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Abstract 

Due to the proliferation of object-oriented software development, UML software 

designs are ubiquitous. The creation of software designs already enjoys wide software 

support through CASE (Computer-Aided Software Engineering) tools. However, there 

has been limited application of computer reasoning to software designs in other areas. 

Yet there is expert knowledge embedded in software design artefacts which could be 

useful if it were successfully retrieved. Thus, there is a need for automated support for 

expert knowledge retrieval from software design artefacts. 

A software design is an abstract representation of a software product and, in the case of 

a class diagram, contains information about its structure. It is therefore possible to 

extract knowledge about a software application from its design. For a human expert an 

important aspect of a class diagram are the semantic tags associated with each 

composing element, as these provide a link to the concept each element represents. For 

implemented code, however, the semantic tags have no bearing. The focus of this 

research has been on the question of whether is it possible to retrieve knowledge from 

class diagrams in the absence of semantic information.  

This thesis formulates an approach which combines case-based reasoning with graph 

matching to retrieve knowledge from class diagrams using only structural information. 

The practical applicability of this research has been demonstrated in the areas of cost 

estimation and plagiarism detection. It was shown that by applying case-based 

reasoning and graph matching to measure similarity between class diagrams it is 

possible to identify properties of an implementation not encoded within the actual 

diagram, such as the domain, programming language, quality and implementation cost. 
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An approach for increasing users’ confidence in automatic class diagram matching by 

providing explanation is also presented. 

The findings show that the technique applied here can contribute to industry and 

academia alike in obtaining solutions from class diagrams where semantic information 

is lacking. 

The approach presented here, as well as its evaluation, were automated through the 

development of the UMLSimilator software tool.  
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Chapter 1 

1 Introduction 

The entire object-oriented paradigm revolves around reuse [Lewis et al., 1990]. Classes 

are created, which define blueprints for generating any number of objects. Reuse 

happens at an intra-class level, where one can factor code into methods which can be 

reused within the class. Inheritance enables us to reuse existing classes through 

extension and specialisation. Classes can be packaged as components, which can be 

reused. However, these are all examples of code reuse.  

Design plays an important role in the creation of software artefacts, as it enables 

visualising the structure and distribution of responsibility, within a planned application 

and it is at the design stage that ideas start taking shape. Reuse in object-oriented 

development is not limited to the reuse of code, although this is the kind of reuse which 

has been applied at a practical level for a long time. Traditionally, less importance has 

been given to the reuse of software design, but this has changed, especially with the 

emergence of design patterns [Gamma et al., 1995]. 

The way a software artefact is structured is important for a developer. A sound design 

enables the creation of reusable modules and more manageable code that can be more 

easily understood by fellow programmers, which is maintainable, flexible and easily 

extendible [Victor et al., 1996]. However, a question posed in this research is whether 

the design is only important to a developer who is writing code or whether there are 

other circumstances in which the design of a software artefact is of importance. The 

functionality of a software application is determined by the choice of code constructs 

and how the code is laid out (its design). As there are numerous ways of structuring 
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code to achieve the same functionality, it is not possible to determine the exact 

functionality of an application just by its design. It is possible, however, to compare 

designs within a particular context. This research focuses on the use of knowledge that 

can be retrieved from software designs.  

Another consideration is the impact of a software artefact’s design on its performance at 

runtime, a topic which is not addressed in this research, but considered in research into 

areas such as refactoring [Demeyer, 2005], binary refactoring [Tilevich and 

Smaragdakis, 2005] and compiler optimisation [Su and Lipasti, 2006]. According to 

Abreu and Melo [Abreu and Melo, 1996], quality of software can be influenced by 

object-oriented design mechanisms, such as inheritance and polymorphism. 

This research addresses whether it is possible to effectively automate the retrieval of 

knowledge from software engineering structures. 

 

1.1 Motivation 

There is no exact science dictating how functional and non-functional requirements of a 

software application are translated into a software design. Software design is an 

experience-driven process and the structure of a software artefact stems from a 

developer’s or systems architect’s experience, personal preference, understanding of the 

business requirements, target technologies or may even be reused in part from existing 

designs. Giving the same non-trivial requirements to a number of developers or 

architects, would result, without doubt, in different software designs. This is obvious 

when setting software design assignments to a class of students. 
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For a person comparing software designs depicting applications with similar 

functionality, a prime indicator for identifying similarity would be the semantic 

relationship between the different elements. The problem with automating this 

comparison is that the names chosen for elements composing a software design could be 

in different languages, abbreviations, words joined together or be meaningful only to 

the designer. It is partly due to this limitation that this research ignores the semantic 

aspect of software artefacts and focuses entirely on their structure. 

As has been established above, it is not possible to determine the functionality of an 

application or system strictly based on its design structure. If each composing element is 

stripped of its semantic description, it can represent anything and is therefore stripped of 

much of its meaning. However, there is meaning in how composing elements are related 

to one another and how they are structured internally. Comparing software designs 

merely from a structural perspective, within a context, can provide valuable 

information. 

There are contexts within which the structural similarity of software designs is more 

relevant than the information provided by semantic comparison. One such example is 

cost estimation of software development. In software engineering, cost or effort 

estimation is the process of predicting the effort required in order to develop a piece of 

software. Cost estimation of software is considered more difficult than in other 

industries, as it generally involves creating new products [Briand and Wieczorek, 2002]. 

As outlined in [Jones, 2007], different approaches exist to software cost estimation; 

some are based on formal models, such as parametric or size-based models, while others 

rely on expert estimation. A major motivation of this research is to determine whether 

cost estimation can be automated effectively by comparing software designs. Given a 

collection of software designs and corresponding cost it took to implement each design, 
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e.g. in lines of code, it may be possible to predict the effort necessary to implement a 

new target design, provided that the implementation shares some common context, such 

as, complexity of the functionality, similar programming languages and technologies, 

etc. 

There have been a number of attempts to automate software cost estimation using 

approaches as varied as fuzzy decision trees, neural networks, rule induction and case-

based reasoning. A comparison of various automated software effort estimation 

techniques has been undertaken by Finney et al. [Finnie, et al., 1997] whose findings 

were that while regression models performed poorly, neural networks and case-based 

reasoning both have value for software development cost estimation models. In the case 

of case-based reasoning, it seems particularly appealing due to similarity to expert 

judgment approaches and as an expert assistant in support of human judgement.  

Using case-based reasoning for cost estimation means that when a new project is 

provided for estimation, the most similar projects from the case-base are selected in 

order to predict the cost of the new project. Much of the research for software cost 

estimation using case-based reasoning is based on the Desharnais data set [Desharnais, 

1989] with cases containing, among other, data such as project details, project length, 

team experience, programming language and entities [Huang, 2009; Li, et al., 2009]. 

Other research involving case-based reasoning relates to web development [Mendes, et 

al., 2002; Mendes, et al., 2003]. None of this research, however, takes into consideration 

the software design artefacts. Given that a software design artefact depicts the intended 

structure of the software product, it can contain information useful to the estimation of 

its development. 
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Another context within which the structural similarity of software designs is more 

relevant than the information provided by semantic comparison is plagiarism detection. 

Within software development, a person committing plagiarism may intentionally 

change the semantic values of elements in order to avoid detection. By measuring 

similarity between software designs purely on a structural level, copying someone’s 

code and changing the names or order of classes, operations and attributes, would still 

be detected. 

Much of the research into plagiarism detection focuses on free text and source code 

[Mozgovoy, 2006; Lukashenko, et al., 2007; Jadalla and Elnagar, 2008]. Nevertheless, 

one may not always be in possession of the source code when comparing two software 

structures. As the subjects of comparison are software designs, there may not be any 

source code if the comparison occurs prior to implementation. 

A software design is defined by its composing elements, which in the case of a UML 

(Unified Modelling Language) class diagram are its classes and interfaces. A 

class/interface is further defined by its internal members, which could be operations, 

constructors and/or attributes. Beyond the composing elements, an essential aspect of 

defining a software design is the relationships between the elements. 

By reducing structurally complex data, as present in a software design, to a graph-based 

notation, it is possible to compare two software designs taking into account not just the 

sum of its composing elements, but also their relationships. 

Representing software architectures as graphs has been discussed by Le Métayer [Le 

Métayer, 1996] and Fahmy [Fahmy, et al., 1997] where hierarchical systems are 

represented in graph-notation. While the research was not specifically applied to UML 

in these cases, the software architecture or architectural designs included components, 
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such as files or procedures which could be expressed diagrammatically. As long as a 

diagrammatic representation of a software system has a hierarchical structure it may be 

represented as a graph, where nodes represent components and arcs represent 

relationships between the components. 

Much of the research on UML and graphs appears to be related to the problem of how 

to visually present diagrams, such as, visualising designs [Gutwenger, 2003; 

Eichelberger, 2003] and aesthetics for domain-specific layout [Purchase, et al., 2001]. 

Once a software design is reduced to graph-based notation it is possible to apply graph 

matching algorithms. In this research, the similarity is measured based on the maximum 

common subgraph, which is defined by Chartrand [Chartrand, 1989] as follows: “A 

graph G without isolated vertices is a greatest common subgraph of a set S of graphs, all 

having the same size, if G is a graph of maximum size that is isomorphic to a subgraph 

of every graph in S”. 

Graph matching and case-based reasoning has been successfully combined by [Petridis, 

et al., 2007a; Petridis, et al., 2007b; Mileman, et al., 2000; Mileman, et al., 2002], with 

the purpose of aiding the design of metal castings. 

In this research, case-based reasoning and graph matching are combined in order to 

measure similarity between software designs so that this information can be applied to 

automated cost estimation, plagiarism detection and identification of properties, such as 

implementation quality, programming language and functionality. 
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1.2 Research Question 

Software designs are an essential element of current software development. Yet it is 

difficult to automate the retrieval of knowledge from software designs. Software design 

is a process driven by personal experience and preferences, and a software engineer 

encodes semantic and structural information in the design artefacts. The semantic 

information is essential to convey how the design reflects the application or system it 

represents, but structural information is just as important. It provides the internal 

structure of elements, as well as the relationships between elements which will dictate 

the overall structure of the application/system. 

Very broadly defined, the aim of this research can be summarised in the following 

question: 

 Is it possible to effectively retrieve expert knowledge from structural software 

engineering artefacts? 

The above aim is very general, so more specific aims are: 

 In the absence of semantic information, is it possible to extract meaningful 

knowledge merely from the structural information, and can this retrieval process 

be automated? 

 Can case-based reasoning be applied to software designs to identify software 

systems from the same domain based on their structure? 

 Can structural similarity and case-based reasoning be combined to estimate 

software development cost? 

 A user’s trust in an automated system is reinforced if the system provides 

explanation of the results it provides. A system which applies case-based 

reasoning, measures similarities of cases to reach a result, which makes it even 
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more important to provide explanation. Thus a further aim of the research is for 

the developed system to explain why it reached a particular result. 

 

1.3 Research Methodology 

To validate the research findings and to warrant that the research question has been 

answered appropriately, the following measures are taken: 

 Development of a software application to automate the algorithms and 

procedures outlined in the research 

 Use of a case base with a considerable amount of diverse cases. There are over 

one hundred cases in the case base. The cases are based on results from a 

number of different teaching assignments, which ensures that there is a varied 

mix of cases. Having cases based on a set of teaching assignments also ensures 

that a number of cases represent software solutions with identical requirements 

(same assignment), making it possible to assess the identification of cases from 

the same domain and measure quality. 

 Controlled and planned experiments to test various aspects of algorithms and 

methods implemented in the software application. Extensive tests are carried out 

comparing only elements (without graphs), graphs using maximum common 

subgraph and graphs with optimised weighting. 

 Application of cross-validation to reinforce trust in the algorithms and their 

results. 

 Use of the software’s ability to explain results, tracing how a particular result 

was obtained, to evaluate the outcomes against human expert opinion. 
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1.4 Thesis Outline 

This thesis comprises six chapters. 

Chapter I: Introduction. This chapter gives an introduction to the thesis by providing 

the motivation for the research, stating the research question, outlining the research 

methodology applied in the research and finally presenting the structure of this thesis. 

Chapter II: Literature Review and Background. This chapter provides a literature 

survey of the state of research in the various areas which are relevant to this work, 

namely, case-based reasoning and graph similarity, retrieval of software knowledge, 

software engineering, cost estimation and explanation. The amount of publications in 

these subject areas is vast, thus the review is concentrated on the research contributions 

which are most closely related to this research or from which it follows. Surveying 

related research publications places this research into context, demonstrating that the 

research question is of value to the research community.  

Chapter III: Using Case-Based Reasoning for Retrieval of Knowledge from 

Software Design Artefacts. This chapter presents the methodologies and techniques 

that were applied, as well as providing justification for their application. The importance 

of structural similarity within software engineering artefacts is highlighted, in 

comparison to semantic similarity. The chapter also discusses the reasoning for 

applying graph modelling. 

Chapter IV: UMLSimilator. This chapter presents UMLSimilator, which is the 

software tool developed to evaluate the research. It explains how the algorithms are 

implemented and provides examples to illustrate. 
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Chapter V: Experiments and Evaluation. This chapter describes the experiments 

performed in order to assess the performance of the applied algorithms and techniques. 

It delineates the results and provides an analysis of the results compared to alternative 

approaches. The contribution to knowledge of each experiment is demonstrated. 

Chapter VI: Conclusion. This chapter concludes the thesis by outlining the main 

contribution of this research and discusses new directions in which this work could 

evolve. 

 

1.5 Publications 

The following publications were completed for this research, all of which were co-

authored with Prof Miltos Petridis: 

 Wolf, M. Petridis, M. (2003) Similarity Metrics for Reuse of Software Design 

using CBR, in Proceedings of the 8th UK Workshop on Case Based Reasoning, 

Cambridge 

 Wolf, M. Petridis, M. (2004) Applying CBR to Measure Similarity of Software 

Design Structures, Expert Update (regular journal of the Specialist Group on 

Artificial Intelligence - SGAI) 

 Wolf, M. Petridis, M. (2008) Measuring Similarity of Software Designs using 

Graph Matching for CBR, in Proceedings of the Artificial Intelligence 

Techniques in Software Engineering Workshop, 18
th

 European Conference on 

Artificial Intelligence 
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1.6 Conclusion 

Software designs are an essential element of current software development, but the 

automated retrieval of knowledge from the designs poses a problem. Software design 

artefacts can be reduced to a hierarchical structure, made up of their composing 

elements and the relationships between these elements. Thus, a software design can be 

represented as a graph. Reducing a design to a graph of a hierarchical structure makes it 

possible to automate the comparison of designs using defined similarity metrics. 

Knowledge retrieved in this way can be effectively applied in a number of fields, 

including cost estimation and plagiarism detection. 

In the next chapter, a review of the current state of the field in subject areas relevant to 

this research is presented. 
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Chapter 2 

2 Literature Review and Background 

The previous chapter set the context of this research and defined the research question 

that the work addresses. 

The goal of this chapter is to present the current state of the research in the main subject 

areas that relate to this work. The chapter starts by describing core areas of software 

engineering and Case-Based Reasoning (CBR), given that these are central to the 

research. Software engineering as the discipline dedicated to the design and 

implementation of software, resulting in software design artefacts, and Case-Based 

Reasoning as a methodology for extracting and using knowledge. Here, software 

designs are the case representations in the case-base of the CBR system. A key aspect of 

CBR is determining similarity of cases. Thus, analogical reasoning is discussed, leading 

to the discussion of structural similarity, as well as, the concepts of graph representation 

and graph similarity. This chapter then continues to explore the retrieval of software 

knowledge, looking at work which influenced this research, as well as considering 

alternative approaches. Given that the research is applied to cost estimation, this area is 

also discussed. The final section of this chapter covers the area of explanation.  
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2.1 Software Engineering 

The term software engineering stems from the 1968 NATO Software Engineering 

Conference [Naur and Randell, 2004] where it was applied with the intention of 

adopting theoretical foundations and practical disciplines in place for established 

branches of engineering design, to the creation of software. Software engineering is 

defined by the IEEE as “the application of a systematic, disciplined, quantifiable 

approach to the development, operation, and maintenance of software” [Abran and 

Moore, 2004] and as such, it relates to the entire process of designing, implementing 

and maintaining software.  

The application of a systematic approach to software development has led to the 

emergence of multiple software engineering methodologies, such as structured analysis 

and design [Yourdon, 1979] (SSADM – Structured Systems Analysis and Design 

Methodology [Eva, 1994]), object-oriented development [Booch, 2007], agile software 

development [Beck, et al., 2001], etc. In all of these methodologies, design features 

prominently. 

According to Tong and Sriram [Tong and Sriram, 1992], design is the process of 

generating a structural description that complies with a set of functional specifications 

and constraints. The process of designing requires knowledge of the functional and 

behavioural requirements which are analysed, synthesised and represented in a 

structural description. The creation of a visual design model aids the development of 

software by considering the entire set or a significant subset of the requirements and 

conceptualising them into an architectural blueprint for a software system. This 

provides an overview which aids understanding of the system to be implemented by 

visualising its structure. Further, it facilitates sharing a common perception of a system 

among multiple people. 



Chapter 2 Literature Review and Background 
 

14 

 

In recent years, object-oriented programming languages have consistently dominated 

the top positions of the TIOBE programming community index [TIOBE, 2012], with 

the most recent rating at 57.1% (July 2012 – see Table 1). This clearly shows the market 

dominance of object-oriented software development.  

Category Ratings July 2012 Delta July 2011 

Object-Oriented Languages 57.1% +1.5% 

Procedural Languages 37.4% -0.5% 

Functional Languages 3.6% -1.3% 

Logical Languages 1.9% +0.3% 
 

Table 1 - Programming Paradigms according to TIOBE Index 

 

2.1.1 Unified Modelling Language and Meta-Object Facility 

The most common modelling approach for object-oriented software development is the 

Unified Modelling Language (UML) [Jacobson, et al., 1998], which is standardised and 

managed by the Object Management Group (OMG). UML was created in 1997 by 

unifying modelling approaches by the Three Amigos (James Rumbaugh, Grady Booch 

and Ivar Jacobson). 

UML has fourteen sets of diagrams divided into two types, namely structural and 

behavioural views of a system model [OMG, 2009]. The structural diagrams are used to 

depict the architecture of a software system, while the behavioural diagrams emphasise 

the functionality of a system and how different composing elements interact. The most 

commonly used diagram by programmers is the class diagram, which describes the 

structure of a system including its classes, their attributes and the relationships between 

the classes. 
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UML diagrams are visual representations and to automate the extraction of knowledge 

from them requires representing them in a data format that can easily be manipulated by 

a software application. It is essential to the research presented here that the visual 

representation is converted to a format that can be stored persistently, used to effectively 

extract information from and compare design models.  Fortunately, UML is in fact a 

metamodel, defined by the Meta-Object Facility (MOF). MOF is a meta-modelling 

architecture, which in the case of UML uses four layers [OMG, 2006] (see Figure 1). 

The top layer, called M3 provides a meta-metamodel which defines the language used 

to build metamodels in the layer below (M2) and actually uses the modelling framework 

and notation of UML. Layer M2 is a metamodel which describes UML itself, defining 

what concepts exist in UML and how they relate to one another – e.g. a class has 

attributes and attributes have a type, a name, a set of valid modifiers, etc. Models in 

layer M1 are described by layer M2 and represent concrete models, such as a particular 

class diagram. Finally, layer M0 embodies real-world objects, which in the case of a 

class modelled in a UML class diagram would be an object of this class’s type. In short, 

an object is modelled by a UML model, which is an instance of the UML metamodel, 

which is described by the MOF meta-metamodel, which uses a subset of UML object 

modelling constructs to define itself (e.g. types, containers). 

A software design model is situated on layer M1, but in order to correctly represent the 

model in a system, be able to persist it and manipulate it, one needs to be aware of the 

structure of the model as defined by its metamodel on layer M2. 

An OMG standard which enables persisting and exchanging metadata information via 

XML (Extensible Markup Language) is XMI (XML Metadata Interchange) [OMG, 

2007]. XMI documents are XML documents which contain metadata of a model 

expressed in MOF, which includes UML models. This is made possible by a mapping, 
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which expresses how MOF elements should be mapped to XMI-compliant XML. While 

XMI documents can be used to encode the composing elements in a UML model, they 

don’t include diagram information (e.g. the graphical layout of a particular diagram). It 

was in order to overcome this limitation of XMI, that XMI[DI] (XMI Diagram 

Interchange) was created by OMG [OMG, 2006b]. Diagram Interchange uses the 

underlying concept of modelling the contents of UML diagrams as graphs, where every 

element is represented as a node or an edge. 

M3 – MOF 2.0

M2 – UML

Class

ClassAttribute

M1 – User Defined Model

M0 – Real World Objects

-title : string

Book

«instance»

«instance» «instance»

«instance»«instance»

 

Figure 1 - MOF Layers 

 

Treating UML models as graphs and manipulating the graphs using XMI has been 

applied in order to create model transformations using graph rewriting systems 

[Gelhausen, 2008]. 
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Lack of consistent support for the XMI and XMI[DI] standards means that there are 

interoperability problems when exchanging UML models between different CASE 

(Computer Aided Software Engineering) tools. However, an understanding of the MOF 

metamodel architecture makes it possible to dissect a UML model into a hierarchical 

structure, which is essential to enable comparisons of UML models as it exposes, not 

only the composing elements of a UML model, but also the kinds of relationships that 

exist between these elements. 

2.1.2 CASE Tools and Reverse Engineering 

CASE tools were used in the 1980s and 1990s with the aim of reducing software 

process costs by automating some process activities and providing information about 

software during the development life cycle and, according to Huff [Huff, 1992], this has 

resulted in improvements in the order of 40%. 

CASE (Computer Aided Software Engineering) tools are commonly used to depict and 

manipulate UML software designs. While the UMLSimilator developed to evaluate this 

research is not a fully-fledged CASE tool, it does visually present class diagrams and 

applies a feature supported by many CASE tools, which is reverse engineering. 

Chikofsky and Cross [Chikofsky and Cross, 1990] define reverse engineering as being 

“the process of analyzing a subject system to identify the system’s components and their 

interrelationships and create representations of the system in another form or at a higher 

level of abstraction”. Using reverse engineering it is thus possible to take compiled 

existing software and abstract it into the higher-level design from which it originated. 

Existing tools for reverse engineering code have been discussed by Gorton and Zhu 

[Gorton and Zhu, 2005]. 
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A major driver for reverse engineering is the understanding and maintenance of legacy 

code, especially where appropriate design documentation is lacking. Even if original 

designs are available, systems change over time as transformations are applied in 

response to new requirements or identified bugs, and the transformations may not have 

been captured in design documentation. Once designs have been recovered, it is 

possible to apply new transformations to the existing code [Baxter and Mehlich, 1997]. 

The process of understanding and changing legacy systems is referred to as re-

engineering. The functionality of the software is not normally changed during the re-

engineering process and even the system architecture generally stays the same 

[Sommerville, 2004]. A key advantage of re-engineering is the reduction of cost in 

comparison to developing a new system. Ulrich [Ulrich, 1990] presents an example of a 

system whose estimate for re-implementation was $50 million and which was 

successfully re-engineered for $12 million. 

However, reverse engineering is not only relevant to maintaining legacy code. It can 

also be used to obtain knowledge about compiled code, e.g. understanding web site 

content and structure [Tilley and Huang, 2001], creating UML sequence diagrams 

[Merdes and Dorsch, 2006], obtaining graphical user interface layouts [Ramon, et al., 

2010] or verification of forward engineering to automatically determine whether an 

implementation is consistent with the original design [Cooper, et al., 2004]. 

When a software artefact has been reverse engineered into a hierarchical design 

structure, it is then possible to extract knowledge from this design. One way in which 

this can be achieved is through the use of CBR. 

 



Chapter 2 Literature Review and Background 
 

19 

 

2.2 Case-Based Reasoning 

Case-Based reasoning (CBR) [Kolodner, 1993] is at the centre of the work presented 

here. In essence, CBR is the process of solving new problems which are based on the 

solution of similar problems while learning from the new cases, if possible. 

The use of CBR in the area of Artificial Intelligence (AI) is founded on work by Roger 

Schank in 1982 [Schank, 1982], who developed a theory of learning and reminding 

based on preserving experience in a dynamic and evolving memory structure. 

The CBR process typically involves four steps as outlined by Aamodt and Plaza 

[Aamodt and Plaza, 1994] (see Figure 2): 

1. Retrieval of most similar cases 

2. Reuse / adaptation of retrieved cases to attempt to solve the problem 

3. Revision of proposed solution, if necessary 

4. Retention of the new case in the case base 

Target 

Problem

Retrieved 

Cases

Retrieve

Case-BaseCase-Base
Case-Base
Case-Base
Case-Base
Case-Base

Proposed 

Solution

Retrieved 

Cases

Confirmed 

Solution

Reuse

Revise

Retain

 

Figure 2 - CBR Cycle - adapted from [Aamodt and Plaza, 1994] 

Due to the nature of this research, its emphasis is on the retrieval and reuse steps, as no 

new cases are added to the case-base as part of the evaluation. 
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2.2.1 Case Representation and Case-Base 

In CBR a case represents specific knowledge tied to a context. The representation of a 

case has to be in a format that can be used by the CBR system, but it can take many 

different forms. Different types of case representation are discussed by Bergmann, 

Kolodner and Plaza [Bergmann, et al., 2005], who describe traditional approaches, 

feature vector representation, structured representation and textual representation, as 

well as sophisticated approaches using hierarchical representations and generalised 

cases. 

In practice a case can store many types of data, ranging from attribute/value pairs, 

textual representations or even multimedia representations. When dealing with object-

oriented design models, case representations which are of particular interest include 

object-oriented case representation and graph representation [Bergmann, 2002].  

Key to any CBR system is the case-base or case library. This is the repository which 

stores the cases. The case-base structure should reflect the conceptual view of the case. 

There are two main academic case-memory models which address the knowledge 

representation problem in CBR, namely, the dynamic memory model [Riesbeck and 

Schank, 1989]  and the category exemplar model [Bareiss, 1988]. These models are 

intended to simplify the access and retrieval of relevant cases. In practice, however, 

many case-bases are stored using flat file structures or relational databases. The case-

base in this research was stored using a relational database as the cases are complex 

hierarchical structures which can be easily represented using a relational structure 

representing the meta-data that makes up a software design. 
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2.2.2 Indexing and Retrieval 

When case-bases contain large amounts of cases, indexing becomes essential in order to 

speed up the retrieval of cases. An index is a data tag which is associated with a case 

and could consist of one or more features of the case or an abstraction inferred from the 

case. A lot of research has been carried out aiming at automating and improving case 

indexing methods, including query sphere algorithm [Stéphane, et al., 2010], semantic 

indexing [Recio-Garcia and Wiratunga, 2010], explanation-based indexing [Barletta and 

Mark, 1988] and many more. 

The retrieval phase within the CBR cycle involves identifying the most suitable cases 

from the case-base and ranking them. The initial retrieval of relevant cases can be 

achieved using indices. The ranking of the retrieved set is usually achieved by using a 

similarity metric which determines the distance between the target case and each 

retrieved case. In some cases a CBR system may not have the identification of relevant 

cases and ranking as two distinct tasks, but apply the ranking on all cases in the case-

base. This evidently removes the need for indexing and only works with a relatively 

small case-base. The results in this case would be more accurate as the ranking is done 

on the entire case-base rather than applying it just to the set identified by the indices. 

However, this is computationally more demanding and could be very time consuming. 

In this research, the size of the case-base was sufficiently small to allow ranking across 

the entire case-base. Indexing was therefore not necessary. Should the case-base 

increase in the future, applying some form of indexing would become necessary. 

The two most common techniques for retrieval are nearest-neighbour retrieval and 

inductive retrieval. Nearest neighbour is a simple technique which applies the K-Nearest 

Neighbour (KNN) algorithm [Dudani, 1976] which applies a similarity metric to 

measure the distance between the target and source case. In most cases, inductive 
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retrieval uses the ID3 induction algorithm [Quinlan, 1986], which constructs decision 

trees from past data. Nearest neighbour retrieval is less sensitive to missing data, but its 

main drawback is that it is computationally intensive. The two techniques can be 

combined by using inductive indexing to retrieve a set of matching cases and apply 

nearest neighbour to rank them. 

2.2.3 Clustering 

A positive aspect of the CBR cycle is the fact that it can easily be complemented with 

other techniques in order to improve performance or accuracy at different stages of the 

cycle. Clustering is an area of data mining which has been combined with CBR in a 

number of ways. It refers to the assignment of objects into groups (clusters) such that 

objects in the same cluster are more similar. Given that case retrieval in CBR is all 

about measuring similarity, it invites the use of clustering. Clustering can be applied at 

different stages of the retrieval process. For instance, when dealing with large scale 

case-bases, clustering of features can make retrieval more efficient by enabling indexing 

of representative attributes from the clusters [Hong and Liou, 2008]. It can also be 

applied to group cases from the case-base [Tsatsoulis and Amthauer, 2003]. This 

research uses the latter approach to generate clusters of the cases post retrieval. This 

approach is used as part of the experiments in order to validate the results. Clustering of 

features to enable indexing, as applied by [Hong and Liou, 2008] could be applied to 

this research in future with the introduction of indexing. 

An advantage of CBR is that it works well with complex domains, where there are 

many different ways in which to generalise a case. As the target case is already 

provided, it is not necessary to perform an exact calculation and obtain the one true 

result, but to identify the case that is closest to the target – the case that is the most 

similar. CBR is also very useful when there is no algorithmic method available for 
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evaluating a solution, making it possible to work with unknowns, as the target case is 

evaluated in the context of other cases in the case-base. This makes CBR well suited for 

working with software design artefacts as it is not possible to easily calculate their 

similarity using other methods. 

In order to effectively retrieve knowledge associated with software designs it is essential 

to be able to compare designs and measure similarity of designs. The comparison of 

software designs requires establishing what composing elements of the design are being 

used to determine similarity. A key objective of this research is to determine whether 

structural similarity can be used effectively to retrieve knowledge from software design 

artefacts. 

 

2.3 Structural Similarity 

The creation of software using the object-oriented paradigm requires the 

“decomposition of a domain into noteworthy concepts or objects” [Larman, 2005]. As 

discussed in the section on Software Engineering, UML class diagrams are used to 

depict the structure of object-oriented software by illustrating its classes, interfaces and 

the associations between these (see Figure 3 for an example). Class diagrams are used 

for static object modelling; they capture the static structure of the object-oriented 

software application. This is opposed to other types of UML diagrams which relate to 

behavioural aspects (state transition, sequence/collaboration diagrams) or functional 

description (use-case diagrams) of a software application. 
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Figure 3 – A UML Class Diagram 

 

2.3.1 Intra-Class Similarity and Hierarchical Structure 

For each composing class/interface, a class diagram also captures class-specific 

attributes
1
 and operations, which capture the state and behaviour of the class. In the 

object-oriented paradigm, attributes and operations are referred to as members. The 

classes/interfaces and their members collectively make up the structure of the software 

design. Attributes are also associated with a data type, while operations have a return 

type and possibly one or more parameters/arguments. All members, as well as the actual 

classes/interfaces can be associated with one or more modifiers. Modifiers qualify the 

element they are associated with, which in an object-oriented programming language 

provides instructions to the compiler on how to treat that element. 

                                                 
1
 Interfaces don’t normally contain attributes, however some object-oriented programming languages do 

allow the use of public static attributes 
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The fact that a software design can be broken down into its composing elements, makes 

it possible to view its structure as a hierarchy of elements. The hierarchical structure of 

class diagrams can be utilised as is evident from the work by Egyed [Egyed, 2002] who 

automates the abstraction of class diagrams by creating tree structures. 

If one creates a tree-like representation of a class diagram, classes and interfaces, as the 

main composing elements, would be placed at the top of the hierarchy. Members and 

modifiers would create the lower levels of the hierarchy. 

The hierarchical structure outlined in Figure 4, shows how a class can be broken down 

into its composing elements. Different levels of the hierarchy are shown in different 

colours and elements shown in italics are defined by their composing elements. 

Class / Interface
 

Operations
 

Final
 

Attributes
 

Stereotype
 

Visibility
 

Constructors
 

Abstract
 

Type
 

Static
 

Visibility
 

Final
 

Parameters
 

Visibility
 

Type
 

Return Type
 

Final
 

Visibility
 

Static
 

Synchronised
 

Abstract
 

Parameters
 

Type
 

Name
 

Name
 

Name
 

Name
 

Name
 

Name
 

 

Figure 4 - Hierarchical Structure of Composing Elements of a Class 

 

The one element which is common to classes, attributes, constructors, operations and 

parameters alike, is the name. What distinguishes the name from all the other elements 
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is the fact that it is just an identifier, but doesn’t have any other operational value or 

implication. That is not to say that the name is irrelevant. In an object-oriented design, 

classes represent concepts from the domain which is being modelled and the names 

would identify which concept is represented by a particular class or interface. Likewise, 

the name of an attribute would identify what piece of information it stores. So for a 

person who looks at a software design, the names would be some of the most important 

features.  

As is evident from the hierarchical structure presented above, software designs are 

complex structures, and there is no preset benchmark for comparing or defining 

similarity between software designs or elements of software designs. This makes 

calculating the similarity between software design models a somewhat difficult and 

complex process to automate. It is possible for a human expert to identify similarities 

between given designs using a heuristic approach, thus the key lies in classifying the 

characteristics that would make a human expert identify the similarity. 

As with any complex structure, partitioning into substructures or composing elements is 

required in order to be able to compare software models. In order to define the overall 

similarity of the entire structure, these elements are compared against each other. 

2.3.2 Feature Weighting and Genetic Algorithms 

By dividing a software design into its composing elements, a hierarchy of elements is 

created. Every element in the hierarchy of a software design can then be compared to 

the corresponding elements from another design, contributing to the overall similarity of 

the two designs. As each element contributes to the overall similarity in uneven shares, 

a weighting scheme is used to assign the weights proportionally. This way the weights 

can be adapted individually to reflect the reasoning process of the human expert. 
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Feature weighting is employed heavily when using the k-nearest neighbour algorithm in 

CBR and several weighting methods have been reviewed and evaluated by 

Wettschereck, Aha and Mohri [Wettschereck, et al., 1997]. 

Different approaches can be taken when determining the weights that should be applied 

to each feature. Weight settings could be obtained from an expert human, who knows 

the importance of each feature and to what extent it should contribute to the overall 

similarity. It is also possible to obtain weights empirically by running experiments with 

different weight settings and identifying those which work best and to automate the 

process, as is evident from the research of Kelly and Davis [Kelly and Davis, 1991], 

who compared results obtained using a hybrid genetic algorithm to unweighted k-NN. 

They used the genetic algorithm and a training data set to learn real-valued weights 

associated with individual attributes in the data set and used the obtained weights in the 

k-NN algorithm. Their findings were that using weights yielded better results. 

Genetic algorithms are optimisation and machine learning techniques in the area of AI, 

which are loosely based on the process of natural evolution. Genetic algorithms have 

been made very popular through the work of John Holland [Holland, 1975]. Being 

based on natural evolution, genetic algorithms have adopted terms used in this field, 

such as population, chromosome, mutation and crossover. Genetic algorithms were 

employed in this research in an attempt to optimise the weight settings applied across all 

features in the hierarchical structure. 

A chromosome represents a candidate solution to a problem and each chromosome has 

a fitness, which is related to the success of the chromosome at solving that problem. A 

population is the initial set of all chromosomes and genetic algorithms solve an 

optimisation problem by manipulating the population of chromosomes. The genetic 
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algorithm repeatedly selects chromosomes from the population which act as parents and 

who are replaced in the current population with new, potentially modified, copies. The 

selection of parents is not random, but is biased in function of its fitness, which means 

that better chromosomes have a higher probability of being selected – this is referred to 

as fitness proportionate selection. The reproduction phase during which the new 

chromosomes are formed can employ mutation and crossover operators. 

The crossover operator generates children which combine chromosomal matter from 

both parents and different crossover techniques exist for use with different data 

structures. The mutation operator introduces localised change, thus creating differences 

between the child chromosome and its parents. The mutation type will depend on the 

chromosome.  The process of reproduction and replacement is continued until a 

termination criterion is met. This could be a predetermined length of time, number of 

replacements or when a solution is found which satisfies a threshold criterion. 

Genetic algorithms have been applied successfully to generate attribute weights as is 

shown in Özşen and Güneş [Özşen and Güneş, 2009] or the research by Beddoe and 

Petrovic [Beddoe and Petrovic, 2006], which used the generated weights in a CBR 

system. 

Within the set of features that are compared within a class, some can only be measured 

in direct matches. For example when measuring the similarity of the static modifiers of 

two attributes, it will either be a 100% match or a 0% match. However, many of the 

features’ similarity can be matched in part by establishing distances between individual 

values within the domain of possible values for a particular feature. The integer and 

float data types, for instance, both share the characteristic of being numerical. While it 
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is not an exact match, it is conceptually closer than a numerical data type and a string 

data type.  

The idea of measuring structural similarity between object-oriented models using data 

types has also been used by Meditskos and Bassiliades [Meditskos and Bassiliades, 

2007] for semantic web service matchmaking. 

While all of this makes it possible to measure the intra-class similarity of individual 

classes or even a set of classes, it ignores the relationships between classes, which are 

also captured in UML class diagrams. To include the relationships in the similarity 

metric, one can employ graph matching. 

 

2.4 Graph Similarity 

As discussed earlier, UML class diagrams contain the classes/interfaces, as well as the 

relationships between these. There are three main types of relationships: association, 

generalisation and interface realisation (implementation). Generalisation establishes an 

is-a relationship between a parent (base) and a child (sub) class. This type of 

relationship is very strong as all of the visible members of the parent are inherited by 

the child. Interface realisation is also an is-a relationship, but is specific to an interface 

and a class. As interfaces have no implemented members, there is no inheritance, but 

the interface specifies members which have to be implemented by the class. 

Associations establish a has-a relationship, which represents a conceptual relationship 

between two classes. An association merely means that a class knows of another and 

communicates with it at runtime. This is by far the most common relationship in object-

oriented designs. In Figure 3, associations connect the Register, Sale, SalesLineItem, 

Product and Payment classes as these merely communicate with each other in order to 
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operate, while inheritance is used to show that the CreditCard and Cash classes are 

types of Payment and therefore inherit common payment-related members from the 

abstract Payment class. 

In their research, Sanders, et al. [Sanders, et al., 1997] discuss benefits of graph-

structured case representations and the potential difficulty of encoding cases as graphs 

in a CBR system. A UML class diagram already records different relationships between 

classes or interfaces and it is therefore a straight-forward process to treat a software 

design as a graph composed of classes/interfaces (nodes) and relationships (arcs). This 

makes it possible to view one case as a single unit, rather than a set of unrelated classes.  

The work on similarity measures for object-oriented case representations by Bergmann 

and Stahl [Bergmann and Stahl, 1998] defined the similarity between two objects as a 

combination of the intra-class similarity and the inter-class similarity. The intra-class 

similarity refers to the similarity between the composing features of a class. Measuring 

the intra-class similarity is also applied in this research whenever two classes are being 

compared. The inter-class similarity measures the similarity between two objects based 

on their positions in the hierarchy. The approach taken here does consider the 

relationships between classes, but doesn’t place the classes themselves in a hierarchy. 

Instead it treats them as a graph. By representing software designs as graphs, it is 

possible to compare a design with regards to its composing elements, using the 

structural hierarchy presented earlier, as well as their relationships. This requires 

comparing graphs, and as the use of graph-based representations has increased in the 

last decade [Raveaux, et al., 2010] there has been much research into alternative 

approaches to graph matching algorithms. Previous research at the University of 

Greenwich [Knight, et al., 2001; Woon, et al., 2001] has shown that competent case 
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retrieval based on the structural similarity between cases can be achieved using graph 

matching techniques. 

2.4.1 Graph Matching Algorithms 

Graph matching is a computationally expensive process given that the number of nodes 

and arcs in graphs provide a multitude of combinations in which elements from the 

source and target graph can be matched. This is aggravated further if graphs are allowed 

to have circular links and if links are bi-directional, as is the case with UML class 

diagrams. 

A number of algorithms have been developed to address the problem of graph 

matching. Zhao et al. apply the eigen-decomposition approach to weighted graph 

matching problems [Zhao, et al., 2007]. A limitation of this approach is that it only 

guarantees to work well in cases where both graphs to be matched must be nearly 

isomorphic. As this is not the case with software designs, this approach was not feasible 

for this research. 

Genetic algorithms have also been applied to graph matching [Krcmar and Dhawan, 

1994; Auwatanamongkol , 2005]. Auwatanamongkol’s approach is interesting as 

indirect links within a graph may be replaced with direct ones in the matching process. 

While this approach would work well with relatively small graphs, computing graph 

similarity with complex graphs would be difficult, as the number of potential 

combinations is increased. This method could be applied to software designs, but would 

need to be combined with other techniques in order to make it feasible. While it 

provides interesting ideas for future research, it was decided to limit graphs to direct 

links initially and defer the use of indirect links for future research. 
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Another alternative would have been to use spanning trees to compare the complexity of 

the graphs. Spanning trees have been successfully applied in textual CBR by creating 

minimum spanning trees of cases within a cluster based on their semantic similarity 

[Patterson, et al., 2008]. 

An algorithm which has been successfully applied to graph matching and CBR 

[Petridis, et al., 2007b] is based on the correct identification of the Maximum Common 

Subgraph (MCS). 

The purpose of this algorithm is that given two graphs, G1 and G2, it identifies the 

largest induced subgraph of G1 which is isomorphic to an induced subgraph of G2 (see 

figure 5).  
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A1 B1

C1
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Figure 5 - Example of a maximum common subgraph 

 

The maximum common subgraph and CBR have been successfully combined in the 

area of metal casting by Petridis et al. [Petridis, et al., 2007a; Petridis, et al., 2007b]. 
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2.4.2 Maximum Common Subgraph in Software Designs 

In the case of a UML class diagram, the graph matching algorithm maps the maximum 

common connected subgraph based on matches between individual classes of each 

graph, where a minimum threshold similarity value is satisfied. 

MCS is known to be NP-hard. Identifying the maximum common subgraph requires an 

exhaustive search which matches all possible combinations within two graphs to 

identify the largest isomorphic subgraphs. This can be a time consuming process and 

graph matching may require the use of a greedy algorithm to be feasible [Champin and 

Solnon, 2003]. A key difference between the greedy algorithm of Champin and Solnon 

and this research is that in their algorithm a vertex in a graph may be associated with 

several vertices of the other graph. Research has also been carried out to speed up 

subgraph isomorphism detection [Weber, et al., 2011].  

In his research of subgraph matching, Ullmann [Ullmann, 1976] proposes an algorithm 

which reduces the number of successor nodes. This idea is applied in this research by 

using a minimum threshold between nodes in the graph. 

An alternative approach would have been to identify a set of all matching subgraphs 

above an established number of nodes. This method would be very computationally 

demanding and has not been explored in this research. 

Combining structural similarity of classes and graph similarity of relationships between 

classes, it may be possible to measure similarity between UML class diagrams and 

thereby retrieve knowledge, which is what this research is attempting to achieve. 
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2.5 Retrieval of Knowledge from Software Designs 

The main driving element of this research is the retrieval of expert knowledge from 

software designs. In order to maximise the potential for knowledge retrieval, it is 

advantageous to have not just a set of software designs, but to have the actual 

implementations of the designs. This has two main advantages: 

1. The additional information can be used to verify findings 

2. The designs are realistic as they reflect real software solutions 

The main disadvantage is that the software designs may include elements which did not 

form part of the original design, but were added during the implementation process, 

such as automatically generated code or existing integrated components. Furthermore, 

ad-hoc implementations, especially of less-experienced developers, may not have a very 

meaningful underlying design. For this work, it was decided that overall the advantages 

of reverse-engineering existing implementations outweigh the disadvantages. 

To reconstruct accurate software design representations based on existing 

implementations, it is necessary to consider the set of constructs available in UML class 

diagrams [Vinita, et al., 2008] and ensure that the algorithm used in the reverse 

engineering process correctly captures the classes, interfaces, relationships and the 

internal structure of classes (operations, constructors, attributes, modifiers). Reverse 

engineering of existing code is most easily achieved using reflection, which is supported 

by many object-oriented programming languages. Reflection enables a computer 

program to examine the structure of a class at runtime. As a matter of fact, it even 

enables instantiation and invocation of a class, but this is not relevant in this case, as for 

this research only obtaining the structure was of interest. Reverse engineering has not 

been limited to UML class diagrams, but has been used to generate UML sequence 
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diagrams from compiled code [Ziadi, et al., 2011] and the automatic detection of design 

patterns [Lee, et al., 2007]. 

Design patterns are an important aspect of object-oriented software design. A “pattern 

describes a problem which occurs over and over again in our environment, and then 

describes the core of the solution to that problem, in such a way that you can use this 

solution a million times over, without ever doing it the same twice” [Alexander, et al., 

1977]. A design pattern in software is thus a conceptual solution for common design 

problems. It is not a concrete design description and it doesn’t involve implementation 

or coding details, but it is rather an abstract description providing a general plan on how 

to solve the problem. Design patterns represent reuse at design, rather than at code level. 

The use of CBR and software reuse has been approached from different angles. Tautz 

and Althoff have drawn comparisons between CBR and software knowledge reuse 

models and proposed the extension of the CBR cycle to include organisational issues, 

which would further support software knowledge reuse [Tautz and Althoff, 1997]. This 

research considers reuse at conceptual knowledge level and considers organisational 

structure, but it has also been considered at a much lower level. It has been successfully 

applied to support reuse in an object-oriented environment [Fernández-Chamizo, et al., 

1996] and more specifically to the reuse of design patterns [Tessem, et al., 1998; Shi 

and Olsson, 2006]. Grabert and Bridge combined CBR and semantic information to 

reuse code snippets (examplets) [Grabert and Bridge, 2003], which works with the 

retrieval of information at code level as opposed to design level, as is applied in the 

research presented here. 
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2.5.1 Structural vs. Semantic Similarity 

As discussed earlier in this chapter, the process of designing software requires 

knowledge of the functional and behavioural requirements which are then represented in 

a structural description. To aid understanding of the design and clarify how the 

requirements are translated to structural elements requires semantic information which 

is encoded in the names chosen by the designer. 

When comparing software designs, one important factor for a human expert is certainly 

semantic similarity. This allows an expert to recognise what type of system a particular 

design depicts. Research has been undertaken by Gomes et al. [Gomes, et al., 2007] into 

CBR and software design similarities using lexical similarity. This research makes use 

of WordNet, an electronic lexical database, which allows conceptual, as well as, lexical 

searches to measure semantic similarities. The aim of their research is the reuse of 

software design by identifying the most similar software design to a given specification 

and reusing relevant parts of the design. 

Another interesting approach is that of Bjornestad [Bjornestad , 2003], which uses 

analogical reasoning to measure similarity between object-oriented specifications. 

Emphasis is placed on the role of an object within the context of the software design. 

Working with semantic similarity makes it is possible to apply analogical reasoning to 

relate textual terms. In fact, the work by Gomes et al. uses analogical reasoning in order 

to transfer knowledge from candidate diagrams to new diagrams based on a query 

diagram [Gomes, et al., 2002; Gomes, et al., 2002]. 

Analogical reasoning [Gentner, 1983] is an area of research which shares similarity with 

CBR. As in CBR, analogical reasoning is a process of comparing similarities between a 

source and a target. The key difference between the two is that CBR uses intra-domain 
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reasoning as cases generally represent concepts from the same domain, whereas 

analogical reasoning is inter-domain, whereby similarities are compared between 

elements which originate from unrelated domains – e.g. comparing a software design to 

a blueprint of a house.  

Zaremski and Wing [Zaremski and Wing, 1997] use a different notion of semantic 

similarity in their work on specification matching of software components. Their 

approach requires metadata in the form of the specification of a component’s behaviour. 

While not measuring semantic similarity of the names used, their use of specifications 

as a set of pre- and post-conditions provides semantic description of a component. 

Interesting research on the reverse engineering of design patterns using a semantic 

approach has been carried out by Alnusair and Zhao [Alnusair and Zhao, 2009; Alnusair 

and Zhao, 2010]. Their reasoning is that the structure of a design pattern may take 

different forms when implemented, which complicates the detection during the reverse 

engineering process. Their solution was to build an ontology for each design pattern 

describing its essential participants and their properties, collaborations and role 

restrictions. This is similar to the approach taken by Gomes et al. [Gomes, et al., 2007], 

who define the specific participants, application conditions and actions for a specific 

design pattern. 

The merit of semantic similarity is evident from the research of Gomes et al. [Gomes, et 

al., 2003; Gomes, et al., 2004; Gomes, et al., 2007], who achieved good results creating 

a CASE tool that helps software developers reuse previously developed software in the 

creation of new designs. More recently, Robles et al. [Robles, et al., 2012] have also 

applied semantics when working with software designs, but their approach is based on 

the creation of a domain ontology and doesn’t apply CBR. Nevertheless, important 
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information is also encoded in the structural similarity. In the area of analogical 

reasoning, Crean and O’Donoghue [Crean and O’Donoghue, 2002] argue that structural 

similarity is more important for the identification of good analogical candidates than 

semantic similarity.  

There is no claim here that structural information is more important than semantic 

information when dealing with software designs. Nevertheless, the structural 

information may be able to convey knowledge that is not captured by the semantics. 

The most complete perspective obviously combines structural and semantic 

information. Gomes et al. complement the semantic similarity with some structural 

similarity. 

The approach taken in this research steps away from both, semantic and role 

similarities, and starts from the assumption that all information from a given software 

design model may be obfuscated
2
. Thus, there may be no information about the design 

other than structural. The question this work is trying to address is whether the 

structural information on its own can convey knowledge. For example, it is important to 

distinguish between the structure and functionality of a software design, but does the 

structure contain within itself enough information to identify its functionality? At least 

to the extent that software designs with similar functionality can be found to have 

similar structures and behaviour. Or is there other knowledge which can be extracted 

from measuring structural similarity between software designs? The areas which are 

explored in this research include plagiarism detection, identification of properties such 

as quality of implementation, implementation language, functionality and cost 

estimation. 

                                                 
2
 In software development, obfuscation refers to the act of making code difficult to understand by humans 
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2.6 Cost Estimation 

In project management it is critical to accurately estimate the size, cost and time 

required in order to develop a software product. Should the effort be underestimated, as 

is commonly the place, it leads to time pressure, which could compromise the quality of 

the final product due to lack of functionality or poor implementation, and in some cases 

could lead to financial loss due to breach of contract. Overestimating the effort required 

can too be problematic, as it could lead to quotes which are not competitive. According 

to a 2011 enterprise resource planning survey by Panorama Consulting, 61.1% of 

projects take longer than expected and 74.1% are over budget [Krigsman, 2011]. 

Software cost estimating first began to be discussed as a technology in the late 1960s. In 

1969, Joel Aron gave a presentation at a NATO conference on the topic [Aron, 1970]. 

As outlined in [Jones, 2007], different approaches exist to software cost estimation; 

some are based on formal models, such as parametric or size-based models, while others 

rely on expert estimation. According to Boehm et al. [Boehm, et al., 2000a] all classes 

of techniques are challenged by the rapid pace of change in software technology. The 

most common approaches are formal estimation models, such as COCOMO 

(COnstructive COst MOdel), established by Boehm [Boehm, 1981], which apply 

formulas derived from historical data. 

The COCOMO model requires the classification of cost drivers using a scale of ratings, 

which must be performed by a human expert. However, a human expert remains prone 

to human errors and biases [Valerdi, 2007]. A major motivation of this research is to 

determine whether cost estimation can be automated effectively by comparing software 

designs. Given a collection of software designs and corresponding cost it took to 

implement each design, e.g. in lines of code, it may be possible to predict the effort 
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necessary to implement a new target design, provided that the implementation shares 

some common context, such as, complexity of the functionality, similar programming 

languages and technologies, etc. 

2.6.1 Automating Software Cost Estimation 

Attempts have been made to automate software cost estimation using a number of 

approaches, such as fuzzy decision trees [Andreou and Papatheocharous, 2008; Huang, 

et al., 2007], neural networks [Tadayon, 2005; Kumar, et al., 2008; Tronto, et al., 2008], 

rule induction [Shepperd, 1996] and CBR [Huang, 2009; Mendes, et al., 2002; Mendes, 

et al., 2003; Li, et al., 2009]. A comparison of various automated software effort 

estimation techniques has been undertaken by Finney et al. [Finnie, et al., 1997] whose 

findings were that while regression models performed poorly, neural networks and CBR 

both have value for software development cost estimation models. Further, the research 

suggests that CBR is particularly appealing due to similarity to expert judgment 

approaches and as an expert assistant in support of human judgement.  

Using CBR for cost estimation means that when a new project is provided for 

estimation, the most similar projects from the case base are selected in order to predict 

the cost of the new project. Much of the research for software cost estimation using 

CBR is based on the Desharnais data set [Desharnais, 1989] with cases containing, 

among other, data such as project details, project length, team experience, programming 

language and entities [Huang, 2009; Li, et al., 2009]. Other research involving CBR 

relates to web development [Mendes, et al., 2002; Mendes, et al., 2003]. None of this 

research, however, takes into consideration the software design artefacts. Given that a 

software design artefact depicts the intended structure of the software product, it can 

contain information useful to the estimation of its development. 
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2.7 Explanation 

It has already been established that there is no existing benchmark for measuring 

similarity between two software designs. As an analogy, consider architectural 

blueprints for two houses. It may be difficult for an architect to provide an exact 

numerical similarity between both as there is no precise algorithm for obtaining this 

value. However, an architect would be able to select the most similar blueprint to a 

given target from a set of ten sources. The target blueprint is evaluated in the context of 

the sources. In the absence of an exact formula, the question would be what features are 

considered by the architect in order to perform the match. It could be the size of the 

house, the number of floors, number of rooms, building material, etc. 

In the case of software designs the features which could influence an expert to 

determine similarity could be the number of classes, their relationships or internal class 

structures.  

If one was to ask the architect why he/she selected a particular blueprint from the set as 

the best match for a target, he/she would probably be able to provide us with an 

explanation. When a particular software design is selected as the most similar from the 

case-base, a user’s confidence in the system increases if it too can provide an 

explanation of how the result was achieved. 

2.7.1 Explanation in Case-Based Reasoning 

The case-based reasoning (CBR) approach is well suited for explanation, because it can 

use retrieved cases in order to explain prediction. According to Leake [Leake, 1996], 

“neural network systems cannot provide explanations of their decisions and rule-based 

systems must explain their decisions by reference to their rules, which the user may not 

fully understand or accept. On the other hand, the results of CBR systems are based on 
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actual prior cases that can be presented to the user to provide compelling support for the 

system’s conclusions.” The first exploration of CBR and explanation was undertaken by 

Schank, who proposed an approach based on “explanation patterns” [Schank, 1986], 

which are generalised patterns of explanation events. 

In their research on case-based explanation, Cunningham et al. [Cunningham, et al., 

2003] have shown how case-based explanation increased trust more than rule-based or 

no explanation. Their system shows target cases of individuals’ alcohol consumption. It 

provides predictions of whether an individual is over the blood alcohol limit and also 

explains the reasoning.  It is interesting to note that the rule-based explanation was not 

as convincing as the case-based one, but as Cunningham et al. point out, the results may 

differ depending on the subjects’ insight into the underlying mechanisms within the 

domain. 

An in-depth overview of different theories of explanation in CBR has been presented by 

Sormo et al. [Sormo, et al., 2005]. While surveying theories of explanation in the areas 

of philosophy of science, linguistic and cognitive sciences, it also considers explanation 

goals and techniques in CBR. The explanation goals are transparency, justification, 

relevance, conceptualisation and learning. Of these goals, the ones most applicable in 

this research is transparency, which explains to a user how the system reached a 

particular answer, and justification, which increases the confidence in the solution 

offered by the system by providing support for the conclusion it provides. 

The explanation technique applied will depend on what the CBR system is trying to 

explain. In its simplest form, just displaying the most similar case or cases can provide 

an explanation. This is the approach used by Cunningham et al. [Cunningham, et al., 

2003] who along with the target case, also display the most similar case as explanation 
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of the solution reached. This is very efficient, as it allows the user to make a direct 

comparison – if person A drank X amount and was over the blood alcohol limit, then 

person B, who drank a very similar amount was probably also over the limit. Other 

explanation techniques include visualisation, explanation models, concept maps, and 

more. This research deals with software designs, which are visual artefacts. It is 

therefore sensible to employ visualisation in the explanation process. The identification 

of similar cases is based on the maximum common subgraph, so displaying this to the 

user can justify the similarity result calculated by the system. To strengthen the trust, 

this can be complemented with a complete breakdown of the structural similarity 

between two cases. 

2.7.2 Case Provenance 

The competence of a CBR system lies in its collection of cases. While good quality 

cases will obviously improve the accuracy of a CBR system, sometimes it is also 

relevant to know where a case came from. Case provenance relates to the value of 

knowing the source of a case and its importance has been discussed by Leake and 

Whitehead [Leake and Whitehead, 2007]. Provenance can be used in explanation, as the 

result obtained by the CBR system may be explained in light of the source from where 

the matching case(s) originated. Using provenance to support explanation has been used 

by Murdock et al. [Murdock, et al., 2006] in the area of Semantic Web. 

Provenance is relevant to this research as the case-base consists of software designs 

obtained from a set of assessments using different requirements, programming 

languages and from different levels. Provenance is also significant in cost estimation, 

where the cost of an implementation is predicted based on existing cases. If cases come 

from very different sources, the cost may be more difficult to predict accurately. 
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2.8 Conclusion 

As is evident from this literature survey, many of the areas relevant to this research are 

of importance to academia, as well as industry and are attracting a lot of high quality 

research. The number of publications in these subject areas is extensive, thus the review 

concentrated on the research contributions which are most closely related to this work 

or from which it follows. Surveying the related research publications has placed this 

research into context, demonstrating that the research question is of value to the 

research community. 

This next chapter presents the methodologies and techniques that were applied, as well 

as providing justification for their application 
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Chapter 3 

3 Using CBR for Retrieval of Knowledge from Software Designs 

The previous chapter presented the current state of the research of the main subject 

areas that relate to this work. 

This chapter presents the methodologies and techniques that were applied in this 

research, as well as providing justification for their application. As is evidenced in the 

literature review, the work draws from a number of diverse areas of research. Different 

approaches and techniques are combined and applied in order to successfully extract 

knowledge based on the structure of software design artefacts. The case-based reasoning 

paradigm is at the centre of the comparison process and is discussed at the beginning of 

the chapter. A key factor which differentiates this research from other approaches 

introduced in the literature review is the focus on structural information which is 

reinforced in the next section. 

The approach taken in this research achieves retrieval of expert knowledge based on the 

contextualisation of software designs. It is by relating designs to each other that one can 

extract knowledge. Viewing a design in the context of others makes it necessary to 

compare them. The chapter therefore continues with the discussion of complex 

structures and how these can be compared. Improvements to measuring similarity are 

considered using weight optimisation and genetic algorithms. This is taken further in the 

section on graph modelling, which is followed by an explanation of how the solution 

cases are clustered. This approach to cost estimation is then compared to COCOMO. 

The chapter concludes with a section on CBR explanation. 
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3.1 Case-Based Approach for Measuring Similarity of UML Class 

Diagrams 

Case-Based Reasoning was chosen as the paradigm for extracting knowledge from the 

class diagrams as it is a method which works with complex domains and when no 

algorithmic method is available for evaluation.  

Case-bases with large amounts of cases rely on indexing to speed up the retrieval of 

cases. However, the case-base used contains just over one hundred cases, which made it 

feasible to combine identification and ranking of cases. However, this means that a 

target case is ranked against every existing case in the case-base. As all cases are 

ranked, the results are more accurate than when ranking is applied only to a set of cases 

identified using indices. 

The two most common techniques for case retrieval are nearest-neighbour retrieval and 

inductive retrieval. Inductive retrieval creates a decision tree based on past data and 

requires pre-indexing as the decision tree is used in the retrieval process. This is not 

appropriate in this case as the class diagrams are complex structures containing many 

possible features for indexing and it is not known how they should contribute to overall 

similarity of the diagrams. Depending on the knowledge one is attempting to retrieve or 

based on the provenance of cases, a feature’s importance could change. In this case, 

inductive reasoning would require recreating the decision tree. Inductive reasoning is 

also sensitive to missing data and a class diagram is a complex structure containing 

many optional elements, which may or may not be present. It was for these two reasons 

that nearest-neighbour retrieval was adopted. 

Nearest-neighbour retrieval typically applies the K-Nearest Neighbour (KNN) algorithm 

[Dudani, 1976], which applies a similarity metric to measure the distance between a 
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target and source case. The distance could be measured using a Euclidean distance 

function or a weighted sum of differences. The approach taken here uses the weighted 

sum of differences. 

In principle, when cases share the same structure (contain the same features), the 

process of measuring the similarity between two cases is straightforward. (1) Each 

feature in the source case is matched to the corresponding feature in the target case; (2) 

the degree of match is computed and (3) multiplied by a coefficient which represents the 

importance of the feature. (4) The results are added to obtain the overall match score. 

This process is expressed in the following formula, which shows the similarity between 

a target (Ct) case and a source (Cs): 
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Where  
 
 is value for the feature and    is the weight (importance) attributed to the 

feature. In this formula, the result is normalised. 

Due to the fact that the cases are represented as a complex hierarchical structure, 

measuring the similarity between two cases becomes much more complicated. This is 

discussed in more detail later in this chapter in the sections on structural similarity and 

graph matching. 
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3.2 Structural vs. Semantic Information 

Creating object-oriented software designs requires an understanding of the tools 

available for creating designs, as well as of the object-oriented paradigm. The process of 

designing software doesn’t use an exact scientific approach for translating requirements 

into a software design. This process is experience-driven and often requires an element 

of creativity and ability for abstraction, especially when a design is trying to solve a 

problem new to the designer. The quality of a software application from a user’s 

perspective is not synonymous with the quality of the underlying design. Two software 

applications can have identical user interfaces and support identical functionality and 

yet have very different designs. This demonstrates that the purpose of a good design is 

not entirely to create an application or system which implements the specified 

requirements. Sometimes, features that distinguish a good from a bad design are its 

flexibility, maintainability and intelligibility. Particularly with large-scale projects, a 

robust and extensible design is essential to ensure that the end product meets the 

requirements, can evolve in response to future requirements and is error free. Design 

can also have an impact on performance. A good design is not necessarily the most 

efficient in terms of performance. For example, an application where all code is placed 

in a single class may execute faster at runtime, but would be more difficult to 

understand and maintain than a design which assigns the same responsibility to a set of 

cooperating classes. 

The functionality of a software application is determined by the choice of code 

constructs and how the code is laid out (its design), but as there are numerous ways of 

structuring code to achieve the same functionality, it is not possible to determine the 

exact functionality of an application just by its design. A UML class diagram is an 

abstract representation of a software application. The functionality is added when a 
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design is transformed into an implementation. Yet, an expert who looks at a design can 

usually recognise what a design represents and how it will work. This information is 

conveyed through a combination of the object-oriented structure and the selection of 

labels for the various elements within this structure. 

If one was to look at the UML class diagram shown in Figure 6, it would be safe to 

presume that this represents some kind of retail application. What this software diagram 

conveys is the structure of the application. However, understanding of the structure is 

aided by the semantic information and data types. 

 

Figure 6 – UML Class Diagram for a Retail Application 

 

If the same diagram were to be obfuscated (see Figure 7), the structure would still be 

clear. One can see that there will be seven classes; that one is abstract and inherited 

from by two other classes; the operations and attributes within each class; the 

relationships between classes. However, it would be impossible to determine what 

domain this diagram represents. At best, one could make educated guesses. 
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Figure 7 - Obfuscated UML Class Diagram for a Retail Application 

 

This example clearly demonstrates the importance of semantic information when 

examining a diagram. For a human expert, the semantic information would normally 

also influence or guide the comparison process of two different diagrams. The semantic 

information is relevant only to the cognitive process and has no bearing on the 

functionality, assembly or execution of a software application, which is why it is 

possible to have obfuscated code. 

The question is not whether a semantic approach to knowledge retrieval is useful, this 

has been verified by much research in the field [Gomes, et al., 2007; Robles, et al., 

2012], but whether effective retrieval of information from software designs can be 

achieved when semantic information is not available; for instance when a developer 

uses another language to name members or a design is reverse-engineered from 
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obfuscated code. It is for this reason that the approach taken in this research was to 

focus entirely on structural information. 

 

3.3 Complex Structural Similarity 

It has been established that only the structural information will be considered in order to 

compare diagrams. So what structural data is available? 

Class diagrams are used in object-oriented software design to depict the classes and 

interfaces of a software design and the way these relate to one another. Apart from the 

classes and their relationships, class diagrams often show additional information, such 

as certain class-specific properties, attributes and operations. Every feature of a class 

diagram can be seen as being fully contained in another. For instance, a class diagram 

contains a class, the class contains an operation, the operation contains a parameter and 

the parameter contains a data type. This concept of containment makes it possible to 

regard a class diagram as a hierarchical tree-like structure. When a class diagram is 

regarded as a hierarchical structure, features can be located at different levels within the 

hierarchy. Features at the same level are siblings and every container feature (one which 

is composed of others) creates a new lower level. If one thinks of a class diagram as a 

box, then anything that can be seen at a glance when opening the box would form the 

top layer in the hierarchy. In this case this would be the classes and interfaces, which are 

the top element in the hierarchy of components of a software design. 

Current object-oriented programming languages, such as Java and Visual C#, follow a 

standard model for determining the elements of the class structure. The class structure 

may contain modifiers, which state a class’s visibility and whether it is final or abstract. 

It could also contain attributes, operations (methods) and constructors. The attributes, 
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operations and constructors will in turn have defining properties themselves. This way 

the hierarchy of features is created, as can be seen in Figure 8 (different colours denote 

different levels of the hierarchy and features in italic denote a container which is 

composed of sub-features). This structure differs slightly from that introduced in the 

literature review, as any names of classes, attributes, etc. have been removed, because 

the semantic information is omitted from the comparison. 

Class / Interface
 

Operations
 

Final
 

Attributes
 

Stereotype
 

Visibility
 

Constructors
 

Abstract
 

Type
 

Static
 

Visibility
 

Final
 

Parameters
 

Visibility
 

Type
 

Return Type
 

Final
 

Visibility
 

Static
 

Synchronised
 

Abstract
 

Parameters
 

Type
 

 

Figure 8 - Hierarchical structure of composing elements of a class (names omitted) 

 

Any leaf feature (one which has no sub-feature) can only occur once in its containing 

feature (e.g. an attribute can have only one type or an operation can have only one 

visibility. However, any of the containers can be repeated (e.g. a class can have multiple 

attributes or an operation can have multiple parameters). The values of leaf features 

state something about their containing feature overall, for instance that a class is abstract 

and has public visibility. However, another relevant aspect of a class’s similarity to 
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other classes is its complexity. An indication of this is the multiplicity of features; the 

number of attributes, constructors and operations, and, at a lower level, the number of 

constructor and operation parameters.  

In addition to the internal hierarchical structure of a class presented above, there are 

further elements obtained from a class diagram, which can be used for measuring 

software design similarity based on structure. These are all related to how a class relates 

to other classes in the class diagram: 

 Inheritance: a class’s super/base class 

 Interface realisation (implementation): the number of interfaces a class 

implements 

 Associations: the number of other classes that a class cooperates with 

Many features are compared in order to establish the overall similarity between two 

classes. It is quite possible that different features contribute to the overall similarity in 

uneven shares. To account for uneven contribution, a weighting scheme is used to 

assign weights proportionally. This way, the weights can be adapted individually to 

reflect the importance of the feature. 

The following equation shows how the similarity between two classes (target and 

source) is calculated. 

 ),(),(),( stllllsthlhlst CCCCCC    (2) 

 

The overall similarity combines the low-level and the high-level similarity between the 

two given classes, where hl
 is the weight coefficient applied to the high-level 

similarity and ll  is the weight applied to the low-level similarity 
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The high-level similarity between two classes is based on the defining characteristics of 

a class (its modifiers) and the number of attributes, operations, constructors and 

relationships with other classes (superclass, number of associations and interface 

realisations). These are properties of a class which can be obtained without having to 

look at the detailed low-level structure of the class. In essence it looks at anything that is 

at the first level of a class’s hierarchical structure. 

The high-level similarity between two classes is obtained as follows: 
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                 (     ) 

(3) 

 

where all mods are the modifiers of a class,     is the weight applied to the similarity 

of each of these modifiers,        is the weight applied to the similarity between the 

super/base class,          is the weight assigned to the number of attributes and 

similarly        ,           ,          and          refer to the number of 

operations, constructors, associations and interface realisations. The modifiers of a class 

are visibility, abstract, final and stereotype (can be interface or enumeration). 

The low-level similarity is concerned with the internal structure of a class (attributes, 

operations and constructors), as stated in equation (4), where       is the weight applied 

to the sum of all matched attributes’ similarity,              refers to the total number 
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of attribute matches and         refers to an attribute and its best match (bmx). 

Similarly,      
refers to operations and         to constructors. 
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The similarity between two attributes is defined as follows: 

 
     (     )  ∑         (     )

   
    

           (     ) 

(5) 

 

The modifiers in this case are static, final and visibility.       refers to the weight 

assigned to the data type of an attribute. 

When calculating the similarity between two operations, the modifiers specific to each 

operation, the number of parameters and the similarity between these parameters are all 

taken into consideration: 
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For operations the modifiers are visibility, static, synchronized, abstract and final. 

retType is the return type of a method,             is the number of parameter matches 

and numPar is the number of parameters. 

Similarity metric (7) is applied to constructors. It is very similar to the one for 

operations, but has only a single modifier (visibility). 
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For operation and constructor parameters, similarity is defined simply as: 

     (         )            (         ) (8) 
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For most modifiers the similarity is easy to calculate as they are either present or absent, 

this means that it will be either a 100% or a 0% match. This applies to: 

 abstract 

 final 

 static 

 synchronised 

Visibility (access level) modifiers control what members (attributes or operations) can 

be accessed by other members. The accessibility of members will depend on the relative 

position of the class containing them and the class trying to access them. For instance, 

whether both members are in the same class, the accessing member is in a class that 

inherits from the class containing the accessed member or whether both classes are in 

the same namespace/package. The different modifiers apply different restrictions with 

private being the most restrictive and public the least. This makes it possible to use 

expert knowledge to establish distances between the different visibility modifiers and 

these distances determine the similarity. Table 2 outlines the similarities used between 

the various visibility modifiers: 

 Public Protected Internal Private 

Public 
100%    

Protected 
60% 100%   

Internal 
50% 80% 100%  

Private 
0% 20% 40% 100% 

 

Table 2 – Similarity of Visibility Modifiers 

 

As with visibility modifiers, data type similarity can be matched in part by establishing 

distances between various data types. For instance, the integer and float data types both 
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share the characteristic of being numerical. While it is not an exact match, it is 

conceptually closer than a numerical data type and a string data type. Table 3 shows a 

matrix with the similarities of data types and return types. The similarity values were 

established based on expert opinion. 

 Bool Byte Short Int Long Float Double Char String Object Array Collect. Void 

Bool 
100%             

Byte 
10% 100%            

Short 
10% 80% 100%           

Int 
10% 70% 80% 100%          

Long 
10% 60% 70% 80% 100%         

Float 
5% 30% 40% 50% 50% 100%        

Double 
5% 30% 40% 50% 50% 80% 100%       

Char 
5% 5% 5% 5% 5% 5% 5% 100%      

String 
10% 10% 10% 10% 10% 10% 10% 60% 100%     

Object 
0% 0% 0% 0% 0% 0% 0% 0% 20% 100%    

Array 
0% 0% 0% 0% 0% 0% 0% 0% 10% 30% 100%   

Collect. 
0% 0% 0% 0% 0% 0% 0% 0% 0% 30% 80% 100%  

Void 
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 

 

Table 3 – Similarity of Data Types and Return Types 

The similarity between an interface and an abstract class was set at 50% as both contain 

abstract operations. 

To measure the similarity between two numerical values, such as the number of 

attributes, operations, parameters, etc., the metric used was: 

 
 (   )  

 

 
 (9) 

where x is the smaller and y is the larger of the two numbers. 

The following rule is applied when comparing features of different classes: the lack of 

features in both classes being compared would denote a 100% similarity for that 

feature, while the absence in merely one class would result in a 0% similarity. For 
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example, if neither class has any attributes, the overall attribute similarity is 100%, 

while if one class contains attributes, but the other does not, 0% similarity would be 

applied. 

Not all of the modifiers available in different object-oriented languages are included in 

the feature set used in this approach. The focus was on those features that are included 

in a class diagram and can be extracted from it. This meant that modifiers such as 

transient, volatile or native were not included. Furthermore, only features which could 

be obtained using reverse-engineering from a class diagram are used. So labels on 

associations, relationship multiplicities, aggregation, composition and constraints are 

not included. 

The structure created to represent a class is quite extensive and includes even small 

internal structural features. An alternative approach to this could have been to include 

only the most obvious features when measuring similarity. The system implemented to 

evaluate the research therefore allows individual features and even entire levels of the 

hierarchy to be excluded from the similarity metrics. 
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3.4 Weight Optimisation & Genetic Algorithms 

Expert input is being used in the weight optimisation process at three levels of 

granularity. 

1. Determine individual weights for every feature in the similarity metric 

2. Set desired class matches within a diagram by setting scores – weights are 

determined by applying a genetic algorithm to obtain the highest possible overall 

score 

3. Set desired diagram matches by selecting the best-matching diagram - weights 

are determined by applying a genetic algorithm to obtain the highest possible 

match between the given diagrams 

As discussed earlier, each feature within a class may contribute to the overall similarity 

between two classes in uneven shares. This requires a weighting scheme to be in place 

in order to assign the weights proportionally to a feature’s importance in terms of the 

overall class similarity. The features of a class are arranged in a hierarchical structure, 

which is reflected by the weights, creating different levels of weights. 

A key issue in calculating the class similarity effectively is to identify what the weight 

setting should be in order to successfully match up the correct classes. There is no 

established norm or convention for measuring similarity between classes. This is an 

abstract activity and even stating whether a match is good or bad is not always 

straightforward. A human expert could identify similarities between given designs using 

a heuristic approach, thus the key lies in classifying the characteristics that would make 

a human expert identify the similarity and adjust the weights for those features 

accordingly. However, this could vary from person to person or even diagram to 
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diagram. It is also possible that a human expert would measure some features intuitively 

without being able to express them in rules.  

In order to solve this problem this research employs weight optimisation. This process 

can be automated by training a system to automatically identify optimal weight settings, 

given the desired matching results. An expert assigns values from a predefined scale to 

class matches (similar to a grading scheme). 

Given a set of desired/undesired matches, the system can apply different weight 

settings, run comparisons between all the different classes and keep a score of the points 

obtained from matching the classes against one another. An analysis of the scores from 

these comparisons makes it possible to adopt the best weight settings. This weight 

optimisation algorithm is outlined in Figure 9. 

 

Figure 9 - Weight Optimisation Algorithm using Class Scores 



Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs 
 

62 

 

A slightly different approach to this weight optimisation problem asks the expert to 

identify the most similar diagrams from a set (see Figure 10). The system applies 

different weight settings and adopts the setting which yielded the highest result. 

 

Figure 10 - Weight Optimisation Algorithm using Diagram Matching 

 

An important question is to what extent the optimisation of weights can be generalised. 

Can a weight setting obtained from a particular set of designs be applied to other cases?  

According to [Mitchell, 1990] it is not possible to use a weight optimisation method that 

would obtain an optimal weight setting which could be used for all tasks, since each 

task requires a different bias for optimal performance. A possible solution to this would 

be the creation of several different profiles according to the specific characteristics of 

different designs. This issue will be discussed in more detail in chapter 5. 
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Rather than randomly changing weights and hoping to chance upon a good setting, it 

would be more efficient to try to improve a setting by incrementally manipulating the 

values, verifying the results and making adjustments accordingly. A way of achieving 

this is through means of a genetic algorithm (see Figure 11). 

Reproduction

Generate initial 
population

Evaluate fitness of 
each chromosome

Select best 
chromosome from 

all populations

Perform elitism 
operation

Perform crossover 
operation

Perform mutation 
operation

Stop evolution?
Create new 
population

Select parents More to select?

Add child to new 
population

No

Yes

Yes

No

 

Figure 11 - Genetic Algorithm 

 

The genetic algorithm is used in the Set Weights phase of the weight optimisation 

algorithms (Figure 9 and Figure 10), effectively automating the weight setting. 

A population contains a set of chromosomes and in this case each chromosome 

represents a weight setting. A chromosome’s fitness shows the similarity or score 

achieved when using this particular set of weights. The number of elite chromosomes 
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which are automatically selected for the next population is determined by an elitism 

rate. The crossover and mutation operations are not performed in every reproduction 

cycle, but their occurrence is dictated by a random function taking into consideration a 

set rate for each. During the reproduction phase, the selection of parents is not 

completely random, but is biased in function of a chromosome’s fitness. This means 

that better chromosomes have a higher probability of being selected – which is referred 

to as fitness proportionate selection.  

The probability of a chromosome being selected is defined as: 

 

   
  

∑    
   

 (10) 

Where    is the fitness of a chromosome and N is the number of chromosomes in the 

population. 

The weight settings obtained from optimisation are cached for later retrieval so that they 

don’t have to be computed at query time. 
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3.5 Graph Matching 

To measure the similarity between two class diagrams, one can simply measure the 

similarity between the number of classes in both diagrams and sum of the similarities of 

all matched classes (11). 

  (       )

      
 

             
∑       (       )

   
       
       

                   (       ) 

(11) 

 

Where Cx is a class from CDt and Cbmx is the best match for that class in CDs. 

However, a great deal of the knowledge associated with UML models is encoded in the 

links between these elements. Typical of this are the associations between classes in a 

UML class diagram and the message passing in interaction diagrams. In fact it can be 

argued that most of the practical reuse of design and code by software engineering 

practitioners is associated with design patterns that are related to patterns of interaction 

between objects.  

As a UML class diagram consists of classes which are connected using relationships, 

they can easily be represented as graphs of nodes (classes) and arcs (relationships). To 

measure similarity between class diagrams, represented as graphs, requires graph 

matching. A full search graph matching algorithm has been adapted to be applied to 

UML class diagrams. Given the graph representations of two UML class diagrams, CDt 

and CDs, the algorithm returns the Maximum Common Subgraph MCS(CDt,CDs) 

present in both graphs. 
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The algorithm attempts to find the best matching elements in the two graphs based on 

the metrics presented in the previous sections. The similarity metric between arcs in the 

diagram is based on a simple classification of association types in terms of the nature of 

their relationship as follows: 

 association 

 generalisation  

 interface realisation (implementation) 

The similarity between associations of the same type is defined as: 
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The graph matching algorithm maps the maximum common connected subgraph based 

on matches between individual elements of each graph, where a minimum threshold 

similarity value is satisfied. 

The overall similarity between the two case graphs (Gt, Gs) is then defined as: 
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where count(Gt) represents the number of nodes (classes) in graph Gt.  

The sum of results is squared to emphasise the differences between graphs and make it 

easier to visualise results. This formula for graph matching has been used successfully 
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in previous research at the University of Greenwich [Petridis, et al., 2007a; Petridis, et 

al., 2007b]. 

Figure 12 shows an example application of the algorithm and similarity measure. At a 

similarity threshold set to 0.4, three connected nodes in each graph have been picked up 

by the algorithm. A further match between the classes “Customer” and “POS” is 

rejected for having similarity value less than the threshold. Potential matches between 

“Supplier” and “Saleable” are not considered as the connecting associations are of 

different types (association vs. interface realisation). 

 

Figure 12 - Maximum Common Subgraph Example 

 

In this example, the overall graph similarity between the two class diagrams would be: 

(0.7+0.8+0.77)
2
 / (5*5) = 0.206 

The algorithm used in this research is based on the full recursive search of all elements 

in the graph representations where both target and source diagrams are being compared. 

The algorithm attempts to match individual classes from the source and target diagram 

σ=0.7 

σ=0.8 

σ=0.77 

σ=0.2 
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where the similarity is greater than a predefined threshold. For each successful match, 

the algorithm attempts to match all respective matches of neighbours whose similarity 

measure is greater than the threshold. The algorithm finishes when no additional 

neighbour matches can be found. This algorithm has been extended from previous 

research [Petridis, et al., 2007b] to follow links representing only similar types of 

associations as defined by equation (12) above. 

Figure 13 outlines a simplified version of the algorithm used to identify the MCS 

between two graph representations of corresponding class diagrams. 

The graph matching algorithm has been used as an alternative to the simpler class 

diagram matching algorithm presented at the beginning of this section (11).  

 

 Figure 13 - Maximum Common Subgraph Matching Algorithm 

 

FORALL possible matches (x,y) 

 mcs   CALL match(x,y) 

ENDFOR 

 

match(x,y): 

 calculate struct similarity sim(x,y) 

  IF sim(x,y) > threshold THEN 

   find all matching neighbour(xn,yn) 

   FOR each (xn,yn) 

    mcs  Append(mcs,match(xn,yn)) 

    IF mcs best so far THEN 

      retain mcs 

    ENDIF 

   ENDFOR 

  ENDIF 

  RETURN mcs 



Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs 
 

69 

 

3.6 Clustering 

Given that clustering makes it possible to group objects that are similar, it can be 

applied in order to evaluate whether the similarity metrics applied in this research are 

working. Clustering is used as part of the experiment stage in order to validate the 

results, whereby clusters of the cases are generated post retrieval and evaluated against 

facts which are known, but don’t form part of the similarity metrics. For instance, 

clustering is being used to determine whether cases are grouped according to the source, 

programming language, size or quality of the software designs. 

Clustering is an area of data mining which consists of the assignment of objects into 

groups (clusters) such that objects in the same cluster are more similar. Given that the 

essence of CBR is measuring similarities, it is sensible to combine the two areas. It is 

possible to find applications for clustering at various stages in the CBR cycle, but in this 

case it is applied to the set of retrieved and ranked cases. 

Agglomerative hierarchical clustering takes as input a set of objects each of which is 

placed in its own cluster. The clustering algorithm then repeatedly merges the closest 

pair of clusters.  

The distances between clusters can be defined using: 

 Single-link clustering (nearest neighbour) – merges clusters with the smallest 

minimum distance from any member of cluster A to any member of cluster B 

 Complete-link clustering (farthest neighbour) – merges clusters with the smallest 

maximum distance from any member of cluster A to any member of cluster B 

 Average-link clustering – merges clusters with the smallest average distance 

from any member of cluster A to any member of cluster B 
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 Figure 14 – Agglomerative Hierarchical Clustering Algorithm 

 

The single-link clustering method is known to be unsuitable for isolating poorly 

separated clusters. In this research it was found that single-link clustering would result 

in one massive cluster containing the large majority of items and all remaining clusters 

each containing a single item. Better results were achieved using average-link 

clustering, which has also ranked well in evaluation studies [Sileshi and Gamback, 

2009]. A disadvantage of the average-link clustering method is that it is computationally 

expensive for large collections of data, but it computed all clusters within a reasonable 

time. 
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The condition for terminating the clustering process could be when a predetermined 

number of clusters is reached or when a cluster fails its criteria of compactness (average 

distance between items in the clusters are too high). The predetermined number of 

clusters was used, which was based on a rule of thumb by Mardia et al. [Mardia, et al., 

1980] and the number of different sources of the cases in the case-base. 

Clustering is an active area of research in its own right and experiments with more 

complex clustering algorithms could have been carried out, such as the approach of Bai 

et al. [Bai, et al., 2011] who use multiple weights for attributes within clusters in order 

to identify clusters in subspaces. However, the focus of this research is not on clustering 

methods. Clustering is used as a means to evaluate the effectiveness of knowledge 

retrieval from software designs. 

 

3.7 Cost Estimation 

Software development projects have a notorious reputation for being late and over 

budget, yet much of the cost estimation for projects is done based on experience of 

project managers and estimates done on the “back of an envelope”. The estimation 

process also needs to account for numerous factors, such as system size, complexity, 

experience of the development team, etc. There is also a tendency to create very 

optimistic estimates, as this makes it more probable for a project to be approved or 

attract funding. 

As with any type of estimation, cost estimation works most efficiently when backed by 

historical and statistical information. Thus, a variety of different approaches exist to 

software cost estimation, which take into account historical and statistical information, 

or which use models which were created using historical data. Some are based on 
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formal models, such as parametric or size-based models, while others rely on expert 

estimation. The most common approaches are formal estimation models, such as 

COCOMO (COnstructive COst MOdel), established by Boehm [Boehm, 1981], which 

apply formulas derived from historical data. The successor to COCOMO is COCOMO 

II [Boehm, et al., 2000b] which is better suited for modern software development 

projects, as it considers the changes to the software development process since the first 

version was published. 

COCOMO uses function point analysis to compute program size, development time and 

the number of people required. It requires the classification of cost drivers using a scale 

of ratings to determine information such as the class of project. It also requires setting 

complexity factors and weight assignment, all of which must be performed by a human 

expert. This means that the estimation is very much dependent on the judgement of the 

expert and remains prone to human errors and biases [Valerdi, 2007]. 

When using the object-oriented paradigm and UML models, the function point analysis 

uses use cases (use-case diagram) and classes (class diagram) in order to compute the 

effort in lines of code. The following formula is used to calculate function points for 

cost estimates: 

                (14) 

 

where    is the number of use cases directly connected to an actor (i.e. use cases which 

are connected not solely to other use cases),    is a weight between 4 and 7,    is the 

total number of classes in the model and    is a weight between 7 and 15. 
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The function points obtained using this calculation are then adjusted using the formula: 

 
              (          ∑  ) (15) 

 

where    are a set of fourteen factors, each of which is assigned a complexity coefficient 

between 0 (no influence) and 5 (essential). The technical complexity factors defined by 

COCOMO are: 

1. System requires reliable backup and recovery 

2. Data communications required 

3. Distributed processing functions 

4. Performance critical 

5. System to run in existing, heavily utilized operational environment 

6. Requires on-line data entry 

7. On-Line data entry requires input transaction over multiple screens/transactions 

8. Master files updated on-line 

9. Inputs/outputs/queries complex 

10. Internal processing complex 

11. Code designed to be reusable 

12. Conversion and installation included in design 

13. System designed for multiple installations in different organisations 

14. Application designed to facilitate change and ease of use by the user 
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Once the function points are calculated, it is possible to convert them to lines of code 

(LOC) using a mapping. The mappings for some programming language are given as: 

Programming Language LOC per FP 

Assembly language 320 

C 128 

Cobol / Fortran 105 

Pascal 90 

PHP / Python 67 

Java / C++ / C# 30 

Code generators 15 
 

Table 4 – Mapping of Function Point to Lines of Code 

 

The technical complexity factors, function point mappings and formulas in COCOMO 

are all derived from the analysis of historical data. 

A major motivation of this research is to determine whether cost estimation can be 

automated effectively by comparing software designs. This is an approach which uses 

estimation by analogy, as experience from previous projects is analysed to determine 

the cost for a new one. Given a collection of software designs and corresponding cost it 

took to implement each design, e.g. in lines of code, it may be possible to predict the 

effort necessary to implement a new target design, provided that the implementation 

shares some common context, such as, complexity of the functionality, similar 

programming languages and technologies. 

In this research the results of COCOMO estimates for lines of code of a target software 

system are compared to the lines of code obtained from the nearest neighbours 

retrieved. 
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3.8 Explanation 

Using the methods described in the previous sections of this chapter, it is possible to 

compute the similarity of two software designs and obtain a match expressed in 

percentage. This result would be calculated based on the maximum common subgraph, 

number of classes in each diagram, similarity of the internal hierarchical structure of the 

classes that form part of the maximum common subgraph and the weights attributed to 

all of the features. It is also possible to indicate which features were ignored in the 

comparison, if any. The reasoning used to obtain the results is remembered and can be 

shown to a user to explain the overall similarity match by breaking it down into each 

constituent element. It is also possible to show how groups of features have contributed, 

such as a particular level in the hierarchical structure (e.g. what the overall match for all 

attributes was for two particular classes). 

The explanation is achieved by providing a complete breakdown of all similarities 

between all features of the two diagrams and is supported by the visualisation of the 

maximum common subgraph, showing exactly what classes were matched and how 

they were linked. 

 

3.9 Conclusion 

This chapter has presented the methodologies and techniques that were applied in this 

research. The research relates to a variety of subject areas and the chapter started by 

introducing the case-based reasoning paradigm and explained how it can be used in 

order to extract knowledge from software design artefacts. 

Most of the research on applying case-based reasoning to software designs relies 

heavily on the semantic information encoded in the designs to measure similarity. While 
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the importance of semantic aspects has been clearly demonstrated, the significance of 

the hierarchical structure has been raised together with the question of whether the 

effective retrieval based solely on structural information was possible. 

It has been demonstrated how class diagrams can be broken down into composing 

features resulting in a hierarchical tree structure with different levels. All the 

contributing structural features have been presented, along with their similarity metrics. 

As a consequence of the uneven contribution to overall similarity, feature weighting has 

been discussed and it was shown how a genetic algorithm can be employed to optimise 

feature weighting. 

To take advantage of the knowledge determined by the relationships between classes, a 

class diagram can be regarded as a graph, which requires some form of graph matching 

to measure similarity. The method proposed for finding the maximum common 

subgraph and a similarity metric and algorithm were provided. It was shown how 

clustering can be used to group cases to evaluate the effectiveness of the knowledge 

retrieval. Retrieval of knowledge is applied in an attempt to perform software cost 

estimation. Existing methods for cost estimation were presented and it was revealed 

how this research will evaluate results against the COCOMO model for estimating lines 

of code. Finally, it was outlined how the system will provide explanation to its users. 

The next chapter will present UMLSimilator, which is the software system developed to 

evaluate the research. 
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Chapter 4 

4 UMLSimilator 

The previous chapter outlined the techniques and methodologies used. This chapter 

explains how the algorithms were implemented and provides examples to illustrate. The 

UMLSimilator tool is presented, which is the software tool which was developed in 

order to evaluate the research. The tool is capable of importing cases, measuring 

similarity and applying all of the techniques discussed in the previous chapter. 

This chapter provides a synopsis of work carried out and starts by presenting the case 

study which forms the basis of the work. The next section provides the overall 

architecture of the system, indicating the various modules it contains. The various 

modules are then presented in turn, describing their specific function within the 

knowledge retrieval process. 

 

4.1 Case Study 

A case-based reasoning system requires a case-base or case-library. As the purpose of 

the application is to retrieve knowledge from structural information of software design 

artefacts, the content of the case-base consists of representations of UML class 

diagrams. To ensure that there is enough data and variety within the case-base, just over 

one hundred cases were obtained and stored. Diversity was introduced by using results 

from a number of different teaching assignments, thus assuring a good assortment of 

cases. Another positive consequence of using a set of teaching assignments is the fact 

that it provides diverse implementations of identical requirements, making it possible to 

validate results and evaluate provenance. Finally, this approach provided a measure of 
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quality in form of the grade achieved. Having this quality indicator enables the 

investigation of the relationship between the structure and quality of a software design. 

To maximise the potential for knowledge retrieval, it is advantageous to have not just a 

set of software designs, but to obtain the designs from actual implementations. This 

makes it possible to verify the findings of this work in relation to cost estimation and 

plagiarism detection. It also implies that the designs are realistic as they reflect real 

software solutions. 

Application Programming Language Level Number of Cases 

Software catalogue application .NET 6 25 

Project management application .NET 6 14 

Application for a car repair shop .NET 5 34 

Stock management application .NET / Java (optional) 7 21 

Project bidding system .NET 6 7 
 

Table 5 – Teaching Assignments in the Case-Base 

 

Table 5 shows details of the assignments which were used to populate the case-base.  

As can be seen, each assignment has different requirements and they are sourced from 

different levels. All assignments had to be completed using an object-oriented language. 

For each assignment, the grade has been recorded, given that this is a measure of quality 

of the finished software product. A high grade doesn’t necessarily guarantee a good 

design, as the grade is generally derived from a number of factors, which include, but 

are not limited to the design. These could include the graphical user interface design, 

functionality offered, validation, accompanying written report, etc. 

The approach to cost estimation applied here computes the estimated cost (lines of 

code) by identifying the nearest neighbour designs and calculating the average cost of 



Chapter 4 UMLSimilator 
 

79 

 

their implementation. This requires knowing the cost of implementation for the designs 

in the case-base. To automate the calculation of implementation cost, a source code 

reader module was built into the UMLSimilator tool. The source code reader allows a 

user to map classes to source files and then automatically extracts the lines of code and 

number of characters for each class. The .NET suite of programming languages allow 

partial classes, where one class is spread over multiple files. The source code reader 

caters for this by allowing multiple files to be mapped to the same class. 

 

4.2 System Architecture 

The UMLSimilator tool implements the proposed approach and aims to support the 

entire knowledge retrieval process using CBR, including the management of the case-

base. The tool comprises a variety of modules to support this functionality. An overview 

of the architecture of the tool and its main modules has been outlined in Figure 15. The 

modules include: 

 UI Forms: Contains the majority of graphical user interfaces, as well as a 

controller and some file handling support 

 Visualiser: A user interface component implemented using Windows 

Presentation Foundation to depict class diagrams and visualising maximum 

common subgraphs 

 Class Similarity Calculator: Performs the internal class similarity calculations 

using the hierarchical structure, including data type similarity 

 Graph Matching: Implements the most complex algorithm of the application 

which uses recursion to match the maximum common subgraph 

 Clustering: Used for clustering cases based on their distances 
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 Weight Optimiser: Supports different types of weight optimisation based on 

desired settings from a human expert. Uses a genetic algorithm to improve the 

weight settings 

 .NET Reflector: Reverse engineers class diagrams from compiled .NET CIL 

code in *.exe or *.dll format 

 Java Reflector: Reverse engineers class diagrams from compiled Java byte code 

in *.class or *.jar format 

 Persistence: Handles all persistence operations with the case base 

<<Java Web Service>>

Java Reflector

<<.NET Web Service>>

Persistence 
Module

UMLSimilator

UI

Visualiser 
Module UI Forms

Services

.NET Reflector
Weight 

Optimiser

Domain

Class Similarity 
Calculator

Graph Matching 
Module

Clustering 
Module

Case-Base

 

Figure 15 - UMLSimilator Architecture 

 

The UMLSimilator tool also incorporates the case-base and its management. Initially 

XML (eXtensible Markup Language) was used as a storage mechanism for the case-

base to provide flexibility. XML is well-structured and as a text-based format it is 
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widely supported and easily transferable, yet capable of representing complex data 

structures through containment. The use of XMI (XML Metadata Interchange) was 

considered in order to provide interoperability between UMLSimilator and popular 

CASE tools. XMI was discussed in chapter 2 with the MOF metamodel architecture. 

However, text processing is quite slow and it became necessary to speed up the 

manipulation of data models. A relational database was therefore created holding class 

representations of the UML metamodel M2 for class diagrams. The database contains 

20 tables and the structure can be found in Appendix 1. 

 

4.3 Reflector Module 

As discussed earlier, existing implementations were used to populate the case-base. The 

cases were obtained by reverse engineering existing implementations.  

The UMLSimilator contains a class structure reflecting the metadata of UML class 

diagrams, which makes it possible to work with in-memory representations of the class 

diagrams, thus speeding up processing. A class diagram showing the core domain 

classes can be found in Appendix 1. The persistence module deals with the serialisation 

and de-serialisation of the cases between in-memory representation and the case-base. 

However, the reflector modules make it possible to introduce the cases in the case-base. 

The reflector modules convert classes from their compiled byte code into cases in the 

case-base. Reflector modules exist for Java, as well as .NET CLS-compliant languages 

(CLS - Common Language Specification). Both modules rely on the reflective ability of 

these programming languages, by means of which compiled classes are dynamically 

loaded at runtime and the features automatically extracted. Reflection enables 

inspection of classes at runtime, as it makes it possible to construct instances of classes 
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for which all one has is the name. Once instantiated, the details of all attributes, 

operations, constructors and parameters can be accessed, as well as metadata, such as 

annotations and assembly attributes. It is even possible to invoke methods on the object. 

Reflection makes it possible to obtain the complete hierarchical structure of a class, 

required to recreate the class diagram. The reverse-engineered designs can then be 

submitted to the case-base. 

Applications written using the .NET suite of languages (e.g. C#, VB.NET) are compiled 

into an intermediate code called CIL (Common Intermediate Language). The compiled 

classes are bundled into assemblies, which for stand-alone applications are typically 

executable files (*.exe) or class libraries (*.dll). The reflector module loads any 

assembly it is passed, obtains a list of classes, loads each class and reflects on it to 

extract all of the required data.  

The UMLSimilator tool is implemented in .NET, thus the .NET reflector module is 

directly integrated. Reflection of Java byte code, requires a Java runtime. While the file 

selection and case-base management is handled by part of the UMLSimilator 

implemented in .NET, the reflection of Java code is delegated to the Java reflector 

module, which is exposed as a web service. The case extraction process for .NET and 

Java code is outlined in Figure 16. The Java reflector module receives Java byte code 

and recreates files from it. It then loads the files and reflects on them. A custom 

implementation of the ClassLoader was used to make it possible to load linked classes 

from multiple nested JAR (Java Archive) files. The structure of the Java Reflector is 

available in Appendix 1. 

Both reflector modules filter out inherited operations and extract only those 

implemented in the actual class. This corresponds to what would be displayed in a class 
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diagram. Inheritance and interface realisations can also be easily extracted using 

reflection. However, one aspect of a class diagram which cannot be obtained directly 

using reflection is the associations between classes. The reflector modules overcome 

this problem by identifying classes from the same diagram which are used either as 

return types of methods, parameter types or data types of declared attributes. 

Association relationships are then established based on this information. 

UMLSimilator

Persistence Web Service Java Reflection Web Service

Select File

.NET Reflector 
extracts data

Persistor adds case 
to case-base

Is .NET file? No

Send to Persistor 
service

Convert to byte 
stream

Send to Java 
reflection service

Recreate byte code 
file

Yes

Java Reflector 
extracts data

 

Figure 16 - Case Extraction Process 

 

The main disadvantage of reverse-engineering implemented software solutions is that 

the software designs may include elements which did not form part of the original 

design, but were added during the implementation process, such as automatically 

generated code or existing integrated components. Furthermore, ad-hoc 

implementations, especially of less-experienced developers, may not have a very 
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meaningful underlying design. For this reason a manual checking step was added to the 

case extraction process. During this phase a human expert reviews the reverse-

engineered solution and can do manual tidying (e.g. removing automatically generated 

classes, adding missing relationships, etc.). 

Existing tools for reverse engineering code have been used by Gorton and Zhu [Gorton 

and Zhu, 2005] and Tessem et al. [Tessem, et al., 1998], who use Java’s reflective 

ability combined with Case-Based Reasoning to “retrieve case-based components in a 

prototyping tool for the Java programming language.” This tool is used to aid class 

retrieval and reuse, but on a code rather than design level and even though this research 

is based on existing implemented designs, it is currently only concerned with the design 

level. Their approach is also oriented towards semantic similarity similarly to Gomes et 

al. [Gomes, et al., 2004]. 

 

4.4 Class Similarity Module 

At the core of the CBR approach is measuring the similarity between a target and source 

cases. As presented in the previous chapter, the proposed approach measures the 

similarity between classes by breaking them down into their composing elements and 

performing matches of similarity at all levels within the resulting hierarchical structure. 

In order to calculate the similarity between two given classes, the UMLSimilator takes 

every element within the hierarchical structure of the first class and compares it to the 

equivalent element(s) from the second class. It proceeds until every element is matched 

and the overall similarity is obtained, not allowing any element to be matched more than 

once. A full search algorithm is applied which ensures a good overall match. The 

algorithms in place will repeatedly rematch all elements until satisfactory matching is 
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achieved. The results of the exhaustive matches are used to measure similarity between 

classes, thus determining which matches are considered in calculating the maximum 

common subgraph. 

The process of exhaustively matching all elements to find the best matches uses the 

binomial coefficient ( 
 
) which defines the number of ways of picking k unordered 

outcomes from n possibilities (see (16)).  

 

(
 

 
)  

  

  (   ) 
 (16) 

 

This equation uses factorial and is computationally demanding, especially as the 

number of elements increase. It is also applied on all levels of the element hierarchy, 

thus a trade-off was made by using a greedy algorithm.  

A greedy algorithm follows the problem solving heuristic of making the locally optimal 

choice at each stage with the hope of finding a global optimum [Cormen, et al., 2009]. 

As applied to this problem, a greedy strategy does not produce an optimal solution, but 

a greedy heuristic may still yield locally optimal solutions that approximate a global 

optimal solution. The key is that it may do so in a reasonable amount of time. The 

algorithm is outlined in Figure 17. 

While the greedy algorithm obtains a very good solution, it doesn’t exhaust all 

possibilities and therefore does not guarantee optimum matching. This is due to the fact 

that by finding the best match for a particular element and then removing it from the 

pool of available elements, the overall similarity could actually be decreased. A slightly 

lower initial match could actually result in higher successive ones. However, the 



Chapter 4 UMLSimilator 
 

86 

 

algorithm required to guarantee optimum matching would be too computationally 

demanding to be feasible, while a heuristic algorithm still provides very good results. 

To improve performance, the class similarity module uses caching. This avoids having 

to repeat the same calculations over and over. When comparing two classes for the first 

time, the result is calculated and stored in a dictionary. Any successive requests are read 

straight from the dictionary. 

Start

Find highest overall 
element match

Calculate overall 
similarity

Remove matched 
elements

More elements?

Match all available 
elements against 

each other

No

Yes

 

Figure 17 - Greedy Algorithm for Comparing Elements 

 

The class similarity module obtains an overall match between two classes by comparing 

all elements within the hierarchical structure according to the current weight setting and 

using the similarity metrics defined in the previous chapter. The structure created to 
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represent a class is quite extensive and includes even detailed internal structural 

features. An alternative approach to this could have been to include only the most 

obvious features when measuring similarity. The UMLSimilator therefore allows 

individual features and even entire levels of the hierarchy to be excluded from the 

similarity calculation process. 

Table 6 shows how the similarity between two classes (Bid and bid_tbl) is calculated. 

Feature Class Bid Class bid_tbl Similarity Contribution 

Inheritance Object Object 100% 7.69% 

No. of Implementations 2 2 100% 7.69% 

No. of Associations 0 2 0% 0.00% 

No of Attributes 3 9 33.33% 2.56% 

No. of Constructors 1 2 50% 3.85% 

No. of Operations 3 18 16.67% 1.28% 

Abstract (class) False False 100% 7.69% 

Final (class) False False 100% 7.69% 

Visibility (class) Public Public 100% 7.69% 

Stereotype None None 100% 7.69% 

Overall Attributes 3 attributes matched at 90%, 

 90% and 100% 

93.33% 7.18% 

Overall Constructors 1 constructor matched at 66.67% 66.67% 5.13% 

Overall Operations 3 operations matched at 95%,  

95% and 100% 

96.67% 7.44% 

Total    73.58% 
 

Table 6 – Example match between class Bid and class bid_tbl 

 

The example only shows the first level of features. The attributes, constructors and 

operations are broken down further into their constituent features. It also uses the same 

contribution for each feature. If optimised weights were used, then features would 

contribute in different proportions. More on this later in this chapter. 
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4.5 Graph Matching Module 

The graph matching module implements the graph matching algorithm first presented in 

the previous chapter, to calculate the maximum common subgraph between two given 

class diagrams (targetDiagram and sourceDiagram). The implementation of this 

algorithm is quite complex and is broken down here into a number of smaller 

algorithms, which explain the different steps involved in identifying the maximum 

common subgraph. The first step of this process is presented here: 

 

 Figure 18 – Algorithm for Finding Maximum Common Subgraph 

 

FindMaximumCommonSubgraph(targetDiagram, sourceDiagram) : 

 mcs  Ø 

 bestGraphSimilarity  0 

 graph  Ø 

 Class (clt) ∈ Classes WHERE Classes ⊂ targetDiagram 

 FORALL Class (clt) IN Classes 

  potentialMatches  CALL FindMatchingClasses(clt, sourceDiagram) 

  FORALL PotentialClass (pcs) IN potentialMatches 

   graph  CALL FindBestGraph(targetDiagram, sourceDiagram, clt , pcs) 

   IF graph ≠ Ø THEN 

      graphSimilarity  Get match percentage from graph 

      IF graphSimilarity > bestGraphSimilarity THEN 

         bestGraphSimilarity  graphSimilarity 

         mcs  graph 

      ENDIF 

   ENDIF 

  ENDFOR 

 ENDFOR 

 RETURN mcs 



Chapter 4 UMLSimilator 
 

89 

 

This algorithm ensures that subgraphs are created starting with every combination of 

classes from both diagrams. For example, if target diagram contains classes At, Bt and 

source diagram As, Bs, Cs, then subgraphs are created starting with the following 

combinations {At, As}, {At, Bs}, {At, Cs}, {Bt, As}, {Bt, Bs}, {Bt, Cs}. From this starting 

point, subgraphs are generated for every combination and the one that develops into the 

maximum common subgraph is selected.  

This algorithm makes use of the FindMatchingClasses algorithm, which for a given 

class of the target class diagram identifies all of the classes in the source class diagram 

to which it could potentially be matched. Whether two classes can be matched is 

determined by the minimum class match threshold, which defines the lowest class 

similarity considered for allowing two classes to be added to the maximum common 

subgraph. The algorithm is defined in Figure 19. 

 

 Figure 19 – Algorithm for Finding Potential Class Matches 

 

FindMatchingClasses(clt, sourceDiagram) : 

 matchingClasses  Ø 

 threshold  Current minimum threshold 

 Class (cls) ∈ Classes WHERE Classes ⊂ sourceDiagram 

 FORALL Class (cls) IN Classes 

  classSimilarity  Compare Classes (clt ,cls) 

  IF classSimilarity >= threshold THEN 

   matchingClasses  Add cls 

  ENDIF 

 ENDFOR 

 RETURN matchingClasses 
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The actual generation of subgraphs is achieved using the FindBestGraph (Figure 20) 

and Match (Figure 21) algorithms. It is important to remember that a node in the graph 

consists of a pair of classes which have been matched. 

 

 Figure 20 – Algorithm for Calculating the Maximum Common Subgraph for a Combination of 

Classes 

 

The FindBestGraph algorithm creates the first graph which contains as a root node the 

target (clt) and source (cls) classes provided. It starts the recursive creation of 

subgraphs by passing the first node to the Match algorithm, together with a reference to 

the collection of graphs. The recursive algorithm will add to the collection of graphs as 

it generates alternative subgraphs. As the Match algorithm is recursive, it will exhaust 

all possible combinations of subgraphs, so when it returns control to the FindBestGraph 

algorithm, all this has to do is iterate through the collection and identify the best match. 

FindBestGraph(targetDiagram, sourceDiagram, clt , cls) : 

 mcs  Ø 

 bestGraphSimilarity  0 

 rootNode  Create node containing clt and cls 

 firstGraph  Add rootNode 

 graphs  Add firstGraph 

 CALL Match(graphs, clt, cls, firstGraph) 

 FORALL Graph (gi) IN graphs 

  graphSimilarity  Get match percentage from gi 

  IF graphSimilarity > bestGraphSimilarity THEN 

   bestGraphSimilarity  graphSimilarity 

   mcs  graph 

  ENDIF 

 ENDFOR 

 RETURN mcs 
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 Figure 21 – Recursive Graph Matching Algorithm 

 

Match(graphs, clt, cls, currentGraph) : 

 tempGraph  Copy currentGraph 

 targetRelations  Get all links for clt 

 sourceRelations  Get all links for cls 

 combinations  CALL FindCombinations(targetRelations, sourceRelations) 

 IF combinations ≠ Ø THEN 

  FORALL Combination (cbi) IN combinations 

   tRel  Get target relation from cbi 

   sRel  Get source relation from cbi 

   IF tRel Is Same Type sRel AND Sim(tRel, sRel) > threshold THEN 

      FORALL Graph (gi) IN graphs 

       IF tRel ∉ gi AND sRel ∉ gi THEN 

       node  Create node containing tRel and sRel 

       gi  Add node 

       CALL Match(graphs, clt, cls, gi) 

       nodeAdded  TRUE 

    ELSE 

       combinationExists  TRUE 

    ENDIF 

      ENDFOR 

      IF NOT nodeAdded AND NOT combinationExists THEN 

    newGraph  tempGraph 

    graphs  Add newGraph 

    node  Create node containing tRel and sRel 

    newGraph  Add node 

    CALL Match(graphs, clt, cls, gi) 

      ENDIF 

   ENDIF 

  ENDFOR 

 ENDIF 
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The recursive graph matching algorithm starts by obtaining all possible combinations of 

relationships (links) starting from the given classes. Each possible combination is 

checked to ensure that the type of relationship matches and that the similarity between 

the classes which sit at the end of the relationships is over the established minimum 

threshold. If a combination can’t be added to existing graphs and is not already used, 

then a new graph is created, which starts from a temporary copy made at the beginning 

of the recursive method and this is then built up using the recursive method. 

The algorithm for obtaining all possible combinations of relationships between two 

classes uses an equation which applies factorial (see (17)).  

 

(
 

 
)  
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 (17) 

 

where n and k are the sets of relations of a target and a source class. n being whichever 

of the two sets is larger. 

A class diagram depicting the structure of the graph matching module can be found in 

the Appendix 1. 

The problem of finding the maximum common induced subgraph of two graphs is NP-

hard [Garey and Johnson, 1987]. This means that while this algorithm works for cases 

with relatively small numbers of classes and relationships, if the application were given 

more complex cases, the time required to compute them would increase drastically, 

making it unfeasible.  

The previous section explained that the class similarity calculator module uses caching 

of results when measuring similarities between classes. This improves performance as 

the combinations of possible matches are high and the same combinations are checked 
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multiple times during class comparisons. The greedy algorithm used to perform matches 

(Figure 17) requires exhaustively comparing all features between two elements every 

time a best match is removed from the set. While the caching improves performance, it 

was found that the amount of comparison results kept in memory were resulting in the 

application draining all available memory on the heap (OutOfMemoryException). 

Optimisation techniques and analysis using a memory profiler were used to overcome 

this problem. Rather than individual objects tracking their own similarities, a set of 

static dictionaries were introduced, which are cleared when the algorithm moves 

between class diagrams. 

 

4.6 Weight Optimiser Module 

The UMLSimilator tool has a module that deals with weight attribution and 

optimisation. Every feature of the class diagram is being compared and its similarity 

contributes to establish the overall similarity between two classes. The weight 

associated with each feature controls the degree to which a feature contributes. The 

weight settings are applied at each level of the hierarchical structure representing a 

class. It is possible to compare classes in terms of a specific subset of features, e.g. to 

determine whether the closest matching class in terms of attributes is also the best 

match in terms of methods. The UMLSimilator allows the user to specify what elements 

should be taken into account when calculating the similarity between classes. It may not 

be possible for a user to easily identify individual weight settings as the process of 

comparing two designs is quite abstract and may involve intuition or reasoning that 

cannot be easily converted into rules. 
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When experts were asked to put weight settings on individual features, they found it 

difficult to abstract how much each feature would contribute to the overall structural 

similarity of two classes. It was easier to work with concrete examples and the most 

important factors in determining the similarity between class diagrams were the 

semantic information and the size/complexity of the designs. 

In an attempt to convert an expert’s choice of similarity matches into rules that can be 

applied by the UMLSimilator, a genetic algorithm was used to adjust the weights. Two 

approaches were introduced in chapter two: 

 The expert defines matches between classes from two different diagrams, 

assigning each match a value between 0 and 10. The genetic algorithm evolves 

the weight settings and retests every new setting. The score of a weight setting is 

determined by the classes it matched out of the pairings identified by the expert. 

The weight setting with the highest score is adopted. 

 The expert is given one diagram and merely identifies the closest match from a 

set of diagrams. The genetic algorithm evolves the weight settings and identifies 

the setting which gives the highest overall similarity between the two class 

diagrams. 

The default settings used for the genetic algorithm are shown in Table 7, but these can 

be customised in the UMLSimilator tool. 

The experiments showed that the number of runs could be kept relatively low, as results 

would rarely improve much with a high number of generations. The population size is a 

key parameter of a genetic algorithm and the observations confirmed the findings of 

Tsoy [Tsoy, 2003], that a large population with fewer runs yields better results than 
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small populations with more runs. If the population is small then it only covers a small 

search space and can therefore result in poor performance.  

For crossover and mutation rates, the recommendations of De Jong [De Jong, 1975] and 

Schaffer et al. [Schaffer, et al., 1989] were followed, who state that crossover rates 

should be high and mutation rate should be very low. The mutation rate has to be kept 

quite low; otherwise it results in essentially random searches. 

Setting Value 

Population size 100 

Number of runs (generations) 20 

Crossover rate 0.7 

Mutation rate 0.05 

Elitism rate 0.05 
 

Table 7 – Default Settings for Genetic Algorithm 

 

A chromosome in this genetic algorithm represents a set of weights for all features in a 

class and its fitness is the overall match achieved when applying these weights. When 

chromosomes are created, weights are generated randomly and then normalised to 

ensure that groups of weights add up to 1.0. To ensure that the genetic algorithm doesn’t 

provide a solution that is worse than the default weight setting, a chromosome with the 

default weights is always included in the initial population and elitism ensures that a 

small percentage of the fittest chromosomes are automatically included in the next 

generation. 

The crossover operation uses a single crossover point, which defines the index in the 

arrays of weights where the segments should be split. The mutation operation randomly 

selects weights, which are then changed to a new random value. This requires a 

renormalisation of the weights. 
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The structure of the weight optimiser module can be seen in a class diagram included in 

Appendix 1. 

 

4.7 Clustering Module 

The clustering module applies agglomerative hierarchical clustering to the set of 

retrieved and ranked cases. Using clustering, these are assigned into groups of similar 

objects. 

The single-link clustering method was first implemented, which merges the clusters 

with the smallest minimum distance between any two members of both clusters. 

However, single-link clustering is not suitable for isolating poorly separated clusters 

and it was found that using this method would result in one massive cluster containing 

the large majority of cases and all remaining clusters each containing a single case. 

Better results were achieved using average-link clustering, which is generally attributed 

to Sokal and Michener [Sokal and Michener, 1958]. This merges the clusters with the 

smallest average distance of pairs of objects from both clusters. 

This is computationally more demanding, but the number of cases in the case-base is 

small enough to warrant the use of this clustering method. 

The termination condition used in this work is based on the number of clusters. Thus, 

starting with just over one hundred clusters, these are incrementally merged until the 

number is reduced to a small set of clusters. According to Mardia et al. [Mardia, et al., 

1980], a good rule of thumb for determining the number of clusters k is: 

 

   √
 

 
 (18) 
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where n is the total number of objects. With the current case-base, this rule of thumb 

would be 7.1, which was rounded up to 8 clusters to take into account the number of 

different assignments in the case-base.  

An overview of the clustering module can be found in a class diagram in Appendix 1. 

The Cluster class and SimilarityResult class which form part of the clustering module 

both implement Comparable interface, but the comparison algorithm was reversed, so 

that results would be sorted from the highest to the lowest. This made it possible to 

work with sorted sets to achieve the clustering. 

 

4.8 Visualisation Module 

The visualisation module was developed to enable easy visualisation of the cases and 

comparison results. It is implemented using Windows Presentation Foundation and 

XAML and makes it possible to display the cases from the case-base in a class diagram-

like fashion, by displaying the classes and their relationships. 

The case-base contains descriptions of class diagram content, but no information about 

the graphical layout of a particular diagram. The visualisation module therefore applies 

an algorithm based on the square root of the number of classes in a diagram to lay out 

the classes evenly distributed. It was found that aligning classes in perfect grids made it 

difficult to clearly display the relationships, thus an offset was used to create a more 

uneven spread. 



Chapter 4 UMLSimilator 
 

98 

 

 

Figure 22 - Visualising the Maximum Common Subgraph 

 

The ability to visually display a diagram aids in providing a better understanding to a 

user of how particular similarity results were obtained by the UMLSimilator tool, as one 

could view the diagrams being compared. The users of the system are also more likely 

to trust it when the system can explain how it has reached a particular answer [Ye and 

Johnson, 1995]. To provide users with an explanation of how results were achieved, the 

tool provides a complete breakdown of all similarities between all features of the two 

diagrams (see Figure 23).  

To further enhance the explanation the system offers, visualisation of the maximum 

common subgraph was implemented. Figure 22 shows an example of how the 

maximum common subgraph is displayed in UMLSimilator. 
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Figure 23 - Example Similarity Breakdown between Two Class Diagrams 

 

By providing a trace of the reasoning the UMLSimilator has undergone in order to 

reach the answer, the system makes the reasoning process transparent to an expert user, 

who can use this information to validate the reasoning of the system. 
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4.9 Conclusion 

This chapter provided details of how the various algorithms used in this work were 

applied in practice. 

The case study was outlined, specifying the contents of the case-base, which consists of 

just over one hundred class diagrams which were obtained from five programming 

assignments of differing levels and technologies. The cases are therefore based on real 

software implementations, which made it possible to obtain the implementation cost in 

lines of code / numbers of characters and the grade each piece of work was awarded. 

The structure of the UMLSimilator tool was presented, outlining the various modules 

and their integration. 

The reflection process was discussed, which made it possible to reverse-engineer class 

diagrams from compiled .NET and Java code. This required the use of Web Services to 

integrate the various services required to use reflection with different technologies. 

It was demonstrated how the similarity between two classes is measured by breaking 

them down into a hierarchical structure of composing elements and applying a greedy 

algorithm to find the best matches. While not guaranteeing the best possible solutions, 

this provides a near optimal solution, which is still computationally feasible. 

The implementation of the graph matching algorithm was sketched out in detail, 

showing how the maximum common subgraph is calculated between two class 

diagrams. This requires a recursive algorithm, which creates subgraphs of classes above 

a specific minimum threshold. While this approach came close to reaching the limit of 

where it could be practicably applied, results would be calculated within an acceptable 

time limit with even the largest class diagrams in the case base. 
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It was explained how a genetic algorithm was applied in order to optimise the weights 

used to establish the similarity between two given classes. In an attempt to extract rules 

from experts’ selection of similarity matches, two approaches to weight optimisation, 

using a genetic algorithm, were implemented. 

Agglomerative hierarchical clustering was applied to all cases in the case-base to 

arrange them into groups of similar objects. The method used for merging clusters was 

average-link clustering, which performed better with this set of objects than single-link 

clustering. 

Finally, the visualisation module was presented, which showed how the system can help 

explain the results of a class diagram comparison by visually displaying the maximum 

common subgraph, the original class diagrams and a complete breakdown of all 

similarity matches. 

The next chapter will introduce the experiments which were performed in order to 

assess the performance of the algorithms and techniques applied in this work, as well as 

providing a detailed analysis and evaluation of the results obtained from the 

experiments. 
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Chapter 5 

5 Experiments and Evaluation 

In the previous chapter the UMLSimilator tool was introduced, which was built in order 

to evaluate whether effective knowledge retrieval from software design artefacts can be 

achieved using case-based reasoning when ignoring semantic information and using 

merely the structural one. Here the experiments carried out using the UMLSimilator are 

presented, along with an evaluation of the results. The goal is to make an assessment of 

the approach and the methodologies used and determine how these can be combined to 

obtain the best results. The reasoning mechanisms are tested and complemented with 

input from human expert evaluation. 

Wherever possible the results of the experiments are compared against those achieved 

using alternative approaches. However, most of the experiments can’t be compared 

against other tools, as there is no tool with enough similarity to UMLSimilator to enable 

comparative tests. Where no comparative results are available, the experiments are 

validated against expert opinion or using other means of validation. All experiments 

were validated using cross validation, with the exception of cost estimation and 

explanation which were validated against expert opinion. 
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5.1 Experiments 

The UMLSimilator tool has been implemented in Visual C#.NET using Visual Studio. 

The case-base is stored in an Access database. All of the experiments were executed on 

the same computer, which was not used for any other work during the execution of the 

tests. The system specification of the computer is outlined in Table 8. 

Detail Specification 

Processor Intel Core i5 CPU 661 @3.33GHz 

Installed memory (RAM) 8.00BG 

System type 64-bit Operating System 

Operating System Windows 7 Enterprise 
 

Table 8 – Test Computer System Specification 

 

The case-base used for the experiments consists of 101 class diagrams obtained from 

five different coursework assignments. All of the assignments were implemented using 

an object-oriented language (.NET or Java). Using different assignments means that the 

cases come from five different domains: 

 Software cataloguing application – (assessment at level 6 – high complexity) 

 Project management application (assessment at level 6 – high complexity) 

 Car repair shop application (assessment at level 5 – low complexity) 

 Stock management application (assessment at level 7 – low complexity) 

 Project bidding system (assessment at level 6 – high complexity) 

The five assessments were from level 5, 6 and 7. As the level 6 assessments were 

sourced from an advanced programming course, the complexity of the requirements was 

higher than that from level 7. 

Of the 101 class diagrams, 17 were implemented in Java and 84 in .NET. 
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The largest class diagram contains 40 classes, the smallest 3 classes and the average 

number of classes per class diagram across the entire case-base is 10.75. Each class has 

on average 13.06 attributes, 1.08 constructors and 8.76 operations. 

The majority of class diagram comparisons executed very fast, with the average being 

1.54 seconds. However, more complex diagrams could take a very long time to compute 

(up to an hour). Performing a run of all cases using a particular weight setting took 

several hours. Thus to keep the user informed of the progress during the lengthy 

operations and stay responsive, the UMLSimilator was implemented as a multi-threaded 

application. The entire set of 70 runs of experiments required over 184 hours of 

processing time to compute, the majority of which was taken up by the graph similarity 

calculations. 

 

5.2 Methodology  

The UMLSimilator tool automates the algorithms and techniques applied in this 

research. To ensure that these are appropriate requires controlled and planned 

experiments which test the various aspects of the algorithms and methods implemented 

by the software tool. 

Extensive tests are carried out which use the structural information encoded in class 

diagrams, but ignore the semantic details. A suite of experiments are devised using: 

1. Classes only (without graphs) 

2. Graphs by calculating the maximum common subgraph 

3. Classes only with optimised weights 

4. Graphs with optimised weights 
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Comparing class diagrams is an abstract undertaking as there is no established 

procedure or approach for determining similarity between class diagrams. This poses 

the problem of how the competence of the work can be measured. 

One solution applied here is to compare the results obtained from the experiments to 

human expert opinion. This is complemented using the software’s ability to explain 

results, tracing how a particular result was obtained to reinforce trust in the approach. 

Other measures of competence can be obtained by using additional information 

available for the cases. The additional information available for the class diagrams in 

the case-base includes: 

 Domain of a case: The domain of each case is known. For each class diagram, 

the system remembers from which of the five different assignments it originated. 

Having this information also makes it possible to determine the importance of 

provenance to this work, as the source of each case is known. 

 Grade achieved: The grade can be regarded as a measure of quality. Although 

the grade awarded is generally not based solely on the structural details of a 

class diagram, but could include a written report, graphical user interface design, 

etc., having this quality indicator still enables an investigation of the correlation 

of marks to structural knowledge. 

 Cost of implementation: By reverse-engineering real software implementations, 

it is possible to obtain the lines of code and number of characters it took to 

implement each class diagram. 

 Programming Language: The programming language used to implement each 

solution is known. 
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To effectively use the above information to discriminate between cases, two methods 

are applied, namely cross validation and clustering. Both were applied to determine 

whether any of the above information can be identified, based solely on the structural 

details of class diagrams. 

Cross-validation assesses how the results of the comparisons will generalise to an 

independent data set. The type of cross-validation used here is leave-one-out cross-

validation, where a single item from the original sample is used as the validation data 

for testing the model and all the remaining items are used as training data. Given that 

the case-base is not very large, it was decided to repeat this process for a considerable 

amount of cases and apply the leave-one-out cross-validation instead of k-fold cross 

validation as it gives more accurate results. Thus, 50% of the cases were randomly 

selected from the case-base and used as the training data, one at a time. The sample was 

checked and contained diagrams from all five case domains. 

Experiments were carried out using one, three and five KNN (k-nearest neighbours). 

The cross-validation for each KNN was measured for each set of results (with different 

weight settings, with and without graphs, with less weighting criteria, with different 

class thresholds). The application of cross-validation was used to evaluate the four 

criteria listed above (case domain, grade, implementation cost and programming 

language). 

An alternative approach to evaluate these criteria is the use of clustering. As single-link 

clustering resulted in most clusters having only a single item, average-link clustering 

was the technique chosen for this work. Clustering was used in order to validate the 

results, whereby clusters of the cases were generated post retrieval and evaluated 

against facts which were known, but didn’t form part of the similarity metrics. For 
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instance, clustering was used to determine whether cases were grouped according to the 

source, programming language, size or quality of the software designs. 

Finally, it was known that two of the assessments in the case-base were found to be 

plagiarised. Thus it is possible to check how efficient the approach is at detecting 

plagiarism. 

 

5.3 Structural Similarity 

The first experiments were carried out using only class structure similarity, using the 

similarity metrics outlined in chapter 3. 

Running a complete set of comparisons of every class diagram in the case-base against 

every other computed quite fast, taking an average of only 0.26 seconds per class 

diagram comparison and completing all 5050 comparisons in around 21 minutes. 

Taking all groups of k-nearest neighbours together (one, three and five), using only the 

structural similarity, the experiments showed that the domain of the target case was 

matched in 74.16% of all cases. This means that for the majority of target cases, the 

nearest neighbours were selected from the same domain (assessment). Figure 24 shows 

a breakdown for all target cases 
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Figure 24 - Percentage of Nearest Neighbours Matching Target Domain 

 

A similar breakdown based on the programming language shows even better results, 

with an average of 85.40% of nearest neighbours matching the programming language 

of the target case. 

 

Figure 25 - Percentage of Nearest Neighbours Matching Target Programming Language 
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As the number of cases implemented in .NET is much higher (≈84%), it is statistically 

more likely that target cases and their nearest neighbours are implemented in the same 

programming language. Filtering the data by programming language, it was found that 

93.89% of nearest neighbours for .NET target cases were .NET, but for Java it was only 

32.06%. However, both of these figures show an improvement over the average (84% 

for .NET and 26% for Java). 

The remaining two characteristics which can be measured using structural similarity are 

the grades and the implementation cost (lines of code/number of characters). These are 

numerical values, thus to evaluate how well the nearest neighbours fare, the standard 

deviation is calculated. The standard deviation of all cases in the case-base was also 

calculated to provide a measure of comparison. For grades, the standard deviation in the 

whole case-base is 20.77, while the average standard deviation of nearest neighbours 

and their target cases based on structural similarity is 11.57. 

 

Figure 26 - Standard Deviation of Grades for Nearest Neighbours 
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As can be seen in the graph above, in the large majority of cases the standard deviation 

of grades improved. There is less dispersion from the average, so the grades are closer 

together. There are two cases (6 and 18) which are notable higher than the case-base 

average. Upon investigating these two cases, it was found that both were unusual, as 

they had low complexity (4 and 3 classes respectively), but had achieved very high 

grades (80% and 90%). 

While the number of characters is a more accurate reflection of the effort it took to 

implement a software application, the lines of code are a measurement generally 

associated with specifying the size of an implementation. As can be seen in the two 

graphs below (Figure 27 and Figure 28), the standard deviation pattern for both is very 

similar. The remaining experiments will therefore use the lines of code. 

 

Figure 27 - Standard Deviation of Lines of Code for Nearest Neighbours 

 

The standard deviation for all cases in the case-base was calculated to be 1762.68 and 

86204.79 for lines of code and number of characters respectively. For both, the standard 
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deviation of the nearest neighbours was much better overall (509.87 and 26499.21) than 

the values measured for the entire case-base. 

 

Figure 28 - Standard Deviation of Number of Characters for Nearest Neighbours 

 

The graphs presented this far were showing averages for cases with one, three and five 

nearest neighbours (KNN) combined. An analysis of the separate sets revealed that the 

best results are achieved across the board when using a single nearest neighbour. The 

worse results with five nearest neighbours. The details can be seen in Table 9. 

Number of 

nearest 

neighbours 

% matching 

target domain 

% matching 

target 

programming 

language 

Standard 

deviation of 

grade 

Standard 

deviation of 

lines of code 

1 82.35 86.27 7.58 247.80 

3 71.90 85.62 12.80 616.67 

5 68.24 84.31 14.33 665.12 
 

Table 9 – Average Results for One, Three and Five Nearest Neighbours 
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These findings suggest that the higher the number of nearest neighbours, the worse the 

results. This makes sense, because as the number of nearest neighbours increases, so 

does the average distance to the target case. The complete set of charts showing the 

performance for one, three and five nearest neighbours can be found in Appendix 2. 

5.3.1 Structural Similarity and Provenance 

All the previous results have been based on the nearest neighbours selected from the 

entire case-base. However, an interesting question is whether the results improve when 

the nearest neighbours are only selected from the same domain. Experiments have been 

carried out using the provenance of target cases to select cases only from the same 

source (assessment/domain). The results are outlined in the Table 10 – Average Results 

by Domain . The results are an average of using one, three and five nearest neighbours. 

To contextualise the results, the averages achieved without provenance have also been 

included. 

Domain % matching 

target domain 

% matching 

target 

programming 

language 

Standard 

deviation of 

grade 

Standard 

deviation of 

lines of code 

Software 

cataloguing 

100 100 10.24 201.86 

Project 

management 

100 100 16.26 1007.66 

Car repair shop 100 100 9.15 452.98 

Stock 

management 

100 56.77 13.95 536.60 

Project bidding 100 100 11.87 1205.95 

No Provenance 74.16 85.40 11.57 509.87 
 

Table 10 – Average Results by Domain  
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Obviously the percentage of cases matching the domain of the target case is 100% and 

for four out of five domains the programming language is also 100%, as all of the 

assessments were developed using the same technology. In the Stock Management 

assignment, students had been given a choice of programming language and solutions 

were implemented in .NET or Java. 

 

Figure 29 - Comparison of Nearest Neighbours Matching Target Programming Language With and Without 

Provenance 

 

Overall, using provenance shows small improvements, but these are not very 

pronounced. 

The graph on the previous page (Figure 29) shows the percentages of cases whose 

programming language matches that of the target case. For data with provenance, the 

target case would select nearest neighbours only from the same domain. 

The average without provenance is 85.40% while using provenance increased the 

average to 90.68%. The results are similar for the standard deviation of grades and lines 
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of code. The overall standard deviation of grades was 11.57 and using provenance 

lowered this value very slightly to 11.20 (breakdown in Figure 30). The standard 

deviation for lines of code was lowered from 509.87 to 505.69 (breakdown in Figure 

31). 

 

Figure 30 - Comparison of Standard Deviation of Grades With and Without Provenance 

 

When using the class structure similarity without graphs, provenance had very little 

effect on the results. All results improved overall, but only marginally. The explanation 

for this is that cases were grouped by quality or complexity, rather than by domain. For 

instance, class diagram of similar quality or implementation cost were matched, but 

from across all domains. The next set of experiments will analyse the impact of 

applying graph matching. 
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Figure 31 - Comparison of Standard Deviation of Lines of Code With and Without Provenance 
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5.4 Graph Similarity 

The experiments in the previous section were calculating similarity of two class 

diagrams based on matching pairs of classes and the overall number of classes in each 

diagram (see equation (11) in section 3.5). 

However, while the intra-class similarity takes into account the number of links of a 

class, the above equation doesn’t explore how classes are connected. The next set of 

experiments takes this into account by treating the class diagrams as graphs and 

calculating the maximum common subgraph between them. The formula used to 

calculate the similarity shown below has been explained in chapter 3. 
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(19) 

 

The problem of finding the maximum common induced subgraph of two graphs is 

known to be NP-hard [Garey and Johnson, 1987]. The implication of this is that the 

algorithm doesn’t scale to graphs having large numbers of nodes. Experiments with this 

algorithm found that cases with low complexity (small number of classes and 

relationships) computed quite fast, many of which computed in less than one second. 

With an increase of the complexity of the graphs, however, the time required to 

calculate the maximum common subgraph would increase drastically. 

 

5.4.1 Computation Times 

An analysis of the execution times clearly showed that the class diagrams with the 

largest number of classes would be among those taking longest to compute. However, it 
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is not just the number of classes, but also the number of relationships which influence 

the execution time. Even graphs with relatively low numbers of nodes can contain large 

numbers of possible graph combinations, if there are many arcs. 

Class Diagram
3
 Number of Classes Number of Relationships 

Software cataloguing – 3394 17 24 

Software cataloguing – 3401 18 21 

Software cataloguing – 3418 12 17 

Project management – 3425 24 42 

Project management – 3433 20 27 

Project management – 3435 40 60 

Car repair shop – 3460 23 21 

Stock management – 3483 9 21 

Stock management – 3491 19 38 

Project bidding – 3500 28 47 

Average across all class diagrams 10.59 13.23 
 

Table 11 – Number of Classes and Relationships for Diagrams Taking Longest to Compute  

 

The time taken to compute the maximum common subgraph is also not dependent 

strictly on the number of classes and relationships, but also how they are arranged. For 

instance, when analysing the results in Table 11, two class diagrams which appear 

peculiar are: Software cataloguing – 3418 and Stock management – 3483. These have 

considerably lower number of classes than the remaining class diagrams. The reason 

they are involved in lengthy computations is due to the fact that they have similar 

distributions of classes and relationships to a very large diagram which could result in 

many matching combinations of possible subgraphs. If two diagrams have very 

different shapes, there is not much overlap and therefore a reduced set of potential 

subgraph combinations to evaluate (e.g. a class diagram arranged in star-shape and 

                                                 
3
 The number following the domain name is a unique identifier which makes it possible to easily 

distinguish between class diagrams 
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another as a long line). Both of the two diagrams share a similar layout to subgraphs of 

Project management – 3435, which is the largest and most complex class diagram in the 

case-base.  

 

 

Figure 32 - Class Diagrams for 3435 and 3418 

 

While at first sight, the two diagrams may appear very different (see Figure 32), their 

maximum common subgraph is actually quite large, encompassing all but one of the 

classes from 3418 (Figure 33). 3418 has only got twelve classes, but the maximum 

common subgraph between it and 3435 contains eleven out of these twelve classes. 

Project management - 3435 

 

Software cataloguing - 3418 
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Figure 33 - Maximum Common Subgraph of 3435 and 3418 

 

Apart from the number of classes and relationships, another factor influencing the time 

it takes to compute the maximum common subgraph is the minimum similarity 

threshold which must be met by two classes in order for them to be added to the graph. 

To measure graph similarity, experiments were carried out using a minimum threshold 

of 80%, 60%, 40% and 20%. Obviously, the higher the threshold, the smaller the 

maximum common subgraphs and the shorter it takes to compute. Calculating the 

maximum common subgraphs between each class diagram in the case-base and all other 

class diagrams took just over half an hour with a minimum class similarity threshold of 

80%. At 60% it took over two hours and at 40% over four and a half hours to compute. 

With a minimum threshold of 20%, it took only 9 seconds longer to compute than 40%, 

so the difference was minimal. The reason for this is that very few class matches would 

result in similarities of less than 40%. 
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Figure 34 - Execution Times for Measuring Graph Similarity for All Diagrams 

 

The increase in time required to calculate the similarity of complex graphs using the 

maximum common subgraph is exponential. While on average each graph would 

compute in between 0.38 and 3.1 seconds, depending on the minimum class threshold, 

the more complex graphs would take a disproportionate amount of time, with some 

requiring around three quarters of an hour to compute. Figure 35 shows the exponential 

distribution of computation times, ordered from the lowest to the highest. The curve is 

the same regardless of the minimum class threshold. This demonstrates that the current 

algorithm could not feasibly be applied if the complexity of class diagrams in the case-

base were to increase. 
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Figure 35 - Computation Times for Individual Graph Matches 

 

5.4.2 Graph Similarity Results 

The graph similarity for all cases was measured by calculating the maximum common 

subgraph using different minimum class similarity thresholds. Again, for all graphs the 

one, three and five nearest neighbours were obtained. Table 12 shows the average 

results. 

Minimum 

Class 

Similarity 

Threshold 

% matching 

target domain 

% matching 

target 

programming 

language 

Standard 

deviation of 

grade 

Standard 

deviation of 

lines of code 

80% 84.53 90.72 11.00 462.10 

60% 85.51 93.16 10.84 470.94 

40% 83.63 92.81 10.80 480.92 

20% 83.25 92.81 10.79 481.03 

Average 84.90 92.37 10.86 473.75 
 

Table 12 – Average Results for Graph Similarity Using Different Minimum Class Similarity Thresholds 
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The results for the various categories differed depending on the threshold configuration. 

There was very little difference between the 40% and 20% threshold. The threshold 

setting which performed best overall was 60%. It achieved the best results for matching 

the target domain and programming language, was only 0.05 worse than the best grade 

standard deviation and was second best for the standard deviation of lines of code. It 

was the only threshold setting which was better than the average in every single 

category. Detailed graphs comparing the different threshold settings can be found in 

Appendix 3. 

A comparison between the graph similarity experiments and the class structure 

similarity experiments discussed in the previous section shows that the graph similarity 

performed better in every category overall, but obviously not in every case.  

Using graph matching, the average percentage of correctly identified target domains 

increased from 74.16%, obtained using class structure similarity, to 85.51%. The 

percentage of nearest neighbours with matching programming language also rose from 

85.40% to 93.16%.  See Figure 36 and Figure 37 for detailed comparisons. 

 

Figure 36 - Comparison of Structural and Graph Similarity for Measuring Matching Domain 
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Figure 37 - Comparison of Structural and Graph Similarity for Measuring Matching Programming Language 

The standard deviation for grades and lines of code decreased using graph similarity 

from 11.57 and 509.87 to 10.84 and 470.94. For complete breakdowns see Figure 38 

and Figure 39. 

 

Figure 38 - Comparison of Structural and Graph Similarity for Measuring Standard Deviation of Grades 
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Figure 39 - Comparison of Structural and Graph Similarity for Measuring Standard Deviation of Lines of 

Code 
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Figure 40 - Comparisons of the Effect of Provenance 
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bidding” (see Table 13). With a widely dispersed set, it is more likely that the standard 

deviation of the nearest neighbours is dispersed. 

Domain Standard Deviation of Grades Standard Deviation of Lines of Code  

Software cataloguing 18.95 713.72 

Project management 25.13 2184.33 

Car repair shop 20.56 1959.67 

Stock management 19.38 1101.73 

Project bidding 19.17 2472.90 

Overall Average 20.77 1762.68 
 

Table 13 - Standard Deviation of Lines of Code and Grades by Domain 

 

The experiments so far were all using a default weight setting, which meant that every 

feature is assumed to contribute equally within its level of the structural hierarchy. The 

next set of experiments introduces weight optimisation. 

 

5.5 Weight Optimisation 

The similarity metrics introduced in chapter 3 all include coefficients (  ) which 

determine the importance of a particular feature. By multiplying a measured similarity 

by the corresponding coefficient it is possible to determine to what extent the feature 

should contribute to the overall similarity of two classes. As the class structure is broken 

down into a hierarchy of features, the coefficients (weights) reflect this hierarchy. 

A human expert in software engineering may be able to express what he/she would 

consider the most important features in determining similarity between class diagrams. 

The first step for weight optimisation was to ask the expert to identify how each feature 

should contribute to the overall similarity. 
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Table 14 shows a breakdown of the default weights and the weights determined by the 

expert. The default weights simply attribute the same value to each feature within a 

particular level of the structural hierarchy. 

 Feature Default Weight Expert Determined 

Weight  

 Final modifier 0.077 0.03 

 Visibility modifier 0.077 0.03 

 Abstract modifier 0.077 0.05 

 Stereotype 

(enumeration/interface) 

0.077 0.05 

 Number of attributes 0.077 0.11 

 Number of constructors 0.077 0.08 

 Number of operations 0.077 0.15 

 Superclass 0.077 0.03 

 Number of implementations 0.077 0.06 

 Number of associations 0.077 0.2 

 Attributes (internal structure) 0.077 0.09 

 Constructors (internal structure) 0.077 0.03 

 Operations (internal structure) 0.077 0.09 

Class Total  1 1 

 Data type  0.25 0.4 

 Final modifier 0.25 0.1 

 Static modifier 0.25 0.2 

 Visibility modifier 0.25 0.3 

Attribute Total  1 1 

 Visibility modifier 0.333 0.15 

 Number of parameters 0.333 0.55 

 Parameters (internal structure) 0.333 0.3 

Constructor Total  1 1 

 Visibility modifier 0.125 0.11 

 Return type 0.125 0.28 

 Final modifier 0.125 0.07 

 Static modifier 0.125 0.11 

 Abstract modifier 0.125 0.07 

 Synchronised modifier 0.125 0.05 

 Number of parameters 0.125 0.2 

 Parameters (internal structure) 0.125 0.11 

Operations Total  1 1 
 

Table 14 – Default and Expert Weights 
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Comparing the results of graph similarity using the default weights and those 

determined by the expert show no clear improvements (Figure 41). While the 

percentages of matching domains and programming languages fell, the standard 

deviation of grades and lines of code improved. 

  

  

 

Figure 41 – Comparison of Graph Similarity Results Using Default and Expert Weight Settings 

 

It is interesting to note that better results were achieved when comparing the class 

structure similarity (Figure 42), where the only category which didn’t improve was the 

standard deviation of lines of code. This suggests that the expert weight setting 

performs better when measuring similarities between individual classes, but doesn’t 
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Figure 42 – Comparison of Structural Similarity Results Using Default and Expert Weight Settings 
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successfully to other cases. To address this issue, the weight optimisation process was 

applied to each of the different domains to create different weight profiles. 

The values used to set matches were: 2.5, 5, 7.5 and 10. The expert was asked to set 

desired class matches for five pairs of diagrams (one pair per case domain). Details of 

the matches defined by the expert can be found in Appendix 4. 

Running the genetic algorithms to obtain the highest score did not identify a weight 

setting which would create higher scores than those obtained when using the default 

weights. While the different weight settings would result in different class similarity 

values, the granularity of the differences was not enough to modify the maximum 

common subgraph and thereby alter the score. 

A variation of this approach was employed, which would still use input from a human 

expert to optimise weights, but would identify even small improvements in a weight 

setting. The expert was given a class diagram from each domain and asked to identify 

the most similar diagrams from a catalogue containing all class diagrams. The genetic 

algorithm manipulated and applied different weight settings, adopting the setting which 

yielded the highest similarity result. For details of the diagrams that the expert was 

given and which were chosen as the best matches, please look at Appendix 5. 

Using this method, weight settings were obtained which improved the similarity 

between each pair of class diagrams. The complete breakdown of feature weights of all 

five weight settings can be found in Appendix 5. 
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A comparison of the results obtained using default weights and those obtained using the 

genetic algorithm is shown in Table 15. 

 

Class Diagram 

Provided 

Class Diagram 

Selected by Expert 

Similarity using 

Default Weights 

Highest Similarity 

Achieved using 

Genetic Algorithm  

Software cataloguing 

- 3422 

Software cataloguing - 

3399 

53.99% 56.22% 

Project Management 

- 3427 

Project Management - 

3434 

17.71% 22.23% 

Car repair shop - 

3453 

Car repair shop - 3450 42.45% 47.71% 

Stock management - 

3488 

Stock management - 

3489 

57.17% 72.06% 

Project bidding - 

3504 

Project bidding - 3506 50.28% 57.56% 

 

Table 15 – Comparison of Class Diagram Graph Similarities between Default and Generated Weights 

 

Having generated five different profiles of weights, each one was applied in turn to 

measure similarity between all class diagrams in the case-base. In the first set of 

experiments, each weight setting was used on the entire training set of cases. This 

means that while a weight profile was optimised for one pair of class diagrams, it would 

be applied across the board. The reasoning behind this experiment was to determine 

whether weight profiles could be generalised, i.e. whether an optimised weight profile 

obtained from a particular experiment would yield good results from across the case-

base. The results of these experiments can be seen in Figure 43, where the default 

weight profile and the five profiles obtained from the different domains were applied 

across all cases. When taken across the four categories that are being analysed, the 

default weight configuration outperformed the automatically generated weight profiles 
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overall, coming top in two of the four categories (cases matching target domain and 

standard deviation of lines of code). 

  

  

 

Figure 43 – Comparison of Graph Similarity Results Using Default and Generated Weight Settings 
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Given that the weight profiles were optimised by increasing the similarity of two class 

diagrams from the same domain, the next set of experiments was devised to verify 

whether a weight profile could be extended to other cases of the same domain. 

Each weight profile was applied to identify the nearest neighbours from only the 

domain for which the weight profile was created. Table 16 shows the results of these 

experiments and detailed graphs of the comparisons per domain can be found in 

Appendix 6. Cases matching the target domain are not shown, as with provenance this 

value is always 100%. 

Weights Applied Cases Matching 

Target 

Programming 

Language (%) 

Standard 

Deviation of 

Grades 

Standard 

Deviation of Lines 

of Code  

Software Cataloguing Domain 

Default 100 13.60 170.79 

Software cataloguing 100 13.39 160.42 

Project Management Domain 

Default 100 15.32 1137.36 

Project management 100 15.23 1379.73 

Car Repair Shop Domain 

Default 100 8.82 486.27 

Car repair shop 100 9.14 503.99 

Stock Management Domain 

Default 69.09 9.61 377.84 

Stock management 70.10 8.86 387.97 

Project Bidding Domain 

Default 100 15.12 1185.95 

Project bidding 100 14.66 1167.28 
 

Table 16 – Comparison of Class Diagram Graph Similarities between Default and Generated Weights using 

Provenance 
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Using the weight profiles did not always improve the results, but the overall picture is 

positive, as in over 63% the results improved. The category where the domain weight 

profiles performed best was the standard deviation of grades. 

A problem with getting the system to automate the weight optimisation process is that 

due to the complexity of the model and the large number of parameters involved, it is 

prone to overfitting. This is due to the fact that the weights obtained through the genetic 

algorithm may describe noise in the form of elements which happen to be the same and 

therefore increase the overall match during the optimisation process, but which can’t be 

generalised or don’t describe the match in a meaningful way. 

5.5.2 Disabling Features 

The experiments carried out with weights so far all attempted to modify how similarity 

is measured by changing the values of the coefficients of the various features in the 

hierarchical structure. A further question considered was whether some of the features 

should not contribute to the overall similarity at all. 

An expert in software engineering was asked to use expert judgement to identify the 

features which should be included in the similarity measurements. The expert identified 

the following features as relevant: 

 Number of associations 

 Number of operations 

 Number of constructors 

 Return type of operations 

 Data type of attributes 

 Number of parameters for constructors and operations 

 Data types of parameters for constructors and operations 
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Experiments were carried out with all remaining features disabled. An interesting 

consequence of measuring the similarity based solely on the above features was that the 

overall similarities of class diagrams were lowered dramatically. The sizes of maximum 

common subgraphs were also lowered considerably and in some cases the system was 

even unable to identify any maximum common subgraphs for some of the class 

diagrams using higher minimum class thresholds (80% and 60%). 

An investigation into this behaviour revealed that some of the features which were 

disabled were found to be identical for the majority of classes in the case-base. These 

features include the final and visibility modifiers for classes, synchronised and final 

modifiers for operations and the visibility modifier for constructors. Having these 

features matched in the majority of cases means that the similarities are increased 

overall. To cater for this, the minimum class similarity threshold was lowered to 20% 

for the experiments involving a reduced set of weights. 

Applying a reduced set of weights didn’t improve the results achieved with a default 

weight setting, which were lowered in three out of four categories (see Table 17). 

Weights % matching 

target domain 

% matching 

target 

programming 

language 

Standard 

deviation of 

grade 

Standard 

deviation of 

lines of code 

All weights 84.49 92.81 10.79 481.03 

Subset of 

weights 

86.97 91.81 10.80 504.64 

 

Table 17 – Comparison of Results for Graph Similarity Using All and a Subset of Default Weights 

 

When applied to the expert weight profile, however, the results improved in three out of 

four categories (see Figure 44). This demonstrates that the weight profile set by the 

expert is further improved by the expert not merely identifying the values of each 
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feature’s weight, but also indicating which features should be ignored altogether. The 

system identified cases matching the same target domain better and also lowered the 

standard deviation for grades and lines of code, despite the fact that restricting the 

number of weights resulted in an average drop of 4.56% in the similarity results 

calculated between the training data and case-base. 

  

  

 

Figure 44 – Comparison of Results for Graph Similarity Using All and a Subset of Expert Weights 
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5.6 Clustering 

Clustering assigns items into groups of similar objects, based on their distances. In this 

work, clustering is applied to the ranked cases and used to divide the entire case-base 

into a set of clusters. Initial tests with single-link clustering found that this method 

resulted in one cluster containing the large majority of all cases and the remaining 

clusters containing a single case each. Better results were achieved using average-link 

clustering, which merges the clusters with the smallest average distance of pairs of cases 

from both clusters. This resulted in a more even distribution of cases across the clusters. 

As explained in chapter 4, the number of clusters for each experiment was fixed at 8. 

The first set of clusters was created based on structural similarity. This resulted in a 

very bipolar distribution of cases, with two large clusters containing 48 and 45 of the 

101 cases and the remaining 6 clusters together containing only 8 cases. An analysis of 

the clusters revealed that although there were only two relevant clusters, one contained 

class diagrams with an average of 3540 lines of code and an average grade of 70.38%, 

while the other contained an average of 1887 lines of code and average grade of 

53.22%. This suggests that there was a trend to group the higher quality work into one 

cluster and the lower quality work into another. 

When applied to all cases based on graph similarity the distribution became more even 

(Table 18). 

While there were still two larger clusters, an analysis of their content showed that 

cluster 7 contained 32 of the Car Repair Shop class diagrams and cluster 6 contained 16 

of the Software Cataloguing class diagrams. Even with other clusters there was a 

tendency to group class diagrams from the same domain. For instance, 70% of cluster 8 

was made up of Project Bidding class diagrams. 
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Cluster Structural 

Similarity 

Only 

Graph 

Similarity 

1 48 9 

2 1 3 

3 1 3 

4 1 2 

5 1 6 

6 1 23 

7 3 45 

8 45 10 
 

Table 18 – Number of Items per Cluster for Structural and Graph Similarity 

 

Experiments were then carried out by creating different sets of clusters for each of the 

automated weight profiles to determine whether the weight profiles would improve the 

clustering of diagrams from the same domain. The results were as follows: 

 Software cataloguing weight profile: The largest number of cases from the same 

domain in the same cluster dropped from 16 to 11. However, it generated a 

cluster of 14 cases which consisted to 79% of Software Cataloguing class 

diagrams. 

 Project management weight profile: The largest number of cases from the same 

domain in the same cluster decreased. A small cluster was created containing 

only one case which was not from the Project management domain. 

 Car repair shop weight profile: The largest number of cases from the same 

domain in the same cluster increased. Created a cluster containing all but one of 

the Car repair shop class diagrams. 

 Stock management weight profile: The largest number of cases from the same 

domain in the same cluster increased and created a cluster consisting to 75% of 
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Stock management class diagrams and which also contained 41.18% of all 

diagrams implemented in Java. 

 Project bidding weight profile: The largest number of cases from the same 

domain in the same cluster increased. 

In three out of five cases the largest number of diagrams from the same domain in a 

single cluster increased. Even in the two cases where it didn’t, applying the 

automatically generated weights for that domain created a more focussed cluster. 

The final experiments with clustering were applying the expert weight profile and a 

reduced set of features (Figure 45). 

For identification of the domain and programming language the expert weight profile 

with a reduced set of weights performed best, but this setting was the worse for standard 

deviation of lines of code, where the default settings fared better. The standard deviation 

of grades was worse for the default weight profile with all weights and very similar for 

the remaining three. 

There was no clear trend across all four categories and different weight profiles 

performed differently in different categories. 
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Figure 45 – Comparison of Clusters for Graph Similarity Using All and a Subset of Default and Expert 

Weights 
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5.7 Plagiarism 

The class diagrams in the case-base all represent assignments completed by students. 

Two of the assignments from the Software Cataloguing assessment (3397 and 3416) 

were known to be plagiarised, as they were submitted for an assessment offence and 

found guilty. 

The two applications from which the class diagrams were reverse-engineered were very 

different in the way the user interface looked and had some differences in the 

functionality implemented. The underlying classes had different names and different 

structures (Table 19). 

Feature 3397 3416 

Lines of Code 1179 1050 

Number of Characters 40786 35350 

Number of classes 8 8 

Number of Relationships 10 9 

Number of Attributes 56 51 

Number of Constructors 9 9 

Number of Operations 65 53 

Number of Parameters 56 43 
 

Table 19 – Comparison of Plagiarised Class Diagrams 

 

The reason the two assignments were submitted for plagiarism was because some of the 

internal implementations of operations were found to be identical. Internal contents of 

operations and constructors cannot be obtained through reverse-engineering. This 

information is therefore not included in the class diagram structure recorded in the case-

base. The similarity could be measured solely on the class structures and arrangement of 

classes. 
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The findings were that out of the 70 sets of experiments, using class structure similarity, 

graph similarity, seven different weight profiles and full or reduced set of weights, the 

two class diagrams were identified as the closest match in all but 7 cases. 

Due to the different weight profiles and types of comparison, the actual similarity 

between the two cases varied between 30.01% and 99.7%, with the average being 

91.57%. Nonetheless, even in the cases where the two class diagrams were not found as 

the highest match for each other, they would always rank between 2
nd

 and 4
th

 closest 

match and differ from the highest match by between 2.07% to 8.37%. 

This demonstrates that the structural approach is well suited for detecting plagiarism in 

class diagram structures. A semantic approach may not have identified matches such as 

SQLPersistence and CatalogueComponent or SaveXML_Click and button4_Click. It is 

important to note, though, that this is the first stage of a two-stage process. The 

approach presented here can do filtering and flag high matches, but this would have to 

be verified by a human expert and potentially confirmed through a formal interview of 

the student suspected of committing the act of plagiarism. 

 

5.8 Cost Estimation 

The most common approaches for software cost estimation are formal estimation 

models. COCOMO (COnstructive COst MOdel) is one such model and was established 

by Boehm [Boehm, 1981]. It uses function point analysis to compute the application 

size, development time and the number of people required for a software development 

project. The calculation of the function points requires weight assignment and 

establishment of complexity factors which must be carried out by a human expert. 
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To calculate the lines of code required to implement a design, COCOMO uses the 

number of use-cases and number of classes in addition to complexity coefficients set by 

the expert. However, complexity can also be obtained from the internal structure of 

classes and using historical/statistical data. In fact, the formulas applied in COCOMO 

were created based on historical and statistical information. 

Experiments were carried out in order to evaluate the suitability of measuring structural 

similarity between class diagrams to estimate cost and compare the results to 

COCOMO. 

Five class diagrams were randomly selected (one from each domain). The estimated 

lines of code for implementing each diagram were calculated using COCOMO (see 

Table 20 for details). 

 Software 

Cataloguing 

- 3419 

Project 

Management 

- 3427 

Car Repair 

Shop - 3450 

Stock 

Management 

- 3481 

Project 

Bidding - 

3504 

Number of use cases 2 6 8 5 3 

Use case complexity 

coefficient 

7 6 4 5 7 

Number of classes 10 16 12 11 12 

Class complexity 

coefficient 

13 11 9 10 11 

Function points 144 212 140 135 132 

Sum of technical 

complexity factors 

25 25 12 12 24 

Adjusted function points 129.6 190.8 107.8 103.95 136.17 

Estimated lines of code 3888 5724 3234 3119 4085 
 

Table 20 – Lines of Code Calculation using COCOMO 

 

Once the COCOMO estimates had been calculated, these were compared against the 

actual lines of code it took to implement each of the class diagrams (Figure 46). 
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Figure 46 - Comparison of Actual Lines of Code and COCOMO Estimates 

 

In three of the diagrams COCOMO estimates were quite accurate, but two were 

considerably higher than the actual implementation. Across all five diagrams the 

difference between actual implementation and the COCOMO estimates was 9238. 

The COCOMO estimates were then compared to the lines of code obtained using a 

nearest neighbour retrieval applying only structural similarity (Figure 47). 

The structural similarity estimates performed better than COCOMO for two of the 

diagrams (3427 and 3450), but COCOMO was more accurate for the remaining three 

(3419, 1481 and 3504). However, even with those three, COCOMO was only 

marginally better (127, 380 and 213 lines of code respectively) and the overall 

difference between the actual lines of code and those estimated was only 5796. 
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Figure 47 - Comparison of Actual Lines of Code, COCOMO and Structural Similarity Estimates 

 

The next experiments compared COCOMO estimates to those achieved using graph 

similarity (Figure 48).  

 

Figure 48 - Comparison of Actual Lines of Code, COCOMO and Graph Similarity Estimate 
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The graph similarity improved the results achieved using only class structure similarity. 

The estimates were more accurate than COCOMO for three diagrams (3419, 3427 and 

3481) and the total difference of lines of code was further reduced to 4556. It is 

interesting to note that graph similarity performed worse than structural similarity for 

the Car Repair Shop. This was an assignment at level 5 and less complex, so it would be 

simpler and produce solutions based on more basic design skills. 

The final set of experiments applied provenance, by choosing only the nearest 

neighbours from the same case domain (Figure 49). 

 

Figure 49 - Comparison of Actual Lines of Code, COCOMO and Graph Similarity Estimate using Provenance 
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the actual lines of code was also reduced further to 3766 which is much lower than the 

9238 lines of code difference with COCOMO. 

In an industrial setting, the provenance approach could be used to discriminate between 

development teams, companies, technologies used in a software development project or 

even classification by types of applications. 

These experiments have demonstrated that it is possible to perform cost estimation of 

the implementation of class diagrams by measuring the structural and graph similarity 

between the class diagrams. The results are comparable to COCOMO at worst and 

better when applying graph similarity and provenance. 

 

5.9 Explanation 

Given that there is no established standard or benchmark for measuring similarity 

between two class diagrams, it is important for the system to provide an explanation of 

how results were achieved. 

Case-based reasoning is well-suited for explanation, as it can use retrieved cases in 

order to explain prediction. It is based on actual existing cases which can be presented 

to support the system’s conclusions. The explanation goals which are most applicable to 

this work are transparency and justification. 

Transparency requires an explanation of how the system reached a particular answer. In 

this case, it needs to convey an understanding to the user of how the system reached a 

particular similarity between two given diagrams. While it is important for the system to 

allow a user to examine the way it reasons to increase trust, the transparency was also 

very important during development to verify whether the reasoning process was 
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correctly implemented. Justification increases the confidence in the solution offered by 

the system by providing support for the conclusion it provides. 

The reasoning used to obtain a result is remembered by the UMLSimilator system and it 

can therefore provide a user with a complete breakdown of how constituent elements 

have contributed to reach an overall similarity match. This makes the reasoning process 

transparent to a user who wishes to understand how the similarity between classes was 

created. 

As class diagrams are visual artefacts and the similarity of two class diagrams is also 

based on the maximum common subgraph, UMLSimilator further allows a user to view 

the maximum common subgraph in order to increase trust in the conclusions of the 

system. 

Experiments were devised to use explanation to verify whether it would aid trust in the 

system. The following steps were taken: 

 Experts were asked to guess similarity between given diagrams 

 The overall matches calculated by the system were provided and presented 

to the experts 

 Experts were asked to confirm whether they trusted that the results produced 

were correct 

 The overall matches were supported by a complete breakdown and the 

maximum common subgraph 

 Experts were asked to re-confirm trust having seen the explanation outlining 

how the results were obtained 
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Details of the expert guesses and the results calculated by the system are shown in Table 

21. 

Class Diagram 1 Class Diagram 2 Expert 1 

Guess 

Expert 2 

Guess 

Measured 

Similarity
4
 

Software cataloguing - 3388 Software cataloguing – 

3392 

50% 45% 42% 

Project management - 3423 Project management – 

3432 

60% 60% 23% 

Car repair shop - 3437 Car repair shop – 3466 70% 55% 51% 

Stock management - 3478 Stock management – 

3496 

50% 45% 36% 

Project bidding - 3502 Project bidding - 3506 40% 50% 50% 
 

Table 21 – Expert Similarity Guesses and Similarity Measured by the System 

 

An analysis of the results shows that the guesses of expert 2 were much closer to the 

results achieved by the system and were in the same ballpark region, with the exception 

of the similarity between 3423 and 3432, where both experts had a much higher figure 

than that provided by the system. The reason for the low match of 23% is explained by 

the fact that out of the seven possible matches, the maximum common subgraph only 

contained four. Matches between these four classes were very high (all over 90%). 

Both experts agreed that providing a breakdown of the results and the visualisation of 

the maximum common subgraph increased the trust in the system. The low similarity 

calculated for 3423 and 3432 came as a surprise and would have been difficult to accept 

at face value, so this is where the additional explanation provided was perceived as most 

essential – to justify an unexpected result. 

                                                 
4
 Similarity was measured using graph matching and 60% minimum class threshold 
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Both experts were asked to identify on what they based their comparison and while both 

agreed that the semantic information was important, expert 2 stated that the overall size 

and structure of the class diagrams also played an important role. This could account for 

the reason why the predictions of expert 2 matched the similarities calculated by the 

system more closely. Expert 1 stated that having a maximum common subgraph where 

semantic terms were not matched correctly was a little confusing and that the formula 

used for measuring graph similarity could be shown more explicitly. For example class 

AddCar had been matched with class addManufacturerFrm and class RequestOrder 

was matched with warehouseArgs. 

The additional information provided by the system regarding a similarity match 

increased the trust of both experts. 

 

5.10 Conclusion 

This chapter discussed the various experiments and analysed their outcomes. An 

assessment was made of the approach and the methodologies used and results were 

evaluated to determine their suitability. Combinations of techniques were also compared 

to verify whether they would improve results. 

Part of the evaluation was made by comparing results from alternative approaches, but 

where necessary experiments were validated against expert opinion. 

The setup for the experiments was described, providing details of the technical 

environment and of the data used for the experiments. 
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The approach followed in carrying out the experiments was explained, whereby a suite 

of extensive tests were devised to test structural similarity, graph matching and using 

optimised weighting. 

Given that comparing class diagrams is an abstract process, this poses the question of 

how the competence of the results could be measured. As additional information was 

known about the class diagrams, this data could be used to measure whether the system 

identifies information such as the domain from which a case was sourced, the 

programming language it was built in, the grade it was attributed or the cost of the 

implementation. Furthermore, competence could be measured by comparison to known 

alternative methods, such as cost estimation using COCOMO, or through evaluation by 

human experts. 

The first sets of experiments used only structural similarity, which confirmed that the 

target domain and programming language was correctly identified in 74% and 85% of 

cases. For grades and lines of code, the standard deviation was used to measure how 

focussed the nearest neighbours were – the lower the standard deviation, the better the 

results. In addition, the standard deviations of the nearest neighbours were compared to 

the standard deviation across the entire case-base and were found to be much lower in 

both instances. An analysis of the number of nearest neighbours used revealed that the 

lower the number, the better the results. 

The impact of choosing cases from the same domain as the target case was verified 

(provenance). It was found that overall, this improved results, but only very marginally. 

Moving from only class structure similarity to graph similarity, the computation times 

increased dramatically. Due to the complexity of calculating the maximum common 
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subgraph, the larger class diagrams came close to the limit of execution times 

considered acceptable for this research. 

Graph similarity was measured using minimum thresholds of 20%, 40%, 60% and 80%, 

with the best overall results achieved using 60%. The results improved in every 

category over structural similarity. Using provenance improved the matching 

programming language and standard deviation for grades, but the standard deviation for 

lines of code deteriorated. 

Many experiments with weight optimisation were carried out. Using weights 

determined by an expert didn’t show a clear improvement with graph similarities, but 

interestingly improved the class structure results. 

Using genetic algorithms and scoring of class matches did not work, so an alternative 

approach was taken which required an expert to identify the closest match for a given 

diagram from the same domain. The genetic algorithm would then run experiments with 

different weights and select the one giving the highest results. The weight profiles 

obtained using this technique, were first applied across the entire case-base, where they 

yielded poorer results than the default weights. However, when each weight profile was 

applied only to cases from its domain, the results improved in over 63% of cases. 

Further experiments with weighting were using only a subset of features determined by 

an expert. The results using default weights were lowered, but when combined with the 

expert’s weight profile, the results improved in three out of four categories. 

Clustering was applied to further validate the results. The entire case-base was clustered 

into eight groups. Clustering showed that clusters generally had a motive. With class 

structure similarity the majority of cases were split between two clusters where one 

seemed to contain the class diagrams with higher lines of code and higher grades. 
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Clusters based on graph similarity were more evenly distributed and were much better 

at grouping class diagrams from the same domain. This was improved further within 

domains when using the weight profiles for each of the domains. Using subsets of 

weights showed no clear trends, improving in some categories, while declining in 

others. 

A known case of plagiarism from the cases in the case-base made it possible to test the 

suitability of the system to detect plagiarised class diagrams which had been modified to 

avoid detection. The results were very good, with the plagiarised cases being paired as 

the highest matches in 90% of all the experiments. 

A comparison between COCOMO and the system showed that while COCOMO was 

comparable to results obtained using class structure similarity, when applying graph 

similarity and especially graph similarity with provenance, UMLSimilator achieved 

better results with these cases than COCOMO. 

Finally, a set of experiments were devised to check whether the system’s ability to 

provide explanation would improve user’s trust in its results and reasoning process. This 

was found to be the case, in particular with a case where the results provided by the 

system were unexpected. 

The next chapter concludes the thesis by outlining the main contributions of this 

research and discussing potential future directions in which it could evolve. 
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Chapter 6 

6 Conclusion 

The results presented in the preceding chapter make it clear that it is possible to retrieve 

knowledge from class diagrams by applying case-based reasoning and using only 

structural information. 

This chapter will outline the main contributions of this work and look at issues arising 

from it, as well as proposing how this research could be projected forward. To start 

with, the research objectives are presented to determine whether these have been met. 

The results of the experiments are summarised and the main contributions of this work 

highlighted. Finally, ideas of how this research can evolve further, but which are outside 

the scope of this work, are presented. 

 

6.1 Review of Research Objectives 

Software designs are an integral part of current software development. They depict the 

structure and distribution of responsibility within a planned software application. A 

software design captures functional and non-functional requirements, but there is no 

exact method dictating how these are translated into a design. Thus, there are many 

different shapes a software design can take, even if the requirements are well-

established. A sound design would enable the creation of reusable modules, manageable 

and intelligible code and code which is maintainable, flexible and extendible. The 

design is therefore important for a developer as it guides the creation of the software 

artefact, but as it reflects the structure of the software artefact, it encodes information 

that can be used for other purposes. It conveys the complexity of a software application 
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and describes the domain of the application by depicting its concepts and how they 

relate. Concepts in the design are expressed through their structure, but also through the 

semantic tags used to name the classes and their constituent elements. While the 

semantic information is very important to facilitate human understanding, it is of no 

relevance to the runtime behaviour of the implemented application, which is determined 

solely by the structure of the code constructs. This suggests that the structural 

information is clearly significant and embodies knowledge about a software application. 

Automatically retrieving knowledge from software designs in the absence of semantic 

information has been the focus of this work. 

A software design can be contextualised by comparing it to other designs, which is 

especially important when semantic information is not taken into consideration. The 

comparison of software designs is an abstract undertaking and no existing standard or 

benchmark exists for achieving it. In order to compare two class diagrams using 

structural similarity requires reducing them to hierarchical structures. Case-based 

reasoning is a good methodology to apply in this case, as it can contextualise design 

diagrams through their nearest neighbours. The target case is placed into context based 

on the cases that are found to be most similar. 

Structural similarity between software diagrams is useful in domains where the structure 

is more important than the semantic information, such as cost estimation and plagiarism 

detection. With the availability of additional information about designs, one can also 

attempt to determine properties of an implementation such as the quality, its domain and 

the programming language in which it was implemented. 
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Chapter 1 defined the aim of the research as being summarised in the following 

question: 

 Is it possible to effectively retrieve knowledge from structural software 

engineering artefacts? 

This was then broken down into more specific aims: 

 In the absence of semantic information, is it possible to extract meaningful 

knowledge merely from the structural information, and can this retrieval process 

be automated? 

 Can case-based reasoning be applied to software designs to identify software 

systems from the same domain based on their structure? 

 Can structural similarity and case-based reasoning be combined to estimate 

software development cost? 

 A user’s trust in an automated system is reinforced if the system provides 

explanation of the results it provides. A system which applies case-based 

reasoning, measures similarities of cases to reach a result, which makes it even 

more important to provide explanation. Thus a further aim of the research is for 

the developed system to explain why it reached a particular result. 

The results of the experiments validate the conclusions that it is possible to retrieve 

meaningful knowledge from class diagrams even when semantic information is 

removed. A software application was developed to automate this process by 

implementing the proposed algorithms and procedures. With an automated process, a 

user’s trust is reinforced if the system can provide an explanation of how the results 

were achieved, so this functionality was included in the system. 
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Controlled and planned experiments were carried out to test the various algorithms and 

methods. Cross-validation was applied to reinforce confidence in the results. 

 

6.2 Conclusions from the Experiments 

The research experiments have provided results which demonstrate that it is possible to 

retrieve knowledge from class diagrams based only on their structural information. 

Some of the techniques and approaches employed have been more successful than 

others, but overall the results achieved have been positive. 

Experiments were carried out on 101 class diagrams obtained from five different 

coursework assignments, resulting in a varied case-base containing cases from five 

domains. A suite of experiments were devised to evaluate which techniques would 

provide efficient solutions. The experiments used: 

1. Classes only (without graphs) 

2. Graphs by calculating the maximum common subgraph 

3. Classes only with optimised weights 

4. Graphs with optimised weights 

Validation of the results was achieved by carrying out cross-validation to measure the 

accuracy of each technique or combination of techniques in detecting the domain of a 

case, the implementation programming language, grade achieved and lines of code. 

Clustering was also used to further validate the results. Regarding cost estimation, the 

results were compared to COCOMO. Wherever necessary, input from human experts 

was used to aid validation.  
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6.2.1 Structural Similarity 

Experiments using structural similarity were applying similarity metrics comparing the 

internal structure of classes, taking into consideration the number of relationships of a 

class, but not the actual distribution of classes (where the relationships lead). 

The results obtained using the class similarity metrics were all better than the case-base 

average. The target domain was matched in 74.16% of cases and the programming 

language in 85.40% of cases. 

To measure how well the case-based reasoning system predicts the quality of a given 

target case, the standard deviation of grades for all class diagrams was calculated to be 

20.77. Using structural similarity, the average standard deviation for all target cases was 

reduced considerably to 11.57. The standard deviation for lines of code improved even 

more. The case-base average being 1762.68 and the average result measured from the 

nearest neighbours of all target cases measuring only 509.87. 

These findings showed clearly that the structural similarity performed much better in 

predicting values in these categories than the case-base averages. 

Further experiments combined the structural similarity metrics with provenance, by 

selecting only nearest neighbours from the same domain as the target case. This 

improved results even further across all categories, but only marginally - the detection 

of the programming language improved by 5.28%, the standard deviations of grades and 

lines of code improved by 3.2% and 0.82%. 

6.2.2 Graph Similarity 

The intra-class similarity was combined with graph matching. A maximum common 

subgraph algorithm was applied. This approach treated class diagrams as graphs and 

calculated the largest isomorphic subgraph between two given diagrams. Being an NP-
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hard problem, the graph similarity algorithm stretched the UMLSimilator software tool 

to the limit of acceptable computation times as these increased drastically with large 

class diagrams. Comparing two larger class diagrams could take up to 45 minutes and 

over 184 hours of execution time was required just for performing similarity 

measurements across the various experiments. 

A minimum class match threshold was used with the graph matching algorithm and 

experiments were carried out with 80%, 60%, 40% and 20% values. The best results 

were achieved with a 60% threshold. 

The combination of intra-class similarity and the maximum common subgraph 

improved the results across the board. 

 % matching 

target domain 

% matching 

target 

programming 

language 

Standard 

deviation of 

grade 

Standard 

deviation of 

lines of code 

Structural 

Similarity 

74.16 85.40 11.57 509.87 

Graph 

Similarity
5
 

85.51 93.16 10.84 470.94 

 

Table 22 – Comparison of Structural and Graph Similarity Results 

 

Provenance was applied again, but with graph similarity the results were not conclusive. 

While some of the results improved, others deteriorated and no clear overall 

improvement was achieved by limiting cases to the same domain. 

  

                                                 
5
 Minimum Class Similarity Threshold set to 60% 
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6.2.3 Weight Optimisation 

Every feature in the hierarchical class structure has an associated coefficient, which 

makes it possible to control the degree to which it will contribute to the overall class 

similarity. The first set of experiments with weighting applied coefficients determined 

by a human expert. Using these didn’t show a clear improvement with graph 

similarities, but interestingly improved the class structure results, where all but the 

standard deviation of lines of code were better than using default weighting. This 

suggests that the expert weight setting performs better when measuring similarities 

between individual classes, but doesn’t cater for the relationships between classes. This 

could be explained by the fact that the weight setting influences primarily the class 

similarity metrics and not the formula used to calculate similarity between graphs. 

In an attempt to automate the weight optimisation process, an expert’s judgement was 

used to identify desired/undesired class matches. This works at a level of abstraction 

which is higher than individual coefficients. A genetic algorithm was applied to test and 

evolve weight settings and adopt the weight profile with the highest score. 

Unfortunately the scoring of class matches did not work, as it found no higher scores 

than those achieved with default weights. The granularity of differences achieved by 

changing weights was enough to change the similarity matches between individual 

classes, but did not change these values sufficiently to considerably alter the maximum 

common subgraphs and thereby changing the scores. 

Due to the shortcomings of the above scoring approach, an alternative method was used 

which required an expert to identify the closest match for a given diagram from the 

same domain. This worked at an even higher level of abstraction, as the expert didn’t 

have to match individual classes. The genetic algorithm ran experiments with different 

weights and selected the setting giving the highest overall class diagram similarity for 
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the two selected class diagrams. The weight profiles obtained using this technique, were 

first applied across the entire case-base, where they yielded poorer results overall than 

the default weights and no domain weight profile stood out as being particularly good.  

The picture changed, however, when each weight profile was applied only to cases from 

its own domain, the results improved in over 63% of cases. 

The final experiments with weighting applied only a subset of features determined by an 

expert. All features not identified by the expert were disabled and excluded from the 

similarity metric. Applying a subset of weights to the default setting lowered results in 

three out of four categories, but when combined with the expert’s weight profile, this 

picture was reversed with results improving in three out of four categories. 

Overall, the weight optimisation did not have as much of a positive impact as initially 

expected. Domain weight profiles improved only within domains, and only marginally. 

A reduction of the number of weights applied yielded better results when applied to the 

expert weight setting, but they were only minor improvements. 

6.2.4 Clustering 

Clustering was applied to further validate the results. Having exhaustively calculated 

the similarity of every class diagram and all other diagrams in the entire case-base, all 

cases were assigned into eight clusters using average-link clustering. To begin with, the 

clustering algorithm was used with class structure similarity, which produced two main 

clusters. An analysis of the clusters revealed that these appeared to have been split 

according to quality. One cluster contained primarily class diagrams which had received 

a very good grade (70.38% average) and whose implementations were on average 

almost twice as large (3540 vs. 1887 lines of code).  
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Clusters based on graph similarity were more evenly distributed and class diagrams 

from the same domain were better grouped. This was improved further within domains 

when using the weight profiles for each of the domains, creating larger clusters of cases 

from the corresponding domain or creating more focused clusters. 

6.2.5 Plagiarism 

An area in which the structural similarity may be considered more important than 

semantic similarity is plagiarism detection. A person copying someone else’s design or 

code may deliberately change the semantic tags in a class diagram or software 

implementation in order to avoid detection. He/she may also move elements around to 

change the order of attributes or operations. While this may avoid detection by a human, 

the similarity metrics are immune to some of these types of changes.  

All cases in the case-based were reverse-engineered from real coursework assignment 

submissions and it was known that two of these had been found guilty of plagiarism. 

The two submissions were not identical and had been altered to be slightly different. 

They also included parts which were dissimilar altogether. This permitted validation of 

the suitability of this approach to plagiarism detection. The results were very good, with 

the plagiarised cases being paired as the highest matches in 90% of all 70 sets of 

experiments, even if the actual similarity measured between them fluctuated between 

30.01% and 99.7%, depending on the type of experiment. These findings are very 

promising, but to fully evaluate the suitability of this approach for plagiarism detection, 

further experiments should be carried out, as the results obtained in this research are 

based solely on the two assignments which were known to be plagiarised. 
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6.2.6 Cost Estimation 

In software development, the most common approaches for cost estimation are formal 

estimation models, such as COCOMO. The approach to cost estimation using case-

based reasoning and nearest neighbour retrieval based on structural and graph similarity 

applied in this work was compared to estimated implementation effort obtained through 

COCOMO. The results were validated against the actual implementation cost. 

The initial set of experiments used the class structure similarity, which showed that 

while the total difference between the actual lines of code and the estimated value was 

much lower, COCOMO performed slightly better overall – in 60% of cases. 

Using graph similarity the results were reversed, with the UMLSimilator system 

performing better in 60% of cases. The total difference between the actual lines of code 

and the estimated value was reduced further. 

Method Difference 

between Actual 

and Estimated 

Lines of Code 

COCOMO 9238 

Structural Similarity 5796 

Graph Similarity
6
 4556 

Graph Similarity
7
 using Provenance 3766 

 

Table 23 – Comparison of the Overall Difference between Actual and Estimated Implementation Cost 

 

In an industrial setting, the weight assignment and establishment of complexity factors 

by a human expert is adjusted to the environment in which the development project will 

be carried out, along with other external factors. These factors could include the 

                                                 
6
 Minimum Class Similarity Threshold set to 60% 

7
 Minimum Class Similarity Threshold set to 60% 
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experience of the development team, the technical resources available and whether 

similar projects have been carried out in the past. An estimate which is correct for one 

setting or company may not be appropriate for another. Similarly, obtaining cases only 

from the same domain as the target case would ensure that the results would originate 

from a similar environment. The final set of experiments therefore compared COCOMO 

to estimates obtained using graph similarity matching and provenance, which improved 

results even further, with 80% being more accurate than COCOMO. 

As is evident from Table 23, the approach used in this research for estimating cost 

performed better than COCOMO with these cases. 

6.2.7 Explanation 

There is no established standard or benchmark for measuring similarity between two 

class diagrams. This work proposed a set of similarity metrics to determine the 

similarity, but these may not be clear to a human expert who is presented with similarity 

matches expressed in percentages. To ensure that a user trusts the results produced by 

the system requires that it explains the results by clarifying how they were calculated. 

The UMLSimilator tool provides explanation by offering a complete breakdown of all 

similarity matches within the hierarchical structure, as well as visually displaying the 

maximum common subgraph between class diagrams. 

A set of experiments were devised which asked experts to estimate the similarity 

between given diagrams and relate their estimates to those produced by the system. 

They were asked to confirm their trust in the results before and after seeing the 

accompanying explanations and the outcome was that trust increased in all instances – 

especially in those where the result provided by the system differed substantially from 

their own estimates. 
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6.3 Contribution to Knowledge 

There is an intrinsic relationship between software designs and their code 

implementation. However, the modular nature of object-oriented programming 

languages, combined with the variations of language constructs available in modern 

programming languages signifies that there are numerous ways of designing a specified 

application and even more ways of implementing a particular design. It is not possible 

to deduct a software product’s exact functionality from its design. Yet, a software 

design is an abstract representation of a software product and, in the case of a class 

diagram, it contains information about its structure. The main aim of this research was 

to determine whether knowledge can be effectively retrieved from software designs 

using only structural information. This research has demonstrated that it can be 

achieved by applying case-based reasoning and graph matching. 

The main contributions of this work are: 

 A CBR framework for the retrieval of knowledge from class diagrams using 

only structural information. The approach of measuring similarity of hierarchical 

structures and graph matching could be abstracted and applied in other domains 

 A mechanism for identifying software solutions which came from the same 

domain, of the same programming language or of similar quality or size by 

applying a graph matching algorithm 

 A technique for estimating implementation cost of a new software product based 

on its design and an existing catalogue of software designs 

 An approach for increasing users’ confidence in automatic class diagram 

matching by providing explanation 

 A software tool for automating the retrieval of knowledge  using the framework 

and techniques described above 
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There are several areas of research which are relevant to this work and by placing this 

research into context of related work, it has been demonstrated that the research 

question is of value to the research community. 

The findings related to cost estimation and plagiarism detection have shown that the 

technique applied here can contribute to industry and academia alike in obtaining 

solutions from class diagrams where semantic information is lacking. 

 

6.4 Further Work 

The work presented in this thesis combined a number of techniques and methodologies 

to improve the knowledge retrieval from class diagrams using structural information. 

During this work a number of issues were encountered, some of which were addressed 

as they were within the scope of this research, others however, were left for future work. 

There were also weaknesses which were tackled by this work, but which would benefit 

from further dedicated research. Some of the findings resulting from this work have also 

raised interesting new ideas of how this work could be taken further. 

There are numerous directions in which this research could evolve, some of which are 

presented in the following subsections. 

6.4.1 Structural and Semantic Similarity 

The use of semantic information to determine the similarity between two class diagrams 

has been successfully applied by Gomes et al. [Gomes, et al., 2007] and Robles et al. 

[Robles, et al., 2012]. The work by Gomes et al. did involve some structural information 

to determine class complexity, which counted the number of methods and attributes. 

However, it does not go into the same depth of structural information or use of graphs. 
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The importance of semantic information has been highlighted not only in other research, 

but it was also reinforced by the findings of this work. In order to improve the results 

achieved here, one should use a hybrid approach which combines the semantic and 

structural approach. Through the use of coefficients, the contribution of semantics and 

structure could be balanced. 

6.4.2 Stereotyping 

Within class diagrams certain types of classes occur numerous times and could be 

defined using stereotypes, thus creating categories of types which could further define 

particular classes. Examples of these include user interfaces, web services, 

events/delegates, exceptions, roles within a design pattern, communication classes, 

database handlers, etc. 

Assigning classes particular stereotypes or trying to automatically determine stereotypes 

would aid in the comparison process, as only classes of the same stereotype would be 

matched. The overall similarity between class diagrams could also take into 

consideration the total number of matched stereotypes. The stereotypes are not 

dependent on the semantic tags or the structure, but define the kind of class. 

6.4.3 Design Pattern Library 

Design patterns are often encoded using general UML class diagrams. Although these 

also use semantics to tag the different elements of the design pattern, the more 

important aspect is generally the structure. By creating a library of design pattern 

structures, it would be possible to identify design patterns in existing software designs 

and tag graphs with patterns. 
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A design pattern is a solution to a commonly occurring problem, so by identifying a 

design pattern, one would know more about the application – such as, what type of 

application it is or something specific the application does. 

It would also be interesting to investigate the classification and detection of design 

patterns within a particular domain. 

An interesting twist of the idea of a design pattern library would be to research the 

possibility of automated identification of new design patterns, which could be fed back 

into the case-base. 

6.4.4 Behavioural UML Diagrams 

Within object-oriented development, software design is most commonly used to 

represent static structures. However, a design may not consist solely of a static model, 

but combine a number of different aspects of a software application or system using a 

range of appropriate diagrams, such as use case, state or interaction diagrams. 

Observing the interaction of elements within a software design may also be important, 

due to difference in object granularity. Different software designers have different styles 

and practices, which could result in applications or systems designed for the same 

purpose having a considerably different number of objects, due to the designer’s 

personal perception of object granularity. However, it is possible that the messages sent 

between objects show similarities of designs, which are not structurally similar. 

A key issue is that a set of UML diagrams depicting a piece of software are related and 

complement each other. For instance, an interaction diagram should represent a 

particular use-case, but using elements and relationships from the class diagram. This 

makes is possible to treat a set of related diagrams as a unit representing a piece of 

software which can be compared to others.  
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Further research could be extended to state transition, collaboration/sequence and use-

case diagrams individually, as well as combinations of diagrams. 

6.4.5 Case-Base Maintenance 

From the various phases of the case-based reasoning process, the emphasis of this 

research has been on the ranking. Little consideration has been given to adaptation and 

retention of new cases. However, it is natural for a case-base to evolve, so case-base 

maintenance would need to be considered. 

Related to case-base maintenance is the idea of assisted automatic re-engineering. When 

implementing a new software product, a rough structure of a class diagram would be 

designed. This would be fed into the CBR system as a new problem; the most similar 

designs would be retrieved and one of these could be adapted and re-engineered to fit 

the requirements of the current problem. This process would require assistance from a 

human expert. 

6.4.6 Performance Improvements 

The approach for measuring class diagram similarity presented in this thesis employs 

methods which are computationally demanding. Exhaustive matching algorithms are 

used, as well as a recursive algorithm for calculating the maximum common subgraph. 

While these techniques worked with the current case-base, it was reaching the limit of 

where it could still be computed within an acceptable amount of time. If one were to 

increase the case-base significantly or include more complex cases, the current 

algorithms would need to be optimised to increase performance. 

The major hurdle to performance is computing the maximum common subgraph, so an 

optimisation of this graph matching algorithm would be the best starting point. One 

could determine the applicability of alternative graph matching algorithms, such as 
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those discussed in the literature review. Another approach would be find the maximum 

clique as has been applied to molecule matching in the Durand-Pasari algorithm 

[Durand, et al., 1999] or other approaches to graph matching optimisation (for example 

the algorithm outlined by [Wang and Maple, 2005]). 

If the case-base were to increase significantly, an appropriate indexing mechanism 

would also have to be introduced. 

Finally, it would be valuable to field test the method for cost estimation presented in 

this work in a commercial setting.
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8 Appendices 

8.1 Appendix 1 – UMLSimilator System Diagrams 

Figure 50 - Entity Relationship Diagram Depicting the Structure of the Case-Base 
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The entity relationship diagram on the previous page shows the database structure used 

to store the case-base, while the class diagram below shows the core domain classes of 

the UMLSimilator system. 

  

Figure 51 - Class Diagram showing Core Domain Classes 
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The Java Reflector is the only module of the UMLSimilator tool which is implemented 

in Java. It makes it possible to reverse-engineer compiled Java code from single class 

files, jar files or even nested jar files. 

 

  

Figure 52 - Java Reflector Class Diagram 
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Figure 53 - Class Diagram for Similarity Calculator 

 

 

Figure 54 - Class Diagram for Graph Matcher 
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Figure 55 - Class Diagram for Weight Optimiser 

 

 

Figure 56 - Class Diagram for Clustering 
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Figure 57 - Class Diagram for Visualiser 

 

The class diagrams presented on the previous pages provide an overview of how the 

different modules of the UMLSimilator tool were implemented. To aid understanding of 

how the modules would interact with the classes from the core domain, these have been 

included in the module class diagrams where necessary. 
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8.2 Appendix 2 – Comparison of Nearest Neighbours 

The following charts show the performance for one, three and five nearest neighbours 

when calculating structural similarity. 

 

Figure 58 - Percentage of Cases Matching the Target Domain using One Nearest Neighbour 

 

Figure 59 - Percentage of Cases Matching the Target Domain using Three Nearest Neighbours 

 

Figure 60 - Percentage of Cases Matching the Target Domain using Five Nearest Neighbours 
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Figure 61 - Percentage of Cases Matching the Target Programming Language using One Nearest Neighbour 

 

Figure 62 - Percentage of Cases Matching the Target Programming Language using Three Nearest 

Neighbours 

 

Figure 63 - Percentage of Cases Matching the Target Programming Language using Five Nearest Neighbours 

For matching the domain and programming language one nearest neighbour generally 

performs best, but the matches are either 0% or 100%. 
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Figure 64 - Standard Deviation of Grades using One Nearest Neighbour 

 

Figure 65 - Standard Deviation of Grades using Three Nearest Neighbours 

 

Figure 66 - Standard Deviation of Grades using Five Nearest Neighbour 
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Again, using one nearest neighbour creates the best results, although there are spikes for 

some cases, which in the case of three or five nearest neighbours were reduced. 

 

Figure 67 - Standard Deviation of Lines of Code using One Nearest Neighbour 

 

Figure 68 - Standard Deviation of Lines of Code using Three Nearest Neighbours 

 

Figure 69 - Standard Deviation of Lines of Code using Five Nearest Neighbour 
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8.3 Appendix 3 – Minimum Class Match Threshold Settings 

The minimum class match threshold is used to determine how similar two classes have 

to be in order for the algorithm to consider them as a potential pair in the maximum 

common subgraph. 

 

Figure 70 - Comparison of Different Threshold Settings for Matching Target Domain 

For matching cases to the same domain as the target case, the 60% threshold performed 

best. It matched the cases correctly in 85.51% of cases. 

 

Figure 71 - Comparison of Different Threshold Settings for Matching Target Programming Language 
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For matching cases to the same programming language as the target case, again the 60% 

threshold performed best. It matched the cases correctly in 93.16% of cases. 

 

Figure 72 - Comparison of Different Threshold Settings for Measuring Standard Deviation of Grades 

The best threshold setting for measuring standard deviation of grades was 20%, with an 

average standard deviation of grades of 10.79. 

 

Figure 73 - Comparison of Different Threshold Settings for Measuring Standard Deviation of Lines of Code 

The best threshold setting for measuring standard deviation of lines of code was 80%, 

with an average standard deviation of grades of 462.10. 
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Overall, the 60% threshold performed best. It performed best in two of the categories 

and was the only setting with all categories above the average. The variation in 

execution times between the categories varied greatly. With a lower threshold, the 

execution time would increase. 
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8.4 Appendix 4 – Expert Class Similarity Matches 

The tables in this appendix show the desired class matches set by the expert for the 

provided class diagrams. The same class could be used in several matches. The range of 

values used was 2.5, 5, 7.5 and 10. The highest score obtained is also shown for each 

pair of class diagrams. 

Classes From 3427 Classes From 3434 Expert Value Highest Scoring Combination 

DataServer SetProject 2.5  

IPMSComponent IPMSComponent 10 10 

IProject IProject 10 10 

ITask ITask 10 10 

PMSServer ProjectProgress 5  

Project Project 5  

SQLServer SetProject 2.5  

Task Task 5  

Task AddTask 2.5  

Team ManageTeam 2.5  

Total 30 
 

Table 24 – Expert Value Settings for Project Management Class Diagrams 3427 and 3434 

Classes From 3401 Classes From 3407 Expert Value Highest Scoring 

Combination 

AdminForm MainForm 7.5  

ClassResultWrapper XClass 2.5  

FieldResultWrapper XField 2.5  

IClassPersistence IClassPersistence 10 10 

MainForm MainForm 5  

MethodResultWrapper XMethod 2.5  

PersistenceService DBPersistence 5  

RecordForm AddForm 7.5  

StoreToSQL DBPersistence 5  

WebService WebService 5  

XMLPersistenceComponent XMLComponent 5  

XMLPersistenceComponent XMLPersistenceComponent 10 10 

ZClass ZClass 10 10 

ZClass XClass 5  

ZField ZField 10 10 

ZField XField 5  

ZMethod ZMethod 10 10 

ZMethod XMethod 5  

Total 50 
 

Table 25 – Expert Value Settings for Software Cataloguing Class Diagrams 3401 and 3407 
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Classes From 3450 Classes From 3453 Expert Value Highest Scoring 

Combination 

AddCarForm AddCar 7.5  

AddModelForm AddModel 7.5 7.5 

AddUpgradeForm AddUpgrade 7.5  

Calculators Discount 2.5  

Converter Converter 7.5  

DelModelForm DeleteCar 2.5 2.5 

MainForm FastLtdCon 5  

Operators FastLtdCon 7.5 7.5 

Search ViewAllCars 5 5 

Search Search 7.5  

SellCarForm CarsForSale 5  

Total 22.5 
 

Table 26 – Expert Value Settings for Car Repair Shop Class Diagrams 3450 and 3453 

 

Classes From 3488 Classes From 3489 Expert Value Highest Scoring 

Combination 

ArgsMainApplication ArgsStores 5 5 

Catalogue EnquiryDesk 2.5  

ConnectArgsMySQL DBHandler 5  

Products NewEntries 2.5 2.5 

StockList StockUpdate 2.5  

Transactions DBHandler 2.5  

Total 7.5 
 

Table 27 – Expert Value Settings for Stock Management Class Diagrams 3488 and 3489 

 

Classes From 3500 Classes From 3504 Expert Value Highest Scoring 

Combination 

Bid Bid 10 10 

Bidder Bidder 10  

BidderPanel BidderForm 7.5  

MainForm AdminPanelForm 7.5  

PojectPanel ViewProjectDetailForm 5  

Predecessor Predecessor 7.5 7.5 

Project Project 7.5 7.5 

ProjectDetails ViewProjectDetailForm 7.5  

ProjectDetails PredecessorForm 2.5  

ProjectPanel ProjectForm 7.5  

Task Task 10 10 

Technology MainTechnology 10 10 

Total 45 
 

Table 28 – Expert Value Settings for Project Bidding Class Diagrams 3500 and 3504 
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8.5 Appendix 5 – Weight Settings Obtained from Genetic Algorithm 

Given that the class scoring didn’t work, the genetic algorithm was used to generate 

weight settings that improved similarity matches between class diagrams selected by the 

expert. The table below shows the complete sets of weights values for all features. 

Feature 
D
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Final modifier 0.077 0.081 0.104 0.057 0.036 0.119 

Visibility 

modifier 

0.077 0.069 0.128 0.037 0.183 0.119 

Abstract modifier 0.077 0.101 0.004 0.163 0.056 0.128 

Stereotype 

(enumeration/inte

rface) 

0.077 0.060 0.164 0.106 0.129 0.092 

Number of 

attributes 

0.077 0.021 0.001 0.021 0.002 0.061 

Number of 

constructors 

0.077 0.110 0.039 0.088 0.083 0.038 

Number of 

operations 

0.077 0.113 0.049 0.014 0.020 0.003 

Superclass 0.077 0.075 0.047 0.061 0.177 0.133 

Number of 

implementations 

0.077 0.044 0.100 0.046 0.094 0.095 

Number of 

associations 

0.077 0.035 0.001 0.072 0.026 0.036 

Attributes 

(internal 

structure) 

0.077 0.097 0.081 0.157 0.045 0.056 

Constructors 

(internal 

structure) 

0.077 0.112 0.156 0.043 0.038 0.020 

Operations 

(internal 

structure) 

0.077 0.081 0.125 0.135 0.113 0.099 

Class Total 1 1 1 1 1 1 

Data type  0.25 0.037 0.467 0.143 0.312 0.091 

Final modifier 0.25 0.025 0.404 0.401 0.071 0.182 

Static modifier 0.25 0.346 0.009 0.072 0.276 0.307 

Visibility 

modifier 

0.25 0.592 0.119 0.384 0.341 0.421 

Attribute Total 1 1 1 1 1 1 

Visibility 

modifier 

0.333 0.096 0.263 0.760 0.414 0.171 
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Number of 

parameters 

0.333 0.177 0.410 0.222 0.340 0.784 

Parameters 

(internal 

structure) 

0.333 0.727 0.326 0.018 0.246 0.045 

Constructor 

Total 

1 1 1 1 1 1 

Visibility 

modifier 

0.125 0.034 0.035 0.090 0.207 0.215 

Return type 0.125 0.064 0.190 0.093 0.089 0.001 

Final modifier 0.125 0.263 0.242 0.269 0.064 0.051 

Static modifier 0.125 0.084 0.114 0.101 0.079 0.233 

Abstract modifier 0.125 0.280 0.128 0.203 0.194 0.021 

Synchronised 

modifier 

0.125 0.022 0.214 0.003 0.155 0.195 

Number of 

parameters 

0.125 0.111 0.005 0.146 0.025 0.148 

Parameters 

(internal 

structure) 

0.125 0.142 0.073 0.095 0.187 0.136 

Operations Total 1 1 1 1 1 1 
 

Table 29 – Comparison of Default Weights and Weights Obtained using the Genetic Algorithm 

 

The default weights are obtained by assigning equal weights to every feature in the 

same level of the class structure hierarchy.  

For every domain a set of weights was generated by asking an expert to match the most 

similar class diagrams within a domain. The genetic algorithm was then used to 

maximise the overall similarity match by testing various weights. 

The tables on the following pages show the class diagram pairs that the expert identified 

as being the best match within each of the domains. 

This approach worked better than setting class scores. However, the automatically 

generated weight settings didn’t improve results by as much as was initially expected.  
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Figure 74 – Software Cataloguing Class Diagram and Expert’s Best Choice 

 

Software cataloguing - 3422 

 

Software cataloguing - 3399 
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Figure 75 – Project Management Class Diagram and Expert’s Best Choice 

Project Management - 3427 

 

Project Management - 3434 
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Figure 76 – Car Repair Shop Class Diagram and Expert’s Best Choice 

  

Car Repair Shop - 3453 

 

Car Repair Shop - 3450 
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Figure 77 – Stock Management Class Diagram and Expert’s Best Choice 

Stock Management - 3488 

 

Stock Management - 3489 
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Figure 78 – Project Bidding Class Diagram and Expert’s Best Choice 

  

Project Bidding - 3504 

 

Project Bidding - 3506 
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8.6 Appendix 6 – Results From Domain Weight Settings 

The following charts show the results obtained by using the five weight settings 

generated using the genetic algorithm. 

   

 

Figure 79 – Graph Similarity Results Using Default and Software Cataloguing Weights and Provenance 

   

 

Figure 80 – Graph Similarity Results Using Default and Project Management Weights and Provenance 
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Figure 81 – Graph Similarity Results Using Default and Car Repair Shop Weights and Provenance 

 

   

 

Figure 82 – Graph Similarity Results Using Default and Stock Management Weights and Provenance 
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Figure 83 – Graph Similarity Results Using Default and Project Bidding Weights and Provenance 

 

The percentage of cases matching the same domain has been omitted as this would 

always be 100%, given that cases are only selected from the same domain. 
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8.7 Appendix 7 – Publication from ECAI 

The following paper has been published in the proceedings of the Artificial Intelligence 

Techniques in Software Engineering Workshop, 18
th

 European Conference on Artificial 

Intelligence. 

Measuring Similarity of Software Designs using 

Graph Matching for CBR 

Markus Wolf and Miltos Petridis
7
 

Abstract. This paper examines different ways for measuring similarity between software design models for Case 

Based Reasoning (CBR) to facilitate reuse of software design and code. The paper considers structural and 

behavioural aspects of similarity between software design models. Similarity metrics for comparing static class 

structures are defined and discussed. A Graph representation of UML class diagrams and corresponding similarity 

measures for UML class diagrams are defined. A full search graph matching algorithm for measuring structural 

similarity diagrams based on the identification of the Maximum Common Sub-graph (MCS) is presented. Finally, a 

simple evaluation of the approach is presented and discussed. 8 

1   Introduction 

The entire object-oriented paradigm revolves around reuse of software design and code. We create classes, which 

define blueprints for creating any number of objects. Reuse happens at an intra-class level, where we can factor code 

into methods which can be reused within the class. Inheritance enables us to reuse existing classes through extension 

and specialisation. Classes can be packaged as components, which can be reused. However, these are all examples of 

code reuse. Reuse in object-oriented development is not limited to the reuse of code, although this is the kind of reuse 

which has been applied at a practical level for a long time. Traditionally, less importance has been given to the reuse 

of software design, but this has changed, especially with the emergence of design patterns. In order to reuse software 

design it is essential to be able to compare designs and measure similarity of designs. Case-based reasoning [1] has 

been successfully applied to support reuse in an object-oriented environment [2]. Software designs are complex 

structures and there is no preset benchmark for comparing or defining similarity between software designs or 

elements of software designs. This makes calculating the similarity between software design models a somewhat 

difficult and complex process to automate. The key lies in classifying the characteristics that would make a human 

expert identify the similarity between given designs. 

One important factor for a human expert is certainly semantic similarity. This will allow an expert to recognise what 

type of system a particular design depicts. Research has been undertaken by Gomes et al [3] into software design 

similarities using lexical similarity. This research makes use of WordNet, an electronic lexical database, which allows 

conceptual, as well as, lexical searches to measure semantic similarities. 

Another interesting approach is that of Bjornestad [4], which uses analogical reasoning to measure similarity between 

object-oriented specifications. Emphasis is placed on the role of an object within the context of the software design. 

The approach introduced in [5] and also adopted in this paper steps away from both, semantic and role similarities, 

and starts from the assumption that all information on a given software design model may be obfuscated. Thus, there 

may be no information about the design other than structural. It is important to distinguish between the structure and 

functionality of a software design, but the question is whether the structure contains within itself enough information 

to identify its functionality. At least to the extent that software designs with similar functionality can be found to have 

similar structures and behaviour. 

Zaremski and Wing [11] use a different notion semantic similarity in their work on specification matching of 

software components. Their approach requires metadata in form of the specification of a component’s behaviour. 

While not measuring semantic similarity of names used, their use of specifications in form of pre- and post-

conditions provides semantic description of a component. 

                                                 
8
 Department of Computing Science, University of Greenwich, Park Row, London SE10 9LS email:{M.A.Wolf, 

M.Petridis}@gre.ac.uk  
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 As with any complex structure, partitioning into substructures or composing elements is required in order to be able 

to compare software models. In order to define the overall similarity of the entire structure, these elements are 

compared against each other. 

By dividing a software design into its composing elements, a hierarchy of elements is created. These can then be 

compared to the corresponding elements from another design at different levels of the hierarchy. As each element 

contributes to the overall similarity in uneven shares, a weighting scheme is used to assign the weights proportionally. 

This way the weights can be adapted individually to reflect the reasoning process of the human expert. 

A way of creating substructures in a software design is to treat a software design as a graph composed of various 

design elements and their relationships. As discussed by Bergmann and Stahl [6], the similarity between two objects 

is a combination of the intra-class similarity and the inter-class similarity. By representing software designs as 

graphs, it is possible to compare a design with regards to its composing elements, but also their relationships. 

Section 2 of this paper discusses similarity measures for the structural similarity between individual classes. Section 3 

extends the approach to a similarity measure for UML class diagrams based on a graph representation of the 

structural information of the diagrams and presents a graph matching algorithm based on the identification of the 

Maximum Common Sub-graph (MCS). A simple evaluation of the approach is presented. Section 4 discusses the 

extension of the approach to other UML design artefacts representing behavioural aspects of software design. 

2   Structural Similarity of Classes 

Class diagrams are used in object-oriented software design to depict the classes of a software design and the way 

these relate to one another. Apart from the classes and their relationships, class diagrams often show additional 

information, such as certain class-specific properties, attributes and operations. If a class is regarded as a hierarchy, 

then they are the main elements of a class diagram and will therefore be the top element in the hierarchy of 

components of a software design. 

Current object-oriented programming languages, such as Java and C#.NET, follow a standard model for determining 

the elements of the class structure. The class structure thus may contain modifiers, which state whether a class is final 

or abstract. It could also contain attributes or methods (operations) and constructors. The attributes, methods and 

constructors will in turn have defining properties themselves. This way the hierarchy of elements is created, as can be 

seen in figure 1. 

Class modifiers state something about a class overall. Another relevant aspect of a class’ similarity to other classes is 

its complexity. An indication of this is the number of attributes, constructors and methods. Furthermore, at a lower 

level, the number of constructor and method parameters. Any names of classes, attributes, etc. are disregarded. This is 

done due to the fact that this information is semantic rather than structural. 
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Figure 1.   Hierarchical structure of a class’ composing elements 

The following rule applies when comparing elements between classes: the lack of elements in both classes being 

compared would denote a 100% similarity for that element, while the absence in merely one class would result in a 

0% similarity. For example, if neither class had any attributes, the overall attribute similarity was 100%, while if one 

class contained attributes, but the other does not, 0% similarity would be returned. 

In order to calculate the similarity between classes a software tool called UMLSimilator was developed. 

XML was used to provide maximum flexibility in dealing with the case base. XML is well-structured and as a text-

based format it is widely supported and easily transferable, yet capable of representing complex data structures 

through containment. 

Existing implementations were used to populate the case base. The cases were obtained by reverse engineering 

existing implementations.   

The UMLSimilator contains a module to convert classes from their compiled byte code into cases in XML format. 

This is done using the reflective ability of the Java programming language, by which means compiled classes are 

dynamically loaded at runtime and the features automatically extracted. The original design is thus reverse 

engineered from the byte code and stored in XML format for later retrieval. Existing tools for reverse engineering 

code have been discussed by Gorton and Zhu [13]. 

Research into this area has been undertaken by Tessem, Whitehurst and Powell [7], who use Java’s reflective ability 

combined with Case-Based Reasoning to “retrieve case-based components in a prototyping tool for the Java 

programming language.” This tool is used to aid class retrieval and reuse, but on a code rather than design level and 

even though our research is based on existing implemented designs, it is currently only concerned with the design 

level. Their approach is also oriented towards semantic similarity similarly to Gomes et al [3]. The research presented 

here investigates additional class elements, which might contain important information for measuring software design 

similarity based on structure. The following equation shows how the similarity between two classes is calculated.  

),(),(),( CCSCCSCCS structstructhlhl
   (1)    

The overall similarity combines the structural and the high-level similarity between the two given classes, where 

hl  is the weight applied to the high-level similarity and struct  is the weight applied to the structural similarity 
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The high-level similarity between two classes is based on the defining characteristics of a class (its modifiers) and the 

number of attributes, methods and constructors. These are properties of a class which can be obtained without having 

to look at the detailed structure of the class. 

The high-level similarity between two classes is obtained as follows: 
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where “all modifiers” are the modifiers of a class, mod  is the weight applied to the similarity of each of these 

modifiers, attrno.  is the weight assigned to the number of attributes and similarly methdno.  and constrno.  refer 

to the number of methods and number of constructors. 

The structural similarity is concerned with the internal structure of a class (attributes, methods and constructors), as 

stated in equation 3, where attr  is the weight applied to the sum of all matched attributes’ similarity, matchesattrn .  

refers to the total number matches and bmxx AA ,  refers to an attribute and its best match (bmx). Similarly, methd

refers to methods and constr to constructors. 
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The similarity between two attributes is defined as follows: 

),(),(),(

mod

modmod AASAASAAS typetype

ifiers
all

attr
    (4)    

The modifiers in this case are static, final and visibility. 
type  refers to the weight assigned to the type of an 

attribute. 

When calculating the similarity between two methods, the modifiers specific to each method, the number of 

arguments and the similarity between these arguments are all taken into consideration: 
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 (5)  

where the modifiers are visibility, static, synchronized, abstract and final. “retype” is the return type of a method, 

matchesn .arg
 is the number of argument matches and “noarg” is the number of arguments. 

Similarity metric 5 is also applied to constructors, but only the relevant terms apply. 

In order to calculate the similarity between two given classes, the UMLSimilator takes every element within the 

hierarchical structure of the first class and compares it to the equivalent element(s) from the second class. It proceeds 

until every element is matched and the overall similarity is obtained, not allowing any element to be matched more 

than once. A full search algorithm is applied which ensures a good overall match. The algorithms in place will 

recursively rematch all elements until satisfactory matching is achieved.  

This algorithm is applied on all levels of the element hierarchy. This algorithm does not guarantee optimum 

matching. This is due to the fact that by finding the best match for a particular element and then removing it from the 

pool of available elements, the overall similarity could actually be decreased. A slightly lower initial match could 

actually result in higher successive ones. However, the algorithm required to guarantee optimum matching would be 

too computationally demanding to be feasible. 

3  Graph Representation and Matching of Software Designs 

Most of the research done so far in the area of software reuse using CBR focuses on the definition of similarity 

between various design elements that are present in UML diagrams. However, a great deal of the knowledge 

associated with UML models is encoded in the links between these elements. Typical of this are the associations 

between classes in a UML class diagram and the message passing in interaction diagrams. In fact it can be argued that 

most of the practical reuse of design and code by software engineering practitioners is associated with design patterns 

that are related to patterns of interaction between objects. It is thus important to establish reliable similarity metrics to 

allow for case retrieval based on the structural similarity between design models. 

Previous research [8],[9] has shown that competent case retrieval based on the structural similarity between cases can 

be achieved using graph matching techniques. The approach followed in this work views design models, such as class 

diagrams as graphs composed of nodes and arcs that link the elements. A full search graph matching algorithm has 

been adapted to be applied to UML class diagrams. Given the graph representations of two UML class diagrams, C 

and C´, the algorithm returns the Maximum Common Subgraph MCS(C,C´) present in both graphs. 

The algorithm attempts to find the best matching elements in the two graphs based on the metrics presented in the 

previous sections of this paper. The similarity metric between arcs in the diagram is based on a simple classification 

of association types in terms of their multiplicity as follows: 

a. one-to-one 

b. one-to-many 

c. many-to-one 

d. many-to-many 

 

3.1 Graph based similarity measures 

In previous research, a simple similarity measure between classes was proposed [5]. However, this was not taking 

into account the structure of a class diagram in terms of associations between classes. However, a great deal of the 

information that can assist decisions for software design reuse is associated with the structure of a class diagram and 

particularly with the associations between classes. The measure proposed in this paper takes into account the structure 

of class diagrams. 



Appendices 
 

214 

 

The similarity between associations of the same type is defined as: 
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The graph matching algorithm maps the maximum common connected sub-graph based on matches between 

individual elements of each graph, where a minimum threshold similarity value is satisfied. 

The overall similarity between the two case graphs (G,G´) is then defined as: 
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where count(G) represents the number of nodes (classes) in graph G.  

 

Figure 2.   Graph similarity between UML class diagrams 

Figure 2 shows an example application of the algorithm and measure. At a similarity threshold set to 0.6, three 

connected nodes in each graph have been picked up by the algorithm. A further match between the classes 

“Customer” and “EPOS” is rejected for having similarity value less than the threshold. Potential matches between 

“Customer” and “Payment” and between “Supplier” and “Product Catalogue” are not considered as the connecting 

associations are of different types. 

In this example, the overall graph similarity between the two class diagrams is: 

(0.7+0.8+0.77)2 /(5x6)=0.172 

3.2 Graph matching algorithm 

The algorithm used in this research is based on the full recursive search of all elements in the graph representations of 

both target and source diagrams compared. 

The algorithm attempts to match individual classes from the source and target diagram, where the similarity is greater 

than a predefined threshold. For each successful match, the algorithm attempts to match all respective matches of 

respective neighbours whose similarity measure is greater than the threshold. The algorithm finishes when no 

additional neighbour matches can be found. This algorithm has been extended from previous research [10] to follow 

links representing only similar types of associations as defined by equation 6 above. 

Figure 3 outlines the algorithm used to identify the Maximum Common Sub-graph (MCS) between two graph 

representations of corresponding class diagrams. 

for all possible matches (x,y) 
 MCS:match(x,y) 
endfor 
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match(x,y): 
 calculate struct. similarity sim(x,y) 
  if sim(x,y) > threshold 
   find all matching neighbour(x ,y ) 
   for each (x ,y ) 
    MCS:Append(MCS,match(x ,y )) 
    if MCS best so far -> retain 
   endfor 
  endif 
  return MSC 
 
Figure 3.   The MCS graph matching algorithm 

3.3 Experiments to evaluate the approach 

In order to evaluate the similarity measures and algorithm proposed in the proposed approach, a set of limited 

experiments were conducted. A number of simple software design case studies (4) were each given to three students 

at a software engineering design course. The students submitted class diagrams for each of the case studies. Model 

solutions prepared by the tutor were also added to the case base. Out of the four case studies, two referred to very 

similar problems, one referring to an order system and one referring to a sales system. The other two case studies 

referred to a software simulation and a library book borrowing system. 

The algorithm described above was used to identify the MCS between the graph representations of the class 

diagrams. The similarity measures described above were used to calculate the similarity between any two cases (class 

diagrams). The calculations were used to cluster the cases.  

The exercise showed that this approach clustered correctly all diagrams referring to the same case study. It also 

showed that the approach can discriminate between class diagrams belonging to different case studies, with the 

exception of the two case studies that referred to the two systems that were isomorphic (order and sales systems). 

Although this evaluation is by no means exhaustive, it indicates the suitability of the measures and algorithms when 

used within a CBR process. 

4   The Importance of Behavioural Information in Software Designs 

Within object-oriented development, software design is most commonly used to represent static structures. However, 

a design may not consist solely of a static model, but combine a number of different aspects of a software application 

or system using a range of appropriate diagrams, such as use case, state or interaction diagrams. 

The strength of software lies in the fact that it is dynamic and has behaviour. Although it may consist of a static 

structure, it is the runtime behaviour and interaction between elements of the static structure that make it functional. 

Thus, the way in which a number of classes and objects are composed, in order to form larger structures, states a lot 

about a software design, yet much of its meaning can only be determined by the pattern of communication between 

these elements, such as the order in which messages are sent between them or the reactions triggered by certain 

messages, the overall complexity of the software and the assignment of responsibility. 

Observing the interaction of elements within a software design may also be important, due to difference in object 

granularity. Different software designers have different styles and practices, which could result in applications or 

systems designed for the same purpose having a considerably different number of objects, due to the designer’s 

personal perception of object granularity. However, it is possible that the messages sent between objects or possible 

states of an object show similarities of designs, which are not structurally similar. 

A key issue is that a set of UML diagrams depicting a piece of software are related and complement each other. For 

instance, an interaction diagram should represent a particular use-case, but using elements and relationships from the 

class diagram. This makes is possible to treat a set of related diagrams as a unit representing a piece of software 

which can be compared to others.  

With any UML diagram, measuring the similarity is a rather abstract undertaking as there are a number of elements 

that can be compared, especially if semantic similarity is not being taken into consideration. This means that the 

criteria that can be used in order to measure similarity between diagrams are limited to the composing elements and 

how they relate to one another. Nevertheless, it is possible to regard any of these diagrams as a graph of nodes and 

arcs, even if there are some additional constraints, such as containment or sequence. 

5   Conclusion 

Calculating the similarity between software designs for CBR is a complex undertaking. Software designs are 

elaborate structures, composed of a large number of elements arranged in many possible ways to achieve certain 

functionality. When comparing two designs, it is exactly that functionality which should determine the similarity 

between them. The problem lies in correctly identifying this functionality. Different approaches have been followed 
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in the past in order to reveal this functionality, such as semantic analysis, analogical reasoning, structural analysis or 

hybrid approaches. 

In this paper we analysed a number of ways which can contribute to calculating the similarity of software designs, 

using class diagrams, focusing entirely on the structural analysis of software designs. This way, we are trying to 

determine the significance of the structure in determining the functionality of a design. 

This research is work in progress. A tool has been developed in C#.NET, called UMLSimilator. This tool works with 

software designs stored in a determined XML format. It is used to calculate the similarity between classes, by 

applying different similarity metrics and a combination of weights. It allows element-specific similarity measuring to 

take place, as it allows the user to determine the element criteria for class comparisons. 

Additionally, a graph matching algorithm and associated graph similarity metrics have been devised to capture 

structural information encoded in design models. This enables the analysis of class diagrams, not as a loose collection 

of classes, but as a connected arrangement of related classes. 

Experiments with the UMLSimilator tool have been very promising and are encouraging the analysis of aspects, 

which we have not taken into consideration in our work up-to-date, such as data types, for example as defined in [12], 

and categorisations. 

In our future research we intend to enhance the MCS similarity measures to discriminate better between different 

types of associations, including generalisation and composition. We are also looking into expanding the similarity 

measure on the use of behavioural information captured in other types of UML diagrams. Finally, a more 

sophisticated set of evaluation experiments are planned to establish the effectiveness and robustness of the approach. 
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