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Abstract 24 
 25 

The development and use of entomopathogens as classical, conservation and augmentative 26 

biological control agents have included a number of successes and some setbacks in the past 15 27 

years. In this forum paper we present current information on development, use and future 28 

directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated 29 

pest management strategies for control of arthropod pests of crops, forests, urban habitats, and 30 

insects of medical and veterinary importance.  31 

Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of 32 

lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some 33 

globally important pests for which control has become difficult due to either pesticide resistance 34 

or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass 35 

produced, highly pathogenic and easily formulated and applied control agents. New baculovirus 36 

products are appearing in many countries and gaining an increased market share. However, the 37 

absence of a practical in vitro mass production system, generally higher production costs, limited 38 

post application persistence, slow rate of kill and high host specificity currently contribute to 39 

restricted use in pest control. Overcoming these limitations are key research areas for which 40 

progress could open up use of insect viruses to much larger markets. 41 

A small number of entomopathogenic bacteria have been commercially developed for control 42 

of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) 43 

sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is 44 

the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-45 

species israelensis and L. sphaericus are the primary pathogens used for medically important 46 

pests including dipteran vectors,. These pathogens combine the advantages of chemical 47 
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pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a 48 

relatively low cost, easy to formulate, have a long shelf life and allow delivery using 49 

conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad 50 

spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental 51 

impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has 52 

more than 50% of market share. Extensive research, particularly on the molecular mode of action 53 

of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant 54 

transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has 55 

been highly efficacious in pest management of corn and cotton, drastically reducing the amount 56 

of broad spectrum chemical insecticides used while being safe for consumers and non-target 57 

organisms. Despite successes, the adoption of Bt crops has not been without controversy. 58 

Although there is a lack of scientific evidence regarding their detrimental effects, this 59 

controversy has created the widespread perception in some quarters that Bt crops are dangerous 60 

for the environment. In addition to discovery of more efficacious isolates and toxins, an increase 61 

in the use of Bt products and transgenes will rely on innovations in formulation, better delivery 62 

systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific 63 

Bt toxins. 64 

Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and 65 

possess many desirable traits that favor their development as MCAs. Presently, commercialized 66 

microbial pesticides based on entomopathogenic fungi largely occupy niche markets.  A variety 67 

of molecular tools and technologies have recently allowed reclassification of numerous species 68 

based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual 69 

forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have 70 
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been traditionally regarded exclusively as pathogens of arthropods, recent studies have 71 

demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi 72 

are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and 73 

plant growth promoters. These newly understood attributes provide possibilities to use fungi in 74 

multiple roles. In addition to arthropod pest control, some fungal species could simultaneously 75 

suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A 76 

greater understanding of fungal ecology is needed to define their roles in nature and evaluate 77 

their limitations in biological control. More efficient mass production, formulation and delivery 78 

systems must be devised to supply an ever increasing market. More testing under field conditions 79 

is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, 80 

greater attention must be paid to their use within integrated pest management programs; in 81 

particular, strategies that incorporate fungi in combination with arthropod predators and 82 

parasitoids need to be defined to ensure compatibility and maximize efficacy.   83 

Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are 84 

potent MCAs. Substantial progress in research and application of EPNs has been made in the 85 

past decade.  The number of target pests shown to be susceptible to EPNs has continued to 86 

increase. Advancements in this regard primarily have been made in soil habitats where EPNs are 87 

shielded from environmental extremes, but progress has also been made in use of nematodes in 88 

above-ground habitats owing to the development of improved protective formulations. Progress 89 

has also resulted from advancements in nematode production technology using both in vivo and 90 

in vitro systems; novel application methods such as distribution of infected host cadavers; and 91 

nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative 92 

research has also yielded insights into the fundamentals of EPN biology including major 93 
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advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and 94 

foraging behavior. Additional research is needed to leverage these basic findings toward direct 95 

improvements in microbial control.  96 

 97 

1. Introduction 98 
 99 
 Since Lacey et al. (2001) addressed the possible future of microbial control of insects, the 100 

development of microbial pesticides and implementation of microbial control has included a 101 

number of successes and suffered some setbacks. Entomopathogens are utilized in all three 102 

categories of biological control, classical, conservation and augmentative, as defined by Hoy 103 

(2008a, 2008b) and McCrevy (2008). Some pathogens that are not commercially produced are 104 

currently used as classical biological control agents (Huger, 2005; Hajek, 2007; Hajek et al., 105 

2007, 2008, 2009; Hajek and Delalibera, 2010; Bedding, 2008) or conserved as naturally 106 

occurring pathogens in agroecosystems (Hummel et al., 2002; Nielsen et al., 2007; Steinkraus, 107 

2007b; Pell et al., 2010). Augmentative biological control, using inundatively applied microbial 108 

control agents (MCAs), is the most common strategy for employing entomopathogens for control 109 

of pest arthropods. Over 50 entomopathogenic viruses, bacteria, fungi, and nematodes are now 110 

commercially produced and used augmentatively as microbial pesticides (Figure 1) (Jackson, 111 

2003; Goettel et al., 2005; Grewal et al., 2005; Ekesi and Maniania, 2007; Kaya and Lacey, 112 

2007; Alves and Lopes, 2008; Copping, 2009; Ravensberg, 2011; Glare et al., 2012; Shapiro-Ilan 113 

et al, 2012b; Morales-Ramos et al., 2014). On a global scale, microbial pesticides only account 114 

for approximately 1-2% of all pesticides sold (Thakore, 2006; Marrone, 2007; Bailey et al., 115 

2010); however, they have shown long term growth over the past decade in contrast to chemical 116 

pesticides, which have consistently declined in the global market (Thakore, 2006; Bailey et al 117 
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2010). Some sources have recently estimated that the growth in microbial pesticides could reach 118 

3% of the pesticide market in 2014 (Glare et al., 2012).  A potent driving force for this expansion 119 

is the impact of European legislation to restrict residue levels of most synthetic chemical 120 

pesticides, and also a forthcoming directive (EC 91/414) to ban many other pesticides including 121 

those deemed to be human endocrine disrupters (Ansell, 2008; Bielza et al., 2008; Marx-122 

Stoelting, et al. 2011). These regulations are increasingly requiring farmers growing horticultural 123 

produce for sale in the European Union (EU) to drastically reduce use of conventional broad 124 

spectrum chemical pesticides. Expansion in biopesticide markets in Europe also reflects the 125 

effort of biocontrol scientists to rationalize and simplify the EU microbial pesticide registration 126 

procedures as part of the Regulation of Biological Control Agents (REBECA) project, and create 127 

a more favorable regulatory system that supports efforts of companies to commercialize MCAs 128 

(Ehlers, 2007). The global adoption of harmonized and simpler registration protocols would be a 129 

valuable step to promote wider MCA commercial availability (Ehlers 2007; Cherry and Gwynn, 130 

2007; Bailey et al., 2010; Kabaluk et al., 2010; Meeussen, 2012; Thornström, 2012). The impact 131 

of the growing organic sector in horticulture has also played a role in increasing market 132 

opportunities for biopesticides (Rohner-Thielen, 2005). Of the several commercially produced 133 

MCAs, Bacillus thuringiensis has the majority of market share (Glare et al., 2012) (Figure 1).    134 

Entomopathogens are ready made for use in integrated pest management programs and 135 

sustainable agriculture (Berger et al., 2007; Pell, 2007; Alves et al., 2008; Lacey and Shapiro-136 

Ilan, 2008; Birch et al., 2011; Glare et al., 2012). They are safe for applicators, the food supply 137 

and environment (Lacey and Siegel, 2000; OECD, 2002; Akhurst and Smith, 2002; Hokkanen 138 

and Hajek, 2003; Lacey and Merritt, 2003; Hajek and Goettel, 2007; O’Callaghan and 139 

Brownbridge, 2009; Mudgal et al., 2013), and their specificity minimizes impacts on beneficial 140 
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and other non-target organisms. This in turn promotes biodiversity and natural control of pest 141 

arthropods by parasites and predators. In the following sections we present information on the 142 

current status of entomopathogens as MCAs and prospects for their use in the near and distant 143 

future. Some of the key questions that we propose to address are: What are the major advances in 144 

microbial control that have been made since 2001? How do we expect biological control to 145 

change in the next decade or and in the more distant future? What are the major research or 146 

implementation barriers that must be overcome to significantly expand the use of MCAs? What 147 

are the societal factors that may hinder or promote their use in the near and distant future? 148 

 149 

2. Entomopathogenic viruses 150 

2.1 Major advances since 2001 151 

The role of entomopathogenic viruses in global crop protection has grown in the last decade, 152 

although steadily and evolutionarily rather than through any major technical advance. Most new 153 

virus products are based on species  that have been known and studied for at least two decades 154 

and represent commercialization based on extant knowledge rather than recent research efforts. 155 

Insect viruses appear to be moving out of narrow “niche” biological control products into the 156 

mainstream of commercial farming, reflected in the increased availability of commercial viral 157 

pesticides over the last few years. Among the different groups of entomopathogenic viruses 158 

(Miller and Ball, 1998; Eberle et al., 2012), most product development and research continues to 159 

be focused on the Baculoviridae (BV) (Miller, 1997; Moscardi et al., 2011). Of the four genera 160 

of baculoviruses, Alpha-, Beta-, Gamma-, and Deltabaculoviruses (Jehle et al., 2006; Eberle et 161 

al., 2012; Herniou et al., 2012), only the lepidopteran-specific nucleopolyhedroviruses (NPV; 162 
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Alphabaculovirus spp.) and granuloviruses (GV; Betabaculovirus spp.) have been commercially 163 

developed to any significant extent (Table 1).  164 

Research on developing non-BV viruses for crop protection has continued but only to a 165 

limited extent. Studies include fieldwork on the use of tetraviruses for control of heliothines in 166 

Australia (Christian et al., 2005) and Cypovirus spp. (Reoviridae) (Belloncik and Mori, 1998) for 167 

control of oil palm pests in South America (Zeddam et al., 2003a), though none appear to be 168 

close to commercialization. The use of Oryctes virus (Nudiviridae) for control of rhinoceros 169 

beetle on oil palm in Asia is an ongoing program (Ramle et al., 2005) that has evolved to include 170 

the use of a pheromone to collect adults that are then infected and used to disseminate the virus 171 

(Jackson et al., 2005). This is an interesting application of the “lure and infect” approach, 172 

although as yet there are no definitive published data on the success of this research and efficacy 173 

in the field.  174 

The dearth of research efforts on these non-BV groups is a significant barrier to further 175 

development as crop protection agents, which is surprising in some ways given the importance of 176 

some of the potential target pests.  Without necessary progress in the fundamental knowledge of 177 

viral taxonomy, pathology, ecology and the development of commercially viable mass 178 

production systems, non-BV viruses are unlikely to be attractive targets for commercialization 179 

by industry in the next decade. 180 

The focus on BV for commercialization can be ascribed to several favorable factors. There is 181 

more basic knowledge about BV biology, pathology and ecology than for any other group of 182 

invertebrate viruses, and the wealth of data greatly facilitates product development and 183 

registration. In addition, there are many scientists with the necessary knowledge to support 184 

commercialization initiatives, and established centers of BV research are more geographically 185 
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widespread, enabling collaborations between academics and local microbial pesticide companies.  186 

High levels of in vivo replication of most BV that are of commercial interest is also a key factor 187 

in making commercial production potentially economically feasible.  188 

The infective stage of BVs is characterized by circular double stranded DNA within rod 189 

shaped nucleocapsids that are encased within occlusion bodies (OB) formed of crystalline 190 

protein. The details of BV life history, biology and ecology are covered in detail elsewhere and 191 

are not discussed here (see Miller, 1997; Fuxa, 2004; Cory and Myers, 2003; Cory and Evans, 192 

2007; Moscardi et al., 2011; Harrison and Hoover, 2012). The robust nature of the OB is a factor 193 

facilitating commercial baculovirus product development as it is readily amenable to 194 

formulation, application and long-term storage than non-occluded insect viruses. OBs can be 195 

visualized using phase contrast light microscopy, facilitating quantification of BV without the 196 

need for electron microscopy, which requires expensive equipment that often is not readily 197 

available to microbial pesticide companies. In the last decade, there has been a significant 198 

expansion in range of commercial BV products (Kabaluk et al., 2010; Gwynn 2014), notably in 199 

the range of BV insecticides available in Europe and North America. Elsewhere the picture is 200 

mixed with significant expansion in the production and use of BV microbial pesticides in parts of 201 

Asia, Australasia and South America, but as yet little expansion of use in Africa (Cherry and 202 

Gwynn, 2007; Kabuluk et al. 2010; Moscardi et al., 2011).   203 

The focus on BV is in large part due to the importance of these pathogens in controlling 204 

some globally important lepidopteran pest species such as Helicoverpa spp. (Rowley et al. 2011) 205 

and Spodoptera spp. (Table 1). These pest species have a marked propensity to rapidly develop 206 

resistance to conventional chemical insecticides, making their control challenging. These species 207 

also are pests on a wide range of crops, providing potential market niches for BV in field crops 208 
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and in protected crops grown in polytunnels and glasshouses (Grzywacz et al., 2005; Arrizubieta 209 

et al., 2014). In China, NPV supply has expanded with nine BV products now commercially 210 

available. There are at least 12 Chinese manufacturers of Helicoverpa armigera NPV 211 

(HearNPV) and several of Spodoptera litura NPV (SpltNPV), Autographa californica NPV 212 

(AucaMNPV), Plutella xylostella GV (PlxyGV) and Spodoptera exigua NPV (SeMNPV) as well 213 

as a number of other BV products (Sun and Peng, 2007;Yang et al., 2012). It is difficult, 214 

however, to determine the total use of BV in China. One source estimated that in 2007 around 215 

250 tonnes of formulated material was produced, 80% of which was HearNPV, used on up to 216 

100,000 ha (Sun and Peng, 2007). A more recently published estimate stated that up to 2,000 217 

tonnes of formulated BV products may be produced annually, from which it may be inferred that 218 

areas treated have expanded significantly from the earlier estimate, and may have reached up to 1 219 

million ha (Yang et al., 2012). In India, many new suppliers of HearNPV and SpltNPV have 220 

appeared in recent years following the adoption of simplified microbial pesticide registration and 221 

in response to the growing problem of synthetic insecticide resistance (Department of 222 

Biotechnology India, 2007; Rabindra and Grzywacz, 2010). The total production of BV in India 223 

was estimated to be in excess of 50 tonnes in 2004 (Singhal, 2004) with both public and private 224 

sector organizations active in manufacturing. Quality control issues remain a concern in India 225 

and parts of Southeast Asia (Jenkins and Grzywacz 2000; Kambrekar et al., 2007; Grzywacz et 226 

al. 2014a).  It remains to be seen if truly large-scale market penetration can be achieved in these 227 

regions with the existing generation of products. Australian growers have incorporated BV for 228 

management of H. armigera in field crops, and importation of Helicoverpa zea NPV 229 

(HezeSNPV) for H.armigera control is now supplemented by local sources of a HearSNPV 230 

isolate (Buerger et al., 2007; Hauxwell et al., 2010). A major breakthrough in adoption of BV by 231 
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producers was bringing together new midge resistant sorghum hybrids with HearSNPV to 232 

produce an IPM system that controlled the two major crop pests alongside local production of 233 

the BV (Franzmann et. al., 2008). HearNPV, SpltNPV and SeMNPV are registered in Thailand 234 

and Vietnam, though supply currently appears to depend on imports and public sector suppliers 235 

rather than local commercial sources (Nakai and Cuc, 2005; Ratanastien et al., 2005; Skovmand, 236 

2007). In South America, Brazil leads BV development with a well-established program for 237 

production and use of Anticarsia gemmatalis NPV (AngeMNPV) for control of velvet bean 238 

caterpillar on soy (Moscardi, 1999; 2007; Sosa-Gómez et al., 2008). More recently, production 239 

and use of AngeMNPV has begun in Mexico (Williams et al., 2013a).  The production of 240 

AngeMNPV was initiated in Brazil as a public sector project but commercial producers 241 

subsequently were brought in to scale up production.  Mass-reared insect production was later 242 

introduced in Brazil to supplement the original field-based production system when the treatment 243 

areas rose to 2 million ha in 2004 (Moscardi, 2007). However, since the use of no-tillage systems 244 

involving the routine prophylactic use of broad spectrum insecticides in place of BV applications 245 

have been widely adopted, AngeMNPV is now used on less than 300,000 ha (Moscardi et al., 246 

2011; Panazzi, 2013). The rapid shift in the fortunes of what was a very successful microbial 247 

pesticide is an illustration of the dynamic nature of modern commercial agriculture and how 248 

continued user acceptance of successful microbial pesticides cannot be taken for granted.  249 

Despite the decrease in use, this program remains a model for public sector development of a BV 250 

that successfully spawned large-scale commercial use. Development of Spodoptera frugiperda 251 

NPV (SpfrMNPV) for controlling S. frugiperda in maize, Condylorrhiza vestigialis NPV 252 

(CoveNPV) for pest control on poplar trees (Populus spp.) and Erinnyis ello GV for cassava pest 253 

control (Bellotti et al., 1999; Moscardi et al., 2011) is also underway by research institutes in 254 
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Brazil, while commercial production of SpfrMNPV and Autographa californica MNPV 255 

(AcMNPV or AucaMNPV) is also reported in Guatemala, although the scale of use is not clear 256 

(Sosa-Gómez et al., 2008). Efforts continue to extend the use of the successful potato tuber moth 257 

Phthorimaea operculella GV (PhopGV), currently produced in Bolivia by the public or non-258 

government organization (NGO) sector (Sporleder, 2003; Kroschel and Lacey, 2008; Sporleder 259 

and Kroschel, 2008; Lacey and Kroschel, 2009) for both field crop (Wraight et al., 2007b; 260 

Arthurs et al., 2008c; Sporleder and Kroschel, 2008; Sporleder and Lacey, 2013) and stored 261 

product use in North and South America (Arthurs et al., 2008b, Sporleder and Kroschel, 2008; 262 

Lacey et al., 2010a; Sporleder and Lacey, 2013). Studies have also focused on the formulation of 263 

PhopGV (Sporleder, 2003; Arthurs et al., 2008b) and its propagation in vivo (Sporleder et al., 264 

2008) for control of the pest host. In some areas of South America, a new potato pest, Tecia 265 

solanovora, has supplanted P.operculella as the main potato pest, threatening the efficacy of 266 

PhopGV in potato stores. The identification of a new strain of PhopGV showing activity against 267 

both pests is particularly promising; without such dual activity, farmer use is likely to decline 268 

precipitously as T. solanovora spreads (Gómez-Bonilla et al., 2011).  269 

One of the most widely used commercially developed viruses is the codling moth, Cydia 270 

pomonella granulovirus (CpGV). Although CpGV was developed and commercialized for use in 271 

Europe in 1987 (Hüber, 1998; Cross et al., 1999; Vincent et al., 2007), it was registered in North 272 

America more recently (Vincent et al., 2007; Lacey et al., 2008b) and is now used worldwide 273 

(Lacey et al., 2008b; Sosa-Gómez et al., 2008). A comprehensive review of the CpGV literature 274 

by Lacey et al. (2008b) concluded that CpGV provides good codling moth population control. 275 

Other reasons for its widespread adoption are that no spray interval is required throughout the 276 

growing season and before harvest,, and it is safe for applicators, the food supply and non-targt 277 
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organisms. Although it is widely used in Europe and in North America, adoption by conventional 278 

growers is still limited compared to organic growers. The principal caveat for its use is the 279 

relatively low persistence of the virus due to solar degradation, necessitating frequent re-280 

application when codling moth pressure is high.  Indeed, given the issue of its low persistence in 281 

the field, its relatively successful use by the apple industry is an interesting illustration that even 282 

products with less than optimal performance can succeed under the right circumstances.  It may 283 

well be that if application can be timed to coincide with peak fruit entry by first instar coddling 284 

moth larvae and the BV can rapidly infect a high proportion of larvae before significant damage 285 

occurs, adequate control can be achieved even in a context where the BV has low persistence 286 

(Cherry, 2000; Grzywacz et al., 2008). Another factor in CpGV’s favor is high virulence and the 287 

ease and speed with which it infects  (Ballard et al., 2010a). Pest ecology may be another 288 

element; in many apple growing systems there are only one or two pest generations per year and 289 

growers can target the early larval stages with a high degree of confidence, ensuring that even a 290 

short lived virus can achieve acceptable control (Lacey and Shapiro-Ilan, 2008). It must also be 291 

noted that CpGV is not a stand-alone product in apple production but a component in a well-292 

developed “soft” IPM system (Lacey et al., 2008b). BVs like other biological control agents 293 

(BCA) may perform best as part of a comprehensive IPM system rather than as chemical 294 

substitutes (Lacey and Shapiro, 2008). The success of soft IPM in apples also may be related to 295 

the long duration of tree crop systems that facilitate the successful establishment of natural 296 

enemy complexes, a situation less common in annual crops. Another issue may be that the 297 

relatively high profile and consumer demand for “organic apples” provides an additional market 298 

incentive to enable biological insecticides such as CpGV to capture a significant market niche.  299 
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Expansion of BV use is not without potential problems. Following widespread adoption of 300 

CpGV in parts of Europe, extremely high levels of resistance have been reported in certain 301 

locations where it has been used for 20 years or more (Fritsch et al., 2005; Eberle and Jehle, 302 

2006; Sauphanor et al., 2006; Zichová et al., 2013). Laboratory studies reveal that rapid 303 

development of extreme resistance (100,000 resistance ratio) is possible due to sex-linked 304 

inheritance of a dominant resistance gene (Asser-Kaiser et al., 2007) and involves a specific 305 

mutation affecting an early block on virus replication (Asser-Kaiser et al., 2011).   It has been 306 

shown that this resistance can be overcome by using BV products containing different CpGV 307 

isolates than the original Mexican strain used in all earlier CpGV products (Eberle et al., 2008), 308 

and a number of new products incorporating the new CpGV isolates have now been brought to 309 

market (Zichová et al., 2013; Andermatt Biocontrol, 2014). However, to ensure future 310 

sustainability, an integrated approach that alternates other soft interventions with CpGV products 311 

is recommended when the virus is used extensively within a region (Lacey et al., 2008b). An 312 

interesting contrast with C. pomonella resistance is use of AngeMNPV in Brazil. Despite the 313 

ease with which resistance to AngeMNPV can be selected for in laboratory populations of A. 314 

gemmatalis (Abot et al., 1997) and the extensive use of AngeMNPV over many years, no reports 315 

of field resistance to AngeMNPV have been confirmed (Moscardi, 2007). This contrast may 316 

indicate that widespread geographical use of a virus is less a factor in selecting resistance than 317 

reliance on a single genetic strain. If so, producers of BV products should plan to incorporate 318 

either a wild type mixture of strains in a product or have alternate strains developed and available 319 

as part of a product resistance management strategy.    320 

The appearance of a commercial GV product against false codling moth, Cryptophlebia 321 

leucotreta, in South Africa is an important step as the first commercially available BV produced 322 
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in Sub-Saharan Africa (Singh et al., 2003; Moore et al., 2004a). Another BV that has been under 323 

active development in Africa is the NPV of Spodoptera exempta NPV (SpexNPV) for control of 324 

the African armyworm, a major migrant pest in Africa (Grzywacz et al., 2008). A pilot 325 

production plant was set up in Kenya by a private commercial producer (Van Beek, 2007) and a 326 

HearNPV product from this producer was registered in Kenya and Ghana in 2012; however, the 327 

scale of use is unclear. Diamond back moth, Plutella xylostella, is another global pest that has 328 

been a priority target for research of both P. xylostella GV (PlxyGV) and P. xylostella NPV 329 

(PlxyMNPV) (Kariuki and Macintosh, 1999; Grzywacz et al., 2004). A comparison of PlxyGV 330 

and PlxyMNPV showed that both had similar pathogenicity on the basis of OB counts but that 331 

PlxyGV infections produced many more OBs per unit of host weight (Farrar et al., 2007). 332 

Commercial PlxyGV products are available in China though the scale of use is uncertain (Yang, 333 

2012).   334 

Turfgrass pest control has also been a focus for pests such as Agrotis ipsilon using an NPV 335 

(AgipMNPV, Prater et al., 2006). Much of the work involves protecting golf course turf, but 336 

while AgipMNPV can give good control of early instars, its persistence is limited by frequent 337 

mowing. Additionally, exposure to UV reduces secondary cycling of the virus (Bixby-Brosi and 338 

Potter, 2010).  BV isolates under development by the public sector (Table 1) have not yet 339 

attained product status.  340 

Research on expanding use of other existing BV products continues, including the use of 341 

Spodoptera exigua NPV (SeMNPV) in glasshouses in southern Europe (Lasa et al., 2007). An 342 

interesting development is the commercialization in Japan of a joint formulation of Adoxophyes 343 

orana GV and Homona magnanima GV for controlling two tortrix pests of tea (Kunimi, 2007).  344 
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The use of BV in forest insect pest control in North America and Europe, a traditional focus 345 

of BV research (Cunningham, 1995; Martignoni, 1999; Podgewaite, 1999), has remained limited. 346 

The development of some forest pest BV, such as the gypsy moth NPV has continued (Cadogan 347 

et al., 2004; Moreau and Lucarotti, 2007) and commercial production of sawfly Neodiprion 348 

abietis is now also underway (Lucarotti et al., 2007). The lack of expansion of BV use in forest 349 

pest control may reflect the preferential adoption of Bacillus thuringiensis-based products, with 350 

their ready availability and wider host range (Moreau and Lucarotti, 2007; van Frankenhuyzen et 351 

al., 2007), rather than rejection of BV microbial pesticides. In Asia a number of forest pest BV 352 

are either in production or use in China, Japan and India; the scale of use remains unclear, 353 

although probably limited (Nair et al., 1996; Peng et al., 2000; Kunimi, 2007; Sun and Peng, 354 

2007; Yang et al., 2012).  Use of BV in stored products has also been a focus of research, 355 

particularly on Plodia interpunctella GV (PlinGV) (Vail et al., 1991, 1993). PlinGV has shown 356 

promise for control both through direct action and auto-dissemination but as yet has not been 357 

commercially developed. 358 

 359 

2.2 Research issues that constrain expansion of the use insect viruses 360 

Mass production of BV at a cost most potential users can bear remains a significant issue. 361 

Production of commercial BV insecticides is still dependent on in vivo systems utilizing 362 

specially reared or wild collected insects (Reid et al., 2014; Grzywacz et al., 2014b). In vivo 363 

systems for production of BV in live larvae remain the normal production method for 364 

commercial companies and for public sector programs (Moscardi, 1999; Van Beek and Davies, 365 

2009; Grzywacz et al., 2014a) but the relatively high cost of producing BV in living insects 366 

compared to their chemical insecticide counterparts remains a constraint as farm prices are 367 
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difficult to reduce below $20 per ha and scaling up in vivo BV production with its demands for 368 

high quality disease-free insects is also a challenge (Reid et al., 2014). The use of automation 369 

and mechanization in inoculation, rearing, and harvesting has facilitated mass production and 370 

made BV a viable commercial option for the current range and usage scale. However, this 371 

manufacturing approach remains unattractive to many companies in North America and Europe 372 

that are unfamiliar with mass insect culture as a mainstream production technique, and while, the 373 

in vivo production approach remains capable of meeting the current market needs, the ability to 374 

produce the amounts of BV needed for large scale field crop protection is far from certain. It 375 

remains to be seen if the recent sharp decline in the use of AgMNPV in Brazil after a major 376 

investment in laboratory-based mass production facilities (Moscardi et al., 2011; Panazzi, 2013) 377 

will have a significant impact on the willingness to fund a major expansion of in vivo BV 378 

production. 379 

While most viral pesticides are produced in specialized facilities, field production in vivo has 380 

been a viable approach for a few commercial BV products such as AgMNPV in developing 381 

countries (Hunter-Fujita et al., 1998; Moscardi, 2007; Alves and Lopes, 2008). Field production 382 

is planned for SpexNPV in Africa (Grzywacz et al., 2014b), although large scale commercial 383 

viable mass production has yet to be successfully established for any BV other than AgMNPV.  384 

Facing future needs for large-scale mass production of BV, in vitro cell culture remains a  385 

major approach to overcoming supply and cost constraints that limit BV use (Black et al., 1997, 386 

Moscardi et al., 2011). Mass production of hosts to produce viruses has been under development 387 

for 30 years but has not yet been successfully scaled up to the levels required to meet 388 

commercial acceptability (Granados et al., 2007).  While many cell lines capable of supporting 389 

BV replication exist, the cells are relatively fragile compared to the bacterial and yeast cells 390 
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normally used in large scale cell culture systems.  Meeting commercial needs for BV production 391 

would require bioreactors of >10,000 l that are capable of continuous high efficiency production. 392 

(Black et al., 1997, Reid et al., 2014). Successful insect cell production has been reported in a 393 

number of different bioreactors but only at volumes of 20- 600 l (Reid et al 2014).  Besides 394 

developing large-scale reactors suitable for insect cell lines, in vitro systems require low cost 395 

chemically defined media optimised for insect cell production to be cost effective and this is also 396 

not yet available.  BV production quality also has been an issue; in particular, low cell yield and 397 

the maintenance of acceptable phenotypic qualities are constraints yet to be overcome (Pedrini et 398 

al., 2006; Nguyen et al., 2011). Thus, while research to develop cost effective in vitro systems 399 

continues (Granados et al., 2007; Szewczyk et al., 2006; Moscardi et al., 2011), there are as yet 400 

no indications that commercial production will begin in the near future, though technical and 401 

commercial “road maps” for such a ventures have been developed (Reid et al., 2014).  402 

The slower killing speed of BV compared with most synthetic insecticides remains a 403 

significant barrier to their wider adoption (Copping and Menn, 2000; Szewcyk et al., 2006). 404 

Speed of action remains an important factor in selecting strains because faster acting strains 405 

would reduce crop damage and would be more attractive to users accustomed to the rapid kills 406 

obtained with many, though not all, chemical pesticides.  A major focus of applied research to 407 

increase speed of action has been genetic modification (GM) of BV to insert or delete genes that 408 

quickly initiate cessation of feeding and accelerate death. The inserted genes include insect 409 

specific toxins from the scorpions Androctonus australis and Leiurus quinquestriatus, the spider 410 

Tengeneria agrestis, the itch mite Pyemotes tritici and juvenile hormone esterases (Burdan et al., 411 

2000; Bonning et al., 2002; Szewcyk et al., 2006).  Despite promising field trial results, 412 

commercial development of these GM BVs appears to have stalled, perhaps because the 413 
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recombinants produce poor yields in current in vivo systems or because the climate of public 414 

opinion and regulatory barriers are not sufficiently favorable to GM products in major potential 415 

markets such as the EU (Black et al., 1997; Glare et al., 2012).  416 

The adoption of new natural mutant virus strains such as non-liquefying SfMNPV (Valicente 417 

et al., 2008) is another route for improving the cost effectiveness of BV that would not face such 418 

perceptual or registration barriers; however, the use of a natural faster-acting strain in practice 419 

may not be without drawbacks. A faster killing strain of S. frugiperda NPV (SpfrMNPV) was 420 

identified, but it was found to produce fewer OBs than the slower killing isolate, an evolutionary 421 

trade-off that is probably common and could reduce the impact of secondary cycling (Behle and 422 

Popham, 2012).   Thus, despite extensive research in genetic modification to overcome some of 423 

the recognized BV constraints of restricted host range, slower action, and sensitivity to UV, no 424 

BV recombinant products with improved performance have been marketed nor do they seem 425 

likely to be in the near future.  This is partly due to the technical failure to develop recombinants 426 

with the desired characteristics but may also reflect the rising costs of registering and deploying 427 

GM technology. In addition, recently published research on the genetic and genomic aspects of 428 

BV (with 43 genomes sequenced) has thrown an interesting light on BV relationships and 429 

evolution (Jehle et al., 2006; Eberle et al., 2009; Herniou et al., 2012).  430 

It has been hoped that genomic data would assist the development of products with improved 431 

efficacy, host range, etc. (Inceoglu et al., 2006), but as yet there has been no commercial impact.  432 

While generally OBs are stable, they are sensitive to UV inactivation as well as phytochemical 433 

degradation on some plant species (Cory and Hoover, 2006; Cory and Evans, 2007: Behle and 434 

Birthisel, 2014). Specific phytochemical mechanisms that interfere with BV infectivity on crops 435 

have been identified in cotton (Hoover et al., 1998; Hoover et al., 2000) and, more recently, in 436 
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chickpea (Stevenson et al., 2010). The low persistence of BV on these and other crops is still 437 

perceived as a real limitation to the current generation of BV microbial pesticides (Copping and 438 

Menn, 2000; Moscardi et al., 2011; Behle and Birthisel, 2014). However, given the relative 439 

commercial success of CpGV, which has a short persistence time due mainly to solar 440 

inactivation, limited persistence may not be an insurmountable barrier to adoption provided 441 

products give a degree of control that meets the users core requirements.  442 

BV can be applied using any commercial spraying system without special formulation (Gan-443 

Mor and Mathews, 2003), although stickers, gustatory stimulants and UV protectants are often 444 

routinely incorporated into tank mixes to improve efficacy (Burges and Jones, 1998; Behle and 445 

Birthisel 2014). Effective application rates for field use of NPV species that contain multiple 446 

virions vary between 0.5-5 x 1012 OBs per ha (Moscardi, 1999), while for the GV with only one 447 

virion per occlusion body, rates can be higher (Moscardi, 1999).  Research into new technology 448 

for applying BV seems to have advanced little in recent years, perhaps in recognition that 449 

farmers’ decisions on the acquisition and use of sprayers is not likely to be driven to any 450 

significant extent by their specific ability to deliver microbial agents such as BV. There is now 451 

more interest in using precision application technologies for crop protection. In the next decade, 452 

use of minimal or precisely applied inocula in place of the traditional blanket spraying may be 453 

one of the most interesting avenues for exploiting BV more successfully and overcoming issues 454 

of cost and availability. 455 

In addition to improving speed of kill, efficacy, host range, and persistence, applied research 456 

on formulation of BV remains one of the most important routes to BV product improvement 457 

(Burges and Jones, 1998; Behle and Birthisel, 2014). However, published research on this issue 458 

is very limited, probably due to proprietary issues, so it is unclear if limited publications reflect 459 
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lack of significant progress. A number of improvements have been reported but it is not clear if 460 

advances are likely to appear in products in the near future. Most virus products are produced 461 

and sold as suspension concentrates, wettable powders and granules.  462 

A minimum shelf life of 18 months was recommended over 30 years ago (Couch and 463 

Ignoffo, 1981) and some products are now available that meet this standard (Burges and Jones, 464 

1998; Lacey et al., 2008b); these usually include adjuvants that stabilize the virus and improve 465 

suspension in water. Factors that affect shelf life of viruses (temperature and formulation 466 

components) have been reported for the NPV of the celery looper Anagrapha falcifera 467 

(AnfaMNPV) (Tamez-Guerra et al., 2000; Behle et al., 2003) and CpGV (Lacey et al., 2008a). 468 

Some producers ship virus as frozen product and advise keeping the virus frozen until used, 469 

although this may not always be possible under operational conditions. Freezing is not essential 470 

to preserve BV, which can remain active in purified suspensions over long periods, even at room 471 

temperature. However, refrigeration or freezing does appear to be necessary to prevent the loss 472 

of activity related to the proliferation of contaminant bacteria and the oxidation of host derived 473 

lipids (Burges and Jones, 1998) and, thus, maintain the infectivity of mass produced suspensions 474 

(Lasa et al., 2008). The need for cold storage of BV is less of constraint in glasshouse and 475 

protected crops where use of biological control agents such as predators and parasitoids, 476 

requiring special storage or immediate use on receipt, has become increasingly common. It does, 477 

however, limit adoption in many field crops where biological control agents are less widely 478 

utilized.  479 

The wider availability of formulations with ambient shelf life comparable to synthetic 480 

pesticides (> 2 years) would be a substantial stimulus for expansion of BV use. Air-dried, spray-481 

dried, and freeze-dried formulations have been widely studied with promising results for storage 482 
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stability and activity (Alcázar et al., 1992; Tamez-Guerra et al., 2000, 2002; McGuire et al., 483 

2001; Behle et al., 2003; Arthurs et al., 2008b). Spray drying of AnfaMNPV did not significantly 484 

reduce activity of lignin formulations over 6 months storage at 4°C (Behle et al., 2003). Freeze 485 

dried formulations of the PhopGV were comparable in activity to emersion in an aqueous virus 486 

suspension (Arthurs et al., 2008b). Freeze dried and microencapsulated formulations of 487 

HearSNPV were also found to be as effective in the field as aqueous suspensions when applied 488 

on chickpea (Cherry et al., 2000). However, AnfaMNPV spray-dried formulations were reported 489 

to have higher residual activity compared with a commercial glycerin-based formulation (Behle 490 

et al., 2003). Differences in results may relate to specific crop-pest factors such as chemical 491 

inactivation reported on chickpea, so formulations may need to be tailored in some cases to the 492 

specific crop (Stevenson et al., 2010). Encapsulation of viral OBs in lignin via spray drying has 493 

been developed and tested with MNPV and GV and produced higher mortality and longer 494 

persistence than unformulated controls (Tamez-Guerra et al., 2000; McGuire et al., 2001; Behle 495 

et al., 2003; Arthurs et al., 2006; 2008a, Behle and Popham 2012). Castillejos et al. (2002) 496 

reported considerably greater persistence with a granular phagostimulant formulation of the 497 

SfMNPV than with an aqueous suspension. In contrast, the commercially produced particle films 498 

and waxes, marketed as sunburn protectants for fruit are reported as providing no significant 499 

additional protection for CpGV (Lacey et al., 2004; Arthurs et al., 2006; 2008a).  500 

A principal concern of growers is the need for frequent reapplication of BV due to rapid 501 

inactivation when exposed to sunlight (Behle and Birthisel, 2014). BV are especially sensitive to 502 

the ultraviolet spectrum (Ignoffo, 1992; Burges and Jones, 1998; Tamez-Guerra et al., 2000; 503 

Lacey and Arthurs, 2005), although specific host plant phytochemical factors can also contribute 504 

to low persistence on some crops and tree species (Cory and Hoover, 2006). The relative role of 505 
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low UV persistence in constraining BV product use varies significantly due to a complex of 506 

biotic and abiotic crop specific factors such as UV levels, crop architecture, pest infestation 507 

patterns and cropping practices (Stevenson et al., 2010). In tropical crops exposed to high UV, 508 

persistence of BV can be less than 24 hours; but persistence of other microbial pesticides such as 509 

Bt and even chemicals can also be short on these crops due to the combination of high UV and 510 

high temperature, which drives inactivation, chemical breakdown and volatization (Cherry et al., 511 

2000).  512 

One issue complicating the evaluation of research on UV persistence is the variability of 513 

experimental protocols used by different researchers. Some researchers evaluate natural sunlight 514 

exposure, which also has issues of variability, but many studies use various artificial UV sources 515 

that may not closely mimic natural sunlight spectra or leaf surface exposure. Exposure distances 516 

and duration vary and the choice of substrate can be a confounding issue. For example, direct 517 

heating effects may confound the effect of UV exposure when substrate temperatures are not 518 

restrained within environmentally valid bounds. Optical brighteners (Tinopal, Blankophor P167, 519 

and other stilbene derivatives), with and without titanium dioxide, have been shown to increase 520 

the persistence of NPV and GV (Farrar et al., 2003; Monobrullah and Nagata, 2001; Sporleder, 521 

2003). However, Sajap et al. (2009) found that, although adjuvants such as Tinopal gave 522 

significantly improved UV protection in laboratory studies of SpltMNPV, in subsequent field 523 

trials on brassicas, no clear advantage was conferred over unformulated SpltNPV. A number of 524 

other materials that absorb specific wavelengths, including specialized dyes, chemicals and 525 

natural substances such as lignin sulfate, polystyrene latex, Congo Red, green tea, antioxidants, 526 

iron oxide and others have been tested to improve the residual activity of entomopathogenic 527 

viruses (Burges and Jones, 1998; Charmillot et al., 1998; Ballard et al., 2000b; de Morães Lessa 528 
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and Medugno, 2001; McGuire et al., 2001; Sporleder, 2003; Asano, 2005; Arthurs et al., 2006; 529 

Shapiro et al., 2008). Molasses, sucrose and skimmed milk powder have also been reported to 530 

slightly improve persistence of CpGV (Charmillot et al., 1998; Ballard et al., 2000b). Alves et al. 531 

(2001) demonstrated greater persistence of NPV in an oil emulsion formulation than in a 532 

wettable powder for control of A. gemmatalis. UV protected petroleum spray oils were also 533 

found to be effective with HearSNPV (Mensah et al., 2005). In considering formulations that 534 

improve UV stability, it is not only performance that should be taken into account. Some 535 

experimentally demonstrated formulation additives have not been adopted for commercial use 536 

due to factors such as high cost, phytotoxicity, storage incompatibility, cosmetic unacceptability 537 

on fresh produce, or because application at the required concentrations, is impractical due to high 538 

viscosity or blocking of spray filters as occurs with some particulate additives. 539 

It has been suggested that the success of HearNPV in Australia is related to very rapid 540 

acquisition, mitigating the problem of low BV persistence on crops (Murray et al., 2001), 541 

although the use of additives in tank mixes to improve efficacy of HearNPV is also an important 542 

factor in its success (Mensah et al., 2005; Hauxwell and Reeson, 2008).  Increasing the 543 

attractiveness of spray deposits by adding attractants and feeding stimulants to tank mixes has 544 

shown promise in accelerating the acquisition of virus; for example, molasses is reported to be 545 

one of the most effective feeding stimulants for codling moth larvae (Ballard et al., 2000b). 546 

Other phagostimulants with potential for improving efficacy of CpGV include monosodium 547 

glutamate (Pszczolkowski et al., 2002) and trans-1-aminocyclobutane-1,3-dicarboxylic acid 548 

(trans-ACBD) (Pszczolkowski and Brown, 2004). However, use of high concentrations of 549 

additives such as molasses may have unacceptable side effects such as stimulating disfiguring 550 

fungal growth such as sooty mold on fresh produce. Schmidt et al. (2008) reported significant 551 
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improvement of CpGV used in conjunction with the pear ester larval and adult attractant 552 

kairomone. However, Arthurs et al. (2007) reported inconsistent results in similar tests on apple 553 

and pear, and suggested that more practical improvements in formulation and application 554 

strategies were needed. Knight and Witzgall (2013) reported significant increases in larval 555 

mortality when combining any one of three yeasts, Metschnikowia pulcherrima, Cryptococcus 556 

tephrensis or Aureobasidium pullulans, with CpGV compared with CpGV alone. A field trial 557 

confirmed that fruit injury and larval survival were significantly reduced when apple trees were 558 

sprayed with CpGV, M. pulcherrima and sugar. 559 

Wetting and sticking surfactants are generally recommended to improve mixing, reduce 560 

surface tension and increase deposition over plant surfaces (Burges and Jones, 1998). The use of 561 

additional stickers with entomopathogenic viruses was reported by Ballard et al. (2000), Tamez-562 

Guerra et al. (2000) and Arthurs et al. (2008a). Optical brighteners have also been shown to 563 

enhance the infectivity of a number of NPV species, a response related to effects on the 564 

peritrophic membrane (Morales et al., 2001; Murillo et al., 2003; Martinez et al., 2004; Farrar et 565 

al. 2005; Toprak et al., 2007). Similarly, Cisneros (2002) demonstrated a synergistic effect of 1% 566 

borax on activity of SfMNPV. Formulation research has not yet produced significant impacts on 567 

the overall performance of commercial BV products, but the availability of formulations with 568 

substantially improved persistence would improve product attractiveness for many crop systems. 569 

The use of other additives to enhance the efficacy of BV infection has been widely explored. 570 

The enhancins are a group of viral proteins recognized to increase both NPV and GV viral 571 

potency in heterologous hosts and suggest significant potential to expand the host range of 572 

specific BV (Slavicek, 2012), although these have not yet been developed for commercial use. 573 

Azadaractin and other neem-derived chemicals also have been reported to effectively reduce the 574 
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BV dosage needed to control pests in bioassays (Zamora-Aviles et al., 2013), and if validated in 575 

the field, could prove useful in lowering the cost of product. 576 

The impact of expanded GM crop production on the use of BV remains to be determined. 577 

While the adoption of insect resistant GM crops can remove established markets for BV in some 578 

crops such as cotton (Buerger et al., 2007), it may also present opportunities for incorporating 579 

BV into GM cropping systems to cope with secondary non target pests, or as part of an insect 580 

resistance management strategy (Thakore, 2006; Kennedy, 2008). HzNPV significantly 581 

improved control of H. zea in GM sweet corn, although not as consistently as application of the 582 

insecticide spinosad (Farrar et al., 2009). Research on the use of insect virus genes in transgenic 583 

plants as a new source of insect resistance may, in the long term, provide the capability to utilize 584 

BV in crop protection (Liu et al., 2006).  585 

While BV may be deployed using basic strategies of inoculation, conservation or 586 

augmentation, in current practice, BV is applied augmentatively as a microbial pesticide on an 587 

“as needed” basis. In the opinion of some researchers, however, pesticidal use is a barrier to 588 

realising the full potential of biological agents and their ability to replicate, persist and spread 589 

(Waage, 1997).  An alternative to conventional spray application is dissemination of BV 590 

formulations via novel lure and contaminate technologies incorporating pheromones (Vega et al., 591 

2007). Adult insects attracted to BV inoculum become surface contaminated and pass the virus 592 

to egg surfaces and subsequently to hatching larvae. This strategy has been recently applied to 593 

orchard pests (Cross et al., 2005); other examples are presented by Vega et al. (2007).  594 

 Despite the recognized importance of secondary cycling via horizontal and vertical 595 

transmission of BV in pest populations, there has been little deliberate exploitation of BV 596 

capacity to replicate and cycle in the way that specific inoculation strategies are used for Oryctes 597 
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virus (Jackson et al., 2005) or cropping practices designed to promote BV conservation 598 

(Moscardi, 1999; Cory and Evans, 2007). Virus ecology remains a very active field of research 599 

for both crop and forest pests (Cory and Myers 2003; Fuxa 2004; Harrison and Hoover 2012), 600 

expanding our knowledge of BV epidemiology and virus host population dynamics. Studies have 601 

included secondary cycling, horizontal and vertical transmission, and the interaction of BV with 602 

other pathogens such as Wolbachia (Graham et al., 2010) and offer interesting insights into how 603 

BV effectiveness might be enhanced in the field through biotic interactions.  Although the 604 

research has not yet been exploited in terms of improving our use of BV on most crops, the 605 

ecology of host pathogen interactions is envisioned to be a way forward to developing new 606 

strategies for novel BV deployment (Waage, 1997).    607 

  608 

2.3 Societal factors and their role in determining the adoption of insect viruses 609 

 Environmental pressures and consumer health concerns have been increasingly focused on the 610 

health and environmental impacts of crop protection products and the well-established safety of 611 

BV (OECD, 2002; Leuschner et al., 2010; Mudgal et al., 2013) is a major advantage.  While 612 

public surveys have not shown that food safety risks are perceived as a major concern, they are a 613 

significant issue for up to 25% of consumers (Food Standards Agency 2013). The recent 614 

controversy over neonicotinoids in the EU has shown that public concerns can drive significant 615 

changes in crop protection policy even if the scientific evidence is controversial (Gross 2013). 616 

These concerns in the EU have led to the sustainable use directive (SUD), a policy of reducing 617 

reliance on chemical pesticides and mandatory adoption of integrated pest management (IPM) 618 

for all crops (Hillocks 2012) . In addition, chemical pesticides must be reregistered, which has 619 

led to a reduction in the number of chemical crop protection products allowed from 620 
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approximately 1,000 in 1993 to less than 330 today (European Commission 2009).   These 621 

measures are undoubtedly increasing the potential for use of BV; however, increased demand for 622 

new BCA elicit serious concerns that the supply of new products remains inadequate to replace 623 

the chemical pesticides being withdrawn (Hillocks 2012).  624 

One barrier to increasing the supply of commercial BV products is registration (Chandler et 625 

al 2011; Ehlers 2011; Lapointe et al., 2012).  Regulatory authorities in many countries and 626 

jurisdictions are unable to complete registration of BV products in a timely, economic and 627 

transparent manner (Kabaluk, 2010; Gwynn, 2014). This may be due to bureaucratic inertia in 628 

some cases, but often the absence of the appropriate biological expertise among regulators has 629 

been cited as a significant constraint (Chandler et al., 2011). Some regulatory bodies such as the 630 

US EPA as appear to be proactive in developing the appropriate expertise and a positive ethos to 631 

facilitate the registration of new BV products through effective fast track systems (Bailey et al., 632 

2010) but the EU, although sponsoring active reviews of microbial pesticide registration (Ehlers 633 

2011), has not yet implemented a specific fast track for microbial pesticides. EU registration has 634 

long timelines and higher costs that deter registrations, especially by the small-medium size 635 

enterprises (SMEs) that are frequently in the forefront of microbial pesticide innovation and 636 

develop 80% of novel microbial pesticide products (Chandler et al., 2011; Ravensberg, 2012). 637 

The use of microbial pesticides has not yet generated serious public concern, although the issue 638 

has been mentioned by some authors such as Lapointe et al. (2012), attitudes may change as BV 639 

use expands.   640 

 641 

2.4 Insect viruses in the next decade 642 
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There is a clear need for need for new BV products active against pests that may increase in 643 

impact as chemical actives are withdrawn. Most BV products recently commercialised or being 644 

brought to market are based on species that are well known and have been studied for at least 30 645 

years. There is a serious concern about the dearth of novel BV species. Given the limited 646 

progress since 2001 in identifying new BV, it is far from clear that new crop protection products 647 

will emerge without increased funding for research and development of BV against new and 648 

emerging threats arising from chemical withdrawal. There is also a need for new technology to 649 

mass-produce BV at costs that appropriate for large-scale use of BV in field crops. Although in 650 

vivo production is an established technology, it is far from certain that it can be expanded to meet 651 

the quantum leap in production that is needed to replace chemical pesticides for major field 652 

crops. It remains to be seen if in vitro systems will overcome the scaling up cost and quality 653 

issues that have prevented these from be adopted by commercial producers. The other key need 654 

is to develop a better understanding of how BV interact with other BCA to identify synergys that 655 

can enhance their overall performance. Many believe that the BV, like other BCA, will never 656 

achieve their full potential until they are deployed as components of ecologically based IPM 657 

systems rather than substitutes for chemical insecticides. 658 

 659 

3. Entomopathogenic Bacteria 660 

3.1 Bacillus thuringiensis (Bt) 661 

3.1.1 Background and overall status. An enormous number of bacterial species have been 662 

reported from pest and beneficial insects (Jurat-Fuentes and Jackson, 2012) but a relatively small 663 

number of entomopathogenic bacteria have been commercially developed for control of insect 664 
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pests of crops, forests, turf, humans, and livestock. These include several Bacillus thuringiensis 665 

(Bt) sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia 666 

entomophila (Table 2). The most widely used bacteria for control of numerous insect pests are Bt 667 

subspp. (Glare and O’Calaghan, 2000; Federici, 2005; Bravo et al., 2011; Glare et al., 2012; 668 

Jurat-Fuentes and Jackson, 2012).   669 

 Highlights of the history and commercial development of Bt are presented by Beegle and 670 

Yamamoto (1992), Federici (2005) and Davidson (2012). Sub-species represent about 98% of 671 

formulated sprayable bacterial microbial pesticides, due in part to the wide host range with 672 

activity against Lepidoptera, Diptera (Nematocera), Coleoptera (Chrysomelidae and 673 

Scarabaeidae), additional species in other orders of insects and other pest invertebrates (mites 674 

and nematodes) (Carneiro et al., 1998; Schnepf et al., 1998; Wei et al., 2003; van 675 

Frankenhuyzen, 2009). Three notable examples are Bt strains with activity for scarab larvae (Bt 676 

subsp. japonensis (Buibui strain), Suzuki et al., 1992); two sawfly species Diprion pini and 677 

Pristiphora abietina (Porcar et al., 2008); and root knot nematodes, Meloidogyne spp. (Chen et 678 

al., 2000; Li et al., 2008; and Khan et al. 2010).  679 

Additional prospection and development will most likely provide B. thuringiensis isolates 680 

with an even broader spectrum of activity. Crickmore et al. (2014) provide a continually updated 681 

list of Bt toxins with links to information on additional host insects and other organisms that are 682 

susceptible to them. There are currently no less than 73 families of crystal (CRY) toxins 683 

comprising a total of 732 toxins, 3 families of cytotoxic (Cyt) proteins including 38 different 684 

toxins and 125 Vegetative Insecticidal Proteins (VIPs) belonging to 4 different families 685 

(Crickmore et al., 2014). 686 
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The primary reason for the utilization of Bt is that it combines advantages of chemical 687 

pesticides and microbial pesticides. Like chemical pesticides, Bt is fast acting, easy to produce at 688 

low cost, easy to formulate, and has a long shelf life. It also can be applied using conventional 689 

application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical 690 

pesticides, B. thuringiensis toxins are selective and negative environmental impact is very 691 

limited (Glare and O’Callaghan, 2000; Lacey and Siegel, 2000; Hokkanen and Hajek, 2003; 692 

Lacey and Merritt, 2003; Birch et al., 2011).  693 

 694 

3.1.2 Control of pest insects with B. thuringiensis microbial pesticide products 695 

3.1.2.1 Crops and orchards: Bt has no pre-harvest spray interval and can be applied until harvest 696 

begins. It has minimal or no impact on beneficial organisms in these agroecosystems; however, 697 

although efficacious, it is sensitive to solar degradation and requires frequent application. 698 

B. thuringiensis subsp. kurstaki (Btk, Dipel) and to a lesser extent B. thurinigiensis subsp. 699 

aizawai (Xentari) are used for control of lepidopteran pests in orchards and in vegetable 700 

production (Glare and O’Callaghan, 2000; Lacey and Shapiro-Ilan, 2008; Glare et al., 2012). It is 701 

used extensively in organic vegetable production and is increasingly being utilized by 702 

conventional growers. Control of a plethora of pest Lepidoptera is common in row crops 703 

including crucifers, solanaceous vegetables, cucurbits, corn, legumes, soybeans, cotton, and 704 

others. The implementation of Btk for control of orchard pests, particularly leafrollers and other 705 

defoliators, was described by Lacey et al. (2007) and Lacey and Shapiro-Ilan (2008). 706 

A multitude of papers on applied research and use of Bt-based products for protection against 707 

lepidopteran pests of vegetables and tree fruit have been published since 2000 and many are 708 

referenced by Glare and O’Callaghan (2000), Metz (2003), Lacey and Kaya (2007), Jurat-709 
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Fuentes and Jackson (2012). Kabaluk and Gazdik (2005) provide a directory of biopesticides that 710 

includes producers of several commercial Bt products for control of Lepidoptera. 711 

Control of coleopteran pests in crops using commercially produced B. thuringiensis is limited 712 

to beetles in the family Chrysomelidae, principally the Colorado potato beetle, Leptinotarsa 713 

decemlineata (Wraight et al., 2007b, 2009). The beetle-active toxin (Cry 3Aa) is produced by B. 714 

thuringiensis subsp. tenebrionis (Btt). It can provide an effective means of control, especially 715 

when applied at regular intervals against early instars. Btt was rapidly developed as a microbial 716 

pesticide in the late 1980s and early 1990s (Gelernter and Trumble, 1999; Gelernter, 2002). 717 

However, several factors, most notably competition with neonicotinyl insecticides, resulted in its 718 

near disappearance from the marketplace (Gelernter, 2002). The Cry3Aa toxin expressed in 719 

transgenic potato provides complete protection from L. decemlineata but current public 720 

opposition to transgenes in food has resulted in removal of transgenic potato from the market in 721 

North America and Europe. Transgenic ‘Spunta’ potato lines with the cry1Ia1 gene were 722 

completely resistant to potato tuberworm in laboratory and field tests (Douches et al., 2002, 723 

2011).   724 

 725 

3.1.2.2 Stored product pests: Several pest insects attack stored grain, fruit, nuts, potatoes and 726 

other stored food products. Btk products have been used to control several of these pests (Lord et 727 

al., 2007; Shapiro-Ilan et al., 2007; Kroschel and Lacey, 2008). Good efficacy of Btk has been 728 

demonstrated and protocols have been published for the evaluation of Btk control against Plodia 729 

interpunctella and other lepidopteran pests of stored grain (Lord et al., 2007). Despite the 730 

massive volume of grain in grain silos, only the top 10 cm of grain require treatment (Lord et al., 731 

2007). Kroschel and Lacey (2008) and Lacey and Kroschel (2009) described examples of large-732 
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scale implementation of Btk in several countries for control of the potato tuber moth, 733 

P.operculella in rustic stores of potato tubers.  734 

 735 

3.1.2.3 Forests: Btk is the principal non-chemical means of control for lepidopteran pests of 736 

forests and development in the 1970s and 1980s facilitated broader commercial development in 737 

the 1980s and 1990s (van Frankenhuyzen et al., 2007). Btk has been used extensively against the 738 

spruce budworm, (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (van 739 

Frankenhuyzen et al., 2000; Bauce et al., 2004; van Frankenhuyzen et al., 2007). Protocols for 740 

the evaluation of Btk and other isolates of Bt for control of C. fumiferana and L. dispar are 741 

presented by van Frankenhuyzen et al. (2007). Btk has also been used for control of other 742 

lepidopteran forest defoliators across North America and Europe including Thaumetopoea 743 

processionea, T. pityocampa, Lymantria monacha, Dendrolimus sp. Bupalus piniaria, Panolis 744 

flammea, Tortrix viridana, Operophtera brumata, Dioryctria abietella, Lambdina fiscellaria 745 

fiscellaria, Choristoneura occidentalis, C. pinus pinus, Orgyia leucostigmata, O. pseudotsugata, 746 

and others (Fuxa et al., 1998; van Frankenhuyzen, 2000). 747 

The only non-lepidopteran forest pest insects that are susceptible to Bt are in the coleopteran 748 

family Chrysomelidae. Bauer (1992) bioassayed Btt for larvicidal activity against the imported 749 

willow leaf beetle, Plagiodera versicolora, reared on poplar (Populus) or willow (Salix). Good 750 

larvicidal activity of the bacterium was only observed on the larvae reared on poplar. Genissel et 751 

al. (2003) reported on the deleterious effects of feeding Chrysomela tremulae larvae and adults 752 

on leaves from transgenic poplar expressing the cry3Aa gene from Btt. No large scale field trials 753 

have yet been conducted with Btt for control of chrysomelids in forests. 754 

 755 
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3.1.2.4 Lawn and turf: Klein et al. (2007) and Koppenhöfer et al.,  (2012) provide overviews of 756 

the use of Bt subspp. for control of turf pests. Btk and Bt subsp. aizawai are registered for 757 

control of sod webworms and armyworm, Mythimna (Pseudaletia) unipuncta, in turf. Although 758 

not widely used for control of these pests, Bt strains provide some control if used when early 759 

instars are present and applications are made during the early evening to avoid as much UV 760 

degradation as possible. Oestergaard et al. (2006) demonstrated control of the European crane 761 

fly, Tipula paladosa, with B. thuringiensis subsp. israelensis (Bti) applied against early instars; 762 

however, there are no reports in the literature of routine use of Bti for crane fly control in turf. 763 

The Bt subsp. japonensis (Buibui strain) is insecticidal for the Japanese beetle, Popillia japonica, 764 

and other scarab species that are turf pests (Suzuki et al., 1992; Alm et al., 1997; Koppenhöfer et 765 

al., 1999, 2012; Bixby et al., 2007). Koppenhöfer et al. (1999) observed an additive and 766 

synergistic interaction between entomopathogenic nematodes (Sterinernema spp. and 767 

Heterorhabditis bacteriophora) and Bt subsp. japonensis (Buibui strain) for control of the grub 768 

Cyclocephala spp. An advantage of Bt subsp. japonensis over Paenibacillus popilliae, another 769 

bacterium used for P. japonica control, is that it can be grown on artificial media and has a 770 

broader host range within the Scarabaeidae.  771 

 772 

3.1.2.5 Medically important insects: Several species of culicid mosquitoes (Culicidae) are 773 

widespread pests, many of which transmit disease causing agents such as Plasmodium spp. 774 

(malaria), filaroid nematodes (elephantiasis, Mansonellosis) and viruses (yellow fever, dengue, 775 

and several that cause encephalitis) (Foster and Walker, 2009). The aquatic habitats in which Bti 776 

is used for mosquito control are extremely diverse in terms of location (salt marsh, tree holes, 777 

wetlands, containers, and a variety of other habitats) and water quality (Skovmand et al., 2007). 778 
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Black flies (Simuliidae) are always found in lotic habitats (rivers, streams, creeks) (Adler et al., 779 

2004; Adler and McCreadie, 2009) and, in addition to their highly pestiferous activity, some 780 

species transmit the filaroid nematodes that cause human and bovine onchocerciasis (Adler and 781 

McCreadie, 2009). Bti is the only Bt subsp. that is commercially produced for control of vector 782 

and pestiferous Diptera in both the Culicidae (Lacey, 2007; Despres et al., 2011) and Simuliidae 783 

(Adler et al., 2004; Skovmand et al., 2007). Although Bti is very efficacious, its persistence in 784 

the environment, especially those with high organic content, is short lived and requires frequent 785 

reapplication. Dense foliar canopy and rapid settling of toxin in deeper lentic habitats decrease 786 

the amount of inoculum reaching the habitat and decreased time for larval exposure. Toxin is 787 

carried shorter distances in shallow streams with large substrate to water volume ratios (wide and 788 

shallow). Large rivers can result in effective carry of the toxin up to 30 kilometers. Further 789 

improvements in formulations and delivery systems are expected to increase efficacy in 790 

mosquito and black fly habitats. 791 

 792 

3.1.3. Production of B. thuringiensis. The nutrient media and conditions under which Bt and L. 793 

sphaericus are produced can markedly influence larvicidal activity. Guidelines and typical media 794 

ingredients for shake flask, stir tank and deep tank fermentation are presented by Beegle et al. 795 

(1991), Lisansky et al. (1993), and Couch (2000). Although there is continued improvement in 796 

fermentation technology for B. thuringiensis, information on any specific changes in methods 797 

and media by industry nearly always is proprietary (Couch, 2000). However, there have been 798 

developments in small scale production using unique media components such as local raw 799 

ingredients of plant and animal origin and bi-products (such as whey) which provide inexpensive 800 
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nitrogen and carbon sources for the production of Bt and L. sphaericus (Aranda et al., 2000; 801 

Lacey, 2007).  802 

    803 

3.1.4. Transgenic crops or Bt-crops. The largest market progress over the last two decades was 804 

associated with the development of a Bt product different from the microbial pesticides, the Bt 805 

transgenic crops. The Cry toxins and VIPs are the only toxins currently used in commercial 806 

insecticidal transgenic crops. VIP toxins are only found in transgenics but several Cry toxins 807 

produced by Bt-crops are the same as those produced for Bt microbial pestcides such as Dipel or 808 

Xentari. GM crops have been the most rapidly adopted production technology in agriculture 809 

(Brookes and Barfoot, 2013; James, 2013). Although implementation has not been without 810 

controversy, wide acceptance is due to specificity to insects and high efficacy of B. thuringiensis 811 

Cry toxins, and safety for consumers and non-target organisms (Shelton et al., 2002; Bravo et al., 812 

2011). A large diversity of toxin genes that are relatively simple to clone and express are found 813 

in different B. thuringiensis strains. The toxin genes are distributed into families that are easy to 814 

characterize and the toxins are organized into clearly distinguishable functional domains (Bravo 815 

et al., 2007). These traits not only make the mode of action (MOA) of the toxins easier to 816 

elucidate but also make both toxins and toxin genes good models for genetic engineering. Early 817 

in the 1980’s, B. thuringiensis was already a commercially successful product. B. thuringiensis 818 

insecticidal proteins were some of the only gene products meeting the technical and ethical 819 

requirements for plant biotechnology. Subsequently, B. thuringiensis toxins became the most 820 

promising source for development insect-resistant transgenic plants (Kennedy, 2008).  821 

Global Bt-crop acreage has increased enormously in the last two decades, reaching 175 822 

million ha in 2013 (Choudery and Guar, 2010; Brookes and Barfoot, 2013; James, 2013). The 823 
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adoption rate was 100% or near 100% in 2013 for all major transgenic crops in the primary 824 

producing countries. Stabilization of adoption rate and area planted are therefore expected in the 825 

coming years (James, 2013).  826 

The increased use of Bt-cotton and Bt-corn has resulted in a significant decrease in the use of 827 

chemical insecticides (Phipps and Park, 2002; Brookes and Barfoot, 2013), particularly in cotton 828 

(Huanga et al., 2003; Edwards and Poppy, 2009; Krishna and Qaim, 2012). However, transgenic 829 

technologies also compete with sprayable formulations of Bt due to the similarity of toxins used 830 

and result in a lower commercial share left to Bt microbial pesticides. Furthermore, while 831 

reducing the overall market for chemical insecticides, widespread adoption of Bt crops can 832 

increase the market for herbicides as new generations of transgenic plants expressing stacked Bt 833 

and herbicide-resistance genes are now on the market (James, 2013). Given the widespread 834 

environmental concerns over broad-spectrum chemical pesticides, it is possible that GM crops 835 

deploying pest specific safe gene products such as Bt toxins may finally be considered a more 836 

environmentally acceptable solution for pest control than the development and widespread 837 

application of newer chemical pesticides. 838 

Given the high cost of developing and deploying a new transgenic crop, currently estimated 839 

as $136 million (McDougall, 2013; Mumm, 2013), it will not be economically viable to develop 840 

GM varieties for all crops, including many minor use or locally important crops, or to control all 841 

specific pests and diseases (Shelton, 2012). Non-GM crop diversity and local varieties must be 842 

maintained for many reasons ranging from differing climates and specific cultural food practices 843 

to the need for a diverse genetic base for disease tolerance. Because not all crops and varieties 844 

will be transgenic, other conventional but still environmentally friendly means of control must be 845 

retained and developed. Among these should be new Bt-based microbial pesticides, as well as 846 
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other entomopathogen-based pesticides. However, niches for microbial pesticides must address 847 

new issues to avoid competition with, for example, focusing on a mosaic of secondary pest 848 

problems. Microbial pesticides for forestry and vector control may be an exception to treatment 849 

of row crops because competition with trangenics does not exist. We predict that microbial 850 

pesticides, such as sprayable and other Bt formulations, will continue to have a successful future 851 

in the coming decades.  852 

 853 

3.1.5. Controversy around Bacillus thuringiensis toxins in GM crops. In this section we address 854 

the biological aspects of the controversy over the use of Bt crops and focus on safety and 855 

environmental concerns. Divisive socio-economic and political issues will not be covered and 856 

should be the subject of a separate forum discussion. The Bt toxins are essential in the 857 

deployment of a number of major insect resistant GM crops and, therefore, B. thuringiensis 858 

microbial pesticides were also involved in the extensive controversy around the safety and 859 

efficacy of GM crops. A notable example has been concern about effects of Bt toxins on the 860 

monarch butterfly, Danaus plexippus. Pollen from Bt-maize dusted onto milkweed under 861 

laboratory conditions was reported to produce mortality in D. plexippus larvae (Losey et al., 862 

1999). Follow up research determined that the deleterious results were related to a specific maize 863 

variety (Bt176, no longer in commercial use) and that there was no negative impact to monarchs 864 

under field conditions (Hellmich et al., 2001; Minorsky, 2001; Pleasants et al., 2001; Sears et al., 865 

2001; Stanley-Horn et al., 2001; Tschenn et al., 2001; Zangerl et al., 2001; Dively et al., 2004; 866 

Anderson et al., 2005). Nevertheless, the controversy generated a widespread perception that Bt-867 

engineered crops are dangerous for the environment. This issue was revived 10 years later when 868 

France and Germany banned the Bt-maize variety MON810 on the basis of a threat to D. 869 
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plexippus, despite the facts that MON810 was found to be harmless to monarch larvae and D. 870 

plexippus is not found in Europe (Ricroch et al., 2010).  871 

A second example relating to the health impact of Bt crops is the “StarLink case” (Bucchini 872 

and Goldman, 2002; Bernstein et al. 2003). In this instance, the StarLink product, a feed-873 

registered insect-resistant Bt-maize engineered with the Cry9Ca toxin, was found in human food. 874 

This was followed by reports of allergic shock in consumers, although follow-up studies by the 875 

Centers for Disease Control failed to confirm any link to the Cry9Ca toxin (CDC, 2001). 876 

Nevertheless, problems were confirmed in the management and control of feed-registered BT-877 

corn products that allowed them to be comingled with food for human consumption (Bucchini 878 

and Goldmann, 2002). The controversy subsequently led to a serious loss of market share for 879 

U.S. corn growers (Schmitz et al., 2005). An additional consequence of the controversy has 880 

resulted in stories implicating Bt crops either in health scares or as contributors to disastrous crop 881 

failures (Tirado, 2010; Coalition for GM free India, 2012). Several of these stories subsequently 882 

were shown to be untrue (Gruere et al., 2008; Brookes and Barfoot, 2013).  883 

Bt microbial pesticides, while accepted in pest control, organic agriculture and vector 884 

control, also have become subjects of debate in the crop biotechnology arena and have been 885 

represented by some as a threat to human or environmental health. For example, Poulin et al. 886 

(2010) and Poulin (2012) demonstrated the negative trophic effect of Bti treatment for mosquito 887 

control on non-target fauna. The reduction of mosquitoes and chironomids and consequently 888 

their predators as prey of breeding house martins, Delichon urbicum, resulted in reduced clutch 889 

size and fledgling survival. Among other measures, Poulin et al. (2010) recommended 890 

suspension of mosquito control in certain habitats. We believe that such measures should take 891 
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into account the effect of mosquito reduction on quality of life for humans and domestic animals, 892 

but most importantly the interruption of disease transmission. 893 

A positive aspect of the debates on the safety of Bt products is that they have prompted 894 

renewed studies on actual health and environmental effects of Bt toxins. These have shown that 895 

commercially approved Bt products and Bt genes are safe and can have positive benefits for the 896 

environment, mostly through the reduced use of chemical pesticides and lack of effects on non-897 

target organisms, (Saxena, and Stotsky, 2001; Phipps and Park, 2002; Shelton et al., 2002, 2007; 898 

Lacey and Merritt, 2003; O’Callaghan et al., 2005; Wu et al., 2005; Romeis et al., 2006; Marvier 899 

et al., 2007; Roh et al., 2007; Chen et al., 2008; Kumar et al., 2008; Wolfenbarger, et al. 2008).  900 

 901 

3.1.6. Insect resistance and mode of action of Bt toxins. One of the most important aspects to 902 

address with Bt-based products and Bt crops is resistance management. B. thuringiensis shares 903 

with chemical pesticides the negative trait of producing resistance to the toxic effects in target 904 

insect populations. Resistance is the interruption of the mode of action (MOA) of any pesticide, 905 

and understanding insect resistance and proposed insect resistance strategies requires first 906 

summarizing the MOA. This section is intended to underline the sequential nature of the MOA 907 

of B. thuringiensis insecticidal proteins and its susceptibility to resistance. Resistance can result 908 

from the interruption of any of the step described in this section and, indeed, several mechanisms 909 

of resistance have been described. The MOA is well understood for a limited number of Bt 910 

toxins, including the Cry and Cyt families used in microbial pesticides, and the Cry and VIP in 911 

transgenic crops.  912 

The MOA of Cry proteins is by far the best known (Whalon and Wingerd, 2003; Bravo et al., 913 

2007, 2011; Pigott and Ellar, 2007, Vachon et al., 2012). Pathogenesis begins with the ingestion 914 
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of the Bt crystal. The crystal, which contains protoxins, is then solubilized by the alkaline pH of 915 

the insect midgut and the soluble protoxins are activated by midgut serine proteases releasing the 916 

active toxin. The structure of these activated toxins has been determined for several families. In 917 

the Cry1 family, three functional domains have been identified (Li et al., 1991; Grochulski et al., 918 

1995; Galitsky et al., 2001; Morse et al., 2001; Boomserm et al., 2005, 2006) (Figure 2). Domain 919 

I consists of 7 alpha helices organized in a barrel-like structure and is involved in pore formation. 920 

Domains II and III are comprised of layers of beta sheets that recognize specific binding sites at 921 

the surface of the midgut brush border (Pigott and Ellar, 2007). These binding sites have been 922 

identified mostly as aminopeptidase N-like proteins (APN) and cadherin-like proteins, although 923 

other putative receptors such as alkaline phosphatases (ALP), glycolipids or a 270-kda 924 

glycoconjugate (Pigott and Ellar, 2007) have been identified. Following specific binding, the 925 

toxin undergoes a change of conformation and inserts into the midgut membrane to form an ionic 926 

channel or pore (Knowles and Ellar, 1987; Vié et al., 2001; Bravo et al., 2004; Vachon et al, 927 

2012) transporting ions with their free charged-amino acids (Masson et al., 1999; Vachon et al., 928 

2002, 2004; Girard et al., 2009; Lebel et al., 2009). Ion transport triggers a physiological 929 

imbalance leading to the death of the cell, destruction of the midgut and ultimately death of the 930 

insect. This process of ionic imbalance, originally described as colloid-osmotic lysis (Knowles 931 

and Ellar, 1987; Bravo et al., 2004), is probably not the only mechanism involved in cell death. 932 

Signaling pathways that follow receptor binding recently have been described (Zhang et al., 933 

2006). These pathways are triggered upon receptor activation by protein binding and initiate cell 934 

death mechanisms. However, these two mechanisms are not exclusive and could both contribute 935 

to the overall toxicity of Cry toxins as suggested by Jurat-Fuentes and Adang (2006) and 936 

discussed by Vachon et al. (2012).  937 



  

JIP-15-82 

 42

Resistance to Bt toxins was first reported in Plodia interpunctella, an insect pest of stored 938 

grain, by McGaughey (1985; 1994). Field resistance has since been reported in diamond back 939 

moth, Plutella xylostella, and cabbage looper, Trichoplusia ni, and several major insect pests 940 

under laboratory selection (Tabashnik, 1994; Moar et al., 1995; Rahman et al., 2004, Shelton et 941 

al., 2007; Furlong et al., 2013). In common with Bt microbial pesticides, Bt crops also are 942 

susceptible to resistance problems and a number of cases have been reported, particularly with 943 

first generation single gene constructs (Rhaman et al., 2004, Shelton et al., 2007; Tabashnik, 944 

2008; Tabashnik et al., 2008a, 2008b, 2009, 2013). Modification of the Bt binding sites is the 945 

most commonly reported resistance mechanism, however other mechanisms affecting different 946 

steps of the MOA have been described and can potentially develop (Frutos et al., 1999; Griffitts 947 

and Aroian, 2005; Heckel et al., 2007).  A key point is that resistance affects both microbial 948 

pesticides and transgenic crops in the same way, and cross-resistance to other similar toxins used 949 

in both modes of delivery could occur.  950 

 951 

3.1.7. Future directions. Since B. thuringiensis remains the primary sprayable microbial 952 

pesticide, the increasing demand for organic products should encourage the development of 953 

additional Bt products. Demand would also be driven partly by safety legislation requiring 954 

reduction of the number of chemical pesticides. The future sustainability of Bt crops will rely on 955 

a combination of multistacked toxin genes and refugia to delay resistance (Caprio and 956 

Summerford, 2007; Tabashnik, 2008, Head and Greenplate, 2012; Storer et al., 2012). 957 

Addressing resistance and resistance management will depend on detailed knowledge of the 958 

MOA of Bt toxins (Griffitts and Aroian, 2005; Shelton et al., 2007). Multiple-gene constructs 959 

targeting different binding sites is the basis for the gene pyramiding that underlies the 960 
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development of novel generations of Bt crops (Shelton et al., 2002). In addition to discovery of 961 

more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will 962 

rely on innovations in formulation, better delivery systems and ultimately, wider public 963 

acceptance of transgenic plants expressing Bt toxins. 964 

 965 

3.2 Lysinibacillus (Bacillus) sphaericus 966 

Although less commonly used than Bti for control of mosquitoes, L. sphaericus offers some 967 

advantages that Bti does not. Only the IIA sub-group includes isolates with larvicidal activity for 968 

mosquitoes (Charles et al., 1996). The moiety responsible for mosquito larvicidal activity in 969 

serovar 5a5b isolates of L. sphaericus is a binary toxin (Charles et al., 1996) with both proteins 970 

required for full toxicity. The individual roles of the toxin components were elucidated by 971 

Charles et al. (1997) and Schwartz et al. (2001). As with Bti, ingested toxins are solubilized in 972 

the alkaline midgut and cleaved to the active moiety by proteases. The two component proteins 973 

of the toxin, BinA (42 kDa) and BinB (51 kDa) bind to specific receptors on the brush border of 974 

epithelial cells of the gastric caecum and midgut and cause pore formation resulting in disruption 975 

of osmotic balance, lysis of the cells, and ultimately death of the insect (Charles et al., 1996). L. 976 

sphaericus binary toxin is more specific and narrower in range than the Bti toxins; it is 977 

principally active against Culex mosquitoes. Several Aedes species in the Stegomyia group (such 978 

as Aedes aegypti) are not susceptible to L. sphaericus formulations. 979 

Protocols for the short-term evaluation of L. sphaericus formulations in the field are similar 980 

to that of Bti (Skovmand et al. 2007). Biotic and abiotic factors that influence the larvicidal 981 

activity of Bti and L. sphaericus include the species of mosquito and their respective feeding 982 

strategies, rate of ingestion, age and density of larvae, habitat factors (temperature, solar 983 
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radiation, depth of water, turbidity, tannin and organic content, presence of vegetation, etc.), 984 

formulation factors (type of formulation, toxin content, how effectively the material reaches the 985 

target, and settling rate), storage conditions, production factors, and means of application and 986 

frequency of treatments (Lacey, 2007). L. sphaericus formulations have been utilized 987 

predominantly in organically enriched habitats, but they are also active against numerous 988 

species, and across several genera in habitats with low organic enrichment. The bacterium has 989 

been shown to persist longer than Bti in polluted habitats and can recycle in larval cadavers 990 

(Lacey, 2007). A disadvantage of L. sphaericus is the development of resistance in certain 991 

populations of Culex quinquefasciatus and Cx. pipiens. Low to extremely high levels of 992 

resistance to the L. sphaericus binary toxin have been reported in populations of Cx. 993 

quinquefasciatus in India, Brazil, China, Thailand, Tunisia and France (Charles et al., 1996; 994 

Lacey, 2007). The combination of L. sphaericus and toxin genes from Bti increases the host 995 

range of the bacterium and could offer a means of combatting resistance (Federici et al., 2007).  996 

 997 

3.3 Paenibacillus species  998 

Paenibacillus spp. are spore-forming obligate pathogens of larval coleopterans in the family 999 

Scarabaeidae (Klein, 1992; Klein et al., 2007; Koppenhöfer et al. 2012). The disease caused by 1000 

these bacteria is known as milky disease due to the milky appearance of the hemolymph in 1001 

infected larvae. Spores of the bacterium must be ingested in order to invade the hemocoel and 1002 

produce an infection. Natural epizootics have been observed in P. japonica, but variable results 1003 

have been obtained after application of spore powders. In some cases, epizootics have been 1004 

induced following applications (Klein, 1992), in others, little or no activity was observed (Klein 1005 

1992, Lacey et al., 1994). The spores have been known to persist for several years in the soil 1006 
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(Klein, 1992). P. popilliae was the first microbial pesticide registered in North America (1948) 1007 

for control of P. japonica (Klein, 1992), but large-scale commercial development has been 1008 

limited due to the requirement for in vivo production and the narrow host range within the 1009 

Scarabaeidae. A breakthrough in in vitro production of P. popilliae and development of strains 1010 

effective against other important scarab species (e.g., Cyclocephala spp., R. majalis, A. 1011 

orientalis, and Melolontha melolontha) would significantly improve the marketability of these 1012 

bacteria. 1013 

 1014 

3.4 Serratia entomophila  1015 

The endemic non-sporeforming bacterium Serratia entomophila (Enterobacteriaceae) was 1016 

discovered and developed in New Zealand, and is used for control of the New Zealand grass 1017 

grub, Costelytra zealandia (Jackson et al. 1992; Jackson, 2007). Cultivation of pastures for 1018 

cropping and re-sowing generally kills grass grubs and eliminates pathogenic strains of bacteria, 1019 

leaving new pastures vulnerable to pest attack. This provides an opportunity for augmentative 1020 

biological control, where S. entomophila is applied to C. zealandia populations to promote 1021 

epizootics and prevent the occurrence of pasture damage. 1022 

Strains of the Serratia spp. cause amber disease in C. zealandia (Jackson et al., 2001). The 1023 

bacterium must be ingested for toxin production to be initiated and disease progression is 1024 

accompanied by a cessation of feeding, clearance of the gut and a halt in the synthesis of 1025 

digestive enzymes. Infected larvae take on a distinctive amber coloration prior to death (Jackson 1026 

et al., 2001). Serratia entomophila is now commercialized as a stabilized dry granular product 1027 

Bioshield™ (Jackson et al., 1992, 2001). The formulation is stable under ambient conditions for 1028 

several months and is applied using a conventional seed drill, which has enhanced adoption of 1029 
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this microbial pesticide by the pastoral sector in New Zealand (Jackson, 2007). Recycling of the 1030 

disease through grass grub larvae produces an endemic population of pathogenic bacteria 1031 

preventing recurrent damaging outbreaks of the pest. The technology for stabilization of this 1032 

non-spore forming bacterium could be useful in the future for other non-spore forming 1033 

entomopathogenic species of bacteria. 1034 

 1035 

3.5 Chromobacterium subtsugae 1036 

Martin et al., (2007a, 2007b) isolated Chromobacterium subtsugae, a new species and genus of a 1037 

motile, Gram-negative bacterium, with per os toxicity to larval Colorado potato beetle, 1038 

Leptinotarsa decemlineata, adults of the corn rootworms, Diabrotica spp., and the southern 1039 

green stinkbug, Nezara viridula.  Encouragingly, live bacteria were not needed for toxicity to N. 1040 

viridula adults (Martin et al., 2007b). Marrone Bio Innovations (MBI) has registered a biological 1041 

insecticide/miticide (Grandevo®) containing C. subtsugae strain PRAA4-1T and spent 1042 

fermentation medium for use on edible crops, ornamental plants and turf against defoliating 1043 

caterpillars and certain Coleoptera (EPA Reg. No.: 84059-17-87865). MBI also reported the 1044 

formulation to have multiple effects such as reduced fecundity and oviposition, reduced feeding 1045 

and activity as a stomach poison on aphids, psyllids, whiteflies, Lygus, mealybugs, thrips and 1046 

phytophagous mites. Genes encoding toxins and VIPs of this bacterium could conceivably be 1047 

candidates for incorporation into GM crops for targeting a broad pest host range. 1048 

 1049 

4. Entomopathogenic Fungi 1050 

4.1 Background and overall status 1051 
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Fungi are the predominant natural pathogens in arthropod populations. Observations of 1052 

epizootics among insect populations are common, indicating the great potential of these 1053 

microbes for regulation of pestiferous species. Entomopathogenic fungi infect their hosts through 1054 

the external cuticle and are pathogenic to both soft- and hard-bodied insects, as well as a range of 1055 

other arthropods including Acari (ticks, mites). Cuticular invasion also enables fungi to infect 1056 

sucking insects such as aphids, whiteflies, psyllids and scales (Burges, 2007; McCoy et al., 2009; 1057 

Lacey et al., 2011). Consequently, fungi have been widely evaluated as control agents for a 1058 

diverse variety of noxious arthropods of agricultural (including forestry and livestock) and 1059 

horticultural importance (Chandler et al., 2000; Shah and Pell, 2003; Brownbridge 2006; Abolins 1060 

et al. 2007; Charnley and Collins 2007; Jaronski 2007; Maniania et al., 2007; Wraight et al., 1061 

2007a; Zimmermann 2007a, b; 2008; Alves et al., 2008; Kaufman et al. 2008; James 2009; Glare 1062 

et al., 2010; Goettel et al., 2010). Recent discoveries of the effects of entomopathogenic fungi on 1063 

adult mosquitoes, including the prevention of development of vectored human pathogens within 1064 

fungal infected mosquitoes, has resulted in an upsurge of research on their potential for control 1065 

of mosquito-borne diseases such a malaria (Blanford et al., 2005, 2009; Scholte et al., 2003, 1066 

2004. 2005; Kikankie et al., 2010).  Although entomopathogenic fungi traditionally have been 1067 

regarded exclusively as pathogens of arthropods, recent studies suggest that they play additional 1068 

roles in nature. Many are now known to be plant endophytes, plant disease antagonists, 1069 

rhizosphere colonizers, and plant growth promoters (Vega et al., 2009; Behie et al., 2012; Jaber 1070 

et al., 2014).  1071 

Several hypocrealean entomopathogenic fungi are important constituents of natural- and 1072 

agro-ecosystems and appear to be ubiquitous inhabitants of soils worldwide. They have been 1073 

recovered from a diverse array of geographic, climatic, and agro-ecological zones (Bidochka et 1074 
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al., 2001, 2002; Shimazu et al., 2002; Keller et al., 2003; Shapiro-Ilan et al., 2003a; Meyling and 1075 

Eilenberg 2006a, b; 2007; Jaronski 2007; Quesada-Moraga et al 2007; Zimmermann 2007a, b; 1076 

2008; Inglis et al., 2008, 2012; Reay et al., 2008, Meyling et al., 2009; Scheepmaker and Butt, 1077 

2010). Fungi such as Beauveria bassiana s.l. and Metarhizium anisopliae s.l. are commonly 1078 

found in both cultivated and undisturbed soils, although their natural distribution appears to be 1079 

linked to habitat (Bidochka et al., 2001; Keller et al., 2003; Meyling and Eilenberg, 2006a; 1080 

Meyling et al., 2009), and soil populations are influenced by agricultural practices (Hummel et 1081 

al., 2002; Jaronski, 2007; 2010; Meyling and Eilenberg, 2007). 1082 

Fungi have many desirable traits that favor their development as biological control agents. 1083 

They pose minimal risk to beneficial non-target organisms such as bees, earthworms and 1084 

Collembola, which are key ecosystem service-providers, and arthropod natural enemies such as 1085 

parasitic wasps and predatory beetles (Goettel et al., 2001; Traugott et al., 2005; Brownbridge 1086 

and Glare 2007; O’Callaghan and Brownbridge, 2008). This enhances their potential role in 1087 

IPM; the preservation of natural enemies allows them to make a greater contribution to the 1088 

overall regulation of pests, and maintenance of biodiversity is increasingly recognized as being 1089 

critical to the long-term productivity of our farms and forests. Their newly found attributes also 1090 

provide the possibility of their use in multiple roles, for instance in addition to arthropod pest 1091 

control, simultaneous suppression of plant pathogens and plant parasitic nematodes (Goettel et 1092 

al., 2008; Kim et al., 2009; Koike et al., 2011) or biofertilizers (Kabaluk and Ericsson, 2007; 1093 

Behie et al., 2012). 1094 

Chandler et al. (2008) considered the development of anamorphic fungi, e.g., B. bassiana, M. 1095 

anisopliae, to have followed an ‘industrial’ pathway; mass-production systems have been 1096 

devised to provide large quantities of inoculum which can then be formulated and repeatedly 1097 
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applied as sprays, granules, etc. (Shah and Pell, 2003; Brownbridge, 2006; Charnley and Collins, 1098 

2007). Conversely, pest control strategies using entomophthoralean fungi have relied more on 1099 

‘ecological’ approaches; accompanying research has focused on understanding conditions that 1100 

promote natural epizootics, e.g. manipulating environmental conditions to enhance disease 1101 

incidence and spread, use of inoculative releases to establish the disease within a pest population 1102 

to achieve long-term suppression, or conservation of natural epizootics  (Steinkraus et al., 2002; 1103 

Steinkraus, 2006, 2007; Nielsen et al., 2007; Pell, 2007; Hajek, 2009; Solter and Hajek, 2009; 1104 

Pell et al., 2010).  1105 

Commercial products based on some of the pathogenic fungi – mycoinsecticides and 1106 

mycoacaricides – are primarily based on Beauveria spp, Metarhizium spp., Isaria fumosorosea 1107 

(formerly Paecilomyces fumosoroseus), and Lecanicillium spp. (Inglis et al., 2001; Faria and 1108 

Wraight, 2007; Wraight et al., 2007; Alves et al., 2008). Table 3 provides examples of fungi used 1109 

for the microbial control of several insect and mite pests. Fungal products largely occupy niche 1110 

markets, often within individual countries or geographically linked regions. In most cases, fungi 1111 

are actively applied as microbial pesticides to regulate pest populations, and pathways towards 1112 

their development and regulation have generally mirrored those of synthetic pesticides. Despite 1113 

these positive developments, fungi remain an under-utilized resource for pest management. How 1114 

far has the field progressed since Lacey et al.’s 2001 publication to move us closer to realizing 1115 

this biological control potential? Here, we will highlight some of the recent developments that 1116 

may promote opportunities to use entomopathogenic fungi and identify some of the critical 1117 

factors that still need to be addressed to enable their wider utilization. 1118 

 1119 

4.2 Mode of action 1120 
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All fungi have the same basic mode of action. Excellent reviews of the mechanical, molecular 1121 

and biochemical processes involved in insect infection are available and consequently will not be 1122 

covered here in detail (e.g., see Hajek and St. Leger, 1994; Hajek, 1997; Inglis et al., 2001; 1123 

Charnley, 2003; Charnley and Collins, 2007; Ortiz-Urquiza and Keyhani, 2013). Insect control 1124 

by entomopathogenic fungi is achieved when sufficient infective propagules (generally conidia) 1125 

contact a susceptible host and conditions are suitable for a lethal mycosis to develop. Fungi have 1126 

been applied for soil pest control by direct incorporation of conidia, mycelial pellets, 1127 

microslerotia or inert or nutrient-based granules containing fungal propagules (conidia or 1128 

mycelia) (Brownbridge, 2006; Charnley and Collins, 2007; Jaronski, 2007; Ansari et al., 2008; 1129 

Jaronski and Jackson, 2008), whereas foliar-feeding pests have typically been targeted by sprays 1130 

of formulated conidia (Jaronski, 2010).  1131 

Fungal isolate virulence towards different arthropod hosts varies. Virulence generally 1132 

decreases with repeated sub-culture on artificial media, and can often be regained through host 1133 

passage (e.g. Nahar et al., 2008). Virulent isolates generally express an abundance of spore-1134 

bound proteases, efficiently produce and release exoenzymes during cuticular penetration, and 1135 

generate toxins as the fungus colonizes the host (Vey et al., 2001; Freimoser et al., 2005; Shah et 1136 

al., 2005; Qazi and Khachatourians, 2007; Zimmermann 2007a; 2007b; 2008; Khan et al., 2012). 1137 

Selecting superior strains exhibiting these characteristics, or manipulating isolates to promote 1138 

these traits, has been seen as a way of overcoming what is often considered a significant 1139 

impediment to their wider use, i.e., fungi kill their hosts too slowly. Fungal virulence can also be 1140 

improved through directed genetic manipulation whereby specific genes are inserted into the 1141 

fungal genome to promote expression of toxins that increase the virulence of the parent 1142 

organisms, e.g., insertion of scorpion toxin genes into M. anisopliae and B. bassiana (Wang and 1143 
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St. Leger, 2007; Pava-Ripoll et al., 2008; St Leger et al, 2011). In both cases, the recombinant 1144 

strains exhibited dramatically increased virulence. This approach has the potential to improve 1145 

insect kill and reduce the amount of inoculum needed to regulate a pest population. In addition, 1146 

protoplast fusion can be used to enhance virulence and increase host range. For instance, 1147 

protoplast fusion was used with several strains and species of Lecanicillium to develop hybrid 1148 

strains with multiple effects (toxic and parasitic) against plant parasitic nematodes, plant 1149 

pathogens and aphids, with plant competency (as root colonizers and endophytes), making these 1150 

strains promising for development as broad-spectrum microbial pesticides targeting plant 1151 

pathogens, insects, and plant parasitic nematodes (Goettel et al., 2008; Koike et al, 2011). 1152 

  Entomophthoralean fungi actively eject spores when conditions are favorable (high 1153 

humidity) that can rapidly infect a susceptible insect, even when these conditions only prevail for 1154 

short periods (Steinkraus, 2006). This trait gives these pathogens great epizootic potential, and in 1155 

many groups of insects, they are among the most important natural mortality factors. In contrast, 1156 

spores of the hypocrealean fungi Beauveria and Metarhizium spp. tend to be dispersed passively, 1157 

via wind currents or rain splash, although transmission can also occur when susceptible insects 1158 

contact infected individuals, or conidia can be distributed on the bodies of other arthropods 1159 

(Rath, 2002; Wraight and Ramos, 2002; Meyling and Eilenberg, 2006b; Meyling et al., 2006; 1160 

Roy et al., 2007; Vega et al., 2007). Both hypocrealean and entomphthoralean fungi can survive 1161 

repeated intervals of low humidity, recommencing development (infection) when favorable 1162 

conditions return. This can result in spectacular epizootics such as those observed in whitefly 1163 

infestations on cotton when the canopy closes and creates a humid microclimate that favors host 1164 

infection and spread of the disease within the population (Lacey et al., 1996). These fungi can, 1165 

though, infect insects even under conditions of low ambient humidity; attachment of the small 1166 
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conidia at infection sites within inter-segmental folds or under elytra where humidity levels are 1167 

high may account for this, and the localized microclimate that exists around an insect or at the 1168 

insect-leaf interface may have a more significant impact on the infection process than ambient 1169 

conditions (Inglis et al., 2001; Vidal et al., 2003; Vidal and Fargues, 2007; Jaronski, 2010).  1170 

Fungi can persist in the soil for several years with new ‘flushes’ of inoculum provided 1171 

following the successful infection and colonization of a susceptible host. This leads to localized 1172 

high concentrations of infective conidia and greater opportunities for insect infection to occur 1173 

(Enkerli et al., 2001; Rath, 2002; Milner et al., 2003; Keller et al., 2003; Meyling and Eilenberg, 1174 

2007). Long-term survival of entomopathogenic fungi within an environment appeared to be 1175 

reliant upon access to susceptible hosts, though, as they were generally considered weak 1176 

saprophytes (Keller et al., 2003; Hummel et al., 2002; Roberts and St. Leger, 2004; Jaronski, 1177 

2007). However, the recent discoveries of their roles as endophytes or rhizosphere competent 1178 

organisms require further investigations in this regard. For those species with relatively narrow 1179 

host-spectra, lack of hosts can limit their natural occurrence and longevity (Keller et al., 2003; 1180 

Meyling and Eilenberg, 2007). 1181 

 1182 

4.3 The changing face of fungi 1183 

A variety of molecular tools and systems now augment more traditional fungal classification 1184 

schemes, allowing examination of evolutionary (phylogenetic) relationships between isolates as 1185 

well as matching anamorphs and teleomorphs (Driver et al., 2000; Rehner and Buckley, 2005; 1186 

Hibbett et al., 2007; Humber, 2008; Bischoff et al, 2009; Blackwell, 2010). Furthermore, they 1187 

aid in the differentiation and identification of fungi in environmental samples, enable definition 1188 

of potential associations (habitat, host), and may provide valuable insights that enable strain 1189 
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improvements or selection of isolates with specific traits (Nielsen et al., 2001; Ranjard et al., 1190 

2001; Sung et al., 2001; Bidochka et al., 2002; Enkerli et al., 2005; Huang et al., 2005; McGuire 1191 

et al., 2006; Nielsen et al., 2005; Rehner et al., 2006; Hibbett et al., 2007; Inglis et al., 2007; 1192 

Sung et al., 2007; Meyling et al., 2009; Enkerli and Widmer, 2010). These techniques are 1193 

changing the way we observe fungi in the environment, and potentially alter pathways towards 1194 

their development as MCAs.  1195 

 1196 

4.4 The importance of selecting the appropriate fungal isolate and other considerations  1197 

The literature is replete with examples of fungi that have performed well in laboratory trials and 1198 

shown “great potential” (Vega et al., 2012) only to fail once they were tested in the field. This 1199 

has often led to a search for ‘new and better’ isolates rather than investigating underlying factors 1200 

impacting performance in the environment. Without diminishing the implicit value of looking for 1201 

new organisms (in general there is no shortage of excellent candidates) more research emphasis 1202 

is instead needed to address critical factors to turn ‘potential’ into viable ‘product’.  1203 

Isolates must be ecologically competent to function and persist in the environment of the 1204 

target pest, and selection of candidates must not be solely based on performance in an optimized 1205 

bioassay system. Bioassays need to be carried out under discriminatory conditions that attempt to 1206 

replicate conditions where the pathogen will be used (Butt and Goettel, 2000). Environmental 1207 

and insect behavioral factors all influence pathogen activity, so their incorporation into a testing 1208 

scheme will enable robust isolates to be identified prior to downstream development activities. 1209 

Fungi and arthropods have evolved complex relationships, and some soil-dwelling 1210 

arthropods show adaptive behavioral responses that prevent their coming into contact with fungal 1211 

inoculum (Villani et al., 2002; Thompson and Brandenburg, 2005; Baverstock et al. 2010). There 1212 
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also appears to be variation in the level of response to different fungal isolates or fungal growth 1213 

stages, i.e. vegetative stage vs conidia (Thompson and Brandenburg, 2005), and in some 1214 

instances, insects may be attracted or repelled by fungal volatiles or metabolites which could 1215 

enhance or deter activity (Villani et al., 1994; Engler and Gold, 2004; Kepler and Bruck, 2006; 1216 

Meyling and Pell, 2006c; Rohlfs and Churchill, 2011). Such behavioral responses should be 1217 

taken into consideration when selecting appropriate strains for insect pest management, and the 1218 

type of inoculum used in a pest management program. Similarly, our ability to manipulate insect 1219 

behavior through the use of a variety of compounds may provide new opportunities to enhance 1220 

pathogen efficacy (Roy et al., 2007). 1221 

 1222 

4.5. Ecological considerations 1223 

Entomopathogenic fungi are natural components of most terrestrial ecosystems. . Greater 1224 

understanding of the fundamental ecology of these organisms in the natural environment and 1225 

post-application would be of immense value in the development of more ecologically sound 1226 

control approaches (Wraight and Hajek, 2009; Vega et al., 2009; Roy et al, 2010a, 2010b). The 1227 

lack of field data is due, in part, to the complexity of the environment and the intricate 1228 

interactions between different environmental and biological factors that can confound 1229 

observations around cause and effect (Jaronski, 2007). Likewise, interactions among biotic and 1230 

abiotic factors, e.g., sunlight, humidity, and microbial activity on the phylloplane, affect efficacy 1231 

and persistence of fungal treatments applied against foliar pests (Jaronski, 2010). While in vitro 1232 

testing can provide valuable insights into fungal responses to specific inputs, they rarely yield 1233 

data that can be directly extrapolated to predict field responses. More effort needs to be invested 1234 

in the evaluation of effects of agricultural practices (e.g., Klingen et al., 2002a; 2002b; Hummel 1235 
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et al., 2002; Townsend et al., 2003) on persistence and particularly efficacy under field 1236 

conditions. 1237 

Production of good ecological data has also been impeded by a historic lack of tools to 1238 

examine and quantify fungal populations. Traditionally, studies have relied on time-consuming 1239 

isolation and plating techniques. Similarly, risk assessments have tended to focus on interactions 1240 

with macroorganisms; monitoring of interactions with other microbes has been limited and 1241 

biased by our inability to culture all soil and foliar microorganisms. However, new tools and 1242 

increasingly powerful molecular methods are becoming available to examine fungal 1243 

communities and may be applied to the study of entomopathogens. For example, use of nuclear 1244 

ITS and EF1-alpha sequences have enabled isolates to be differentiated and phylogenetic 1245 

relationships within species to be determined, enabling links to geographic and host origins to be 1246 

defined (Driver et al., 2000; Bidochka et al., 2001; 2002; Rehner and Buckley, 2005; Rehner et 1247 

al., 2006; Inglis et al., 2008; Meyling et al., 2009; Inglis et al,, 2012). The ability to transform 1248 

fungi to express the green fluorescent protein (GFP) allows GFP-mutants to be observed in-situ, 1249 

and expression of the protein may be tied to specific events during infection or growth through 1250 

choice of an appropriate promoter (Lorang et al., 2001; Hu and St. Leger, 2002; Skadsen and 1251 

Hohn, 2004; Wu et al., 2008). A variety of other molecular techniques such as RFLP, T-RFLP, 1252 

AFLP and strain-specific microsatellite markers have been used as diagnostic tools allowing 1253 

fungi to be tracked in the environment (Enkerli et al., 2001; 2004; 2005; Castrillo et al, 2003; 1254 

Rehner and Buckley, 2003; Schwarzenbach et al., 2007a, 2007b; Inglis et al., 2008; Enkerli and 1255 

Widmer, 2010; Inglis et al., 2012). Advances in the use of PCR techniques provide highly 1256 

specific methods of monitoring fungal populations in ‘real time’ and in a quantitative manner, in 1257 

soils, insects, and in plants (Ownley et al., 2004; Wang et al., 2004; Entz et al., 2005; Castillo et 1258 
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al., 2008; Meyling et al., 2009; Enkerli and Widmer, 2010; Inglis et al., 2012). Use of qPCR with 1259 

automated ribosomal intergenic spacer analysis (ARISA) allow soil microbial communities to be 1260 

profiled and responses to specific events to be monitored; these techniques are likely to be 1261 

increasingly applied to the study of entomopathogens to assess the fate of biological control 1262 

species and their impacts on microbial community structure (Ranjard et al., 2001; Hartmann et 1263 

al., 2005; Shah et al., 2009; Torzilli et al., 2006; Martin, 2007; Enkerli, 2008; Enkerli and 1264 

Widmer, 2010; Inglis et al., 2012). 1265 

All biotic factors in soils are influenced by prevailing environmental conditions, soil types, 1266 

nutrient status, agricultural practices and inputs in the form of pesticides and soil amendments. 1267 

Intricate interactions between abiotic and biotic factors make it extremely difficult to quantify 1268 

the specific effects of each of these on the dynamics of entomopathogenic fungi in soil (e.g. 1269 

Quesada-Moraga et al., 2007). However, we can identify three principle biotic components that 1270 

have a major influence on fungal persistence and efficacy. These are: soil microorganisms, 1271 

plants, and invertebrates. 1272 

Generally speaking, entomopathogenic fungi are considered weak saprophytes in the 1273 

competitive soil environment, and introduced inoculum levels will decline in the absence of an 1274 

arthropod host (Inglis et al., 2001; Roberts and St. Leger, 2004; Längle et al., 2005). Metabolites 1275 

produced by other soil microbes can adversely affect germination and growth, or be directly 1276 

toxic, leading to reduced infectivity or multiplication; consequently, survival and efficacy of 1277 

entomopathogens is commonly superior in sterilized vs non-sterilized soils (Jaronski, 2007). 1278 

Even so, in native soils conidia will infect a susceptible host when they contact the insect cuticle; 1279 

Metarhizium and Beauveria will germinate, grow, and conidiate when applied to soil and 1280 

amendment of soil with nutrients can overcome (apparent) fungistasis (Keller, 2000; Milner et 1281 
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al., 2003; Bruck, 2005; Chandler and Davidson, 2005; Brownbridge, 2006; Jaronski, 2007; 1282 

Jaronski and Jackson, 2008). This suggests that fungistasis alone is not the sole reason for the 1283 

low germination in soil and fungi may require additional host- or nutrient-derived cues to initiate 1284 

development. Antibiosis also occurs between entomopathogenic fungi and other 1285 

microorganisms, a phenomenon that has implications for protection of crop plants from 1286 

pathogens (Ownley et al., 2004; 2010). Very few attempts have been made to evaluate effects of 1287 

phylloplane microorganisms on persistence and infectivity of fungi applied to foliage, in spite of 1288 

the fact that plant surfaces are occupied by a diverse range of microfauna (Jaronski, 2010). 1289 

Crop plant species and tillage practices affect the prevalence and persistence of fungi 1290 

(Hummel et al., 2002; Klingen et al., 2002b; Jaronski, 2007). Fungal entomopathogens could be 1291 

affected by plant surface chemistry and volatiles (Cory and Ericsson, 2010). Some 1292 

entomopathogens, particularly M. anisopliae, are more commonly associated with agricultural 1293 

(tilled) soils than natural habitats, although fungal prevalence and diversity is normally greater in 1294 

undisturbed soils (Bidochka et al. 2001; 2002; Inglis et al., 2008; Meyling and Eilenberg, 2007; 1295 

Meyling et al., 2009). Plant root exudates contain many nutrients that support the development of 1296 

microbial populations in the rhizosphere; in vitro tests demonstrated that carbohydrates and 1297 

nitrogen compounds stimulate germination and growth of M. anisopliae conidia, while organic 1298 

acids may inhibit germination (Li and Holdom, 1995). Some M. anisopliae isolates are 1299 

rhizosphere-competent, a trait that enhances persistence in the root zone (Hu and St. Leger, 1300 

2002; Bruck, 2005; St. Leger, 2008). The physiological adaptation of the fungus to function as a 1301 

pathogen or saprophyte involves expression of different gene products, demonstrating that the 1302 

fungus appears to have evolved various mechanisms that enhance survival in different 1303 



  

JIP-15-82 

 58

environments (Wang et al., 2005; Wang and St. Leger, 2007; Bruck, 2010; St. Leger et al., 1304 

2011).  1305 

Endophytes may be broadly defined as microbes that live in healthy plant tissue (Hyde and 1306 

Soytong, 2008). Commonly, these are bacteria and fungi that have either no effect or have a 1307 

beneficial relationship with their host, including the ability to naturally confer resistance to pests 1308 

and diseases (Backman and Sikora, 2008). Recently, B. bassiana has been recognized as an 1309 

endophyte that occurs naturally in, or has been successfully introduced into a diverse range of 1310 

plant species (Vega et al., 2008; Parsa et al., 2013). In several instances, colonization of plant 1311 

tissues by the fungus has provided protection against insect damage or has inhibited insect 1312 

development and establishment, such as the banana weevil, Cosmoplites sordidus (Akello et al., 1313 

2008), stem borer, Sesamia calamistis (Cherry et al., 2004), and the cyniprid, Iraella luteipes 1314 

(Quesada-Moraga et al., 2009), probably as a result of in planta production of insecticidal 1315 

metabolites by triggering host-plant defenses, or as a result of feeding deterrence/antibiosis.  1316 

Some isolates have also demonstrated anti-microbial activity and can provide protection against 1317 

infection by plant pathogens (Ownley et al., 2004; 2010) including most recently, the zucchini 1318 

yellow mosaic virus in curcurbits (Jaber et al., 2014). As endophytes, the fungi are in a protected 1319 

environment where they are not exposed to abiotic and biotic factors that can limit efficacy when 1320 

fungi are applied to foliage or the soil, and may offer protection against cryptic species, e.g., 1321 

stem borers, that would otherwise be difficult to control (Brownbridge, 2006; Jaronski, 2007, 1322 

2010). 1323 

Foliar topography and chemistry can affect fungal activity and persistence (Jaronski, 2010). 1324 

While the specific physical traits or compounds responsible for these observed differences are 1325 

often unknown, the work of several authors indicate that both factors can significantly impact 1326 
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insect infection due to reduced rates of conidial acquisition (Kouassi et al., 2003; Ugine et al., 1327 

2007) and the toxic effects of chemicals produced (as exudates or volatiles) at the leaf surface 1328 

(Inyang et al., 1998) or consumed by the host (Olleka et al., 2009). Efficacy may be further 1329 

compromised by the use of inefficient application practices and different spray parameters on 1330 

crops at different stages of development, which has been clearly shown to affect insect infection 1331 

rates (Ugine et al., 2007). Clearly, we need to develop a better understanding of the complex 1332 

interactions between a range of factors, e.g., crop type and physiology, age, fungal strain, pest 1333 

biology, method of application, etc., to devise efficient use practices. 1334 

Invertebrates have many effects on entomopathogen levels in soil. Some, such as 1335 

Collembola, mites and earthworms, ingest conidia and play a role in their dispersion within and 1336 

removal from soil (Broza et al., 2001; Dromph, 2003; Milner et al., 2003; Brownbridge and 1337 

Glare, 2007; Shapiro-Ilan and Brown, 2013). Insect hosts are critical to the long-term survival of 1338 

many species of entomopathogenic fungi. Access to and successful infection of a host is the only 1339 

way in which some species can significantly multiply. Fungal prevalence over time may thus be 1340 

closely correlated with the presence of susceptible insect populations (Meyling and Eilenberg, 1341 

2007), although the extent that they reproduce endophytically or epiphytically remains to be 1342 

determined. Use of insecticides may contribute to the decline of fungal populations by reducing 1343 

the availability of suitable hosts rather than having direct negative effects on fungal survival 1344 

(Klingen and Haukeland, 2006). Unfortunately, most studies on effects of chemical pesticides on 1345 

viability of entomopathogenic fungi have been carried out using in vitro techniques that bear 1346 

little resemblance to the agricultural system in which the pathogen will encounter the chemical. 1347 

This is an area of research that could be highly beneficial. Knowledge of positive or negative 1348 

interactions could allow IPM practices to be adjusted to favor insect infection. 1349 
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An avoidance response to conidia of both M. anisopliae and B. bassiana has been observed 1350 

in mole crickets, which may lead to inconsistent performance of these fungi in the field (Villani 1351 

et al., 2002; Thompson and Brandenburg, 2005). However, there appears to be variation in the 1352 

level of response to different isolates (Thompson and Brandenburg, 2005). Insects may also be 1353 

attracted to fungi. Engler and Gold (2004) showed that termites were attracted to mycelial 1354 

preparations and volatile extracts of M. anisopliae, and P. japonica females preferentially 1355 

oviposited in soils treated with mycelia (Villani et al., 1994). This recruitment effect was also 1356 

seen with black vine weevil (BVW) Otiorhynchus sulcatus larvae, which responded positively to 1357 

M. anisopliae-treated media (Kepler and Bruck, 2006). Such behavioral responses should be 1358 

taken into consideration when selecting appropriate strains for insect pest management and may 1359 

be useful in the development of more effective biological control strategies. 1360 

 1361 

4.6 Production and formulation 1362 

Following the traditional model, mass production systems have been devised to maximize 1363 

inoculum yield at the lowest possible cost for use in inundative applications (Wraight et al., 1364 

2001; Cliquet and Jackson, 2005; Jackson et al., 2010; Jaronski, 2010; Jaronski and Jackson, 1365 

2012). Research emphasis has been placed on optimization of biomass production, stability, and 1366 

ease of handling for application (Charnley and Collins, 2007). The general assumption has been 1367 

that control could be achieved if sufficient inoculum could be produced cheaply enough and 1368 

applied at sufficiently high rates (Brownbridge et al., 2008; Jaronski, 2010). The role of the 1369 

environment and its impact on fungal activity has not necessarily been a primary consideration 1370 

driving the development of production and formulation techniques (Jackson et al., 2010). 1371 

However, there is considerable scope to modify production media and techniques to provide 1372 
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more ecologically competent infective material that is better suited to use in specific 1373 

environments. Greater knowledge of prevailing ecological factors in the pest’s habitat will allow 1374 

potential constraints to fungal survival and/or infection to be identified, and will provide leads 1375 

for research to overcome these constraints. When combined with development of alternative 1376 

delivery mechanisms, it is likely that more efficacious microbial control products will become 1377 

available. 1378 

Efficacy against soil-inhabiting pests is influenced by many biotic and abiotic factors. 1379 

Consequently environmental factors are critical to performance, and maintenance of bioactivity 1380 

must be a primary consideration when developing production media (Kiewnick, 2004; Tarocco 1381 

et al., 2005; Brownbridge, 2006; Jaronski, 2007, 2010). Formulation can enhance characteristics 1382 

or render fungal preparations easier to apply, but their performance is ultimately reliant upon 1383 

inclusion of robust biological material that is “fit for purpose” (Jackson, 1999; Brownbridge et 1384 

al., 2008). The production method selected will depend upon the nature of the inoculum required, 1385 

and isolates may have different growth characteristics on different production media (Shah et al., 1386 

2005; Charnley and Collins, 2007; Jaronski and Jackson, 2012). An excellent overview of 1387 

ecological considerations in the production and formulation of entomopathogenic fungi was 1388 

recently published by Jackson et al. (2010), and readers are referred to it for a more complete 1389 

review of these factors. 1390 

Solid substrates have been widely used to produce aerial conidia of entomopathogenic and 1391 

other beneficial fungi (Kiewnick, 2001; Wraight et al., 2001; Krishna, 2005; Charnley and 1392 

Collins, 2007; Jaronski and Jackson, 2012). Temperature, pH, aeration and substrate components 1393 

all influence conidial yield, viability, stability and virulence (Jaffee and Zasoski, 2001; Shah and 1394 

Butt, 2005; Shah et al., 2005; Rangel, 2006; Jackson et al., 2010). Although these parameters are 1395 
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more difficult to regulate in a solid-substrate system, this remains the predominant method used 1396 

for commercial products due, in part, to the flexibility of a system that lends itself to the cottage-1397 

industry production scale used in many parts of the world. Solid-state fermentation bioreactors 1398 

yielding up to 3x1013 conidia per kg of substrate have been developed (Jenkins and Gryzwacz, 1399 

2000; Wraight et al., 2001; Kiewnick, 2004; Kang et al., 2005; Kiewnick and Sikora, 2006; 1400 

Jaronski and Jackson, 2012).  1401 

The economies of large-scale liquid fermentation processes for microorganisms is well 1402 

established and has provided the paradigm for the mass production of microbes with 1403 

pharmaceutical (e.g., production of insulin) or nutraceutical (e.g., probiotics) applications. Large-1404 

scale liquid fermentation systems are successfully used for agriculturally important bacteria (e.g., 1405 

B. thuringiensis, S. entomophila). In submerged culture, fungi generally produce vegetative 1406 

propagules – mycelia or yeast-like blastospores; culture conditions and media composition will 1407 

have a primary influence on the type and amount of inoculum produced (Jackson et al., 2003; 1408 

Vega et al., 2003; Cliquet and Jackson, 2005; Charnley and Collins, 2007; Jaronski and Jackson, 1409 

2012). Production systems have been designed with high yield as a primary goal but again, the 1410 

infectivity of the resulting biomass and its ecological competence and stability are key factors 1411 

that must be considered during process development. Culture conditions and media can be 1412 

manipulated to impart specific traits to the resulting biomass, including enhanced infectivity 1413 

(potency) and stability during drying and in storage (Vega et al., 2003; Cliquet and Jackson, 1414 

2005; Liu and Chen, 2005; Leland et al., 2005a; 2005b; Jackson et al., 2006; Jaronski and 1415 

Jackson, 2008; 2012). Jaronski and Jackson (2008; 2012) and Jackson et al. (2010) recently 1416 

described methods to induce production of microsclerotia by M. anisopliae in liquid media. The 1417 

aggregates were readily air-dried, stable at room temperature, and showed superior efficacy 1418 
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against sugarbeet root maggot in soil assays compared with conventional corn-grit granules. The 1419 

material sporulated profusely in non-sterile soils and was active at low soil moisture levels 1420 

(Jaronski, 2007; Jaronski and Jackson, 2008). Such production/formulation techniques overcome 1421 

some of the biotic and abiotic constraints to fungal efficacy and may increase opportunities to 1422 

utilize these biocontrol agents against soil pests. 1423 

Advances in formulation technologies now permit stabilization of environmentally sensitive 1424 

microbes and have applications to a diverse variety of beneficial organisms. Formulations can 1425 

improve the handling characteristics and safety of a microorganism (e.g., by eliminating spore 1426 

dust during preparation of a spray mixture), enhance stability pre- and post-application, improve 1427 

persistence, promote efficacy, and facilitate easy delivery to the target pest (Wraight et al., 2001; 1428 

Brownbridge, 2006; Brownbridge et al., 2006; Jackson et al., 2006; Thompson et al., 2006; 1429 

Charnley and Collins, 2007; Jaronski, 2007; 2010; Jaronski and Jackson, 2008; Jackson et al., 1430 

2010). Critical, however, is maintenance of viability, ideally even when storage conditions are 1431 

sub-optimal (Jackson et al., 2010). Effective formulation is integral to the wider utility of 1432 

microbial pesticides in agricultural production systems, and microbes can fail if formulated 1433 

poorly. Formulations may be tailored to suit the environment in which the microbial will be 1434 

used, the delivery system envisioned, and the nature of the inoculum being used. Like production 1435 

systems, they must be rationally developed to ensure retention of key characteristics that are 1436 

critical to microbial efficacy, in both foliar and soil environments (Jaronski, 2010). For example, 1437 

an oil formulation of M. anisopliae var. acridum was developed to overcome the limitations of 1438 

dry habitats for the control of locusts and grasshoppers (Lomer et al., 1999, 2001; Bateman, 1439 

2004; Moore, 2008).  1440 

 1441 
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4.7 Improving delivery 1442 

While mass production systems can be refined to overcome particular environmental constraints, 1443 

strategies for more efficient use also need to be investigated to capture the full potential of these 1444 

microbes, as well as to reduce the amount of inoculum required to achieve satisfactory control 1445 

because there is a physical and economical limit to the amount of material that can be applied. 1446 

Some circumstances may require repeated pesticidal application of fungal biocontrol agents 1447 

where simple sprays are not appropriate or effective. Control of cryptic insects, for example, 1448 

cannot be achieved using conventional sprays. We thus need to look to application techniques 1449 

that are not only more efficient, but use less material. As with other development criteria, 1450 

consideration of the pest’s biology is paramount to devising novel delivery techniques.  1451 

The pollen beetle Meligethes aeneus, is a widespread pest of oilseed rape and other important 1452 

cruciferous crops in Europe. Adults and larvae feed on pollen in buds and open flowers, affecting 1453 

seed set and hence yield. The beetles are very difficult to reach with regular sprays in this 1454 

protected environment. Honey-bees (Apis mellifera), frequent visitors to oilseed crop flowers to 1455 

forage for nectar and pollen,,were successfully used to vector dry M. anisopliae conidia to 1456 

flowers of oilseed rape, leading to subsequent high levels of pollen beetle mortality and mycosis 1457 

(Butt et al., 1998). Honey bees have subsequently been used to disseminate B. bassiana to canola 1458 

flowers for control of tarnished plant bug, Lygus lineolaris  (Al-mazra'awi et al., 2006a) and can 1459 

vector dry conidia to a range of agriculturally important crops, demonstrating additional 1460 

opportunities to use bees to deliver these control agents (Al-mazra'awi et al., 2007). Bumble bees 1461 

are used to pollinate many greenhouse crops, and can also be employed to vector B. bassiana and 1462 

other microbial inoculants to control thrips, tarnished plant bug and grey mold in greenhouse 1463 

tomato and sweet pepper (Al-mazra'awi et al., 2006b). In all cases, fungal delivery was 1464 
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efficiently targeted to the portion of a crop where pest damage was occurring, and relatively 1465 

small amounts of conidia were needed to effect control (Kapongo et al. 2008 a, 2008 b; Kevan et 1466 

al., 2008). 1467 

Fungi can be delivered into the soil environment via seed coatings. This technique has 1468 

traditionally been used to protect seeds and developing seedlings from soil-borne diseases and 1469 

subterranean pests with persistent broad-spectrum fungicides and insecticides. With the advent of 1470 

new polymers that can be used to coat materials onto seeds without heat, seed-coating with 1471 

microbes has become possible. Seed coating with fungal inoculants can be used to establish 1472 

fungi such as Trichoderma spp. in the rhizosphere and prevent losses to root diseases. Rhizo-1473 

competent entomopathogens such as M. anisopliae may establish on the developing roots of 1474 

seedlings, mitigating insect damage, and endophytic entomopathogens such as B. bassiana may 1475 

colonize the plant providing resistance to plant pathogens. Although the biological control 1476 

effectiveness of these approaches needs to be validated, targeted suppression of a pest with 1477 

reduced amounts of inoculum could be provided. 1478 

Efficiencies may also be realized using auto-dissemination devices. Several insect pests have 1479 

been effectively regulated using this approach (Vega et al., 2007; Baverstock et al., 2010). Tsetse 1480 

flies, Glossina spp., are major impediments to rural development in many African countries. 1481 

Previous control attempts have focused on habitat manipulation and widespread application of 1482 

insecticides. The long-term efficacy of these approaches is poor and the high cost and 1483 

environmental risks posed by widespread insecticide applications have provided the impetus to 1484 

develop alternative management approaches. Area-wide spray applications of fungi are 1485 

impractical due to issues of cost, targeting, and poor field persistence, creating an ideal scenario 1486 

for development of an auto-inoculation device. Various traps have been devised that are highly 1487 
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attractive to tsetse, e.g., bi-conical traps baited with cow urine (Dransfield et al., 1990); by 1488 

combining this technology with an inexpensive trap-and-release inoculation device, an efficient 1489 

and economical method of delivering lethal doses of M. anisopliae conidia to adult tsetse was 1490 

developed in Kenya (Maniania et al., 2002). A similar approach was taken to the development of 1491 

an auto-dissemination device for control of adult fruit flies (Dimbi et al., 2003; Ekesi et al., 1492 

2007). The potential for horizontal transmission among inoculated individuals further enhances 1493 

the likelihood that these pests can be controlled using fungi in an auto-inoculation device 1494 

(Quesada-Moraga et al., 2008; Thaochan and Ngampongsai, 2015). 1495 

Auto-dissemination devices show promise for use against pests of field vegetable and fruit 1496 

crops, and in forested areas, where widespread conventional applications of fungal pathogens are 1497 

impractical. A common behavioral phenomenon among many beetles is that they overwinter en-1498 

masse, providing opportunities to target a fungal treatment to a compact population (Dowd and 1499 

Vega, 2003). Overwintering sap beetles, Carpophilus luqubris, were contaminated and infected 1500 

with a virulent strain of B. bassiana using an auto-inoculative device baited with pheromones. 1501 

Insects were targeted as they left harvested cornfields in the fall; the disease spread within the 1502 

population by horizontal transmission and established in the overwintering population (Dowd 1503 

and Vega, 2003). Autoinoculative devices were also successfully used to introduce B. bassiana 1504 

into a population of spruce bark beetle, Ips typographus (Kreutz et al., 2004). Transmission of 1505 

the pathogen occurred between treated and non-treated individuals and significantly reduced 1506 

adult beetle damage to spruce trees and numbers of beetle larvae under spruce bark. The capacity 1507 

to control other insects of agricultural importance using this technology has been reviewed by 1508 

Vega et al. (2007). This includes pests with cryptic habits such as leafminers, which are very 1509 

difficult to control with microbial or conventional pesticides (Migiro et al., 2010). Knowledge of 1510 
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pest biology is essential to the development of these novel yet simple technologies, which have 1511 

excellent potential to provide selective and cost-efficient means of control. 1512 

Insect behavior may be manipulated with a variety of allelochemicals and other compounds 1513 

in ways that may improve the efficiency of pathogen-based pest control strategies (Pell et al., 1514 

2007; Baverstock et al., 2010). For example, a variety of thrips allelochemicals will attract, arrest 1515 

or repel these insects, raising the possibility of using these materials to concentrate thrips into 1516 

specific areas of a crop (Tsao et al., 2005; Teulon et al., 2007a, 2007b; Davidson et al., 2007; 1517 

2008). Use of attractants with repellent compounds allows us to consider development of a 1518 

“push-pull” approach in greenhouse crops (van Tol et al., 2007). By concentrating infestations in 1519 

a limited area, control efforts can be focused there, rather than blanket-spraying an entire crop. 1520 

 The differential attraction of some insect pests to particular plant varieties or species offers 1521 

another way in which pest behavior can be modified to enhance the efficacy of fungal biocontrol 1522 

agents. For example, western flower thrips are more strongly attracted to some varieties of 1523 

chrysanthemum, which can be used as ‘trap plants’ within a production system (Buitenhuis and 1524 

Shipp, 2006). Trap plants can be arranged as “islands” within a crop and fungal biocontrol agents 1525 

applied to the islands within a wider cropping area. Despite a wide host range, the black vine 1526 

weevil has distinct preferences for feeding and oviposition. Adults are differentially attracted to 1527 

plant volatiles (van Tol et al., 2002), and insect feeding damage on Taxus and Euonymous spp. 1528 

invokes the production of odors that are highly attractive to other beetles (van Tol et al., 2002; 1529 

2004). These and other attractive plants can be used as trap crops to limit weevil distribution and 1530 

egg-laying to specific areas, allowing control efforts such as M. anisopliae (Bruck, 2005; Shah et 1531 

al., 2007) to be focused on the trap plants. Furthermore, some fungi appear to attract the weevils, 1532 
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which may further improve efficacy (Kepler and Bruck, 2006). By defining more efficient use 1533 

practices for insect pathogens, such controls become more cost-effective.  1534 

Synergistic interactions have often been observed when fungal pathogens have been co-1535 

applied with sub-lethal doses of insecticides. Synergism is thought to occur due to the action of 1536 

the insecticide on the insect’s behavior, either stimulating movement through treated media in an 1537 

attempt to escape to a less toxic environment and, in the process, leading to the acquisition of 1538 

more fungal inoculum, or adversely affecting movement and grooming behavior, leading to 1539 

greater retention of inoculum on the body of an insect (Quintela and McCoy, 1998; Jaramillo et 1540 

al., 2005; Shah et al., 2007; 2008; Ansari et al., 2007). Synergism leading to improved efficacy 1541 

and control may also occur when different species or strains of fungi are applied concurrently. 1542 

For example, combined application of B. bassiana and M. acridum (identified as M. flavoviride) 1543 

could be used to overcome some of the constraints of temperature in thermoregulating pests such 1544 

as grasshoppers, especially where temperatures fluctuate or are high for a significant period of 1545 

time (Inglis et al., 1997). Application of entomopathogenic fungi can also be practiced in 1546 

combination with other insect pathogens, including nematodes and Bt (Ansari et al., 2008; 2010; 1547 

Wraight et al., 2009). Combined applications may render the insect host more susceptible by way 1548 

of compromising health, prolonging developmental stages, or simply by the combined action of 1549 

two microbes on different components of the pest population. Similar effects can be obtained by 1550 

using entomopathogens in combination with predators or parasitoids (Roy and Pell, 2000; 1551 

Wraight, 2003. For example, Labbé et al. (2009) demonstrated that applications of B. bassiana 1552 

for control of greenhouse whiteflies (Trialeurodes vaporariorum) was compatible with 1553 

concurrent use of the parasitoid, Encarsia formosa, and the generalist predator, Dicyphus 1554 

hesperus. 1555 
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Clearly, opportunities exist to use a variety of mechanisms to improve the efficiency of 1556 

fungal biocontrol strategies. Such approaches can reduce the amount of inoculum needed to 1557 

control a pest and provide protection against environmental factors that would otherwise rapidly 1558 

degrade the organism post application, while improving efficacy and cost-effectiveness. This 1559 

area needs to be explored further rather than remaining focused on the pesticide paradigm. 1560 

 1561 

4.8 Conservation biological control 1562 

Contrary to the inoculative or augmentative approaches discussed above, conservation biocontrol 1563 

relies on the modification of habitats or of crop management techniques to promote the impact of 1564 

ecosystem service providers, specifically the natural activity of biocontrol agents within a crop 1565 

system (Steinkraus, 2007; Pell et al., 2010). The successful use of this approach relies on a 1566 

thorough understanding of the biology and ecology of the pest and the natural enemy complex 1567 

and, in the case of fungi, conditions that promote the development of epizootics (Pell et al., 2010; 1568 

Meyling and Hajek, 2010). Although conservation biocontrol may be considered to be in its 1569 

infancy for entomopathogens, this tactic has been successfully used on a large scale. For 1570 

example, predictive systems have been devised to inform farmers when conditions favor the 1571 

development of natural epizootics of Neozyygites fresenii in cotton aphids, reducing the need for 1572 

other mitigation strategies (Steinkraus et al., 2002; Steinkraus, 2007). There are opportunities to 1573 

create a new norm around the ‘use’ of these natural enemies. They do not necessarily create 1574 

commercial opportunities for sale of bioinsecticides, however development of systems whereby 1575 

environmental conditions can be manipulated to promote the natural incidence and efficacy of 1576 

fungi can provide an environmentally friendly and efficacious method for pest management. 1577 

Both entomphthoralean and hypocrealean entomopathogenic fungi can make a significant 1578 
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contribution to pest reduction and can form the foundation of an integrated crop management 1579 

program (Meyling and Eilenberg, 2007; Pell, 2007; Pell et al., 2010).  1580 

Greater adoption of fungal controls in agriculture will rely on achieving greater efficacy, cost 1581 

reduction, and an ability to broaden the range of pest species that may be targeted. Many of these 1582 

potential approaches go beyond the use of fungi as microbial pesticides, and require a more 1583 

ecological approach to their application.  1584 

There are several key areas where we must continue to derive new knowledge to advance the 1585 

development and use of fungal controls. Detailed knowledge of fungal ecology is needed to 1586 

better understand their role in nature and limitations in biological control. More efficient mass 1587 

production, formulation, and delivery systems are needed to supply a larger market; most fungi 1588 

are mass-produced using solid substrates and there are obvious physical limitations to the 1589 

amount of inoculum that can be produced using these processes. More testing under field 1590 

conditions is required to identify effects of biotic and abiotic factors and their interactions on 1591 

efficacy, persistence, and potential limitations to the use of these biocontrol agents in certain 1592 

crops or locations; and greater investment in the optimization of use practices is needed. There 1593 

are great opportunities to use fungi in classical and conservation biological control approaches 1594 

that can improve environmental stability, efficacy and the cost effectiveness. 1595 

 1596 
5. Entomopathogenic Nematodes 1597 

5.1 Background and overall status 1598 

Although there are numerous nematode taxa that have shown potential in biological control, the 1599 

entomopathogenic nematodes (EPN), Rhabditida: Steinernematidae and Heterorhabditidae, have 1600 

been most successful and have received the most attention (Grewal et al., 2005a), and therefore 1601 

constitute the focus in this article. We include only a brief description of EPN basic biology and 1602 
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life cycles; more detailed aspects may be found elsewhere (e.g., Kaya and Gaugler, 1993; 1603 

Gaugler, 2002; Grewal et al., 2005).   1604 

EPNs kill arthropod hosts via a mutualistic symbiosis with bacteria, Xenorhabdus spp. and 1605 

Photorhabdus spp. for steinernematids and heterorhabditids, respectively (Poinar, 1990). 1606 

Infective juveniles (IJs), the only free-living stage, enter hosts through natural openings (mouth, 1607 

anus, and spiracles), or in some cases, through the cuticle. After entering the host’s hemocoel, 1608 

nematodes release their bacterial symbionts, which are primarily responsible for killing the host 1609 

within 24-48 hours, defending against secondary invaders, and providing the nematodes with 1610 

nutrition (Dowds and Peters, 2002). The nematodes molt and complete up to three generations 1611 

within the host, after which IJs exit the cadaver to find new hosts (Kaya and Gaugler, 1993).  1612 

EPNs possess many positive attributes as biological control agents (Shapiro and Grewal, 2008). 1613 

They are safe to humans and are generally safe to other nontarget organisms and the environment 1614 

(Akhurst and Smith, 2002; Ehlers, 2005), which has led to a lack of pesticide registration 1615 

requirements in many countries such as the United States and nations in the European Union 1616 

(Ehlers, 2005). With few exceptions, e.g., Steinernema scarabaei (Koppenhöfer and Fuzy, 1617 

2003), entomopathogenic nematodes have a wide host range. Some nematode species have been 1618 

reported to infect dozens of insect species across five or more orders (Poinar, 1979; Klein, 1990), 1619 

and certain nematode species are used commercially against 12 or more insect species (see Table 1620 

4). Entomopathogenic nematodes are amenable to mass production using in vivo (infected 1621 

insects) or in vitro (solid or liquid fermentation) methods (Shapiro-Ilan and Gaugler, 2002; 1622 

Shapiro-Ilan et al., 2014a).   1623 

A number of biotic and abiotic factors affect EPN pest control efficacy (Kaya and Gaugler, 1624 

1993; Shapiro-Ilan et al., 2002a; Shapiro-Ilan et al., 2006a). Biotic factors such as choice of 1625 
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nematode species and rate of application (generally a minimum of 25 IJs per cm2 is required) are 1626 

critical (Shapiro-Ilan et al., 2002a). Environmental factors are also critical in determining 1627 

efficacy of EPN applications (Shapiro-Ilan et al., 2006a; Shapiro-Ilan et al., 2012b). For 1628 

example, the nematodes are highly sensitive to desiccation and ultraviolet light, thus applications 1629 

made to soil or other cryptic habitats, and made during the early morning or evening, tend to be 1630 

most successful.  EPNs have been developed as biocontrol agents on a commercial level. They 1631 

are currently being produced by at least 12 companies in Asia, Europe, and North America 1632 

(Kaya et al., 2006), and, to date, at least 13 different species have reached commercial 1633 

development, application, and sales: Heterorhabditis bacteriophora, H. indica, H. marelata, H. 1634 

megidis, H. zealandica, Steinernema carpocapsae, S. feltiae, S. glaseri, S. kushidai, S. kraussei, 1635 

S. longicaudum, S. riobrave, and S. scapterisci (Lacey et al., 2001; Georgis et al., 2006; Kaya et 1636 

al., 2006: Shapiro-Ilan et al., 2014a). Commercial application extends to a considerable variety 1637 

of economically important pests in various commodities (Table 4) (Shapiro-Ilan and Gaugler, 1638 

2002; Georgis et al., 2006). Significant advances have increased the biocontrol utility of EPNs 1639 

since 2001; new pests have been targeted, production and application technologies have been 1640 

improved, and our fundamental knowledge of ecology and genetics has greatly expanded. The 1641 

following is an update in research progress relative to EPN application since 2001.  1642 

 1643 

5.2 Novel EPN targets 1644 

The quest to develop EPNs for new target pests has remained active. High levels of efficacy have 1645 

been demonstrated against previously untested (or insufficiently tested) insect pests. Most of the 1646 

new targets are soil pests because the environment is favorable for EPNs. For example, EPNs 1647 

have caused substantial field suppression (75 to 100%) in two root-boring pests of stone fruits, 1648 
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the Mediterranean flat-headed rootborer, Capnodis tenebrionis (L.) (Morton and Garcia-del-1649 

Pino, 2008; Martinez de Altube et al., 2008) and the peachtree borer, Synanthedon exitiosa 1650 

(Cottrell and Shapiro-Ilan, 2006; Shapiro-Ilan et al., 2009a). In addition to root-borers, advances 1651 

have been made in effectively controlling soil-dwelling stages of other insect pests, such as the 1652 

filbertworm, Cydia latiferreana (Bruck and Walton, 2007; Chambers et al., 2010), guava weevil, 1653 

Conotrachelus psidii  (Dolinski et al., 2006), large pine weevil, Hylobius abietis L. (Dillon et al., 1654 

2007; Williams et al., 2013b), navel orangeworm, Amyelois transitella (Siegel et al., 2006), 1655 

pecan weevil, Curculio caryae (Shapiro-Ilan et al., 2006b), plum curculio, Conotrachelus 1656 

nenuphar (Shapiro-Ilan et al. 2004a, 2008a, 2013; Alston et al., 2005; Pereault et al., 2009), 1657 

oriental fruit moth, Grapholita molesta, (Riga et al., 2006; De Carvalho et al., 2013), and small 1658 

hive beetle, Aethina tumida (Ellis et al., 2010; Shapiro-Ilan et al., 2010a).  1659 

New developments in EPN usage have also taken place in non-soil habitats. Because 1660 

nematodes are sensitive to adverse environmental conditions, a major barrier to expanded use of 1661 

EPNs has been difficulties encountered with application to aboveground targets. Nevertheless, 1662 

some significant progress has been made in that arena over the past several years, including the 1663 

application of S. feltiae for   control of the sweetpotato whitefly, Bemisia tabaci, in the 1664 

greenhouses (>80% control) (Cuthbertson, et al., 2007) and application of S. carpocapsae for 1665 

control of P. xylostella, which is enhanced by a novel surfactant-polymer formulation (Schroer 1666 

and Ehlers, 2005; Schroer et al., 2005). Furthermore, S. carpocapsae treatments for control of the 1667 

lesser peachtree borer, Synanthedon pictipes, were greatly enhanced by a follow-up application 1668 

of a sprayable gel that is commonly used for protecting structures from fire (Shapiro-Ilan et al., 1669 

2010b), and S. carpocapsae treatments resulted in high levels of suppression of the red palm 1670 

weevil, Rhynchophorus ferrugineus when applied in a chitosan formulation (Llàcer et al., 2009). 1671 
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Applications of EPNs to apple tree trunks for control of codling moth, C. pomonella, were 1672 

improved when the treatments included the sprayable fire-gel or wood flour foam as a protective 1673 

agent (Lacey et al., 2010). Additionally, some promise has been demonstrated for using EPNs for 1674 

control of stored product pests (Mbata and Shapiro-Ilan, 2005; Ramos-Rodriguez et al., 2006; 1675 

Athanassiou et al., 2008).  1676 

In addition to developing new targets for EPNs, significant expansion and improvements 1677 

have been made in the control of a number of “traditional” target pests, i.e., those that have been 1678 

considered commercial targets, or potential commercial targets, for over a decade. A case in 1679 

point is the use of EPNs for control of white grubs (Coleoptera: Scarabaeidae). Advances in 1680 

white grub control have been made based on the discovery of new highly virulent steinernematid 1681 

and heterorhabditid species or strains, as well as an in-depth analysis of nematode-host 1682 

specificity and elucidation of the mechanisms behind that specificity (e.g., differences in 1683 

infection routes and optimum soil parameters) (Koppenhöfer and Fuzy, 2003; 2007; An and 1684 

Grewal, 2007; Grewal et al., 2004; Koppenhöfer et al., 2006; 2007).  1685 

A new discovery of particular promise is the recently discovered S. scarabaei, which is 1686 

highly virulent against a variety of white grubs and exhibits long-term persistence in the soil 1687 

environment (Stock and Koppenhöfer, 2003; Koppenhöfer and Fuzy, 2003; Koppenhöfer et al., 1688 

2009). Additionally, enhanced control of codling moth, C. pomonella was observed based on use 1689 

of optimum application equipment, addition of adjuvants, and mulching (Unruh and Lacey, 1690 

2001; Lacey et al., 2006a,b). A novel control approach for codling moth is to add EPNs to the 1691 

water in apple dump tanks, thereby targeting the overwintering insects that are harbored in 1692 

infested fruit bins (Lacey et al., 2005; de Waal et al., 2010). Advances in suppression have been 1693 

made for other established target pests including fungus gnats (Diptera: Sciaridae) (optimized 1694 
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substrate media and timing of applications) (Cloyd and Zaborski, 2004; Jagdale et al., 2004; 1695 

2007), the diaprepes root weevil, Diaprepes abbreviatus (expansion of control to other host 1696 

plants) (Jenkins et al., 2008), grape root borer, Vitacea polistiformis, (Williams et al., 2010), and 1697 

the western corn rootworm, Diabrotica virgifera virgifera, in Europe (Toepfer et al., 2008).   1698 

Research has progressed significantly beyond direct application of EPNs as single control 1699 

agents for suppression of insect pests. Studies on combining EPNs with other control tactics have 1700 

increased substantially since 2001. Positive/synergistic interactions have been observed among 1701 

various novel combinations with chemicals (Koppenhöfer et al., 2002; Polavarapu et al., 2007; 1702 

Koppenhöfer and Fuzy, 2008; Reis-Menini et al., 2008), microbial agents (e.g., M. anisopliae 1703 

s.l.) (Ansari et al., 2004; 2006a; Acevedo et al., 2007) and arthropod predators (Premachandra et 1704 

al., 2003). However, neutral or negative interactions with these agents may also be observed 1705 

depending on the specific pathogens, hosts, or application parameters (Koppenhöfer et al., 2002; 1706 

Shapiro-Ilan et al.2004b). Interestingly, entomopathogenic nematodes have also been reported as 1707 

synergists in conjunction with GM crops (i.e., Bt-corn) (Gassmann et al., 2008).  1708 

EPN research has expanded beyond the targeting of insects pests to include such pests as 1709 

plant-parasitic nematodes; efficacy in control of plant parasitic nematodes using EPNs has varied 1710 

based on a number of factors such as target species and the cropping system (Lewis et al., 2001; 1711 

Fallon et al., 2002; 2004; Jagdale et al., 2002, 2009; Nyczepir et al., 2004; Perez and Lewis 1712 

2004; Lewis and Grewal, 2005; Shapiro-Ilan et al., 2006c). Finally, research has included 1713 

utilization of nematode symbiotic bacteria partners (separate from the nematodes) or byproducts 1714 

thereof, as control mechanisms for arthropods (Mohan et al., 2003; Jung and Kim, 2006; 1715 

Bussaman et al., 2006; ffrench-Constant et al., 2007; Abdel-Razek, 2010; Da Silva et al., 2013) 1716 
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or plant pathogens (Isaacson and Webster, 2002; Ji et al., 2004; Böszörmènyi et al., 2009; 1717 

Shapiro-Ilan et al., 2009b).   1718 

 1719 

5.3 Advances in basic research 1720 

Fundamental research on EPNs expands utility of the organisms in biological control efforts. 1721 

Basic research in ecology of EPNs has progressed substantially in the past several years. For 1722 

example, a number of advances in understanding the dynamics of host attraction and infection 1723 

have been made.  Novel cues eliciting EPN responses have been discovered including vibration 1724 

(Torr et al., 2004), electromagnetic stimuli (Shapiro-Ilan et al., 2009c, 2012a; Ilan et al., 2013), 1725 

and attraction to plant roots in response to chemical “distress calls” triggered by pest attack (van 1726 

Tol et al., 2001; Rasmann et al., 2005; Ali et al., 2013). Plant roots were also found to enhance 1727 

nematode infection by providing routes for nematode movement (Ennis et al., 2010). Infection 1728 

and foraging behaviors such as jumping response (Campbell and Kaya, 1999; 2002), response to 1729 

host exudates (Kunkel et al., 2006), differential response to infected vs. uninfected hosts 1730 

(Christen et al., 2007; Ramos-Rodriguez et al., 2007), chemical signaling (Kaplan et al., 2012) 1731 

and olfactory response (Dillman et al., 2012), and competition within the host (male fighting) 1732 

(Zenner et al., 2014) have been elucidated. Additionally, broad models of host-parasite infection 1733 

dynamics have been developed and/or tested, such as the phased infectivity hypothesis 1734 

(Campbell et al., 1999; Dempsey and Griffin, 2002; Ryder and Griffin 2003), optimal infection 1735 

strategies based on trade-offs (Fenton and Rands, 2004), risk-sensitive infection and “follow the 1736 

leader” behavior (Fushing et al., 2009), and aggregative group movement/foraging behavior 1737 

(Shapiro-Ilan et al., 2014b).  These discoveries greatly expand our knowledge of factors that 1738 
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drive foraging and infection strategies (e.g., the discovery of aggregative movement suggests that 1739 

nematodes may move together in the soil in groups, akin to a pack of wolves). 1740 

Fundamental research has also progressed in the realm of soil ecology. Insight has been 1741 

gained into interactions with other biotic agents such as phoretic associations (Campos-Herrera 1742 

et al., 2006), an alternative role for EPNs as scavengers rather than parasites (San-Blas and 1743 

Gowen, 2008), food web response and competition among entomopathogenic or non-1744 

entomopathogenic nematode species (Millar and Barbercheck, 2001; Somasekhar et al., 2002; 1745 

Duncan et al., 2003a, 2003b, 2007; Hodson et al., 2012), and deterrence or susceptibility to 1746 

antagonists (Zhou et al., 2002; El-Borai et al., 2009). Some of these relationships, e.g., phoretic 1747 

associations causing enhanced EPN dispersal, have direct impacts toward improved biocontrol 1748 

efficacy (Shapiro-Ilan and Brown, 2013). Additionally, advances were made in elucidating the 1749 

impact of soil habitat complexity in reference to EPN spatial dynamics and trophic cascade 1750 

theory (Efron et al., 2001; Spiridonov et al., 2007; Denno et al., 2008; Hoy et al., 2008; Jabbour 1751 

and Barbercheck, 2008; Ram et al., 2008). Research focused on soil dynamics, such as the 1752 

studies cited above, elucidate biotic and abiotic factors that impact nematode distribution and 1753 

persistence and therefore directly impacts our ability to enhance efficacy of short-term 1754 

inundative applications, and also serves as foundation for development of inoculative, classical, 1755 

or conservation approaches (Loya and Hower, 2002; Preisser et al., 2005; Adjei et al., 2006; 1756 

Barbara and Buss, 2006; Stuart et al., 2008).   1757 

Expansion of basic research in entomopathogenic nematology has also been made through 1758 

extensive progress in fundamental genetic studies including molecular genetics and genomics. Of 1759 

particular note, the entire genomes of entomopathogenic nematodes and their symbionts have 1760 

been sequenced (e.g., Duchaud et al., 2003; Bai and Grewal, 2007; Ciche, 2007; Bai et al., 2009, 1761 
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2013; Schwartz et al., 2011; Bai et al., 2013). Additional tools (i.e., RNAi) for evaluating 1762 

functional genomics of the sequence as it becomes available have been developed (Ciche and 1763 

Sternberg, 2007), and analyses of certain EPN genes and their expression have already been 1764 

reported including genes related to stress, involvement in host colonization, and the host-1765 

pathogen relationship (Chen et al., 2006; Sandhu et al., 2006; Bai and Grewal, 2007; Tyson et 1766 

al., 2007; Cowles and Goodrich-Blair, 2008; Hao et al., 2008; Somvanshi et al., 2008; Bai et al., 1767 

2009; Easom et al., 2010; Hao et al., 2012). Given the unique characters of EPN biology and the 1768 

progress made in genetic studies, the entomopathogenic nematode-bacterium complex is being 1769 

developed and recognized as model system for understanding pathogenicity and symbiosis 1770 

(Goodrich-Blair, 2007; Clarke, 2008; Hussa and Goodrich-Blair, 2013).   1771 

Although the outcomes may not be immediately apparent, advancements in molecular 1772 

genetics and genomics will cultivate the development of new tools for enhancing biocontrol with 1773 

EPNs. Additionally, significant progress has been made in applied genetic studies that may have 1774 

more near-term benefits to EPN utility. For example, new EPN strains with enhanced traits (e.g., 1775 

environmental tolerance) have been developed through genetic improvement methods of 1776 

selection and or hybridization (Strauch et al., 2004; Ehlers et al., 2005; Shapiro-Ilan et al., 2005; 1777 

Nimkingrat et al., 2013). Beneficial trait deterioration is a significant problem that can occur 1778 

during repeated EPN culturing; for example, virulence, environmental tolerance and reproductive 1779 

capacity can decline after several passages in vivo (Bai et al., 2005; Bilgrami et al., 2006).  1780 

Insights into the nature of beneficial trait deterioration (Bai et al., 2005; Bilgrami et al., 2006; 1781 

Wang et al., 2007) as well as the discovery of methodologies to overcome the problem, e.g., 1782 

through the creation of homozygous inbred lines (Bai et al., 2005; Anbesse et al., 2013), and 1783 
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insight into the specific genes that change (Adhikari et al., 2009) will foster maintenance of 1784 

strain stability and biocontrol performance.   1785 

 1786 

5.4 Production and application technology 1787 

Considerable advances in EPN production and application technology have been made, including 1788 

liquid culture media improvement (Gil et al., 2002; Islas-López et al., 2005; Chavarría-1789 

Hernández et al., 2006) and increased understanding of the EPN biology, population dynamics, 1790 

and physical parameters within the bioreactor (Chavarría-Hernández and de la Torre, 2001; Han 1791 

and Ehlers, 2001; Neves et al., 2001; Johnigk et al., 2004; Chavarría-Hernández et al., 2008; 1792 

Hirao and Ehlers, 2010; Hirao et al., 2010; Belur et al., 2013). Detailed microbiological and 1793 

molecular aspects of the EPN life-cycle have also been elucidated (Chaston et al., 2013; 1794 

Moshavov et al., 2013). In vivo production of EPNs has been enhanced through the development 1795 

of mechanized equipment (Gaugler et al., 2002) and improved inoculation procedures (Shapiro-1796 

Ilan et al., 2002b; Brown et al., 2006; Shapiro-Ilan et al., 2008b).  1797 

Aqueous application has benefited from advanced understanding the impacts of various types 1798 

of application equipment on the EPNs (Fife et al., 2003; 2004; 2006; Brusselman et al., 2012). 1799 

Additionally, in terms of application technology, substantial interest in the approach of using 1800 

infected host cadavers as a vehicle for EPN distribution has been garnered. In this approach, 1801 

nematode infected hosts are applied to the target area and pest suppression is achieved by the 1802 

progeny IJs that emerge from the insect cadavers. Over the past several years, a number of 1803 

different pests have been targeted using the infected host application method (Bruck et al., 2005; 1804 

Dillon et al. 2007; Del Valle et al., 2008; Jagdale and Grewal, 2008). Research has confirmed 1805 

that, relative to application in aqueous suspension, infected host application can be superior in 1806 
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EPN infectivity, survival, dispersal, and pest control efficacy (Perez et al., 2003; Shapiro-Ilan et 1807 

al., 2003b; Fujimoto et al., 2007). Moreover, studies indicate that the approach can be facilitated 1808 

by formulating the infected hosts in coatings (Shapiro-Ilan et al., 2001; 2010a; Ansari et al., 1809 

2009; Del Valle et al., 2009) using hard-bodied insects as the host (Shapiro-Ilan et al., 2008c) 1810 

and development of equipment to distribute the cadavers (Zhu et al., 2011).  Nonetheless, the 1811 

cadaver application method has thus far only been used commercially on a very small scale 1812 

relative to conventional methods.  1813 

 1814 

5.6 The future for entomopathogenic nematodes 1815 

EPNs have been cultured commercially for more than 25 years. Substantial progress has been 1816 

made in terms of the number of insect pests that are targeted as well as the number of different 1817 

nematode species produced. Nonetheless, commercial level application has not reached 1818 

expectations. In the 1980s and 1990s, companies projected sales of well over $100 million, yet 1819 

currently the market is closer to only 10% of those projections (Gaugler and Han, 2002; Georgis, 1820 

2002). A number of barriers exist that have hindered further expansion of EPN markets including 1821 

cost of product, efficacy, and shelf life. These barriers may be overcome through a variety of 1822 

endeavors as outlined below.  1823 

One approach to improving efficacy and expanding the list of target pests to which EPNs can 1824 

be marketed is to improve the EPNs themselves. Methods to improve and expand the use of 1825 

EPNs include discovery of more effective strains or species and genetic improvement via 1826 

selection, hybridization or molecular manipulation (Gaugler, 1987; Burnell, 2002; Grewal et al., 1827 

2005b). Discovery of new strains and species is a straightforward approach that can quickly lead 1828 

to enhanced efficacy based on innate differences in nematode virulence, environmental 1829 
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tolerance, or other properties. For example, in the 1990s, the discovery and subsequent 1830 

commercialization of S. scapterisci for control of mole crickets and S. riobrave for Diaprepes 1831 

root weevils and other insects made a considerable impact on EPN markets (Shapiro-Ilan et al., 1832 

2002a). The rate of EPN species discovery has been increasing dramatically (Poinar, 1990; 1833 

Adams and Nguyen, 2002; Stock and Hunt, 2005). Of the more than 90 EPN species reported to-1834 

date (e.g., in the last nine decades) more than 40% have been described in the last decade (after 1835 

2001). Additionally, the numerous new strains of existing species that are being discovered can 1836 

also offer enhanced virulence or other properties (e.g., Stuart et al., 2004). Certainly the number 1837 

of new strains and species will continue to rise, adding more potential options for biocontrol 1838 

development. However, in order to leverage the advantages that strain/species discoveries offer, 1839 

biocontrol characterization of these new organisms must keep pace with the survey/discovery 1840 

research. Currently, less than 20% of the >35 species discovered since 2001 have been tested for 1841 

biocontrol efficacy in the laboratory, greenhouse, or field; clearly there is significant untapped 1842 

potential. In addition to expanded utility derived from discovery, we can also expect the 1843 

upcoming advances in genomics (Bai and Grewal, 2007; Ciche, 2007; Bai et al., 2009, 2013) to 1844 

offer substantial opportunities for directed strain improvement through genetic methods. 1845 

 Improved production, formulation and application technology will lead to improved 1846 

efficacy. Production efficiency and reduced costs are expected with the recent significant 1847 

increase in number of laboratories or companies that are researching liquid culture methodology 1848 

as well as the renewed interest in developing efficient automated in vivo systems (de la Torre, 1849 

2003; Ehlers and Shapiro-Ilan, 2005; Shapiro-Ilan et al., 2014a). Additionally, fruitful 1850 

advancements are expected through implementation of novel approaches to application such as 1851 

distribution of infected hosts, attract and kill methodologies, slow-release teabags, habitat 1852 
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manipulation, and prophylactic plant dips as well as advanced research on the impact of 1853 

application equipment (Wright et al., 2005a; Hiltpold et al., 2012; Nielsen and Lewis, 2012; 1854 

Duncan et al., 2013). In contrast to production technology, with a few exceptions, activity in 1855 

development of improved formulation has lagged, and shelf life (particularly at room 1856 

temperature) continues to be a barrier to expansion of EPN markets. Thus, creative solutions to 1857 

developing superior formulations are needed; alternatively, new approaches to marketing e.g., 1858 

“fresh” marketing, where shelf life is not a substantial issue, may be an option.  1859 

Commercial use will also expand as the list of target pests deemed suitable for application 1860 

increases. As indicated above, research toward increasing the use of EPNs to control new or 1861 

existing targets has been an active area of research over the past decade and we can expect that 1862 

such efforts will continue. Expansion of target pests and markets depends largely on 1863 

establishment of field efficacy. At a certain point, if innate virulence is too low then there is little 1864 

chance for success (Shapiro-Ilan et al., 2002a). Thus, substantial research efforts have been 1865 

devoted to determining field efficacy, and a large body of literature has demonstrated high levels 1866 

(e.g., ≥ 75%) of control against numerous economically important pests (Klein, 1990; Shapiro-1867 

Ilan et al., 2002a; Grewal et al., 2005a) (Table 4). Note that some pests listed in Table 4 have 1868 

never become significant commercial targets despite the fact that high levels of efficacy can be 1869 

demonstrated under field conditions. Thus it is clear that efficacy is not the sole factor for 1870 

establishing market success.   1871 

It also should be noted that some of the commercial targets pests are not necessarily strongly 1872 

supported by high levels of field efficacy (e.g., ≥ 75%) reported in several refereed papers. 1873 

Possibly, some of these pests are not actually suitable for control with EPNs, but are listed as 1874 

targets by some commercial companies nonetheless. In some of these cases however, it may be 1875 
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that substantial “in-house” research by EPN producers led to the existing markets. Alternatively, 1876 

it may be that for some target pests, high levels of efficacy, similar to that expected for chemical 1877 

pesticides, may not be necessary for EPN success.   1878 

 1879 

6. Commercialization 1880 

Although research into the use of entomopathogens as MCAs has been conducted for over 150 1881 

years (Davidson, 2012) much of the effort has failed to lead to commercially successful 1882 

microbial pesticide products. While some of the issues are related to biological constraints, a 1883 

major factor is the absence of a clearly understood model for the commercialization of MCAs. A 1884 

variety of factors contribute to the potential for market success, which is essentially a measure of 1885 

cost and benefits including expected protection of the crop and crop value, and efficiency of 1886 

competing products (Black et al., 1997; Shapiro-Ilan et al., 2002a; 2012b; Ravensberg, 2011; 1887 

Glare et al., 2012). The development of MCAs is an extremely complex business, which many 1888 

scientists fail to appreciate properly (Lisansky, 1997).  1889 

The publication of the book A Roadmap to the Successful Development and 1890 

Commercialization of Microbial Pest Control Products by Ravensberg (2011) is the first 1891 

comprehensive attempt to analyze and communicate in a publically available single volume the 1892 

entire process of developing products from entomopathogens. It is of particular value that 1893 

examples were drawn from real product development projects and the author explains the 1894 

regulatory and commercial challenges that may be unfamiliar to research scientists who are 1895 

focused on biological studies, but that need to be addressed in developing research programs that 1896 

will facilitate eventual commercialization.    1897 

Registration is often identified as the biggest barrier to commercialization of MCAs 1898 

(Montesinos, 2003; Chandler et al., 2008; Ravensberg, 2011; Sundh et al., 2012a). The issues 1899 
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around registration of MCAs have been discussed extensively in three recent books that 1900 

addressed ways to simplify registration and reduce the costs for MCA development (Bailey et al., 1901 

2010; Ehlers, 2011; Sundh et al, 2012b). MCAs must be regarded as living entities within an 1902 

ecosystem rather than simply as replacements for chemical pesticides (Sundh andGoettel, 2013). 1903 

Kabuluk et al. (2010) compared in detail many registration systems used worldwide. The 1904 

particular issues of developing successful MCA products for Africa have also been explored in 1905 

some detail (Cherry and Gwynn, 2007; Grzywacz et al., 2009). 1906 

 1907 

7. Conclusions 1908 

Globally, pests annually consume the amount of food estimated to feed an additional one billion 1909 

people (Birch et al., 2011). The human population is expected to grow from 6 billion today to 9 1910 

billion in 2050 and the amount of food produced must increase commensurately. Increased crop 1911 

production will mean increased amounts of food available for pests, with pest population 1912 

increases and higher pest pressure as a consequence.  1913 

The higher cost associated with the current generation of microbial pesticide products in 1914 

comparison to most chemical insecticides is still considered a major limiting factor in many 1915 

promising markets, especially in Asia and developing countries (Skovmand, 2007). The 1916 

expanding global impact of Maximum Residue Limit regulations in removing older cheaper 1917 

broad spectrum chemicals is expected to lower this barrier somewhat, although the ready 1918 

availability of cheap “off patent” pesticides in many markets still constitutes a serious challenge 1919 

to microbial pesticides. 1920 

Glare et al. (2012) contend that MCAs have not yet reached their full potential, even though 1921 

all predictions suggest microbial pesticides will outperform other pest control options in terms of 1922 

market share increases in the near future. While the outlook for most microbial products is more 1923 
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positive than it has been for many years, there are a number of generic issues that will determine 1924 

how much use expands in the near to long term future.  1925 

Most MCAs are arthropod-specific, and most crops are likely to be affected by a suite of 1926 

pests, therefore MCAs will need to be successfully integrated with other microbial products or 1927 

pest management strategies in order to provide the pest control that farmers require. Several 1928 

studies have been carried out to assess interactions of insect pathogens with chemical pesticides 1929 

and fungicides. In general, few deleterious effects have been observed under field conditions and 1930 

adverse effects observed in vitro were often not reliable predictors of antagonism under natural 1931 

conditions. We cannot assume that all biocontrol agents, simply because they are living 1932 

organisms, are compatible or interact positively, yet few studies have documented interactions 1933 

among MCAs. The importance of such studies is evident, and clearly more research is needed to 1934 

provide integrated, compatible, cost-effective and reliable bio-based pest control strategies for 1935 

cropping systems, not only for individual crop pests. For example, synergistic virulence to the 1936 

scarab, Cyclocephala spp., was observed for combinations of EPNs with P. popilliae (Thurston 1937 

et al., 1993, 1994) or with B. thuringiensis subspecies japonensis (Koppenhöfer and Kaya, 1997; 1938 

Koppenhöfer et al., 1999). However, interactions between entomopathogenic nematodes and 1939 

other entomopathogens can also be antagonistic (Baur et al., 1998; Brinkman and Gardner, 2000; 1940 

Koppenhöfer and Kaya, 1997; Shapiro-Ilan et al., 2004b). Advances in our understanding of 1941 

infection processes, combined with the availability of new molecular tools that aid our ability to 1942 

monitor the fate of entomopathogens in the environment and quantify effects of environmental 1943 

factors on efficacy and persistence, continue to provide new insights that will support the rational 1944 

development of these technologies.  1945 



  

JIP-15-82 

 86

Legislation to increasingly restrict the residues of chemical pesticides in agricultural produce 1946 

(including flowers and non-food products), is providing a major thrust for farmers to adopt non-1947 

chemical controls in place of chemical pesticides. Consumer awareness and demand is also 1948 

driving major produce retailers to force growers to implement more sustainable pest and disease 1949 

management techniques. This is creating new market opportunities for microbials and resulting 1950 

in the expansion of the range of microbial products available to farmers. There seems little doubt 1951 

that over the next decade major new opportunities to expand the use of microbials in agriculture 1952 

will occur.  1953 

However, while legislators are reducing the number of chemical pesticides and restricting 1954 

their use, the regulatory agencies continue to operate in a regulatory framework for chemicals, 1955 

which restricts progress by regulating microbial pesticides similarly to chemical insecticides. 1956 

While there are moves to change regulations to create an easier pathway for the registration of 1957 

biologicals, the current system remains a major impediment to the wider availability of microbial 1958 

pesticides and their expanded use. Greater harmonization of registration practices across 1959 

international boundaries, and acceptance of ‘generic’ safety data will help to streamline the 1960 

registration process, and reduce the time and cost of bringing new microbial products to market.  1961 

Microbial products, even when effective, must be able to compete successfully with other 1962 

non-chemical technologies such as cultural controls, predators and parasitoids, on both cost and 1963 

ease of use. This requires that research focuses on improving production techniques to lower 1964 

costs and on formulation to improve storage and use, as well as on persistence to reduce the need 1965 

for frequent application. A major task is to ensure that quality products are available and that 1966 

farmers are equipped with the knowledge to apply them. By focusing resources on transitional 1967 
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research to devise robust practices, microbial pesticides can become important components of 1968 

integrated crop production systems.  1969 

 1970 

8. Recommendations 1971 

Clear efforts must be made to engage stakeholders along the entire marketing chain including 1972 

producers, regulators, farmers, retailers and consumers, to ensure acceptance and support of 1973 

biocontrol approaches and the incorporation of MCAs in IPM strategies. Outreach and 1974 

demonstration programs that promote understanding of what growers can (or cannot) expect 1975 

from these control agents, coupled with appropriate training on their use, will further enhance 1976 

their successful integration into agricultural production systems. Even though the climate for 1977 

microbial pesticides is becoming more positive, significant research is still needed to overcome 1978 

the limitations of current microbial products and expand the range of products available if they 1979 

are to play a significantly greater role in the next generation of farming and pest control. Our 1980 

recommendations to address these needs include: 1981 

1. Continue the search for new entomopathogens. Given the withdrawl of chemical 1982 

pesticides, new and diverse host-specific and multi-host entomopathogens are urgently 1983 

needed. Pathogens can provide new efficacious MCAs and also the genetic diversity 1984 

needed for adaptation to a wider range of habitats and climates. New entomopathogens 1985 

can also serve as sources of novel genes for insect resistance and other advantageous 1986 

traits that can be incorporated into the genomes of other microorganisms or plants. 1987 

2. Continue development of production, formulations and application methods that will 1988 

improve the efficacy, user acceptability and cost efficiency of MCAs for a variety of 1989 

crops and climates. 1990 
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3. Focus on strategic selections of target pests and markets to meet the challenge of 1991 

developing non-chemical control of global pests, including disease vectors. Control of 1992 

vectors of human, animal and plant diseases is a growing global public priority and MCA 1993 

research needs to address these targets. 1994 

4. Continue development of transgenic plants using MCA genes for additional major crops. 1995 

Develop objective and evidence-based knowledge to increase public understanding of 1996 

transgenic crops. 1997 

5. Adopt streamlined registration procedures for MCAs and harmonize global registration 1998 

systems. 1999 

6. Conduct further studies on the ecology of insect pathogens and their role in the 2000 

environment, which will increase their potential for efficient and sustainable use in pest 2001 

management. 2002 
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Table 1. Entomopathogenic viruses that have been used for biological control of insect pests. 4463 
 4464 
Common and Species 
Names 

Targeted insects Producer Selected References 

Baculovirus 

 

Principally 
Lepidoptera, some 
Hymenoptera and 
Diptera 

 Miller (1997),  
Moscardi (1999, 
2007), Theilmann et 
al. (2005), 
Szewczyk et al. 
(2009), Harrisson 
and Hoover (2012) 

Corn earworm NPV 
(HezeSNPV) 

Helicoverpa zea: 
Corn earworm, 
Tomato fruitworm, 
Tobacco budworm. 
Heliothis virescens 

Certis (USA)  Ignoffo (1999), 
Rowley et al. (2011) 
 
 

Cotton bollworm NPV 
(HearNPV) 
 

Helicoverpa 

armigera, Cotton 
bollworm, 
Podborer,  

Andermatt, 
(Switzerland) 
AgBioTech (Australia) 
Jiyuan Baiyun 
Industry Company Ltd 
(China), BioControl 
Research Labs (India), 
Kenya Biologics 
(Kenya), plus other 
producers in India, 
China,  

Grzywacz (2010), 
Hauxwell et al. 
(2010), Rabindra 
and Rowley et al. 
(2011), Yang et al., 
(2012), Gwynn 
(2014). 
 

Diamond back moth GV 
(PlxyGV)  

Plutella xylostella  Jiyuan Baiyun 
Industry Company Ltd 
(China) 
 

Grzywacz et al. 
(2004), Farrar et al. 
(2007), Yang et al. 
(2012) 

Unbarred Spodoptera 
moth  (army worm NPV 
(SdalNPV) 
 

Spodoptera albula 
(sunia) 

Agricola el Sol 
(Guatamala)  

Moscardi (1999) 

Beet armyworm NPV 
(SpexMNPV) 
 

Spodoptera exigua Andermatt, 
(Switzerland)  
Certis (USA) 
Jiyuan Baiyun 
Industry Company 
Ltd, (China) 
BioTech (Thailand) 

Kolodny-Hirsch et 
al. (1997), Lasa et 
al. (2007), Sun and 
Peng (2007), 
Gwynn (2014) 

Egyptian Cotton 
Leafworm NPV 

Spodoptera 

littoralis 

Andermatt 
(Switzerland) 

Jones et al. (1994) 
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(SpliNPV) 
 

 

Tobacco armyworm NPV 
(SpltNPV) 

Spodoptera litura Biocontrol Research 
Lab, Ajay Biotech, 
Bassarass Biocontrol, 
Biotech International, 
BioControl Research 
Labs (India) 
Jiyuan Baiyun 
Industry Company 
Ltd, (China) 
 

Nakai and Cuc 
(2005), Department 
of Biotechnology 
India (2007), 
Kunimi (2007), 
Yang et al. (2012) 

Gypsy moth, NPV 
(LydiMNPV) 
 

Lymantria dispar USDA , (USA) Sylvar 
Technology (Canada) 
Andermatt 
(Switzerland) 

Podgewaite (1999) 
 

Velvetbean caterpillar, 
NPV (AngeMNPV) 

Anticarsia 

gemmatalis 

Coodetec. CNP So, 
Nova Era 
Biotechnologica 
Agricola, Nitral 
Urbana Laboratorios, 
Coop Central  
 Milenio Agro 
Ciencias (Brazil) 

Moscardi (2007),  
Sosa-Gómez et al. 
(2008), Moscardi et 
al. (2011), Panazzi 
(2013) 

Red headed pine sawfly 
NPV (NeleNPV)1 
 

Neodiprion lecontei Sylvar Technology 
(Canada)  

Cunningham (1995) 

Douglas fir tussock moth 
NPV (OrpsNPV) 
 

Orygia 

pseudotsugata 

Canadian Forest 
Service  

Martignoni (1999) 
 

Balsam fir sawfly NPV 
(NeabNPV) 

Neodiprion abietis Sylvar Technology 
(Canada) 

Lucarotti et al. 
(2007), 
Moreau and 
Lucarotti (2007) 

Codling moth GV 
(CpGV)  

Cydia pomonella Certis (USA), 
BioTepp (Canada), 
Arysta 
Lifscience(France), 
Andermatt 
(Switzerland), Hoerst 
(Germany), BioBest 
(Belgium), Arysta Life 
Science (France), 
Agro Roca 
(Argentine)  

Tanada (1964), 
Cross et al. (1999), 
Arthurs et al. 
(2005); Eberle and 
Jehle (2006), Lacey 
et al. (2008b)  

False Codling Moth GV Cryptophlebia Andermatt Singh et al. (2003), 
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(CrleGV) 
 

leucotreta (Switzerland), 
River Bioscience 
(South Africa) 

Moore et al. 
(2004b) 

Potato tubermoth GV 
(PhopGV) 

Phthorimaea 

operculella 

Centro Internacional 
de la Papa (Peru),  
Proinpa (Bolivia)  

Sporleder (2003), 
Arthurs et al. 
(2008b), Kroschel 
and Lacey (2008), 
Lacey and Kroschel 
(2009) 

Summer fruit totrix GV 
(AdorGV) 
 

Adoxophyes orana Andermatt 
(Switzerland) 
 

Blommers (1994), 
Cross et al. (2005), 
Nakai (2009) 

Tea tortrix (HomaGV) Homona 

magnanima 

Arysta life science 
(Japan) 

Kunimi (2007), 
Nakai (2009)  
 

Smaller Tea tortrix GV 
(AdhoGV) 

Adoxophyes honmai Arysta life science 
(Japan) 

Nakai et al. (2002),  
Nakai (2009) 
 

Alfalfa looper NPV 

(AucaMNPV)  
 

Noctuidae Agricola el Sol 
(Guatamala)  
 

Vail et al. (1999),  
Yang et al. (2012) 

Cabbage looper 
(TrniSNPV)1 

 

Trichoplusia ni Andermatt 
(Switzerland) 

Vail et al. (1999) 
 

Tea geomotrid EcobNPV Extropic obliqua Small scale 
commercial 
production China * 

Sun and Peng 
(2007), 
Yang et al. (2012) 
 

Tea tussock moth (Eups 
NPV)  

Euproctis 

pseudoconspersa 

Small scale 
commercial 
production China * 

Sun and Peng 
(2007), 
Yang et al. (2012) 
 

Tea Moth (BuzuNPV) Buzura 

suppressaria 

Small scale 
commercial 
production China * 

Sun and Peng 
(2007), 
Yang et al. (2012)  
 

Teak Defoliator 
(HypeNPV) 

Hyblea peura Kerala Forest 
Research Institute 
(India) 

Nair et al. (1996) 

Imported cabbageworm 
(PiraGV) 

Artogeia (Pieris) 
rapae 

Registered in China 
Small scale 
commercial 
production China * 

Yang et al. (2012) 

Oriental armyworm, 
(LeseNPV) 

Leucania 

(Mythimna) 

separata 

Registered in China 
Small scale 
commercial 

Yang et al. (2012) 



  

JIP-15-82 

 203

 production China * 
Reoviridae    
Masson pine moth 
cypovirus  
(CPV) 

Dendrolimus 

punctatus 

Registered in China 
Small scale 
commercial 
production China * 

Peng et al. (2000), 
Yang (2007) 
Yang et al. (2012) 

Parvoviridae    
Cockroach densonucleosis 
virus (DNV) 

Periplaneta 

fuliginosa 

 

Registered in China 
Small scale 
commercial 
production China * 

Bergoin and Thijsen 
(1997), Yang et al. 
(2012) 

Nudiviruses     
Oryctes virus Oryctes rhinoceros Not commercially 

produced but locally 
produced for 
autodissemination 

Jackeson et al. 
(2005), Huger 
(2005), Ramle et al. 
(2005), Jackson 
(2009)  

* Personal Communications. Professor Xiulian Sun Wuhan Institute Virology 4465 

  4466 
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Table 2. Entomopathogenic bacteria used for control of insect pests of major crops, forest, turf, 4467 
humans and domesticated animals.  4468 
 4469 
Bacterial Species Major Targeted 

Habitat 

Examples of Major 

Pest Orders 

Selected References 

Bacillus thuringiensis 
sub-species kurstaki

1 
Row crops, forests, 
orchards  

Lepidoptera: 
numerous families 
and species 

Glare and   
O’Callaghan  (2000), 
Federici (2005), 
Huang et al. (2007), 
Lacey et al. (2007), 
van Frankenhuyzen  
(2009), Jurat-Fuentes 
and Jackson (2012),  

B. thuringiensis sub-
species aizawai

1 
Row crops, orchards Lepidoptera Tabashnik et al. 

(1993), Glare and 
O’Callaghan (2000), 
Mashtoly et al. (2011)  

B. thuringiensis sub-
species tenebrionis

1 
Potato Coleoptera: 

Chrysomelidae, 
predominantly 
Leptinotarsa 

decemlineata 

Kreig et al. (1983), 
Langenbrusch (1985), 
Gelernter (2002) 
 

B. thuringiensis sub-
species israelensis

1 
Diverse lentic and 
lotic aquatic habitats 

Diptera: Culicidae and 
Simuliidae  

Lacey and Merritt 
(2003), Lacey (2007), 
Skovmand et al. 
(2007), Despres et al. 
(2011) 

B. thuringiensis sub-
species japonensis 

strain Buibui 

Lawn and turf Coleoptera: 
Scarabaeidae 

Alm et al. (1997), 
Klein et al. (2007), 
Mashtoly et al. (2010) 

Lysinibacillus 

sphaericus
1
  

Lentic aquatic habitats Diptera: Culicidae Charles et al. (2000), 
Lacey (2007), 
Skovmand et al. 
(2007) 

Paenibacillus 

popilliae 

Lawn and turf Coleoptera: 
Scarabaeidae: Popillia 

japonica 

Klein et al. (2007), 
Koppenhöfer et al. 
(2012) 

Serratia entomophila
1 Pasture Coleoptera: 

Scarabaeidae: 
Costelytra zealandica 

Jackson et al. (1992, 
2001), Jackson 
(2003), Jackson and 
Klein (2006) 

1commercially produced 4470 
  4471 
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Table 3. An overview of the entomopathogenic fungi that have been developed for microbial 4472 
control of insect pests.1 4473 
 4474 
Species Names Targeted insects Produced in Selected References 
Aschersonia 

aleyrodis  

Hemiptera 
(Aleyrodidae) 

Russia Fransen, 1990; Meekers 
et al., 2002; Lacey et al., 
2008; McCoy et al., 2009 

Beauveria 

bassiana sensu 

lato 

Acari, Coleoptera, 
Diplopoda, Diptera, 
Hemiptera, 
Hymenoptera,  
Isoptera, 
Lepidoptera, 
Orthoptera,  
Siphonoptera, 
Thysanoptera,  

Africa, Asia, Australia,  
Europe, South & North 
America  

de la Rosa et al., 2000; 
Wraight et al., 2000, 
2007b; Chandler et al., 
2005; Wekesa et al., 
2005; Brownbridge et al., 
2006; Labbé et al., 2009 
 

Beauveria 

brongniartii 

 

Coleoptera 
(Scarabaeidae)  

Europe, Colombia, 
Reunion Island 

Zimmermann, 1992; 
Keller, 200; Keller et al., 
2003; Dolci et al., 2006; 
Townsend et al., 2010 

Conidiobolus 

thromboides 

Acari 
Hemiptera, 
Thysanoptera 

Colombia, India, South 
Africa 
 

Papierok and Hajek, 
1997; Nielsen and Hajek, 
2005;  Hajek et al., 2012 

Hirsutella 

thompsonii 

Acari India McCoy, 1981; Chandler 
et al., 2000, 2005; 
McCoy et al., 2009 

Isaria 

fumosorosea 

Acari, Diptera, 
Coleoptera, 
Hemiptera, 
Thysanoptera,  

Belgium, Colombia, 
Mexico, USA, 
Venezuela 

Wraight et al., 2000, 
2007; Lacey et al., 2008, 
2011; Zimmermann, 
2008 

Lagenidium 

giganteum 

Diptera (Culicidae) USA Kerwin and Petersen, 
1997; Skovmand et al., 
2007 

Lecanicillium 

longisporum  
Hemiptera  Brazil, Netherlands Bird et al., 2004; Down et 

al., 2009; Kim et al., 
2009 

Lecanicillium 

muscarium 

Acari, Hemiptera, 
Thysanoptera 

Netherlands, Russia  Chandler et al., 2005; 
Cuthbertson and Walters, 
2005; Burges, 2007; 
Goettel et al., 2008 

Metarhizium 

anisopliae sensu 

lato 

Acari, Blattoidea, 
Coleoptera, Diptera, 
Hemiptera, Isoptera, 
Lepidoptera, 
Orthoptera,  

Africa, Asia, Australia,  
Europe, South, Central 
& North America 

de la Rosa et al., 2000; 
Chandler et al.,  2005; 
Wekesa et al., 2005; 
Jaronski and Jackson, 
2012; Lacey et al., 2011 
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Metarhizium 

acridum 

Orthoptera Australia, South Africa, 
USA 

Lomer et al, 1999. 2001; 
Thomas, 2000 

Nomuraea rileyi 

 
Lepidoptera Columbia, India Moscardi and Sosa-

Gomez, 2007; Thakre et 
al., 2011 

    
1 Condensed and modified from de Faria and Wraight, 2007. For up to date information on 4475 
products registered in the OECD Countries, visit https://www5.agr.gc.ca/MPDD-CPM/search-4476 
recherche.do?lang=eng 4477 
For information on the production and successful use of entomopathogenic fungi as microbial 4478 
pesticides in Latin America see Alves et al., 2008.  4479 
 4480 
 4481 
  4482 
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 4483 
Table 4.  Efficacy and commercialization of entomopathogenic nematodes for suppression of 4484 
some major insect pests.  4485 

Pest 

Common name 

Pest 

Scientific name 

Key  
Crop(s) targeted 

≥ 75% Efficacy 
Observed

a 
Targeted  

Commercially
c 

  
 

  

Artichoke plume moth Platyptilia carduidactyla  
Artichoke 

Yes (Sc) Yes 

Armyworms Lepidoptera: Noctuidaeb Vegetables Yes (Sc, Sf, Sr) Yes 
Banana moth Opogona sachari  Ornamentals Yes (Hb, Sc) Yes 
Banana root borer Cosmopolites sordidus Banana Yes (Sc, Sf, Sg) Yes 
Billbug Sphenophorus spp. (Coleoptera: 

Curculionidae) 
Turf Yes (Hb,Sc) Yes 

Black cutworm Agrotis ipsilon  Turf, vegetables Yes (Sc) Yes 
Black vine weevil Otiorhynchus sulcatus Berries, 

ornamentals 
Yes (Hb, Hd, Hm, 
Hmeg, Sc, Sg) 

Yes 

Borers Synanthedon spp. and other 
sesiids 

Fruit trees & 
ornamentals 

Yes (Hb, Sc, Sf) Yes 

Cat flea Ctenocephalides felis  Home yard, turf No Yes 
Chinch bugs Hemiptera: Blissidae Turf No Yes 
Citrus root weevil Pachnaeus spp. (Coleoptera: 

Curculionidae 
Citrus, ornamentals Yes (Sr, Hb) Yes 

Codling moth Cydia pomonella  Pome fruit Yes (Sc, Sf) Yes 
Corn earworm Helicoverpa zea  Vegetables Yes (Sc, Sf, Sr) Yes 
Corn rootworm Diabrotica spp.  Vegetables Yes (Hb, Sc) Yes 
Cranberry girdler 

Chrysoteuchia topiaria 
Cranberries Yes (Sc) Yes 

Crane fly 
Diptera: Tipulidae 

Turf Yes (Sc) Yes 

Diamondback moth 
Plutella xylostella  

Vegetables No Yes 

Diaprepes root weevil 
Diaprepes abbreviatus 

Citrus, ornamentals Yes (Hb, Sr) Yes 

Fungus gnats Diptera: Sciaridae Mushrooms, 
greenhouse 

Yes (Sf, Hb) Yes 

German cockroach Blattella germanica  Household No Yes 
Grape root borer Vitacea polistiformis Grapes Yes (Hz) No 
Iris borer Macronoctua onusta Iris Yes (Hb, Sc) Yes 
Large pine weevil Hylobius albietis  Forest plantings Yes (Hd, Sc) Yes 
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 4486 

 4487 

 4488 
a At least one scientific paper reported ≥ 75% suppression of these pests in the field or greenhouse.   4489 
Hb=Heterorhabditis bacteriophora, Hd = H. downesi, Hm= H. marelatus, Hmeg = H. megidis, Hz = H. 4490 
zealandica, Sc=Steinernema carpocapsae, Sf=S. feltiae, Sg=S. glaseri, Sk = S. kushidai, Sr=S. riobrave, 4491 
Sscap=S. scapterisci, Ss = S. scarabaei.  4492 
 4493 
b Efficacy against various pest species within this group varies among nematode species. 4494 
 4495 
c http://www.biocontrol.entomology.cornell.edu/pathogens/nematodes.php 4496 
  4497 
 4498 
  4499 

Leafminers Liriomyza spp. (Diptera: 
Agromyzidae) 

Vegetables, 
ornamentals 

Yes (Sc, Sf) Yes 

Mint flea beetle Longitartsus waterhousei  Mint No Yes 
Mint root borer Fumibotys fumalis  Mint No Yes 
Mole crickets Scapteriscus spp.  Turf Yes (Sc, Sr, Scap) Yes 
Navel orangeworm Amyelois transitella Nut and fruit trees Yes (Sc) Yes 
Oriental fruit moth 
Pecan weevil 

Grapholita molesta  
Curculio caryae  

Fruit trees 
Pecan 

Yes (Sf) 
Yes (Sc) 

No 
Yes 

Plum curculio Conotrachelus nenuphar  Fruit trees Yes (Sr) Yes 
Scarab grubs Coleoptera: Scarabaeidae Turf, ornamentals Yes  (Hb, Sc, Sg, 

Ss, Hz)b 
Yes 

Shore flies Scatella spp. Ornamentals Yes (Sc, Sf) Yes 
Sod webworms Lepidoptera: Pyralidae Turf No Yes 
Strawberry root weevil Otiorhynchus ovatus Berries Yes (Hm) Yes 
Sugarbeet weevil Temnorhinus mendicus  Sugar beets Yes (Hb, Sc) No 
Sweetpotato weevil Cylas formicarius  Sweet potato Yes (Hb, Sc, Sf) Yes 
Wireworms Coleoptera: Elateridae Vegetables No Yes 
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Estimated world biopesticide sales by type in 2010 (millions of $US). 4500 

 4501 
CPL Business Consultants (2010) The 2010 Worldwide Biopesticides Market Summary, (Vol. 4502 
1), CAB International Centre. Wallingford. 4503 
 4504 

Bt 210.8

Other Bacteria 49.3

Virus 49.2

Fungi 77.1

Nematodes and 

others 18.1



  

Figure 1. Estimated world biopesticide sales by type in 2010 (millions of $US). 
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Figure 2. Apical ribbon view representing the 3-D structure of  the Bacillus thuringiensis Cry1Aa toxin. 

. 
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