

jst := j + τjpRj. (23b)

Substitution of equations (22) and (23a-23b) into (21) and after expanding
ṗ =

∑

bNbṗb, results in

∑

b

Mabṗb =

∫

∂v

Nat
B da+

∫

v

Naρb dv −
∫

v

σ
(
Gst, jst

)
∇Na dv, (24)

where Mab = MabI with Mab =
(∫

v
NaNb dv

)
the consistent mass contri-

bution. An identical spatial discretisation procedure can now be followed
for δWPG

δσ (20b) and δWPG
δq (20c) by employing similar finite element expan-

sions {δσ =
∑

aNaδσa, δq =
∑

aNaδqa} and {Ġ =
∑

bNbĠb, j̇ =
∑

bNbj̇b},
resulting in

∑

b

MabĠb =

∫

∂v

Na

(
pB

ρ
⊗ n

)

da−
∫

v

pst
G

ρ
⊗∇Na dv, (25a)

∑

b

Mabj̇b =

∫

∂v

Na

(
pB

ρ
· n
)

da−
∫

v

pst
j

ρ
·∇Na dv, (25b)

where the stabilised linear momenta pst
G and pst

j are defined by

pst
G = p+ τpGRp, (26a)

pst
j = p+ τpjRp. (26b)

In order to speed up the algorithm, the consistent mass matrix contribu-
tions are replaced by lumped mass matrix contributions without affecting the
order of convergence [44]. In addition, traction and linear momentum vectors
at the boundary, denoted as tB (see equation (24)) and pB (see equations
(25a-25b)), are computed from prescribed (essential and natural) boundary
conditions.

Notice that in applying the stabilisation described in (26a), the displace-
ment gradient will no longer be a discrete spatial gradient (in some weighted
residual sense (25a)). Hence, as already presented in [44, 71], it is preferred
to adopt τpG = 0, where no stabilisation is added to this term in order to
ensure the satisfaction of this involution, namely, G is curl free.
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As can be observed, the time rates of p, G and j, present in the left hand
side of the system of conservation laws, are also involved in the stabilisation
terms pst

G, p
st
j , G

st and jst, resulting in an implicit formulation, which could
lead to a costly algorithm. To reduce the level of implicitness of the for-
mulation, expressions (23a-23b) can be further enhanced by adding the cor-
responding time integrated stabilisation terms

∫

t
τGpRG dt and

∫

t
τjpRj dt

for Gst and jst, respectively, resulting in new expressions for Gst and jst as
follows

Gst := G+ τGpRG + α (∇u−G) , (27a)

jst := j + τjpRj + β (divu− j) , (27b)

where α (already introduced in reference [44]) and β are non-dimensional sta-
bilisation parameters in the range 0 to 0.5. In order to develop a formulation
consistent with that of a fractional step approach (refer to section 2.4.1), it
is interesting to re-scale the stabilisation coefficients τjp and β in (27b), by
means of the dimensionless ratio µ

κ
as

jst := j + τjp
µ

κ
Rj + β

µ

κ
(divu− j) . (28)

Note that all stabilising terms (26a-26b) and (27a,28) are weighted residu-
als, ensuring the consistency of the numerical formulation and thus preserving
the order of convergence. For the examples shown in this paper, the formu-
lation was simplified by using τjp = τpG = 0. With this consideration, the
system of equations (24) and (25a-25b) becomes fully decoupled, enabling its
resolution in a sequential manner. Equation (25a) is first solved for Ġ which
can then be substituted into (24) to yield ṗ. Once ṗ is known, j̇ can then be
determined from equation (25b) via prior evaluation of pst

j . On the contrary,
if either τpG or τjp are non-zero, an iterative procedure is then required.

Finally, the stabilised semidiscrete nodal equations which have been pro-
duced can then be explicitly integrated from time step tn to tn+1. In this
case, the explicit one-step two-stage Total Variation Diminishing Runge-
Kutta (TVD-RK) time integrator [72] is preferred due to its excellent TVD
properties (refer to Section 4 in [44] for further discussion). The evaluation
of the maximum time increment ∆t is intimately related to the minimum
size of element hmin and the maximum wave speed cmax = cp (15) via the
Courant-Friedrichs-Lewy number αCFL [51].
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2.4. Fractional step approach: small deformations

As it is well known, in the case of fully incompressible or nearly incom-
pressible materials, the volumetric wave speed cp can reach very large values
leading to prohibitively small time steps [51]. This can have a very negative
effect in the computational efficiency of the algorithm. A popular approach
to handle incompressibility in explicit schemes is the fractional step method,
originally developed in [52–54]. This methodology can be adapted to our
mixed formulation (1a-1c) in order to alleviate the numerical difficulties as-
sociated with the existence of a saddle-point.

The conservation equation for the volumetric strain (1c) is replaced by the
constraint div(p

ρ
) = 0. As presented at the end of section 2.2, the problem is

then dominated by shear waves of speed cs. In this case, the new unknowns
for the problem are {p,G, p} (j is replaced with p), as the volumetric strain
j is constrained to be always zero throughout the entire deformation process.

The time update of the linear momentum from pn to pn+1 over a time
step ∆t is split in two stages. Firstly, the algorithm is advanced explicitly
yielding an intermediate linear momentum pint which is then projected after
implicitly solving a Poisson-like equation [73] (also known as pressure cor-
rection). In this approach, it is traditional [74] to first discretise in time and
then discretise in space (i.e. using a suitable PG stabilisation). Therefore,
the first (predictor or intermediate) step of the scheme is defined as

(pint − pn)

∆t
− divσdev,n −∇pn − ρbn = 0, (29a)

Gn+1 −Gn

∆t
−∇

(
pn

ρ

)

= 0, (29b)

where pint stands for the linear momentum at an intermediate stage and the
second (corrector or projection) step becomes

(pn+1 − pint)

∆t
−∇

(
pn+1 − pn

)
= 0. (30)

The summation of both equations (29a) and (30) recovers the original as-
sumption in which the pressure variable is treated implicitly in the formula-
tion. Application of the divergence operator to (30) produces

div

(
pn+1

ρ

)

− div

(
pint

ρ

)

− ∆t

ρ
∇2
(
pn+1 − pn

)
= 0, (31)
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where the Laplacian operator ∇2(·) = div∇(·) has been introduced. For
simplicity and without loss of generality, the density ρ has been assumed
to be constant across the entire domain. To allow for the case of nearly
incompressible deformation, the first term in (31) can be written as follows

div

(
pn+1

ρ

)

=
pn+1 − pn

κ∆t
. (32)

For a truly incompressible material, κ = ∞ and the right hand side of equa-
tion (32) vanishes, resulting in the incompressibility constraint. Substituting
(32) into (31) renders

1

κ∆t

(
pn+1 − pn

)
− div

(
pint

ρ

)

− ∆t

ρ
∇2
(
pn+1 − pn

)
= 0. (33)

In the following section, the weak statements for (29a-29b) and (33) are
derived by employing suitable Petrov-Galerkin stabilisations. The linear
momentum can finally be updated (30) using a classical Bubnov-Galerkin
approach via the pressure correction pn+1 − pn once (33) has been solved.

2.4.1. Variational linearised fractional step formulation

To obtain a variational statement for the fractional step formulation, we
first need to define the corresponding residuals of equations (29a), (29b) and
(33) as,

Rpint := divσdev,n +∇pn + ρbn − (pint − pn)

∆t
, (34a)

RG := ∇

(
pn

ρ

)

− Gn+1 −Gn

∆t
, (34b)

Rj := div

(
pint

ρ

)

+
∆t

ρ
∇2
(
pn+1 − pn

)
− 1

κ∆t

(
pn+1 − pn

)
, (34c)

Rp := ∇pn+1 − (pn+1 − pint)

∆t
. (34d)

Using appropriately stabilised conjugate virtual fields δVst = [δvst, δσst, δqst]T ,
already defined in (19a-19c), a variational statement is defined as

δWPG =

∫

v

δvst ·Rpint dv +

∫

v

δσst : RG dv +

∫

v

δqstRj dv = 0. (35)
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Following a similar finite element spatial discretisation strategy as that pre-
sented previously, where {p,G, p} and {δvst, δσst, δqst} are expanded in
terms of nodal values and corresponding linear shape functions, the resulting
predictor system of equations yields

∑

b

Mab
(pint

b − pn
b )

∆t
=

∫

∂v

Nat
B,n da+

∫

v

Naρb
n dv −

∫

v

σ
(
Gst, pst

)
∇Na dv,

(36a)

∑

b

Mab

(
Gn+1

b −Gn
b

)

∆t
=

∫

∂v

Na

(
pB,n

ρ
⊗ n

)

da−
∫

v

pst
G

ρ
⊗∇Na dv,

(36b)

where

Gst := Gn + τGpRG + α (∇un −Gn) (37a)

pst := pn + τjp µRj + βµ

(

divun − pn

κ

)

(37b)

pst
G := pn + τpGRpint . (37c)

Notice that for the case of using linear shape functions for the expansion
of the pressure field, the second term (Laplacian term) on the right side of
(34c) vanishes. It is interesting to note how equations (28) and (37b) are
related, as multiplication of equation (28) by κ yields (37b). For the case of
incompressible materials, where κ = ∞, the term in parenthesis on the right
hand side of (37b) yields the volumetric constraint.

As discussed in Section 2.3, by setting τjp = τpG = 0, equations (36a-
36b) can be solved sequentially. Finally, the corrector system of equations
emerges as

∑

b

[

Mvol
ab +

∆t2

ρ
Kab

](
pn+1
b − pnb
∆t

)

dv =

∫

∂v

Na

(
pB

ρ
· n
)

da−
∫

v

pst
j

ρ
·∇Na dv

(38)
where the mass matrix contribution Mvol

ab , the viscosity matrix contribution
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Kab and the stabilised linear momentum pst
j are defined as

Mvol
ab :=

∫

v

1

κ
NaNb dv, (39a)

Kab :=

∫

v

∇Na ·∇Nb dv, (39b)

pst
j := pint + τpjRpint , (39c)

respectively. Note that equation (25b) can be identified as a particular case
of (38) by neglecting the viscous contribution Kab. For the case of full in-
compressibility (κ = ∞), the mass matrix contribution vanishes. Once the
pressure increment (38) is known, we can subsequently update the linear
momentum pn+1 using a standard Bubnov-Galerkin formulation (δWBG =
∫

v
δv ·Rp dv = 0) to give

∑

b

Mab
pn+1
b − pint

b

∆t
=

∫

v

Na∇
(
pn+1 − pn

)
dv. (40)

As mentioned at the end of section 2.3, the scheme is explicitly driven
in time via a TVD-RK time integrator where, in this case, the maximum
allowable time step is controlled by the shear wave speed cs.

3. Nonlinear reversible elastodynamics

3.1. Enhanced p-F -J mixed methodology

Let us consider the motion of a continuum which in its initial or material
configuration is defined by a domain V ⊂ R

3 of boundary ∂V with outward
unit normal N . After the motion, the continuum occupies a spatial configu-
ration defined by a domain v ⊂ R

3 of boundary ∂v with outward unit normal
n. The motion is defined by a time t dependent mapping field φ which links
a material particle from material configuration X ∈ V to spatial configura-
tion x ∈ v according to x = φ(X, t). It is possible to define the motion
through a system of first order conservation laws expressed in a Lagrangian
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format as follows

∂p

∂t
−DIVP = ρ0b, (41a)

∂F

∂t
−DIV

(
1

ρ0
p⊗ I

)

= 0, (41b)

∂J

∂t
−DIV

(

HT
F

p

ρ

)

= 0, HF := JFF
−T , JF = detF , (41c)

∂ET

∂t
−DIV

(
1

ρ
P Tp−Q

)

= s. (41d)

Equation (41a) represents the conservation of linear momentum p, where
ρ0 is the density of the continuum in the initial configuration, b is a body
force per unit of mass, P is the first Piola-Kirchhoff stress tensor and DIV
is the divergence operator in the material configuration. Equation (41b) is a
conservation equation for the deformation gradient tensor F whilst (41c) is
a conservation equation for the Jacobian J of the deformation where HT

F is
defined as the cofactor of the deformation. Finally, equation (41d) represents
the conservation of the total energy per unit of undeformed volume ET with
Q the heat flux and s the heat source.

Analogously to section 2.1, in the case of adiabatic isothermal deforma-
tions, this last equation (41d) is fully decoupled from the rest of the system.
In addition, the stress P is considered a function of F and J , which are
evolved in time through equations (41b) and (41c), respectively. Again, no-
tice that in this mixed p-F -J formulation, F and J are not computed from
the mapping φ, namely ∇0φ and det∇0φ, respectively

4.
In order to close the coupled system defined by (41a-41c), the underlying

conservation laws have to be supplemented with an appropriate constitutive
model obeying both the laws of thermodynamics and the principle of ob-
jectivity [61, 75–77]. One of the simplest models satisfying the above condi-
tions is the well-known hyperelastic nearly incompressible Neo-Hookean (NH)
model. Its strain energy functional ψ(F , J) can be additively decomposed

into a deviatoric contribution ψdev(J
−1/3
F F ) and a volumetric contribution

ψvol(J) defined by

ψdev =
1

2
µ
(

J
−2/3
F (F : F )− 3

)

, ψvol =
1

2
κ(J − 1)2, (42)

4∇0 represents the gradient operator with respect to the material configuration
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where κ and µ are the bulk and shear moduli, respectively. The corresponding
first Piola-Kirchhoff stress tensor P can then be derived as

P = P dev + P vol, P dev =
∂ψdev

∂F
, P vol =

dψvol

dJ
HF = pHF , (43)

where the deviatoric contribution of P and the hydrostatic pressure p are

P dev = µJ
−2/3
F

(

F − 1

3
(F : F )F−T

)

, p = κ (J − 1) . (44)

The system of conservation laws (41a-41c) can be recast in a more compact
manner as

∂U

∂t
+
∂F I

∂XI

= S, I = 1, 2, 3, (45)

where U is the vector of conservation variables, F I denotes the flux vector
in the spatial direction I and S the source term, namely

U =





p

F

J



 , FN = F INI =





−PN
−1
ρ0
p⊗N

−1
ρ0
p ·HFN



 , S =





ρ0b
0

0



 .

(46)
Similarly to section 2.1, the above system can be rewritten in quasi-linear
format as

∂U

∂t
+AI

∂U

∂XI

= S, I = 1, 2, 3, (47)

where the corresponding flux Jacobian matrix AN = AINI is

AN =








−∂(PN)
∂p

−∂(PN)
∂F

−∂(PN)
∂J

−∂
(

1

ρ0
p⊗N

)

∂p
−∂

(

1

ρ0
p⊗N

)

∂F
−∂

(

1

ρ0
p⊗N

)

∂J

−∂
(

1

ρ0
p·HFN

)

∂p
−∂

(

1

ρ0
p·HFN

)

∂F
−∂

(

1

ρ0
p·HFN

)

∂J







. (48)

Substitution of (43-44) into (48) yields

AN =





03×3 −CN −κHFN

− 1
ρ0
IN 03×3×3×3 03×3×1

− 1
ρ0
N 03×3 0



 , (49)

where

[CN ]ijJ = [C]iIjJ NI , [C]iIjJ =
∂ [P ]iI
∂ [F ]jJ

, (50a)

[IN ]iJk = δikNJ . (50b)
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3.2. Eigenvalue structure

Apart from objectivity and compliance with the second law of thermo-
dynamics, the constitutive model under consideration must also satisfy an-
other requirement, namely rank one convexity, also known as the Legendre
and Hadamard condition [58]. Satisfaction of this condition is equivalent to
the existence of travelling waves with real wave speeds. Hence, the study
of the eigenvalue structure of the system of conservation laws becomes of
paramount importance. The eigenvalues and eigenvectors of system (47) can
be evaluated considering plane wave solutions of the form

U = φ(X ·N − cαt)Ūα = φ(X ·N − cαt)





pα

F α

Jα



 , (51)

where cα are the wave speeds corresponding to the eigenvector Ūα. The
resulting eigen-system cαŪα = AN Ūα is of the form

cαpα = −CN : F α − κHFJαN , (52a)

cαF α = − 1

ρ0
pα ⊗N , (52b)

cαJα = − 1

ρ0
pα ·HFN − 1

ρ0
p ·
(
∂HF

∂F
: F α

)

N . (52c)

Substitution of equation (52b) into (52c) yields

cαJα = − 1

ρ0
pα ·HFN +

1

ρ20cα
(p⊗N ) :

∂HF

∂F
: (pα ⊗N ) . (53)

It is possible to demonstrate after some algebra that the last term in the
right hand side of above equation (53) is zero, yielding the reduced equation

cαJα = − 1

ρ0
pα ·HFN . (54)

Substitution of equations (52b) and (54) into (52a) results in

ρ0c
2
αpα = [CNN + κ (HFN )⊗ (HFN )]pα, [CNN ]ij = [C]iIjJ NINJ .

(55)
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The tensor CNN for the constitutive model under consideration (42) can be
shown to be

CNN =− 2

3
µJ

−5/3
F ((HFN )⊗ (FN ) + (FN )⊗ (HFN ))

+ µJ
−2/3
F I +

5

9
µJ

−8/3
F (F : F ) (HFN )⊗ (HFN ) .

(56)

Combining equations (55) and (56) and introducing the vectors m := HFN

and m∗ := FN , it yields

ρ0c
2
αpα = [γ1 (m⊗m∗ +m∗ ⊗m) + γ2I + γ3m⊗m]pα, (57)

where

γ1 = −2

3
µJ

−5/3
F , (58a)

γ2 = µJ
−2/3
F , (58b)

γ3 = κ+
5

9
µJ

−8/3
F (F : F ) . (58c)

Although it is possible to obtain a closed form solution for the eigen-system
defined above, it is sufficient to compute bounds of the wave speeds. This
scenario arises when the vectors m and m∗ are co-linear, which is attained
when N is a principal direction. In this particular case, it is easy to prove
that m∗ = λn and m = JF

λ
n where λ is the stretch in the spatial direction

n and the system (57) yields

ρ0c
2
αpα =

[(

2γ1

(
JF
λ

)

+ γ3

(
JF
λ

)2
)

n⊗ n+ γ2I

]

pα. (59)

It can be seen that the system contains three pairs of non-zero eigenvalues
corresponding to the volumetric and shear waves as

c1,2 = ±cp, cp =

√
√
√
√

(

2γ1
(
JF
λ

)
+ γ3

(
JF
λ

)2
+ γ2

)

ρ0
, c3,4 = c5,6 = ±cs, cs =

√
γ2
ρ0
,

(60)
with eigenvectors

Ū1,2 =





n

± 1
ρ0cp

n⊗N

± 1
ρ0cp

JF
λ



 , Ū3,4 =





t1
± 1

ρ0cs
t1 ⊗N

0



 , Ū5,6 =





t2
± 1

ρ0cs
t2 ⊗N

0



 ,

(61)
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where t1 and t2 are two arbitrary tangential vectors orthogonal to n. The
rest of the eigenvalues are zero and have null associated velocity components.

To ensure the hyperbolicity of the problem, cp and cs must be real. This
is easy to prove noticing that γ2 ≥ 0 (cs are real waves) and

2γ1

(
JF
λ

)

+ γ3

(
JF
λ

)2

+ γ2 = κ

(
JF
λ

)2

+ µJ
−2/3
F

(

1 +
5

9

F : F

λ2
− 4

3λ

)

≥ 0,

(62)
proving that cp are also real waves. This proves the rank one convexity of
the strain energy potential and guarantees the existence of physical waves
propagating throughout the domain [58].

For a fully incompressible material, the conservation equation for the
volumetric strain (41c) is replaced by the constraint HF : ∇0(

p

ρ0
) = 0 and

thus, equation (54) gets replaced by the constraint pα · HFN = 0. This
constraint, once substituted into equation (57) yields

ρ0c
2
αpα = γ2pα, (63)

leading to only two pairs of non-zero eigenvalues corresponding to the shear
waves c3,4 = c5,6 = ±cs with eigenvectors Ū3,4 and Ū5,6.

3.3. Nonlinear Petrov-Galerkin formulation

The stabilised variational statement for reversible nonlinear elastodynam-
ics can also be derived through the use of work conjugate principles [44].
To achieve this, we need to define appropriate stabilised conjugate variables

δVst =
[
δvst, δP st, δqst

]T
via (18) using the appropriate flux Jacobian matrix

AI as

δvst = δv − τpF
ρ0

DIVδP − τpJ
ρ0

HF∇0δq, (64a)

δP st = δP − τFp C : ∇0δv − τFJ

(
p

ρ0
⊗∇0δq

)

:
∂HF

∂F
, (64b)

δqst = δq − τJp κHF : ∇0δv, (64c)
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and the residuals R = [Rv,RF ,RJ ]
T of the conservation laws (41a-41c) are

defined by

Rp = DIVP + ρ0b− ṗ, (65a)

RF = ∇0

(
p

ρ0

)

− Ḟ , (65b)

RJ = DIV

(

HF
T p

ρ0

)

− J̇ . (65c)

Using expressions in (64a-64c) and (65a-65c), it is now possible to derive the
stabilised weak statement by multiplying appropriate conjugate virtual fields
δVst with the corresponding residuals R and integrating over the volume V,
to give

δWPG =

∫

V

δVst ·R dV = 0. (66)

Following an identical finite element methodology as that outlined in Sec-
tion 2.3, the conjugate virtual fields {δvst, δP st, δqst} and the conservation
variables {p,F , J} are expanded in terms of nodal values and linear shape
functions. It is possible to obtain the discrete set of nodal equations as

∑

b

Mabṗb =

∫

∂V

Nat
B dA+

∫

V

Naρ0b dV −
∫

V

P st
∇0Na dV, (67a)

∑

b

MabḞ b =

∫

∂V

Na

(
pB

ρ0
⊗N

)

dA−
∫

V

pst
F

ρ0
⊗∇0Na dV, (67b)

∑

b

MabJ̇b =

∫

∂V

pB

ρ0
·HFNaNdA−

∫

V

pst
J

ρ0
·HF∇0Na dV. (67c)

In equation (67a), P st represents the stabilised first Piola-Kirchhoff stress
tensor. This tensor, following a VMS approach [44], can be defined in terms
of a stabilised deformation gradient F st and Jacobian Jst as

P st := P dev(F st) + κ(Jst − 1)HF , (68)

where

F st := F + τFpRF , (69a)

Jst := J + τJpRJ . (69b)
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Analogously, the stabilised linear momenta pst
F and pst

J appearing in the dis-
crete conservation equations (67b-67c) are defined by

pst
F = p+ τpFRp, (70a)

pst
J = p+ τpJRp. (70b)

For simplicity, the stabilisation factor τFJ has been taken as zero. Other-
wise, the stabilised linear momentum pst

J would carry an extra contribution
(refer to equation (64b)). In addition, for the speed up of the algorithm,
the use of a lumped mass matrix is preferred. Moreover, in equation (67c),

terms
(

pB

ρ0
·HF

)

and
(

pst
J

ρ0
·HF

)

appearing in both integrands are linearly

approximated within every finite element.
Traction and linear momentum at the boundary, tB and pB, respectively,

are evaluated from prescribed boundary conditions. As already described
in section 2.3, the stabilisation parameter τpF is set to zero to ensure the
discrete satisfaction of the involution of the deformation gradient tensor F

(i.e. curl free condition).
Insofar as both the deformation gradient and the Jacobian are treated

as independent unknowns in this mixed formulation, not explicitly related
to the mapping φ, namely F 6= ∇0x and J 6= det (∇0x), expressions (69a)
and (69b) can be further enhanced by adding the relevant time integrated
stabilisations, namely

∫

t
τFpRF dt and

∫

t
τJpRJ dt, to penalise the difference

between F and ∇0x and the difference between J and det (∇0x), to yield

F st = F + τFpRF + α (∇0x− F ) , (71a)

Jst = J + τJp
µ

κ
RJ + β

µ

κ
(det(∇0x)− J) , (71b)

where α and β are non-dimensional stabilisation parameters in the range 0
to 0.5. The dimensionless ratio µ

κ
present in equation (71b) is introduced

for consistency with the fractional step approach to be presented in a sub-
sequent section. The residual based α- and β-terms present in (71a-71b)
provide additional stability and, more importantly, help reducing the level of
implicitness of the formulation.

Notice that when τJp = 0, equations (67a-67c) are fully decoupled and can
be solved in a sequential manner. Equation (67b) is first solved to obtain Ḟ

which can then be substituted into (67a) to deduce ṗ. Once ṗ is determined,
J̇ can finally be obtained from (67c). Unlike a two-step Taylor Galerkin
formulation [45], all weighted residual based stabilising parameters can be
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suitably selected in an independent manner enhancing the robustness of the
scheme.

The stabilised semidiscrete nodal equations (67a-67c) are then explicitly
integrated from time step tn to tn+1 with the TVD-RK time integrator [72].
For stability, the maximum time increment ∆t is evaluated based on the
minimum size of element hmin and the maximum wave speed cmax = cp (60).

3.4. Fractional step approach: large deformation

The explicit p-F -J Petrov-Galerkin (PG) formulation presented above is
not computationally suitable to model nearly (fully) incompressible materials
as the volumetric wave speed can be significantly high (infinity) leading to a
time step size ∆t extremely small (zero). In these situations, it is preferred to
resolve the incompressibility constraint in an implicit manner. The maximum
time step size is then limited by the shear wave speed cs.

The conservation equation for the Jacobian (41c) is replaced by the con-

straint HF : ∇0

(
p

ρ

)

= 0. In this case, the new unknowns for the problem

are {p,F , p} (J is replaced with p), as the Jacobian is constrained to be
always one throughout the entire deformation process. A predictor-corrector
algorithm is designed to advance the problem unknowns from tn to tn+1 in
such a way that only the pressure field p is solved implicitly in time tn+1.
The predictor step is of the form

(pint − pn)

∆t
−DIVP dev,n −DIV (pnHF

n)− ρ0b
n = 0, (72a)

F n+1 − F n

∆t
−∇0

(
pn

ρ0

)

= 0, (72b)

and the corrector step

(pn+1 − pint)

∆t
−DIV

[(
pn+1 − pn

)
HF

n
]
= 0. (73)

Notice that the summation of (72a) and (73) recovers the original assumption
that only the pressure field p is computed implicitly in tn+1 (i.e. the cofactor
HF is frozen at time tn). Application of the operator HF

n : ∇0(·) to above
equation (73) yields,

HF
n : ∇0

(
pn+1

ρ0

)

−HF
n : ∇0

(
pint

ρ0

)

−∆t

ρ0
HF

n : ∇0

[
DIV

((
pn+1 − pn

)
HF

n
)]

= 0.

(74)
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For simplicity and without loss of generality, the material density ρ0 has been
assumed to be constant across the entire domain. To allow for the case of a
nearly incompressible NH material, we can write

HF
n : ∇0

(
pn+1

ρ0

)

=
pn+1 − pn

κ∆t
. (75)

For a truly incompressible material, κ = ∞ and the right hand side of above
equation vanishes resulting in the incompressibility constraint. Using this
relationship on the first term of (74), it yields

pn+1 − pn

κ∆t
−HF

n : ∇0

(
pint

ρ0

)

−∆t

ρ0
HF

n : ∇0

[
DIV

((
pn+1 − pn

)
HF

n
)]

= 0.

(76)

3.4.1. Variational nonlinear fractional step formulation

To obtain a variational statement, we first define the residuals of equations
(72a), (72b) and (76) as

Rpint := DIVP dev,n +DIV (pnHF
n) + ρ0b

n − (pint − pn)

∆t
, (77a)

RF := ∇0

(
pn

ρ0

)

− F n+1 − F n

∆t
, (77b)

RJ := HF
n : ∇0

(
pint

ρ0

)

+
∆t

ρ0
HF

n : ∇0

[
DIV

((
pn+1 − pn

)
HF

n
)]

− pn+1 − pn

κ∆t
,

(77c)

Rp := DIV
((
pn+1 − pn

)
HF

n
)
− (pn+1 − pint)

∆t
. (77d)

Using appropriate stabilised conjugate virtual fields Vst =
[
δvst, δP st, δqst

]T
,

already defined in (64), a variational statement is defined by

δWPG =

∫

V

δvst ·Rvint dV +

∫

V

δP st : RF dV +

∫

V

δqstRJ dV = 0, (78)

Following a similar finite element spatial discretisation as that presented in
the previous section, where {p,F , p} and {δvst, δP st, δqst} are expanded in
terms of linear shape functions, the resulting predictor system of equations
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yields

∑

b

Mab
(pint

b − pn
b )

∆t
=

∫

∂V

Nat
B,n dA+

∫

V

Naρ0b
n dV −

∫

V

P
(
F st, pst

)
∇0Na dV

(79a)

∑

b

Mab

(
F n+1

b − F n
b

)

∆t
=

∫

∂V

Na

(
pB,n

ρ0
⊗N

)

dA−
∫

V

pst
F

ρ0
⊗∇0Na dV,

(79b)

where

F st := F n + τFpRF + α (∇0x
n − F n) , (80a)

pst := pn + τJp µRJ + βµ

(

det(∇0x
n)− 1− pn

κ

)

, (80b)

pst
F := pn + τpFR

int
p . (80c)

Analogously to section 2.4.1, by using linear shape functions for the expansion
of (pn+1−pn)HF

n in the second term of the right hand side of equation (77c),
this term vanishes. For an incompressible medium where κ = ∞ the term
in parenthesis on the right hand side of (80b) reduces to the volumetric
constraint. This equation (80b) is consistent with (71b), as multiplication of
(71b) by κ yields (80b).

Setting τpF = τJp = 0, equations (79a-79b) can be solved sequentially.
The corrector step is formulated as

∑

b

[

Mvol
ab +

∆t2

ρ0
Kab

](
pn+1
b − pnb
∆t

)

dV =

∫

∂V

(
pB

ρ0
·HF

n

)

NaNdA

−
∫

V

(
pst
J

ρ0
·HF

n

)

∇0Na dV,

(81)

where the mas matrix contribution Mvol
ab , the viscosity matrix contribution

Kab and the stabilised linear momentum pst
J are defined as

Mvol
ab :=

∫

V

1

κ
NaNb dV, (82a)

Kab :=

∫

V

(HF
n
∇0Na) · (HF

n
∇0Nb) dV, (82b)

pst
J := pint + τpJRpint , (82c)
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respectively. In addition, in equation (81), terms
(

pB

ρ0
·HF

n
)

and
(

pst
J

ρ0
·HF

n
)

appearing in both integrands in the right hand side are linearly approxi-
mated within every finite element. It is now possible to update the linear
momentum pn+1 using the conventional Bubnov-Galerkin (BG) formulation
δWBG =

∫

V
δv ·Rp dV to give

∑

b

Mab
pn+1
b − pint

b

∆t
=

∫

V

NaDIV
((
pn+1 − pn

)
HF

n
)
dV. (83)

The algorithm is finally evolved in time via a TVD-RK time integrator with
a time step limit controlled by the shear wave speed cs

4. Numerical examples

In this section, a number of numerical examples will be presented in order
to assess the performance of the enhanced p-F -J (p-G-j in small deforma-
tions) Petrov-Galerkin (PG) formulation in compressible, nearly incompress-
ible and truly incompressible regimes, compared against the stabilised p-F
(p-G) formulation [44], together with the use of an explicit two stage Total
Variation Diminishing Runge-Kutta (TVD-RK) time integrator.

4.1. Low dispersion cube

This example is an extension of the two dimensional plate presented in
[44] to assess the convergence behaviour of the algorithm in three dimensions
[71]. A unit cube (1m × 1m × 1m) has symmetric boundary conditions (i.e.
roller supports) applied on the faces x1 = x2 = x3 = 0m and skew-symmetric
boundary conditions on the rest of the boundary surfaces x1 = x2 = x3 = 1m.
For small deformations, the analytical displacement field (and hence velocity
and Cauchy stress at any time t) can be described by a closed-form expression
as

u(x, t) = U0 cos

(√
3

2
cdπt

)









A sin
(
πx1

2

)
cos
(
πx2

2

)
cos
(
πx3

2

)

B cos
(
πx1

2

)
sin
(
πx2

2

)
cos
(
πx3

2

)

C cos
(
πx1

2

)
cos
(
πx2

2

)
sin
(
πx3

2

)









; cd =

√
µ

ρ0
.

(84)
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Parameters {A,B,C} are arbitrary constants such that A + B + C = 0,
ensuring no contribution from volumetric deformation. For values of U0

below 0.001, the solution can be considered to be linear and the closed-
form solution holds. The cube is initially loaded with a known displacement
gradient field G0 (by computing the gradient of (84) at t = 0) without any
initial velocity. In this particular case, a linear constitutive model is chosen
such that Young’s modulus E = 0.017GPa, density ρ0 = 1.1Mg/m3 and
Poisson’s ratio ν = 0.45. We set the solution parameters as A = B = 1,
C = −2 and U0 = 5 × 10−4m in linear regime. Global convergence error
analysis for velocity and stress on a sequence of grids at time t = 2×10−3s are
examined in Figure 1. As expected, each of the diagrams tends to asymptotic
quadratic convergence for all the variables of the p-G-j formulation when
linear interpolating functions are used.

4.2. Beam bending

The small bending deformation of a cantilever beam with dimensions
1 × 1 × 10m is studied. The beam is fully clamped on one end and loaded
with a sudden constant tip traction of P0 = −1× 10−5Pa on the other end.
A linear elastic constitutive model in which Young’s modulus E = 1Pa and
density ρ0 = 0.1kg/m3 is chosen. The purpose of this example is to illus-
trate the performance of the proposed methodologies in bending dominated
scenarios in linear compressible regimes by imposing Poisson’s ratio ν = 0.3.
In these circumstances, the recently proposed p-G formulation [44] produces
reliable results, which can be treated as reference solutions for comparison
purposes. Figure 2 shows the position of a cantilever beam at various time
instants for three cases: standard p-G PG formulation, linearised p-G-j PG
formulation and linearised p-G-p fractional step PG formulation. It is clear
that the proposed algorithms can be used without bending difficulty. More
importantly, the deformed shapes obtained from the enhanced methodologies
are found to be in perfect agreement with the standard v-G approach.

4.3. Thick column

A three dimensional thick column [71] clamped on its bottom face (X3 =
0) is presented in this numerical example (see Figure 3). An initial linear
variation in velocity field v0 = (V0X3/L, 0, 0)

T is given (where V0 = 10m/s)
and the column is left oscillating in time, leading to large strain oscillatory
motion. The objective is to assess the performance of the different large
deformation PG methodologies (i.e. p-F formulation, p-F -J formulation
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Figure 1: Low Dispersion Cube: Results obtained with U0 = 5 × 10−4m
where the analytical solutions for velocity and stress are available at time t =
2× 10−3s. First column shows the L1 norm convergence and second column
shows the L2 norm convergence. First row shows the velocity errors and
second row illustrates the stress errors. The linear elastic model is used and
material properties are such that Young’s modulus E = 0.017GPa, density
ρ0 = 1.1Mg/m3, Poisson’s ratio ν = 0.45 and αCFL = 0.4. Stabilising
parameters of the p-G-j PG formulation using lumped mass matrix are:
τGv = ∆t, τvj = 0.1∆t, α = 0 and β = 0.5.
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(a) Standard p-G (τF = ∆t, τp = 0, α = 0.1)

(b) Linearised p-G-j (τGp = ∆t, τpj = 0.2∆t, α = 0, β = 0.5)

(c) Linear fractional step (τGp = ∆t, τpj = 0.2∆t, α = 0, β = 0.5)

Figure 2: Cantilever Beam: Sequence of deformed shapes (pressure contour
plot) using (a) Standard p-G PG formulation; (b) Linearised p-G-j PG
formulation; and (c) Linearised fractional step PG formulation. Results ob-
tained with a sudden constant tip traction P0 = 1 × 10−5Pa. A linearised
constitutive model is used such that Young’s modulus E = 1Pa, density
ρ0 = 0.1kg/m3, Poisson’s ratio ν = 0.3 and αCFL = 0.3. Discretisation of
2 × 2 × 20 × 6 tetrahedral elements. Lumped mass contribution. Solution
plotted with displacement scaled 20 times.
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and fractional step formulation) in bending difficulty. A Neo-Hookean (NH)
material model is employed such that Young’s modulus E = 0.017GPa and
density ρ0 = 1.1Mg/m3. We examine the proposed schemes in compressible
regime by taking the Poisson’s ratio ν = 0.45.

Both the enhanced p-F -J and the fractional step PG formulations show
excellent agreement with the existing p-F formulation (see Figure 4 and
Figure 5). For truly incompressible solids, the explicit p-F and p-F -J for-
mulations cannot be used due to the incompressibility constraint (κ = ∞).
Such limitation is removed by employing the fractional step PG formulation
in which the time step depends only on the shear wave speed (see Figure
6). In all cases, the pressure contours are extremely smooth and without
spurious oscillations.

T(1,1,6)

T(1,1,0)

0V

3X

2X1X

Figure 3: Thick column configuration

4.4. Twisting column

Similar to the case of bending column discussed in Section 4.3, a twisting
column clamped on its bottom face is presented (see Figure 7). An initial
sinusoidal rotational velocity field relative to the origin is given by

v0(X) = ω ×X; ω =

(

0, 0,Ω sin

(
ΠX3

2L

))T

(85)
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(a) p-F -J PG formulation

(b) Fractional step PG formulation

Figure 4: Bending Column: Sequence of deformed shapes (pressure contour
plot) using (a) p-F -J PG formulation; and (b) Nonlinear fractional step
PG formulation. Results obtained with a linear variation in velocity field
v0 = (V0X3/L, 0, 0)

T where V0 = 10m/s. The nearly incompressible Neo-
Hookean (NH) constitutive model is used such that Young’s modulus E =
0.017GPa, density ρ0 = 1.1Mg/m3, Poisson’s ratio ν = 0.45 and αCFL = 0.3.
Discretisation of 4× 4× 24× 6 tetrahedral elements. Stabilising parameters:
τFp = ∆t, τpJ = 0.2∆t, α = 0 and β = 0.5. Lumped mass contribution.32



Figure 5: Bending Column: Sequence of deformed shapes (pressure contour
plot) using p-F PG formulation. Results obtained with a linear variation in
velocity field v0 = (V0X3/L, 0, 0)

T where V0 = 10m/s. The nearly incom-
pressible Neo-Hookean (NH) constitutive model is used such that Young’s
modulus E = 0.017GPa, density ρ0 = 1.1Mg/m3, Poisson’s ratio ν = 0.45
and αCFL = 0.3. Discretisation of 4×4×24×6 tetrahedral elements. Stabil-
ising parameters: τF = ∆t, τp = 0 and α = 0.1. Lumped mass contribution.
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Figure 6: Bending Column: Sequence of deformed shapes (pressure contour
plot) using nonlinear fractional step PG formulation. Results obtained with a
linear variation in velocity field v0 = (V0X3/L, 0, 0)

T where V0 = 10m/s. In-
compressible Neo-Hookean (NH) constitutive model is used such that Young’s
modulus E = 0.017GPa, density ρ0 = 1.1Mg/m3, Poisson’s ratio ν = 0.5 and
αCFL = 0.3. Discretisation of 4×4×24×6 tetrahedral elements. Stabilising
parameters: τFp = ∆t, τpJ = 0.2∆t, α = 0 and β = 0.5. Lumped mass
contribution.

34



where Ω = 100 rad/s. The main objective is to assess the robustness of
the proposed algorithms in extremely high nonlinear deformations. This
problem is modelled by using a nearly incompressible Neo-Hookean (NH)
constitutive model where Young’s modulus E = 0.017GPa, material density
ρ0 = 1.1Mg/m3 and Poisson’s ratio ν = 0.499. For comparison purposes, the
performance of three different numerical strategies, namely p-F , p-F -J and
nonlinear fractional step PG formulations, are presented.

Clearly, the existing p-F formulation exhibits non-physical pressure fluc-
tuations due to insufficient numerical stabilisation and then follows a com-
pletely wrong solution path (see Figure 8). On the contrary, the use of
the p-F -J formulation and that of the fractional step implementation pro-
duce practically identical locking-free solutions that are freed from low-energy
modes (see Figure 9). As can be observed, the pressure contours are very
smooth. As expected, the fractional step solution is slightly more dissipative
due to the contribution of the viscosity matrix.

We can further examine the performance of the fractional step PG for-
mulation in the case of a truly incompressible material. Figure 10 illustrates
the evolution of deformed shapes using the fractional step method, demon-
strating the robustness of the proposed methodology.

T(1,1,6)

T(1,1,0)

3X

2X1X

0ω

Figure 7: Highly nonlinear twisting column
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Figure 8: Twisting Column: Sequence of deformed shapes (pressure contour
plot) using standard p-F PG formulation. Results obtained with a initial
sinusoidal rotational velocity Ω = 100rad/s. A nearly incompressible Neo-
Hookean (NH) constitutive model is used such that Young’s modulus E =
0.017GPa, density ρ0 = 1.1Mg/m3, Poisson’s ratio ν = 0.499 and αCFL = 0.3.
Stabilising parameters: τF = ∆t, τp = 0.2∆t and α = 0.1. Lumped mass
contribution.
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(a) Nearly incompressible p-F -J formulation

(b) Nearly incompressible fractional step formulation

Figure 9: Twisting Column: Sequence of deformed shapes (pressure contour
plot) using (a) Nearly incompressible p-F -J formulation; and (b) Nonlinear
fractional step formulation. Results obtained with a initial sinusoidal rota-
tional velocity Ω = 100rad/s. A nearly incompressible Neo-Hookean (NH)
constitutive model is used such that Young’s modulus E = 0.017GPa, den-
sity ρ0 = 1.1Mg/m3, Poisson’s ratio ν = 0.499 and αCFL = 0.3. Stabilising
parameters: τFp = ∆t, τpJ = 0.2∆t, α = 0 and β = 0.5. Lumped mass
contribution.
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Figure 10: Twisting Column: Sequence of deformed shapes (pressure contour
plot) using fractional step PG formulation. Results obtained with a initial
sinusoidal rotational velocity Ω = 100rad/s. A nearly incompressible Neo-
Hookean (NH) constitutive model is used such that Young’s modulus E =
0.017GPa, density ρ0 = 1.1Mg/m3, Poisson’s ratio ν = 0.5 and αCFL = 0.3.
Stabilising parameters: τFp = ∆t, τpJ = 0.2∆t, α = 0 and β = 0.5. Lumped
mass contribution.

1X

2X

3X

T(3,3,3)

T(0,10,3)

T(6,0,0)

)t(1F

)t(2F

Figure 11: L-shaped block configuration
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4.5. L-shaped block

This benchmark problem, originally proposed by [78] and subsequently
presented in [71, 78–80], is included in order to assess the ability of the
algorithm to preserve angular momentum. We consider the motion of a three-
dimensional L-shaped block subjected to initial impulse traction boundary
conditions at two of its sides described as follows (see Figure 11)

F 1(t) = −F 2(t) =







η0 × t, 0 ≤ t < 2.5
η0 × (5− t), 2.5 ≤ t < 5
0, t ≥ 5

(86)

where η0 = [150, 300, 450]T . The material response is governed by the Neo-
Hookean model where its physical properties are Young’s modulus E =
50046Pa, density ρ0 = 1Mg/m3 and Poisson’s ratio ν = 0.3. Figure 12
presents the momentum evolution of the system calculated with the frac-
tional step method. A sequence of deformed states is illustrated in Figure
13a, each of which agrees very well with the results obtained using p-F for-
mulation proposed in [44] (see Figure 13b).

4.6. Tensile cube

The objective of this three dimensional tensile cube problem is to demon-
strate the performance of the nonlinear fractional step PG formulation when
a tetrahedral mesh is used in an incompressible regime. A unit block clamped
at the bottom (traction-free conditions for the rest of the boundaries) is sub-

jected to a sinusoidal variation in initial velocity field v0 =
[
0, 0, v0 sin

(
ΠX3

2L

)]T

(where v0 = 500m/s) is compatible with the boundary. An incompressible
Neo-Hookean (NH) constitutive model is employed where the Young’s mod-
ulus E = 21GPa, density ρ0 = 7Mg/m3 and Poisson’s ratio ν = 0.5. Figure
14 compares the pressure contour (being this variable the most sensitive to
any stabilisation technique adopted) with and without the β stabilisation
parameter appearing in the term pst (see equation (79a)). Observe that the
fractional step PG formulation incorporating β-term eliminates the appear-
ance of non-physical mechanisms similar to hourglassing in the solution (see
Figure 15).

4.7. Benchmarked Taylor Impact problem

The classical benchmarking example demonstrates the impact of a cylin-
drical copper bar of initial radius r0 = 0.0032m and length L0 = 0.0324m,
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Figure 12: L-shaped Block: Results obtained with an impulse traction
boundary conditions (86) at two of its sides using fractional step PG for-
mulation. This example is run with the Neo-Hookean (NH) constitutive
model and material properties are such that Young’s modulus E = 50046Pa,
density ρ0 = 1Mg/m3, Poisson’s ratio ν = 0.3 and αCFL = 0.3. Stabilising
parameters: τFp = ∆t, τpJ = 0.2∆t, α = 0 and β = 0.5. Lumped mass
contribution.
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(a) Nonlinear fractional step PG formulation (τFp = ∆t, τpJ = 0.2∆t, α = 0 and β = 0.5)

(b) Standard p-F PG formulation (τF = ∆t, τp = 0, α = 0.1)

Figure 13: L-shaped Block: Results obtained with an impulse traction
boundary conditions (86) at two of its sides using (a) Nonlinear fractional
step PG formulation; and (b) Standard v-F PG formulation. This example
is run with the Neo-Hookean (NH) constitutive model and material proper-
ties are such that Young’s modulus E = 50046Pa, density ρ0 = 1Mg/m3,
Poisson’s ratio ν = 0.3 and αCFL = 0.3. Lumped mass contribution.
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(a) Imposing stabilisation β = 0.5

(b) Imposing stabilisation β = 0

Figure 14: Tensile Problem: A sequence of deformed shapes (pressure con-
tour plot) using nonlinear fractional step PG formulation: (a) With β sta-
bilisation; and (b) Without β stabilisation. Results obtained with a si-

nusoidal variation in initial velocity field v0 =
[
0, 0, v0 sin

(
ΠX3

2L

)]T
where

v0 = 500m/s. Incompressible Neo-Hookean (NH) constitutive model is used
such that Young’s modulus E = 21Pa, density ρ0 = 7Mg/m3, Poisson’s ratio
ν = 0.5 and αCFL = 0.3. Discretisation of 8× 8× 8× 6 tetrahedral elements.
Stabilising parameters: τFp = ∆t, τpJ = 0.2∆t and α = 0. Lumped mass
contribution.
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Figure 15: Tensile Problem: A sequence of cross-sectional deformed shapes
(pressure contour plot) using nonlinear fractional step PG formulation. Re-
sults obtained with a sinusoidal variation in initial velocity field v0 =
[
0, 0, v0 sin

(
ΠX3

2L

)]T
where v0 = 500m/s. Incompressible Neo-Hookean (NH)

constitutive model is used such that Young’s modulus E = 21Pa, density
ρ0 = 7Mg/m3, Poisson’s ratio ν = 0.5 and αCFL = 0.3. Discretisation
of 8 × 8 × 8 × 6 tetrahedral elements. Stabilising parameters: τFp = ∆t,
τpJ = 0.1∆t, α = 0 and β = 0.5. Lumped mass contribution.
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Figure 16: Classical benchmark impact bar configuration

against a rigid wall (see Figure 16). The bar is made of a nearly incom-
pressible Neo-Hookean (NH) constitutive model such that Young’s modulus
E = 117GPa and density ρ0 = 8930kg/m3 and is dropped with a constant
velocity V0 = 1000m/s. The primary interest of this problem is to show the
effectiveness of the fractional step method in both compressible and truly
incompressible regimes, where in the latter case no volumetric deformation
is allowed. Locking-free deformed sequences based on two different Poisson’s
ratios are presented in Figure 17. Observe that the pressure resolution is
clearly freed from non-physical pressure checkerboard modes.

5. Conclusions

In this paper, a new computational methodology has been presented for
the analysis of bending dominated nearly and truly incompressible large de-
formations in fast solid dynamics. The methodology is based upon a system
of first order conservation laws, where the linear momentum p conservation
equation is supplemented with two geometric conservation laws, one for the
deformation gradient F and one for the Jacobian of the deformation J . A
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(a) Compressible regime (bulk modulus κ = 97.5GPa and shear modulus µ = 45 GPa)

(b) Incompressible regime (bulk modulus κ = ∞ and shear modulus µ = 39 GPa)

Figure 17: Classical Taylor Impact Problem: Sequence of deformed shapes
(pressure contour plot) using nonlinear fractional step PG formulation (τFp =
∆t, τpJ = 0.2∆t, α = 0 and β = 0.5) for (a) Poisson’s ratio ν = 0.3; and (b)
Poisson’s ratio ν = 0.5. Results obtained with a constant initial velocity V0 =
1000m/s. A nearly incompressible Neo-Hookean (NH) constitutive model is
used such that Young’s modulus E = 117GPa, density ρ0 = 8930kg/m3 and
αCFL = 0.3. Lumped mass contribution.
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Petrov-Galerkin spatial discretisation method has been employed for stabil-
isation of the governing equations and an adapted fractional step method
has been presented when dealing with nonlinear deformations in the incom-
pressible limit. Both velocities (or displacements) and stresses display the
same rate of convergence, which proves ideal in the case of low order finite
elements (usually preferred in commercial codes). It has been shown that the
enhanced p-F -J formulation overcomes locking and non-physical hydrostatic
fluctuations in the pressure, providing a good balance between accuracy and
speed of computation. The incorporation of polyconvex energy functionals
[81, 82] into the existing mixed methodology is the next step of our work.
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