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ABSTRACT

Researchers all over the world are looking for ways of continuing the evolution of

mobile communication technology to its fifth generation (5G). Providing high data

rate information transfer to highly mobile users over time varying communication

channels remains a shared obstacle. In this thesis, we contribute to these global

e↵orts by providing further fundamental understanding of time varying channels

in 5G mobile communication systems and overcome the obstacle.

First, we reopen the door of research in the field of time varying communication

channels. The door has almost been closed before by a well-accepted conclusion

related to the types of channels. It was ‘proven’ that mutual information rate

of the uniformly symmetric variable noise finite state Markov channel (USVN-

FSMC) was maximized by input signals of maximum information entropy. The

result means time varying channels and time invariable channels are identical,

regarding information rate maximization over input signal probability distribution.

We provide evidence that assumptions for the results are not valid for time varying

channels and replace them with more practical ones. We confirm, via input signals

of non-uniform independent distribution and first order Markov chain, that the

mutual information rate of the USVN-FSMC is maximized by input signals with

information redundancy.

Second, we provide a solution which dramatically reduces the waste of communi-

cation resources in estimating channel state information of time varying mobile

communication channels. The orthodox method in dealing with time varying chan-

nels is that, the channel is “cut” to pieces in time domain to look like a sequence

of time invariable channels for the purpose of state estimation. By doing this

the capacity loss is staggering for n-times higher carrier frequency channels and

n-dimensional multiple input and multiple output channels, eliminating almost

entirely the capacity gain of these two most promising capacity-increasing tech-

niques for 5G. We define the simplest finite state Markov model for time varying

channels to explain the essential di↵erence between information processing of time

varying channels and time invariable channels. We prove that the full information

capacity of the model can be achieved by the di↵erential type encoding/decoding

scheme without employing any conventional channel state estimator.
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Chapter 1

Introduction

1.1 A Non-Trivial Obstacle to 5G Mobile Com-

munication Technology

It is the demand from the smart phones market to provided high data rate infor-

mation transmission to highly mobile users in the next ten years. The data rate

of 5G needs to be 1000 times faster than that of 4G. The objective is as di�cult

as it sounds. We provide evidences that conventional techniques of increasing the

data rate cannot achieve this objective.

1.1.1 The Requirements of 5G: High User Mobility and

High Data Rate

The world mobile communication market of smart phones, by the time of writing

this thesis, runs in trillions of dollars. The market is predicted to double by year

2016 to 4.7 trillion dollars [1, 2]. The highly developing market brings about severe

pressure to mobile communication technology.
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Chapter 1. Introduction

The market comprises of three essential technical parts: platforms (smart phones),

smart phone applications and mobile network connecting the other two parts. The

computation performance of the smart phones has been improved significantly

without compromising their mobility in the past ten years [3–5]. The smart phone

applications, which were originally developed for information retrieval, have also

been driven into much broader categories. These developments increase the data

volume transmitted over the mobile network dramatically. Therefore, much higher

mobile communication data rates are already in need without compromising any

user mobility.

1) The development of mobile devices in size: The computer has kept getting

smaller and lighter since the first programmable computer was created in 1936 by

Konrad Zuse. The first person computer, which size and computing capacity are

designed to individuals, was created in 1962. The concept of portable computer,

i.e. laptop, was proposed in 1972 and realised in 1975 by IBM. A computer was

decreased in size to a mobile phone in 2007 by Steven Jobs. Since then, the

communication between computers and that between mobile phones have united

and the data volumn transferred over mobile communication networks explored.

2) The development of smart phones in number: According to a report 2013

[3], global broadband mobile subscriptions have reached around 1.7 billion and

are predicted to reach 7 billion in 2018 (approximately 85 percent of the world’s

population) [3]. The majority of mobile broadband devices are, and will continue

to be smart phones. It is also predicted by the number of smart phones will grow

to 4.5 billion in 2018 from 1.2 billion at the end of 2012 [3].

3) The development of the smart phones in terms of technology: Smart phones

have also undergone a major technical development in the past ten years. From

Symbian [6], window mobile [7] and RIM [8] to Android [9] and IOS [10], the smart

phone operating systems are getting more and more sophisticated. The latest

2



Chapter 1. Introduction

version of iphone or samsung galaxy can actually be seen as a high-performance

computer.

4) The development of smart phone applications: The technical development of

smart phone operation systems leads to a fast expansion of smart phone appli-

cation markets. According to the apple press information on January 7, 2013,

customers have downloaded over 40 billion applications, with nearly 20 billion in

2012 alone [11]. The application store of another popular smart phone opera-

tion system, android, hits 25 billion downloads on September 26, 2012 [5]. These

applications cover a larger range of categories including mobile phone games, fac-

tory automation, GPS and location-based services, banking, order tracking, and

ticket purchases. By the year of 2020, 50 billion new things will connect to mobile

networks.

These developments on smart phone and smartphone application have explicitly

defined the next generation mobile communication network (5G). Compared to

4G (e.g. WiMax, LTE), the data rate has to be increased by a 1000 times without

compromising any user mobility [12].

1.1.2 The Limitation of The Communication Theory to

Provide High Rate Data Transmission to Highly Mo-

bile Users

The requirements of 5G mobile communication technology have been obvious. But

the problem is that the Wi-Fi (IEEE 802.11), 2G (ETSI-GSM), 3G (IMT-2000),

and 4G (IMT-Advanced) technologies together have reached the channel limit

defined by the Shannon information theory. Performances of these communication

technologies depend on the user mobility. 2G, i.e., GSM, provides the lowest data

rate for users with the highest mobility. Wi-Fi provides the highest data rate to

3



Chapter 1. Introduction

users with the lowest mobility. The other technologies compromise between data

rates and user mobility. However, the smart phone communications require the

5G to increase the data rate without compromising any user mobility.

Research projects on 5G have been started in EU (Projects: METIS and NSN

network), UK (Project: 5GIC), South Korea (Project: Giga Korea) and America

(NYU). In general, the research projects try to increase the channel information

capacity by employing n-dimentional MIMO channels or n-times higher frequency

channels. [13–17]. These two most promising techniques for increasing the infor-

mation capacity are insu�cient when users are highly mobile.

Problem for empolying n-times higher frequency channel(1): Theoretically, in time

invariant or slow varying channels, employing n-times higher frequency means a

n-times channel larger bandwidth and a n-times larger channel capacity.

For fast time varying channels, the assumption is no longer valid. In the exist-

ing mobile communication systems, training impulses are transmitted periodically

for channel state information. The communication channel is assumed unchanged

during time intervals between any two consecutive training impulses. An impulse

response at the receiver therefore contains necessary information of channel char-

acteristics to recover information symbols transmitted during the relevant interval

[18]. For example, in GSM, about 24 bits out of a 100-bits package are used for

training purpose. User motions in mobile communications result in Doppler shifts,

which lead to time varying phase shifts to all carrier signal components. These

phase shifts is seen as random in the literature and cannot be removed in carrier

recovery and have secondary e↵ect on the channel characteristics. The time inter-

val during which the channel is seen as unchanged becomes shorter, therefore more

frequent training impulses are required to update the knowledge of these channel

characteristics.

4



Chapter 1. Introduction

The Doppler shift increases linearly with the carrier frequency[18]. By contrast,

the variation rate of channel characteristics increases linearly with the carrier

frequency[18]. When n-times higher frequency channels are employed, the extra

training impulses can cancel out the information capacity improvement made by

extra bandwidth resource.

Problem (2): The Shannon information theory suggests that the achievable chan-

nel capacity increases logarithmically with the transmit power [19]. By contrast,

the information capacity of a MIMO channel increases linearly with the number

of transmitter antennas. However, any two antennas in MIMO communication

systems have to be separated at least by a half of the wavelength of transmitted

signals to show di↵erent multi-path fading e↵ects [20]. A denser antenna array

therefore requires smaller wavelengths, which only come from higher-frequency

signals. Problem (1) arises thereafter.

1.2 Our Understanding and Our Proposed Solu-

tions to Achieve 5G

We provide evidence that the real obstacle to 5G is the lack of adequate under-

standing of the fundamental time varying communication channel.

The mobile communication channel is a typical time varying communication chan-

nel. The research field to time varying communication channels has almost been

closed for twenty years due to some incomplete results. This thesis is trying to

reopen it and develops a further fundamental understanding for the type of chan-

nels. The understanding complements the conventional communication theory and

leads to a solution of achieving high rate data transmission to highly mobile users.

5



Chapter 1. Introduction

1.2.1 Incompleteness of Existing Analysis of Time-Varying

Channels

Time varying communication channels are often modeled by Finite State Markov

Channel (FSMC), among which the uniformly symmetric, variable noise FSMC

(USVN-FSMC) is of particular importance [21–24]. The Gilbert-Elliot channel

is the simplest USVN-FSMC. It is shown in [21, 22] that the mutual information

rate of FSMC is a continuous function of the input distribution. The mutual infor-

mation rate of the USVN-FSMC is maximized by the channel input of maximum

entropy, i.e., uniform and i.i.d.. This result of mutual information rate maximiza-

tion coincidences with that of time invariant channels. For the reason, it is well

accepted that time invariable channels and time varying channels are not funda-

mentally di↵erent. A capacity achieving decoder, named by the decision-feedback

decoder, is proposed as a proof for the results in [21, 22]. The decision-feedback

decoder is comprised of a recursive state estimator and a conventional maximum-

likelihood decoder.

In chapter 3, we show that results in [21, 22] are based in assumptions, which are

valid for time invariant channels and slow time varying channels. The assumption

is: maximizing the mutual information rate in each state can maximize the mu-

tual information rate of the whole channel. For the reason, the analysis and the

decision-feedback decoder employ input signal of maximum information entropy

for each channel state.

We show that the local maximization does not lead to global maximization. Ac-

cording to our simulation results, the information redundancy in input signals

from the previous channel time slot can decrease the uncertainty of the state dis-

tribution in the current channel time slot. Higher maximum mutual information

is therefore achievable in the current channel time slot.

6
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For the reason, in the first channel time slot where the state distribution is as-

sumed, we can choose not to maximize the mutual information. Instead, we em-

ploy input signals with information redundancy. The information redundancy

decreases the uncertainty of the state distribution of the second channel time slot,

in which a higher maximum mutual information is achievable. In the second chan-

nel time slot, we again choose not maximize the mutual information. Information

redundancy in input signals is used again to decrease the uncertainty of the state

distribution in the third time slot. By repeating the process, there is always cer-

tain amount of information resource invested in channel state estimation. The

investment causes some information loss in the beginning, we prove that it pays

o↵ in the long term: the mutual information rate of the USVN-FSMC with the

decision-feedback decoder employed is maximized by input signals with informa-

tion redundancy.

1.2.2 The Information Capacity Analysis of the Time Vari-

able Binary Symmetric Channel

The second objective of this thesis is to propose a new simplest model for time

varying communication channel. An optimum decoding scheme, which achieve

the full information capacity of this new model, is also found. The ultimate

purpose of this thesis is to provide a solution to achieve high rate data transmission

over time varying mobile communication channels. We provide evidence that the

current simplest USVN-FSMC model (i.e. the Gilbert-Elliot channel)of the time

varying mobile communication channel is incomplete. Current decoding schemes

for time varying communication channels are originally designed for time invariant

channels. We can show that it is very di�cult to achieve the full information

capacity of time varying channels with these decoding schemes.

7
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In mobile communication systems, user motions bring about two new challenges

for reliable signal transfer: time varying signal amplitude fading and time varying

carrier phase shift[18]. The signal amplitude fading results from the geometric

change of the communication environment, while the carrier phase shift is due to

the Doppler e↵ect. The Gilbert-Elliot channel model captures only the amplitude

fading. However, the channel variation in mobile communications is mainly caused

by the Doppler phase shift than on the amplitude variation [25, 26]. In chapter 5 of

this thesis, we propose the time-variable-BSC model for the Doppler phase shift,

which complements the Gilbert-Elliot channel. We confirm firstly the accuracy

of the time-variable-BSC by detailing the mapping between parameters of the

time-variable-BSC and the relevant factors of the physical time varying channel.

We then prove that the di↵erential encoder and di↵erential decoder achieve the

information capacity for the time-variable-BSC.

The di↵erential encoding/decoding scheme does not involve any conventional chan-

nel state estimation scheme. It confirms the fundamental di↵erence between in-

formation processing of time varying channels and time invariant channels. The

Shannon theory assumed that the channel state information had to be known by

the receiver before any information transmission can be performed[19]. In what

follows, research of channel state estimation and research of signal decoding are

done mostly separately, and have developed into two independent research fields,

leaded by Kalman filter [27] and Viterbi algorithm [28], respectively. However,

although channel state information and additive white Gaussian noise are inde-

pendent, the channel state estimation and extracting signal in the presence of

the Gaussian noise are actually not. Synchronization between these two actions

is always required. The relationships are like what is shown in 1.1(b). In some

other types of wireless communication where user motions are also highlighted,

synchronization has become a shared problem[29–31]. We provide evidence that

8
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(a) (b)

Figure 1.1: (a) The relationship between detecting channel states and extract-

ing signals in the presense of additive white Gaussian noise in previous analysis

; (b) The relationship between detecting channel states and extracting signals

in the presence of additive white Gaussian noise in this thesis.

the perfect synchronizer is a su�cient condition to achieve the information capac-

ity of time varying communication channels. This can only be done via combining

the channel state estimation and signal detection. The di↵erential encoder and

the di↵erential decoder are doing just that and achieve the information capacity

of the time-variable-BSC.

The report is organized in the following way:

1. In chapter 2, we separate FSMCs of time invariant communication channels

and FSMCs of time varying communication channels.

2. In chapter 3, we revisit the existing analysis of mutual information rate of

USVN-FSMCs in the literature and provide our analysis of the channel.

3. In chapter 4, we provide a further analysis of the mutual information rate of

the USVN-FSMC when the input signal has Markov memory.

4. In chapter 5, we introduce the time-variable-BSC for the mobile communi-

cation channel and prove the the information capacity of the channel can be

achieved by the di↵erential encoder and di↵erential decoder.

5. Chapter 6 is the conclusion and the future work.

9



Chapter 2

The Finite State Markov

Channels Model of Time Varying

Communication Channels

In the literature, time varying channels are defined conceptually by channels whose

channel states information are time varying. Time invariable channels are defined

by channels whose channel states information are time invariable. Analysis in this

thesis requires a clear separation between FSMCs of these two types of channels.

This is not easy based on the simple definition of time varying channels and time

invariable channels [32–45]. In this chapter, we propose definitions for three types

of memory in mobile communication systems. They are called by Markov signal

memory, multi-path signal memory and channel variation memory, respectively.

We also introduce FSMCs for each memory. FSMCs of time varying channels

in this thesis means FSMCs with channel variation memory. FSMCs of time

invariable channels means FSMCs with Markov signal memory or multi-path signal

memory only.

10
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Channels

2.1 The Simplified Wireless Communication Sys-

tem Model

The analysis throughout this thesis is based on the following simplified model of

digital communication system,

Y = GX + Z, (2.1)

Y Channel output; Y could be a variable or a vector. Elements of which are

assumed to be numbers in this thesis.

G Channel state characteristics or channel state information; G could be a variable,

a vector or a matrix. Elements of which are assumed to be numbers in this

thesis.

X Channel input; X could be a variable or a vector. Elements of which are

assumed to be numbers in this thesis.

Z Additive white Gaussian noise (AWGN). Z could be a variable or a vector.

Elements of which are assumed to be numbers in this thesis.

2.2 Three Types of Memory in The Digital Com-

munication System

In this section, we introduce the Markov signal memory, the multi-path signal

memory and the channel variation memory in the system model of (2.1). The

channel with each kind of memory can be modeled by a kind of FSMCs. The

relationships between three types of FSMCs are also clarified.

11
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Channels

Figure 2.1: A discrete model for time invariant communication systems with

multi-path delays.

2.2.1 The Markov Signal Memory

The Markov signal memory in this thesis means the mutual dependence of the

original transmitted signals. One of the popular example is the Markov channel

input[46]. Refering to (2.1),

Y = GX + Z, (2.2)

where X , Y , G and Z are assumed to be scalers. An L order Markov signal

memory means the input sequence x
n

in the nth time slot is dependent on the

(x
n�1,...,xn�L

).

2.3 The Multi-Path Signal Memory

The multi-path channel memory is also called by inter-symbol interference. It

refers to the dependence between received signals, which caused by multi-path

delays [32, 33, 36, 37, 47–49]. A discrete model of the multi-path communication

12
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system is shown in Fig. 4.1(a). Referring to the system model of (2.1)

Y = GX + Z, (2.3)

where G and X are assumed to be vectors. Y and Z are assumed to be scalars.

The multi-path memory is first carried by Y . In order to separate the multi-path

signal memory and the Markov signal memory, we express (2.3) by

ẏ
n

=
L

X

l=1

ġ
l

ẋ
n�l+1 + ż

n

, (2.4)

where the notations, ẏ
n

, ẋ
n

, ġ
l

and ż
n

are only used in this chapter. ẏ
n

is the

the received symbol in the nth time slot. ẏ
n

depends on the transmitted symbol

sequence ẋ
n

in the nth time slot and some input sequences in previous time slots

(ẋ
n�1, ..., ẋn�L+1). All of these transmitted symbols have multi-path components

arriving at the receiver in the n time slot; L is the extent of the multi-path in-

terference, and it is also named by the memory order; ġ
l

is the lth element of

the vector G. It should be noted that perfect knowledge of G is assumed at the

receiver since it is unchanged. ẏ
n

is dependent on (ẏ
n�1, ..., ẏn�L+1) because any

two of them have at least one input symbol in common.

The multi-path channel memory and the signal memory are usually

analyzed in the same way. The mutual dependence between the inputs symbols

can a↵ect the received signals in the same ways as the multi-path delay does. For

example, if the transmitted symbol at time slot n is dependent of those at previous

L� 1 time slots, ẏ
n

is dependent on (ẏ
n�1, ..., ẏn�L+1) even though it experiences

no multi-path delay during transmission.

The multi-path signal memory or Markov signal memory is not funda-

mentally di↵erent from memoryless channels. The information capacity of

FSMC of these two types of memory can be achieved by decoders designed for

13
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memoryless channels, such as the maximum-likelihood decoder. The channel with

the multi-path signal memory in (2.4) can be modeled by an L-order FSMC, of

which the state s
n

= (ẋ
n

, ẋ
n�1, ..., ẋn�L+1)[46]. The state transition probability

can be expressed by

Pr (s
n+1 | sn) = Pr (ẋ

n+1 | ẋn

, ..., ẋ
n+1�L

) . (2.5)

The finite state Markov chain can be transformed equivalently into a sequence of

discrete memoryless states without losing any information, where s
n

= (ẋ
n

, ẋ
n�1, ..., ẋn�L+1).

A simple example of the transformation is shown as follows.

Assuming that the memory order L = 1, an input symbol sequence ẋn can be

expressed by

ẋn = (ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6, ..., ẋn

). (2.6)

When the FSMC of (2.6) has states as follows, s1 = ẋ1, s2 = ẋ2, ..., sn = ẋ
n

.

This Markov chain is equivalent to a sequence of memoryless states, s1 = ẋ1ẋ2,

s2 = ẋ2ẋ3, ..., sn�1 = ẋ
n�1ẋn

. Refering to Fig. 2.1, the communication system

can be understood alternatively that the transmitted signals do not experience

multi-path delay, and all input sequences except for those from the first time slot

are transmitted repeatedly L + 1 times with di↵erent signal amplitudes. In the

previous example of (2.6), L = 1 and each input sequence is repeated 2 times:

At time slot 1, the signal ẋ1 and ẋ2 are sent.

At time slot 2, the signal ẋ2 and ẋ3 are sent.

At time slot 3, the signal ẋ3 and ẋ4 are sent.

At time slot n� 1, the signal ẋ
n�1 and ẋ

n

are sent.
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Therefore, conventional decoders for memoryless channel, such as the maximum-

likelihood decoder, can perform optimum signal detection for FSMCs with the

multi-path signal memory. According to the Shannon theory, maximum mutual

information rate of discrete memoryless channels is achieved by uniform, indepen-

dent and identically distributed (i.i.d.) inputs[50].

2.4 The Channel Variation Memory

The Channel variation memory is mutual dependence between receiver symbols,

and the dependence is caused by the variation of the channel state information.

Referring to the system model

Y = GX + Z. (2.7)

where Y , G, X and Z are all scalars We assume that transmitted signals do not

experience multi-path delay. We also assume the input signals are i.i.d.. The

channel variation memory is firstly carried by G, of which perfect knowledge is no

longer assumed at the receiver. In order to clarify the relationship between the

multi-path channel memory and the channel variation memory, we express (2.7)

by,

ẏ
n

= g̈
n

ẋ
n

+ ż
n

, (2.8)

where notations ẏ
n

, g̈
n

, ẋ
n

are used only in this chapter. ẏ
n

is the output sequence

in time slot n and it depends only on the input sequence sent in the same time

slot; g̈
n

is the time varying channel state information of time slot n. (2.8) can

be also modeled by a FSMC. Assuming that the memory order is L, the channel
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state is s
n

= (g̈
n

, g̈
n�1, ..., g̈n�L+1), with state transition probability,

Pr (s
n+1 | sn) = Pr (g̈

n+1 | g̈n, ..., g̈n+1�L

) . (2.9)

We introduce in the following the relationship between the channel variation mem-

ory and the multi-path signal memory. Assuming perfect synchronization between

the detection of g̈
n

and ẋ
n

, (2.8) can be expressed by

ẏ
n

= g̈
n

ẋ
n

+ ż
n

= ġ
n

ẍ
n

+ ż
n

, (2.10)

where ġ
n

is unchanged and assumed to be known by the receiver, and ẍ
n

= a
n

ẋ
n

,

of which a
n

depends on n; and g̈
n

= ġ
n

· a
n

. (2.10) and (2.4) are equivalent and

the channel varying memory can be modeled by the FSMC for multi-path channel

memory. This conclusion is important. It shows implicitly that this synchroniza-

tion between channel state estimation and signal detection is a su�cient condition

to achieve the information capacity of the FSMC with channel variation memory.

However, to find the perfect synchronization scheme is very di�cult. There are

always delays between the channel state estimation and signal detection in the

presence of noise.

The mobile communication channel is a typical channel with channel variation

memory. The lack of adequate understanding of this types FSMCs is one of the

main reasons for the di�culty of providing high rate data transmission to users in

motion. This thesis therefore focus on reviewing the analysis of the existing FSMCs

with channel variation memory. The FSMC is called by the USVN-FSMC. We

show the incompleteness of the analysis and provides complementing analysis.
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Chapter 3

Mutual Information Rate

Analysis of Experiencing Finite

State Markov Channels

The chapter focuses on a class of USVN-FSMC where the channel state informa-

tion is unknown to the transmitter. Results in the literature for the USVN-FSMC

show that time variable channels and time invariant channels are the same in

terms of maximization of the mutual information rate over channel input prob-

ability distribution. We show that the analysis is based on the assumptions for

time invariant channels. We propose more practical assumptions for time variable

channels. Our analysis of the USVN-FSMC based on the new assumption con-

firms the fundamental di↵erence between time variable channels and time invariant

channels.
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Chapter 3. Mutual Information Rate Analysis of USVN-FSMC

3.1 Contrasting The Conventional Assumptions

and Our New Assumption for Uniformly Sym-

metric Variable Noise Finite State Markov

Channels

In this section, we show the incompleteness of the conventional assumption for the

USVN-FSMC in [21, 22] and propose more practical assumptions in this thesis.

1. Conventional assumption: maximizing the mutual information of each time

slot of the channel will maximize the mutual information of whole channel

[21, 22];

2. New assumption: maximizing the mutual information of each time slot of the

channel might not maximize the mutual information of the whole channel

(our assumption).

3.1.1 Uniformly Symmetric Variable Noise Finite State

Markov Channels

The channel model considered in this thesis belongs to the class of USVN-FSMCs[22].

The finite channel state space C = {c1, c2, ..., cK} corresponds to K di↵erent dis-

crete memoryless channels, respectively. The states have common finite discrete

input and output alphabet [22]. The discrete input sequence and output sequence

of the channel at time slot n are denoted by x
n

and y
n

, respectively. The channel

state at time slot n is denoted by s
n

. The state transition matrix is denoted by

P, of which the (m, k)th entry is the probability of transition from state c
m

to c
k

,

P
mk

= Pr (s
n+1 = c

k

|s
n

= c
m

) , (3.1)
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for k,m 2 1, ..., K. The initial state probability vector is denoted by ⌧ with the

kth element being

⌧ (k) = Pr (s0 = c
k

) . (3.2)

Throughout this thesis, we use the following notation:

rn , (r1, ..., rn) , (3.3)

for r = x, y, or s. The initial channel state probability vector ⌧and the channel

state transition matrix P are assumed to be independent of the channel input. We

denote the conditional channel state distribution by two K-dimensional random

vectors ⇡n and ⇢n. ⇡n is the channel state distribution conditioned on past inputs

and outputs, while ⇢n is the channel state distribution conditioned on past outputs

only. The kth elements of ⇡n and ⇢n are denoted by

⇡n (k) = Pr
�

s
n

= c
k

|xn�1, yn�1
�

, (3.4)

and

⇢n (k) = Pr
�

s
n

= c
k

|yn�1
�

, (3.5)

respectively.

The numerical example of USVN-FSMC used in the simulation in this chapter is

an example of Gilbert-Elliot channel model. The Gilbert-Elliot channel is the two-

state USVN-FSMC [21]. The crossover probabilities of “good” and “bad” state of

the Gilbert-Elliot channel are denoted by p
G

(0  p
G

 0.5) and p
B

(0  p
B

 0.5),

respectively, where p
G

< p
B

. The channel state transition probabilities, from the

bad state to the good state and from the good state to the bad state, are given by

g and b, respectively. The channel memory µ is defined by µ = 1� b� g.
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(a)

(b)

Figure 3.1: (a) The system model; (b) the decision-feedback decoder

3.1.2 Decision-Feedback Decoder with The Conventional

Assumption

The system model of the USVN-FSMC and the decision feedback decoder are

shown in Fig. 3.1(a) and Fig. 3.1(b), respectively[22]. The system is composed of

a conventional (block or convolutional) encoder for memoryless channels, a block

interleaver, an FSMC, the decision-feedback decoder, and a deinterleaver. The

interleaver works as follows: The output of the encoder is stored row by row in

a J ⇥ L interleaver, and transmitted over the channel column by column. The

deinterleaver performs the reverse operation [22]. Because the e↵ect of the initial

channel state dies away, the received symbols within any row of the deinterleaver

become mutually independent as J becomes infinite [22]. Each interval, during

which a row of output signal is processed, is a channel time slot. The decision

feedback decoder includes two parts: the state estimator and the ML decoder. The

state estimator uses the following recursive relationship to estimate the channel
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state distribution conditioned on the past inputs and outputs[22].

⇡n+1 =
⇡nD (x

n

, y
n

)P

⇡nD (x
n

, y
n

)1
, f (x

n

, y
n

,⇡n) (3.6)

where D (x
n

, y
n

) is a K⇥K diagonal matrix with the kth diagonal term, Pr(y
n

=

0|x
n

= 0, s
n

= c
k

), and 1 = (1, ..., 1)T is a K-dimensional vector. The input to the

ML decoder is the channel output y
n

, and the estimated state distribution ⇡n. Its

output is the detected channel input, x̂
n

, which maximizes log Pr (y
n

,⇡n|xn

). The

estimation of the channel input, x̂
n

, is then fed into the state estimator for the

next channel state estimation. For independent input signals, there is a similar

recursive estimation formula conditioned on the past output only,

⇢n+1 =
⇢nB (y

n

)P

⇢nB (y
n

)1
, f̂ (y

n

,⇢n) , (3.7)

whereB (y
n

) is aK⇥K diagonal matrix with the kth diagonal term Pr (y
n

= 0|s
n

= c
k

)

and P is the state transition matrix of the USVN-FSMC[22]. In appendix A, we

prove the equivalence between (3.6) and (3.7). In most parts of this thesis, we use

(3.7) as the state estimation formula.

Lemma 3.1. Assuming perfect channel input information, the recursive relation-

ships in(3.6) and (3.7) of the recursive state estimator of the decision-feedback

decoder are equivalent.

Proof : See appendix A for proof.

3.1.2.1 Conventional Assumptions

The decision-feedback decoder with input signals of maximum entropy is capacity

achieving for the USVN-FSMC under the following assumptions. The reason of

the optimality can be found in the recursive process of the decoder.
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• The initial state distribution is assumed.

• The state distribution of other channel time slot can be estimated accurately

given the value of past inputs and past outputs.

• Maximum mutual information of any channel time slot is decided by the

corresponding state distribution.

• Maximizing the mutual information of each time slot of the channel will

maximize the mutual information rate of the whole channel. [21, 22].

3.1.2.2 The Recursive Process of The Decision-Feedback Decoder un-

der The Conventional Assumption

Suppose that a su�ciently large interleaver of size J⇥L is implemented. The (pos-

sibly) coded signals are arranged row-by-row and transmitted column-by-column.

We can decode the received signal row-by-row recursively. The recursion process

is as follows:

1. For the first row, j = 1. We can treat the first row as L copies of independent

channels with ⇡1 as the state distribution, ⇡1 = ⇡0 · P. The independence

holds due to that J is large. The channel transition probability is then

given by Pr(y|x) =
P

k=0,1 p(y|x, s1)⇡1(k). Maximum mutual information

is maxPr(x1) I(x1; y1|⇡1). Obviously, input signals with maximum entropy

maximize the mutual information, therefore the achieved mutual information

of the recursion is R1 = maxPr(x1) I(x1; y1|⇡1). Assuming a large enough L

and large enough symbol intervals, error probability of Pr(x̂1 = x1) can be

made arbitrarily low. Hence we can estimate ⇡2(k) = Pr(S2 = k|x1, y1, ⇡1)

accurately using (3.6).

2. For the second row, j = 2. We can treat the second row as L copies of

independent channels with ⇡2 as the state distribution. We can estimate
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⇡2(k) = Pr(S2 = k|x1, y1, ⇡1) accurately using (3.6). The independence

holds due to that J is large. The channel transition probability is then

given by Pr(y|x) = P

k=0,1 p(y|x, s2)⇡2(k). Maximum mutual information is

maxPr(x2) I(x2; y2|⇡2). Obviously, input signals with maximum entropy max-

imizes the mutual information, therefore the achieved mutual information

of the recursion is R2 = maxPr(x2) I(x2; y2|⇡2). Assuming a large enough L

and large enough symbol intervals, error probability of Pr(x̂2 = x2) can be

made arbitrarily low. Hence we can estimate ⇡3(k) = Pr(S3 = k|x2, y2, ⇡2)

accurately using (3.6).

3. For the row, j = j + 1. We can treat the second row as L copies of in-

dependent channels with ⇡
j+1 as the state distribution. The independence

holds due to that J is large. The channel transition probability is then

given by Pr(y|x) =
P

k=0,1 p(y|x, sj+1)⇡j+1(k). Maximum mutual informa-

tion is maxPr(x
j+1) I(xj+1; yj+1|⇡j+1). Obviously, input signals with maximum

entropy maximizes the mutual information, therefore the achieved mutual

information of the recursion is R
j+1 = maxPr(x

j+1) I(xj+1; yj+1|⇡j+1). Assum-

ing a large enough L and large enough symbol intervals, error probability of

Pr(x̂
j+1 = x

j+1) can be made arbitrarily low.

4. Step 3 repeats and ends at j = J .

The maximum mutual information rate achieved by the decision-feedback decoder

with input signals of maximum entropy is

R = lim
J!1

1

J

J

X

j=1

R
j

= lim
J!1

j = 1

J

J

X

1

max I(X
j

;Y
j

|⇡
j

). (3.8)

From the recursive process, the mutual information of each channel time slot is

maximised. Based on assumption in [21, 22] that mutual information maximization

of each channel time slot is independent, it is not di�cult to prove that R converge

to the information capacity of the USVN-FSMC.
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3.1.3 Decision-Feedback Decoder with The New Assump-

tion

In this subsection, we show the hidden problem of the conventional assumptions in

[21, 22] and propose a more practical assumption. Under this new assumption, the

maximum mutual information rate of the USVN-FSMC with the decision-feedback

decoder employed is achieved by input signals with information redundancy.

3.1.3.1 Incompleteness of The Conventional Assumption

In this subsection, we prove via numerical examples that the estimation result of

state distribution of any channel time slot depends on the input signal distribution

of the previous channel time slot. The simulation method is detailed in appendix

B. The estimation results are shown in Fig. 3.2(a), 3.2(b), 3.2(c) and 3.2(d).

By this, we prove the dependency between the state estimation result and the

information redundancy in input signals.

Fig. 3.2(a) shows the tracking ability of the decision-feedback decoder as the

channel input approaches maximum entropy, Pr (x
n

= 0) = 0.5. Apparently, the

estimator fails to indicate the channel state. This is because the estimator deter-

mines the channel state by measuring how much the channel input distribution is

modified when it is filtered by the channel. However, for the USVN-FSMC, the

maximum-entropy channel input distribution will be modified by the same degree,

regardless which state the channel is in[22].

Fig. 3.2(b), 3.2(c) and 3.2(d) show the tracking ability of the decision-feedback

decoder with channel input probabilities, Pr (x
n

= 0) = 0.6, Pr (x
n

= 0) = 0.7

and Pr (x
n

= 0) = 1, respectively. In general, the channel states can be tracked

successfully for all these input distributions. The best result is obtained with

Pr (x
n

= 0) = 1, and the performance deteriorates as the probability decreases.
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(a) (b)

(c) (d)

Figure 3.2: Tracking ability of the decision-feedback decoder with di↵erent

channel input probabilities: (a) Pr(x
n

= 0) = 0.5, (b) Pr(x
n

= 0) = 0.6, (c)
Pr(x

n

= 0) = 0.7 and (d) Pr(x
n

= 0) = 1.

Therefore, we can have the following conclusions:

• As the channel input signals of the previous time slot approach maximum

entropy, the channel state of the current time slot of the USVN-FMSC cannot

be tracked reliably by the decision-feedback decoder;

• With the channel input signals of the previous time slot with information

redundancy, the channel state of the current time slot of the USVN-FMSC

can be tracked reliably by the decision-feedback decoder;

• The more redundancy there is in the channel input, the more accurate the

estimation is.
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3.1.3.2 New Assumptions

The simulation results show the hidden problems of the conventional assumptions.

It is clear that maximizing the mutual information of any two consecutive channel

time slots depends on each other. Under the case that the mutual information rate

of the previous time slot is maximized by input signals with maximum entropy, the

estimator in the decision-feedback decoder cannot decrease the uncertainty of state

distributions of the current time slot. However, under the case that information

redundancy are included in the input signals of the previous time slot, the uncer-

tainty of the channel state distribution of the current time slot will be decreased.

It is possible to achieve a higher maximum mutual information of the current

channel time slot. Based on the understanding, we propose new assumptions for

the USVN-FSMC and the decision-feedback decoder.

• The initial state distribution is assumed (identical).

• The state distribution of other channel time slot can be estimated accurately

given the value of past inputs and past outputs (identical).

• Maximum mutual information of any channel time slot is decided by the

corresponding state distribution (identical).

• Maximizing the mutual information of each time slot of the channel might

not maximize the mutual information of the whole channel(di↵erent).

3.1.3.3 The New Recursive Process of The Decision-Feedback Decoder

under The New Assumption

Under the new assumption, maximizing the mutual information of each channel

time slot independently does not necessary maximize the mutual information rate

of the whole channel. Investing certain amount of information resource from input

26



Chapter 3. Mutual Information Rate Analysis of USVN-FSMC

signals in state estimation, which causes some information loss in the beginning,

leads to higher mutual information in future time slots and a higher mutual infor-

mation rate of the whole channel.

Suppose that a su�ciently large interleaver of size J⇥L is implemented. The (pos-

sibly) coded signals are arranged row-by-row and transmitted column-by-column.

We can decode the received signal row-by-row recursively. The recursion process

is as follows:

1. For the first row, j = 1. We can treat the first row as L copies of independent

channels with ⇡1 as the state distribution, ⇡1 = ⇡0 · P. The independence

holds due to that J is large. The channel transition error probability is then

given by Pr(y|x) =
P

k=0,1 p(y|x, s1)⇡1(k). Maximum mutual information

is maxPr(x1) I(x1; y1|⇡1). Obviously, input signals with maximum entropy

maximizes the mutual information. We choose not to maximize the

mutual information rate by employing input signals with informa-

tion redundancy. The achieved mutual information of this recursion will

be comparatively lower. We denote it here by R0
1, and R0

1 < R1. Assuming a

large enough L and large enough symbol intervals, probability of Pr(x̂1 = x1)

can be made arbitrarily low.

2. For the second row, j = 2. We can estimate the state distribution of the

next time slot ⇡0
2(k) = Pr(S2 = k|x1, y1, ⇡1) using (3.6). Because of the re-

dundancy in x1, ⇡0
2 is with less uncertainty than ⇡2. We can treat the second

row as L copies of independent channels with ⇡0
2 as the state distribution.

The independence holds due to that J is large. The channel transition er-

ror probability is then given by Pr(y|x) = P

k=0,1 p(y|x, s2)⇡0
2(k). Maximum

mutual information is maxPr(x2) I(x2; y2|⇡0
2). Because ⇡0

2 is with less un-

certainty than ⇡2, maxPr(x2) I(x2; y2|⇡0
2) > maxPr(x2) I(x2; y2|⇡2) Obviously,

input signals with maximum entropy maximizes the mutual information.
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We choose not to maximize the mutual information rate by em-

ploying input signals with information redundancy. The achieved

mutual information rate denoted by R0
2 < maxPr(x2) I(x2; y2|⇡0

2). It should

be noted here R0
2 is not necessary smaller than R2 = maxPr(x2) I(x2; y2|⇡2).

Assuming a large enough L and large enought symbol intervals, probability

of Pr(x̂2 = x2) can be made arbitrarily low.

3. For row, j = j + 1. We can estimate the state distribution of the next time

slot ⇡0
j+1(k) = Pr(S

j+1 = k|x1, y1, ⇡
j

) using (3.6). Because of the redun-

dancy in x
j

, ⇡0
j+1 has less uncertainty than ⇡

j+1. We can treat the row as

L copies of independent channels with ⇡0
j+1 as the state distribution. The

independence holds due to that J is large. The channel transition error

probability is then given by Pr(y|x) =
P

k=0,1 p(y|x, sj+1)⇡0
j+1(k). Maxi-

mum mutual information is maxPr(x
j+1) I(xj+1; yj+1|⇡0

j+1). Because ⇡0
j+1 is

with less uncertainty than ⇡
j+1, maxPr(x

j+1) I(xj+1; yj+1|⇡0
j+1) > maxPr(x

j+1)

I(x
j+1; yj+1|⇡j+1) Obviously, input signals with maximum entropy maxi-

mizes the mutual information. We choose not to maximize the mu-

tual information rate by employing input signals with information

redundancy. The achieved mutual information rate denoted by R0
j+1 <

maxPr(x
j+1) I(xj+1; yj+1|⇡0

j+1). It should be noted here R0
j+1 is not necessary

smaller than R
j+1 = maxPr(x

j+1) I(xj+1; yj+1|⇡j+1). Assuming a large enough

L and a large enough symbol interval, probability of Pr(x̂
j+1 = x

j+1) can be

made arbitrarily low.

4. Step 3 repeats and ends when j = J .

The overall achieved mutual information rate is R0 = lim
J!1

1
J

P1
j=1 R

0
j

. We

prove in the next section of our thesis that, by employing input signals with

certain amount of information redundancy R0 > R.
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3.2 Mutual Information Rate Analysis of The

Channels with Independent Input Signals Un-

der The New Assumption

In the previous section, the incompleteness of the conventional assumption in

[21, 22] for the USVN-FSMC is confirmed and more practical assumptions are

proposed. In this section, we provide analysis of the mutual information rate of

the USVN-FSMC under the new assumptions and prove that the mutual infor-

mation rate is maximized by input signals with information redundancy. All the

discussions are based on the system model in Fig. 3.1(a), where decision-feedback

decoder is employed.

3.2.1 Mutual Information Rate

In this subsection, we show via numerical examples the di↵erence between the

mutual information rate of the following three types of USVN-FSMCs in terms of

the channel state memory, shown in Fig. 3.3.

1. The USVN-FSMC with infinite channel state memory. This type of USVN-

FSMC is also called time invariant USVN-FSMC. Perfect channel state in-

formation is usually assumed at the receiver for this type of USVN-FSMC.

The mutual information rate can be expressed as R = I(Y ;X | S) =
P

k=K

k=0 Pr(c
k

)I(Y ;X | c
k

), where Y and X are the channel output and in-

put, respectively, and S is the perfect channel state information. Its mutual

information rate is maximized by input signals with maximum entropy. The

information capacity of an example Gilbert-Elliot channel assuming perfect

channel state information at the receiver is plotted in Fig. 3.3, denoted by

C
CSI

.
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Figure 3.3:

1. C
CSI

is the information capacity of the Gilbert-Elliot channel assuming

perfect knowledge of the channel state information ;

2. C
noCSI

denotes the information capacity of the Gilbert-Elliot without

channel state information , of which the value is equal to that in (a) when

n = 5000;

3. AMIR is the Gilbert-Elliot channel’s achievable mutual information rate

by the decision-feedback decoder vs. the input entropy;

4. C
memoryless

is the information capacity of the Gilbert-Elliot channel with

the memory equal to 0.

2. The USVN-FSMC with zero channel state memory. This type of USVN-

FSMC is also called memoryless USVN-FSMC. Channel state estimation is

useless for this type of channel. The channel structure is usually assumed at

the receiver, i.e., the initial channel state distribution. The mutual informa-

tion rate can be expressed as R = I (Y ;X | ⇢0). It should be noted that ⇢0

is the state distribution not the perfect state information. The channel tran-

sition probability is then given by Pr(y|x) = P

k=0,1 p(y|x, s0)⇢0(k). And its

30



Chapter 3. Mutual Information Rate Analysis of USVN-FSMC

mutual information rate is maximized by input signals with maximum en-

tropy. The information capacity of an example of memoryless Gilbert-Elliot

channel is plotted in Fig. 3.3, denoted by C
memoryless

.

3. The USVN-FSMC with channel state memory larger than zero but not in-

finite. This type of USVN-FSMC is what we focus on in this thesis. The

channel structure is usually assumed in the receiver, i.e., the initial state

distribution. For this type of USVN-FSMC, we can decrease the uncertainty

of the state distribution by estimating the channel state. This is done at

the price of including information redundancy in input signals. The mutual

information rate can be expressed as R = I
⇣

Y ;X | Ŝ
⌘

, where Y and X are

the channel output and input, respectively, and Ŝ is the estimated channel

state[21, 22]:

I
⇣

Y ;X | Ŝ
⌘

= lim
J!1

�H �

yJ | ŝJ��H �

yJ | ŝJ , xJ

��

= lim
J!1

1

J

J

X

n=1

(H (y
n

| ŝ
n

)�H (y
n

| x
n

, ŝ
n

)) , (3.9)

It should be noted here that Ŝ = ⇢ is also the estimated state distribu-

tion, not the perfect state information. For example, the channel transition

probability at n time slot is then given by Pr(y|x) = P

k=0,1 p(y|x, sn)⇢n(k).
The mutual information rate of an example Gilbert-Elliot of this type is

plotted against the input entropy. The signal detection is performed by the

decision-feedback decoder. It is clear that the mutual information rate is not

maximized by input signals with maximum entropy.

When input signals with maximum entropy are employed, we are not mak-

ing use of the state memory. The achieved mutual information rate is the

maximum mutual information rate of The USVN-FSMC with zero channel

state memory, shown in Fig. 3.3.
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Figure 3.4: The information capacity of the Gilbert-Elliot channel obtained

by the sum-product algorithm vs. the recursion time; what is shown in the

figure is the mean values of 100 simulations [46, 51].

It should be noted that the maximum mutual information rate of the USVN-

FSMC obtained by the decision-feedback decoder is not the information

capacity of the channel. The C
noCSI

is the information capacity of the USVN-

FSCM obtained by the sum-product algorithm, which is independent of the

system model and the decoding scheme [46, 51]. The detail simulation result

is shown in Fig.3.4. C
noCSI

in Fig.3.3 is the value to which the simulation

result converges. The sum-product algorithm will be discussed in detail in

section 2.3.

3.2.2 Proving The Mutual Information Rate Is Maximized

by Input Signals with Information Redundancy

In this subsection, we present a proof that the mutual information rate of the

USVN-FSMC with the decision-feedback decoder employed is maximized by input

signals with information redundancy. First, it is proven that the state estimator
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cannot decrease the uncertainty of the channel state distribution if the channel

input is of maximum information entropy. In other words, the estimator does not

make use of the channel memory, system model in Fig. 3.1(a) is therefore mem-

oryless. We denote the information capacity of this memoryless USVN-FSMCs

as CNM . Second, it is shown that the maximum mutual information rate of the

USVN-FSMC assuming no channel state information, I
max

(Y ;X | Ŝ), is larger

then CNM . Certain parts of the following proof was done by Zarko Krusevac. My

contribution is to link these parts and make them a complete proof.

Lemma 3.2. For the USVN-FSMC and the channel input of maximum entropy,

the recursive formula (3.7) converges toward the vector of stationary state prob-

abilities ⌧ = [Pr (c1) , ...,Pr (ck)]. ⌧ is the solution of the eigenvector equation

PT⌧ = ⌧ , where PT is the transpose of the channel state transition matrix.

Proof : Since each c
k

2 C is output symmetric and the marginal input probability

Pr (x
n

) is uniform, then Pr (y
n

|s
n

= c
k

) is also uniform [22], i.e., Pr(y
n

= y
i

|s
n

=

c
k

) = 1/ |Y|, where Y is the output alphabet. This is because the crossover

probability is the same for both x
n

= 0 and x
n

= 1, for any amount of x
n

=

1“cross” to x
n

= 0, there are the same amount of x
n

= 1 “cross” to x
n

= 1. If x
n

is uniform before transmission, it should also be uniform after the transmission.

Hence, for the USVC-FSMC, with the channel input of maximum entropy, the

recursive formula (3.7) becomes

⇢n+1 (l) =

P

K

k=1 Pr (yn = y
i

|s
n

= c
k

) Pr (s
n

= c
k

|yn�1)P
kl

P

K

k=1 Pr (yn = y
i

|s
n

= c
k

) Pr (s
n

= c
k

|yn�1)
(3.10)

=
1
|Y|

P

K

k=1 Pr (sn = c
k

|yn�1)P
kl

1
|Y|

P

K

k=1 Pr (sn = c
k

|yn�1)

=

P

K

k=1 Pr (sn = c
k

|yn�1)P
kl

P

K

k=1 Pr (sn = c
k

|yn�1)
, (3.11)
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where y
i

2 Y and P
kl

is the (k, l)th entry of the transition matrix P. Because
P

K

k=1 Pr (sn = c
k

|yn�1) = 1, ⇢n+1 (l) can be expressed by

⇢n+1 (l) =
K

X

k=1

Pr
�

s
n

= c
k

|yn�1
�

P
kl

. (3.12)

Thereby, the recursive formula (3.7) converges towards

⇢ , lim
n!1

⇢n = ⌧ , (3.13)

where ⌧ = [Pr (c1) , ...,Pr (ck)] is the vector of stationary state probabilities, which

is the solution of the eigenvetor equation PT⌧ = ⌧ . Therefore, the mutual infor-

mation rate achieved with the channel input of maximum entropy is actually the

information capacity of the memoryless USVN-FSMC.

Lemma 3.3. For a memoryless USVN-FSMC, the following equality holds,

INM

USV N�FSMC

(Y ;X | Ŝ) = INM

FSMC

(Y ;X), (3.14)

over the set of all i.i.d. input distributions P(X), where INM

USV N�FSMC

(Y ;X | Ŝ)
is the mutual information rate for the memoryless USVN-FSMC assuming no

channel state information , and INM

FSMC

(Y ;X) is the mutual information rate of

the memoryless FSMC assuming no channel state information .
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Proof :

H
�

yJ |xJ

�

=
J

X

n=1

H
�

y
n

|x
n

, xn�1, yn�1
�

(3.15)

=
J

X

n=1

H (y
n

|x
n

)

=
J

X

n=1

E

"

� log
K

X

k=0

Pr (y
n

|x
n

, s
n

= c
k

) Pr (s
n

= c
k

)

#

=
J

X

n=1

E

"

� log
K

X

k=0

Pr (y
n

|x
n

, s
n

= c
k

)⇢n (k)

#

=
J

X

n=1

H (y
n

|x
n

, ŝ
n

) (3.16)

where the fourth equality follows from the fact that the FSMC is memoryless and,

thereby

⇢n (k) = Pr
�

s
n

= c
k

|yn�1
�

= Pr (s
n

= c
k

) . (3.17)

Similarly,

H
�

yJ |ŝJ� =
J

X

n=1

H (y
n

|ŝ
n

) =
J

X

n=1

H
�

y
n

| yn�1
�

= H
�

yJ
�

. (3.18)

INM

USV N�FSMC

(Y ;X | Ŝ) = lim
J!1

"

1

J

J

X

n=1

H (y
n

|ŝ
n

)� 1

J

J

X

n=1

H (y
n

|x
x

, ŝ
n

)

#

= lim
J!1

"

1

J

J

X

n=1

H (y
n

)� 1

J

J

X

n=1

H (y
n

|x
n

)

#

= INM

FSMC

(Y ;X), (3.19)

Because INM

FSMC

(Y ;X) is a convex function and is maximized with channel inputs

of maximum entropy, INM

USV N�FSMC

(Y ;X | Ŝ) works the same way. Therefore, the
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capacity of memoryless USVN-FSMCs can be expressed by,

CNM = max
n

INM

USV N�FSMC

(Y ;X | Ŝ)
o

. (3.20)

Lemma 3.4. For USVC-FSMC assuming channel state information , the follow-

ing equality holds,

ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

= ICSI

FSMC

(Y ;X) , (3.21)

over the set of all i.i.d. input distribution P (X), where ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

is the mutual information rate of the USVC-FSMC assuming channel state infor-

mation and ICSI

FSMC

(Y ;X) is the mutual information rate of the FSMC assuming

channel state information .

Proof :

ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

= lim
J!1

I ��

yJ , ŝJ ; xJ

��

= lim
J!1

I ��

yJ ; xJ

��

= ICSI

FSMC

, (3.22)

where the second equality follows from the fact that the channel state information

has been given, and therefore ŝJ can be taken away from the equation.

Because ICSI

FSMC

(Y ;X) is a convex function over P(X) and it is maximized with

channel inputs with maximum entropy, ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

has the same

behaviour.

In the following, the relationship among the three mutual information rates is

investigated, ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

, I
⇣

Y ;X | Ŝ
⌘

and INM

USV N�FSMC

(Y ;X | Ŝ).
It is shown that, as the channel memory µ increases from 0 to 1, I

⇣

Y ;X | Ŝ
⌘

converges to ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

from INM

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

.
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In order to investigate the relationship between the mutual information rate and

the channel process memory, the channel state structure and the transition struc-

ture ratios need to be fixed. For instance, for the Gilbert-Elliott channel, it means

that the state cross-over probabilities, p
G

and p
B

, and the good-to-bad ratio are

fixed [21]. We use I
µ

⇣

Y ;X | Ŝ
⌘

to denote the mutual information rate of the

USVC-FSMC under this assumption.

Let µ denote a measure of the persistent channel memory which has maximum

value of µ
max

, such that

lim
µ!µ

max

P = P
fixed

, (3.23)

where P is the channel state transition matrix, and P
fixed

is a special case of P

and it has one element in each row equal to 1 (dominant element) and all other

elements equal to 0.

Since the recursive estimation formula (3.7) is linear in P, for µ ! µ
max

, it

monotonically converges towards

lim
µ!µ

max

⇢n+1 (l) = lim
µ!µ

max

P

K

k=1 Pr (yn|sn = c
k

) Pr (s
n

= c
k

|yn�1)P
kl

P

K

k=1 Pr (yn|sn = c
k

) Pr (s
n

= c
k

|yn�1)

=

P

r2R Pr (y
n

|s
n

= c
r

)⇢n (r)
P

K

k=1 Pr (yn|sn = c
k

)⇢n (k)
, (3.24)

where r 2 R are dominant elements of the l-th column of P
fixed

and P
rl

= 1.

Lemma 3.5. For any i.i.d. input distribution P (X) which is not uniform, there

exists a channel state c
v

for which the recursion (3.24) increases and monotonically

converges to 1, as time n proceeds. For other states, the recursion (3.24) decreases

and monotonically converges to 0.

Proof : See Appendix C for the proof.
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Therefore, there is a monotonic convergence lim
µ!µ

max

H (⇢) = 0 for any i.i.d

input distribution which is not uniform, and thereby, monotonic convergence

H
�

yJ |xJ , ŝJ
�

toH
�

yJ |xJ

�

,H
�

yJ |ŝJ� toH �

yJ
�

and I
µ

⇣

Y ;X | Ŝ
⌘

to ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

for µ ! µ
max

. The monotonic convergence of I
µ

⇣

Y ;X | Ŝ
⌘

to ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

is intuitively satisfactory, because for larger memory the expected dwell time in

each state is larger and the next state can be better predicted. For the uniform

i.i.d. input distribution, Eq. (3.24) becomes lim
µ!µ

max

⇢n+1 (l) = ⇢n (l) and H (⇢)

is a step function, i.e., H (⇢) = 0 for µ = µ
max

and H (⇢) = H (⌧ ) elsewhere, where

⌧ is the initial channel state distribution.

Therefore, according to Lemma 3 to Lemma 6, for any channel input distribution,

I
⇣

Y ;X | Ŝ
⌘

converges to ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

from INM

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

,

for µ increasing from 0 to 1.

Theorem 3.6. For the USVC-FSMC, there exists a non-maximum-entropy chan-

nel input distribution, with which the obtained mutual information rate assuming

no channel state information is larger than that obtained with the channel input

of maximum entropy.

Proof :

We have proved that:

1. if input signals are of maximum information entropy, the mutual information

rate achieved by the decision-feedback decoder is the information capacity

of memoryless channel, CNM

⇣

Y ;X | Ŝ
⌘

.

2. as the channel memory goes towards infinite, the maximum mutual informa-

tion rate achieved by the decision-feedback decoder approaches the informa-

tion capacity of time invariant channels, CCSI

USV N�FSMC

> CNM

⇣

Y ;X | Ŝ
⌘

.

3. therefore, for a channel with any state memory µ, rather than the input

signal with maximum information entropy, there must exist at least one
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input signal distribution, in which the mutual information rate is larger

than CNM

⇣

Y ;X | Ŝ
⌘

.

We assume that, the channel state structure and the transition structure of the

USVN-FSMC are fixed. For any channel memory µ, the mutual information rate

of the USVN-FSMC assuming channel state information is larger than that of

the memoryless USVN-FSMC. Because the information capacity of the USVN-

FSMC assuming channel state information is a continuous function over all input

distributions, there exist a set of channel input distributions, denoted by P 0(X),

with which, ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

> CNM

⇣

Y ;X | Ŝ
⌘

. We have proven that

I
⇣

Y ;X | Ŝ
⌘

converge to ICSI

USV N�FSMC

⇣

Y ;X | Ŝ
⌘

as µ increases. Therefore, for

any input distribution in P 0(X), excluding the input distribution that is of max-

imum entropy, there is a value of µ, with which I
⇣

Y ;X | Ŝ
⌘

> CNM

⇣

Y ;X | Ŝ
⌘

.

3.3 Discussion: The Decision-Feedback Decoder

Cannot Achieve The Full Information Ca-

pacity of The Gilbert-Elliot Channel

According to the analysis of mutual information rate of USVN-FSMC, it is clear

from Fig. 3.3 that the decision-feedback decoder has not achieved the information

capacity of the Gilbert-Elliot channel. The problem for the USVN-FSMC has

not been solved completely. We can provide evidence that non-optimality is due

to the di�culty of synchronizing the state estimation and signal detection in the

decision-feedback decoder. Looking for perfect synchronizer for the Gilbert-Elliot

channel could be one of our future research works.
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3.3.1 The Non-Optimality of The Decision-Feedback De-

coder

In this subsection, we introduce the method which can obtain the information

capacity of the Gilbert-Elliot channel independent of the decoding schemes. It is

called by “coin toss” in [52]. The method is independent of the system model.

After that, we show that the information capacity is higher than the maximum

mutual information rate obtained by the decision-feedback decoder.

The mutual information rate expression by the decision-feedback decoder including

the estimation-caused information loss, I(Y ;X | Ŝ), has been introduced in [23],

where Ŝ is the estimated channel state distribution.

I
⇣

Y ;X | Ŝ
⌘

= lim
J!1

�H �

yJ | ŝJ��H �

yJ | ŝJ , xJ

��

= lim
J!1

1

J

J

X

n=1

(H (y
n

| ŝ
n

)�H (y
n

| x
n

, ŝ
n

)) , (3.25)

where

H (y
n

| ŝ
n

) =
K

X

k=1

⇢n (k)H (y
n

| s
n

= c
k

) , (3.26)

H (y
n

| x
n

, ŝ
n

) = (3.27)

X

i=0,1

Pr (x
n

= i)
K

X

k=1

⇢n (k)H (y
n

| x
n

= i, s
n

= c
k

) ,

where H (y
n

| ŝ
n

) denotes the channel output entropy conditioned on the state

distribution, and H (y
n

| x
n

, ŝ
n

) is the output entropy conditioned on the state

distribution and inputs.

The information capacity of the Gilbert-Elliot channel model can be obtained

using a system-independent method. The mutual information of the Gilbert-Elliot
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channel can be expressed by[53],

I (Y ;X) = H (Y )�H (Y | X) , (3.28)

where H denotes the entropy rate. In [46], it was found that, given input sequence

xn and output sequences yn with n going to infinity, � 1
n

log p(xn, yn)+ 1
n

log p(xn)

converged to the entropy rate H(Y |X), and � 1
n

log p(yn) converged to H(Y).

I (Y ;X) becomes

I (Y ;X) (3.29)

=
1

n
log p (xn, yn)� 1

n
log (xn)� 1

n
log p (yn) ,

where p(yn) and p(xn, yn) can be computed using the sum-product algorithm pro-

vided in [46]. The results show that the information capacity is achieved by uni-

form and i.i.d channel inputs[21].

The sum-product algorithm was later simplify to a “coin toss” method. In [21,

46, 52], the Gilbert-Elliot channel information capacity is expressed by

C = lim
n!1

max
1

nI (xn; yn)

= lim
n!1

max
(H (yn)�H (yn | xn))

n

= lim
n!1

max
(H (yn)�H (zn)))

n
. (3.30)

H(yn) = n log(Y) = n because the output alphabet Y is uniform and i.i.d.. (3.30)

is simplified to,

C = 1� lim
n!1

H (zn)

n
. (3.31)

H(zn) can be approximated by generating a long sequence of zn and evaluat-

ing � log Pr(zn)/n. The probability of z
n

= 1 can be calculated recursively as
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follows[21, 22]:

q
n

= v (z
n�1, qn�1) , (3.32)

if z
n�1 = 0,

v (z
n�1, qn�1) = p

G

+ b (p
B

� p
G

) (3.33)

+µ (q
n�1 � p

G

) [(1� p
B

) / (1� q
n�1)] ,

if z
n�1 = 1,

v (z
n�1, qn�1) = p

G

+ b (p
B

� p
G

) + µ (q
n�1 � p

G

) (p
B

/q
n�1) . (3.34)

Because

� log Pr(zn)/n = � 1

n

n

X

i=1

log Pr(z
i

|zi�1)

= � 1

n

n

X

i=1

(z
i

log (q
i

) + (1� z
i

) log (1� q
i

))) . (3.35)

The limit of (3.35) can be obtained by recursion. z0 is assumed. This recursion

begins with i = 1 and stops when i is larger enough that the value of (3.35)

converges. In the simulation in this thesis, the recursion stops at i = 5000. In

each step of the recursion, we generate z
i

as a Bernouli(q
i

) since q
i

is known. If

the Bernouli(q
i

) result is success, log(q
i

) is added, otherwise log(1� q
i

) is added.

This method is called by “coin toss” in [52].

In Fig. 3.3, the information capacity of the Gilbert-Elliot channel obtained by

the “coin toss” method is plotted against the recursive times. In Fig. 3.4, we

compare the mutual information rate, denoted in the figure by AMIR, obtained

by the decision-feedback decoder with the information capacity, of which the value
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Figure 3.5: The decision-feedback decoder with the implicit predictor.

is taken from Fig. 3.3 when recursive time n = 5000. Evidently, the decision-

feedback decoder is unable to achieve the the information capacity.

3.3.2 A Non-Trivial Reasons for The Non-Optimality of

The Decision Feedback Decoder

Many possible reasons contribute to the non-optimality of the decision-feedback

decoder. We argue that the delay between the state detection and signal detection

is the main reason. We have shown in section 1.3.1.3 that the perfect synchro-

nization between the two detections is a su�cient condition for optimum signal

detection of FSMCs with channel variation memory. In this subsection, we show

that the decision-feedback decoder tries to solve the problem by guessing the dis-

tribution of the next state, which removes the delay of state estimation but results

in additional errors.

Refering to formula (3.7) of the decision-feedback decoder

⇢n+1 =
⇢nB (y

n

)P

⇢nB (y
n

)1
, f (y

n

,⇢n) , (3.36)
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where B (y
n

) is a diagonal 2 ⇥ 2 matrix, with the kth (k = 1, 2) diagonal term

Pr (y
n

= 0|s
n

= c
k

) and 1 = (1, 1)T [22], (3.36) can be devided into two parts:

⇢n+1 =

✓

⇢nB (y
n

)

⇢nB (y
n

)1

◆

· (P) , (3.37)

We show in the following that the state has been actually detected by the formula

in the first bracket, while P in the second bracket predicts the distribution of next

state.

⇢nB (y
n

)

⇢nB (y
n

)1

=



Pr (s
n

= c1) Pr (s
n

= c2)

�

2

6

4

Pr (y
n

|s
n

= c1) 0

0 Pr (y
n

|s
n

= c2)

3

7

5



Pr (s
n

= c1) Pr (s
n

= c2)

�

2

6

4

Pr (y
n

|s
n

= c1) 0

0 Pr (y
n

|s
n

= c2)

3

7

5

2

6

4

1

1

3

7

5

=



Pr (y
n

, s
n

= c1) Pr (y
n

, s
n

= c2)

�



Pr (y
n

, s
n

= c1) Pr (y
n

, s
n

= c2)

�

2

6

4

1

1

3

7

5

=



Pr (s
n

= c1|yn) Pr (s
n

= c2|yn)
�

.

(3.38)

Therefore ⇢nB(y
n

)

⇢nB(y
n

)1 has detected the state distribution conditioned on the past

outputs. However, what is used for recovering transmitted signal in the ML de-

coder is the prediction result, shown in Fig. 3.5. Because estimating the channel

state in the receiver is always delayed by 1 symbol, which means the detected state

information is about the channel state in time slot n when the n + 1 symbol ar-

rives at the receiver, this prediction succeeds in removing the delay but obviously

additional errors has been introduced by the term (P) in (3.37).
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3.4 Chapter Conclusion

In the section, we provide analysis for USVN-FSMC, which complements the exist-

ing analysis for time varying channels in the literature. We show that time varying

channels are fundamentally di↵erent from time invariant channel or slow time vary-

ing channels. The exisiting state estimation schemes and decoding schemes are

no longer capacity achieving for time varying channels. There could be two non-

trival reasons for the non-optimality. First, estimation schemes and the decoding

schemes are not powerful enough. Second, models for time varying channels are

insu�cient to show the essential of the type of channels.
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Chapter 4

The Mutual Information Rate

Analysis of Uniformly Symmetric

Variable Noise Finite State

Markov Channels with Markov

Input Signals

In this chapter, we test the mutual information rate of USVN-FSMC with an

example of Markov signal input. The example we use is a first order symmetric

Markov chain. In last chapter, we show via independent input signals that the

mutual information rate of USVN-FSMC is maximized by input signals with in-

formation redundancy. Our analysis of Markov input signals confirms this result

again. More importantly, we find that the Markov input signal can achieve higher

mutual information rate than independent input signals with the same information

redundancy.
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4.1 Channel State Estimation Algorithm for Markov

Input Signals and The Estimation Results

In this section, we first show how the uniform inputs with first order memory can

be converted to equivalent non-uniform i.i.d. sequence so that (3.7) in chapter 3

can be used. We assume that the alphabet of Markov inputs has two symbols,

X = {1, 0}, and the transition probabilities between each other are equal, g10 =

g01.

Referring to Fig. 3.1(b), input symbols with memory will be made mutual inde-

pendent when passing through the interleaver[21–23]. This is done by storing the

symbols row by row in a J ⇥L matrix and transmitting them column by column.

An example is shown as follows,

x1, x2, x3, x4, · · ·, x9 =)

2

6

6

6

6

4

x1 x2 x3

x4 x5 x6

x7 x8 x9

3

7

7

7

7

5

=) x1, x4, x7, x2, · · ·, x9.

Any two consecutive symbols in the input sequence is dispersed by J in distance

and can be regarded as memoryless when J is large. Therefore, when the uniform

Markov source is applied to the interleaver directly, it will become uniform and

i.i.d.. According to result in section 3.2, the state cannot be tracked reliably as

the estimation requires redundancy [23].

However, any two consecutive symbols in the Markov chain are dependent and we

can make use of their memory by treating them as one symbol in the interleaver.
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An example is shown as follows:

x1, x2, x3, x4, ···, x18 =)

2

6

6

6

6

4

x1x2 x3x4 x5x6

x7x8 x9x10 x11x12

x13x14 x15x16 x17x18

3

7

7

7

7

5

=) x1x2, x7x8, x13x14, x3x4, ···, x17x18.

The inputs is converted to a sequence of new alphabet. In our case, the input will

become an i.i.d sequence with new alphabet X = {00, 01, 11, 10}, where

Pr (x
n

= 00) = 0.5 ⇤ (1� g10) ,

Pr (x
n

= 01) = 0.5 ⇤ g10,

Pr (x
n

= 11) = 0.5 ⇤ (1� g10) ,

Pr (x
n

= 10) = 0.5 ⇤ g10. (4.1)

If g10 = 0.5, the new sequence is uniform, i.e., Pr(x
n

= 00) = Pr(x
n

= 01) =

Pr(x
n

= 11) = Pr(x
n

= 10) = 0.25. If g10 6= 0.5, the sequence has redundancy

and the channel state can be tracked as follows.

Taking a module-2 addition of the two bits of each new symbol, we have

00 �! 0� 0 = 0,

01 �! 0� 1 = 1,

11 �! 1� 1 = 0,

10 �! 1� 0 = 1. (4.2)

Denoting the addition result by x
0
n

, we have

Pr
⇣

x
0

n

= 0
⌘

= 1� g10

Pr
⇣

x
0

n

= 1
⌘

= g10 (4.3)
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The corresponding analytical output probabilities of good state and bad state can

be expressed by,

Pr
⇣

y
0

n

= 0|s
n

= c1

⌘

= Pr
⇣

x
0

n

= 0
⌘

·�(1� p
G

)2 + (p
G

)2
�

+2·Pr
⇣

x
0

n

= 1
⌘

·(1� p
G

)·(p
G

) ,

(4.4)

Pr
⇣

y
0

n

= 0|s
n

= c2

⌘

= Pr
⇣

x
0

n

= 0
⌘

·�(1� p
B

)2 + (p
B

)2
�

+2·Pr
⇣

x
0

n

= 1
⌘

·(1� p
B

)·(p
B

) ,

(4.5)

We denote the statistical average of the output obtained in simulations by P̂r
�

y
0
n

= 0
�

.

According to (3.7), the state can be detected by

⇢n+1 =
↵̂

0

�̂ 0
·P, (4.6)

where ↵̂
0
=



|P̂r(y0
n

= 0)� Pr(y
0
n

= 0|s
n

= c2)| |P̂r(y0
n

= 0)� Pr(y
0
n

= 0|s
n

= c1)|
�

,

�̂ 0 = |P̂r(y0
n

= 0)� Pr(y
0
n

= 0|s
n

= c2)|+ |P̂r(y0
n

= 0)� Pr(y
0
n

= 0|s
n

= c1)|.

Fig. 4.1(a) shows the tracking ability of estimator with µ
s

= 0. Obviously, the

estimator fails to track the channel state. This is because when the memory is

equal to zero, the input is uniform and i.i.d.. According to [21–23], the estimator

determines the channel state by measuring how much the channel input distribu-

tion is modified after being filtered by the channel. However, the uniform and i.i.d.

input distribution will be modified by the same degree, regardless which state the

channel is in.

Fig. 4.1(b), 4.1(c) and 4.1(d) show the tracking ability of the estimator with

channel input memory, µ
s

= 0.2, µ
s

= 0.4 and µ
s

= 0.6, respectively. For all these

inputs, the channel state is tracked successfully. The performance improves as the

memory increases. This is because redundancy in the transformed input sequence

is an increasing function of the original input’s memory, and larger redundancy

results in better estimation results [23].
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(a) (b)

(c) (d)

Figure 4.1: Tracking ability of the loop-loop estimator with di↵erent input

memory, µ: (a) µ = 0, (b) µ = 0.2, (c) µ = 0.4 and (d) µ = 0.6.

The results above are also confirmed in Fig. 4.2(a), in which the entropy of the

state is plotted against the memory. As the memory increases, the state entropy

decreases continuously.

In Fig. 4.2(b), we also compare the estimation ability of the Markov inputs and

i.i.d. inputs. The entropy of the estimated state distribution by these two kinds of

inputs is plotted against the channel input entropy. With the same input entropy,

the state entropy by Markov source is larger. This means that with the Markov

source, we are more certain about the channel state. It should be noted that

the minimum entropy of the uniform Markov source is 0.5. This is because by

taking module-2 addition to the two bits of each input symbol, we enlarge the

distance between the two analytical output probability of the two states in (4.6),
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(a) (b)

Figure 4.2: (a) The entropy of the estimated state distribution vs. the channel

input memory; (b)

1. The solid line is the entropy of the estimated state distribution by Markov

source vs. the channel input entropy.

2. The dash line is the entropy of the estimated state distribution by i.i.d.

source vs. the channel input entropy

Pr (y
n

= 0|s
n

= c1) and Pr (y
n

= 0|s
n

= c2), so that it becomes easier to determine

the state given the same redundancy.

4.2 Mutual Information Rate Expression of The

Channel with Markov Input Signals

In this section, we investigate the mutual information rate of USVN-FSMCs with

the Markov input. We show first that compared to uniform and i.i.d. inputs with

the same alphabet, larger maximum mutual information rate can be obtained by

the Markov input. Second, we show that with the same redundancy, the Markov

inputs have better mutual information rate performance than i.i.d. inputs with

the same alphabet.

The mutual information rate expression, R = I
⇣

Y ;X | Ŝ
⌘

, has been introduced

in [23], where Y and X are the channel output and input respectively, and Ŝ is the
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(a) (b)

Figure 4.3: (a)

1. The solid line is H (y
n

| ŝ
n

) vs. the channel input memory.

2. The dash line is H (y
n

| x
n

, ŝ
n

) vs. the channel input memory;

(b)

1. The solid line is the channel mutual information rate by uniform dis-

tributed source with memory vs. the channel input memory

2. The dash line is the channel mutual information rate by uniform and i.i.d.

source vs. the channel input memory.

estimated channel state distribution. It should be noted that the uniform Markov

source is transformed to non-uniform i.i.d. input sequence with larger alphabet

by the algorithm in last section. Information about the channel state distribution

is obtained by estimation, which is enabled by the redundancy in the transformed

input sequence.

I
⇣

Y ;X | Ŝ
⌘

= lim
J!1

�H �

yJ | ŝJ��H �

yJ | ŝJ , xJ

��

= lim
J!1

1

J

J

X

n=1

(H (y
n

| ŝ
n

)�H (y
n

| x
n

, ŝ
n

)) , (4.7)

where H (· | ·) denotes the conditional entropy. H (y
n

| ŝ
n

) denotes the entropy

of the channel outputs conditioned on state distribution. H (y
n

| x
n

, ŝ
n

) is the

entropy of the outputs conditioned on state distribution and inputs.
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(a) (b)

Figure 4.4: (a)

1. The solid line is the channel mutual information rate by uniform dis-

tributed source with memory vs. the channel input entropy.

2. The dash line is the channel mutual information rate by i.i.d. source vs.

the channel input entropy.

(b) Enlargement of a part of (a).

4.3 Comparing The Mutual Information Rates

Obtained by Markov Source and That by In-

dependent Source

In Fig. 4.3(a), H (y
n

| ŝ
n

) and H (y
n

| x
n

, ŝ
n

) of the channel with uniform inputs

with memory are plotted against the channel input memory. They decrease at

di↵erent rates as the memory increases. Therefore, the mutual information rate is

not maximized by inputs with memory which is equal to 0.

In Fig. 4.3(b), the mutual information rates gotten by uniform Markov source and

by uniform i.i.d source with the same alphabet are plotted against the channel

input memory. Evidently, when the memory is zero, the Markov source changed

back to i.i.d. and the two mutual information rates are equal. However, the mutual

information rate with Markov source is maximized at a non-zero memory.
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In Fig. 4.4(a) and 4.4(b), channel mutual information rates obtained by uniform

Markov inputs and i.i.d. inputs with the same alphabet are plotted against input

entropy. Obviously, the Markov inputs have achieved better performance. This

is because the Markov inputs can track the state more reliably, which indirectly

leads to a higher mutual information rate, shown in Fig. 4.2(b).

4.4 Chapter Conclusion

In this chapter, we confirm via a type of Markov input signals that the mutual

information rate of USVN-FSMC is maximized with information redundancy. We

also prove the possibility that Markov input signals can achieve higher mutual

information rate than independent signals. But the advantage is very small and

can almost neglected. In other words, there is no much research value in it.
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Chapter 5

Information Capacity Analysis of

The Time Varying Binary

Symmetric Channels

The ultimate purpose of this thesis is to find a solution to achieve high rate data

transmission over mobile communication channels. The mobile communication

channel is a typical time variable channel. In this chapter, we achieve this ob-

jective in two steps. First, we clarify the incompleteness of the current simplest

USVN-FSMC model for mobile communication channels. We then introduce a

more accurate and simpler model for the time variable mobile communication

channels. Second, we prove that the di↵erential encoder and the di↵erential de-

coder can achieve the information capacity of the new model. In chapter 3 and

chapter 4, we revisited the analysis of time variable channels in the literature. We

confirm that time invariant channels and time varying channels are fundamentally

di↵erent. It should be noted here that time invariant channels here also include

slow time varying channel. Existing decoding schemes for time varying communi-

cation schemes are usually comprised of two parts. The first part is channel state

estimator. The second part is signal detector. There are always relative delays
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between these two parts. For this reason, existing decoders cannot achieve the full

information capacity of time varying communication channels. The di↵erential

encoder and the di↵erential decoder combined the two parts and is able achieve

the information capacity of the time varying channels.

5.1 The Incompleteness of The Gilbert-Elliot Chan-

nel Model

The Gilbert-Elliot model is the simplest FSMC model for time varying commu-

nication channels in the literature. In this section, we introduce the physical

significance of the Gilbert-Elliot model and show its incompleteness in modeling

the time varying channels. A new simplest model for the mobile communication

channel is therefore required..

5.1.1 The Discrete Communication System

The mathematical model of the digital communication systems has been expressed

in (2.1)

Y = GX + Z. (5.1)

In this chapter, we are going to analyze the modeling of the simplest communica-

tion channel with channel variation memory. The four factors Y , G, X and Z in

(5.1) are all scalars, which means that the transmitted symbols are mutually inde-

pendent and there is no multi-path delay during the transmission. In this paper,

we denote the nth transmitted symbol and the nth received symbol by x0
n

and y0
n

,

respectively. And we denote the transmitted symbol sequence and the received
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(a) (b)

Figure 5.1: (a) The Gilbert-Elliot channel model; (b) The time-varying-BSC.

symbol sequence at time slot n by x
n

and y
n

, respectively. Since the transmitted

symbols are mutually independent, the expectation E(x0
i

·x0
j

) = 0 whenever i 6= j.

5.1.2 The Physical Significance of The Gilbert-Elliot Model

The Gilbert-Elliot channel, shown in Fig. 5.1(a), has been used in modeling the

time varying receiver signal amplitude fading in time varying mobile communica-

tion channel[21–23]. It is comprised of two discrete Binary Symmetric Channels

(BSC), denoted by c1, c2, respectively. The crossover probabilities at c1 and c2

are denoted by p
G

and p
B

, respectively, and p
G

< p
B

. The state with smaller

crossover probability is called as the good state and the other is called as the

bad state. We clarify in this subsection how the Gilbert-Elliot channel is used

to model the time varying receiver signal amplitude fading in single-path mobile

communication system or in multi-path communication system.

First, we assume that there is only one line-of-sight path between the transmit-

ter and the receiver over which the signal is transmitted. The transmitted signal

experiences no amplitude attenuation, but the receiver motion can change the com-

munication environment geometrically which may have a di↵erent level of additive

white Gaussian noise and therefore a di↵erent signal to noise ratio. For simplic-

ity, we take the changing of the noise level as a kind of time varying amplitude
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fading since the di↵erent signal to noise ratio can be caused in another equivalent

situation where the signal experiences amplitude fading while the additive white

Gaussian noise stays still. The Gilbert-Elliot channel models the channel with

strong additive white Gaussian noise by the bad state and models the channel

with low additive white Gaussian noise by the good state.

Second, we assume that signals are transmitted to the receiver over multiple prop-

agation paths, but all components of each transmitted symbol arrive at the re-

ceiver without any excess delay[18]. Under this assumption, transmitted signals

experience certain level of amplitude fading at any time slot. The object motion

changes communication environments geometrically, which leads to di↵erent am-

plitude fading level. Similarly, the channel with deep fading is modelled by the

bad state and the channel with light fading is modelled by the good state.

Referring back to the scalar model of the time varying communication system

in (??), the geometric change of the communication environment results in time

varying amplitude fading, which leads to an increase or an decrease of the value

of G. Therefore, the Gilbert-Elliot channel model can be expressed by

Y = GX + Z, (5.2)

where G 2 {G1, G2}.

5.1.3 The Limitation of The Gilbert-Elliot Channel Model

In this subsection, we show the incompleteness of the Gilbert-Elliot model in

modelling mobile communication channels. The information loss caused by the

Doppler shift has not been covered. This incompleteness can be shown via the

simplest time varying communication scenario where there is only one transmitter

and one receiver, and the signal travels over one single path. We can show that, the
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Doppler phase shift cannot be removed in demodulating the carrier signal to base

band signal and will cause errors in deciding the transmitted symbol conditioned

on demodulated signals. This error has not been covered by the Gilbert-Elliot

channel model.

We assume that the receiver is moving at a velocity v. Assuming the wave arriving

at the receiver at an angle ↵ to the direction of motion, the Doppler shift in Hertz

carried in the carrier signal can be expressed by

f
d

=
v

�
cos↵ = f

m

cos↵, (5.3)

where � is the wavelength and f
m

is the maximum doppler shift. The transmitted

signal can be expressed by

s
T

(t) = s (t) (cos (2⇡f
c

t) + i sin (2⇡f
c

t)) , (5.4)

The received signal can be expressed by

s
R

= s
T

(t) (cos (2⇡f
c

t+ 2⇡f
d

t) + i · sin (2⇡f
c

t+ 2⇡f
d

t)) , (5.5)

where s
T

is the base band transmitted signal and f
c

is the carrier frequency; i is

the imaginary unit. The amplitude of the received signal, |s
R

(t)|, is always equal
to that of the transmitted signal, |s

T

(t)|, shown as follows:

|s
R

(t)| = |s
T

(t)|
q

cos2 (2⇡f
c

t+ 2⇡f
d

t) + sin2 (2⇡f
c

t+ 2⇡f
d

t)

= |s
T

(t)| . (5.6)

When this communication channel is modeled by the Gilbert-Elliot channel , the

transition probability from the good state to the bad state approaches zero and

the channel always stays in the good state. However, we can show that even with
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the unweaken received power amplitude, additional bits are required to recover

the transmitted symbol. We assume that binary phase shift keying is used here

and the signal is recovered using the real part of the received signal[18],

R {|s
R

(t)|} = s
T

(t) cos (2⇡f
c

t+ 2⇡f
d

t) . (5.7)

Multiplying (5.7) by cos (2⇡f
c

t), we have,

R {|s
R

(t)|} cos (2⇡f
c

t) = s
T

(t) cos (2⇡f
c

t+ 2⇡f
d

t) cos (2⇡f
c

t) (5.8)

=
1

2
s
T

(t) (cos (4⇡f
c

t+ 2⇡f
d

t) + cos (2⇡f
d

t)) .

Removing the high frequency part of (5.8) by a low-pass filter[18], we have the

recovered signal:

ŝ
R

(t) = s
T

(t) cos (2⇡f
d

t) . (5.9)

The information loss in signal recovery till here is modeled well by the good state

of the Gilbert-Elliot channel. However, it is obvious that detection errors might

occur due to the Doppler phase shift, 2⇡f
d

t. In slow time varying channels, the

Doppler phase shift accumulates very slowly and can be removed or compensated

via frequency synchronization. In other words, the Doppler phase shift can still

be easily observed using conventional techniques. The Gilbert-Elliot model is still

accurate. However, when the receiver is moving in a large enough velocity, for

example, in a car. The Doppler phase shift accumulates too fast and becomes

very di�cult to detect. The consistent e↵ect of the Doppler phase shift is no

longer negligible in modelling. Therefore, a model for the relevant information

loss is required.
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5.2 Modeling The Mobile Communication Chan-

nel by The Time-Varying Binary Symmetric

Channel

In this section, we model the Doppler phase shift in mobile communications by

the time-varying-BSC. We first introduce in detail the Doppler phase shift carried

by signals in both single-path time varying channels and multi-path time varying

channels. Second, we clarify the physical significance of the time-varying-BSC by

matching parameters of the model with the relevant factors of physical channels.

Third, we prove that the di↵erential encoder and the di↵erential decoder can

synchronise the state detection and signal recovery of the time-varying-BSC, and

preserve the information capacity of the model.

5.2.1 Time Varying Binary Symmetric Channel Model

The time-varying-BSC in this thesis belongs to the general set of uniformly sym-

metric variable noise finite state Markov channels [54–57]. An example of the

time-varying-BSC is shown in Fig. 5.1(b). The time-varying-BSC comprises of

two BSCs, which are called by non-inverted BSC and inverted BSC. The non-

inverted BSC and the inverted BSC have opposite crossover probabilities denoted

by p and 1 � p, respectively. And the two BSCs have the same probability of

transitioning to each other, denoted by q.

5.2.2 Doppler Phase Shift

In this subsection, we introduce the Doppler phase shift in the received carrier sig-

nal in both single-path time varying channels and multi-path time varying chan-

nels.
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First, we assume the signal only propagates over one line-of-sight path between

the transmitter and the receiver. The received carrier signal can be expressed by,

s
R

(t) = s (t) (cos (2⇡f
c

t+ 2⇡f
d

t) + i sin (2⇡f
c

t+ 2⇡f
d

t)) , (5.10)

where the Doppler shift in Hertz can be expressed by

f
d

=
v

�
cos↵ = f

m

cos↵, (5.11)

where v is the motion velocity, � is the wavelength and f
m

is the maximum Doppler

shift.

Second, we assume signals are transmitted over multiple paths, in which there is

no line-of-sight path between the transmitter and the receiver. We show in the

following that Doppler shifts of most carrier signals are within two very small

intervals, [�f
m

,�f
m

+ ⇢) and (f
m

� ⇢, f
m

], ⇢ is a small positive real number.

Following the assumption of Clarke’s model in [58], antennas of the transmitter are

vertically polarized. There are N azimuthal plane waves arriving the receiver with

arbitrary carrier phases, arbitrary azimuthal angles of arrival, and equal average

amplitude [58]. The power spectrum of the received carrier signal of the Clarke’s

model has been analyzed in [58]. With the average signal amplitude denoted by

U , the total received power can be expressed by

P
r

=

Z 2⇡

0

UPr(↵)d↵, (5.12)

where UPr(↵)d↵ is the di↵erential variation of received power with angle. With the

power-spectral density of the received signal denoted by ⌥ (f), the total received

power can also be expressed by

P
r

=

Z

f

c

+f

m

f

c

�f

m

⌥ (f)df. (5.13)
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Combining (5.11)(5.12) and (5.13), we have

⌥ (f) =
U (Pr (↵) + Pr (�↵))

f
m

r

1�
⇣

f�f

c

f

m

⌘2
. (5.14)

Since ↵ is uniformly distributed over 0 to 2⇡ and Pr (↵) = 1
2⇡ , the power spectrum

becomes

⌥ (f) =
U

⇡f
m

r

1�
⇣

f�f

c

f

m

⌘2
. (5.15)

Equation (5.15) shows infinite power spectral density at f = f
c

± f
m

. This

means that the Doppler shifts of most arrived waves are within two small ranges,

(�f
m

,�f
m

+ ⇢) and (f
m

� ⇢, f
m

).

5.2.3 Physical Significance of The Time-Varying Binary

Symmetric Channel

In this section, we introduce the time-varying-BSC for the Doppler phase shift.

Instant phases of the received carrier components are random and impossible to

be modeled. We dig into the phase changes in last two subsections and show their

underlying constant changing rate. The time-varying-BSC is actually modeling

this changing rate.

Under the single-path assumption, the Doppler shift in the received carrier signal

is fixed, f
d

or �f
d

, which depends on the motion direction. We assume the Doppler

phase shift starts from 0. Because the Doppler phase shift is equal to 2⇡f
d

t, which

is a linear function of t, it rotates on the Cartesian coordinate plan at a constant

rate 2⇡f
d

, shown in Fig.5.2. Referring to equation (5.9), the demodulated signal

is

ŝ
R

(t) = s
T

(t) cos (2⇡f
d

t) . (5.16)
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Figure 5.2: The Doppler phase shift.

When the phase shift stays in the right side of the Cartesian coordinate plane,

cos(2⇡f
d

t) is positive and the signal is in-phase. Assuming binary phase shift

keying scheme is used, the transmitted symbol can be recovered without any ad-

ditional errors. The mathematical system model can be expressed by

Y = GX + Z. (5.17)

The channel during the time when the signal stay in-phase can be modeled in

the time-varying-BSC by a BSC with the crossover probability, p, shown in Fig.

4.2(b).

When the phase shift stays in the left side of the coordinate plane, the signal

would stay out-of-phase. Assuming binary phase shift keying is used, an opposite

transmitted symbol will be obtained. The mathematical system model becomes,

Y = G (�X ) + Z

= �GX + Z. (5.18)

The channel during this time can be modeled by an inverted BSC, with the prob-

ability, 1� p. Since the phase shift stays in either side of the coordinate plane for
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an equal length of time, the transition probabilities, q, between the non-inverted

BSC and the inverted BSC are the same, value of which are determined by the

motion velocity.

Under the multi-path assumption, the mapping between the physical channel and

the time-varying-BSC is not straightforward and it is necessary to clarify following

relationships,

1. Excess delay and base band signal: this thesis considers the very narrow

base band signal, the bandwidth of which is smaller than ten percent of

the carrier frequency. Its symbol duration is long enough that the excess

delay encountered by the multi-path components cannot cause inter-symbol

interference. For simplicity, we can assume that all multi-path components

arrive at the receiver simultaneously.

2. Excess delay and carrier signal: The excess delay is large enough to a↵ect the

phase of the carrier signal, which has a very high frequency and a very small

wavelength. Usually, the excess delay can be assumed to be a random pro-

cess and therefore the carrier signal components have random phases, which

are uniformly distributed on the interval (0, 2⇡] [18]. It should be noted

that we assume that the excess delays encountered by the multi-path com-

ponents vary at a much slower rate than the Doppler phase shift does. For

simplicity, we can assume the excess delays for the multi-path components

are stationary for a certain block of time.

3. Doppler phase shift and Carrier signal: The Doppler phase shift is carried

by the carrier signal and mixed with the phase shift caused by the excess

delay. Both phase shifts continue to exist after the demodulation. However,

we can expect the excess-delay-caused phase shift to be eliminated from the

demodulated base band signal due to its stationary, but the Doppler phase

shift will stay and a↵ect the subsequent detection of the transmitted symbol.
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It is fortunate that the Doppler phase shift in the multi-path components

is not random and we show in this subsection its e↵ect on symbol detection

can be modeled by the time-varying-BSC.

4. Doppler phase shift and base band signal: The Doppler phase shift stays with

the modulated base band signal. It should be noted that the Doppler phase

shift does not a↵ect the phase of base band signal, which is a combination of

random phases of many single-frequency signals and does not have physical

meaning. This means the Doppler phase shift does not change the shape of

the base band signal. The Doppler phase shift can change the amplitude of

the demodulated base band signal and it can be seen as a scalar to the base

band signal, which takes values from [�1, 0) [ (0, 1].

Given the clarifications listed above, the physical significance of the time-varying-

BSC under the multi-path propagation assumption can be shown. Based on the

analysis in [58, 59], received carrier signals at time t under the multi-path assump-

tion can be expressed by

s
R

(t) = T
c

cos (2⇡f
c

t)� i · T
s

sin (2⇡f
c

t) , (5.19)

where

T
c

(t) = E0

N

X

n=1

C
n

cos (2⇡f
d�n

t+ �) , (5.20)

and

T
s

(t) = E0

N

X

n=1

C
n

sin (2⇡f
d�n

t+ �) . (5.21)

where E0 is the amplitude of local average E-field and C
n

is real random variable

representing the amplitude of nth wave; f
d�n

is the Doppler shift of the nth wave.

T
c

(t) and T
s

(t) are both Gaussian random processes at any time t [58, 59].
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We assume that the signal is recovered using the real part of (5.19). It can be ex-

pected that cos(2⇡f
c

t) is eliminated in demodulation and the transmitted symbol

are decided based on T
c

(t),

T
c

(t) = E0

N

X

n=1

C
n

cos (2⇡f
d�n

t+ �) . (5.22)

However, we have shown in section IV-A that Doppler shifts of most arrived waves

are within two small ranges, [�f
m

,�f
m

+ ⇢) and (f
m

� ⇢, f
m

], where ⇢ is a very

small positive number. Therefore, the Doppler phase shift are also within two

small intervals [�2⇡f
m

,�2⇡f
m

+ 2⇡⇢) and (2⇡f
m

� 2⇡⇢, 2⇡f
m

]. In digital com-

munications, the Doppler phase shifts are discretized into equal segments, each

of which are represented by one phase shift. It is reasonable to assume that the

segment is much larger than the interval and thus all Doppler phase shift are

represented by 2⇡f
m

t or �2⇡f
m

t. Therefore, T
c

(t) can be expressed by,

T
c

(t) = E0

N

X

n=1

C
n

cos (2⇡f
m

t+ �) , (5.23)

or

T
c

(t) = E0

N

X

n=1

C
n

cos (�2⇡f
m

t+ �) . (5.24)

It can be expected that � of these multi-path components can be removed due to

its stationary, as shown in (5.7), (5.8) and (5.9). T
c

(t) becomes

T
c

(t) = E0

N

X

n=1

C
n

cos (�2⇡f
m

t) . (5.25)

Theoretically, the transmitted symbol is decided by the value of T
c

(t). When

T
c

(t) is higher than the threshold 0, the symbol of 1 is transmitted; when T
c

(t) is

smaller than the threshold 0, the symbol of 0 is transmitted. We also assume the
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Doppler phase shift starts from 0. It rotates on the Cartesian coordinate plane

at a constant rate 2⇡f
m

or �2⇡f
m

. The transmitted symbol can be recovered

without any additional errors when the Doppler phase shift is in the right side of

the Cartesian plane and cos(�2⇡f
m

t) or cos(2⇡f
m

t) is positive. The mathematical

system model can be expressed by

Y = GX + Z. (5.26)

The channel during the time is modeled in the time-varying-BSC by the non-

inverted BSC.

When the Doppler phase shift stays in the left side of the Cartesian plane, cos(�2⇡f
m

t)

or cos(2⇡f
m

t) is negative and the opposite of the transmitted symbol will be ob-

tained if there is no additional detecting technique being used for the Doppler

phase shift. The mathematical system model becomes,

Y = �GX + Z. (5.27)

The channel during this time can be modeled by the inverted BSC. Since the

phase shift rotates at a constant rate, the channel stays in either state for an equal

length of time, the transition probabilities between the non-inverted BSC and the

inverted BSC are the same.

5.2.4 Di↵erential Encoder and Di↵erential Decoder

In this subsection, we show that the di↵erential encoder and the di↵erential de-

coder for the time-varying-BSC can synchronize the state estimation and signal

detection without any additional information loss. As a result, the encoder and the

decoder can achieve the information capacity of the time-varying-BSC. Results in

this subsection prove indirectly the hypothesis made in section 3.4.2 that the main
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Figure 5.3: The channel model of time-varying-BSC with the synchronizer.

di�culty in performing optimum detection for time varying channel model, includ-

ing the Gilbert-Elliot channel and time-varying-BSC, comes from synchronizing

the state detection and signal detection.

5.2.4.1 Synchronizing The Signal Recovery with The State Detection

In chapter 3, we have clarified that the main di�culty to achieving information

capacity of time varying channels comes form synchronizing the state detection

and signal detection. Before introducing the di↵erential encoder and the di↵er-

ential decoder, we show physically how they synchronize the signal detection and

state estimation. Referred to the system model in Fig. 5.3, the decision-feedback

decoder for the Gilbert-Elliot channel performs state estimation in the receiver

side only. In the di↵erential decoding scheme, part of the work of state estima-

tion is moved to the transmitter. A pre-synchronizer is set up in the transmitter

side. Each transmitted symbol is restructured when it is passed through the pre-

synchronizer and become sensitive to the varying of the channel state. At the

received side, the signal carrying the state information is passed through the de-

synchronizer, where the state information is determined and removed from the

signal. The transmitted signal is thereafter able to be recovered based on the

state information using a conventional decoder, such as the maximum-likelihood
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decoder. Since the state information carried by the received signal is instant, no

delay occurs between the state estimation and the signal detection.

The advantage of the di↵erential encoder and the di↵erential decoder on syn-

chronization can also be shown mathematically. Referred back to Fig.4.2(b), the

time-varying-BSC can be described by [40],

y0
n

= s
n

� x0
n

� v
n

, (5.28)

s
n

= s
n�1 � ⌘

n

(5.29)

where y0
n

and x0
n

denote the n-th bit of the input sequence and the output sequence,

respectively; s
n

is the channel state information, during which x0
n

is transmitted,

and ⌘
n

is the channel varying process; ⌘
n

2 {0, 1} and Pr(⌘
n

) = q; v
n

denotes the

channel noise process and Pr(v
n

= 1) = p.

When the di↵erential encoder and the di↵erential decoder are employed, the trans-

mitted signal is encoded before transmission,

b
n

= x0
n

� b
n�1, (5.30)

where b0 is the reference bit. The received signal can be expressed by

y0
n

= s
n

� b
n

� v
n

(5.31)

= (s
n�1 � ⌘

n

)� (x0
n

� b
n�1)� v

n

. (5.32)
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Figure 5.4: The new equivalent Markov model of the time-varying-BSC.

When the received signal is passed through the di↵erential decoder, it is decoded

by

d
n

= y0
n

� y0
n�1

= (s
n

� b
n

� v
n

)� (s
n�1 � b

n�1 � v
n�1)

= ((s
n�1 � ⌘

n

)� (x0
n

� b
n�1)� v

n

)� (s
n�1 � b

n�1 � v
n�1)

= x0
n

� ⌘
n

� (v
n

� v
n�1) . (5.33)

From (5.33), the instant varying information ⌘
n

is carried. What is innovative is

that ⌘
n

= s
n

� s
n�1 is memoryless and the information can be processed using

conventional technique in the literature for memoryless channels. Based on instant

state information, the transmitted signal can be further recovered.
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5.2.4.2 Achieving The Information Capacity of Time-Varying-BSC by

The Di↵erential Encoder and The Di↵erential Decoder

In this subsection, we prove that the di↵erential encoder and the di↵erential de-

coder can achieve the information capacity for the time-varying-BSC. From (5.33),

the cascade of the di↵erential encoder, the time-varying-BSC and the di↵erential

decoder have formed a new Markov channel. We prove that the encoder and the

decoder do not lead to any capacity loss and these two Markov channels have the

same information capacity,

The new Markov channel has been defined in [40], shown in Fig. 5.4. The channel

state at time slot k is denoted by se
k

= ce
i,j

= [v
k

= i, v
k�1 = j]. The initial state

distribution is denoted by Qe

0, of which the (2i+j)th element is Pr(se0 = ce
i,j

) = p
i

·p
j

[40].

The transition probability of the new channel is denoted by

q(2i+j)(2m+n) = Pr
�

se
k

= ce
m,n

|se
k

= ce
i,j

�

= p
m

, (5.34)

where if i = n, p
m

= Pr(v
k

= m) = 1� p for m = 0 and p
m

= Pr(v
k

= m) = p for

m = 1; if i 6= n, p
m

= 0.

The equivalent channel state law is denoted by

pe(m)(n) = pe(m)(2i+j) = Pr
�

ze = m|se
k

= ce
i,j

�

= Pr (⌘
k

= i� j �m) = q
i�j�m

= q
l

, (5.35)

where ze = x0
n

� d
n

is the error function for the new channel; q
l

= 1� q for l = 0

and q
l

= q for l = 1.

Theorem 5.1. The di↵erential encoder and the di↵erential decoder are able to

achieve the information capacity of the time-varying-BSC.
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Proof We prove the theorem by showing that the new Markov Channel, shown in

Fig.5.4 and the time-varying-BSC have equal information capacity.

According to [21], the information capacity of time-varying-BSC and the new

Markov channel can be expressed by

C = 1� lim
N!1

E (H (✏
N

)) , (5.36)

and,

C = 1� lim
N!1

E (H (✏e
N

)) , (5.37)

respectively, where ✏
N

and ✏e
N

is the channel error probability at the Nth use of

the time-varying-BSC and the new Markov channel respectively, and H(·) is the
binary entropy function; E(·) denotes the expectation.

(5.36) and (5.37) can also be expressed by the following equations due to the

stationary stochastic process[21, 53],

C = 1� lim
N!1

1

N

�

H
�

zN
��

= 1� lim
N!1

✓

� 1

N
log2

�

Pr
�

zN
��

◆

, (5.38)

and

C = 1� lim
N!1

1

N

⇣

H
⇣

z(e)
N

⌘⌘

= 1� lim
N!1

✓

� 1

N
log2

⇣

Pr
⇣

z(e)
N

⌘⌘

◆

. (5.39)

In the following, we show that the Pr(zN) = Pr(z(e)
N

).
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For the new Markov channel,

Pr
⇣

z(e)
N

⌘

=
1

X

i=0

1
X

j=0

Pr
⇣

z(e)
N |se0

⌘

Pr
⇣

s(e)
N |se0 = ce

i,j

⌘

=
1

X

i=0

1
X

j=0

Pr
⇣

z(e)
N |se0 == ce

i,j

⌘

(p
i

· p
j

)

=
1

X

i=0

1
X

j=0

"

1
X

k=0

1
X

l=0

Pr
⇣

z(e)
N

, se
N

= ce
k,l

|se0 = ce
i,j

⌘

#

(p
i

· p
j

)

=
1

X

i=0

p
i

1
X

j=0

p
j

"

1
X

k=0

1
X

l=0

Pr
⇣

z(e)
N

, se
N

= ce
k,l

|se0 = ce
i,j

⌘

#

=
1

X

i=0

p
i

· 1 ·
"

1
X

k=0

1
X

l=0

Pr
⇣

z(e)
N

, se
N

= ce
k,l

|se0 = ce
i,0

⌘

#

=
1

X

i=0

p
i

· 1 ·
2

4

1
X

k=0

"

1
X

l=0

Pr
⇣

z(e)
N

, se
N

= ce
k,l

|se0 = ce
i,0

⌘

#

3

5 . (5.40)

The underlined part in equation (5.40) can be expressed as an backward recursion,

of which the first round is shown as follows:

1
X

l=0

Pr
⇣

z(e)
N

, se
N

= ce
k,l

|se0
⌘

=
1

X

l=0

Pr
⇣

z
(e)
N

, z(e)
N�1

, se
N
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k,l

|se0 = ce
i,0

⌘

=
1

X

l=0

1
X

n=0

1
X

t=0

Pr
⇣

z(e)
N�1

, se
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n,t
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⌘

Pr
⇣
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1
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1
X
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Pr
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where the last equality is due to the fact that l has to be equal to n for the

recursion to continue. The recursion ends at Pr(z(e)
N

, se1 = ce
k,l

|se0), (5.40) can then

be expressed by
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For the time-varying-BSC, we calculate Pr(zN+1) instead of Pr(zN). This is be-

cause the new Markov channel has included the di↵erential encoder and the dif-

ferential decoder, which require one reference bit to be transmitted reliably before

75



Chapter 4. Information Capacity Analysis of The Time Varying Binary
Symmetric Channels

the information transfer. Therefore, Pr
⇣

z(e)
N
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in (5.42) is actually the error prob-

ability of the (N + 1)th information bit of the new Markov channel.
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The same rule in (5.41) applies.
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Therefore,

Pr
�

zN+1
�

=
1

X

i=0

Pr
�

z
N+1 = m, zN |s0 = i

�

Pr (s0 = i)

= 0.5
1

X

l=0

p
m�l

·
1

X

k=0

q
l�k

1
X

i=0

Pr
�

zN , s
N

= k|s0 = i
�

= 0.5
1

X

l=0

p
m�l

·
1

X

k=0

q
l�k

· p(z,k) · · ·
1

X

v=0

q
r�v

· p(z,v) ·
1

X

i=0

q
k�i

= 0.5
1

X

l=0

p
m�l

·
1

X

k=0

q
l�k

· p(z,k) · · ·
1

X

v=0

q
r�v

· p(z,v) · 1. (5.44)

Because of the constellation symmetric that, p
i

= 1 � p for i = 0, p
i

= p for

i = 1, and q
i

= 1 � q for i = 0, q
i

= q for i = 1, (5.44) and (5.42) are the same

combinations of the same p
i

and q
j

multiplication except for the 0.5 in (5.44).

Refer back to (5.39)
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where the third and fourth equalities both follow from the fact that the real number

1 cannot a↵ect the result with N goes to infinity.
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5.3 Chapter Conclusion

In this chapter, we clarify that the Doppler phase shift is a major cause for the

channel state variation. The Gilbert-Elliot model does not take it into considera-

tion. The model therefore is incomplete for time varying channel. We introduce

the time-varying BSC which complements the Gilbert-Elliot model. More impor-

tantly, we successfully avoid the issue of synchonizing state estimation and signal

detection for time varying channels. And we achieve the information capacity for

the new model.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

The thesis serves two aims. The first aim is to di↵erentiate time varying channels

and time invariant channels, and to clarify why optimum decoders for the former

are not capacity achieving for the latter. The second aim is to provide a solution

of achieving high rate data transmission over time varying mobile communication

channels. These two aims have both been met.

1. Time varying communication channels and time invariant communication

channels are fundamentally di↵erent in terms of maximizing the mutual

information rate over channel input probability distribution. For time in-

variant channels, the perfect channel state information is assumed at the

receiver. The more information are transmitted, the more information are

received. The mutual information rate is maximized by channel inputs of

maximum information entropy. However, for time varying channels, we can

invest certain amount of information redundancy of channel input signals in

channel state estimation. The investment decreases the amount of informa-

tion transmitted over the channel. But on the other hand, it decreases the
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uncertainty of channel state distribution and might lead to higher mutual

information rate in the long term. The optimum trade-o↵ between the two

e↵ects will lead to maximization of the mutual information rate.

2. The time varying communication channels and time invariant channels are

fundamentally di↵erent in terms of signal processing. For time invariant

channels, estimating channel state and extracting signal in the presence of

AWGN (i.e., signal detection) are done independently in succession. Since

the channel state information is time invariant. We assume implicitly that

channel state estimation and signal detection are already synchronized. But

for time varying channels, performing these two actions one after the other

independently is not able to achieve the information capacity of the channel.

There are always delays between the two actions and extra communication

resource are needed for synchronization. We prove the combining channel

state estimation and signal detection can save the communication resource

for synchronization. And combining these two actions is also a su�cient

condition for achieving the information capacity of time varying channels.

6.2 Future Work

The original purpose of this thesis is to correct a well accepted result in the litera-

ture for time varying communication channels. However, we unexpectedly end up

with attacking one of the most important assumptions of the root communication

theory, the Shannon information theory. It has been clear to us that the Shan-

non information theory are developed for time invariant communication channels

only. It has started limiting the development of mobile communication technology,

where time variation is highlighted. It is the market demand of 5G that asks for
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an extension of the Shannon information theory to cover time varying communi-

cation channels. In chapter 5 of thesis, we made the first step only. Tremendous

research e↵orts are required in future, serving the following two purposes:

1. To define the information capacity of time varying communication channels

and have the information capacity expressed in a closed formula.

2. To exploit the information capacity of time varying channels defined by the

new information theory. In other words, the second purpose is to develop

5G mobile communication technology based on the information theory for

time varying communication channels.

The future work serving the first purpose is a continuation of the analysis in this

thesis. The future work serving the second purpose required cooperative e↵orts of

researcher in mobile communication all over the world. We discuss in this chapter

only the future work serving the first purpose. In order to define the information

capacity of time varying channels, we need to revisit almost all assumptions and

definitions in the Shannon information theory.

6.2.1 Assumptions of The ShannonWiener Theory for Time

Invariable Communication Channels

ShannonWiener theory of communications starts with definition of communication

channel as the system of three fundamental uncertainties: uncertainty of informa-

tion transmitted X , uncertainty of the observation noise Z, and uncertainty of

channel state information G.

Y = GX + Z. (6.1)
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The ShannonWiener theory of communications reduces the joint three dimensional

communication channel uncertainty model (uncertainty of information transmit-

ted, uncertainty of the observation noise, and uncertainty of channel state) to es-

sentially two communication problems with two uncertainties. We call this reduced

model as Shannon Wiener Separation model. The two communication problems

with two uncertainties are as follows:

1. Estimation of channel state information G, in the presence of noise Z, train-

ing signal being known.

2. Detection of uncertain transmitted information X , in the presence of noise

Z, channel state information being measured and certain from the previous

measurement.

This approach is correct in the case where channel state information G, does not
change in time. The fact that channel state information does not change in time

makes existence of channel state information real and observation of channel state

information in principle possible (irrespective of the observation noise level).

The Shannon information capacity of the time invariant additive Gaussian com-

munication channel is given as C = B ⇤ log(1 + S/N), where B is the channel

bandwidth, S/N is the signal to AWGN power ratio [19]. The information rate R,

which could be transmitted over the channel with vanishingly small probability of

error, must satisfy the inequality R < C. The explicit assumptions under which

this formula is derived are:

1. Infinite signal time delay (or very long signalling interval).

2. Existence of a very powerful channel coding/decoding scheme.

3. Stationary channel model with bandwidth B defined.

4. Channel characteristics in principle known to the receiver.
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6.2.2 Hypothesis for Time Variable Communication Chan-

nels

The analysis in chapter 3 proves that, performing the channel state estimation and

signal detection separately cannot achieve the information capacity of time varying

communication channels. We also confirm that in chapter 5 that, the information

capacity of the simplest model of time varying communication channel can be

achieved without employing any conventional channel state estimator. According

to these understanding, we propose the following hypotheses for time varying

communication channels. These hypothesis has been partially proven in chapter

5.

For time varying communication channels Y = GX+Z, the joint three dimensional

communication channel uncertainty model is inseparable in the following sense:

1. The information capacity of joint three-dimensional model (as channel in-

formation rate with vanishingly small probability of error) does exist and it

is di↵erent from zero.

2. The information capacity of joint three-dimensional model is no less than

the capacity of Shannon Wiener separation model.

3. The absolute time varying channel state information G cannot be measured

accurately (at will) not even in principle. Consequently di↵erent receivers

with di↵erent observation noise have di↵erent channel state information max-

imizing the channel capacity. The channel state information is not absolute.

The channel state information is relative – relative to the speed of the chan-

nel change and the level of the observation noise.

4. The traditional time invariant channel is a special case of the time varying

channel whose channel variation rate is zero.
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5. The signalling formats exist at the transmitter, (at least for simple time

varying channel models) which eliminates the need for channel state infor-

mation in order to obtain non-zero information rate at the receiver. For the

same channel models, any attempt to establish the measurement of chan-

nel state information at the receiver by sending training information at the

transmitter, produces loss of information capacity, respectively.

Had these hypothesis been proven, the information capacity of time varying addi-

tive Gaussian communication channel might not be as simple as C = B ⇤ log(1 +
S/N). The explicit assumptions, under which this formula is derived, also need to

be revisited.

1. Infinite signal time delay (or very long signalling interval). This assumption

is also valid for time varying communication channels. We are also given

enough time for processing each transmitted symbol.

2. Existence of a very powerful channel coding/decoding scheme. This as-

sumption is also valid for time varying communication channels. To our

knowledge, time invariant communication channels and time varying com-

munication channels are fundamentally di↵erent, but not in terms of channel

coding/decoding. The turbo coding and other powerful channel codes will be

able to deliver data rates close to the information capacity due to constant

increase of computational power at reduced cost.

3. Stationary channel model with bandwidth B defined. This assumption is not

valid for time varying communication channels. The concept of bandwidth

in wireline communication channel is clearly defined. All mentioned wireline

channels are very slowly time varying and they could be approximated by

time invarying stationary channels. The concepts of autocorrelation, the con-

cepts of spectrum and consequently the concept of bandwidth are rigorously
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defined on those channels [60]. However, all these concepts for stationary

channels need to be updated.

4. Channel characteristics in principle known to the receiver. We have come to

the conclusion that this assumption is not valid for time varying communica-

tion channels. And the following question is: what is the new assumption for

deriving the information capacity formula for time varying communication

channels?
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Proving Lemma 1

Proof :
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The Estimation Method for The

Gilbert-Elliot Channel

Because the Gilbert-Elliot channel has only two states, the estimation recursive

formula (3.7) becomes

⇢n+1 =



⇢n(1) ⇢n(2)

�

2

6

4

Pr (y
n

= 0|s
n

= c1) 0

0 Pr (y
n

= 0|s
n

= c2)

3

7

5

2

6

4

P11 P12

P21 P22

3

7

5



⇢n(1) ⇢n(2)

�

2

6

4

Pr (y
n

= 0|s
n

= c1) 0

0 Pr (y
n

= 0|s
n

= c2)

3

7

5

2

6

4

1

1

3

7

5

,

(B.1)

where c1 denotes the good state and c2 denotes the bad state. (B.1) can be

simplified to
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Eliminating Pr (y
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In our simulations, the channel states of the Gilbert-Elliot channel are estimated

using equation (B.4). Let P̂r (y
n

= 0) be the statistical average of the output ob-

tained in simulations. The probabilities Pr (s
n

= c1|yn = 0) and Pr (s
n

= c2|yn = 0)

of the equation (B.4) can be obtained by the following way.

It is assumed that the channel input of the channel, as well as the error probabilities
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where “| ⇤ |” denotes the absolute value of a real number. Substituting (B.7) into

(B.4), ⇢n+1 can be expressed by
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The metric update function of the ML decoder is able to show the tracking ability

of the open-loop estimator. The metric update is based on ⇢n, and is expressed

as

m(x
n

, y
n

) = � log

"

K

X

k=1

Pr (y
n

= 0|x
n

= 0, s
n

= c
k

)⇢n (k)

#

� log [Pr (x
n

= 0)] .

(B.9)

With perfect channel state information , the metric update tracks the channel

state precisely and has only two values, given by
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n

, y
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and
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for the good and bad states, respectively. When the channel state information is

not known, di↵erent ⇢n and metric updates will be obtained with di↵erent channel

input distributions. By comparing these values with the perfect updates, we can

analyze the performance of the open-loop state estimator.
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Proving Lemma 5

In this section, it is proven that the recursion (3.24) monotonically converges to 1

for one of the channel states, while converges to 0 for other states.
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fixed

is similar. Assuming that P
fixed

is a 3⇥3 matrix

and it has three possible forms:

P
fixed

=

2

6

6

6

6

4

0 0 1

0 1 0

1 0 0

3

7

7

7

7

5

or

2

6

6

6

6

4

0 0 1

0 0 1

0 1 0

3

7

7

7

7

5

or

2

6

6

6

6

4

0 0 1

0 0 1

0 0 1

3

7

7

7

7

5

, (C.2)
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Appendix X. Proving Lemma 5

For the first form, (C.1) becomes,

lim
µ!µ

max

⇢n+1 (l) = lim
µ!µ

max

P

K

k=1 Pr (yn|sn = c
k

) Pr (s
n

= c
k

|yn�1)P
kl

P

K

k=1 Pr (yn|sn = c
k

) Pr (s
n

= c
k

|yn�1)

=

P

r2R Pr (y
n

|s
n

= c
r

)⇢n (r)
P

K

k=1 Pr (yn|sn = c
k

)⇢n (k)

=
⇢n (r)

⇢n (r) +
P

K

k=1,k 6=r

m(k, r)⇢n (k)
, (C.3)

where r 2 R are the dominant elements, P
rl

= 1, of the l-th column of P
fixed

and

m(k, r) = Pr(y
n

|s
n

= c
k

)/Pr (y
n

|s
n

= c
r

). In this case, there is only one dominant

element in each column. For any i.i.d. input distribution which is not uniform,

there exists a channel state c
v

for which m(k, v) < 1, k = 1, ..., K. For the channel

state c
v

, equation (C.3) increases as time n proceeds and monotonically converges

to 1. For other states, (C.3) decreases and monotonically converges to 0.

For the second form, as there is no dominant element in the first column of P
fixed

,

⇢n (1) , 0. The channel becomes a two state channel and

P
fixed

=

2

6

4

0 1

1 0

3

7

5

, (C.4)

Similarly, for one of the states, (C.3) converges to 1, while for the other state, the

equation converges to 0.

For the third form, as there is no dominant element in either the first column or

the second column of P
fixed

, ⇢n (1) , ⇢n (2) , 0. Therefore, ⇢n (3) , 1.
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