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been provided. We further examine the ip bifurcation related to the existence of an
order-2 limit cycle. We show that the existence of an order-2 limit cycle implies the
existence of an order-1 limit cycle. We derive su cient conditions under which any
trajectory initiating from a phase set will be free from impulsive e ects after nite
state-dependent feedback control actions, and we also prove that order-k (k ~ 3) limit
cycles do not exist, providing a solution to an open problem in the integrated pest
management community. We then investigate multiple attractors and their basins of
attraction, as well as the interior structure of a horseshoe-like attractor. We also
discuss implications of the global dynamics for integrated pest management strategy.
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1 Introduction
This study concerns the global dynamics of semi-dynamical systems with state-dependent
feedback arising from modeling integrated pest management (IPM) [  ]. The challenge
for the study of the systems global dynamics is due to the state-dependent impulsive con-
trol.

Impulsive semi-dynamical systems arise from many important applications in the life
sciences including population dynamics (biological resource and pest management pro-

grams, and chemostat cultures) [ ], virus dynamics (HIV) [ ], medicine and phar-
macokinetics (diabetes mellitus and tumor control) [ ], epidemiology (vaccination
strategies, the control of epidemics and plant epidemiology) [ ], and neuroscience
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[ ]. In some applications such as spraying pesticides and releasing natural enemies
for pest control and impulse vaccinations and drug administrations for disease treatment
[, , , ] theimpulsive control is implemented at xed moments to re ect how

human actions are taken at xed periods. In some applications, however, impulsive di er-
ential equations with state-dependent feedback control have to be used to model density-
dependent control strategies[ , , , , , ] Inparticular,inan integrated pest manage-
ment (IPM) strategy, actions are taken only when the density of pests reaches an economic
threshold[ , ]. Feedback control strategies have also been applied indi erent eldsin
quite di erent ways [ 1

There has also been substantial theoretical development for impulsive semi-dynamical
systems [ ]. Techniques including the Lyapunov method have been developed to
study the stability and boundedness of solutions for impulsive di erential equations with

xed moments, with applications in many important areas[ , ]. Despite a few inter-
esting studies on more complicated dynamics such as limit cycles [ ], invariant and
limiting sets [ ], LaSalles invariance principle [ ] and the Poincar@-Bendixson the-
orem[ , ], muchremainsto be done forthe qualitative theory, and especially the global
dynamics, of impulsive semi-dynamical systems. This is particularly so for impulsive dif-
ferential equations with state-dependent feedback control.

Some prototype models with biological motivation are needed to guide the development
of a general qualitative theory of semi-dynamical systems with state-dependent control.
A good example in the series of models motivated by integrated pest management (IPM)
[ 1 where the classical Lotka-Volterra model with state-dependent feedback control is
used and some novel techniques for the existence and stability of an order- limit cycle,
non-existence of limit cycles with order no less than , the coexistence of multiple attrac-
tors and their basins of attraction are developed. The modeling framework and the de-
veloped analytical techniques have been used in a number of recent studies. For example,
Huangetal. [ ] proposed mathematical models depicting impulsive injection of insulin
for type and type diabetes mellitus, and considered the existence and local stability
ofan order- limit cycle. Based on biomass concentration-dependent impulsive perturba-
tions, the studies[ , ] proposed and analyzed chemostat models with state-dependent
feedback control, again focusing on the existence and stability of an order- limit cycle.
These studies also found that the models have no limit cycles with order no less than
Thework[ , ]also considered the existence and stability of limit cycles with di erent
orders, in relation to the biological issue of maintaining the density of an infected plant
population below a certain threshold level. See also similar work on population dynamics
L. . ] and epidemiology [ ]. These studies, however, focused on the existence
and local stability of an order- limit cycle for speci c cases.

Here, we develop novel analytical techniques in order to understand the global dynamics
of a very general class of impulsive models with state-dependent feedback control, com-
monly used in a number of biological applications including IPM. In particular, we address
the following issues and explore their biological implications:

the precise information as regards the domains of impulsive sets and the phase sets,
and the domains for the Poincar@ map of impulsive point series;

the global stability of order- limit cycles (including boundary order- limit cycles);

the existence of order- limit cycles and non-existence of limit cycles with order no
less than , an open problem listed in [ ];
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the necessary condition for the existence of order- limit cycles, and the relation
between the existence of order- limit cycles and order- limit cycles;

the precise information on parameter space for the nite state-dependent feedback
control actions, crucial for designing threshold control strategies;

the description of smaller attractors, their basins of attraction and how they are
related to phase sets and interior structures of horseshoe-like attractors.

2 The model with state-dependent feedback control
A threshold policy can be de ned in broad terms as follows: control (grazing, harvesting,
pesticide application, treatment etc.) is suppressed when a speci ¢ species abundance is
below a previously chosen threshold density; above the threshold, control is applied. Its
application can be seen in wide areas. For an IPM strategy, a long-term management strat-
egy that uses a combination of biological, cultural, and chemical tactics to reduce pests to
tolerable levels, actions must be taken once a critical density of pests (economic threshold,
ET) isobserved in the eld so that the economic injury level (EIL) is notexceeded [ ,
], as shown in Figure . Note that EIL and ET are important components of a coste ec-
tive IPM program and are useful for decision-making in the applications of pesticides[ |,
]. For chemostat setting, when the lactic acid concentration in the bioreactor reaches
the critical level, the appropriate control measures (extraction, dilutedness, etc.) should
be used such that the concentration of the substrate and the lactic acid change instanta-
neously [ ]. Similarly, once the concentration of the tumor cells reaches the therapeutic
threshold level in tumor tissue, a combination of photodynamic therapy and sonodynamic

therapy should be used [ ]. Moreover, including CD * T cell counts and/or viral load
level, state-dependent guided antiretroviral therapy has been widely used in HIV [ 1
hepatitis B virus, and hepatitis C virus treatment [ 1

Let x and y be the densities of the pest and its natural enemy populations. The integrated
control interventions are implemented once the x grows and reaches the threshold level.
Denoting the threshold level as V|, the state-dependent impulsive di erential equations

+ + EIL

Number of insects

Time

Figure 1 Illustration of IPM program. Economic Injury Level (EIL) = lowest population density that will
cause economic damage. Economic Threshold (ET) = population density at which control measures should
be determined to prevent an increasing pest population from reaching the EIL. The arrow indicates the point
where pest levels exceeded the ET and an IPM strategy would be applied.




Tang et al. Advancesin Di erence Equations (2015) 2015:322 Page 4 of 70

are

=i xOK ax(t) pxoyo.
YO = OO ax(ty(t)  y(), L
X(t)=( (),

y(t) =y +

X=V.,

where x(t*) and y(t*) denote the numbers of pests and natural enemies after a control
strategy applied at time t, and x( *) and y( *) denote the initial densities of pest and nat-
ural enemy populations. Throughout this paper we assume that the initial density of the
pest population is always less than Vi, ie. x( *)=x <V, y( *)=y > . Otherwise, the
initial values are taken after an integrated control strategy application.

For the model without control strategy in ( . ), r represents the intrinsic growth rate
of the pest population, k represents the carrying capacity. The pest population dies at a
rate ax and is predated by the predator population at a rate pxy. The predator response
expands at a rate ffyx, which is a saturating function of the amount of pest present. The
prey population also inhibits the predator response at a rate gxy, which is the so-called
anti-predator behavior, and in the absence of the pest declines at a rate y. Note that all
parameters shown in model ( . ) are non-negative constants.

Many experiments show that the predator and prey populations can reverse their roles,
whereby adult prey attack vulnerable young predators [ ], the so called anti-predator
behavior. If the variables x and y in model ( . ) describe the prey and predator populations,
then the term gxy represents the e ects of the prey population on the predator popula-
tion, i.e. the prey can kill their predators. Simple predator-prey models with anti-predator
behavior have been studied[ , 1.

In model ( . ) < isthe proportion by which the pest density is reduced by killing
or trapping once the number of pests reaches V|, while is the constant number of natural
enemies released at this time t. Di erent releasing methods including a proportion for
the release rate rather than a constant number can be used inmodel (. )[, , ] In
order to control the pest we assume, throughout the paper, that % if = (froma
biological point of view, su  cient of the natural enemies must be released to prevent the
pest population exceeding V_, i.e., by maintaining % < (for some time) and > if

= . Such a strategy ensures that x(t) is a decreasing function of time once the pest
population reaches the V.

It is interesting to note that this model can be commonly used in depicting (i) the anti-
predator behavior of the interaction between pest and its natural enemies, as shown above;
(ii) the interaction between the virus population (such as HIV) and its immune cells[ ];
(iii) the cytotoxic T lymphocyte response to the growth of an immunogenic tumor [ ];
and (iv) the interaction between a toxic phytoplankton population and a zooplankton pop-
ulation[ , 1

We use this widely used model ( . ) to illustrate systematic methods for investigating
global dynamics, and address the basic problems related to models with state-dependent
feedback control (i.e. state-dependent impulsive e ects). Of most interest, are questions
of how the instant killing rate , releasing constant and threshold parameter V| a ect
the dynamics of model ( . )? To address this question completely, we choose those three
parameters as bifurcation parameters and x all others aiming to comprehensively inves-
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tigate the qualitative behavior of model ( . ), of particular interest in the dynamics listed
in the Introduction.

Note that this work will focus on model ( . ) with state-dependent feedback control,
aiming to maintain the density of x below the previous given threshold level. Thus, it is
reasonable to assume that the population x could grow exponentially before reaching the
threshold level as the threshold value is relatively small compared with the carrying ca-
pacity, i.e.wecanletk + |, then model ( . ) becomes

O = bx(t) px(Ey(L),

<V,
YO = OO ax(ty(t)  y(), . o)

x)=( (),

+ X=V|,
yt)=y®+ ,
withb=r a.
Some special cases of model ( . ) have beeninvestigated[ , , ] Forexample,let =

and q= ,then model ( . ) becomes

O = px(t)  px(t)y(t),
YO = ex)y(t)  y(),
XA)=( (),

ye)=yo+ .

which has been investigated by Tang and Cheke [ ], and we will see that all results related
to model ( . ) can be easily obtained based on the results for model ( . ).

3 The ODE model and its main properties
The ODE model considered in this work becomes

O = hy(t)  px(t)y(t) = P(x,y),
YO = OO gu(tyy®) () =Qx.Y).

It is easy to see that for model ( . ) there exists a trivial equilibrium ( , ) and the interior
equilibrium (x ,y ) satis esy = % and x is the root of the following equation:

qgx +(c+g+ )X+ =,

which indicates that

cq — (€ q ) 9
q

X =

Therefore, there are two interior equilibria, denoted by

c + (c b
E = x.y, q (qq ) 9 K ()

and

Page 5 of 70
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provided thatc ¢ > and =( ¢ ) g > . Therefore, if
caq > q ., ()

then there are two interior equilibriaE and E . Moreover, the two roots collide together if
c q = g . Throughout this work we assume that the condition ( . ) holds true.
It is easy to show that E is a saddle pointand E is a center.

It follows from model ( . ) that we have

dy_y s ()
dx x b py ' '
which implies that model ( . ) possesses the rst integral
X c Y b
H(x,y) = ) " Z q dz ) - p dz
That is, we have
H(x,y)=bln(y) py Eln( + X)+ In(x)+gx=h, ()

where h is a constant. In order to solve the equation H(x,y) = h with respect to y, the
Lambert W function and its properties[ ] are necessary throughout the paper, for details
see the Appendix.

Thus, according to the de nition of the Lambert W function and solving H(x,y) = h with
respect to y yields two roots

_ b p cin( + x) In(x) q x+h
yL= pW p &XP b

and

p cin( + x) Inx) g x+h
bexp b

y_bW
u= g ,

Again, according to the domains of the Lambert W function we require

Eexp cin( + x) bIn(x) g x+h 6

to ensure that y, and yy are well de ned. So we rst consider the following equation:

cin( + x) In(x) q x+h be
=ln —
b p

cn( + x)  In()=q x h +b In beT
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Denote
FX)=cIn( + x) In(x)
and

FM=q x h +b |nbeT.

By simple calculation we have

_c .
(+ x X

F )= T 3 X F (x)=

andsolving F (x) = with respect to x yields the extreme point, denoted by Xyn = -—, and

Xm > holdstrueduetoc g > . F (X)=q .SolvingF (x)= vyieldstwo in ection
points, denoted by x, and x, , and

+ C C
X\ =—— X =

c ) c )
with X; <Xm <X;.

Moreover, itiseasy toseethatlimy +F (X)=+ ,andsolvingF (xX) =F (x) with respect
to x yields two roots (as shown in Figure ), which are exactly the abscissas of two interior
equilibriaE andE ,i.e.

L ¢4 —(Ca ) q
| q

F1 (x) and Fz(x)

20 25

Figure 2 The roots of F1(x) = F2(x) with respect to different h values, where parameter values are xed
asfollows:b=0.3,p=1,¢c=052, =0.2,q=0.2, =0.05h; = 1.4429,andhy = 0.8027.

Page 7 of 70
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Denote

h =blny py EIn + x + Inx +0gx
=bln(o/p) b Zin + x + Inx +gx

=bln be /p EIn + x + Inx +gx
and

h =blny py EIn + X + Inx +gx

=bin be /p EIn + X + Inx +gx.
The family of closed orbits is
h= (XY)IHXY)=hh <h<h , (.)

moreover, 1, converts to the equilibrium pointE ash  h ,and y becomesthe homo-
cliniccycleash h.

Therefore, the two curves F (x) and F (x) are tangentat x=x orx=x ,i.e.h=h or
h=h . If we choose h as a bifurcation parameter, then the domains of two branches of y,
and yy can be determined as follows:

Ifh <h<h ,then there are three intersect points between two functions F (x) and
F (x), denoted by Xmin, Xmid, and Xmax, as shown in Figure . For this case, the two
branches of y_ and yy are well de ned forall X  [Xmin, Xmig] [Xmax,+ ) With

Y % Yu, as shown in Figure .

Figure 3 Two branches of y. and yy with respect to different h values and the diagram for
Theorem 3.1.
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Ifh  h orh h,then there exists a unique intersect point between two functions
F (x) and F (x), denoted by Xmin. For this case, the two branches of y, and yy with
YL g yu are well de ned for all X  [Xmin, + ), as shown in Figure .

Similarly, for any solution x = x(t), y = y(t) of system ( . ) initiating from (x ,y ) satis es

the relation
X c Y b
.+ 2z 7z dz= , Z p dz ()
That is, we have
c + x(t) X(t) y(t)
ly In — t =bln 2= t , _
N —x n—— ax@® x N Py ()
bin(y) py EIn( + x)+ In(X)+gx=h (. )

withh =bin(y) py <In( + x)+ In(x )+gx .
In particular, if =qg= |, then the model becomes the classical Lotka-Volterra model,
and the unique interior ( /c,b/p) is a center. The rst integral is as follows:

y _ x
bin v ply yl=cx x] In " (.)
i.e. we have

bin(y) py+ In(x) cx=bin(y) py + In(x) cx.

The following theorem is useful for discussing the existence of multiple attractors of
models with state-dependent feedback control proposed in this work.

Theorem . LetstraightlineL through point (x ,y,) be parallel to the x axis, as shown in
Figure . Take any pointP (or Q )inL, draw the line L through P (or Q ), perpendicular
toL . Choose apointP (orQ)inLsuchthat|P P|= > (or|Q Q|= > ), andthen
there exists a unique trajectory of system ( . ) through point P (or Q ) and it intersects
another point P (or Q ) in L. Then we must have |P P | = [PP|(r|QQ]|=

|Q Q |), where | «| denotes the length of the line segment. Similar results can be had for the
trajectory through point P (or Q ), as shown in Figure .

Proof Note thatthere are threedi erenttrajectories shown in Figure ,so in the following

the closed orbits are chosen to illustrate Theorem . , and the other two cases can be

proved similarly. Therefore, taking any closed orbit as shown in Figure (A) which contains

the center point E , and the closed orbit divided into two branches by the line y = b/p:

the upper branch (denoted by Uyp) and the lower branch (denoted by Lp). Let =x X,
=y b/pie,x= +x > ,y= +b/p> ,then model ( . ) becomes

d () — dx(t) _
PO =20=p(+x) (,
d@ _dyt)y - (+b/plgqg +caqg ) qx] (,) ()
dt — dt — + (+X) v

1
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-

Figure 4 lllustration of transformations used in proof of Theorem 3.1.

which implies that

d _ (+bplag +c a ) gx]
d b (+x)(+ (%) FC) ¢-)

Meanwhile, the L, shown in Figure (B) satis es the following scalar di erential equa-
tion:

(. )_ C +bplg +( g ) qx]
¢, ) p(+x)(+ (+x))

Note that > , +x > ,and (¢ q ) gx= (c ¢ ) g ,andit
is easy to know that F( , )>f(, )for < ,F(, )<f(,)for < <x x =

(c g ) g /(q ).Further,we have F( , ) andf( , ) as

Therefore, if we can show that the curve Uy, lies above the curve Ly at the right hand
side of point A and left hand of point B for all < (as shown in Figure (B)), then,
according to the comparison theorem of ODE, the whole curve U, must lie above the
whole curve Ly and the results follow. In the following we only prove the curve Uy lies
above the curve Ly, at the right hand side of point A. To do this, we rotate Figure (B)
degrees clockwise about the origin, as shown in Figure (C), and then denote u= and
v=, which yields Figure (D). Consequently,( . )and( . )become

dv _ _
du~ F(,) F(wvu)
pu( v+x )( + (v+x))

v(u+b/p)[q v+(c q ) 9 x]

g(u,v) (.)
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and
dv _ _
du” f(,)  f(wvu)
pu( v+x )( + (v+x))
v(u+b/p)lg v+(c g ) g x]

G(u,v). (. )

Similarly, at the point Awe havev< and <u ,and then < u+b/p<u+b/p.
Therefore, we have g(u,v) <G(u,v) for <u andv< ,andg(u,v) =G(u,v) foru=
and v< . So if we choose the initial point A with (u ,v )=( ,v ), then according to the
second comparison theorem of ODE the results are true.

Corollary . If = andqg= ,thenmodel ( . ) reduces to the classical Lotka-Volterra
model, and we conclude that the results shown in Proposition . of reference [ ] are true.

4 Impulsive set, phase set, and Poincar@ map

In order to employ the ideas of the Poincar@ map or its successor function to address the

existence and stability of order-k limit cycles, we must know the exact conditions under

which the solution of model ( . ) initiating from (x*,y*) N isfree fromimpulsivee ects,

i.e. the more exact phase set N should be provided. Moreover, for the impulsive set M,
y % is the maximum interval for the vertical coordinates of M. Thus, we also want

to know the exact interval, i.e. in which part of y % the solution of model ( . ) cannot

reach and then the exact domains of the impulsive set can be obtained.

Based on the position of V| for xed we consider the following three cases:

(C) VL x; (C) x <V <x and (C) V. x. (.)

Further, the three quantities Ay, , An, and A are useful throughout the rest of the paper,
which are de ned as

Ay =Sm — X m —>  gx ( WV ()
" + (W ( W L '
_ + Vi
Apn=—1In P Wi In — q V. (.)
and
C + X X
A =—In TV, In V_L gx V. =An A (.)

Based on the signs of A, , A, and A , we can discuss of the domains of the impulsive
set and the phase set of model ( . ). To show this, we let x be the horizontal component
of the small intersection point (denoted by E = (x , b/p)) of the homoclinic cycle | with
theliney = b/p (Figure (A)),and x be the horizontal component of the intersection point
(denoted by E = (x ,b/p)) of the closed trajectory 1, which is contained inside the point
E andistangenttothelineL atpointT with T =(V,, g), as shown in Figure (B). Thus,
we have X <x  x <X . For the third case (i.e. (C )), any solution initiating from the
phase set N will experience in nite pulse e ects, which means that the impulsive set and
phase set for case (C ) can easily be de ned and obtained.
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Figure 5 lllustrations of the domains of the impulsive set and the phase set for cases (C1) and (C3).
(M)VL xpandx; (1 VL X (B)x, <Vi<xpandx, <(1 V.

4.1 Impulsive set
There are two subsets M and M of the basic impulsive set M which are needed for
providing the exact domains of the impulsive set of model ( . ), where

M = (xy) Rlx=Vy, y Y] ()

and
h

M = (xy) Rix=VL, 'y Yy, (.)
where

h b +Ah h A

YiS:BWeF, Y = =W e F (.)
with Ay and A . Moreover, we have M =M once A, = ,and M =M once
A =

Lemma . Forcase(C ),if(  )Vo<x or(  )VL>x ,thentheimpulsivesetisde ned
by M ;ifx  ( )VL  x then the impulsive set is de ned by M . For case (C ), if
( )VL X, then the impulsive set isde ned as M ;if ( VL >Xx , then the impulsive
setis de ned by M. For case (C ), the impulsive set is de ned by M .

Proof We rst consider case (C ). If ( )VL <x , then there exists a curve  which is
tangent with lineL (de nedasx=(  )V.)atpoint((  )V.,b/p), where the curve
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can be determined as follows:
binGy) py —In( + x)+ IN)+gx=blno/p) b ~In + ( W
+ In( )V +q( VL (.)

For this case, the line L (i.e. x = V) will intersect with the curve  at two points, denoted
by Q and Q , and the vertical coordinates of both points are the two roots of the following

equation:
bin(y) py=Dbin(b/p) b+ Ay, (.)
i.e. we have
p p +An
— pY = o
bye e |

which can be solved by employing the Lambert W function, i.e. if A, then we have

Yir;:%Weﬁbﬂ’ Yls:gw e (. )

Thus, if ( )V <X , then the impulsive setis de ned by M . If so, no solution of model
(. ) initiating from the phase set can reach into the interval (Yi*s‘, b/p].

Ifx (  )VL x ,thenthelineL intersectswith the right branch of the homoclinic
cycle H(x,y) = h at two points, denoted by Q = (V| Y,hS Yand Q =(V|, Yiz ) (as shown in

Figure ), where Y,'; and Yi'; are two roots of the following equation with respect to y:
bin(y) py=bin(b/p) b A.

Solving the above equation with respect to y yields two roots as follows:

vi=2woe ¥, vi= 2w e §. ()
p p
Therefore, if X ( )VL X, then the impulsive set can be de ned by M . If so, no
solution of model ( . ) initiating from the phase set can reach the interval (Yiz ,b/p].
If( )V >x , then by using the same methods as subcase ( )VL <x theimpulsive
set is de ned by M . Similarly, we can prove the results for case (C ) and case (C ) are

true.

4.2 Phase set

The exact domains of the phase set depend on the domains of the impulsive set and
whether the solution of model ( . ) initiating from (x*,y*) N is free from impulsive
e ects or not. Thus, to discuss the domains of the phase set, we de ne Y, and Y, related
to the interval Yp (here Yo =[ ,b/p+ ]) as the following two intervals:

Yo= Yo+ Yp= ,Yi2+ : (.)
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We rst address under which conditions the solution of model ( . ) initiating from
(x*,y") N will be free from impulsive e ects, and then provide the exact domains of
the phase set for each case.

Lemma . Forcase(C),ifx ( )VL x ,thenanysolution initiatingfrom (x*,y")

N with y* [Yr:‘]in,Y,?]ax] will be free from impulsive e ects, where
b An b An
Yr:in: BW e b, Yrgax: BW & b ( : )

Moreover, x <( VL <X An > ,and Ay = at( VL =x and ( WL=x.
Proof Note that the curve of homoclinic cycle 1 can be described as follows:
h i HXYy)=blinly) py Eln( + )+ In(x)+gx=h. (.)

Substituting y = b/p into the above equation, one can see that x satis es the following
equation:

X
In — qgx x=.

. C
FX=—1In —— <

Taking the derivative of F (x) with respect to x yields

F ()= +q+;

X
and solving F (x) = yields two roots x =x and x = x . It is easy to see that F (x ) =
F (x )= .Thisindicatesthat F (x)> forallx (x,x) (x,+ ).

In this case, the line L must intersect with the homoclinic cycle  at two points, de-
notedby P =(( VL, Yma)andP =((  )VL, Y ), which are the two roots of (. )
with respect to y for x = ( )VL. In fact, substituting x = ( )V into (. ) and rear-
ranging it yield

bin(y) py=bin(b/p) b As,
i.e. we have

An
Y= ¢ .

olo

oo

ye

Solving the above equation with respect to y yields two roots which are given by ( . ).
Moreover, both P and P are well de ned due to Ay, =F (( ) for all x

( )VL x .Thus,any trajectory initiating from (x*,y*) N with Yr:‘]in v Y e will
be free from impulsive e ects.

Therefore, forcase (C ) (ie. VL. x),ifx ( )VL X ,the phase set can be de ned
as follows:

N = x'y' RIX'=( VLY Y§ (.)
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with
Yo = Ymin o Yewt Yo (.)

' ' min max!

If ( WL <x or( )VL > X , then the phase set for model ( . ) isde ned as
N = X+vy+ R+|X+ = ( )Vl_,y+ YD . ( . )

Moreover, any solution initiating from phase set N will experience in nite state-
dependent feedback control actions.

Lemma . Forcase(C ),ifx <( )V, then any solution initiating from (x*,y*) N

withy* (YR YR ) will be free from impulsive e ects, where

b Ap b An
Yr!r]\in = BW € b, le'r11ax = BW € b (. )
Moreover, x <( WL Ap> ,andAp= at( WVL=x.

Proof The closed orbit 1, forh <h<h which is contained inside the point E and tan-
gent to the line L can be determined as follows:

ni HY)=bIng) py <In( + x)+ In6)+ax=h (. )

withh=blIn(/p) b <In( + V.)+ In(VL)+qV,.
Similarly, substituting y = b/p into the above equation, one can see that x should be the
smallest root of the following equation:

+ X

Vi

Fo)=Sin n =E v 0=

Moreover, we have F (x )=F (x )= . Thisindicates that F (x)> forallx (x ,V.).
Further, the line L mustintersectwith  attwo points, denotedbyP =(( )V, Y1)
and P =(( )VL,Y,?,m), which are the two roots of ( . ) with respect to y for x = (
)V and can be obtained by using the same methods as those in the proof of Lemma . .
Moreover, both P and P are well de ned due to A, =F (( WD) forallx (
)VL. Therefore, any trajectory initiating from (x*,y*) N with Y. <y* <Yl will be
free from impulsive e ects.

Therefore, for case (C ) (i.e. x <V <x),ifx <( )VL, then the phase set can be
de ned as follows:

N"= x"y" Rx'=( Vuy" Y5 (. )
with

o= ,Yh Yoo+ Yp. (.)

min max’
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Table 1 Exact domains of the impulsive set and phase set of model (2.2)

Cases (1 V. Impulsive set  Phase set
(C]_) 1 )V|_ < X3, (l )V|_ > X1 M, N;
YR VI M, N
(C2) T Wox M, Ny
@ W>x, M NS
) (@ i<x My N:

If ( )VL X, then the phase setis de ned by N . Finally, for case (C ), it is easy to see
that the phase set for model ( . )isde ned by N .

In conclusion, we list all possible cases for the domains of the impulsive set and phase set
of model ( . )in Table . It follows that the basic phase set N cannot be used to de ne the
real phase set of model ( . ) for any case. This indicates that the exact domains of the phase
set of model ( . ) should be carefully discussed. However, the domains of the impulsive set
and phase set have not been discussed carefully in the previous literature [ , ], which may
resultinsome di culties in employing the Poincar@ map or its successor function to study
the existence and stability of limit cycles of planar impulsive semi-dynamical systems.

In the following, if we consider both A, and Ay as functions of V|, then we have the
following results.

Lemma . An, =AjatVyo=x and A, >AhifV . >x .

Proof It is easy to see that

X m X gx v o=zA. (. )

c
F(V)=A Arn=—1In
(Vo) =An h TV, A

Based on the proof of Lemma . we can see that the equation F (V) = with respect to
V| has two roots V| =x and V_ =x . It follows from F(x ) =F (x )= that A, > A for
all vV >x .

The impulsive set and phase set for model ( . ). Let x be the horizontal component
of the small intersection point (denoted by E = (x ,b/p)) of the closed trajectory
which is contained inside the center ( /c,b/p) and is tangent to the line L at point T
with T = (V,b/p). It follows from the rst integral ( . ) that the closed cycle initiating
from (V,b/p) satis es

bin(y) py+ In(x) cx=blin(b/p) b+ In(V ) cV..
Substituting y = b/p into the above equation, one can see that x satis es
In(x) cx= In(VL) cVy,

solving it with respect to x we get two roots: one is Vi with Vi - and the other is given
by

cV cV
X = EW —Lexp -t
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Thus, by using the same methods as those in the proof of Lemma . we have the fol-
lowing results for model ( . ).

Lemma . Forthecase V. > /cinmodel (. ). Ifx <( )V, then any solution of
model (. ) initiating from (x*,y") N with y* [Y i, Ymad Will be free from impulsive
e ects, where

b A A
Y min = BW e B, Yoax= =W , e © ( )
and
A=cV, In — . (. )

X

Moreover, x <( W A > andA = atV_ =

The impulsive set of model ( . ) can be determined as those for model ( . ), and we only
need to consider two cases, i.e. V. > /candV_  /c.For the former case, if Wi < /e
then the impulsive set isde ned by M and

M = (xy) Rix=Vi, y Y (. )

with

If ( )WL  /c then the impulsive set is M. For the latter case (i.e. V. /c), itis easy
to see that the impulsive set isde nedby M .
Therefore, if V. > /c, then the phase set for the case x <( )V, can be de ned as

N" = x"y" Rx'=( VLy" Y] (.)
with

Y= vy Y oo+ Yo. (.)

» I'min max’

The phase set for the case ( VL x isde nedby N and
N = x"y" RJx'=( )Vuy" Yp, and Yp= Y+ . (. )
Finally, if V. /c, then it is easy to see that the phase setisde nedby N .

Remark . Before we provide the formula for the Poincar@ map of model ( . ), we want
to show how the phase sets change as the key parameters (i.e. , V_, and ) vary. For
example, the set N" can be de ned exactly according to the relations among Yr?“n, and
Y . One simple case is as follows: if Y. and Y/,  +b/pthen

NP= x*yt RX'=( vyt yIM= yh yh

min max?

+b/p . (. )
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Similarly, we can discuss several other cases and get the domains of YJ™ and N", where

[,Yhal YR +b/pl, if  YR.<Yh.  +b/p,

min
[an‘axv + b/p], if Yrir]]in < Ynrlax + b/p,
YoM= [, +b/p], ifyh <yh < < +b/p, (.)
[, Yminl, if YN o< +blp<YP..
, ifyh < < +b/p<Yh,.

It follows from Remark . that the relationsamong , Y  and Y!  are crucial for the

min’ max
exact domains of the phase set, which will be addressed later.

4.3 Poincar@ map
Theorem . ThePoincar? map for the impulsive points of model ( . ) de ned inthe phase
set can be determined as

PO, ¥i Yp ifx VL x,

C): .++ = '

©): P, yi Yp if Vi<x or Vi >x, C.)
+ Py, vyi Y5 ifx < v

©): yi= DOV YYD X S W ()
Py)., vi Yp if VL x,

(C ): yi++ :P(yr): yr YD- ( . )

Here = and
+_ b P+ P+, An
Py = BW Byi exp Byi +F + . (.)

Proof Assuming that any solution ,+ with initial condition z* = (x*,y*) N experiences
impulses k + times ( nite or in nite), we denote the corresponding coordinates P; =
(Vi,yi) Mand P =(( VL) N,i=, ,... k Therefore, if both points P;" and
Pi+ lie in the same trajectory (closed or non-closed) fori= , ,...,k, then the points P;"
and P;. satisfy the following relation:

Yi+

C + V_
— I — VL=Ar=bin = oy (.
P VA q VL=An o Py v ()

In order to show the exact domains of the Poincar@ map, we rst need to know under
what conditions the trajectory initiating from P;” N cannot reach the point Pi, M.
There are two cases:

Case (i) VL x andx ( Vo x . It follows from Lemma . that if the initial
point P = (( VL, ¥{) lies in the homoclinic cycle y or its interior, then although the
two points P;" and P;. could satisfy ( . ), the trajectory cannot reach the line L forever,
which indicates that both points P;” and Pi, cannot lie in the same trajectory, as shown in
Figure (A). It follows from Lemma . and Table that in this case we have Ay and
we require P;  N".

Case (ii): x <V_<x andx <( VL. It follows from Lemma . that if the initial
point P = (( )VL.Y{) lies in the interior of the closed cycle p, then the trajectory

Page 18 of 70
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cannot reach the line L , which shows that both points P and P, cannot lie in the same
trajectory, as shown in Figure (B). It follows from Lemma . and Table again thatin
this case we have Ap > and we require P} N h,

Rearranging ( . ) yields

+ A :
Pre = Pyrexp Pyr ™ io Lk

P,
Yir &0 4 b b’ T b

b

Solving the above equation with respect to y;. , we have

b P . p Ah .
Yis = BW P Vi &P it s 1E ek C.)
and
+ b P+ P+, An + :
Yis = BW PP Pyt f =Py, i=, ...k (. )
If Ap , it is easy to show that DRyrexp( Byf +48) [e , ) for all A ,

this indicates that equation ( . ) is well de ned in this case. If A, > , we must have
Byl exp( pyi + %) e . It follows that we get the inequality

p P 4 An
Byi EXp Byi EXp 'k

which is solved to give,y7  ( ,Yh.1 [YDh. ) whereY/ andYf. aregivenin( . ).

Therefore, forcase (C ),ifx ( )VL x ,thenitfollowsfromLemma . thatA, >
An and according to the monotonicity of the Lambert W function we have [Y[. Y1 ']
[Y,ﬂm,YrﬂaX]. So no matter what A, > Ay > and A, > An (as shown in Figure ) the
Poincar@ map is given by the rstcaseof (. )ifx ( WL x LI ( WL <x or
( )VL >x , then it follows from the proofs of Lemma . and Lemma . thatwe must
have A, < , consequently the Poincar@ map is given by the second case of ( . ).

The other two cases (C ) and (C ) of Theorem . can be obtained directly from the

domains of the Poincar@ map and the proof of Lemma . . This completes the proof.

It follows from Lemma . that we have the main results for the Poincar@ map of the
impulsive points of model ( . ).

Corollary . The Poincar@ map for the impulsive points of model ( . ) de ned in the
phase set can be determined as

PO, yi YS ifvi>-andx < Vi,
v = PO, Yy Yp ifVi>-and VL x, (. )
PV, ¥ Yp ifVL ¢
Compared with published de nitions of the Poincar@ map for model ( . )[ , ], we can
see that more accurate domains have been provided in formula ( . ).
Based on the proofs of Lemmas . - . and Theorem . we can see that the signs of Ay,
and Ay, play the key roles in determining the domains of the impulsive set and phase set,
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Table 2 The relations among the key parameters (i.e. , Vi, and ), thesigns of Ay, and A
and the domains of the Poincar@ map P (y;")

Cases V| A An and An, Py;)
hy

h,
(C1) VL<X2,  Xg VL Xmn An OAn 0 yF YD
Xmin < 1VL<Xmid  An>0,An, O

Xmid L X An OAy O
1VL <X3 An O yi* Yé
X < 1L
M2V X L X Av OAy 0y Y
VL <X Ay 0 yioYs
Xy < I
(C2) Xy < VL An >0, ybovb
X Ay O v Y%
(Cs) Ay 0 yioY5

means the sign of Any is not necessary for that subcase and 1 =1

andinde ningthe Poincar@map P (y{). Therefore, the relations among the key parameters
(ie. ,V,and ), thesignsof A, and A, and the domains of the Poincar@ map P (y;") will
be discussed brie y before we address the existence and stability of the limit cycle of model
(. ), which are also important in the rest of this work.

To do this, we take the notations shown in Figure , where x:}“n represents the intersec-
tion point of the curve H(x,y) =h with the line y = b/p. Then the relations among the key
parameters (i.e. ,V ,and ),thesignsof A; and A, and the domains of the Poincar@ map
P(y{") can be summarized in Table .

5 Existence of order-1 limit cycles and some important relations

Investigations of the existence and stability of order- limit cycles of system ( . ) for the
whole parameter space are quite challenging, and are similar to the study of the existence
and stability of limit cycles of continuous semi-dynamical systems. Fortunately, the ana-
Iytical formula of the Poincar@ map de ned by the impulsive points in the phase set has
been obtained, which allows us to employ it to study the existence and stability of order-
limit cycles of model ( . ).

The xed point of the Poincard map P (y;") in the phase set corresponds with the exis-
tence of the order- limit cycles of model ( . ) and model ( . ). Without loss of generality,
we rst discuss the existence of a xed point of the Poincar@ map P (y") in the basic phase
set N,i.e.y] Yp,and then we will focus on the particular domains of the Poincar® map
P(y{") in phase sets and discuss the existence of the xed point. Denote the xed point
asy , then we have

b A
Py = Jw e Py it o+ =y (.)

Sincey Yp=[ ,b/p+ ], wehave

W Ey exp Ey +& = E

b Y "o y

Therefore, according to the de nition of the Lambert W function the above yields

A
P " E y exp

p -
o) TP T T

T|T
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Note that if = and A, = , then for any y  b/p the above equation holds true; if
= and A, = ,theny = isaunique xed pointof Poincard map P(y).If > ,then
solving the above equation with respecttoy yields

_ e )
y o M) (.)

The necessary condition for the existence of a xed point of the Poincar@ map P (y{) in
the phase setisy  Yp. Thus, it is interesting to show under what conditions the y
( ,b/p+ 1 rst. Todo this, we consider the following two cases: (i) A, ;and (ii) Ap > .
If Ap , then it is easy to show thaty > and
_exp(B %) b N
T ee@ & P

hold true. This indicates that if A, ,theny ( ,b/p+ 1.
If A, > ,thenwe rstneed exp(% ’%) > toensurethaty ispositiveandy > .
Thus we must have A, <p . Furthermore,

_ exp(p ) b
exp(5 %) P
is equivalent to
P Ay P
b b b

Rearranging the above inequality yields

—+EEXE+E ex ﬁ
b p T b Ty P b

Solving the above inequality with respectto  + % yields + % Yn*}m (which isimpossible

duetoYp, <2)or +2 Yp.. Thisindicatesthatif +2 Yf, theny 2+ when
<An<p .
Based on the de nition of the Poincard map P(y;") and its domains, the point ((
)VL,y ) related to the xed pointy must lie in the domains of phase sets rather than
basic phase set (i.e.y  Yp). To address this and reveal all possible dynamic behavior of
model ( . ), we rst need to investigate some important relations amongy ,y , +b/p,
Y Yhfori=hh and +Y{, where
_b+p + b +p
B p

5.1 Some important relations

Note that the key parameters and V. determine the domains of the Poincar® map P (y;),
and the third key parameter will play a crucial role in determining the dynamics of model
(. ). Thus, the parameter related to state-dependent feedback control has been chosen
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to address the relations, i.e. we considery ,y , +b/p, Y}, Y} fori=hh and +Y]

as functions of . Asthe rststep, we discuss the monotonicity of they , wherey isgiven
by (. ), and we have the following results.

Lemma . If <Ap<p ,theny reaches its minimal value (denoted by y,;, and y,;, =
Yhsdat m=Yh, 2.

Proof Taking the derivative of y with respectto yields

dy _exp(5  bexp(f  F) b p]

d blexp(} %) ] <)
Since Ap <p , itis seen that %L = isequivalent to
. P An
=b - — b = .
exp oL p ()

Rearranging the above equation yields

p p An
+— ex — = eX —

b P b P b
and itis easy to see that A, <p isa necessary condition for the existence of a positive root
of the above equation with respectto . Solving the above equation with respectto , one
has two roots and only the larger one is positive, denoted by \, where

W ,e ©® =Y/ g>—. (.)

olT
TlT

Moreover, we have lim 4, +y =+  asshown in Figure . This indicates that the y
T
A
reaches its minimal value at . By calculation we have exp(% M %) = W( , e %n),

and consequently we have

W( , e © b An
Ymin = M ( A) = —-W , e bh :Yh

+W( , e 1)

Furthermore, it follows from Theorem . that

b_b
M:Yrgax B>B Yrgin' (.)
Lemma . IfA, ,thentheinequalityy <y holds true naturally.

Proof If A, , then the inequalityy <y can be rewritten as

exp(fs ) exp(f ) _b+p + b+p

exp(2  An) exp(p ) p
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Rearranging the above inequality yields

b+ b+p p ep: bp Drp >. ()

Denote z= % > , then the above inequality is equivalent to

+  +z +z

e? > zZ+ +z.

+z z

LetF(z)=¢* (z+ +z)andwe have

F(z)> +z+-z z+ +z = +-z +z >

To discuss the relationsamongy , +b/p, Yx, and Yr:in which will be used in this work,
we de ne the following four functions with respect to

b . . .
= oY =y Vi =y vy, =y Yo ()

For the rstequation = + % y = ,substitutingy into it and arranging the items
we can see which is equivalent to the equation = (de nedby ( . )). Thisindicates that
the equation = has a unique positive root y, i.e. the twocurvesy and + b/p with
respectto intersectat = \, asshown in Figure

T
1
1
4501
1
1
41
1
1
3511
1 1=Ah/p
1
sl
1 h
1 T1|
1
251, -
1
ol ! - \
I -
1 -\ - \ \ h
1 - max
15 =" T B
1 _yh iy yh yh,
1 M max P / min min
11 E
1
I A \
L A |
0.5 ' N h\
1
0 1 | | | | | | |
0 0.5 1 15 2 25 3 35 4
T
Figure 6 The relationsamongy ,y,, +b/p, Yinin, Y,inax and i = h, h;. All other parameter values are xed

asfollows:b=18p=13,¢=052, =01,9=023 =03, =08andV =4
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Substituting y into the second function and letting = yield
- h _— exp(% %) Yh — ( )
=y max exp(% '%h) max —  * '

Rearranging the above equation, one has

p p p A
anax exp Yrgax = _YrgaxeXp _Yr?lax"'_ . ( )

p
b b b b b

An
Substituting Yo = gW( , € b )into the right hand side of the above equation ac-
cording to the equation W (z)eW @ =z yields
A An  An A
ngﬁ‘mexp ngﬂax+ Fh = ee b =¢eeob,
In order to ensure (. ) has a positive root with respect to , the necessary condition
is < Yrﬁax. Given this and according to the de nition of the Lambert W function we can
solve it and yield two roots, denoted by "and ", where

b A
"oyh +-W e e (.)
p
and
b A
MY +-W e e . (. )
p
Note that Ap indicates that A, A,> or A, > An, which means that both
"and " arewell de ned. Moreover, if A, , then the small root " disappears and
y will intersect with Yr?]in at another point, which will be discussed later.
For the third function , we want to nd the root of equation =y y = with
respect to , i.e. the positive root of the following equation:
exp® %) _b+p + b +p ()

exp(f 4 P

It is impossible to solve the above equation directly with respect to , so we turn to a
discussion of the existence of the positive roots. Note that == u + % y(m= and
y < +%f0r all > .Thisindicatesthat | =y (m) Yy (m)> .Moreover,solving the

equation y Yhx= with respectto ,denoted by yields

b th
— yh max h
- Ymaxb—pYr?wx < Ynax-
Furthermore, it is easy to see that =y ( ) y( )< .Therefore, according to the
monotonicity of the functiony andy for M, we conclude that for the equation

=y y = there exists a unique positive root, denoted by  with (m, )and
< M asshown in Figure
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h

Finally, we discuss the existence of the positive root of the equation =y Y, = for
the case Ay, . By employing the same methods as those for the equation =y Yo =
, itis easy to see that the for the equation =y Yr?]in = there exists a unique positive
root, denoted by " and
b A
h h
=Ypint=-W , e e®. (.)
p
Now we discuss the relations betweeny and + Yiz when A , and the relations

betweeny and +Y{whenA, . Thatis, we have the following main results.

Lemma . IfA ,theny < +Yi2 forall > " andy = +Yi2 at = "fA,
then y +Y[foral >
Proof First we note thaty and Y intersectsat = ", so substituting it into  + Yiz
yields
h _ h h
+Yis = +Yis :Yrrr]mxv ( : )

which indicates that those three functions (i.e.y LYo, and +Yi'; ) withrespectto inter-

sect at the same point,ie. = ".Moreover, y+Y; =Yh_ % +Y{ <Yh.. Therefore,
we can conclude that if y exists then it is no larger than + Yiz when A

For the second part of Lemma . , it follows from ( . ) that we consider the following
equation:

dy _exp(5  Mbexp(f ) b p]_

- (. )
d blexp(; 4 ]
with respect to . Rearranging the above equation one has
P An
b - — =b
G plexp o
and solving the above equation one gets the unique positive root when Ay,
b b A b
T=—+-W e * 7 :B YiQ' (. )

Moreover, we have y ( 1) = % = 1+ YiQ, which indicates that both functions (i.e. y and

+ YiQ) aretangentat = t.According tothe monotonicity of both functions we conclude

thaty + Yi*s‘ when A and the equal holds true onlyat = .

5.2 Existence of order-1 limit cycle

In order to provide the detailed su cient conditions for the existence of a xed point of
the Poincar@ map P (y), we rearrange the subcases of the cases (C )-(C ) according to the
domains of the Poincar@ map P (y) listed in Table or the domains of the phase set listed
in Table or the signs of Ay and Ay, . Thus, we put the subcases with the domain of the
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Poincard map P (y;") de ned by Y, (or the phase setde nedby N or A, ) in together,
denoted by subcase (SC ), i.e.

(SC ): (C)with V_<x or V. >x,(C)with V. x and(C). (. )

We denote the subcase for (C ) with A, > and Ay as subcase (SC ), i.e.

(SC ): (C)with V<X and Xmin < VL < Xmid, (.)
and denote all subcases for (C ) with Ay and Ay as subcase (SC ), i.e.
(C)with V< xgﬂn and x Vi Xmin,
(SC ): (C)withV <x. andXma VL X, (.)

(C ) with xzﬂn V and x Vi Xx.

The combination of (SC )and (SC ) is called (SC ) in this work. Finally, we denote the
subcases for (C ) with A, > as subcase (SC ), i.e.

(SC): (C)withx < VL. (. )

Based on the important relations discussed before, for the existence of a xed point of
the Poincar@ map P (y;') of model ( . ) and consequently the existence of the order- limit
cycle we have the following main results.

Theorem . If = andA,= (here > ) ,thenanyy inthe phasesetisa xed point
of the Poincard map P(y{). If = and An= ,theny = isaunique xed point of the
Poincar@ map P (y;).

If > ,thenthe xedpointy ofthePoincard map P (y;)isalwayswellde nedfor(SC )
withy  Yp.If > " thenthe xed pointy of the Poincar@ map P (y;) exists for (SC )
andy (Yrﬁlax,YiQ + 1If < < h (or > h ), then the xed pointy of the Poincar@
map P(y7) existsfor (SC )andy (.Y )(ry (YmaYh + 1).1f w, then the

xed pointy of the Poincarg map P (y;) exists for (SC )andy  [Y! ., % + ]

Proof The results for = are true obviously. Since Ay for (SC ), it follows from
Lemma . thaty + Yi’S‘ forall > ,whichindicatesthaty existsin the phase set, i.e.
y Yo

If > " then it follows from the relations between y and Yhax that y > Yhax. Further,
according to Lemma . we havey < Yi's‘ + forall > " dueto A in case (SC ).
Thusthe xed pointy of the Poincar@ map P (y;) exists for (SC )andy (Yrﬁax, Yi'; + 1

If < < " thenitfollows from the relations betweeny and anlin thaty < Yr?ﬂn, which
means that the xed pointy of the Poincar@ map P (y]') exists for (SC )andy  ( 'Yr?\in)'
If > " then the resultcanbe proved by using the same methods as those for case (SC ).

If wm, then it follows from the relations betweeny and Y. and the relations be-

max

tweeny and g + thaty [Yr';,ax,g + ] and consequently the last part of the results

shown in Theorem . are true.

Based on the relations discussed before and Theorem . , we have the following main
results for the non-existence of a xed point of the Poincar@ map P (y;") of model ( . ).



Tang et al. Advancesin Di erence Equations (2015) 2015:322 Page 27 of 70

Corollary . Assume > . The Poincard map P(y;") does not have a xed point for case
(SC ) provided % < " The Poincarg map P (y;) does not have a xed point for case
(SC )provided "

(SC ) provided 22 < <

" The Poincar® map P (y;) does nothave a xed point for case

Theorem . and Corollary . provide the detailed conditions for the existence and
non-existence of a xed point of the Poincar@ map P (y;") of model ( . ), consequently the
existence and non-existence of order- limit cycles of model ( . ) can be obtained directly.
For the existence and non-existence of a xed point of model ( . ) we have the following

results.

Corollary . If = and A = (here > ), thenanyy in the phase setisa xed

point of the Poincar® map P(y;) of model ( . ).If = andA = ,theny = isaunique
xed point of Poincard map P(y;). If > and A , then for the Poincar@ map de ned

in the phase set there exists a unique xed pointy Y. IfA > and m, then for

the Poincard map P (y;) there exists a unique xed pointy with Y, v + % The

Poincarg map P (y;") does not have a xed point provided < % < < m.

6 Local and global stability of order-1 limit cycle

To address the stability of y , we note thatif = and A, = (here > ) theny isstable
but not asymptotically stable. For thecase = and A= (ie.y = )we will address it
as a special case later in more detail. Thus, we rst assume that > andy exists, and
we provide the su cient conditions for the local stability and global stability of the xed
pointy . Consequently, the global stability of the order- limit cycle of model ( . ) can be
obtained, which improved on previous results on models with state-dependent feedback
control [, ].

6.1 Local stability of order-1 limit cycle

Theorem . Assumethat > andy exists. If Ay thenthe xed pointy of Poincar@
map P (yi) is locally stable; If Ap > thenthe xed pointy of Poincar@ map P (y;) is locally
stable provided

<b+p+ b +p .

g p

Proof For convenience, denote f(y) = %yexp( %y + %), and we have

p

_ P P, An p
f(y)= S Al

By

Moreover, by simple calculation and according to the properties of the Lambert W func-

tion we have
dP(y;) _ b W(f(y )) f(y)
dyi ey pfy ) +W(f(y))
b Wly)  p _( )b py)
P FWEG) y by py ) V) )
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We rstnotethatify = +b/ptheng(y )= , which indicates thaty is unstable. Thus,
for the stability of y , we only need to focus on the interval <y < + b/p. Moreover,
la(y )] < isequivalent to the following inequalities:

S )b opy)

yb by ) )

which indicates that if the above inequalities hold, then the xed pointy is locally stable.
Note that we havey (b p(y ))> forall <y < +b/pand > .Itiseasy toshow
that the right hand side of ( . ) holds true naturally, and the left hand side inequality is
equivalent to

b
py (b+ply +—< ()
and solving the above inequality we havey <y <y where

b+p b +p
p

y ’ =
Further, we can show that
y < <y < +bh/p.

This indicates that if <y <y, thenthe xed pointy of Poincar® map P(y{) is locally
stable. Itfollowsfrom Lemma . thaty <y holds true naturally if A, . This completes
the proof of Theorem

Corollary . Assumethat > ,y exists,and A,> .Ify (y, + g], then the xed
pointy of the Poincar@ map P (y;') of model ( . ) is unstable.

Corollary . Assumethat > andy exists. If A , then the xed pointy of the
Poincar map P(y;') of model ( . ) is locally stable; If A > , then the xed pointy of
Poincar@ map P (y{) is locally stable provided y  ( ,y ), and it is unstable when y

v, +2I

By combining Theorems . and ., Corollaries . and . ,and all of the relations dis-
cussed in Section . we can provide the exact conditions for the existence and stability of
the xed pointy of the Poincar@ map P (y{") of model ( . ) based on the three parameters

, Vi, and . Here for simpli cation and convenience we employ the signs of A, and Ay
rather than and V|, and list all results in Table .

Here, means the sign of A, is not necessary for that subcase, NE denotes the non-
existence of a xed point, EU represents the existence of a xed point which is unstable,
ES shows the existence of a xed point which is stable, EG denotes the existence of a xed
point which is globally stable, and ENS represents the existence of a xed point which is
neutrally stable. Note that if = , then for case (SC ) we have Yr:‘]in = Yi'; once Ay =
Thus, inthissubcase,anyy [ ,Yr:‘,m) =[ ,Yirs1 yisa xed pointof the Poincar@ map P (y;
of model (. ), i.e. for any solution initiating from (( )VL,y ) is an order- periodic
solution which is neutrally stable.
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Table 3 Existence and stability of the xed pointy of Poincar@ map P (yi+)

Cases  ApandAp, y Interval of y
(SCi23) An O, >0 EG  Yi=[ Y0+ ]
An <0, =0 EG y =0
An =0, ENS y [oY]
An hy
(SCu1)  An>0An O o 2 NE
h h h
2t < ES (Yoo Yigs + ]
=0 EU y =0
h h
(SC12)  An OAy O St ,1 NE
0< < n ES (o,h\(rhnlm)h
>t ES  (YmaxYig' + ]
An <0, =0 ES y =0
h
An =0, \ ENS y [0Y3)
(SC2)  An>0, T < NE
M 2 EU [V E + ]
2< ES  [Mhaopt ]
=0 EU y =0

So far, all cases shown in Table have been proved except for the global stability of the
xed pointy insubcase (SC ) and the stabilityofy = for = ,which are our main
purposes in the following subsections.

6.2 Global stability of the order-1 limit cycle

For the global stability of the xed pointy aswell as the order- limit cycle of system ( . ),
we rst focus on the case > for (SC ) based on the domains of Poincar@ map P (y;)
and the existence of y , and we have the following main result.

Theorem . Assumingthat > incase(SC ),thenthe xedpointy of Poincard map
P(y{) exists and satis es <y <y . Moreover, it is globally stable once it exists. Conse-
quently, the order- limit cycle of system ( . ) is globally stable.

Proof Note that we have Ay for (SC ), and then it follows from Theorem . and
Lemma . thatthe xed pointy of the Poincar@ map P(y;) exists and satis es <y <
y . It is easy to see that the Poincar@ map P(y;) is continuous and di erentiable on its
domains. Moreover, for any solution initiating from (( WLy withy™ / (1, +b/p]
will reach the phase set N after asingle impulsivee ectwithy* (, +Y[1] (, +b/p].
Further,forally ( , +b/p]we have

dP(y) _ b W(f(y) b W((y))

p
- 4 f = _—___yvrv o _F . .
dy pfy)( +W(f(y)) ) p +W(@E(y) vy b g(y) (.)

According to the conditionswe seethatf(y) e fory (, +b/p], whichindicatesthat
W (f(y)) < .Moreover, if Ay = ,thenwe have W(f(b/p))= andlimy ppa(y)= .

Thus there exists a unique y, = b/p such that g(y) = , g(y)< forally>b/pandg(y)>
for all y < b/p. In order to prove the global stability of the xed pointy , we consider the
following two cases:

Case b/p.

For this case, we have <W(f(y))< andg(y)< forally (, +b/p]. Therefore,in
order to show the global stability, we only need to prove g(y) > forally (, +b/p]. It
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follows from (. ) thatg(y)> isequivalent to the following inequality:

Py
by ()

W f(y) >

It is easy to know that bp—ypy >  fory>b/p, and according to the de nition of the Lam-
bert W function the above inequality is equivalent to

py py
f(y) > ex
v) b by P 5 oy

py b p py An
b P Y py b b’ (.)

Thus, we only need to show

py b p py
b P oy b

Denote u =y withu % , + % I ¢, + E ]. Then the above inequality is equivalent
to the following inequality:

Fw=(u )In(u ) u@u )<,
where F( )= and by simple calculation yields
F= In(u )+ u, and F@U=—— <

whichindicatesthatF (u) <F ()= .Thisshows thatif b/p,thenwe have  <g(y) <
forally (, +b/p]andconsequentlythe xed pointy is globally stable.

Case  <bh/p.

For this case, we note that <g(y)< forally (g, % + ]. Therefore, since we have
g(b/p) = andinorder to prove the global stability of y for this case, we only need to show

<g(y)< forally ( ,b/p).Itiseasytoseethatg(y)> holdstrueforally ( ,b/p)and
g(y) < isequivalent to

Py

< Z<W f .
b v
Thus, according to the de nition of the Lambert W function the above inequality is equiv-
alent to
A
gyeXP Ey < EYGXP Ey +

which holds true naturally if A, < . Therefore, if A, < , then we have g(y)< forall

y ( ,b/p], and consequently the xed pointy is globally stable if <b/pand A,< .
Finally, if <b/pand A, = , then it is easy to see that y (%,y )and g(y) = for all

y (, %). Moreover, by simple calculation we have W (f (y)) = % forally ( ,g), which
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means that for any solution initiating from ((  )V,y") withy* <b/pwe havey;, =y; +
ifyi (., %)- Therefore, there exists a positive integer k such thaty;  (b/p, +b/p]and
yi  (,b/p)foralli<k . The result follows if we can prove thaty; (b/p, + b/p] for all
i k. Todo this, we need the following result.

ClaimIfy;y  (b/p, +b/p], thenwe musthaveyy, (b/p, +b/p].

Proof We employ the following two methods to prove the above claim, which are useful
later.
Method : Note that

+ b p + p +
Yo+ = EW Byk exp Byk +

andyy, (b/p, +b/p]isequivalentto

P+ P+ P
W Pl &P Ve < (.)
Thus, if the following inequality:
+E exp +E > gyexp %y

holds for ally  (b/p, + b/p], then the inequality ( . ) follows. According to the mono-
tonicity of Fyexp( £y) we only need to show

() o+

exp  +

ol
olT

+ +% exp +% >
for all (,b/p).

Itiseasytoseethat ( )= and ( )> .Thisindicatesthatyy , >b/pand byinduction
we havey] (b/p, +b/p]foralli k.

Method : In the following we prove thatif <b/pand A, = theny (g + -,y ). Note
thaty <y hasbeen provedasinlLemma .  andy > % + - isequivalent to

exp(y )

b
exp(% ) >5+— for all ( ,b/p). (.)

Rearranging the above inequality yields

_ p b p
()=-exp i = 5 &P b >

with ()=, (b/p)= e> and ( )> .Thisindicatesthattheinequality( . )holds
true. Thus, if y;  (b/p, +b/p], then accordingto  <g(y)< forally (g,g+ ] we
have

Yoo Y =PYe Py =9g@U)Ve ¥V <Y VY.

Page 31 of 70
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wherey (y,yg)ory (yg.y). Itfollows fromy > % +-and < b/p that we have
Yy . >b/p. By induction, we conclude thaty; (b/p, +b/p]foralli k.

Therefore, the xed pointy is globally stable when A, = and <b/p. Based on results
shown in Cases and , we can see that if the conditions of Theorem . are true, then
the xed pointy is globally stable. This completes the proof.

Remark . Theabove two theorems (Theorem . and Theorem . ) have provided the
detailed analyses for the existence and stability of xed pointy of the Poincar@ map P (y;)
and consequently the order- limit cycle. Further, we note that the period of the order-
limit cycle can be analytically determined by using similar methods as those developed in
reference[ ].

Corollary . Assumingthat > and A , then the xed point'y of Poincar@ map
P (yi") for model ( . ) exists and satis es <y <y . Moreover, it is globally stable once it
exists. Consequently, the order- limit cycle of system ( . ) is globally stable.

Before nishing this subsection, we would like to address some special cases of the
order- limit cycle including the existence of an order- homoclinic cycle, and long or
short order- limit cycles.

Order- homoclinic cycle. To address the existence of the order- homoclinic cycle, we
note that the point P* = (( )VL,y ) determined by the xed pointy of the Poincar@
map P (y;") must lie in the order- Homoclinic cycle (as shown in Figure ), wherey is
de nedbyformula( . ), i.e.

p An
exp(y )
B p An

exp(y  3)
2r . .
1 1
1 1
1 1
18- L x=(1-8)V ——>1 Ly x=V —>t

0.4
0

x(t)

Figure 7 lllustrations of existence of order-1 homoclinic cycle ( p), order-1long ( 1) orshort( )
limit cycle.
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Therefore, we have

biny py S o+ (Vo (o WVe+a( Ve=h. o (L)
Then the above equation becomes

biny py =bin(b/p) b Ay.

Therefore, if y satis es the above equation, i.e. all parameters satisfy the following rela-
tion:

exp(l ) b P bin(/p) b Ay .
y= ————= -W  —exp S
ep(p B P D b “

then for model ( . ) there exists a unique order- homoclinic cycle 4, as shown in Fig-
ure .

Order- long or short limit cycle. Based on the existence of the order- homoclinic cycle,
we see that if the xed pointy of Poincar? map is less than the y, and ( VL >x , then
we say that model ( . ) has an order- short limit cycle ¢, as shown in Figure . While,
if the xed pointy of Poincar@ map is larger than the y, and ( )VL > x , then we say
that model ( . ) hasan order- longlimitcycle |, asshowninFigure .The order- short
or long limit cycle may play a key role in real problems with state-dependent feedback
control actions, which tells us how frequently the control tactics should be applied or how
to design the control tactics to adjust the period of control actions.

6.3 Boundary order-1 limit cycle and its stability

It follows from Theorem . thatif = andA,= ,theny = isaunique xed pointof
Poincar@ map P (y;) (please see Table for details), which indicates that for model ( . )
there exists a unique boundary order- limit cycle with initial condition (( Wi, ).
Therefore, in this subsection, we address its analytical formula and stability. Note that, if

= and A, = , then the derivative of the Poincar@ map aty = is one, which indicates
that the stability ofy = |, which in this case cannot be determined directly.
Inmodel (. ),lety(t)= and = ,then we have the following subsystem:
& = px(1), X<V, ()

XE)=( (@), x=VL.
Solving the rst equation with initial condition x( *) =( )V, yields
x(t)=( )Viexp(bt)

and letting V| = ( )VLexp(bT) and solving it with respect to T, we have T = ¢ In —.
Therefore, model ( . ) has a periodic solution, denoted by x'(t) and x'(t) = (
)V exp(bt) with period T, which means that for model ( . ) there exists a boundary
order- limit cycle (x' (t), ).
To show its stability, we rst consider two points P* = (( WL,yY) L and Q =
(VL,y ) L withy*,y  b/p, which lie in the same trajectory of system ( . ), as shown
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(A) (B)
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(D) (E)
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% 1 P
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0.1
0 0
0 50 100 0 50
t t
Figure 8 Stability of boundary order-1 limit cycle (x" (t), 0). (A)-(C) Unstable boundary order-1 limit cycle
with V| = 3.2 and Ap = 0.0495; (D)-(F) Stable boundary order-1 limit cycle with V|, =2.2 and A, = 0.0775. All
other parameter values are xed as follows:b=18,p=13,¢=052, =01,9=023 =03, =08 =0

in Figure (C) and (F). Moreover, the coordinates of these two points satisfy the following
relations:

c + VL y +
An=—In ——— In — VL =bln = . .
h n— ( A n g Vi n v py 'y (. )
It is easy to see that y* =y . Otherwise, if y* =y then A, = , which contradicts with
An = . De ne function h(y) as h(y) = blIn(y) py with h(y) = p(%y ), which indicates
thath (y)> fory< % Therefore, if A, > , then we have

+

bin §—+ py" y" > or blin ;/— ply vy1> .

hereweusey" =y andy" =y dueto = .Thatis,

+

biny* py">biny" py" or binly) py >biny) py,

which indicate that y* >y*andy >y .
Similarly, if A, < ,theny* <y*andy <y must hold true. In conclusion, we have the
following main results for the boundary order- limit cycle.

Theorem . Let = and A, = . The boundary order- limit cycle (x' (t), ) is glob-
ally asymptotically stable for (SC ), and it is locally asymptotically stable for (SC ). The
boundary order- limit cycle (x' (t), ) is unstable for (SC ) and (SC ).



Tang et al. Advancesin Di erence Equations (2015) 2015:322

Proof For case (SC ), we assume, without loss of generality, that any solution initiating

from phase set N experience in nite impulsive e ects, i.e. we have y;  ( ,Y{S‘] for all

k . Since Ay < , it follows from the above discussion that by induction we conclude
that y; is a strictly decreasing sequence with lim,  y; =y . Moreover,y = must hold,
otherwise it contradicts the uniqueness of y = in this case. Thus, the boundary order-

limit cycle (X (t), ) is globally attractive.
So in order to prove Theorem . , we only need to show that it is asymptotically stable.
To do this, by using Lemma A. we denote bx(t) px(t)y(t) =P(x,y) and cft)){((tt)) gx(t)y(t)
y(t) = Q(x,y), then

P Q cX
—=b =
< Py, Y S TEx P
a_ a_b_b_
x y y
= 5c
and =P,/P= . Thus
T P Q T oxT (1)
— + = dt= + T(t dt
'y XM ax- (t)
= )t %exp(btwibm + ( Wiexpt) T
- ML et
=(  /b)In oo tpoin ]
=In — +—An
n b h
Therefore,
| [=C )exp In — TpAn =exp AL

which indicates that the boundary order- limit cycle is orbitally asymptotically stable and
enjoys the property of asymptotic phase if A, < . Thus, the boundary order- limit cycle
is globally stable if = and A, = incase(SC ).

The local stability of the boundary order- limit cycle for (SC ) is obvious due to the
domain of the phase set. The instability of the boundary order- limit cycle for (SC ) and
(SC ), is shown since A, > , y; is a strictly increasing sequence and the solution will be
free fromimpulsive e ectsafter nite state-dependent feedback control actions, as shown
in Figure (C). Thus the results are true.

Remark . Itisinterestingto note thatifwelet = and Ay be abifurcation parameter,
then the unique boundary order- limit cycle is stable when A, < , and there exists a
family of order- periodic solutions when A, = . As A, increases and goes beyond zero
(i.e. Ay > ), then the boundary order- limit cycles disappear. These results indicate that
if = , then the Poincar@ map P(y{") undergoes a Fold bifurcation at (y ,An) =( , ).

Page 35 of 70
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0.6 T T T T T T
u(VL) with t=0.8

Figure 9 The plots of A, , An,and  asV varies for different . All other parameter values are  xed as
follows:b=18p=13,¢c=052, =019=023 =03, =08

Moreover, if the Ay, is considered as a function of V|, then there are two critical values V
and V| such that A, = , as shown in Figure

To con rm the main results obtained in Theorem . ,we xed the parameter values as
those in Figure , and we can see that if A, > , then the impulsive points and its phase
points of trajectory shown in Figure (C) are two monotonically increasing sequences, and
eventually the trajectory approaches a closed orbit which frees it from impulsive e ects.
While if A, < , then the impulsive points and its phase points of trajectory shown in
Figure (F) are two monotonically decreasing sequences, and eventually the trajectory
tends to the boundary order- limit cycle (x' (t), ).

Corollary . If = andA = ,thenthereexists a unique boundary order- limit cycle
(xT(t), ) for model ( . ). Furthermore, if A > , then the order- limit cycle (x (t), ) is
unstable; if A < , then the order- limit cycle (xT (t), ) is globally asymptotically stable.

7 Flip bifurcation and existence of order-2 limit cycle
Investigating the existence or non-existence of the limit cycle with order no less than for
models with state-dependent feedback control is challenging, but this problem has been
addressed for some special cases [ ]. Thus, in the following two sections we will focus on
the existence and non-existence of order- limit cycles for model ( . ) and provide some
su cient conditions or necessary conditions on this topic.

According to the stability analyses of the xed pointy of the Poincar@ map P (y) that
if > andA; ,thenthe xed pointy islocally stable or globally stable once it exists.
However, it follows from Theorem . thatif > | Ay> andy exists, then the xed
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pointy of the Poincar@ map P (y;) is locally stable provided

<b+p+ b +p _

Y p

Therefore, we can de ne the following ip bifurcation curve with respect to threshold
value V. when > and A,>

b+p + b +p
(V) =y =y oy, (.)
p
which indicates thatif = ,thenwe haveg(y )= ,and the positive xed pointy loses
its stabilityat = . In order to consider the existence of a ip bifurcation of model ( . ),

we choose the threshold V as a bifurcation parameter and de ne G(y, V) = P(y;{) as the
one parameter maps, correspondingly we denote f(y,V,) = Ey exp( Ey + %). Then we
rst solve the equation (V)= with respect to Ay, yielding

C
A,=—1In y

In — q V_.=p bIny > (.)

+ (W
Now we discuss the existence of positive roots of the above equation with respect to V.
and consequently the positive roots for the equation (V)= . To show this, we denote
Vi

FAVD=Sh — Y o gw,
+ (VL

and we have the following results.

Lemma . LetV, = (g+q7)-;§ withB= q + qc qc. If A, > , then there are two
positive roots of the equation Fa(V.) = ,denoted by V, andV, ,such that Fa(V,)> for
all Vi (V_ ,V_ ). Further, if FA(V ) >p bIn(yy—),then the equation (V. )= exists
with two positive roots, denoted by V| and V, (as shown in Figure ), andV, <V, <

Vi <V_ .Moreover, Fo(V, )> andF,(V, )< .

Proof Itiseasytoseethat Fa( )< and Fa(+ )= . Taking the derivative of Fa(V\)
with respect to V, yields

[c a( + VO)(+( ) V)]

FaVL) = (+ V)(+ W VL)

and solving F, (VL) = yields two roots V|, V, with

g+q B g+q + B
T YT O e

whereB= q + qc qgc. Note that V| < <<, thus only the V, may be the
desirable maximal extreme point of the function Fa(V.). Moreover, V| > is equivalent

to

q+q + B> .



Tang et al. Advancesin Di erence Equations (2015) 2015:322 Page 38 of 70

Rearranging the above inequality we have: if ¢ > g, then V| > holds true. This indicates
that if x and x exist (ie.c q > @ ) then for the function Fa(V.) there always
exists a unique maximal extreme point V. Thus, the results for the function Fa(V,) and
the function (V_) are correct.

Theorem . Assumingthat > ,Ap> ,y existsand Fa(V )>p bln(yy—), then the
family G(y, VL) undergoes a ip bifurcation at (y ,V, ), while the family G(y, V) cannot

undergo a ip bifurcation at (y ,V, ).

Proof Itiseasy to see that G(y ,V, )=y forV =V, andV =V, .Further

G(y, Vi) _ b wWVv)) p _
Y ogvosv vy P OFWEGNVD) Y b gupsg vy
G(y, V1) = FaV(b py)  W(f(y. V1))
Yy Vi gvose v bpy [ +W{EW VO] gv=¢ v)
_bRA(VO(b py)y )
ylb py )l

Itfollowsfrom therelations <y < +b/pthaty > andb p(y )> .Therefore,
according to the signs of F,(V, ) and F,(V, ) we have —S00| .\ 1 v )< provided
y >b/pand %l(yyvm(y v )< providedy <b/p.Further,if A, > ,theny =y > %
and it follows from Lemmas A. -A. that the family G(y, VL) undergoes a ip bifurcation
at (y ,V, ). In contrast, the family G(y, V) cannot undergo a ip bifurcation at (y ,V, ).

This completes the proof.

To address the stability of a ip bifurcation (supercritical or subcritical bifurcation), we
need to calculate TG(y,VL) and to determine its sign at (y , V| ), which is quite complex.
Thus, we turn to, equivalently, a calculation of the Schwarzian derivative of the map M(x),
which is de ned as follows [ Ik

_M () M (x)
M= ~ M®

By complex calculation, we have (denote W =W (f(y ,V,)))

Gy = Py)Ipy b+ Db](+ W) b(py bWIW + ) + ]
by)® py)(+W) ’

which indicates thatif SG(y )< (i.e. f (y ,V, )< ) thenthefamily G(y, V) undergoes
a supercritical ip bifurcation at (y ,V,_ ); If SG(y ) > (ie. TG(y ,V_ )> ), then the
family G(y, V) undergoes a subcritical ip bifurcationat (y ,V, ).

As an example, we choose the parameter values as shown in Figure , then we have

Vo= . ,V, = . ,andy = . . Moreover, x = ,x = . ,Ay= .
An = . LYh = . Yho= . Yho= . Yox= . ,and +b/p= .

This indicates that the phase setisde nedby N"andy [YP ., +b/p]lwithV = <x .

max?
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