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Abstract. This paper presents a novel Smoothed Particle Hydrodynamics (SPH) framework for 

analysis of droplet impact dynamics in a 3D inkjet printing process. Results obtained are validated 

against experimentally derived high-speed imaging data. The numerical framework is based on the 

Smoothed Particle Hydrodynamics approach of Monaghan et al [1] which has been proven to be 

efficient and effective for analysis of dynamic fluid flow problems involving free surface 

interfaces. The SPH approach has been augmented through addition of the kernel gradient 

correction scheme proposed by Belytschko et al [2] and stabilization terms of Marrone et el [3]. 

This correction provides a more accurate approximation of the boundary forces including surface 

tension which dominate at typical inkjet droplet lengthscales (<100 µm). Analysis is expedited 

through adoption of the OpenACC programming paradigm to enable GPU based computation. 

Numerical analyses have been validated against analytical solutions, reference macroscale 

problems and through comparison with experimental high speed imaging data of the inkjet printing 

process. The experimental setup consisted of a Fuji Dimatix SL-128 inkjet printhead jetting an 

acrylate based 3D printing build material onto a glass substrate. Images of a single inkjet droplet 

impacting onto the glass slide were captured at a rate of 100,000 frames per second, with droplet 

diameter assessed using a weight test approach.  

Qualitative comparison of the numerical and experimental results showed a good agreement, 

indicating that the implemented framework is effective for analysis of the fluidic aspects of the 

printing process. The model is able to assist in tackling manufacturing issues that can detrimentally 

influence the quality of manufactured parts through provision of insight into the process. 



1 INTRODUCTION 

Additive manufacturing is becoming widely adopted across a range of industrial sectors and being 

applied to increasingly high value and high complexity products. Piezoelectric drop-on-demand 

inkjet printing systems can be used to form truly three dimensional, multi material objects with 

very high dimensional accuracy. The development of conductive pastes that can be dispensed 

using inkjet printers has enabled the approach to be utilised for development of microelectronics 

components.  

The large number of academic research 3D printing systems targeting the electronics packaging 

sector [4-6] are now augmented by a number of commercially available systems intended for 

production of saleable products such as the Nano Dimension Dragonfly [7] and the Optomec [8] 

systems. The EU funded NextFactory [9-11] project has developed a 3D printing, micro-

deposition, micro-assembly, and curing system, illustrated in Figure 1a,  that can accurately deposit 

and cure both functional and structural materials and place/embed components in an integrated 

manner within a single platform. The system uses a hybrid approach in order to increase its 

flexibility, with an inkjet system augmented by microdeposition tools that enable conductive 

adhesive materials to be used alongside silver nano-inks for conductive features.  

The system enables producers of micro-mechatronic systems to manufacture complete products 

on a single machine with the manufacturing process from CAD design to finished product taking 

a number of hours rather than more lengthy timescales typically associated with traditional 

manufacturing methods. The three-dimensional nature of the build process enables manufacture 

of complex 3D microsystems as readily as 2D and 2.5D devices. 

Figure 1(a): NextFactory 3-D additive manufacturing system and 1(b) 3-D printed 

microelectronics test structure 



As is the norm for the electronics sector, new manufacturing approaches need to be considered in 

terms of the long term reliability of the final product. In addition to commonplace reliability 

qualification approaches such as JEDEC tests, there is an increasing drive to assess component 

quality during the manufacturing process. Condition based monitoring approaches measure key 

parameters associated with component quality during manufacture and continually optimise 

process parameters in real time to increase final quality and reliability of formed components [12, 

13]. Such condition based monitoring systems need to be trained as to how variation of process 

parameters influences product quality. A numerical model, capable of detailed analysis of the 

process, can be used to underpin such an approach. 

The primary requirement of the numerical model for inkjet deposition is to capture the complex 

physics involved when and inkjet droplet impacts a printed surface. There are a number of 

significant challenges in such an analysis. The primary challenge is that analysis of droplet impact 

upon an idealised flat surface is insufficient. Only the first layer of an inkjet printed structure will 

be deposited on the flat baseplate. The following layers will be deposited onto a layer of partially 

cured polymer droplets which form and uneven surface and will deform on impact. The material 

is not a simple Newtonian fluid such as water but a complex multi-component polymer which 

exhibits shear dependent viscous behaviour – a complex non-Newtonian material. Additionally, 

the impact is very severe with a droplet of diameter in the order of 40 microns impacting at approx. 

5 metres per second. 

Traditional computational fluid dynamics (CFD) approaches such as the Finite Volume Method 

[14] would be readily capable of modelling the impact dynamics of a small number of droplets.

However, in order to consider prediction of the development of defects over a number of layers it

is necessary to take advantage of a more efficient approach such as GPU enabled SPH. This

approach has a number is advantages over traditional methods in that interfaces are explicitly

captured rather than needing to be approximated but, more critically, incorporates a finite support

distance enabling the problem domain to be subdivided into a large number of overlapping

subdomains which can be assessed on a single core of a graphical processor unit.

2 Numerical Approach 

The Smoothed Particle Hydrodynamics (SPH) approach was developed by Lucy [15] and by 

Gingold and Monaghan in 1977 [1]. It is a versatile discrete particle method for solution of a 

number of differing physical phenomena. It is a computationally highly effective method for 

solution of complex fluid flows, particularly in cases with interfaces and large deformations. The 

SPH approach considers the fluid as a collection of particles, each associated to a number of 

physical properties such as position, velocity, mass, density, etc. At the heart of the SPH approach 

is a means of evaluating spatial derivatives through integral interpolants which use kernels to 

approximate a delta function. The integral interpolant of any quantity function A(r) is defined by: 

𝐴(𝑟) = ∫ 𝐴(𝑟′)𝑊(𝑟 − 𝑟′, ℎ)𝑑𝑥
 

Ω
(1)



This relates the value of parameter A, a scalar variable such as pressure, at location r, through 

integration of the value of A over surrounding space Ω with a smoothing kernel W. This smoothing 

kernel essentially acts as a weighting factor which, critically, enables the variation of A at distances 

greater than a defined value to be ignored. This finite support radius enables the physical domain 

to be subdivided into a number of overlapping subdomains which greatly enhances the 

computational efficiency of the approach. In the standard SPH formulation, this can be written as: 

𝐴𝑖(𝑟) = ∑ 𝐴𝑗
𝑚

𝜌
𝑊(𝑟𝑖 − 𝑟𝑗, ℎ)𝑗   (2) 

In which the value of A of particle i is evaluated by summing the values of A at all particles within 

the support radius as a function of their mass, m, density, ρ and kernel, W. This can be extended 

to spatial derivatives through the following functions: 

∇𝐴𝑖(𝑟) = ∑ 𝐴𝑗
𝑚

𝜌
∇𝑊(𝑟𝑖 − 𝑟𝑗, ℎ)𝑗    (3) 

∇2𝐴𝑖(𝑟) = ∑ 𝐴𝑗
𝑚

𝜌
∇2𝑊(𝑟𝑖 − 𝑟𝑗, ℎ)𝑗   (4) 

A number of different kernels have been proposed in SPH literature, each with differing behaviour 

benefits and drawbacks. The cubic spline kernel has been adopted for this analysis as it is the most 

widely used and understood. The Cubic spline is given by the following function, with 

normalisation factors, σ, of 1/h, 10/(7πh2), and 1/(πh3) in one, two and three dimensions 

respectively.  

𝑊(𝑟, ℎ) = 𝜎 {

1 −
3

2
𝑞2 +

3

4
𝑞3    0 ≤ 𝑞 ≤ 1

1

2
(2 − 𝑞)3  1 ≤ 𝑞 ≤ 2

0  𝑞 > 2

(5) 

This limited support radius enables the solution domain to be subdivided into cell each with 

dimension equal to the support radius. When each cell is linked with the 26 surrounding cells to 

form a sub-region, the domain is separated into a number of overlapping subdomains in that a 

particle inside the subregion will only have a valid interaction with particles in the same region as 

particles in other regions will be more than the support radius away. This is a key advantage of the 

SPH approach in that the computational cost of solving a number of small problems is significantly 

lower than solving one very large problem. Additionally, the numerical processing can be 

performed on a graphical processing unit (GPU) which comprises a relatively large number of 

relatively small cores which is ideally suited to such problems.  



Within each subdomain it is necessary to determine the movement of each particle as a function 

of the acceleration due to interaction forces from surrounding particles. The fluid flow forces are 

governed by the Navier Strokes Equations, which can be written as: 

𝛿

𝛿𝑡
(𝜌𝑢) + (𝜌𝑢 ∙ 𝛻) = −𝛻𝑝 + 𝜇𝛻2𝑢 + 𝑔

(6) 

In the SPH approach these can be reformulated as a smoothed interaction force between each pair 

of particles. The acceleration of a particle can therefore be derived through summation of these 

forces over all particles within the support radius. The total acceleration force can be written as: 

(7) 

(8) 

In addition to the standard SPH formulation, a number of additional functions needed to be 

implemented in order to address specific challenges of the inkjet droplet impact problem. The first 

of these is to implement the dissipative SPH framework of Marrone et al [3] in order to better deal 

with the violent impact events. This framework involves modification of the interaction forces to 

incorporate additional stabilisation terms such that: 

(9)



 where: 

𝜓𝑖𝑗 = 2(𝜌𝑗 − 𝜌𝑖)
𝑟𝑗𝑖

|𝑟𝑖𝑗|2
− [(∇𝜌𝑖) + (∇𝜌𝑗)] (10) 

𝜋𝑖𝑗 =
(−𝑢𝑖)∙𝑟𝑗𝑖

|𝑟𝑖𝑗|2
(11) 

The XSPH correction of Monaghan [16] has been implemented to stabilise the analysis, which 

modifies the particle velocity based on the velocity of the surrounding particles in a manner given 

by: 

𝛿𝑟𝑖

𝛿𝑡
=  𝑢𝑖 + 𝜀 ∑

𝑚𝑏𝑗

𝜌̅𝑖𝑗
𝑗

𝑢𝑗𝑖  𝑊(𝑟𝑖 − 𝑟𝑗 , ℎ) 
(12) 

Furthermore, the kernel gradient correction approach of Belytschko [2] is implemented to correct 

the evaluation of the kernel and gradient values at interfaces. In these regions the support radius 

covers a region of liquid, represented by particles, and a region of air which, in this 

implementation, is represented by an absence of particles. The approach of Belytschko requires a 

4x4 matrix to be inverted in order to determine the correction factors however this increases the 

accuracy of the analysis in the critical impact phase of the process. Time integration has been 

handled through use of a velocity Verlet scheme [17] while material cure behaviour has been 

handled through a viscosity modification term. A more detailed analysis of the cure kinetics and 

the non-Newtonian rheometry of the jetted fluids are required to improve the accuracy of the 

model.  

𝑨 = ∑ 𝑊𝑖
𝑠 [

1 𝛿𝑥
𝛿𝑥 𝛿𝑥𝛿𝑥

𝛿𝑦 𝛿𝑧
𝛿𝑦𝛿𝑥 𝛿𝑧𝛿𝑥

𝛿𝑦 𝛿𝑥𝛿𝑦
𝛿𝑧 𝛿𝑥𝛿𝑧

𝛿𝑦𝛿𝑦 𝛿𝑧𝛿𝑦
𝛿𝑦𝛿𝑧 𝛿𝑧𝛿𝑧

]𝑗     

(13) 

Aα = I (14) 

W𝑖
𝑠 =

𝑊𝑖

∑ (
𝑚𝑗

𝜌𝑗
𝑊𝑗)𝑗

(15) 

𝑊 = 𝛼11 + 𝛼12𝛿𝑥 + 𝛼13𝛿𝑦 + 𝛼14𝛿𝑧    (16) 

∇𝑊𝑥 = 𝛼21 + 𝛼22𝛿𝑥 + 𝛼23𝛿𝑦 + 𝛼24𝛿𝑧  (17) 

∇𝑊𝑦 = 𝛼31 + 𝛼32𝛿𝑥 + 𝛼33𝛿𝑦 + 𝛼34𝛿𝑧  (18) 

∇𝑊𝑧 = 𝛼41 + 𝛼42𝛿𝑥 + 𝛼43𝛿𝑦 + 𝛼44𝛿𝑧      (19)



3 Droplet Impact Analysis 

Analysis of a single droplet of uncured polymer has been performed using the model. The analysis 

has considered an initial state of a perfectly spherical droplet of diameter 23µM travelling toward 

a flat plane at 5 Ms-1. The fluid is considered to have constant viscosity of 0.015 Pa.S and density 

1000.0 KgM-3. Surface energy values for the fluid-air interface and fluid surface interface were 

taken as 72 mJM-2. Polymer materials typically exhibit non-Newtonian behavior and the surface 

energy behavior is more complex than considered in the model and as such the accuracy of the 

analysis will be limited until the model is extended to capture these phenomena. 

The development of the droplet shape during the impact, as predicted by the numerical model, is 

illustrated in Figure 2. The six images show the droplet at 1, 10, 20, 86, 200 and 400 µs after 

impact. The high impact speed causes relatively localized deformation in the immediate post 

impact phase before the kinetic energy is transferred into transverse momentum and significant 

viscous energy dissipation. The point at which the droplet has greatest transverse radius occurs at 

86 µs, where momentum forces have been balanced by the surface tension forces resulting in zero 

velocity at the outermost extents of the droplet. Beyond this time, the surface tension forces draw 

the droplet back into a more spherical shape as shown in in the 200 and 400 µs plots. 

Figure 2: Single droplet impact sequence 



These numerical results can validated through qualitative comparison with high speed imaging 

data. The experimental setup consisted of a Fuji Dimatix SL-128 inkjet printhead jetting an 

acrylate based 3D printing build material onto a glass substrate. Images of a single inkjet droplet 

impacting onto the glass slide were captured at a rate of 100,000 frames per second, with droplet 

diameter being accurately assessed using a weight test approach. Figure 3 illustrates a droplet 

impact sequence showing on in every three images for conciseness. Comparison of these he images 

with numerically derived results would suggest a discrepancy between the actual surface tension 

values and those considered in the model. 

Figure 3: High-speed imaging droplet impact sequence 



5 Conclusions 

A new, effective approach for analysis of droplet impact dynamics associated with piezoelectric 

drop-on-demand inkjet printing systems was presented. The SPH formulation of Lucy and Gingold 

and Monaghan has been used as the basis for the model, with the δ-SPH terms of Marrone et al 

and gradient correction terms of Belytschko used to improve the accuracy and stability.  

Qualitative comparison of results obtained from the numerical framework with experimentally 

derived high speed imaging data show the applicability of the approach. The approach could be 

further enhanced by implementation of an iterative incompressible approach such as that proposed 

by Ihmsen et al [18] and through integration of an appropriate cure kinetics model to capture post 

impact UV cure processes. 
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