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Abstract  

Most existing computational approaches are 

restrictive in their predictive capabilities by using 

non-representative virtual geometric domains 

(RVEs) of test materials. The strategy proposed here 

relaxes these restrictions by utilizing statistically 

representative 3D RVEs with appropriate boundary 

conditions and a robust homogenization 

implementation based on a micromechanical 

modelling philosophy. The strategy was 

implemented as a self-consistent, rigorous, virtual 

testing framework analogous to a physical 

experimental testing scheme. The strategy proposed 

in this work was shown to give a holistic set of 

elastic properties of the test composites considered 

when compared with other predictive approaches. 

Also, parametric studies were carried out to explore 

the different features of the virtual framework. 

Therefore, this virtual test-bed strategy represents a 

suitable substitute for realistic experiments and can 

be used in designing different virtual experiments. 
 

1. Introduction 
 

A prerequisite for any virtual testing scheme is 

the generation of appropriate virtual geometric 

domains, which are inherently characteristic of the 

test composites under investigation. Such domains 

are commonly described as representative volume 

elements (RVEs). Numerical algorithms used to 

generate these RVEs for composite materials assume 

either deterministic (i.e. Square or Hexagonal) or 

random spatial configurations of reinforcements 

within the matrix medium. Using a combined 

numerical-statistical method, Trias and co-workers 

[1] showed that the difference in predicted effective 

Young’s modulus and Poisson’s ratio between both 

assumptions, for the material they considered, was 

12% and 2% respectively. Furthermore, the authors 

established that deterministic models significantly 

underestimated damage initiation variables. Hence, 

RVEs with random spatial configurations of 

reinforcements are crucial for accurate numerical 

analyses. 

Moreover, most existing virtual testing schemes 

for unidirectional (UD) composites often 

approximate 3D problems with 2D models. This is 

generally motivated by the need to simplify models 

to ensure less computational demands. However, 

such models are limited in their predictive capacity. 

For example, such models often predict only four, 

out of five independent, elastic constants i.e. E22, E33, 

G23 and v23 (with the 1-axis representing the fibre-

axis); and E11  is usually obtained from crude 

estimates based on the rule of mixtures [2]. 

Comparative analyses of 2D and 3D model 

predictions of de-bonding in composite skin-

stiffened panels showed appreciable differences 

between predictions using both methods [3]. The 

authors concluded that whilst 2D approximations are 

less computationally demanding, they should only 

be used qualitatively and 3D RVEs should be 

deployed when accurate quantitative predictions are 

required. 

A seminal work adopting 3D RVEs to predict 

the effective elastic properties of UD composites is 

that of Sun and Vaidya [4]. However, the authors 

utilised deterministic arrangements of 

reinforcements within generated RVEs, although, 

their predictions agreed quite well with experimental 

data. Nevertheless, their methodology for imposing 

periodic boundary conditions (PBCs) made 

restrictive assumptions about the deformation of the 

test composite along the fibre axis. This approach 

requires a priori knowledge of the material response 

along the fibre axis, which violates the fundamental 

principle of developing a virtual testing framework 

devoid of overly restrictive assumptions about the 

constitutive response of test materials. 

Recently, Melro and associates [5] statistically 

investigated the influence of several different 

geometric parameters on the effective elastic 

response of UD composites. Their work was based 

on 3D RVEs with a random spatial arrangement of 

fibres along the transverse direction of the RVE, 

prescribed with PBCs. The geometric parameters 

considered were the fibre radius, dimensions of the 

RVE, and minimum distance between neighbouring 

fibres within the RVEs. The authors postulated that 

utilizing 3D RVEs with a random spatial 

configuration of fibres, in conjunction with a system 

of imposing PBCs, and numerically/statistically 

determining the effect of certain geometric 

parameters, constitutes a road-map for performing 
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high-fidelity micromechanical computational 

analysis on UD composites. 

Therefore, in lieu of the foregoing thesis 

presented by several authors, this communication 

presents a robust virtual framework based on 3D 

RVEs, capable of accurately predicting the holistic 

elastic response of UD composites. The 

methodology presented here is based solely on 

knowledge of the properties of constituent phases 

(i.e. fibre/matrix) comprising the test material. Most 

importantly, there were no assumptions regarding a 

prior knowledge of material constitutive response in 

any material test direction. 

In the following sections, details of the proposed 

virtual framework are espoused. 
 

2. The virtual test-bed 

The proposed virtual test-bed comprises a multi-

step implementation process ranging from the 

development/isolation of appropriate RVEs of test 

materials, to the determination of their effective 

elastic properties. Fig. 1 shows a schematic rendition 

of the key component steps within the test-bed. 
 

2.1. Generation of virtual geometric domains 

(RVEs) 

Micromechanical analyses of materials mandates 

the determination of well-defined RVEs [6]. An 

intrinsic feature of manufactured composites is the 

presence of an interphase region between the fibres 

and matrix. However, for the purpose of this study, 

perfect bonding between the fibres and the matrix 

was assumed. 
 

2.1.1. Virtual 2D geometric modelling 

In this study, a geometric modelling algorithm, 

Monte Carlo RVE Generator (MCRVEGen), was 

developed to automate the generation of virtual 

domains for composites with pseudo-randomly 

positioned inclusions. The MCRVEGen algorithm 

was developed based on expositions from the Hard-

Core Model [7]. Essentially, the MCRVEGen 

algorithm iteratively populates a pre-defined 2D 

virtual domain, which represents the cross-section of 

a given UD test material, with randomly positioned 

non-intersecting circles, representing the reinforcing 

fibres, until a required volume fraction is attained. 

The MCRVEGen algorithm comprises two principal 

modules: (i) the Hard-Core Model module, and (ii) 

the application of periodicity of material constraints 

module. 
 

 

Fig. 1. Schematic of the multi-step implementation of the 

virtual test-bed. 

 

2.1.2. Preventing fibre overlap within virtual 

domain 

Pseudo-randomly positioned inclusions within a 

virtual domain are liable to intersections; hence, the 

need for a strategy to prevent such non-physical 

phenomenon.  

Consider Fig. 2 which shows a schematic of the 

cross-section of a typical RVE domain with 

randomly positioned inclusions. The coordinates of 

the origin of this domain is defined as 

             ; likewise, a point diagonal to the 

origin is defined as              , where      and 

     represent the width and height of the RVE 

domain respectively. Also, assume there exists an i-

th fibre within this domain, with coordinates defined 

as         and a diameter,   . If the distance between 

this fibre and any other fibre within this domain is 

designated as   , where            ,this fibre 

may be considered to overlap, if and only if, 

     . The distance    is evaluated based on 

equation 1. 
 

    √(     )
  (     )

   
 

  (1) 

The MCRVEGen algorithm enforces the 

condition,        ; where   represents a scalar 

coefficient with the following condition:    . 

Within the context of this study, the authors 
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enforced     to avoid fibre contiguity within the 

virtual domain. 

 

Fig. 2.  Methodology for preventing fibre intersections 

within virtual domain. 

 

2.1.3. Periodicity of material constraint 

Periodicity of material constraints require the 

complementary fraction of boundary penetrating 

inclusions to reappear on the corresponding side of 

the RVE. This condition is mandatory in order to 

ensure stress continuity across the boundaries of the 

RVE; thereby, precluding wall-effects [6]. Hence, in 

developing MCRVEGen, an approach for detecting 

and eliminating wall-effects was developed. 

Again, consider Fig. 3 which depicts an RVE 

enforced with the periodicity of material constraints. 

Here, the coordinates and dimensions of the RVE 

and fibres retain their previous definitions used 

earlier within this paper (i.e.               etc.). 

Assuming an i-th boundary penetrating fibre exists 

within the window, three distinct categories of 

boundary penetration for this fibre are possible: X-

axis, Y-axis and corner/vertex categories 

respectively. An i-th boundary penetrating fibre is 

said to satisfy any of these categories if either of the 

following expressions is satisfied. 
 

(a) |        |        or |        |        

for X-axis boundary penetrating fibres, 

(b) |        |        or |        |        

for Y-axis boundary penetrating fibres  

(c) |        |        and |        |        

for boundary fibres close to the origin of the 

virtual domain; |        |        and 
|        |        for boundary fibres close 

to the diagonal of the origin or the RVE.  
 

The preceding arguments defining boundary fibre 

penetration can be extended to the other vertices 

of the RVE domain. 
 

2.1.4. Spatial characterization of generated RVEs 

Having developed a scheme for generating 2D 

virtual domains, it becomes imperative to assess the 

‘appropriateness’ of these domains in describing 

actual test materials. Two important criteria are 

generally used in performing this assessment: (a) the 

thermo-mechanical conformations of the RVEs, and 

(b) the spatial distributions of inclusions within the 

RVE. The latter is accomplished by using 

appropriate statistical spatial descriptors which 

include, Voronoi polygon areas, neighbouring fibre 

distances, nearest neighbour distances, nearest 

neighbour orientations, Ripley’s K function and Pair 

distribution functions [8]. In this study, the nearest 

neighbour distance was adopted. This statistic was 

obtained using a Probability Density Function (PDF) 

of proximity interactions between a given fibre and 

its nearest neighbours. This statistical measure is 

particularly sensitive to point (reinforcement) 

agglomeration within any given domain; therefore, it 

is imperative that this characteristic be reproduced 

faithfully as particle agglomeration can be a 

precursor to damage initiation sites [1]. A digitized 

micrograph was created from a random regional 

sample of a typical glass-fibre UD reinforced 

polypropylene, Plytron™. The statistical descriptor 

of this digitized sample was compared against 

several RVEs generated using MCRVEGen as shown 

in Fig. 5. The results show the MCRVEGen RVEs 

are representative of typical samples of UD 

composites. Fig.4 shows typical RVEs generated 

using the MCRVEGen algorithm. 

 

2.1.5. Generation of 3D virtual domains 

3D RVEs were obtained by extruding 

MCRVEGen-based 2D RVEs within ABAQUS CAE 

software. Data from MCRVEGen were supplied to 

ABAQUS using a dedicated Python script for this 

purpose. 
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Fig. 3. Representative approach for enforcing the 

periodicity of material constraints; the circles in dashed 

lines represent fibres imposed with the constraints.  

 

Fig. 4. Representative 2D RVE domains with       and 

fibre diameter     : (a) dimension             (b) 

dimension            .          . 
 

2.2. Boundary Conditions 

Periodic boundary conditions (PBCs) have been 

shown to provide more accurate predictions when 

compared with Dirichlet and/or Neumann boundary 

conditions [6]. In formulating PBCs for RVEs 

studied in this work, the conclusions of van der Sluis 

and associates [9] originally proposed for 2D RVEs 

have been extended to 3D RVEs here. 
 

2.2.1. Definition of 3D virtual domain 
 

Given a 3D RVE in real space,   , with a 

periodic microstructure, let      represent the 

boundary domain within which the reinforcement 

and matrix constituents are enclosed as shown in 

Fig. 6. This domain is cubical of typical dimensions, 

a. The domain      comprises six surfaces such 

that any two surfaces (for example XPOS and XNEG) 

are always parallel to one another in the x-, y- or z-

axes. The XPOS surface represents the yz-plane 

located at the maximum x-axis cubic dimension (i.e. 

x=a) while its corresponding XNEG surface is located 

at the minimum x-axis cubic dimension (i.e. x=0). 

Each of these surfaces is made up of nodes; hence, 

for nodes on the XPOS surface, they are described as: 

XPOSNodes. Similar definitions apply for the remaining 

five faces. Also for the given domain, edge nodes 

are identified as the set of nodes shared by two 

intersecting surfaces. If the set of nodes for a given 

surface is defined as Snp where n = X, Y, Z (the 

reference frames) and p = [POS, NEG] – a 

collection of all positive or negative faces per given 

axes; then the set of surface nodes for the 3D 

domain is defined as given in equation 2. 
 

 

2.2.2. Formulation of 3D PBC 

In enforcing PBCs for the 3D RVE 

domain,     , all six surfaces and twelve edges of 

the domain were constrained to undergo 

synchronous deformation. This condition is satisfied 

when any pair of surfaces (e.g. SXPOS and SXNEG) is 

kinematically tied. In this study, the formulations for 

2D domains proposed by Kouznetsova and 

associates [10] have been extended  to 3D domains. 

Consider Fig.6, which shows a typical 3D RVE 

domain,     . Let the position vector of any surface 

node in this domain be  
 

   
where Snp retains its 

previous definition and i=1,…,N where N=total 

number of nodes per surface. Alternatively, let the 

position vector for any corner node be     where 

the corner node number j = 1,2,…,8. Four reference 

nodes are isolated: N1, N2, N3 and N4 which are 

called retained nodes which will be used to 

prescribe the required boundary conditions to 

replicate a desired load case. The remaining corner 

nodes: N5 to N8 and surfaces: ( 
 

       
 

       
 

     ) 

are called tied, slave or dependent nodes and 

surfaces respectively. The tied entities are slaves to 

any displacement or loading on the retained nodes. 

Therefore, the mathematical formulations that 

prescribe periodic deformation on all nodes 

bounding      are:  
 

 
 

       
 

        
     

     (3a) 

 
 

       
 

        
     

     (3b) 

 
 

       
 

        
     

     (3c) 
 

 

In imposing PBC, it is necessary that 

equilibrium of stresses is satisfied at opposite 
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edges/surfaces of a given RVE domain [9], [10]. 

 

Fig. 5. A comparison of spatial descriptors between a 

digitized micrograph and numerically derived virtual 

domains :(a) digitized micrograph from 

Plytron™ (                     )  (b) typical 

comparable RVE generated by MCRVEGen and (c) 

comparison of PDFs between the digitized micrograph 

and four MCRVEGen-generated RVEs. 

 

Fig. 6. A typical 3D RVE of a UD reinforced composite 

showing 8 vertex nodes (N1 to N8) and three labelled 

surfaces (XNEG, YNEG & ZNEG). The vertices with unfilled 

circles indicate four retained nodes (N1 to N4) whilst the 

ones with filled circles are 4 slave nodes (N5 to N6). 
 

2.2.3. Definition of load cases for 3D RVE 

As a consequence of the periodic boundary 

condition formulation above, where all nodes 

(except the retained nodes) have been kinematically 

tied, only the retained nodes become the material 

points on which different load cases can be 

prescribed on the 3D RVE domain,     . Therefore, 

specific constraints have to be imposed on the 

retained nodes in order to create uniaxial and/or 

shear load cases. The nodal constraints (on the 

retained nodes) that imposes uniaxial and shear 

loadings are given in Tables 1 & 2.  
 

2.2.4 The 3D periodic boundary condition 

generating algorithm (PBC3DGen) 

In this study, the PBCs were applied as linear 

constraint equations using the *EQUATION 

command in ABAQUS™. The task of applying 

these linear constraints for every pair of nodal sets 

on all six surfaces and edges is enormous, and doing 

so manually is onerous. In response, the authors 

developed an algorithm, PBC3DGen: this is a 3D 

periodic boundary condition generating algorithm 

for creating linear constraints for every nodal pair of 

the RVE.  
 

2.3. Computational homogenization 

Consider as shown in Fig. 7 a typical test 

composite enclosed within a macroscale domain, 

      . Also, assuming statistical homogeneity of 

the test material, a point within        is defined 

such that a 3D microscale RVE of the test composite 

can be isolated and is enclosed in domain,     . Let 

Lmacro and Lrve be the macro and micro lengthscales 

associated with the two domains. It is to be assumed 

that the lengthscale of        is many orders of 

magnitude greater than the lengthscale of     , 

such that 
    

      
   for every chosen 3D RVE. 

Furthermore, if the microscale domain,      is 

imposed with PBCs, the periodically deformed 

domain can be defined as,         , and this is 

equivalent to the 3D domain of Fig. 6. The 

computational homogenization implementation is 

used here to determine the link between the 

identified macro- and micro-fields. 

Let          be subjected to a stress tensor, σ  

at a material point, x within the volume, V enclosed 

by         , the outward flux of the stress field 

through a given surface, Snp of          becomes 

the volume integral of the divergence of the region 

enclosed by this surface. 
 

 
 
  (   )    

 
[          ]    

 
    (5) 

 

Eqn 5 applies when equilibrium of stresses (in the 

absence of body forces) is assumed since       

and         . Re-writing eqn 5 by considering 

the integral over the surface area, A gives: 

       
 
(   )      

           
   (6) 

 

σ is symmetric and surface traction,     
      

. 

Finally, the volume-averaged stress within the 
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periodically deformed RVE domain,         , 
shown in Fig. 7. becomes: 
 

〈 〉  
 

 
      

 

 
        

   (7) 

where 〈 〉  is the volume-averaged stress. Since 

         is deforming periodically, all tractions on 

all surfaces vanish during the volume-averaging 

process leaving only the nodal forces applied to the 

retained nodes, hence:     
   for surface, Snp and  

Table 1. Specific nodal constraints imposed on all four 

retained nodes to create uniaxial deformation along x-, y- 

or z-axes of the 3D RVE domain. 

Node N1 Node N2 Node N3 Node N4 

Uniaxial deformation along x-axis  

        
       

  
     

     

  
     

  
     

     

  
     

  
     

     

Uniaxial deformation along y-axis  

        
     

  
     

     

  
       

  
     

     

  
     

  
     

     

Uniaxial deformation along z-axis  

        
     

  
     

     

  
     

  
     

     

  
       

  
     

     

 

Table 2. Specific nodal constraints imposed on all four 

retained nodes to create simple shear deformation on xy-, 

yz- or xz-planes of the 3D RVE domain.  

Node N1 Node N2 Node N3 Node N4 

Simple shear deformation on xy-plane  

        
     

     

  
       

  
     

     

  
     

  
     

     

  
     

Simple shear deformation on yz-plane  

        
     

     

  
     

  
     

     

  
       

  
     

     

  
     

Simple shear deformation on xz-plane  

        
     

     

  
       

  
     

     

  
     

  
     

     

  
     

 

the retained nodal forces is:     
   where 

i=1,2,…,4 and xi is the coordinate position of 

reference node, Ni. In essence,    
 is simply the 

external force that is applied at the retained nodes, 

Ni. The volume-averaged stress within the RVE 

becomes: 
 

〈 〉  
 

 
[      

       
       

      ] (8) 

 

Eqn 8 represents the volume-averaged stress within 

         determined based on virtual work 

contributions from four retained nodal forces and 

displacements of the domain[10]. 
 

2.4. Prediction of Constitutive Parameters 

With the assumption of the global periodicity for 

        , the overall macroscopic stress is taken to 

be        〈 〉 . Similarly, the global strain, 

       is calculated from the displacement of the 

retained nodes given that u1 = 0 to prevent rigid 

body motion. Therefore, the individual 

displacements of the remaining retained nodes 

become: 
 

         (     )           (     )  
and           (     ) 
 

(9) 
 

where    {              } is the displacement 

vector of retained node i with respect to its 

coordinate position, xi.  

 Uniaxial deformation along Z- or 1-axis will 

result in the following effective properties: 
 

   
   

 
   (     )

   (     )
     

   
 

   (     )

   (     )
   

    
   

 
   (     )

   (     )

 

(10a) 
 

 Uniaxial deformation along X- or 2-axis will 

result in the following effective properties: 
 

   
   

 
   (     )

   (     )
     

   
 

   (     )

   (     )
   

    
   

 
   (     )

   (     )

 

(10b) 

 Uniaxial deformation along Y- or 3-axis will 

result in the following effective properties: 
 

   
   

 
   (     )

   (     )
     

   
 

   (     )

   (     )
   

    
   

 
   (     )

   (     )

 

(10c) 

 Simple Shear deformation along ZX- or 12-, 

ZY- or 13- and XY- or 23-planes  will result 

in the following shear modulus properties  

respectively: 
 

   
   

 
   (     )

   (     )
     

   
 

   (     )

   (     )
   

    
   

 
   (     )

   (     )
 

(10d) 
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Fig. 7. A 3D representation of macro-to-micro scale 

transitions for a heterogeneous material.  

 

2.5 Test Materials 

Two test materials were used in this work. The 

first was a boron-aluminium metallic composite with 

volume fraction 47% [4].  This metallic composite 

was used to validate predictions from the virtual 

test-bed proposed in this work. Additionally, it was 

chosen because of the availability of experimental 

data on six out of twelve of its elastic constants. 

Furthermore, Sun and Vaidya [4] published 

comparisons of several predictive approaches with 

their approach for the same boron-aluminium 

composite; hence, this study aimed to rank the 

current predictions from the virtual test-bed with the 

entire predictive approaches reported by Sun and 

Vaidya. The properties of the constituent materials 

of the boron-aluminium composite are reported in 

Table 3. 

The second test material is an E-glass fibre 

reinforced polypropylene matrix composite 

Plytron™. This material was used for model 

predictions and parametric studies (of the validated 

approach). The properties of the constituents of 

Plytron™ are reported in Table 4. 
 

3. Validation of proposed virtual test-bed 

In validating the proposed virtual test-bed, 

predictions from this study were compared with 

experiments based on the boron-aluminium 

composite whose properties are reported in Table 3. 

In addition, several predictions published in Sun and 

Vaidya’s work [4] and the predictions from this 

study were compared. Results from these 

comparisons are shown in Table 5.  

The first predictive approach was based on 

Hashin and Rosen work [11]. It is an analytical 

approach based on energy variational principles. Sun 

and Vaidya [4] determined upper and lower bounds 

of the predicted effective properties using the 

Hashin-Rosen approach. The lower bounds are the 

values within the curly brackets in Table 5. The 

second approach compared is based on  Chamis’ 

work [12] which uses a unit cell analytical approach 

where a square fibre-packing array was assumed, 

and the RVE divided into several sub-regions. 

Thirdly, a finite element modelling implementation 

by Sun and Vaidya [4] was also considered. Sun and 

Vaidya used two types of 3D RVEs with different 

deterministic arrangements of fibres: namely, square 

and hexagonal arrangements. The average state 

variables within the RVE (i.e. stresses and strains) 

were obtained using strain energy equivalence 

principles and Gauss’ divergence theorem. Finally, 

all predictive approaches were compared against 

actual experimental data of the boron-aluminium 

composite obtained by Kenaga and associates [13]. 

In this study, two different 3D RVE types were 

used: (a) FEM small: a 3D RVE of typical 

dimensions, 30μm, with a single fibre inclusion and 

(b) FEM big: a 3D RVE of typical dimensions, 

100μm with 27 fibres (being a statistically 

representative RVE of the test composite). The RVE 

size for FEM Big was chosen to ensure convergence 

of predicted elastic properties (see section 4.1); also, 

both 3DRVE types had sufficient mesh density to 

ensure convergence (see section 4.5). In all cases, 

the volume fraction of, 47% remained constant. The 

FEM small was adopted as a direct comparison to 

Sun and Vaidya’s model [4]  whilst the FEM big 

was chosen to assess if the virtual test-bed proposed 

in this study had any advantages over the other 

approaches. 

In general, the predictions from this study, Sun, 

and Hashin agree well with those from experiments. 

However, predictions of the shear modulus G12 and 

the transverse modulus E22 based on Chamis’ work 

were slightly higher than the experimental data as 

well as other predictive approaches. A probable 

reason for this is the improperly chosen boundary 

conditions. Finally, the framework presented in this 

study is the only approach that predicted all the 

possible effective elastic properties of the composite 

because a statistically representative 3D RVE was 

used in conjunction with appropriate boundary 

conditions. The virtual test-bed gives the closest 

predictions to experimental data for the given elastic 

constants of the test composite. Therefore, this 

virtual test-bed is most suited for use as a predictive 

approach for determining a holistic range of 

effective elastic properties of UD composites. The 

predictions obtained from the two RVE types 
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considered here in this work show results from FEM 

Small were, in some cases (e.g. E22), higher 

compared to that of the FEM big. One probable 

reason for this disparity is that FEM small lacks 

sufficient fibres for it to be regarded as being 

statistically representative of the test composite; 

hence, the possibility for it to produce non-

representative predictions. 

Table 3. Properties of the constituents of Boron-

Aluminium composite (Vf  = 47%) [4]. 

Material Young’s modulus (GPa) Poisson’s ratio, v 

Boron 379.3 0.1 

Aluminium 68.3 0.3 

 

Table 4. Properties of constituents for Plytron™ 

composite [14], [15]  

Material Young’s 

modulus(GPa) 

Poisson’s 

ratio, v 

Glass fibre 73 0.20 

Polypropylene 1.308 0.43 

 

4. Results and discussion 

4.1. Critical RVE size, LRVE,crit  

Before any characterization of a material’s 

response can be accomplished using micro-

mechanical analysis, an appropriately sized RVE 

must be isolated from the parent material first [6]. 

An appropriately sized RVE is attained when the 

magnitude of any predicted material property 

obtained using the RVE is invariant with any further 

increases in size of that RVE. In order to determine 

an appropriate size of the generated RVEs for the 

chosen test material (in this case Plytron™), a 

geometric parameter, λ, was defined as the ratio of 

the fibre reinforcement,    , and the characteristic 

length of any side of an RVE cube, LRVE:   
    

  
. 

The diameter of the fibre of Plytron™ was 

determined from a digitized micrograph to be 

approximately 15μm. The geometric parameter, λ, 

was varied between 1.5-10 to establish convergence 

of all possible predicted elastic properties. 

In all simulations, the volume fraction and 

diameter of the inclusions remained constant at 35% 

and 15μm respectively. Results from these 

simulations are reported in Figs. 8-9. These results 

show a critical RVE, LRVE,crit exists for λ≥6.0 beyond 

which, there was no appreciable change in all 

predicted properties. All RVEs used in subsequent 

simulations satisfied this geometric parameter 

criterion. 
 

4.2. Effect of different spatial realizations  

Table 6 shows the longitudinal elastic modulus, 

E11 is insensitive to spatial realization of inclusions 

hence the low standard deviation. However, the high 

standard deviation for the transverse moduli (E22 and 

E33) reflects a higher sensitivity to spatial realization. 

Consequently, the transverse Poisson ratios 
(       )  show significant variability unlike the 

longitudinal Poisson ratios, (       ) Also, the 

shear moduli were highly dependent on spatial 

realizations since the shear load cases involve the 

displacement of inclusions from their original 

positions through a sliding/rolling motion. 
 

4.3. Comparison of different Approaches 

The virtual framework developed in this study 

was used to determine effective properties for 

Plytron™ but for varying volume fractions. 

Predictions were compared against experimental 

data obtained for Plytron™ and other analytical 

and/or semi-analytical approaches. The approaches 

considered include: (a) Rule of mixtures - ROM (b) 

Hopkins-Chamis square array method and (c) 

Halpin-Tsai semi-empirical method. Experimental 

data for Plytron™ with volume fraction of 35% 

were derived from [14]. In the longitudinal direction, 

the results showed a linear relationship between 

increase in the volume fraction of reinforcements 

and the predicted modulus and Poisson ratios. 

However, the dependence of E22 and G12 on 

increased volume fraction was non-linear. Above all, 

the results shown in Fig. 10 & Fig 15 indicate the 

virtual test-bed predictions gave the closest values to 

experiments. 
 

4.4. Effect of boundary condition types on 

predicted effective properties 

An RVE which is representative of its parent 

material should ideally produce results invariant of 

the imposed boundary conditions (BCs) [9]. 

However, for this universal condition to hold, the 

size of the RVE has to be extremely large, making it 

unfeasible to simulate efficiently given limited 

computing resources. Therefore, this study aims to 

quantify the effect of several boundary condition 

types on the predicted effective properties for 

Plytron™ . Three types of commonly used boundary 

conditions were considered: (a) Dirichlet, (b) 

Neumann and (c) periodic boundary conditions. 
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Results from uniaxial and shear simulations using 

cubic RVEs are shown in Fig. 11-12. It is well 

reported in the literature that predictions based on 

Dirichlet BCs and Neumann BCs overestimate and 

underestimate effective properties respectively [9]. 

As a result, predictions using periodic BCs are 

bounded by those of the Dirichlet and Neumann 

BCs. This conclusion is confirmed in Fig. 11a for 

the longitudinal modulus, E11 but not for the 

transverse and shear moduli as well as Poisson 

ratios where the periodic boundary condition gave 

the least predicted effective properties. It seems the 

generally accepted conclusions of effective 

properties based on periodic BCs to be bounded by 

those of Neumann and Dirichlet BCs is partially 

valid. This study has observed and therefore 

concludes that if the dependence of effective 

properties on volume fraction follows a nonlinear 

relationship, the periodic BCs give the least 

predicted effective properties. This is confirmed in 

Fig. 11b-12b except for Fig. 12c where the periodic 

BCs gave the highest effective properties. The effect 

of boundary conditions for these cases is minimal 

when periodic BCs are used. However, further 

studies need to be done to conclusively show the 

effect of boundary conditions on predicted effective 

properties. 

 

 

 

 
 

 

 

Table 5. Comparison of predicted effective elastic properties of boron-aluminium (         ) obtained using different 

approaches. Note: the fibre direction is along the 1-axis.

Elastic Constants(GPa) Experiment
a
 FEM small

b
 FEM big

c
 FEM Sun 

d
  

(Square /Hexagonal) 

Analytical
e
 Semi-empirical

f
 

E11 216 215 214 215 / 215 215 214 

E22 140 141 134 144 / 136.5 139.1{131.4} 156 

E33 - 141 135 - - - 

ν12 0.29 0. 195 0. 196 0.19 / 0.19 0.195 0.20 

ν13 - 0.195 0.194 - - - 

ν23 - 0. 255 0. 302 0.29 / 0.34 0.31 {0.28} 0.31 

G12 52 51.9 52.0 57.2 / 54.0 53.9 62.6 

G13 - 52.0 52.8 - - - 

G23 - 45.0 49.4 45.9 / 52.5 54.6 {50.0} 43.6 

Key to table: 
 

a
 Experiment:  Experimental data of boron-aluminium composites from work of Kenaga, et. al. 

 

b
 FEM Small:  FEM based on this study using a Small RVE with window size 30μm

2
 and 1 fibre. 

 c
 FEM Big:  FEM based on this study using a Big RVE with window size 100μm

2
 and 27 fibres. 

d
 FEM Sun:  FEM approach due to the work of Sun and Vaidya for square and hexagonal arrays. 

e
 Analytical:  Analytical approach based on energy-balance principles of Hashin and Rosen. 

 

f
 Semi-Empirical:  Semi-empirical approach proposed by Chamis. 

 
 

 
 

 

 
 

 
 

 
 

Fig. 8. Variation of predicted effective properties with increasing geometric parameter, λ (a) longitudinal Young’s modulus 

E11 (b) transverse moduli E22 & E33 and (c) Shear Moduli G12, G13 & G23.  
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Fig. 9. Variation of predicted Poisson ratios v12 with increasing geometric parameter λ. 

 

Fig. 10. Comparison of predicted effective elastic constants between this work and other approaches (a) longitudinal 

Young’s modulus E11 (b) transverse modulus E22 (c) shear modulus, G12 
 

 

Fig. 11. Effect of boundary condition types on predicted effective elastic properties (a) longitudinal modulus, E11 (b) 

transverse modulus, E22 (c) major shear modulus G12. 

 
Fig. 12. Effect of boundary condition types on predicted effective elastic properties (a) minor shear modulus G23. (b) major 

and minor Poisson ratios, v12 & v21 (c) minor Poisson ratio v23. 
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Fig. 13.  Effect of mesh sensitivity on predicted effective elastic properties (a)  longitudinal modulus, E11. (b) transverse 

moduli, E22 & E33 (c) shear moduli G12, G13 & G23 

 

Fig. 14. Effect of mesh sensitivity on predicted effective elastic properties (a) longitudinal modulus, E11. (b) transverse 

moduli, E22 & E33 (c) shear moduli G12, G13 & G23 

 

Fig. 15 Comparison of Poisson ratio, v12 determined in 

this work with predictions based on other approaches. 

4.5. Mesh sensitivity study on effective properties 

In this section, the mesh density sensitivity of the 

virtual test-bed in predicting effective properties for 

Plytron™ was assessed. Five mesh densities ranging 

from 4584 elements to 221696 elements were 

sampled. Plots of effective properties of interest 

against total number of elements, 
e

RVEN  were 

determined. The results of the mesh sensitivity 

convergence profile for all twelve elastic constants 

are given in Fig. 13-14. According to Fig. 13-14, all 

effective properties converged at a mesh density of 

about 40,000 elements. For a 3D RVE of typical 

edge length, LRVE = 30μm, the above mesh density 

represents an edge discretization of at most 2μm.  
 

Table 6. Effect of spatial realizations on predicted 

effective properties. NB: Units of moduli, Eij and Gij is in 

GPa where i,j = 1,2,3. 

Elastic constants Mean Standard deviation 

E11 
25.86 0.030 

E22 
3.16 0.110 

E33 
3.18 0.090 

G12 
0.93 0.010 

G13 
0.94 0.020 

G23 
0.93 0.020 

v12 
0.345 0.004 

v13 
0.342 0.004 

E23 
0.656 0.010 

G21 
0.042 0.001 

G31 
0.042 0.001 

G32 
0.659 0.013 
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5. Conclusions 

This study developed a virtual test-bed for 

predicting a holistic range of elastic properties of a 

typical UD composite material. The virtual 

framework is based on 3D RVEs which comprises 

the following; (a) the geometrical modelling of 

statistically representative RVEs (b) prescription of 

appropriate PBCs for desired load cases and 

application of a robust macro-micro homogenization 

scheme to predict effective elastic constants. Several 

statistical-numerical modules were incorporated in 

various frames of the test-bed to either corroborate 

numerically derived parameters with experimental 

data, or ensure strict virtual domain objectivity.  The 

test-bed predicted the entire set of effective elastic 

constants with excellent accuracy compared to other 

existing approaches. Furthermore, unlike other 

comparable approaches, this test-bed requires no a 

priori assumptions about material constitutive 

response along any material axis. Therefore, with 

adequate extensions (i.e. incorporating robust micro-

scale material models), the presented virtual test-bed 

is suitable for investigating nonlinear responses of 

UD composites. 
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