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ABSTRACT 

This research addresses the problem of prolonging the life of aged structures of historical 

value that have already outlived their original designed lives many times. While a lot of 

research has been carried out in the field of structural monitoring, diagnostics and prognostics 

for high tech industries, this is not the case for historical aged structures. Currently most 

maintenance projects for aged structures have focused on the instrumentation and diagnostic 

techniques required to detect any damage with a certain degree of success. This research 

project involved the development of diagnostic and prognostic tools to be used for monitoring 

and predicting the ‗health‘ of aged structures. The diagnostic and prognostic tools have been 

developed for the monitoring of Cutty Sark iron structures as a first application. 

The concept of canary and parrot sensor devices are developed where canary devices are 

small, accelerated devices, which will fail according to similar failure mechanisms occurring 

in an aged structures and parrot devices are designed to fail at the same rate as the structure, 

thus mimicking the structure. The model-driven prognostic tool uses a Physics-of-Failure 

(PoF) model to predict remaining life of a structure.  It uses a corrosion model based on the 

decrease in corrosion rate over time to predict remaining life of an aged iron structures. The 

data-driven diagnostic tool developed uses Mahalanobis Distance analysis to detect anomalies 

in the behaviour of a structure. Bayesian Network models are then used as a fusion method, 

integrating remaining life predictions from the model-driven prognostic tool with information 

of possible anomalies from data-driven diagnostic tool to provide a probability distribution of 

predicted remaining life. The diagnostics and prognostic tools are validated and tested through 

demonstration example and experimental tests. 

This research primarily looks at applying diagnostic and prognostic technologies used in high-

tech industries to aged iron structures. In order to achieve this, the model-driven and data-

driven techniques commonly used had to be adapted taking into consideration the particular 

constraints of monitoring and maintaining aged structures. The fusion technique developed is 

a novel approach for prognostics for aged structures and provides the flexibility often needed 

for diagnostic and prognostic tools.   
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NOMENCLATURE 

PHM      Prognostic and Health Management 

PoF       Physics of Failure 

MD       Mahalanobis Distance 

C_PoF_RUL node for probability distribution of remaining life prediction 

obtain from PoF model for canary device 

P_PoF_RUL node for probability distribution of remaining life prediction 

obtain from PoF model for parrot device 

C_MDValues node for probability distribution of Mahalanobis Distance 

values for canary device 

P_MDValues  node for probability distribution of Mahalanobis Distance 

values for parrot 

Visual_Inspection node for probability distribution of damage level detected 

through visual inspections 

Canary_PredictedRUL node for probability distribution of predicted remaining life 

for canary device 

Parrot_PredictedRUL node for probability distribution of predicted remaining life 

for parrot device 

ShipStructure_PredictedRUL node for probability distribution of predicted remaining life 

for ship structure 

C_Time_Period node representing time for the canary device related input of 

Bayesian network model 

P_Time_Period node representing time for the parrot device related input of 

Bayesian network model 

Salt125_PoF_RUL node for probability distribution of remaining life prediction 

obtain from PoF model for the 0.125mm test device in salt 

environment 
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environment 
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1. Introduction 

1.1. Overview  

This research project involves the development of diagnostics and prognostic tools to be used 

for monitoring and predicting the ‗health‘ of aged structures of great historical value. Such 

activities present particular challenges when applied to aged structures. This chapter 

introduces the diagnostics, prognostics and structural health monitoring research field, which 

are then detailed further in the following chapter. This chapter also describes the types of 

structures considered for this research project. A few examples of aged structures are 

presented along with the Cutty Sark, which is used as the demonstration application of the 

diagnostic and prognostic tools developed. The challenges in maintaining such structures and 

in particular the Cutty Sark ship are discussed. The motivations for undertaking this research 

work is presented along with the aims and objectives. The chapter ends with an outline of the 

general methodology for the diagnostic and prognostic tools developed and the contribution 

made towards the research field of health monitoring, diagnostics and prognostics for aged 

structures. 

Aged structures encompass a broad range of civil and engineering structures that have been 

built and used for a long period. Any structure in service is affected by age-related 

deterioration that can lead to failure of the structure. The deterioration occurring is caused by 

many factors related to the material composition, the architecture, the usage and the 

environment of the structure. Structural deterioration comes in many forms: coating damage, 

corrosion, cracking, deformation, stress, fatigue and wear and tear. These factors can act 

individually or in combination, and their effects are hard to quantify. Corrosion and fatigue 

are the predominant modes of failure that affect aged iron structures. Fatigue is due to the 

fluctuating nature of load and corrosion, and is primarily due to environmental effects. A 

detailed analysis of failure modes and mechanisms of aged structures is provided in chapter 3. 

1.1.1. Use of diagnostics and prognostics technology 

The prognostics and diagnostics terminologies are used to describe the broad range of 

processes, which aim to determine material condition at present time and predict material 

condition at a later predetermined time. Diagnostics is the process of determining the current 

―health‖ of a structure while prognostic is the process of predicting the future ―health‖ of a 
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structure. Structural health monitoring is a term used to describe the sensor system and 

diagnostics and prognostics technologies used to monitor systems and structures. 

Monitoring of aged structures is essential as most of these structures have exceeded their 

original design life, but are expected to operate reliably and safely over their extended 

operational lives. The maintenance of these structures would usually be carried out on an ad 

hoc basis as and when required and little documentation of such repair work is available. The 

most common form of monitoring the degradation of such structures is visual inspection, 

which is carried out at varying intervals depending on the usage and age of the structure and 

the funding available. Visual inspection is a labour intensive and subjective approach to 

monitoring aged structures and more cost-effective and reliable monitoring strategy is 

required. Additionally, standard visual inspection techniques do not necessarily detect 

insidious deterioration that can lead to substantial damage but only detect defects that are 

clearly visible and most likely easily controllable. 

With diagnostic and prognostic tools in place, monitoring of a structure would provide better 

understanding of the response of the structure under real operational and environmental 

conditions. Knowledge of where to inspect a structure should damage start to develop would 

be available, thus reducing inspection time and maintenance costs. Additionally, monitoring 

can be carried in inaccessible areas. Maintenance decisions can then be taken based on 

monitoring and prediction results well ahead of time in order to prevent catastrophic failures.  

For new structures, diagnostics has been successfully implemented up to a certain extent in 

many diverse fields such as manufacturing, civil structures, electronics, aerospace, etc. 

However, this is not the case for prognostics, which has higher requirements compared to 

diagnostic analysis. For prognostic purposes, assessment of performance of a structure is 

required, which involves matching the performance and behaviour signatures from recent data 

with data representing normal performance and behavior. Using these assessment results, 

prediction algorithms are then used requiring correct interpretation of the data and insightful 

understanding of degradation processes of the structure monitored. This development of 

accurate prediction algorithms is usually the most challenging part. 

Typically a diagnostic analysis for new structures would involve data collection, signal 

processing, feature extraction and selection. Additionally, a knowledge base of failure modes 
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and mechanisms would be available from expert knowledge, physical models and historical 

data. However, for aged structures, the knowledge base available for use in diagnostic and 

prognostic analysis is minimal if not completely nonexistent. This may be due to lack of 

original documentation of the architectural structure, lack of maintenance logs and lack of 

understanding of properties of materials used at the time and lack of physical models. Thus, 

very often, the history of the operational and environmental load experienced by an aged 

structure is unknown. This further complicates the already challenging task of diagnostic and 

prognostic analysis.  

1.2. Motivation  

Aged structures play an important role in heritage tourism and thus have a positive economic 

and social impact. In 2010, the heritage tourism industry‘s annual contribution to UK‘s gross 

domestic product was worth almost £21 billion (HERITAGE LOTTERY FUND, 2011), 

which is a bigger contribution than car manufacturing or advertising and film industries to the 

UK industry. Tourism continued to increase while the wider economy was shrinking. Thus, 

the preservation and maintenance of heritage structures is of utmost importance in order to 

preserve our historical and cultural heritage and provide identity to the local community as 

heritage structures raise pride in the local area and create a distinct sense of belonging. 

Additionally, with heritage being one of the biggest drivers of tourism in the UK, maintaining 

heritage structures is a vital part in order to continue to grow the tourism industry as it helps 

to attract new businesses and residents to an area. 

Heritage structures usually have different degrees of degradation depending on the techniques 

used to build them as well as the length of time they have been exposed to their environmental 

conditions. There is major motivation in the heritage community to modernise maintenance 

operations to reduce costs as well as to ensure the structures are preserved for future 

generations (ANASTASI, G. et al., 2009) (GARZIERA, R. et al., 2007). Ideally, the structural 

integrity of heritage structures should be preserved for as long as possible such that they can 

serve their original or new purposes as well as preserving a cultural legacy. 

Heritage structures such as the Cutty Sark are a great cultural inheritance from the past and 

need to be preserved. The conservation work being carried out on the ship is ―state of the art‖, 

but there is no evidence at present for predictions of the effectiveness of the conservation 

work over the next 50 years. The main motivation for this PhD project is to develop 
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prognostic and diagnostic tools to help in maintenance decisions for heritage structures such 

as the Cutty Sark. This has the potential to make huge savings in terms of cost of maintenance 

while increasing safety and reliability as well as safeguarding a national treasure. For the 

scope of this project, only the iron structures are considered for the diagnostic and prognostic 

tools. 

1.3. Cutty Sark Ship 

The Cutty Sark is a composite-built vessel, built 140 years ago with a wrought iron frame 

skeleton and teak and rock elm strakes fastened to it. Conservation work is currently being 

carried out because of extensive deterioration of the wrought iron frames and timber planking 

(CAMPBELL, Sheelagh A et al., 2005). The main cause of damage of the wrought iron 

framework is corrosion with various forms of corrosion prevalent in different parts of the 

ship. The conservation aims to minimize the potential for degradation by removing some 

agents of deterioration. The strategy is to ensure that dissimilar metals and materials are not in 

contact and to use surface coatings, which should form a barrier between the iron and agents 

of deterioration. Figure 1-1 illustrates examples of severe corrosion and material deterioration 

that are present in the original fabric of the ship.  

 

 

 

 

 

 

 

 

 

Figure 1-1: the composite built vessel (a) and examples of severe corrosion and 

material deterioration (b and c) that are present in the original fabric of the ship. 

(b) 

(c) 

(a) 
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The diagnostic and prognostic tools developed within this research project will be used to 

predict the current and future ―health‖ of Cutty Sark iron structures. Research and 

implementation of these tools are a necessary continuation of these conservation works to 

ensure that the original aim of a 50-year life with only minor and acceptable deterioration (in 

conservation terms) can be met. 

The fastenings used in Cutty Sark are made of Muntz metal (alloy of copper and zinc).  Iron 

and wood are two different types of materials that behave differently under different loads in 

similar environments. Thus, structures made from these two different materials should be 

monitored in both parts that use metal or wood. The areas where the iron and wood are in 

contact are also of importance. For example, iron structures under a particular stress might 

experience deformation and affect the wood structures (by applying an indirect stress on the 

wood structures) and thus although the wood structures are not affected by the original 

applied stress, the structures might still undergo deformation.  

The Cutty Sark being around 140 years of age, creep and fatigue would be failures of major 

concern for the ship. Corrosion is also one of the main aspects of failure to consider as 

corrosion accelerates creep and fatigue in various different ways for metals, woods and alloys. 

Since its launch in 1869, the Cutty Sark has been sailing for around 70-80 years until it was 

dry-docked in 1954. The types of creep, fatigue and corrosion, which the Cutty Sark has been 

experiencing, would be different types during these two periods because the ship has been 

used for carrying goods at sea and later converted into a museum in a dry dock. 

The development of diagnostic and prognostic tools, which will later be incorporated into a 

maintenance decision support system, requires input and collaboration of technology and 

knowledge from different disciplines. Such an inter-disciplinary effort has not yet been 

developed for heritage structures such as the Cutty Sark. Similar endeavours can be found in 

the building and maintenance of iron and steel bridges across the world where long-term 

monitoring systems of bridges is necessary in order to secure structural and operational safety 

as well as issue early warning on deterioration of structures. The main difficulties here again 

lie in the technological fusion of different disciplines, which include distributed and 

embedded sensing, data management and storage, data mining and knowledge discovery, 

diagnostic and prognostic methods and decision support systems (KO, J. M. and Ni, Y. Q., 

2005). 
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1.4. Challenges in Maintaining Aged Structures 

In order to detect and predict faults and failures, it is essential to understand the structures and 

their behavior. The lack of documentation explaining the design and construction of aged 

structures makes structural assessment difficult. Intrusive measurement techniques common 

in monitoring cannot be applied as these have high risk of damaging the structure. The 

challenges described are commonly observed in aged structures where the lack of technical 

details of the structures hinder the maintenance process to a great extent (MANDENO, W. L., 

2008).  

For example, in reference to (GARZIERA, R. et al., 2007), a new technique is presented 

which involves the use of a laser Dopper vibrometer to measure displacement with great 

accuracy and reliability. In this project, the aim is to identify the dynamic characteristics of a 

building, which then help to locate damaged zones, cracks due to structural degradation in 

historical churches, bells and masonry towers. Wireless sensor networks are also being 

investigated for the monitoring of historical buildings to facilitate monitoring of appropriate 

physical characteristics from sensors placed in hard-to-access areas (ANASTASI, G. et al., 

2009). Reference (GLISIC, B. and al, 2007) provides more examples of structural monitoring 

of historic buildings, which have undergone extensive repair and the conservation program 

where both conventional sensors as well as optical fibre sensors have been used. Such 

monitoring systems for aged structures have mainly diagnostic capabilities with little or no 

prognostic capabilities. 

The iron structures of the Cutty Sark are made of wrought iron. While considerable attention 

and a lot of research continues to be directed towards corrosion of iron and steel structures, no 

comprehensive study has been carried out to date on corrosion models for wrought iron 

structures (SOARES, C G and al., et, 2008) (SOARES, C. G. and al., et, 2008) (YUANTAI, 

2008) (MELCHERS, R. E., 1999) (MELCHERS, R. E. and Jeffrey, R. J., 2008).  Information 

is scarce on corrosion models for prediction of corrosion rates with respect to different 

influencing factors such as relative humidity, temperature, time of wetness, surface area, 

chloride concentration and other contaminants. Therefore, uncertainties in quantitative 

corrosion models are quite high. Straub (STRAUB, Daniel, 2004) reports that physical 

models of corrosion processes are hard to build, as these require knowledge of the 
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concentration of oxygen in the environment, the diffusion coefficient in the corrosion 

products and many other factors, which are not generally available. Additionally, purely 

empirical models have little value, as the extrapolation of the models outside the calibration 

range is not possible.  

Furthermore, the environmental conditions on a ship such as the Cutty Sark will be different 

in the future once the restoration work is complete. Added to that, the iron structures would 

have been treated to decrease corrosion and to protect them from any further corrosion. 

Therefore, extrapolation of data and information from historic behaviour cannot be carried out 

and processed in a straightforward manner to provide predictions of future degradation for the 

ship. Conventional inspections approaches, such as inspect and repair, are not viable options 

for the ship, as any harmful effects must be detected well in advance of any significant 

damage on the structures.  

Due to the complexity of the corrosion processes, measuring and predicting future corrosion 

rates for iron structures is a challenge. Corrosion encompasses complex electrochemical 

reactions for which corrosion rates vary significantly depending on the composition of the 

materials, the shape of the structures and the surrounding environmental conditions. As 

mentioned above, many corrosion processes are little understood to date making it difficult to 

predict corrosion rates of particular structures of particular material within a specific and/or 

changing environment. The specific challenges for Cutty Sark can be listed as the following: 

 Understanding to what extent corrosion affects iron structures. 

 Determining the corrosion rates for wrought iron structures as well as composite 

structures made of wrought iron and timber 

 The corrosion rates will be different throughout the ship due to difference in shapes of 

structures and different environmental conditions 

 Finding out to what extent will corrosion affect already aged material 

 Developing a correlation between environmental factors and actual corrosion 

occurring 
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1.5. Aims and objectives of the research 

1.5.1. Aims 

There are four main aims for this research. The first is to summarise the major areas of 

research currently being carried out in the field of maintenance of aged structures, structural 

health monitoring, diagnostics and prognostics. This project being an interdisciplinary effort, 

a thorough investigation of the state-of-art in the different disciplines involved is essential. 

The second aim is to investigate the use of sensors to gather environmental and performance 

data. Due to restrictions in terms of installation of monitoring equipment, bespoke sensors are 

required to acquire data. The development and implementation of diagnostic and prognostic 

tools is the third aim of this research. In brief, within this framework, performance data will 

be processed to determine at diagnostic level whether the structure is ‗healthy‘ or 

experiencing damage. If damage is detected, a trending process is initiated to estimate the 

remaining useful life of the structure in the prognostic stage. Various methodologies can be 

used at both diagnostic and prognostic level. Most importantly, the diagnostic and prognostic 

tools should provide an accurate update on the extent of corrosion damage and its 

development such that maintenance actions can be planned at convenient times. Finally, the 

fourth aim is to demonstrate the utility of the tools developed using some notional examples. 

1.5.2. Objectives 

To achieve the aims set above a list of objectives has been identified and is detailed below: 

 Define conservation in terms of primary parameters for which changes over time is 

measured. Additionally, the likely values of these parameters over a period of 50 years 

need to be established. This also involves understanding how the restored structures 

are expected to perform over time. The parameter(s) chosen should be indicative of 

the state of the corrosion of that structure, easily measured and provide a continuous 

update of the state of the structure. 

 Damage detection: Design sensors to use around the structure and determine optimal 

placement of those sensors to detect with high probability and reliability, any damage 

before it becomes critical. The number of sensor should be kept to a minimum due to 

operational cost issues. 
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 PHM Framework: The objective is to investigate model driven and data driven 

algorithms for diagnostic and prognostic purposes. An appropriate fusion technique 

should then be used to combine all the diagnostic and prognostic analysis into a PHM 

framework that will also provide the ability to manage uncertainty 

 Diagnostics: The diagnostic tool will compare the 50 years predicted value for a 

parameter with threshold values that have been chosen to represent a lower bound of 

acceptable deterioration with time. If any predicted parameter exceeds its threshold 

value, this should be detected early enough for remedial action to take place. Data 

trending algorithms will be developed to detect anomalies in chosen parameter 

measurements that would indicate possible failure in the near future. 

 Prognostics: While faults are identified at diagnosis level, usually immediate action 

will not be required at that stage. The development of a fault is tracked and 

maintenance is scheduled at the most appropriate time. The prognostic system is 

expected to have low predictive accuracy at the beginning (which is acceptable and 

unavoidable) and maximum accuracy towards the end of the life of the structure 

(which is too late to be useful). Hence, one main objective is to achieve adequate 

accuracy of predictions of remaining life (for a 50-year period ahead for Cutty Sark 

example) in the next five to ten years. 

1.6. General Methodology  

Prognostics and health management (PHM) techniques combine sensing, recording, and 

interpretation of environmental, operational, and performance-related parameters, which are 

indicative of a system‘s health. Prognostics and health management can be implemented using 

various techniques to sense and interpret the parameters indicative of: 

 performance degradation, such as deviation of operating parameters from their 

expected values 

 physical or electrical degradation, such as material cracking, corrosion, interfacial 

delamination, or increases in electrical resistance or threshold voltage 

 changes in a life-cycle environment, such as usage duration and frequency, ambient 

temperature and humidity, vibration, and shock.  
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Different approaches can be used individually or combined together to predict failure in terms 

of a distribution of remaining life and/or level of degradation. 

A set of diagnostic and prognostic tools have been developed and a new sensor system has 

been devised as part of a prognostics and health management system. The diagnostic tool 

performs anomaly detection using Mahalanobis distance (TAGUCHI, Genichi et al., 2000)  as 

the reasoning algorithm. Mahalanobis distance (MD) is a distance measure based on 

correlation between two or more variables from which patterns can be identified and 

analysed. It produces a single metric from multiple sensor data to represent anomalies in the 

system.  

The first prognostic tool is based on the Physics-of-Failure approach, which consists of 

predicting remaining life of a structure using deterioration models based on environmental 

factors and any other relevant factors that can lead to deterioration of a structure. This 

generally involves a physical/empirical model best fit to predict the future state of a structure.  

Here, a temporal model is used to predict the amount of corrosion at a specified point in time 

and the evolution of corrosion penetration with time.  

The second prognostic tool developed uses a fusion approach that is implemented using 

Bayesian networks. Bayesian Network models are developed to predict remaining life of a 

structure by integrating predictions of remaining life (using PoF) with real-time information 

of possible anomalies in the system(using MD analysis). This fusion approach has been 

adopted with the aim of developing a prognostic tool that can accommodate the initial lack of 

information and knowledge regarding the corrosion processes on the Cutty Sark iron 

structures and handling data uncertainty.  

The new sensor system devised consists of two types of devices: Canary and Parrot devices. 

Canary devices are small-accelerated devices, which will fail according to similar failure 

mechanisms occurring on Cutty Sark. Canary devices will fail faster than the actual system 

thus giving advance warning of impending failure. Parrot devices are similar to canary 

devices but fail at the same rate as Cutty Sark structures. These devices will be placed around 

the ship for monitoring purposes.  
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1.7. Contribution 

The key contributions of this thesis are highlighted below: 

1. Development of a sensor monitoring system comprising of canary and parrot 

devices in order to measure environmental and performance variables for the iron 

structures. 

2. Development of a prognostic tool that incorporates a PoF model for remaining life 

prediction of iron structures through the adaptation of the linear-bilogarithmic law. 

3. Development of a data-driven diagnostic tool that uses Mahalanobis Distance 

analysis for anomaly detection. 

4. Development of a prognostic tools based using fusion approach to integrate 

information obtained from the PoF model and anomaly detection to provide 

updated remaining life prediction using Bayesian Networks. 

The diagnostic and prognostic tools developed in this thesis are expected to have a broader 

impact to the heritage industry as their applications can be extended to aged structures where 

historical data is scarce, appropriate sensor monitoring techniques are few and understanding 

of complex failure mechanisms is still incomplete. The results of the research work have been 

presented at three international conferences and have been published in two journal papers.  

1.8. Thesis Structure 

The thesis is organised in seven chapters including this chapter. The general layout of the 

thesis and the topics discussed in each chapter are as follows: 

Chapter 2 reviews the Prognostics and Health Management approach on which the PHM 

framework is based. The following areas are covered in more details: Use of Canary devices, 

Model-driven methods, Data-driven methods and Fusion methods. A brief overview of 

maintenance strategies used in the field is also provided. Additionally PHM and SHM efforts 

for historic structures are reviewed. 

Chapter 3 provides background information regarding structure degradation of other maritime 

heritage structures, failure modes and mechanisms experienced by historic structures such as 

the Cutty Sark. 



- 12 - 

 

In chapter 4, the diagnostic and prognostic tools developed for aged structures are described 

using the Cutty Sark as example. The use of canary and parrot devices is also detailed. The 

model-driven method used to predict corrosion rates of iron structures as well as the data-

driven method using precursor monitoring and anomaly detection are presented. Then the use 

of Bayesian networks as a fusion approach for updated remaining life probability distribution 

is detailed. 

Chapter 5 illustrates a demonstration example setup to test the diagnostic and prognostic tool 

framework. The background information used to develop the demonstration example is 

presented along with the results from the diagnostic and prognostic tools. 

Chapter 6 describes the laboratory experiment carried out to evaluate the methodologies 

presented within the PHM framework. The results are also detailed and discussed.  

Chapter 7 concludes the thesis with a summary of research work carried out, its scientific 

contribution, the recommendations for diagnostic and prognostic tools and future research 

areas.  
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2. Literature Review 

2.1. Prognostics and Health Management 

2.1.1. Introduction 

Prognostics and health management (PHM) is an approach that is used to evaluate the 

reliability of a system in its actual life-cycle conditions, to determine the initiation of failure, 

and to mitigate the system risks (MATTHEW, S et al., 2008). The prognostics and diagnostics 

terminologies are used to describe the broad range of processes, which aim to determine 

material condition at present time and at a later predetermined time. Diagnostics is as 

described in (HESS, A. et al., 2005) is the process of determining the state of a component to 

perform its functions, high degree of fault detection and fault isolation capability with very 

low false alarm rate. In (GREITZER, F. and al, 2001), Prognostics is described as the process 

of predicting the future state of a system based on current state and predicted future usage. 

Diagnostics is carried out to investigate any current failure in a component whereas 

prognostics will give warning of possible failure in the future and/or predict remaining life of 

a system such that there is enough time for any preventive measure to be taken to extend life 

of the system. 

Diagnostic methods of PHM systems for fault detection and isolation have achieved good 

levels of effectiveness depending on the field of application. However, prognostic abilities of 

PHM systems are still at infancy levels in many application areas as the requirements are 

often more challenging than those for diagnostic methods. The performance of the prognostic 

part of a PHM system is dependent on the quality of the diagnostic part. A PHM system can 

provide many different kinds of predictions. These could be the probability associated with a 

particular system event occurring or the probability of failure of a system within a set period 

of time or determining the remaining lifetime of the system under set conditions. 

Development of PHM systems depends on the specific requirements of the application. 

Amongst the main requirements is the amount of time in advance that faults should be 

detected and how far in future is the prediction of failure required for.  In fulfilling these 

requirements, several factors need to be taken into consideration: the capabilities of the 

sensors, the logistics available, the current technology shortfalls and the level of safety and 

reliability that needs to be attained. Additionally, the following factors are critical to perform 
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prognostics: current health state, historical health state, past maintenance history, and 

expected future usage (GOH, K M et al., 2006). 

There are four general methods for conducting prognostics and health management of 

systems, which are: 

 Fuses and Canaries - also called prognostic cell approach. The prognostic cells are 

integrated into a specific component or device; these cells incorporate the same failure 

mechanisms as the embedded device, but fail faster than the actual product by means 

of scaling. 

 Model Driven Methods - such as Physics-of-Failure (PoF) methodology, which is 

founded on the premise that failures result from fundamental mechanical, chemical, 

electrical, thermal and radiation processes. It consist of four steps: (1) Failure mode 

and effect analysis, (2) Life cycle loading monitoring, (3) data reduction and load 

feature extraction and (4) Damage assessment and remaining life calculation. 

 Data Driven Methods - These methods are typically derived from machine learning 

techniques such as (i) models that establish a set of interconnection relationships 

between input and output where the parameters of the relationship are adjusted with 

more information and (ii) detection algorithms that learn a model of the nominal 

behaviour of a system and then indicate an anomaly when new data fails to match that 

model (SCHWABACHER, M and Goebel, Kai, 2007)
.
 

 Fusion Methods - The aim of fusion/hybrid methods is to integrate both model-based 

and data-driven methods in order to benefit from the merits of both approaches.   

The term Structural Health Monitoring is used also to describe diagnostic and prognostic 

technologies used to monitor systems and structures. In reference (SPECKMANN, Holger 

and Roesner, Henrik, 2006), Structural Health Monitoring is described as the continuous, 

autonomous in-service monitoring of a structure by means of embedded or attached sensors 

requiring minimal manual intervention to monitor the structural integrity of a structure. This 

typically involves a large number of sensors used at the front-end to gather data on the 

condition of the structure. This data is then used in structural analysis and failure models to 

assess the state of a structure and to predict the remaining useful life (ACHENBACH, J D, 

2009). 
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Structural health monitoring is usually carried in fields such as the electronics industry, 

aviation industry, civil industry and many others.  Boeing is currently looking at 

implementing a structural health monitoring system focusing on detection and prediction of 

the corrosion of metallic structures in ageing aircrafts (COLE, I, 2008).  In the civil 

engineering sector, the focus is on the maintenance of increasingly ageing civil 

infrastructures, especially bridges and high-rise buildings (AUWERAER, H. V.D., 2003). For 

example, in Japan, there is major concern for the integrity of civil structures with respect to 

damage caused by earthquakes. Furthermore, it is anticipated that investments in new 

buildings and infrastructure will decrease while maintenance and renovation of existing 

structures will increase. 

The main motivations for SHM are the optimal use of a structure, minimized downtime and 

the avoidance of catastrophic failures (BALAGEAS, Daniel, 2010). SHM also aims to 

minimise human involvement thus reducing labour, downtime and human error, which leads 

to improved safety and reliability. Additionally, the economic benefits are also considerable 

in that constant maintenance costs would be expected instead of increasing maintenance costs 

for classical maintenance approaches. Some of the features usually associated with SHM are 

(SPECKMANN, Holger and Roesner, Henrik, 2006): 

 Sensors permanently attached to the structure 

 No physical access to inspection area necessary (safe inspection of hazardous areas) 

 Automated inspection without manual operation in the inspection area required 

 Questioning several locations at the same time 

The transition from research to practice of SHM however is reported to be quite slow. There 

are many technical challenges still to overcome particularly with regard to sensor 

development and data transmission (ACHENBACH, J D, 2009). Sensors need to be small and 

ideally with suitable wireless transmission capabilities to the central station.  

The purpose of this chapter is to provide an overview of the diagnostics and prognostic 

methodologies currently in development and/or in use for aged structures such as ships, 

bridges and historical buildings as well as aircrafts and electronics. The first section describes 

the different categories of diagnostic/prognostic methods in PHM. The second section 

describes the use of canaries as advance warning devices. The third section describes the 



- 16 - 

 

model-driven methodologies for prediction of corrosion rates in varied structures. In the 

fourth section, an overview of data-driven techniques is provided with focus on technologies 

used for precursor monitoring and anomaly detection. The fifth section describes research 

carried out on using fusion approaches for prognostics and especially Bayesian Networks, 

which is, used the fusion prognostic tool developed. The penultimate section provides an 

overview of current SHM and PHM efforts for historic buildings and ships. The last section 

summarizes the information provided in this chapter. 

2.1.2. Challenges & Issues 

The challenges of PHM systems are varied and depend on the application field. While most 

likely scenarios and future events and behavior can be quantified to a certain extent, the future 

is not known at the time of prediction. Thus, prediction needs to be treated as a probabilistic 

process where the predicted remaining time is represented by a probability density function.  

As a result, we cannot eliminate the inaccuracy and uncertainty (precision and confidence) of 

the predicted remaining life but only minimize it (HESS, A. et al., 2005).  

A common paradox associated with PHM due to the use of Probability Density Functions 

(PDFs) to represent predicted remaining life is the more precise the remaining life estimate, 

the less probable this estimate will be correct. In reference (ENGEL, S J et al., 2000), Engel et 

al demonstrates the distinction between four idealized Probability Density Functions (PDFs) 

for remaining life. Prognostic methods need to be able to handle real world uncertainties that 

lead to inaccurate predictions. These uncertainties are grouped into three categories (SUN, Bo 

et al., 2010): 

 Model uncertainty caused by model simplification and model parameters 

 Measurements and forecast uncertainty induced by environmental and operational 

loads 

 Uncertainties associated with the characteristics of parameters of a system caused by 

the production and implementation process of that system. 

Thus prognostic accuracy assessment technologies with methods that impartially evaluate the 

effectiveness and accuracy of a PHM system are required for quantifying the confidence level 

of the PHM system. Often prognostic methods cannot be used due to lack of empirical data or 

experience knowledge required to develop and test the methods. This occurs mainly due to the 
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lack of failure data for systems, as they get safer and more reliable. Additionally some legacy 

systems lack the necessary documentations (HADDEN, G D et al., 2000). 

Sun et al, also discuss the difficulty of determining the Return on Invest (ROI) of a PHM 

system as it is difficult to quantify the benefits of PHM results. ROI is a process based on cost 

avoidances associated using PHM and the costs associated with the implementation of PHM. 

Thus performance measures for PHM need to be well defined in order to assess the 

anticipated ROI and these would include the overall logistics system, supply chain 

management and other related resources required for the implementation and running of a 

PHM system. Finally, maintenance applications tend to be complex (in both volume and 

substance) which overwhelms users. This leads to users developing mistrust in the system 

whenever a false alarm occurs or prediction of a failure is missed (KOTHAMASU, 

Ranganath et al., 2006). 

2.1.3. Benefits of PHM 

The use of a prognostics health management approach for maintenance of systems provides 

many advantages in terms of reliability, safety, maintainability and other aspects (SUN, Bo et 

al., 2010). These are summarised below in Table 2-1. 

Criteria Benefits 

Reliability (SUN, Bo 

et al., 2010) 

With monitoring of environmental and usage loads, it is 

possible to take active control actions increase the lifetime of 

a system through changes to environmental and/or usage 

conditions. Collection of data enables PHM to assess the 

actual condition of a system and predict remaining life which 

in turn is used to replace components of a system as and when 

required resulting in improved reliability. 

Safety (SUN, Bo et 

al., 2010) 

PHM provides the ability to anticipate incipient faults prior to 

their progressing to final system failure and time to fix 

problems before the faults cause a catastrophic failure.  

Maintainability (SUN, 

Bo et al., 2010) (NIU, 

Gang et al., 2010) 

PHM helps eliminate redundant inspections, minimise 

unscheduled maintenance, extend maintenance cycle, decrease 

test equipment requirements and ultimately reduce 

maintenance costs. 

Logistics (NIU, Gang 

et al., 2010) (SUN, Bo 

et al., 2010) 

PHM improves and assists the logistical support system by 

integrating reliable real time information on current and future 

status of systems which aid planning maintenance and the 

logistics associated with maintenance such as transportation 

and supply chains for spare parts. 
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System design and 

Analysis (NIU, Gang 

et al., 2010) 

Through investigation of failure modes, mechanisms, and 

effects of systems, potential design flaws can be found. This 

helps in improving design and qualifications processes for 

systems.  

Risk Management 

(HESS, A et al., 

2006) 

Some level of risk is inevitable with maintenance decisions 

where the balance is required between removing a faulty 

component while it still possesses useful capabilities and 

achieving the limit of 100% failure avoidance. PHM enables 

the user to make maintenance decisions by providing the 

necessary information to evaluate and manage the risks 

associated with the actions to be taken. 

Table 2-1: Benefits of PHM 

2.1.4. Overview of Prognostics Techniques 

From the literature, many research groups have presented a typical PHM system, which would 

take sensor values as inputs and ideally perform the following (HADDEN, G D et al., 2000), 

(SCHWABACHER, M and Goebel, Kai, 2007), (PATNAIK, A R et al., 2006): 

 System Monitoring using Sensors - sensors located at critical points 

 Fault detection - detecting that something is wrong (diagnostics) 

 Fault isolation - determining the location of the fault (diagnostics) 

 Fault identification - determining what is wrong, i.e. determine the fault mode 

(diagnostics) 

 Fault prediction - determining when a failure will occur based conditionally on 

anticipated future usage (prognostics) 

 Maintenance Scheduling - determining the appropriate times for maintenance 

activities based on a cost-benefit analysis 

Many PHM algorithms exist whose applicability is highly dependent on the available 

knowledge of the monitored system. These algorithms can be classified into three main 

categories: (1) Model-driven, (2) Data-driven and (3) Fusion, which can be further classified 

as shown in Figure 2-1 which is based on similar representations in (SCHWABACHER, M 

and Goebel, Kai, 2007) (ZHANG, Huiguo et al., 2009).  
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Figure 2-1: Types of Prognostic Algorithms 

Model-driven algorithms are hand-coded representation of the system. These can be either 

physics-based or Artificial Intelligence-based. Physics-based models involve accurate 

mathematical models encapsulating first principles knowledge of the system. Such models are 

highly desirable but often difficult to build for complex systems (PATNAIK, A R et al., 

2006). Thus, most physics-based models do not capture every details of the system, but 

capture the essentials features with minimum complexity. AI-based algorithms include rule-

based expert systems and finite state machines amongst others.  

Schwabacher et al, define data-driven approaches as methods that automatically fit a model of 

system behavior to historical data rather than hand coding a model (SCHWABACHER, M 

and Goebel, Kai, 2007). Data-driven methods use real data to approximate and track features 

revealing the degradation of systems and to forecast the behavior of a system. As a result, 

data-driven approaches are highly dependent on the quantity and quality of data. As such, 

data-driven models can be applied immediately in situations for which appropriate physics-

based models do not exist or are too expensive and/or complicated to develop. Data-driven 

approaches are further categorized into machine learning approaches (such as neural 

networks, fuzzy systems, decision trees, etc.) and statistical approaches. Machine learning 
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techniques are usually very flexible and can easily adapt to changes resulting from changes in 

the system itself, in its operating environment or expectations (ZHANG, Huiguo et al., 2009). 

Further review of data-driven methods used in Prognostics and Health management is 

provided section 2.3.2. 

More recently fusion or hybrid approaches to perform diagnostics and prognostics have 

emerged with the aim of combining the advantages of PoF models and data-driven methods to 

provide a more reliable prediction of remaining useful life (ZHANG, Huiguo et al., 2009) 

(CHENG, Shunfeng and Pecht, Michael, 2009). In reference (ZHANG, Huiguo et al., 2009), the 

data-driven method is used to ―calibrate‖ the PoF model. Meanwhile, the PoF model is used 

to define failure criteria and thresholds for the data-driven method and provide an estimate of 

remaining life based on data-driven results. 

2.1.5. Prognostics in application 

Prognostics and Diagnostic systems have recently gained strong interest from diverse fields 

(mechanical and electrical systems, logistics, and construction, medical).  Prognostic tools are 

now researched widely under industrial, government and academia projects. An overview of 

some projects in various sectors is provided in the following subsections.  

2.1.5.1. GE Aviation 

GE Aviation is engaged in developing prognostics health management applications for 

mechanical and electronics systems in the avionics industry. In (SMITHS AEROSPACE, 

2004), the ProDAPS project application is described as providing intelligent tools to facilitate 

the following tasks: 

 Extraction of new knowledge and information from system health data 

 Reasoning with this knowledge and information to diagnose system state 

 Anomaly detection and trending for prognostics 

 Determine the optimum actions to meet system management goals. 
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The ProDAPS application consists of a number of components (Probabilistic High Level 

Reasoning Engine, Decision Support, Network Editor, Causal Network Editor, Data Mining 

& Knowledge Discovery, and Reasoning Function) as detailed in (SMITHS AEROSPACE, 

2004). 

2.1.5.2. PHM for Energetic Materials 

Niu et al, are looking into the development of a PHM-based system to ensure the unique and 

demanding reliability and safety requirements of energetic material systems are met to enable 

widespread use in both military and civilian applications (NIU, Gang et al., 2010). Energetic 

materials are a class of materials with a high amount of stored chemical energy that can be 

released (e.g. hydrogen fuel cells). Traditionally the predicted remaining life of energetic 

materials was based on an assumed rate of deterioration, which did not account for usage and 

environmental stresses encountered in real life.  

The PHM-based technology would be implemented from initial stage with embedded sensors 

installed on the actual system for future data collection and health assessment. Investigation 

into the use of canary materials that exhibit similar behaviours to the energetic material itself 

are also being carried out. The physicochemical properties and parameters often define how 

the performance degradation of energetic materials will occur. Currently assessing the 

material‘s energy consumption, predicting the remaining useful life, and enhancing the 

reliability of the energetic material are concerns. A fusion approach combining both the PoF 

and data-driven approaches are being investigated for energetic material with the aim of 

benefitting from the merits of both approaches.  

2.1.5.3. Integrated Vehicle Health Management in the Auto Industry 

Holland presents the Integrated Vehicle Health Management (IVHM) as an active 

management system of the automotive vehicle‘s health to guarantee performance of key 

functions to ensure the requirements for safe and reliable transportation are met (HOLLAND, 

Steven W, 2008). The aim is to port integrated vehicles health management concepts 

originally developed for aerospace into automotive industry.  

The need for IVHM is motivated by the need for car manufacturers to deliver high value at an 

affordable price while remaining highly customer-focused. Currently depending on the 

frequency and severity of faults, different approaches are used to deal with them. The strategy 



- 22 - 

 

of ―operate till failure‖ is used for fault with very low frequency and severity. For faults of 

very high frequency and severity, the product or process is redesigned to eliminate the 

problem at the source. IVHM is mostly concerned with the strategies to employ in between 

these extremes. Mathematical models can be used to exploit information available from 

existing sensors to predict future faults and/or remaining life. Currently condition-based 

approaches while effective are currently considered too costly due to the need to install 

additional sensors and the need of considerable engineering effort. 

2.1.5.4. Condition-Based Maintenance for Naval Ships 

This project supported by the Office of Naval Research of the U.S. Department of defence 

aims to develop the MPROS architecture (Machinery Prognostics and Diagnostics System) 

which hosted multiple online diagnostic and prognostic algorithms that can efficiently 

undertake real time analysis from appropriately instrumented machinery aboard naval ships. 

Feedback to users regarding the status of the machinery would then be provided to aid in 

maintenance decisions before embarking on their next mission. MPROS had two phases: the 

first phase was installed and running in a lab and the second phase was installed on the Navy 

hospital ship Mercy in San Diego.  

One prototype contained four sets of algorithms developed by four different teams. Data 

concentrators (devices with embedded computers for processing the diagnostic and prognostic 

algorithms) were placed near the ship‘s machinery. The information processed from the data 

concentrators were then sent over the ship‘s networks to a centrally located machine 

containing the Prognostic/Diagnostic/Monitoring Engine (PDME). The PDME implement a 

subsystem called Knowledge Fusion (KF) using Dempster-Shafer belief, which combines the 

information processed from all the data concentrators to form a prioritized list of maintenance 

tasks. The PDME also serves as a repository for the diagnostic/prognostic conclusions from 

the data concentrators and the KF processing. Currently the set of algorithms being 

implemented still needs to be validated in large parts as well as optimized for various 

purposes. 
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2.2. Canary and Parrot Devices Approach 

2.2.1. Origin of Canary Devices  

The word ―canary‖ is derived from one of the coal mining‘s earliest systems for warning of 

the presence of hazardous gas using the canary bird. Because the canary is more sensitive to 

hazardous gases than humans, the death or sickening of the canary was an indication to the 

miners to get out of the shaft. The canary thus provided an effective early warning of 

catastrophic failure that was easy to interpret (VICHARE, N and Pecht, M, 2006).  

In prognostics and health management, the same idea is adapted such that canary devices are 

used in the actual systems and thus providing advance warning of failures. This technique is 

widely used in the electronics industry to sense excessive current drain and to disconnect 

power from the concerned part for example (VICHARE, N and Pecht, M, 2006). Canary 

devices are accelerated devices, which will fail according to similar failure mechanisms, 

which could possibly occur in actual system being monitored. Canary devices are designed to 

fail faster than the actual system as an early warning of failure. Canary devices are also used 

to learn about the effect of several factors, which could lead to failure in the system. 

Additionally, as shown in Figure 2-2, the canaries can then be calibrated to provide advance 

warning of failure (the prognostic distance) to allow appropriate maintenance operations 

(PECHT, Michael, 2006). 

 

Figure 2-2: Advanced warning of failure using canary devices 
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2.2.2. Canary Devices: Current State of the Art  

2.2.2.1. Use of canary devices in electronics industry 

Fuses and canary devices have been used for a while as a means of detecting and preventing 

failure in the electronics. Vichare (VICHARE, N and Pecht, M, 2006) describes various uses 

of fuses and canaries, which include circuit breakers to sense excessive current drain and 

disconnect power from the concerned part and thermostats to sense critical temperature 

limiting conditions and shut down part of the structure until the temperature returns to normal.  

Ridgetop Group have commercialized prognostic cells for semiconductor failure mechanisms 

such as electrostatic discharge, hot carrier, metal migration, dielectric breakdown and 

radiation effects for which time to failure with respect to the actual product can be pre-

calibrated (RIGETOP SEMICONDUCTOR-SENTINEL SILICON LIBRARY, 2004).  

2.2.2.2. Corrosion sensors in Structural Health Monitoring of Aircrafts 

CSIRO, in conjunction with Boeing Phantom Works and Australia‘s Defence Science and 

Technology Organisation (DSTO), has developed structural health monitoring system, which 

is based on an agent-based system that uses sensor microclimate, and corrosion data to 

diagnose corrosion and infer the presence of corrosion in locations such as crevices where it 

cannot be sensed directly (COLE, I, 2008).  Clusters of sensors in small local regions of the 

aircraft measure local microclimate factors, including temperature, humidity, surface wetness 

and conductivity of surface moisture. The sensor cluster also includes a galvanic corrosion 

sensor, fabricated from mated strips of copper and aluminum allow. Each agent forms an 

autonomous sensing unit by including data acquisition, processing and communications 

capability with each sensor cluster. 

Sensors can however only monitor a small percentage of the aircraft structure and it is not 

possible to install sensors in some of the areas of high corrosion risk, such as crevices and 

fastener holes. Thus, the structural health monitoring system also needs a reliable way of 

inferring the likely progression of corrosion damage at ―unsensed‖ points in the aircraft. The 

galvanic corrosion sensors (damage sensors) used in the system measure the rate of 

degradation of the material of the sensor itself, rather than that of the structure to which it is 

attached.  
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Correlation relationships between the actual component damage and the sensor damage have 

been developed through experiments run in environmental chamber tests (MUSTER, T et al., 

2005).  A model is derived from data streams of the microclimate and damage sensors by an 

optimization procedure that establishes the best-fit ―relationship‖ between the damage data 

streams and the microclimate data streams. The model is then used to predict the future 

progression of damage over immediate time spans (up to 6 months). The model is 

continuously modified while the system is in use. One of the features of this system is its 

capability to predict corrosion damage for unsensed points that do not have a sensor array 

attached by matching the materials, geometry and local microclimate to those at sensed points 

and making modifications to allow for specific features such as fastener holes.  

2.2.3. Use of canary devices for corrosion monitoring 

Garnett classifies corrosion detection methods into two major categories (GARNETT, E S, 

2005). First, there are corrosion detection devices and techniques used to supplement visual 

inspection at routine maintenance intervals. Those techniques include Visual, Eddy Current, 

and Ultrasonic, Electrochemical Impedance Spectroscopy (EIS), Colour Visual Imaging 

(CVI), Radiography and Infrared imaging. Most of those techniques required skilled operators 

with knowledge of where to focus the detection. Additionally these devices are only used at 

maintenance intervals, so damage arising between routine service intervals is problematic.  

The second group of corrosion and crack monitoring tools is sensors and/or actuators 

integrated into automated SHM systems. The sensors subgroup passively measures at discrete 

predetermined locations: acceleration, ph, humidity, acoustic emission, ion concentration, 

linear polarization resistance, and chemical potential detectors. The self-sensing actuator 

subgroup uses the properties of piezoelectric smart materials to actively generate high 

frequency nondestructive vibrations to inspect a structure for cracks and/or corrosion using 

Lamb Wave or impedance methods. The advantage of the second group of corrosion and 

crack detectors is the ability to do real-time monitoring and alert maintenance technicians as 

the structure changes. A listing of the corrosion and crack detection methods and how they 

work can be found in (GARNETT, E S, 2005). 

Each of the corrosion detection methods listed above has unique properties that make them 

useful for detecting certain types of corrosion. As of yet, no one method can detect and 

quantify all types and forms of corrosion in all types of joints, fasteners, and materials. Thus, 
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it requires multiple techniques to detect corrosion. The advantages and disadvantages of each 

method are described in (GARNETT, E S, 2005). 

The PHM framework being developed here adopts the use of canary devices for monitoring 

purposes. Intrusive measurement methods cannot be used due to the risk of damaging 

structures of great historical value within Cutty Sark. The canary devices are smaller versions 

of the iron structures found on Cutty Sark. The canary devices are designed as such with the 

aim of accelerating the impact of the factors that cause failure based on the same failure 

mechanisms as those on the actual structures. The canary devices also undergo treatments 

such as being soaked in chlorine concentration solution for a predetermined period and/or 

placed in harsher environments to accelerate corrosion of the structures hence accelerating 

failure of the structures.  

2.3. Data Driven Methods 

2.3.1. Overview 

Data-driven methods encompass algorithms that learn models directly from the data rather 

than using a hand-built model based on human expertise (SCHWABACHER, Mark, 2005). 

Such methods are particular useful when understanding of first principles of a system is not 

comprehensive or when developing an accurate model to represent a complex system is too 

expensive. The two main strategies of data-driven methods are: (1) model cumulative damage 

and then extrapolate out to obtain a damage threshold and (2) learn the remaining useful life 

directly from data. Some of the common approaches taken are: (i) variants of neural networks, 

(ii) fuzzy logic, (iii) Bayesian networks, (iv) Case Based Reasoning and (v) various types of 

anomaly detection algorithms.  

Application of data-driven approach to PHM in industry has been successful to a certain 

extent for diagnostic purposes whereas implementation of these approaches for prognostic 

purposes is still very much at an exploratory stage. The efficacy of data-driven approaches 

depends on the quantity as well as the quality of training data. 

Artificial neural networks is one of the most popular machine-learning approaches to 

prognostics where a model that establishes a set of interconnected functional relationships 

between input data and desired output is created (SCHWABACHER, M and Goebel, Kai, 
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2007). The parameters of the functional relationship are adjusted for optimal performance 

using various techniques. Fuzzy logic is another AI technique that is frequently used for 

prognostic purposes. Fuzzy logic provides a language (with syntax and local semantics) into 

which one can translate qualitative knowledge about the problem to be solved thus allowing 

the use of linguistic variables to model dynamic systems (SCHWABACHER, M and Goebel, 

Kai, 2007). Case based reasoning is also used to look up a best match in a database of 

diagnostic cases containing typical problems and solutions encountered while diagnosing a 

system (PRZYTULA, Wojtek and Thompson, Don, 2000). 

2.3.2. Precursor Monitoring and Anomaly Detection 

A failure precursor is defined as an event or series of events that is indicative of impending 

failure (MATTHEW, S et al., 2008). For example, an increased electrical resistance and/or 

material loss would suggest impending structural failure due to corrosion leading to decreased 

strength of a metallic component. Precursor monitoring is the continuous measuring of 

selected parameter(s) for which a change in its value can be associated with a subsequent 

failure (anomaly detection). Failures can then be predicted using a causal relationship between 

a measure parameter that can be correlated to a failure. Usually parameters monitored are 

those that are essential for the reliability of the system and critical for safety. Knowledge of 

such parameters can be gathered through experience and using historical data of failures.  

Precursor monitoring and anomaly detection is useful in situations where the physic-of-failure 

models for a system are too expensive to build and run due to complexity and insufficient 

knowledge of the application environment. A generic approach to carrying out precursor 

monitoring and anomaly detection can be described as follows: 

 Through analysis of trends within data, precursors are derived from one or more 

parameters that show measurable changes based as a result of changes in performance 

of the system.  

 Feature extraction from the selected precursors is carried out to provide better 

explanation of the current and possible future state of a system. 

 To perform anomaly detection, data trend analysis algorithm is developed to detect 

changes in the values of the measurement variables and to correlate these changes with 

impending failure of the system.  
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2.3.2.1. Anomaly Detection Techniques 

2.3.2.1.1. MSET  

Multivariate State Estimation Technique (MSET) is used to monitor the current state of a 

system and provide information to make a remaining useful life (RUL). MSET monitors 

multiple parameters of a system such as temperature, humidity and vibration, and calculate 

the residuals between the actual and the expected values of these parameters based on the 

healthy historic data. MSET uses pattern recognition from healthy product data to generate an 

estimate of current health. The historic data is assumed to cover and provide data for the 

entire healthy range of the system. The results of MSET are residuals that describe the actual 

monitored data in terms of the expected healthy values and can thus detect faults by 

comparing the residuals with the threshold. 

Figure 2-3 shows the MSET process as described in reference (CHENG, Shunfeng and Pecht, 

Michael, 2007). New observations (Xobs) are acquired for the monitoring parameters selected. 

Training data (T) is built using healthy data from historic or current acquired data. Then 

special data from the training data is picked to create memory matrix D, after which MSET 

will go through two processes to calculate (1) the actual residuals and (2) the healthy 

residuals. To calculate the actual residuals, Rx, the new observations, Xobs, is subtracted from 

the estimate of the observation, Xest, (i.e. the expected value calculated from the healthy data). 

To calculate the healthy residuals, RL, the estimates, Lest,  of all the remaining training data, L 

is calculated first, then the residuals between the estimates and remaining training data L is 

calculated. The fault detection process then compares actual residuals with healthy residuals 

to decide whether the current product is healthy or not. The common method is to employ a 

hypothesis test, such as the Sequential Probability Ratio Test (SPRT), to produce alerting 

patterns. A detailed description of the MSET process can be found in (CHENG, Shunfeng and 

Pecht, Michael, 2007). 
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Figure 2-3: MSET Process 

 

2.3.2.1.2. Mahalanobis Distance 

Mahalanobis Distance (MD) is a statistical tool developed by Mahalanobis in 1930, to 

distinguish of a certain group from other groups (akin to the process by which a doctor 

determines the degree of heath of a patient during an examination and classified the health of 

the patient within a range from healthy to severely ill) (NIE, L et al., 2007). MD is used to 

find the ―nearness‖ of an unknown point from the mean point of a group (PINJALA, K K et 

al., 2003). Thus the nearer the unknown point to the mean point of the group (assumed as the 

―healthy‖ group), the more likely that point represents a ―healthy‖ state. MD is used mostly to 

reduce a multivariate system to a univariate system by considering correlation among the 

parameters. MD is often preferred to other distance measures such as the Euclidean distance, 

which does not capture correlation between variables and needs to be scaled to reflect 

differences in variances. The general steps employed for MD analysis are as follows (NIE, L 

et al., 2007): 

 Generation of the Mahalanobis (Normal) Space 

o Define the ―Normal‖ group (the healthy group) 

o Define the y system variables (the performance parameters of a system, e.g. 

vibration) 

o Gather data for the normal group with sample size N>>y 

o Calculate the Mahalanobis distance MD) for each sample from the defined 

centre of the normal group. 
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o Determine the MD threshold value distinguishing the normal group 

 Evaluation of system data (outside the normal group) 

o Gather data on the y defined system variables for samples outside the normal 

group (data from real system being diagnosed) 

o Calculate MD for each sample 

o Compare MD values with MD threshold values to determine whether sample 

belongs to normal group (healthy) or other groups (unhealthy, faults present) 

MD has been applied with a varying degree of success in many applications such as medical 

diagnostics, fire alarms, automotive, business forecasting and fault detection (CUDNEY, 

Elizabeth A et al., 2007) (KUMAR, S et al., 2008) (CUDNEY, Elizabeth A et al., 2006).  

2.3.2.2. Application Examples 

Nie et al (NIE, L et al., 2007), present a prognostics approach using the MD method to predict 

the reliability of multilayer ceramic capacitors (MLCC) in temperature-humidity bias (THB) 

conditions. Capacitance, dissipation factor and insulation resistance were the three parameters 

for which data was collected. A Mahalanobis space (MS) was formed from the MD values of 

a set of the three identified parameters for non-failed MLCCs. In constructing the 

Mahalanobis space, the values for the initial period (first 50 data points) were not used due to 

unusually high MD values at the beginning attributed to transient phenomena. The modified 

Mahalanobis space had less variation and provided better sensitivity for detection of 

anomalies. They also suggested an alternative, which was to construct a separate Mahalanobis 

space for the initial test period with a different MD threshold value.  

The MD values for the remaining MLCCs were compared with an MD threshold value. Data 

for MLCCs, which exceeded the threshold, were examined using the failure criteria for the 

individual electrical parameters to identify failures and precursors to failure. Although the 

detection rate was not perfect, the MD method was able to detect failures of the capacitors and 

identify precursors to failure. They found that for discontinuous or intermittent failures, MD 

was not successful in identifying these failures as anomalies. The quantity of historical data 

required is identified as enough data to capture at least the whole life cycle of the system. 

Additionally, if there is a change in the conditions defining ―normal‖ data, then Mahalanobis 

space should be updated accordingly. They deduced that the quality and construction of the 
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MS, together with the choice of the MD threshold, were the critical factors determining the 

sensitivity of the MD method.  

D‘Silva et al, use the MD distance metric in the development of a vehicle stability indicator to 

correlate the various current vehicle chassis sensors (e.g. hand wheel angle, yaw rate and 

lateral acceleration) (D'SILVA, Siddharth H et al., 2007). This endeavour had the aim of 

developing a single metric that represents the performance of the vehicle as whole to 

complement the individual subsystems that quantify the level of vehicle stability enhancement 

in their domain through measurement of key vehicle signals. MD analysis was used to assess 

the degree of correlation of the sensor signal, as in general there is a correlation between 

various pairs of sensor signals when the vehicle operation is linear and stable and a lack of 

correlation when the vehicle is becoming unstable or operates in a nonlinear region. Currently 

MD analysis treats unstable and nonlinear operation as unwanted operation and flags their 

presence with a high scalar metric. They report that preliminary simulation results indicate 

that the scalar MD metric compares favourably with the traditional multi-metric approach. 

2.3.3. Data-Driven methods for Corrosion-Related failures 

Dawotola et al (DAWOTOLA, Alex W et al., 2011), use a data-driven approach to find the 

optimal inspection interval for a petroleum pipeline that is subject to long-term corrosion. 

This approach takes into consideration both the failure frequency and the consequences of 

failure due to three forms of corrosion: uniform corrosion, pitting corrosion and stress 

corrosion. The failure frequency is estimated by fitting historical failure data into either a 

homogeneous Poisson process or power law while the consequences of corrosion is calculated 

in terms of economic loss and environmental damage caused by small and large leaks and 

rupture of pipeline. Both failure frequency and consequences are then used to estimate the 

total loss due to pipeline operation.  

Gu et al (GU, Jinwei et al., 2006), developed the Space-Time Appearance Factorisation model 

(STAF) that factors space and time-varying effects to monitor the process of corrosion of steel 

structures by analysing the changes of surface appearance over time. The data driven model 

separated temporally varying effects from spatial variation, estimating a ―temporal 

characteristic curve‖ in appearance that depends only on the physical process as well as static 

spatial textures than remain constant over time. Added to that, they developed the facility to 

estimate rates and offsets that control different rates at which different spatial locations 
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evolve, causing spatial patterns on the surface over time such that he speed of evolution can 

be controlled by separately modifying space and time-varying effects. 

2.4. Model Driven Methods 

2.4.1. Physics-of-Failure Approach 

Physics of Failure is an approach where accurate mathematical model (with an acceptable 

degree of uncertainty) can be built from first principles representing the physical processes 

within the system. Thus, knowledge of specific failure mechanisms and life cycle loading is 

required to assess product reliability (PECHT, Michael G, 2008). The PoF methodology aims 

to do prognostics by first calculating the cumulative damage accumulation due to various 

failure mechanisms within a particular environment of a system and then analyses this 

information to give predictions of remaining service life the system. PoF approaches integrate 

sensor data with prediction models (based on future estimated loads) to predict the future 

―health‖ of a system.  

Various approaches are presented in literature for carrying on PoF-based prognostics.  Failure 

Modes, Mechanisms and Effect Analysis (FMMEA) is one methodology that is widely 

adopted to carry of PoF-based prognostics (MATTHEW, S et al., 2008), (PECHT, Michael G, 

2008). The FMMEA process is shown in Figure 2-4 (ZHANG, Huiguo et al., 2009).  
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Figure 2-4: FMMEA Process used in PoF based PHM 

FMMEA is a systematic methodology to identify potential failure mechanisms and models for 

all potential failure modes and to prioritise failure mechanisms (PECHT, Michael G, 2008). 

The failure modes and mechanisms to be monitored are then prioritized according to their 

severity and likelihood of occurrence. Monitoring parameters and sensor locations can then be 

determined. Using operational and environmental data, the amount of damage can is 

calculated from PoF models, which is then used to estimate the remaining life. Further 

detailed description of the FMMEA process can be found in (ZHANG, Huiguo et al., 2009). 

Matthew et al, describes a PHM methodology that incorporates FMMEA and PoF models 

through the following steps (MATTHEW, S et al., 2008): 

1. Life cycle loading monitoring – the lifecycle of a system is the manufacturing, 

operating and non-operating loads which individually or in various combinations 

accumulate damage that can lead to degradation of the system. 

2. Data reduction and load feature extraction – storage space and CPU load are 

important factors to consider and it is essential to be able to condense load 

histories without losing important damage characteristics. Prioritisation of failure 

mechanisms leads to effective utilization of resources as usually only a few 

operational and environmental parameters cause the majority of failures. 
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3. Damage assessment and remaining life calculation – PoF models can be used to 

calculate damage cause by temperature and vibration loading which are common 

load conditions that accelerate failure. 

4. Uncertainty implementation and assessment – While PoF models can be used to 

calculate remaining life, it is still necessary to identify the uncertainties and assess 

the impact of those uncertainties on the remaining life distributions in order to 

make risk-informed decisions.  

PoF models would generally use as inputs the following: stress level and severity, the 

architecture or geometry, the material properties and life-cycle profile of a system to calculate 

the time to failure for a particular failure mechanism of the system. For example, Coffin 

Manson‘s model can be used to calculate damage caused by cyclic loading (e.g. temperature). 

Additionally as life cycle loads are collected in real time, PoF models are generally expected 

to be able to update predictions continuously. Damage can be calculated from various stresses 

cause by environmental and/or operational loads. Then damage accumulation is performed for 

a set period and the remaining life is calculated based on the accumulated damage. (PECHT, 

Michael G, 2008) 

2.4.2. Physics-of-Failure Models for Corrosion-Related failures 

Failures in a system are usually due to the processes occurring within and around the system 

(e.g. mechanical, chemical, electrical, thermal, etc.) as well as the different types of loads the 

system is subjected to. For example in the case of Cutty Sark, the iron structures present have 

experienced over the vessel‘s lifetime various types of corrosion in different locations within 

the ship. Corrosion models for certain materials have been developed that can predict failure 

progression in laboratory with set environmental conditions and usage profiles. However, the 

variation of test conditions such as the use of different metals and environmental conditions in 

the various corrosion studies means no generic corrosion model to predict corrosion rate has 

been developed to date. 

For the scope of this research project, the corrosion rate of atmospheric corrosion has been 

studied, as it is one of the main corrosion types the Cutty Sark is subjected to. Atmospheric 

corrosion is an electrochemical process, with the necessary electrolyte provided by 

condensation from the atmosphere (TULLMIN, Martin and Roberge, Pierre R., 1995). 
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Atmospheric corrosion can occur both indoors and outdoors. The main factors that have the 

most influence on the corrosiveness of the atmosphere at a given site are: 

 time of wetness – increased time of wetness generally increases corrosion rates. 

 chloride concentration – presence of chloride ion accelerates corrosion. 

 amount of industrial pollutants – in presence of moisture, sulphur dioxide is oxidize to 

form corrosion sulphuric acid. 

 temperature – rates of corrosion usually increases with high temperature. 

 relative humidity – as the relative humidity level increases, the thickness of the 

moisture film increases. 

 Dust – presence of dust on the surface can increase the surface moisture at a given 

relative humidity. 

Corrosion models are typically based on explicit mathematical models of corrosion rates. 

Examples of this type of models include the Eyring-Peck model (HALL, P L and Strutt, J E, 

2003) and Linear-Bilogarithmic law model (POURBAIX, M, 1982). The Eyring-Peck model 

is an empirical model based on temperature and humidity of the environment. The Linear-

Bilogarithmic law is also an explicit model for the corrosion process controlled by time of 

exposure and two coefficients, which depend on the exposure conditions. It is expressed as 

follows in equation (1). 

BAtP          (1)  

Where P is the corrosion penetration at exposure time t. A is corrosion rate during the first 

year of measurement and B is a constant representing a measure of long-term decrease in 

corrosion rate.   

2.4.3. Model-driven approaches applied in the field 

2.4.3.1. Using Life Cycle Consumption Methodology to assess remaining life of electronic 

products 

Vichare and Pecht investigated the effect of thermal loads on the reliability of electronic 

products (VICHARE, N and Pecht, M, 2006). The aim is to continuously monitor the thermal 
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loads, in-situ and use the data together with precursor reasoning algorithms and stress-and-

damage models to do prognostics. They applied the Life Cycle Consumption (LCM) 

methodology to achieve this aim. At CALCE, Ramakrishman et al, (RAMAKRISHMAN, A 

and Pecht, M, 2003) developed LCM where a history of environmental stresses is used in 

conjunction with physics of failure models to compute damage accumulated and thereby 

forecast life remaining. Figure 2-5 (SANDBORN, P, 2005) shows the six mains steps 

involved in the LCM Methodology.  

 

Figure 2-5: CALCE Life Consumption Monitoring Methodology (SANDBORN, P, 2005)  

Temperature and vibrations measurements were taken in-situ on the board in the application 

environment and were used to develop stress and damage models to estimate consumed life. 

The LCM methodology was then used to predict remaining life. Data reduction and load 

parameter extraction algorithms were embedded into the sensor module to reduce onboard 

storage space, power consumption and permit uninterrupted data collection over longer 

durations. They monitored and statistically analysed the temperatures inside of a notebook 

computer, including those experienced during usage, storage, and transportation, and 

discussed the need to collect such data both to improve the thermal design of the product and 

to monitor prognostics health. After the data was collected, it could be used to estimate the 
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distributions of the load parameters. The usage history was used for damage accumulation and 

remaining life prediction. 

2.4.3.2. Engine Bearing Prognostics 

Orsagh et al (ORSAGH, Rolf et al., 2004) have developed an engine bearing prognostics 

approach that utilizes available sensor information on-board the aircraft such as rotor speed, 

vibration, lube system information and aircraft maneuvers to calculate remaining useful life of 

the engine bearings. Sensed data is linked to fatigue-based damage accumulation models 

(based on a stochastic version of bearing life equations ) and projected engine operation 

conditions to implement remaining useful life assessment. Model-based estimates can be used 

when no diagnostic indicators are present and using monitored features at later stages when 

failure indications are detectable, thus reducing the uncertainty in model-based predictions. 

Prediction is carried out through a fusion of diagnostic features and physics-based modeling. 

They perform assessment of remaining life through three functional steps: 

 Sensed data – signals indicative of bearing health (vibration, oil debris, temperature, 

etc) are monitored to determine the current bearing conditions. 

 Current bearing health – engine speed and maneuver induced loading are used as 

inputs for bearing health models. 

 Future bearing health – a rolling contact fatigue model utilizing information from 

sensed data is used to calculate the cumulative damage sustained by the bearing since 

it is first installed. The model output is then combined with extracted features and 

future operation conditions to give prediction of remaining useful life. 

To achieve a comprehensive diagnostic/prognostic capability throughout the life of critical 

engine components, model-based information is used to predict the initiation of a fault. In 

most cases, the predictions will prompt ―just in time‖ maintenance actions to prevent the fault 

from developing. However due to modeling uncertainties, incipient faults may occasionally 

develop earlier than predicted. In these situations, sensor-based diagnostics complement the 

model-based prediction by updating the model to reflect the fact that fault initiation has 

occurred. 
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2.4.3.3. Prognostic tool for single spur gear tooth and helical gear 

Kacprzynski et al, developed a prognostic tool where predictions are made through the fusion 

of stochastic physics-of-failure models, relevant system health monitoring data and various 

inspection results (KACPRZYNSKI, G J et al., 2002). The inherent uncertainties and 

variability in material capacity and localized environmental conditions as well as the 

realization that complex physics-of-failure understanding will always possess some 

uncertainty, all contribute to the stochastic nature of prognostic modeling. However, accuracy 

can be improved by creating a prognostics architecture instilled with the ability to account for 

unexpected damage events, fuse with diagnostic results, and statistically calibrate predictions 

based on inspection information and real-time system level features.  

The approach involves using an integrated mathematical (probabilistic) framework that uses 

material-level fatigue models, system-level feature models and raw health monitoring 

measurements. Two prognostic models were developed: 

 For a single spur gear tooth – aim was to correlate a 2-D finite element fracture 

mechanism models and associated crack initiation and propagation algorithms to tooth 

stiffness and acoustic emission changes. This was achieved by updating/adapting 

material property distributions or choice of algorithms during damage progressions 

based on measured or inferred conditions. 

 For a helical gear – aim was to predict current and future material level damage as a 

function of torque from system level vibration using a high fidelity model (built upon 

contact element and 3-D fracture mechanics FE models of the gear). 

2.4.4. Advantage of using PoF models for prognostic purposes 

PoF based methodologies can provide information that can be used for advance warning of 

failures, which helps, minimize unscheduled maintenance and decreasing inspection costs and 

downtime. Data-driven approaches require data for training the algorithm. In legacy and new 

systems, very often little data is available initially whereas PoF models can be used if the 

material properties and structure geometries are available. In addition, many data-driven 

approaches tend to only detect failure close to the failure point, thus making it difficult to 

assess remaining life at the beginning. 
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2.5. Fusion Methods 

The fusion approach, also referred to as hybrid approach, is a mixture of the techniques 

mentioned above. Fusion approaches are generally driven by the need to overcome the 

lacking of PoF models and data-driven approaches in terms of their diagnostic and prognostic 

capabilities. Data-driven techniques usually cannot distinguish different failure modes and 

mechanisms in a system. Additionally there is heavy reliance on a reasonably large training 

dataset that will explore the necessary loading and environmental conditions that will cause 

faults and failures. PoF models are developed based on knowledge of specific material 

properties, geometry and loading conditions and any deviation in those parameters in the 

actual system will result in erroneous diagnosis and prognosis that is amplified over time. 

Added to that, PoF models usually find it challenging to deal with complex failure 

mechanisms.  

By fusing the output of both methods, more robust and accurate diagnostics and prognostics 

will result. Fusion approaches are also being investigated for their capability of fusing data 

from different predictors where some will yield numeric values, while others will use 

symbolic ones (BARAJAS, Leandro G and Srinivasa, Narayan, 2008). There are several 

approaches to perform fusion prognostics. The following section provides an overview of 

various approaches and their applications. 

2.5.1. Bayesian Networks 

Bayesian network is another popular method used for fusion prognostics. The following 

subsections provide an overview of use of Bayesian networks for diagnostic and prognostics 

purposes and briefly describe some example applications.  

2.5.1.1. Overview of Bayesian Networks in diagnostics and prognostics 

A Bayesian network is a probabilistic graphical model that represents a set of variables and 

their probabilistic independencies. Bayesian networks are usually used to represent the 

probabilistic relationships between causes and effects. Nodes represent the various variables 

of the system (defined over all its possible states) and the connecting arrows indicate the 

causality between these variables. Bayesian Networks are based on the Bayes‘ Rule (equation 

(2)): 
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Where for events A and B (provided P(B)≠0), P(A) is the prior belief (i.e. initial uncertainty 

in A), P(A|B) is the posterior belief (i.e. the uncertainty having accounted for evidence B), 

P(B|A) is the likelihood and P(B) is the marginal likelihood. 

Bayesian networks are used to represent domains containing some degree of uncertainty as a 

result of inadequate knowledge of the state of the domain and/or randomness in the 

mechanisms that control the behaviour of the domain. One unique feature of Bayesian 

Networks is that results are presented in the form of probability distributions rather than 

single values. Thus, uncertainty of processed results and impact of various decisions is 

represented explicitly. Moreover, Bayesian Networks are particularly useful in situations 

where a large number of interlinked factors need to be taken into consideration. 

Przytula et al (PRZYTULA, Wojtek and Choi, Arthur, 2007), have carried out extensive 

research in the field of diagnostics and prognostics using Bayesian networks with the 

development and implementation of Bayesian Networks for diagnostics of complex 

transportation and prognostic of electromechanical and electronic subsystems in aviation 

systems. Initially the focus was on developing a systematic procedure for the efficient 

creation of Bayesian networks for diagnostics (PRZYTULA, Wojtek and Thompson, Don, 

2000). This process was divided into several phases:  

 Problem decomposition – decompose the initial system into simple subsystems 

 Sub-problem definition 

 Design and testing of a Bayesian network models for each subsystem. 

 Integration into a complete Bayesian network.  

The main principle in the development was starting with the simplest form of Bayesian 

networks and increasing their complexity as required while balancing model accuracy and 

knowledge acquisition cost. Further details on the method developed can be found in 

(PRZYTULA, Wojtek and Thompson, Don, 2000). 
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In a subsequent paper (PRZYTULA, Wojtek and Choi, Arthur, 2007), Przytula et al, describe 

a general purpose probabilistic framework for reasoning in diagnostics and prognostics which 

coherently integrates multiple sources of evidence, including system usage, environmental 

conditions of operation as well as system health and health trends. The framework uses a 

novel form for structure Bayesian networks based on layered, directed graphs. Only essential 

aspects of system operation for diagnosis and prognosis are represented. Thus, there is a layer 

of nodes representing the health of systems, a layer or diagnostic and prognostic observations, 

a layer of usage observations and one or more layers of subsystems as shown in Figure 2-6, 

(PRZYTULA, Wojtek and Choi, Arthur, 2007). To obtain reliable health prognosis, the 

information contained in the average usage statistics is combined with the information 

provided by one or more health observations, which characterize the health of the individual 

component. Our solution to fusion of the usage and health information relies on a graphical 

probabilistic framework. It is application independent, very rigorous mathematically and 

accurate. 

 

Figure 2-6: A layered probabilistic graphical model for diagnosis and prognosis 

 

Figure 2-7 depicts an example of the model for a simple system consisting of a single 

component with one usage and one health observation. In this model, the reasoning for  

diagnosis and prognosis is performed in two steps. First, the reasoning engine accepts the 

present values for all usage and health observations as specified by the model, producing the 

diagnosis for all modeled components. The future usage nodes, which indicate the time 

interval we are interested in predicting health for, are simply set to the present usage values. 

Next, for prognosis, the future usage values are set as required by a mission, and health trends 

are used as future health observations. The trends are computed externally by an appropriate 

trending algorithm which, given the available history of health values, projects to a future 



- 42 - 

 

usage value. The prognosis results take the form of the probability of completing the mission, 

which is specified in terms of the future usage. However, they may be also easily expressed in 

terms of remaining useful life of the component or system. 

 

Figure 2-7: BN for prognosis consisting of a single component, usage and health observation

The Bayesian network model developed was then extended further into layered dynamic 

network model, as the previous static model did not intrinsically account for historical values 

of health observations, and employed health observation trends that were computing outside 

of the model (PRZYTULA, Wojtek and Choi, Arthur, 2008). Thus, the temporal structure of 

the extended model allows the incorporation of all available health history directly in the 

model. The dynamic networks can accept all available component health histories at once, 

which the reasoner can fuse together to produce the health diagnosis.  

In reference (PRZYTULA, Wojtek et al., 2003), Przytula et al present the methods they 

employed for Bayesian network evaluation which consist of use of Monte Carlo simulation 

and efficient visualization of simulation results. Evaluation of Bayesian network models is 

necessary as the quality of a model determines the quality of diagnostic recommendations 

obtained using the model. Using evaluation techniques, the critical elements of the model that 

are responsible for incorrect diagnosis can be identified. Monte Carlo simulation is used to 

automatically generate diagnostic cases that uniformly cover all the parts of the BN model. 

The results are presented in the form of sample graphs and matrices that pinpoint which 

components and observations are responsible for incorrect diagnosis. 
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2.5.2. Fusion-based prognostics examples 

Orsagh et al, (ORSAGH, Rolf et al., 2004) , present an engine bearing prognostics approach, 

which consists of fusion of diagnostic features and physics-based modelling. Model-based 

information on damage accumulation is used to predict the initiation of a fault to provide ―just 

in time‖ maintenance actions to prevent the fault from developing. Additionally sensor-based 

diagnostics update the model-based prediction where faults might have occurred earlier and 

was not predicted using model-based techniques. The sensed data is linked with fatigue-based 

accumulation models based on a stochastic version of the Yu-Harris bearing life equations 

with projected engine conditions to assess remaining useful life. 

In (GOEBEL, Kai and Bonissone, Piero, 2005), Goebel and Bonissone describe a feature 

level prognostics fusion approach aggregating different information sources to give a 

continuous output that is ideally amended by a confidence value. First preprocessing occurs 

using appropriate principal component analysis, filtering, smoothing, normalisation and 

transformation techniques. Then an adaptive network based fuzzy inference system (ANFIS) 

is used at the prognostic model that fuses different information sources and produces a 

remaining life prediction. ANFIS is a representative hybrid system in which neural networks 

are used to tune a fuzzy logic rule base. The rule set determines the topology of the net (model 

structure), while dedicated nodes in the corresponding layers of the net (model parameters) 

define the terms and the polynomial coefficients. Post-processing then follows where the 

prediction is recursively confirmed through trend analysis. They applied this approach to 

estimate the time-to-breakage for web breaks in the wet-end part of paper machines in paper 

mills. 

Kumar et al, (KUMAR, Sachin et al., 2008), developed a hybrid prognostics methodology for 

electronic products utilising both data-driven and PoF techniques. First failure mode, 

mechanism, and effect analysis (FMMEA) is performed to identify the failure mechanism, 

critical component and parameters to be monitored. Then continuous monitoring of the 

identified parameters (providing information on the system‘s performance, current health, 

usage and environmental conditions) is carried out. The data stream is preprocessed using 

data-driven techniques to extract features that determine system health. The extracted features 

are used to characterize system health and define baseline performance, which is then used to 

identify performance deviation of the system and detect anomalies. Trending performance 
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deviation and anomalies gives an indication of incoming faults or failures. The component 

causing system degradation is identified using parameter isolation techniques and is matched 

with the PoF database, which contains information regarding components, their failure 

mechanism and their damage models. The monitored system parameters obtained from the 

data-driven analysis are then used in the PoF models to estimate remaining useful life of the 

system.  

A similar approach is taken by Cheng and Pecht, (CHENG, Shunfeng and Pecht, Michael, 

2009). Here they additionally propose that if failure models for potential failure mechanisms 

cannot be identified, the failure can be defined from the historical database where the failed 

data in the database is classified based on the identified failure mechanisms. Furthermore if 

the failure mechanisms cannot be identified (for example where a failure is due to complex 

reactions between different failure mechanisms), the fusion method will use only the data-

driven method to predict remaining useful life based on monitored data.  

Goebel et al (GOEBEL, Kai et al., 2006) (GOEBEL, Kai et al., 2007), describe an approach to 

fuse two prediction algorithms for prognostics: 

  using first principles to model fault propagation using knowledge of the physics of the 

system  

 using data from experiments at known conditions and component damage level to 

estimate the fault propagation rate to build an empirical model 

They use Dempster-Shafer regression as the fusion method and present results from a case 

study using rig tests where a bearing was run under mission typical flight profiles. The 

Dempster-Shafer regression provides a prediction of the output in form of a fuzzy belief 

assignment. Apart from obtaining more accurate and robust results, the Dempster-Shafer 

regression helps to quantify the uncertainty of the estimates. 

Wang and Jiang, (YANNIAN, Wang and Zhuangde, Jiang, 2005), present a decision fusion 

algorithm using the Dempster-Shafer theory for diagnostic and prognostic assessment of long 

distance oil pipeline.  It is used to identify and locate leakage and external damage by 

integrating the real-time signals from sensors with the information about the historic 

maintenance status records of the pipe, the geological condition and the pipe wall health 

condition. 
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Flores-Quintanilla et al use a combination of probabilistic modeling and machine learning 

techniques to diagnose faults in electrical systems (FLORES-QUINTANILLA, J L et al., 

2005). The framework developed consists of two phases: fault detection using Dynamic 

Bayesian Network that generates a subset of most likely faulty components in the first phase 

and fault diagnosis using a Particle Filter algorithm to monitor suspicious components and 

extract the fault components in the second phase. The electrical system concerned is the 

production line in a factory, which consists of a set of interconnected electrical machines 

made up of several components. The feasibility of the framework was tested in a simulation 

environment using several interconnected electrical machines. The Dynamic Bayesian 

Network chose the electric machines with the highest probability of failure and the particle-

filtering algorithm continuously monitored those machines to detect if a component‘s 

parameter values had changed. Additionally the Bayesian network was updated periodically 

based on evidence to evaluate the failure probabilities of each machine. 

2.5.2.1. Sensor Validation using Bayesian Networks 

Mengshoel et al used Bayesian networks to perform sensor validation within aerospace 

vehicles. Given a vector of sensor readings, the framework detects whether one or more 

sensors have failed and are therefore producing bad data (MENGSHOEL, O. J. et al., 2008). 

The Bayesian network models developed represent the health modes of sensors explicitly, and 

contain random variables for capturing other aspects of the system (including the health status 

of other system components). Once input is provided to the Bayesian Network models using 

sensor readings and commands for the variables capturing other aspect of the system, a MAP 

(maximum a posteriori hypothesis) query is run over the health of the sensor variables. As a 

demonstration example, the failed mission of the Mars Polar Lander is discussed. While the 

cause of the loss of the Mars Polar Lander is not known with certainty, it had enough 

instrumentation onboard to enable robust state estimation. The radar altimeter as well as the 

touchdown (contact sensors) provides readings for height above surface which was a critical 

state variable for the Mars Polar Lander and both had provided conflicting readings with one 

indicating touchdown and the other not indicating touchdown.  

Mengshoel et al advocate that had a Bayesian Network model been used to fuse the two 

readings, a better estimate of the height above surface could have been provided 

(MENGSHOEL, O. J. et al., 2008) . Additionally the Bayesian network model could have 
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been used to find conflicts and causes of conflicts in sensor readings, which can help in 

deciding which sensor readings to trust. 

2.5.2.2. Decision Support for Maintenance Management Using Bayesian Networks 

Yan and Shi-Qi developed a decision support system for the Maintenance Management of 

mechanical systems using Bayesian Networks (YAN, Liu and Shi-qi, Li, 2007).  The contents of 

lubricant oil used in mechanical systems are usually monitored (using spectral analysis, Ferro 

graph analysis, oil physics and chemical performance analysis, etc) to determine the wear 

condition of the system. The analysis of wear particle concentration and sizes can determine 

the severity of wear while analysis of wear particle component, wear particle colour and wear 

debris can determine the wear site, wear type and reasons of wearing.  

Using knowledge of relationships between the fault symptoms and oil monitoring data, a 

Bayesian diagnosis network was constructed with the topological structure expressing the 

qualitative knowledge and the probability distributions of the nodes expressing the 

uncertainties. In addition, a forecasting formula for the condition prediction of the system was 

introduced in the Bayesian network model. The decision support system thus would estimate 

and forecast of the system and assist maintenance decision making. 

2.6. Traditional Maintenance Strategies 

2.6.1. Standard Maintenance Strategies 

Various maintenance strategies have been developed and used over the years in different 

fields. Although equipment needed to be maintained since the beginning of time, the earliest 

effort on formalizing maintenance is attributed to a book on maintenance of railways 

published in 1886 (DHILLON, B S, 2006). The term preventive maintenance was coined in 

the 1950s and a handbook on maintenance of railways was published in 1957. Additionally, 

various efforts were initiated between World War II and in the 1950s, in the aviation and 

military fields. Maintenance is the set of processes employed to restore a system or structure 

to full working order or to the best state possible such that it can perform as intended 

(STARR, a. and Ball, A., 2000). The following subsections briefly describe the various 

maintenance approaches used in different fields. 



 

~ 47 ~ 
 

2.6.1.1. Corrective/Reactive Maintenance 

Corrective maintenance is a legacy practice that involves repair carried out on a system only 

once failure has occurred, thus often requiring urgent actions (KOTHAMASU, Ranganath et 

al., 2006). Corrective maintenance may involve repairing a failed component, servicing and/or 

rebuilding a component to its original state. This means disruption of operation of a system 

can occur at any time causing unexpected downtime of the system.  

2.6.1.2. Preventive Maintenance 

Preventive maintenance is scheduled maintenance carried out to keep a system in a 

satisfactory operational state by providing for systematic inspection, detection and correction 

of incipient failures either before their development into major failures or before their 

occurrence (DHILLON, B S, 2006). The U.S. Navy pioneered preventive maintenance as a 

means to increase the reliability of their vessels. This proved to be a more cost effective 

approach compared to reactive maintenance. Studies indicate that savings of as much as 12% 

to 18% on average can be made (O&M Best Practices Guide, Release 2.0). The main benefits 

of preventive maintenance are reduced downtime and improved safety as maintenance tasks 

can be planned to balance workload. There are however several disadvantages to take into 

account: initial costs might be expensive, unnecessary downtimes and wasted resources to 

carry out unneeded maintenance and failures might still occur. 

2.6.1.3. Reliability-Centred Maintenance  

Reliability-Centered Maintenance (RCM) originated from the U.S aviation industry in the late 

1960s and was applied by the U.S military services from the middle of 1970s. Because its 

economic benefit and cost effectiveness were believed significant, since the beginning of 

1990s, RCM has been applied to many fields, such as aviation industry, military industry, 

energy industry, offshore oil production, and so on. (BLISCHKE, Wallace R and Murthy, 

D.N. Prabhakar, 2003). 

RCM is considered as both a preventive and predictive maintenance technique. In Reliability-

Centered maintenance, the components of a system are assessed using performance and safety 

criteria to determine when maintenance is required on the particular components. Fault Tree 

Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) are carried out to determine 

which parts of a system are most critical to the system (KOTHAMASU, Ranganath et al., 
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2006). Once the critical processes and components of a system are determined, a maintenance 

strategy is developed which concentrates on ensuring the critical parts are inspected and 

maintained more frequently than other parts of the system. Also reliability-centered 

maintenance aims to give feedback on how the original design of a system is performing, thus 

helping in improving future products (DHILLON, B, 2006). 

2.6.1.4. Condition Based Maintenance 

Starr. A. and Ball. A. (STARR, a. and Ball, A., 2000), define condition based maintenance 

(CBM)  as maintenance carried out based on the degradation of a parameter indicative of 

system health.. The aim of CBM is to shift the focus from maintaining a system to sustaining 

the ability of that system to perform. The parameter monitored is a performance indicator, 

which gives an early warning of deterioration when there is a change in the readings for that 

parameter. Various techniques depending on the field of application have been developed to 

carry out such measurements (e.g. vibration analysis, thermography, visual inspection) 

(SMITH, R and Mobley, K, 2006). Once the possible presence of a fault is detect, inspection 

of the system is carried out and maintenance is performed depending on the results of the 

inspection. CBM can also be described as a predictive maintenance approach.  

Predictive maintenance is carried out according to the actual condition of a system (SMITH, 

R and Mobley, K, 2006). The main aims of a predictive maintenance strategy are to increase 

the life of a system, reduce the amount of downtime, minimize cost for parts and labour as 

well as find small problems before they turn into big ones. To achieve those usually more 

investing in inspection equipment is required along with increased amount of staff training. 

RCM, Structural Health Monitoring and PHM are all based on the predictive maintenance 

principle, which is to monitor current condition of a system and perform maintenance only 

when required. 

2.6.1.5. Comparison of Traditional Maintenance Strategies 

In references, (DHILLON, B S, 2006) & (DHILLON, B, 2006), Dhillon describes typical 

corrective, preventive and RCM maintenance programs that can be performed and these are 

summarised in the table x. Amari (AMARI, S, 2006) also provides a typical maintenance 

programme that can be applied for condition-based maintenance which is summarized in 

Table 2-2. 
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Maintenance 

Approach 

Maintenance Steps 

Corrective 
 Failure recognition 

 Localising the failure within the system to a specific piece of 

equipment 

 Diagnosis within equipment to identify specific failed part of 

component 

 Failure part replacement or repair 

 Checking out and returning the system back to service. 

Preventive 
 Identify components of a system requiring maintenance 

 Identify what type of preventive maintenance to be performed 

on these components 

 Determine the frequency of the maintenance tasks to be 

performed 

 Maintenance tasks are then scheduled and carried out 

 Preventive maintenance tasks and schedules are analysed and 

improved based on feedback received and information gathered 

from previous maintenance tasks carried out. 

RCM 
 Identify high priority components with respect to maintenance. 

 Collect all necessary system failure data. 

 Perform fault tree analysis. 

 Apply decision logic to identify failures modes, which are 

critical. 

 Formulate maintenance requirements and implement 

maintenance decisions. 
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Condition-

Based 

 Identification of failure mechanisms, causes and detection and 

prevention methods 

 Identification of the deterioration model associated with the 

system.  

 Determination of the costs and effect of various types of 

failures and maintenance actions 

 Development of optimal CBM policy for inspection schedules 

for condition monitoring and optimal maintenance tasks. 

Table 2-2: Summary of Traditional Maintenance Approaches 

Contemporary maintenance strategies focus on a predictive approach rather than time-based 

approach. While the efforts in structural health monitoring concentrate more on the optimum 

utilization of sensors for structure monitoring and fault detection, the PHM approach takes a 

more holistic approach to maintenance with a wide variety of techniques used for sensing, 

diagnosis, prognosis as well as logistics performance. Military, aircraft and electronics 

industries have so far lead research initiatives in PHM, but other industries have started 

investigating and implementing PHM practices as well.  

Apart from endeavouring to use the latest technologies in sensing, diagnosis and prognosis, 

PHM encourages solutions that implement a continuous and seamless flow of information 

throughout the entire process such that maximum use of data obtained through sophisticated 

sensors is achieved to deliver the most accurate predictive information to help in maintenance 

decision making. The PHM framework developed for aged structures draw a lot of the 

structure and techniques from the PHM approach to maintenance.  

2.7. Applications for Aged Structures 

The maintenance of aged structures is usually conducted through manual inspection of the 

components according to a set maintenance schedule. This type of maintenance is inefficient 

and unsafe as faults develop in between inspections are not detected until the next inspection 

is scheduled. Additionally, very often components are removed for fault repair are still fully 

functional wasting labour and resources in the process.  
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The use of sensors within aged structures is spreading slowly across different types of aged 

structures. However, efficient usage of the data provided by these sensors in developing 

maintenance plans is still poor. The maintenance of salvaged historic structures brings 

additional challenges in that knowledge of the structures and materials used for building those 

ships is scarce and very often, many of the standard type of sensors cannot be used. The next 

sub-section presents an overview of maintenance efforts for aged structures of various kinds. 

The following sub-section outlines the restoration and maintenance strategies of three historic 

ships (SS Great Britain, Vasa and Mary Rose) which have been salvaged and transformed into 

museums.  

2.7.1. SHM and PHM efforts for Historic Structures 

Structural health monitoring systems are currently being developed and implemented to serve 

diverse applications. Most projects involving monitoring the health condition of heritage 

structures aim to do so using non-destructive and non-invasive sensors as much as possible. 

There is also often the need for continuous monitoring for real-time assessment of a 

structure‘s health as well evolution of any detected anomaly or fault. Additionally, the 

majority of systems for structural health monitoring often require an integrated approach.  

Inaudi and Walder, (INAUDI, D and Walder, R, 2009) describe the various technologies and 

sensors that a structural monitoring system should have. For example, a building would 

require fibre optics sensors for strain monitoring, a corrosion monitoring system consisting of 

concrete corrosion and humidity sensors used for concrete pylon, vibrating pressure cells for 

measuring the pile loads in the foundations and a laser distance meter to observe the global 

deformations. The data from these systems are then fused such that correlations between the 

measurements can be found. The following section provides an overview of technologies and 

example applications of SHM and PHM in historic structures, as well as buildings and ships 

in general. 

2.7.1.1. Examples 

Lubowiecka et al, (LUBOWIECKA, Izabela et al., 2009), developed a methodology 

integrating laser scanning, ground penetrating radar (GPR) and finite element analysis (FEM) 

to evaluate the condition of historical bridges for which the geometry is complex and the 

material properties are unknown and cannot be directly assessed. Using terrestrial laser 
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scanners (TLS), the geometry of the structure is prepared and a 3D model of the bridge is 

built. GPR techniques are used to estimate the homogeneity of the structure. The information 

obtained is used to define a finite element-based structural model, which is then used to model 

the structural behavior of the bridge.  

Inaudi et al, (INAUDI, Daniele et al., 2001), investigated the use of fibre optic sensors for 

long-term monitoring to help increase the knowledge of the real behavior of historic structures 

and plan maintenance. Fibre optic sensors were chosen as they can be mounted on the surface 

of concrete, mortars, bricks, timber, steel and other construction materials. They are also 

durable, stable and insensitive to external influences (such as temperature variations, 

corrosion and humidity), thus making them good candidates for long-term health assessment 

of structures.  

They demonstrated the use of fibre optic sensors in the monitoring of a cracked church vault 

where relatively short sensors with a measurement base of 30-50cm were mounted at different 

locations along a longitudinal crack that appeared in a small church in Gandria(Spain). 

Measurements for the crack openings were recorded and their daily and seasonal variations 

were analysed with respect to ambient temperatures and so far the findings show that crack-

opening variations correlate with ambient temperature variations and there is no occurrence of 

long-term evolution of damage. 

Tse et al, (TSE, C Y et al., 2010), developed an integrated SHM system to monitor the 

structural stability of Alexander Grantham, a historic fireboat harboured in Hong Kong. The 

aim is to assess the prevailing condition of the fireboat and predict the likelihood of any 

structural failures before they develop into significant issues that would cause serious threat to 

the integrity of the structure. The core activities of the integrated SHM program for the 

fireboat include: (1) Risk assessment and setting monitoring scopes, (2) Identifying 

representative monitoring parameters, (3) Designing integrated monitoring systems and the 

sensor network and (4) Data acquisition and processing and interpretation of the data. The 

current system setup divides into three sub-systems:  

 Continuous monitoring system — vibrating wire strain gauges, anemometer, 

accelerometer, tilt meter  
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 Periodic monitoring system — reference points for tape-extensometer, settlement 

markers 

 Data acquisition system — devices for continuous logging of data from sensors. 

The setup monitors the following parameters: load pattern of the fireboat, deformation of the 

hull structure, tilting and acceleration, foundation settlement and wind speed and direction. So 

far, only an observational approach has been used to determine the thresholds of the readings 

that give an early warning regarding possible degradation. No diagnostic and prognostic 

capabilities have been developed yet. Additionally the future works identified include 

statistical models to differentiate undamaged features from damaged structures as well as use 

of sensor systems that would provide measurement that is more sensitive.  

Solis et al, (SOLIS, M et al., 2009) deployed an application for monitoring and detection of 

structural damage techniques for ―La Giralda‖ sculpture, which is placed on top of Seville 

cathedral‘s tower bell. The sculpture is supported with an internal bar structure, which is fitted 

over the axis about which it rotates according to the wind direction, allowing it to function as 

a weathervane. The sculpture was demounted and underwent extensive restoration process 

between 1999 and 2005 and an instrumentation system consisting of different types of sensors 

was installed as well.  

Most of the sensors were installed in the support shaft, which is the most critical part for the 

sculpture‘s stability. The sensors installed are: 8 strain gauges, 6 accelerometers, 4 

inclinometers, 1 anemometer and vane, 2 temperature and humidity probes and 2 corrosion 

probes using samples of different materials in contact together. The data recorded from the 

sensors was used to study the dynamic behavior of the sculpture. Additionally accelerations, 

inclinations, forces, humidity, temperature, galvanic potentials, wind direction and wind 

velocity data are used in damage detection.  

Analysis of corrosion data from corrosion probes revealed that a correlation exists between 

humidity and galvanic potential does exist where ambient humidity conditions may accelerate 

corrosion process but no modeling of this correlation was carried out. Results obtained in the 

first two years of system operation, showed that there was no increasing or decreasing trends 

in damage detection parameters. This was expected, as two years is a short period compared 
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to expected lifespan of such structures (previously major damage repairs have been carried 

out every two hundred years).  

The system put in place for monitoring and diagnosis of the sculpture is expected to become 

more effective with time as more data is acquired. Currently only detection and location of 

damage can be carried out. There is still a need to quantify the damage through numerical 

simulation. Even though it is anticipated that the sculpture will not deteriorate over short 

periods, the authors recommend inspection of the sculpture as well as the instrumentation 

system every five years as the sensors have short lifespan especially under severe climatic 

conditions.  

Another example of using monitoring techniques is for the maintenance of the wooden 

structures of The Royal Villa in Monza (built in 1777-1779) which has degraded significantly 

and experienced cracks as a result (INAUDI, D and Walder, R, 2009). The monitoring was 

carried out during the restoration as well due to the uncertainties related to the structural 

behavior and the complex static system. Both conventional and optical fibre sensors with 

optical fibre sensors being used mainly as extensometers installed between the walls and 

shorter sensors for crack monitoring. The data was then interpreted and analysed using 

statistical means. The monitoring data was used heavily in planning and structuring the 

restoration works. 

Bogdan et al, (BOGDAN, B A et al., 2005) (MUFTI, A A, 2003), implemented an SHM 

system for Manitoba‘s Golden Boy statue placed on top of the Manitoba Legislative Building. 

Restoration was carried out on the statue as the steel supporting shaft had deteriorated 

significantly due to corrosion. A stronger, stainless steel shaft replaced the worn shaft and 

sensors including electrical strain gauges, accelerometers, fibre optic sensors and 

thermocouples were installed. Additionally, a web camera and wind meter was installed on 

the roof of the building.  

Data from the sensors and video feed are available through internet to facilitate web-based 

SHM in real-time. Wind and acceleration data are used to estimate strain experienced by the 

shaft and these are then correlated with the actual strain record by the strain sensors. This 

empirical relationship is used to detect faults in the sensors or deterioration of the structure. 

The data collected within the first year is used as the baseline and everything beyond the first 
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year will be compared to the baseline. Further damage detection methods are being developed 

as more data is collected over time with particular focus on dealing with measurement errors 

and eliminating correlations within measurement data in order to improved monitoring and 

diagnostics of the structure.  

Salvino et al, (SALVINO, Liming W et al., 2009), present a potential SHM architecture for 

future shipboard application involving use of low cost and dense sensor arrays wireless 

communications in selected areas of the ship hull as well as conventional sensors measuring 

global structural response of the ship. The architecture is multi-tiered where on the global 

level, a real-time, onboard sensor network combined with dynamic based damage detection 

algorithm can pinpoint possible problems and identify their approximate locations. Then 

further evaluations are carried out using localised techniques as well as using sensor and 

inspection information into fatigue based models to evaluate the details of the suspected 

faults. Future works include embedding data interrogation and processing algorithms at 

sensors level to enable near real time SHM. 

2.7.2. Maintenance Strategies of Historic Ships 

2.7.2.1. SS Great Britain 

The SS Great Britain was the first ocean going liner with wrought iron hull as well as being 

the biggest ship in the world in its time. In 1970, SS Great Britain was salvaged from the 

Falkland Islands and placed in the Great Western Dockyard in Bristol (WATKINSON, David 

and Lewis, Mark, 2010). In order to preserve the hull, the fabric of the ship and the dockyard 

structures, a complex preservation project involving innovative use of desiccation was 

undertaken.  

The hull of SS Great Britain contained a range of iron corrosion products that include 

FeOOH (Akageneite), Fe3O4 (Magnetite) and other chloride infested iron (WATKINSON, 

David and Lewis, Mark, 2010). Results of experiments showed that to ensure that these iron 

products do not corrode iron in contact with them, the relative humidity should be 12% or less 

(WATKINSON, David et al., 2010). However desiccating the hull of the SS Great Britain to 

12% relative humidity was deemed too costly and technically challenging with potentially 

high maintenance costs. Further experiments carried out on the influence of FeCl2.4H2O and 

FeOOH on the rate of iron corrosion showed that corrosion is many times lower at 20% 
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relative humidity as compared to 25% or 30% relative humidity (WATKINSON, David et al., 

2010).  

Due to the condition of the iron and length of the hull, conservation methods such as 

employing stripping or traditional surface treatments were not attempted for fear of further 

damaging the already badly corroded hull. Additionally, treatments involving removing 

and/or inhibiting the action of chlorides was not carried out as these were unpredictable and 

had technical challenge on such a large scale effort (WATKINSON, David and Lewis, Mark, 

2010). The main approach to conserve the iron hull was to control the humidity around the 

ship, which is a major factor in corrosion processes. Thus, a preventive maintenance strategy 

is employed where desiccation is the adopted method for preserving the ss Great Britain it 

was assessed to be the least interceptive and least unpredictable method available.  

2.7.2.2. Vasa 

The Vasa is a battle galleon that sank within one nautical mile of the start of her maiden 

voyage in 1628 (MAYOL, Dottie E., 1996). Various woods were used with 90% of it being 

northern oak and various other types of wood making up the rest.  The Vasa was salvaged in 

1961 and it is claimed that 95% of the ship is still original (MAYOL, Dottie E., 1996). The 

recovered waterlogged timber hull of the Vasa is the largest of its kind (more than 700 cubic 

metres of wood weighing around 1500 tons when wet) and it has been underwater for over 

300 years. Over such a long time, bacteria had attacked the wood and rust had spread 

throughout the hull from all the iron objects that had corroded (Preservation and Research - 

The Vasa Museum, 2010). If the waterlogged wood were allowed to dry out after salvage, the 

wood would split and collapse. Conservation of waterlogged wood is not easy since new 

chemical processes are initiated when wood is exposed to oxygen in the air.  

The current efforts in maintaining the ship‘s structure are aimed at controlling the 

environmental condition around and within the ship (Preservation and Research - The Vasa 

Museum, 2010). The temperature and humidity are maintained at even levels. High humidity 

helps bacterial colonies and mold to develop while the conservation agent used to preserve the 

ships become sticky and attracts dust. If the humidity is too low, there wood might crack and 

shrink. Currently the relative humidity around the ship is maintained around 51-59% and the 

temperature is maintained around 18°C-20°C. The light levels are kept below 100 lux and 
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daylight is not allowed to fall on the ship as organic materials can be broken down by high 

and intense light levels. 

To keep the wood wet, it was treated with polyethylene glycol (PEG) which penetrated 

degraded cells of waterlogged wood replacing the water, which hinders shrinkage when the 

wood dries (MAYOL, Dottie E., 1996). Added to that, research is currently being carried out 

on extraction of iron content from the wood as iron speeds up the deterioration of both wood 

cellulose and the conservation agent, PEG (MAYOL, Dottie E., 1996). A special cradle was 

constructed to support and help distribute the Vasa‘s weight better. It also facilitates 

conservation treatments that require partial dismantling (The construction and salvage of the 

Vasa). An advanced laser positioning system is also used to monitor the tiniest movements in 

the hull of the Vasa. This system is useful in revealing subsiding if the mechanical strength of 

the wood gradually decreases. 

Further complications in the conservation of the Vasa have developed recently. In 2000, an 

increasing number of white and yellowish salts started to precipitate inside the ship and on the 

artifacts in the magazine (The construction and salvage of the Vasa). This is been caused by a 

significant build-up of sulphuric acid within the wood. Additionally, the ―new‖ iron bolts 

(coated with epoxy or zinc) that were inserted into empty holes after the salvage in the 1960s 

have severely corroded and the iron compounds formed further accelerates the degradation of 

wood cellulose. Thus until current research confirm the failure mechanisms affecting the 

Vasa, a preventive maintenance strategy is adopted whereby the environmental conditions 

within and around the ship are controlled.  

2.7.2.3. Mary Rose 

The Mary Rose is a 16
th

 century warship, which was built in Portsmouth and launched in 

1511. She sank during an engagement with the French invasion fleet in 1545 and lay buried in 

the seabed off the south coast of England until she was salvaged in 1982 (ESRF, 2005). The 

Mary Rose is currently undergoing a conservation spray treatment, which started 10 years ago 

to wash away sulphuric acid that forms. Large amounts of iron are present in the wood from 

completed corrosion iron bolts, nails and other objects. Accumulated sulphur compounds 

within the ship oxidises when in contact with iron which corrodes in presence of oxygen to 

form sulphuric acid. As uncontrolled atmospheric surroundings can accelerate this process, a 
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stable climate (constant relative humidity and temperature) around the ship will be created 

once the spray treatment and drying is completed (ESRF, 2005).  

Additionally, researchers are currently using synchrotron x-rays to analyse wood samples to 

determine the quantities and location of sulphur and iron and their chemical state. This is be 

used to keep a record of the state of deterioration and improve methods of conservation in the 

future. Currently, research is still undergoing with aims of understanding the failure 

mechanisms and developing methods to stop or slow down the deterioration of the ship‘s 

material and again a preventive maintenance strategy is adopted where environmental 

conditions are controlled to provide a stable climate for the ship (constant relative humidity 

and temperature). 

2.8. Chapter Summary 

The majority of published research involving PHM systems refers either to a single 

component or to a single aspect of a system. Very few comprehensive research efforts are 

currently taking a holistic approach when developing a PHM system. As such, diagnostics, 

prognostics and sensor network remain an area of active research. Many techniques developed 

so far have demonstrated their effectiveness in laboratory environments but their performance 

in real-world applications remains uncertain as only a few have been deployed on actual 

structures. 

A complete PHM system would encompass the layout of sensors, the capturing and 

processing of data from those sensors, the diagnostic and prognostic algorithms used to 

provide current health status as well as estimate future health status and finally a maintenance 

decision-making tool, which would act on the processed diagnostic and prognostic 

information provided.  

The number and type of sensors as well as the location of those sensors should be determined 

with the aim of providing maximum useful data without overloading the system with 

unnecessary data. The data captured requires pre-processing to remove possible noise and 

extract performance features that are not readily recognizable in raw data, before passing on 

to diagnosis and prognosis phases. The diagnostic stages involve detection and reporting of 

anomalies in the system. This should be achieved with as low false alarm rate as possible to 

build trust in the end-user.  
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The prognostic stage in a PHM system is still the most difficult challenge. In order to 

determine the health status of a system, previous data representing healthy and 

unhealthy/degraded systems should be ideally be available for comparison. This is often hard 

to obtain or inexistent for legacy systems or aged structures which have been built at a time 

when such requirements were not deemed necessary.  

In addition to identifying faulty behaviour from normal behavior, the PHM system expects to 

predict when the system will fail which requires clear understanding of how the system faults 

develop. Such information is hard to acquire for many systems, as the operation of those 

systems would stop long before they fail thus preventing collection of data on faulty 

behaviour.  

Remaining lifetime estimate depends on future usage, thus future loads and environments 

need to be determined in one way or another before remaining life estimation is calculated. 

Furthermore, uncertainty arising from experiment errors as well as modeling inaccuracies, 

need to be handled appropriately when performing prognostics and diagnostics. Finally, 

prognostics and health management of aged structures have their particular limitations to take 

into consideration such as, lack of structural design, construction and material information, 

inability to conduct experiments on the structures to learn about their behavior and many 

more. Currently most aged structure maintenance projects have focused on the 

instrumentation and diagnostic techniques required to detect any damage with a certain degree 

of success. However, very little research has been undertaken regarding the prognostic aspect. 

This chapter has covered a variety of PHM techniques that are currently being researched in 

high tech applications. The concept of canary devices was introduced as accelerated sensor 

devices used to provide warning of impending failure. PoF-based and data-driven prognostic 

approaches were reviewed with emphasis on anomaly detection algorithms and corrosion-

related failure algorithms. Another approach to doing prognostics is fusion prognostics where 

remaining useful life distribution using data-driven methods and PoF-based method are 

predicted individually and then fused using a probabilistic method to obtain a new remaining 

useful life prediction distribution. Examples of fusion prognostics techniques have been 

reviewed, in particular Bayesian networks. The last section provided an overview of 

diagnostic and prognostic endeavours for historic structures. The next chapter will detail the 

particular PHM techniques used to build the PHM framework for Cutty Sark iron structures.   
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3. Corrosion Degradation Mechanisms 
 

3.1. Introduction 

Several degradation mechanisms affect aged iron structures. The main cause of deterioration 

in aged iron structures is corrosion. The formation of corrosion usually plays a major role in 

the long-term maintenance of metallic structures. Corrosion consists of complex processes 

that can occur in different forms. The following subsections provide a brief overview of the 

causes of age-related structural degradation, degradation mechanisms affecting aged 

structures, the electrochemistry of corrosion, factors influencing corrosion rate, the different 

forms of corrosion, corrosion models and finally the consequences of corrosion. 

3.2. Age-Related Structural Degradation 

Aging of ship structures is defined as the progressive deterioration of structures as a result of 

normal operational use and environmental influences. The structural deterioration comes in 

the following forms (WANG, G and Boon, B, 2009) (PAIK, J K and Brenman, F, 2006): 

 Coating damage - This can take the form of coating cracking, blistering, rust and 

flaking.  

 Corrosion – Corrosion occurs due to the chemical reaction between metal and the 

environment.  Further detailed description of corrosion processes is provided in the 

next section. 

 Cracking – Cracks originate from defects in structures and accidental overload that 

leads to initiation of cracks. 

 Mechanical Wear and Tear – this can be in the form of sliding wear and friction, low 

and high-stress abrasion etc. Such mechanical damage can result in denting, cracking 

and coating damage. Local dents often initiate crack, which under repeated loading 

continue to increase in size.  

 Interaction of different degradation mechanisms - Corrosion and crack propagation 

can take place simultaneously. In corroded structures, crack propagation can be 

accelerated as the stress in the structure increases with material loss due to corrosion.  
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3.2.1. Degradation Mechanisms of Aged Structures 

The main degradation mechanisms identified for aged iron structures are corrosion and 

fatigue cracking. Fatigue is due to the fluctuating nature of load and corrosion is primarily due 

to the environmental effects (DISSANAYAKE, P B and Karunananda, P A, 2008).   Fatigue 

cracks can initiate in areas of stress concentration under repeated loading. Initial defects 

formed during construction of a structure can remain undetected for a long time and cracks 

may initiate from such defects, and propagate. Fatigue damage at a crack initiation site is 

influenced by many factors: (i) material properties, (ii) high local stresses, (iii) size of 

components, (iv) nature of stress variation and (v) environmental and operational factors 

(PAIK, J K and Brenman, F, 2006). Corrosion is the degradation mechanism that affects aged 

iron structures the most. The following sections detail the corrosion processes and models, 

which have been developed so far for remaining life prediction of iron structures. 

3.3. Electrochemistry of Corrosion 

Understanding how and why corrosion affects structures requires knowledge of 

electrochemistry of corrosion. This is beyond the scope of this thesis, but an overview of 

corrosion formation is presented. Corrosion is the deterioration of a material due to chemical 

interaction of the material with its environment. Corrosion reactions are electrochemical 

reactions. The corrosion process consists of an anodic and a cathodic reaction as described in 

(ROBERGE, P R, 2000).  At the anode, iron loses electrons and goes into the electrolyte 

solutions as ferrous ions. At the cathode, the electrons released react with some reducible 

component of the electrolyte as shown in Figure 3-1. The anodic reaction takes the form of 

equation (3) and the cathodic reaction takes the form of equation (4). 

 

 

 

 

 

Fe 
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Figure 3-1: Anodic and Cathodic Reactions 



 

~ 62 ~ 
 

                  (3) 

                 (4) 

The rates of anodic and cathodic reactions are equivalent according to Faradays‘ Laws and the 

rate is determined by the total electron flow from anode to cathode (AHMAD, Z, 2006).   

3.3.1. Corrosion Rates 

The corrosion rate (or rate of material loss) is expressed in equation (5) as the thickness loss 

of material per unit time. The equation takes the form 

At

KW
CPR


         (5) 

Where, CPR is the corrosion penetration rate, K is a constant (depending on system of units 

used), W is weight loss, 


is density, A is the exposed area and t is the exposure time. 

Corrosion rate can also be defined as weight loss per unit time per unit area represented by 

equation (6).  

nF

IM
w 

         (6) 

Where, w is the weight loss per unit time per unit area, I is the current density, M is the 

molecular weight of reaction species, n is the number of electrons transferred and F is 

Faraday‘s constant.  

3.3.2. Factors Affecting Corrosion Rate 

Factors causing corrosion and affecting corrosion rate are numerous with some factors being 

more important in determining corrosion rates for particular types of corrosion. Some of the 

main factors are illustrated below: 

 Addition of acids - Usually corrosion of a metal occurs in the presence of an 

electrolyte where positively and negatively charged ions move thus creating an electric 
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current. For some solutions, addition of acids or bases that can dissociate into ions can 

increase the current –carrying capability of the solution. 

 Variation in concentration of solutions - Small variations affect the corrosion rate of 

metals. 

 Oxide layer -The presence of an oxide layer will slow down corrosion rate as the oxide 

layer prevents the metal and the solution to be in contact. The uniformity and tenacity 

of the oxide layer matters as well. 

 Pressure - Pressure can influence the solubility of oxygen, carbon dioxide, chloride 

and hydroxides in the solution such that more or less positively and negatively 

charged ions are available for flow of electric current. 

 Temperature - Corrosion rate increases with increase in temperature. As a rule, 

reaction rate will double when the temperature rise doubles. 

 Relative humidity - Corrosion rate usually increases with increase in relative humidity. 

 pH level - Ph. level of solution can influence the corrosion rate of metals. For 

example, for pH values below four, ferrous oxide dissolves as it is formed rather than 

forming a layer on the metal and thus iron is in direct contact with the solution and 

thus corrosion rates are higher. 

 Surface of material - The surface of a metal can affect corrosion rate in that non-

uniform surfaces promotes initiation of local corrosion and the corrosion rate at these 

particular points is usually faster than the general corrosion rate. 

 Stimulation of anodic or cathodic reaction - Ions such are chlorides will prevent the 

formation of protective oxide films on the metal surface thus increasing corrosion. 

Sulphur dioxide present in the atmosphere can dissolve in the thin film of moisture 

present on metal surfaces and the acidic electrolyte formed can stimulate both anodic 

and cathodic reactions. 

 Flow rate of water - An increase in flow of water will increase the amount of oxygen 

available to the surface of the metal. Also increasing flow rate means any protective 

films will be removed faster, thus putting the metal in direct contact with any 

corrosive environment. 

 Oxygen content - The higher the oxygen content the greater the corrosion rate.   
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 Chloride content - Corrosion rate can increase rapidly with present of chloride ions. 

 Pollution level - Pollutant gases such as sulphur dioxides reacts with water to form 

sulphuric acid that is highly corrosive to iron. 

 Footfall - More footfall could lead to increase in relative humidity. 

3.4. Types of Corrosion 

There are various forms of corrosion that can occur in metal structures as described in 

(AHMAD, Z, 2006) (BARDAL, E, 2003) (ROBERGE, P R, 2000) (SCHWEITZER, Philip A, 

2007) (TRETHEWEY, K. and Chamberlain, J., 1995). The main forms of corrosion of 

concern for Cutty Sark structures are described below. 

3.4.1. Uniform/General  

Uniform corrosion is the most common form of corrosion with corrosion attack evenly 

distributed over the surface leading to relative uniform thickness reduction (BARDAL, E, 

2003). As the electrochemical reaction occurs with equivalent intensity over the entire 

exposed surface, the rate of corrosion can be equated to the electron current flow between the 

anode and the cathode. While being the most common form of corrosion, it is not the most 

dangerous form of corrosion as the rate of uniform corrosion is more easily measurable than 

other more complex forms of corrosion. 

3.4.2. Atmospheric 

In atmospheric corrosion, a complex electrochemical process taking place in corrosion cells 

consisting of base metal, metallic corrosion products, surface electrolyte and the atmosphere 

(SCHWEITZER, Philip A, 2007). It depends on the following factors: relative humidity, 

temperature, sulphur dioxide content, chloride content, amount of rainfall as well as 

geographical location. Depending on the specific contaminants present and the material in 

consideration, all types of corrosion can occur. Atmospheric corrosion is considered a 

discontinuous process, as an electrolyte (usually water from rain, fog, dew or high humidity) 

is not always present. Thus, atmospheric corrosion only takes place during time of wetness 

(SCHWEITZER, Philip A, 2007).  The corrosion rate is determined by the time of wetting, 

the frequency and duration of dry periods, relative humidity, temperature and temperature 

variation. 
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3.4.3. Galvanic 

Galvanic corrosion occurs when two metals with different electrochemical potentials are in 

metal-to-metal contact in an electrolyte (AHMAD, Z, 2006). Due to the difference in 

potentials, current will flow from the anode to the cathode such that the less noble metal (the 

anode) will corrode faster than the more noble metal(the cathode). The galvanic series is used 

to determine which metal will corrode faster than the other, that is, which metal will behave 

as the anode and which metal as the cathode. Galvanic corrosion is present on the ship as part 

of the metal structures is made of both iron and muntz components. 

3.4.4. Crevice 

Crevice corrosion is defined in (TRETHEWEY, K. and Chamberlain, J., 1995) as corrosion 

attack which occurs because part of a metal surface is in a shielded or restricted environment, 

compared to the rest of the metal which is exposed to a large volume of electrolyte. This is 

likely to occur on the ship when the protection coating on the iron structures cracks and 

crevices form.  

3.4.5. Pitting 

Pitting corrosion is a form of localised corrosion in which small pits are formed. These pits 

usually penetrate from the top of a horizontal surface downward in a nearly vertical direction, 

thus preventing pitting being detected often until failure occurs (BARDAL, E, 2003). The 

extent and intensity of pitting corrosion is difficult to measure because the number and size of 

pits (diameter and depth) vary from region to region and within each region. Serious damage 

can be caused with even small loss of materials. The surface of a metal can affect corrosion 

rate in that non-uniform surfaces promotes initiation of local corrosion and the corrosion rate 

at these particular points is usually faster than the general corrosion rate. Thus, damage in 

small areas is more pronounced and has more serious effects on the overall strength of the 

material at these particular places. 

3.4.6. Microbiologically Influenced (MIC) 

MIC is corrosion promoted by microorganisms that can be found in both metals and non-

metals. Microorganisms are living organism found almost everywhere in the environment and 

they can be divided into four main types, namely, fungi, algae, diatoms and bacteria 
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(TRETHEWEY, K. and Chamberlain, J., 1995). Microorganisms can affect corrosion 

behaviour in many ways as described in (ROTHWELL GP, 2006): 

 By production slimes and deposits which give rise to crevice corrosion 

 By creating corrosion conditions through their metabolic products or by destroying 

materials added to the system to provide corrosion inhibition 

 By directly influencing the corrosion reactions 

Given the right condition such as the appropriate temperature, ph level, water and food, the 

microorganisms will develop and grow in numbers. In general, microorganisms release 

chemicals in the environment of the metal concerned, thus changing the environment 

surroundings and creating optimum conditions for corrosion of the metal. 

3.4.7. Corrosion of metal by Wood 

Wood can release corrosive substances such as acetic acids, which are volatile leading to 

corrosion of metal near the wood. Different types of wood have different acetic acid content 

as illustrated in (NPL, 2006). The rate of formation of acetic acid depends on the temperature 

and moisture content of the wood while the rate of emission of the acetic acid depends of the 

shape of the wood structure concerned. The chlorine content of wood can also affect corrosion 

rate of metal. Wood structures near or within a marine environment will absorb a higher 

quantity of chloride that will accelerate of corrosion of metal parts in contact with the wood. 

3.5. Deterioration Models for Corrosion 

The thermodynamics and kinetics of corrosion control corrosion reactions. Thermodynamics 

gives an indication of the tendency of electrode reactions to occurs whereas corrosion kinetics 

addresses the rates of such reactions (AHMAD, Z, 2006).  

3.5.1. Thermodynamics of Corrosion 

Thermodynamics laws provide information on feasibility of a particular reaction, i.e. whether 

a metal will oxidize into its ions if the ions are of lower energy state than the pure metal.  For 

the corrosion reaction to occur, the metal must surmount the energy barrier, which is also 

called the free energy of activation, which is represented by equation (7) (BARDAL, E, 

2003): 
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KRTGo ln        (7) 

Where, ∆G° is the free energy of activation at standard state parameters (i.e. 298K and 1 atm. 

Pressure), R is the universal gas constant, T is the absolute temperature and K is the 

equilibrium constant. 

 

Energy changes during corrosion reactions can be measured as electrical potentials and flow 

of current such that electrical measurements can be used to measure rate of corrosion reaction. 

Work done is expressed in terms of potential difference and charge transported (Faraday‘s 

Law). Several methods are used to study the rate of a reaction involving the determination of 

the amount of reactants remaining in products after a given time (AHMAD, Z, 2006): 

 The Pourbaix diagram shows a qualitative picture of what can happen at a given pH 

and potential, that is, whether the metal will corrode, form a passivating layer or be 

stable to corrosion (BARDAL, E, 2003).  

 The Nernst equation relates the actual potential of an electrode, E, to the standard 

potential of an electrode, Eo as a function of the concentrations of ions taking part in 

the corrosion reaction.  

 The Butler-Volmer equation expresses the fundamental relationship between the 

current flowing and the applied voltage (JENKINS, T., 2007). 

3.5.2. Mathematical Models for Corrosion Related Deterioration 

Age related deterioration in aged structures is time-variant in nature. Several mathematical 

models for predicting time-variant corrosion related deterioration due to aging have been 

researched and developed (PAIK, J K and Brenman, F, 2006). Most of those models are time-

variant empirical models developed through statistical analysis of corrosion measurement data 

for specific materials, environmental conditions and operational loading.  However, corrosion 

is a complex process that is influenced by many factors and using statistical analysis of 

corroded structures alone is not enough to identify the key influencing factors.  

To obtain prediction of corrosion, models based on corrosion mechanisms are required. Most 

corrosion models developed so far apply for uniform corrosion. These models are sometimes 

extended for pitting corrosion where pit depth and width are assumed random variables 
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following lognormal distributions (SADIQ, R et al., 2004). The most common and generic 

time-variant corrosion model is the Linear-Bilogarithmic law model (POURBAIX, M, 1982). 

It is an explicit model for the corrosion process, and is based on the decrease of corrosion rate 

over time. Several extended models of Linear-Bilogarithmic law model exist for particular 

metals and environmental conditions 

3.5.3. Extended models of Linear-Bilogarithmic Model 

The following subsections describe extended versions of the Linear-Bilogarithmic model 

taking into account various factors that affect corrosion rate. 

3.5.3.1. Effect of time wetness, sulphur dioxide concentration and chloride concentration on 

corrosion 

The growing oxide film in dry atmospheres usually protects the underlying metal from further 

corrosion following a logarithmic/power law. When exposed to rain, the metal may corrode 

but the rate falls when it dries. Thus, the factor commonly termed ―time of wetness‖ is 

required as well as average temperature, average relative humidity and so on. In 

(GONZALEZ, J E and al, et, 2003), a modified version of the Linear-Bilogarithmic law was 

used for corrosion depth such as equation (8). 

 ( )      0( (   )  (   )  (   ))     (8) 

Where a, b, c and d are constants, (SO2) as concentration of sulphur oxide in mg/ (m
2
 day), 

(Cl
-
) as the concentration of chlorides in mg/ (m

2
 day), and TOW as time of wetness (h/year). 

Such an equation is however of limited value due to the difficulties in determining the local 

conditions precisely. 

3.5.3.2. Two phase corrosion model 

This model consists of two phase (in the first phase rapid exponential corrosion growth and in 

the second a slow linear growth) as depicted in equation (9) (SADIQ, Rehan et al., 2004). 
 

 ( )      (      )       (9) 
. 

Where a = constant (typical value: 0.009mm/yr), b = corrosion depth scaling constant (typical 

value: 6.27mm) and c = corrosion rate inhibition factor (typical value: 0.14yr
-1

) 
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3.5.3.3. Corrosion Model for Carbon Steel and Copper Samples 

Corrosion accelerates in presence of chloride ion such that the rate of deposition of chloride 

ion affects the rate of corrosion. The chloride deposition rate in turn depends on the cleaning 

effect of rain. Experiments have been carried out on plain carbon steel and copper samples at 

two atmospheric test stations in open environment: Havana in Cuba and Medellin in 

Colombia, which experience different amount and frequency of rain. Further details of the 

experiment carried out over the period of one year can be found in (CORVO, F. et al., 2005). 

The model proposed as a result of these experiments is one that extends the Linear-

Bilogarithmic law for atmospheric equation. It incorporates the cleaning effect of rain in the 

determination of the acceleration rate of chloride ions and is represented in equation (10). 

          (   )        (10) 

Where K = mass loss; a, b, c and d = constants; [CL] = chloride deposition rate; W= rainfall 

(mm); D = rainy days; t= time of exposure. The cleaning effect of rain is represented by the 

ratio W/D (amount of rain/ frequency of rain). 

3.6. Consequences of Corrosion 

In general, failure due to corrosion is a result of the electrochemical action of the corrosion on 

the material causing a loss of the material (in this case, metals) by dissolution or oxidation.  

Metals will usually react with elements from the environment to change from a high-energy 

state to a low energy state. Corrosion typically occurs at the surface of the material. In 

addition, localized attacks can lead to corrosion cracking as wet corrosion attacks metals 

selectively instead of uniformly. This can lead to failure much more rapidly as one part of a 

component loses material much faster than another adjacent part leading to cracks 

propagating steadily under a stress much less than the stress required in standard conditions. 

Corrosion also increases the rate of growth of fatigue cracks in most metals and alloys. Hence, 

fatigue strength of a material can be reduced substantially and thus failure will occur at 

relatively light loads and/or within shorter periods. Therefore, several properties of a structure 

are affected due to corrosion.  
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Some of these changes in properties can be monitored to determine corrosion rate for the 

structure and/or at particular locations for that structure. Some of the main consequences of 

corrosion on structures are illustrated below: 

 Reduction of metal thickness - Decrease in metal thickness will lead to decrease in 

mechanical strength, which may then lead to structural failure. This is particular 

dangerous in localized corrosion where only a small amount of metal loss can lead to 

structural failure of a component. 

 Loss of surface properties of materials - Properties such as electrical conductivity, 

surface reflectivity or heat transfer can be affected by change in composition of the 

surface. 

 Appearance - Appearance of a structure will change as its metallic surfaces corrode. 

Thus, the changing aesthetics of the structure will affect its appeal. 

 Safety - The margin of safety for a system will change as corrosion damages the 

structure of the system. 

3.7. Summary 

While several degradation mechanisms affect aged structures, the main cause of deterioration 

in aged iron structures is corrosion. Thus for the PHM methodology developed, the diagnostic 

and prognostic tools will take into consideration mainly failures due to corrosion degradation 

mechanisms which affect the ―health‖ of aged iron structures. For Cutty Sark, the main forms 

of corrosion affecting its structure are uniform, galvanic and pitting corrosion. The next 

chapter will detail the particular diagnostic and prognostic tools developed as part of the PHM 

methodology for aged iron structures using the Cutty Sark as the example application.   
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4.  Developing a PHM Methodology for Aged 

Structures  

4.1. Overview 

For the PHM framework developed, one diagnostic tool and two prognostic tools have been 

developed. The diagnostic tool uses a data-driven method to perform precursor monitoring 

and anomaly detection. The first prognostic tool is developed using a model-driven method, 

which consists of a Physics-of-Failure model for corrosion related deterioration. The second 

prognostic tool, using a fusion approach, takes the information processed from the diagnostic 

tool and the first prognostic tool and provides updated remaining life predictions. The 

diagnostic tool and model-driven based prognostic tool are deterministic approaches towards 

detecting and predicting failure. The fusion based prognostic tool uses a probabilistic 

approach that incorporates the results from the two former tools as depicted in Figure 4-1.  

 

Figure 4-1: Use of Deterministic and Probabilistic Approaches within PHM 

The PHM methodology developed combines the use of the diagnostic and prognostic tools as 

shown in Figure 4-2. The PHM methodology includes the use of canary and parrot devices 

(similar to canary devices but mimic actual rate of deterioration in a structure instead of 

developing an accelerated rate of deterioration as in canary devices) as well as other 

environmental sensors placed around the ship for data gathering. Thus, monitoring of 

performance, environmental and operational parameters is carried out where appropriate.  

The diagnostic tool implements precursor monitoring and anomaly detection on the 

performance parameters to be carried out at regular intervals. Ideally, those parameters should 

be monitored throughout the lifetime of the iron structures to understand the status of their 
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health. Feature extraction is carried out on the monitored parameters of the healthy structure 

to create a training dataset representing healthy structures.  Using Mahalanobis Distance 

(MD) as the anomaly detection algorithm, the performance parameters of the structure under 

consideration are then compared with the healthy training dataset for anomaly detection. 

Simultaneously, the remaining life of the structure is predicted through the model-driven 

prognostic tool using an appropriate PoF model (provided the failure definition is given). 

Information from the model-driven prognostic tool and the data-driven diagnostic tool is fed 

into a Bayesian Network model, which then processes the probability distribution of predicted 

remaining life of the structure.  

 

Figure 4-2: PHM Framework for Cutty Sark Iron Structures 

Using the model-driven method alone to predict future health of a structure is not sufficient as 

the PoF models may fail to capture real life conditions which might not been accounted for 

but are still experienced by the structure during its lifetime. PoF models based on failure 

mechanisms due to corrosion usually contain a high degree of uncertainty due to the lack of 

understanding of the complex processes involved in the corrosion of iron structures.  

The data-driven diagnostic tool delivers reliable results of anomaly detection when good 

training data is available but while data-driven algorithms such as Mahalanobis distance 

perform well in detecting anomalies, such techniques do not provide any prediction 

capabilities.  Hence, a fusion approach using Bayesian Networks has been adopted with the 
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aim of developing a prognostic tool that can accommodate the initial lack of information and 

knowledge regarding the corrosion processes on the Cutty Sark‘s iron structures and handling 

data uncertainty.  The following four sections describe (a) the use of canary and parrot 

devices, (b) the data-driven diagnostic tool, (c) the model-driven prognostic tool and (d) the 

fusion-based prognostic tool. 

4.2. Use of Canary and Parrot Devices 

4.2.1.  Overview 

The methodology of using canary devices to give warnings to impending failures is adopted 

for the PHM framework of Cutty Sark iron structures, the main purpose of which is to provide 

an awareness of the onset of degradation mechanisms before any major failure of the iron 

structures occurs. Canary devices will therefore give advance warning of impending failures 

in the iron structures. These devices are used as it is difficult to use non-destructive inspection 

techniques (e.g. ultrasound, acoustic emission, etc) as corrosion-prone areas are often 

inaccessible or in hidden locations and care needs to be taken in handling the actual fabric of 

the ship for measurement purposes.  

Canary and parrot devices will be used to gain valuable information on the behavior of similar 

iron structures in various different environmental conditions experienced within the ship. 

Along with canary devices, parrot devices representing miniature systems of the iron 

structures with the same mechanisms of failure and within the same environmental conditions 

are also used. The main reason for using parrot devices as well as canary devices is that it is 

not possible to carry out direct measurements and monitoring on the actual iron structures due 

to risk of damaging structures of great historical value within Cutty Sark. 

4.2.2.  Purpose of Canary and Parrot devices 

The main objective of the use of canary and parrot devices is to provide an indication of the 

failure of the structures in the short and long term. To that end, strong correlations between 

the canary devices, parrot devices and iron structures need to be developed. The acceleration 

factors between the canary and the parrot devices will be identified in the beginning and these 

will be updated, as new data on corrosion damage from the devices becomes available. The 

parrot devices will in turn be calibrated to the actual failure levels of the iron structures. Thus, 

a sound understanding of the corrosion damage occurring within the canary and parrot devices 
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and the iron structures is necessary to enable accurate corrosion predictions. An example form 

of acceleration factor (AF) between a canary and a parrot device is shown in equation (11).  

  (      )  
(                   )      

(                   )      
     (11) 

Figure 4-3 illustrates the initial concept of how canary and parrot devices can be used to 

perform predictions. A canary device and a parrot device are both monitored for percentage of 

material loss. Given the acceleration factor between the canary and the parrot is known, when 

the canary device fails at time t, it can be calculated when parrot device will fail (i.e. when 

iron structure of ship will fail). One point to be noted is that the predictions and acceleration 

factors will be updated when new data for canary and parrot device is acquired, thus 

increasing the accuracy of the predictions as shown by the probability distributions on the 

graph below.  

 

Figure 4-3: Material Loss Prediction Using Canary and Parrot devices 

 

4.2.3.  Design of Canary and Parrot Devices 

The canary devices will be designed to include the same mechanisms (at an accelerated 

speed) that can lead to failure in the actual iron structures. Here failure is mainly due to 

corrosion of iron structures, but the different parts of the iron structures are subjected to 

different types of corrosion and the environmental conditions for the iron structures differ 
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within the ship. The degradation of the canary devices will be assessed using accelerated 

testing and the degradation levels will be calibrated and correlated to the actual failure levels 

of the iron structures.  

Measurement for environmental factors for the canary devices will also be carried out with 

the aim to understand the effect of changes in environmental conditions on the different 

degradation mechanisms of the iron structures. Canary devices are designed to fail faster than 

the actual system, while parrot devices are designed to represent the actual Cutty Sark 

wrought iron components. In general, the dimensions of the parrot devices are slightly bigger 

compared to their respective canary devices to ensure a smaller area-to-volume ratio and 

hence less corrosion penetration. Currently, the design of the canary and parrot devices has 

not yet been finalised. However, the design characteristics of the devices as well as other 

factors related to the use of canary and parrot devices within a PHM framework for Cutty 

Sark have been set out. The different types of canary and parrot devices proposed are for 

monitoring: 

 corrosion of iron structures 

 different environmental conditions present within the ship. 

 degradation mechanisms due to bacterial attack of iron, abrasion and other degradation 

of protective coatings 

The main factors taken into account for the design of the Canary and Parrot devices are as 

follows: 

 Location within the ship 

o Locations with harshest environments which would create best environment 

for corrosion 

o Locations that are not easily accessible for visual inspections and other regular 

monitoring of corrosion damage. 

o Different locations within the ship will experience different varying 

environmental conditions and therefore should be analysed separately. 

 Types of corrosion to be monitored 

o Uniform Corrosion 
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o Atmospheric Corrosion 

o Crevice Corrosion 

o Pitting Corrosion 

 Types of structures on which canary/parrot devices will be based on  

o Structures which are hidden within other structures thus hard/impossible to 

reach for any visual inspections or monitoring 

o Frequency of measurements of environmental and performance factors 

The main differences between Canary and Parrot devices are as follows: 

 Canary devices will be smaller structures and will thus be more reactive than bigger 

parrot devices 

 Parrot should not be new teak or iron and should have undergone a certain amount of 

corrosion enough to mimic the ship‘s original fabric. 

 Parrots devices will be painted with no moisture allowed whereas canary devices will 

be painted but will allow moisture in through gaps and flaws 

 Canary devices will be immersed in chlorine solution while parrot devices will not 

undergo such treatment. 

Table 4-1 shows a summary of the material and treatment of materials initially envisaged as 

well as a list of possible corrosion damage parameters and corrosion causes. 

 Materials/Treatment of materials Measurements 

1 Dry iron filings and salt in a paint system 

capsule  

 Corrosion damage parameters 

(performance metrics) 

 Weight change 

 Electrical Resistance 

 Dilation 

 Dimension changes 

2 Pre-corroded and cleaned mild steel samples 

coated with the paint system  

3. A mild steel bolted joint assembly with 

variants: 
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 Clean interfaces coated with the paint 

system 

 Dry salt contaminated interfaces 

coated with the paint system 

 Wet salt contaminated surfaces coated 

with the paint system 

 Appearance changes 

 Surface hardness/roughness 

 Linear Polarisation 

Resistance 

 Corrosion causes 

(environmental factors) 

 Relative Humidity 

 Temperature 

 Cracking of paint 

 Chloride concentration 

4 Timber to detect: 

 fungal attack  

 bacterial attack 

5  Oak and iron sample together and pre-

soaked. 

Table 4-1: Canary and Parrot Design Characteristics 

 

4.2.3.1. Preliminary designs of Canary and Parrot Devices 

Figure 4-4 and Figure 4-5 show two different pairs of Canary and Parrot devices to be used in 

experimental trials on Cutty Sark. The canary device is an iron wire secured with plastic bolts 

and the parrot device is two iron sections bolted together using plastic bolts (Figure 4-4). In 

Figure 4-5, the iron wire in the canary device is sandwiched between two wood sections and 

the iron section in the parrot device is bolted to a wood section using plastic bolts. These pairs 

have been designed with a view of representing the different types of corrosion on the 

different types of iron structures present on Cutty Sark. These Canary and Parrot pairs can be 

placed in locations experiencing different environmental conditions within the ship.  

Measurements will be carried out on a monthly basis for the first set of the Canary and Parrot 

pairs, every six months for the second set of the Canary and Parrot pairs and after one year for 

the third set of the Canary and Parrot pairs. Several more Canary and Parrot pairs have been 

designed for trials on Cutty Sark at a later stage and are shown in appendix section 9.1. 
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Figure 4-4: Parrot and Canary Device Pairs (a) 

 

 

Figure 4-5: Canary and Parrot Device Pairs (a) 

 

4.3. Model Driven Prognostic Tool: Remaining Life Prediction 

using PoF Model 

4.3.1. Failure processes affecting iron structures 

The degradation of the iron structures of the ship is mainly due to corrosion. Therefore, the 

Physics-of-Failure model used for the prognostic is mostly based on corrosion models. 

Corrosion leads to loss of strength and can ultimately cause structural failure.  

The four different types of corrosion occur under different conditions and depend on the 

following deviations as stated in (BARDAL, E, 2003): 

 The design (macro-geometry of the metal surfaces) 

 The combination of metal and environment 

 The state of the surface (e.g. cleanliness and roughness) 

 Other deterioration mechanisms. 
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4.3.2. Model-Driven Method: Physics of Failure Models for Corroded Iron 

Physics of Failure approach (PoF) utilises knowledge of the life-cycle load profile and 

material properties of a structure and architecture to identify potential future failure 

mechanisms. The PoF methodology aims to do prognostics by first calculating the cumulative 

damage accumulation due to various failure mechanisms within a particular environment of a 

system and then analyses this information to give predictions of remaining service life of the 

system. The Physics of Failure model used for Cutty Sark iron structures is based on mainly 

corrosion models. 

The following factors can be considered as the input parameters for corrosion based PoF 

models of Cutty Sark structures: 

 Environmental Loads 

 Relative Humidity 

 Temperature 

 Chloride Ion Concentration 

 External Support Structure 

 Operational Loads 

 Footfall 

 Material Properties 

 Geometry 

 Architecture 

Ideally, PoF models for Cutty Sark would incorporate most of the environmental and 

operational loads mentioned. However there are few such models which have been 

investigated and developed to date for wrought iron structures (STRAUB, Daniel, 2004), 

(MELCHERS, R. E., 1999), (MELCHERS, R. E. and Jeffrey, R. J., 2008). Hence, the generic 

―Linear Bi-logarithmic Law‖ for atmospheric corrosion (POURBAIX, M, 1982) is used as a 

starting point for the PoF model for Cutty Sark iron structures. 
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4.3.2.1. PoF model: Linear Bilogarithmic Law 

The Linear Bilogarithmic Law represents corrosion rate as a function of time based on the 

understanding that the build-up of corrosion products tends to reduce the corrosion over time. 

The law is expressed as shown in equation (12). 

              (12) 

Where P is corrosion penetration, t is exposure time, A is corrosion rate during the first year 

of measurement and B is a constant representing a measure of long-term decrease in corrosion 

rate.  

A generic approach to implementing the Linear Bi-logarithmic law as a PoF model would 

involve the following steps:   

 Obtain initial values of corrosion penetration from experimental trials (under normal 

environmental and operational loads) over the 1
st
 year. 

 Determine A & B, using linear regression on ln(P) = ln(A)+ Bln(t) 

 Define failure in the test structure as corrosion penetration being more than x% of 

initial depth of structure, D. 

 Calculate remaining life using t= e(ln(0.03*D)-lnA)/B 

 From 2
nd

 year onwards, the model can be updated as new measurements become 

available. 

According to Pourbaix, this law is valid for extrapolation of up to 20-30 years (POURBAIX, 

M, 1982). However, for such long periods, environmental conditions are likely to change 

making the corrosion penetration prediction unreliable with time. 

4.4. Data Driven Diagnostic Tool: Anomaly Detection using 

Mahalanobis Distance Analysis 

4.4.1. Overview 

Prediction of remaining life using PoF methodology is usually accompanied with 

uncertainties due to inaccuracy of the model itself, inaccuracy in measurement processes and 
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varying environmental and operational loads, which might not have been taken into account 

in the model. During normal operation, all ―health‖ parameters follow a similar pattern, 

however in presence of a fault that might lead to a failure, these parameters would usually 

increase in proportion to the magnitude of the fault. Hence, it is important to monitor ―health‖ 

parameters of the real structure under operation and precursor monitoring becomes an 

essential tool in determining the current ―health‖ of a system and providing an indication of 

any change on predicted remaining life. 

4.4.2. Precursor Monitoring 

As described in chapter 3, the term precursor defines a ―health‖ parameter, which is a 

measurable variable of which significant changes can be associated with a forthcoming 

failure. For example, an increased corrosion penetration rate and material loss would suggest 

impending structural failure due to decreased strength of the component. Failures can then be 

predicted by using a causal relationship between a measured variable that can be correlated 

with subsequent failure.  

For the scope of this project, the following precursor variables have been identified: weight 

change, dimension change and electrical resistance. Feature extraction was carried out on the 

precursor variables; the average value, maximum value and minimum value were computed 

for a certain amount of readings of the precursor variables at a time. Feature extraction was 

needed in order to capture changes that are not visible using the real data only. Then an 

anomaly detection algorithm is developed to correlate the change in the precursor variable 

with the impending failure. The anomaly detection algorithm developed for the PHM 

framework developed uses Mahalanobis Distance (MD).  

4.4.3. Theory of Mahalanobis Distance 

Mahalanobis Distance (MD) is a distance measure based on correlation between two or more 

variables in multi-dimensional space from which patterns can be identified and analysed. It is 

used to distinguish the pattern of a certain group from other groups (TAGUCHI, Genichi et 

al., 2000). Using Mahalanobis Distance, multidimensional data obtained from sensors for 

various performance factors can be reduced to univariate data to represent anomaly from a 

system. Here the Mahalanobis distance technique is used to measure the degree of health of 
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an iron structure by processing all multidimensional measurement data available (i.e. 

dimension change, weight change, and electrical resistance).  

A Mahalanobis space is created which is centred on the typical performance variable values 

representing a healthy structure. Any deviation in the performance variables is then 

determined by the distance from the centre point. Threshold values are determined by 

extensive testing of the system that generates ―healthy‖ performance data. Mahalanobis 

distance values greater than these threshold values then indicate possible failure in the 

structure. The Mahalanobis Distance takes the form of equation (13): 

   (   )    (   )      (13) 

Where D2 is Mahalanobis distance, x, vector of data from sensors for observed parameters, m, 

vector of mean values of independent variables from training set and C-1, inverse covariance 

matrix of independent variables from training set. 

The health of an iron structure is defined by several performance parameters. Each parameter 

in each vector is standardized by subtracting the mean of the parameter and dividing it by the 

standard deviation. These mean and standard deviation are calculated from the data collected 

for normal or healthy structure. The MD values are calculated for the healthy group. These 

MD values define the Mahalanobis space, which is used as a reference set for the MD 

measurement scale. Then, the MD values for the test structure are calculated after the 

parameters are standardized using the mean and standard deviation for normal-group. The 

resulting MD values from test system are compared with the MD values of the healthy system 

to determine test structure's health. 

4.4.4. Mahalanobis Distance Analysis of Precursors for Cutty Sark Iron 

Structures 

The methodology used to carry out MD analysis of precursors for iron structures is depicted 

in Figure 4-6. The following steps are performed to find the MD value to determine the 

current health of an iron structure/device:   

1. Generate baseline for healthy behavior - experiments are conducted on healthy 

structures within the range of environmental and operational conditions the 

structure is assumed to experience. 



 

~ 83 ~ 
 

2. Perform feature extraction on performance parameters to select features providing 

meaningful data. 

3. The data from selected features is normalised with the mean and standard deviation 

of the data. This is done by reducing the data by its original mean and dividing the 

data by its original standard deviation respectively. 

4. Once normalised values are obtained, two healthy datasets are created: Dataset A 

and Dataset B. The Matlab mahal function is then used to generate MD values with 

Dataset A used as the reference sample and Dataset B used as the health 

observations for which MD values are generated.  

5. A MD threshold value is determined based on the MD values obtained for Dataset 

B. 

6. Perform MD analysis on test structures 

7. Test structures are subjected to similar tests as for the healthy structures, data from 

the same performance parameters is collected, and the same features are extracted 

as in step 1. 

8. Each observation in time of the test data is then normalised using the mean and 

standard deviation of the healthy data. 

9. Once normalised values are obtained, the test Dataset C is created from those 

values. The Matlab mahal function is then used again to generate MD values for 

Dataset C with Dataset A used as the reference sample again. 

10. The MD values of the test dataset are compared with the threshold MD value. MD 

Values higher than the threshold MD value would indicate an anomaly in the 

system. 
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Figure 4-6: Mahalanobis Distance Analysis Methodology 

4.5. Fusion Approach: Bayesian Network Models 

4.5.1. Introduction 

A Bayesian network is a probabilistic graphical model that represents a set of variables and 

their probabilistic independencies and it is based on an approach of probability theory by 

Thomas Bayes (BROMLEY, J et al., 2004). A certain degree of uncertainty in the prediction 

of remaining life from PoF models for corrosion prevails due to the lack of understanding of 

the complex processes involved in corrosion of iron structures. Calibration of the canary and 

parrot device pairs is also a challenge while precursor monitoring and anomaly detection 

require good training data to deliver reliable results of anomaly detection. Bayesian network 

is used here as a fusion approach within the PHM framework in order to obtain more accurate 

prediction of remaining life for the iron structures. 

 Within this framework, prediction of remaining life using PoF models and anomaly detection 

through precursor monitoring is carried out as described in the previous sections. The 
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information output from these models is then used as input data to the Bayesian network 

models developed. Bayesian Network models help to coherently integrate causes leading to a 

failure as well as the evidence of the effects of that failure and handles uncertainty in 

prediction of remaining life within a rigorous mathematical approach. 

4.5.1.1. Baye‘s Rule and Bayesian Networks 

A Bayesian network model consists of three elements: 

1. A set of nodes - representing the system variables where each node has a finite set 

of mutually exclusive states. 

2. A set of links/arcs – representing the cause and effect relationships between the 

nodes 

3. A set of conditional probability tables - expressing the probability of a node being 

in a particular state given the states of other connecting nodes. 

Bayesian networks operate by propagating beliefs using Bayes‘ Rule from equation (15) 

through the network once some evidence about that state of certain nodes can be asserted. 

When evidence of a node is confirmed, this belief is propagated upwards in the network by 

calculating posterior probabilities of the evidence of all other nodes connected to the 

confirmed node. Thus, the current belief in the evidence of all the nodes in a network can be 

computed, given knowledge of the evidence of a few of the nodes and the relationships 

between them.  

)(

)()|(
)|(

BP

APABP
BAP 

       (15) 

Where P(A) is the prior belief (i.e. initial uncertainty in A), P(A|B) is the posterior belief (i.e. 

the uncertainty having accounted for evidence B), P(B|A) is the likelihood and P(B) is the 

marginal likelihood. Assume A is a variable with n states a1, a2,..., an, then P(A) denotes a 

probability distribution over these states as shown in equation (16). 
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Where xi is the probability of A being in state ai. This can be written as P (A = ai) = xi or P 

(ai) = xi, e.g. P(Age = new) = 0.2.  

The Bayesian network treatment of certainties in causal networks makes use of conditional 

probabilities. If variable B has m states b1, b2, . . ., bn, then P(a | b) = x. The probability P(A| 

B) implies an n × m table including the probabilities P(ai | bj ). Table 4-2 shows an example 

of P(ai | bj ), where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. The columns sum to one. 

 

 b1 b2 b3 

a1 0.1 0.6 0.2 

a2 0.9 0.4 0.8 

 

Table 4-2: Conditional Probability Table for Variable A 

4.5.1.2. Advantages/Reasons for choosing Bayesian Networks 

Bayesian statistics has many benefits for decision-making problems as usually decision-

making are hard due to lack of knowledge and uncertainty about relevant parameters for a 

model. Bayesian Statistics allows for the quantification of uncertainties using subjective 

probability. Predictions can be made based on initial available data (objective and subjective) 

and are updated as new data is acquired. Bayesian methods use all relevant available 

information and not just knowledge from data only. Bayesian techniques are used to obtain 

estimations by combining subjective data and observed data right from the start even with 

only a small set of observed data available. Additionally, Bayesian networks can incorporate 

variables of any kind (i.e. physical, economic, social or any other type).  

For the case of Cutty Sark, historical data is difficult to obtain and accurate models of 

corrosion of the iron structures for the current environmental conditions of Cutty Sark is not 

available. Thus, information from other sources needs to be incorporated to be able to form a 

data set from which predictions can be made. This information can come from experts in the 
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field or visual inspections of the structures. Using Bayesian networks, simple causal graphical 

structures can be built to represent the system under investigation and this can be extended 

and modified later with relative ease as more knowledge is gathered. 

4.5.2. Bayesian Network Model Development Process 

The development process followed for Bayesian network models for the PHM framework is 

shown in Figure 4-7 and can be broken into five general steps: 

1. Developing the structure of the model – the model variables, nodes and arcs are 

specified 

2. Parameterising the model (qualitative and quantitative) – the states for the nodes 

are assigned and the conditional probability table of the nodes are defined and 

parameterized using a combination of methods  

3. Evaluation of the model and testing scenarios – this involves assessing the model 

to check if the model is representing the right information and producing the 

expected results 

4. Reasoning on the model – this entails propagation of beliefs and updating the 

probability distribution of remaining nodes 

5. Updating the model – this can comprise either updating the model structure or 

updating the CPTs or both when more learning data and knowledge becomes 

available 
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Figure 4-7: Development process used to build a Bayesian network model 

 

4.5.3. Bayesian Network Model for a small structure 

This section demonstrates the development of a Bayesian network development for a small 

structure following the development process described in the previous section. Let us consider 

building a small Bayesian network model to predict the presence of corrosion in an iron 

structure. Many factors can be taken into account such as the environmental conditions, the 

age of the structure, etc. These are represented in a Bayesian Network model connected by 

directed links based on the cause/effect relationships of the nodes. In Figure 4-8, the variables 

humidity and age have an impact on the variable corrosion, meaning the presence of 

corrosion can be determined by the states of humidity and age. The states of each variable can 

take different types of discrete values. Here the variable humidity is represented by intervals 

(i.e. 0%-30%, 30%-100%). The variable age has states that take ordered values new, 

intermediate, and old and the states of the variable corrosion are represented by ordered 

values yes and no. 
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Figure 4-8: Small BN model for corrosion damage 
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In Figure 4-8, the variable Corrosion has two parents: variables Humidity and Age. The latter 

two variables do not have any parents. The joint probability distributions for the variables are 

defined as P(Corrosion | Age, Humidity) P(Humidity), and P(Age). These probabilities can 

be either determined by an expert or extracted from a data set. Since the variables Humidity 

and Age have no parents, their prior probabilities can be simply specified as follows: 

 P(Humidity = ―0-30‖) = 0.7 and P(Humidity = ―30-100‖) = 0.3 

 P(Age = new) = 0.2, P(Age = intermediate) = 0.6, and P(Age = old) = 0.2. 

The variable Corrosion has two states and two parents, one with two states and one with three 

states. The conditional probability distribution of variable Corrosion can be shown as on 

Table 4-3. The yes and no label in the first column are the states of variable Corrosion. 

 

  

Humidity 
0% - 30% 30% - 100% 

Age new intermediate Old new intermediate old 

yes 0.1 0.4 0.4 0.3 0.5 0.9 

No 0.9 0.6 0.6 0.7 0.5 0.1 

Table 4-3: CPT for Corrosion node 

 

Bayesian networks can be conditioned on any subset of their variables, supporting any 

direction of reasoning. Thus, any variable may be query variables or evidence variables. 

Figure 4-9 shows the Bayesian network at initial stage with no evidence input on any node. 

Whenever new information is acquired, new beliefs can be calculated. Suppose that humidity 

is within the 30% to 100% range and the age of the structure is old, then P(Humidity = ―30-

100‖) = 1.0 and P(Age = old) = 1.0. They are shown in Figure 4-10 as percentages (100.00 

and 00.00) with red colors. This kind of probabilities is referred to as evidence. When new 

evidence is applied to a Bayesian network, the beliefs on the other variables may change. This 

is also called belief updating. This is shown in Figure 4-10 and Figure 4-11 where the 

probability distribution on the Corrosion node changes depending on the evidence input on 

Humidity and Age nodes. 
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Figure 4-9: Bayesian Network with no evidence input 

 

Figure 4-10: Bayesian network with evidence input on Humidity and Age nodes 

 

 

Figure 4-11: Bayesian network with different evidence input on Age node 
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The evidence that humidity is 30-100 and age is old, increases the belief on corrosion to 90% 

in Figure 4-10 while the evidence that humidity is 30-100 but age is new in Figure 4-11 

decreases the belief on corrosion to 30 %. 

4.5.4. Bayesian Network Model for Fusion-based Prognostics tool 

4.5.4.1. Development of Bayesian Network Model 

Although a lot of research has been carried out on deterioration of iron structures, the results 

and knowledge from these research projects is not directly applicable to the case of Cutty Sark 

(YUANTAI, 2008) (MANDENO, W L, 2008) (STRAUB, Daniel, 2004). These research 

projects are usually carried out using specific materials as example and the knowledge gained 

is mostly only applicable for particular structures and scenarios. Due to the complexity of 

corrosion processes, the corrosion rates for different materials differ. The environmental 

conditions can affect the corrosion rates significantly even for structures made of the same 

material. Also for various reasons, observation data is often not easily acquired and usually 

input data from other structures cannot be reused due to the particularities of each structure. 

Thus for the development of the Bayesian network model for the PHM framework, subjective 

inputs from industry experts are usually required as well as observation data to be able to run 

models and simulations for the deterioration of an iron structure for example.  

The Bayesian network model developed is organised in a layered structure with the top layer 

representing the prediction of remaining life of the system under consideration, the middle 

layer representing the diagnosis and prognosis observations of the structure and the bottom 

layer representing usage and health observations with the nodes in the different layers 

connected by causal links. This approach is similar to that described in (PRZYTULA, K W 

and Choi, A, 2007). Here, Bayesian network‘s ability to link different types of information 

whether it is coming from empirical or physical models into a single probabilistic graphical 

model is used to develop this Bayesian network model.  

The initial structure (i.e. the whole Cutty Sark ship) is decomposed into sub-structures and a 

Bayesian Network model is developed for each substructure. The submodels then integrate to 

make a complete model. Figure 4-12 shows the initial Bayesian network model, where factors 

influencing the remaining life prediction and the performance factors indicating current 

―health‖ are represented in different layers and arcs are used to represent the relationships. 
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This initial model while aiming to be as comprehensive as possible with regards to 

representation of causes and effects of corrosion on iron structures was deemed unfeasible to 

model due to lack of knowledge and data required to model all the particular nodes. 

 

Figure 4-12: Conceptual Bayesian Network for Cutty Sark 

 

Figure 4-13 shows a modified version of the Bayesian network model for Cutty Sark iron 

structures. Remaining life predictions from PoF models for canary (C_PoF_RUL) and parrot 

(P_PoF_RUL) devices provide input for the top layer nodes representing the causes of failure. 

The bottom layer nodes represent the anomaly detection results for canary (C_MDValues) and 

parrot (P_MDValues) devices using Mahalanobis Distance analysis, thus representing the 

effects of failure as well as usage and health observations (Visual_Inspection). The nodes in 

the middle layer represent the diagnosis and prognosis for the canary (Canary_PredictedRUL) 

and parrot (Parrot_ PredictedRUL) device as well as that of the ship iron structure 

(ShipStructure_PredictedRUL). Two additional nodes representing time are included into the 

model to account for the point in time at which the model is run (C_Time_Period for the 

canary and P_Time_Period for the parrot devices). Evidence on these two nodes will always 

be provided when reasoning using the network as such information should always be 

available. The nodes across the layers are linked together such that evidence recorded for one 

of the nodes will result in a belief updating of all the nodes connected to it. The links between 

nodes ‗C_PoF_RUL‘, ‘Canary_PredictedRUL’ and ’C_MDValues‘ mean that the prediction 

of remaining life of the canary device using PoF models will affect the failure prediction of 
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the canary device which in turn affects the MD value obtained from the MD analysis of 

failure precursors of the canary device. The node ‗Canary_PredictedRUL‘ links to node 

‗Parrot_PredictedRUL‘ that in turn links to node ‗ShipStructure_PredictedRUL‘. This is to 

represent the correlation between failure rates in canary device, parrot device and the ship 

structure under consideration. This approach allows for predictions of health of components 

for which damage can be observed directly as well as predictions of health that can be made 

indirectly using information about usage loads and environmental conditions. 

 

Figure 4-13: BN Network 

The information required to build the Bayesian network model can be broken into two parts: 

(1) the structure, which is defined using knowledge of the system and the diagnostic and 

prognostic observations that can be made and (2) the parameters, which are defined from the 

data being collected from laboratory experiment, and field use. Data gathering for building 

Bayesian Networks is very flexible and essentially two main techniques are used to build a 

Bayesian network model: 

 Expert Knowledge - manually build graphical structure of the network, identify, and 

populate the conditional probability table based on expert‘s knowledge of system. 

 Learning Analysis - Graphical structure of the network and the conditional probability 

table are both obtained from experimental data.  

Model-Driven 

Prognostic 
 

Fusion-based 

Prognostic 
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For our case, a mixture of both approaches is used. The structure of the Bayesian network was 

devised after acquiring knowledge from engineers, corrosion experts, preservation experts as 

well as information obtained from literature. Then the initial set of probability of values is 

based on existing measurements from sensors, historical information for relevant parameters 

of appropriate corrosion models and subjective information from the domain experts. The 

next section details the populating of the conditional probability tables of the nodes in the 

Bayesian network model described above.  

4.5.4.2. Parameterisation: States definition and Populating CPTs 

The parameterisation of a Bayesian network model can be broken into two stages: (1) 

defining the states of each node and (2) populating the Conditional Probability Tables (CPTs) 

for the node. States of a node can be categorical, continuous or discrete. The states of each 

node must be mutually exclusive and exhaustive, that means the variable must take on exactly 

one of these values at a time. The states of all the nodes for the Bayesian Network model built 

for the PHM framework are defined to be either categorical or discrete. The states for each 

node are presented in the table below. 

Nodes States 

Canary_PoF_RUL Intervals ([-∞, 0], [0, 1], …, [5, ∞]) representing the 5 

year lifetime of a canary device. 

Canary_PredictedRUL Intervals ([-∞, 0], [0, 1], …, [5, ∞]) replicating that of 

node Canary_PoF_RUL. 

Parrot_PoF_RUL Intervals ([-∞, 0], [0, 1], …, [20, ∞]) representing the 20 

year lifetime of a parrot device 

Parrot_PredictedRUL Intervals ([-∞, 0], [0, 1], …, [20, ∞]) replicating that of 

node Parrot_PoF_RUL. 

ShipStructure_PredictedRUL Intervals ([-∞, 0], [0, 1], …, [20, ∞]) replicating that of 

node Parrot_PredictedRUL 

Canary_MDValues Intervals ([-∞, 0], [0, 1], …, [15, ∞]) representing the 

typical MD values expected during operation. 

Parrot_ MDValues Intervals ([-∞, 0], [0, 1], …, [15, ∞]) representing the 

typical MD values expected during operation. 

C_Time_Period Discrete values [1, 5] representing the period the canary 

device is  expected to be in operation. 

P_Time_Period Discrete values [1, 20] representing the period the parrot 

device is  expected to be in operation. 

Visual_Inspection Order values [1, 5] representing the severity of damage  

detected on structures during visual inspection. 
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Once the states of the nodes are defined, the relationship between the nodes is developed. This 

relationship is defined using conditional probability tables (CPTs). A CPT quantifies the 

probability of a node/variable being in a particular state, given the states of its parent nodes. 

The probabilities are derived from (1) direct elicitation of scenarios from expert, (2) data 

obtained from PoF model and anomaly detection and (2) equations used to describe 

relationships between the nodes. The CPTs for nodes ‗C_PoF_RUL‘ and ‗P_PoF_RUL‘ 

represent the unconditional probability distribution of predicted remaining life from the PoF 

models taking into account the factors influencing the remaining life prediction for the canary 

and parrot devices. Nodes without parents have an unconditional distribution defined for their 

CPTs. For nodes with parents (child nodes), the probability distribution of their states will 

depend on the state in which the parent nodes are. For example, the CPT for node 

‗Ship_Visual_Inspection‘ depends on the state of node ‗ShipStructure_PredictedRUL‘. The 

Bayesian network model was built with as few nodes as possible and minimal interaction 

amongst the nodes in order to reduce the amount of conditional probabilities to be specified. 

It should be noted that so far, the preliminary parameters and CPTs have been derived from 

published literature, current understanding of the system and input from the PoF model and 

MD analysis. Further development of the model would involve an iterative refinement 

process, which would include expert elicitation as well as any information available from 

experimental or field results. As the CPTs of the Bayesian Network models for the 

demonstrator example and the experimental trial differ slightly, the populating of the CPTs is 

described in detail in Chapter 5 for the demonstrator example and in Chapter 6 for the 

experiment trial.  

4.5.4.3. Running BN models 

There are several software packages for developing Bayesian network models, each with their 

own strengths and weaknesses: 

 Commercial – Hugin Expert A/S (HUGIN, 2011), Netica (NORSYS SOFTWARE 

CORP.), AgenaRisk (AGENA, 201), Analytica (LUMINA, 2011) and Bayesia 

(BAYESIA) 

 Non-commercial – GeNIe & SMILE (DECISION SYSTEMS LABORATORY, 2007)  
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Bayesian network software packages include a graphical user interface for building the 

Bayesian network model and a runtime module that handles the probabilistic calculation and 

evidence propagation. First, the model structure is constructed by creating the nodes using the 

graphical user interface. These nodes are then linked to other nodes under the constraint that 

no directed loops are created in the network. The CPTs are then generated through educated 

guesses from experts or inferred from data. Most of the software packages support different 

types of nodes (i.e. chance nodes, utility nodes, etc) and these nodes can be assigned different 

types of states (i.e. labelled, internal, Boolean, continuous, etc). Additionally some offer the 

facility to create complex equations using numerous statistical distributions and mathematical 

operations. Furthermore, parameter and structural learning features are also available as well 

as sensitivity analysis capabilities.   

Hugin software package was selected for the development of the Bayesian network models 

for the PHM framework, as it possesses the most comprehensive set of features regarding the 

development, testing and running of Bayesian network models as well as a powerful and 

intuitive user interface. A large range of built-in statistical distributions and expressions are 

available for building CPTs. Hugin software also allows mixing of discrete and continuous 

nodes to model quantitative and qualitative variables. Hugin software uses the Junction Tree 

algorithm to perform probabilistic inference. This algorithm first transforms the Bayesian 

network into a tree where each node in the tree corresponds to a subset of variables in the 

Bayesian networks. The algorithm then exploits several mathematical properties of this tree to 

perform propagation (i.e. probabilistic inference). 

For the Bayesian network model, the reasoning for diagnosis and prognosis is performed in 

three main step steps. First, the reasoning engine reads the model information, which includes 

the structure of the network as well as the CPTs for all the nodes of the network. It then loads 

the values for all nodes for which observations are available as shown in Figure 4-14. In a 

normal scenario, evidence for all the blue and green nodes (i.e. top and bottom layers of 

nodes) should be available and entered into the network. At present, for the static version of 

the Bayesian network, two nodes are introduced representing the point in time (for canary and 

parrot device) at which the network is being run. In the third step, the reasoning engine then 

performs evidence propagation and produces the update probability distributions for the 

predicted remaining life of the canary and parrot device as well the ship structure (nodes 

Canary_PredictedRUL, Parrot_PredictedRUL and ShipStructure_PredictedRUL). 
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Figure 4-14 : Reasoning on Evidence 
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4.5.4.4. Evaluation of Bayesian network model 

The evaluation of the Bayesian network model is undertaken to determine whether the model 

is doing the right job (validation) and whether the model is doing the job right (verification). 

The two types of evaluations applied were qualitative and quantitative. Qualitative evaluation 

was used to compare different versions of structures of Bayesian networks that were 

accordingly refined until a satisfactory version was obtained. To validate the model, an 

appraisal is carried out to determine whether the key variables and their relationships are 

represented correctly. The appraisal in terms of the structure of the Bayesian network model 

has thus far been carried out with the help of experts. Quantitative validation of a Bayesian 

network model involves the following: 

 Testing the reasoning accuracy based on the model 

 Evaluating the model‘s performance robustness 

 Evaluating the model‘s tolerance to noises 

Sensitivity analysis is often used to investigate the performance robustness and tolerance to 

noises by studying the effect of small changes of numeric parameters on a Bayesian network‘s 

performance. It uses calculation of variance reduction for continuous variables and entropy 

reduction for discrete variables. It helps in verifying correct initial model structure and 

parameterization. A number of test case scenarios (in the demonstrator example) were defined 

which represent real-life cases encountered during the lifetime of an iron structure. Each test 

case constitutes a set of findings used as inputs to the networks. For evaluation, the goal was 

to get the Bayesian network model to tell us what we expect to see, that is, to present expert 

judgment and any initial empirical data on how the system works and behaves. The results 

from quantitative evaluation of these test case scenarios are presented in the next chapter. 

4.6.  Summary 

A PHM framework based on the use of bespoke sensors, diagnostic and prognostic tools has 

been presented. The application of this PHM framework is the prediction of remaining life of 

wrought iron structures of the Cutty Sark, which experiences various complex corrosion 

processes over time. The concept of use of Canary and Parrot devices is explained where it 

has been devised in order to obtain sensor data on current state of the ship structures and the 

surrounding environment without using any direct intrusive measurement techniques.  
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For the model-driven prognostic tool, a Physics-of-Failure model for prediction of corrosion 

rate of wrought iron over time is developed. This is a temporal model based on the Linear 

Bilogarithmic law for corrosion. In the data-driven diagnostic tool, precursor monitoring is 

carried out to detect anomalies using Mahalanobis distance analysis of failure precursors of 

canary and parrot devices. This also includes feature extraction on performance parameters to 

create a training data set representing healthy structures.   

Finally, Bayesian networks are used as a fusion approach to perform probability distributions 

for remaining life predictions.  The main aim of integrating the diagnostic tool and the 

prognostic tools is to harness the strength of each methodology while minimising the impacts 

of their shortcomings. The Physics-of-Failure model in the model-driven diagnostic tool used 

for this framework currently does not capture real life conditions in the prediction of 

remaining life of an iron structure. Within the diagnostic tool, using Mahalanobis distance 

analysis for precursor monitoring and anomaly detection provides good diagnostic capabilities 

when good training data is available but does not offer prognostic capabilities. The use of a 

Bayesian network model as a fusion approach is considered key in bringing this PHM 

framework together as it can handle different types of input to produce probability 

distributions of remaining life of the iron structures for the Cutty Sark. The next chapter 

describes the data gathering carried out to develop and test the diagnostic and prognostic tools 

discussed.  
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5. Demonstration Example 

An example application has been set up to demonstrate the methods discussed in the previous 

chapter. The following section describes the setup for the demonstration example, which will 

be used to test the diagnostic and prognostic tools developed followed by a description of the 

different scenarios investigated. In section 5.3, the tools developed and tested are: 

1. the model-driven prognostic tool using a PoF model to predict the remaining life of 

the devices used in the demonstrator example  

2. the data-driven diagnostic tool using precursor monitoring and anomaly detection 

and  

3. the fusion-based prognostic tool using Bayesian Network models are used to 

update the predicted remaining life.  

The results of the tests are discussed. The final section in this chapter provides a summary of 

the demonstration example setup, the significance of the results and possible improvements of 

the current PHM methodologies used. 

For this example application, the expected lifetime of a parrot device is 20 years and that of a 

canary device is 5 years under normal environmental conditions. The expected lifetimes of the 

devices are described in further detail in section 5.2. The 20 years lifetime for the parrot 

device was defined to reflect the fact that the Linear-Bilogarithmic law will hold for 20 years 

or so according to Pourbaix (POURBAIX, M, 1982). There are five scenarios investigated: 

 Scenario 1 (Normal ―Healthy‖ conditions): the environmental conditions (relative 

humidity and temperature) are set such that the canary and parrot device has a life 

expectancy of 5 years and 20 years respectively.  

 Scenario 2 (Mixed conditions): normal environmental conditions for the first 15 years 

of lifetime of the parrot device and the first 3.75 years of the lifetime of the canary 

device. The devices experience harsher environmental conditions for the remaining 

lifetime. 

 Scenario 3 (Mixed conditions): normal environmental conditions for the first 5 years 

of lifetime of the parrot device and for the first 1.25 years of the lifetime of the canary 
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device. The devices experience harsher environmental conditions for the remaining 

lifetime. 

 Scenario 4 (Harsh conditions): harsh environmental conditions throughout the lifetime 

of the canary and parrot devices. 

 Scenario 5 (Alternate conditions): alternate normal (for four months) and harsh 

environmental conditions (for two months) throughout the lifetime of the canary and 

parrot devices 

5.1.  Demonstration Setup 

To be able to demonstrate the methodologies developed in the diagnostic and prognostic 

tools, a data set of corrosion rate measurements over time is required so that the predictive 

power of the models can be tested against this data set of corrosion rates. At present time, 

such a complete set of real data from experimental measurements (i.e. Cutty Sark) is not 

available. Therefore, the following approach to generate demonstration data sets of corrosion 

rates (i.e. data to substitute real corrosion measurements and corrosion history over time) 

required for the prognostic examples is undertaken. This dataset, shown on the left side of 

Figure 5-1, has been generated to have certain characteristics as would typically be observed 

in the corrosion of iron structures, and therefore to mimic real corrosion data attributes and 

trends.  

 

Figure 5-1: Using generated "Real" Corrosion Data to test PHM Framework 
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Initial first year corrosion rates of steel (Table 5-1 and Table 5-2), as detailed in the report 

‗Atmospheric corrosion rates of railway bridge structures‘ (GASCOIGNE, A and Bottomley, 

D, 1995), have been used as a guidance on typical values for corrosion rates of metals and 

their variation as a result of changes in the environmental conditions. For example, the 

seasonal variations in weather conditions throughout the year result in slightly higher 

corrosion rates during the height of summer and winter. Corrosion rates increase as the 

temperature and/or relative humidity increase. The corrosion rate for wrought iron was 

adjusted by multiplying the corrosion rate of steel by a factor of 0.7 as recommended by the 

same report. Baseline initial first year corrosion rate of 35m/year is assumed at temperature 

20°C and relative humidity 60%. This value is in the range reported in the literature 

(GASCOIGNE, A and Bottomley, D, 1995). 

 

Test 

Commenced 

Corrosion rate 

(µm/year) 

February 28.5 

May 29.5 

August 34.3 

November 33.5 

 

Table 5-1: Corrosion rates of steel after 1 year test (GASCOIGNE, A and Bottomley, D, 1995) 

 

 

 

UK data 

Average 

Corrosion Rate 

(µm/year) 

Minimum/Maximum 

(µm/year) 

Rural 36 6 – 64 

Urban 71 71 

Light Industrial 47 30 – 53 

Industrial 77 36 – 173 

Industrial/Marine 51 36 – 66 

Marine 34 15 – 79 

 

Table 5-2: Average corrosion rate of steel (GASCOIGNE, A and Bottomley, D, 1995) 
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On this basis, the generated dataset of corrosion rate values to act as a representation of real 

measured data at different temperature and relative humidity levels is constructed to have the 

following attributes: 

 Environmental Conditions: temperature range is 0°C to 30°C and relative humidity 

range 30%-90%; 

 Corrosion rate values are greater at higher temperature and/or higher relative 

humidity; 

 Corrosion rates are more sensitive to relative humidity changes than the temperature 

changes; 

 Magnitude of values of the corrosion rates that are generated are in the range of the 

measured data reported in the literature. 

The dataset of corrosion rates, with the attributes above, for temperature and relative humidity 

pairs for the first year is detailed in Table 5-3. The corrosion rates listed are in unit µm per 

year. This data, although not based on real corrosion values obtained through measurements, 

is realistic and has the trends of real corrosion rate changes as a function of temperature and 

relative humidity. Three similar tables (see Table 5-4 to Table 5-6) with datasets for the 

corrosion rates at times corresponding to the fifth, tenth and the twentieth year are also 

derived. The data in Tables 5-4 to 5-6 was derived on the basis of the data in Table 5-3 such 

that the relation between the corrosion rates between the first, fifth, tenth and twentieth year 

follows a power law relation and captures the effect of time on the corrosion rate.  

Equation (18) represents a typical power law equation based on a sample of the data from 

Tables 5-3 to 5-6, where y is the corrosion rate and t is the time at which the corrosion rate is 

generated. The power law rule is applied to ensure the generated corrosion rates data follows 

a known corrosion phenomena that the corrosion rates are usually much higher in the first few 

years, and then gradually decrease and stabilise after 5-10 years once a protective layer (e.g. 

rust) has formed (POURBAIX, M, 1982). 

                      (18) 
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Temp. (°C)/ 

RH(%) 

0 5 10 15 20 25 30 

30 4 7 10 13 14 17 23 

40 7 10 13 17 18 24 32 

50 10 15 17 20 23 28 39 

60 15 25 27 28 35 37 49 

70 25 32 35 36 46 48 62 

80 32 39 42 44 58 60 82 

90 40 45 50 57 66 70 90 

Table 5-3: Estimated corrosion rates for temperature and relative humidity pairs after 1st year 
 

Temp. (°C)/ 

RH(%) 

0 5 10 15 20 25 30 

30 2.0 3.5 5.0 6.5 7.0 8.5 11.5 

40 3.5 5.0 6.5 8.5 9.0 12.0 16.0 

50 5.0 7.5 8.5 10.0 11.5 14.0 19.5 

60 7.5 12.5 13.5 14.0 17.5 18.5 24.5 

70 12.5 16.0 17.5 18.0 23.0 24.0 31.0 

80 16.0 19.5 21.0 22.0 30.0 29.0 41.0 

90 20.0 22.5 25.0 28.5 33.0 35.0 45.0 

Table 5-4: Estimated corrosion rates for temperature and relative humidity pairs after 5th year 
 

Temp. (°C)/ 

RH(%) 

0 5 10 15 20 25 30 

30 1.6 2.8 4.0 5.2 5.6 6.8 9.2 

40 2.8 4.0 5.2 6.8 7.2 9.6 12.8 

50 4.0 6.0 6.8 8.0 9.2 11.2 15.6 

60 6.0 10.0 10.8 11.2 14.0 14.8 19.6 

70 10.0 12.8 14.0 14.4 18.4 19.2 24.8 

80 12.8 15.6 16.8 17.6 24.0 23.2 32.8 

90 16.0 18.0 20.0 22.8 26.4 28.0 36.0 

Table 5-5: Estimated corrosion rates for temperature and relative humidity pairs after 10th year 
 

Temp. (°C)/ 

RH(%) 

0 5 10 15 20 25 30 

30  1.44 2.52 3.60 4.68 5.04 6.12 8.28 

40 2.52 3.60 4.68 6.12 6.48 8.64 11.50 

50 3.60 5.40 6.12 7.20 8.28 10.10 14.00 

60 5.40 9.00 9.72 10.10 12.60 13.30 17.60 

70 9.00 11.50 12.60 12.90 16.60 17.30 22.30 

80 11.50 14.00 15.10 15.80 21.60 20.90 29.50 

90 14.40 16.20 18.00 20.50 23.80 25.20 32.40 

Table 5-6: Estimated corrosion rates for temperature and relative humidity pairs after 20th year 
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Tables 5-3 to 5-6 contain discrete test values for corrosion rate as a function of the time, 

temperature and relative humidity. Based on the principles above used to derive this data, it 

can be seen as a realistic and possible set of corrosion data that could be obtained in a 

scenario of real measurements. A corrosion rate generator is now required in order to generate 

corrosion rate data with respect to any particular set of time, temperature and relative 

humidity values that will be defined in the study case of validating the developed diagnostic 

and prognostics methodology. The data generator is developed as a model that interpolates 

continuously in three-dimensional space (time-temperature-humidity) the data in Table 5-3 to 

Table 5-6. The corrosion rates that can be generated with this model would then be used for 

various scenarios of environmental conditions and over time as datasets that are used to 

represent "real" data against which the diagnostic and prognostic tools are tested. The 

corrosion rate generator is based on a multi-quadratic model taking the form of equation (19). 

 ( )     
 
                      (19) 

where X is a three-dimensional vector representing the three parameters; time (in years), 

temperature (in °C) and relative humidity (in %) for evaluation. f(X) returns the value of the 

corrosion rate that is generated (in unit µm per year).     is a three-dimensional vector 

representing a triplet of time, temperature and humidity with the known values from Table 5-3 

to Table 5-6, (i    , m). The triplet data points in the Tables 5-3 to 5-6 are 80, and therefore 

in the above model m=80. 

The coefficients, ai, in the multi-quadratic function are computed by requiring the function in 

equation 5-2 to fit exactly the given set of data (from Table 5-3 to Table 5-6) for the data 

points (i     80). This requirement results in solving a linear system of m (m=80 in this 

case) equations with the coefficients in the multi-quadratic model ai (i=1,..,m) as unknowns. 

Using the multi-quadratic model ensures that the data generated is in line with the trends for 

the corrosion rates observed in real life when time, temperature and relative humidity change.  

It is an interpolation function for the data in Table 5-3 to Table 5-6. That is the model predicts 

the exact value for the corrosion rate at the triplet (time, temperature, relative humidity) points 

used in the tables. The coefficients of the model are reported in Table 5-7. For example, this 

model will generate at arbitrary conditions for time = 17 years, Temperature = 18°C and RH = 

65%, a value of the corrosion rate of 13.67 µm per year. Such value is to be viewed as an 

experimentally measured value under this condition. 
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i ai 

 

i ai 

 

I ai 

 

I ai 

1 0.45753 21 0.24037 41 -0.08505 61 0.19556 

2 -0.31168 22 0.46009 42 -0.32661 62 -0.06578 

3 -0.10663 23 0.79331 43 -0.35930 63 0.03957 

4 -1.40685 24 1.96285 44 -0.21628 64 0.20639 

5 0.06605 25 0.26066 45 -0.28671 65 -0.02451 

6 -0.43313 26 0.62047 46 -0.39429 66 -0.08846 

7 -0.17816 27 0.96064 47 -0.49274 67 -0.00099 

8 -1.82370 28 2.17804 48 -0.56476 68 -0.09419 

9 0.15597 29 0.65134 49 -0.21290 69 0.11856 

10 -1.10261 30 1.20598 50 -0.53286 70 -0.15412 

11 -0.98147 31 1.66168 51 -0.66712 71 -0.08174 

12 -2.19659 32 2.84622 52 -0.58649 72 -0.02259 

13 -0.78706 33 1.15913 53 -0.53619 73 -0.13025 

14 -1.24245 34 1.63121 54 -0.74405 74 -0.19153 

15 -1.29924 35 2.30209 55 -0.92549 75 -0.14376 

16 -2.75690 36 3.72977 56 -0.76187 76 -0.04643 
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17 -1.03482 37 1.91464 57 -0.22864 77 0.25241 

18 -1.48422 38 2.35611 58 -0.54534 78 0.05574 

19 -2.73816 39 3.56277 59 -0.79182 79 -0.09579 

20 -5.51639 40 5.43862 60 -0.53770 80 -0.00801 

 

Table 5-7: Coefficients values of the multi-quadratic model (the corrosion rate generator) 

Values for the monthly temperature and relative humidity range in London, UK, from the 

BBC weather web site [ (WEATHER, BBC, 2006), see Table 5-8], is used in this study to 

generate artificial histories for both the temperature and relative humidity over a period of 20 

years. The values for a temperature/ relative humidity scenario are obtained by randomly 

generating values in the min-max range for the respective month.  

 

Month Average 

Minimum 

Temperature 

(°C) 

Average 

Maximum 

Temperature 

(°C) 

Average 

Minimum 

Relative 

Humidity 

(%) 

Average 

Maximum 

Relative 

Humidity 

(%) 

January 2 6 77 86 

February 2 7 72 85 

March 3 10 64 81 

April 6 13 56 71 

May 8 17 57 70 

June 12 20 58 70 

July 14 22 59 71 

August 13 21 62 76 

September 12 19 65 80 

October 8 14 70 85 

November 5 10 78 85 

December 4 7 81 87 

Table 5-8: Dataset of min and max monthly temperature and relative humidity (WEATHER, BBC, 2006) 

The approach detailed above for the simulation of corrosion data for this demonstration 

example was deemed necessary as to the author‘s knowledge there is not such dataset set for 

corrosion available for analysis. Additionally simulation of corrosion data allowed for the 
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testing of scenarios, which are usually experienced in the real world. Furthermore, data with 

well-defined characteristics can be used to test particular aspects of PHM methodologies 

developed. The simulated corrosion data was also vital in developing the training dataset for 

the data-driven diagnostic tool. 

5.2.  Scenarios Investigated for Demonstration Example 

The diagnostic and prognostic tools are tested for a parrot device assumed to be made of 

wrought iron material with the following dimensions: length L = 2 cm, width W= 1 cm, depth 

D= 1.2 cm. The canary device, also assumed to be made of wrought iron material has smaller 

dimensions than the respective parrot device providing larger area-to-volume ratio (length L = 

2 cm, width W= 1 cm, depth D= 0.6 cm). Therefore, the rate of relative material loss in the 

canary device is higher compared to the respective parrot device.  

The expected lifetime of a parrot device is 20 years and that of a canary device is 5 years 

under normal conditions. The 20 years lifetime was chosen to reflect the fact that the Linear-

Bilogarithmic law will hold for 20 years or so according to Pourbaix (POURBAIX, M, 1982). 

Using the corrosion generator described in the previous section, the corrosion rates under 

normal environmental conditions were generated and the cumulative corrosion for time, t = 5 

years and t = 20 years were calculated. The average cumulative corrosion after 5 years was 

174mm, which is approximately 3% of the original depth of the canary device. The average 

cumulative corrosion after 20 years was 353mm, which is approximately 3% of the original 

depth of the parrot device. Therefore, for this demonstration, a failure in a canary or parrot 

device is defined as the corrosion penetration being more than 3% of the initial depth of the 

device. The diagnostic and prognostic tools are tested under the following five scenarios. 

5.2.1. Scenario 1 (Normal ―healthy‖ conditions) 

Normal relative humidity and temperature for which the parrot device has life expectancy of 

20 years while the canary device has a life expectancy of 5 years. The relative humidity and 

temperature in scenario 1 for normal healthy conditions are in the range detailed in Table 5-8 . 

Such conditions will generate the normal corrosion rate expected throughout the lifetime of 

the canary/parrot devices (i.e. these are the conditions a ―healthy‖ canary/parrot would 

experience throughout their lifetime).  
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Figure 5-2 shows an example of randomly generated profile of the temperature and relative 

humidity values (derived from the BBC weather data shown in Table 5-8) used to represent 

scenario 1 over a 20-year period. The fluctuation in the temperature and relative humidity 

values arise from the season changes throughout one year. Once this scenario is assumed, the 

corrosion rate history over the 20 years can also generated using the multi-quadratic model 

described above for corrosion rate generation. An example of such generated corrosion rate 

measurements is shown in Figure 5-3. As already discussed, this data is used as corrosion 

measurements over time, and it is generated using equation (5-2) to test the diagnostic and 

prognostic tools discussed in the previous chapter. 

 

Figure 5-2: Typical Temperature and RH for Scenario 1 

 

 

Figure 5-3: Corrosion Rates for Scenarios 1 
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5.2.2. Scenario 2 (Mixed conditions) 

The parrot device experiences normal conditions during the first 15 years of its life and 

harsher conditions (i.e. higher temperature and relative humidity compared with the normal 

case) afterwards for the remaining of its life. Similarly, the canary device experiences normal 

conditions during the first 3.75 years of its life and harsher conditions afterwards for the 

remaining of its life. This scenario has been devised with the aim of demonstrating that the 

PHM framework can detect anomalies that can occur in healthy canary/parrot devices thus 

requiring inspection and maintenance. Here the amount of time after which the canary and 

parrot device experience higher corrosion rates has been chosen arbitrarily for demonstration.   

Figure 5-4 shows the temperature and relative humidity values (derived from the BBC 

weather data shown in Table 5-8) used to represent scenario 2 over a 20-year period for the 

parrot device. For the first 15 years, the temperature and relative humidity ranges are similar 

to that of scenario 1. For the remaining life, the temperature and relative humidity ranges are 

slightly higher than that of scenario 1 to represent harsh environmental conditions where the 

temperature is increased by 3°C and the relative humidity is increased by 5% as shown in 

Table 5-9. An example of such generated corrosion rates measurements for scenario 2 is 

shown in Figure 5-5.  

 

Month Average 

Minimum 

Temperature 

(°C) 

Average 

Maximum 

Temperature 

(°C) 

Average 

Minimum 

Relative 

Humidity 

(%) 

Average 

Maximum 

Relative 

Humidity 

(%) 

January 5 9 82 91 

February 5 10 77 90 

March 6 13 69 86 

April 9 16 61 76 

May 11 20 62 75 

June 15 23 63 75 

July 17 25 64 76 

August 16 24 65 81 

September 15 22 70 85 

October 11 17 75 90 

November 8 13 83 90 

December 7 10 86 92 

Table 5-9: Dataset of min and max monthly temperature and relative humidity for harsher conditions 
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Figure 5-4: Typical Temperature and RH for Scenario 2 

 

Figure 5-5: Corrosion Rates for Scenarios 2 

5.2.3. Scenario 3 (Mixed conditions) 

The parrot device experiences normal conditions during the first quarter of its life and harsher 

conditions (i.e. higher temperature and relative humidity compared with the normal case) 

afterwards for the remaining of its life. The canary device also experiences normal conditions 

during the first quarter of its life and harsher conditions afterwards for the remaining of its 

life. This is a variation on scenario 2 again to demonstrate that the PHM framework can detect 

anomalies that can occur later in initially healthy canary/parrot devices thus requiring 

inspection and maintenance.  



 

~ 112 ~ 
 

Figure 5-6 shows the temperature and relative humidity values used to represent scenario 3 

over a 20-year period for the parrot device. For the first 5 years, the temperature and relative 

humidity ranges are similar to that of scenario 1 (as shown in Table 5-8). For the remaining 

life, the temperature and relative humidity ranges used are from Table 5-9 to represent harsh 

environmental conditions. An example of such generated corrosion rate measurements for 

scenario 3 is shown in Figure 5-7.  

 

Figure 5-6: Typical Temperature and RH for Scenario 3 

 

Figure 5-7: Corrosion Rates for Scenarios 3 

5.2.4. Scenario 4 (Harsh conditions) 

The parrot device experiences harsh environmental conditions from the beginning throughout 

its life (i.e. higher temperature and relative humidity compared with the normal case). The 

canary device experiences similar harsh conditions throughout its life. This scenario is used to 

demonstrate that the PHM framework can detect anomalies in canary/parrot devices right 

from the beginning should such a situation arise. It should be noted that in real life, one would 
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expect that once such anomalies are detected, the system would be inspected and any 

imminent failure dealt with in an appropriate manner while here this scenario just continues 

showing with the same high corrosion rates.  

Figure 5-8 shows the slightly higher temperature and relative humidity values used from 

Table 5-9 represent scenario 4 over a 20-year period for the parrot device. The same 

temperature and relative humidity ranges are used for the canary device. An example of such 

generated corrosion rate measurements for scenario 4 is shown in Figure 5-9. 

 

Figure 5-8: Typical Temperature and RH for Scenario 4 

 

 

Figure 5-9: Corrosion Rates for Scenarios 4 

5.2.5. Scenario 5 (Alternate conditions) 

The parrot device alternately experiences normal and harsh environmental conditions from the 

beginning throughout its life. The canary device also alternately experiences normal and harsh 

conditions throughout its life. This scenario is used to demonstrate that the PHM framework 
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can detect anomalies in canary/parrot devices caused by varying conditions over time, which 

mirrors the situation where corrosion occurs during periods where the structure might be 

exposed to harsher conditions for only a short periods followed by similar periods of normal 

conditions. 

 Table 5-10 shows the temperature and relative humidity ranges used for the harsh 

environmental conditions where the temperature is increased by 5°C and the relative humidity 

is increased by 8%. Here the temperature and relative humidity ranges are set at normal (i.e. 

same as scenario 1) for four months and then increased to the harsh conditions as shown in 

Table 5-10 for two months then set back to normal conditions for another four months and so 

on. This cycle is repeated throughout the lifetime of both devices. An example of such 

generated corrosion rate measurements for scenario 5 is shown in Figure 5-11. 

 

Month Average 

Minimum 

Temperature 

(°C) 

Average 

Maximum 

Temperature 

(°C) 

Average 

Minimum 

Relative 

Humidity 

(%) 

Average 

Maximum 

Relative 

Humidity 

(%) 

January 7 11 85 94 

February 7 12 80 93 

March 8 15 72 89 

April 11 18 64 79 

May 13 22 65 78 

June 17 25 66 78 

July 19 27 67 79 

August 18 26 68 84 

September 17 24 73 88 

October 13 19 78 93 

November 10 15 86 93 

December 9 12 89 95 

Table 5-10: Dataset of min and max monthly temperature and relative humidity for harsh alternate 

conditions 
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Figure 5-10: Typical Temperature and RH for Scenario 5 

 

 
Figure 5-11: Corrosion Rates for Scenarios 5 

5.3.  Analysis of PHM Methodologies  

5.3.1.  Predicting remaining life using PoF Approach (Model Driven) 

In this demonstration, the Linear Bilogarithmic Law for atmospheric corrosion is used as the 

PoF model to predict the remaining life of a canary and parrot device pair (for scenarios 1-5). 

Figure 5-12 shows the steps carried out to predict remaining life of the canary and parrot 

devices: 

 Step (1) – Calculate Penetration Depth Pt at time t: Using the available corrosion rate 

data up to time t for a particular scenario (as discussed in section 5.2), the cumulative 

penetration, Pt, over the time, t is calculated using equation (19).  

                     (19) 

 Step (2) – Determine A and B from the linear bi-logarithm equation. This is achieved 

using linear regression where three sets of data obtained from step (1) are used to fit 
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the equation. For example, in this case we have used Pt data at time points 

representing 10%, 15% and 30% of the history up to the current point in time. A and B 

are derived from the regression line taking the form of equation (20). 

  ( )    ( )      ( )       (20) 

 

 Step (3) – Calculate remaining life, trul,: Using equation (21) with the failure criteria Pt 

= 3% of original depth, the remaining life is calculated. 

       
  (  )   ( )

          (21) 

The predicted remaining life of the devices is updated each year by repeating the above steps.  

 

Figure 5-12: Predicting Remaining Life using PoF model based on Linear Bi-logarithmic Law 

 

5.3.1.1. Results and Discussion 

Figure 5-13 shows the lifetime prediction of the PoF model for a canary device over time (for 

scenarios 1-5) and compares this with the expected remaining life under normal 

environmental conditions for that canary device (approximately 5 years in this case as 

described earlier in section 5.2). The remaining life predictions in Figure 5-13 show the 

instance for which the last 10% of the lifetime of the current life of the canary device is used 

to recalculate and update the constants A and B. For a parrot device, data from the last 15% of 

the lifetime is used to recalculate and update the constants A and B in the lifetime model. As 

canary devices have shorter lives than parrot devices, the lifetime model uses less historical 

data to calculate constants A and B in order to capture recent changes that might affect the 
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structure more significantly. Currently, the ratio of lifetime to be used to get the most accurate 

predictions is still under investigation. The amount of historical data required will be defined 

from data of experiment trials once these are available. 

In Figure 5-13, for scenario 1, the predicted remaining life is close to the approximated 

expected lifetime of 5 years thus reflecting the normal environmental conditions set for 

generating the corrosion rates for this scenario. In scenario 2, the predicted remaining life is 

similar to Scenario 1 in the beginning but later, a shorter remaining life is predicted. This is in 

agreement with what is expected as for the first 3.75 years of the canary‘s life, normal 

environmental conditions was experienced and harsher environmental conditions was 

experienced for the remaining life. As for Scenario 3, the predicted remaining life is much 

lower as harsher environmental conditions were experienced after first 1.25 years of its 

lifetime.  

In scenario 4, the predicted remaining life is much lower from the beginning as harsh 

environmental conditions were applied to the canary device right from the beginning. In 

scenario 5, the environmental conditions were altered continuously from normal to harsh. 

This results in shorter remaining life than expected for the canary device as shown in the 

graph. It should be noted that scenarios 2-5 have been devised for testing purposes only as in 

real life if the expected remaining life was much lower than the expected remaining life, 

inspection of the structure under consideration would be carried out and repairs would be 

made if required. 

 

Figure 5-13: PoF-based Prediction of Remaining Life for Canary Device 
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Figure 5-14 shows the lifetime prediction of the PoF model over time (for scenarios 1-5) and 

compares this prediction with the expected remaining life under normal environmental 

conditions for the parrot device (approximately 20 years in this case as described earlier in 

section 5.2). Predictions of remaining life for scenario 1 is considerably lower than expected 

due to the higher rates of corrosion occurring in the first few years, thus predicting a shorter 

remaining life. Later on, as the corrosion rate stabilises, the predicted remaining life is very 

close to that expected as shown in the graph for scenario 1. 

In scenario 2, the predicted remaining life is similar to Scenario 1 in the beginning but later, a 

shorter remaining life is predicted thus reflecting the change to harsher environmental 

conditions after the first 15 years of life. As for scenario 3, the trend for the predicted 

remaining life changes after the first 5 years of the lifetime, thus reflecting the change to 

harsher environmental conditions (as simulated in the corrosion datasets) causing earlier 

failure in the parrot device and shortening the remaining life to 16 years.  

In scenario 4, the predicted remaining life is much lower from the beginning reflecting the 

harsh environmental conditions applied to the parrot device right from the beginning. In 

scenario 5, the environmental conditions are altered continuously from normal to harsh 

resulting in shortening the remaining life to 18 years. Here again, it should be noted that 

scenarios 2-5 have been devised for testing purposes only and a structure would be inspected 

and repaired if needed should the predicted remaining life be shorter than expected. 

 

Figure 5-14: PoF-based Prediction of Remaining Life for Parrot Device 
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5.3.2. Data Driven Diagnostic Tool: Using Mahalanobis distance analysis for 

anomaly detection  

In this example, MD analysis is carried out to assess the corrosion of the devices assuming 

environmental conditions under scenarios 2-5. Scenario 1 is used as the training data as 

normal environmental conditions are assumed to represent a healthy device (5 years for 

canaries and 20 years for parrots). The following subsections will detail the setup for 

performing the MD analysis as well as an analysis of the results obtained. 

5.3.2.1.  Feature Extraction  

Three precursor variables are monitored that represent corrosion rate in the canary and parrot 

device: weight change rate, dimension change rate and electrical resistance change rate. Data 

features from the three precursor variables were additionally processed such that average, 

maximum and minimum values over a certain period were computed (for the demonstration, 

these computations were carried out for every four readings taken over a four month period). 

The use of basic feature extraction techniques here aims to capture changes that cannot be 

observed using raw data only. For example, for weight change rate, apart from the original 

(raw) data of the weight change rate (weight change per month), three sets of data were 

generated using feature extraction that was performed for every four readings of weight 

change rate: (i) average weight change rate, (ii) maximum weight change rate and (iii) 

minimum weight change rate. The average feature was computed to even out small 

fluctuations in corrosion rate such that when anomaly detection is performed using MD 

analysis, the results would not be biased due to small fluctuations. Computation of the 

maximum value over a certain period was carried out such that if corrosion did occur at a 

higher rate than usual during that time, this information would be captured and used 

afterwards. The computation of minimum value over a certain period is also carried with a 

view to possibly detect any further unforeseen patterns. 

5.3.2.2. Setup for Anomaly Detection 

For this demonstration, three precursors are monitored for both canary and parrot devices: (i) 

dimension change rate, (ii) weight change rate and (iii) electrical resistance change rate. 

Figure 5-15 shows the steps carried out to perform MD analysis for the canary and parrot 

devices: 
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 Step 1 - Generate corrosion penetration (dimension change), weight change and 

electrical change 

Corrosion penetration (dimension change) over the lifetime of the device is simulated using A 

and B values obtained from Step 2 in the PoF model for scenario 1. Pt, the corrosion 

penetration for each time step is calculated using equation (20). Then the weight change and 

electrical resistance change is derived using equations (22) and (23) respectively. Several 

datasets consisting of dimension change rate, weight change rate and electrical resistance 

change rate with slight arbitrarily defined variations (2%-5% randomness) are generated to 

build the healthy data. 

∆   
∆      

 
        (22) 

where, ∆Wt is the weight change rate at time t, ∆Pt is the corrosion penetration at time t, E is 

the exposed area,    is the metal density and K, a constant for unit conversion 

 

∆   
   

    
        (23) 

where, ∆Rt is the corrosion penetration at time t, Pt is the corrosion penetration at time t,    is 

the electrical resistivity, L, length of the device and w, the width of the device.  

 

 Step 2 - Feature Extraction: This is carried out on the data generated from Step 1 such 

that the average, maximum and minimum (over a period time, t=t to time, t=t+4) is 

calculated. 

 Step 3 – Normalisation of data: The data for each performance parameters (real, 

average, maximum and minimum) is then normalised using the mean and standard 

deviation to remove scaling effects as dimension change, weight change and electrical 

resistance all have different units. This now constitutes the Mahalanobis space (i.e. the 

training dataset).  

 Step 4 – Compute healthy MD values:  Using the Mahal function from Matlab, 

Mahalanobis distance analysis is carried out to obtain the MD values for healthy data. 

If new healthy data is available, this step is repeated to obtain new MD values. 
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 Step 5 – Determine MD threshold value: The MD threshold values are determined 

using the average and standard deviation of the MD values for healthy data obtained 

from Step 4 as well as expert knowledge. Currently the MD threshold is set as average 

of MD values plus one standard deviation of the MD values. 

 Step 6 – Generate Test data: Test data is generated in the same manner as in step 1 but 

for scenarios (2-5).  

 Step 7 - Feature Extraction: Feature extraction is carried out to obtain average, 

maximum and minimum is performed on test data in a similar manner as in Step 2.  

 Step 8 – Normalisation of data: This is carried out using the mean and standard 

deviation of health data from step 3. 

 Step 9 – Compute MD Values: Using the Mahal () function from Matlab, the MD 

values is obtained for test data. 

 Step 10 - Compare MD value for test data with MD threshold value 

The MD values will also be used in the Bayesian Network models developed as shown in the 

next section. 
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Figure 5-15: Using MD analysis to detect anomalies in scenarios 2-5 

5.3.2.3. Results and Discussions 

The Mahalanobis distance values obtained are plotted against each data point. Here a data 

point represents a period of one month as measurements are taken on a monthly basis. Figure 

5-16 shows the MD value history for scenarios (1-3) for the real data, i.e. dimension change 

rate, electrical resistance change rate and weight change rate for the canary device (without 

any feature extraction performed). An MD threshold value of 5.5 is used to distinguish 

between anomalies in the device being detected or not, which represents the average of MD 

values (for the cases of normal healthy conditions) plus one standard deviation of the MD 

values. Expert knowledge can also be used to define the MD threshold value. The MD 

threshold can be further tuned if required to obtain desired sensitivity. The MD value history 

for scenario 2 reflects the harsher environmental conditions inflicted after the first 3.75 years 

of the lifetime of the canary device. For scenario 3, the effect of the harsher environmental 
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conditions inflicted after the first 1.25 years of the lifetime is visible through the higher MD 

value history obtained. 

Figure 5-17 shows the MD value history for scenarios (1, 4, and 5) for the original data for the 

canary device. As expected, the MD values for scenario 4 are above the MD threshold 

throughout almost the whole lifetime of the canary device due to harsh environmental 

conditions experienced by the canary device throughout its lifetime. As for scenario 5, the 

MD values go above and below the MD threshold value periodically as expected following 

the harsh and normal environmental conditions inflicted on the canary device alternately.  

 

Figure 5-16: MD Analysis of Real Data for Scenarios 2 & 3 for Canary 

 

 

Figure 5-17: MD Analysis of Real Data for Scenarios 4 & 5 for Canary 

 

Figure 5-18 and Figure 5-19 show the MD value history for scenarios 1-5 for the average of 

real data (i.e. the average of dimension change rate over a 4-months period, the average of 
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electrical resistance change rate over a 4-months period and the average of weight change rate 

over a 4-months period) for the canary device. Here a data point represents a period of four 

months as the average is calculated for four measurements are taken on a monthly basis. 

Again, here, the MD threshold value of 5.7 is used representing the average of MD values 

plus one standard deviation of the MD values. The results observed for scenarios 2-4 are 

similar to that of the MD analysis of the original data. However, the MD values for scenario 5 

do not alternate above and below the MD threshold value as much as observed for the original 

data.  

 

 

Figure 5-18: MD Analysis of Average Data for Scenarios 2 & 3 for Canary 

 

 

Figure 5-19: MD Analysis of Average Data for Scenarios 4 & 5 for Canary 

In a similar manner, MD analysis is carried out on the parrot device. As the parrot device 

experiences higher corrosion rates in the first few years, two different MD threshold values 

for the lifetime life of the parrot device are considered. Once the corrosion rate stabilises after 

the first few years, the long-term threshold MD value is used to compare the long-term 

performance of the parrot device. In this case, MD value of 4.7 is used for original, average 

and minimum data and an MD value of 4.9 is used for maximum data. 
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Figure 5-20 and Figure 5-21 show the MD value history for real data for scenarios (1-3) and 

scenarios (1, 4, 5) respectively. Figure 5-22 and Figure 5-23 show the MD value history for 

the average of real data for the parrot device for scenarios (1-3) and scenarios (1, 4, 5) 

respectively. Similar trends as the ones from the MD analysis of the canary device are 

observed when analysis of the MD values for the last 80% of the lifetime for scenarios 2-5 is 

considered.  

 

 

Figure 5-20: MD Analysis of Real Data for Scenarios 2 & 3 for Parrot 

 

Figure 5-21: MD Analysis of Real Data for Scenarios 4 & 5 for Parrot 
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Figure 5-22: MD Analysis of Average Data for Scenarios 2 & 3 for Parrot 

 

Figure 5-23: MD Analysis of Average Data for Scenarios 4 & 5 for Parrot 

In appendix section 9.2.1 , the MD value histories for the MD analysis of maximum and 

minimum data over a three months period for the canary and parrot devices is shown. The 

observed results reflect similar trends as for MD analysis of the average data for the three 

performance parameters. 

5.3.3. Results and discussion of fusion based prognostics tool 

5.3.3.1. Developing the Bayesian Network model 

The flowchart diagram in Figure 5-24 shows the steps taken to build and use the Bayesian 

network model for prognostic purposes using the demonstrator example detailed in the 

previous sections. Steps 1-3 involve building the model: 

 Step 1 - the variables and relationships between the variables are represented using 

nodes and arcs to build the structure of the Bayesian network model. 
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 Step 2 - the states of each node are defined.  

 Step 3 - involves defining the conditional probability table for each node.  

 Step 4 - evidence propagation is performed every time monitoring data is available 

(i.e. data from PoF model, MD Analysis and other measurements) to obtained an 

updated probability distribution for predicted remaining life.  

 Step 5 – Recommend inspection of structure if predicted remaining life is below 

acceptable level.  

Steps 1-3 are repeated if the model needs updating with new training data.  

 

Figure 5-24: Flowchart Diagram of use Bayesian Network Model 

The Bayesian network model used is shown in Figure 5-25. It is similar to the Bayesian 

network model shown in Figure 4-13 except for the lack of the ‗Visual_Inspection‘ node. At 

the time of development of this example, information was not available regarding visual 

inspection and its relation to corrosion related damage of iron structures and thus for this 

example, this variable is not represented in the model. 

(2) Determine the states

(1) Build the BN Model 
Structure

(3) Populate CPTs

(4) Perform Evidence 
Propagation for 

Remaining Life Prediction

Healthy data:
(i)PoF model 

(ii) MD Analysis
(iii)measurements

Test data:
(i)PoF model

(ii) MD Analysis
(iii)measurements

Is structure 
Healthy?

Yes

(5) Recommend 
Inspection/
Maintenance

No
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Figure 5-25: Bayesian Network Model for Demonstrator example 

Table 5-11 illustrates what data is required to input in the model for probability inference of 

predicted remaining life of canary, parrot and ship structure. The values for the time variables 

Tc,i and Tp,i are set according to the current lifetime value of the canary and parrot devices 

respectively. mc,i and mp,I  are the MD values for canary and parrot devices. Lc,i and Lp,I  are the 

predicted remaining life using the PoF model. 

Canary Parrot 

Time MD 

Values 

PoF-based 

Predicted 

RUL 

Time MD 

Values 

PoF-based 

Predicted 

RUL 

Tc,1 mc,1 Lc,1 Tp,1 mp,1 Lp,1 

Tc,2 mc,2 Lc,2 Tp,2 mp,2 Lp,2 

Tc,3 mc,3 Lc,3 Tp,3 mp,3 Lp,3 

… … … .. … … 

Table 5-11: Input data required for inference using BN model 

5.3.3.2. Populating the Conditional Probability Tables (CPTs) 

This section provides detailed description of the populating of the CPTs for each node in the 

BN mode structure. The CPT describes the probability of a node being within a state given a 

combination of values of its parents‘ states. If a node has no parents, it is described by a 

marginal probability distribution. The values for the CPTs in this model are hypothetical and 

are intended for illustrative purposes only. The conditional probability tables for each node 

are devised as follows: 
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 Canary_PoF_RUL – the states for this variable are continuous and have been 

discretised into seven finite states represented by intervals (-∞ - 0, 0 – 1, …, 5 - ∞) to 

reflect the 5 year lifetime of a canary device. This node has one parent node, 

C_Time_Period. Thus, the probabilities of the states of this node are conditional on 

the states of its parent nodes.  For each state of node C_Time_Period, the probability 

distribution for node Canary_PoF_RUL follows a normal distribution with mean and 

variance from Table 5-12 representing the predicted remaining life from PoF model 

used in section 5.3.1 and is input in Hugin as shown in Figure 5-26.   

 

Figure 5-26: CPT for Canary_PoF_RUL Node in Hugin 

 

 Parrot_PoF_RUL – the states for this variable are also continuous and have been 

discretized into 22 finite states represented by intervals (-∞ - 0, 0 – 1, …, 20 - ∞) to 

represent the 20 year lifetime of a canary device. Similar to node Canary_PoF_RUL, 

the CPT for this node is populated using mean values and variance (from Table 5-12) 

of predicted remaining life from PoF model used in section 5.3.1. 

 C_Time_Period – the states of this variable are discrete taking the values 1 to 5. This 

represents the number of years these devices are expected to be in operation. For 

demonstration purpose, the evidence is propagated in the network every year, hence 

the range of values for the states of this node being 1 to 5. The CPT is populated in 

Hugin as shown in Figure 5-27. 

 

Figure 5-27: CPT for C_Time_Period Node in Hugin 
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 P_Time_Period – similar to C_Time_Period node, the states of this variable are 

discrete but take the values 1 to 20.  

 Canary_MDValues – The states here are continuous and have been discretised into 17 

finite states represented by intervals (-∞ - 0, 0 – 1, …, 15 - ∞) to represent the typical 

MD values expected during operation. This node has two parent nodes: 

C_Time_Period and Canary_PredictedRUL. The probabilities of the states of this 

node are conditional on how the state of its parent nodes combine and follows a 

normal distribution based on MD threshold values (Table 5-13) from MD analysis of 

precursors in section 5.3.2. The CPT is populated using the Expression Builder feature 

in Hugin shown in Figure 5-28.   

 

Figure 5-28: CPT for Canary_MDValues in Hugin 

 

 Parrot_MDValues – the states are assigned the same as for the node 

Canary_MDValues and the CPT is populated using the same procedure as for that 

node using the values from Table 5-14. 

 Canary_PredictedRUL – the states are similar to that of node Canary_PoF_RUL. 

However, this node has two parent nodes: C_Time_Period and Canary_PoF__RUL. 

Currently the probability distribution of predicted remaining life from node 

Canary_PoF_RUL is assumed to also represent the probability distribution of 

predicted remaining life from node Canary_Predicted_RUL. Thus, the probability 
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distribution follows a normal distribution with the mean value being the current value 

of node Canary_PoF_RUL that is input in Hugin as shown in Figure 5-29.   

 

Figure 5-29: CPT for Canary_PredictedRUL in Hugin 

 

 Parrot_PredictedRUL – the states are similar to that of node Parrot_PoF_RUL and 

the CPT are similar to that of node Canary_PoF_RUL. However, this node has three 

parents‘ nodes instead of two nodes: P_Time_Period, Parrot_PoF_RUL and 

Canary_PredictedRUL. The probability distribution for this node is assigned in same 

manner as for node Canary_PredictedRUL and is then adjusted to account for effect of 

node Canary_PredictedRUL. Here the correlation factor between predicted remaining 

lives of canary and parrot devices is assumed 0.2. Thus mean for the normal 

distribution is adjusted using the expression builder in Hugin as shown in Figure 5-30.   

 

Figure 5-30: CPT for Parrot_PredictedRUL in Hugin 

 

 ShipStructure_PredictedRUL – the states replicate that of node Parrot_PredictedRUL. 

This node has only one parent node: Parrot_PredictedRUL. At the moment, no 
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experiment has been carried out to obtain a correlation factor between parrot devices 

and the ship structure, and thus for this demonstration the correlation factor is assumed 

to be one. Thus, the probability distribution of predicted remaining life from node 

Parrot_PredictedRUL is assumed to also represent the probability distribution of 

predicted remaining life for node ShipStructure_PredictedRUL. The probability 

distribution follows a normal distribution with the mean value being the current value 

of node Canary_PoF_RUL and is inputted in Hugin as shown in Figure 5-31.   

 

Figure 5-31: CPT for ShipStructure_PredictedRUL in Hugin 

 

Time 

(years) 

Parrot Canary 

Mean(yrs) Variance Mean(yrs)  Variance 

1 6.08 0.03 2.59 0.01 

2 7.74 0.05 2.19 0.01 

3 10.20 1.86 1.80 0.06 

4 11.34 0.74 1.10 0.01 

5 12.27 0.61 0.31 0.01 

6 13.91 1.20   

7 13.05 0.10   

8 13.38 0.34   

9 12.94 0.04   

10 11.36 0.17   

11 9.84 0.04   

12 9.18 0.05   

13 8.52 0.09   

14 7.29 0.01   
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15 6.44 0.01   

16 4.99 0.07   

17 3.84 0.03   

18 2.79 0.01   

19 1.73 0.01   

20 0.64 0.01   

Table 5-12: PoF model-based input data 

 

 

Time 

(years) 

Mean  

MD  

Standard 

Deviation 

MD 

Threshold 

Variance 

1 12.72 0.81 13.53 0.97 

2 7.77 1.00 8.77 1.51 

3 5.10 0.57 5.67 0.48 

4 3.68 0.203 3.88 0.06 

5 3.27 0.13 3.40 0.02 

6 3.19 0.31 3.50 0.15 

7 2.83 0.09 2.92 0.01 

8 2.78 0.20 2.97 0.06 

9 2.41 0.76 3.16 0.86 

10 2.20 0.26 2.45 0.10 

11 2.15 0.17 2.31 0.04 

12 1.97 0.33 2.29 0.16 

13 2.51 0.21 2.72 0.07 

14 2.62 0.43 3.05 0.28 

15 2.96 0.38 3.34 0.22 

16 2.39 0.07 2.46 0.01 

17 3.89 0.79 4.67 0.92 

18 3.90 0.68 4.59 0.70 

19 4.58 0.31 4.89 0.14 

20 5.52 0.49 6.01 0.37 

Table 5-13: Input data for Parrot Device from MD Analysis Results 

  

Time 

(yrs) 

Mean  

MD  

Standard 

Deviation 

MD 

Threshold 

Variance 

1 6.26 1.95 8.21 5.69 

2 3.13 0.61 3.74 0.56 

3 2.29 0.44 2.73 0.29 

4 2.67 0.40 3.08 0.24 

5 3.78 0.33 4.11 0.17 

Table 5-14: Input data for Canary Device from MD Analysis Results 
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The CPTs for the current model have been constructed with the best information available, 

which currently is drawn from a mix of expert opinion and relevant sets of data found in 

literature. As more data or knowledge becomes available, the CPTs will be adjusted to reflect 

improved learning data sets. 

5.3.3.3. Testing the BN models 

Once all the CPTs are specified, the BN model can be compiled and ‗run‘. Scenarios have 

been devised and are examined. The predictions of the remaining life using the PoF models 

and the MD values from Mahalanobis Distance analysis are used as evidence input for nodes 

(Canary_PoF_RUL, Parrot_PoF_RUL, Canary_MDValues and Parrot_MDValues). The 

state for the nodes, C_Time_Period and P_Time_Period, representing time for canary device 

and parrot device are selected. The reasoning engine (using Hugin) for this Bayesian network 

model then performs propagation of probabilities and the scenario can be examined by its 

effects on the remaining nodes (i.e. hypothesis nodes, Canary_PredictedRUL, 

Parrot_PredictedRUL and ShipStructure_PredictedRUL) which display updated probability 

distributions. The scenarios tested for the Bayesian Network model developed are as follows: 

 Scenario 1 (Normal ―healthy‖ conditions) - Normal relative humidity and temperature 

for which the parrot device has life expectancy of 20 years while the canary device has 

a life expectancy of 5 years. At the end of the first five years, a new canary device 

with a life expectancy of 5 years is used, while the parrot device remains unchanged. 

This is repeated at the end of the next 5 years for two more times. Thus in total four 

canary devices are used (one for each 5-year period). 

 Scenario 2 (Harsh conditions) - The parrot device experiences harsh environmental 

conditions from the beginning throughout its life (i.e. higher temperature and relative 

humidity compared with the normal case). The canary device experiences similar 

harsh conditions throughout its life. This scenario is used to demonstrate that the PHM 

framework can detect anomalies in canary/parrot devices right from the beginning 

should such a situation arise. Here Bayesian network analysis is carried out up to 

failure in canary device occurs. This reflects the real world situation where if the 

canary device were found to be deteriorating at a rate much faster than expected, then 

the parrot device would also be deteriorating at a faster rate. In such a case, further 

detailed inspection of the actual iron ship structure would be required. 
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 Scenario 3 (Mixed conditions): The parrot device experiences normal conditions 

during the first 10 years of its life and harsher conditions (i.e. higher temperature and 

relative humidity compared with the normal case) afterwards for the remaining of its 

life. Here for the first 10 years, the first three canary devices used (one for every 5-

year period) experience normal conditions and the last canary device used experiences 

harsh conditions. This scenario aims to demonstrate that the PHM framework can 

detect anomalies that can occur later in the iron structures, which is reflected in 

canary/parrot devices. Here the amount of time after which the canary and parrot 

device experience higher corrosion rates has been chosen arbitrarily for the purpose of 

demonstration. 

5.3.3.4. Analysis of Results 

The graphs in Figure 5-32 provides a visual interpretation of the results of Scenario 1 for node 

ShipStructure_PredictedRUL from the Bayesian Network model built as detailed in section 

5.3.3.1. The graph shows the probability distribution of remaining life of a ―healthy‖ ship 

structure (experiencing normal environmental conditions throughout its life) over time. At 

year 1, higher probabilities are observed for a predicted remaining life of 6-8 years. The 

predicted remaining life is low due to high corrosion rates in the beginning but once the 

corrosion rates slows down over the next few  years, the predicted remaining life increases. 

Thus, the probability distributions shift to the right for the next 8 years.  For example at year 

5, the probability distribution predicts a remaining life in the range of 11-12 years which 

reflects closely to what is expected for a prediction made after 5 years lifetime (i.e. 5 years 

plus predicted 12 years would be an overall possible lifetime of 17 years). After year 9, the 

probability distribution shift to the left as we enter the second part of the lifetime of the 

structure and thus predicted remaining life decreases accordingly.   
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Figure 5-32: Probability Distribution of Predicted Remaining Life for Ship Structure (Scenario 1) 

The graph in Figure 5-33 provides a visual interpretation of the results of Scenario 1 for nodes 

Parrot_PredictedRUL. The probability distributions of predicted remaining life follow the 

same trend as that of the graph for the ship structure. This is because the CPT of the ship 

structure is based on that of the CPT for the parrot device (as shown in Figure 5-33).  

 

 

Figure 5-33: Probability Distribution of Predicted Remaining Life for Parrot Device (Scenario 1) 

The graph in Figure 5-34 provides a visual interpretation of the results of Scenario 1 for node 

Canary_PredictedRUL. The graph shows the probability distribution of remaining life of the 
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four ―healthy‖ canary devices over the 20-year period. At year 1, higher probabilities are 

observed for a predicted remaining life of 2-3 years. The predicted remaining life is less than 

the expected 4 years due to high corrosion rates in the beginning but once the corrosion rates 

slows down, the predicted remaining life increases. This cycle is repeated four times for each 

new canary device used after the 5-year period. 

 

Figure 5-34: Probability Distribution of Predicted Remaining Life for Canary Device (Scenario 1) 

The probability distribution graphs in Table 5-15 provide a numerical interpretation of the 

results of Scenario 1 for nodes Canary_PredictedRUL, Parrot_PredictedRUL and 

ShipStructure_PredictedRUL. Throughout scenario 1, only one parrot device is used for the 

20-year period and four canary devices are used for the 20-year period (one for each 5-year 

period). Hence, in Table 5-15 at Time 1 and 5 years, the probability distribution for the first 

canary is shown. At Time 10 years, the probability distribution for the second canary is 

shown. At time 15 years, the probability distribution for the third canary is shown and at time 

20 years, the probability distribution for the fourth canary is shown. At times 1, 5, 10, 15 and 

20 years, the probability distribution for the one parrot and corresponding ship structure is 

shown. 

At year 1, higher probabilities are observed for a predicted remaining life of 6-8 years for the 

Parrot and Ship Structure while for the Canary, higher probabilities are assigned for a 

predicted remaining life of 2-3 years. This is expected due to higher corrosion rates in the 

beginning as explained previously. The probability distributions shift as expected with time 

reflecting healthy structures for scenario 1. For example, at year 15, the probability 

distributions predict a remaining life in the range of 6-8 years for both the parrot and ship 

structure, while a remaining life in the range of 0-1 years is predicted for the canary device.  
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Time 

(yrs) 

Canary Parrot Ship Structure 

1 

 

5 

 

10 

 

15 
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20 

 
 

Table 5-15: Demonstrator Timeline for Scenario 1 

The probability distribution graphs in Table 5-16 provides a numerical interpretation of the 

results of Scenario 2 for nodes Canary_PredictedRUL, Parrot_PredictedRUL and 

ShipStructure_PredictedRUL. At year 1, the probability distributions predict a remaining life 

in the range of 4-5 years for both the Parrot and Ship Structure while for the Canary; the 

predicted remaining life is in the range of 1-2 years. The range predicted is lower than that of 

scenario 1 as both canary and parrot devices as well as the ship structure experience harsher 

conditions from the beginning and throughout their lifetime. At year 5, the probability 

distributions predict a remaining life in the range of 5-7 years for both the parrot and ship 

structure instead of the expect range of 12-13 years as seen in Table 5-15 for year 5 

predictions. This again confirms expected predictions for remaining life for scenario 2. 

Time 

(yrs) 

Canary Parrot Ship Structure 

1 

 

3 
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5 

 
 

Table 5-16: Demonstrator Timeline for Scenario 2 

The probability distribution graphs in Table 5-17 provide a numerical interpretation of the 

results of Scenario 3. Throughout scenario 3, only one parrot device is used and three canary 

devices are used (one for each 5-year period). In Table 5-17 at Time 1 and 5 years, the 

probability distribution for the first canary is shown. At Time 10 years, the probability 

distribution for the second canary is shown. At time 13 years, the probability distribution for 

the third canary is shown. At times 1, 5, 10 and 13 years, the probability distribution for the 

one parrot and corresponding ship structure is shown. 

As per the scenario, the third canary device starts to experience harsher conditions from the 

beginning of its lifetime (from year 11 for the overall period of the scenario). The parrot 

device also starts to experience harsh conditions after year 10. At year 13, the predicted 

remaining life for the canary device experiencing harsh conditions is in the range of 0-1 years 

thus predicted to fail 2 years before expected for a health canary. The probability distributions 

predict a remaining life in the range of 4-6 years (instead of an expected 8-10 years for a 

healthy device) for the parrot device and the ship structure reflecting the effect of the 

probability distribution of the canary device. In a scenario 1, the probability distributions at 

year 15 would predict remaining life in the range of 6-8 years as shown in Table 5-15. In this 

case, the correlation factor assigned between the canary and parrot device seems effective to a 

certain extent in allowing events in the canary device to propagate to probability distributions 

of the parrot device. The results for scenarios 3 indicate that the CPTs for the nodes 

Canary_PredictedRUL and Parrot_PredictedRUL need to be adjusted in terms of correlation 

factor between the two devices in order to increase sensitivity. 
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Time 

(yrs) 

Canary Parrot Ship Structure 

1 

 

5 

 

10 

 

13 

 
 

Table 5-17: Demonstrator Timeline for Scenario 3 

From these preliminary results, the main observation is that the predictions of remaining life 

reflect the expected results for most scenarios. However, the accuracy of the prediction for the 

remaining life and the confidence in the predictions is not at the level expected for this PHM 
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framework. As more knowledge through more experiments and/or expert contribution is 

available, the CPTs should be revised to include improved and more comprehensive data set.  

5.4. Summary 

In this chapter, the diagnostic and prognostic tools described in the chapter 4 are evaluated 

and tested using a demonstration example. This example consisted of a canary and parrot 

device pair, with the canary device having smaller dimensions than the parrot device. A set of 

scenarios for canary/parrot pair was devised using simulated corrosion data for evaluation and 

testing of the tools. The predicted remaining life of the canary and parrot devices was 

calculated using the PoF model and compared for a set of scenarios. Similarly, anomaly 

detection was carried out on the devices using Mahalanobis distance analysis for all the 

scenarios. The results obtained for these two tools were close to that expected for the 

particular scenarios.  

A Bayesian network model was used as a fusion prognostic tool to provide updated remaining 

life prediction for the canary and parrot devices. Additionally in this model, an iron structure 

was represented and was assigned similar prior probability distribution for predicted 

remaining life as that of the parrot device and the posterior probability distribution for the 

predicted remaining life is calculated. Here again the preliminary results are promising, 

however as developing Bayesian network model is an iterative process, it is expected that at 

the next iteration, the nodes the states of the nodes and the associated CPTs will be updated 

such that better precision can be achieved during prediction of remaining life. 

One key element for improving the accuracy and confidence in diagnosis and prognosis is the 

correlation of damage detection and quantification of the canary/parrot sensor devices and the 

actual aged structure monitored. While simulation (e.g. simulation of corrosion data as used in 

the demonstration example in this chapter) is an effective way to enrich the data set, it is 

imperative to carry out evaluation and testing in the field in order to validate the tools such 

that reliable diagnosis and prognosis can be obtained. Data obtained from field use can then 

be used to update the models. Each variant of canary and parrot device pairs designed to 

monitor different failure mechanism needs to be calibrated with the actual structure to be 

monitored under varying environmental conditions. The next chapter describes how the 

diagnostic and prognostic tool were used during an experiment trial carried out on iron wire 

devices used as canary/parrot devices and discusses the results obtained. 
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6.  Experimental Trials 

6.1.  Experimental Setup 

An experiment was set up to investigate and test the diagnostic and prognostic tools 

developed. The following chapter describes the aims and the setup of the experiment. Then 

analysis of the data collected is carried out and the results are discussed. The aims of this 

experiment were threefold: 

 Understand corrosion behavior of iron structures 

o To investigate the ranges of temperature and relative humidity that affects iron 

structures 

o To determine how much corrosion takes place under set temperature and 

relative humidity conditions 

 Test suitability of canary and parrot sensor devices  

o To test whether the sensor devices designed are corroding at the expected rate 

within the set time under set environmental conditions. 

o To assess suitability of current corrosion parameters monitored 

 Test PHM Framework 

o Test the data-driven diagnostic tool 

o Test the model-driven prognostic tool 

o Test the fusion based prognostic tool 

6.1.1. Experimental Description 

Prior to deploying a test-bed for experimental trials, the sensor devices to be used were 

investigated. There are many aspects of the design of the sensor devices to consider: 

 The thickness of the sensor devices needed to be small enough to experience corrosion 

within a certain time limit. 

 Protective paint or coating could be applied to the sensor devices to mimic the iron 

structures in the Cutty Sark. 

 The actual shapes of the sensor devices and the interconnection 
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For the experimental setup, as a starting point, three iron wires of different diameter 

dimensions (0.125mm, 0.25mm and 0.5mm) and of 1m in length were used as shown in 

Figure 6-1.  

 

Figure 6-1: 3 sensor devices of diameter dimensions (0.125mm, 0.25mm and 0.5mm) 

Three desiccators were used to house the three iron wires of different diameter dimensions. 

While all 3 desiccators were placed in the same room under normal room temperature, each 

desiccator had different relative humidity environments. Desiccator 1 had a dry environment. 

Desiccator 2 had water in the lower tray thus raising the relative humidity compared to 

Desiccator 1. Desiccator 3 had salt saturated water in the lower tray, thus experiencing the 

highest relative humidity and harshest environment of the three desiccators. Figure 6-2 shows 

the setup for the three desiccators.  

 

 

 

 

0.125mm iron 
wire device 

0.25mm iron 

wire device 

0.5mm iron 

wire device 
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Figure 6-2: Experimental Setup of the 3 Desiccators 

One data logger was placed in each desiccator measuring temperature and humidity at a rate 

of one sample every 15 minutes. The experiments were conducted for a total of 85 days from 

May to August 2010. Figure 6-3 and Figure 6-4 show the graphs for temperature and relative 

humidity for all the three desiccators for the month of May. The temperature readings for all 

the desiccator are within the same range as expected as the three desiccators where placed in 

the same room experiencing the same temperature throughout the experiment.  

The relative humidity readings for desiccator 1 (dry) were in the range of 30%-40%, which is 

much lower than desiccators 2 and 3 as expected. The relative humidity readings for 

desiccator 3 (salty) were in the range of 80%-90% as expected. The relative humidity readings 

dropped to the 30%-40% range for 3 days for desiccator 3 at the end of the month of May, as 

Desiccator 1 Desiccator 2 Desiccator 3 
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the experiment in desiccator 3 had been stopped and the iron wires were removed from that 

desiccator were subjected to further salt treatment. The data logger in the desiccator continued 

to record the relative humidity and temperature during that time thus registering the drop in 

relative humidity readings. 

The iron wires connected to a PXI module and a data-logging script developed in Labview 

was used to record the electrical resistance of the wires every hour. The PXI module used to 

connect the iron wires to record the electrical resistance readings had only eight connectors 

available. As there was three sets of three iron wire devices for which the electrical resistance 

readings needed to be taken, the electrical resistance of the thickest wire (0.5mm) in 

desiccator 3 (dry environment) was only recorded at certain times. The electrical resistance 

readings of the other eight iron wire devices were recorded every hour. Once the salt iron 

devices failed the 0.5mm iron wire in desiccator 3, (dry environmental was then connected 

permanently to the PXI module and the electrical resistance readings were recorded every 

hour as well from then on. 

 

Figure 6-3: Temperature Readings for Desiccators 1, 2 & 3 
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Figure 6-4: Relative Humidity Readings for Desiccators 1, 2 & 3 

After running the experiment for 13 days, the electrical resistance readings for the eight iron 

wires being monitored remained stable indicating that the iron wires were not corroding. The 

wires in Desiccator 3 (salt water environment) were disconnected and soaked for 1 day in 

saturated salt water and left to dry for another day before being installed back in Desiccator 3 

for further monitoring. The wires in Desiccator 1 and 2 were not treated further and 

monitoring continued for them as well. The experiment was then run until all the wires in 

Desiccator 3 (salt-water environment) were corroded. The experiment was run for another 5 

days for the iron wires in desiccators 1 and 2. The drop in relative humidity as shown in 

Figure 6-4 between 26 May 2010 and 29 May 2010 is due to the desiccator being open at the 

time to remove the corroded 0.125mm and 0.25mm iron wires. The graphs for temperature 

and relative humidity for all the three desiccators throughout the whole experiment is found in 

appendix section 9.3.1. 

6.2. Analysis of Experimental Data 

Figure 6-5 to Figure 6-7 show the electrical resistance readings taken for the three wires 

(diameters 0.125mm, 0.25mm, 0.5mm) in desiccators 1, 2 and 3 during the whole 

experimental trial. Missing data points are due to the PXI system being restarted at times as 

the PXI module was disconnected from the PXI system when other unrelated experiments 

were loaded and run on the PXI system. In addition, there was no reading taken for 3 days 
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from 17 May 2010 and 20 May 2010 while the wires in Desiccator 3 were given additional 

treatment with the aim of accelerating the corrosion process. 

 

Figure 6-5: Electrical Resistance Readings for 0.125mm iron wires 
 

 

Figure 6-6: Electrical Resistance Readings for 0.25mm iron wires 
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Figure 6-7: Electrical Resistance Readings for 0.5mm iron wires 

As the electrical resistance readings for the same diameter, iron wire was plotted against each 

other, a trend in the readings was observed for 0.125mm and 0.25mm wires. While the 

0.125mm wires were placed in different desiccators, they still experience the same trend in 

change in electrical resistance at the same time, thus implying that the different environments 

in the desiccators did not have the expected effect on the corrosion of the iron wires. The 

0.5mm iron wires did not follow the same trend as observed for the other two types of iron 

wires.   

After further investigation, it was determined that the room temperature was the cause of the 

noise to the measurement of the electrical resistance readings of the iron wires. Due to the 

thermal coefficient of the iron wires, the resistivity of the iron wires would change due to 

changes in temperature as well as corrosion that might occur. Figure 6-8 to Figure 6-10 show 

an overlay of readings of the temperature inside Desiccator 3 and the electrical resistance of 

the iron wires. It can be observed that the electrical resistance of 0.125mm iron wire device 

follows the same trend as the temperature (Figure 6-8). The same occurs for the 0.25mm iron 

wire device (Figure 6-9). The electrical resistance of the 0.5mm iron wire device however 

does not follow the same trend as the temperature (Figure 6-10) as the thermal coefficient was 

not high enough to affect the electrical resistance of the thickest iron wire device.  The graphs 

of overlay of readings of the temperature inside desiccators 1 and 2 can be found in appendix 

section 9.3.2. 
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) 

Figure 6-8: Overlay of Temperature and Resistance (0.125mm) -Salt Environment 

 

Figure 6-9: Overlay of Temperature and Resistance (0.25mm) -Salt Environment 

 

Figure 6-10: Overlay of Temperature and Resistance (0.5mm) -Salt Environment 

6.2.1.    Noise reduction of electrical resistance data 

Figure 6-11 shows the steps carried out to remove the noise caused by the influence of 

temperature on the resistivity of the iron wires and to filter any additional noise: 
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1. As the actual resistivity for the iron wires used is unknown, resistivity      of 

9.71x10^-8 ohm.m at temperature of 20°C (Resistivity and Temperature Coefficient, 

2011) was used at the start to calculate    at temperature, Tt and time, t using equation 

(24).  

                           (24)  

 

where, ρt is the resistivity at temperature Tt at time t, ρref is the resistivity at reference 

temperature Tref, α is the temperature coefficient of resistivity for the iron wire, Tt is the 

temperature at time t (during experiment) and Tref is the reference temperature that α  is 

specified at for the iron wire  

 

2. Every time a new electrical resistance reading is taken, the resistivity       is 

calculated again using equation (25). This is performed, as the actual resistivity for the 

iron wires is unknown. 

           (       )         (25) 

 

where, ρt+1 is the resistivity at temperature Tt+1, ρt is the resistivity at reference temperature 

Tt, α is temperature coefficient of resistivity for the iron wire, Tt+1  is temperature at time, t+1 

(during experiment) and Tt is temperature for which ρt was calculated in step 1.  

 

3. At each electrical resistance reading taken, using   obtained in step 2,   
   

 is 

calculated using equation (26), representing the expected electrical resistance at 

temperature Tt. 

  
   

 
    

 
        (26) 

 

Where, ρt is the resistivity at temperature T at time t, l is the length of iron wire and A is the 

cross sectional area of iron wire 
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4. Finally, the difference in electrical resistance, ∆Rt, can be calculated using equation 

(27). ∆Rt  is due to the corrosion of the iron wires without noise due to temperature 

effect on resistivity. 

∆     
    

          (27) 

Where,   
  is the original electrical resistance reading at time t and   

   
 is the adjusted 

electrical resistance at time t 

5. Using moving average (over a window size of 20), filtering of noise of random nature 

is carried out on ∆Rt  

6. The resulting ∆R can then be used either in PoF models and/or for anomaly detection.  

 

Figure 6-11: Flowchart of noise reduction of electrical resistance readings 

The graphs for the 0.125mm (Figure 6-12) and 0.25mm (Figure 6-13) iron wires show the 

most marked difference between the original difference and adjusted difference of electrical 
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t
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on temperature 
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(3) Calculate adjusted 
resistance, Rt
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(4) Calculate increase 
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RO
t and Rt
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resistance. The graph for the 0.5 mm iron wires (Figure 6-14) shows almost no difference 

between the original and adjusted difference. This is believed to be because the temperature 

coefficient of the resistivity is not high enough to affect the electrical resistance of the 0.5mm 

iron wire and thus the original electrical resistance difference is used for the 0.5mm iron wire 

for the rest of the analysis. The graphs for resistance differences before and after the 

adjustment of temperature effect for iron wires in dry and water environments can be found in 

appendix section 9.3.3. 

 

Figure 6-12: Resistance Difference before and after adjustment for temperature effect (0.125mm wire in 

salt environment) 

 

Figure 6-13: Electrical Resistance Difference before and after adjustment for temperature effect (0.25mm 

wire in salt environment) 
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Figure 6-14: Electrical Resistance Difference before and after adjustment for temperature effect (0.5mm 

wire in salt environment) 

The filtering of random noise on the electrical resistance difference was carried out using 

moving average and median. For both filters, a filtering weight of 20 was used. The results of 

both filtering techniques were assessed by applying standard deviation on the electrical 

resistance difference before and after filtering for readings taken in the first 7 days of the 

experimental trial. Table 6-1 shows the standard deviations for (i) original resistance 

difference, (ii) moving average filtered resistance difference and (iii) median filtered 

resistance difference. The standard deviations decrease when either filter is applied with the 

moving average filter giving slightly smaller standard deviations overall compared to the 

median filter. Therefore, the electrical resistance difference data that had undergone noise 

filtering using moving average filter was used from thereon. Figure 6-15 to Figure 6-17 show 

graphs for comparison of filters and the original data for 0.125mm, 0.25mm and 0.5mm iron 

wires in Desiccator 3 (salt environment).  

 Original Mov. Avg. Median 

Dry 0.125 0.0336 0.0299 0.0338 

Dry 0.25 0.0134 0.0069 0.0088 

Dry 0.5 0.0188 0.0255 0.0259 

Water 0.125 0.0582 0.0535 0.0559 

Water 0.25 0.0134 0.0093 0.0103 

Water 0.5 0.0089 0.0050 0.0048 

Salt 0.125 0.5243 0.4123 0.4113 

Salt 0.25 0.0608 0.0445 0.0453 

Salt 0.5 0.0223 0.0187 0.0190 

Table 6-1: Standard Deviation of Electrical Resistance Deviation 
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Figure 6-15: Comparison of using Moving Average and Median as smoothing technique for 0.125mm iron 

wire (salt environment) 

 

Figure 6-16: Comparison of using Moving Average and Median as smoothing technique for 0.25mm iron 

wire (salt environment) 

 

Figure 6-17: Comparison of using Moving Average and Median as smoothing technique for 0.5mm iron 

wire (salt environment) 
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6.2.2.  Using PoF model to predict remaining life: Results and Discussions 

Figure 6-18 shows the steps carried out to predict remaining life of the iron wires using the 

using the model-driven approach that uses a PoF model: 

1. At each electrical resistance reading taken, using   of 0.097 ohm.µm (Resistivity and 

Temperature Coefficient, 2011), the corresponding diameter is calculated using 

equation (28) and difference in diameter, ∆D. 

    
                

    
       (28) 

Where, ρref is the reference resistivity (Resistivity and Temperature Coefficient, 2011) , l is 

the length of iron wire and Rt is the measured resistance of the iron wire 

2. Plot ∆D against time  

3. Use trend-line fitting over ∆D readings over a period of 10 days to obtain logarithmic 

model. Here due to the short period of time over which the experiment was run, only a 

short period is used in the trend-line fitting. 

4. Estimated the corrosion penetration over 1
st
 year, A, based on logarithmic model 

obtained (29). 

              (29) 

Where P is corrosion penetration, t is exposure time, A is corrosion rate during the first year 

of measurement and B is a constant representing a measure of long-term decrease in corrosion 

rate. A and B are obtained through trend-line fitting, t is assigned to 365 days in order to 

obtain corrosion penetration over 1
st
 year. 

 

5. Calculate predicted remaining life of iron wires using equation (30). The model-driven 

approach defined in Chapter 4 has been modified here to accommodate for the lack of 

corrosion data required for over a year in order to use the Linear Bilogarithmic law for 

prediction of corrosion penetration over time. An arbitrary value of 0.5 is assigned to 

B while A is obtained from following the procedure detailed in steps 1-4.  
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  ( )    ( )

         (30) 

 

Where, P is the loss in diameter (due to corrosion) which will lead to failure of iron wire, A is 

the corrosion penetration for the 1
st
 year and B is the degree of decrease of corrosion over 

time (here assigned arbitrarily). 

6. The predicted remaining life, t can then be used in the fusion based prognostic tool as 

input information for the Bayesian Network model.  

 

Figure 6-18: Flowchart - Predicting remaining life using PoF 

Table 6-2 shows the predicted remaining life of the iron wires using the model-driven 

approach described above in years (T) and in days (t). A is the estimated corrosion rate over 

the first year. For all three different environments, the thickest wire (0.5mm) has the longest 

predicted remaining life as expected. For the water and salt environments, the thinnest wire 

(0.125mm) has the shortest predicted remaining life, while for the dry environment the 0.25m 

has the shortest predicted remaining life. Here it is believed that due to errors in measurement 
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(6) Use trul in Bayesian 
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procedures, the predicted remaining life for the iron wires in the dry environment is not as 

accurate as expected.  

It should be noted that when using the Linear-Bilogarithmic law as a PoF model, it is 

recommended to use data recorded over the first year before making any prediction. As the 

experiment was run for just under 3 months, the measurement readings were extrapolated first 

before being used in the PoF model. This could have a significant effect on the values of the 

predicted remaining life of the iron wires. However, the PoF model developed here is 

believed to be a good starting prediction model for remaining life of iron wires (with respect 

to failure being caused by corrosion).  

 A (mm/year) T (years) t(days) 

Dry 0.125 10.59 5.58 2036 

Dry 025 22.90 4.77 1740 

Dry 0.5 15.78 40.15 14656 

Water  0.125 13.84 3.26 1191 

Water 0.25 24.58 4.14 1511 

Water 0.5 9.44 112.13 40929 

Salt 0.125 14.21 3.09 1130 

Salt 0.25 20.61 5.88 2147 

Salt 0.5 27.07 13.65 4981 

Table 6-2: Prediction of Remaining life of iron wires 

 

6.2.3.  Data-Driven Approach: Using Mahalanobis Distance Analysis for 

Anomaly Detection  

Figure 6-19 shows the steps carried out to perform anomaly detection on the iron wires in the 

three different environments using Mahalanobis Distance analysis. 
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Figure 6-19: Flowchart - Anomaly Detection using MD analysis 

The process involves 8 steps, which are detailed below: 

1. First, expected corrosion penetration over time needs to be simulated. Using A and B 

values obtained from step 4 in PoF model used in previous section, penetration, ∆Dt, 

for each time step (every day) is calculated using equation (31). 

∆               (31)  

Where, ∆Dt is the difference in diameter (i.e. corrosion penetration) at time t, A is the 

corrosion penetration over the 1
st
 year and B, the decrease of corrosion over time. 

2. Calculate Dt which is the difference between original diameter, D0 and corrosion 

penetration, ∆Dt  and the resulting Rt which is the resistance at time t for 

corresponding diameter, Dt , using and Rt using equation 32.  
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  (
  

  ) 
        (32) 

Where, Dt is the diameter of iron wire at time t, l is the length of iron wire, and ρ is the 

resistivity of the iron wire. 

 

3. ∆Rt, the difference between original resistance, R0 (at the beginning when no 

corrosion has yet occurred) and the current resistance, Rt is calculated for every time 

step. Several datasets consisting of ∆Rt with slight arbitrarily defined variations (2%-

5% randomness) are generated to build the training dataset. 

4. The mean and standard deviation of ∆Rt and t in the training dataset is calculated. 

5. ∆Rt and t are then standardised and used to construct the Mahalanobis space. Once 

constructed the mahalanobis space will be used each time mahalanobis distance 

analysis is carried and is only updated if new training dataset becomes available. 

6. Using the Mahal function in Matlab, Mahalanobis Distance analysis is carried out to 

determine the MD threshold values from the training dataset. Thus, the MD threshold 

values will be used each time until the mahalanobis space is updated and new MD 

threshold values are determined. 

7. The ∆Rt (obtained from step 6 in section 3.2.1) from experiment readings and t are 

standardized using mean and standard deviation from step 4.  

8. Using the Mahal function in Matlab and the mahalanobis space developed in step 5, 

Mahalanobis Distance analysis is carried out to determine the MD values for ∆Rt. The 

MD values can then be used in the Bayesian Network models developed.  

Two training datasets have been developed for this experiment: one for the iron wires in the 

Salt environment and one for the iron wires for both Water and Dry environments. The 

training datasets were developed for t=90 days as this was the duration of the experiment. 

6.2.3.1.  Results Analysis 

The Mahalanobis distance values corresponding to each data point (every hour) are plotted as 

a function of time for each device. Figure 6-20 shows the MD value history for salt-0.125 

device (red graph) and the MD value history for a similar healthy device (blue graph). Three 

different MD thresholds are applied to distinguish between anomaly in the device being 
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detected or not. The first 25% of the lifetime has MD threshold value of 3.5, the next 50% of 

the lifetime has MD threshold value of 2 and the last 25% of the lifetime has MD threshold 

value of 3.7 as shown by the horizontal broken line in Figure 6-20. The reason for choosing 

three different threshold values arises due to the pattern observed for MD values for a healthy 

device (blue graph in Figure 6-20).  

During MD analysis for device salt-0.125, the MD values are much higher than the MD 

threshold value of 2.0 (red graph in Figure 6-20) just before total failure of the device. Here 

while the Mahalanobis distance algorithm does detect anomalies present in the device, it does 

so too close to failure time. This can be explained by the possibility that the extra salt 

treatment administered to the device cause severe pitting corrosion, which lead to failure 

quickly. 

 

Figure 6-20: Comparing of MD values (0.125mm iron wire - salt) and threshold MD values 

Figure 6-21 shows the MD value history for salt-0.25 device (red graph) and the MD value 

history for a similar healthy device (blue graph). Again, three different MD thresholds are 

applied: (i) MD threshold value of 3.8, (ii) MD threshold value of 2 and (iii) MD threshold 

value of 3.5 as shown by the horizontal broken line in Figure 6-21. Here, the observation is 

similar to that for device salt-0.125 where the MD values are much higher than the MD 

threshold value just before total failure of the device. Similarly, it seems that extra salt 

treatment administered to the device cause severe pitting corrosion, which leads to failure 

MD Value: 3.5 

MD Value: 2.0 

MD Value: 3.7 
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quickly.

 

Figure 6-21: Comparing of MD values (0.25mm iron wire - salt) and threshold MD values 

Figure 6-22 shows the MD value history for salt-0.5 device (red graph) and the MD value 

history for a similar healthy device (blue graph). Again, three different MD thresholds are 

applied: (i) MD threshold value of 3.7, (ii) MD threshold value of 2 and (iii) MD threshold 

value of 3.7 as shown by the horizontal broken line in Figure 6-22. Here, the observation is 

similar to that for device salt-0.125 where the MD values are much higher than the MD 

threshold value just before total failure of the device. Similarly, it seems that extra salt 

treatment administered to the device cause severe pitting corrosion, which leads to failure 

quickly. 

 

Figure 6-22: Comparing of MD values (0.5mm iron wire - salt) and threshold MD values 
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Comparing the healthy (blue) graphs against the test (red) graphs for the 3 salt devices, it is 

clear to see that a pattern forms after data point 360 (which approximately represents day 15), 

the time after which the devices were subjected to harsher salt treatments for the salt 

experiment. Thus, we observe that Mahalanobis distance analysis is useful in identifying 

anomalies or faulty behavior. However, the patterns generated need more analysis in order to 

identify anomalies earlier on (as soon as they start to develop rather than just before failure). 

It should be noted that the training dataset used for Mahalanobis Distance has been developed 

for uniform corrosion, while it appears that the failure on the salt devices were due to pitting 

corrosion.  

In a similar manner, MD analysis is carried out on the devices for the dry and water 

environments. Figure 6-23 to Figure 6-25 show the MD value histories for devices, dry-0.125, 

dry-0.25 and dry-0.5, respectively. The MD threshold values for each device are displayed 

along with the graph of MD values for healthy devices (blue graphs). Here as expected, the 

MD values remain below the corresponding MD threshold values, as the three devices in the 

dry experiment do not experience much corrosion. The graphs for MD value histories for the 

devices of the water experiment are found in the appendix. 

 

Figure 6-23: Comparing of MD values (0.125mm iron wire - dry) and threshold MD values 
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Figure 6-24: Comparing of MD values (0.25mm iron wire - dry) and threshold MD values 

 

Figure 6-25: Comparing of MD values (0.5mm iron wire - dry) and threshold MD values 

Thus comparing the healthy (blue) graphs against the test (red graphs) for the 3 dry devices, 

shows that MD analysis performs well as the MD values are at or below the MD threshold 

values which reflects what is expected for all 3 dry devices. Data from more experiments with 

better control on the environmental conditions and more experiments for monitoring different 

forms of corrosion would provide a comprehensive training dataset, which can then be used 

for MD analysis. The graphs showing the results of MD analysis for the 3 iron wires in water 

environment can be found in appendix section 9.3.4. The MD values for the iron wires in the 

water environment follow a similar trend to that of the iron wires in the dry environment. 
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6.2.4. Building the BN models for the Experimental trials 

The Bayesian network model developed is again organised in a layered structure with the top 

layer representing the prediction of remaining life of the system under consideration, the 

middle layer representing the diagnosis and prognosis observations of the structure and the 

bottom layer representing usage and health observations with the nodes in the different layers 

connected by causal links. A Bayesian network model is built for each experiment 

environment: salt (Figure 6-26), dry (Figure 6-27) and water (Figure 6-28).  

 

Figure 6-26: Network for Salt Environment Lab Experiments 

 

 

Figure 6-27: Network for Dry Environment Lab 

Experiments 

 

 

Figure 6-28: Network for Water Environment 

Lab Experiments 

Model-Driven 

Prognostic 

Fusion-based 

Prognostic 

Data-driven 

diagnostic 
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In Figure 6-26, remaining life predictions from PoF models for the 3 test devices (0.125mm, 

.25mm and 0.5mm) provide input for the top layer nodes: Salt125_PoF_RUL, 

Salt250_PoF_RUL and Salt500_PoF_RUL. The bottom layer nodes (Salt125_MDValues, 

Salt250_MDValues and Salt500_MDValues) represent the anomaly detection results for the 

three devices during the experiment. The nodes in the middle layer represent the diagnosis 

and prognosis for the three devices: Salt125_PredictedRUL, Salt250_PredictedRUL and 

Salt500_PredictedRUL.  One additional node representing the time is included to account for 

the point in time at which the model is run (usually each time new input data for bottom layer 

nodes is available). Similar to the Bayesian network model for the demonstrator example, the 

nodes across the layers are linked together such that evidence recorded for one of the nodes 

will result in a belief updating of all the nodes connected to it.  

The links between nodes ‗Salt125_PoF_RUL‘ and ‘Salt125_PredictedRUL‘ mean that the 

probability distribution of the predicted remaining life of the 0.125mm device using PoF 

models will affect the probability distribution of the updated predicted remaining life of the 

0.125mm device.  The links between nodes ‘Salt125_PredictedRUL‘ and 

‘Salt125_MDValues‘ mean that the probability distribution of the updated predicted 

remaining life of the 0.125mm device in turn affects the probability distribution of MD values 

which is initially calculated from the MD analysis of failure precursors of that device. The 

node ‗Salt125_PredictedRUL‘ links to node ‗Salt250_PredictedRUL‘ that in turn links to 

node ‗Salt500_PredictedRUL‘. This is to represent the correlation between failure rates in all 

three devices under experimentation.  

The next step was to build the Conditional Probability Tables (CPTs) associated with each 

node in the model. The initial set of probabilities values is based on measurements from the 

devices for the first 10 days. The details for populating the CPTs are provided below: 

1. Salt125_PoF_RUL – the states for this variable are continuous and have been 

discretized into intervals (-∞ - 500, 500-1000, … , 3000 -  ∞) to represent the 

estimated lifetime of this device under healthy conditions. As this node is a root node, 

the probabilities of its states are defined by normal distribution based on mean values 

of PoF predicted remaining life for a healthy device from section 6.2.2 as shown in 

Table 6-3. The CPTs is populated as shown in Figure 6-29 . 
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Figure 6-29: CPT for Salt125_PoF_RUL Node in Hugin 

 

2. Salt250_PoF_RUL – the states for this variable are also continuous and have been 

discretised into intervals (-∞ - 500, 500-1000, … , 4500 -  ∞) to represent the 

estimated lifetime of this device under healthy conditions. Similar to node 

Salt125_PoF_RUL, the CPT for this node follows a normal distribution populated  

using mean values of PoF predicted remaining life for a healthy device as shown in 

Table 6-3.  

3. Salt500_PoF_RUL – the states for this variable are continuous and have been 

discretised into intervals (-∞ - 1000, 1000-2000, … , 8000 -  ∞). Similar to nodes 

Salt125_PoF_RUL and Salt250_PoF_RUL, the CPT for this node follows a normal 

distribution  using mean values of PoF predicted remaining life for a healthy device as 

shown in Table 6-3.  

4. Salt125_MDValues – The states here are continuous and have been discretised into 

intervals (-∞ - 0, 0 – 1, … , 10 -  ∞) to represent the typical MD values expected 

during the experiment. This node has two parent nodes: Time_Period and 

Salt125_PredictedRUL. The probabilities of the states of this node are conditional on 

how the state of its parent nodes combine and follows a normal distribution based on 

MD threshold values. The CPT is populated using the Expression Builder feature in 

Hugin shown in Figure 6-30.   
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Figure 6-30: CPT for Salt125_MDValues in Hugin 

 

5. Salt250_MDValues – the states are assigned the same as for the node 

Salt125_MDValues and the CPT is populated using the same procedure as for that 

node with marginal probabilities derived from Table 6-5. 

6. Salt500_MDValues – the states are assigned the same as for the node 

Salt125_MDValues and Salt250_MDValues and the CPT is populated using the same 

procedure as for that node with marginal probabilities derived from Table 6-6. 

7. Salt125_PredictedRUL – the states for these nodes are similar to that of node 

Salt125_PoF_RUL. However, this node one parent node, Salt125_PoF__RUL.  The 

probability distribution of predicted remaining life from node Salt125_PoF_RUL is 

assumed to also represent the probability distribution of predicted remaining life from 

node Salt125_PredictedRUL. Thus, the probability distribution follows a normal 

distribution with the mean value being the current value of node 

Salt125_PoF_RULTable 5-14: Input data for Canary Device from MD Analysis 

Results and is inputted in Hugin as shown in Figure 6-31.   

 

Figure 6-31: CPT for Salt125_PredictedRUL in Hugin 

 

8. Salt250_PredictedRUL – the states for this node are similar to that of node 

Salt250_PoF_RUL and the CPT is similar to that of node Salt125_PredictedRUL. 

However, this node has three parent nodes instead of two: Time_Period, 

Salt250_PoF_RUL and Salt125_PredictedRUL. The probability distribution for this 

node is assigned in same manner as for node Salt125_PredictedRUL and is then 

adjusted to account for effect of node Salt125_PredictedRUL. After preliminary 

analysis, the correlation factor between predicted remaining lives of canary and parrot 
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devices is set at 0.2.  Thus, mean for the normal distribution is adjusted using the 

expression builder in Hugin as shown Table in Figure 6-32.   

 

Figure 6-32: CPT for Salt250_PredictedRUL in Hugin 

 

9. Salt500_PredictedRUL – the states for this node are similar to that of node 

Salt500_PoF_RUL and the CPT is populated using the same procedure as for that 

node Salt250_PredictedRUL. 

10. Time_Period – the states of this variable are categorical (―1
st
 part‖, ―Middle part‖, ―3

rd
 

Part‖). They have been devised as such to represent the three different MD threshold 

values were assigned for any healthy device as described in section 6.2.3. For this 

experiment, the evidence is propagated in the network every day and depending on the 

period that particular day fall, the relevant stated is selected.  

 

Salt125 Salt250 Salt500 

Mean(days) Variance Mean(days)  Variance Mean(days) Variance 

2328 1445544 3222 278818 5959 953843 

Table 6-3: PoF model-based input data 

 

 

Time (days) Mean  

MD Value 

Standard 

Deviation 

MD 

Threshold 

Variance 

1
st
 Part  2.73 0.96 0.54 3.47 

Middle Part 1.24 0.74 0.55 1.98 

Last Part  2.73 0.97 0.95 3.71 

Table 6-4: Input data from MD Analysis Results for 0.125mm salt device 
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Time (days) Mean  

MD Value 

Standard 

Deviation 

MD 

Threshold 

Variance 

1
st
 Part  2.73 1.03 1.07 3.76 

Middle Part 1.23 0.74 0.55 1.98 

Last Part  2.44 1.06 1.12 3.50 

Table 6-5: Input data from MD Analysis Results for 0.25mm salt device 

 

 

Time (days) Mean  

MD Value 

Standard 

Deviation 

MD 

Threshold 

Variance 

1
st
 Part  2.72 0.97 0.93 3.69 

Middle Part 1.24 0.74 0.55 1.98 

Last Part  2.74 0.97 0.94 3.70 

Table 6-6: Input data from MD Analysis Results for 0.5mm salt device 

6.2.4.1. Running the Bayesian Network Model 

With all the CPTs specified, the BN model is compiled and ‗run‘. The predictions of the 

remaining life using the PoF models and the MD values from Mahalanobis Distance analysis 

are used as evidence input for nodes (Salt125_PoF_RUL, Salt250_PoF_RUL, 

Salt500_PoF_RUL, Salt125_MDValues, Salt250_MDValues and Salt500_MDValues). The 

state for the node Time_Period, representing time for the experiment is selected as 

appropriate. The reasoning engine (using Hugin) for this Bayesian network model then 

performs propagation of probabilities and the updated probability distributions for the 3 

hypothesis nodes (Salt125_PredictedRUL, Salt250_PredictedRUL and 

Salt500_PredictedRUL) are obtained. The same procedure is repeated for the Bayesian 

network models for Dry and Water experiment using input data from Table 9-1 to Table 9-4 

in appendix section 9.3.5. 

6.2.4.2. Analysis of results 

Table 6-7 provides a timeline of the main events occurring for the salt experiment. The last 

column ‗Prediction Time‘ indicates the time at which evidence is propagated within the 

Bayesian network model to obtain updated probability distributions for predicted remaining 

life for all three salt devices. The BN model ran every day but the results in Table 6-8 only 

show updated predictions from approximately last 10 percent of the lifetime. A visual 

representation of the daily updated probability distribution graphs for the three iron wire 
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devices for all three experiments (salt, water and dry environments) can be found in appendix 

section 9.3.6. 

Time (days) Event Description Prediction Time (days) 

1 A Start of the experiment for 

all three environments 

1 

13 B Salt Environment 

Experiment stopped and 

devices undergo treatment 

11 

15 C Experiment for Salt 

environment is restarted 

16 

27 D Salt-0.125 device fails 24 

30 E Salt-0.25 device fails 27 

79 F Salt-0.5 device fails 77 

85 G Experiment is stopped for 

remaining two environments 

 

 

Table 6-7: Experiment Timeline 

The probability distribution graphs in Table 6-8 provide a numerical interpretation of the 

results of the salt experiment nodes Salt125_PredictedRUL, Salt250_PredictedRUL and 

Salt500_PredictedRUL. The state intervals are represented on the right hand side column 

within the nodes and the probability associated with each state interval is represented on the 

left hand side column as a percentage. At day 1, the probability distributions predict a 

remaining life in the range of 1500-2000 days for the Salt125_PredictedRUL node, 1000-

2000 days for the Salt250_PredictedRUL node and 4000-6000 days for the 

Salt500_PredictedRUL node. The predicted remaining lives are shorter than the expected at 

this stage due to higher corrosion rates in the beginning. At day 11, just before the iron wire 

devices were subjected to further salt treatment, the probability distributions predict a 

remaining life in the range of range of 2500-3000 days for the Salt125_PredictedRUL node, 

3000-3500 days for the Salt250_PredictedRUL node and 4000-5000 days for the 

Salt500_PredictedRUL node, which reflects healthy wires devices.  

At day 16, one day after the additional salt treatment was administered to the three iron 

devices, the probability distributions predicted the same remaining lives as for at day 11.  At 

day 24, three days before the Salt125 device fails, the probability distribution for the 

Salt125_PredictedRUL node shifts to the intervals (500 – 1500). At day 27, three days before 

the Salt250 device fails, the probability distribution for the Salt250_PredictedRUL node 
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remains similar to that as at day 11. At day 77, two days before the Salt500 device fails, the 

probability distribution for the Salt500_PredictedRUL remains similar to that as at day 11.  

Time 

(days) 

Salt125 Salt250 Salt500 

1 

 

11 

 

16 

 

24 

 

27 
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77 

 
 

Table 6-8: Updated Probability Distributions for Predicted Remaining Life for all three salt devices. 

The results for the analysis of the salt devices reveal that while the Bayesian network model 

can detect and predict that the Salt125 device will fail shortly, it fails to identify in time that 

the two devices Salt250 and Salt500 were about to fail. This could be accounted based on two 

factors. First, the discretisation of the nodes need to make use of smaller intervals thus 

representing the actual condition and behavior of the devices more accurately and the CPTs 

for those nodes need to be update accordingly. Secondly, it is suspected that the harsh salt 

treatment applied the second time on the devices triggered pitting corrosion, which is a failure 

mechanism that this Bayesian network model does not account for. Additionally, the accuracy 

of the prediction for the remaining life of the salt devices is not satisfactory and should be 

improved. However using the fusion based prognostic tool for remaining life prediction 

provides better results compared to using the model-driven prognostic tool as the fusion based 

prognostic tool incorporates data from the diagnostic tool when available to update the 

remaining life prediction. 

6.3. Summary 

This chapter describes the trial experiment carried out to test the diagnostic and prognostic 

tools developed. The experiment consisted of three sets of three different iron wire devices 

placed in three desiccators with varying relative humidity conditions (labelled: salt, water and 

dry). The three iron wire devices are initial versions of canary and parrot sensor devices with 

the thinner wire device representing a canary device and the thicker one representing a parrot 

device. The experiment was run until the three wire devices in the salt environment all failed.  

There was some measurement data loss due to the trial experiment being interrupted several 

times for various reasons. Additionally, the changes in room temperature proved to be high 

enough to affect the electrical resistance readings of the two thinnest iron wires. Thus, the 

noise due to temperature changes had to be removed from the electrical resistance readings 

before being used in the diagnostic and prognostic tools.  
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The predicted remaining life of the iron wire devices was calculated using the PoF model 

developed in chapter 4 based on the electrical resistance readings taken for the first ten days. 

Similarly, readings for the first ten days were used as training data for Mahalanobis distance 

analysis, which is used within the data-driven diagnostic tool. Diagnostics using Mahalanobis 

distance analysis was then performed on a daily basis. Finally, the fusion based prognostic 

tool implemented using Bayesian network model was used to provide probability distributions 

of predicted remaining life for the iron wire devices.  

The results obtained using the model-driven prognostic tool using a PoF model, the data-

driven diagnostic tool using Mahalanobis distance analysis and the fusion based prognostic 

tool are promising. The PoF model itself requires one year‘s worth of electrical resistance data 

before prediction can be made but was here adapted for the length of time the experiment ran 

and therefore could not be validated in a formal manner. The Mahalanobis distance analysis 

of the three iron wire devices in the salt environment detected deviations from normal/healthy 

behavior at the earliest time possible, although not all the graphs show this due to missing 

measurement data. The Bayesian network model needs optimization regarding the states and 

CPTs of the node as it is not sensitive enough to reflect the true effect of even small changes 

in predicted remaining life from PoF model and diagnostic information from Mahalanobis 

distance analysis.  

The test results were very informative and revealed that the diagnostic and prognostic tools 

have low robustness when dealing with noisy and/or missing data. This trial experiment only 

investigated one possible design of canary/parrot devices. More designs of the devices need to 

be trialed in order to test and validate first whether the devices can monitor performance 

parameters that indicate particular failure mechanisms and second, whether the diagnostic and 

prognostic tools developed can provide results with accuracy.  
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7. Conclusion and Future Work 

This thesis has focused on developing diagnostic and prognostic tools in order to predict 

remaining life of aged structures based on damage caused by corrosion and investigating the 

use of low-cost sensor devices to monitor aged iron structures. A summary of the research 

work is presented in section 7.1. The contributions to the field of diagnostics and prognostics 

in aged structures are discussed in section 7.2. Recommendations for diagnostic and 

prognostic tools for Cutty Sark iron structures are made in section 7.3. Finally, the way 

forward and possible directions for future research are outlined in the last section. 

7.1. Summary of Research 

The first part of this thesis described the deterioration problem that affects aged structures, 

especially corrosion damage in aged iron structures. The Cutty Sark is used as an example 

application for the diagnostic and prognostic tools developed for monitoring of aged 

structures. Background information is provided regarding monitoring of aged marine 

structures as well as the corrosion mechanisms that take place in such structures. A literature 

review of diagnostic and prognostics techniques follows describing the different types of 

models available and in development for monitoring of engineering structures and systems.  

While there are many models and algorithms developed for diagnostic and prognostic 

purposes, currently diagnostic tools have enjoyed more success than prognostic tools in 

application in the real world. Multiple challenges remain in the application of diagnostic and 

prognostics to complex structures. These range from lack of appropriate sensors, little 

understanding of physical behavior of the structure, lack of historical data to the 

interdisciplinary effort required to integrate diverse systems together to develop robust tools. 

Added to this, problems often particular to monitoring of aged iron structures are that budgets 

are often limited regarding implementation of monitoring system. In addition, iron structures 

that have experience corrosion for over a century, usually have corrosion distributed unevenly 

across structure and can vary from one structure to another to due varying environmental 

conditions being subjected to.   

The second part of thesis introduced the concept of novel sensors (canary and parrot devices) 

and presented the diagnostic and prognostic tools developed for monitoring corrosion damage 
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and predicting remaining life in aged iron structures. A Physics-of-Failure (PoF) model is 

developed based on the linear bi-logarithmic law for corrosion to predict remaining life of an 

iron structure as a model-driven prognostic tool. Currently the only influencing factor is time 

with this model representing the general rule that corrosion decreases with time due to 

protective layer buildup on the iron structure. The data-driven diagnostic tool developed uses 

Mahalanobis distance as the anomaly detection algorithm taking performance parameters as 

input. A fusion based prognostic tools is also developed using Bayesian networks  where 

probability distributions of predictions of remaining life are processed by integrating 

predictions of remaining life (using PoF) with information of any anomaly detected in the 

structure(using MD analysis).  

The tools developed were tested using a demonstration example based on simulation data 

(Chapter 5) and data obtained from a trial experiment (Chapter 6). While the PoF model 

performed reasonable well for both tests, a comprehensive PoF model for corrosion-based 

damage would involve other environmental variables. The same challenge applies for the MD 

analysis technique employed in the diagnostic tool. The more simulation and experimental 

data for different failure mechanisms and varying conditions, available for use in the training 

data set, the better the MD analysis will perform.  

Using Bayesian networks as the fusion approach for the prognostic tool provides many 

advantages. While the accuracy of predictions is low due to lack of correlation information, 

experimental data and more expert knowledge, once more input is available, it can be added 

to the Bayesian network models developed so far with relative ease. Currently due to initial 

lack of information and knowledge regarding corrosion processes in iron structures, the 

Bayesian network model provides a good starting point to predict remaining life of a structure 

as one can choose to input as little or as much information available to them at one point into 

the Bayesian network model to obtain predictions of remaining life. Additionally, when more 

Physics-of-Failure models are built for other failure mechanisms, these data processed from 

these models can be incorporated relatively easily into the Bayesian network models thus 

further increasing the accuracy of the predictions of remaining life. The same applies for data 

processed from data-driven diagnostic tools that could implement other algorithms to detect 

anomalies. 
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7.2. Research Contributions and Impact 

This thesis makes several contributions in the field of diagnostics and prognostics for aged 

structures and these are summarized as follows: 

 Sensor monitoring system - A bespoke sensor monitoring system comprising of 

canary and parrot devices has been devised in order to acquire environmental and 

performance data for the iron structures around the ship. The use of canary and parrot 

devices provides a practical low-cost solution regarding the requirement that only non-

destructive measuring techniques can be used for aged structures of great historical 

value. Currently temperature and relative humidity (environmental conditions) and 

electrical resistance (performance) are being measured using the sensor monitoring 

system and has demonstrated promising results. Additionally the information acquired 

from the sensor monitoring system will increase understanding of how corrosion 

forms and progresses enabling engineers and maintenance personnel to control and 

predict corrosion on structures better.  

 Diagnostic Tools to detect damage in aged iron structures - A diagnostic tool is 

implemented to detect corrosion-related damage in aged iron structures using a 

distance measure technique called Mahalanobis distance. For the demonstration 

example and the trial experiment, electrical resistance was used as the performance 

parameter for corrosion related-damage. As more performance parameters are 

identified and monitored, the same distance measure technique can be used to detect 

anomalies and it has the added advantage of removing and correlation between 

performance parameters that might influence the damage detection.  

 Model-driven prognostic tool to predict the remaining life of iron structures - A 

prognostic algorithm is developed using PoF approach based on the linear bi-

logarithmic law for corrosion. After initial measurements of corrosion rate are 

acquired, the prognostic algorithm is used to predict remaining life of the structure. 

This prognostic algorithm is adapted into two slightly different versions for use on the 

demonstration example and the trial experiment. The prognostic algorithm can be run 

on a regular basis based on the frequency of corrosion rate measurements and the 

amount of history data to be incorporated. 

 Fusion-based prognostic tool - A novel fusion approach using Bayesian networks is 

employed to develop to a prognostic tool that performs prediction of remaining life 
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with integrated uncertainty analysis. It incorporates the results from the diagnostic tool 

and the PoF-based prognostic tool and provides probability distributions of predicted 

remaining life. This is a first and an original application of the fusion technique for 

diagnostic and prognostic purposes for aged structures. 

 Demonstrate PHM Framework - A notional example consisting of a canary and parrot 

device pair under the effect of various scenarios was presented. Using the diagnostic 

and prognostic tools developed, the prediction of remaining life was calculated and 

compared with expected values for each scenario. Additionally, the diagnostic and 

predictive capabilities of the tools developed were also put to test using experimental 

data. 

 Publications – The tools developed and preliminary results from the research work 

have been disseminated in three international conferences and two journal papers.  

7.3. Recommendations for Diagnostic and Prognostic tools for 

Cutty Sark iron structures 

Based on the research work carried out so far on diagnostic and prognostic tools for aged iron 

structures, the following set of recommendations are proposed for the development of such 

tools for Cutty Sark ship: 

 Instrumentation for Measurement - Once the parameters to be measured are known is 

it important to use instrumentation of the required accuracy for carrying out 

measurement on sensors and the appropriate data acquisition system. 

 Sensor devices - Practical issues such as ease of installation, use and maintenance are 

as important as the accuracy and reliability of the measurements for low-cost sensor 

devices. In that respect, any new or adapted designs of the sensor devices should take 

into account the measurement equipment that will be integrated as well as the actual 

gathering and transfer of the data. Additionally, the relation between a canary sensor 

device, parrot sensor device and actual structure should be clear. Since the sensor 

devices are measuring corrosion processes (which is normally a slow and long-term 

deterioration mechanism), the sensor devices themselves need to have long remaining 

life and be able to maintain long-term reliability of the measurements. 

 Consider all possible sources of noise - For example in the experiment carried out (as 

detailed in chapter 6), even slight changes in room temperature affected the electrical 



 

~ 179 ~ 
 

resistance of iron wires and the measurement data had to be de-noised before being 

used for diagnostic and prognostic analysis. 

 Operational and Environmental Conditions - As much as possible all the operation and 

environmental settings should be investigated such that the structure‘s behaviour can 

be understood from all perspectives. 

 Training data - It is imperative to collect data from the actual structure and incorporate 

this data in the development of any diagnostic and prognostic tool, this is because 

simulated data cannot fully represent the conditions and behaviour of the actual 

structure and thus tools developed using solely simulation data will often provide poor 

results 

7.4. Areas for Future Research 

The diagnostic and prognostic tools developed for aged structures need further development 

in order to be able to deploy it as an application for real-world projects. There are several 

potential extensions to the work presented in this thesis and future research could expand 

along following areas: 

 Further development of the sensor devices - While the sensor devices developed have 

been useful in terms of proof of concept for the sensor monitoring system, there is still 

much to be accomplished before they are operational. Currently the sensor devices 

developed are used for electrical resistance measurement only. Temperature and 

relative humidity sensors could be integrated into the canary/parrot sensor devices. 

More designs of the sensors need to be made to represent the different structures to be 

monitored. These sensors require testing under varying environmental and loading 

conditions in order to obtain robust correlations. Once sufficiently large set of data is 

obtained for the canary/parrot sensor devices as well as the actual structures being 

monitored if possible, the correlation factors can be determined more accurately.  

 Extension of the PoF Models - The current PoF model used for remaining life 

prediction only uses time as the factor influencing the corrosion rate. With additional 

experiment trials studying the effect of other factors as sulphur concentration and 

chloride concentration, the PoF model could be extended to include them. 

Furthermore, PoF models for failure mechanisms other than corrosion should be 

investigated.  
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 Investigation of anomaly detection algorithms - The Mahalanobis distance analysis 

has been trained to detect one main form of failure, that is, is uniform corrosion. Once 

other failure mechanisms are identified, the Mahalanobis distance analysis can also be 

trained to those failures. Apart from Mahalanobis Distance, other distance measures 

such as Euclidean Distance can be explored for use in simpler cases where no 

correlation of data expected.  

 Further Development of Bayesian Network models - Various improvements can be 

made on the Bayesian network models designed. Currently, discrete nodes are used to 

represent continuous variables, as they are more convenient to manipulate in Hugin 

tool. These nodes could be converted to continuous ones to better capture the original 

distributions and increase the precision of the variable values. The structure of the 

Bayesian network models can be extended to include other variables representing 

other types of measurements such as structural distortion, stress, etc.  

The Bayesian network models developed so far are static Bayesian network models. That is, 

they do not intrinsically account for historical values of health observations and rely primarily 

on the PoF model to perform initial predictions. The models can be extended into temporal 

Bayesian network models where the models are structured temporally as well as organised 

into layers. In such a model, the transition function would be time-dependent.  

The derivation of the CPTs of the Bayesian network models needs optimising through input 

from more experts as well as data gathered from further lab experiments. While in the 

beginning, it is acceptable to rely more on input from experts to derive CPTs, it is expected 

that once more data in acquired through experimental trials and from the sensor monitoring 

system, the CPTs should be revised accordingly. Thus, input bias that often results from 

elicitation of probabilities from experts is reduced. 

 Simulation of failure data - Since the goal of maintenance is to prevent failure, 

allowing a structure to fail to obtain failure data can be expensive and in some cases 

impossible even (e.g. safety critical systems). As a result, it is hard to obtain failure 

data from real systems, which can be used to develop diagnostic and prognostic tools. 

Thus in order to obtain failure data, simulation needs to be carried out based on 

analytical models. The demonstrator example used in chapter 5 used simulation data 

based on corrosion rates obtained from literature. The simulation data can be further 
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enhanced by adding the influence of more factors on corrosion. Data can also be 

simulated for many more realistic scenarios (e.g. varying periods of time to which the 

structures is subjected to environmental conditions and other load conditions as well 

as varying the strengths of the environmental and load conditions).  

 Validation of Models - The proposed diagnostic and prognostic tools have been 

validated using a demonstrator example and the preliminary experiment carried out. It 

is however necessary to test and validate the tools further using a real application. 

Once the sensor devices have been finalised, the tools developed need to be tested for 

accuracy and robustness through trial runs with the sensor devices placed within the 

actual structures being monitoring based on a formal validation and testing plan. 
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9. Appendix 

9.1. Additional PHM Framework Information 

9.1.1. Additional Parrot Device Designs 

 

Figure 9-1: Parrot Device Designs (a) 

 

Figure 9-2: Parrot Device Designs (b) 
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9.1.2. Additional Canary Device Designs 

 

Figure 9-3: Canary Device Designs (a) 

 

Figure 9-4: Canary Device Designs (b) 

 

 

Figure 9-5: Canary Device Designs (c) 
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9.2. Demonstrator Example 

9.2.1. MD Analysis of Canary and Parrot Devices 

 

 

Figure 9-6: MD Analysis of Max Data for 

Scenarios 2 & 3 for Canary 

 

Figure 9-7: MD Analysis of Min Data for Scenarios 

2 & 3 for Canary 

 

Figure 9-8: MD Analysis of Min Data for Scenarios 

4 & 5 for Canary 

 

Figure 9-9: MD Analysis of Max Data for 

Scenarios 4 & 5 for Canary 

 

Figure 9-10: MD Analysis of Max Data for 

Scenarios 2 & 3 for Parrot 

 

Figure 9-11: MD Analysis of Max Data for 

Scenarios 2 & 3 for Parrot 
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Figure 9-12: MD Analysis of Max Data for 

Scenarios 4 & 5 for Parrot 

 

Figure 9-13: MD Analysis of Max Data for 

Scenarios 4 & 5 for Parrot 

 

9.3. Additional Experimental Trials Information 

9.3.1. Temperature and Relative Humidity 

 

Figure 9-14: Temperature readings for experiment 
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Figure 9-15: Relative Humidity readings for experiment. 

9.3.2. Overlay Graphs of Temperature and Electrical Resistance for Dry and 

Water Environments 

 

Figure 9-16: Overlay of Temperature and Resistance (0.125mm) -Water Environment 
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Figure 9-17: Overlay of Temperature and Resistance (0.25mm) -Water Environment 

 

Figure 9-18: of Temperature and Resistance (0.5mm) -Water Environment 

 

Figure 9-19: of Temperature and Resistance (0.125mm) -Dry Environment 
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Figure 9-20: of Temperature and Resistance (0.25mm) -Dry Environment 

 

Figure 9-21: of Temperature and Resistance (0.5mm) -Dry Environment 

9.3.3. Difference in electrical resistance before and after adjustment of 

temperature effect 

 

Figure 9-22: Resistance Difference before and after adjustment for temperature effect (0.125mm wire in 

water environment) 
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Figure 9-23: Resistance Difference before and after adjustment for temperature effect (0.25mm wire in 

water environment) 

 

Figure 9-24: Resistance Difference before and after adjustment for temperature effect (0.5mm wire in 

water environment) 

 

Figure 9-25: Resistance Difference before and after adjustment for temperature effect (0.125mm wire in 

dry environment) 
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Figure 9-26: Resistance Difference before and after adjustment for temperature effect (0.25mm wire in 

dry environment) 

 

Figure 9-27: Resistance Difference before and after adjustment for temperature effect (0.5mm wire in dry 

environment) 

9.3.4. MD values for Analysis of Water Environment 

 

Figure 9-28: MD Values for experiment on Water - 0.125mm 
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Figure 9-29: MD Values for experiment on Water - 0.25mm 

 

Figure 9-30: MD Values for experiment on Water - 0.5mm 

 

9.3.5. Bayesian Network Preparation Tables for CPTs 

Dry/Water125 Dry/Water250 Dry/Water500 

Mean(days) Variance Mean(days)  Variance Mean(days) Variance 

1222 40131 1539 63588 42148 47722788 

Table 9-1: PoF model-based input data 

 

 

Time (days) Dry/Water125 

Mean  

MD Value 

Standard 

Deviation 

MD 

Threshold 

Variance 

1
st
 Part  2.73 0.97 0.93 3.69 

Middle Part 1.24 0.74 0.55 1.98 

Last Part  2.73 0.97 0.94 3.70 

Table 9-2: Input data from MD Analysis Results 
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Time (days) Dry/Water250 

Mean  

MD Value 

Standard 

Deviation 

MD 

Threshold 

Variance 

1
st
 Part  2.72 0.05 0.00 2.77 

Middle Part 1.24 0.74 0.55 1.98 

Last Part  2.45 0.00 0.00 2.45 

Table 9-3: Input data from MD Analysis Results 

 

Time (days) Dry/Water500 

Mean  

MD Value 

Standard 

Deviation 

MD 

Threshold 

Variance 

1st Part  2.73 0.97 0.94 3.70 

Middle Part 1.23 0.74 0.54 1.96 

Last Part  2.73 0.97 0.94 3.70 

Table 9-4: Input data from MD Analysis Results 

 

9.3.6. Visual Representation of Bayesian Network Analysis Results  

 

Figure 9-31: Probability Distributions of Predicted Remaining Life for Dry-0.125 device 
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Figure 9-32: Probability Distributions of Predicted Remaining Life for Dry-0.25 device 

 

 

Figure 9-33: Probability Distributions of Predicted Remaining Life for Dry-0.5 device 
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Figure 9-34: Probability Distributions of Predicted Remaining Life for Water-0.125 device 

 

 

Figure 9-35: Probability Distributions of Predicted Remaining Life for Water-0.25 device 
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Figure 9-36: Probability Distributions of Predicted Remaining Life for Water-0.5 device 

 

 

 

Figure 9-37: Probability Distributions of Predicted Remaining Life for Salt-0.125 device 
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Figure 9-38: Probability Distributions of Predicted Remaining Life for Salt-0.25 device 

 

 

Figure 9-39: Probability Distributions of Predicted Remaining Life for Salt-0.5 device 

 


