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Highlights

• Now various strains of Wolbachia-infected vectors are released in dengue

areas.

• Models with and without augmentation for dengue control are proposed.

• Stability analysis shows there are backward bifurcations and multiple at-

tractors.

• Initial values and release methods affect the success of population replace-

ment.

• Suitable Wolbachia and release methods are needed for the control of

dengue virus.

1



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

Models to assess how best to replace dengue virus

vectors with Wolbachia-infected mosquito populations

Xianghong Zhanga, Sanyi Tanga,∗, Robert A. Chekeb

aCollege of Mathematics and Information Science, Shaanxi Normal University, Xi’an,

710062, PR China
bNatural Resources Institute, University of Greenwich at Medway, Central Avenue,

Chatham Maritime, Chatham, Kent, ME4 4TB, UK

Abstract

Dengue fever is increasing in importance in the tropics and subtropics. En-

dosymbiotic Wolbachia bacteria as novel control methods can reduce the ability

of virus transmission. So, many mosquitoes infected with Wolbachia are re-

leased in some countries so that strategies for population replacement can be

fulfilled. However, not all of these field trails are successful, for example, re-

leases on Tri Nguyen Island, Vietnam in 2013 failed. Thus, we evaluated a

series of relevant issues such as (a) why do some releases fail? (b) What affects

the success of population replacement? And (c) Whether or not augmentation

can block the dengue diseases in field trials. If not, how we can success be

achieved? Models with and without augmentation, incorporating the effects of

cytoplasmic incompatibility (CI) and fitness effects are proposed to describe the

spread of Wolbachia in mosquito populations. Stability analysis revealed that

backward bifurcations and multiple attractors may exist, which indicate that

initial quantities of infected and uninfected mosquitoes, augmentation methods

(timing, quantity, order and frequency) may affect the success of the strategies.

The results show that successful population replacement will rely on selection

of suitable strains of Wolbachia and careful design of augmentation methods.

Keywords: Backward bifurcation, Fitness effects, Augmentation order,
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Augmentation quantity, Augmentation times

1. Introduction

The mosquito-borne diseases, dengue fever and dengue hemorrhagic fever,

are among the leading causes of illness in the tropics and subtropics such as the

Americas, Southeast Asia, the Western Pacific, Africa and the Eastern Mediter-

ranean, mostly in urban and semi-urban areas, with up to 380 million infections

estimated to occur annually [1]. People may be infected with dengue more

than once because it is caused by any one of four related viruses transmitted

by mosquitoes, especially Aedes aegypti and Aedes albopictus [2]. There are

no antiviral therapies or vaccines available to prevent infection with dengue, so

control of mosquitoes remains the most effective protective measure for dengue

prevention [3, 4]. However, the traditional use of insecticides as a control mea-

sure is often prohibitively expensive and environmental undesirable; moreover,

it may lead to insecticide resistance [3].

Therefore, it is necessary to search for novel technologies to break dengue

transmission cycles [5, 6]. At present, exploitation of Wolbachia bacteria is a

promising method for manipulation of mosquito vectors. Wolbachia are ma-

ternally transmitted endosymbiotic bacteria, estimated to infect up to 65% of

insect species and approximately 28% of the surveyed mosquito species [7, 8].

The bacteria live within testes and ovaries of their hosts and are passed from

one generation to the next through the hosts’ eggs; thus, they can interfere with

the insects’ reproductive mechanisms, causing phenomena such as cytoplasmic

incompatibility (CI), parthenogenesis and feminization of genetic males. Ap-

pearances of these phenotypes depend on the host species and Wolbachia types.

CI causes uninfected females that mate with infected males to rarely produce

fertile eggs, while infected females are not affected. This gives infected females

an advantage and helps the bacteria to spread quickly through a mosquito pop-

ulation [9, 10, 11, 12].

Two strategies to develop Wolbachia for biological control of dengue virus

3
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have been proposed [13]. Different strategies lead to the selection of different

strains of Wolbachia and methods for augmentation (pulse), which involves the

supplemental release of infected mosquitoes. Relatively small seedings may be

released at a critical time of the season (inoculative release) or millions may be

released (inundative release) when the density of infected individuals is too low

[14, 15]. Population suppression (mosquitoes dying out) based on CI occurs if

only infected males are inundatively released, as in the case of the successful

suppression of Culex pipiens populations in field tests [16, 17]. Some strains of

Wolbachia can shorten the mosquitoes’ lives, indirectly preventing viral matura-

tion and transmission [18]. Furthermore others can not only successfully spread

within mosquito populations but also act as a ’vaccine’ for the mosquitoes to

stop them from replicating and transmitting many types of viruses including

dengue virus [19, 20]. So the strategies of population replacement (ensuring

uninfected mosquitoes are replaced by infected ones) based on CI mechanisms

and matrilineal inheritance, have been proposed involving inoculative releases

of infected mosquitoes [19, 20, 21, 22].

Many mathematical models have been investigated for the spread of Wol-

bachia infection [23, 28, 29, 30, 31, 32, 33, 34]. A continuous-time model for

the behaviour of one and two strains of Wolbachia within a single well-mixed

population has been studied which demonstrated the Allee effect and founder

control. Patchy persistence of the two strains has been shown in a discrete spa-

tial model [23, 28]. Delay differential equations analyze how the reproductive

advantage offsets the fitness costs for the success of population replacement [32].

Moreover, birth-pulse models of Wolbachia-induced CI have studied the effect

of different density dependent death rate functions on different strategies for

control of dengue virus [34].

At present dengue diseases, being among the leading causes of illness in

the tropics and subtropics, have attracted close attention all over the world.

After receiving government approval and support from the local community, re-

searchers in many countries aim to release mosquitoes implanted with different

strains of Wolbachia bacteria to block the spread of dengue virus. The first

4
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releases were of mosquitoes infected with wMel Wolbachia (strong anti-dengue

properties and low fitness costs) in Yorkeys Knob and Gordonvale in north-

eastern Australia in 2011 [20]. Subsequentially, in Tri Nguyen Island, Viet-

nam, two types of Wolbachia-infected mosquitoes involving wMelPop (reducing

mosquito lifespan) and wMel were released in April 2013, which failed, and in

May 2014 (on going), respectively [35]. In communities around Yogyakarta, In-

donesia, mosquitoes infected with wMelWolbachia were also released in January

2014.

At present, over the next 30 years 7 million dengue cases are reported in

Brazil. Today the country leads the world in the number of dengue cases with

3.2 million cases and 800 deaths reported during 2009-2014 [36]. Ten thousand

mosquitoes will be released there once a week for three to four months. The first

release was in September 2014 in Tubiacanga, in the north of Rio de Janeiro, to

block the spread of dengue virus. Three more neighbourhoods will be targeted

next, and large scale studies to evaluate the effect of the strategy are planned for

2016. In addition, further trials are also planned for Colombia [36]. It is useful

to generalize analysis of the strategies for possible application in other countries

with high-prevalence areas of dengue diseases. For instance, countries such as

Malaysia, Singapore and China reported more cases in 2014 when compared to

the same period in 2013 [37].

However, not all of field trails are successful in different countries, thus, in-

teresting issues arise including (a) why did some releases fail in the end? (b)

What affects the success of population replacement? (c) Whether or not aug-

mentation can block dengue diseases in field trials, such as in Brazil? If not,

how we can it be done successfully? In this study, we focus on answering these

questions through mathematical models. Firstly, a continuous four-dimensional

mosquito model with Wolbachia-induced CI is proposed and simplified as a two-

dimensional model, because the ratio of males to females in each state is assumed

to be identical. Secondly, we analyze the existence and stability of equilibria,

and the conditions of backward bifurcations in three cases. The results show

that the zero equilibrium is always unstable, which indicates population eradi-

5
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cation will not be achieved, so only population replacement will be considered.

If forward bifurcation occurs, the condition of the threshold R0 > 1 ensures the

success of population replacement naturally. However, as the threshold value

R0 may be very small when the mosquito population begins to become infected

with Wolbachia, it is unlikely for R0 to be larger than one in practice. Therefore

it is weakened by the existence of backward bifurcation. When the fitness cost

is large enough, there exists a backward bifurcation which is very important in

disease control. So we discuss the basins of attraction of the two attractors and

analyze how the parameter space impacts on the success of control strategies

without augmentation. Thirdly, regarding the release of infected mosquitoes,

models with finite and infinite augmentation are considered to analyze the ef-

fects of the initial densities of mosquitoes, augmentation timings, augmentation

quantities and numbers of augmentations on the success of population replace-

ment in the general case. The results show that suitable strains of Wolbachia

should be selected and augmentation methods should be carefully designed for

successful population replacement.

2. Models and methods

2.1. Mosquito population models

The total population of mosquitoes N(t) is subdivided into four classes,

uninfected females FU , infected females FI , uninfected males MU and infected

males MI . It is assumed that both infected and uninfected individuals have

the same natural birth rate b and natural death rate d, specify that the death

rates are density dependent. And the offspring have a proportion f of females.

The bacterium is mostly passed from infected females to their offspring. But

the transmission is usually not perfect in nature, occurring with a probability

τ ∈ (0, 1]. The effect of the CI mechanism results in zygotic death of potential

offspring with a probability q ∈ [0, 1] when an infected male mates with an

uninfected female, while all other crosses are unaffected.

6
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Generally, compared with uninfected ones, mosquitoes infected with Wol-

bachia may suffer a fitness cost which is assumed as equal or larger than zero in

[28, 29]. However, a fitness cost is not inevitable as there may be some fitness

advantages in mosquitoes infected with Wolbachia, which allows them to spread

more easily and establish themselves in field trails [38, 39, 40, 41]. So in this

work, we consider that infected individuals may undergo an additional fitness

effects D(d+D > 0), such as fitness cost or (D > 0) or fitness benefit (D < 0)

depending on the mosquito species and Wolbachia strains.

Therefore, the size of mosquito vector populations can be described by the

following differential equations [28]






























dFI(t)
dt

= fτbFI − (d+D)NFI ,

dFU (t)
dt

= fb(1− τ)FI + fbFU (1− qMI

MU+MI

)− dNFU ,

dMI(t)
dt

= (1− f)τbFI − (d+D)NMI ,

dMU (t)
dt

= (1− f)b(1− τ)FI + (1− f)bFU (1− qMI

MU+MI

)− dNMU .

(1)

In general, the main dengue mosquito vector species in China have 1 : 1

sex ratios, for Aedes aegypti [24] and Ae. albopictus [25], and we assumed

that the ratio of infected males to infected females is the same as the ratio of

uninfected males to uninfected females, i.e. MI/FI = MU/FU . So after one or

two generations, the ratio of males to females in each state is identical. However,

there is evidence that a 1 : 1 sex ratio may not pertain always [26] and in other

insects infection with Wolbachia may indeed distort sex ratios [27]. If further

research shows this to be the case in dengue vectors then modifications to our

models will be needed in future and the effects of varying sex ratios investigated.

Then we can simplify the above model by considering the entire infected and

uninfected populations denoted by I and U, respectively, and re-scale suitable

parameters, as follows:






dI
dt

= τbI − (d+D)(I + U)I
.
= F1(I, U),

dU
dt

= (1− τ)bI + bU(1− qI

I+U
)− d(I + U)U

.
= G1(I, U).

(2)

The above model has been studied in the literature [28, 29]. However, the

existence and stability of all possible equilibria of model (2) have not been solved

7
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completely so far, and this is one of our main purposes. Consequently, some

interesting biological implications concerning vector population replacement will

be discussed in more detail in this paper.

Note that both

lim
(I,U)→(0,0)

F1(I, U) = 0 and lim
(I,U)→(0,0)

G1(I, U) = 0

hold true, thus we can define F1(0, 0) = G1(0, 0) = 0, confirming that both of the

functions F1 andG1 are continuous on the closure ofR2 = {(I, U)|I ≥ 0, U ≥ 0}.
Therefore, the trivial equilibrium E∗

10 = (0, 0) always exists in model (2).

The other equilibria of model (2) satisfy the following equations:







F1(I
∗, U∗) = 0,

G1(I
∗, U∗) = 0.

(3)

Solving the above equations with respect to I∗ and U∗, there are three other

equilibria: boundary equilibrium E∗
11 = (0, b/d) and two interior equilibria

E∗
1i(i = 2, 3), where

E∗
12 =

(

bτ

d+D

−B −
√
∆

2A
,

bτ

d+D

−B +
√
∆− 2τD

2A

)

and

E∗
13 =

(

bτ

d+D

−B +
√
∆

2A
,

bτ

d+D

−B −
√
∆− 2τD

2A

)

with

∆ = B2 − 4AC, A = q(d+D), B = −(q(d+D)+ τD) and C = (d+D)− dτ.

The positivity of all possible equilibria will be addressed in coming subsections.

Moreover, the stability of some equilibria of model (2) can not be easily discussed

directly, so we need to employ the following equivalent system.

8
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2.2. The equivalent model of model (2)

Equilibrium E∗
10 cannot be linearized in model (2), so its local stability can-

not be studied directly. In addition, it is difficult to determine whether the

eigenvalues of E∗
1j (j = 2, 3) are less than zero or not, because of their complex

forms. So we expand model (2) on a whole axis by studying the transformed

model (ξ, U) with ξ = I/(I + U) ∈ [0, 1) (the ratio of infected individuals to

the total population) to understand the stability of E∗
1j (j = 0, 1, 2, 3). Every

nonzero equilibrium will possess one corresponding equilibrium in the trans-

formed model. However, E∗
10 may have three corresponding equilibria in the

transformed model.

According to the above variable conversion, the equivalent model (ξ, U) of

model (4) has the following form:






dξ

dt
= ξ(−bqξ2 + bqξ + bτ − b−DU)

.
= F2(ξ, U),

dU
dt

= b(1−τ)Uξ

1−ξ
+ bU(1− qξ)− dU2

1−ξ

.
= G2(ξ, U).

(4)

In this section, we first study the four boundary equilibria of model (4).

They are denoted as E0
20 = (0, 0), E1

20 = (ξ01, 0), E
2
20 = (ξ02, 0) and E∗

21 =

(ξ1, U1) = (0, b
d
), where

ξ01,02 =
q ∓

√
∆1

2q

with ∆1 = q2 − 4q(1− τ) > 0.

Note that for E∗
10, the second variable U of corresponding equilibria will

be zero in the transformed model (4). So the three equilibria Ei
20 (i=0,1,2)

correspond to the equilibrium E∗
10 of model (2).

The endemic equilibria of model (4) are solutions of






ξ(−bqξ2 + bqξ + bτ − b−DU) = 0,

b(1−τ)Uξ

1−ξ
+ bU(1− qξ)− dU2

1−ξ
= 0.

(5)

In order to obtain positive solutions of (5), we eliminate U using the sec-

ond equation of (5) and substitute it into the first equation, then we have the

following equation:

Aξ2 +Bξ + C = 0. (6)

9
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This equation may have two positive roots

ξ2,3 =
−B ∓

√
∆

2A

when ∆ > 0. So the two interior equilibria are

E∗
22 =

(

ξ2,
bτ

d+D

−B +
√
∆− 2τD

2A

)

,

E∗
23 =

(

ξ3,
bτ

d+D

−B −
√
∆− 2τD

2A

)

.

The three equilibria E∗
2j(j = 1, 2, 3) of model (4) correspond to E∗

1j(j = 1, 2, 3)

of model (2), respectively.

2.3. Stability analysis of equilibria for models (4) and (2)

At first, we can utilize the Jacobian matrix of models (4) and (2) to determine

the stability of equilibria E∗
1j(j = 1, 2, 3) (see Appendix A for details). For

convenience, the stability condition of E∗
11 is denoted −b (1− τ +D/d) = 0

as R0
.
= τ − D/d = 1, then E∗

11 is locally stable provided that R0 < 1. The

stability of equilibria E∗
12 and E∗

13 are determined by whether the eigenvalues

are strictly negative or not. However, the local stability of equilibrium E∗
10

cannot be studied directly, because E∗
10 cannot be linearized in model (2). So

its stability is transported to analyze the three equilibria Ei
20(i = 0, 1, 2) of the

equivalent model (4). If we denote the eigenvalues of boundary equilibria of

model (4) as λ1 and λ2, by a similar method as for model (2), their stabilities

can be obtained as shown in Table 1.

Therefore, for the stability of boundary equilibria of models (4) and (2), we

have the following main results.

Theorem 2.1. For model (2), E∗
11 is locally asymptotically stable if R0 < 1,

and unstable if R0 > 1. For model (4), Ei
20(i = 0, 1, 2) are unstable when they

exist, therefore, for model (2), zero equilibrium E∗
10 is unstable.

10
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Based on Theorem 2.1, E∗
10 is always unstable which indicates that it is

impossible to prevent the spread of dengue virus by eradicating mosquito pop-

ulations. Indeed, it is also unlikely, and not necessarily desirable, that the

mosquitoes could be eradicated in practice. Therefore, population replacement,

an alternative and more effective strategy, will be addressed in this paper. To

do this, we first need to analyze the stability of interior equilibria for models

(2) and (4).

In order to understand the existence and stability of equilibria of models

(4) and (2) in more detail, we choose D, τ and q as bifurcation parameters to

address the regions of existence and stability of equilibria for the two models.

For convenience, three key curves are defined as

L1 : B = 0, L2 : B2 − 4AC = 0, L3 : R0 = 1.

In practice, the fitness advantages and disadvantages may be balanced out

(i.e. D = 0) for mosquitoes infected with some Wolbachia [1, 41]. Other Wol-

bachia may have perfect transmission rates from infected females to their off-

spring (i.e., τ = 1), which may lead to complete population replacement in

mosquito populations [34]. Therefore, to comprehend how the three critical pa-

rameters D, τ and q affect the success of population replacement, we address

the following three scenarios.

Case 1: Fitness cost D = 0.

In this case, the righthand function F2(I, U) of equivalent model (4) is inde-

pendent of variable U . Interior equilibria of original model (2) are changed as

E∗
12 = (I∗2 , U

∗
2 ) and E∗

13 = (I∗3 , U
∗
3 ), with

I∗2 = U∗
3 =

bτ(q −
√
∆1)

2dq
and I∗3 = U∗

2 =
bτ(q +

√
∆1)

2dq

and ∆1 > 0 indicates that both I∗2 and I∗3 are positive.

While in the equivalent model (4), they are simplified as E∗
22 = (ξ2, U

∗
2 ) and E∗

23 =

(ξ3, U
∗
3 ), with

11
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ξ2,3 =
q ∓

√
∆1

2q
.

By estimating the eigenvalues of E∗
2i(i = 2, 3) for model (4), the stability of

E∗
2i(i = 2, 3) and their corresponding equilibria E∗

1i(i = 2, 3) of model (2) were

determined as shown in Table 2.

In this case, the three lines (L1, L2 and L3) divide the τ and q parameter

space into five regions as shown in Fig. 2(A). Only Ω11 and Ω12 are meaningful

regions for the existence of equilibria. Especially, the two attractors E∗
11 and

E∗
13 (or E∗

22 and E∗
23) coexist in region Ω12, coinciding in line L2. Detailed

descriptions for each region are shown in Table 3.

According to the above stability analysis, we have the following main results.

Theorem 2.2. For model (2), when there is no fitness cost, i.e. D = 0, there

are at most four equilibria, E∗
10, E

∗
11, E

∗
12 and E∗

13.

(1) If ∆1 > 0, then E∗
11 and E∗

13 are locally stable, while the other two are

unstable. The solution stabilizes at E∗
11 provided that the initial ratio ξ0 ∈

(0, ξ01) and any U0; the solution stabilizes at E∗
13 provided that the initial ratio

ξ0 ∈ (ξ01, 1) and any U0.

(2) If ∆1 = 0, then E∗
12 and E∗

13 collide together as (bτ/(2d), bτ/(2d)), and only

E∗
11 is locally stable.

(3) If ∆1 < 0, then two interior equilibria disappear, and E∗
11 is locally stable.

Based on the above Theorem, there exists an Allee effect which means that

low initial ratios of infected individuals to the total population (ξ0 < ξ01) are

driven to the extinction of infected ones, but high initial ratios of infected indi-

viduals to the total population (ξ0 > ξ01) can survive for infected ones as shown

in Fig. 1. So in this case, in order to achieve the population replacement, the

initial ratio of the infected individuals should be larger than ξ01.

Case 2: Perfect transmission τ = 1.

In this special case, interior equilibria of the original model (2) are changed

to

12
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E∗
12 =

(

bD

q(d+D)2
,
b(q(d+D)−D)

q(d+D)2

)

, E∗
13 =

(

b

d+D
, 0

)

.

Similarly, by estimating the eigenvalues of E∗
1i(i = 2, 3) for model (2), their

stabilities are determined. The three lines (L1, L2 and L3) divide the D and

q parameter space into many regions. Only Ω2k(k = 1, 2, 3, 4) are meaningful

regions for the existence of equilibria. Especially, the two attractors E∗
11 and

E∗
13 (or E∗

22 and E∗
23) coexist in region Ω23, coinciding in line L2. Detailed

descriptions for each region are shown in Table 3.

Therefore, we have the following main results.

Theorem 2.3. For model (2), when there is perfect transmission τ = 1, there

are at most four equilibria, E∗
10, E

∗
11, E

∗
12 and E∗

13. E
∗
11 is locally stable provided

that D > 0; E∗
12 is unstable when it exists; E∗

13 is locally stable provided that

D < qd/(1− q).

According to the above Theorem, if the fitness cost D < 0, then only E∗
13

is stable. Thus, the population replacement may be realized completely for the

control of dengue diseases.

Case 3: General situation D 6= 0, τ 6= 1.

In this case, it is difficult to determine the stability of interior equilibria, so

we first concentrate on the existence of backward bifurcation, which is important

in the control of dengue virus just as it is in the control of epidemics in general.

Note that, C ≤ 0 if and only if R0 ≥ 1 which is necessary in the following.

(i) Let d+D = 0, i.e., D = −d < 0. (6) is a linear equation with a unique

root ξ = −C/B, which is positive if and only if R0 > 1. Thus if d+D = 0 there

is a unique endemic equilibrium provided that R0 > 1 which approaches zero

as R0 → 1 while there is no endemic equilibrium if R0 < 1. In this case it is

impossible to have a backward bifurcation at R0 = 1.

(ii) Let d+D > 0, i.e., D > −d. If B > 0, then (6) is quadratic and there

is a unique positive root when R0 > 1; while there is no root when R0 ≤ 1. If

B < 0, there is a unique positive root for (6) when R0 > 1; a unique positive

13
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root ξ = −B/A when R0 = 1; two positive roots ξ2 and ξ3 when Rc
0 < R0 < 1;

no positive root when R0 < Rc
0, where

Rc
0
.
= 1− (q(d+D) + τD)2

4dq(d+D)
.

Here Rc
0 can be obtained when ξ2 = ξ3, i.e., B2 − 4AC = 0.

Therefore, we have the following main results.

Theorem 2.4. Model (4) exhibits a backward bifurcation when Rc
0 < R0 < 1 if

B < 0. Consequently, model (2) has a backward bifurcation when Rc
0 < R0 < 1

under the same conditions owing to equivalence between models (2) and (4).

Consider that the three parameters D, τ and q are critical to the success

of population replacement, and backward bifurcation is important to endemic

control, so in the following we address how the three parameters affect the

occurrence of backward bifurcation.

We can obtain an explicit expression of D in terms of parameters q, d and τ

for the existence of backward bifurcation at R0 = 1. According to the expression

of R0 and B, inequality B < 0 is equivalent to D > −dq. So the backward

bifurcation occurs at R0 = 1 if and only if D > −dq. In other words, when

the fitness cost D > −dq, backward bifurcation will take place as shown in

Figs. 4(A) and 5(A), which means D is one of the factors leading to backward

bifurcation. When D ≤ −dq, then the backward bifurcation will change to

forward as shown in Fig. 4(B).

Note that if D > −dq, there is a backward bifurcation at R0 = 1, then

there are two endemic equilibria for an interval of R0 from a threshold value Rc
0

defined by B2 − 4AC = 0 to R0 = 1. In order to calculate Rc
0, substituting the

expressions of A,B and C into B2 − 4AC = 0 yields a quadratic of τ :

D2τ2 + 2q(3dD + 2d2 +D2)τ + q(q − 4)(d+D)2 = 0. (7)

Solving (7) with respect to τ yields

τ1,2 =

(

−qD − 2qd∓
√

q2dD + q2d2 + qD2
)

(d+D)

D2
.

14
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Note that B < 0 and R0 < 1 are equivalent to

−q(d+D)

D
< τ <

d+D

d
.

So τc = τ2 and

Rc
0 = τc −

D

d
.

Similarly, we have the following results on the existence of backward bifur-

cations for Cases 1 and 2 as shown in Fig. 5.

Lemma 2.1. For model 2, in Case 1, there exists a backward bifurcation when

Rc
0 < R0 < 1, with Rc

0 = τc = 1 − q/4; in Case 2, there exists a backward

bifurcation when Rc
0 < R0 < 1, with Rc

0 = 1−Dc/d = 1− q/(1− q).

Similarly, the three lines (L1, L2 and L3) divide the D and q parameter

space into five regions as shown in Fig. 2(A). Only Ω3k(k = 1, 2, 3, 4, 5, 6, 7) are

meaningful regions for the existence of equilibria. Especially, the two attractors

E∗
11 and E∗

13 (or E∗
22 and E∗

23) coexist in region Ω33, coinciding in line L2.

Detailed descriptions for each region are shown in Table 3.

Theorem 2.5. For model (4), when R0 > 1, the unique endemic equilibrium

E∗
23 is locally stable if 0 < q < min {4(1− τ),−D/(d+D)} ≤ 1.

The proof of Theorem 2.5 is shown in Appendix B. Consequently, for model

(2), there are the same stability conditions for the unique endemic equilibrium

E∗
13.

Theorem 2.6. For model (4), when B < 0 and Rc
0 < R0 < 1, if one of the

following two conditions hold true:

(i) If D < 0 and −D/d < q < min {4(1− τ),−D/(d+D)} ≤ 1.

(ii) If D > 0, q1 < q < min{4(1− τ), q2} and (C.1).

Then E∗
23 is locally asymptotically stable. E∗

22 is an unstable saddle provided

that (C.2) holds.
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Where (C.1), (C.2) and the proof of Theorem 2.6 are shown in Appendix

C. Consequently, for model (2), there are the same stability conditions for the

endemic equilibria E∗
12 and E∗

13.

2.4. Modelling augmentation

At present, dengue diseases are giving rise to close attention all over the

world. Some field trials (releases of mosquitoes implanted with different strains

of Wolbachia bacteria) have been planned to achieve population replacement

and block the spread of dengue virus in many countries including Australia,

Vietnam, Indonesia and Brazil. However, not all of these releases can or will

succeed.

We assume that initial populations of mosquitoes will have very low numbers

infected with Wolbachia, so it is difficult for them to be established in the field

trails which means R0 < 1. Therefore, in the following, we focus on whether

population replacement can be success under a lower value R0. According to

the above section, when backward bifurcation occurs, the solutions of model (2)

from different initial values have different stable states, i.e. some solutions can

stabilize at E∗
11, while others will stabilize at E∗

13, which depends on where the

initial values lie in the basins of attraction of the two attractors, which indicates

that strategies of population replacement may either succeed or fail in the end.

So we focus on the existence of backward bifurcation in parameter space, and

then alter their dynamics by introducing infected mosquitoes so that their orbit

is within the desired zone, i.e., the grey areas in Figs. 2, 3 and 6. If this

can be achieved, then the control measures will be successful. Without loss of

generality, the releases of infected mosquitoes occurs at times T1, T2, ..., Tk and

augmentation (pulse) quantities θi > 0(i = 1, 2, ..., k, k being finite and infinite),

with the same ratio of infected females to males as in the original model (2).
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Then a model with augmentation is proposed as follows:






























dI
dt

= τbI − (d+D)(I + U)I,

dU
dt

= (1− τ)bI + bU(1− qI

I+U
)− d(I + U)U,







t 6= Ti,

I(T+
i ) = I(Ti) + θi,

U(T+
i ) = U(Ti),







t = Ti,

(8)

where T+
i denotes the moment after pulse releases at time Ti, and they are

nearly equal. The items I(T+
i ) and U(T+

i ) denote the mosquito densities of

the infected and uninfected ones at time Ti after pulse releases, and we have

I(T+
i ) > 0 and U(T+

i ) > 0.

Model (8) is employed to investigate how the augmentation time Ti and the

augmentation quantity θi affect the success of population replacement.

3. Results and discussion

In this section, we will focus on the biological implications of all the main

results shown in previous sections. In particular, we carry out numerical investi-

gations for the models with and without augmentation strategies to address all

the questions arising in the introduction section. To do this, we choose different

parameter sets for illustrations only in the following due to our current lack of

any real parameter values. In order to overcome this weakness, the wide ranges

of all parameters related to mosquitoes and human actions have been chosen for

sensitivity analysis, which allows us to address how the key parameter changes

affect on the successful strategies of population replacement. Thus, the main re-

sults obtained here can be used to evaluate the effectiveness of different control

tactics and to provide the qualitative information on the control of dengue vec-

tors. So that suitable strains of Wolbachia and careful design of augmentation

methods can be selected for the successful control of dengue virus.

3.1. Backward bifurcation

In epidemic models, when the bifurcation leading from a disease free equi-

librium to an endemic equilibrium is forward, a basic reproduction number is a
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threshold in a sense, i.e. a disease is persistent if it is greater than one, and dies

out if it is below one. However, if a backward bifurcation occurs, the basic re-

production number does not describe the necessary elimination effort any more;

rather it is replaced by a critical value at the turning point. In the control of

dengue disease, it is desired to realize the population replacement as much as

possible to block the replication of dengue virus, in other words, the outbreak of

mosquitoes infected with Wolbachia benefit dengue control. Thus, it is impor-

tant to identify backward bifurcations to obtain the threshold for the outbreak

of Wolbachia infected mosquitoes.

According to detailed analysis of the stability of models (2) and (4), some

useful quantitative results of backward or forward bifurcation can be described

as follows.

Case 1: Fitness cost D = 0. Note that D > −qd is satisfied in this case, thus

forward bifurcation cannot occur at all, only backward bifurcation can appear

in parameter region Ω12 as shown in Figs. 2(A) and 5(A). So for any initial

values, the solutions of model (2) either stabilize at E∗
11 or E∗

13, which depends

on the relationship between initial values and the unstable manifold as shown

in Figs. 1 and 2(B).

Case 2: Perfect transmission τ = 1. Based on Theorem 2.4, if parameters

lie in region Ω23, backward bifurcation occurs as shown in Figs. 3(A) and

5(B). So for any initial values, the solutions of model (2) either stabilize at

E∗
11 or E∗

13, which depends on the relationship between initial values and the

unstable manifold as shown in Fig. 3(B). While if the parameter values lie in

regions Ω21 and Ω22(D < 0), the backward bifurcation is replaced by a forward

bifurcation, which implies that for any initial values, the solutions of model

(2) finally stabilize at E∗
13 provided that R0 > 1, so population replacement is

completely achieved.

Case 3: General situation D 6= 0, τ 6= 1. Similarly, if the parameter values

lie in region Ω33 (see Fig. 6(A)), backward bifurcation occurs as shown in Figs.
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4(A) and 5(A). So for any initial values, the solutions of model (2) either stabilize

at E∗
11 or E∗

13, which depends on the relationship between initial values and the

unstable manifold as shown in Figs. 7 and 8. Especially, when fitness costD > 0,

it is interesting that as D increases (from 0, 0.1, 0.2, 0.3, 0.4 to D∗ = 0.7), the

threshold values Rc
0 decrease and the regions of backward bifurcations become

narrow until they disappear, as shown in Fig. 5(A). While if parameter values

lie in regions Ω31 and Ω32, the backward bifurcation is replaced by a forward

bifurcation as shown in Fig. 4(B), which indicates population replacement can

be partially fulfilled provided that R0 > 1.

3.2. Multiple attractors

In order to explain the steady sates of the solutions for model (2) from

different initial values when backward bifurcation occurs, we consider the basins

of attraction of the two attractors E∗
11 and E∗

13 in their coexistence regions in

three cases as shown in Figs. 2(B), 3(B) and 6(B), respectively.

In Fig. 2(B), the critical parameter values (τ = 0.9, q = 0.8) are chosen

from the region Ω22, the other parameter values are the same as in Fig. 2(A).

The two regions are separated by an unstable manifold U0 = (1 − ξ01)I0/ξ01

(or ξ0 = ξ01), the grey and white regions are the basins of attraction of E∗
13

and E∗
11, respectively, which indicates that for any initial values (I0, U0) , the

solutions of model (2) will finally stabilize at E∗
13 (or E∗

11), then two types of

mosquitoes will coexist (or the infected ones will die out), which means that the

population replacement can be partly realized (or fail).

In Fig. 3(B), parameter values are the same as in Fig. 3(A). The two

regions are separated by the unstable manifold. The initial values (I0, U0) from

the grey (or white) region, the solutions of model (2), will finally stabilize at

E∗
13 (or E∗

11), then uninfected mosquitoes are totally replaced by infected ones

(or infected ones die out), which means that the population replacement can be

completely realized (or fail).

Similarly, in Fig. 6(B), parameter values are the same as in Fig. 6(A).

The two regions are separated by an unstable manifold. Only the initial values
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(I0, U0) from the grey region, solutions of model (2) will finally stabilize at E∗
13,

then uninfected mosquitoes are partly replaced by infected ones, which means

that the population replacement is either partly realized or fails.

Note that the size of the basin of attraction of E∗
13 increases from Cases 2, 1

and 3, respectively. So for Cases 1 and 3, the probability of solutions stabilizing

to E∗
13 are larger than that for Case 2. However, compared to Case 2 which

can realize uninfected mosquitoes being totally replaced by infected ones, in

Cases 1 and 3, they only realize the coexistence of the two types of mosquitoes.

Therefore, in practice, we should balance the two sides, and different control

aims may lead to the selection of different stains of Wolbachia bacteria. For

example, if total population replacement is needed to control dengue disease,

then the Wolbachia bacteria with perfect transmission rate is selected.

3.3. Control strategies without augmentation

For the control of dengue disease in epidemic areas, for example in Brazil,

whether or not dengue disease is controlled successfully is determined by differ-

ent parameter spaces and initial densities of two types of mosquitoes. Based on

these facts, it is critical to consider the following three issues.

Firstly, in practice, in order to block the spread of dengue diseases, three key

parameters (rate of zygotic death from CI q, fitness costD and transmission rate

τ) of different stains of Wolbachia in the target mosquitoes should be estimated

at first. Next, appropriate strains should be selected to make sure that the

three parameters lie in those regions that ensure the existence of E∗
13, as shown

in Figs. 2(A), 3(A), 6(A) and Table 3. For example, the meaningful regions for

the three cases are Ω12, Ω2k(k = 1, 2, 3) and Ω3k(k = 1, 2, 3), respectively.

Secondly, different types of bifurcation (here forward and backward) may

lead to different control strategies. So the type of bifurcation should be esti-

mated clearly in each parameter region. When the effect of the fitness benefit is

weak, i.e., −d < D < −dq, forward bifurcation occurs, so the threshold R0 being

unity is a strict threshold for the control of the disease: The infected mosquito

will die out provided that R0 < 1, and otherwise it will tend to break out.
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For instance, the regions with forward bifurcation occurring are Ω2k(k = 1, 2)

and Ω3k(k = 1, 2), respectively. Hence, for any initial values (I0, U0) from the

regions, the solutions of model (2) finally stabilize at E∗
13 provided that R0 > 1

which indicates that the strategy of population replacement can be realized

without augmentation. However, when the effect of fitness cost is strong, i.e.

D > −dq, the backward bifurcation will take place when Rc
0 < R0 < 1. For

instance, the regions with backward bifurcation occurring are Ω12, Ω23 and Ω33,

respectively. In this case, whether the strategy of population replacement can

be achieved or not depends on the initial values (I0, U0). From Figs. 2(B), 3(B)

and 6(B), if the initial densities of infected and uninfected mosquitoes lie in the

grey region, population replacement may be realized in spite of a lack of con-

trol, and the levels of replacement depend on the different strains of Wolbachia

bacteria. While if the initial densities of two types of mosquitoes lie in the white

region, if there is no other control, the strategy of population replacement will

fail in the end.

Thirdly, the more the degree of population replacement, the more is the ben-

efit for controlling the dengue virus. Note that the total number of mosquitoes

in equilibrium E∗
13 is I∗13 + U∗

13 = bτ/d. If E∗
13 exists and is locally stable in pa-

rameter space (see Table 3), it is desirable to make the number of infected ones

(or uninfected ones) be as large (or small) as possible, which helps realization

of population replacement for the control of dengue disease. In Case 2, if E∗
13

exists and is locally stable, uninfected individuals will be totally replaced by

infected ones, so it is unnecessary to make the number of infected mosquitoes

as large as possible. In Case 1, the effects of parameters on the values I∗13 are

similar to results presented by [34], which shows that the larger the natural birth

rate b, rate of zygotic death from CI q and the probability of transmission from

infected mother to offspring τ and the shorter the natural death rate d make

dengue control more effective. In Case 3, the smaller the fitness cost D benefits

dengue control, and the other parameters produce similar results to those in

Case 1.
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3.4. Control strategies with augmentation

According to the above section, in order to realize population replacement

without augmentation, the strains of Wolbachia should be carefully evaluated at

first, such that the existence of interior equilibria are possible and the thresh-

old value R0 is larger than one. However, the initial population of infected

mosquitoes may be very low in numbers, so that the threshold value R0 may

be very small. Therefore, to answer the series of issues in the introduction,

we focus on whether or not some strains of Wolbachia can realize population

replacement under a relatively weak threshold condition Rc
0 < R0 < 1 (i.e. a

backward bifurcation occurs). To do this, a key question is how augmentation

can be applied such that the densities of infected and uninfected mosquitoes

lie in desired regions, i.e., the grey areas in Figs. 2, 3 and 6, in other words,

the basin of attraction of attractor E∗
11 moves to that of E∗

13. Without loss of

generality, we mainly analyze the effects of initial values, augmentation timings,

augmentation quantities and number of augmentation events (or augmentation

quantities and augmentation periods) on the solutions of model (8) in Case 3,

when the number of augmentations is finite (or infinite), the other two cases

can be discussed similarly. For convenience, denote T1j and θ1j(j = 1, 2, ..., k)

as the pulse times and the quantities vectors released in j pulses, respectively.

Note that if some strains of Wolbachia are selected such that parameter

values lie in the nonexistence regions of E∗
13 (i.e. R0 < 1 or R0 < Rc

0 depending

on forward or backward bifurcation, respectively), no matter how many infected

mosquitoes are released, the strategies of population replacement will fail in the

end. This possibly explains why the releases of mosquitoes infected with wMel

in Tri Nguyen Island failed.

3.4.1. Augmentation at finite times

In order to show the effects of the initial values, pulse timings and pulse

quantities on the solutions of model (8) with finite impulsive augmentation (here

one, two and three pulses considered), only a single factor is changed, the other

two factors being the same (see Figs. 9, 10 and 11). For easy comparison, in the
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following figures, the initial densities of the uninfected mosquitoes are fixed and

the black dotted lines denote the solutions of model (8) without augmentation.

The parameter values are the same as in the corresponding figures.

Figs. 9(A), (C), 10(A) and 11(A) show that if the initial density of infected

mosquitoes or the pulse quantity are too low, the releases cannot realize pop-

ulation replacement at all (see green solution curves). However, if the initial

density of the infected ones or the pulse quantity increases, after many pulses,

the densities of the two types of mosquitoes will lie in the basin of attraction of

E∗
13, and then population replacement will succeed in the end. Moreover, the

more the increase of the initial infected mosquitoes or of the pulse quantity, the

easier it is to realize the replacement (i.e. the solutions stabilize faster at E∗
13),

for example from magenta, blue to red solution curves in sequence.

Figs. 9(B), 10(B) and 11(B) show that too early or too late implementations

of population replacement strategies cannot succeed at all (medium yellow or

green solution curves), which implies that there may exist a most appropriate

pulse time for the releases of infected mosquitoes. For convenience, we only

consider the pulse time in the solutions of model (8) with one pulse. Other

finite pulses can be analyzed similarly. When different pulse time points are

selected, the detailed effects of them on the solutions of model (8) are shown in

Fig. 12. The best pulse time is when the solution curve begins to be plain (i.e.,

the black solid line in Fig. 12(A)). The more pulse time points near it, the easier

and the faster the solutions of model (8) is stabilization at E∗
13. If pulse time

points are far from it, the solutions may in turn stabilize at E∗
11 (here at times

T1, T2, T8, T9) which lead to failure of population replacement. In Fig. 12(B),

we give examples to verify our results. When pulse releases take place at three

times T3, T5 and T7, respectively, at time T5, the solution of model (8) is the

easiest and fastest to stabilize at E∗
13 (see blue, red solid and magenta solution

curves). In addition, when the pulse quantity increases to 0.35, and with pulses

at times T2 and T8, the solutions of model (8) stabilize at E∗
13.

Figs. 10(C) and 11(C) illustrate three main points. Firstly, with the same

pulse quantity, different pulse sequences may lead to entirely different results
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(see the magenta and green solution curves). Secondly, if the strategies of

population replacement can be achieved under some given pulse quantity, then

with an increase of the pulse quantity at some pulse times, the more likely is

realization of population replacement (see the magenta, blue and red solution

curves). Thirdly, if the strategies of population replacement fail under some

given pulse quantity, then only an increase of enough pulse quantity can realize

population replacement (see the green, medium yellow and blue solution curves).

In order to show how the number of impulsive augmentations affect the

strategies of population replacement, under the same pulse quantity, model (8)

with different numbers of pulses is considered. In Fig. 13, with a single pulse,

control strategies cannot be achieved, while with two or even three pulses, the

control strategies may be realized better.

According to the above discussion, by finite augmentations of infected mosquitoes

to block dengue diseases in some countries (for example in Brazil), the following

advice is useful for realizing population replacement as far as possible in the

high-incidence season of dengue.

• Wolbachia should be monitored and selected carefully at first regarding the

existence of a backward bifurcation and the density of infected mosquitoes

under stable state ( I∗13) being as large as possible.

• Initial densities of infected and uninfected mosquitoes and the pulse quan-

tities are large enough so that population replacement can be achieved,

and the higher they are, the easier and faster will it be to realize the re-

placement. Augmentation should be carried out at as near to the suitable

time as possible. Too early or too late timings will lead to failure.

• In spite of the augmentation timings being the same, the sequence of

augmentations of different quantities may substantially affect the success

or failure of strategies. If the first pulse is carried out as near to the

suitable time as possible and with a relative large quantity, the greater

the chance of successful population replacement. In the same region of

24



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

pulse timing and pulse quantity, it is beneficial to population replacement

when the number of pulses is increased.

3.4.2. Augmentation at infinite times

In practice, it is easier to implement control measures when releases are

periodic rather than aperiodic. So in the following, we consider how periodic

augmentation impacts on the implementation of population replacement. For

convenience, pulse period and pulse quantity are denoted by T and θ, respec-

tively in model (8).

Figs. 14(A) and (B) show that the pulse quantity is too low to realize popu-

lation replacement (see green solution curve), as the pulse quantity increases, it

is much easier and faster to achieve stability at a period solution with larger am-

plitude (see magenta, blue and red solution curves). Similar results are shown

in Figs. 14(C) and (D) for when the pulse quantity is fixed and pulse period

decreases.

Therefore, for the releases of infected mosquitoes in the fight against dengue

disease in Brazil, releases with large pulse quantity and short period are re-

quired in the high-incidence season of dengue, so that population replacement

can achieved as soon as possible to suppress the replication of dengue virus in

mosquitoes.

3.5. Further work

In this paper, we focused on the augmentation quantity with the same ratio

of infected females to males as in the original model (2). However, in practice,

seasonal fluctuations in releases of infected mosquitoes will lead to different ra-

tios of females to males. Secondly, females and males whether infected with

Wolbachia or not may have different fates when they mate due to the CI mech-

anism and matrilineal inheritance. Moreover, as reported in the China Daily on

Nov 10, 2014 [42], dengue fever has afflicted the whole of Guangdong Province in

China particularly severely this year, with more than 42,000 cases reported by

Nov 2. The fever is spread via bites from female mosquitoes, and the males do
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not bite. Wolbachia has a special effect of sterility on the Aedes aegypti mosquito

based on CI. Therefore, only the male mosquitoes infected with Wolbachia will

be released in March and April on Shazai Island in Guangdong province in a

trial aimed at sterilizing the mosquitoes that transmit diseases like dengue fever

(population suppression). To achieve the best outcome, five Wolbachia-carrying

male mosquitoes should be released for each uninfected wild male mosquito on

the island. Further trials will be conducted in Jiangmen, Guangdong province,

and in Hainan province. Therefore, model (1) can not be reduced to the simple

model (2) any more, and the more realistic four-dimensional impulsive model

should be developed to study how different sex ratios of the infected mosquitoes

released may affect the strategies of population suppression and replacement.

Whether or not the strategy of population suppression can be realized in Guang-

dong province remains to be seen. If not, how we can success be achieved?
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Appendix A. Stability of E∗
1j(j = 1, 2, 3) of model (2)

In the neighbourhood of equilibria, the dynamics of model (2) are determined

by the linearization

Ẋ = JX (A.1)

with Jacobian matrix J as the linear counterpart and X = (I, U). By simple

calculation, the Jacobian matrix J at (I, U) is given by

J(I, U) =





bτ − (d+D)(2I + U) −(d+D)I

(1− τ)b− bqU2

(I+U)2 − dU b(1− qI

I+U
+ qIU

(I+U)2 )− d(I + 2U)



 .

(A.2)

The Jacobian matrix of model (2) at E∗
11 takes the form of





bτ − b(d+D)
d

0

b((1− τ)− q − 1) −b



 .

where (⋆) is not necessary for the stability analysis, so we omit it.

Since the eigenvalues are

λ1
11 = bτ − b(d+D)

d
≤ 0, λ2

11 = −b < 0.

Note that λ1
11 ≤ 0 is equivalent to

R0
.
= τ − D

d
≤ 1,

so R0 = 1 if and only if τ = 1 (perfect transmission) and D = 0 (no fitness cost

for infection). So for model (2), E∗
11 is locally asymptotically stable if R0 < 1,

and unstable if R0 > 1.

Combination (3) and (A.2), Jacobian matrices J at E∗
1i(i = 2, 3) are simpli-

fied as

JE∗

1i
=





−(d+D)I∗ −(d+D)I∗

q(d+D)2

bτ2 U∗2 − dU∗ + (1− τ)b q(d+D)2

bτ2 I∗U∗ − dU∗ − (1− τ)b I∗

U∗



 .

(A.3)
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By simple calculation, eigenvalues of E∗
12 are

λi
12 =

−P1 ±
√

P 2
1 + 4N1

2
(i = 1, 2),

where

P1 = b
4q(d+D)2 [∆− (2q(d+D) + 4Dτ)

√
∆+ (q2 + 4qτ − 4q + 3τ2)D2

+ (2dq2 + 12dqτ − 8bq)D + d2q2 + 8qτd2 − 4qd2],

(A.4)

and

N1 =
b2τ

√
∆
(

q(d+D) +Dτ −
√
∆
)

2q(d+D)2
.

Similarly, eigenvalues of E∗
13 are

λi
13 =

−P2 ±
√

P 2
2 + 4N2

2
(i = 1, 2),

where

P2 = b
4q(d+D)2 [∆ + (2q(d+D) + 4Dτ)

√
∆+ (q2 + 4qτ − 4q + 3τ2)D2

+ (2dq2 + 12dqτ − 8bq)D + d2q2 + 8qτd2 − 4qd2],

(A.5)

and

N2 =
−b2τ

√
∆
(

q(d+D) +Dτ +
√
∆
)

2q(d+D)2
.

Therefore, the types of equilibria E∗
12 and E∗

13 and their stability are deter-

mined according to whether or not their eigenvalues are strictly negative.

Appendix B. The proof of Theorem 2.5

The local stability of endemic equilibria of model (4) when R0 > 1. The

Jacobian matrix of model (4) is

J(ξ, U) =





bqξ(1− 2ξ) −Dξ

(1−τ)bU−dU2

(1−ξ)2 − bqU (1−τ)bξ−2dU
1−ξ

+ b(1− qξ)



 . (B.1)
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Combining nonzero coordinate values for endemic equilibria and (5), the

Jacobian matrix of model (4) is simplified as

J(ξ, U) =





bqξ(1− 2ξ) −Dξ
(

−b(1−qξ)
1−ξ

− bq
)(

−bqξ2+bqξ+bτ−b

D

)

−d
1−ξ

(

−bqξ2+bqξ+bτ−b

D

)



 .

(B.2)

So

detJ = bξ2(qξ2−qξ+1−τ)(−2q(d+D)ξ+q(d+D)+D)
D(1−ξ) ,

trJ = b(2qDξ3+(dq−3qD)ξ2+q(D−d)ξ+d(1−τ))
D(1−ξ) .

(B.3)

Note that R0 > 1 is equivalent to C < 0, according to the expression of C,

we have D < −d(1− τ) < 0. Therefore detJ is positive if and only if

(qξ2 − qξ + 1− τ)(−2q(d+D)ξ + q(d+D) +D) < 0.

For convenience, denote

f1(ξ) = qξ2 − qξ + 1− τ, f2(ξ) = −2q(d+D)ξ + q(d+D) +D,

then we have

f1(ξ) > f1(
1

2
) =

−q

4
− τ + 1.

For simplicity, we only focus on the case of f1(ξ) > 0 for all the ξ, i.e., q <

4(1 − τ). Similarly, we can analyze the stability conditions when f1(ξ) < 0 for

some ξ.

Solving f2(ξ) = 0 with respect to ξ yields

ξ∗ =
q(d+D) +D

2q(d+D)
.

ξ3 > ξ∗ holds true naturally when D < 0. So detJ > 0 if f1(
1
2 ) > 0 and

f2(0) < 0, i.e.,

0 < q < min

{

4(1− τ),
−D

(d+D)

}

≤ 1.
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In addition, trJ is negative if and only if

2qDξ3 + (dq − 3qD)ξ2 + q(D − d)ξ >
−d(1− τ)

ξ
.

Denote

f3(ξ) = 2qDξ3 + (dq − 3qD)ξ2 + q(D − d)ξ, f4(ξ) =
−d(1− τ)

ξ
.

f3(0) = q(D − d) < 0, lim
ξ→0

f4(ξ) = −∞. Solving f3(ξ) = 0 with respect to ξ

yields two roots (D− d)/(2D) > 1/2 and 1. Thus, trJ < 0 holds true naturally.

By the Routh-Hurwitz criterion, we complete the proof of Theorem 2.5.

Appendix C. The proof of Theorem 2.6

There are two endemic equilibria E∗
2i(i = 2, 3) when Rc < R0 < 1, then

D > −d(1− τ). Let Ji be the Jacobian matrix at E∗
2i(i = 2, 3). Note that

ξ3 =
−B +

√
∆

2A
>

−B

2A
,

and ∆ > 0. For convenience, we only focus on the case of f1(ξ) > 0 for all the

ξ, i.e., q < 4(1− τ).

When D < 0, as in the similar proof of Theorem 2.5, then E∗
23 is locally

asymptotically stable if

−D

d
< q < min

{

4(1− τ),
−D

(d+D)

}

.

When D > 0, note that f2(ξ3) > 0 provided that ξ3 > ξ∗. Substituting the

formulae of ξ3 and ξ∗ into the above inequality yields q1 < q < q2, with

q1,2 =
−B1 ∓

√

B2
1 − 4A1C1

2A1
,

A1 = (d+D), B1 = 6dτD+4d2τ +2τD2−8dD−4d2−4D2, C1 = (2τ −1)D2.

Thus detJ3 > 0 if q1 < q < q2 hold true.

30



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

From (B.3), trJ3 is negative if ξ(f3(ξ3)−f4(ξ3)) < 0 holds true. Substituting

the formulae of ξ3 and ξ∗ into the above inequality yields

qτD(d+D)(qD + dτ + 3τD) + 2τ3D3 +
(

qτ(d+D)2 + 2qdτ(d+D) + 2τ2D2
)

√
∆1 < (d+D)(6qτD(d+D) + q2d2τ + 2q(d+D)

√
∆).

(C.1)

On the other hand,

ξ2 =
−B −

√
∆

2A
.

From (B.3) detJ2 < 0 if and only if

f1(ξ2)f2(ξ2)

D
< 0.

Substitution of ξ2 into the above inequality yields

(τD −
√
∆+D)(τD −

√
∆− q(d+D)) > 0. (C.2)

So E∗
22 is a saddle provided (C.2). Therefore, we complete the proof of Theorem

2.6.

31



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

References

[1] S. Bhatt, P.W.Gething, O.J. Brady, et al., The global distribution and

burden of dengue, Nature 496 (2013) 504.

[2] J.G. Rigau-Pérez, Severe dengue: the need for new case definitions, Lancet

Infect. Dis. 6 (2006) 297.

[3] J. Hemingway, H. Ranson, Insecticide resistance in insect vectors of human

disease, Annu. Rev. Entomol. 45 (2000) 371.

[4] R.F. Qi, L. Zhang, C.W. Chi, Biological characteristics of dengue virus and

potential targets for drug design, Acta. Biochim. Biophys. Sin. 40 (2008)

91.

[5] B.J. Beaty, Genetic manipulation of vectors: a potential novel approach for

control of vector-borne diseases, Proc. Natl. Acad. Sci. 97 (2000) 10295.

[6] M.M. Pettigrew, S.L. O’Neill, Control of vectorborne disease by genetic

manipulation of insect vectors: technological requirements and research

priorities, Aust. J. Entomol. 36 (1997) 309.

[7] J.H. Werren, L. Baldo, M.E. Clark, Wolbachia: master manipulators of

invertebrate biology, Nat. Rev. Microbiol. 6 (2008) 741.

[8] P. Kittayapong, K.J. Baisley, V. Baimai, et al., Distribution and diversity of

Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae),

J. Med. Entomol. 37 (2000) 340.

[9] H. Laven, Crossing experiments with Culex strains, Evolution 5 (1951) 370.

[10] J.H. Yen, A.R. Barr, A new hypothesis of the cause of cytoplasmic incom-

patibility in Culex pipiens, Nature 232 (1971) 657.

[11] S.L. ONeill, R. Giordano, A.M.E. Colbert, et al., 16S rRNA phylogenetic

analysis of the bacterial endosymbionts associated with cytoplasmic incom-

patibility in insects, Proc. Natl. Acad. Sci. 89 (1992) 2699.

32



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[12] E. Caspari, G. Watson, On the evolutionary importance of cytoplasmic

sterility in mosquitoes, Evolution 13 (1959) 568.

[13] J.J. Bull, M. Turelli, Wolbachia versus dengue: Evolutionary forecasts,

Evol. Med. Public Health 2013 (2013) 197.

[14] M.P. Hoffmann, A.C. Frodsham, Natural Enemies of Vegetable Insect

Pests, Cornell University, Ithaca, New York, 1993.

[15] P. Neuenschwander, H.R. Herren, Biological control of the cassava mealy-

bug, Phenacoccus manihoti, by the exotic parasitoid Epidinocarsis lopezi

in Africa, Phil. Trans. R. Soc. Lond. B 318 (1988) 319.

[16] Anon., Oh, New Delhi; Oh, Geneva, Nature 256 (1975) 355.

[17] H. Laven, Eradication of Culex pipiens fatigans through cytoplasmic in-

compatibility, Nature 216 (1967) 383.

[18] C.J. McMeniman, R.V. Lane, B.N. Cass, et al., Stable introduction of a

life-shorteningWolbachia infection into the mosquito Aedes aegypti, Science

323 (2009) 141.

[19] T. Walker, P.H. Johnson, L.A. Moreira, et al., The wMel Wolbachia strain

blocks dengue and invades caged Aedes aegypti populations, Nature 476

(2011) 450.

[20] A.A. Hoffmann, B.L. Montgomery, J. Popovici, et al., Successful establish-

ment of Wolbachia in Aedes populations to suppress dengue transmission,

Nature 476 (2011) 454.

[21] M. Turelli, Cytoplasmic incompatibility in population with overlapping

generations, Evolution 64 (2010) 232.

[22] H.L. Yeap, P. Mee, T. Walker, et al., Dynamics of the ’popcorn’ Wolbachia

infection in Aedes aegypti in an outbred background, Genetics 187 (2011)

583.

33



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[23] P.G. Schofield, Spatially explicit models of Turelli-Hoffmann Wolbachia

invasive wave fronts, J. Theor. Biol. 215 (2002) 121.

[24] M.G. Grech, F. Ludueña-Almeida, W.R. Almirón, Bionomics of Aedes ae-

gypti subpopulations (Diptera: Culicidae) from Argentina, J. Vector Ecol.

35 (2010) 277.

[25] H.N. Aida, H. Abu, H. Ahmad, et al., The biology and demographic pa-

rameters of Aedes albopictus in northern peninsular Malaysia. Asian Pac.

J. Trop. Biomed. 1 (2011) 472.

[26] W.A. Hickey, G.B. Craig, Genetic distortion of sex ratio in a mosquito,

Aedes aegypti, Genetics 53 (1966) 1177.

[27] G.D.D. Hurst, F.M. Jiggins, J.H.G. von der Schulenburg, et al., Male killing

Wolbachia in two species of insect, Proc. R. Soc. Lond. B 266 (1999) 735.

[28] M.J. Keeling, F.M. Jiggins, J.M. Read, The invasion and coexistence of

competing Wolbachia strains, Heredity 91 (2003) 382.

[29] J.Z. Farkas, P. Hinow, Structured and unstructured continuous models for

Wolbachia infections, Bull. Math. Biol. 72 (2010) 2067.

[30] J.G. Schraiber, A.N. Kaczmarczyk, R. Kwok, et al., Constraints on the use

of lifespan-shortening Wolbachia to control dengue fever, J. Theor. Biol.

297 (2012) 26.

[31] A. Pandey, A. Mubayi, J. Medlock, Comparing vector-host and SIR models

for dengue transmission, Math. Biosci. 246 (2013) 252.

[32] B. Zheng, M.X. Tang, J.S. Yu, Modeling Wolbachia spread in mosquitoes

through delay differential equations, SIAM J. Appl. Math. 74 (2014) 743.

[33] M. Ndii, R.I. Hickson, D. Allingham, G.N. Mercer, Modelling the trans-

mission dynamics of dengue in the presence of Wolbachia, Math. Biosci.

262 (2015) 157.

34



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[34] X.H. Zhang, S.Y. Tang, R.A. Cheke, Birth-pulse models of Wolbachia-

induced cytoplasmic incompatibility in mosquitoes for dengue virus control,

Nonlinear Anal-Real. 35 (2015) 236.

[35] Vietnam-Eliminate Dengue (Accessed 10 December 2014). URL.

〈http://www.eliminatedengue.com/vietnam/faqs〉.

[36] Eliminate Dengue Brazil (Accessed 10 December 2014). URL.

〈http://www.eliminatedengue.com/brazil〉.

[37] N. Mehta, Brazil releases Wolbachia infected mosquitoes

to fight dengue (Accessed 10 December 2014). URL.

〈http://www.livemint.com/Consumer/T8Ok070nJy1O4zlW5C93aP/Brazil-

releases-Wolbachia-infected-mosquitoes-to-fight-dengu.html〉.

[38] S.L. Dobson, W. Rattanadechakul, E.J. Marsland, Fitness advantage and

cytoplasmic incompatibility in Wolbachia single-and superinfected Aedes

albopictus, Heredity (Edinb) 93 (2004) 135.

[39] A.J. Fry, M.R. Palmer, D.M. Rand, Variable fitness effects of Wolbachia

infection in Drosophila melanogaster, Heredity 93 (2004) 379.

[40] M.D. Dean, A Wolbachia-associated fitness benefit depends on genetic

background in Drosophila simulans, Proc. Biol. Sci. 273 (2006) 1415.

[41] D. Joshi, M.J. McFadden, D. Bevins, et al.,Wolbachia strain wAlbB confers

both fitness costs and benefit on Anopheles stephensi, Parasites & Vectors

7 (2014) 336.

[42] J. Shan, Trial aims to take bite out of

mosquitoes (Accessed 12 November 2014). URL.

〈http://readpaper.chinadaily.com.cn/EpaperStation/chinadaily/cndy/2014-

11/10/content−18892361.htm〉.

35



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

Table Legends

Table 1: Stability of the equilibria Ei
20
(i = 0, 1, 2) of model (4). (S∼Stable, U∼Unstable).

Model (4) E0
20 E1

20 E2
20

Eigenvalues λi(i = 1, 2)
−b(1− τ) < 0 b

√
∆1(q−

√
∆1)

2q > 0 −b
√
∆1(q+

√
∆1)

2q < 0

b > 0 bτ > 0 bτ > 0

Stability U U U

Table 2: Stability of equilibria E∗

2i
(i = 1, 2, 3) of model (4) and their corresponding equilibria

E∗

1i
of model (2) in Case 1. (S∼Stable, U∼Unstable).

Model (4) E∗
21 E∗

22 E∗
23

Eigenvalues λi(i = 1, 2)
−b(1− τ) < 0 b(

√
∆1−q+4(1−τ))

2 > 0 b(−
√
∆1−q+4(1−τ))

2 < 0

−b < 0 −bτ < 0 −bτ < 0

Stability S U S

Model (2) E∗
11 E∗

12 E∗
13

Stability S U S
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Table 3: Parameter regions for the existence and stability of equilibria E∗

ij
(i = 1, 2, j =

1, 2, 3) of models (2) and (4) in the three cases. Each region denoted as Ωjk(j = 1, 2, 3, k =

1, 2, 3, 4, 5, 6, 7). (S∼Stable, U∼Unstable, ×∼ Nonexistence).

Regions Ωj1 Ωj2 Ωj3 Ωj4 Ωj5 Ωj6 Ωj7

Case 1

E∗
i1(S) E∗

i1(S)

E∗
i2(×) E∗

i2(U)

E∗
i3(×) E∗

i3(S)

Case 2

E∗
i1(U) E∗

i1(U) E∗
i1(S) E∗

i1(S)

E∗
i2(×) E∗

i2(×) E∗
i2(U) E∗

i2(×)

E∗
i3(S) E∗

i3(S) E∗
i3(S) E∗

i3(×)

Case 3

E∗
i1(U) E∗

i1(U) E∗
i1(S) E∗

i1(S) E∗
i1(S) E∗

i1(S) E∗
i1(S)

E∗
i2(×) E∗

i2(×) E∗
i2(U) E∗

i2(×) E∗
i2(×) E∗

i2(×) E∗
i2(×)

E∗
i3(S) E∗

i3(S) E∗
i3(S) E∗

i3(×) E∗
i3(×) E∗

i2(×) E∗
i2(×)

Figure Legends
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Figure 1: The effects of different initial values on the solutions of models (4) and (2) when

D = 0. The parameter values are fixed as follows: b = 2, τ = 0.85, d = 0.3, q = 0.7, then

E∗

21
= (0.3110, 3.9042) and E∗

23
= (0.6890, 1.7624). When the initial infected ratio ξ0 < ξ2,

the solutions of models (4) (or (2)) will stabilize at E∗

21
(or E∗

11
), when the initial infected

ratio ξ0 > ξ2, the solutions will stabilize at E∗

23
(or E∗

13
).
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Figure 2: The existence and stability of equilibria E∗

ij
(i = 1, 2, j = 1, 2, 3) of models (2) and

(4) (A) and basins of attraction of equilibria E∗

1j
(j = 1, 3) for model (2) (B) when D = 0.

The baseline parameter values are fixed as follows: b = 2, d = 0.3, and critical parameters

values fixed as τ = 0.9, q = 0.8 in (B).
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Figure 3: The existence and stability of equilibria E∗

ij
(i = 1, 2, j = 1, 2, 3) of models (2) and

(4) (A) and basins of attraction of equilibria E∗

1j
(j = 1, 3) for model (2) (B) when τ = 1.

The baseline parameter values are the same as Fig. 2, and critical parameters values fixed as

D = 0.2, q = 0.8 in (B).
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Figure 4: The bifurcation diagrams of infected ratio at equilibria versus R0 for model (4) with

different D values. The parameter values are fixed as follows: b = 2, d = 0.3, τ = 0.8, q = 0.7.

(A) Backward bifurcation with two interior equilibria when D = −0.1 and R0 < 1. (B) With

D reducing from −0.1 to −0.22, the backward bifurcation changes to a forward bifurcation.
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Figure 5: The bifurcation diagrams of infected ratio at equilibria versus R0 for model (4)
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0.3, q = 0.7. (A) Backward bifurcations occur with D increasing from 0 to 0.7 respectively

with τ = 0.7. (B) Backward bifurcation with two interior equilibria when τ = 1 and R0 < 1.
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(4) (A) and basins of attraction of equilibria E∗

1j
(j = 1, 3) for model (2) (B) when in general

case. The baseline parameter values are fixed as follows: b = 2, d = 0.3, τ = 0.65, and critical

parameters values fixed as τ = 0.9, q = 0.8 in (B).

43



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

0 0.2 0.4 0.6 0.8

1

2

3

4

5

6

7

8

ξ

U

(A)

0 1 2 3 4

1

2

3

4

5

6

7

8

I

U

(B)

E
*

22

E
*

23
E

*

13

E
*

11

E
*

12

E
*

21

0 0.5 1

1

2

3

4

5

6

ξ

U

(C)

0 5 10

1

2

3

4

5

6

I

U

(D)

E
*

23
E

*

13

Figure 7: The effects of different initial values on the solutions of models (4) and (2) when

−dq < D < 0. The baseline parameter values are the same as in Fig. 1 and D = −0.1.

(A)-(B): There is an unstable manifold for models (4) or (2) such that some initial values will

stabilize at E∗

23
or E∗

13
, while others will stabilize at E∗

21
or E∗

11
, given τ = 0.64. Unstable

equilibrium of model (7) E∗

22
= (0.1429, 5.4857), the unstable manifold moves to the right in

this case, compared with D = 0. (C)-(D): The unstable manifold disappears, and all initial

values will stabilize at E∗

23
or E∗

13
, given τ = 0.68.
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unstable manifold for models (4) or (2) such that some initial values will stabilize at E∗
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, while others will stabilize at E∗
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Figure 9: The effects of initial values (A), pulse timings (B) and pulse quantities (C) on the

solutions of model (8) with one pulse in the general case. The baseline parameter values are

fixed as the same as those in Fig. 6(B). In (A) T11 = [30], θ11 = [0.3], in (B) (I0, U0) =

(0.4, 20), θ11 = [0.3], and in (C) (I0, U0) = (0.4, 20), T11 = [40].
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Figure 10: The effects of initial values (A), pulse timings (B) and pulse quantities (C) on the

solutions of model (8) with two pulses in the general case. The baseline parameter values

are fixed as the same as those in Fig. 6(B). In (A) T12 = [10, 20], θ12 = [0.2, 0.1], in (B)

(I0, U0) = (0.4, 20), θ12 = [0.2, 0.1], and in (C) (I0, U0) = (0.3, 20), T12 = [5, 20].
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solutions of model (8) with three pulses in the general case. The baseline parameter values

are fixed as the same as those in Fig. 6(B). In (A) T13 = [5, 10, 15], θ13 = [0.1, 0.1, 0.1], in (B)
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ues are fixed as the same as those in Fig. 6(B). When pulse timings are selected from
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Figure 13: The effects of pulse sequences and numbers of pulses on the solutions of (8) in

the general case. The baseline parameter values are fixed as the same as those in Fig. 6(B).

Initial value and total quantity are fixed as (I0, U0) = (0.3, 20), θ = 0.3, respectively.
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Figure 14: The effects of pulse quantities (A) and pulse periods (B) on the solutions of model

(8) with infinite pulses in the general case. The baseline parameter values are fixed as the

same as those in Fig. 6(B). Initial value is fixed as (I0, U0) = (0.1, 20). In (A) pulse period

T = 7 and in (B) pulse quantity θ = 0.3.
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