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A new paradigm is proposed for assessing confidence in the identification of known metabolites in
metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of
the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size
of themetabolite. Several new indices are proposed including:metabolite identification efficiency (MIE) andme-
tabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together
with some guidelines, can be used to provide a better indication of known metabolite identification confidence
in metabonomics studies than existing methods. Since known metabolite identification in untargeted
metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts
based on molecular spectroscopic informatics, will find utility in the field.
© 2015 Everett. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Metabonomics is defined as ‘The study of the metabolic response of
organisms to disease, environmental change or geneticmodification’ [1]
and has emerged as a leading technology in a number offields, including
biology and medicine [2], with new areas emerging recently, such as
pharmacometabonomics for personalised medicine [3–5]. The alterna-
tive term metabolomics [6] was defined a little later as a ‘comprehen-
sive analysis in which all the metabolites of a biological system are
identified and quantified’. The two terms are now used interchangeably
but in this article we will refer to the original term throughout.

Metabonomics studies are typically conducted with either nucle-
ar magnetic resonance (NMR) spectroscopy or a hyphenated mass
spectrometry (MS) technology, such as liquid chromatography–MS
(LC–MS) [7], to acquire information on the identities and quantities of
metabolites in the particular samples of interest. The studies are
conducted either in a targeted fashion, where a pre-defined set of me-
tabolites are measured, or in an untargeted fashion, where no precon-
ceptions of the metabolites of importance are imposed. The choice of
analytical technology used often depends upon the particular study
requirements.

In this article, the focus will be on the use of NMR spectroscopy rath-
er than MS, although the two technologies are quite complementary
and it is often advantageous to use them together in concert.
behalf of the Research Network of Co
Metabonomics/metabolomics studies have a number of important
elements including:

1. definition of study aims e.g., understanding the metabolic conse-
quences of disease progression in a particular group of patients

2. ethical approval
3. sample collection and storage
4. sample preparation
5. NMR data acquisition
6. quality control of the acquired data to ensure adequate signal-to-

noise, lineshape and resolution
7. spectroscopic data pre-processing steps such as zero-filling,

apodisation, Fourier transform, phasing and baseline correction
8. statistical data pre-processing steps such as peak alignment, scaling

and normalisation of the data
9. statistical analysis of the data to interrogate differences between

groups of subjects e.g., healthy volunteers vs patients with disease
10. identification of metabolites responsible for any inter-group differ-

ences discovered in the study
11. rationalisation of the role of the discriminatingmetabolites in terms

of physiological and biochemical changes in the subject.

Many of the 11 steps above have been subject to rigorous study and
guidelines have emerged for several areas includingNMR-based sample
preparation, data acquisition, data pre-processing and statistical analy-
sis of the data, especially by multivariate methods [8–15]. However,
the critical step for many untargeted metabonomics studies is the
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identification of the metabolites that are responsible for discriminating
between different groups of subjects in the study: step 10. This remains
problematical for both MS [16,17] and NMR spectroscopy [14,18–24]
and is a significant bottleneck for the development of the science.

The issue with metabolite identification was nicely illustrated by
Wishart who contrasted the 4 different bases in the human genome,
and the 20 natural amino acids in the human proteome, with the thou-
sands of different metabolites in the human metabolome: this is the
cause of the issue [25].

For studies where many samples are available, statistical
methods of metabolite identification, such as STOCSY and variants
thereof, are powerful tools that can be used for metabolite and bio-
marker identification [26,27]. In genome wide association studies
on metabonomics data, the pathway information that can be gleaned
can also be used to help identify key metabolites, including by
metabomatching [28,29].

Metabolite identification by NMR spectroscopy has recently been
significantly facilitated by the development of spectral databases of me-
tabolites [30], such as the Human Metabolome Database (HMDB) [31],
the BioMagResBank (BMRB) [32] and the Birmingham Metabolite
Library (BML) [33]. These libraries not only store information on the
NMR spectra of a vast array of metabolites, which helps metabolite
identification, but more powerfully, some also allow downloading of
the original NMR free induction decay data from the databases, to facil-
itate comparison of the spectral features of authentic metabolites with
those of unidentified metabolites in users' biological samples.

Some progress has been made towards the automated identifica-
tion of metabolites but these methods are not yet at the stage that
they can be routinely used to identify more than a fraction of the
metabolites in complex biofluids such as urine. The Birmingham
Metabolite Library (BML) provides a facility for the matching of ex-
perimental 2D 1H J-resolved spectra with those of reference metabo-
lites stored in a database, which is a good approach, but is limited by
the low number of metabolites in that database [33]. Approaches
such as MetaboHunter have been applied to the identification of
mixtures of standard compounds but not to a biofluid [21]. An ap-
proach based on 1D 1H NMR profiles, has had success in identifying
metabolites in human serum and cerebrospinal fluid, but was less
successful in identifying metabolites in urine due to spectral com-
plexity and the lack of a complete reference set [34]. A different 1D
1H NMR approach based on extraction of relevant variables for anal-
ysis (ERVA) has been applied to simulated mixtures and to the anal-
ysis of tomato extracts, but again relies on the availability of
authentic spectra of the metabolites and fails for compounds that
have only a single peak in their 1D 1H NMR spectrum [24]. Thus, at
the present time, the only robust way to identify known metabolites
in the 1D 1H NMR spectra of complex biofluids such as urine is by
manual analysis by an expert NMR spectroscopist.

The metabolite identification issue is in two distinct categories:
first the structure elucidation of truly novel metabolites, not previ-
ously reported, and secondly, the structure confirmation or structure
identification of previously reported or known metabolites. This sim-
ple language and description is consistent with decades of molecular
structure elucidation literature, and is preferable to the more com-
plex and confusing labelling of metabolites as ‘unknown unknowns’
or ‘known unknowns’ that has emerged more recently [25,35]. For
the structure elucidation of truly novel metabolites, there is a con-
sensus that the same rigorous processes used in the natural product
field should be adopted in metabolite identification. This would usu-
ally involve extraction and purification of the novel metabolite,
followed by full structure elucidation by ultraviolet, infrared and
NMR spectroscopies in concert with MS [36,37].

However, the process of structure confirmation of known metabo-
lites remains an issue, due to differences in approaches across the
metabonomics/metabolomics community. In order to address the me-
tabolite identification issue, the Metabolomics Standards Initiative
(MSI) [38] set up a Chemical Analysis Working Group (CAWG) which
proposed a 4-level classification system (Table 1) for the structure con-
firmation of known metabolites in 2007 [36].

In the seven years since these proposals were made, they have not
been widely adopted by the community [39]. There are two basic prob-
lemswith the original proposals: firstly, the requirement of comparison
of experimental data for known metabolites to an authentic reference
standard in the lab, is often too strict and not always appropriate for
an NMR-based study, and secondly, the system is too coarse and does
not define closely enough the confidence achieved in the metabolite
identification. Recently, new proposals emerged to update the 4-level
systemwith either: (i) addition of sub-levels to grade confidence better,
(ii) an alternative quantitative identification points scoring system or
(iii) quantitative enhancement of the current 4-level system to indicate
confidence [40]. An overlapping subset of the same authors also pro-
posed quantitative and alphanumeric metabolite identification metrics
[41]. The quantitative scoring proposal in the latter publication contains
a mixture of excellent metabolite identification criteria with precision
e.g., accuratemass of parent ion (b5 ppm) and processes such as having
a COSY NMR, with no precision or scoring for matching. It was
commented that it is difficult to see how scoring formatching ofmetab-
olite data to standards could be achieved [41]. A call to the community
was made for engagement with this important problem [40].

This paper responds to those calls. A new approach to the under-
standing of the NMR spectroscopic information theoretically embedded
in metabolites is put forward, and compared with the data that is actu-
ally obtained in the course of metabonomics experiments. Conclusions
and proposals are arrived at in terms of a different approach to metab-
olite identification confidence, which should be applicable in spirit to
any other analytical technology, in addition to NMR spectroscopy.

2. Material and methods

2.1. Subjects, sample preparation and NMR spectroscopy

The 75 metabolites included in this study were identified manually
from the proton NMR spectra of the urine from a C57BL/6 mouse at
30 weeks of age, and the urine of a diabetic patient on an exercise
study at La Sapienza University, Rome. Both studies were ethically
approved [42].

The diabetic urine sample was prepared by mixing urine (630 μl)
with phosphate buffer (70 μl of an 81:19 (v/v) mixture of 1.0 M
K2HPO4 and 1.0 M NaH2PO4 pH 7.4). After standing at room tempera-
ture for 10min, the sample was centrifuged at 13,000 g for fiveminutes
at 4 °C to enable separation of clear supernatant (600 μl) from any par-
ticulatematter. The supernatantwasmixedwith a solution of the chem-
ical shift reference material, sodium 3-(trimethylsilyl) propionate-2, 2,
3, 3-d4 (TSP) in D2O (60 μl), to give a final TSP concentration of
0.18 mM.

The mouse urine sample was prepared by mixing pooled urine
(500 μl) from a single C57BL/6 mouse with phosphate buffer (150 μl
of a 81:19 (v/v) mixture of 0.6 M K2HPO4 and NaH2PO4 in 100% 2H2O,
pH 7.4, containing 0.5 mM TSP as a reference and 9 mM sodium
azide). The sodium azide was added to prevent bacterial growth in the
urine sample.

All NMRexperimentswere conducted on a Bruker Avance spectrom-
eter operating at 600.44 MHz for 1H NMR, at ambient temperature, in
5 mm NMR tubes (508-UP-7). All chemical shifts are on the δH or δC
scales relative to TSP at 0.

The identification of the metabolites used a combination of stan-
dard 1D and 2D NMR methods, including J-resolved (JRES), COSY,
TOCSY, HSQC and HMBC experiments. The 1D 1H NMR experiments
used the 1D NOESY presaturation pulse sequence, noesypr1d. Free
induction decays were collected into 65,536 data points with 256
scans and 4 dummy scans and a spectral width of 12,019.2 Hz. The
resulting spectra were zero-filled to 131,072 or 262,144 points,



Table 2
The 14 molecular and spectroscopic features calculated for the 75 metabolites.

1. Number of hydrogen atoms 2. Number of carbon
atoms

3. Number of oxygen
atoms

4. Number of nitrogen atoms 5. Number of sulphur 6. Nominal mass in Da
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baseline corrected automatically, phase corrected automatically
(with manual override, as required) and apodised for resolution en-
hancement using Gaussian multiplication. The detailed parameters
for the acquisition of the 2DNMR spectra are given in Supplementary
Table 1.
atoms
7. Number of chiral centres 8. Number of 1H NMR

chemical shifts
9. Number of
multiplicities

10. Number of 2- or 3-bond H,
H coupling constants

11. Second order flag = 0
or 1

12. Number of 2D 1H
COSY cross-peaks

13. Number of 2D 1H, 13C
HSQC cross-peaks

14. Number of 2D 1H, 13C
HMBC cross-peaks

Table 3
Metabolite identification parameters calculated for the 75 metabolites.

Parameter Calculation

A. Total number of heavy atoms Sum of features 2 to 5 in
Table 2

B. Total number of spectroscopic information bits
available from 1D 1H NMR

Sum of features 8 to 11

C. Total number of spectroscopic information bits
available from 1D 1H and 2D 1H COSY NMR

Sum of features 8 to 12

D. Total number of spectroscopic information bits
available from 1D 1H and 2D 1H COSY and HSQC
NMR

Sum of features 8 to 13

E. Total number of spectroscopic information bits
available from 1D 1H and 2D 1H COSY, HSQC and
HMBC NMR

Sum of features 8 to 14

F. Theoretical metabolite identification carbon (Sum of features 8 to
2.2. Theoretical analysis of the NMR spectroscopic information content of
the 75 metabolites

All 75 metabolites were characterised by their common names,
IUPAC name, HMDB code, SMILES string, InChi code and InChi key
(see Table 4 and Supplementary Data). 14 Molecular features were
analysed manually for each of the 75 metabolites represented in this
study (Table 2):

The following rules were applied to this feature analysis:

1. Only non-exchanging protons were included in the analysis of the
number of proton chemical shifts present in the metabolites, and
this included non-exchanging (on the NMR timescale) amides but
not hydroxyl, amine or acid protons

2. The number of multiplicities is simply the sum total of the number of
singlets, doublets, doublet of doublets etc. contained in a metabolite:
for example, if a metabolite has one singlet and two doublet proton
signals, the multiplicity count for that metabolite is three

3. The total number of coupling constants was calculated for all possible
2- and 3-bond proton-to-proton couplings involving non-exchanging
protons

4. COSY cross-peaks between two protons were only counted once:
therefore the number of COSY peaks must equal the number of cou-
pling constants: long-range COSY connectivities were not counted

5. All HSQC cross-peaks including those fromnon-equivalentmethylene
protons on the same carbon were counted. However, symmetrically-
equivalent HSQC or HMBC cross-peaks, such as those that occur in
succinic acid for example, were counted only once: the analysis re-
flects the number of peaks that can be seen in the spectra.

6. The count of theoretical 1H, 13C HMBC NMR cross-peaks includes all
possible 2- and 3-bond carbon-to-proton couplings, including those
between pseudo-equivalent groups e.g., the methyl groups in
trimethylamine, as these are real and provide useful information for
the identification of small metabolites

7. The second-order flag was only set in cases where the presence of
magnetically non-equivalent but chemically equivalent protons
would give rise to additional transitions in the spectra, not merely
for cases where the signals have intensity distortions. The flag is set
to 1 if there are ≥1 of these second order features and 0 otherwise.

8. For sugars, the count of features is applied to both anomers.

Thirteen parameters, A to M, were then calculated from the 14 fea-
tures (Table 3): see also the Supplementary Data.
Table 1
The four levels of known metabolite identification from the CAWG 2007 [36].

Level 1 Identified Compound: A minimum of two independent and
orthogonal data (such as retention time and mass spectrum)
compared directly relative to an authentic reference standard

Level 2 Putatively Annotated Compound: Compound identified by
analysis of spectral data and/or similarity to data in a public
database but without direct comparison to a reference
standard as for Level 1

Level 3 Putatively Characterised Compound Class: unidentified per se
but the data available allows the metabolite to be placed in
a compound class

Level 4 Unknown Compound: unidentified or unclassified but
characterised by spectral data
2.3. Analysis of the NMR spectroscopic data and metabolite identification

All spectral processingwas conducted inMNova version 9.0.0-12821
(Mestrelab Research S.L.).

Analysis of the spectroscopic information content of the urinary
metabolites was conducted manually and captured and further
analysed in Excel for Mac 2011 version 14.4.6 (Microsoft Corporation).
Student t-tests were run in Excel using 2-tailed, unpaired calculations
to determine the statistical significance of differences in values between
groups of data. A p value of b0.05 was used as the cut-off for statistical
significance [43]. IUPAC names, SMILES strings and InChi codes for the
metabolites were downloaded from either the Human Metabolome
Database [31] or from ChemSpider (Royal Society of Chemistry).
Although 2D 1H JRES NMR gives no new information (except for 2nd
order systems and the discrimination of homonuclear and hetero-
nuclear coupling), it was used to assist with the analysis of the 1D 1H
NMR spectra, and some coupling and multiplet information was ab-
stracted from 2D 1H JRES NMR rather than the 1D 1H NMR spectra if ap-
propriate. Similarly, TOCSY data was occasionally used to assist spectral
analysis in crowded regions, although it theoretically provides no new
information over COSY in the absence of spectral crowding.
efficiency (MICE) for 1D 1H NMR 11)/number of carbon atoms
G. Theoretical metabolite identification carbon
efficiency (MICE) for 1D 1H and 2D 1H COSY
NMR

(Sum of features 8 to
12)/number of carbon atoms

H. Theoretical metabolite identification carbon
efficiency (MICE) for 1D 1H and 2D 1H COSY
and HSQC NMR

(Sum of features 8 to
13)/number of carbon atoms

I. Theoretical metabolite identification carbon
efficiency (MICE) for 1D 1H and 2D 1H COSY,
HSQC and HMBC NMR

(Sum of features 8 to
14)/number of carbon atoms

J. Theoretical metabolite identification efficiency
(MIE) for 1D 1H NMR

(Sum of features 8 to
11)/number of heavy atoms

K. Theoretical metabolite identification efficiency
(MIE) for 1D 1H and 2D 1H COSY NMR

(Sum of features 8 to
12)/number of heavy atoms

L. Theoretical metabolite identification efficiency
(MIE) for 1D 1H and 2D 1H COSY and HSQC NMR

(Sum of features 8 to
13)/number of heavy atoms

M. Theoretical metabolite identification efficiency
(MIE) for 1D 1H and 2D 1H COSY, HSQC and
HMBC NMR

(Sum of features 8 to
14)/number of heavy atoms



Table 4
The 75 metabolites identified by NMR spectroscopy in recent metabonomics studies on human and mouse urine.

Metabolite class Common name IUPAC name

Carboxylic acids Formic acid Formic acid
Acetic acid Acetic acid
Propionic acid Propanoic acid
Butyric acid Butanoic acid
Isobutyric acid 2-Methylpropanoic acid
Isovaleric acid 2-Methylbutanoic acid
Ketoleucine 4-Methyl-2-oxopentanoic acid
Benzoic acid benzoic acid
Phenylacetic acid 2-Phenylacetic acid
Para-hydroxy-phenylacetic acid 2-(4-Hydroxyphenyl)acetic acid
Hydrocinnamic acid 3-Phenylpropanoic acid

Hydroxycarboxylic acids Glycolic acid 2-Hydroxyacetic acid
Lactic acid (2S)-2-hydroxypropanoic acid
2-Hydroxyisobutyric acid 2-Hydroxy-2-methylpropanoic acid
3-Hydroxyisobutyric acid (2S)-3-hydroxy-2-methylpropanoic acid

Dicarboxylic acids Succinic acid Butanedioic acid
L-Malic acid (2S)-2-hydroxybutanedioic acid

Tartaric acid (2R,3R)-2,3-Dihydroxybutanedioic acid
Methylsuccinic acid 2-Methylbutanedioic acid
Glutaric acid Pentanedioic acid
2-Hydroxyglutaric acid (2S)-2-hydroxypentanedioic acid
2-Ketoglutaric acid 2-Oxopentanedioic acid
2-Isopropylmalic acid (2S)-2-hydroxy-2-(propan-2-yl)butanedioic acid

Tricarboxylic acid Citric acid 2-Hydroxypropane-1,2,3-tricarboxylic acid
Isocitric acid 1-Hydroxypropane-1,2,3-tricarboxylic acid
cis-Aconitic acid (1Z)-Prop-1-ene-1,2,3-tricarboxylic acid
Trans-aconitic acid (1E)-Prop-1-ene-1,2,3-tricarboxylic acid

Small alcohols Ethanol Ethanol
Chiral 2, 3-butanediol (2R,3R)-butane-2,3-diol or (2S,3S)-butane-2,3-diol
Meso-2, 3-butanediol (2R,3S)-2,3-butanediol

Ketones Butanone Butan-2-one
Acetoin 3-Hydroxybutan-2-one

Sugars and sugar acids D-Xylose (3R,4S,5R)-oxane-2,3,4,5-tetrol

L-Fucose (3S,4R,5S,6S)-6-methyloxane-2,3,4,5-tetrol

D-Glucose (3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

Mannitol (2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol
D-Glucaric acid (2R,3S,4S,5S)-2,3,4,5-tetrahydroxyhexanedioic acid

D-Glucuronic acid (2S,3S,4S,5R,6S)-3,4,5,6-tetrahydroxyoxane-2-carboxylic acid

Para-cresol glucuronide (2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(4-methylphenoxy)
oxane-2-carboxylic acid

Amines Methylamine Methanamine
Dimethylamine Dimethylamine
Trimethylamine Trimethylamine
Trimethylamine N-oxide N,N-dimethylmethanamine oxide
Ethanolamine 2-Aminoethan-1-ol
Choline (2-Hydroxyethyl)trimethylazanium
3-Methylhistamine 2-(1-Methyl-1H-imidazol-5-yl)

ethan-1-amine
Hypotaurine 2-Aminoethane-1-sulfinic acid
Taurine 2-Aminoethane-1-sulfonic acid
3-Indoxyl sulphate 1H-indol-3-yloxidanesulfonic acid
Putrescine Butane-1,4-diamine
Creatinine 2-Imino-1-methylimidazolidin-4-one
Creatine 2-(1-Methylcarbamimidamido)acetic acid
L-Carnitine (3R)-3-hydroxy-4-(trimethylazaniumyl)

butanoate
Amino acids and amides Glycine 2-Aminoacetic acid

N-methylglycine, sarcosine 2-(Methylamino)acetic acid
Dimethylglycine 2-(Dimethylamino)acetic acid
N,N,N-trimethylglycine, betaine 2-(Trimethylazaniumyl)acetate
N-acetylglycine 2-Acetamidoacetic acid
N-propionylglycine 2-Propanamidoacetic acid
N-butyrylglycine 2-Butanamidoacetic acid
N-isovalerylglycine 2-(3-Methylbutanamido)acetic acid
Hippuric acid, benzoylglycine 2-(Phenylformamido)acetic acid
Phenylacetylglycine 2-(2-Phenylacetamido)acetic acid
Guanidoacetic acid 2-Carbamimidamidoacetic acid
Ureidopropionic acid 3-(Carbamoylamino)propanoic acid
L-Alanine (2S)-2-aminopropanoic acid

Beta-alanine 3-Aminopropanoic acid
Pyroglutamic acid (2S)-5-oxopyrrolidine-2-carboxylic acid
L-Histidine (2S)-2-amino-3-(1H-imidazol-4-yl)propanoic acid

1-Methylhistidine (2S)-2-amino-3-(1-methyl-1H-imidazol-4-yl)
propanoic acid
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Table 4 (continued)

Metabolite class Common name IUPAC name

Amino acids and amides Allantoin (2,5-Dioxoimidazolidin-4-yl)urea
Trigonelline 1-Methylpyridin-1-ium-3-carboxylate
1-Methylnicotinamide 3-Carbamoyl-1-methylpyridin-1-ium
Cytosine 6-Amino-1,2-dihydropyrimidin-2-one

Other metabolites Para-cresol sulphate (4-Methylphenyl)oxidanesulfonic acid
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Features numbered 8 to 14 in Section 2.2 above were then analysed
in the actual 1D and 2D NMR spectra of the urines of the mouse and di-
abetic patient, as features 8′ to 14′ respectively. For example, the total
number of 1H NMR chemical shifts (8′) actually observed for each me-
tabolite (as opposed to the theoretical number calculated in
Section 2.2 above) was measured. Parameters equivalent to B to M in
Section 2.2 above were then calculated from features 8′ to 14′ to give
the values for B′ to M′ respectively, for comparison with the theoretical
values. For instance, the actualmetabolite identification carbon efficien-
cy (MICE) for 1D 1HNMR level data is parameter F′. The full spreadsheet
containing all these data is available as Supplementary Data.

3. Results and discussion

3.1. The identification of 75 human and mouse urinary metabolites

The manual analysis of a range of 1D and 2D NMR spectra of mouse
andhumanurines from two recent studies [42] had resulted in the iden-
tification of a total of 75 metabolites. These metabolites were identified
on the basis of NMR spectral analysis and comparison of the spectral
data of the metabolites with that available for standard reference me-
tabolites in the HumanMetabolome Database [31], the BioMagResBank
(BMRB) [32] and the Birmingham Metabolite Library (BML) [33]. The
exact methodology for the analysis will not be detailed here but
Fig. 1. The 600MHz 1HNMR spectrum of the urine from a C57BL/6mouse and an expansion in t
trum is moderately resolution-enhanced by Gaussian multiplication.
typically involved: (i) comprehensive comparison of the 2D 1H, 13C
HSQC data with reference data in the HMDB and (ii) further interroga-
tion of the data using all available resolution-enhanced 1D 1H and 2D
1H JRES, COSY, TOCSY and HMBC data.

As an example, the alpha and beta anomers of L-fucose (6-deoxy-L-
galactose), a methyl sugar, were identified in themouse urine. The pro-
cess of this identification is described here. The 600 MHz 1D 1H NMR
spectrum of the mouse urine is shown in Fig. 1. Hundreds of signals
are seen for dozens of metabolites. The identification of the knownme-
tabolite L-fucose commenced by matching the cross-peak at 1.25, 18.47
in theHSQC spectrum (Supplementary Fig. 1) to themethyl group of the
beta anomer of L-fucose by an HMDB 2D HSQC search. The database
gives figures of 1.26, 18.3 for the beta anomer of L-fucose. In confirma-
tion, the 3JH,H coupling constant of the doublet at ca 1.25 in the mouse
urinewasmeasured as 6.5Hz, in accordancewith theHMDBfigure. Nat-
urally, if the beta anomer of L-fucose is present, then the alpha anomer
must also be detected, as they are in dynamic equilibrium, although it
is expected to be present at lower levels.

No signals for the alpha anomer were clearly visible in the 1D 1H
NMR spectrum, but the HSQC spectrum displayed a cross-peak at 1.22,
18.4, which corresponded well with the HMDB data for the authentic
reference material (1.20, 18.3). The 3JH,H coupling constant between
the alpha methyl and H5 was 6.6 Hz, in good agreement with HMDB
(6.7 Hz). This was measured in the 2D J-resolved 1H NMR spectrum
he region of themethyl signals from lactic acid and the two anomers of L-fucose. The spec-



Fig. 2.Anexpansion of the 600MHz2D 1H J-resolvedNMR spectrumof theurine from a C57BL/6mouse in the region of themethyl signals from lactic acid and the two anomers of L-fucose,
underneath the corresponding region of the 1D 1H NMR spectrum.
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(Fig. 2), where the hidden alpha anomer signal is revealed by the
spreading-out of the overlapped metabolite signals across a second
dimension.

Further confirmation that these signals belonged to L-fucose came
from a 2D 1H COSY NMR spectrum (Supplementary Fig. 2), which
showed that the methyl doublets resonating at ca 1.25 and at ca 1.21 in
the mouse urine spectrum were connected to protons resonating at
3.80 and 4.20 respectively, exactly as expected for the beta and alpha
anomers of L-fucose according to HMDB00174, which gives 3.80 and
4.18 respectively. A 2D 1H, 13C HMBC NMR spectrum also showed that
the methyl protons at ca 1.25 connected to a carbon resonating at 73.7,
which is a good match for C5 in beta-L-fucose (HMDB00174 gives 73.5).

In addition to these data, signals for the alpha and beta anomeric
protons of L-fucose were detected at 5.22 (doublet (d), ca 4.0 Hz,
COSY to H-2 at ca 3.78, HSQC to 95.5) and 4.57 (d, ca 7.8 Hz, COSY to
3.46, HSQC to 99.5) respectively (data not shown). Interestingly, the lat-
ter COSY revealed that there had been a data misinterpretation in
HMDB (HMDB00174, accessed 29th November 2014) as the resonance
for H-2 beta is given as 3.64 instead of 3.46, even though the coupling
data matches the signal reported in HMDB at 3.46 and not at 3.64.
HMDB00174 gives 5.19 (d, 3.9 Hz), 95.1 and 4.54 (d, 7.9 Hz), 99.0 for
the anomeric protons and carbons of the alpha and beta anomers
respectively.

It seemed that the metabolite whose signals were observed in the
mouse urine was definitely L-fucose. However, according to the MSI
guidelines, the identification could only be classified as a putative anno-
tation, as the comparisons were made relative to the data in the HMDB,
rather than to an authentic reference standard (Table 1). Indeed, all 75
metabolites identified in the studies of the mouse and human urine
(Table 4) could only be described as putatively annotated by these
rules. This seemed inappropriate and unsatisfactory, as the confidence
in the identification of the vast majority of these metabolites was very
high. It seems that theMSI 4-Level system is too conservative formetab-
olite identification based on NMR spectroscopic data, which in compar-
ison to chromatographic retention time data, or electrospray MS signal
intensity data, for example, is more predictable and precise.

In order to explore what information had been acquired and how it
comparedwithwhatwas theoretically available, an analysis of the spec-
troscopic information present in the 75 metabolites identified in the
two metabonomics studies was undertaken.

The 75 metabolites from the two studies were combined to provide
a realistic representation of the range of metabolites that a typical
metabonomics study by high field NMR might identify. Analysis of
these molecules showed that they had a molecular weight range of 31
to 284 Da (nominal mass) with an average of 126.7 ± 46.6 Da. The
number of carbon atoms ranged from 1 to 13 with an average of
4.9 ± 2.2 (standard deviations). See the Supplementary Data for more
information.

The subsequent analysis was completed in three parts: (i) an analy-
sis of the information content of 1D and 2D 1HNMR spectra; (ii) an anal-
ysis of the NMR spectroscopic features theoretically present in the 75
metabolites and (iii) a comparison of the features theoretically present
in the metabolites with those actually found in the course of the
metabonomics studies. The aim of these analyses was to determine
how much structural information was present in the metabonomics
data and therefore how much confidence could be ascribed to metabo-
lite identification. This analysis proved to be both informative and
thought provoking.

3.2. The Information content of NMR spectra in the context of metabonomics
experiments

NMRspectroscopyprovides a surprisingly rich quantity of information
on the molecules under study. The following list of 11 NMR spectral
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features is not exhaustive but includes those that are useful for the pur-
poses of metabolic profiling, and is focused on 1H NMR-detected experi-
ments: (1) chemical shifts, (2) signal multiplicities, (3) coupling
constants, (4) 1st or 2nd order signal nature, (5) signal half-bandwidth,
(6) signal integral, (7) COSY cross peaks, (8) HSQC cross-peaks,
(9) HMBC cross-peaks, (10) TOCSY cross-peaks and (11) signal rate of
change [44]. A detailed analysis of these features is provided in Supple-
mentary Table 2.

3.3. Analysis of the theoretical 1D and 2D 1HNMR spectroscopic information
content of metabolites

Of the 11 features of 1D or 2D 1H NMR spectroscopy outlined in
Section 3.2 above, the analysis here focused on just 7: chemical shifts,
multiplicities, coupling constants, 2nd order nature and COSY, HSQC
and HMBC cross-peaks, for further study, as these are of most impor-
tance for metabolite identification by NMR spectroscopy. A manual
analysis of the number of each of these 7 features expected to occur in
each of the 75 metabolites was conducted (see Supplementary Data).

Table 5 shows the number of bits of spectroscopic information theo-
retically present in the 1D or 2D 1H NMR spectra of the 75 metabolites,
for a range of different approaches to metabolite identification. The first
would involve just the use of 1D 1H NMR; the second, the additional use
of COSY, the third the additional use of HSQC and finally, the additional
use of HMBC information. For example, the number of bits of spectro-
scopic information in a metabolite for an approach based on just 1D
1H NMR would include the total number of 1H NMR chemical shifts,
multiplicities and coupling constants in a metabolite, plus a flag for a
second order spin system, if present.

Thus, as expected, the amount of spectroscopic information avail-
able to assist with metabolite identification increases in going from ap-
proaches based solely on 1D 1H NMR, to those involving significant
utilisation of 2D NMR methods. The distribution of the data across the
75 metabolites is informative (Fig. 3). The bits of spectroscopic informa-
tion can be considered to be bits of metabolite identification information,
each of importance to the valid identification of metabolites. What is im-
mediately apparent is that even with a simple 1D 1H NMR approach,
some metabolites contain a surprisingly large number of bits of infor-
mation that can be used to identify them: up to 42 bits in onemetabolite
in this set.

It is important to understand how themetabolite identification infor-
mation content of the metabolites varies with their structures. Fig. 4
shows the variation in the number of bits of metabolite identification in-
formation against the number of carbon atoms in the molecule. An ap-
proximately linear relationship is observed, apart from three clear
outliers (filled diamonds in Fig. 4) due to the sugars xylose, fucose and
glucose in the set. Removal of the three outliers improves the linear cor-
relation to an R2 of 0.47, with the equation y = 1.74 x −0.48.

The analysis was then developed using a concept from drug discov-
ery. In 2004, Alex, Groom and Hopkins introduced the concept of ligand
efficiency as a tool to assist lead and drug discovery [45,46]. The essence
of this approach is to calculate the binding energy of ligands per heavy
atom in the molecule, in order to drive drug discovery projects towards
molecules that have the highest binding energy with the lowest
Table 5
The number of bits of spectroscopic information per metabolite theoretically contained in the g
sponds to a bit of metabolite identification information.

Feature/methodology 1D 1H NMR 1D 1H NMR plus 2D COSY 1D

Minimum number of bits 2 2 3
Maximum number of bits 42 56 70
Average number of bits 9.2 11.3 14
Median number of bits 7 8 11
Standard deviation 7.9 10.6 13
molecularweight. A corresponding approach tometabolite identification
analysis would use the concept of metabolite identification efficiency
(MIE). In contrast to ligand efficiency (LE) where the total molecular
weight is of importance, in MIE, the number of carbon atoms in the me-
tabolite is also of importance, as the carbon atoms carry the vastmajority
of the non-exchangeable hydrogen atoms observed in 1H NMR experi-
ments. We thus introduce the concept of metabolite identification effi-
ciency in two forms:

MIE ¼ numberof bitsof metabolite identificationinformation=number
of heavyatomsin metabolite

MICE ¼ numberof bitsof metabolite identificationinformation=number
of carbonsinmetabolite

where MICE is the Metabolite Identification Carbon Efficiency. Like MIE,
MICE can be calculated separately for each metabolite according to the
approach taken to the analysis of the metabonomics data, be that solely
based on 1D 1H NMR, or involving significant utilisation of 2D NMR
methods (Fig. 5).

It is clear that the MICE for metabolites varies broadly and that the
use of additional 2D technologies including COSY, HSQC and HMBC
can significantly boost the theoretical amount of metabolite identifica-
tion information per carbon atom in the metabolite. The theoretical
MICE values range from an average of 1.8 ± 1.3 for 1D 1H NMR alone,
to 2.2 ± 1.7 for approaches that include COSY data, to 2.9 ± 2.1 for
approaches that also include COSY and HSQC and to 4.6 ± 3.3 bits
per carbon atom for approaches that include COSY, HSQC and HMBC
(standard deviations).

For comparison, the theoretical MIE values range from an average of
1.0 ± 0.7 for 1D 1H NMR alone, to 1.2 ± 0.9 for approaches that also in-
clude COSY data, to 1.6 ± 1.1 for approaches that also include COSY and
HSQC and to 2.6± 1.8 bits per heavy atom (standard deviations) for ap-
proaches that also include HMBC. TheMIE values are naturally lower as
the number of heavy atoms is approximately double the number of car-
bon atoms across this set of 75 metabolites.

The amount ofmetabolite identification information per heavy atom
or per carbon atom in themetabolites is quite high and gives a perspec-
tive on what can be achieved via modern, high field NMR spectroscopy
approaches to metabonomics. This efficiency-based approach is critical
in understanding how much metabolite identification information is
being obtained relative to the molecular size of the metabolite.

The theoretical MIE and MICE values also varied significantly accord-
ing to the type of metabolites under study. The metabolites were sorted
between those containing 1 to 5 chiral centres (n = 24) and those con-
taining no chiral centres (n=51). Table 6 shows the differences between
the chiral and non-chiralmetabolites in terms of their theoretical number
of bits of metabolite identification information at the level of 1D 1H and
2D COSY and HSQC NMR data plus the corresponding MIE and MICE
values.

Table 6 clearly shows that: (i) the information content of the chiral
metabolites is significantly greater than that of the non-chiral metabo-
lites (p = 0.0007), and also that (ii) the information density per heavy
atom (MIE, p = 0.0022) or per carbon atom (MICE, p = 0.0014, all
from two-tailed, unpaired student t-tests) is also significantly higher
for chiral metabolites. In all cases the p values from the student t-test
roup of 75 metabolites, from four NMR-based metabonomics approaches: each bit corre-

1H NMR plus 2D COSY and HSQC 1D 1H NMR plus 2D COSY, HSQC and HMBC

3
106

.7 24.3
16

.1 21.8



Fig. 3. The distribution of the theoretical number of bits ofmetabolite identification (ID) information available from three different NMRapproaches across the 75metabolites. The number
of bits is calculated in bins ranging from0 to 4, 5 to 8 etc. up to 105 to 108 bits. Each bit represents a 1HNMRchemical shift, multiplicity, coupling constant, 2nd orderflag, COSY cross-peak,
HSQC cross peak or HMBC cross peak, that theoretically should be observed for the metabolite in question. Data for approaches using 1H plus COSY data not shown for clarity of
presentation.
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are less than0.05, the cut-off for statistical significance of thedifferences
in the values, with 95% confidence. The reason for these significant dif-
ferences is principally the raising of the chemical shift degeneracy for
methylene protons in the environment of a chiral centre: this signifi-
cantly increases the number of metabolite identification information
bits in a metabolite.

A similar theoretical analysis using an NMR approach including 1D
1H NMR, COSY and HSQC data was conducted of differences between
the classes of metabolites in Table 4. This demonstrated that the MIE
values for the tricarboxylic acids (0.8 ± 0.5, n = 4) are significantly
lower than the corresponding values for the cluster formed of the
small alcohols and ketones (1.9 ± 0.5, n = 5, grouped together) with
a p value of 0.012. In addition the group of sugars and sugar acids
have an MIE value (3.6 ± 2.1) that is significantly greater than those
of all other groups (additional values are: 1.5 ± 0.4, 1.3 ± 1.1, 1.4 ±
1.0, 1.4 ± 0.6 and 1.4 ± 0.7 for the carboxylic acids, n = 11, the
hydroxycarboxylic acids, n = 4, the dicarboxylic acids, n = 8, the
amines, n = 14 and the amino acids and amides, n = 21 respectively)
with p values all ≤0.039, apart from the cluster formed of the small al-
cohols and ketones (p = 0.079).
Fig. 4. The number of metabolite identification (ID) information bits theoretically available from
liers due to xylose, fucose and glucose are highlighted with filled, as opposed to open diamond
The corresponding theoretical MICE analysis (at the level of 1D 1H
NMR, COSY and HSQC data) showed that the values of the sugars and
sugar acids (7.1 ± 4.1) are significantly greater than those of all other
groups, with p values ranging from 0.012 to 0.031. The MICE values
for the other groups are 2.3 ± 0.6, 2.5 ± 1.9, 2.7 ± 1.9, 1.7 ±1.1,
2.8 ± 0.7, 2.5 ± 1.1 and 2.6 ± 1.2 for the carboxylic acids, the
hydroxycarboxylic acids, the dicarboxylic acids, the tricarboxylic acids,
the small alcohols and ketones, the amines, and the amino acids and
amides, respectively. No other groups showed significantly different
MICE values in pairwise comparisons. The non-significance (MIE) vs
the significance (MICE) in the differences between the values for the
sugars and sugar acids and the small alcohols and ketones, reflects the
fact that the carbon to oxygen ratio is at least 2 to 1 for the alcohols
and ketones whereas it is ca 1:1 for most of the sugars and sugar
acids. This has the effect of scaling down the MIE values for the sugars
and sugar acids andmaking the difference between their average values
and those of the small alcohols and ketones non-significant.

It is worth noting that a third approach, different from either theMIE
or MICE approaches is possible. This third approach involves simply
counting the number of bits of metabolite identification information
1D 1HNMR plotted against the number of carbon atoms for all 75metabolites. Three out-
s.



Fig. 5. The theoreticalmetabolite identification carbon efficiency (MICE) for all 75metabolites and for four separatemetabolic profiling approaches: 1D 1HNMRalone, 1D 1H plus COSY, 1D
1H plus COSY andHSQC data and 1D 1H plus COSY, HSQC andHMBC data. The histogram shows the number ofmetabolites for each approachwithMICE values in bins of 0 to 1, N1 to 2, N2
to 3 etc. up to N17 to18.
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theoretically present in each of the metabolites, with each level of NMR
approach, from 1D 1H NMR alone, up to the combined usage of 1D 1H
NMR together with COSY, HSQC and HMBC data. The number of theo-
reticalmetabolite ID information bits can then be comparedwith the ac-
tual number of bits experimentally observed to give a metabolite
identification hydrogen fraction (MIHF). This analysis is conducted in
Section 3.4 below.
3.4. An analysis of the actual 1D and 2D 1H NMR spectroscopic information
content of metabolites, retrieved from analysis of biofluid NMR spectra

Theoretical analyses are all well and good but a key question is how
much metabolite identification information is actually retrieved in typi-
calmetabonomics experiments. Issues such as relatively low abundance
of a particular metabolite and/or spectral crowding in some chemical
shift regions will reduce the actual amount of metabolite identification
information retrieved for metabolites, relative to the theoretical maxi-
mal amount. In addition, the small size and lack of hydrogen atoms in
some metabolites limit the amount of information available.
Table 6
A theoretical analysis of the total number of metabolite identification information bits,
metabolite identification efficiency (MIE) and metabolite identification carbon efficiency
(MICE) for chiral (24) vs non-chiral (n = 51) metabolites in this study (all analyses at
the level of data from 1D 1H and 2D COSY and HSQC NMR.

Feature/parameter Average
value

Standard
deviation

Total number of metabolite identification information bits
for chiral metabolites

24.58 17.98

Total number of metabolite identification information bits
for non-chiral metabolites

9.98 6.03

Metabolite identification efficiency MIE, chiral 2.36 1.52
Metabolite identification efficiency MIE, non-chiral 1.27 0.56
Metabolite identification carbon efficiency (MICE), chiral 4.45 3.03
Metabolite identification carbon efficiency (MICE),
non-chiral

2.19 0.88
Table 7 lists the information obtained using four different levels of
NMR spectroscopy for the 75 metabolites studied in this work. A direct
comparison with Table 5 will illustrate that there is a significant drop in
the amount of information obtained from the analysis of the experimen-
tal NMR spectra, compared with that which is theoretically available.
Table 8 provides another view of the data, providing the total number
of bits of metabolite identification information actually obtained in
four differentmodes of NMR-basedmetabonomics versus the bits of in-
formation theoretically available.

The drop off in metabolite identification information observed rela-
tive to that theoretically available is particularly steep for the HMBC
data. Only 82 bits of information out of a possible total of 725 bits
were obtained across all 75 metabolites from HMBC experiments. This
is unsurprising given the difficulty in acquiringHMBCdata on lowabun-
dance metabolites in biofluids with good sensitivity in a reasonable pe-
riod of time. However, for HSQC, an encouraging 129 bits of information
were obtained from a theoretical maximum of 250 across the 75
metabolites.

Supplementary Fig. 3 shows a histogram comparing the actual num-
ber of metabolite identification information bits retrieved in the experi-
ments reported here compared with the amount theoretically available,
for an approach combining information from 1D 1H NMR, COSY and
HSQC experiments. The clustering of the actual information retrieved to
lower bin sizes is clear.

Finally, Fig. 6 shows the actual metabolite identification carbon effi-
ciency (MICE) obtained in the experiments with four different NMR
approaches.

The data in Fig. 6 can be directly compared with that in Fig. 5. It is
clear that the actual, experimental MICE values for metabolites vary
broadly and that the use of additional 2D technologies including COSY
and HSQC does boost the actual amount of metabolite identification in-
formation per carbon atom in the metabolite. However, in these exper-
iments, the additional information from HMBC did not augment the
information available to anywhere near the extent theoretically possi-
ble. The actual average MICE values over all metabolites range from
1.3 ± 0.8 for 1D 1H NMR alone, to 1.6 ± 1.0 for approaches that also in-
clude COSY, to 1.9 ± 1.1 for approaches that also include COSY and
HSQC and to 2.2 ± 1.1 bits per carbon atom (standard deviations) for
approaches that also include HMBC. The corresponding actual MIE



Table 7
The bits of metabolite identification information per metabolite actually obtained from four NMR-based metabonomics approaches in the group of 75 metabolites.

Feature/methodology 1D 1H NMR 1D 1H NMR plus 2D COSY 1D 1H NMR plus 2D COSY and HSQC 1D 1H NMR plus 2D COSY, HSQC and HMBC

Minimum number of bits 2 2 2 2
Maximum number of bits 22 28 31 31
Average number of bits 6.2 7.5 9.2 10.3
Median number of bits 5 6 8 9
Standard deviation 4.5 5.8 6.5 6.8
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values (Fig. 7) averaged over all 75 metabolites are: 0.7 ± 0.4 for 1D 1H
NMR alone, 0.9 ± 0.5 for approaches that also include COSY, 1.1 ± 0.6
for approaches that also include COSY and HSQC and 1.2 ± 0.6 bits
per heavy atom for approaches that also include COSY, HSQC and
HMBC (standard deviations).

As mentioned in Section 3.3 above, another approach to take to the
question of metabolite identification confidence would be to compare
simply the number of metabolite identification information bits obtain-
ed experimentally, with the number of bits theoretically present in each
metabolite to arrive at a metabolite identification hydrogen fraction
(MIHF) as defined below:

MIHF ¼ NMIIo=NMIIt
NMIIo ¼ Numberof bitsof Metabolite IdentificationInformation

actuallyobserved
NMIIt ¼ Numberof bitsof Metabolite IdentificationInformation

theoreticallypresent

MIHF can be calculated for single metabolites, sub-groups of me-
tabolites or an entire collection. This analysis is also illuminating
(Fig. 8).

It is striking that 42 out of 75metabolites (56%) haveMIHF values of
N0.9 for a simple 1D 1H NMR approach to metabolite identification, in-
dicating that the majority of metabolites studied here are displaying
N90% of the available 1D 1H NMR information bits. This % drops off as
theNMRapproach includes the use ofmore andmore 2DNMRmethods
and is lowest for the approach combining 1D 1H NMR with 2D COSY,
HSQC and HMBC approaches. This is due to the difficulty of observing
all HMBC cross-peaks for metabolites present in a biofluid at relatively
low concentrations.

As discussed above, the MIHF values clustered significantly at the
high end of the range of possible values and provided a less good dis-
crimination between metabolites than the corresponding MIE or MICE
values. In addition, the MIHF values can seemmisleadingly low for chi-
ral metabolites, where there is typically more information than is re-
quired for confident metabolite identification, due to the raising of the
degeneracy of methylene proton signals. For instance, a comparison of
achiral, 2-hydroxyisobutyric acid (2-hydroxy-2-methylpropanoic acid,
HMDB00729) with its chiral isomer, 3-hydroxyisobutyric acid ((2S)-3-
hydroxy-2-methylpropanoic acid, HMDB00023) shows that the former
has a total of just 2 bits of spectroscopic information at the level of 1D 1H
NMR information bits, whereas the latter has 12! Finally, it is also a con-
cern that it may be easier for a small metabolite with a low number of
signals to get a very high MIHF score, compared with a more complex
metabolite with more signals. Consequently, the MIE and MICE
Table 8
A comparison of the total amount ofmetabolite identification information actually obtained ver
group of 75 metabolites as a whole.

Feature/methodology 1D 1H
NMR

1D 1H NM
COSY

Theoretical total number of metabolite identification bits available 688 849
Actual total number of metabolite identification bits observed 467 560
measures of confidence in metabolite identification were used in the
rest of this analysis in preference to the MIHF.

3.5. How much NMR information is enough for confident metabolite
identification?

This is the key question. The Metabolomics Standards Initiative
(MSI) approach differentiates between the situation where: (i) the ex-
perimental metabonomics data is compared with an authentic refer-
ence standard (Level 1, Identified Metabolite) and (ii) where
comparison is made to the literature or a public domain database such
as the HMDB (Level 2, Putatively Annotated Metabolite): see Table 1.
On the basis of the analysis of the NMR-derived data in this study, that
differentiation is not appropriate and it is perfectly possible to confi-
dently identify known metabolites based on reference to the literature
or the public databases. The guidelines to enable this are proposed to
be as follows:

1. experimental metabolite identification carbon efficiency (MICE)
ideally ≥ 1 and/or metabolite identification efficiency (MIE) N 0.5,
[these are guidelines, not rigid cut-offs, based on the experience
with the metabolites in this study and are for MICE and MIE
values with NMR approaches based on 1D 1H plus 2D COSY and
HSQC data]

2. the fit of the experimental data to reference data should be precise,
generally within ±0.03 ppm for 1D 1H and ±0.5 ppm for 13C NMR
shifts and ±0.2 Hz for homonuclear proton couplings: values outside
these limits need explanation: in addition, the reference database
entries should be double-checked for consistencywith other literature
values and general accuracy and self-consistency, including by
downloading of actual free induction decay data e.g., from the HMDB
[31]

3. theNMR spectral data should provide ‘coverage’ of all parts of themol-
ecule: for example, for para-cresol glucuronide, a molecule with two
distinct parts, it is important to have NMR data from both the cresol
and glucuronide parts for good confidence

4. the signal-to-noise ratio and the resolution (actual and digital) in
the spectra should be sufficient to measure the signal features
with confidence, with high resolution having the added benefit
of enabling the observation of long-range, homonuclear 1H \1H
and two-bond 1H \14N couplings that can be diagnostic for cer-
tain metabolites

5. care needs to be applied in the assignments of signals in regions
of the 1H NMR spectrum that are crowded with signals from
other metabolites, as the possibility of miss-assignment is
higher in these regions: high spectral and digital resolution is
sus that theoretically available from four NMR-basedmetabonomics approaches across the

R plus 2D 1D 1H NMR plus 2D COSY and
HSQC

1D 1H NMR plus 2D COSY, HSQC and
HMBC

1099 1824
689 771



Fig. 6. The actual experimental metabolite identification carbon efficiency (MICE) for all 75metabolites and for four separatemetabolic profiling approaches: 1D 1HNMR alone, 1D 1H plus
COSY, 1D 1Hplus COSY andHSQCdata and 1D 1Hplus COSY, HSQCandHMBCdata. The histogram shows thenumber ofmetabolites for each approachwithMICE values in bins of 0 to 1,N1
to 2, N2 to 3 etc. up to N17 to18.
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even more critical, as is the ability to correlate the correct sig-
nals together: TOCSY and J-resolved spectra can be enabling
here

6. HSQC data is extremely important in resolving metabolite iden-
tification issues, as the chemical shift sensitivity of 13C NMR is ca
20× that of 1H NMR and it provides a superb orthogonal data
source, as recommended by MSI: reliance solely on 1D 1H NMR
data will lead to confident assignments of major metabolites
but will struggle with the confident identification of less prom-
inent metabolites in crowded spectral regions

7. even though HMBC provided only a small proportion of the me-
tabolite identification bits that were theoretically possible in
these experiments, it is sometimes the only way to categorically
identify metabolites. HMBC is extremely valuable for defining
inter-atomic connectivities to quaternary carbon atoms, as
Fig. 7.The actual experimentalmetabolite identification efficiency (MIE) for all 75metabolites a
1H plus COSY andHSQCdata and 1D 1H plus COSY, HSQC andHMBCdata. The histogram shows
N0.4 to 0.6 etc. up to N3.0 to 3.2.
well as through quaternary carbon atoms and heteroatoms,
and should be used as much as possible.

The example of the identification of L-fucose is a good one, if on the
extreme end of proving a point. A total of 15 bits of 1D 1HNMR informa-
tion were discovered in the experimental data. This figure increased to
20, 24 and 25 bits of information if COSY, COSY plus HSQC or COSY
plus HSQC and HMBC data respectively, were considered in addition
to the 1D 1H NMR data. The experimental MICE values were 2.5, 3.3,
4.0 and 4.2 for the 1D 1H NMR, 1D 1H plus 2D COSY, 1D 1H plus 2D
COSY and HSQC, and 1D 1H plus 2D COSY, HSQC and HMBC data ap-
proaches respectively. The corresponding MIE values were: 1.4, 1.8,
2.2 and 2.3 respectively. All the experimental bits of metabolite identifi-
cation information were in good agreement with those reported for au-
thentic L-fucose, HMDB00174, in the HMDB (see Section 3.1 above).
nd for four separatemetabolic profiling approaches: 1D 1HNMRalone, 1D 1Hplus COSY, 1D
the number ofmetabolites for each approachwithMIE values in bins of 0 to 0.2, N0.2 to 0.4,



Fig. 8.Ahistogram of the number ofmetabolites in the collection of 75metabolites analysed here against themetabolite identification hydrogen fraction (MIHF) in buckets of 0.1 from 0 to
1. The analysis is shown for four separate NMR approaches to metabolite identification: use of 1D 1H NMR data alone and the additional uses of COSY, HSQC and HMBC data.
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These figures indicate great confidence in the metabolite identification
and no need for any further direct comparisons with an actual sample
of authentic L-fucose as recommended in the original MSI publication
[36].

A metabolite with an MICE value just under average for approaches
based on 1D 1H plus 2D COSY and HSQC data is ketoleucine
(HMDB00695). This is a more normal example of a metabolite that
was identified in the mouse urine. The methyl groups were observed
as a doublet at 0.941 (d, 6.6 Hz), 24.5 with a COSY to 2.098 (triplet of
septets), and the latter signal had a COSY to 2.618 (d, 7.0 Hz). The iden-
tification of three chemical shifts, threemultiplicities, two coupling con-
stants, two COSY and one HSQC cross-peaks gave a total of 11 bits of
information. The corresponding data for HMDB00695 was 2.60 (d,
7.0), 50.8; 2.09, 26.7 and 0.93 (d, 6.7 Hz), 24.4 and is an excellent
match to the experimental data. Ketoleucine has 6 carbon atoms, so
the MICE value is 11/6 = 1.8, just under the average MICE value of 1.9
bits per carbon for all the metabolites in this study, and at this level.
Ketoleucine, a metabolite with a below average MICE value is consid-
ered confidently identified.

3.6. How confident can we be in metabolite identification withMIE b 0.5 or
MICE b 1 (using 1D 1H plus COSY and HSQC NMR data)?

This analysis will be exemplified for NMR approaches that use 1D 1H
plus COSY and HSQC NMR data, as this is routine in metabonomics/
metabolomics studies. Of the 75 metabolites in this study, five have a
theoretical MIE of b0.5 and four of these five have a theoretical MICE
of b1 based on combined 1D 1H plus COSY and HSQC NMR data (See
Supplementary Data). These metabolites are: 2-hydroxyisobutyric
acid, succinic acid, tartaric acid, allantoin and guanidoacetic acid. All
fivemetabolites have just a single singlet in their 1D 1H NMR spectrum,
Table 9
the actual NMR-based metabolic identification information available from 1D 1H plus COSY an

Common name Number of
carbon atoms

Number of
1D 1H δH

Number
of mult.

Number
of nJHH

Actua
order

Phenylacetic acid 8 1 1 0 1
Methylsuccinic acid 5 1 1 1 0
Trans-aconitic acid 6 2 2 0 0
Choline 5 1 1 0 0
L-Carnitine 7 1 1 0 0

Dimethylglycine 4 1 1 0 0
N,N,N-trimethylglycine, betaine 5 1 1 0 0
N-propionylglycine 5 1 1 1 0
severely limiting the amount of NMR information that can be obtained.
In practice, the relatively distinctive chemical shifts of the first four, the
availability of HSQC information for all five and HMBC information for
all except 2-hydroxyisobutyric acid, means that their identification is
unambiguous (see Supplementary Information). However, in these
cases, where the MIE b 0.5 and/or MICE is b 1, it is critical to have or-
thogonal confirmation of metabolite identities via HSQC/HMBC data,
as achieved in the experiments reported here, and all five metabolites
are considered confidently identified. The actual experimental MICE,
MIE values were: 2-hydroxyisobutyric acid (0.8, 0.4), succinic acid
(0.8, 0.4), tartaric acid (0.8, 0.3), allantoin (0.8, 0.3) and guanidoacetic
acid (1.0, 0.4), all being identical to the maximum theoretical values in
this case.

In addition, 13 of the 75 metabolites studied have actual MIE
scores of b0.5 and/or actual MICE scores of b1.0 based on the com-
bined experimental 1D 1H plus COSY and HSQC NMR data (See Sup-
plementary Data). These 13 naturally include the five metabolites
analysed above. Table 9 extracts the data that was available for the
MICE scores of the 8 additional metabolites from the Supplementary
materials.

So, for thesemetabolites, how confident is their identification based
on the information given in Table 9? For phenylacetic acid, three addi-
tional HMBC connectivities were observed from the acid, and ipso and
ortho aromatic carbons to the methylene protons, which also had a
long-range, 4-bond COSY to the ortho aromatic protons, so this identifi-
cation is considered confident. For methylsuccinic acid, no additional
information was available and therefore this metabolite should be de-
scribed as putatively annotated, to keep consistency with the MSI no-
menclature. For trans-aconitic acid, in addition to the 1D 1H NMR
chemical shift, multiplicity and HSQC information, a long-range, 4-
bond COSY was observed between the olefin and methylene protons,
d HSQC NMR experiments on eight metabolites with MICE scores of b1.0.

l 2nd
flag

Number of COSY
cross-peaks

Number of
HSQC peaks

Actual total info 1D
1H, COSY & HSQC

Actual MICE based on
1D 1H COSY HSQC

0 4 7 0.9
1 0 4 0.8
0 1 5 0.8
0 1 3 0.6
0 1 3 0.4

0 1 3 0.8
0 1 3 0.6
1 0 4 0.8
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both of which displayed characteristic 0.8 Hz couplings on resolution
enhancement of the spectra. Reprocessing the reference NMR data in
HMDB (HMDB00958) with resolution enhancement reveals couplings
of ca 0.7 and 0.8 Hz on the methylene and olefin signals respectively,
in agreement, so this metabolite is considered confidently identified.
For choline, in addition to the 1D 1H NMR chemical shift, multiplicity
andHSQC information, cross-methyl, andN\CH2 carbon tomethyl pro-
ton HMBC peaks were observed. Remarkably, due to the quasi-
symmetrical environment of the quadrupolar nitrogen-14 atom,
resolution enhancement of the methyl signal revealed a small 2JNH of
ca 0.6 Hz (triplet 1:1:1) which is diagnostic and also present on
reprocessing the HMDB reference spectrum with resolution enhance-
ment (HMDB00097). This identification is thus considered confident.
For L-carnitine, in addition to the proton chemical shift and multi-
plicity of themethyl group, an HSQC cross-peak to themethyl carbon
was observed, together with HMBC cross-peaks from the methyl car-
bon and the N\CH2 carbon to the methyl protons. This metabolite is
considered putatively annotated however, as none of the metabolite
identification information covers the carboxylic acid portion of the
molecule (see Guideline 3 in Section 3.5 above). For dimethylglycine,
in addition to the 1D 1H NMR chemical shift, multiplicity and HSQC
information, cross-methyl and N\CH2 carbon to methyl HMBC
peaks were observed, confirming the identification of this metabo-
lite. For betaine, in addition to the 1D 1H NMR chemical shift, multi-
plicity and HSQC information, cross-methyl, and N\CH2 carbon to
methyl proton HMBC peaks were observed, confirming the identifi-
cation. For N-propionylglycine however, no further information
was available and thus, this metabolite should be described as
putatively annotated also.

In summary for 13metaboliteswith actualMIE scores of b0.5 and/or
actual MICE scores of b1.0 based on the combined experimental 1D 1H
plus COSY andHSQCNMRdata, a total of threemetaboliteswere classed
as putatively annotated: the restwere confidently identified. Thus, even
with relatively low MIE or MICE scores, it is still possible to confidently
identify a very large number of metabolites, as long as additional, high
quality 1D and 2D NMR data is available.
4. Conclusions

This work represents a novel, more quantitative approach to the
issue of confidence inmetabolite identification. The spectroscopic infor-
mation content of the 1D and 2D 1H NMR spectra of metabolites has
been investigated from a metabolite identification perspective for the
first time. New theoretical and experimental measures of metabolite
identification efficiency have been delineated: the metabolite identifi-
cation efficiency (MIE), the metabolite identification carbon efficiency
(MICE) and the metabolite identification hydrogen fraction (MIHF).
These are expected to be useful in helping to establish the confidence
of metabolite identifications in future metabonomics/metabolomics
studies.

The main recommendation emerging from this work is that the re-
quirement for comparison with an authentic reference standard for
confident metabolite identification is unnecessary for NMR-based me-
tabolite identifications as long as the 7 recommendations formetabolite
identification confidence below are acted upon (see also Section 3.5).
Metabolites can be confidently identified by comparison with data in
online databases such as HMDB [31]. Examples have been given of con-
fident identifications of metabolites with high, average and relatively
low MIE/MICE values, using data at the level of 1D 1H plus 2D COSY
and HSQC data. Metabolites with low MIE/MICE values will need cor-
roboration with other data. In the case of experiments run at the level
of 1D 1H plus 2D COSY and HSQC data, this may be HMBC or long-
range coupling data, for example.

The 7 recommendations for confident identification of known me-
tabolites based on comparison with the NMR spectra of those
metabolites in reference databases such as HMDB that emerged from
this work (see Section 3.4 above for more details) are:

1. the experimental metabolite identification carbon efficiency (MICE)
obtained in the experiments ideally should be≥1, or the metabolite
identification efficiency (MIE) N 0.5: these are guidelines, not abso-
lute numbers, and are for approaches using 1D 1H plus 2D COSY
and HSQC data

2. the fit of the experimental data to reference data should be precise,
generally within ±0.03 ppm for 1H, and ±0.5 ppm for 13C NMR
shifts and ±0.2 Hz for proton couplings: the database entries should
be double-checked for self-consistency, accuracy and agreement
with other literature, including by downloading of actual free induc-
tion decay data (HMDB)

3. the NMR spectral data should provide ‘coverage’ of all parts of the
molecule

4. the signal-to-noise ratio and the resolution (actual and digital) in the
spectra should be sufficient to measure the signal features with
confidence

5. care should be applied when assigning signals in crowded spectral
regions

6. HSQC data is important in metabolite identification, as it provides an
excellent orthogonal data source via the 13C NMR chemical shift

7. HMBC data should be used wherever possible to corroborate
identifications.

A further recommendation from this work is that metabonomics/
metabolomics researchers publish more detail on the spectroscopic
data onwhich they are basing their metabolite identifications. This addi-
tional information could include the MIE or MICE values for each of the
metabolites identified. Confidence in metabolite identification is critical
for any subsequent biochemical or biological interpretation of the data.

Thus, in summary, as long as the 7 recommendations above are acted
upon, confident identifications of knownmetabolites can bemade by ref-
erence to on-line databases such as the Human Metabolome Database
(HMDB). Out of 75 knownmetabolites studied in this work, it is asserted
that 72 of 75 (96%) are confidently identified and only 3metabolites (4%)
fell into the putatively annotated category.

One of the reasons for being less conservative in the identification of
known metabolites using NMR spectroscopic methods is that NMR
technology is stable and reproducible. Having an excellent resource
like the HMDB [31] available, that not only provides access to informa-
tion on the NMR spectra of the metabolites in both 1D and 2D forms,
but also enables access to the raw free induction decay data, is equiva-
lent in many cases to having access to an authentic reference standard
for direct comparisons. However, as always, the researcher needs to
double-check all database entries for coherence and accuracy: errors
in the databases do occur.

It is hoped that this work provides a new paradigm for NMR-based
metabolite identification of known metabolites. It is expected that
other researchers will investigate and test the methodology and no
doubt develop it further. However, it is hoped and expected that the
provision of a metabolite identification confidence index such as MIE
or MICE will help solve the current issue of confidence in metabolite
identification. Finally, it should be noted that the ideas herein are equal-
ly applicable to mass spectrometry, and to other analytical techniques,
and should have broad utility.
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Appendix A

A.1. Glossary of terms
Term
 Meaning
1D
 One-dimensional

2D
 Two-dimensional

CAWG
 Chemical Analysis Working Group

CE–MS
 Capillary electrophoresis mass spectrometry

COSY
 COrrelated SpectroscopY

δH
 Hydrogen-1 or proton NMR chemical shift

δC
 Carbon-13 NMR chemical shift

GC–MS
 Gas chromatography mass spectrometry

HMBC
 Heteronuclear multiple bond correlation spectroscopy

HMDB
 Human Metabolome Database

HSQC
 Heteronuclear single quantum correlation spectroscopy

ID
 Identification

3J
H,H
 Three-bond spin–spin coupling between two hydrogens etc
JRES
 J-resolved spectroscopy

LC–MS
 Liquid chromatography mass spectrometry

MIE
 Metabolite identification efficiency

MICE
 Metabolite identification carbon efficiency

MIHF
 Metabolite Identification Hydrogen Fraction

MS
 Mass spectrometry

MSI
 Metabolomics Standards Initiative

NOESY
 Nuclear Overhauser spectroscopy

NMR
 Nuclear magnetic resonance

TOCSY
 TOtal Correlation SpectroscopY

TSP
 Sodium 3-(trimethylsilyl) propionate-2, 2, 3, 3-d4

UPLC–MS
 Ultra-performance liquid chromatography mass spectrometry
Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2015.01.002.
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