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A b s t r a c t - - A  distributed algorithm is developed to solve nonlinear Black-Scholes equations in the 
hedging of portfolios. The algorithm is based on an approximate inverse Laplace transform and is 
particularly suitable for problems that do not require detailed knowledge of each intermediate time 
steps. (~) 2005 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

FinanciM model l ing in the  area of opt ion pricing involves the  unders tand ing  of hedge assets and 

portfolios in order  to control  the  risk due to movements  in share prices. Such activi t ies depend on 

financial analysis  tools being available to  the  t rader  wi th  which he can make rapid  and sys temat ic  

evaluat ion of buy /se l l  contracts.  In turn,  analysis tools rely on fast numerical  a lgori thms for the  

solut ion of financial ma themat i ca l  models. There  are many  different financial act ivi t ies apar t  

from shares buy /se l l  activities.  However, i t  is not  the  in tent ion of this  paper  to discuss various 

financial activit ies.  The  main  aim of this  paper  is to propose and discuss a d i s t r ibu ted  a lgor i thm 

for the  numerical  solution of a European  option.  Both  l inear and nonlinear  cases are considered. 

The  a lgor i thm is based on the concept of the  Laplace t ransform and its numerical  inverse. Firs t ,  

a Laplace t ransform is appl ied to the  linear Black-Scholes equation,  which leads to a set of mutu-  
ally independent  l inear o rd inary  differential equations.  The  set of differential equations may  then  

be solved concurrent ly  in a d i s t r ibu ted  environment.  The  scMabili ty of the  a lgor i thm has been 

s tudied theore t ica l ly  in [1,2]. This  paper  provides numerical  tes ts  to demons t ra te  the  effectiveness 

of the  a lgor i thm for financial analysis. Time dependent  functions for vola t i l i ty  and interest  rates 
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are also discussed. Second, an extension is given of the algorithm for nonlinear Black-Scholes 
equations where the volatility is a function of the option value. The Laplace transform is applied 
to a linearization of the nonlinear Black-Scholes equation. A set of mutually independent linear 
ordinary differential equations is obtained, and these equations may be solved in a distributed 
computing environment. The numerical inverse Laplace transform then is obtained within an 
outer iteration loop. The convergence behaviour of the algorithm is discussed. 

The algorithm relies on fast computation of the numerical inverse Laplace transform. The main 
goal of this paper is to demonstrate the feasibility and effectiveness of using an inverse Laplace 
transform in applications to linear and nonlinear Black-Scholes equations. This paper will also 
examine the various computational issues of such a numerical inverse in terms of distributed 
computing. 

2. T H E  B L A C K - S C H O L E S  M O D E L  

Let v(S,  t) denote the value of an option, where S is the current value of the underlying asset 
and t is the time. The value of the option relates to the current value of the underlying asset via 
two stochastic parameters, namely, the volatility a and the interest rate r, of the Black-Scholes 
equation, 

Ov 1 2 2 02v Ov gt + [T, 0) (1) 
0--7 + ~ s - b ~  + r s S - ~  - rv  = o e × , 

where f~+ = {S : S > 0}. The stochastic background of the equation is not discussed in this 
paper, and readers who are interested should consult reference [3]. 

In this paper, attention is paid to European options, which mean that  the holder of the option 
may execute at expiration a prescribed asset, known as the underlying asset, for a prescribed 
amount, known as the strike price. There are two different types of option, namely, the call 
option and the put option. At expiration, the holder of the call option has the right to buy the 
underlying asset and the holder of the put option has the right to sell the underlying asset. For 
a European put option with strike price k and expiration date T, it is sensible to impose the 
boundary conditions, 

v (0, t) = ke - r (T- t ) ,  v (L, t) = O, 

where L is usually a large value. At expiration, if S < k, then one should exercise the call option, 
i.e., handing over an amount k to obtain an asset with S. However, if S > k at expiration, then 
one should not exercise the option because of the loss k - S. Therefore, the final condition, 

v (S, T) = max {k - S, 0}, 

needs to be imposed. The solution v for t <: T is required. 
The financial interpretation of the above model is as follows. The difference between the 

return on an option portfolio, which involves the first two terms, and the return on a bank 
deposit, which involves the last two terms, should be zero for a European option. Note that  
within a given short period, it is possible to assume the interest rate to be a constant rather than 
a stochastic parameter. 

Since equation (1) is a backward equation, it needs to be transformed to a forward equation 
by using ~- -- T - t, which leads to 

OV 1 2 202V OV 

subject to initial condition, 

and boundary conditions, 

- ~ v  e ~ +  × (0, T ] ,  (2) 

V (S, O) = m a x  {k - S, 0 } ,  

V (0, 7) = k¢ - ' * ,  V (L, 7) = O. 
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An analytic solution may be derived if a change of variable is made where the Black-Scholes 
model is converted to a time-dependent heat conduction equation with constant coefficients [3]. 
However, a field method, such as the finite-volume method, is of more interest for two reasons. 
First, there are many examples in multifactor model such that  a reduction of the time dependent 
coefficient to a constant coefficient heat is impossible. Hence, analytic form of solutions cannot be 
found. Second, financial modelling typically requires large number of simulations and solutions 
at intermediate time steps are usually not of interest. Efficiency of the numerical algorithm is 
very important in order to make evaluation and decision before the agreement of a contract is 
reached. Ideally, one would like to use an algorithm which can be completely distributed onto a 
number of processors with only minimal communications between processors. 

3. T H E  D I S T R I B U T E D  A L G O R I T H M  

It should be noted that  in a field method for time dependent partial differential equations, the 
time step length is often restricted by a stability criterion and by the truncation errors in the 
discretised approximation of the time derivatives. On the other hand, concurrent computation 
of all time steps is almost impossible, i.e., it is not possible to apply a distributed algorithm. 

Since the solutions at intermediate steps of (2) are usually not of interest, it is possible to apply 
the Laplace transform [4] to (2) and to reduce it to a number of mutually independent boundary 
value problems. Let 

oo 
f -  

l ( v )  - / ~ - ~ v ( s , ~ )  & = u ( ~ ;  s )  
, 1  

0 

be the Laplace transform of the function V(S ,  ~'), then the Laplace transform of (2) leads to 

! ~ s ~ d 2 U  dU 
2 dS 2 + r S - - ~  - (r + A) U = - V  (S, 0) C f/+, (3) 

subject to the boundary condition, 

k 
U (A; 0) = A + r '  U (A; L) = 0. 

Here, A E {),j} is a finite set of transformation parameters defined by 

ln2 
Aj = j  T ' j = l , 2 , . . . , m ,  (4) 

where m is required to be chosen as an even number [5]. Therefore, the original problem (2) 
is converted to m independent parametric boundary value problems as described by (3), and 
these problems may be distributed and solved independently in a distributed environment which 
consists of a number of processors linked by a network. From experience, the value of m is usually 
a small even number not larger than ten [2]. Numerical experiments in Sections 4 and 5 also 
confirm such experience. 

In order to retrieve V ( S , T ) ,  the approximate inverse Laplace transform due to Stehfest [5] 
given by 

V(S,T)  ~ ~jV(~j;S), (5) 
j = l  

where 
mm(j,m/2) k,~12 (2k)~ wj  = (_1 )~ /2+J  y ,  

, - ,  ( ~ / 2  - k)!k! (k - 1)! (j  - k)! (2k - #)! 
k=(lq-j) /2 

is known as the weighting factor, is used. This approximate inverse Laplace transform is by no 
means the most accurate one. The authors select Stehfest method because of previous experience 
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with the method used for linear problems [2,5] and wish to investigate the application of the 
inverse method to option pricing problems. 

For time varying a(t) and r(t),  it is possible to make a suitable coordinate transformation to 
the Black-Scholes equation in order to obtain a time independent-like heat equation [1]. Hence, 
the above Laplace transform method may still be applied. 

4 .  E X A M P L E S  W I T H  C O N S T A N T  V O L A T I L I T Y  

An example of European put option is given in this section. The spatial domain is chosen 
to be ~+ -- {S : 0 _< S _< 320}, the strike price being k -- 100 and the expiration date 
being T = 0.25 (three months). The two parameters a and r are chosen to be 0.4 and 0.5 
respectively, throughout the simulation period. A second-order finite-volume method is applied 
to each parametric equation as given by (3). The mesh size is chosen to be h -- 320/2 ~. 

As a comparison the forward Black-Scholes equation as given by (2) is solved by means of an 
Euler marching scheme along the temporal axis with time step-length being 1/365, i.e., one day, 
in conjunction with the above finite-volume scheme applied along the spatial axis S. The dis- 
cretisation leads to a set of tridiagonal system of equations at every time-step, which then may 
be solved by a direct method. The numerical solution for V(S, T) obtained in this case is denoted 
by VTI. The reason for choosing this method is that  the computational complexity is reasonably 
low for the accuracy that  it can achieve compared with higher-order schemes. On the other hand, 
the Laplace transformed set of equations is solved, sequentially in the same computational envi- 
ronment, with different values of m. An approximation to V(S, T) corresponding to each value 
of m is found by using the inverse Laplace transform as described in Section 3 and is denoted 
as VIL. Discrepancies between solutions, IIVTI -- VILH2, are recorded and shown in Table 1 for 
comparisons. Timings were obtained on a Sun Ultra-5 workstation using an F90 program which 
implements the above two methods. 

Table 1. Timing and discrepancy comparisons. 

m 2 4 6 8 10 

NVTI - -  giLl[ 2 1.0767 0.0812 0.0111 0.0037 0.0032 
Time (VIL) 0.006 0.009 0.014 0.017 0.018 

rn 12 14 16 18 

] IVTI  - -  VILLI2 0 .0032  0 .0032 0 .0032  0.0032 

Time (VIL) 0.021 0.028 0.028 0,035 

For comparison time (VTI) 0.133 

The timing of each run observed in this example consists of two parts. First, the second- 
order finite-volume solver time and, second, overheads due to the computation of inverse Laplace 
transforms. Dividing the timings for the inverse Laplace algorithm gives a crude estimation of 
the distributed processing time. Suppose there are as many processors available as the value 
of m, the scalability of the algorithm can still be easily observed from the sequential timings 
recorded in Table 1 using the above crude estimation of the corresponding distributed timings. 
The discrepancy II VTx --VIL ]l 2 approaches an asymptotic value of 0.0032 when m > 8. Therefore, 
it is not necessary to take m very much larger than ten. This result confirms the previous tests 
on a linear heat conduction problem [2]. 

As the total timings shown in Table 1 are very small, one may argue that  the distributed 
algorithm is not necessary. However, as discussed in Section 5, the situation becomes very 
different in nonlinear problems due to the linearization steps, and hence, the total computation 
increases. 
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5. S O L V I N G  N O N L I N E A R  M O D E L S  

Very often, over a short period of time the interest rate, r, is fixed while the volatility, a, is 
varying. The volatility may be a function of the transaction costs [6], the second derivative of 
the option value [7], or, in some cases, the solution of a nonlinear initial value problem [6]. In 
order to develop the nonlinear solver in this section, the volatility proposed in [8], i.e., 

a = (r0x/1 + a 

is used, where a is the proportional transaction cost scaled by a0 and the transaction time. Here, 
the authors adopted a heuristic approach in which the transaction cost is related to the option 
value and follows a Gaussian distribution. In order to demonstrate the inverse Laplace transform 
technique for nonlinear problems, a sine function is used to produce the effect of a pulse-like 
distribution instead of a Gaussian distribution. Therefore, the proportionM transaction cost, a, 
may be replaced by a function of the option value such as 

a 

where k is the strike price. This volatility is used in the subsequent numerical tests. 
The forward Black-Scholes model as given in (2) may be rewritten as 

OV = A (V) 02V OV + rs-  - rv,  (6) 

where A(V) = (1/2)(r(V)2S 2. Two linearization techniques can be applied to (6). 
First, the coefficient A is computed by using an approximation V, which is updated in every 

step of an iterative update process. Each step of the iterative update process involves a numerical 
solution to the equation, 

OV A (9) 02V OV 
o--; = + r s - S g  - (7) 

defined in the time interval ~- C (ti,t~+l]. Let V(n)(S,t~+l) and V('~)(S, ti)be the numerical 
solutions of equation (6) at ~- = ti+l and ~- -- ti, respectively. The iterative update process to 
obtain the numerical solution V(n)(s, t~+l), using V(n)(S, t~) as the initial approximation to V, 
is described in the algorithm below. 

ALGORITHM C 1. Iterative coefficient--temporal integration. 
Initial approximation:- V (°) (S, ti+l) := V (~) (S, ti); 
k := 0; 
Iterate 

k : = k + l ;  
1 / :=  V (k-l) (S, ti+l) ; {Store for comparison} 
Compute A(V); 
V (k) (S, ti+l) := Apply a temporal marching step to equation (7); 

Until IlV (k) (S, t i + l ) -  V (k-l) (S, ti+l)H < z 
11, : ~  k 

Numerical solutions for equation (6) may be obtained by using a temporal integration method, 
which involves the nonlinear iteration loop, described in Algorithm C1, using an Euler marching 
step applied to equation (7), and an outer iteration loop, with ti -- iST, i = 0, 1 , . . . ,  where 5~- 
is the step length of the temporal integration, applied to cover all of the temporal steps. Algo- 
rithm C1 is used to produce a reference solution for comparison. 

Alternatively, a Laplace transform can be applied to equation (7), now being defined in the 
time interval T E (T¢, Ti+l], in its differential form which leads to 

d2U dU 
A (9) - ~  + rS-d- ~ - (r + )~) U = - V  (S, T~), (8) 
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where 
U = l (V) .  

An iterative update process is required to update IF and to obtain the numerical solution 
V(n)(S,T~+I), using V('~)(S, Ti) as the initial approximation to 12, and is described in the al- 
gorithm below. 

ALGORITHM C2. Iterative coefficient--inverse Laplace transform. 
Initial approximation:- V (°) (S, T~+I) := V (n) (S, T~); 
k := 0; 
Iterate 

k : = k + l ;  
IF :-- V (k-l) (S, Ti+I) ; {Store for comparison} 
Compute A(IF); 
Parallel for j :--- 1 to rn(i) 

Solve (s) for S); 
End Parallel for 
Compute V (k) (S, Ti+l) using inverse Laplace in (5); 

Until [IV (k) (S, Ti+l) - g (k- l )  (S, T i+I ) t  I < 
n : ~ ] g  

Here, re(i) is the number of transformation parameters and T~ = i A v .  In order to solve 
equation (8) for U(Aj; S), one can employ the same finite-volume technique described in Section 4. 
In order to solve equation (6) for V(S,T), Algorithm C2 needs to be iterated through Ti := 
T1, T2 , . . . ,  T by using suitable values of ra(i) in the form of an outer iteration. In essence, the 
actual implementation does not require different values of m(i) for many problems, and the 
results shown in this paper use the same number of transformation parameters, denoted as rh, 
for different values of i during the outer iteration loop. Note that in this case, AT can be chosen 
to be much greater than 5T because the fine details of V(S, T) at each time step of a temporal 
integration is not required in the inverse Laplace transformation calculation. This paper does 
not intend to provide a full analysis of different possible choices of AT. In the numerical tests 
shown in Section 6, AT = T/IO, T/20, T/40, T/80, all normalised with respect to one year, and 

t o = 0 .  
Second, a small perturbation may be applied to equation (6), defined in the time interval 

T E (t~, ti+l], and leads to 

-O-~T- A'(V)-o-~+A(V)-oS-5+rS - r  5V 
(9) 

02V OV rV) 

where ~V is a small incremental change of V. Let 

6V (") (S, ti+l) 

be the numerical solutions of equation (9) at T = t~+l. Newton's iterative method of obtaining the 
numerical solution 5V (n) (S, ti+l ), using V (n) (S, tl) as the initial approximation to V (°) (S, t~+l), 
is described in the algorithm below. 

ALGORITHM NM1. Newton's method--temporal  integration. 
Initial approximation:- V (°) (S, t~+l) := V (~) (S, t~); 
k : = 0 ;  
Iterate 

k : = k + l ;  
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:= V (k-i) (S, ti+l) ;(Store for comparison} 

Compute A (17); Compute A' (17); 
05? 

Compute A' (17) 0S2; 

C o m p u t e -  ~ -  ~ + r S ~ - ~ - r V  ; 

5V (k) (S, ti+l) :=Apply a temporal marching step to equation (9); 
V(k) (S, t~+~) := 17 + ~V(k) (S,t~+~) ; 

Until II v(k) (s,t,+l)ll < 

Similar to the iterative coefficient method numerical solutions for equation (6) may be obtained 
by using a temporal integration method, which involves the nonlinear iteration loop, described 
in Algorithm NM1, using an Euler marching step applied to equation (7), and an outer iteration 
loop, with ti = i5~-, i = 0 ,1 , . . . ,  where 5v is the step length of the temporal integration, applied 
to cover all of the temporal steps. 

Alternatively, a Laplace transform then may be applied to (9), now being defined in the time 
interval T E (Ti, Ti+i], in its differential form results to 

( °2y a~ ~ ) 
l ( s v )  - 5 v  (s, Ti) - A' (V) - ~ T  + A (Y) ~ + r S  - r l (SV) 

( 02V OV ) 
= - l  (V) - Y (S, T~) - A (Y) - 0 ~  + rS-o-g - r V  

(lo) 

Newton's iterative method of obtaining the numerical solution l(~V (n) (S, T~+ i)), using V (n)(S, T~) 
as the initial approximation to V(°) (S, Ti+i), is described in the algorithm below. 

ALGORITHM NM2. Newton's method--inverse Laplace transform. 
Initial approximation:- V (°) (S, T~+i) :-- V (n) (S,T~); 
k : = 0 ;  
Iterate 

k : = k + l ;  
1)" :=- V (k-i) (S, T~+i);(Store for comparison} 
Compute A (17); Compute A' (V); 

Compute A' (17) 0S2; 
( 02? 07 ) 

Compute - l  (17) - Y (S, T~) - d (17) ~ - ~  + rS--~-~ - rP" ; 

Parallel for j := 1 to m (i) 

Solve (10) for l (6V(k) (S, Ti+i)); 
End Parallel for 

Compute 6V (k) (S, Ti+i) using inverse Laplace in (5); 
V (k) (S, T~+l) := ff + ~V (k) (S, T~+l) ; 

Until llSV(k)(S, Ti+I)II < ¢ 
n:~-k 

Here, m(i) is the number of transformation parameters. In order to solve equation (10) 
for I(SV('~)(S, T~+I)), one can employ the same finite-volume technique described in Section 4. 
Similar to the method of iterative coefficient Algorithm NM2 can now be iterated through 
Ti := Ti,T2, . . .  ,T  by choosing suitable values of re(i) in the form of an outer iteration. The 
other discussion for the choice of m(i) and A~- also applies. 
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6. E X A M P L E S  W I T H  N O N L I N E A R  V O L A T I L I T Y  

As an example of the distributed algorithm and the two linearization methods, the same 
problem of European put option described in Section 4 is used. The volatility a is chosen 
as a function as described above and the parameters a0 and r are chosen to be 0.4 and 0.5, 
respectively, throughout the simulation period. A second-order finite-volume method is applied 
to each parametric equation as given by (8) or (10). The mesh size is chosen to be h = 320/29. 

The Laplace transformed set of equations for each of the linearization methods is solved, se- 
quentially in the same computational environment, with different values of ~h and an approxima- 
tion to V(S, T) corresponds to each value of ~h is found by using the inverse Laplace transform 
as described in Section 3. The approximations obtained by means of the iterative coefficient 
and Newton's methods are denoted as Vc2 and VNM2, respectively. By using the choices of 
AT = T/10, T/20, T/40, T/80, the number of outer iterations required for Algorithm C2 and 
Algorithm NM2 is 10, 20, 40, and 80, respectively. 

The above two distributed algorithms are compared with the linearised forward Black-Scholes 
equation given in (8) solved by means of Euler marching scheme, Algorithm C1, along the tem- 
poral axis with ~T = 1/365, i.e., one day, in conjunction with the second-order finite-volume 
scheme applied along the spatial axis S. The discretisation leads to a number of tridiagonal 
systems of equations due to the linearisation step at every time step, which may be solved by a 
direct method. The numerical solution V(S, T) obtained by this temporal integration is denoted 
as Vcl. An F77 program was written, which implements the above two linearisation methods, 
and run on a COMPAQ laptop. The stopping criterion used in the linearization step is chosen 
as ~ = 10 -5. 

Defining one work unit as the computational work required for solving a tridiagonal system 
of equations results from a chosen mesh size. The total sequential work unit is obtained by 
multiplying the total number of work unit to ~ ,  and the total parallel work unit is simply the 
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Figure 2. Point-wise discrepancies of solutions for nonlinear problems. 

total work unit plus inverse Laplace transform and communication overheads. Discrepancies in 

solutions, i.e., IIVcl - Vc2tl2 and ]lVcl - VNM2]t2 using various AT, are recorded in Figures la  
and lb. In general, the discrepancy levels off when m > 8, which suggests that the use of more 
terms in the inverse Laplace transform at a fixed value of AT has no effect on the accuracy. 
On the other hand, smaller A~- produces small discrepancy at the expense of requiring more 
work unit as recorded in Table 2 for comparisons. Furthermore, the work unit required by using 
Algorithm NM2 is less than that of Algorithm C2, and there is no sudden increase of work when 
m = 1 2 .  

The other feature of the two linearization methods is that the use of iterative coefficients 
has no advantage over Newton's method. Finally, the pointwise discrepancies of the solutions, 

I Vc1 (S, T) - Vc2 (S, T) I and [Vcl (S, T) - VNM 2 (S, T)[, as compared with a time-stepping method 
applied to the nonlinear problem with rh = 10 and AT = 1/80 for the case h = 320/29 is 
recorded in Figure 2. Such comparison is not the best way of comparing results, but it gives 
an idea of the deviation from the numerical solution obtained by a temporal integration using 
Euler's method, which is well documented with error analyses in the literature. It shows that the 
largest discrepancies occur nearby the strike price. Therefore, it is the resolution problem of the 
finite-volume scheme near the strike price. On the other hand, the order of discrepancies is of the 
order of 10 -3 which is in consistent with the results for linear problems. Finally, the numerical 
approximations to V(S, T) using various methods and the initial condition V(S, 0) are plotted in 
Figure 3. 

Note that the linearization techniques applied above may be extended to handle American 
options and Asian options with little difficulties. A complimentary problem can always be formed 
for American options, in which the free boundary is embedded into the formulation. A Laplace 
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Figure 3. Comparison of numerical solutions at time T. 

transform can be applied then to the complimentary problem [3] followed with an inner iteration 
loop to drive the inequality to convergence. Work in this area is currently being conducted by 
the authors. 

7, C O N C L U S I O N S  

A distributed algorithm for solving European options model is discussed. Numerical examples 
are provided for a European put option with one spatial variable S. Timings of the linear 
problems obtained on a Sun Ultra-5 workstation show the advantages of the present Laplace 
transform approach for option pricing. A projection of the timing to a distributed computing 
environment shows the scalability of the algorithm. Two linearisation methods were used in 
conjunction with the inverse Laplace transform method for nonlinear Black-Scholes models are 
discussed. Work unit counts were also presented. The computational work unit suggests that 
inverse Laplace techniques have advantages in solving nonlinear option pricing problems. Further, 
investigation into other methods of the inverse Laplace transform is currently undertaken by the 
authors. 
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