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Abstract

We consider a single machine scheduling problem with changing processing times. The
processing conditions are subject to a general cumulative effect, in which the process-
ing time of a job depends on the sum of certain parameters associated with previously
scheduled jobs. In previous papers, these parameters are assumed to be equal to the
normal processing times of jobs, which seriously limits the practical application of this
model. We further generalize this model by allowing every job to respond differently to
these cumulative effects. For the introduced model, we solve the problem of minimiz-
ing the makespan, with and without precedence constraints. For the problem without
precedence constraints we also consider a situation in which a maintenance activity is
included in the schedule, which can improve the processing conditions of the machine,
not necessarily to its original state. The resulting problem is reformulated as a variant
of a Boolean programming problem with a quadratic objective, known as a half-product,
which allows us to develop a fully polynomial-time approximation scheme with the best
possible running time.

Keywords: Single machine; Deterioration; Precedence Constraints; Maintenance; Ap-
proximation scheme; Half-Product Problem

1 Introduction

Scheduling models, in which the actual processing times of jobs are not constant but are
subject to various effects, have recently generated a considerable volume of publications.
Traditionally, in the literature on scheduling with changing processing times two opposite
effects are studied: deterioration and learning. Under deterioration, the later a job starts, the
more time is required to process it. A common rationale for deterioration effects is that the
processing quality of a machine-tool gets worse. On the other hand, under a learning effect
the actual processing times for the jobs that are scheduled later appear to be shorter, which
can be illustrated by an example of human operators who improve their skills in performing
similar activities by gaining experience.

In this paper, we address several versions of a single machine scheduling problem to
minimize the maximum completion time, provided that a generalized linear job-dependent
cumulative effect is applied. We are given the jobs of set N = {1, 2, . . . , n} , to be processed
on a single machine. Each job j ∈ N is associated with an integer pj that is called its
“normal”processing time. This value can be understood as the actual processing duration
of job j, provided that the machine is in a perfect condition.
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In scheduling literature, the effects that may affect the actual processing time of a job
j ∈ N , usually belong to one of the following types (or their combination):

• Time-Dependent effect: the actual processing time of job j depends on the start time
of the job; see the book by Gawiejnowicz (2008) which gives a detailed exposition of
scheduling models with this effect;

• Positional effect: the actual processing time of job j depends on pj and on the position
of the job in the sequence; see a focused survey by Rustogi and Strusevich (2012b) and
a discussion in Agetis et al. (2014);

• Cumulative effect: the actual processing time of job j depends on pj and on an ac-
cumulated value of some parameter, typically, on the sum of normal processing times
of all jobs sequenced earlier; see Kuo and Yang (2006a) and Kuo and Yang (2006b),
where a similar effect is introduced.

Suppose that the jobs are processed on a single machine in accordance with the sequence
π = (π (1) , π (2) , . . . , π (n)). Under the most studied cumulative effect, introduced in Kuo
and Yang (2006a) and Kuo and Yang (2006b), the actual processing time of job j scheduled
in the r-th position of permutation π is defined by

pj (π; r) = pj

(
1 + b

r−1∑
h=1

pπ(h)

)A
, (1)

where A is a given constant, and b is either equal to 1 or to −1, in the case of deterioration
or of learning, respectively. The extensions and generalizations of this basic model can be
found in Yin et al. (2009) and Huang and Wang (2015). A common drawback of papers on
scheduling with a cumulative effect is that normally no convincing practical motivation of
the model is given. In particular, it is not well-justified why the actual processing time of a
job should depend on total normal time of previously scheduled jobs.

In this paper, we study a cumulative effect that arises when a job j ∈ N is associated
not only with the normal processing time pj but also with two additional parameters, bj and
qj > 0. Here qj is a quantity, not necessarily equal to the normal processing time, such that
its accumulated value affects the actual processing time of later scheduled jobs. Formally, if
job j is scheduled in the r-th position of permutation π is defined by

pj (π; r) = pj

(
1 + bj

r−1∑
h=1

qπ(h)

)
, (2)

where bj > 0 under a deterioration effect and bj < 0 under a learning effect. Unlike (1),
the effect (2) is represented not by a polynomial but by a linear function of the accumulated
quantities. On the other hand, no explicit dependence on the normal time of previously
scheduled jobs is assumed and the values of bj can be understood as job-dependent rates
that reflect how sensitive a particular job is to the previously scheduled jobs.

For illustration of our model, suppose that a floor sanding machine is used to treat floors
in several rooms. The normal time pj is the time requirement for sanding floors in room j,
provided that a new sanding belt/disk is used. The value of qj can be seen as the amount
of generated saw dust or an appropriately measured wear of the sanding belt/disk, which
does not necessarily depend on the time of treatment. For some rooms the actual treatment
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time can be seriously affected by the quality of the equipment, for some rooms the effect may
be less noticeable, and this job dependency is captured by the rate parameter bj . It is not
diffi cult to identify a similar cumulative deterioration effect in other activities/industries.

To illustrate the effect (2) in a learning environment, consider the following situation.
Suppose a computer programmer is supposed to write n software pieces for a particular
project. These pieces can be developed in any order. Typically, a software piece j ∈ N
can be completed in pj time units by an inexperienced programmer. Assume that after
completing a particular software piece j, the technical skill of the programmer increases by
qj appropriately measured units, and that skill might help to speed up the creation of any
peice to follow. Thus, the actual time needed to create a particual peice depends on the
accumulated skills gained during the development of previously created peices. Formally,
the development time of a software peice decreases linearly with the technical skill of the
programmer, so that the actual time taken to write a software peice j = π(r) is given by
pj (π; r) = pj − aj

∑r−1
h=1 qπ(h), where the quantity aj defines how sensitive the development

time for software peice j is to the gained technical skills. This formulation can be written in
terms of the effect (2) with bj = −aj/pj .

Adopting standard scheduling notation, we denote the problem of minimizing
the makespan Cmax, i.e., the maximum completion time, under the effect (1) by

1
∣∣∣pj (π; r) = pj (1 + bPr)

A
∣∣∣Cmax, where Pr stands for the sum of the normal processing times

of the jobs scheduled prior to job π (r). A similar problem under the effect (2) is denoted
by 1 |pj (π; r) = pj (1 + bjQr)|Cmax, where Qr represents the sum of the qj values of the jobs
scheduled prior to job π (r).

Apart from problem 1 |pj (π; r) = pj (1 + bjQr)|Cmax in which the jobs of set N are in-
dependent, we also study its version in which precedence constraints are imposed on the
set of jobs, so that only those permutations of jobs that respect the constraints are fea-
sible. These precedence constrains are given in a form of an acyclic directed graph, with
the nodes representing the jobs and the arcs linking immediate successors and predeces-
sors. Provided that the digraph that defines precedence constraints is series-parallel, we de-

note the problems under effects (1) and (2) by 1
∣∣∣pj (π; r) = pj (1 + bPr)

A , SP − prec
∣∣∣Cmax

and 1 |pj (π; r) = pj (1 + bjQr) , SP − prec|Cmax, respectively. See Gordon et al. (2008)
for a range of results on single machine scheduling with series-parallel precedence con-
straints and various effects (positional, time-dependent and cumulative), including problem

1
∣∣∣pj (π; r) = pj (1 + Pr)

A , SP − prec
∣∣∣Cmax. Extending our floor sanding machine example

given above, problem 1 |pj (π; r) = pj (1 + bjQr) , SP − prec|Cmax can arise if precedence
constraints occur due to a particular physical layout of the building in which the rooms
to be sanded are located.

For scheduling problems with a deterioration effect, the actual processing times grow. In
order to prevent the processing times to become unacceptably large, a maintenance period
(MP) can be introduced into a schedule. During an MP no processing takes place, and after
the MP the processing facility is in better processing conditions. The duration of an MP is
either a constant or depends on its start time τ . See Rustogi and Strusevich (2012a, 2014,
2015) for studies of scheduling models with maintenance under positional effects, combined
effects and time-dependent effects, respectively.

Rustogi and Strusevich (2013) study problems 1 |pj (π; r) = pj (1 + bPr) ,MP (0)|Cmax
and 1 |pj (π; r) = pj (1 + bPr) ,MP (λ)|Cmax with exactly one MP introduced into a sched-
ule, where MP (λ) means that the duration of the MP is a linear function of its start
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time τ written as λτ + µ, where µ and λ are given constants; in particular MP (0) corre-
sponds to the MP of constant duration µ. In this paper, we address more general problems
1 |pj (π; r) = pj (1 + bjQr) ,MP (0)|Cmax and 1 |pj (π; r) = pj (1 + bjQr) ,MP (λ)|Cmax with
a single maintenance period. Notice that in the models studied in Rustogi and Strusevich
(2013) the MP is assumed to fully restore the processing conditions, so that after the mainte-
nance the machine is “as good as new”. In this paper, we consider the MP as a rate-modifying
activity, as introduced by Lee and Leon (2001), and assume that for a job j ∈ N scheduled
after the MP the normal processing time changes from pj to σpj , where σ ≥ 1 is a given
constant.

The problems with a single MP are NP-hard, and we focus on the design of fully
polynomial-time approximation schemes (FPTAS). Recall that for a problem of minimizing a
function Φ(x), where x is a collection of decision variables, a polynomial-time algorithm that
finds a feasible solution xH such that Φ(xH) is at most ρ ≥ 1 times the optimal value Φ(x∗) is
called a ρ−approximation algorithm; the value of ρ is called a worst-case ratio bound. A fam-
ily of ρ−approximation algorithms is called a fully polynomial-time approximation scheme
(FPTAS) if ρ = 1 + ε for any ε > 0 and the running time is polynomial with respect to both
the length of the problem input and 1/ε.

The remainder of this paper is organized as follows. In Section 2, problem
1 |pj (π; r) = pj (1 + bjQr)|Cmax is reduced to the classical scheduling problem 1 ||

∑
wjCj

to minimize the sum of weighted completion times on a single machine, and is there-
fore solvable in O (n log n) time. Using the theory of minimizing priority-generating
functions over series-parallel precedence constraints, in Section 3, we show that problem
1 |pj (π; r) = pj (1 + bjQr) , SP − prec|Cmax is also solvable in O (n log n) time. In Section 4,
we present a fast FPTAS for problem 1 |pj (π; r) = pj (1 + bjQr) ,MP (λ)|Cmax with a single
maintenance period. Some concluding remarks can be found in Section 5.

2 Minimization of Makespan

For a scheduling problem to minimize a function Φ over a set of permutations, an optimal
solution can be found by applying a priority rule, i.e., by associating each job j ∈ N with a
value ω (j) and sorting the jobs in non-increasing order of ω (j)’s. The values ω (j), j ∈ N ,
are called 1-priorities. The most popular 1-priorities are ω (j) = pj , j ∈ N , and ω (j) = 1/pj ,
j ∈ N , which correspond to the well-known LPT and SPT priority rules, respectively.

Problem 1
∣∣∣pj (π; r) = pj (1 + bPr)

A
∣∣∣Cmax is known to be solvable by the SPT rule if

A < 0 (learning, see Kuo and Yang (2006b)) and if A > 1 (fast deterioration, see Gordon
et al. (2008)). For the problem with A = 1, the objective function is sequence independent,
i.e., any permutation is optimal; see Gordon et al. (2008).

Another well-known scheduling priority rule is the WSPT (or Smith’s) rule. This rule is
based on 1-priorities ω (j) = wj/pj , j ∈ N , and finds an optimal permutation for problem
1 ||
∑
wjCj of minimizing the sum of weighted completion times.

Assume that in problem 1 ||
∑
wjCj the processing time of a job j ∈ N is denoted by

qj . Then the value of the objective function for a schedule associated with a permutation
π = (π (1) , π (2) , . . . , π (n)) is given by

n∑
r=1

wπ(r)Cπ(r) =
n∑
r=1

wπ(r)

r∑
h=1

qπ(h),
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and, as proved by Smith (1956), an optimal permutation can be found in O (n log n) time by
sorting the jobs in non-increasing order of the 1-priorities ω (j) = wj/qj .

We use this result to solve problem 1 |pj (π; r) = pj (1 + bjQr)|Cmax.

Theorem 1 For problem 1 |pj (π; r) = pj (1 + bjQr)|Cmax , an optimal permutation can be
found in O (n log n) time by sorting the jobs in non-increasing order of the ratios (pjbj) /qj,
j ∈ N .

Proof: We reduce the problem under consideration to problem 1 | |
∑
wjCj , with the

processing times equal to qj and the weights defined by

wj = bjpj , j ∈ N. (3)

Given a permutation π = (π (1) , π (2) , . . . , π (n)) of jobs, let Cmax (π) denote the
makespan for a schedule in which the jobs are processed according to permutation π. Then
for the original problem, we have

Cmax (π) = pπ(1) +

n∑
r=2

pπ(r)

(
1 + bπ(r)

r−1∑
h=1

qπ(h)

)
=

=

n∑
r=1

pπ(r) +

n∑
r=2

bπ(r)pπ(r)

r−1∑
h=1

qπ(h)

=
n∑
r=1

pπ(r) +
n∑
r=1

bπ(r)pπ(r)

r−1∑
h=1

qπ(h),

where the last equality is due to
∑0

h=1 qπ(h) = 0.

Using (3), we further rewrite

Cmax (π) =
n∑
r=1

pπ(r) +
n∑
r=1

wπ(r)

r−1∑
h=1

qπ(h)

=
n∑
r=1

pπ(r) +
n∑
r=1

wπ(r)

r∑
h=1

qπ(h) −
n∑
r=1

wπ(r)qπ(r)

=

n∑
r=1

wπ(r)

r∑
h=1

qπ(h) +

n∑
j=1

(pj − wjqj) .

Thus, Cmax (π) is minimized if the minimum of
∑n

r=1wπ(r)
∑r

h=1 qπ(h) is attained. The
latter expression is the objective function in problem 1 | |

∑
wjCj , so that the optimal per-

mutation can be found by the WSPT rule. In terms of the original problem, an optimal
permutation is obtained by sorting the jobs in non-increasing order of the ratios (pjbj) /qj .

Reformulating Theorem 1, we conclude that for the problem of minimizing the makespan
under an effect (2) the 1-priority is ω (j) = bjpj/qj , j ∈ N . Notice that Theorem 1 holds
irrespective of the sign of bj , i.e., for both deterioration and learning effects.

Theorem 1 can be applied to the effect that resembles (1) with A = 1.
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Corollary 1 If effect (2) is applied with qj = pj, for all j ∈ N, then the resulting prob-
lem 1 |pj (π; r) = pj (1 + bjPr)|Cmaxis solvable in O (n log n) time by sequencing jobs in non-
increasing order of bj. Moreover, if bj = 1, for all j ∈ N, then an arbitrary permutation of
jobs results in an optimal solution to the resulting problem 1 |pj (π; r) = pj (1 + Pr)|Cmax.

Notice that the part of Corollary 1 on problem 1 |pj (π; r) = pj (1 + Pr)|Cmax is also
proved in Gordon et al. (2008).

3 Minimization of Makespan with Precedence Constraints

In this section, we study problem 1 |pj (π; r) = pj (1 + bjQr) , SP − prec|Cmax, provided that
precedence constraints are imposed on the set of jobs, and the graph that defines these
constraints is series-parallel; see Valdes et al. (1982) and Tanaev et al. (1984) for relevant
definitions.

Research on scheduling problems under series-parallel precedence constraints was ini-
tiated by Lawler (1978), who presented a polynomial-time algorithm for minimizing the
weighted sum of the completion times on a single machine subject to series-parallel con-
straints. Soon after, it has been discovered that many other scheduling problems can be
solved by a similar approach, provided that their objective functions possess specific proper-
ties, related to an extended notion of a priority function that is defined for subsequences of
jobs rather than just for individual jobs. The definition below can be found in Tanaev et al.
(1984) and Monma and Sidney (1979).

Definition 1 Let παβ = (π′αβπ′′) and πβα = (π′βαπ′′) be two permutations of n jobs that
differ only in the order of the subsequences α and β (here subsequences π′ and/or π′′ can be
dummy permutations with no elements). For a function Φ(π) that depends on a permutation,
suppose that there exists a function ω(π) such that for any two permutations παβ and πβα the
inequality ω(α) > ω(β) implies that Φ(παβ) ≤ Φ(πβα), while the equality ω(α) = ω(β) implies
that Φ(παβ) = Φ(πβα). In this case, function Φ is called a priority-generating function, while
function ω is called its priority function. For a (partial) permutation π, the value of ω(π) is
called the priority of π.

A priority function applied to a single job becomes a 1-priority for that job. Thus,
for function Φ(π) to be priority-generating, it is necessary that the problem of minimizing
Φ(π) admits 1-priorities. On the other hand, the existence of 1-priorities does not imply
that they can be extended to a priority function. Intuitively, a priority function allows
us to rank not only individual jobs but also partial permutations. The fastest algorithm
known algorithm minimizes a priority-generating function under series-parallel precedence
constraints in O(n log n) time; see, e.g., Monma and Sidney (1979) and Tanaev et al. (1984).

Various single machine scheduling problems with changing times and series-parallel
precedence constraints have been studied in Gordon et al. (2008), Wang et al.
(2008) and Dolgui et al. (2012). In particular, Gordon et al. (2008) study problem

1
∣∣∣pj (π; r) = pj (1 + Pr)

A , SP − prec
∣∣∣Cmax for a positive integer A. For A = 1, the ob-

jective function is sequence independent (see Corollary 1), and the problem is solvable in
O (n) time under arbitrary precedence constraints since any feasible permutation is optimal.
For A = 2, the objective function is proved to be priority-generating and the problem is
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therefore solvable in O (n log n) time. On the other hand, for A = 3, the objective function
is proved not to generate a priority function.

Below, we use Definition 1 to prove that for problem
1 |pj (π; r) = pj (1 + bjQr) , SP − prec|Cmax the objective function is priority-generating.

Theorem 2 For the single machine problem to minimize the makespan under the cumulative
effect (2), the objective function is priority-generating and

ω(π) =

∑|π|
j=1 pπ(j)bπ(j)∑|π|
j=1 qπ(j)

(4)

is its priority function, so that problem 1 |pj (π; r) = pj (1 + bjQr) , SP − prec|Cmax is solv-
able in O (n log n) time.

Proof. For a (partial) permutation π we denote the length of π, i.e., the number of jobs in
π, by |π|. For a partial permutation π conisder a schedule S such that π is contained as a
subsequence in a full permutation that defines schedule S. Assume that for S the following
holds: (i) the first job in π starts at time τ ; and (ii) the sum of the qj values of the jobs
that precede the first job in π, i.e., those completed by time τ , is equal to ζ. Under these
assumptions, let Cmax(π; τ ; ζ) denote the maximum completion time of the jobs in π. By
definition, for problem 1 |pj (π; r) = pj (1 + bjQr) , SP − prec|Cmax we deduce

Cmax(π; τ ; ζ) = τ + Cmax(π; 0; ζ) = τ +

|π|∑
k=1

pπ(k)

(
1 + bπ(k)

(
ζ +

k−1∑
i=1

qπ(i)

))
.

Let παβ = (π1αβπ2) and πβα = (π1βαπ2) be two permutations of all jobs that only differ
in the order of the subsequences α (containing u jobs) and β (containing v jobs). Define
∆C = Cmax(π

αβ)−Cmax(πβα) and let ζ ′ denote the total sum of the qj values of the jobs in
π1. Then ∆C = Cmax(αβπ2; 0; ζ ′)− Cmax(βαπ2; 0; ζ ′). Furthermore,

Cmax(αβπ2; 0; ζ ′) = Cmax(αβ; 0; ζ ′)

+

|π2|∑
k=1

pπ2(k)

1 + bπ2(k)

ζ ′ + u∑
i=1

qα(i) +
v∑
j=1

qβ(j) +
k−1∑
i=1

qπ2(i)

 ,

Cmax(βαπ2; 0; ζ ′) = Cmax(βα; 0; ζ ′)

+

|π2|∑
k=1

pπ2(k)

1 + bπ2(k)

ζ ′ + v∑
j=1

qβ(j) +

u∑
i=1

qα(i) +

k−1∑
i=1

qπ2(i)

 ,

so that ∆C = Cmax(αβ; 0; ζ ′)− Cmax(βα; 0; ζ ′). To prove the theorem, we derive conditions
under which ∆C ≤ 0.
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Further, we deduce

Cmax(αβ; 0; ζ ′) = Cmax(α; 0; ζ ′) +
v∑
k=1

pβ(k)

1 + bβ(k)

ζ ′ + u∑
i=1

qα(i) +
k−1∑
j=1

qβ(j)


=

u∑
k=1

pα(k)

(
1 + bα(k)

(
ζ ′ +

k−1∑
i=1

qα(i)

))

+

v∑
k=1

pβ(k)

1 + bβ(k)

ζ ′ + u∑
i=1

qα(i) +

k−1∑
j=1

qβ(j)

 ,

Cmax(βα; 0; ζ ′) = Cmax(β; 0; ζ ′) +
u∑
k=1

pα(k)

1 + bα(k)

ζ ′ + v∑
j=1

qβ(j) +
k−1∑
i=1

qα(i)


=

v∑
k=1

pβ(k)

1 + bβ(k)

ζ ′ + k−1∑
j=1

qβ(j)


+

u∑
k=1

pα(k)

1 + bα(k)

ζ ′ + v∑
j=1

qβ(j) +
k−1∑
i=1

qα(i)

 ,

so that for ∆C we derive

∆C =
u∑
k=1

pα(k)

(1 + bα(k)

(
ζ ′ +

k−1∑
i=1

qα(i)

))
−

1 + bα(k)

ζ ′ + v∑
j=1

qβ(j) +
k−1∑
i=1

qα(i)


+

v∑
k=1

pβ(k)

1 + bβ(k)

ζ ′ + u∑
i=1

qα(i) +

k−1∑
j=1

qβ(j)

−
1 + bβ(k)

ζ ′ + k−1∑
j=1

qβ(j)

 .

Proceeding further, we obtain

∆C = −
u∑
k=1

pα(k)bα(k)

v∑
j=1

qβ(j) +

v∑
k=1

pβ(k)bβ(k)

u∑
i=1

qα(i).

Dividing by
∑u

k=1 qα(k)
∑v

i=1 qβ(i), we deduce that ∆C ≤ 0, provided that∑u
k=1 pα(k)bα(k)∑u

k=1 qα(k)
≥
∑v

i=1 pβ(i)bβ(k)∑v
i=1 qβ(i)

.

For an arbitrary (partial) permutation π, define the function ω(π) by (4). It is easily
verified that ω(α) > ω(β) implies Cmax(παβ) ≤ Cmax(π

βα), while ω(α) = ω(β) implies
Cmax(π

αβ) = Cmax(π
βα), as required by Definition 1.

Theorem 2 holds irrespective of the sign of bj , j ∈ N . Observe that if (4) is ap-
plied to a single job j, i.e., to a permutation of length one, then the priority function
becomes a 1-priority function ω(j) = (pjbj) /qj , which is consistent with Theorem 1. Be-
sides, if qj = pj and bj = b for all j ∈ N , when ω(j) becomes constant, i.e., for problem
1 |pj (π; r) = pj (1 + bPr)|Cmax any permutation is optimal, which is consistent with Corol-
lary 1 and Gordon et al. (2008).
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4 Minimization of Makespan with Machine Maintenance

In this section, we consider the effect (2) in the deterioration form, with bj > 0. A single
rate-modifying maintenance activity is introduced into a schedule, which is able to improve
the processing quality of the machine.

An instance of problem 1 |pj (π; r) = pj (1 + bjQr) ,MP (λ)|Cmax is defined by the arrays
of positive numbers pj , qj and bj , j ∈ N , and positive numbers λ, µ and σ. The duration of
the maintenance period (MP) is λτ + µ time units, provided that the MP starts at time τ ;
here λ ≥ 0 and µ ≥ 0. For a job j ∈ N scheduled after the MP, the normal processing time
changes from pj to σpj , where σ ≥ 1.

In a schedule with a single MP the jobs are split into two groups: group 1 consists of the
jobs scheduled before the maintenance and group 2 contains all other jobs. Let Ni be the set
of jobs in group i and |Ni| = ni, for i ∈ {1, 2}. Due to Theorem 1, we may assume that the
jobs in each group are sequenced in non-increasing order of the 1-priorities (pjbj) /qj . This
is why throughout this section the jobs are renumbered so that

p1b1
q1
≥ p2b2

q2
≥ · · · ≥ pnbn

qn
. (5)

Let x = (x1, x2, . . . , xn) denote a vector with 0 − 1 components. Problem
1 |pj (π; r) = pj (1 + bjQr) ,MP (λ)|Cmax belongs to a range of scheduling problems that can
be reduced to minimizing a function of the form

F (x) = H (x) +K, (6)

where

H (x) =

n∑
1≤i<j≤n

uivjxixj −
n∑
j=1

hjxj , (7)

is known as the Half-product function. The coeffi cients uj and vj are non-negative integers,
while hj is an integer that can be either negative or positive.

Let a vector that is optimal for the problem of minimizing (7), or equivalently, (6) be
denoted by x∗ = (x∗1, x

∗
2, . . . , x

∗
n). Notice that we are only interested in the instances of the

problem of minimizing function (7) for which the optimal value H (x∗) is strictly negative;
otherwise, setting all decision variables to zero solves the problem. On the other hand, below
and in fact in most known applications it is assumed that constant K is such that F (x∗) > 0.

To proceed, we need to refine the definition of an FPTAS for the problem of minimizing
a function H(x) which takes both positive and negative values. For such a problem an
FPTAS delivers a solution vector xε such that H(xε)−H(x∗) ≤ ε |H(x∗)| . For the problem
of minimizing function (6) with F (x∗) > 0, an FPTAS outputs a solution vector xε such
that F (xε) ≤ (1 + ε)F (x∗).

Badics and Boros (1998) prove that the problem of minimizing function (7) is NP-hard.
The first FPTAS for minimizing a function of the form (7) in strongly polynomial time is
due to Erel and Ghosh (2008), with the running time of O

(
n2/ε

)
. This running time should

be seen as the best possible, since just computing the value of the objective function for a
given vector x takes O

(
n2
)
time. However, it is known that an FPTAS for minimizing the

function H(x) does not necessarily behave as an FPTAS for minimizing the function F (x) of
the form (6) with an additive constant. This is due to the fact the optimal value of H(x) is

9



negative and K can be positive; see Erel and Ghosh (2008), Kellerer and Strusevich (2012)
and Kellerer and Strusevich (2015) for discussion and examples.

For the problem of minimizing (6), Erel and Ghosh (2008) outline a procedure, which
may behave as an FPTAS.

Theorem 3 For the problem of minimizing function (6), denote the lower and upper bounds
on the value of F (x∗) by LB and UB, respectively, i.e., LB ≤ F (x∗) ≤ UB. If the ratio
UB/LB is bounded from above by some positive γ, then there exists an algorithm that delivers
a solution x0 such that F (x0)− LB ≤ εLB in O(γn2/ε) time.

Theorem 3 is proved in Erel and Ghosh (2008). If the value of γ is bounded from above
by a polynomial of the length of the input of the problem, then the algorithm from Theorem
3 designed by Erel and Ghosh (2008) behaves as an FPTAS. Moreover, if γ is a constant,
then such an FPTAS requires the best possible running time of O

(
n2/ε

)
. In what follows,

we refer to the algorithm from Theorem 3 as the γ-FPTAS.

Given problem 1 |pj (π; r) = pj (1 + bjQr) ,MP (λ)|Cmax, introduce a Boolean variable xj
in such a way that

xj =

{
1, if job j is scheduled in the first group
0, otherwise

for each job j, 1 ≤ j ≤ n.
Taking the jobs in order of their numbering given by (5), if job j ∈ N is scheduled in the

first group then it completes at time

Cj = pjxj

(
1 + bj

j−1∑
i=1

qixi

)
,

so that the MP starts at time τ =
∑n

j=1 pjxj

(
1 + bj

∑j−1
i=1 qixi

)
. If job j is scheduled in the

second group, then its completion time is given by

Cj = τ + (λτ + µ) + σpj(1− xj)
(

1 + bj

j−1∑
i=1

qi(1− xi)
)

= (λ+ 1)

n∑
j=1

pjxj

(
1 + bj

j−1∑
i=1

qixi

)
+ σpj(1− xj)

(
1 + bj

j−1∑
i=1

qi(1− xi)
)

+ µ.

This implies that in order to solve problem 1 |pj (π; r) = pj (1 + bjQr) ,MP (λ)|Cmax, we
need to minimize the function

Z (x) = (λ+ 1)
n∑
j=1

pjxj

(
1 + bj

j−1∑
i=1

qixi

)
+ σ

n∑
j=1

pj(1− xj)
(

1 + bj

j−1∑
i=1

qi(1− xi)
)

+ µ

=
n∑
j=1

(λ+ 1) bjpjxj

(
j−1∑
i=1

qixi

)
+

n∑
j=1

σbjpj(1− xj)
(
j−1∑
i=1

qi(1− xi)
)

+ (λ+ 1)
n∑
j=1

pjxj + σ
n∑
j=1

pj(1− xj) + µ.

10



We show that the above function admits a representation of the form (6). As in (3),
define wj = bjpj , j ∈ N , and rewrite Z (x) as

Z (x) =
∑

1≤i<j≤n
(λ+ 1) qiwjxixj +

∑
1≤i<j≤n

σqiwj(1− xi)(1− xj) (8)

+ (λ+ 1)

n∑
j=1

pjxj + σ

n∑
j=1

pj(1− xj) + µ.

This function is now written in the form that appears as an objective function in the
so-called symmetric quadratic knapsack problem, see Kellerer and Strusevich (2012) and
Kellerer and Strusevich (2015) for reviews.

Since

∑
1≤i<j≤n

qiwj(1− xi)(1− xj) =
∑

1≤i<j≤n
qiwjxixj −

n∑
j=1

wj (j−1∑
i=1

qi

)
+ qj

 n∑
i=j+1

wi

xj

+
∑

1≤i<j≤n
qiwj ,

and

(λ+ 1)

n∑
j=1

pjxj + σ

n∑
j=1

pj(1− xj) = (λ− σ + 1)

n∑
j=1

pjxj + σ

n∑
j=1

pj

function Z (x) derived above may be written as

Z (x) =
∑

1≤i<j≤n
(λ+ σ + 1) qiwjxixj

+
n∑
j=1

(λ− σ + 1) pj − σ

wj (j−1∑
i=1

qi

)
+ qj

 n∑
i=j+1

wi

xj (9)

+

µ+ σ

 ∑
1≤i<j≤n

qiwj +
n∑
j=1

pj

 .

This is clearly a representation of the form (6) with

uj = (λ+ σ + 1)wj , vj = qj , hj = (λ− σ + 1) pj − σ

wj (j−1∑
i=1

qi

)
+ qj

 n∑
i=j+1

wi

 , j ∈ N ;

K = µ+ σ

 ∑
1≤i<j≤n

qiwj +

n∑
j=1

pj

 .

According to Theorem 3, in order to obtain a γ-FPTAS for the problem of minimizing
function (6), we are required to find the bounds LB and UB on the value of Z(x∗) and to
prove that the ratio UB/LB is bounded from above by a constant γ. Notice, since we aim
at obtaining an FPTAS with the best possible running time of O

(
n2/ε

)
, we need to find

the required lower and upper bounds in no more than O
(
n2
)
time. This can be done as

described below.
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Assume that the integrality constraint of the decision variables xj , is relaxed, i.e., the
condition xj ∈ {0, 1} is replaced by 0 ≤ xj ≤ 1, j ∈ N . If xC = (xC1 , . . . , x

C
n ), 0 ≤ xCj ≤ 1, is

the corresponding solution vector and Z(xC) denotes the optimal value of the function (8)
for the continuous relaxation, then clearly Z(xC) ≤ Z(x∗), i.e., we may set LB = Z(xC).

As demonstrated in Kellerer and Strusevich (2010), the relaxation of the problem of min-
imizing a convex function of the form (6), even with an additional linear knapsack constraint,
reduces to finding the minimum cost flow with a convex quadratic cost function in a special
network. The latter problem is studied by Tamir (1993) who gives a solution algorithm that
in the case under consideration requires O

(
n2
)
time.

Notice that a function of the form (7) is proved convex, provided that the items are
numbered in non-decreasing order of the ratios vj/uj , j ∈ N ; see Kellerer and Strusevich
(2010). In our case, the required numbering is guaranteed by (5), so that the objective
function Z(x) as given in (9) is convex and Tamir’s algorithm is applicable. Thus, a lower
bound LB = Z(xC) on the value Z(x∗) can be found in O

(
n2
)
time.

To obtain an upper bound, we perform an appropriate rounding of the fractional compo-
nents of vector xC . A simple rounding algorithm is described below.

Algorithm Round

Step 1. Given a vector xC = (xC1 , . . . , x
C
n ), 0 ≤ xCj ≤ 1, a solution to the continuous

relaxation of the problem of minimizing (9), determine the sets I1 =
{
j ∈ N, xCj ≤ 1

2

}
and I2 =

{
j ∈ N, xCj > 1

2

}
and find vector xH = (xH1 , . . . , x

H
n ) with components

xHj =

{
0 if j ∈ I1
1 if j ∈ I2

.

Step 2. Output vector xH = (xH1 , . . . , x
H
n ) as a heuristic solution to the problem of mini-

mizing function (9), and therefore function (8).

The running time of Algorithm Round is O (n). Clearly, the inequalities Z(xC) ≤
Z(x∗) ≤ Z(xH) hold, i.e., we may take Z(xH) as an upper bound UB on the optimal
value Z(x∗). We now estimate the ratio γ = UB/LB = Z(xH)/Z(xC).

Theorem 4 Let xC be an optimal solution of the continuous relaxation of the problem of
minimizing function Z(x) of the form (9), and xH be a vector found by Algorithm Round.
Then

γ =
Z(xH)

Z(xC)
≤ 4.

Proof: For a vector xC , let I1 and I2 be the index sets found in Step 2 of Algorithm Round.
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For a vector x = (x1, . . . , xn), where 0 ≤ xj ≤ 1, using the representation (8) define

Z1 (x) = (λ+ 1)
∑

1≤i<j≤n
i,j∈I1

qiwjxixj + σ
∑

1≤i<j≤n
i,j∈I1

qiwj (1− xi) (1− xj) ;

Z2 (x) = (λ+ 1)
∑

1≤i<j≤n
i∈I1,j∈I2

qiwjxixj + σ
∑

1≤i<j≤n
i∈I1,j∈I2

qiwj (1− xi) (1− xj) ;

Z3 (x) = (λ+ 1)
∑

1≤i<j≤n
i∈I2,j∈I1

qiwjxixj + σ
∑

1≤i<j≤n
i∈I2,j∈I1

qiwj (1− xi) (1− xj) ;

Z4 (x) = (λ+ 1)
∑

1≤i<j≤n
i,j∈I2

qiwjxixj + σ
∑

1≤i<j≤n
i,j∈I2

qiwj (1− xi) (1− xj) ;

Z5 (x) = (λ+ 1)
∑
j∈I1

pjxj + σ
∑
j∈I1

pj(1− xj);

Z6 (x) = (λ+ 1)
∑
j∈I2

pjxj + σ
∑
j∈I2

pj(1− xj).

By the rounding conditions in Step 2 of Algorithm Round, we derive

Z2(x
H) = Z3(x

H) = 0,

while
Z1(x

H) = σ
∑

1≤i<j≤n
i,j∈I1

qiwj ; Z1(x
C) ≥ σ

4

∑
1≤i<j≤n
i,j∈I1

qiwj ;

Z4(x
H) = (λ+ 1)

∑
1≤i<j≤n
i,j∈I2

qiwj ; Z4(x
C) ≥ λ+ 1

4

∑
1≤i<j≤n
i,j∈I2

qiwj ;

Z5(x
H) = σ

∑
j∈I1

pj ; Z5(x
C) ≥ σ

2

∑
j∈I1

pj ;

Z6(x
H) = (λ+ 1)

∑
j∈I2

pj ; Z6(x
C) ≥ λ+ 1

2

∑
j∈I2

pj .

Thus, we have that

Z(xH) =
6∑

k=1

Zk(x
H) + µ = Z1(x

H) + Z4(x
H) + Z5(x

H) + Z6(x
H) + µ

≤ 4Z1(x
C) + 4Z4(x

C) + 2Z5(x
C) + 2Z6(x

C) + µ

≤ 4

6∑
k=1

Zk(x
C) + 4µ = 4Z(xC),

as required.

It follows immediately from Theorem 4 that for the problem of minimizing function (8)
(or, equivalently, function (9)) Theorem 3 is applicable, i.e., the problem admits a γ-FPTAS
with γ = 4. Hence, in terms of the original scheduling problem, we obtain the following
statement.
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Theorem 5 Problem 1 |pj (π; r) = pj (1 + bjQr) ,MP (λ)|Cmax admits an FPTAS that re-
quires O

(
n2/ε

)
time.

Notice that Theorem 5 cannot be improved for problem
1 |pj (π; r) = pj (1 + bjQr) ,MP (0)|Cmax, i.e., for the case of a constant MP duration,
since the underlying Boolean programming problem still remains that of minimizing a
half-product function.

This is in contrast with the results obtained in Rustogi and Strusevich (2013) for a simi-
lar, but simpler problem 1 |pj (π; r) = pj (1 + bPr) ,MP (λ)|Cmax, in which it is additionally
assumed that σ = 1, i.e., the MP fully restores the machine back to the default conditions.
For problem 1 |pj (π; r) = pj (1 + bPr) ,MP (0)|Cmax, an FPTAS requires only O (n/ε) time,
since the underlying Boolean programming problem takes the form of a Subset-Sum problem,
with a linear objective function.

For the case of λ > 0, Rustogi and Strusevich (2013) also rely on Theorem 3, but in order
to demonstrate that problem 1 |pj (π; r) = pj (1 + bPr) ,MP (λ)|Cmax with σ = 1 admits a
γ-FPTAS, an approximate solution to 1 |pj (π; r) = pj (1 + bPr) ,MP (0)|Cmax is used as a
lower bound LB, and the ratio UB/LB is bounded by γ that is a linear function of λ. To
make Theorem 3 applicable, an additional assumption is made that λ ≤ 1.

The approach described in this paper, based on Algorithm Round and Theorem 4, can
also be applied to handling problem 1 |pj (π; r) = pj (1 + bPr) ,MP (λ)|Cmax with λ > 0 and
σ = 1. It will lead to a γ-FPTAS with the running time of O

(
n2/ε

)
, as in Rustogi and

Strusevich (2013), but no additional assumptions regarding the value of λ are needed.

Notice that the results in this section can be extended to handle an enhanced model in
which it is assumed that the normal processing time of a job j ∈ N scheduled after the MP
changes from pj to σjpj , with a job-dependent factor σj > 1, provided that these factors are
such that for each pair of jobs i and j the inequality

piwi
qi
≤ pjwj

qj

implies
σipiwi
qi

≤ σjpjwj
qj

.

Similar assumptions are common in the literature on scheduling with rate-modifying
maintenance, see. e.g., Lee and Leon (2001) who argue in favour of their practical relevance.

5 Conclusion

The paper introduces a rather general model for scheduling with changing processing times
under a cumulative effect. For the problem of minimizing the makespan on a single machine,
we adopt Smith’s rule to solve the problem in O (n log n) time. It follows that the problem
with precedence constraints can also be solved in O (n log n) time since its objective func-
tion is priority-generating. The problem with a rate-modifying maintenance activity, which
allows us to (partly) restore the processing conditions of the machine, is linked to a Boolean
programming problem with a quadratic objective function, namely the half-product problem.
Adapting the results previously known for that problem, we provide an FPTAS that takes
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O
(
n2/ε

)
time to solve the problem of minimizing the makespan with a single maintenance

period.

The next step in studying the models with cumulative deterioration could be a search for
approximation algorithms or schemes that would allow us to handle multiple maintenance
periods.
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