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Abstract

The main purpose is to develop novel analytical techniques and provide a

comprehensive qualitative analysis of global dynamics for a state-dependent

feedback control system arising from biological applications including integrated

pest management. The model considered consists of a planar system of di�erential

equations with state-dependent impulsive control. We characterize the impulsive and

phase sets, using the phase portraits of the planar system and the Lambert W

function to de�ne the PoincarØ map for impulsive point series de�ned in the phase

set. The existence, local and global stability of an order-1 limit cycle and obtain sharp

su�cient conditions for the global stability of the boundary order-1 limit cycle have

been provided. We further examine the �ip bifurcation related to the existence of an

order-2 limit cycle. We show that the existence of an order-2 limit cycle implies the

existence of an order-1 limit cycle. We derive su�cient conditions under which any

trajectory initiating from a phase set will be free from impulsive e�ects after �nite

state-dependent feedback control actions, and we also prove that order-k (k � 3) limit

cycles do not exist, providing a solution to an open problem in the integrated pest

management community. We then investigate multiple attractors and their basins of

attraction, as well as the interior structure of a horseshoe-like attractor. We also

discuss implications of the global dynamics for integrated pest management strategy.

The analytical techniques and qualitative methods developed in the present paper

could be widely used in many �elds concerning state-dependent feedback control.
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1 Introduction

This study concerns the global dynamics of semi-dynamical systems with state-dependent

feedback arising from modeling integrated pest management (IPM) [���]. The challenge

for the study of the system�s global dynamics is due to the state-dependent impulsive con-

trol.

Impulsive semi-dynamical systems arise from many important applications in the life

sciences including population dynamics (biological resource and pest management pro-

grams, and chemostat cultures) [����], virus dynamics (HIV) [�����], medicine and phar-

macokinetics (diabetes mellitus and tumor control) [�����], epidemiology (vaccination

strategies, the control of epidemics and plant epidemiology) [�����], and neuroscience
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[�����]. In some applications such as spraying pesticides and releasing natural enemies

for pest control and impulse vaccinations and drug administrations for disease treatment

[��	, �, ��, ��], the impulsive control is implemented at �xed moments to re�ect how

human actions are taken at �xed periods. In some applications, however, impulsive di
er-

ential equations with state-dependent feedback control have to be used to model density-

dependent control strategies [�, �, �, ��, ��, ��]. In particular, in an integrated pest manage-

ment (IPM) strategy, actions are taken only when the density of pests reaches an economic

threshold [��, �	]. Feedback control strategies have also been applied in di
erent �elds in

quite di
erent ways [�����].

There has also been substantial theoretical development for impulsive semi-dynamical

systems [	��		]. Techniques including the Lyapunov method have been developed to

study the stability and boundedness of solutions for impulsive di
erential equations with

�xed moments, with applications in many important areas [��	, �]. Despite a few inter-

esting studies on more complicated dynamics such as limit cycles [	��	�], invariant and

limiting sets [	����], LaSalle�s invariance principle [�	] and the PoincarØ-Bendixson the-

orem [	�, ��], much remains to be done for the qualitative theory, and especially the global

dynamics, of impulsive semi-dynamical systems. This is particularly so for impulsive dif-

ferential equations with state-dependent feedback control.

Some prototype models with biological motivation are needed to guide the development

of a general qualitative theory of semi-dynamical systems with state-dependent control.

A good example in the series of models motivated by integrated pest management (IPM)

[���], where the classical Lotka-Volterra model with state-dependent feedback control is

used and some novel techniques for the existence and stability of an order-� limit cycle,

non-existence of limit cycles with order no less than �, the coexistence of multiple attrac-

tors and their basins of attraction are developed. The modeling framework and the de-

veloped analytical techniques have been used in a number of recent studies. For example,

Huang et al. [��] proposed mathematical models depicting impulsive injection of insulin

for type � and type � diabetes mellitus, and considered the existence and local stability

of an order-� limit cycle. Based on biomass concentration-dependent impulsive perturba-

tions, the studies [�, ��] proposed and analyzed chemostat models with state-dependent

feedback control, again focusing on the existence and stability of an order-� limit cycle.

These studies also found that the models have no limit cycles with order no less than �.

The work [��, ��] also considered the existence and stability of limit cycles with di
erent

orders, in relation to the biological issue of maintaining the density of an infected plant

population below a certain threshold level. See also similar work on population dynamics

[��, 	�, �����] and epidemiology [��]. These studies, however, focused on the existence

and local stability of an order-� limit cycle for speci�c cases.

Here, we develop novel analytical techniques in order to understand the global dynamics

of a very general class of impulsive models with state-dependent feedback control, com-

monly used in a number of biological applications including IPM. In particular, we address

the following issues and explore their biological implications:

� the precise information as regards the domains of impulsive sets and the phase sets,

and the domains for the PoincarØ map of impulsive point series;

� the global stability of order-� limit cycles (including boundary order-� limit cycles);

� the existence of order-� limit cycles and non-existence of limit cycles with order no

less than �, an open problem listed in [�];
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� the necessary condition for the existence of order-� limit cycles, and the relation

between the existence of order-� limit cycles and order-� limit cycles;

� the precise information on parameter space for the �nite state-dependent feedback

control actions, crucial for designing threshold control strategies;

� the description of smaller attractors, their basins of attraction and how they are

related to phase sets and interior structures of horseshoe-like attractors.

2 Themodel with state-dependent feedback control

A threshold policy can be de�ned in broad terms as follows: control (grazing, harvesting,

pesticide application, treatment etc.) is suppressed when a speci�c species abundance is

below a previously chosen threshold density; above the threshold, control is applied. Its

application can be seen in wide areas. For an IPM strategy, a long-term management strat-

egy that uses a combination of biological, cultural, and chemical tactics to reduce pests to

tolerable levels, actions must be taken once a critical density of pests (economic threshold,

ET) is observed in the �eld so that the economic injury level (EIL) is not exceeded [��, �	,

��], as shown in Figure �. Note that EIL and ET are important components of a cost e
ec-

tive IPM program and are useful for decision-making in the applications of pesticides [��,

�	]. For chemostat setting, when the lactic acid concentration in the bioreactor reaches

the critical level, the appropriate control measures (extraction, dilutedness, etc.) should

be used such that the concentration of the substrate and the lactic acid change instanta-

neously [�]. Similarly, once the concentration of the tumor cells reaches the therapeutic

threshold level in tumor tissue, a combination of photodynamic therapy and sonodynamic

therapy should be used [�	���]. Moreover, including CD�+ T cell counts and/or viral load

level, state-dependent guided antiretroviral therapy has been widely used in HIV [�����],

hepatitis B virus, and hepatitis C virus treatment [��, �	���].

Let x and y be the densities of the pest and its natural enemy populations. The integrated

control interventions are implemented once the x grows and reaches the threshold level.

Denoting the threshold level as VL, the state-dependent impulsive di
erential equations

Figure 1 Illustration of IPM program. Economic Injury Level (EIL) = lowest population density that will

cause economic damage. Economic Threshold (ET) = population density at which control measures should

be determined to prevent an increasing pest population from reaching the EIL. The arrow indicates the point

where pest levels exceeded the ET and an IPM strategy would be applied.
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are

�

�
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�

�

�

�

�

�

�

�

dx(t)
dt

= rx(t)[� � x(t)/k] � ax(t) � px(t)y(t),
dy(t)
dt

= cx(t)y(t)
�+�x(t)

� qx(t)y(t) � �y(t),

�

x < VL,

x(t+) = (� � � )x(t),

y(t+) = y(t) + � ,

�

x = VL,

(�.�)

where x(t+) and y(t+) denote the numbers of pests and natural enemies after a control

strategy applied at time t, and x(�+) and y(�+) denote the initial densities of pest and nat-

ural enemy populations. Throughout this paper we assume that the initial density of the

pest population is always less than VL, i.e. x(�+) = x� < VL, y(�+) = y� > �. Otherwise, the

initial values are taken after an integrated control strategy application.

For the model without control strategy in (�.�), r represents the intrinsic growth rate

of the pest population, k represents the carrying capacity. The pest population dies at a

rate ax and is predated by the predator population at a rate pxy. The predator response

expands at a rate
cxy

�+�x
, which is a saturating function of the amount of pest present. The

prey population also inhibits the predator response at a rate qxy, which is the so-called

anti-predator behavior, and in the absence of the pest declines at a rate �y. Note that all

parameters shown in model (�.�) are non-negative constants.

Many experiments show that the predator and prey populations can reverse their roles,

whereby adult prey attack vulnerable young predators [�����], the so called anti-predator

behavior. If the variables x and y in model (�.�) describe the prey and predator populations,

then the term qxy represents the e
ects of the prey population on the predator popula-

tion, i.e. the prey can kill their predators. Simple predator-prey models with anti-predator

behavior have been studied [��, ��].

In model (�.�) � � � < � is the proportion by which the pest density is reduced by killing

or trapping once the number of pests reaches VL, while � is the constant number of natural

enemies released at this time t. Di
erent releasing methods including a proportion for

the release rate rather than a constant number can be used in model (�.�) [�, 	, �]. In

order to control the pest we assume, throughout the paper, that � � b
p

if � = � (from a

biological point of view, su
cient of the natural enemies must be released to prevent the

pest population exceeding VL, i.e., by maintaining dx(t)
dt

< � (for some time) and � > � if

� = �. Such a strategy ensures that x(t) is a decreasing function of time once the pest

population reaches the VL.

It is interesting to note that this model can be commonly used in depicting (i) the anti-

predator behavior of the interaction between pest and its natural enemies, as shown above;

(ii) the interaction between the virus population (such as HIV) and its immune cells [��];

(iii) the cytotoxic T lymphocyte response to the growth of an immunogenic tumor [�	];

and (iv) the interaction between a toxic phytoplankton population and a zooplankton pop-

ulation [��, ��].

We use this widely used model (�.�) to illustrate systematic methods for investigating

global dynamics, and address the basic problems related to models with state-dependent

feedback control (i.e. state-dependent impulsive e
ects). Of most interest, are questions

of how the instant killing rate � , releasing constant � and threshold parameter VL a
ect

the dynamics of model (�.�)? To address this question completely, we choose those three

parameters as bifurcation parameters and �x all others aiming to comprehensively inves-
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tigate the qualitative behavior of model (�.�), of particular interest in the dynamics listed

in the Introduction.

Note that this work will focus on model (�.�) with state-dependent feedback control,

aiming to maintain the density of x below the previous given threshold level. Thus, it is

reasonable to assume that the population x could grow exponentially before reaching the

threshold level as the threshold value is relatively small compared with the carrying ca-

pacity, i.e. we can let k � +�, then model (�.�) becomes

�

�

�

�

�

�

�

�

�

�

�

dx(t)
dt

= bx(t) � px(t)y(t),
dy(t)
dt

= cx(t)y(t)
�+�x(t)

� qx(t)y(t) � �y(t),

�

x < VL,

x(t+) = (� � � )x(t),

y(t+) = y(t) + � ,

�

x = VL,

(�.�)

with b = r � a.

Some special cases of model (�.�) have been investigated [�, �, 	�]. For example, let � = �

and q = �, then model (�.�) becomes

�

�

�

�

�

�

�

�

�

�

�

dx(t)
dt

= bx(t) � px(t)y(t),
dy(t)
dt

= cx(t)y(t) � �y(t),

�

x < VL,

x(t+) = (� � � )x(t),

y(t+) = y(t) + � ,

�

x = VL,

(�.�)

which has been investigated by Tang and Cheke [�], and we will see that all results related

to model (�.�) can be easily obtained based on the results for model (�.�).

3 The ODEmodel and its main properties

The ODE model considered in this work becomes

�

dx(t)
dt

= bx(t) � px(t)y(t)
.
= P(x, y),

dy(t)
dt

= cx(t)y(t)
�+�x(t)

� qx(t)y(t) � �y(t)
.
= Q(x, y).

(�.�)

It is easy to see that for model (�.�) there exists a trivial equilibrium (�, �) and the interior

equilibrium (x�, y�) satis�es y� = b
p

and x� is the root of the following equation:

q�x� + (�c + q + ��)x + � = �,

which indicates that

x�
�,� =

c � q � �� –
�

(c � q � ��)� � �q��

�q�
.

Therefore, there are two interior equilibria, denoted by

E� =
	

x�
� , y�

e




=

�

c � q � �� +
�

(c � q � ��)� � �q��

�q�
,
b

p

�

(�.�)

and

E� =
	

x�
�, y�

e




=

�

c � q � �� �
�

(c � q � ��)� � �q��

�q�
,
b

p

�

(�.�)



Tang et al. Advances in Di�erence Equations  ( 2015)  2015:322 Page 6 of 70

provided that c � q � �� > � and � = (c � q � ��)� � �q�� > �. Therefore, if

c � q � �� > �
�

q��, (�.�)

then there are two interior equilibria E� and E�. Moreover, the two roots collide together if

c � q � �� = �
�

q��. Throughout this work we assume that the condition (�.�) holds true.

It is easy to show that E� is a saddle point and E� is a center.

It follows from model (�.�) that we have

dy

dx
=

y

x

cx
�+�x

� qx � �

b � py
, (�.	)

which implies that model (�.�) possesses the �rst integral

H(x, y) =


 x

x�

�

c

� + �z
�

�

z
� q

�

dz �


 y

y�

�

b

z
� p

�

dz.

That is, we have

H(x, y) = b ln(y) � py �
c

�
ln(� + �x) + � ln(x) + qx = h, (�.�)

where h is a constant. In order to solve the equation H(x, y) = h with respect to y, the

Lambert W function and its properties [��] are necessary throughout the paper, for details

see the Appendix.

Thus, according to the de�nition of the Lambert W function and solving H(x, y) = h with

respect to y yields two roots

yL = �
b

p
W

�

�
p

b
exp

�

c ln(� + �x) � �� ln(x) � q�x + h�

b�

��

and

yU = �
b

p
W

�

��, �
p

b
exp

�

c ln(� + �x) � �� ln(x) � q�x + h�

b�

��

.

Again, according to the domains of the Lambert W function we require

�
p

b
exp

�

c ln(� + �x) � �� ln(x) � q�x + h�

b�

�

� �e��

to ensure that yL and yU are well de�ned. So we �rst consider the following equation:

c ln(� + �x) � �� ln(x) � q�x + h�

b�
= ln

�

be��

p

�

i.e.

c ln(� + �x) � �� ln(x) = q�x � h� + b� ln

�

be��

p

�

.



Tang et al. Advances in Di�erence Equations  ( 2015)  2015:322 Page 7 of 70

Denote

F�(x) = c ln(� + �x) � �� ln(x)

and

F�(x) = q�x � h� + b� ln

�

be��

p

�

.

By simple calculation we have

F �
�(x) =

c�

� + �x
�

��

x
, F ��

� (x) = �
c��

(� + �x)�
+

��

x�

and solving F �
�(x) = � with respect to x yields the extreme point, denoted by xm = �

c���
, and

xm > � holds true due to c � q � �� > �. F �
�(x) = q�. Solving F ��

� (x) = � yields two in�ection

points, denoted by x�
I and x�

I , and

x�
I =

�� +
�

c��

�(c � ��)
, x�

I =
�� �

�
c��

�(c � ��)

with x�
I < xm < x�

I .

Moreover, it is easy to see that limx��+ F�(x) = +�, and solving F �
�(x) = F �

�(x) with respect

to x yields two roots (as shown in Figure �), which are exactly the abscissas of two interior

equilibria E� and E�, i.e.

x�
�,� =

c � q � �� –
�

(c � q � ��)� � �q��

�q�
.

Figure 2 The roots of F1(x) = F2(x) with respect to different h values, where parameter values are �xed

as follows: b = 0.3, p = 1, c = 0.52, � = 0.2, q = 0.2, � = 0.05, h1 = �1.4429, and h2 = �0.8027.
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Denote

h� = b ln
	

y�
�




� py�
� �

c

�
ln

	

� + �x�
�




+ � ln
	

x�
�




+ qx�
�

= b ln(b/p) � b �
c

�
ln

	

� + �x�
�




+ � ln
	

x�
�




+ qx�
�

= b ln
	

be��/p



�
c

�
ln

	

� + �x�
�




+ � ln
	

x�
�




+ qx�
�

and

h� = b ln
	

y�
�




� py�
� �

c

�
ln

	

� + �x�
�




+ � ln
	

x�
�




+ qx�
�

= b ln
	

be��/p



�
c

�
ln

	

� + �x�
�




+ � ln
	

x�
�




+ qx�
�.

The family of closed orbits is

�h =
�

(x, y)|H(x, y) = h, h� < h < h�

�

, (�.�)

moreover, �h converts to the equilibrium point E� as h � h�, and �h becomes the homo-

clinic cycle as h � h�.

Therefore, the two curves F�(x) and F�(x) are tangent at x = x�
� or x = x�

�, i.e. h = h� or

h = h�. If we choose h as a bifurcation parameter, then the domains of two branches of yL

and yU can be determined as follows:

� If h� < h < h�, then there are three intersect points between two functions F�(x) and

F�(x), denoted by xmin, xmid, and xmax, as shown in Figure �. For this case, the two

branches of yL and yU are well de�ned for all x 	 [xmin, xmid] 
 [xmax, +�) with

yL � b
p

� yU , as shown in Figure �.

Figure 3 Two branches of yL and yU with respect to different h values and the diagram for

Theorem 3.1.
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� If h � h� or h � h�, then there exists a unique intersect point between two functions

F�(x) and F�(x), denoted by xmin. For this case, the two branches of yL and yU with

yL � b
p

� yU are well de�ned for all x 	 [xmin, +�), as shown in Figure �.

Similarly, for any solution x = x(t), y = y(t) of system (�.�) initiating from (x�, y�) satis�es

the relation


 x

x�

�

c

� + �z
�

�

z
� q

�

dz =


 y

y�

�

b

z
� p

�

dz. (�.�)

That is, we have

c

�
ln

�

� + �x(t)

� + �x�

�

� � ln

�

x(t)

x�

�

� q
�

x(t) � x�

�

= b ln

�

y(t)

y�

�

� p
�

y(t) � y�

�

, (�.�)

b ln(y) � py �
c

�
ln(� + �x) + � ln(x) + qx = h� (�.��)

with h� = b ln(y�) � py� � c
�

ln(� + �x�) + � ln(x�) + qx�.

In particular, if � = q = �, then the model becomes the classical Lotka-Volterra model,

and the unique interior (�/c, b/p) is a center. The �rst integral is as follows:

b ln

�

y

y�

�

� p[y � y�] = c[x � x�] � � ln

�

x

x�

�

, (�.��)

i.e. we have

b ln(y) � py + � ln(x) � cx = b ln(y�) � py� + � ln(x�) � cx�.

The following theorem is useful for discussing the existence of multiple attractors of

models with state-dependent feedback control proposed in this work.

Theorem �.� Let straight line L� through point (x�
� , y�

e ) be parallel to the x axis, as shown in

Figure �. Take any point P� (or Q�) in L, draw the line L through P� (or Q�), perpendicular

to L�. Choose a point P� (or Q�) in L such that |P�P�| = � > � (or |Q�Q�| = � > �), and then

there exists a unique trajectory of system (�.�) through point P� (or Q�) and it intersects

another point P� (or Q�) in L. Then we must have |P�P�| = � � |P�P�| (or |Q�Q�| = � �
|Q�Q�|), where | • | denotes the length of the line segment. Similar results can be had for the

trajectory through point P� (or Q�), as shown in Figure �.

Proof Note that there are three di
erent trajectories shown in Figure �, so in the following

the closed orbits are chosen to illustrate Theorem �.�, and the other two cases can be

proved similarly. Therefore, taking any closed orbit as shown in Figure �(A) which contains

the center point E�, and the closed orbit divided into two branches by the line y = b/p:

the upper branch (denoted by Ub) and the lower branch (denoted by Lb). Let 	 = x � x�
�,


 = y � b/p, i.e., x = 	 + x�
� > �, y = 
 + b/p > �, then model (�.�) becomes

�

d	 (t)
dt

= dx(t)
dt

= �p
(	 + x�
�) � �(	 ,
),

d
(t)
dt

= dy(t)
dt

=
	 (
+b/p)[�q�	+(c�q���)��q�x�

�]

�+�(	+x�
�)

� �(	 , 
),
(�.��)
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Figure 4 Illustration of transformations used in proof of Theorem 3.1.

which implies that

d


d	
=

�	 (
 + b/p)[�q�	 + (c � q � ��) � �q�x�
�]

p
(	 + x�
�)(� + �(	 + x�

�))
� F(	 ,
). (�.��)

Meanwhile, the �Lb shown in Figure �(B) satis�es the following scalar di
erential equa-

tion:

d


d	
=

��(	 , �
)

�(	 , �
)
=

�	 (�
 + b/p)[�q�	 + (c � q � ��) � �q�x�
�]

p
(	 + x�
�)(� + �(	 + x�

�))
� f (	 ,
). (�.��)

Note that 
 > �, 	 + x�
� > �, and (c � q � ��) � �q�x�

� =
�

(c � q � ��)� � �q��, and it

is easy to know that F(	 ,
) > f (	 , 
) for 	 < �, F(	 ,
) < f (	 ,
) for � < 	 < x�
� � x�

� =
�

(c � q � ��)� � �q��/(q�). Further, we have F(	 , 
) � � and f (	 ,
) � � as 
 � �.

Therefore, if we can show that the curve Ub lies above the curve �Lb at the right hand

side of point A and left hand of point B for all � < 
 � � (as shown in Figure �(B)), then,

according to the comparison theorem of ODE, the whole curve Ub must lie above the

whole curve �Lb and the results follow. In the following we only prove the curve Ub lies

above the curve �Lb at the right hand side of point A. To do this, we rotate Figure �(B) ��

degrees clockwise about the origin, as shown in Figure �(C), and then denote u = 
 and

v = �	 , which yields Figure �(D). Consequently, (�.��) and (�.��) become

dv

du
= �

�

F(	 , 
)
= �

�

F(�v, u)

=
pu(�v + x�

�)(� + �(�v + x�
�))

�v(u + b/p)[q�v + (c � q � ��) � �q�x�
�]

� g(u, v) (�.�	)
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and

dv

du
= �

�

f (	 , 
)
= �

�

f (�v,u)

=
pu(�v + x�

�)(� + �(�v + x�
�))

�v(�u + b/p)[q�v + (c � q � ��) � �q�x�
�]

� G(u, v). (�.��)

Similarly, at the point A we have v < � and � < u � �, and then � < �u + b/p < u + b/p.

Therefore, we have g(u, v) < G(u, v) for � < u � � and v < �, and g(u, v) = G(u, v) for u = �

and v < �. So if we choose the initial point A with (u�, v�) = (�, v�), then according to the

second comparison theorem of ODE the results are true. �

Corollary �.� If � = � and q = �, then model (�.�) reduces to the classical Lotka-Volterra

model, and we conclude that the results shown in Proposition �.� of reference [�] are true.

4 Impulsive set, phase set, and PoincarØ map

In order to employ the ideas of the PoincarØ map or its successor function to address the

existence and stability of order-k limit cycles, we must know the exact conditions under

which the solution of model (�.�) initiating from (x+
� , y+

�) 	 N is free from impulsive e
ects,

i.e. the more exact phase set N should be provided. Moreover, for the impulsive set M,

� � y � b
p

is the maximum interval for the vertical coordinates of M. Thus, we also want

to know the exact interval, i.e. in which part of � � y � b
p

the solution of model (�.�) cannot

reach and then the exact domains of the impulsive set can be obtained.

Based on the position of VL for �xed � we consider the following three cases:

(C�) VL � x�
� ; (C�) x�

� < VL < x�
� and (C�) VL � x�

�. (�.�)

Further, the three quantities Ah� , Ah, and A� are useful throughout the rest of the paper,

which are de�ned as

Ah� =
c

�
ln

�

� + �x�
�

� + �(� � � )VL

�

� � ln

�

x�
�

(� � � )VL

�

� q
�

x�
� � (� � � )VL

�

, (�.�)

Ah =
c

�
ln

�

� + �VL

� + �(� � � )VL

�

� � ln

�

�

� � �

�

� q�VL (�.�)

and

A� =
c

�
ln

�

� + �x�
�

� + �VL

�

� � ln

�

x�
�

VL

�

� q
�

x�
� � VL

�

= Ah� � Ah. (�.�)

Based on the signs of Ah� , Ah, and A�, we can discuss of the domains of the impulsive

set and the phase set of model (�.�). To show this, we let x�
� be the horizontal component

of the small intersection point (denoted by E� = (x�
�, b/p)) of the homoclinic cycle �h� with

the line y = b/p (Figure 	(A)), and x�
� be the horizontal component of the intersection point

(denoted by E� = (x�
�,b/p)) of the closed trajectory �h which is contained inside the point

E� and is tangent to the line L� at point T with T = (VL, b
p
), as shown in Figure 	(B). Thus,

we have x�
� < x�

� � x�
� < x�

� . For the third case (i.e. (C�)), any solution initiating from the

phase set N will experience in�nite pulse e
ects, which means that the impulsive set and

phase set for case (C�) can easily be de�ned and obtained.
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Figure 5 Illustrations of the domains of the impulsive set and the phase set for cases (C1) and (C2).

(A) VL � x�
1 and x�

3 � (1 � � )VL � x�
1 ; (B) x�

2 < VL < x�
1 and x�

4 < (1 � � )VL .

4.1 Impulsive set

There are two subsets M� and M� of the basic impulsive set M which are needed for

providing the exact domains of the impulsive set of model (�.�), where

M� =
�

(x, y) 	 R�
+|x = VL, � � y � Y h

is

�

(�.	)

and

M� =
�

(x, y) 	 R�
+|x = VL, � � y � Y

h�
is

�

, (�.�)

where

Y h
is = �

b

p
W

	

�e��+
Ah
b




, Y
h�
is = �

b

p
W

	

�e���
A�
b




(�.�)

with Ah � � and A� � �. Moreover, we have M� = M once Ah = �, and M� = M once

A� = �.

Lemma �.� For case (C�), if (��� )VL < x�
� or (��� )VL > x�

� , then the impulsive set is de�ned

by M�; if x�
� � (� � � )VL � x�

� then the impulsive set is de�ned by M�. For case (C�), if

(� � � )VL � x�
�, then the impulsive set is de�ned as M�; if (� � � )VL > x�

�, then the impulsive

set is de�ned by M. For case (C�), the impulsive set is de�ned by M�.

Proof We �rst consider case (C�). If (� � � )VL < x�
�, then there exists a curve �� which is

tangent with line L	 (de�ned as x = (� � � )VL) at point ((� � � )VL,b/p), where the curve ��
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can be determined as follows:

b ln(y) � py �
c

�
ln(� + �x) + � ln(x) + qx = b ln(b/p) � b �

c

�
ln

	

� + �(� � � )VL




+ � ln
	

(� � � )VL




+ q(� � � )VL. (�.�)

For this case, the line L� (i.e. x = VL) will intersect with the curve �� at two points, denoted

by Q� and Q�, and the vertical coordinates of both points are the two roots of the following

equation:

b ln(y) � py = b ln(b/p) � b + Ah, (�.�)

i.e. we have

�
p

b
ye�

p
b

y = �e��+
Ah
b ,

which can be solved by employing the Lambert W function, i.e. if Ah � � then we have

Y h
is = �

b

p
W

	

�e��+
Ah
b




, Y h
IS = �

b

p
W

	

��,�e��+
Ah
b




. (�.��)

Thus, if (� � � )VL < x�
�, then the impulsive set is de�ned by M�. If so, no solution of model

(�.�) initiating from the phase set can reach into the interval (Y h
is , b/p].

If x�
� � (� � � )VL � x�

� , then the line L� intersects with the right branch of the homoclinic

cycle H(x, y) = h� at two points, denoted by Q� = (VL, Y
h�
IS ) and Q� = (VL,Y

h�
is ) (as shown in

Figure 	), where Y
h�
IS and Y

h�
is are two roots of the following equation with respect to y:

b ln(y) � py = b ln(b/p) � b � A�.

Solving the above equation with respect to y yields two roots as follows:

Y
h�
is = �

b

p
W

	

�e���
A�
b




, Y
h�
IS = �

b

p
W

	

��,�e���
A�
b




. (�.��)

Therefore, if x�
� � (� � � )VL � x�

� , then the impulsive set can be de�ned by M�. If so, no

solution of model (�.�) initiating from the phase set can reach the interval (Y
h�
is ,b/p].

If (� � � )VL > x�
� , then by using the same methods as subcase (� � � )VL < x�

� the impulsive

set is de�ned by M�. Similarly, we can prove the results for case (C�) and case (C�) are

true. �

4.2 Phase set

The exact domains of the phase set depend on the domains of the impulsive set and

whether the solution of model (�.�) initiating from (x+
� , y+

�) 	 N is free from impulsive

e
ects or not. Thus, to discuss the domains of the phase set, we de�ne Y �
D and Y �

D related

to the interval YD (here YD = [� ,b/p + � ]) as the following two intervals:

Y �
D =

�

� ,Y h
is + �

�

, Y �
D =

�

� ,Y
h�
is + �

�

. (�.��)
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We �rst address under which conditions the solution of model (�.�) initiating from

(x+
� , y+

�) 	 N will be free from impulsive e
ects, and then provide the exact domains of

the phase set for each case.

Lemma �.� For case (C�), if x�
� � (��� )VL � x�

� , then any solution initiating from (x+
� , y+

�) 	
N with y+

� 	 [Y
h�
min, Y

h�
max] will be free from impulsive e�ects, where

Y
h�
min = �

b

p
W

	

�e���
Ah�

b



, Y h�
max = �

b

p
W

	

��,�e���
Ah�

b



. (�.��)

Moreover, x�
� < (� � � )VL < x�

� � Ah� > �, and Ah� = � at (� � � )VL = x�
� and (� � � )VL = x�

� .

Proof Note that the curve of homoclinic cycle �h� can be described as follows:

�h� : H(x, y) = b ln(y) � py �
c

�
ln(� + �x) + � ln(x) + qx = h�. (�.��)

Substituting y = b/p into the above equation, one can see that x�
� satis�es the following

equation:

F�(x)
.
=

c

�
ln

�

� + �x�
�

� + �x

�

� � ln

�

x�
�

x

�

� q
	

x�
� � x




= �.

Taking the derivative of F�(x) with respect to x yields

F �
�(x) = �

c

� + �x
+ q +

�

x

and solving F �
�(x) = � yields two roots x = x�

� and x = x�
� . It is easy to see that F�(x�

� ) =

F �
�(x�

� ) = �. This indicates that F�(x) > � for all x 	 (x�
�,x�

� ) 
 (x�
� , +�).

In this case, the line L	 must intersect with the homoclinic cycle �h� at two points, de-

noted by P� = ((� � � )VL,Y
h�
max) and P� = ((� � � )VL,Y

h�
min), which are the two roots of (�.��)

with respect to y for x = (� � � )VL. In fact, substituting x = (� � � )VL into (�.��) and rear-

ranging it yield

b ln(y) � py = b ln(b/p) � b � Ah� ,

i.e. we have

�
p

b
ye�

p
b

y = �e���
Ah�

b .

Solving the above equation with respect to y yields two roots which are given by (�.��).

Moreover, both P� and P� are well de�ned due to Ah� = F�((� � � )VL) � � for all x�
� �

(� � � )VL � x�
� . Thus, any trajectory initiating from (x+

� , y+
�) 	 N with Y

h�
min � y+

� � Y
h�
max will

be free from impulsive e
ects. �

Therefore, for case (C�) (i.e. VL � x�
� ), if x�

� � (� � � )VL � x�
� , the phase set can be de�ned

as follows:

N
h�
� =

�	

x+, y+



	 R�
+|x+ = (� � � )VL, y+ 	 Y

h�
D

�

(�.�	)
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with

Y
h�
D =

��

�,Y
h�
min






	

Y h�
max, +�

��


 Y �
D. (�.��)

If (� � � )VL < x�
� or (� � � )VL > x�

� , then the phase set for model (�.�) is de�ned as

N� =
�	

x+, y+



	 R�
+|x+ = (� � � )VL, y+ 	 Y �

D

�

. (�.��)

Moreover, any solution initiating from phase set N� will experience in�nite state-

dependent feedback control actions.

Lemma �.� For case (C�), if x�
� < (� � � )VL, then any solution initiating from (x+

� , y+
�) 	 N

with y+
� 	 (Y h

min,Y h
max) will be free from impulsive e�ects, where

Y h
min = �

b

p
W

	

�e���
Ah
b




, Y h
max = �

b

p
W

	

��,�e���
Ah
b




. (�.��)

Moreover, x�
� < (� � � )VL � Ah > �, and Ah = � at (� � � )VL = x�

�.

Proof The closed orbit �h for h� < h < h� which is contained inside the point E� and tan-

gent to the line L� can be determined as follows:

�h : H(x, y) = b ln(y) � py �
c

�
ln(� + �x) + � ln(x) + qx = h (�.��)

with h = b ln(b/p) � b � c
�

ln(� + �VL) + � ln(VL) + qVL.

Similarly, substituting y = b/p into the above equation, one can see that x�
� should be the

smallest root of the following equation:

F�(x)
.
=

c

�
ln

�

� + �VL

� + �x

�

� � ln

�

VL

x

�

� q(VL � x) = �.

Moreover, we have F �
�(x

�
�) = F �

�(x
�
� ) = �. This indicates that F�(x) > � for all x 	 (x�

�,VL).

Further, the line L	 must intersect with �h at two points, denoted by P� = ((��� )VL,Y h
max)

and P� = ((� � � )VL,Y h
min), which are the two roots of (�.��) with respect to y for x = (� �

� )VL and can be obtained by using the same methods as those in the proof of Lemma �.�.

Moreover, both P� and P� are well de�ned due to Ah = F�((� � � )VL) � � for all x�
� � (� �

� )VL. Therefore, any trajectory initiating from (x+
� , y+

�) 	 N with Y h
min < y+

� < Y h
max will be

free from impulsive e
ects. �

Therefore, for case (C�) (i.e. x�
� < VL < x�

� ), if x�
� < (� � � )VL, then the phase set can be

de�ned as follows:

N h
� =

�	

x+, y+



	 R�
+|x+ = (� � � )VL, y+ 	 Y h

D

�

(�.��)

with

Y h
D =

��

�,Y h
min

�



�

Y h
max, +�

��


 YD. (�.��)



Tang et al. Advances in Di�erence Equations  ( 2015)  2015:322 Page 16 of 70

Table 1 Exact domains of the impulsive set and phase set of model (2.2)

Cases (1 � � )VL Impulsive set Phase set

(C1) (1 � � )VL < x�
3 , (1 � � )VL > x�

1 M1 N1

x�
3 � (1 � � )VL � x�

1 M2 N
h1
2

(C2) (1 � � )VL � x�
4 M1 N1

(1 � � )VL > x�
4 M N h

2

(C3) (1 � � )VL < x�
2 M1 N1

If (� � � )VL � x�
�, then the phase set is de�ned by N�. Finally, for case (C�), it is easy to see

that the phase set for model (�.�) is de�ned by N�.

In conclusion, we list all possible cases for the domains of the impulsive set and phase set

of model (�.�) in Table �. It follows that the basic phase set N cannot be used to de�ne the

real phase set of model (�.�) for any case. This indicates that the exact domains of the phase

set of model (�.�) should be carefully discussed. However, the domains of the impulsive set

and phase set have not been discussed carefully in the previous literature [�, �], which may

result in some di
culties in employing the PoincarØ map or its successor function to study

the existence and stability of limit cycles of planar impulsive semi-dynamical systems.

In the following, if we consider both Ah� and Ah as functions of VL, then we have the

following results.

Lemma �.� Ah� = Ah at VL = x�
� and Ah� > Ah if VL > x�

� .

Proof It is easy to see that

F(VL)
.
= Ah� � Ah =

c

�
ln

�

� + �x�
�

� + �VL

�

� � ln

�

x�
�

VL

�

� q
�

x�
� � VL

� .
= A�. (�.��)

Based on the proof of Lemma �.� we can see that the equation F �(VL) = � with respect to

VL has two roots VL = x�
� and VL = x�

� . It follows from F(x�
� ) = F �(x�

� ) = � that Ah� > Ah for

all VL > x�
� . �

The impulsive set and phase set for model (�.�). Let x�
� be the horizontal component

of the small intersection point (denoted by E� = (x�
�,b/p)) of the closed trajectory �h�

which is contained inside the center (�/c, b/p) and is tangent to the line L� at point T

with T = (VL,b/p). It follows from the �rst integral (�.��) that the closed cycle initiating

from (VL,b/p) satis�es

b ln(y) � py + � ln(x) � cx = b ln(b/p) � b + � ln(VL) � cVL.

Substituting y = b/p into the above equation, one can see that x�
� satis�es

� ln(x) � cx = � ln(VL) � cVL,

solving it with respect to x we get two roots: one is VL with VL � �
c

and the other is given

by

x�
� = �

�

c
W

�

�
cVL

�
exp

�

�
cVL

�

��

.
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Thus, by using the same methods as those in the proof of Lemma �.� we have the fol-

lowing results for model (�.�).

Lemma �.� For the case VL > �/c in model (�.�). If x�
� < (� � � )VL, then any solution of

model (�.�) initiating from (x+
� , y+

�) 	 N with y+
� 	 [Y �

min,Y �
max] will be free from impulsive

e�ects, where

Y �
min = �

b

p
W

	

�e���
A�
b




, Y �
max = �

b

p
W

	

��,�e���
A�
b




(�.��)

and

A� = c�VL � � ln

�

�

� � �

�

. (�.��)

Moreover, x�
� < (� � � )VL � A� > � and A� = � at VL =

x�
�

���
.

The impulsive set of model (�.�) can be determined as those for model (�.�), and we only

need to consider two cases, i.e. VL > �/c and VL � �/c. For the former case, if (��� )VL < �/c

then the impulsive set is de�ned by M�
� and

M�
� =

�

(x, y) 	 R�
+|x = VL, � � y � Y �

is

�

(�.�	)

with

Y �
is = �

b

p
W

	

�e��+
A�
b




. (�.��)

If (� � � )VL � �/c then the impulsive set is M. For the latter case (i.e. VL � �/c), it is easy

to see that the impulsive set is de�ned by M�
� .

Therefore, if VL > �/c, then the phase set for the case x�
� < (� � � )VL can be de�ned as

N h�
� =

�	

x+, y+



	 R�
+|x+ = (� � � )VL, y+ 	 Y h�

D

�

(�.��)

with

Y h�
D =

��

�, Y �
min

�



�

Y �
max, +�

��


 YD. (�.��)

The phase set for the case (� � � )VL � x�
� is de�ned by N �

� and

N �
� =

�	

x+, y+



	 R�
+|x+ = (� � � )VL, y+ 	 Y �

D

�

, and Y �
D =

�

� ,Y �
is + �

�

. (�.��)

Finally, if VL � �/c, then it is easy to see that the phase set is de�ned by N �
� .

Remark �.� Before we provide the formula for the PoincarØ map of model (�.�), we want

to show how the phase sets change as the key parameters (i.e. � , VL, and � ) vary. For

example, the set N h
� can be de�ned exactly according to the relations among � , Y h

min, and

Y h
max. One simple case is as follows: if � � Y h

min and Y h
max � � + b/p then

N h
� =

�	

x+, y+



	 R�
+|x+ = (� � � )VL, y+ 	 Y mM

D =
�

� , Y h
min

�



�

Y h
max, � + b/p

��

. (�.��)
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Similarly, we can discuss several other cases and get the domains of Y mM
D and N h

� , where

Y mM
D =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

[� ,Y h
min] 
 [Y h

max, � + b/p], if � � Y h
min < Y h

max � � + b/p,

[Y h
max, � + b/p], if Y h

min < � � Y h
max � � + b/p,

[� , � + b/p], if Y h
min < Y h

max < � < � + b/p,

[� ,Ymin], if � � Y h
min < � + b/p < Y h

max,

�, if Y h
min < � < � + b/p < Y h

max.

(�.��)

It follows from Remark �.� that the relations among � , Y h
min, and Y h

max are crucial for the

exact domains of the phase set, which will be addressed later.

4.3 PoincarØ map

Theorem �.� The PoincarØ map for the impulsive points of model (�.�) de�ned in the phase

set can be determined as

(C�) : y+
i+� =

�

P(y+
i ), y+

i 	 Y
h�
D if x�

� � ��VL � x�
� ,

P(y+
i ), y+

i 	 Y �
D if ��VL < x�

� or ��VL > x�
� ,

(�.��)

(C�) : y+
i+� =

�

P(y+
i ), y+

i 	 Y h
D if x�

� < ��VL,

P(y+
i ), y+

i 	 Y �
D if ��VL � x�

�,
(�.��)

(C�) : y+
i+� = P(y+

i ), y+
i 	 Y �

D. (�.��)

Here �� = � � � and

P
	

y+
i


 �
= �

b

p
W

�

�
p

b
y+

i exp

�

�
p

b
y+

i +
Ah

b

��

+ � . (�.�	)

Proof Assuming that any solution 
z+
�

with initial condition z+
� = (x+

� , y+
�) 	 N experiences

impulses k + � times (�nite or in�nite), we denote the corresponding coordinates Pi =

(VL, yi) 	 M and P+
i = ((� � � )VL, y+

i ) 	 N , i = �, �, . . . ,k. Therefore, if both points P+
i and

Pi+� lie in the same trajectory � (closed or non-closed) for i = �, �, . . . ,k, then the points P+
i

and Pi+� satisfy the following relation:

c

�
ln

�

� + �VL

� + �(� � � )VL

�

� � ln

�

�

� � �

�

� q�VL = Ah = b ln

�

yi+�

y+
i

�

� p
�

yi+� � y+
i

�

. (�.��)

In order to show the exact domains of the PoincarØ map, we �rst need to know under

what conditions the trajectory initiating from P+
i 	 N cannot reach the point Pi+� 	 M.

There are two cases:

Case (i): VL � x�
� and x�

� � (� � � )VL � x�
� . It follows from Lemma �.� that if the initial

point P+
i = ((� � � )VL, y+

i ) lies in the homoclinic cycle �h� or its interior, then although the

two points P+
i and Pi+� could satisfy (�.��), the trajectory cannot reach the line L� forever,

which indicates that both points P+
i and Pi+� cannot lie in the same trajectory, as shown in

Figure 	(A). It follows from Lemma �.� and Table � that in this case we have Ah� � � and

we require P+
i 	 N

h�
� .

Case (ii): x�
� < VL < x�

� and x�
� < (� � � )VL. It follows from Lemma �.� that if the initial

point P+
i = ((� � � )VL, y+

i ) lies in the interior of the closed cycle �h, then the trajectory
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cannot reach the line L�, which shows that both points P+
i and Pi+� cannot lie in the same

trajectory, as shown in Figure 	(B). It follows from Lemma �.� and Table � again that in

this case we have Ah > � and we require P+
i 	 N h

� .

Rearranging (�.��) yields

�
p

b
yi+� exp

�

�
p

b
yi+�

�

= �
p

b
y+

i exp

�

�
p

b
y+

i +
Ah

b

�

, i = �, �, . . . ,k.

Solving the above equation with respect to yi+�, we have

yi+� = �
b

p
W

�

�
p

b
y+

i exp

�

�
p

b
y+

i +
Ah

b

��

, i = �, �, . . . ,k (�.��)

and

y+
i+� = �

b

p
W

�

�
p

b
y+

i exp

�

�
p

b
y+

i +
Ah

b

��

+ �
�
= P

	

y+
i




, i = �, �, . . . ,k. (�.��)

If Ah � �, it is easy to show that � p
b
y+

i exp(� p
b
y+

i +
Ah
b

) 	 [�e��, �) for all Ah � �,

this indicates that equation (�.��) is well de�ned in this case. If Ah > �, we must have

� p
b
y+

i exp(� p
b
y+

i +
Ah
b

) � �e��. It follows that we get the inequality

p

b
y+

i exp

�

�
p

b
y+

i

�

� exp

�

�� �
Ah

b

�

,

which is solved to give, y+
i 	 (�,Y h

min] 
 [Y h
max,�), where Y h

min and Y h
max are given in (�.��).

Therefore, for case (C�), if x�
� � (��� )VL � x�

� , then it follows from Lemma �.� that Ah� >

Ah and according to the monotonicity of the Lambert W function we have [Y h
min,Y h

max] �
[Y

h�
min, Y

h�
max]. So no matter what Ah� > Ah > � and Ah� > � � Ah (as shown in Figure 	) the

PoincarØ map is given by the �rst case of (�.��) if x�
� � (� � � )VL � x�

� . If (� � � )VL < x�
� or

(� � � )VL > x�
� , then it follows from the proofs of Lemma �.� and Lemma �.� that we must

have Ah < �, consequently the PoincarØ map is given by the second case of (�.��).

The other two cases (C�) and (C�) of Theorem �.� can be obtained directly from the

domains of the PoincarØ map and the proof of Lemma �.�. This completes the proof. �

It follows from Lemma �.	 that we have the main results for the PoincarØ map of the

impulsive points of model (�.�).

Corollary �.� The PoincarØ map for the impulsive points of model (�.�) de�ned in the

phase set can be determined as

y+
i+� =

�

�

�

�

�

P(y+
i ), y+

i 	 Y h�
D if VL > �

c
and x�

� < ��VL,

P(y+
i ), y+

i 	 Y �
D if VL > �

c
and ��VL � x�

�,

P(y+
i ), y+

i 	 Y �
D if VL � �

c
.

(�.��)

Compared with published de�nitions of the PoincarØ map for model (�.�) [�, �], we can

see that more accurate domains have been provided in formula (�.��).

Based on the proofs of Lemmas �.�-�.	 and Theorem �.� we can see that the signs of Ah�

and Ah play the key roles in determining the domains of the impulsive set and phase set,
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Table 2 The relations among the key parameters (i.e. � , VL, and � ), the signs of Ah1 and Ah
and the domains of the PoincarØ mapP(y+

i
)

Cases VL �1VL Ah and Ah1
P(y+

i
)

(C1) VL < x
h2
min x�

3 � �1VL � xmin Ah � 0, Ah1
� 0 y+

i 	 Y
h1
D

xmin < �1VL < xmid Ah > 0, Ah1
� 0

xmid � �1VL � x�
1 Ah � 0, Ah1

� 0

�1VL < x�
3 Ah � 0, × y+

i 	 Y1
D

x�
1 < �1VL

x
h2
min � VL x�

3 � �1VL � x�
1 Ah � 0, Ah1

� 0 y+
i 	 Y

h1
D

�1VL < x�
3 Ah � 0, × y+

i 	 Y1
D

x�
1 < �1VL

(C2) x�
4 < �1VL Ah > 0, × y+

i 	 YhD
�1VL � x�

4 Ah � 0, × y+
i 	 Y1

D

(C3) Ah � 0, × y+
i 	 Y1

D

× means the sign of Ah1
is not necessary for that subcase and �1 = 1 � � .

and in de�ning the PoincarØ mapP(y+
i ). Therefore, the relations among the key parameters

(i.e. � , VL, and � ), the signs of Ah� and Ah and the domains of the PoincarØ map P(y+
i ) will

be discussed brie�y before we address the existence and stability of the limit cycle of model

(�.�), which are also important in the rest of this work.

To do this, we take the notations shown in Figure 	, where x
h�
min represents the intersec-

tion point of the curve H(x, y) = h� with the line y = b/p. Then the relations among the key

parameters (i.e. � , VL, and � ), the signs of Ah� and Ah and the domains of the PoincarØ map

P(y+
i ) can be summarized in Table �.

5 Existence of order-1 limit cycles and some important relations

Investigations of the existence and stability of order-� limit cycles of system (�.�) for the

whole parameter space are quite challenging, and are similar to the study of the existence

and stability of limit cycles of continuous semi-dynamical systems. Fortunately, the ana-

lytical formula of the PoincarØ map de�ned by the impulsive points in the phase set has

been obtained, which allows us to employ it to study the existence and stability of order-�

limit cycles of model (�.�).

The �xed point of the PoincarØ map P(y+
i ) in the phase set corresponds with the exis-

tence of the order-� limit cycles of model (�.�) and model (�.�). Without loss of generality,

we �rst discuss the existence of a �xed point of the PoincarØ map P(y+
i ) in the basic phase

set N , i.e. y+
i 	 YD, and then we will focus on the particular domains of the PoincarØ map

P(y+
i ) in phase sets and discuss the existence of the �xed point. Denote the �xed point

as y�, then we have

P
	

y�
 = �
b

p
W

�

�
p

b
y� exp

�

�
p

b
y� +

Ah

b

��

+ � = y�. (	.�)

Since y� 	 YD = [� , b/p + � ], we have

W

�

�
p

b
y� exp

�

�
p

b
y� +

Ah

b

��

= �
p

b

	

y� � �



� ��.

Therefore, according to the de�nition of the Lambert W function the above yields

�
p

b
y� exp

�

�
p

b
y� +

Ah

b

�

= �
p

b

	

y� � �



exp

�

�
p

b

	

y� � �



�

.
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Note that if � = � and Ah = �, then for any � � y� � b/p the above equation holds true; if

� = � and Ah �= �, then y� = � is a unique �xed point of PoincarØ map P(y+
i ). If � > �, then

solving the above equation with respect to y� yields

y� = �
exp( p

b
� �

Ah
b

)

exp( p
b
� �

Ah
b

) � �
. (	.�)

The necessary condition for the existence of a �xed point of the PoincarØ map P(y+
i ) in

the phase set is y� 	 YD. Thus, it is interesting to show under what conditions the y� 	
(� ,b/p + � ] �rst. To do this, we consider the following two cases: (i) Ah � �; and (ii) Ah > �.

If Ah � �, then it is easy to show that y� > � and

y� = �
exp( p

b
� �

Ah
b

)

exp( p
b
� �

Ah
b

) � �
�

b

p
+ �

hold true. This indicates that if Ah � �, then y� 	 (� ,b/p + � ].

If Ah > �, then we �rst need exp( p
b
� �

Ah
b

) � � > � to ensure that y� is positive and y� > � .

Thus we must have Ah < p� . Furthermore,

y� = �
exp( p

b
� �

Ah
b

)

exp( p
b
� �

Ah
b

) � �
�

b

p
+ �

is equivalent to

exp

�

p

b
� �

Ah

b

�

�
p

b
� � � � �.

Rearranging the above inequality yields

�
p

b

�

� +
b

p

�

exp

�

�
p

b

�

� +
b

p

��

� � exp

�

�� �
Ah

b

�

.

Solving the above inequality with respect to � + b
p

yields � + b
p

� Y h
min (which is impossible

due to Y h
min < b

p
) or � + b

p
� Y h

max. This indicates that if � + b
p

� Y h
max, then y� � b

p
+ � when

� < Ah < p� .

Based on the de�nition of the PoincarØ map P(y+
i ) and its domains, the point ((� �

� )VL, y�) related to the �xed point y� must lie in the domains of phase sets rather than

basic phase set (i.e. y� 	 YD). To address this and reveal all possible dynamic behavior of

model (�.�), we �rst need to investigate some important relations among y�, y�
�, � + b/p,

Y i
min, Y i

max for i = h,h� and � + Y h
is , where

y�
� =

b + p� +
�

b� + p�� �

�p
. (	.�)

5.1 Some important relations

Note that the key parameters � and VL determine the domains of the PoincarØ map P(y+
i ),

and the third key parameter � will play a crucial role in determining the dynamics of model

(�.�). Thus, the parameter � related to state-dependent feedback control has been chosen
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to address the relations, i.e. we consider y�, y�
� , � + b/p, Y i

min, Y i
max for i = h, h� and � + Y h

is

as functions of � . As the �rst step, we discuss the monotonicity of the y�, where y� is given

by (	.�), and we have the following results.

Lemma �.� If � < Ah < p� , then y� reaches its minimal value (denoted by y�
min and y�

min =

Y h
max) at �M = Y h

max � b
p
.

Proof Taking the derivative of y� with respect to � yields

dy�

d�
=

exp( p
b
� �

Ah
b

)[b exp( p
b
� �

Ah
b

) � b � p� ]

b[exp( p
b
� �

Ah
b

) � �]�
. (	.�)

Since Ah < p� , it is seen that
dy�

d�
= � is equivalent to

��
.
= b exp

�

p

b
� �

Ah

b

�

� b � p� = �. (	.	)

Rearranging the above equation yields

�

�

� +
p�

b

�

exp

�

�� �
p�

b

�

= � exp

�

�� �
Ah

b

�

and it is easy to see that Ah < p� is a necessary condition for the existence of a positive root

of the above equation with respect to � . Solving the above equation with respect to � , one

has two roots and only the larger one is positive, denoted by �M , where

�M = �
b

p
�

b

p
W

	

��, �e���
Ah
b




= Y h
max �

b

p
>

Ah

p
. (	.�)

Moreover, we have lim
�� Ah

p

+ y� = +�, as shown in Figure �. This indicates that the y�

reaches its minimal value at �M . By calculation we have exp( p
b
�M �

Ah
b

) = �W (��,�e���
Ah
b ),

and consequently we have

y�
min = �M

W (��,�e���
Ah
b )

� + W (��,�e���
Ah
b )

= �
b

p
W

	

��,�e���
Ah
b




= Y h
max. (	.�)

Furthermore, it follows from Theorem �.� that

�M = Y h
max �

b

p
>

b

p
� Y h

min. (	.�)

�

Lemma �.� If Ah � �, then the inequality y� < y�
� holds true naturally.

Proof If Ah � �, then the inequality y� < y�
� can be rewritten as

�
exp( p

b
� �

Ah
b

)

exp( p
b
� �

Ah
b

) � �
� �

exp( p
b
� )

exp( p
b
� ) � �

<
b + p� +

�

b� + p�� �

�p
.
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Rearranging the above inequality yields

	

b +
�

b� + p�� � � p�



exp

�

p

b
�

�

� b � p� �
�

b� + p�� � > �. (	.�)

Denote z = p
b
� > �, then the above inequality is equivalent to

ez >
� +

�
� + z� + z

� +
�

� + z� � z
= z +

�
� + z�.

Let F(z) = ez � (z +
�

� + z�) and we have

F(z) > � + z +
�

�
z� �

	

z +
�

� + z�



= � +
�

�
z� �

�
� + z� > �. �

To discuss the relations among y�, � +b/p, Y
h�
max, and Y

h�
min which will be used in this work,

we de�ne the following four functions with respect to �

��
�

.
= � +

b

p
� y�, ��

�

.
= y� � Y h�

max, ��
�

.
= y� � y�

�, ��
�

.
= y� � Y

h�
min. (	.��)

For the �rst equation ��
�

.
= � + b

p
� y� = �, substituting y� into it and arranging the items

we can see which is equivalent to the equation �� = � (de�ned by (	.	)). This indicates that

the equation �� = � has a unique positive root �M , i.e. the two curves y� and � + b/p with

respect to � intersect at � = �M , as shown in Figure �.

Figure 6 The relations among y� , y�
2 , � + b/p, Y i

min , Y
i
max and i = h,h1 . All other parameter values are �xed

as follows: b = 1.8, p = 1.3, c = 0.52, � = 0.1, q = 0.23, � = 0.3, � = 0.8, and VL = 4.
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Substituting y� into the second function and letting ��
� = � yield

��
�

.
= y� � Y h�

max = �
exp( p

b
� �

Ah
b

)

exp( p
b
� �

Ah
b

) � �
� Y h�

max = �. (	.��)

Rearranging the above equation, one has

p

b

	

� � Y h�
max




exp

�

p

b

	

� � Y h�
max




�

= �
p

b
Y h�

max exp

�

�
p

b
Y h�

max +
Ah

b

�

. (	.��)

Substituting Y
h�
max = � b

p
W (��,�e���

Ah�
b ) into the right hand side of the above equation ac-

cording to the equation W (z)eW (z) = z yields

�
p

b
Y h�

max exp

�

�
p

b
Y h�

max +
Ah

b

�

= �e��e�
Ah�

�Ah
b = �e��e�

A�
b .

In order to ensure (	.��) has a positive root with respect to � , the necessary condition

is � < Y
h�
max. Given this and according to the de�nition of the Lambert W function we can

solve it and yield two roots, denoted by �
h�
� and �

h�
� , where

�
h�
� = Y h�

max +
b

p
W

�

��, �e��e�
A�
b

�

(	.��)

and

�
h�
� = Y h�

max +
b

p
W

�

�,�e��e�
A�
b

�

. (	.��)

Note that Ah� � � indicates that Ah� � Ah > � or Ah� > � � Ah, which means that both

�
h�
� and �

h�
� are well de�ned. Moreover, if Ah � �, then the small root �

h�
� disappears and

y� will intersect with Y
h�
min at another point, which will be discussed later.

For the third function ��
� , we want to �nd the root of equation ��

�

.
= y� � y�

� = � with

respect to � , i.e. the positive root of the following equation:

�
exp( p

b
� �

Ah
b

)

exp( p
b
� �

Ah
b

) � �
=

b + p� +
�

b� + p�� �

�p
. (	.�	)

It is impossible to solve the above equation directly with respect to � , so we turn to a

discussion of the existence of the positive roots. Note that ��
�M

= �M + b
p

� y�(�M) = � and

y�
� < � + b

p
for all � > �. This indicates that ��

�M
= y�(�M) � y�

�(�M) > �. Moreover, solving the

equation y�
� � Y

h�
max = � with respect to � , denoted by � � yields

� � = �Y h�
max

b � pY
h�
max

b � �pY
h�
max

< Y h�
max.

Furthermore, it is easy to see that ��
�� = y�(� �) � y�

�(� �) < �. Therefore, according to the

monotonicity of the function y� and y�
� for � � �M , we conclude that for the equation

��
� = y� � y�

� = � there exists a unique positive root, denoted by �� with �� 	 (�M, � �) and

�� < �
h�
� , as shown in Figure �.
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Finally, we discuss the existence of the positive root of the equation ��
�

.
= y� �Y

h�
min = � for

the case Ah � �. By employing the same methods as those for the equation ��
�

.
= y� �Y

h�
max =

�, it is easy to see that the for the equation ��
�

.
= y� � Y

h�
min = � there exists a unique positive

root, denoted by �
h�
� , and

�
h�
� = Y

h�
min +

b

p
W

�

�,�e��e�
A�
b

�

. (	.��)

Now we discuss the relations between y� and � + Y
h�
is when A� � �, and the relations

between y� and � + Y h
is when Ah � �. That is, we have the following main results.

Lemma �.� If A� � �, then y� < � +Y
h�
is for all � > �

h�
� and y� = � +Y

h�
is at � = �

h�
� . If Ah � �,

then y� � � + Y h
is for all � > �.

Proof First we note that y� and Y
h�
max intersects at � = �

h�
� , so substituting it into � + Y

h�
is

yields

� + Y
h�
is = �

h�
� + Y

h�
is = Y h�

max, (	.��)

which indicates that those three functions (i.e. y�, Y
h�
max, and � +Y

h�
is ) with respect to � inter-

sect at the same point, i.e. � = �
h�
� . Moreover, �M + Y

h�
is = Y h

max � b
p

+ Y
h�
is < Y h

max. Therefore,

we can conclude that if y� exists then it is no larger than � + Y
h�
is when A� � �.

For the second part of Lemma 	.�, it follows from (	.�) that we consider the following

equation:

dy�

d�
=

exp( p
b
� �

Ah
b

)[b exp( p
b
� �

Ah
b

) � b � p� ]

b[exp( p
b
� �

Ah
b

) � �]�
= � (	.��)

with respect to � . Rearranging the above equation one has

(b � p� ) exp

�

p

b
� �

Ah

b

�

= b

and solving the above equation one gets the unique positive root when Ah � �

�T =
b

p
+

b

p
W

	

�e��+
Ah
b




=
b

p
� Y h

is . (	.��)

Moreover, we have y�(�T ) = b
p

= �T + Y h
is , which indicates that both functions (i.e. y� and

� +Y h
is ) are tangent at � = �T . According to the monotonicity of both functions we conclude

that y� � � + Y h
is when Ah � � and the equal holds true only at � = �T . �

5.2 Existence of order-1 limit cycle

In order to provide the detailed su
cient conditions for the existence of a �xed point of

the PoincarØ map P(y+
i ), we rearrange the subcases of the cases (C�)-(C�) according to the

domains of the PoincarØ map P(y+
i ) listed in Table � or the domains of the phase set listed

in Table � or the signs of Ah and Ah� . Thus, we put the subcases with the domain of the
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PoincarØ map P(y+
i ) de�ned by Y �

D (or the phase set de�ned by N� or Ah � �) in together,

denoted by subcase (SC���), i.e.

(SC���) : (C�) with ��VL < x�
� or ��VL > x�

� , (C�) with ��VL � x�
� and (C�). (	.��)

We denote the subcase for (C�) with Ah > � and Ah� � � as subcase (SC��), i.e.

(SC��) : (C�) with VL < x
h�
min and xmin < ��VL < xmid, (	.��)

and denote all subcases for (C�) with Ah � � and Ah� � � as subcase (SC��), i.e.

(SC��) :

(C�) with VL < x
h�
min and x�

� � ��VL � xmin,

(C�) with VL < x
h�
min and xmid � ��VL � x�

� ,

(C�) with x
h�
min � VL and x�

� � ��VL � x�
� .

(	.��)

The combination of (SC��) and (SC��) is called (SC�) in this work. Finally, we denote the

subcases for (C�) with Ah > � as subcase (SC�), i.e.

(SC�) : (C�) with x�
� < ��VL. (	.��)

Based on the important relations discussed before, for the existence of a �xed point of

the PoincarØ map P(y+
i ) of model (�.�) and consequently the existence of the order-� limit

cycle we have the following main results.

Theorem �.� If � = � and Ah = � (here � > �), then any y� in the phase set is a �xed point

of the PoincarØ map P(y+
i ). If � = � and Ah �= �, then y� = � is a unique �xed point of the

PoincarØ map P(y+
i ).

If � > �, then the �xed point y� of the PoincarØ mapP(y+
i ) is always well de�ned for (SC���)

with y� 	 Y �
D. If � > �

h�
� , then the �xed point y� of the PoincarØ map P(y+

i ) exists for (SC��)

and y� 	 (Y
h�
max, Y

h�
is + � ]. If � < � < �

h�
� (or � > �

h�
� ), then the �xed point y� of the PoincarØ

map P(y+
i ) exists for (SC��) and y� 	 (�,Y

h�
min) (or y� 	 (Y

h�
max,Y

h�
is + � ]). If � � �M , then the

�xed point y� of the PoincarØ map P(y+
i ) exists for (SC�) and y� 	 [Y h

max, b
p

+ � ].

Proof The results for � = � are true obviously. Since Ah � � for (SC���), it follows from

Lemma 	.� that y� � � + Y h
is for all � > �, which indicates that y� exists in the phase set, i.e.

y� 	 Y �
D.

If � > �
h�
� , then it follows from the relations between y� and Y

h�
max that y� > Y

h�
max. Further,

according to Lemma 	.� we have y� < Y
h�
is + � for all � > �

h�
� due to A� � � in case (SC��).

Thus the �xed point y� of the PoincarØ map P(y+
i ) exists for (SC��) and y� 	 (Y

h�
max, Y

h�
is + � ].

If � < � < �
h�
� , then it follows from the relations between y� and Y

h�
min that y� < Y

h�
min, which

means that the �xed point y� of the PoincarØ map P(y+
i ) exists for (SC��) and y� 	 (�,Y

h�
min).

If � > �
h�
� , then the result can be proved by using the same methods as those for case (SC��).

If � � �M , then it follows from the relations between y� and Y h
max and the relations be-

tween y� and b
p

+ � that y� 	 [Y h
max, b

p
+ � ] and consequently the last part of the results

shown in Theorem 	.� are true. �

Based on the relations discussed before and Theorem 	.�, we have the following main

results for the non-existence of a �xed point of the PoincarØ map P(y+
i ) of model (�.�).
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Corollary �.� Assume � > �. The PoincarØ map P(y+
i ) does not have a �xed point for case

(SC��) provided
Ah
p

< � � �
h�
� ; The PoincarØ map P(y+

i ) does not have a �xed point for case

(SC��) provided �
h�
� � � � �

h�
� ; The PoincarØ map P(y+

i ) does not have a �xed point for case

(SC�) provided
Ah
p

< � < �M .

Theorem 	.� and Corollary 	.� provide the detailed conditions for the existence and

non-existence of a �xed point of the PoincarØ map P(y+
i ) of model (�.�), consequently the

existence and non-existence of order-� limit cycles of model (�.�) can be obtained directly.

For the existence and non-existence of a �xed point of model (�.�) we have the following

results.

Corollary �.� If � = � and A� = � (here � > �), then any y� in the phase set is a �xed

point of the PoincarØ map P(y+
i ) of model (�.�). If � = � and A� �= �, then y� = � is a unique

�xed point of PoincarØ map P(y+
i ). If � > � and A� � �, then for the PoincarØ map de�ned

in the phase set there exists a unique �xed point y� 	 Y �
D. If A� > � and � � �M , then for

the PoincarØ map P(y+
i ) there exists a unique �xed point y� with Y �

max � y� � � + b
p
. The

PoincarØ map P(y+
i ) does not have a �xed point provided � < A�

p
< � < �M .

6 Local and global stability of order-1 limit cycle

To address the stability of y�, we note that if � = � and Ah = � (here � > �), then y� is stable

but not asymptotically stable. For the case � = � and Ah �= � (i.e. y� = �) we will address it

as a special case later in more detail. Thus, we �rst assume that � > � and y� exists, and

we provide the su
cient conditions for the local stability and global stability of the �xed

point y�. Consequently, the global stability of the order-� limit cycle of model (�.�) can be

obtained, which improved on previous results on models with state-dependent feedback

control [�, �].

6.1 Local stability of order-1 limit cycle

Theorem �.� Assume that � > � and y� exists. If Ah � � then the �xed point y� of PoincarØ

mapP(y+
i ) is locally stable; If Ah > � then the �xed point y� of PoincarØ mapP(y+

i ) is locally

stable provided

y� <
b + p� +

�

b� + p�� �

�p
. (�.�)

Proof For convenience, denote f (y) = � p
b
y exp(� p

b
y +

Ah
b

), and we have

f �(y) = �
p

b
exp

�

�
p

b
y +

Ah

b

��

� �
p

b
y

�

.

Moreover, by simple calculation and according to the properties of the Lambert W func-

tion we have

dP(y+
i )

dy+
i

�

�

�

�

y+
i =y�

= �
b

p

W (f (y�))

f (y�)(� + W (f (y�)))
f �(y�)

= �
b

p

W (f (y�))

� + W (f (y�))

�

�

y� �
p

b

�

=
(y� � � )(b � py�)

y�(b � p(y� � � ))
� g(y�). (�.�)
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We �rst note that if y� = � +b/p then g(y�) = ��, which indicates that y� is unstable. Thus,

for the stability of y�, we only need to focus on the interval � < y� < � + b/p. Moreover,

|g(y�)| < � is equivalent to the following inequalities:

�� <
(y� � � )(b � py�)

y�(b � p(y� � � ))
< �, (�.�)

which indicates that if the above inequalities hold, then the �xed point y� is locally stable.

Note that we have y�(b � p(y� � � )) > � for all � < y� < � + b/p and � > �. It is easy to show

that the right hand side of (�.�) holds true naturally, and the left hand side inequality is

equivalent to

p
	

y�
�
� (b + p� )y� +

b�

�
< � (�.�)

and solving the above inequality we have y�
� < y� < y�

� where

y�
�,� =

b + p� �
�

b� + p�� �

�p
.

Further, we can show that

y�
� < � < y�

� < � + b/p.

This indicates that if � < y� < y�
�, then the �xed point y� of PoincarØ map P(y+

i ) is locally

stable. It follows from Lemma 	.� that y� < y�
� holds true naturally if Ah � �. This completes

the proof of Theorem �.�. �

Corollary �.� Assume that � > �, y� exists, and Ah > �. If y� 	 (y�
�, � + b

p
], then the �xed

point y� of the PoincarØ map P(y+
i ) of model (�.�) is unstable.

Corollary �.� Assume that � > � and y� exists. If A� � �, then the �xed point y� of the

PoincarØ map P(y+
i ) of model (�.�) is locally stable; If A� > �, then the �xed point y� of

PoincarØ map P(y+
i ) is locally stable provided y� 	 (� , y�

�), and it is unstable when y� 	
(y�

�, � + b
p
].

By combining Theorems 	.� and �.�, Corollaries 	.� and �.�, and all of the relations dis-

cussed in Section 	.� we can provide the exact conditions for the existence and stability of

the �xed point y� of the PoincarØ map P(y+
i ) of model (�.�) based on the three parameters

� , VL, and � . Here for simpli�cation and convenience we employ the signs of Ah and Ah�

rather than � and VL, and list all results in Table �.

Here, × means the sign of Ah� is not necessary for that subcase, NE denotes the non-

existence of a �xed point, EU represents the existence of a �xed point which is unstable,

ES shows the existence of a �xed point which is stable, EG denotes the existence of a �xed

point which is globally stable, and ENS represents the existence of a �xed point which is

neutrally stable. Note that if � = �, then for case (SC��) we have Y
h�
min = Y

h�
is once Ah = �.

Thus, in this subcase, any y� 	 [�,Y
h�
min) = [�,Y

h�
is ) is a �xed point of the PoincarØ mapP(y+

i )

of model (�.�), i.e. for any solution initiating from ((� � � )VL, y�) is an order-� periodic

solution which is neutrally stable.
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Table 3 Existence and stability of the �xed point y� of PoincarØ mapP(y+
i
)

Cases Ah and Ah1
� y� Interval of y�

(SC123) Ah � 0, × � > 0 EG Y1
D = [� ,Yhis + � ]

Ah < 0, × � = 0 EG y� = 0

Ah = 0, × ENS �y� 	 [0,Yhis ]

(SC11) Ah > 0, Ah1
� 0

Ah
p

< � � �
h1
2 NE

�
h1
2 < � ES (Y

h1
max ,Y

h1
is + � ]

� = 0 EU y� = 0

(SC12) Ah � 0, Ah1
� 0 �

h1
3 � � � �

h1
2 NE

0 < � < �
h1
3 ES (0,Y

h1
min)

� > �
h1
2 ES (Y

h1
max ,Y

h1
is + � ]

Ah < 0, × � = 0 ES y� = 0

Ah = 0, × ENS �y� 	 [0,Y
h1
min)

(SC2) Ah > 0, × Ah
p

< � < �M NE

�M � � � �2 EU [Yhmax ,
b
p

+ � ]

�2 < � ES [Yhmax ,
b
p

+ � ]

� = 0 EU y� = 0

So far, all cases shown in Table � have been proved except for the global stability of the

�xed point y� in subcase (SC���) and the stability of y� = � for � = �, which are our main

purposes in the following subsections.

6.2 Global stability of the order-1 limit cycle

For the global stability of the �xed point y� as well as the order-� limit cycle of system (�.�),

we �rst focus on the case � > � for (SC���) based on the domains of PoincarØ map P(y+
i )

and the existence of y�, and we have the following main result.

Theorem �.� Assuming that � > � in case (SC���), then the �xed point y� of PoincarØ map

P(y+
i ) exists and satis�es � < y� < y�

�. Moreover, it is globally stable once it exists. Conse-

quently, the order-� limit cycle of system (�.�) is globally stable.

Proof Note that we have Ah � � for (SC���), and then it follows from Theorem �.� and

Lemma 	.� that the �xed point y� of the PoincarØ map P(y+
i ) exists and satis�es � < y� <

y�
�. It is easy to see that the PoincarØ map P(y+

i ) is continuous and di
erentiable on its

domains. Moreover, for any solution initiating from ((� � � )VL, y+
�) with y+

� /	 (� , � + b/p]

will reach the phase setN� after a single impulsive e
ect with y+
� 	 (� , � +Y h

is] � (� , � +b/p].

Further, for all y 	 (� , � + b/p] we have

dP(y)

dy
= �

b

p

W (f (y))

f (y)(� + W (f (y)))
f �(y) = �

b

p

W (f (y))

� + W (f (y))

�

�

y
�

p

b

�

� g(y). (�.	)

According to the conditions we see that f (y) � �e�� for y 	 (� , � +b/p], which indicates that

�� � W (f (y)) < �. Moreover, if Ah = �, then we have W (f (b/p)) = �� and limy�b/p g(y) = �.

Thus there exists a unique ye = b/p such that g(y) = �, g(y) < � for all y > b/p and g(y) > �

for all y < b/p. In order to prove the global stability of the �xed point y�, we consider the

following two cases:

Case � � � b/p.

For this case, we have �� < W (f (y)) < � and g(y) < � for all y 	 (� , � + b/p]. Therefore, in

order to show the global stability, we only need to prove g(y) > �� for all y 	 (� , � + b/p]. It
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follows from (�.	) that g(y) > �� is equivalent to the following inequality:

W
	

f (y)



>
py

b � �py
. (�.�)

It is easy to know that
py

b��py
> �� for y > b/p, and according to the de�nition of the Lam-

bert W function the above inequality is equivalent to

f (y) >
py

b � �py
exp

�

py

b � �py

�

i.e.

�py � b

b
< exp

�

p

b
y �

py

�py � b
�

Ah

b

�

. (�.�)

Thus, we only need to show

�py � b

b
< exp

�

p

b
y �

py

�py � b

�

.

Denote u = p
b
y with u 	 ( p

b
� , � + p

b
� ] � (�, � + p

b
� ]. Then the above inequality is equivalent

to the following inequality:

F(u) = (�u � �) ln(�u � �) � �u(u � �) < �,

where F(�) = � and by simple calculation yields

F �(u) = �
�

ln(�u � �) + � � �u
�

, and F ��(u) =
�

�u � �
� � < �,

which indicates that F �(u) < F �(�) = �. This shows that if � � b/p, then we have �� < g(y) < �

for all y 	 (� , � + b/p] and consequently the �xed point y� is globally stable.

Case � � < b/p.

For this case, we note that �� < g(y) < � for all y 	 ( b
p
, b

p
+ � ]. Therefore, since we have

g(b/p) = � and in order to prove the global stability of y� for this case, we only need to show

� < g(y) < � for all y 	 (� ,b/p). It is easy to see that g(y) > � holds true for all y 	 (� ,b/p) and

g(y) < � is equivalent to

�� < �
py

b
< W

	

f (y)



.

Thus, according to the de�nition of the Lambert W function the above inequality is equiv-

alent to

�
p

b
y exp

�

�
p

b
y

�

< �
p

b
y exp

�

�
p

b
y +

Ah

b

�

,

which holds true naturally if Ah < �. Therefore, if Ah < �, then we have � � g(y) < � for all

y 	 (� ,b/p], and consequently the �xed point y� is globally stable if � < b/p and Ah < �.

Finally, if � < b/p and Ah = �, then it is easy to see that y� 	 ( b
p
, y�

�) and g(y) = � for all

y 	 (� , b
p
). Moreover, by simple calculation we have W (f (y)) = � py

b
for all y 	 (� , b

p
), which
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means that for any solution initiating from ((��� )VL, y+
�) with y+

� < b/p we have y+
i+� = y+

i +�

if y+
i 	 (� , b

p
). Therefore, there exists a positive integer k� such that y+

k�
	 (b/p, � + b/p] and

y+
i 	 (� ,b/p) for all i < k�. The result follows if we can prove that y+

i 	 (b/p, � + b/p] for all

i � k�. To do this, we need the following result.

Claim If y+
k�

	 (b/p, � + b/p], then we must have y+
k�+� 	 (b/p, � + b/p].

Proof We employ the following two methods to prove the above claim, which are useful

later.

Method �: Note that

y+
k�+� = �

b

p
W

�

�
p

b
y+

k�
exp

�

�
p

b
y+

k�

��

+ �

and y+
k�+� 	 (b/p, � + b/p] is equivalent to

W

�

�
p

b
y+

k�
exp

�

�
p

b
y+

k�

��

< �� +
p

b
� . (�.�)

Thus, if the following inequality:

�

�� +
p

b
�

�

exp

�

�� +
p

b
�

�

> �
p

b
y exp

�

�
p

b
y

�

holds for all y 	 (b/p, � + b/p], then the inequality (�.�) follows. According to the mono-

tonicity of � p
b
y exp(� p

b
y) we only need to show

�(� )
.
=

�

�� +
p

b
�

�

exp

�

�� +
p

b
�

�

+

�

� +
p�

b

�

exp

�

�

�

� +
p�

b

��

> �

for all � 	 (�,b/p).

It is easy to see that �(�) = � and � �(� ) > �. This indicates that y+
k�+� > b/p and by induction

we have y+
i 	 (b/p, � + b/p] for all i � k�.

Method �: In the following we prove that if � < b/p and Ah = � then y� 	 ( b
p

+ �
�
, y�

�). Note

that y� < y�
� has been proved as in Lemma 	.�, and y� > b

p
+ �

�
is equivalent to

y� = �
exp( p

b
� )

exp( p
b
� ) � �

>
b

p
+

�

�
for all � 	 (�,b/p). (�.�)

Rearranging the above inequality yields

�(� )
.
=

�

�

�

exp

�

p

b
�

�

+ �

�

�
b

p

�

exp

�

p

b
�

�

� �

�

> �

with �(�) = �, �(b/p) = ��e > � and ��(� ) > �. This indicates that the inequality (�.�) holds

true. Thus, if y+
k�

	 (b/p, � + b/p], then according to �� < g(y) < � for all y 	 ( b
p
, b

p
+ � ] we

have

�

�y+
k�+� � y��

� =
�

�P
	

y+
k�




�P
	

y�
�
� =

�

�g �(y�)
�

�

�

�y+
k�

� y��
� <

�

�y+
k�

� y��
�,
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where y� 	 (y�, y+
k�

) or y� 	 (y+
k�

, y�). It follows from y� > b
p

+ �
�

and � < b/p that we have

y+
k�+� > b/p. By induction, we conclude that y+

i 	 (b/p, � + b/p] for all i � k�.

Therefore, the �xed point y� is globally stable when Ah = � and � < b/p. Based on results

shown in Cases � and �, we can see that if the conditions of Theorem �.� are true, then

the �xed point y� is globally stable. This completes the proof. �

Remark �.� The above two theorems (Theorem �.� and Theorem �.�) have provided the

detailed analyses for the existence and stability of �xed point y� of the PoincarØ map P(y+
i )

and consequently the order-� limit cycle. Further, we note that the period of the order-�

limit cycle can be analytically determined by using similar methods as those developed in

reference [�].

Corollary �.� Assuming that � > � and A� � �, then the �xed point y� of PoincarØ map

P(y+
i ) for model (�.�) exists and satis�es � < y� < y�

� . Moreover, it is globally stable once it

exists. Consequently, the order-� limit cycle of system (�.�) is globally stable.

Before �nishing this subsection, we would like to address some special cases of the

order-� limit cycle including the existence of an order-� homoclinic cycle, and long or

short order-� limit cycles.

Order-� homoclinic cycle. To address the existence of the order-� homoclinic cycle, we

note that the point P+
� = ((� � � )VL, y�) determined by the �xed point y� of the PoincarØ

map P(y+
i ) must lie in the order-� Homoclinic cycle (as shown in Figure �), where y� is

de�ned by formula (	.�), i.e.

y� = �
exp( p

b
� �

Ah
b

)

exp( p
b
� �

Ah
b

) � �
.

Figure 7 Illustrations of existence of order-1 homoclinic cycle (�h), order-1 long (�l ) or short (�s)

limit cycle.
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Therefore, we have

b ln
	

y�
 � py� �
c

�
ln

	

� + �(� � � )VL




+ � ln
	

(� � � )VL




+ q(� � � )VL = h�. (�.��)

Then the above equation becomes

b ln
	

y�
 � py� = b ln(b/p) � b � Ah� .

Therefore, if y� satis�es the above equation, i.e. all parameters satisfy the following rela-

tion:

y� = �
exp( p

b
� �

Ah
b

)

exp( p
b
� �

Ah
b

) � �
= �

b

p
W

�

��,
p

b
exp

�

b ln(b/p) � b � Ah�

b

��

.
= y�

h,

then for model (�.�) there exists a unique order-� homoclinic cycle �h, as shown in Fig-

ure �.

Order-� long or short limit cycle. Based on the existence of the order-� homoclinic cycle,

we see that if the �xed point y� of PoincarØ map is less than the y�
h and (� � � )VL > x�

� , then

we say that model (�.�) has an order-� short limit cycle �s, as shown in Figure �. While,

if the �xed point y� of PoincarØ map is larger than the y�
h and (� � � )VL > x�

� , then we say

that model (�.�) has an order-� long limit cycle �l , as shown in Figure �. The order-� short

or long limit cycle may play a key role in real problems with state-dependent feedback

control actions, which tells us how frequently the control tactics should be applied or how

to design the control tactics to adjust the period of control actions.

6.3 Boundary order-1 limit cycle and its stability

It follows from Theorem 	.� that if � = � and Ah �= �, then y� = � is a unique �xed point of

PoincarØ map P(y+
i ) (please see Table � for details), which indicates that for model (�.�)

there exists a unique boundary order-� limit cycle with initial condition ((� � � )VL, �).

Therefore, in this subsection, we address its analytical formula and stability. Note that, if

� = � and Ah �= �, then the derivative of the PoincarØ map at y� = � is one, which indicates

that the stability of y� = �, which in this case cannot be determined directly.

In model (�.�), let y(t) = � and � = �, then we have the following subsystem:

�

dx(t)
dt

= bx(t), x < VL,

x(t+) = (� � � )x(t), x = VL.
(�.��)

Solving the �rst equation with initial condition x(�+) = (� � � )VL yields

x(t) = (� � � )VL exp(bt)

and letting VL = (� � � )VL exp(bT) and solving it with respect to T , we have T = �
b

ln �
���

.

Therefore, model (�.��) has a periodic solution, denoted by xT (t) and xT (t) = (� �

� )VL exp(bt) with period T , which means that for model (�.�) there exists a boundary

order-� limit cycle (xT (t), �).

To show its stability, we �rst consider two points P+
� = ((� � � )VL, y+

� ) 	 L	 and Q� =

(VL, y�) 	 L� with y+
� , y� � b/p, which lie in the same trajectory of system (�.�), as shown
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Figure 8 Stability of boundary order-1 limit cycle (xT (t), 0). (A)-(C) Unstable boundary order-1 limit cycle

with VL = 3.2 and Ah = 0.0495; (D)-(F) Stable boundary order-1 limit cycle with VL = 2.2 and Ah = �0.0775. All

other parameter values are �xed as follows: b = 1.8, p = 1.3, c = 0.52, � = 0.1, q = 0.23, � = 0.3, � = 0.8, � = 0.

in Figure �(C) and (F). Moreover, the coordinates of these two points satisfy the following

relations:

Ah =
c

�
ln

�

� + �VL

� + �(� � � )VL

�

� � ln

�

�

� � �

�

� q�VL = b ln

�

y�

y+
�

�

� p
�

y� � y+
�

�

. (�.��)

It is easy to see that y+
� �= y�. Otherwise, if y+

� = y� then Ah = �, which contradicts with

Ah �= �. De�ne function h(y) as h(y) = b ln(y) � py with h�(y) = p( b
p

�
y

� �), which indicates

that h�(y) > � for y < b
p
. Therefore, if Ah > �, then we have

b ln

�

y+
�

y+
�

�

� p
�

y+
� � y+

�

�

> � or b ln

�

y�

y�

�

� p[y� � y�] > �,

here we use y+
� = y� and y+

� = y� due to � = �. That is,

b ln
	

y+
�




� py+
� > b ln

	

y+
�




� py+
� or b ln(y�) � py� > b ln(y�) � py�,

which indicate that y+
� > y+

� and y� > y�.

Similarly, if Ah < �, then y+
� < y+

� and y� < y� must hold true. In conclusion, we have the

following main results for the boundary order-� limit cycle.

Theorem �.� Let � = � and Ah �= �. The boundary order-� limit cycle (xT (t), �) is glob-

ally asymptotically stable for (SC���), and it is locally asymptotically stable for (SC��). The

boundary order-� limit cycle (xT (t), �) is unstable for (SC��) and (SC�).
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Proof For case (SC���), we assume, without loss of generality, that any solution initiating

from phase set N� experience in�nite impulsive e
ects, i.e. we have y+
k 	 (�,Y h

is] for all

k � �. Since Ah < �, it follows from the above discussion that by induction we conclude

that y+
k is a strictly decreasing sequence with limk�� y+

k = y�. Moreover, y� = � must hold,

otherwise it contradicts the uniqueness of y� = � in this case. Thus, the boundary order-�

limit cycle (xT (t), �) is globally attractive.

So in order to prove Theorem �.�, we only need to show that it is asymptotically stable.

To do this, by using Lemma A.� we denote bx(t)�px(t)y(t)
.
= P(x, y) and cx(t)y(t)

�+�x(t)
�qx(t)y(t)�

�y(t)
.
= Q(x, y), then

�P

�x
= b � py,

�Q

�y
=

cx

� + �x
� qx � �,

�a

�x
= �� ,

�a

�y
=

�b

�x
=

�b

�y
= �,

��

�x
= �,

��

�y
= �

and �� = P+/P = � � � . Thus


 T

�

�

�P

�x
+

�Q

�y

�

dt =


 T

�

�

b +
cxT (t)

� + �xT (t)
� qxT (t) � �

�

dt

= (b � �)t �
(� � � )qVL

b
exp(bt) +

c

�b
ln

�

� + �(� � � )VL exp(bt)
�
�

�

T

�

= (� � �/b) ln
�

� � �
�

q�VL

b
+

c

b�
ln

�

� + �VL

� + �(� � � )VL

�

= ln

�

�

� � �

�

+
�

b
Ah.

Therefore,

|µ�| = (� � � ) exp

�

ln

�

�

� � �

�

+
�

b
Ah

�

= exp

�

�

b
Ah

�

,

which indicates that the boundary order-� limit cycle is orbitally asymptotically stable and

enjoys the property of asymptotic phase if Ah < �. Thus, the boundary order-� limit cycle

is globally stable if � = � and Ah �= � in case (SC���).

The local stability of the boundary order-� limit cycle for (SC��) is obvious due to the

domain of the phase set. The instability of the boundary order-� limit cycle for (SC��) and

(SC�), is shown since Ah > �, y+
k is a strictly increasing sequence and the solution will be

free from impulsive e
ects after �nite state-dependent feedback control actions, as shown

in Figure �(C). Thus the results are true. �

Remark �.� It is interesting to note that if we let � = � and Ah be a bifurcation parameter,

then the unique boundary order-� limit cycle is stable when Ah < �, and there exists a

family of order-� periodic solutions when Ah = �. As Ah increases and goes beyond zero

(i.e. Ah > �), then the boundary order-� limit cycles disappear. These results indicate that

if � = �, then the PoincarØ map P(y+
i ) undergoes a Fold bifurcation at (y�,Ah) = (�, �).
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Figure 9 The plots of Ah1
, Ah , and µ as VL varies for different � . All other parameter values are �xed as

follows: b = 1.8, p = 1.3, c = 0.52, � = 0.1, q = 0.23, � = 0.3, � = 0.8.

Moreover, if the Ah is considered as a function of VL, then there are two critical values V ��
L

and V ��
L such that Ah = �, as shown in Figure �.

To con�rm the main results obtained in Theorem �.�, we �xed the parameter values as

those in Figure �, and we can see that if Ah > �, then the impulsive points and its phase

points of trajectory shown in Figure �(C) are two monotonically increasing sequences, and

eventually the trajectory approaches a closed orbit which frees it from impulsive e
ects.

While if Ah < �, then the impulsive points and its phase points of trajectory shown in

Figure �(F) are two monotonically decreasing sequences, and eventually the trajectory

tends to the boundary order-� limit cycle (xT (t), �).

Corollary �.� If � = � and A� �= �, then there exists a unique boundary order-� limit cycle

(xT (t), �) for model (�.�). Furthermore, if A� > �, then the order-� limit cycle (xT (t), �) is

unstable; if A� < �, then the order-� limit cycle (xT (t), �) is globally asymptotically stable.

7 Flip bifurcation and existence of order-2 limit cycle

Investigating the existence or non-existence of the limit cycle with order no less than � for

models with state-dependent feedback control is challenging, but this problem has been

addressed for some special cases [�]. Thus, in the following two sections we will focus on

the existence and non-existence of order-� limit cycles for model (�.�) and provide some

su
cient conditions or necessary conditions on this topic.

According to the stability analyses of the �xed point y� of the PoincarØ map P(y+
i ) that

if � > � and Ah � �, then the �xed point y� is locally stable or globally stable once it exists.

However, it follows from Theorem �.� that if � > �, Ah > � and y� exists, then the �xed
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point y� of the PoincarØ map P(y+
i ) is locally stable provided

y� <
b + p� +

�

b� + p�� �

�p
= y�

�. (�.�)

Therefore, we can de�ne the following �ip bifurcation curve with respect to threshold

value VL when � > � and Ah > �:

µ(VL) = y� �
b + p� +

�

b� + p�� �

�p
= y� � y�

�, (�.�)

which indicates that if µ = �, then we have g(y�) = ��, and the positive �xed point y� loses

its stability at µ = �. In order to consider the existence of a �ip bifurcation of model (�.�),

we choose the threshold VL as a bifurcation parameter and de�ne G(y,VL) = P(y+
i ) as the

one parameter maps, correspondingly we denote f (y, VL) = � p
b
y exp(� p

b
y +

Ah
b

). Then we

�rst solve the equation µ(VL) = � with respect to Ah, yielding

Ah =
c

�
ln

�

� + �VL

� + �(� � � )VL

�

� � ln

�

�

� � �

�

� q�VL = p� � b ln

�

y�
�

y�
� � �

�

> �. (�.�)

Now we discuss the existence of positive roots of the above equation with respect to VL

and consequently the positive roots for the equation µ(VL) = �. To show this, we denote

FA(VL) =
c

�
ln

�

� + �VL

� + �(� � � )VL

�

� � ln

�

�

� � �

�

� q�VL

and we have the following results.

Lemma �.� Let V �
L = ��q+q�+

�
B

�(��� )q�
with B = ��q� + �qc � ��qc. If Ah > �, then there are two

positive roots of the equation FA(VL) = �, denoted by V ��
L and V ��

L , such that FA(VL) > � for

all VL 	 (V ��
L , V ��

L ). Further, if FA(V �
L ) > p� � b ln(

y�
�

y�
���

), then the equation µ(VL) = � exists

with two positive roots, denoted by V ��
L and V ��

L (as shown in Figure �), and V ��
L < V ��

L <

V ��
L < V ��

L . Moreover, F �
A(V ��

L ) > � and F �
A(V ��

L ) < �.

Proof It is easy to see that FA(�) < � and FA(+�) = ��. Taking the derivative of FA(VL)

with respect to VL yields

F �
A(VL) =

� [c � q(� + �VL)(� + (� � � )�VL)]

(� + �VL)(� + �VL � ��VL)

and solving F �
A(VL) = � yields two roots V �

L , V �
L with

V �
L =

��q + q� �
�

B

�(� � � )q�
, V �

L =
��q + q� +

�
B

�(� � � )q�
,

where B = ��q� + �qc � ��qc. Note that V �
L < ��

(��� )�
< ��

�
< �, thus only the V �

L may be the

desirable maximal extreme point of the function FA(VL). Moreover, V �
L > � is equivalent

to

��q + q� +
�

B > �.
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Rearranging the above inequality we have: if c > q, then V �
L > � holds true. This indicates

that if x�
� and x�

� exist (i.e. c � q � �� > �
�

q��), then for the function FA(VL) there always

exists a unique maximal extreme point V �
L . Thus, the results for the function FA(VL) and

the function µ(VL) are correct. �

Theorem �.� Assuming that � > �, Ah > �, y� exists and FA(V �
L ) > p� � b ln(

y�
�

y�
���

), then the

family G(y,VL) undergoes a �ip bifurcation at (y�
�, V ��

L ), while the family G(y,VL) cannot

undergo a �ip bifurcation at (y�
�,V ��

L ).

Proof It is easy to see that G(y�
�,V �

L ) = y�
� for V �

L = V ��
L and V �

L = V ��
L . Further

�G(y,VL)

�y

�

�

�

�

(y,VL)=(y�
� ,V�

L )

= �
b

p

W (f (y,VL))

� + W (f (y,VL))

�

�

y
�

p

b

�
�

�

�

�

(y,VL)=(y�
� ,V�

L )

= ��,

��G(y,VL)

�y �VL

�

�

�

�

(y,VL)=(y�
� ,V�

L )

= �
F �

A(VL)(b � py)

bpy

W (f (y,VL))

[� + W (f (y,VL))]�

�

�

�

�

(y,VL)=(y�
� ,V�

L )

=
bF �

A(V �
L )(b � py�

�)(y�
� � � )

y�
�[b � p(y�

� � � )]�
.

It follows from the relations � < y�
� < � +b/p that y�

� �� > � and b�p(y�
� �� ) > �. Therefore,

according to the signs of F �
A(V ��

L ) and F �
A(V ��

L ) we have ��G(y,VL)
�y �VL

|(y,VL)=(y�
� ,V��

L ) < � provided

y�
� > b/p and �G�(y,VL)

�y �VL
|(y,VL)=(y�

� ,V��
L ) < � provided y�

� < b/p. Further, if Ah > �, then y� = y�
� > b

p
,

and it follows from Lemmas A.�-A.� that the family G(y,VL) undergoes a �ip bifurcation

at (y�
�,V ��

L ). In contrast, the family G(y,VL) cannot undergo a �ip bifurcation at (y�
�,V ��

L ).

This completes the proof. �

To address the stability of a �ip bifurcation (supercritical or subcritical bifurcation), we

need to calculate ��G�

�x� (y,VL) and to determine its sign at (y�
�,V �

L ), which is quite complex.

Thus, we turn to, equivalently, a calculation of the Schwarzian derivative of the map M(x),

which is de�ned as follows [������]:

SM(x) =
M���(x)

M�(x)
�

�

�

�

M��(x)

M�(x)

��

.

By complex calculation, we have (denote W� = W (f (y�
�,V �

L )))

SG
	

y�
�




=
�p�(y�

�)�[(py�
� � �b)� + �b�](� + �W�) � b�(�py�

� � b)W �
� [(W� + �)� + �]

b�(y�
�)�(b � py�

�)�(� + W�)�
,

which indicates that if SG(y�
�) < � (i.e. ��G�

�x� (y�
�,V ��

L ) < �), then the family G(y,VL) undergoes

a supercritical �ip bifurcation at (y�
�,V ��

L ); If SG(y�
�) > � (i.e. ��G�

�x� (y�
�,V ��

L ) > �), then the

family G(y,VL) undergoes a subcritical �ip bifurcation at (y�
�, V ��

L ).

As an example, we choose the parameter values as shown in Figure ��, then we have

V ��
L = �.���, V ��

L = ��.	��, and y� = �.		��. Moreover, x�
� = ��, x�

� = �.���, Ah = �.���,

Ah� = �.�	�, Y h
min = �.���,Y h

max = �.�	�, Y
h�
min = �.���, Y

h�
max = �.���, and � + b/p = �.���.

This indicates that the phase set is de�ned by N h
� and y� 	 [Y h

max, � + b/p] with VL = � < x�
� .
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