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Abstract

Optimisation in wireless sensor networks is neces-
sary due to the resource constraints of individual de-
vices, bandwidth limits of the communication channel,
relatively high probably of sensor failure, and the re-
quirement constraints of the deployed applications in
potently highly volatile environments.

This paper presents BioANS, a protocol designed to
optimise a wireless sensor network for resource effi-
ciency as well as to meet a requirement common to a
whole class of WSN applications - namely that the sen-
sor nodes are dynamically selected on some qualitative
basis, for example the quality by which they can provide
the required context information.

The design of BioANS has been inspired by the com-
munication mechanisms that have evolved in natural
systems. The protocol tolerates randomness in its en-
vironment, including random message loss, and incor-
porates a non-deterministic ‘delayed-bids’ mechanism.

A simulation model is used to explore the proto-
col’s performance in a wide range of WSN configura-
tions. Characteristics evaluated include tolerance to
sensor node density and message loss, communication
efficiency, and negotiation latency.

1. Introduction

Wireless Sensor Networks (WSN) are becoming in-
creasingly popular as a means of remotely monitoring
an environment and collecting information that provides
context to applications. The increasing popularity stems
from advances in the underlying technology, in terms of
physical size, on-board processing and storage capabili-
ties, wireless communication range and battery technol-
ogy. Simultaneously, the per-unit costs are falling, so
that it has become economically feasible to deploy sys-
tems that have some redundancy.

Applications of WSN tend to concern monitoring a
physical environment in which various characteristics of
the environment itself, or of the actors that occupy the
environment, are collected and provide a means of run-
time contextualisation. Typical and diverse examples of
monitored environments include care homes for sick or
elderly patients, in which information concerning the lo-
cation and behaviour of the occupants is used to iden-
tify alarm’ scenarios [1]. The deployed systems need
to fully self-manage as the patient is unable to carry out
technical support. Another application, operating on a
much larger scale (in terms of the number of sensors and
their geographical spread) is the monitoring of changes
to glaciers, in which location (more specifically move-
ment over time) and temperature is used to measure the
effects of global warming [2]. Although sensor node
technology is improving, there remains the fact that re-
sources are finite. So even if (for example) you dou-
ble the battery capacity it will still run out. The lack of
resources of sensor nodes are the biggest single limiter
that restricts the functionality of deployed applications.
Communication is one of the costliest aspects of sen-
sor node behaviour in terms of power consumption. The
communication protocol employed in the glacier exam-
ple [2], mentioned above, was designed specifically to
optimise for coverage as the sensor nodes eventually, in-
evitably, exhaust their power supplies. By dynamically
self-configuring, nodes optimise multi-hop routing such
that transmission power is kept low (by transmitting to
physically close neighbours), yet at the same time it is
necessary to avoid depleting the power of those nodes
who forward messages. Ant Colony Optimisation is a
technique that uses simulated pheromone trails, inspired
by stigmergic communication in insect colonies. This
has been used to dynamically find ’good’ routes through
sensor networks, see for example [3] and [4].

In addition to the constraints of the technology, the
typical applications also introduce several constraints.
These include: robustness, scalable deployment plat-
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forms; stability despite configuration change; and low
communication latency because the applications can
have a real-time aspect. Applications select sensor
nodes dynamically on some qualitative basis, for exam-
ple the quality by which they can provide the required
context information. This is defined as Quality of Con-
text (QoC) [5]. Here it is not sufficient to locate any
sensor, instead it is required that sensors are selected
based on the QoC that they can deliver; and there can
be many different attributes of this quality (such as up-
to-dateness, granularity - of position information for ex-
ample, and accuracy).

This paper describes a highly efficient sensor network
protocol, BioANS (Bio-inspired Autonomic Networked
Services), which facilitates QoC-based dynamic selec-
tion of sensor nodes, whilst simultaneously meeting the
requirements of efficient resource usage (especially in
terms of communication), robustness (through its ability
to choose among redundant sensors and its resilience to
message loss), scalability and low latency.

Section two describes sensor networks and their as-
sociated challenges. The third section discusses engi-
neering emergence, and its appropriateness to solving
some of the problems of WSN. BioANS’s approach to
autonomicity is borrowed from its predecessor ANS [1],
and this is explained in section four. Section five fol-
lows with a description of the BioANS protocol. The
next two sections (six and seven) introduce the simula-
tion with its assumptions that were run to test the perfor-
mance of BioANS. Sections eight, nine, and ten give the
experimental results. This is followed by a discussion of
related work in section eleven, and then a conclusion.

2. Sensor Network Concepts

WSN comprise varying numbers of sensor nodes.
These are typically homogeneous devices that each
are tasked with monitoring some environmental aspect
(even if the nodes are equipped with different types of
sensors, the basic processing platform is likely to be the
same). The nodes also form a communication network
through which the individual nodes receive configura-
tion instructions and through which the monitored in-
formation is delivered back to some designated external
collection point - often referred to as a sink (this node
might differ from the other nodes in several important
ways: its location might be fixed, and it might have a
wired power supply and network connection). Various
techniques are used to achieve efficiency in such en-
vironments. Primarily message routing has to be opti-
mised to keep the transmission power as low as possible
and to minimise the effect of communication on third-
parties (both in the sense of forwarding costs, and also

in terms of wasteful interruptions when non-interesting
packets are *overheard’; listening costs almost as much
a transmitting). To reduce power costs, low-bandwidth
wireless links tend to be used. This places a premium
on bandwidth, reinforcing the need to minimise both the
number of, and size of, messages. Therefore another
optimisation is to dynamically aggregate data at sensor
nodes before sending. The characteristics of WSN thus
place significant constraints on the design of the com-
munication and application protocols deployed.

3. Engineered Emergence in WSNs

Natural systems such as insect colonies have evolved
to solve problems similar to those experienced in sensor
networks: in the sense that they have large numbers of
individuals who each have only local knowledge of their
environment and of the context in which their colony
is operating at any moment. Communication has to be
highly effective and messages must be passed through
the colony using the individual actors not only as ’re-
ceivers’ but also as "routers’. This is one of a great many
examples of how order and structure ’emerge’ from the
interaction of many individuals in natural systems, and
over a large number of iterations such ’protocols’ have
become highly optimised.

The term *engineered emergence’ describes the pur-
poseful design of interaction protocols so that a pre-
dictable, desired outcome is achieved at a higher level
(i.e. Emerges) even though the individuals work with
only local knowledge. Effectively the intention is to
mimic behavioural aspects of the natural systems. See
for example [6] and [7].

Our use of the term emergence describes higher-level
states, patterns or other behaviours that arise in systems
of numerous lower-level components that have local au-
tonomy to interact with their neighbours. The individ-
ual components are typically quite simple and operate
with only a local view of the system. Higher-level be-
haviour cannot be predicted by examining the individ-
ual components or their behaviour in isolation. There
are many examples in nature where highly optimised
global behaviour emerges from these kinds of systems
[8]. The science of emergence is described in [9] [10]
[11]. One additional important characteristic of natu-
ral emergent systems is that they embrace random influ-
ences in their environments; actually incorporating the
randomness into behavioural protocols - a specific ex-
ample is symmetry breaking.

In contrast to the lightweight approaches that have
evolved in the natural systems, traditional design of
distributed computer applications focuses on strict pro-
tocols, message acknowledgements and event order-

43



EEDAS 2007 - 2nd International Workshop on Engineering Emergence in Decentralised Autonomic Systems

ing. Each message and event is considered important
and randomness is generally undesirable imposing se-
quenced or synchronised behaviour which is generally
deterministic. Such a design paradigm can lead to ineffi-
ciency, for example through large numbers of transmit-
ted messages (a significant fraction of which might be
for handshaking and error recovery purposes) and ad-
ditional communication latency. In addition, typically
some of the low level messages do not directly con-
tribute to correct application behaviour at higher levels
[12].

Natural biological systems however are fundamen-
tally non-deterministic and there are many examples of
large-scale systems that are stable and robust at a global
level; the most commonly cited examples being drawn
from cellular systems and insect colonies. BioANS re-
quires that a small number of appropriate quality bids
are elicited from sensor nodes (service providers) in po-
tentially very large systems. In this application domain
it is important to minimise the total amount of commu-
nication, the latency of service negotiation, and also to
preserve the battery power at each sensor node.

The BioANS protocol has been designed to pur-
posely mimic some aspects of interactions in natural
systems, to yield sensor net communication that is si-
multaneously scalable, self-configuring, reliable and ef-
ficient. The protocol employs emergence concepts to
achieve scalable and robust negotiation (i.e. Dynamic
selection of sensors based on their QoC characteristics).
The negotiation protocol needs to be stable and pre-
dictable in terms of its higher-level behaviour (i.e. a
suitable context provider needs to be located within a
reasonable time-frame, and whilst making efficient use
of messages), although the low-level behaviour (such as
the actual interactions with and between sensor nodes,
and the ordering of events such as message transmis-
sion) has elements of randomness and can thus not be
precisely predicted.

The delayed-bid mechanism, described in detail in
[12], is employed in BioANS to introduce randomness
into the timing of responses to QoC queries. By us-
ing this mechanism, the high number of bids sent as re-
sponses to a QoC request in large systems are spread out
in time (each node waiting a short random time before
responding to a request). As sensor bids are evaluated
in the order they are received at the requester, the ran-
domness makes the system non-deterministic in terms of
which sensor will be the first to fulfil the QoC require-
ment and thus be selected. As soon as an acceptable
sensor has been found, the requester sends a ’Stop-Bids’
message which has the effect of cancelling any pending
bids that have not at that point been transmitted. See
[12]for empirical analysis results.

The original ANS protocol [13] was reliable and
simple, but had scale-related high communication over-
heads. The randomness and non-determinism that have
been purposely introduced into the successor protocol,
BioANS, enable it to be used in high-density networks
whilst retaining protocol simplicity. This is shown by
the experimental results presented in this paper.

4. Approach to Autonomicity using the orig-
inal ANS

A perceived notion of context and quality of con-
text (QoC) drives the autonomic behaviour of ANS. Au-
tonomicity in systems is defined as the ability to be
self managing, often referred to as self* [14]. Context
refers to the circumstances, situations, or environment
in which a computing task takes place [15]. A common
example of quality of context is the quality of the lo-
cation of the user or objects of interest. Location can
be tracked in smart homes using different sensor types
such as ultrasonic badges, or RFID tags [16]. There will
be a difference in the quality of location information de-
pending on the type or state (battery power, damaged
or, obscured sensing apparatus) of the sensor. As an ex-
ample, ultrasonic badges can determine location with a
precision of up to 3 cm, while RF lateration is limited to
1-3 m precision. The quality needed and its degree will
be application specific.

QoC is used by ANS to choose a suitable service
among those available when delivering requested infor-
mation to an application. While different types of infor-
mation will have QoC attributes specific to them, cer-
tain attributes will be common to most types of infor-
mation such as: Precision, Probability of correctness,
Resolution, Up-to-datedness and Refresh rate [17]. In
ANS sensors need to specify QoC attributes for the in-
formation they deliver. The QoC from a given sen-
sor is susceptible to change over time and therefore
needs to be autonomously managed.. ANS describes
the data/function provided by a sensor as services. Ser-
vices are represented as a named list of >commands’ and
’events’.  An application then calls on the service by
naming it-and its required QoC. Figure 1 shows the num-
bers and types of messages the protocol uses in a mes-
sage diagram. Services are selected through a process
called ’tendering’. When an application needs a service
it broadcasts a ‘request’ command containing the name
of the service (such as temperature) and its preferences
for the QoC attributes. Devices within range and able to
offer the service use a ’utility function’ to calculate their
ability to deliver the information at the requested QoC.
The utility function returns a single signed integer called
"closeness’. If the value meets a certain threshold of the
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Figure 1. A message diagram of the ANS
protocol.

requested QoC, it is sent back to the requesting device
to allow it to decide which device to use. Regular ’re-
tendering” allows requesters to autonomously adapt to
the best sensor available, take advantage of any new de-
vices joining the network, and recover from sensor fail-
ures. All QoC attributes are scaled and translated when
a service is defined so that they are all of the same order
of magnitude [13].

The utility function works by treating QoC as a point
in an n-dimensional space (n being the number of QoC
attributes). Available and requested QoC attributes are
plotted in n-dimensional space. The utility function
then returns the the distance from the requested point
to the available point also referred to as ’closeness’.
The requester will choose the first device with a positive
’closeness’ since that device will be at least as good as
the application wants. If nothing sufficient is returned in
a given time period then a list of all of the sensors who
have responded will be checked. The sensor with the
least negative closeness will be chosen since, while not
sufficient, it is the least bad and for many applications
tolerable.

5. The BioANS Protocol with engineered
emergence

BioANS enables adaptivity through the selection of
sensor(s) based on the quality of information that they
can offer. Utility functions express the information re-
questers QoC requirements such as accuracy and up-to-
datedness. Theses requirements encapsulate the exter-
nally deterministic behaviour needed. However, it is
not important that the lower-level behaviour be deter-
ministic. This gives great freedom in which sensor pro-
vides the information, or how the sensor(s) are selected.
BioANS takes advantage of cheaper (less communi-
cation intensive, less synchronous and self-regulating)
non-deterministic communication strategies inspired by

biological systems such as insect colonies.

Certain techniques are found in natural systems that
use non-deterministic strategies. Common are: random-
ness (such as in timing mechanisms) and attributing low-
value to individual events, actors and messages. These
systems are unaffected by message loss, or events go-
ing unobserved or unordered. BioANS uses the delayed-
bid mechanism [18] to add a random timing component
spreading out in time the responses to QoC requests.

When a sensor receives a request, it computes its QoC
value based on the requested utility function. Once the
node has determined the QoC it can deliver, it transmits
a reply to the requester. Broadcasting the request is ef-
ficient with respect to the simplicity of the protocol and
the total number of messages, but introduces a synchro-
nisation point. Receipt of a request implicitly invokes a
certain response at each node. As system size increases,
near simultaneous reply messages present a problem by
congestion of the communication channel. This can in-
crease application latency and deny communication to
another applications. Often only one or a small number
of sensors are required to provide information to a par-
ticular application. If all the sensors respond this wastes
communication bandwidth, battery power at the sensor
nodes, and the processing of replies at the requester.

BioANS solves this problem by the injection of a
random delay locally determined at each sensor. This
spreads out the replies and directly reduces the network
congestion problem. It also provides an opportunity
for significant reduction of messages. This is because
the response messages are dispersed in time and the re-
quester node can process some messages before others
have been sent. Once a sufficient response with the ap-
propriate QoC parameters has been received, a Stop-
Bids message is sent. This cancels all of the unsent re-
sponses at sensor nodes. Some unwanted messages may
already be in transmission, but the large majority of un-
necessary messages can be stopped.

All messages in BioANS have low-value, and the
protocol tolerates the loss of any individual message. If a
request receives no replies (within the maximum random
time delay for replies) the request message is deemed
lost and is repeated; if a request message is not received
by an individual sensor node it simply does not partici-
pate in the bidding. Likewise individual response mes-
sages are of low value. If a Stop-Bids message is lost
the protocol still functions completely correctly, it just
looses efficiency as the reply-quenching savings are lost.
Low value messages make BioANS extremely robust to
network failures and dynamic network conditions, and
allow BioANS to scale well.
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6. Simulation of BioANS

To further understand BioANS we model it as a
discrete event simulation, using observed performance
from BioANS’s predecessor ANS implemented on the
Beastie sensor network [1]. The ANS protocol has been
implemented for two applications; patient monitoring in
the home, and large scale building usage monitoring. We
want to examine the trade off between protocol overhead
and performance. By overhead we refer to all of the
communication not concerned with performing work.
Performance we define as the ability of a requester to re-
ceive its desired QoC, and for what percentage of overall
run time.

As stated above, we have implemented an initial ver-
sion of ANS on a real sensor network of 5 nodes. From
this we have gathered our main parameters to drive the
BioANS simulations. Simulation is necessary to ex-
amine the effects of the protocols as systems scale up
to thousands of nodes, because implementation and de-
ployment of actual sensors at this scale in controlled
realistic conditions is currently highly problematic and
costly.

The first set of experiments includes location and re-
ception radius limiting the number of sensors that can
hear a given requester. These add a realistic set of con-
straints that the system will face in deployment. First
we focus on the percentage of time a requester receives
its desired QoC as the deployment area of the network
increases, and the sensor density decreases. Then we
choose one density, and see how BioANS scales at this
density.

The second set of experiments looks at how BioANS
performs as the failure rate increases, and as how per-
formance degrades as the network fails, and resumes as
the network recovers. Theses experiments model sensor
networks in highly dynamic environments, like mobile
nodes, or single deployment situations, where the sen-
sors are deployed, and then left to run until their power
is exhausted. An example of this is monitoring glaciers,
where the nodes are deployed over a large area by be-
ing thrown out of a helicopter, and left to run until they
fail. After failure, more nodes can be thrown out again,
to resume network operation.

7. Assumptions

BioANS assumes that the sensors themselves choose
if they are going to respond to a re-tender request. The
criterion they use is to calculate if they can provide at
least 60% of the QoC asked for. If not, the sensor re-
mains silent. This heuristic was derived from previous
experiments.

The duty-cycle between re-tenders is an important
consideration in ANS; a large duty-cycle between re-
tenders lowers protocol overhead at a cost of resilience
to sensor failure. In these simulations the duty-cycle was
10 queries. Packets sent to the sensor for readings and
packets with sensor data were counted as work packets.
All others were considered protocol admin packets, i.e.
overhead.

To faithfully simulate the dynamic nature of the sen-
sor network, sensor failure and replacement is built into
the experiments. The sensor failures are exponentially
distributed with a mean of one failure every 5000 time
units, and a failure triggers a replacement of one or more
new sensors with a replacement time lag exponentially
distributed with a mean of 10000 time units. When the
sensors are replaced, the number of new sensors is ge-
ometrically distributed with a mean sensor node count
of 1.6. When a sensor used by a requester fails, the re-
quester immediately starts the re-tendering process. The
QoC of the new sensor is completely random, and it has
a ten percent chance of having a variable QoC that will
decrease by 33% for each user. The advertised QoC of
the sensors is assumed to be correct. All sensors serve
data that is of interest to all of the requesters, but dif-
ferent requesters want different QoC. Each requester re-
quires only one sensor at a time.

Location information in the model constrains the
number of sensors that can respond to a (re)-tender re-
quest. This is due to communication range.

To facilitate exploration of the effect of sensor node
population density on the protocol’s performance, a sim-
ple means of diluting the sensor nodes is used.

A 2-dimensional grid of cells is used to simulate the
area of deployment. One or more node can reside in a
given cell. Consequently, given a constant sensor pop-
ulation, the size of the grid determines the population
density of the nodes. For a given node population, a
larger grid will have a lower density than a smaller grid.
In each experiment (i.e. change in grid size) the nodes
are distributed across the grid with a uniform random
distribution.

The term ’density factor’ is defined as the mean num-
ber of sensor nodes within a 100 cell area of the grid;
i.e. a density factor of 1 implies that there is an aver-
age of one sensor node per 100 grid cells. Each type of
node has a wireless range of 20 cells, with the assump-
tion that there is no interference to limit range. Thus its
communication range covers 4007 =~ 1257 cells. Figure
7 illustrates a typical sensor node distribution with den-
sity factor 0.4 (for clarity, the lines in the diagram are
drawn at a distance of 10 cells apart). On average this
density factor equates to 5 sensor nodes being in com-
munication range of a requester node. The simulation is
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Figure 2. A random sensor node distribu-
tion with a density factor of 0.4. Sensor
and requestor nodes are represented by
the symbols ’S’ and 'R’ respectively.

initialised such that at the beginning each requester can
hear at least one sensor. Failures and the constrained
number of sensors available can leave a requester in a
state with no sensors available.

The time between packet arrivals is affected by the
random back-off algorithm used by the radio link layer
BNET [19] that ANS was built on. The arrival of re-
sponses from requests (non-random arrivals) were nor-
mally distributed with the means and standard deviations
taken from the packet traces in [1]. Packet loss, colli-
sion and traffic management problems were not mod-
elled, because we assume this to be handled by BNET.

Three metrics were measured in these experiments:
the average percentage of time in the simulation run that
the requesters got their requested QoC or no sensor; the
average ratio of work related packets sent and received
by the requesters (the inverse of the protocol’s overhead)
and negotiation time, from request packet being sent out,
to the sending of the select sensor packet. The simula-
tions were run for 10,100,000 time units, measured at
equilibrium with a restart at 100,000 time units. Results
are generated as an average over all requesters, each over
ten runs.

8. BioANS performance at various node
densities

Given a range of 20 units, the density of the sensors
in the deployment area will affect the performance of
the network. The performance we choose to measure
is QoC. Figure 3 shows us the average QoC received
by 50 requesters in a network of 500 sensors. The x
axis shows the density factor of the monitored region
occupied by the nodes (sensors and requesters). As area
in the monitored region occupied by the node decreases,
so does the density.
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Figure 3. Relationship between average
percentage of time requesters got QoC
and density factor.

The average QoC obtained by the requester is almost
100% until the density factor fall below 1. At that point
the average QoC begins to drop very quickly. At den-
sity factor 0.4 the requesters are only getting their QoC
an average of 85% of the time. By density factor 0.2
that figure has dropped to 72%, and 64% by density fac-
tor 0.1. A further look at the raw data not graphically
presented here shows that with a density factor of 1 a
requester can hear an average of 8 sensors. A density
factor of 0.4 reduced that to an average of 2 sensors.
These figures are below the expected mathematical av-
erage because of sensor failure in the network.

9. BioANS performance at a fixed node den-

sity

Given the results above, we decided to test the per-
formance of BioANS as it scales in network size. The
density factor was set to 0.4 to examine the performance
as it begins to deteriorate. The results are summarised in
figures 4, 5 and 6.

These experiments show that BioANS scales well up
to 1000 sensors and 100 requesters (the maximum popu-
lation tested in this experiment). Figure 4 shows that the
average QoC received is the same for all network sizes.
The average time requesters had no senor fluctuated a
bit, was was consistently below 1% of the time. The
inverse of the overhead, represented here as percentage
of work packet traffic to overall packet traffic, is con-
stantly high (overheads consistently low), see figure 5.
Latency, represented here as average time a re-tender
took to complete, is also low, and consistent among all
of the populations tested, see figure 6
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10. BioANS performance with failures

To test the robustness of BioANS in the face of a
dynamic network, we run experiments where we vary
the failure and resumption rate of the network. We also
watch the degradation of the network as all of the nodes
fail without replacement, and as the network recovers
from a state of no sensors, to a full population of sen-
SOrS.

All of the previous experiments are run with a failure
rate of one failure every 5000 time units distributed ex-
ponentially. The resumption rate is half that, with new
nodes being added every 10000 time units, but added in
batches (one or more) with a geometric distribution with
a mean of 1.6. The previous experiment shows that the
network is stable as the size increases. In this experi-
ment, we increase the failure and resumption rate from
one every 5000 time units to one every 10 time units.
The resumption rate is half the failure rate, and the new
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Figure 6. Average re-tender time as net-
work size increases with fixed density.

node batch mean is always 1.6. The population of the
network is always 1000 sensors and 100 requesters, and
the density factor is fixed at 0.4 The results are sum-
marised in figures 7, 8, and 9.  Figure 7 shows the
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Figure 7. Average percentage of time re-
questers had QoC in relation to mean time
between failures.

average received QoC remaining consistent as the fail-
ure rate increases. Figure 8 gives a close up of the graph
at the more frequent failure rates of one every 100, 50
and 10 time units. Even with the high frequency, the
received QoC remains consistent. Similar behaviour is
observed for percentage of time a requester has no sen-
sor, the ratio of work packets to overall packets (inverse
of the overhead) in figure 9, and the average time for a
re-tender to complete. These results are not surprising
since BioANS uses a frequent re-tender method. At the
same time BioANS manages to keep low overheads (see
figure 9).

Our final experiment looks at how average QoC de-
grades as the sensors fail without replacement, and re-
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Figure 8. Subset of x axis from 0 to 1000
of average percentage of time requesters
had QoC in relation to mean time between
failures.
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Figure 9. Ratio of work packets to overall
packets in relation to mean time between
failures.

sumes as new sensors are are added. The experiments
were run with a density factor of 0.4, varying the sensor
node population from 0 to 1000. The failure and re-
covery rates are exponentially distributed with a rate of
one every 5000 time units. Each experiment was run ten
times, and all ten runs are shown to show the deviation
of results in figure 10. The results show that BioANS
degrades and recovers gracefully. The collective results
of the above experiments show that the bio-inspired ap-
proach of low cost messages works well to make a sta-
ble, robust protocol with low overheads. The protocol is
very resilient to highly dynamic network conditions.

11. Related Work

Utility based service selection is gaining interest in
the Self-Adaptive Computing community. Much of this
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Figure 10. Average percentage QoC as
network resumes.

work prescribes a given utility of service per applica-
tion without providing a single generic framework that
is shared between applications. The applications request
a service using bulky middleware that buffers utility in-
formation and drives the self-management of the system
therein. This middleware solution is not suitable for re-
source scarce sensor networks and this central compo-
nent limits he scalability required for larger scale *smart
dust-like’ applications as found in environmental moni-
toring.

Rajkumar et al. [20] propose a resource allocation
model for QoS management within a single system. Re-
sources include CPU utilisation, memory consumption,
network bandwidth and latency. Each application deliv-
ers to the system the minimum resource requirements
it has, plus a utility function that returns the increase
in performance given additional resources. The system
then allocates resources to each application such that the
total system utility is maximised.

The Context Toolkit [21] is a framework aimed at fa-
cilitating the development and deployment of context-
aware applications. Similar to the work presented here,
it abstracts context services, e.g. a location service, from
the sensors that acquire the necessary data to deliver the
service. Again, the Context Toolkit allows sharing of
context data through middleware, but has the advantage
that this is distributed over the base-stations or nodes
that have higher resources. Again, unlike our work this
middle-ware infrastructure is quite bulky thus not suit-
able for sensor applications where the infrastructure is
deployed on the actual sensor nodes. Moreover, it does
not provide any self-adaptation in terms of allowing ap-
plications that enter the distributed environment to dis-
cover available services: the location of context services
(IP address and port number) has to be known in ad-
vance. Also, there is no mechanism that allows context
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services to adapt and react to failure or degradation of
the underlying sensor infrastructure, e.g. by switching
to an alternative means of acquiring the same type of
context.

Cohen et al. have proposed iQueue [22], a data-
composition framework for pervasive data. iQueue al-
lows applications to create data composers, specify a
composer’s data sources using functional data specifi-
cation, and specify a composer’s computation. Simi-
lar to our Requester, the iQueue run-time system selects
data sources satisfying the data specifications, dynam-
ically re-selects data sources as appropriate. The goal
is very similar to ours, although their middleware has
not been designed in a lightweight fashion. They use a
mechanism similar to our periodic retender request, in
that a data source issues advertisements periodically, but
also whenever properties of the data source, e.g. qual-
ity of information, change. It would appear that they
use Boolean predicates over the values of the properties
of the data source. Instead, we present a mathematical
model based on application’s wishes that evaluates each
applications quantitative satisfaction with regard to any
particular data source. These centralised solutions are
not suitable for sensor networks as many of the nodes are
too small to carry out this burden and it introduces a cen-
tral point of failure to the system. Therefore we aimed
to carry out the same functionality in a more lightweight
and decentralised way, hence our bio-inspired approach.

BioANS is an enhancement of the wireless sensor
network protocol ANS [13] with the addition of the stop-
bid mechanism . ANS is a much simpler protocol, and
proved very robust. Its problem is high communica-
tion overhead when the network grows to larger sizes.
BioANS is proposed as a solution to this scaling prob-
lem.

The inspiration for BioANS is stylistically bio-
inspired. In [23] an emergent leader election algo-
rithm is given whose communication style is based
on the mechanics of pheromone based communication.
Pheromone communication is essentially a broadcast,
with no guarantee of delivery. The emergent leader elec-
tion algorithm uses the inherent non-determinism of un-
reliable communication to make a very efficient algo-
rithm for large size distributed systems. In [12] a similar
use of the non-determinism of un-reliable communica-
tion is used to recruit idle nodes for distributed com-
putation. Because of the similarity between the style
of communication used in these works, and the type of
communication we are restricted to in sensor nets, the
optimised ANS is heavily inspired by these algorithms.

As far as we are aware there is no protocol for sen-
sor networks that we can use to compare our work di-
rectly. Recall that BioANS is essentially a service-

oriented protocol designed to be lightweight while im-
plementing self-optimisation and reliability through ser-
vice redundancy. There is a large body of service ori-
ented/service selection research in the large scale com-
puting field; mainly focusing on semantics and perfor-
mance at that scale. Conversely, BioANS was designed
with a low footprint and operational overhead for tiny
sensor node devices where the emphasis is on minimis-
ing overheads and achieving scalability in the thousands
rather than tens of nodes. The main body of emergent-
like algorithms that exist for sensor networks mainly fo-
cus on the reliable and timely delivery of messages from
a given node to a sink or between nodes and not reliabil-
ity through service selection which sits at a higher level
of abstraction (e.g. LEACH and the large body of sub-
sequent related work [24]). Incidentally, BioANS does
not assume a reliable underlying network layer and as-
sumes messages can be lost. As a result, there are no
results, other than our own obtained from the initial pro-
tocol runs, to which we can directly compare the figures
we present here.

12. Conclusion

BioANS employs emergence engineering concepts to
satisfy the demanding requirements of large-scale appli-
cations deployed on sensor networks. Specifically these
requirements are scale, robustness, low latency negoti-
ation and efficient resource usage. BioANS describes
services provided by the WSN as contexts and the qual-
ity (QoC) with which this context can be delivered. Ap-
plications are composed of sets of calls to retrieve con-
text (sensor data) from those sensors that provide the ap-
propriate quality (accuracy, up-to-dateness etc.) of such
data.

This paper has evaluated the extent to which the in-
troduction of these emergence mechanisms, such as de-
layed bid, contribute to the overall quality of the proto-
col.

To this end we took measurements obtained from a
smaller scale WSN running the original ANS and ap-
plied them to a simulation model to observe how the
protocol would operate under extreme conditions such
as failure or large numbers of nodes, which further al-
lowed us to carry out partial validation of results.

The experiments have evaluated the performance of
the BioANS protocol in terms of?: its resilience to node
failure; the effects of changes in sensor node population
and density; the efficiency of communication in terms
of the ratio of work packets to overhead packets; and
the various factors that impact on the QoC received by
requesters.

The average received QoC was measured as the den-
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sity of the nodes in their deployment was reduced. At
the given range of 20 units, the nodes offered above
94% average QoC over time as long as the density fac-
tor was greater than 1.0. At density factors less than
1.0, the QoC begins to reduce. The performance of
BioANS was measured at a density factor of 0.4 and
was found to scale without change in performance up
to 1000 nodes. BioANS was also tested with increasing
failure rate of the senors, and found to offer the same
performance even with very high failure rates, i.e. the
performance was found to gracefully degrade as the the
sensor pool shrinks due to failures. In conclusion the
experiments demonstrate that the bio-inspired optimisa-
tions of BioANS provide a stable, highly scalable and
robust protocol that has general applicability to a wide
range of applications in sensor networks and similar re-
source constrained domains.

References

[1] J. McCann and A. Hoskins, “Proof of concept adaptivity
and performance benchmark results,” tech. rep., Imperial
College London, May 2006.

[2] K. Martinez, J. Hart, and R. Ong, “Environmental sensor

networks,” IEEE Comput., vol. 37, pp. 50-56, August

2004.

S. Okdem and D. Karaboga, “Routing in wireless sen-

sor networks using ant colony optimization,” in First

NASA/ESA Conference on Adaptive Hardware and Sys-

tems, IEEE, 2006.

W. Cai, X. Jin, Y. Zhang, K. Chen, and R. Wang, “Aco

based qos routing algorithm for wireless sensor net-

works,” in Lecture Notes in Computer Science, Springer

Berlin/ Heidelberg, August 2006.

[5] T. Buchholz, A. Kupper, and M. Schiffers, “Quality of

contex: What it is and why we need it,” 10th Workshop of

the HP OpenView University Association (HPOVUAO3).

R. Anthony, “Emergent graph colouring,” Engineering

Emergence for Autonomic Systems (EEAS), First Annual

International Workshop, at the third International Con-

Serence on Autonomic Computing (ICAC), Dublin, Ire-

land, pp. 4-13, June 2006.

[7] O. Babaoglu, G. Canright, A. Deutsch, G. D. Caro,
F. Ducatelle, L. Gambardella, M. J. N. Ganguly, R. Mon-
temanni, A. Montresor, and T. Urnes, “Design patterns
from biology for distributed computing,” in ACM Trans-
actions on Autonomous and Adaptive Systems, vol. 1,
pp. 26—66, September 2006.

[8]1 M. Gell-Mann, The Quark and the Jaguar: Adventures

in the Simple and the Complex. Abacus, London, 1994,

S. Johnson, Emergence: The connected lives of Ants,

Brains, Cities and Software. Penguin Press, London,

2001.

J. Casti, Complexification: Explaining a Paradoxical

World Through the Science of Surprise. Abacus, Lon-

[3

—

[4

—

(6

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

[23]

[24]

51

don, 1994.

R. Genet, The Chimpanzees who would be Ants: A Uni-
fied Scientific Story of Humanity. Nova Science Publish-
ers Inc, New York, 1997.

R. Anthony, “Engineering emergence for cluster configu-
ration,” Journal of Systemics, Cybernetics and Informat-
ics, vol. 4, no. 3, 2006.

J. McCann, M. Huebscher, and A. Hoskins, “Context
as autonomic intelligence in a ubiquitous computing en-
vironment,” International Journal of Internet Protocol
Technology (IJIPT) special edition on Autonomic Com-
puting, 2006.

J. Kephart and D. Chess, “The vision of autonomic com-
puting,” Computer -IEEE Computer Society, vol. 36,
no. 1, pp. 41-51, 2003.

M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. Campbell, and K. Nahrstedt, “A middleware infras-
tructure for active spaces,” IEEE Pervasive Computing,
vol. 1, no. 4, pp. 74-83, 2002.

J. Hightower and G. Borriello, “Location systems for
ubiquitous computing,” JEEE Computer, vol. 34, pp. 57—
66, August 2001.

A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual
framework and a toolkit for supporting the rapid proto-
typing of context-aware applications,” Human-Computer
Interaction, vol. 16, pp. 97-166, 2001.

R. Anthony, “Emergence: A paradigm for robust and
scalable distributed applications,” st Intl. Conf. Auto-
nomic Computing (ICAC), IEEE, New York, pp. 132-139,
2004.

“Ans over bnet.” http://www.doc.ic.ac.uk/ asher/ubi/ans/bnet.html.

R. Rajkumar, J. L. C. Lee, and D. Siewiorek, “A resource
allocation model for qos management,” in Proceedings
of the 18th IEEE Real-Time Systems Symposium (RTSS
"97), p. 298, IEEE Computer Society, 1997. ISBN 0-
8186-8268-X.

D. Salber, A. K. Dey, and G. D. Abowd, “The context
toolkit: aiding the development of context-enabled ap-
plications,” in Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 434-441, ACM
Press, 1999. ISBN 0-201-48559-1.

N. H. Cohen, A. Purakayastha, L. Wong, and D. L. Yeh,
“iqueue: A pervasive data composition framework,” in
Proceedings of the Third International Conference on
Mobile Data Management (MDM), pp. 146-153, Jan-
uary 2002. URL http://www.research.ibm.com/sync-
msg/MDM2002.pdf.

R. Anthony, “An autonomic election algorithm based
on emergence in natural systems,” Integrated computer-
aided engineering, vol. 13, no. 1, pp. 3 -22, 2006.

W. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless
microsensor networks,” System Sciences, 2000. Proceed-
ings of the 33rd Annual Hawaii International Conference
on, p. 10, 2000.



