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Abstract The increasing demand for high performance and quality polymer composite materials has led to international 

research effort on pursuing advanced tooling design and new processing technologies to satisfy the highly specialised 

requirements of composite components used in the aerospace industry. This paper reports the problems in the fabrication 

of advanced composite materials identified through literature survey, and an investigation carried out by the authors 

about the composite manufacturing status in China’s aerospace industry. Current tooling design technologies use tooling 

materials which cannot match the thermal expansion coefficient of composite parts, and hardly consider the calibration of 

tooling surface. Current autoclave curing technologies cannot ensure high accuracy of large composite materials because 

of the wide range of temperature gradients and long curing cycles. It has been identified that microwave curing has the 

potential to solve those problems. The proposed technologies for the manufacturing of fiber-reinforced polymer 

composite materials include the design of tooling using anisotropy composite materials with characteristics for 

compensating part deformation during forming process, and vacuum-pressure microwave curing technology. Those 

technologies are mainly for ensuring the high accuracy of anisotropic composite parts in aerospace applications with 

large size (both in length and thickness) and complex shapes. Experiments have been carried out in this on-going 

research project and the results have been verified with engineering applications in one of the project collaborating 

companies. 

Key words polymer composites manufacturing, anisotropic composite tooling design, vacuum-pressure microwave 

curing, aerospace composite materials  

1. Introduction 

Fiber-reinforced polymer composite materials with high mechanical strength and fatigue 

resistance, light weight, and excellent high-temperature characteristics are the combination of 
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various polymer matrix and fibers. Owing to its excellent mechanical properties, fiber reinforced 

composites are the promising solutions to the various commercial applications [1-3], especially in the 

weight-critical aerospace industry. Aerospace applications pursuit best performance, and traditional 

materials cannot meet the highly specialized requirement, therefore, advanced composite materials 

with much better and controllable functional properties become widely used in aerospace structures 

[4]. Commercial aircrafts, military aircrafts, space aircrafts and helicopters, all make substantial use 

of composites, both for interior and exterior structures [5]. Polymer composite structures like 

wing-covers, aircraft leading edges and composite fuselages become the standard use in advanced 

aircrafts, which not only reduce structural weight, but also provide better stiffness, toughness, fatigue 

strength, energy absorption, and thermal stability than traditional materials [6,7]. Currently, 

composite materials represent 50% of the weight for Boeing 787 Dreamliners and 52% for Airbus 

350XWB airplanes [8]. More fiber reinforced composites are being applied in their aircraft structures 

such as by the two giant aerospace companies. China’s aerospace industry has advanced at an 

impressive rate over the past two decades. The data in Figure 1 shows major countries’ aerospace 

manufacturing investments from 1990 – 2009 [9]. It can be seen that China has invested more than 

USA in the aerospace field over the past two decades (the vertical axis represents the numbers of 

investment projects). According to the data released at AVIC’s 2009 company summit meeting [10], 

the total value of the company’s subcontract deliveries in 2008 reached $639 million, a 35% 

year-on-year increase over 2007. 

The investigation by AeroStrategy Management Consulting [9] shows that China is a popular 

location for manufacturing investments and has a broad aerospace supplier base to set up aerospace 

industry. This can dramatically promote the composite materials manufacturing business in aircraft 

components. Many domestic aircraft industries of China have already built their own composite 

design, processing and testing facilities. The development of advanced composite materials has 

become one of the new forces to drive China’s aerospace industry. The proportion of composite 

structures used in aircrafts increased very quickly. For example, a series of main load-bearing and 

complex composite components have been used in China’s domestic airplanes C919, nearly reaching 

23%, including composite wings, wing fuel tanks, center tanks, empennages and control surfaces 

[11].  
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The trend of the application of Advanced High Performance (AHP) composite components 

(including anisotropic composite materials) is for larger size (in length and thickness), higher 

dimensional and geometric accuracy and complex surfaces. The AHP composite materials, 

especially for anisotropic materials such as unsymmetrical composites, have attracted researchers’ 

interest in developing morphing and shape control technologies in aerospace applications [12]. 

Higher component accuracy and quality can be achieved by designing the surfaces of tools and 

reducing tool-part interaction. Therefore, tooling design plays a major role in deformation control. 

Metal tooling has high coefficient of thermal expansion (CTE), high weight and difficult-to-cut 

characteristics, which makes it a new challenge in aerospace manufacturing. More tooling is being 

built using composite materials [13]. The CTE of Anisotropic Composite Tooling (ACT) may be 

designed to have almost the same CTE of AHP composite components in all directions. Recently, 

most AHP composite materials have been developed into thick components with variable 

cross-sections. This trend adds more problems to composite materials fabrication. Non-uniform 

temperature distribution and cracks often appear in composite parts during manufacturing using 

traditional techniques.  

In order to improve the property of thick composite materials, especially for large-scale and 

high quality composite materials, this project investigated microwave curing technologies which 

have significantly shorter curing cycle and produce better performing composites with thick cross 

sections (e.g., 24.5mm), compared with conventional thermal curing technologies [14]. This research 

is carried out in response to the demand of the aircraft manufacture industry identified in a 

comprehensive investigation of composite structures used in the aerospace industry. 

The purpose of this study is to develop new methods for composite tooling design, and more 

effective microwave curing technologies. The project will use anisotropic composite materials for 

tooling, and develop theoretical models to predict the expansion of tools during forming process to 

match the expansion of composite components, and to calibrate tool surfaces to compensate the 

deformation of components after the forming process. In microwave curing technology, this project 

will use electromagnetic to penetrate composite tooling and heat the thick non-symmetric composite 

materials with vacuum-pressure, and use distributed temperature control methods to optimize the 

temperature distribution across the external surfaces and throughout the entire volume of the 

material, so as to reduce non-uniform curing and thus obtain good quality. 



2. An Industrial Investigation 

The aim of this investigation is to obtain an estimate of the trend at which large size, higher 

dimensional and geometric accuracy, complex surface and anisotropic composite materials have 

been used in aerospace field. A list of questionnaire-based surveys have been carried out in Chengdu 

Aircraft Industry Group Co. and Hongdu Aircraft Industry Group Co.. Their engineers in Composite 

Materials Processing Plant (CMPP) responded to the questionnaires. A total of 20 questionnaires 

have been answered by the two companies by telephone interviews. Over 90% respondents have 

more than 5 years’ working experiences in aerospace industry. 

The response rate was 85%. This study reduced the reporting bias and obtained a series of 

statistical diagrams that showed the development trend of AHP composite materials in aircraft 

industry. The survey carried out in this project indicates that autoclave curing is taken as the most 

important composite processing technology in aerospace manufacturing, and approximately 98% 

composite components are made by autoclave in some military projects. The contributing factors 

causing AHP composite materials’ deformations in autoclave curing are shown in Figure 2.  

The total grade is 9.0 and the statistics data is the average value. The grades of different features 

in the whole composite parts fabricated in their plants have been analyzed in Figure 3(a). The grades 

of different tooling materials used in plants are analyzed in Figure 3(b).  

Those survey data indicates that the large size, complex surface and anisotropic composite 

materials have a big proportion in aircraft composites. The composite parts larger than 5m get grade 

value of 4.3. Complex surface parts reach grade value of 4.2. The advanced tooling materials, such 

as Invar and composite still need further development. But the survey also exhibits that the 

composite tooling application has a big increase in recent years. Figure 4 shows the grades of 

problems in the curing of thick composite parts (more than 20mm in thickness) and problems in 

tooling design process. Large temperature gradient and deformations have a very high score 

nowadays curing technologies, nearly 8.2 scores. This means that conventional thermal heating 

techniques cannot solve the curing problems of thick composite parts. The relationship of tooling 

design and deformation of parts still puzzles the engineers in plant. 



3. Literature Survey  

Since 1980, advanced composite materials have been used in F-18 fighter aircrafts. With the 

development of technology, composite materials are applied to the whole wings and fuselages of 

state-of-the-art fighters, accounting for nearly 25% to 50% of the whole aircraft weight, Such as F-22 

and EF2000 [15]. The characteristics of composites determined that it can only be achieved by the 

integration of digital design and manufacturing technologies. The design and processing method for 

aircraft structures of polymer composite materials have been described in numerous books and 

papers, including those by Schwartz [16] and Ye [17].  

Many processing methods have been developed in recent years, as the autoclave curing method 

has a variety of major advantages, but processing AHP composite laminates still remain as a big 

challenge in aerospace field. Figure 5 shows a large composite wing panel of Airbus large transporter 

A400M [18]. The appropriate tooling design methodologies can reduce the tooling-part interaction 

and increase the accuracy of composite parts. The non-uniform curing is mainly caused by uneven 

temperature distribution, so the Microwave curing techniques can be considered to solve this 

problem. Microwave curing technology can accomplish a synchronous inside-out cure in 

thick-section composite to obtain an even temperature distribution and reduce the deformation of 

composite components used in the aerospace applications. This technology is investigated in this 

paper to reduce the in-plane and thick-direction temperature distribution, which can also reduce 

energy consumption. 

3.1 Tooling of Composite Materials 

The control of part shape and deformation is significant in manufacturing of composite 

materials. The matching of CTEs of fiber and matrix materials is very difficult to achieve, due to the 

deformation nature of fiber reinforced composite materials. However, the tooling surface and 

tooling-part interaction can be designed and calibrated to achieve higher components accuracy and 

quality. For this reason, tooling design is thought as vital but often is underappreciated silent partner 

behind every well-designed composite part [19]. 
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3.1.1 Tooling Materials  

Differences in thermal properties between the tooling materials and fiber reinforced composite 

materials often lead to severe stresses in the composite parts during autoclave processing. These 

stresses may have a strong influence on the deformation of composite structures [20]. The influence 

of the tooling materials are discussed in this paper. Metal tooling, like steel and aluminum, have a 

wide use in aircraft composite parts’ processing. Those tooling can fabricate specified geometry 

which are the same as the composite components. They may also prove to be of lower investment 

and maintenance cost than other tooling materials [21]. The stable structure of metal tooling in high 

temperature can guarantee the shape and quality of parts. But high coefficient of thermal expansion 

(CTE) and excessive weight limit the achievable accuracy and quality of composite materials.  

With the continuous development of technologies, invar tooling [22] has drawn researchers’ 

attention, for its low thermal expansion. The practically same CTE value of parts with the composite 

materials of invar tooling has given less deformation than metal tooling. Wimpenny and Gibbons 

[23] reported an invar spray technology, aiming at developing a manufacturing route for large 

aerospace composite forming tooling. They also developed a method of spray invar tooling, other 

than machining for composite aerospace components. The mechanical properties of the coatings 

were found to be low, compared to bulk invar [24]. Figure 6 shows an invar tooling manufactured by 

Lockheed company to process the composite laminate of F-35 aircraft [25]. However, the invar 

tooling has a very high price and difficult-to-cut characteristics. This makes it difficult to promote in 

some low cost fields. 

Table 1 indicates that the composite tooling has low manufacture costs, weight, CTE and better 

control of deformation than invar and conventional tooling materials. High Specific heat capacity of 

composite tooling can uniform the temperature of parts and reduce the curing time. It is most 

important that composite tooling offers a simplifying tooling design and reduces time of building, 

which is low in cost, rigid, durable and thermally stable. Many companies such as advanced 

composites group (ACG) produced autoclave-cure tooling system that offers a thermal cycling 

capability up to 200°C/392°F [26]. 

John Wanberg et al [27] indicated that composite tooling is extremely cost effective for 

moulding exceptional high-quality parts. Zhou [28] studied composite tooling and claimed that it can 



reduce the heat capacity and temperature difference of composite component during curing process 

and match the CTE between tooling and component by reasonable design. Ao [29]
 
reported that 

composite tooling can provide high accuracy of radar antenna, e.g., the accuracy of composite 

antenna can be less than 0.04mm. Fan and Zhang [17]
 
investigated large size and critical dimensional 

and geometric accuracy aircraft composite parts, and predicted that more large complex composite 

structures will be used in military and civil aircrafts, and the corresponding tooling should be 

fabricated. A composite tooling of 4m width, 8m length is fabricate by Hexcel Company applied in 

the future A350 XWB aircraft fuselage panels [30]. The composite parts processed by those tooling 

achieved good surface quality and accuracy than by metal tooling. On this account, more and more 

tooling is being built using composite materials, particularly where dimensions or mould stability are 

critical. 

3.1.2 Calculation of Composite Material Deformation 

Many researchers studied the design of tooling surface to obtain the required tool shapes. GKN 

aerospace company investigated less expensive composite tooling and concluded that it may provide 

the optimum solution for the future [31]. Potter et al [32] investigated four flat moulds: aluminum, 

steel, carbon composite and carbon foam curing unidirectional laminates. As a result, severe residual 

strains were found in the longitudinal direction for the samples cured on aluminum or steel moulds, 

whereas the samples cured on carbon-based moulds exhibited almost no strain after cooling-down.  

As commonly known, tooling-rework is time consuming and costly. In order to get the 

dimensional and geometric accuracy of composite components, numerical analysis such as Finite 

Element Modeling (FEM) has been used to calibrate tooling geometry. Jung et al [33]
 
developed two 

numerical models to calculate spring-back and compensate tooling geometries for hybrid 

carbon-glass laminates. Zeng and Raghavan [34] studied the tool-part relationship in autoclave 

process induced deformation of a large composite structure using a 3D finite element process model. 

A comparison of predictions using various models for this research suggested that the process 

induced stress of composite components were caused by constrained deformation of the tool and the 

part. Simulation programs have also been developed to achieve low deformation and reduce errors 

caused by unskilled engineers and nonlinear complicated contact treatment [35, 36]. The in-plane 



and through thickness thermal and chemical stress of composite laminates have been considered to 

build 3D finite element simulations for calibrate tooling design in post-cure distortions [37-39].  

In addition, calculation methods have been studied to predict the deformation of composite 

material. Hyper [40, 41]
 
was the pioneer to establish geometric formula and calculate the thermal 

deformations in anisotropic composite material, which is cross-ply composites. Nawab et al [42] 

calculated the thermal and chemical deformations together, by considering a non-linear geometrical 

approach to understanding the evolution of shape and hence residual stresses induced during 

carbon/epoxy laminates fabrication process. The effect of fiber fraction on the chemical and thermal 

deformations was studied as well.  

3.1.3 The Application of Anisotropic Composite Materials 

The anisotropic fiber reinforced composite parts, for instance the non-symmetric composite 

materials, have military and commercial applications for Unmanned Aerial Vehicles (UAVs) to stow 

their wings and control surfaces into very small volumes to permit gun launch or packaging into 

aircraft mounted aerial drop assemblies [43-45]. A study funded by Sandia National Laboratories 

(Albuquerque, N.M., U.S.A.) has produced an "adaptive" composite wind blade, which promises to 

reduce the cost of energy from a 1.5 MW turbine by about 2%. The 9m "adaptive" blade's 

anisotropic laminate design helps the pitch control system maintaining a steadier flow of electrical 

power under these sudden, transient and localized wind conditions [46]. Moore et al [47] studied the 

stability characteristics and thermal response of a bi-stable composite plate with different asymmetric 

composition. The non-linear finite element method (FEM) was utilized to determine the response of 

the laminate. Figure 7 shows an aircraft winglet model with the FEM predicted stable configurations 

without any continuous power source or mechanical conjunctions. They thought that using of this 

supreme morphing ability can enhance the performance of the aircraft, although it has not been 

industrialized yet. 

 Bowen et al [12] investigated the asymmetrical carbon fiber/epoxy composites with bonded 

piezoelectric actuators. The shape change and morphing of composite materials have been 

successfully obtained by experiment application. Friswell and Inman [48] reported the use of an 

asymmetrical laminated composite as an alternative approach to realize a variable sweep unmanned 

aerial vehicles (UAVs) wing. In order to overcome the aerodynamic loads, two spar wings with an 



asymmetric laminate region close to the root were applied. Many other authors [49-51] studied the 

asymmetric composite materials at room-temperature and predicted the application of bi-stable 

laminates in morphing or adaptive aircraft winglet with the experimental approach.  

3.2 Microwave Curing of Polymer Composite Materials 

Thick-section AHP composite materials have unacceptable temperature difference in the 

thickness direction and this phenomenon can cause non-uniform curing, which contribute a 

remarkable percentage to composite warpage. Thus, this project proposes microwave curing 

technologies to optimize the in-plane and thick-direction temperature distribution, which can also 

reduce production cycle and obtain good quality. 

3.2.1 Comparison of Different Heating Technologies 

For polymer composite materials, there are many processing techniques. Most polymer matrix 

composite materials need to be heated to have crosslink reaction. The conventional heating method is 

electrical heating, such as the technologies used in autoclave and thermal curing oven. The main 

principle is heating the air in the oven, then through thermal heat convection and radiation to heating 

the composite materials and tooling [52]. Autoclave processing can produce strong, quality 

composites with higher fiber volume percentage and low void fractions [53, 54]. For this reason, 

autoclave processing with vacuum is commonly used for manufacturing composite components for 

the aerospace industry [55]. However, the thermal transfer process can only be controlled indirectly 

by cure temperature cycle, as thermal convection occurs spontaneously. Autoclave moulding process 

also requires a high capital cost of energy and processing times for accurate temperature and pressure 

control [56].  

Compared with electrical heating, electron-beam curing is a non-thermal, non-autoclave curing 

process [57]. It has essential difference with the conventional thermal curing. The electron-beam 

curing can reduce curing times, improve the composite part quality and performance and reduced 

overall manufacturing costs. Janke et al [58] thought that composite manufacturing technology has 

recently achieved a major breakthrough for the composites industry by successfully developing 

electron-beam. Lopata et al [59] studied the electron-beam-curable epoxy resins for the 

manufacturing of high-performance composites structures. They developed electron-beam curing 



technology which is possible to reduce the processing time and costs while processing composite 

materials. Zhang et al [60] studied the mechanism of interaction between AS4 carbon fiber and an 

epoxy matrix in composites cured by electron beam. The inter-laminar shear strength of an 

electron-beam-cured composite was improved from 72.1 to 81.1 Mpa. But the electron-beam curing 

cannot penetrate into composite materials. For thick-section composite materials, the temperature 

gradient is still unacceptable. At the same time, this technology has a strict requirement to the 

equipments. Other curing methods, like Ultra Violet (UV) processing technologies are also unable to 

cure the inter materials and need special resin matrix system to have a reaction with UV [61, 62]. 

X-rays provide the ability to control dose-rate and to penetrate into metal mold [63], but may result 

in an extremely long curing time and have implications on safety. 

Microwave curing technology has a low heating efficiency, long curing time and good control 

of temperature. As the problems discussed above, the microwave curing technology can deliver the 

microwave energy directly to materials through molecular interaction with the electromagnetic field. 

Because microwaves can penetrate into materials and deposit energy, heat can be generated inside 

the material, that is so quickly and possible to achieve rapid and uniform heating of thick composite 

materials. The volumetric heating phenomenon means that air around the materials will not be 

heated, hence energy efficiency is improved. In addition to volumetric heating, energy transfer at a 

molecular level can have some additional advantages, such as enhancing the adhesive bonding 

between two composite parts and increasing boundary strength of fiber and polymer matrix [64]. 

3.2.2 Microwave  

Microwaves belong to the portion of the electromagnetic spectrum with wavelengths from 1mm 

to 1m with corresponding frequencies between 300MHz and 300GHz [65]. It is superposition of 

alternating electromagnetic and magnetic fields. With the wide range of electromagnetic spectrum, 

microwaves are used for wireless communication and heating. For microwave heating, microwave 

processing frequencies is limited to a few ranges: 915 MHz, 2.45 GHz, 5.8 GHz and 24.124 GHz 

[65].  



3.2.3 Microwave Curing of Composite Materials 

When using microwave in the manufacturing process of composite materials, the dipole steering 

polarization phenomenon plays a major role for material heating. In electromagnetic field, the 

dipoles of the material have an interaction with the electric field, which results in the macroscopic 

dipole moment. The hysteresis of dipole steering polarization with the alternating electric field, 

finally lead to power dissipation and heating in composite materials. The power dissipation and 

absorption of microwave energy can be calculated by equation [66]: 

                                                                        

Where P is absorption of microwave energy,   is the circumference-to-diameter ratio, f is the 

frequency of microwave,      is the dielectric loss of material, which means the efficiency of 

transform electromagnetic energy to thermal energy, E is the electric field intensity. For microwave 

curing of thick composites, the penetration depth also requires consideration to guarantee the 

temperature distribution. Different frequencies have different penetration depths. The equation 

related with microwave penetration depth in materials is [67]: 

                  ⁄                                                      

Where D is the penetration depth, c is a constant number,   is dielectric constant without 

electromagnetic. Thus, microwave processing efficiency is affected by the dielectric properties of the 

composite material itself. The energy absorbed across the laminate also depends on the material and 

thickness. Compared with the whole fiber/resin-matrix composite materials, carbon fiber reinforced 

composites have the highest dielectric properties in terms of the conductive properties of carbon 

fiber.  

As mentioned above, different composites system can have different microwave processing 

results and performance. Lee and Springer [68] investigated microwave curing of both glass fiber 

reinforced and graphite epoxy matrix composites. The glass fiber reinforced composites may be 

cured effectively by microwaves regardless of ply orientation and polarization angle. Graphite epoxy 

composites consisting of multidirectional laminate cannot be cured effectively by microwaves, as the 

electrical conductivity and electromagnetic reflection of graphite fiber bundles. Fang and Scola [69] 

concluded that microwave energy can be successfully used to fabricate high-performance 

PETI-5/IM7 polyimide/ graphite prepreg into PETI-5/IM7 composites with better properties than 



using the conventional thermal cure process. Boey and Yap [70] investigated the effect of using 

different curing agents in microwave curing of an epoxy system and suggested that the microwave 

curing was more effective in enhancing the reaction rates during crosslinking. Ku and Siores [71] 

reported that microwave irradiation did reduce curing shrinkage of the components cast from 

uncured 33% by weight or 44% by volume of fly ash particulate-reinforced vinyl esters. Ismail et al 

[72] compared microwave energy and conventional curing 5292A bismaleimide resin. They realized 

that there was no difference in the chemical reactions taking place during the microwave curing and 

the thermal curing. Zhao et al [72] studied a mathematical model that can be used to optimise 

microwave heating devices, enabling the configuration to deliver a uniform electric field to process 

thermosetting of epoxy resin layers of material. 

For thick composite laminates, thermal gradients in thick direction always confused the 

researcher. The study of processing a thick composite laminate found a very low heating rate before 

gel point which can control the temperature in an allowed range. But the manufacturing time is 

increased by 27% [74-76]. Autoclave curing thick-section laminates may cause anisotropy of 

viscosity and degree of curing. That can harm the composite property and produce micro-cracks [77]. 

Erik and Tsu [14] studied both microwave curing and thermal curing of thick-section glass/epoxy 

laminates. They discovered that microwave curing promotes an inside-out cure, dramatically reduced 

thermal gradients and the overall processing time. They also researched the numerical process 

simulation of a thick composite laminate processed using conventional and microwave techniques 

[78]. Wei et al [79] reported microwave curing of thick cross-ply carbon fiber/epoxy composites in a 

single mode microwave cavities. The 24-ply cross ply graphite fiber/epoxy composite laminates had 

been processed in a cavity using 2.45 GHz microwave radiation. 72-ply unidirectional and cross ply 

composites also had been successfully cured. Results of the numerical and experimental work show 

that microwaves accelerate the curing of thick laminates through accelerated chemical reaction 

kinetics and direct, efficient coupling of energy throughout the material thickness. Qaddoumi et al 

[80] reported that microwave energy can provide uniform and fast heating for thick sandwich 

composites than conventional thermal techniques.  

The measurement of thermal gradients in microwave curing of composite materials is different 

from using the thermal heating technology. The conventional metal-based thermoelectric cannot be 

used in microwave cavity, because the metal sensor may be self-heated by electromagnetic wave 



induced surface eddy current [81]. Yarlagadda and Cheok [82] studied the temperature-feedback 

control system of microwave curing, which was able to provide a precise and considered temperature 

control strategy for the localized hot spots and thermal run-away. They applied an infrared 

thermometer to measure the surface temperature of the composite materials. Degamber [83,84] 

developed a low-cost, disposable fiber optic temperature sensor in the microwave oven and embed in 

the materials. This study demonstrated the successful deployment of two optical fiber sensors inside 

a microwave oven for monitoring the cure and temperature on line during a curing process. But, 

those measuring method should destroy the structure of composite parts. Vötsch Hephaistos 

Microwave Company [85] used the thermal imaging camera system to measure the temperature and 

obtained a better result.  

3.2.4 Variable Frequency Microwave Curing Technologies 

At present, most widely used microwave curing technologies are fixed-frequency and single 

model resonant cavity. However, the uneven temperature distribution and hot spots of 

electromagnetic in fixed-frequency microwave are often problematic [86], which restricted the 

composite parts performance and quality. Recently, Variable Frequency Microwave (VFM) 

technologies for material processing have been developed and alleviated the non-uniform heating in 

microwave processing. The technologies work by sweeping through a band-width of frequencies 

which are cycled through consecutively and launched into a cavity, resulting in different standing 

waves with many resonant modes [87]. 

Zhou [88] studied a VFM curing adhesive bonding in a single mode applicator. Results showed 

that microwaves reduced the bonding time dramatically and obtained adequate bonding strength. 

Fang and Scola [69] investigated microwave energy processing carbon fiber reinforced composite 

materials with a VFM furnace. Antonio and Deam [89] focused on the sweep-rate regime used in 

VFM and the effect of varying this parameter. They investigated two-dimensional computer model 

and it was found that a more even temperature distribution could be achieved using a VFM curing 

method. Ku et al [90, 91] have done a lot of work on microwave curing, studied low loss 

thermoplastic composites materials and presented a VFM technology. Figure 8 shows the microwave 

energy distribution of fixed frequency microwave and variable frequency microwave [92]. However, 



industrial microwave processing frequencies are limited to a few ranges, as discussed above. This 

means that VFM facilities cannot be widely used in industrial production.  

3.2.5 Assistive Technologies of Vacuum and Pressure 

As known, microwave energy may induce drying and dehydration of materials, to decrease the 

toughness and flexural strength of polymer resin. Thus, vacuum technology is necessary to provide 

the vacuum bag and vacuum environment to retain water in the resin materials. Meanwhile, for 

aircraft composite components, the fiber volume fraction needs to be maintained at 0.62 to offer a 

high strength and consolidation. However, without the pressure condition, fiber volume fraction can 

hardly be over 0.5 in composite curing process. 

Boey et al [93] investigated the high-pressure microwave curing process for an epoxy-matrix/ 

glass-fiber composite materials, and suggested that reduction in void content can be achieved. The 

usage of a continued vacuum evacuation is also studied. The vacuum bagging system reduces the 

voids by physically transporting the voids out of the resin and fiber network. An epoxy 0/90 

cross-woven E-glass system comprising 12-24 plies composite had been cured in a multi-mode 

cavity based on a 2.45 GHz magnetron with a wave-guide design. Results showed that industrial 

application of the microwave curing process still necessitates void reduction, which can be achieved 

using high-pressure to dissolute the voids. Earlier research work of Boey [94] indicated that the 

humidity and autoclave pressure affect glass fiber composite materials performance. The pressure 

during curing increased the Interfacial Shear Strength (ISS) values for all humidity levels.  

However, the pressure condition may affect the shape of microwave cavity. The most widely 

used cavity is rectangle resonant oven. But rectangle shape cannot be applied in pressure 

environment, due to the stress concentration in the corner. Thostenson and Chou [14] employed a 

2.45GHz multi-mode microwave cavity with 500 liter volume and cylinder shape, as shown in 

Figure 9(a). But this kind of cavity may cause electromagnetic concentration in the geometric center. 

Non-uniform temperature may occur. Vötsch Hephaistos Microwave Company [85] developed a 

hexagon shape microwave oven without pressure as shown in Figure 9(b), and reported that it has an 

even electromagnetic field compared with cylinder oven.  



4. Development of AHP Composite Components Curing 

Technology 

The research and application of ensuring high accuracy of AHP composite laminates are 

discussed in this paper. The Anisotropic Composite Tooling (ACT) design method has been studied 

to match the CTE of anisotropic composites, and calibrate tooling surface with nodes displacement 

of deformed part surface, based on the FEM calculation theory. Microwave curing technology can 

achieve rapid and uniform heating of AHP composite materials than using other heating methods. 

For processing better compaction and strength of aircraft composites, Vacuum-Pressure Microwave 

(VPM) with vacuum and pressure assisted curing technology is established to increase the resin 

toughness, compaction and to reduce the voids content.  

The Anisotropic Composite Tooling (ACT) and Vacuum-Pressure Microwave (VPM) curing 

technologies are integrated to ensure dimensional and geometric accuracy of part and reduce 

unacceptable temperature gradient occurred in AHP composite components. Those technical details 

are discussed in the sub-sections below. Appropriate composite tooling design methodologies can 

reduce the tooling-part interaction. The non-uniform curing factor, which affects the deformation of 

AHP composite materials, can be reduced by applying the VPM technology. 

The electromagnetic penetrates into the ACT and heats the composite part. ACT controls the 

composite part deformation and VPM reduces the temperature gradient, the accuracy and quality of 

AHP composites will be improved effectively. The curing procedure of AHP composite parts by the 

combination of ACT design and VPM curing technologies is shown in Figure 10. Better performance 

of AHP composite parts have been obtained in industrial applications. The composite component 

manufactured by this curing technology can achieve a better accuracy than using traditional 

processes. 

4.1 Anisotropic Composite Tooling Design 

For the Anisotropic Composite Tooling (ACT) design technology, as shown in Figure 10, the 

most important process is the design of composite tooling with approximately the same CTE value as 

the composite parts. That is based on calculating the parts ply direction and material parameters 

using ESAComp code. This process can ensure that the thermal deformation of composite tooling 



correspondence with composite part in their contact surface and substantially reduce the tooling-part 

interaction. On the other hand, the original tooling surface needs to be calibrated according to the 

composite part deformed surface at final dwell temperature. The deformed shapes after curing are in 

a state of equilibrium in which the total potential energy inside the body is at the minimum. 

Therefore, the composite deformation can be calculated with non-linear strains-displacement 

relationship and minimum of total potential energy established by FEM model. Finally, the 

deformation of anisotropy composite materials is calibrated to the original tooling surface and an 

approximately the same CTE as the composites parts is achieved in all-directions to ensure that the 

composite materials cured by ACT can get a high accuracy and quality. 

4.2 Vacuum-Pressure Microwave Curing Technologies 

In Vacuum-Pressure Microwave (VPM) curing process, microwave curing technology is used to 

heat the composite materials from inside to outside, at the same time, electromagnetic energy is used 

to increase the resin toughness, and the voids content is reduced by vacuum and pressure 

environment. The Distributed Temperature Control (DTC) technology has been presented within this 

framework to further improve the homogeneous of microwave heating. Distributed temperature 

control technology is developed based on infrared temperature measurement. The temperature 

measured from the composite materials is fed back to the temperature gradient computation system. 

The system calculates the fastest temperature variation directions using directional derivative and 

gradient function on the measurement of several temperature areas. Multiple magnetrons power 

coupling control module received the computation results, and adjusts the power of multiple 

magnetrons at corresponding positions according to the fastest temperature variation directions. 

VPM curing technology cuts down the non-uniform cross-link reaction and thermal stress of 

composite materials to achieve a high dimensional and geometric accuracy and quality, which can 

also reduce production cycle and achieve good quality. 

4.3 The Experiment 

To verify the anisotropic composite tooling design and vacuum-pressure microwave curing 

technologies, a number of unidirectional carbon fiber laminates were used to fabricate a complex 

composite part and then measured for deformation. The laminates used in present experiment are 



T300/3234 carbon fiber/epoxy unidirectional prepreg (USN150). The specimen in this study is 

manufactured by hand cutting and lay-up of USN150 prepreg. The temperature cycle for autoclave 

curing is dwell 100℃(212F) for 40 minutes and arrive 160℃(320F) with a temperature ramp rate of 

3.2℃/min (37.8F/min) then dwell 1 hour and cooling-down. The thermo-mechanical properties of 

the prepreg are given in Table 2. In this table, the variable “T” means temperature in curing process. 

The longitudinal direction is parallel to the fiber direction and the transverse direction is 

perpendicular to the fiber direction. The composite part is scaled with equal proportion from partial 

fairing structure for better reflection of advanced high performance composite components in current 

industrial applications. The 2mm thickness part ply is [45, 90, -45, 0, 90]4, compared to the [02/902]2 

plied asymmetric thin composite part. 

The anisotropic composite tooling is 40mm long, 20mm width and 2.5mm thickness, with 

circular surface and right-angle corner, as shown in Figure 11. The ply direction of tooling is based 

on the calculate results by ESAComp code to match the CTE of composite part. On the other hand, 

electromagnetic heating model of finite element method is applied to calculating the deformation of 

composite part in microwave oven. The composite tooling calibration is achieved through adjusting 

the tooling surface according to the result of composite part deformation. For convenience of 

experiment, the tooling is put in a foam model to support the tooling surface.  

A microwave oven with infra-red temperature measurement system is shown in Figure 12(a). It 

includes the infra-red temperature measurement (with two infra-red sensors) and power conditioning 

systems (with three magnetrons). As the microwaves penetrate into and heat the composite material 

from inside out, the temperature distribution in thick direction can be the same as in the surface. The 

microwave oven can run automatically by measuring the surface temperature of composite part and 

controlling the magnetron power to achieve the set temperature. The on-going research project 

provides an approach to compute the temperature gradient of two infrared sensors using directional 

derivative and gradient function. The algorithm of this method is programmed in the temperature 

controller, which is shown in Figure 12(b). This equipment can receive two signals of infra-red 

sensors and identify (by calculation) which temperature areas that are uneven, then control the power 

of the magnetron in respective positions. Microwave curing can offer low curing energy, reduced 

time and activation energy of the reactions [65]. The temperature cycle for USN150 prepreg is 

adjusted to satisfy the curing process of microwave by numeral experiments. The dwell temperature 



is 100℃(212F) for 10 minutes then rapid heating up to 160℃(320F), dwell 30 minutes and natural 

cooling to room temperature. 

Figure 13 demonstrates the vacuum bagging scheme and materials for composite part curing. 

For better accuracy of infrared measurement, the breather does not put into the bag. Meanwhile, the 

ballast load places on the top of the bag to provide the pressure for the composite materials. Two 

infra-red measurement areas do not put ballast load. The anisotropic composite component is 

fabricated using the anisotropic composite tooling (see Figure 11). The curvature measurement 

method and directions are shown in Figure 14. ‘A’ and ‘B’ are the start points of measurement, ‘C’ 

and ‘D’ are the end points. Measuring the ‘A-C’ line can get the curvature of circular surface, and 

measuring the ‘B-D’ line can obtain the right-angle corner curvature. Through measuring the 

coordination of composite part and tooling using a coordinate measuring machine, the curvature of 

composite parts manufactured using vacuum-pressure microwave curing technology are measured in 

every 5mm, along the measurement directions.  

The comparison of composite part curvature is plotted in Figure 15. This figure shows that the 

curvature of the composite component manufactured by anisotropic composite tooling, which 

applied ACT design technology, is significantly reduced. 

Due to the smooth of composite part surface, the curve graphs have small fluctuations. The 

largest curvature occurs at the two edges of composite part along the width direction. In the middle 

of the composite part, the curvature has a minimum value. The curvature in ‘A-C’ line is uniformly 

distributed in both sides and the curvature of composite component manufactured by designed 

anisotropic composite tooling is much lower than using conventional composite tooling. The largest 

decreasing of curvature is 5mm and lowest is 0.3mm. The curvature in ‘B-D’ line do not distribute 

symmetrically, the curvature near the ‘D’ point is much smaller than the ‘C’ point, as the 

deformation of asymmetric composite part has been restricted by the right-angle corner. Meanwhile, 

the measurement points close to the right-angle corner have a fluctuation, as the large deformation of 

carbon fiber and epoxy materials. 

The surface temperature of composite part fabricated in microwave oven has been measured 

using an infra-red sensor, as shown in Figure 16. Those results demonstrate that the surface 

temperature optimized by Distributed Temperature Control (DTC) technology can obtain a lower 

difference with standard temperature cycle than conventional temperature control at heating stage. 

As the composite part finished curing at 160℃ temperature, the magnetrons were shut down and let 

the part natural cooling-down to room temperature. Through analyzing the temperature of two 

infra-red sensors (such as infra-red sensor 1 and infra-red sensor 2), which measure two different 

areas of composite part surface, a more even surface temperature distribution can be achieved using 

DTC technology in microwave oven than using traditional automatic microwave control. More than 



10℃ surface temperature fluctuation can be reduced to allow infra-red temperature curve to be near 

the standard temperature cycle.  

Therefore, the composite components using composite tooling, which applied ACT design 

technology, and manufactured by vacuum-pressure microwave curing method, can increase the 

accuracy of advanced high performance composite components with features of anisotropic, larger 

size (in length and thickness), higher accuracy and complex surfaces. Other parts of those 

technologies have been verified with engineering applications in one of the project collaborating 

companies. 

5. Conclusions 

The control of dimensional and geometric accuracy of manufactured fiber-reinforced polymer 

composite components is a major challenge in the aerospace industry, especially for aircraft structure 

parts of large size (in length and thickness) with complex surfaces. A comprehensive literature 

survey and industry investigation identified that current tooling use materials which cannot match the 

thermal expansion of composite parts; and current microwave curing technologies have problems in 

dealing with large composite materials. The proposed and developed anisotropic composite tooling 

design method combined with vacuum-pressure microwave curing technology can achieve an 

impressive increase in the quality of manufactured composite components. Using the method, the 

thermal expansion of tooling can be predicted and appropriate materials selected so as to match with 

the expansion of composite parts. The method also provides a tool calibration algorithm to 

compensate the deformation of composite parts after forming process. The corresponding 

vacuum-pressure microwave curing technology solves the non-uniform curing problem, and 

increases the resin toughness and reduces the voids in the volume of the material. However, the 

technologies for the composite part deformation prediction and the temperature control of microwave 

curing, need to be further developed before the proposed technologies can be used in industry.  
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Table 1 Comparison of different tooling materials 

Property Composite 

 

Invar tooling Steel tooling Aluminum 

 First tooling costs (RMB) 600,000 700,000 300,000 250,000 

Second tooling costs 

 

335,000 700,000 300,000 250,000 

Thickness (mm) 6.3 15 15 15 

Density (kg/m3) 1500 8100 7850 2700 

Specific heat capacity 

 

1200 460 460 880 

CTE (10-6/K) 1.7~5.1 2.55 12 24 

Tooling deformation (mm) 9.4 9.8 33.3 52.5 

Parts deformation (mm) 15 15.9 47.5 62.5 

 

 

Table 2 Thermo-mechanical properties of composite laminates 

Material Composite Laminate (USN150) 

Density (kg/m3 ) 1533 

Longitudinal elastic modulus (GPa) 140 

Transverse elastic modulus (GPa) 7.1 

Longitudinal thermal expansion(/10-6) 30 

Transverse thermal expansion(/10-6) 1.5 

Thermal conductivity (W/m K) 5.43 

Specific heat (J/kg K) 963.5+3.52*T 
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Fig. 1 Major Aerospace Manufacturing Investments from 1990 -2009 [9] 

 

 

Fig. 2 Questionnaire survey results, sources of deformations for composite products  

 



        

(a)                                        (b) 

Fig. 3 Questionnaire survey results, (a) the grade of different features in the whole composite parts, (b) 

the grade of different tooling materials used in plants 

 

        
(a)                                         (b) 

Fig. 4 Questionnaire survey results, (a) the grade of problems in thick composite parts curing, (b) the 

grade of problems in tooling design 

 



 

Fig. 5 Composite wing panel of Airbus large transporter A400M [18] 

 

 

Fig. 6 Lockheed F-35 Invar laminating tooling [25] 

 

        
(a)                                        (b) 

Fig. 7 Winglet model with the FEA predicted stable configurations. (a) Prediction of first stable shape 

of composite panel, (b) Prediction of second stable shape of composite panel [47] 

 



 

Fig. 8 Schematic representations of microwave energy distribution in cavities for (a) fixed frequency 

microwave and (b) variable frequency microwave [92] 

 

        

(a)                                     (b) 

Fig. 9 2.45GHz multi-mode microwave cavity, (a) pressure assisted microwave oven [14], (b) Vötsch 

Hephaistos Microwave oven [85] 
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Fig. 10 AHP composite parts curing procedure of combining ACT design and VPM curing 

technologies 

 

  

Fig. 11 An anisotropic composite tooling by ACT design   

 



          
(a)                                          (b) 

Fig. 12 (a) A microwave oven with infrared temperature measurement system, Oven door, Infrared          

temperature measurement system (with two infrared sensors), Power conditioning system (with three 

magnetrons); (b) Temperature feedback and magnetrons power control system, Magnetrons power 

control, Temperature feedback sensor 

 

 

Fig. 13 Bagging scheme for composite part cure 

 



 

Fig. 14 Curvature measurement and CAD model of composite part  

 

 

Fig. 15 The comparison of composite part curvature  

 



 

Fig. 16 The surface temperature of composite part measured by infrared sensor 
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