
SARK : A TYPE-INSENSITIVE RUNGE-KUTTA CODE

BY

KEVIN CHRISTOPHER! WADE
BSc (Hons)

Thesis submitted to the Council for National Academic Awards in
partial fulfilment of the requirements for the Degree of Doctor of
Philosophy.

Centre for Numerical Modelling and Process Analysis
School of Mathematics, Statistics and Computing

Thames Polytechnic
London

September 1987

TO MY PARENTS

ABSTRACT
A novel solution method based on Mono-implicit Runge-Kutta methods has
been fully developed and analysed for the numerical solution of stiff
systems of ordinary differential equations (ODE). These Backward
Runge-Kutta (BRK) methods have very desirable stability properties
which make them efficient for solving a certain class of ODE which are
not solved adequately by current methods.

These stability properties arise from applying a numerical method to
the standard test problem and analysing the resulting stability
function. This technique, however, fails to show the full potential of
a method. With this in mind a new graphical technique has been derived
that examies the methods performance on the standard test case in much
greater detail. This technique allows a detailed investigation of the
characteristics required for a numerical integration of highly
oscillatory problems.

Numerical ODE solvers are used extensively in engineering applications,
where both stiff and non-stiff systems are encountered, hence a single
code capable of integrating the two categories, undetected by the user,
would be invaluable. The BRK methods, combined with explicit
Runge-Kutta (ERK) methods, are incorporated into such a code. The code
automatically determines which integrator can currently solve the
problem most efficiently. A switch to the most efficient method is
then made. Both methods are closely linked to ensure that overheads
expended in the switching are minimal. Switching from ERK to BRK is
performed by an existing stiffness detection scheme whereas switching
from BRK to ERK requires a new numerical method to be devised. The
new methods, called extended BRK (EBRK) methods, are based on the BRK
methods but are chosen so as to possess stability properties akin to
the ERK methods. To make the code more flexible the switching of order
is also incorporated.

Numerical results from the type-insensitive code, SARK, indicate that
it performs better than the most widely used non-stiff solver and is
often more efficient than a specialized stiff solver.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisors Dr. Will

Richards and Dr. Martin Everett for their interest and support in my

work. In particular my appreciation is further extended to Dr.

Richards for introducing me to the project, and for his ongoing

assistance.

I also wish to thank Professor John Butcher, Dr. Jeff Cash, Dr. Graeme

Cooper and Dr. Roland England for their advice and many useful

discussions.

I am also grateful to the computer staff at Thames Polytechnic for

their continuous help in providing resources, and for their general

assistance whenever computer problems arose.

I also wish to thank my family for their support during my studies and

all my colleagues and friends at Thames Polytechnic for making my stay

there a most enjoyable one. In particular, I am extremely grateful to

my fiancee Priti Shah for her careful checking of this manuscript and

her constant encouragement.

Finally, I would like to thank the Science and Engineering Research

Council for their financial support in all the work reported in this

thesis.

NOMENCLATURE

Arg(q) Argument of complex q

E(q) General stability function of a Runge-Kutta method

Ee (q) Stability function of ERK method

Eb (q) Stability function of BRK method

eps Smallest machine representable number such that l+eps>l

exp(a) exponentional function, ea

h Step size

1 »J Superscripts for iteration loops

ji Subscripts for loop counts

J Jacobian matrix of the system under consideration

M Approximation to the iteration matrix

N Dimension of ODE system

p Order of the method

q step size, h, multiplied by complex x of scalar test problem

Ri,j Fade" i,j approximation

Re(q) Real part of complex q

r Residual vector

S(x) Stiffness ratio at position x

s Number of stages of the method

t,x Independent variables

xn x-value at nth step

y Dependent variable

yn Numerical solution at position xn

y(xn) Analytical solution at position xn

A Displacement vector

e Error vector

X Real or complex scalar

X^ General eigenvalues of Jacobian of system

9 General Angle

Eigenvector corresponding to X

|a| Modulus of complex a

llall Norm of a

CONTENTS PAGE

ABSTRACT

ACKNOWLEDGEMENTS

NOMENCLATURE

CHAPTER 1 : INTRODUCTION 1

1.1 The problem considered 1

1.2 Stability 4

1.3 Stiffness 6

1.4 Numerical integrators 7

1.4.1 Linear multistep methods 7

1.4.2 Runge-Kutta methods 9

1.5 Selection of an appropriate numerical method 11

1.6 Overview of the thesis 13

CHAPTER 2 : PREDICTING PERFORMANCE 17

2.1 Extension of regions of absolute stability 17

2.2 Application to highly oscillatory problems 24

2.3 Numerical results 31

2.4 Conclusions 34

CHAPTER 3 : BACKWARD RUNGE-KUTTA METHODS 51

3.1 Derivation of Backward Runge-Kutta methods 51

3.2 Order of Backward Runge-Kutta methods 52

3.3 Absolute stability regions of Backward

Runge-Kutta methods 53

3.4 Other stability properties of Backward

Runge-Kutta methods 53

3.5 Implementation details 61

3.6 Problems considered and numerical results 69

CONTENTS PAGE

CHAPTER 4 : ERROR CONTROL 37

4.1 Embedding 37

4.2 Inverse embedding 39

4.3 Richardson extrapolation 91

4.4 Implementation details 92

4.5 Numerical results 93

CHAPTER 5 : PROBLEMS ASSOCIATED WITH BACKWARD RUNGE-KUTTA

METHODS 102

5.1 Singular iteration matrix 102

5.1.1 Approximate factorisation 104

5.1.2 Application of approximate factorization 108

5.1.3 Computing to extra precision 112

5.1.4 Decrease order 113

5.2 Incorrectly calculated iteration matrix 114

CHAPTER 6 : TYPE-INSENSITIVE CODE 121

6.1 Motivation 122

6.2 Switching integrator 124

6.2.1 Switching from explicit method to

implicit method 124

6.2.2 Switching from implicit method to

explicit method 128

6.3 Switching order 132

6.3.1 Order reduction 133

6.3.2 Increasing order 134

6.4 General comments 135

CONTENTS PAGE

6.5 Numerical results 136

6.5.1 Integrating non-stiff problems 136

6.5.2 Integrating stiff problems 137

6.5.3 General results 138

CHAPTER 7 : NUMERICAL COMPARISIONS 165

7.1 The Problems considered 166

7.2 Non-stiff problems 169

7.2.1 Group A 169

7.2.2 Group B 169

7.2.3 Group C 169

7.2.4 Group D 170

7.2.5 Group E 170

7.2.6 Summary of non-stiff results 170

7.3 Stiff problems 171

7.3.1 Group A 171

7.3.2 Group B 171

7.3.3 Group C 172

7.3.4 Group D 172

7.3.5 Group E 173

7.3.6 Summary of stiff results 173

CHAPTER 8 : DISCUSSION AND CONCLUSIONS 200

LIST OF REFFERENCES 204

APPENDICES 209

Appendix A Non-stiff results from DETEST package 209

Appendix B Stiff results from DETEST package 222

Chapter 1 : INTRODUCTION

In this chapter the general problem to be solved will be defined and

sufficient conditions for the existence of a unique solution stated.

The general concept of stability and stiffness as applied to Ordinary

Differential Equations (ODEs) will be introduced. An outline of some

of the methods commonly used in the numerical solution of ODEs will be

discussed and finally a brief overview of the remainder of this thesis

will be presented.

1 . 1 The problem considered

This thesis is concerned with the numerical integration of the initial

value problem,

 =f 1 (x,y 1 ,...yN) Yi(a) = r\i
dx

(1.1)
dyN
 = fN (x,y 1 , . . .yN) yftU) = nN
dx

x > a

ie. a system of first order ODEs. Such systems may arise naturally or

from reducing a higher order equation to a system of first order

equations. Many engineering processes can be expressed mathematically

as ODEs, Bjurel et al.[1970], and hence the efficient and accurate

numerical solution of such systems plays an important role in industry.

By expressing f and y as vectors, (1.1) may be rewritten as

dy
 = f(x,y) (1.2)
dx

x > a , y(a) = n

Before a numerical solution to (1.2) is obtained it is natural to

determine conditions under which a unique solution does exist. For the

initial value problem (1.2) suppose that f(x,y) is continuous in a

region D where

D = { (x,y): a < x < b, lly« < » } (1.3)

then suppose there exists a finite Lipschitz constant, L, such that

Hf(x,y) - f(x,z)ll < Llly-zll (1.4)

for every pair of points (x,y) and (x,z) in D. Then there exists a

unique function y(x) which satisfies (1.2), Henrici[1962] . Clearly

these conditions are very demanding and can accordingly be weakened to

allow a unique solution in some interval |x-a|. Assume that f(x,y) is

continuous in some interval D where

D = { (x,y): |x-a| < «, lly-bll <P } (1.5)

then suppose there exists a finite constant L such that

llf(x,y) - f(x,z)ll < Llly-zll (1.6)

holds for every pair of points (x,y) and (x,z) in D and let

M = max Hf(x,y)ll (1.7)
(x,y)eD

and

7 = min(«,0/M) (1.8)

then there exists a unique solution y(x) of (1.2) in the interval

|x-a|<7. Repeated use of the above, over a sequence of intervals which

together cover the desired integration range, allows a unique solution

over the complete range to be proved.

In practice integration of (1.2) is performed by marching from x = a up

to some finite b in discrete steps, thus solutions are generated at a =

x0 < Xj < . . . < XM = b. Such methods are known as discrete variable

methods. A general k-step class of such a method is given by,

h) n=0(l)M-k (1.9)

given starting values
- 2 -

yj. = Si(h) i=0(l)k-l

where Mh = b-a, h = xn+1 - xn here assumed constant and the «js are

constant. If *f is independent of yn+k then the method is explicit

otherwise it is implicit. Most of the common discrete variable methods

are encompassed in (1.9), eg. selecting

k = 1,

s i-i
*f =

and « 1 = 1

(where the constants depend upon the particular method and are defined

later) will produce an s-stage, one step (explicit) class of method

known as Runge-Kutta methods. The simplest of these being the Euler

method,

+ hk i

Generally a solution at ynn-i is produced by taking a sample of the

function at discrete points between xn and xn+ t , producing a set of s

k-values. A linear combination of these k-values are then added to the

solution produced at xn .

The ability of a numerical method to generate a series of solution

values at a set of node points is, however, no guarantee that the

solution produced is a reasonable approximation to the true solution.

The error produced by the method must be investigated. Global

truncation error is defined by
*

en = V< xn) - Vn (1.11)

where y(xn) denotes the true, but usually unknown, solution at xn .

Clearly as the step size of the numerical method is reduced the

solution produced by it should approach the true solution ie.

- 3 -

Max n en+kll -» 0 as h » 0 (1.12)
o<n<M-k

A method which satisfies (1.12) is said to be convergent. From a

numerical point of view it is clearly inappropriate to control (1.11)

at each step, as the true solution is unknown. The quantity which is

usually controlled is the local truncation error, Tn+k , of the method.

This can be thought of as the error introduced by the formula at each

step assuming that no errors have been previously created, ie.

Tj = y(xn) - Sj(h) j=0(l)k-l (1.13)

k
Tn+k = E^y^n-Hi) ~ h*f (xn ,y(xn4.k) , . . . ,y(xn) ,h) n=0(l)M-k

=o

The question of 'how accurate is the numerical solution?' can, in part,

be answered by considering the order of accuracy of the local

truncation error. A method of order p is defined as having

Max HTn+k ll = 0(hp+1) (1.14)
n=0(l)M-k

and a method of order at least 1 is said to be consistent. Clearly a

'usable' numerical method must be consistent. Consistency, however,

does not imply convergence, Hall and Watt [1976].

1.2 Stability

Unfortunately the convergence of a method only deals with the behaviour

of the method as h tends to zero and in practice h must be non-zero.

Clearly any (stability) constraints of a method will depend upon the

problem being solved, thus some standard equation is required. The
i

equation usually considered is the one dimensional test equation,

y' = Xy y(0) = 1 (1.15)

where X may be complex. By applying a Runge-Kutta method to (1.15) a

stability function, E(q), is formed which will, in general, be a

rational polynominal in q=hx. The absolute stability region of a

- 4 -

numerical method is defined to be a region in the complex plane for

which E(q) is less than one in modulus. By ensuring that q remains in

this stability region then propogated errors will decay as the solution

proceeds. If instead of a single equation a linear system of N

equations is considered, ie.

y' = Jy y(o) = A (i.ie)

where J is a constant NxN matrix, A is given and J has eigenvalues \±

for i=l(l)N, then instead of q we must consider q^ = hX| for i = l(l)N.

We must ensure that for all q^ such that Re(q^) is less than zero, q^

lies within the region of absolute stability.

When encountering problems for which Re(Xj), for some i, is large and

negative, then clearly a finite stability region will restrict the step

size of the method. When solving such problems the corresponding q^

must always be included in the stability region of the method. Thus

the stability region must include some substantial portion of the

left-hand half plane. If the stability region of a method includes the

whole of the left-hand half plane then the method is said to be

A-stable. A method whose stability region is exactly the left-hand

half plane is said to be a precisely A-stable method.

No explicit k-step method can have this property and the highest

attainable order of an A-stable implicit Linear Multistep method is

two, Dalhquist[1963]. Clearly this stability property places a severe

restriction on the numerical method and in particular Linear Multistep

methods.

A less severe restriction is that of A(<x)-stability where <x is an angle

in [0,ir/2], as shown in Figure 1.1

 5

A-stability or A(<x)-stability examines the absolute stability region

ie. the rate at which the growth of the true solution to (1.15) is

modelled by the numerical method. By considering the rate at which the

solution grows relative to the exact solution a relative stability

region can also be defined. (Unfortunately the term relative stability

region is used to mean something quite different in the context of

linear multistep methods, Lambert[1973]). Wanner et al.[1978] refer to

this region as the order star of the method. The absolute stability

region and order star of the unique 1-stage 1st order Runge-Kutta

method (Euler) are shown in Figure 1.2.

As Re(q) * -« in (1.15) the ratio y(xn+1)/y(xn) -» 0, hence a numerical

method that is to realistically model this ratio must also produce this

behaviour. By applying a Runge-Kutta method to (1.15) and forming the

corresponding numerical ratio, Yn+i/Vn' tne L-stability of that method

can be assessed. A method is said to be L-stable, in addition to being

A-stable, if when applied to (1.15)

Limit * 0 (1.17)
Re(q)->-» yn

holds or L(a)-stable if the method is A(<x)-stable.

1.3 Stiffness

In many engineering applications the system of ODEs being integrated

possesses both fast and slow transients which must be followed

correctly. This phenomenon is known as stiffness and must be correctly

modelled by the numerical method. The first formal definition of

stiffness was given by Lambert[1973] . A linear system y 1 = Ay + o(x)

is said to be stiff when

- 6 -

i) Re(\i) < 0 i=l(l)N and

ii) S(x) = Max iRe)! / Min (Re) | » 1 (1.18)

where X^ , i = l(l)N are the eigenvalues of the NxN matrix A. This

definition can also be used for non-linear systems if the eigenvalues

of af/ay are considered. The system will then be stiff in an interval

I(x) if i) and ii) above are satisfied. The quantity S(x) defines the

(local) stiffness ratio of the problem.

This definition is acceptable if it is not taken too literally. It
*

should only be used as a guide, as stiffness is more complicated than

this and depends upon the solution method, the problem being solved and

the local accuracy requirements. An improved definition of stiffness is

that of Shampine[1975] , which states that a problem is stiff when the

step length is restricted for reasons of stability. But clearly no

numerical figures can be attributed to this definition and (1.18) is

still useful as the formal definition.

1 .4 Numerical integrators

The general class of k-step integration method (1.9) incorporates most

of- the commonly used methods with the Euler method being the simplest

and most basic. This thesis although restricted to Runge-Kutta

methods, will use other integrators for comparison purposes, and these

are described below along with a review of Runge-Kutta methods.

1.4.1 Linear Multistep methods

A class of methods, based upon past information, are Linear Multistep

methods, these have the general form,

(1.19)

- 7 -

If |3k = 0 («fc * 0) then the method is explicit otherwise it is

implicit. When such a method is explicit then (1.19) can be solved

directly otherwise some iterative scheme must be employed. One class

of linear multistep methods commonly used for the numerical integration

of non-stiff problems are Adams methods. These methods are derived by

replacing the function in (1.2) by a polynomial and integrating this,

Shampine and Gordon[1975].

The Adams methods incorporated in the NAG library have explicit

predictors, chosen to maximize the stability region, and implicit

Adams-Moulton methods for the corrector in a PECE implementation. The

implicit method is solved by means of a simple functional iteration and

the error estimation is performed by Milne's device. The NAG

implementation incorporates methods of orders one to twelve.

The most commonly used methods for solving stiff systems are the

Backward Differentiation Formulae (BDF) popularized by Gear[1971].

These methods have the general form

k
(1.20)

Although these are k-step methods, they only require one function

evaluation per iteration at each step. The implicit equations are

solved by a Quasi-Newton method. The BDF methods, orders one to five,

are used in conjunction with starting values obtained by extrapolation

using a divided difference table. The major handicap with BDF methods

is that their stability properties deteriorate as the order is

increased. When applied to (1.15), BDF methods of order greater than

six are not A(0)-stable and hence they are of little value. Although

the number of function evaluations required is low their overheads are

- 8 -

high. Craigie[1975] describes in detail the complexity of a modern

version of Gear's method.

1.4.2 Runge-Kutta methods

The general form of an s-stage Runge-Kutta method is

= Vn (1.21)

ki xn + hbi- vn 1-1(1)8

The constants ajj and c^ characterise the particular method and

(1.22)

The coefficients can be expressed in terms of a matrix system, called

the Butcher matrix of the method. This is

's

1l

ls .
(1.23)

. ass or

where the sxs matrix A is strictly lower triangular for an explicit

method, lower triangular for a semi-implicit (or semi-explicit) method

and full for a fully implicit method.

Due to their simplicity, explicit methods have been very popular and

high order methods have been derived. The minimum number of stages

required to solve the resulting non-linear order constraint equations

is shown in Table 1.1. A by the number of stages denotes that the

minimum number of stages is unproven but methods with this number of

stages have been derived.

As will be shown in section 2.2, no explicit Runge-Kutta method can

- 9 -

possess an infinite stability region and hence the step must be

severely restricted when solving problems with fast transients. For

this reason implicit Runge-Kutta (IRK) methods have become very

attractive, as they can be A-stable for high orders. Ehle[1968] proved

that an s-stage 2s order IRK method can be A-stable. However IRK

methods suffer from a severe practical disadvantage. If an s-stage

method is used to solve (1.2), then a system of sN implicit algebraic

equations have to be solved at each step. By using the Newton

iteration process this involves approximately s 3 N 3 multiplications for

the LU factorization of the iteration matrix and s 2 N z multiplications

for the back solvers. This is clearly expensive, expecially for high

order methods.

An enormous improvement in computational efficiency can be achieved if

semi-implicit methods are used, Alt[1972], Norsett[1974],

Crouziex[1976] and Alexander[1977]. By using semi-implicit methods the

process at each step involves the solution of s systems of N algebraic

equations. In solving the algebraic equations an iteration matrix of

the form

I-na^af/ay (1.24)

must be evaluated, where the a^'s are the diagonal elements of the

Butcher matrix. In a semi-implicit method 8f/3y will be calculated,

and stored, and (1.24) evaluated for each different a^. But by

selecting all the ajj values the same (1.24) need be evaluated only

once, ie. the method has only one s-fold zero of the stability

function. Such methods are known as Diagonally Implicit Runge-Kutta

methods (DIRK), Alexander[1977]. However, a semi-implicit method can

have at most order s+1.

- 10 -

Cash[1975] derived a type of Runge-Kutta method that is a significant

departure from traditional methods. These methods are implicit in the

single unknown yn+ t and not in the k values like IRK methods. The

general form of the s-stage method is ,

s
vn+t = vn + hECikj

i=i
r

^ = f(xn 4- hbj, yn * hEa^k^ i = l(l)r (1.25)
j = i

s
ki = f < xn+i + nbi> vn+i +

By being implicit in only yn+1 only one set of algebraic equations

needs to be solved at each step. These Mono-Implicit Runge-Kutta

(MIRK) methods, require only one LU factorization and s back

substitutions, Singhal[1980] . Two important class of methods are

included in MIRK methods, viz. explict Runge-Kutta, r=s, and Backward

Runge-Kutta, r=0. These Backward Runge-Kutta (BRK) methods will be

analysed in detail in this thesis.

1.5 Selection of an appropriate numerical method

When the numerical solution of (1.2) is required the user has a vast

bank of methods to select from. These range from low order to high

order, explicit or implicit methods of either single-step or multistep

or of one of the more unusual methods ie. Rosenbrock, Block implicit

Runge-Kutta, etc. The method chosen must be capable of integrating the

problem efficiently ie. accurately and within a reasonable CPU time.

The problem of selecting an integrator for the whole integration range

is two-fold, firstly if the incorrect method is used the integration

will be inefficient. Secondly the characteristics of the problem may,

and often do, change during the integration range.

- 11 -

Clearly no single numerical scheme (where scheme implies the complete

solution algorithm, ie. numerical integrator and if relevant the linear

equation solver) can possess the correct characteristics to enable it

to efficiently solve non-stiff and stiff ODEs.

A simple solution, is to always employ an implicit method with the

implicit equations being solved by a Newton type process. This will,

however, be inefficient for the non-stiff problems.

A better solution is to use a numerical scheme (integrator plus linear

equation solver) that monitors the characteristics of the problem and

can automatically detect changes in these characteristics and switch to

a scheme that is most appropriate for the problem at that particular

time. Codes that can automatically do this are often referred to as

type-insensitive.

There are two basic switching strategies;

i) incorporate two integrators in a code and switch between the two or

ii) employ only one basic implicit integrator and switch the iteration

process for solving the implicit equations.

Both methods have been investigated and production codes developed.

Petzold[1983] produced a code that switched between Adams and BDF

methods. As stated earlier the main drawback with BDF methods is their

order limitation for practical purposes, they can not be greater than

5. The overheads in linear multistep methods are high and so are the

overheads in switching.

The code of Norsett and Thomsen[1986] keeps the same numerical

- 12 -

integrator, an implicit Runge-Kutta method, and switches the implicit

equation solver. For the non-stiff case simple functional iteration is

used whereas Quasi-Newton is employed for the stiff case. This has the

disadvantage that some iterative scheme must always be employed, which

is expensive. The code is also restricted to a fixed order.

1-6 Overview of the thesis

This thesis is concerned with the development of numerical schemes for

the solution of initial value ODEs. A new graphical technique for

assessing the performance of potential methods is described in chapter

2, with particular attention to highly oscillatory problems.

Chapter 3 develops the theory behind Backward Runge-Kutta methods and

in particular their close coupling with explicit Runge-Kutta methods.

It also shows that they have far superior damping properties than the

most widely used stiff solvers. Numerical examples are presented,

without the hinderance of error control, that shows the potential of

the methods.

In chapter 4 the error control policies applicable to BRK methods are

explored and it is shown why the normal embedding method, commonly used

for explicit methods, cannot be employed in the BRK case. The error

control policy adopted is discussed and incorporated into the code and

compared with the BDF code implementation of the NAG library.

Most of the numerical integrators incorporated in codes suffer from

some inefficiencies when solving a certain type of problem. It is well

known that BDF methods are extremely inefficient for solving problems

which possess highly oscillatory solutions. Chapter 5 discusses the

- 13 -

class of problem for which BRK methods are inefficient.

Chapter 6 develops the strategies for switching between explicit and

Backward Runge-Kutta methods. Thus a type-insensitive Switching

Algorithm for Runge-Kutta methods (SARK) is devised. The switching of

order is also discussed and implemented in the final code. Numerical

examples are given that highlight the necessity for a code of this

type.

When developing any numerical code for the solution of DDEs it is

impossible to test the code on all systems of DDEs and hence a test

battery is required. The test battery that is commonly used is the

DETEST set of Enright and Pryce[1983]. The code developed in chapter

6, SARK, is compared with the BDF code over the stiff and non-stiff

problems of the set. As BDF methods are not designed to integrate

non-stiff systems the Adams methods, used in the NAG library, are also

tested and compared with SARK over the non-stiff set.

- 14 -

Order

Stages

Equations
to solve

1234567 8 9 10 11

1234 6 7 9 11 16* 17* ———

1 2 4 8 17 37 85 200 486 1205 3047

Table 1.1 : Minimum number of stages for each order

IMAGINARY

Figure 1.1 : A(cc) -stability region

- 15 -

IMAGINARY

Figure 1.2a : Absolute stability region of Euler's method

11AQI MART

R6AU <q

Figure 1.2b : Relative stability region of Euler's method

- 16 -

Chapter 2 : PREDICTING PERFORMANCE

This chapter addresses the problem of assessing the potential

performance of a numerical method, over a wide range of problems. To

fully assess the performance of any method for solving initial value

problems, it must be fully implemented and applied to a large

collection of test problems. To compare a number of methods in this

way is clearly a lengthy process. Furthermore, minor changes in the

implementation strategy can lead to dramatic improvements or to severe

deterioration, making comparisons difficult to interpret. Consequently

a quick to use assessment of potential performance, which is

independent of algorithmic details, is extremely valuable. This can be

used as a sieve to make an initial selection of promising methods which

can then be implemented and fully tested on a batch of test problems.

A new graphical technique is devised that allows this by comparing the

numerical approximation with the exponential solution of the standard

test problem in much greater detail than existing techniques. This

method is extremely quick and easy to perform.

If the ODE being integrated is characterised by imaginary eigenvalues,

often giving rise to a highly oscillatory component, then the absence

of A-stability in a numerical method has prompted many authors to

dismiss it as being inadequate. This new technique introduced gives

more insight into this case and as a result this assumption is shown to

be invalid.

2.1 Extension of regions of absolute stability

The simple idea of a region of absolute stability has been extensively

used for assessing methods. The stability region gives some insight

into the stability characteristics of a numerical method when solving

- 17 -

systems of DDEs. Integrating with q (=hx) within the stable region is,

however, no guarantee that the solution produced will model

realistically the solution of the system. Indeed if Re(q) is greater

than zero, it could be disasterous to integrate with q within this

region.

Recall the standard test problem,

dy
 = Xy y(0)=l (2.1)
dx

which has the analytical solution

y(x) = exp(xx) (2.2)

If the analytical solution is examined at a series of node points xn =

nh for n = 0, 1, . . . then

- = exp(q) (2.3)
y(xn)

When the numerical method is applied to (2.1) with constant step h, the

corresponding numerical ratio is

= E(q) (2.4)

This ratio is the stability function of the method and is a numerical

approximation to (2.3). The region of absolute stability of the method

is defined as being the region(s) of the complex plane where propagated

errors decay as the solution proceeds. One way to identify the

stability region of a method is to find its boundary. It can easily be

verified that the boundary is generated from the stability function by

equating its modulus to unity, ie. |E(q)|=l. One such technique for

locating this boundary is the boundary locus method Lambert[1973].

Generally E(q) * exp(q), but it is hoped that E(q) « exp(q) . The

absolute stability region gives only limited indication as to what
- 18 -

extent the numerical ratio is a good approximation to the analytical

one.

By expressing

q * a + ib (2.5)

in (2.3), the analytical ratio can be written as

 = exp(a+ib) = exp(a)x{cos(b) + isin(b)} (2.6)
Y(xn)

where ea is a measure of the damping of the component and b, the

argument of q, is its frequency. If a is less than zero the solution

will decay to zero whereas if a is greater than zero the solution grows

in amplitude. The stability function, E(q) should approximate both the

damping and the frequency of the component to produce realistic

results. It follows that we require the approximate relation between

the complex quantities ie.

E(q) « exp(a+ib) (2.7)

to be good in terms of both modulus and argument. This will ensure

that both damping and frequency are realistic. Therefore it is

necessary to consider two aspects of the approximation (2.7), viz. the

damping and the frequency.

Analysis of the damping characteristics of a method can be performed by

comparing the modulus of the stability function with the modulus of the

analytical ratio (2.6). Hence we require,

|E(q)| « lexp(a-i-ib) | = exp(a) (2.8)

By expressing E(q) as Rexp(ie)

|E(q)| = R (2.9)

Therefore from (2.8) and (2.9)

R * exp(a) (2.10)

- 19 -

is required. Thus numerical contours expressing the damping

characteristics of the method can be produced by plotting q such that

E(q) = R (2.11)

for various values of R. These can then be compared with the

analytical contours for which exp(a) = R. The latter, from (2.8) are

straight lines logarithmically spaced perpendicular to the real axis.

The ability of a numerical method to model realistically the frequency

of a component can be determined by comparing arg(E(q)) with

arg(exp(q)). Using (2.5) and expressing E(q) as Rexp(ie) then,

arg(exp(q)) = arg(exp(a+ib)) = b (2.12)

and

arg(E(q)) = arg(Rexp(ie)) = 0 (2.13)

Therefore the frequency of the numerical solution is 9 which should be

a satisfactory approximation to b. Hence numerical contours can be

produced and compared with the analytical solution in which the

contours are linearly spaced perpendicular to the imaginary axis.

For all Runge-Kutta methods E(q) is a rational polynominal of the form,

E(q) = N(q) / D(q) (2.14)

where N(q) and D(q) are polynomials in q and D(q) = 1 for an explicit

method. Substituting Rexp(ie) for E(q) in (2.14) yields an expression

of the form

CN(q) - Rexp(i0)D(q)] = 0 (2.15)

This polynorainal equation with complex coefficients can now be solved

for q to produce the contours. By taking a series of R values eg. R =

.25, .5, l., 2., 3. and for each value of R varying 0 in the range 0 <

0 < 2ir eg. 0 = 27TJ/100 for j =1(1)100 a series of contours of equal R

ie. equal |E(q)| can be generated. Similarly if 0 is fixed at a number

- 20 -

of convenient levels eg. 9 = -3*74, -w/2, -w/4, 0, v/4, ir/2, 3ir/4 and

for each fixed e solving (2.15) for (complex) q with R = O.lj for j =

1(1)100, contours of equal arg(E(q)) can be plotted. In each case a

polynomial in q must be solved which has complex coefficients. The NAG

subroutine C02ADF can be used for this. This technique can be thought

of as a logical extension of the boundary locus method.

To illustrate this contouring technique a collection of 4th order

Runge-Kutta methods, whose stability functions are Pads' approximations

are examined. The five approximations considered are:

R4>0 = 1 + q + q 2 /2 + q 3 /6 + q*/24

R 3>1 = (1 + 3q/4 + q z /4 -K[3 /24)/(l - q/4)

R2|2 = (1 + q/2 + q z /12)/(l - q/2 + q z /12) (2.16)

~ 3q/4 + q z /4 - q 3 /24)

These approximations, with the exception of R 2 2 , stem from infinite

families of methods typified by; the classical 4-stage 4th order

explicit method (R 4 0), Lobatto IIIc method (R 3 t), Chipmann[1971] and

a 4-stage 4th order backward method (R 0 .). The R 7 7 approximation is** » *• t ^

defined uniquely from the 2-stage 4th order fully implicit method which

has Butcher matrix shown in Table 2.1.

The only 4th order Fade" approximation not in common use as a

Runge-Kutta method is the R 3 j. This approximation can only be derived

from a fully implicit method and it possesses a finite stability region

and is hence of no practical value.

The modulus and argument plots for these five Pad£ approximations are

shown in Figures 2.1 to 2.5. As all the plots are symmetric about the

- 21 -

real axis, section 3.3, only the positive imaginary axis is displayed.

The contours for the modulus plots are presented at five different

levels of R, viz. R = 1/4, 1/2, 1.0, 2.0 and 3.0, each contour is

represented by a different symbol on the diagram. The argument plots

are shown for Qe[n/2,2Tr] in intervals of ir/2, again each contour level

is denoted by a different symbol. Both sets of analytical contours are

superimposed on to the corresponding plot and their value denoted by

the symbol located at one end of the contour. The normal region of

absolute stability can be observed by considering the contour R = 1 of

the modulus plot.

One other desirable stability property required by a numerical method

when solving stiff systems is L-stability (chapter 1). The modulus

plot has the added advantage of determining whether this property is

present in the method. To be L-stable the contours of Re(q) at -« must

be zero, hence the value of the contours should decrease as Re(q) tends

to -co.

Modulus and argument plots for the Pad£ R 4 0 approximation are shown in

Figure 2.1. The modulus plot clearly indicates that the method is more

successful at producing the correct damping (amplification) for Re(q)

greater than zero than for Re(q) less than zero. This is due to the

zeros of the stability function being in the left-hand half plane with

one close to each of the axes. As q approaches any of the zeros the

approximation becomes highly inaccurate. From the argument plot it is
*

clear that the zero close to the imaginary axis will distort the

frequency in this region. Also computing with q at 4i will result in

the solution being underdamped, whereas with q at 2.5i, within the

absolute stability region, results in an overdamped solution.

- 22 -

Therefore the absurdity of the common assumption that computing with q

within the absolute stability region guarantees a realistic solution is

immediately clear from these plots.

The two plots generated by the R 3>1 implicit method are shown in Figure

2.2. As this is a rational approximation there are now three zeros and

a pole, the pole being on the positive real axis. Again this

approximation is more successful at producing the correct damping for

Re(q) greater than zero than for Re(q) less than zero, providing that

Re(q) is kept away from the pole. The pole and zeros again produce

distortions in the two sets of contours, however as they are further

away from the imaginary axis the method is more successful for problems

with eigenvalues close to this axis. The argument plot highlights the

inability of the method to correctly represent the frequency as q

departs from the origin.

By considering only the modulus plot of the R 2 2 approximation, Figure

2.3, it appears that the method is almost ideal for problems with

purely imaginary eigenvalues. The analytical contour is followed

exactly on this axis. In other words the corresponding method is

precisely A-stable, however, the contours in the negative half-plane

indicate that it is not L-stable. The argument plot reveals that even

though the poles and zeros are well away from the imaginary axis, the

frequency will only be modelled realistically for small q. This

demonstrates that precise A-stability is not a particularly valuable

attribute for solving oscillatory problems.

The next two approximations, R 1>3 and R 0(4. are mirror images about the

imaginary axis of R 3>1 and R 4(0 respectively with the zeros replaced by

- 23 -

the poles and vice versa. These are shown in Figures 2.4 and 2.5

respectively. From the modulus plot it is apparent that the R t >3

approximation is A-stable and that they are both L-stable. Both

approximations are more successful at producing the correct damping for

the Re(q) less than zero than for Re(q) greater than zero, providing

that the zero of R t ^ 3 at q = - 4 is avoided. The argument plots show

that being able to produce the correct damping for Re(q) less than zero

is not sufficient to produce realistic results. The step size of both

must be restricted to faithfully follow the frequency of the component.

2.2 Application to highly oscillatory problems

The ability of this contouring technique to predict the performance of

numerical methods can be demonstrated by considering a class of problem

in which the dominant eigenvalues of the Jacobian matrix, 3f/3y, are of

the general form a ± ib, where jb/a| is much greater than one. Such

problems frequently arise in engineering situations and will severely

tax any numerical method. This type of problem is often described as

highly oscillatory due to dominant eigenvalues of linear problems

giving rise to a solution of the form

exp(ax)sin(bx + c) (2.17)

c constant. This leads to the component having a frequency of b/2ir Hz.

Irrespective of whether the problem is linear, the stability

characteristics of the integrator are clearly of importance. It has

long been understood, Prothero and Robinson[1974], Jeltsh[1978],

Singhal[1980], Gear[1981], that A-stable methods must be employed for

such problems.

If only error propagation is considered, then A-stability appears

desirable if not essential. But the ability to produce the correct

- 24 -

damping and frequency is also of great importance. It is of no value

producing stable results that are physically unrealistic.

The modulus and argument plots clearly show that precisely A-stable

methods will need to restrict the step size to follow any high

frequency component, as indeed will all the methods. None of the 4th

order methods examined will allow a significantly larger step to be

used than another. Therefore the method that is "cheapest"

computationally must be employed, which is the explicit method. Lack

of A-stability will not hinder the method when solving problems with

imaginary eigenvalues.

These predictions can be analysed further by considering a variety of

Runge-Kutta methods applied to the highly oscillatory problems. Three

types of Runge-Kutta method, derived from the same coefficients, are

considered. These are outlined below:

(i) Explicit Runge-Kutta (ERK)

The general form of an s-stage ERK method is

kj = f(xn + hbj, yn + hla-jiki) j = l(l)s (2.18)
i = i

and their stability functions are of the form

s
Ee (q) = 1 + E6jqJ (2.19)

j = 1

where the value of 6 j , j = l(l)s depends upon the chosen method and in

particuilar, 6j = 1/j! for any s-stage s order method, ie. s is less

than five. Clearly

Limit |Ee (q) | = « (2.20)
Re(q) -> -«

- 25 -

and hence no ERK method can be A-stable.

(ii) Backward Runge-Kutta (BRK)

The general form of an s-stage BRK method is,

s
= Vn "I"

j = i
j- 1

kj = f(xn+1 - hbj, yn+1 - hEa-jiki) j=l(l)s (2.21)
i = i

Thus BRK methods can be considered as ERK methods integrating from xn+i

to xn with a step of -h, ie. Backward. Therefore any coefficients from

a ERK method can be used to form the corresponding Backward method.
%

Their stability functions, as derived in section 3.1, are of the form,

1 1
Eb (Q) = i = (2- 22)

(-q)J E(-q)

where the value of 6 j , j = 1(1)s are those of the corresponding ERK

method. A-S table BRK methods of order up to two, are known, with

higher order methods being A(<x)-stable with <x close to 90". Typical <x

values attainable are given in Table 2.2, along with the corresponding

<x values for the well known BDF methods.

(iii) Mixed Runge-Kutta (MRK)

These are derived by alternately using ERK and BRK methods. First the

ERK method is applied with step h/2 followed by the corresponding BRK

method with the same step. The order of the resulting method is

usually the same as the main ERK method but can be higher, (the

explicit method which generates the mixed method will be referred to as

the main method). For example coupling 1st order Euler with its

corresponding BRK method, Backward Euler, gives rise to the precisely

A-stable 2nd order Trapezoidal rule.

The stability function of a-Runge-Kutta method is generated by applying
- 26 -

the method to the standard test problem, (2.1), with constant step h.

Thus for MRK method, this is

Vn+K = Ee (q/2)yn (2.23)

for the first half step using the ERK method and for the second half

step using the corresponding BRK method,

yn+1 = Eb (q/2)ynH.fc (2.24)

Hence merging (2.23) and (2.24) and using the result of (2.22)

= Ee(q/2)Eb (q/2)

E(q/2)
(2.25)

Ee (-q/2)

Thus the stability function of a MRK method has the form

E6j(-q/2)J

For a MRK method the imaginary axis always forms part of the boundary

of the region of absolute stability. This can be shown by considering

q = ib in (2.26). Hence

s
1 -i- £6j(ib/2)J

1 + E6j(-ib/2)J

Si s 2

S t S 2
E« z1 (-l)J(-b/2)J * 1E6
j=2 J j=l

(2.27,

- 27 -

where

{ s/2 for s even
(s-l)/2 for s odd

, (s-2)/2 for s even s • = f (3-2

2 I (s-l)/2 for s odd

Clearly as the numerator and denominator are a conjugate pair their

moduli are the same, ie.

|Ee (ib/2)|
|Em (ib)| = ———————— = 1 (2.28)

|Ee (-ib/2)|

and hence the MRK method is stable along the entire imaginary axis.

This does not mean, however, that all MRK methods are precisely

A-stable, the following theorem demonstrates this.

Theorem 2.1 : A MRK method is precisely A-stable 4=» the zeros of the

stability function of the main ERK method are all in the left-hand half

plane.

Proof : Let the zeros of the stability function of the ERK method be

q ,• , j = l(l)s. Where Re(qj) is less than zero for all j, ie. all zeros

are in the left-hand half plane. Then, as qj for all j are roots of

(2.19)

(qi-q)(q 2 -q). - .(qs-q)
Ee (q) = ——————————————————— (2.29)

qiq 2 . • -qs

From (2.25), the stability function of the resulting mixed method is

Ee (q/2)

Ee (-q/2)

(2q t -q)(2q 2 -q). . .(2qs-q)
= —————————————————————— (2.30)

(2q t +q)(2q 2 +q). . .(2qs+q)

which has zeros at q = 2qj for j=l(l)s which, are also in the left-hand

half plane. There are poles at q = -2qj for j = l(l)s which are all in
- 28 -

the right-hand half plane. If follows from the maximum modulus theorem

that maximum of |Em (q)| in the left-hand half plane occurs on the

boundary of the region ie. on the imaginary axis. However, from

(2.28), the stability function equals unity on this axis and hence,

|Em (q)| < 1 (2.31)

for Re(q) less than zero, ie. it is precisely A-stable if all the zeros

of the stability function of the main ERK method are in the left-hand

half plane.

Now assume that there exists a precisely A-stable MRK for which the

main ERK has a zero in the right-hand half plane, at qp. This implies,

from (2.22), that the corresponding BRK method has a pole at ~qp » ie.

in the left-hand half plane, hence

Limit |E(q)| = 0 and Limit l/|Ee (-q)| = « (2.32)•* -qp

thus

Ee (q/2)
Limit Em (q) = Limit —————— = » (2.33)

q -> -2qp q •» -2qp Ee (-q/2)

Thus a mixed method can only be precisely A-stable if all the zeros of

the main ERK method satisfy Re(q-j) less than zero for all j = l(l)s.

All s-stage s order ERK methods give rise to precisely A-stable MRK

methods. The location of the zeros for these ERK methods are given in

Table 2.3. To highlight the fact that not all ERK methods produce

precisely A-stable MRK methods the 6-stage 5th order method of

Fehlberg, in MRK mode is shown in Figure 2.6, with the stability region

shaded. The zeros of the main ERK method are given in Table 2.4 and

are clearly not all in the left-hand half plane resulting in a MRK

method which is not precisely A-stable.

- 29 -

A set of Runge-Kutta methods can thus be implemented in three separate

modes viz. ERK, BRK and MRK with each possessing very different

characteristics.

The highly oscillatory case is under consideration. This is

characterised by dominant eigenvalues which are essentially imaginary,

hence the modulus and argument plots will be restricted to the

imaginary axis. On this axis jexp(q)| = 1 and arg(exp(q)) has a

saw-tooth profile of period 2ir.

Figure 2.7 shows these new modulus and argument plots for Euler (ERK),

Backward Euler (BRK) and the Trapezoidal rule (MRK). The latter being

precisely A-stable produces the correct damping for all imaginary q.

The ERK, on the other hand, underdamps the component and the BRK

overdamps as q departs from the origin. The arg(exp(q)) appears on the

argument plot as the saw-tooth profile. Clearly the ability of the MRK

to reproduce the correct damping is offset by its inability to

correctly predict the frequency for large imaginary q. Clearly

arg(E(q)) is the same for both ERK and BRK modes, and as shown their

ability to accurately represent the frequency is limited to small q

values.

Modulus and argument plots for methods based on 3rd order ERK methods

are shown in Figure 2.8. It is readily apparent that as the order

increases the range of q for which the correct damping and frequency

can be reproduced also increases. The argument plot clearly shows that

the MRK method can correctly follow the frequency for twice the value

of that allowed by the ERK or BRK methods. This indicates that the MRK

method can be used with twice the step size of that allowed for by the

- 30 -

other modes. It must be remembered, however, that the MRK method

requires, at best, twice as many function evaluations per step as the

corresponding ERK method, (and may be more if repeated iterations are

required to solve the implicit equations).

The ability to extend the range of q for which the correct

characteristics are produced when the order is increased, can be

illustrated by considering the 5th order 6-stage method of Fehlberg and

the 8th order 12-stage method of Verner[1978], Figures 2.9 and 2.10

respectively. As q increases along the imaginary axis the ERK methods

eventually underdamp the solution, modulus plots. Before they do this

however, they overdamp for a small range of q. This is due to zeros of

the stability function distorting the contours in these regions.

Similarly the Backward methods underdamp in the region of the poles

then eventually overdamp. It is often the presence of zeros or poles,

near or on the imaginary axis, which forces a restriction in the step

size when following the frequency. Methods which do not have zeros or

poles near the imaginary axis do better but even they must be used with

restricted q to follow the frequency. Thus to correctly follow the

component a small step must be employed, which suggests that the

cheapest methods, ie. explicit methods, will be the most efficient.

2.3 Numerical results

To verify these predictions the 6-stage 5th order Fehlberg method,

Figure 2.9, was implemented in ERK, BRK and MRK modes, to integrate the

following system of ODEs,

dx

- 31 -

dy 2
——
dx

dx

xe[0,10]

y*

—— = -10001y 3 - lOOOOy,
dx

with initial conditions

y(0) = [0,6,0,-50001]T

The component of interest, y t , has the analytical solution,

y t (x) = sin(x) + O.OSsin(lOOx) (2.34)

Hence the solution has a high frequency component, about 16Hz,

superimposed upon a pure sine wave, Figure 2.11

A large fixed step was used for all modes, the step size of the MRK

method being twice that of the others to compensate for the double step

that it must perform, ie. it performs two steps of h/2. After only a

few steps the explicit method produced spurious results. In contrast

the BRK method totally damps out the high frequency and produced the

pure sine wave solution, Figure 2.12. The MRK method, however,

recognized the presence of the high frequency, Figure 2.13, and

obtained the correct amplitude, but was unable to represent the high

frequency correctly. As a result the solution produced by the MRK

method is no better, in terms of accuracy than that produced by the BRK

method. Table 2.5 summarises these results. The maximum global error

of the first component is measured as the maximum relative difference

between the analytical solution, (2.34), and the numerical one

throughout the integration range. All CPU times are calculated

relative to the time taken for the ERK method.

- 32 -

When the step is greatly reduced, all methods can follow the solution

accurately. The explicit method being clearly the most efficient,

Table 2.6.

Hence to follow faithfully the high frequency component an explicit

method is the most efficient. It may, however, be desirable to damp

out the high frequency artificially, if it is of no interest. This may

often be the case in engineering applications. If so the most suitable

method would be the BRK.

This desirable ability to damp out the high frequency oscillation

artificially must, however, be used with caution. Consider the

following system of DDEs,

dt

______ _ yZ _ y

dt
te[0,500] (p2.2)

—— = 0.5y4
dt

t - 0.5y 3
dt

with initial conditions

y(0) = [1,0,1,0]T

This is a non-linear problem arising from the study of stellar orbits,

Scheid[1983] . The first component represents the radial displacement

of the orbit of the star from a reference circular orbit and y 3 the

deviation of the star's orbit from the galatic plane. Astronomers

solving p2.2 are interested in two energy levels, viz.

- 33

i) E t (t) = (yf + y§)/2

ii) E 2 (t) = (yl * y*)/8

Problem p2.2 solved by a variable step implementation of the 12-stage

8th order method of Verner[1978], with a small initial step, l.e-5, and

tight error tolerance produces the solution, for E 2 (t), shown in Figure

2.14, (details of the variable step algorithm employed are given in

chapter 4). This agrees with the solution produced in Scheid[1983],

which is characterised by a high frequency component driving a low

frequency oscillation.

If the high frequency is of no interest then, by using a large initial

step, it can be damped out artificially. The effect of using a large

initial step, of 100, is shown in Figure 2.15. Clearly, as expected,

the high frequency is damped out, but as this drives the lower

frequency it too disappears. The oscillations near the end of the

integration are caused by the algorithm reducing the step size to

arrive exactly at the end point and in doing so detecting the

oscillations.

2.4 Conclusions

In general a successful integrator of classically stiff problems should

have three characteristics. Firstly they should have no poles or zeros

near the negative real axis. Furthermore they must have

arg(E(q)) = arg(exp(q)) = 0 (2.35)

for q real and negative and

|E(q)| * |exp(q)| (2.36)

(in the absolute sense), for Re(q) less than zero.

- 34 -

For the highly oscillatory case it has been shown that

|E(q)| = |exp(q)| = 1 (2.37)

can be achieved on the whole of the imaginary plane, but in none of the

cases considered has

arg(E(q)) = arg(exp(q)) (2.38)

been achieved.

A successful integrator will have no poles or zeros close to the

imaginary axis. When integrating these types of problems (highly

oscillatory) neither A-stability or precise A-stability is necessary.

On balance explicit methods will be most efficient for these problems.

- 35 -

1/2 + V3/6

1/2 - ^3/6

1/4 1/4 + V3/6

1/4 - V3/6 1/4

1/2 1/2

Table 2.1 : Butcher matrix of 2-stage 4th order
Runge-Kutta method

Order

BRK
BDF

1

90.0'

90.0*

23456

90.0° 88.2' 83.9' 79.1° 74.3°

90.0° 88.0° 73.0' 51.0' 18.0°

Table 2.2 : Comparison of A(oc)-stability region for BRK
and BDF.

Order
Position
of zeros

1 -1.0

2 -0.5 ± 0.5i

3 -0.1867309 ± 0.4807739i
-0.6265383

4 -0.0426266 ± 0.3946330i
-0.4573733 ± 0.2351005i

Table 2.3 : Location of zeros of s-stage s order ERK
methods

- 36 -

Order
Position
of zeros

-0.4243994
0.02526698 ± 0.2966870i
-0.2714430 ± 0.28252281
-0.08324843

Table 2.4 : Location of zeros of 6-stage 5th order ERK

Mode

ERK

BRK

MRK

Table 2.5

Mode

ERK

BRK

MRK

Table 2.6

method

Step Max. Global Relative
size error y t CPU time

0.1 8.00 e287 1.00

0.1 4.99 e-2 1.87

0.2 9.58 e-2 1.60

: Comparison of the 5th order method of
Fehlberg in different modes (large step)

Step Max. Global Relative
size error Y! CPU time

0.01 4.04 e-2 1.00

0.01 2.49 e-2 2.10

0.02 1.92 e-2 1.42

: Comparison of the 5th order method of
Fehlberg in different modes (small step)

- 37 -

o

0 a
0 a

•* a
o a

c, a
o a

o
a o

* a °o
«• o o

o = ° A A*O ^ A
0 = 0 A^

a o A
0 o A •*• "'""*'-,

a -f- -
«• 0 A .

a A
0 ° A *

= 0 A •+•- - - : *
«> a o
O A
. o -*• j.
0 a A •*• -K
* ^
o a A

0 **%
o* =«*o a
a

o
a

0
o

o
o

A A
A

A

A
.

. ^*

H- ^

-*-
^

X

-t- *

t

*

2

° ° ̂

C

o ̂ oc

* t -T!
& •*

A A

2 ——

I

1 — '

C

L. <

k C

k c
<

, c
<

1.1 i —
—3 — Z —1 «S

3o c
o

, *
a «•

> =" *
0 0

o a
. o a

•° °

0 a

o c

0 c

o c
0 =

o c
=• c
> c
> c
> E

> c
> c
> c
> c
> c
> [
> c

1

0

0

o
0
«
o

! o
i °
1 «

1 <
1 <
1 <
1 <
1 <
1 <
1 <
1 «
1 «
1 •

1

» -f- 2 » S0O~~0 1
y^ 3 ,9OO~~01

o i .aao-i-a»

o 1'.1™~IZ

>WHAI_

Figure 2.la : Modulus plot of Fade' R 4 0 approximation.

IMASIMART a

t

X 0

x o

O
a
o

—2 . jso->-aca

—7. 93O—31
a.aao—ai
r.aso—ai
i .97o->-aa

3 . i

I1 i
.KBAU q

Figure 2.1b : Argument plot of Pad^ R 4 0 approximation.

- 38 -

TMAQTMAOY a

O
0

o o o-
o a. a

0 a
o =

•» a" o° 00 °«
o a °

0 a °
D ° A AAA..

*" a o A
^s. __ O -».-«-
° = 0 ^ -H* -1

0 a o A -t-
a °•o o -•-

= 0 A ^.
<> c»r ° * +^ ^ -^o a o A ^.

D o ^
A ^

A *
m 0a -t-

<v 0 ^
<» -jm

1 ^r ' — a ttii

F ^
O

C

I
a

c

>o
o

c
'^

-t- A
-4- ^

-f- A

-t-

-f-
-t-

• ,

t

A

A

. A

A

k c

^
^«>~

0

o
a

* c

3

O

O 3 ——

0

O

' O
L

c
4.

v. C

I C

k C

k c
t.

c

\ -i a

> c

o
o

%.
1 «

4

a

a

a

a

a

c

c

, c

, t

) C

) C

> c
> c

> c

1 <

>
o
•0

0

*

<

4

) •

1 •

1 •

1 «

) 4

3 4

p. -t- 2.-?S>D-«l
1<^ S - <30O~~0 1
O t ..30O'^00
C3 2 • 30D^^0®
o 3 . aao»-aa

>

>

1 1

Figure 2.2a : Modulus plot of Padd R 3>1 approximation.

I MAO I NARY. <3

o

"> a o

o r

aso— ai
aao~ai

Figure 2.2b : Argument plot of Pad£ R 3(1 approximation.

- 39 -

J1AOINAHY

i ' -I—i—i—i—i—i—i ' r
-O -« ^ -« -S —» -3 -Z

o i -
ca 2.

a o
o

a
O

I O

o
o

Figure 2.3a : Modulus plot of Pad£ R 2 2 approximation2 , 2

9 —

0 a —

A r ~"

o
a —

o ^

0 A •*•

0 1 * «-"
* * "•"" T "

————— ° 0<gj:r«v*^"
=3 0

a °-^ n ,' ~
a

' -T ' -• ' -0 ' — t ' -3 ' -2 ' -C

iriAQiNARr a
-i- —2 _33o-i-aa

o — r aao— ai
a e a&o—ai
o 7 aso— «i

•v z jso*a5a
M< 3 i -»o-t-aa

o

A

A °

"*" A o

"*" A °
"* >« _ -t. A

X« -t" "^"*« * A °
V A ^

o a

a

I,I 2 | 3 |^| 3 |»U

Figure 2.3b : Argument plot of Pad£ R 2 approximation.

- 40 -

InAOTNARV <3

5* ——

' > t)

4 > C 3 II

^ b C >

;. t) II

o
o
o

^ s.aeo—ai
o i -s

s s

Figure 2.4a : Modulus plot of Pad£ R t 3 approximation.

9 ——

"*"-»- A

-^ « ~

**-

"^

"•"* """*'"».

"« "*>•

"" ^^ ^^

M ^
2 —

V X ""
x;

^ x V ~T
* X 0 ^^

^™^~ 1 1 1 i (i 1

IHAOINART a

-t- —a 3eo->-aa
a ^ — i ^5-7o-*aa

° o o —7 USD— ai
a a a aao— ai

o 07 aso— ai

o D ^2 jao-»-aa
<» Mi 3 . 1 -*D->-Z>a

o a ' ————————————————

0

oa <=•

^ ° a «> >c

a o
A ° a o ^
A a .x
A 0 ** ^

"*" °~ ° C3 ° X*^

"* "'Irfto 0 ° x ^
"*%——'^^a ^ y^ ^

"" XT
** >e ~

v ^^

Figure 2.4b : Argument plot of Pad£ R lf3 approximation.

- 41 -

rr-fAOT.MABV a

4

-t-

-t-

-+-
•4-

-t-

-4-

-+>
-*-
-4-
-4-

-t-
i

4-
4

t-
i

t

t

m A

4

4

' 4

4

4

•4-

-*-

-4-

4- •

^k (

A a
A O

A 0 '
c

A O
A o

o
f-

o

0

• o
k

c
k
^ c
b e
^ i -<
k C

i. C

t C

Ik C

h. C

k <
k C

— i a

-4. ~*~ "*^ ~*"

3 C

k

aa
QO.O a
3C» * D
» ""c
3° ° t=

«• *

a

i
i
i

» i
> i
> c
9 C

3 C

> [

J t

p4**- -k

^
A

O
0

c

i
a

a
a
^
3 <
I ^
1
I «
1 «
1 <
I
]

, -t- a.sao— at
"*" _,. A 3-aac3— a:

H. o i .aao^-aa
-^ C3 2.aaD-*-aa

., <> 3 . aao <-aa
-4-

^ A -1-

^ -*•

A -t-

^ ̂ -+•

0 A -f

°0

A

0 A *

°° ^A *
O

D aaa o -»-
a 10 A

O*" °'<> D ° A "*•
CD

•O 13 °

«.= 0 ^ -+•

0° 0 "1 Z

* a o A *
^ "*"

" a o ^ ""

1 i 1 z la

Figure 2.5a : Modulus plot of Pad^ R 0 ,4 approximation

1
-t- ~2.^dO-t-aa

a.aao—ai
7 .930—ai
i .^ro-i-aa
2. _3so*az>

<-> C3 0

o a
o a

s<
x

Figure 2.5b : Argument plot of Pad£ R 0 4 approximation.

- 42 -

IMAOINARY C|

Figure 2.6 : Absolute stability region of Fehlberg's 5th order method
in MRK mode.

- 43 -

Figure 2.7a : Modulus plot of Euler based methods

Figure 2.7b : Argument plot of Euler based methods

- 44 -

jiooui-us at a

A ERK

CD MRK

IMAGINARY

Figure 2.8a : Modulus plot of 3rd order based methods

AKQ E< a
-t- ERK ^ BKK
A n«K
O ANAUr-ricr

1-1 AGINARY

Figure 2.8b : Argument plot of 3rd order based methods

- 45 -

paseq aapao q^g jo ^oyd luamnSav : qe'2

spoq^aui pascq aapao q^g jo ioid sn^npow :

MMUJ O

sninaou

-t- BRK

^ ERK
O MRK

1 rlAO I NARY

Figure 2.10a : Modulus plot of 8th order based methods

-+- BRK ^ BRK
^ nRK
O ANALYTIC"

IMAOINART a

Figure 2.10b : Argument plot of 8th order based methods

- 47 -

Figure 2.11 : Analytical solution of y^x) for problem p2.1

- 48 -

-i—————i—————r

Figure 2.12 : Solution of y t for p2.1 by BRK method

X -10 '

TIHK

Figure 2.13 : Solution of y l for p2.1 by MRK method

- 49 -

Figure 2.14 : Energy level E 2 (t) for p2.2, small initial step

Figure 2.15 : Energy level E 2 (t) for problem p2.2, large initial step

- 50 -

Chapter 3 : BACKWARD RUNGE-KUTTA METHODS

This chapter discusses the basic characteristics of Backward

Runge-Kutta methods for the numerical integration of stiff systems of

DDEs. In particular the superior damping properties of BRK methods

over linear multistep methods will be discussed. The close coupling of

BRK methods with ERK methods will be emphasized and further absolute

stability regions together with the new modulus and argument plots

presented.

The implementation of fixed step BRK methods into a computer code is

discussed and numerical results presented for a wide range of problems.

These results show the enormous potential of the method for solving

many stiff systems.

3. 1 Derivation of Backward Runge-Kutta methods

By considering the MIRK methods of Cash[1975], (1.23), and setting r =

0 then an s-stage class of MIRK method given by,

s
h
i=i

i- 1 (3.1)
k-[= f(xn+1 - hbif yn+1 - h

j = i

is generated. This formula can be considered as an explicit

Runge-Kutta method with step size -h moving backwards from yn+1 to yn .

Clearly any coefficients from an ERK method can be used to form the

corresponding BRK method. For example consider the 1-stage 1st order

Euler method,

+ hk i
(3.2)

ki = f(xn ,yn)

The corresponding BRK is constructed by integrating backwards ie.

replacing xn by xn+1 and h by -h, in (3.2). This leads to the
- 51 -

following method,

+ hk ' (3.3)

kj = f(xn+1 ,yn+1)

which is the 1-stage 1st order implicit method, Backward Euler

Expressing (3.2) as a Butcher matrix, leads to

0 0 b A
(3.4)

II I cT

From the Butcher matrix of an ERK method the Butcher matrix of the

corresponding BRK method can be derived by applying the following

transformation,

u-b | C - A
———|————— (3.5)

where C is a sxs matrix with all rows comprising CT and u is the

s-component vector (1, . . . , 1)^. Applying this transformation to

(3.4) yields,

(3.6)
I 1

the Butcher matrix of Backward Euler. Thus BRK methods are fully

implicit methods but implemented as MIRK methods, ie. implicit in yn+1

only.

3.2 Order of BRK methods

When a BRK method is formed from an ERK method the coefficients remain

the same and hence the same order constraint equations must be upheld.

Thus the order of a BRK method is the same as that of the corresponding

ERK method.

- 52 -

3.3 Absolute Stability regions of BRK methods

Consider the general 3-stage BRK method,

Vn+i = Vn + h tc 1k 1 + c 2k 2 + c 3k 3] (3.7)

where the k values are computed as

ki = f (xn+i 'Vn-i-i)

k 2 = f(xn+1 - hb z , yn+l - ha 21 k t) (3.8)

k 3 = f(xn+! - hb 3 , yn+1 - ha 3t k t - ha 32k 2)

applied to the standard test problem, (2.1) with constant step h,

(3<9)

- ha 32k z)

Substituting (3.9) into (3.7) to advance the solution to the next node

point, and setting q = Xh, yields

Yn+i * Yn + Yn-nqOi ~ <I6 z * Q2 ^3] (3.10)

where

6 t = ci + C 2 + c 3

6 2 = a 21 + a 3l + a 32 (3.11)

63 = a 2ixa 32

Hence,

yn 1 - qfij + q z6 2 -
(3.12)

Lambert [1973] gives sufficient conditions for a 3-stage ERK method to

be 3rd order. Similiarly the following order equations must be

satisfied,

6 t = 1

6 2 = 1/2 (3.13)

6 3 = 1/6

for the corresponding BRK method to be 3rd order. Thus for the 3-stage

- 53 -

3rd order BRK method

E(q) = Jill = ———————————————— (3.14)
yn 1 - q + q z /2 - q 3 /6

Performing this analysis with s-stages will clearly lead to the general

form of the stability function,

1
E(q) = —————————— (3.15)

It will be shown in section 3.4 that this approximation will damp out

the fast transients of a component much quicker than the commonly used

BDF methods .

Let the stability function of the ERK method be E e (q). To find the

stability region of the corresponding BRK method, it is applied with

step -h to predict yn+1 from yn . It follows that the BRK method is

merely a case of interchanging yn+1 and yn and replacing h by -h, ie. q

by -q. Thus (2.4) becomes

= Ee (-q) (3.16)

ie

= Eb (q) (3.17)
yn Ee (-q)

The stability function of the BRK method, Eb(q) , is thus expressed in

terms of the stability function of the corresponding explicit method.

The stability region of the BRK methods like all Runge-Kutta methods

are symmetric about the real axis. Let the general stability function

be of the form

- 54 -

t
N(q)
___ = j=1 (3.18)

s
D(q)

where N(q) = 1 for a BRK method and D(q) = 1 for an ERK method. To

show that the resulting stability region is symmetrical about the real

axis substitute Rexp(i9) for q in (3.18),

t
N(Rexp(ie)) E TjRJx{cos(je) + isin(je)}

D(Rexp(ie)) E 6jRj'x{cos(je) + isin(je)}

t t
E TjRJcos(je) + iE TjRJsin(j
ll __________ il! ————————— (3.19)

E 6jRJ Cos(je) + iE 6jRj'sin(je)

Taking the modulus of both sides

t t
|N(Rexp(ie))| {CETjRJcos(je)] 2 + CETjRJsin(je)] 2 } 1/2

————————— »Jli ——————————— ̂ 1 ————————— (3.20)
s s

|D(Rexp(ie))| {CE6jRJcos(je)] 2 + [E6jRj'sin(je) 3 2) 1 / 2
j=i j=i

It follows that

|N(Rexp(-ie))

s s
|D(Rexp(-ie))| {[E6jRJ Cos(-je)] 2 + C£6jRj'sin(-je)

i = i i = i

|N(Rexp(ie)|
(3.21)

|D(Rexp(ie)|

hence the region of absolute stability of all Runge-Kutta methods are

symmetric about the real axis.

The stability region of a BRK method is closely related to the

stability region of the corresponding ERK method. Let -qh be on the
- 55 - D

boundary of the stability region of the ERK method, ie.

!E e (-qb)| = 1 (3-22)

using (3.15)

1
!E b (qb)l = ——————— = 1 (3 - 23)

|E e (-qb)|

ie. qD is on the boundary of the stability region of the BRK method.

Similiarly if -q^ and -qo are, respectively inside and outside the

stability region of the ERK method, then

|Eb (qi)l > 1
and (3.24)

|Eb (q0)l < i
Hence from (3.23) and (3.24) the stability region of the BRK method is

the complementary set of the image of the stability region of the ERK

reflected in the imaginary axis. This is clearly shown by considering

Euler (ERK) and Backward Euler (BRK), Figure 3.1.

As discussed in chapter 2, a region of absolute stability of a method

gives only limited insight into its potential performance. But it is

useful for an indication of the restriction placed on the step size for

solving stiff problems. This can be seen by considering the contour R

= 1 of the modulus plots in Figures 3.2 - 3.5. These figures show

modulus and argument plots for BRK methods of orders 1 to 4.

As with ERK methods, the stability regions of BRK methods of order 1-4

can only be enlarged by the addition of extra costly stages. For 5th
i

and 6th order methods of 6- and 7-stages respectively, however, they

each have 1 free parameter. This free parameter can be adjusted to

enhance the stability region of the method. It cannot, however, be

used to increase the order of the.method, ie making this free parameter

equal to 1/6!, for the 5th order method, will not meet the order

- 56 -

requirements for a 6th order method. An s-stage s-1 order BRK method

will have a stability function of the form

E(q) = —— —— ————————————— (3.25)

thus 6S is the free parameter. A numerical search was conducted to

find the value of 6S for which the A(«)-stability region were largest

for s = 6 and 7. A value for 6S was selected, from a plausible range,

and the boundary locus method used to locate the boundary of the

stability region. When a negative root of (2.15) was located, ie. a

point on the boundary in the left-hand half plane, the angle between

the real axis and a line from the origin to this point was calculated.

The smallest angle, «, was noted for each value of 6g . When the

complete range had been swept the process was repeated with a reduced

range, ie. a subset of the original range. This process continued

until the value of &s to maximize <x was determined to a reasonable

accuracy. The 6g values obtained in this manner were,

66 = 2.31e-4 giving <x = 79.1" and

6 7 = -2.31e-5 giving oc = 74.3*.

Figures 3.6 and 3.7 show the stability regions of the 5th and 6th order

methods with 6S set as above. It is apparent from these plots, that

although the 5th and 6th order BRK methods cannot be made A-stable, the

whole of the imaginary axis, in the case of the 6th order method, is

included in the stability region. In fact setting 66 =l.2e-3 allows the

whole of the imaginary axis to be included in the stability region of

the 5th order method, however, the method is only A(77 .2°) -stable . The

small regions of instability in the left-hand half plane do not

necessarily invalidate the method for solving stiff systems.

Using the 6-stage 5th order method Lawson[1967] , the coefficients of

the method which possesses this optimal stability region can be

generated. The coefficients, given in Table 3.1, are in their ERK

form, but can be expressed in the fully implicit form by applying the

simple transformation (3.5).

3.4 Other stability properties of BRK methods

One other important stability property needed by an integrator of stiff

systems is L-stability. The current analysis of L-stability, however,

does not indicate to what extent the numerical ratio E(q) damps out the

fast transients compared to the analytical solution (2.3), ie. how well

the numerical quantity E(q) approximates exp(q). To reproduce the fast

decay of exp(q) the numerical ratio, E(q), should have a stability

function of the form,

(3.26)

Clearly no explicit method can do this. The modulus and argument plots

of chapter 2, in part, show the damping ability of the method, but they

do not explicity define the amount of damping produced. This can be

rectified if the Lr-stability of a method is considered, Richards and

Everett[1983].

A k-step method is said to be Lr-stable, if when applied to the

standard test problem (2.1)

p
t

= 0(Re(q)~r) as Re(q) -> -« (3.27)

Clearly any 1-step L-stable method is at least I^-stable.

The most commonly used methods for solving stiff systems are the BDF

methods. The following theorem demonstrates that as the order of these

methods is increased the order of damping produced decreases.

Theorem 3.1 : An order p BDF is L^P-stable.

A brief sketch of the proof is now given : Consider the general pth

order BDF applied to (2.1)

p-i
(3.28)

Then the auxiliary equation corresponding to the linear difference

equation (3.29) is

1 + ... + «0 = 0 (3.29)

Let the roots of (3.29) be c t , c z , . . ., c p which generally will be

distinct so that the general solution to (3.28) will be

yn = (3.30)

where are constant. We note that as Re(q) -> -«>, c -» 0 for all

1=1 (l)p. It follows that

vn+p

Yn

J-o

PIE;
1=1

Hence taking limits of (3.31) as Re(q) -» -»

Limit
Vn+p

(3.31)

Limit «

P
E

. .,,1 = 1
t/P

(3.32)

By dividing (3.29) by l-q£p and allowing q->-<x> we see that Ci-»0 for
- 59 -

i=l(l)p. Hence by repeated use of L'Hopitals rule

Limit
Vn+p

yn
= Limit
Re (q)-»-<»

<xo
= 0 (RefqT'/P) (3.33)

Thus a BDF method is L*/P-stable. BRK methods on the other hand

achieve (3.23) for orders 1 to 4 and hence are Lp-stable. For p

greater than four BRK methods give an approximation to exp(q) of the

form

s
+ EC
i=5

(3.34)

Hence a general s-stage BRK method is normally Ls-stable but exceptions

can be found, ie. if 6« = 0.

The superior damping properties of BRK methods over the commonly used

BDF methods can be demonstrated numerically by applying them both to

the standard test problem, (2.1) with X real and negative and the

initial condition y(0) - 1.

The extra starting values required by the BDF (for orders greater than

one) are supplied by the analytical solution, (2.2). Two tests were

performed, the results of which are displayed in Table 3.2, one with q

= -1 and the other introducing more damping by setting q = -10, the

analytical solution is also shown for comparison.

For order 1 both BDF and BRK are the same method, Backward Euler and

hence the results are the same. When q = -1 a slight improvement in

the BRK methods solution is obtained by the use of a higher order,

whereas there is no significant improvement in the corresponding BDF

solution. Increasing q to -10, however, shows a dramatic improvement

in the BRK solution as order 6Qis_ increased compared with the

deterioration of the BDF solution.

3.5 Implementation details

The implementation for a BRK method will now be discussed with

particular reference, for simplicity, to a 2-stage 2nd order BRK

method. The implementation details apply equally well to other orders.

As BRK methods are implicit, in yn+1 only, algebraic equations of the

form

s
~ vn ~ hEc^i = 0 (3.35)

must be solved at each step. There is no guarantee that this equation

has a unique solution for yn+ t . However, we attempt to find a solution

using an iterative process. Using a simple functional iteration

process, however, places an unacceptable restriction on the step size.

A more robust method must therefore be employed. The method usually

employed is based on the Newton iteration process which will usually

converge providing that a good initial estimate can be supplied,

without severe restrictions on the step size. This leads to the

following iterative scheme

JJ] = -«(vAJl) (3-36)

where the iteration matrix, 8e/ayn+l , is evaluated at every iteration

for a full Newton method and from (3.35) has the form,

s
= I - h

i=1 8vn+i

8k t
——— = —————— (3.37)

8k
I - ha zl -

af(yn+1 - ha 2l k t)
, etc

- 61 -

where I is the NxN unit matrix. If the ODE under consideration is

linear then the Jacobian matrix is constant ie.

3f
——— = J (3.38)

If, however, the problem is non-linear but the solution is slowly

varying then the problem can be considered as static in an interval and

thus (3.39) still holds. For a 2-stage 2nd order BRK method applied to

a linear problem

~ vn + hEcjkj + C 2k 2]

" vn + h [ciJVn+i + c 2J(yn+1 - hb^Jy^)]*

= [I - hJ + (hJ) 2 /2]yn+1 - yn (3.39)

and the iteration matrix, from (3.37), is

(I - hJ + (hJ) 2 /2) (3.40)

If the exact iteration matrix, (3.40), is used with exact arithmetic

then, using (3.39) and (3.40), the Newton process, (3.36), can be

rewritten as,

- [I - hJ + (hJ) 2 /2]- 1 x
[(I - hJ + (hJ) 2 /2)yn+1 - yn]

= [I - hJ + (hJ) 2 /2]~ l yn (3.41)

Thus the process must converge in one iteration. However, the exact

iteration matrix is usually unavailable, so an approximation to (3.40)

is used. Let this be M, the exact form of M is given later in this

section. Using this the Newton process (3.36) becomes

Vn+i ' yn - [Mr'xUl - hJ + (hJ) 2 /2)yn+1 - yn]

= [I - [M]- l x[(I - hJ + (hJ) 2 /2)yn+1] - [M]- 1 yn (3.42)

Hence if (3.40) is not exact then an iterative scheme is required.

This requires the matrix M to be updated at each iteration, in practice

a modified Newton process is used whereby the iteration matrix is only

updated when it is strictly necessary. More precise details about the

updating of this matrix will be given later in this section.
- 62 -

The actual procedure used to solve the system of equations is obtained

by rewriting (3.36), using M as an approximation to ae/ayn+1 , as

**!+! = -€ < vn+i) < 3 ' 43 >

where

Thus M must be computed as a good approximation to (3.40), especially

as it is only updated when necessary. The simplest approximation is to

compute (3.40) directly ie. evaluate J 2 and J numerically, by finite

differences, and then construct (3.40). However, this has a variety of

limitations. The squaring of J, for 2nd order, is acceptable but for

higher order methods the evaluation of Js , J8" 1 , ... is not. The

storage requirements are also very high even if nested multiplication

is used.

To alleviate these problems, the present work involves the direct

evaluation of 3e/3yn+1 by numerical differentiation. Each component of

vn+t * s perturbed by an amount |3^, where the subscript denotes the ith

component of the vector yn+ t » and the corresponding new value of

e(yn4. t) computed. Various fixed perturbations were examined eg. 3^ =

l.e-10, l.e-12, but each was found to be unsatisfactory. Hence, some

change relative to the ith component was required. To cope with the

case of any component of yn+1 being zero an absolute perturbation was

also added. Thus the perturbation is constructed as a combination of a

relative part and an absolute part,

Pi = yn-*-t[[l. yeP8]] + SIGN(yn+t ,l)^eps (3.45)
*

where eps is the smallest positive number representable on the computer

for which (1 + eps) is greater than one. The function SIGN(a,6), which

returns the sign of a with the magnitude of b, is used to ensure that a

zero perturbation is avoided, ie. the relative and absolute changes

- 63 -

always have the same sign.

The solution of (3.43) is then performed by decomposing the iteration

matrix into a LU product, L being a lower triangular matrix with unit

diagonal and U an upper triangular matrix. This reduces equation

(3.43) to

LUA^ = -€(yn+l) (3.46)

which is solved by first solving

Vz i+l = -«(yn+i) (3.47)

and then

LAi+i = z i+1 (3.48)

by forward and backward substitutions in the normal manner to yield the

displacement vector Aj + 1 . Equation (3.44) is then used to generate the

next iterative value of yn+ t . This process, (3.46) is continued until

convergence of &±+l is -attained.

Convergence can only be attained if successive iterations tend to some

linit, which ultimately depends upon the approximation M. Consider

two successive iterations

+ c (3.49)

+ c (3.50)

using the displacement vector, (3.44), and subtracting (3.50) from

(3.49)

(3.51)

Assuming that there exists an exact solution yn+1 and defining a

residual vector as

r i = vn+t ~ vn+i (3.52)

then

- 64 -

(3.53)

Now r0 and A0 can be expressed as a linear combination of the

eigenvectors of J, u j , assuming that they form a basis. Let

N N
r 0 = E^^ and A = £0i" (3.54)

Clearly generating successive iterations brings in the eigenvalues of

M, thus

N N
and A = Ej3x ^ (3.55)

So clearly for r^ and Aj to converge Xj must be less than 1 for all

j=l(l)N, ie. the spectral radius of M, p(M) , must be less than 1. This

is also referred to as the amplification factor, Cash and

Singhal[1983] .

To examine whether two successive iterations have converged to an

acceptable amount, as ^i +1 is unlikely to equal zero, a convergence

test nust be applied. As the Newton process must be solved accurately

the error control must be kept very tight, using a relative error test

will ensure that this happens. Thus convergence of the Newton process

is considered achieved when

———— < stol (3.56)
Max[Veps,Hyn+l ll]

where stol is some acceptable local convergence level.

This check, however, causes one more iteration of the Newton process

than is really necessary for the convergence test to be met.

Convergence is attained when (3.56) is satisfied, ie. 8^ + jH must be

relatively small, compared with Byn+1 ll, hence the addition of this

vector to yn+ t will make no significant difference to the solution.

- 65 -

Therefore it is advantageous to estimate HAi + iH on the ith iteration.

Consider

yjiJ = Myj+t + c (3.57)

Using the result of (3.55) and assuming that |X t | > jXj| j=2(l)N ie. X t

is dominant, then on the jth iteration

Aj s P^M! (3.58)

and hence

= X t Aj (3.59)

Taking a suitable norm, results in

—— £ |XJ = p(M) (3.60)
HAj»

Hence the convergence rate of the process is approximately the ratio of

two successive displacement vectors which in turn is approximately the

spectral radius of the iteration matrix. Let the convergence rate of

the process on the ith iteration be CRATE-^, thus

- = CRATEi+1 (3.61)

and then

+ 1 B = HAi HxCRATE i .(. 1 (3.62)

Hence the value of BA i + l H can be obtained on the ith iteration if an

estimate of the convergence rate of the process is obtainable. It can

be assumed that the convergence rate on the (i+l)th iteration,

CRATEi + t , differs from CRATE^ by only a factor of two, ie. convergence

is ultimately linear. In any case CRATE^, i = 1, 2, .. must be less

that one to ensure convergence. Hence

CRATE 1+1 < min(l,2xCRATE i) (3.63)

Thus HA^+jfl in (3.62) can be approximated by

+1 H = min(l,2xCRATE i)xBAi B (3.64)

- 66 -

which often saves at least one iteration of the Newton process.

Initially CRATEj is set to one and updated subsequently by

CRATEj = ntaxf.ZxCRATEi^.HAiH/HAi^H) (3.65)

On the first iteration of each new step the convergence rate from the

last iteration of the last step is used. Hence the displacement vector

is never calculated on the (i+l)th iteration but always estimated, and

it is this estimated value that is always used.

This idea can be extended to check for divergence of the Newton

process. If •Aj+jll > lOxBA-jJ, (10 to allow some small increase), then

the scheme is showing signs of divergence and some correcting procedure

must be forthcoming. This idea was first proposed by Hindmarsh[1974]

and later incorporated in most codes that solve systems of equations by

a Newton process.

Clearly there will be occasions when the Newton process is going to be

slow to converge eg. when too large a step is used. For this reason

some limit must be imposed on the maximun number of iterations used.

As a failure of the iteration process must lead to a step reduction and

almost certainly an expensive iteration matrix update, the scheme is

allowed to iterate up to ten times. This figure is, however, rarely

reached as the number of iterations usually does not exceed three or

four.

The system (3.12) can only be solved for Ai+l providing the iteration

matrix, as it is computed numerically, is non-singular, or more

precisely is considered sufficiently well-conditioned for the LU

factorization algorithm to be successful. Any single occurrence of it

being singular can be overcome by changing the step size. An increase

- 67 -

is not advocated as the local accuracy requirements may not then be

net, thus h is reduced. The reduction is performed by halving the step

size and recomputing the complete step. If the iteration matrix is

repeatedly computed as singular then some other action must be

.forthcoming, this problem is discussed in detail in chapter 5.

Once the iteration matrix, M , has been evaluated it is the LU

factorization which is stored (ignoring the unit diagonal on L) for

future use and not M itself. As the iteration matrix is computed

numerically, knowledge of the analytical Jacobian matrix J of the

initial value problem, would be of no help in the solution procedure.

The iteration matrix is updated for only one of three reasons, viz.

i) the relative change in the step size exceeds 10%,

ii) the iterations fail to converge after three iterations, or

iii) the iteration process shows signs of divergence.

Due to (3.38) being a polynomial in hJ of degree s it is evident that

any change in the step size will require a re-evaluation of the matrix

M, for good convergent properties to be maintained. This has serious

implications in step control policies and they are discussed in chapter

4.

The initial approximaton y{{+i to yn+1 is generated by extrapolation

using a divided difference table that is constructed from consecutive

successful steps of the method. Numerical tests were used to determine

the optimal order of the divided difference table for BRK methods of

order 2, 5 and 8, these are 3, 7 and 10 respectively.

- 68 -

3.6 Problems considered and numerical results

To confirm the potential shown in BRK methods, fixed step versions of

orders 2, 5 and 8 were implemented. As no error estimate was being

incorporated the initial and maximum step sizes were supplied as data,

to enable a crude error control policy. Step increases by a factor of

ten were allowed if the Newton process converged in less than five

iterations with a stopping tolerance, stol, of l.e-10. (The Hindmarsh

process described in section 3.5 was not implemented at this stage)

The BRK methods have been applied to a large number of problems and

their performance compared to the BDF methods of Gear, incorporated in

the NAG library routine D02QBF, Gladwell[1974]. Hereafter GEAR refers

to these methods, using a relative error test (CIN(2) = 2), and

numerically evaluated Jacobian matrix. The default initial step size

was used in all cases. Results are shown for four typical problems,

three non-linear and one linear.

In all the following tables and figures the abbreviations below are

used,

TOL : local tolerance to satisfy at each step

Steps : number of steps taken to complete integration

FE : total number of function evaluations (including those

required for the Jacobian matrix evaluation)

JE : total number of Jacobian evaluations

CPU time : CPU time in seconds on a Prime 550

Order : Order of the method used

Sig. Figs. : significiant figures accuracy computed as

-Iog 10 = Min
|yN -

,0. (3.66)

- 69 -

where yjj is the numerical solution and y^ the corresponding

analytical solution, over the relevant component. The relevant

components being y 3 y 3f y4 and y t for problems p3.1, p3.2, p3.3 and

p3.4 respectively

The four systems of DDEs considered are listed below together with

initial conditions, integration range, eigenvalues of the Jacobian

matrix and where appropriate the analytical solution.

dyi
—— = -106 y, + yf + yf, - 1 - l/(H-x) 2
dx

= -y z + yid+x) 2 xe[o,io] (ps.i)
dx

— - -y!
dx

Initial conditions : y(0) = [1,1, 1] T

Eigenvalues : -10s , -1, -2/(l+x)

Analytical solution : y t (x) = exp(-10s x)

y2 (x) = 1.0

y 3 (x) = 1/(14-X)

This non-linear problem has a stiffness ratio of approximately I.e6.

Initially all components of the solution are of the same magnitude but

as the solution precedes y t decays rapidly to zero.

dx

—— = ———— xe[0,10] (p3.2)
dx (1+x)

- 70 -

dy,
—— - -y 2 (l+x)e x
dx

Initial conditions : y(0) = [le-2, Ie6, le6] T

Eigenvalues : -10s , -l/(l+x), 0

Analytical solution : y t (x) = 10~ 2 exp(-106 x)

y z (x) = 10fi /(H-x)

y 3 (x) = 106 exp(-x)

This problem was constructed so that y t has an extremely rapid

transient but, unlike p3.1 is much smaller in magnitude than the other

components. This situation is very common in engineering problems

especially where variables are converted to SI units, eg. converting to

Pascals may result in some components having extremely large

magnitudes, whereas others are extremely small.

dx

—— = -10y 2 + 20yf
dx

dy 3 X€[0,20] (p3.3)
—— = -40y 3 + 80(yf + yf)
dx

—— = -100y4 + 200(y^ + y| * y|)
dx

Initial conditions : y(0) = [1,1,1,1] T

Eigenvalues : -1, -10, -40, -100

This is a non-linear problem considered by Cash[1975]

dx xe[0,10] (p3.4)

- 71 -

j - 2y 2
dx

Initial conditions : y(0) = [1,-1] T

Eigenvalues : -1 * lOOi

Analytical solution : y t (x) = e~xcos(100x)

y z (x) = -e~x [cos(100x) + I00sin(lOOx)]

This is the only linear problem considered here and is characterised by

a highly oscillatory component. It is well known that BDF methods

perform particularly badly on such problems.

The initial fast transient stage of a stiff system is usually the most

demanding for any stiff integrator, as they only start to work

efficiently when the step size is large. The superior damping

properties of the BRK methods, over the BDF methods, during this fast

transient stage are apparent from Figure 3.8 and Table 3.3 for problem

p3.1. In each case the accuracy of the first component is plotted

closest to l.e-6, 2.e-6 and 3.e-6. This ensures that no additional

errors are introduced by interpolation. The numbers at the right-hand

end of the graph are the number of steps and function evaluations

respectively, these clearly show the supremacy of BRK methods at

controlling the fast transients. In particular the 8th order method

performs extremely well, being able to integrate upto 3.e-6 in just one

step and still producing an acceptable solution.

Table 3.5, Figure 3.9, summarises the three BRK methods and GEAR over

the whole integration range. The runs were set up so that each took,

approximately the same CPU time. All the BRK methods, with the

exception of the 2nd order method, out performed the GEAR method on

this problem.

- 72 -

Table 3.5 and Figure 3.10 summarises the performance of the methods

over the fast transient stage of the solution for problem p3.2. With

GEAR it is clear that a very small step must be used initally and

maintained for this part of the integration range, whereas the BRK

methods can employ a much larger step and still damp out the component.

Even with this small step the solution produced by the BDF methods lose

accuracy as x increases, this does not happen with the BRK methods.

Integrating over the whole range, Table 3.6 and Figure 3.11, indicates

that not only are the BRK methods faster but they are more accurate

throughout the range. Due to its poor performance on this 2nd order

BRK method is omitted.

Problem p3.3 results are summarised in Table 3.7, Figure 3.12. Even

though GEAR is able to used a larger step than any of the BRK methods

it is still slower and less accurate, with the exception of the 2nd

order BRK method. The somewhat erratic accuracy of all BRK methods can

be partially overcome by using a small initial step, but it does

highlight the need for some form of error control and variable step

policy.

Problem p3.4 is known to severely tax codes based on BDF methods such

as GEAR. This is due to the problem being characterized by a highly

oscillatory component. Table 3.8, Figure 3.13, show results for,

approximately, comparable CPU time. An interesting feature is the high

number of Jacobian evaluations required for the BDF code, this suggests

that the step control policy is allowing the step to change too freely.

Clearly the BRK methods out perform GEAR on this problem.

- 73 -

0.0

0.5

0.25

0.5

0.75

1.0

0.5

0.1875 0.0625

-0.32392 0.17608 0.14784

-0.13206 -0.31965 0.63912 9/16

0.444708 0.87328 0.25344 -12/7 8/7

7/90 0 32/90 12/90 32/90 70/90

Table 3.1 : Coefficients for 6-stage 5th order ERK.

No. of
steps Order BRK

Final values
BDF Analytical

-1 20 1 9.5367e-7 9.5367e-7 2.0612e-9

1.0995e-8 -4.0863e-6

3.0243e-9 3.3444e-7

2.2180e-9 4.6533e-7

-10 20 1 1.4864e-21 1.4864e-21 1.3839e-87

2 1.9652e-36 1.5316e-12

3 7.1451e-48 3.66526-10

4 6.5734e-57 8.6177e-8

Table 3.2 : Comparison of BRK and BDF on standard

test problem

- 74 -

Method Log 10 Steps at order Initial
& Order TOL 1 2 3 4 5 8 FE JE Steps Step

BRK 8

GEAR -15

BRK 8

GEAR -12

BRK 5

BRK 8

BRK 5

GEAR -7

BRK 8

BRK 5

BRK 2

GEAR -2

30 228

3 5 17 18 646 869

12 312

3 4 15 18 102 383

60 402

3 104

12 162

3 4 10 12 22 133

1 65

2 42

10 42

344 42

1

44

1

25

1

1

1

11

1

1

1

4

30

689

12

242

60

3

12

51

1

2

10

11

1

7

2

1

5

1

2

4

3

1

3

1

.Oe-7

.2e-17

.5e-7

.5e-l

.Oe-8

.Oe-6

.5e-7

2

.9e-10

.Oe-6

.5e-6

.Oe-7

.2e-8

Table 3.3 : Transient phase of problem p3.1 (Figure 3.8)

Method Log 10 Initial Maximum CPU
& order TOL FE JE Steps Step Step Time

BRK 2 - 432 1 201 5.0e-2 5.Oe-2 1.02

BRK 5 - 1830 6 204 5.Oe-2 5.Oe-2 2.03

BRK 8 - 2821 2 101 1.Oe-1 l.Oe-1 3.07

GEAR -7 424 33 241 4.9e-10 3.6e-l 3.43

Table 3.4' : Full range of problem p3.1 (Figure 3.9)

- 75 -

Method Log 10 Steps at order Initial
& Order TOL 1 2 3 4 5 8 FE JE Steps Step

BRK 8

BRK 5

BRK 8

GEAR -15

BRK 5

BRK 5

BRK 2

GEAR -12

BRK 2

GEAR -10

GEAR -7

BRK 8

20 468

100 636

10 299

2 4 10 14 60 188

20 204

10 138

100 212

3 4 7 18 3 96

20 72

375 42

4 19

2 91

1

1

1

15

1

1

1

9

1

5

3

1

20

100

10

91

20

10

100

35

20

15

4

2

5

1

1

2

5

1

1

1

5

1

1

5

.Oe-7

.Oe-7

.Oe-6

.4e-10

.Oe-7

.Oe-6

.Oe-7

.5e-8

.Oe-7

.5e-7

.9e-7

.Oe-6

Table 3.5 : Transient phase of problem p3.2 (Figure 3.10)

Method Logr Initial Maximum CPU
& order TOL FE JE Steps Step Step Time

BRK 5 - 2166 6 105 l.Oe-1 l.Oe-1 2.91

BRK 8 - 3783 9 106 l.Oe-1 l.Oe-1 4.59

GEAR -10 520 29 385 1.5e-7 6.8e-2 5.16

Table 3.6 : Full range of problem p3.2 (Figure 3.11)

- 76 -

Method Log 10 Initial Maximum CPU
& order TOL FE JE Steps Step Step Time

BRK 2 - 1160 23 211 l.Oe-12 l.Oe-1 2.64

BRK 5 - 2640 8 203 l.Oe-4 l.Oe-1 3.49

BRK 8 - 3263 10 80 2.5e-l 2.5e-l 3.46

GEAR -6 383 23 206 4.8e-6 l.OSeO 4.40

Table 3.7 : Full range of problem p3.3 (Figure 3.12)

Method Log 10 Initial Maximum CPU
& order TOL FE JE Steps Step Step Time

BRK 2 - 46630 1 20001 5.Oe-4 5.Oe-4 78.8

BRK 5 - 76044 1 10001 1.Oe-3 1.Oe-3 63.5

BRK 8 - 130130 1 10001 l.Oe-3 l.Oe-3 89.9

GEAR -7 11481 623 9794 4.0e-7 3.1e-3 99.5

Table 3.8 : Full range of problem p3.4 (Figure 3.13)

- 77 -

I 0
0

rq c n cc CO co rh

C»

O" CD

OX
j

M
- o 3 CO

03

O

X S 0) "1 a. to

c 3

CD

N
u

4
a

s
a

a

/(

>-
*.

 J

I.
I

I
I

I
I

I
I V

c ĈD

CO ri-

P cr CD 0x5 C

I—
 '

CD n M CD rt ET o a

iMASiy,
-t- 4> < ' cp

o

o

o ca e>
< 9

cat i

-f. 2.S0D—Bl
^ s.aeo—01
o i . aao-»aa

-3 —Z

Figure 3.2a : Modulus plot of BRK 1.

IflAglNARY <a

i——;——i——;——i——:——r

-I- 7 . SSO-
£*. 1
o z.:

o
o

-*———|————|————|————|————|————|————.———— KEAl. c,
I i Iz Is !•» la 10 IT- la

Figure 3.2b : Argument plot of BRK 1

- 79 -

-f.

-*-

-+•

•+•

H-

-^

4

-»»

*
-C

«•

t

A

C

-*-
-t-

-t-

-1-

2 —

/a

A

y

/ i-

i.

CtlAOINAfi

^H.**

/

&

C
0

0

0

o c
a

o a '
0 a*
= a<

5 a

5 a
* a
> c
i
>

«

o° e

a c

*

y

O
00

=1

-T O

"*" _,. ^ 3.aao— ai
H- 01 .aao-^aa

-t- o 2-aaD-ao
-». o 3 .aao-<-aa

-*-

-t-
o A

°° ^ ""
0

D ° A.
* a o A

> 0
Q o A o -*-

oa ° A ^
0 0 A

> o A ^.
a c3
a o •*•

a o A
0 A

—————————————— _ ——————————— ̂ . ——— ——————————— «CAU O

, T 2 1 3

Figure 3.3a : Modulus plot of BRK 2.

9 ——

v a —
x

x

X

———————— — —————— ̂1 ——
a —

x

V
X

X ^ _

v
"^ ^^ ^

^ H^ 3 ——
o r

^ 5«

«• X
O z ——

0 ^X

o :
^

<»

»•« -t-

^

+ A

" "" ^
M« -4*

** "*" ^.

** "*" ^

"* "*" A

«" * °
-t- ^ O

" -H «° "'
r -f- o
_ "* ^ ^

^ "" -)- A. 0
«. 0 V *• -(- A O

< — ,* A O
x" "A o
• CD

a

o
a
o

—i .
—r . SSD— ai
a.aao— ai
7 . aso— ai
i -37D->-aa

-e — • — r -9 —a — * —a —2
RBAU =,

Figure 3.3b : Argument plot of BRK 2

- 80 -

ft11

-
-
8

8
8

9
9

9
8

9
1

1
t

t
+

Q Q 0 0
0

9 S 8 9 8
r
 B 8 8 8

N B - N n

M
O

O
O

+
+

t
t

+*

aj

4. t
^
4

^
^

t
+

d
^

,+
 *

.0
^

0
°

°
°

t +
d
^

n
°

^O
4

0
°

Q
O

D
°

4^
o "

n
^
o
^

<i
o °

o
«

4
o°

o°
!

*
Q o °

0 no
D o D

D
°«

^
.

«
n
"
»

A
A

A
A

A
^J

|J

ri
U

A

"

^

A

hQ
4

O
J
?

A
*A

»
D

D
n

n
^
^

5*0
i

1H

T

i.

It"

t

^
 —

—
—

—
—

—
—

—
— 4

0
"0 A

9
n D

4
o

^O
O

D
"

<i
n

—
—

 ̂
 —

—
—

—
 1°

°
0

0
0 —

 O
O

p
Q

O
O

O
Q

O
O

l

*s
'' 5 <4 ^

^
<

^
\.

+ + +
4 <

4
<I

nN-81

CO^

teDQ

«M

OJ->O•—
I

aCO3TJ
OSed
•^CO£-1tic

JNAR-T a0r.H

8 8 •-•-•-
8

8
8

9
9

t t
!

1
1

Q 0 0 Q 0
0 S 1) 8 1)
n i) ID 9 ID
N - S 8 N

1
1

1

t«O
D

O

1

0
0

,

1£
t

:!

1

9
8

9
9
8

9
t +

f
Q Q Q
s
o
t

«i n -
<• M n

X
t>

*

I
0

D

0
0

I*i »

\

A
A

O
n"

0
0

o

+
titn

X
*

1
*

V
p

0
.°
0

Q
p

0 O
Q

C,
M

i

***^ fr
>

X
X

X

A,
Ao

o

t
t* '

S
X

X
X

Xx x
X

Q
0

«"°!ll 1 '
0

I>X
y

(x x

^t>(,

X
X

X
>

SI
b

t-
N

XX
X

X
K

4A

A

A

>ot>^
K[)

X 'x
X

0
A

0

V
d

X
i

X
1

K
.

(A
0

0
0*0

0

I_1i

t>

rs—an_^nN8 iNn ii-t!
'-DI

co03or—
I

a-Mc0)EboCO(U^43

W

00I

4

-¥•

-t-

_^

-*-

^,

_,.
-».

-+.
.+.

"*"

i-
r»

,

_^:
-t-

£>.£ *
^ t

A O

A O
[
c

^ o
o

» *?—
^ 0

^ o
o

k
c

k
ck

k c

h 1 ^

k C

b <
k c

k

t
1 '

— 1 S3

'* 1

^ A A A .

=) o0oo

aa

*> *D
B> °C

a a
= a

»

> i
> i
> c
9 C

) I

J C

3 t

'"""I

te> A
A

3
O

O

c

a
a

a

3 <
3 «,
]
1 «
1 c
1 <
)
!

, -t- z.aao— ai
•*• ^_ AS -aao-ai

.^ 01. aao-*-aa
-^ a z.aeD-»aa

_,. o 3 .aaot-aa

. -t-
£*. -t-

A -t-

0 A -1-

°o

o
0 A

o A "*"
0 A ^_

« QD^ ° A
3 aC3 ° -»•

a o A

V*H ^ A

o a o A -*•
0° 0 A *

C3 -t-
<» a o A -i-

° <=> ° A "*"

a o -i-
0 ^ -t-*> ^3 Cj

* 0 A -^

^ I 1 I Z I 3

Figure 3.5a : Modulus plot of BRK 4.

c
c

\ Ij
9M

• ~^ A

H- yy

V -(. A

V >« "*" ^

V 9M •*'
iy >•« •+•

^. *7 ****

X ^
X V

x z —
X

——— I ———— 1 ———— 1 ———— 1 ———— '- — r — — i ———— i ———— i ———— i ———— i ——— •

I MAO^NARY a

a
a xo

> a 0 *= ^

O D ° J< ^ j^

0 a o ^ ««
X V M

f~l O *r* **

o a o "*
o a o x " * ^-

jQD"^ ^^ _._* '•^ <^ y^ ip ^^ *r^
1*0 X ^ ^ -K

^ 5*< "*" .
X I- A

' *" ** ^ rn"* •""*" A ^

"^r"!-/^* o0 o°°

— » —3 — Z —1 a 1 2 1 3 t 3 3

—i .•3-7B-+es<o

a
o r.aso— ai

i -S7o-f*aa

>« 3-1 -40-i-aa

Figure 3.5b : Argument plot of BRK 4

- 82 -

Figure 3.6 : Optimal stability region of 5th order BRK

ITIASItMA

Figure 3.7 : Optimal stability region of 6th order BRK

- 83 -

f
t

•
•
 B

• B
fl

I
V

I

I

8I;

H
I

-T—
—

—
—

—
—

I—
—

—
—

—
—

f-

0)
<W
(0-p tncdOJ> oCOQ
.

e0)o(X* •

00

CO

0)txl
•H

« r
Of 0

M
O

O

f K
K

U
l

0 ID ID
u Jn
>

fciOc toOJ
I—

 I
oX
!

00aCD
i—1OtxO

)

COCX£

I

00

20(468)

100(636,;

10(799)

• K •
•x a
UK •

Figure 3.10 : Problem p3.2 over initial stage.

B«K 3
C5E AR

Figure 3.11 : Problem p3.2 over whole range

- 85 -

is Jo mioa

-t- e«tK a
A e«K 3
o

.». i a
I zx v

FlgUre 3 ' 12 ; P3.3 over whole range.

F1 ^ure 3 ' 13 : Proble<» P3.4 over whole

- 86 -

range .

Chapter 4 : ERROR CONTROL

In chapter 3 the potential of BRK methods for solving stiff systems of

ODEs was demonstrated using fixed step mode. However, some means of

controlling the error of the method must be derived to produce an

efficient algorithm.

The global error, the difference between the true solution and the

numerical one at any given point, cannot generally be determined. Thus

the usual measure of control is the local truncation error, ie. the

error committed in one step of the method assuming that no errors have

previously been introduced. In fact the global error is a result of

the local truncation errors, formed over all the previous steps, taken

to construct the numerical solution, accumulated in a non-trivial

manner together with round-off errors. In addition for an implicit

method, since the implicit equations are never solved exactly, further

errors are introduced. It can be shown that a bound on the local

truncation error provides a corresponding bound on the global error,

Lambert[1973].

This chapter examines a variety of techniques for estimating the

principal local truncation error of a Runge-Kutta method and in

particular BRK methods. By estimating the principal local truncation

error the step size, h, can be adjusted automatically so that in some

region of x where y(x) is changing rapidly h is kept small, while in

regions where y(x) is changing slowly h is made large.

4.1 Embedding

Unfortunately the error term, given by the Taylor series expansion, is

too complicated to be of any practical value, hence the local

- 87 -

truncation error must be evaluated numerically. The most commonly used

estimation method for Runge-Kutta methods is that of embedding,

Fehlberg[1970], Verner[1978].

This technique requires an s-stage method (explicit or implicit) of

order p+1, (s,p+l) to have embedded within it a method of order p,

(s,p). By embedding we mean that the (s,p) method uses the same

function evaluations as the (s,p+l), ie. the same sampling points, but

uses a different linear combination. Assuming that the solution at

xn_ t is exact and no computational errors are introduced in computing

the next step and two approximations are generated at xn = xn _ t + h.
Let these be yn and yn for the (s,p+l) and (s,p) methods respectively.

Clearly if y(xn) denotes the true solution at xn , then the (s,p+l)

method generates

yn = y(xn) H- hP+ 2 <&(y(xn)) + 0(hP+3) (4.1)

where o>(y(xn)) is the principal error function. The (s,p) method will

produce

Vn = V(xn) + hP+1 x(y(xn)) + 0(hP+2) (4.2)

where x(y(xn)) is the principal error function of the (s,p) method.

Subtracting (4.2) from (4.1) yields the difference between the two

estimates

Vn - Vn = hP+1 x(y(xn)) + 0(hP+2) (4.3)

and hence

hp+1 x(y(xn)) = yn - y* = d(h) (4.4)

Thus d(h) is an estimate of the local truncation error of the (s,p)

method at xn and this must be kept less than a fixed local error

tolerence, TOL, at each step to maintain a bound on the global error.

An absolute error test or a relative error test may be used. In the

- 88 -

latter case
ld(h)H

T(h) = ———— (4.5)

and it is T(h) which is controlled. When the step has been completed,

the optimal step size, hnew = nh, to be attempted on the next step can

be estimated. This is the step which would exactly satisfy the local

error requirements, TOL. Assuming that the error changes slowly along

the integration range then n must be chosen such that

T(ah) = TOL (4.6)

Clearly from (4.4) and (4.5)

T(/ih) = MP^Tth) (4.7)

and it follows that

PTOL
= c (4.8)

LT(h).

where c is introduced as a safety factor, usually taken as ce [0.8, 1.0].

Once v has been estimated from (4.8) then the following step control

policy is adopted:

a) If u < 0.8 the the step is rejected. The step to be attempted on

the re-calculation is hnew = vh, with v = Max[0.1, UL] , to disallow very

large changes in the step size.

b) If 1 > fi > 0.8 the solution produced by the (s,p) method is

accepted. However, it is normal practise to carry forward the solution

obtained from the (s,p+l) method and this is the policy adopted here.

The new step is, however, reduced by setting hnew =

c) If M > 1 then the step is accepted and again the p+lth order

solution is carried forward. The new step is set at hnew = vh, where v

is constrained by v = MinflO.O, iu] , again to disallow large changes in
- 89 -

the step size.

This is a typical error control policy for explicit Runge-Kutta

methods.

4.2 Inverse embedding

This is a similar idea to the embedding technique, section 4.1, but is

valid for the BRK methods derived in chapter 2. An embedded pair

(s,p+l) and (s,p) are required as before. Suppose the implicit

equations are solved for the (s,p+l) %ethod to produce yn , (the scalar

case is depicted in Figure 4.1), so that

s
Efyn^n-i) = Vn - Vn-i - hEciki = 0 (4.9)

i = i

The value of yn together with the corresponding kj values will in

general not satisfy the (s,p) equation, ie.

s
E*(yn .yn-i) = Vn ~ vn-t - h£ci ki * 0 (4.10)

i=i

We could of course solve the (s,p) method equations to produce yn

giving

s
E*(yn>yn-i> = yn - Vn-i - *Zc[k{ = 0 (4.11)

but this will require a great deal more function evaluations to produce

the k{ values which correspond to yn instead of yn . It will also mean

estimating 3E*/ayn . Alternatively for some vector y^-i we nave

s
E*(yn-yn-i) = yn ~ yn-i ~ hEcj ki = 0 (4.12)

Let

«

and

- 90 -

It is extremely easy to compute <x but we really need p. From (4.11)

= E *
3E~

3yn
HOT

= 0

Ignoring the higher order terms

.*- -i
13 -

8E
(4.13)

L3ynJ
From (4.10) and (4.12)

* , <x = E (yn
and

3E*, -!

<x (4.14)

Thus P can be computed from <x provided an estimate for 3E*/3yn is

available.

4.3 Richardson extrapolation

One error control policy commonly used is that of Richardson

extrapolation (halving or doubling). The integration from xn _ 1 to xn

is performed twice with the same order method. A step of 2h is taken

and compared with a solution computed by taking two steps of size h.

Let the solution obtained by the 2h step be denoted by y and the

solution by the two h steps by yn_i^ and yn . Thus using y(xn) as before

= y(xn) - (2h)P+1 d>(y(xn)) + 0(hP+ 2) (4.15a)

and

= y< xn) - hp+1 <J>(y(xn)) + 0

Hence, subtracting (4.15b) from (4.15a),

(4.15b)

- 91 -

hP+ l*(y(xn)) = -!!———— m d(h) (4.16)
1 - 2P+ 1

giving an estimate of the local truncation error, d(h). Using a

similar approach to the embedding technique the optimal step to be

attempted next can be estimated by

TOL(2P+1 - 1)
M = C (4.17)

T(h)

where T(h) is as (4.5). The step to be attempted next, hnew , is then

computed in the same way as with the embedding technique. The solution

that is carried forward is the solution obtained by the two h steps, as

this should be the most accuate.

There are two main drawbacks with this technique. The first is the

amount of work required to perform one successful step ie. the step is

performed twice with different step sizes to produce an estimate for

the local truncation error. The second is that an iteration matrix is

required for both stages, ie. one for the 2h step and one for the two h

steps. This clearly makes the operation expensive.

4.4 Implementation details

The obvious choice for an error control policy, for ERK methods is the

embedding technique. This is straight forward to implement and is done

so as described above.

BRK methods on the other hand have two plausible error control

techniques, 4.2 or 4.3. Extensive testing of the two techniques

indicated that the Richardson technique was more reliable and more

efficient. Table 4.1 shows the results for a typical problem, viz.

p3.4. Hence this is the error control policy adopted. The basic

- 92 -

implementation details are described below.

The order in which the integration steps are performed in this

technique is of great importance. The 2h step must be performed first,

as it is more likely to fail than the small h steps. The initial

estimate for yn is obtained by extrapolating the divided difference

table updated after each successful step. When the 2h step has been

successfully completed, the solution produced is used to update the

divided difference table. This old divided difference table is,

however, not over-written by the new one as a step failure would

destroy the validity of the table. Therefore this new table is

calculated and then stored separately. The initial approximation to

vn-K' tne first n step, is obtained by interpolating the new divided

difference table. Providing that the first h step is computed

successfully the second can be performed. An estimate of the solution

at xn already exists from the 2h step, and this can be used as an

initial approximation to the solution for the second h step. By using

this initial approximation the iterations normally converge rapidly,

usually in 1 or 2 iterations. The test (4.17) is then conducted to

determine whether the step was successful and determine hnew for the

next step.

4.5 Numerical results

BRK methods of orders 5 and 8 have been implemented in variable step

mode and used to integrate the problems considered in chapter 3, viz.

p3.1, p3.2, p3.3 and p3.4. Due to the lack of error control of the

methods in chapter 3 the approach adopted here, to analyse the results,

is somewhat different. The methods can now be controlled by specifying

a local error tolerance, TOL, that must be satisfied at each step. It

- 93 -

is, however, not enough to specify some value of TOL and compare this

with the results of GEAR using the same tolerance level. Both methods

will use TOL as a local error tolerance but may actually control

different quantities. Thus the accuracy actually attained by the

method must be monitored. The approach taken in this chapter is to

monitor the accuracy at the end of the integration range in terms of

the number of accurate significiant figures obtained over the relevant

component. The relevant components being the same as those used in

chapter 3.

The results of problem p3.1 are tabulated in Table 4.2 and displayed

graphically in Figure 4.2. Even though an expensive error control

policy is being employed the BRK methods are able to compute a solution

more efficiently than GEAR, with the 5th order method marginally

outperforming the 8th.

With problem p3.2, Table 4.3, Figure 4.3, all methods are capable of

producing results in a reasonable time when low accuracy is required.

If more accuracy is requested, however, the 8th order method is best.

Problem p3.3 highlighted the necessity of an error control policy for

BRK methods (Figure 3.12), Table 4.4 and Figure 4.4, show the effect of

incorporating an error control policy into the 5th order method. It

shows that a more uniform accuracy is maintained throughout the

integration range. The results of Table 4.5 and Figure 4.5 show that

the 8th order method is extremely inefficient on this problem in total

contrast to problem p3.2. Clearly the high number of stages of the

methods, viz. 12, place a severe restriction on it, especially as the

problem has more state variables than the other three problems

- 94 -

considered.

When a problem with fewer state variables, problem p3.4, is considered

the 8th order method again shows its supremacy, (Table 4.6 and Figure

4.6).

- 95 -

Method Log 10
TOL FE

Richardson -3

Inverse
Fehlberg

-4
-5
-6
-8
_Q

-3
-4
-5
-6
_rr

-8
-9

38094
55674
79980
122796
221496
310818

32852
51433
81439
142765
267409
402637
603211

JE

22
16
18
4
6

12

21
30
34
43
45
60
67

Steps

2176
3202
4612
10002
12720
17858

2525
3982
6435
10537
14487
22293
35515

Maximum Accuracy CPU
Step at xen(j Time

7
5
3
1
1
6

1
1
7
4
3
1
1

.8e-3

.3e-

.7e-

.Oe-

3
3
3

.Oe-3

.9e-4

.8e-

.le-

.6e-

.8e-

.Oe-

2
2
2
3
3

.9e-3

.le-3

2
3
3
5
6
6

2
3
4
4
5
6
6

.02

.00

.78

.52

.03

.67

.46

.12

.05

.68

.03

.05

.81

41
61
87
146
242
340

28
44
72

124
218
329
503

.94

.00

.70

.12

.00

.00

.64

.87

.02

.33

.30

.10

.70

Table 4.1 : Comparison of error control devices

Method Log 10 Maximum Accuracy CPU
& Order TOL FE JE Steps Step at xend Time

BRK 8

BRK 5

GEAR

-3
-4
-6
-7
-8
-9

-2
-4
-6
-7
-8
-9

-5
-6
-7
-8
-9

-10
-11
-12

1752
1908
2916
3336
3000
4020

972
858
1368
1920
2443
3349

234
293
424
462
619
809

1056
1415

18
24
10
12
10
7

21
11
12
15
10
12

21
25
30
34
43
48
61
76

18
24
54
58
76

104

24
34
60
86

150
228

130
169
241
300
414
576
809
1132

9
8
8
8
2
1

8
3
8
4
6
4

6
4
3
2
1
1
9
6

.6e-

.5e-

.7e-

.4e-

.3e-

.9e-

.Oe-

. le-

.5e-

. le-

.le-

1
1
1
1
1
1

1
1
1
1
2

.7e-2

.4e-

.Oe-

.6e-

.6e-

.7e-

.le-

.Oe-

.Oe-

1
1
1
1
1
1
2
2

5
7
7
9

10
11

4
6
7
8
9

11

3
4
5
6
6
7
8
9

.99

.21

.93

.14

.66

.11

.66

.66

.74

.48

.38

.73

.64

.72

.57

.19

.99

.83

.59

.38

1
2
3
4
3
5

1
1
2
2
4
7

1
2
3
4
5
7

10
14

.97

.15

.60

.09

.88

.26

.36

.29

.11

.99

.04

.95

.78

.39

.43

.08

.66

.57

.31

.14

Table 4.2 : Comparison of problem p3.1 (Figure 4.2)

- 96 -

Method Log 10 Maximum Accuracy CPU
& Order TOL FE JE Steps Step at xend Time

BRK 8

BRK 5

GEAR

-2
-3
-7
_o

-9
-10

-3
-4
-6
-7
-8
-9

-10

-6
-7
-8
-9

-10
-11
-12

1212
1200
1488
2052
3133
3589

726
900

1254
1657
2239
3446
4802

180
231
302
382
520
722

1028

11
16
21
28
30
29

22
20
12
10
8

13
13

13
17
20
22
29
40
53

16
16
20
26
48
52

20
42
90
132
196
290
428

102
140
195
274
385
555
813

7.
1.
9.
8.
6.
8.

1.
2.
1.
7.
5.
3.
2.

2.
1.
1.
1.
6.
5.
3.

Oe-1
8e 0
8e-l
3e-l
le-1
4e-l

8e 0
4e-l
le-1
7e-2
3e-2
5e-2
4e-2

6e-l
9e-l
5e-l
Oe-1
8e-2
le-2
4e-2

1
3
4
5
7
8

1
2
4
4
5
6
7

1
2
3
4
4
5
6

.39

.53

.80

.70

.90

.10

.79

.53

.08

.58

.34

.24

.10

.55

.86

.86

.23

.89

.44

.22

1
1
2
3
4
5

1
1
2
3
4
7

10

1
1
2
3
5
7

10

.84

.77

.19

.03

.79

.50

.23

.66

.55

.47

.80

.34

.36

.49

.97

.74

.70

.16

.29

.60

Table 4.3 : Comparison on problem p3.2 (Figure 4.3)

Method Log 10 Initial Maximum CPU
& Order TOL FE JE Steps Step Step Time

BRK 5 -3 2136 38 80 l.Oe-4 l.le 0 3.47

GEAR -6 383 23 206 4.8e-6 1.Oe 0 4.40

Table 4.4 : Comparison on problem p3.3 (Figure 4.4)

- 97 -

Method Log 10
& Order TOL

Maximum Accuracy CPU
FE JE Steps Step at xend Time

BRK 8

BRK 5

GEAR

-1
-3
-5

-2
-4
-5

-2
-3
-4
— o
-7
-9

-10

3936 51 34 1.4e 0 5.74 5.37
3324 34 42 1 . 2e 0 6.99 4.71
3684 29 60 9.7e-l 9.46 5.47

1854 35 72 9.9e-l 6.99 2.98
2814 28 140 9.8e-l 8.93 5.00
4722 33 346 1 . Oe 0 9.87 9.33

129 12 50 3.0e 0 4.08 1.12
193 14 80 2.7e 0 4.96 1.77
276 22 124 3.1e 0 5.60 2.70
278 16 148 9.3e-l 6.09 3.14
479 27 274 3.9e-l 9.50 5.80
1032 60 578 5.3e-l 9.81 12.18
1146 62 732 3.9e-l 10.47 14.66

Table 4.5 : Comparision on problem p3 . 3 (Figure 4.5)

Method
& Order

BRK 8

BRK 5

GEAR

Log
TOL

-3
-4
-5
-6
-7
-8
-9

-3
-4
-5
-6
-8
-9

-7
-8
-9

-10
-11

10 Maximum Accuracy CPU
FE JE Steps Step at xend Time

23484 12 634 2.3e-2 1.24 21.08
31260 12 838 1.3e-2 2.19 27.93
32964 10 958 1 . 2e-2 2.74 30.16
52668 22 1436 9.6e-3 4.20 46.88
68352 16 1956 7.1e-3 5.34 60.81
82740 12 2982 3.3e-3 6.77 77.16
108024 25 3310 3.1e-3 7.20 92.23

38094 22 2176 7.8e-3 2.02 41.94
55674 16 3202 5.3e-3 3.00 61.00
79980 18 4612 3 . 7e-3 3.78 87.70

122796 4 10002 1 . Oe-3 5.52 146.12
221496 6 12720 l.Oe-3 6.03 242.00
310818 12 17858 6.9e-4 6.67 340.00

11481 628 9794 3.1e-3 1.80 99.53
15985 797 14020 2 . 6e-3 2.59 139.54
23013 1115 20402 1 . 8e-3 3.41 202.76
32907 1577 29296 1 . Oe-3 4.28 290.63
48742 2343 43505 7.9e-4 5.11 426.31

Table 4.6 : Comparison on problem p3.4 (Figure 4.6)

- 98 -

(xn ,y*)

<x

(xn ,y n)

Figure 4.1 Node layout for inverse embedding method
(scalar case)

CPU TIMB

e«K
9RK

SIC <=IGe T3

Figure 4.2 : Problem p3.1

- 99 -

CI«U
i a

-+. BRK a
A BRK 3
O OBAR

\ .SIO f»IC3e T3

Figure 4.3 : Problem p3.2

sio PI os

Figure 4.4 : Problem p3.3 over whole range.

- 100 -

CPU TIMB

-i- B«K a
A BRK S
O GBAH

i a
era rice

Figure 4.5 : Problem p3.3

CPU Tine

-I- BRK
A B«K
O QEAS

. SIO P" 1 OS

Figure 4.6 : Problem p3.4

- 101 -

Chapter 5 : PROBLEMS ASSOCIATED WITH BRK METHODS

All numerical methods used to solve ODEs will be inefficient for some

class of problem. Thus Adams methods are hopelessly inefficient at

solving stiff systems and BDF methods are poor when applied to highly

oscillatory problems. Not surprisingly BRK methods are inefficient for

some problems.

This chapter sets out the deficiencies of BRK methods and some of the

routes that have been investigated in the search for a remedy.

5.1 Singular iteration matrix

When integrating a well-behaved system of ODEs we expect the iteration

matrix associated with the solution of the implicit equations to be

non-singular. However, in some cases, due to the finite precision of

the calculations, singular or nearly singular approximations to the

Jacobian may be produced. This normally happens only very rarely. Any

isolated occurrence of it can be overcome by simply changing the step

size. A step increase is not advocated as then the accuracy

requirements may not be met, thus the step must be reduced. With BRK

methods the iteration matrix is computed directly from the residual

vector, €(h), by perturbing the yn values and recomputing e(h), section

3.5.

Consider the linear system

dx
xe[0,l]

dy z
—— = -10ayi - (10a + I)y 2
dx

with initial conditions

- 102 -

Yi(0) = 2 y z (0) = -

and a is a positive integer. The Jacobian matrix associated with p5.1

is

J- (5.1)
.-10a -

which is clearly non-singular.

From chapter 3 the iteration matrix asscoiated with an s-stage BRK

method, for a linear system, has the form

M = (5.2)
= o

A 3-stage 3rd order BRK method will thus have an iteration matrix

comprising

I - hJ + (hJ) 2 /2 - (hJ) 3 /6 (5.3)

Now clearly J 2 and J 3 for problem p5.1 can be constructed as

J 2 = -10*

and (5.4)

J 3 =
10 2<x+10a 10 2<X+10OC+1

-10 3<x-10 20c-10a -10 3<X-10 2<X-10CC-1

For a large value of <x and moderately sized h

M -h 3J 3 /6 (5.5)

which may be computed as singular since the second column is virtually

the same as the first and hence the system of equations cannot be

solved. This is a problem that is inherent to all MIRK based methods,

Singhal[1980]. The situation degenerates as the order of the method

increases. Even though the implementation discussed in chapter 3 does

not compute J directly, the approximation to the iteration matrix, M,

may be computed as singular.

- 103 -

This severe drawback of MIRK methods may make them unsuitable as an

integrator for a class of simple linear ODEs. However, various schemes

to alleviate this problem are discussed in the following section.

It is important to note that it is not the eigenvalues that cause the

problems since systems with exactly the same eigenvalues as p5.1 can

be solved very efficiently. Thus it is untrue to say that BRK methods

cannot solve stiff systems but rather that they are inefficient at

solving some stiff systems. For example the problem

—— = -106yi
dx

(P5.2)
dy z

dx

has the same eigenvalues as problem p5.1, yet BRK methods are able to

integrate this problem without any difficulties.

5.1.2 Approximate factorization

Following an approach proposed by Singhal [1980] , the iteration matix

can be factorized as

M = (I-v t hJ)(I-v 2 hJ) . . . (I-v shJ) (5.6)

for an s-stage method. Singhal [1980] shows that a more efficient

scheme can be produced by taking v^ = v, i=l(l)s. Thus M is

approximated by

M = (I - vhJ) s (5.7)

The solution of which will require one Jacobian evaluation, one LU

decomposition and s back substitutions. Clearly v must be chosen so

that the approximation to the iteration matrix produces a matrix that

ensures that the rate of convergence of the Newton process is less than

one , ie. p(M) < 1, and hopefully p(M) « 1. Singhal [1980] found

- 104 -

values of v for MIRK methods of order 2, 3 and 4 such that p(M) was

less than one.

This idea can be extended to allow two free parameters and hence giving

the scheme more flexibility. Consider

M « (eel + PhJ) 8 (5.8)

as an approximation to the iteration matrix. The free parameters can

be found by a minimax process. Consider for simplicity, a linear

approximate factorization for the 2-stage 2nd order BRK method.

Application of Newton's method gives

Vi*!0 " AyKl + b (5.9)

where

A = I - (<xl + j3hJ)~ 2 (I - hJ +(hJ) 2 /2)

b = (ocl + /3hJ)~ 2 yn

To ensure that the approximation is satisfactory p(A) must be less than

1, ie. the largest eigenvalue of A cannot be greater than one. Now the

eigenvalues of A can easily be found by replacing J by x$ in (5.9),

thus A has eigenvalues

1 - (« + miXjr'U - h\i + (hXi) 2 /2) (5.10)

These eigenvalues must be minimized with respect to <x and 0 over some

region of the hx(=q) complex plane. Singhal[1980] considered the

approximation to the iteration matrix, (5.7), over the complete

left-hand half plane, ie. Re(q) < 0. By ensuring that (5.10), (with «

s 1), is analytic in this region then the maximum modulus theorem was

used to show that the maximum value is attained on the boundary of the

region, ie. Re(q) = 0. The approach taken here is somewhat different.

The problems that create severe difficulties for BRK methods have real

eigenvalues on the negative axis. Thus we perform our minimization

solely over the real negative axis. Hence we require

- 105 -

Min Max
- (l-q+q2 /2)

(5.11)
<x,P qe(-«,0]

Put

W = !/(« + 3q) * q =

Thus, as there is a 1-1 relationship between q and n, the problem can

be rewritten to allow a finite range of M to be inspected, ie.

Min Max | e(/Li) I (5.12)
<x,3 iue[o,i/<x]

where

-2(<x-H3) 2 iu 2 - 2(<x-H3)iu + 1 +
€ (M) = —————————————————————————— (5.13)

for a 2-stage 2nd order BRK method. Clearly (<x+|Bq) must be non-zero to

ensure that the function is analytic. We take <x as positive and £

negative to ensure this.

The NAG subroutine E04CGF was used to determine the values of <x and p

to minimize e(ju). This routine finds the minimum value of a function

of N independent variables using function values only. The function

that E04CGF minimizes is the maximum of e(n) over the finite interval

[0,l/<x], ie. a minimax problem. This maximum can be determined by

computing e(0), e(l/cc) and e(jji) at the turning points given by e'(ju) =

0 such that iue[0,l/<x]. The maximum of the moduli of these value of

e(M) gives the function values for E04CGF and the minimum of those

produces the required amplification factor.

This idea can be extended further by using an approximation to the

iteration matrix

1 + s,hJ 4- 6 2 (hJ) 2 4- . . . + 6m (hJ)m
MCI —————————————————————————— (5.14)

for the 2-stage 2nd order BRK method. The process (5.14) can however,
- 106 -

be made more efficient by rewriting and implementing it in the

following form

-«- ... + ————————— (5.15)
(al+PhJ) 2 (ccI+phJ) 3 (<xI+phJ) 2+m

This has m+2 free parameters which can be adjusted to reduce the

amplification factor. This involves solving

Min Max
c,p qe(-«,0]

(l-q+q 2 /2)

(cc+|3q) 2 +. . .
(5.16)

for the unknowns a, p, n t , . . ., t^, where the constraints are as

above.

By extending this idea still further a quadratic factorization can be

considered. This has the general form for a 6-stage 5th order BRK

method of

(<x + 0hJ + r(hJ) 2) 3 (5.17)

Like the linear case a number of correction terms can be added to

enhance the scheme, ie

1 -i- 6 t hJ -»• 6 2 (hJ) z + ... + 6 2m (hJ) zm
(5.18)

4- 0hJ + r(hJ) 2) m+6

which can be written and computed as

(<xI+phJ+r(hJ) 2) (<xI+phJ+y(hJ) 2) 6 +m

for efficiency.

(5.19)

The amplification factor can be determined by using a similar idea to

that mentioned in the previous section, except that with the quadratic

case there is one extra parameter to solve for, viz. y.

Similarly these ideas can be extended to higher order BRK methods. When
- 107 -

an approximate factorization is used for a 5th order 6-stage method the

amplification factors can be very good. The amplification factors

found for the approximate quadratic factorization of a 6-stage 5th

order method are shown in Table 5.1. If more than four correction

terms are added then the time required to perform the back substitution

stage far outweighs the time saved in reducing the amplification

factor.

5.1.2 Application of approximate factorization

The general code developed here uses orders 3 and 5 and hence an

approximate factorization for the 5th order method is required. The

form of the iteration matrix for a general 6-stage 5th order method is

M = I - hJ -i- (hJ) 2 /2 - (hJ) 3 /6 + (hJ)*/24

- (hJ) s/120 -i- (hJ) 6p (5.20)

where p depends upon the particular 5th order method being employed.

Thus a linear approximate factorization of (5.20) would be

M - («I + PhJ) 6 (5.21)

which can be formed cheaply and the LU decomposition successfully

performed. However, it turns out that this approach cannot produce the

desired results when it is used on high order methods. There are two

stages in the process, viz. calculating the residual vector and

performing the back substitutions. Simple numerical tests shows that

the residual vector, used to form the iteration matrix, is correct but

that the back substitution stage of the process goes wrong.

Consider problem p5.1 with <x = 6, then the eigenvalues of J can be

found by forming the characteristic equation

X 2 + X(10G +1) + 10s = 0 (5.22)

which clearly has roots at -106 and -1. The -106 egienvalue will be

- 108 -

referred to as the dominant eigenvalue. The corresponding eigenvectors

can be formed from each eigenvalue, respectively as [-10~6 ,1] T and

T[-1,1] . Let these vectors be denoted by Vi and V 2 , respectively.

Defining the residual vector for a general s-stage BRK method as

s
r = vn+i ~ vn ~ nZCiki (5.23)

i=i

then for a 6-stage 5th order method applied to a linear problem it is

r = [I - hJ +(hJ) 2 /2 - (hJ) 3 /3! + . . .

+ p(hJ) 6]yS+1 - yn (5.24)

Clearly yft+1 and yn can be formed by taking a linear combination of the

eigenvectors of J, ie.

0 = a I-:
(5.25a)

(5.25b)
hence the residual vector, (5.24), can be expressed as

r = a{l + hlO 6 4- (h!06) 2 /2 + ... + p(h!06) 6 > f-10~6> r-10~6 l

+ b{l + h + h 2 /2 + ... + phs }r-11

+ cf-10- 6] + df-1]
L 1 J L lJ (5.26)

Setting h = 0.1 and using the initial conditions as the starting vector

y{{ enables a, b, c and d to be computed exactly as

a = c = -999999

and b = d = -1.

Now in (5.26)

{1 -i- hlO6 H- (h!06) 2 /2 -H . . . H- p(h!06) 6 } = 6.049157816 e26

and

{1 + h + h z /2 + ... + ph6 } = 6.059376119 e 2

- 109 -

with p = 4.81890304 e -4. The residual vector, r, in (5.26) is then

04915781 ef 6 '
1-6.

(5.27)
04915781 e 32*

which is clearly parallel to [-10~6 ,1] T which corresponds to the

dominant eigenvalue X = -10s - This quantity is reproduced by the BRK

methods correctly when integrating this problem, hence the residual

vector is calculated correctly.

The next stage to check is the back substitution which will find the

displacement vector, 6. This requires the solution to

[ccl + PhJ] G6 = r (5.28)

by first forming the factorization and then performing six back

substitutions in the normal way.

Selecting <x and /3 to maximize the rate of convergence of the Newton

process, ie. minimize the amplification factor, results in (<xI+phJ)

being evaluated as

1.096622667508114 e 0 -2.9073996092294181 e-2l ,
I (5 . <:» ;

2.90739960924137 e 4 2.9075121789605120 e 4j

with an amplification factor of 2.51e-2.

Thus (5.28) can be solved by using the residual vector, (5.27), by

first solving

(1.09 ... eO)6 t - (2.90 ... e-2)6 2 = 6.04 ... e26

(2.90 ... e4)6 t + (2.90 ... e4) 6 2 =-6.04 ... e32
«

and using this result as the right-hand side of (5.28) to perform the

next back substitution. The displacement vector produced after the

first back substitutions is

6 4 = 2.0805291579 e22

6 2 =-2.0805291581 e28
- 110 -

which is clearly parallel to the eigenvector [-10 6 ,1] T which

corresponds to the dominant eigenvalue -10s . Carrying out all six back

substitutions lead to the displacement vector set out in Table 5.2.

Clearly after the 6 back substitutions have been performed the

displacement vector is not parallel to the dominant eigenvalue, in fact

it is parallel to [-1,1] T which corresponds to the eigenvalue -1.

Hence the process has managed to switch from following the dominant

eigenvalue to following the other, the mechanism being the same as in

the inverse power method, eg. Burden et al.[1978].

The 6-stage 5th order BRK method advances the solution by using

Vn+i = Yn + (5.30)

which can be expressed as

Now

vn

y t = [I - hJ + (hJ) 2 /2 - * . . . + P <hJ) 6]y0

(5.31)

(5.32)

and we know

y(o) - y0 (5.33)

and that

y(°) + d = y0 (5.34)

where d is the displacement vector. The correct displacement is from

(5.32) and using (5.33)

[I - hJ 4- (hJ) 2 /2 - -i- . + P (hJ) 6]y0 - y0

where

= F(hJ)y<

F(hJ) - [- hJ * (hJ) 2 /2 - p(hJ) 6]

(5.35)

(5.36)

Now y0 is constructed from a linear combination of the eigenvectors of

- Ill -

J, (5.25b). Thus (5.35) becomes

F(hJ)[cV t + dV 2] = cF(hJ)V 1 + dF(hJ)V 2

= cF(-106h)V 1 + dF(-h)V2

= C(6.049157816 e26)V t + d(6.05366119 e2) (5.37)

when h = 0.1 and F(hJ) is obtained from (5.26). The two constants c

and d are also computed from (5.26) as c = -999999 and d = -1. Clearly

the first term will dominate and thus the displacement vector produced

by (5.28) should be parallel to the eigenvalue Vj, ie. [-10~6 ,-1] T . As

the process described above does not do this then instead of

convergence being attained quickly, it will be an extremely slow

process or not obtained at all.

If the denominator of the stability function is of high degree in q

then the method will never work satisfactorily. For lower order

denominators the method will be more successful but the inverse power

method effect will still be present and is likely to reduce the

stiffness ratio that can be successfully tackled. Furthermore if a

problem with eigenvalues X = -1, -10s and 1 is considered, this is

easily constructed by simply adding in y 1 = y3 , then the approximate

factorization will make convergence slow, if obtainable at all.

5.1.3 Computing to extra precision

When the iteration matrix is computed as singular, it is not because

the system of equations have become unsolvable but rather due to the

inaccuracies in the representation of real numbers on a computer. By

working to extra precision the problem can, to some extent, be avoided.

The Prime 550 computer, that has been used for most of the

computational work, supports a 32 bit word length as standard.

- 112 -

However, when extra precision is required the double precision

arithmetic option can be envoked. This doubles the size of any single

variable to 64 bits, this comprises of a 1 bit sign, a 47 bit mantissa

and a 16 bit exponent, Figure 5.1.

By employing the REAL*16 option, in Prime FORTRAN 77, the standard word

length can be quadrupled to 132 bits per variable. Using this extended

precision results in the computations being performed much more

accurately and hence the likelihood of the iteration matrix being

computed as singular is less.

However, there is a very heavy penalty, in terms of CPU time, to pay

for demanding extra precision. Table 5.3 and 5.4 display results for

timing round a loop to compute various quantities. Clearly the extra

precision increases the CPU times by a factor in excess of 100. The

process does, however, alleviate the problem of singular iteration

matrices to a certain extent. Table 5.5 compares results for running

problem p5.1, with <x=6, for a standard 5th order method in double

precision and for one in quadruple precision. The low number of

Jacobian evaluations, JE, indicate that the extra precision is working,

but at a high computational cost.

/

5.1.4 Decrease order

This singular Jacobian problem is extremely pronounced with high order

methods due to the iteration matrix becoming dependent upon high powers

of J. Thus one simple solution is to decrease order when the problem

is encountered. The code developed here is designed to facilitate the

changing of order and hence a simple strategy for decreasing order when

the singular problem occurs is permissible. Although this is not the

ideal solution, it is felt that there is no simple solution to this
- 113 -

problem for BRK methods. Thus if more than five step failures are due

to the iteration matrix then the order is decreased, this continues

until first order is reached.

5.2 Incorrectly calculated iteration matrix

Consider integrating

dx

—— = 400y t - 100y 2 y 3 - 3000y£ (p5.3)
dx *

—— = 30yf
dx

with initial conditions y(0)=[l ,0,0]T by the 2-stage 2nd order BRK

methods given by

vn+i = Vn + h < k i + M/2

k i = f(xn+1 , yn+1) (5.30)

k 2 = f(xn+1 - h, yn+1 - hkj

The Jacobian matrix of p5.3 can clearly be formed and assuming that the

problem is slowly varying then the iteration matrix is

[I - hJ -i- (hJ) 2 /2] (5.31)

which, taking an initial step of 2.e-4 and using the initial values,

can be constructed as approximately

1.0000008 0 0
-0.08 1 0

0 01
(5.32)

For the 2-stage 2nd order BRK method the residual vector can be formed

initially as

r = y t - y 0 - Mk t + M/2 (5.33)

where y0 is given by p5.3 and consequently the initial approximation

for yj is y0 . The k value required can be computed as

- 114 -

hk t = O8.e-6, 8.e-2, 0.eO]T

hk 2 = [-8.6-6, 7.6e-2, 3.84e-5]T

and thus the residual vector is

r = C-8.e-6, 7.8e-2, 1.92e-5]T

which is then used to generate the iteration matrix numerically. This

is computed as

1.0000007987 e 0 0.0000000000 e 0 5.9604168715 e-8
-7.6160321012 e-2 9.5200013741 e-1 -8.4033373041 e-4
-3.8400008634 e-5 4.7999863720 e-4 1.0000004033 e 0.

which is clearly a good approximation to (5.32). Thus the displacement

vector can be computed and the process continued resulting in a

converged solution. This whole process works adequately while h is

kept small, however, when h is increased by any significant amount the

residual vector becomes very large in magnitude and the iteration

matrix computed is totally incorrect. This can be simulated by

considering an initial step of 0.2, which is not unreasonable

especially if a high tolerance is requested.

Now rewriting the k values of (5.30) as

kj = fi(xn+l -h, yn.n-hk}, y£.n-hk*, yn-n~hk ?) * = 1.2,3

where

f t = -0.04y l + O.Oly^

f 2 = 400y! - 100y 2 y 3 - 3000y|

f 3 = 30yf

At the initial step the approximation for y t is y 0 and the k t values

can be constructed as

k{ = fj(0.2, 1.0, 0.0, 0.0)
= -0.04

kf = f 2 (0.2, 1.0, 0.0, 0.0)
= 400

- 115 -

k? = f3(0.2, 1.0, 0.0, 0.0)
= 0.0

and k 2 as

kj = f^O.O, 1-0.2(-0.04) , 0-0.2(400), 0-0.2(0))
= f t (0.0, 1.008, -80.0, 0.0)
= -0.04032

k| = f 2 (0.0, 1.008, -80.0, 0.0)
= -19199596.8

kf = f 3 (0.0, 1.008, -80.0, 0.0)
= 192000

which results in a residual vector of

r = [8.032 e-3, 1.91991968 e6, 1.92 e4]T

The fact that the residual vector is large in magnitude is itself not

necessarily a problem. The problem arises when the iteration matrix is

computed, it should be approximately

1.008032 0 0
-80.32 1 0

0 01

The actual iteration matrix computed is, however

1.00803196 e 0 -1.1920900 e-7 8.0000000 e-2
3.83992065 e 6 -4.8005687 e 4 -8.0000000 e 2

-3.84000087 e 4 4.8006835 e 2 1.0000000 e 0

which is clearly incorrect. This iteration matrix results in a

displacement vector that forces the solution in completely the wrong

direction and usually ends up with an overflow being produced which

aborts the program.

There appears to be no simple solution to this problem as it is

independent of the order of the methods being employed. The only

solution is to check for an exceptionally large residual vector and

halve the step size when it occurs. This will ensure that the

incorrect matrix is not computed and hence a saving in wasted function

evaluations.

- 116 -

This problem, p5.3, is taken from the DETEST package and is problem D2.

Consequently all problems in group D of the test package are of a

similar nature and BRK methods will perform inefficiently.

- 117 -

No. of Amplification

Correction terms factor

6 2.28e-2

1 1.75e-2

2 8.69e-3

3 5.47e-3

4 1.75e-3

Table 5.1 : Amplification factors for quadratic approximation

Back Displacement vector
subs. &i 6 2

1 2.0805291579 e22 -2.0805291581 e28

2 7.1556938908 e!7 -7.1557094535 e23

3 2.3228628042 e!3 -2.4611130639 e!9

4 1.2272854297 e!2 8.4523974568 e!4

5 -1.0909971616 e!2 1.0618840290 e!2

6 -9.6917511262 ell 9.6917411131 ell

Table 5.2 : Displacement vectors

- 118 -

Quantity computing : sin(x)

No. of times computed : 10000

precision
time

(centiseconds)

single real

double real

quadruple real

56

98

11620

Table 5.3 : Timing for computing sin(x)

Quantity computing : axb

No. of times computed : 100000

precision
time

(centiseconds)

single integer

double integer

single real

double real

quadruple real

71

165

70

101

6662

Table 5.4 : Timing for computing axb

Mode

double

quadruple

TOL

-4
-5
-6

-4
-6
-7

o
FE

129924
403524
531126

1080
2478
8118

JE

332
11717
16329

34
68

213

Steps

7484
4834
5656

20
32

150

CPU
Time

195.05
477.86
623.23

44.56
100.71
340.35

Table 5.5 Comparison of double and quadruple
precision on problem p5.1.

- 119 -

12 48 49 64

MANTISSA X EXPONENT]

Figure 5.1 : 64 bit word length on a Prime 550

- 120 -

Chapter 6 : TYPE-INSENSITIVE CODE

Many engineering processes give rise to systems of ordinary

differential equations which require a fast, accurate and reliable

numerical integrator. The user does not want to explore the extensive

software available for such calculations. Normally the ODE system used

to describe the process may be classified into one of three classes

viz. oscillatory, non-stiff or stiff problem, before the integration

commences. Each class puts different demands on a numerical solver for

efficient integration. However, from studying the initial ODE system

tehere is no simple way of determining the characteristics of the

problem, in fact many engineering problems will change characteristics

as the integration proceedes. For example, an integrator for a weapon

guidance system of a rocket will require a small time step to correctly

track the initial stages of the trajectory where the thrust rockets and

fins are deployed, if the velocity is to be calculated correctly. The

rocket will then go through a relatively steady phase where no vital

information can be gathered and hence a large time step should be used.

In the final stage the target may be taking evasive action and again a

small time step will be required to monitor the flight path accurately,

ensuring that the rocket hits the target.

One obvious way of determining the characteristics is to evaluate the

eigenvalues of the initial value problem. This, however, may be very

time consuming, especially if the system is large or highly non-linear.

If the user is unsure of the nature of the system then normally the

safest choice is to employ an implicit method, which will clearly be

inefficient if the problem is not stiff in any region of the

integration range.

- 121 -

This chapter describes an algorithm that takes this important decision

of method selection away from the user by monitoring automatically the

state of the equations and selecting the most appropriate integrator.

The scheme is based on the Backward Runge-Kutta methods of chapter 3,

and Explicit Runge-Kutta methods. The complete algorithm will switch

from explict solver to implicit solver depending upon the

characteristics of the problem at any stage during the integration. A

facility for changing order is also incorporated into the code to give

additional flexibility.

6. 1 Motivation for a type-insensitive code

The motivation for creating a numerical code that is capable of

automatically switching between different solvers is readily seen by

considering the following system of ODEs ,

—— = -10y t + 500y 2
dt

dy2
—— = -SOOyj - 10y 2
dt

—— = -4y 3
dt

te[0,64]

dt

—— = -0.5y 5
dt

—— = -O.ly6
dt

with y(0) = [1,1,1,1,1,1] T

This is a problem based on B5 of the DETEST battery, Enright and

Pryce[1983], and is frequently used as a test example. It is
- 122 -

characterised by an initial oscillatory component which is damped out

after about 1.5 seconds.

Table 6.1 shows the effect of integrating with an 8th order method in

ERK and BRK modes on this problem (p6.1), where Max error is measured

as the maximum absolute error over the integration range.

Clearly the CPU time for the ERK method is unacceptable and hence it

appears that the explicit method should not be used on this problem at

all. However, if the integration range is shortened such that the

oscillatory component is not damped out then a very different picture

emerges, Table 6.2

The explicit method is far superior over this initial oscillatory stage

of the integration. When the oscillations have been damped out the BRK

requires only another 24 steps to complete the integration, whereas the

ERK method must continue to use a small step.

Clearly the ideal situation, on this problem, would be to integrate up

to about 1.5 using an explicit method and then switch over to an

implicit method where the step will be allowed to rise sharply. From

this example the need for a code that automatically switches numerical

solvers is apparent, such codes are often referred to as

type-insensitive.

In Chapter 2 three Runge-Kutta methods were generated from one set of

basic coefficients viz., ERK, BRK and MRK methods. Chapter 3 showed

that BRK methods are often capable of integrating stiff systems of ODEs

efficiently, whereas ERK methods are commonly used for the solution of

- 123 -

non-stiff DDEs. Although MRK methods can be made precisely A-stable,

it was shown in chapter 2, that they do not perform significiantly

better than ERK methods at reproducing the correct characteristics of

an oscillatory solution, ie. they cannot correctly predict the

frequency of the component unless the step size is severely restricted.

We conclude that the oscillatory problems can be integrated efficiently

by an explicit method. A schematic overview of the explicit and

implicit methods employed in the algorithm is presented in Figure 6.1.

The arrows indicate the direction of switching that is used. A

flowchart illustrating the switching available at any step of the

algorithm is shown in Figure 6.2 for the 3rd order ERK method, the same

basic strategy applies to BRK methods.

6.2 Switching integrator

The two classes of integrators employed are the expicit, ERK methods

and the implicit, BRK methods. The ideas behind the switching

strategies are basically the same regardless of the order of the method

currently being employed.

6.2.1 Switching from explicit method to implicit method

The algorithm starts the integration with the explicit method using a

very small step, as this is computationally the cheapest and the state

of the equations are undetermined initially. The explicit method will

be efficient providing that the system remains non-stiff or

oscillatory. If the equations are, or become, stiff a change must be

made to the stiff solver, hence some means of detecting stiffness is

needed. The approach taken here is to use a stiffness detection scheme

based on an idea by Shampine and Hiebert[1977].

- 124 -

Assuming that the integration is being performed by an s-stage method

of order p+1, (s,p+l), and the error controlled by an embedded (s,p)

method then after a successful step the error control mechanism will

select a new step size. This step will be the largest possible to meet

the accuracy requirements, this may correspond to a q^ value being on

the boundary of the methods stability region in which case the step

size is restricted for stability reasons. Alternatively all q^ values

may be well within the stability region and the step size is restricted

by accuracy.

The main requirement, apart from reliability, of the stiffness

detection scheme is cheapness. As the scheme is to be employed after

every successful step the cost of it must be minimal.

Consider taking a step with the (6,5) and (6,4) Fehlberg methods ie.

= f(xn -i- hai, yn + hEbjjkj) (6.1)

where the constants are given in Table 6.3. At each step six function

evaluations at discrete points between xn and xn+1 are available. From

these a (6,2) and a (6,1) method can be constructed ie. 2nd and 1st

order methods with 6 stages. This is clearly inefficient in a normal

explicit scheme, but in this case the function evaluations, k values,

are already available from the (6,5) method. Thus a linear combination

of them can be taken to form the lower order methods .

For the (6,2) method this will be,

- 125 -

6

Yn + Zc^i (6.2)

and for the (6,1) method

* (6.3)

where the weights are taken together with the constants from Table 6.3

to generate the required order method.

The two equations to be satisfied for a 6-stage 2nd order method are

6

E6i = 1
i=i
6

and ECa = 1/2 (6.4)

By incorporating the coefficients from the main (6,5) method the six

free parameters can be reduced to four with

6

6

and 5i = 1 - Eci (6.5)
i=z

Similarly for the 1st order method, one free parameter can be removed

by setting

6

C? - 1 - EC* (6.6)
i=z

The only requirement of this lower order pair is that their stability

regions are uniformly larger than that of the (6,5) method.

A computer search was made for a (6,2) and a (6,1) pair which had a

stability region uniformly larger than the (6,5) method. The

coefficients produced are the same as those published by Shampine and

Hiebert[1977] and are given in Table 6.3. On all subsequent plots the

- 126 -

stability regions for each method will be denoted by the following key;

i) MAIN for the main integrator,

ii) ERROR for the integrator used for error control (ERK only),

iii) ORDER for an integrator use for switching order, and

iv) METHOD for an integrator used to switch numerical method.

The absolute stability regions of the 5th order related methods are

shown in Figure 6.3. Clearly the embedded explicit methods, ERK 2 and

ERK 1, used for the switching of numerical methods are uniformly larger

than the main explicit methods.

Similarly for a (3,3) method with a (3,2) method for error control,

embedded (3,2) and (3,1) methods for stiffness detection can be found.

Table 6.4 shows these coefficients and their stability region are shown

in Figure 6.4.

Clearly this idea of embedding a 2,1 pair within the higher order

methods for the detection of stiffness, can be extended to higher

orders. It cannot, however, be used in conjunction with any ERK pair

lower than 3rd order. For this scheme to work a 2nd and 1st order

embedded pair are required with stability regions uniformly larger than

the main method. Hence if the main method is 2nd order, in 2 stages,

then the embedded 2nd order method must have exactly the same stability

region as the main method. Thus a switch from ERK 2 to BRK 2 is not

provided. The 2nd order coefficients are, however, given for

completeness in Table 6.5.

The main method will select a step size that just meets the accuracy

requirements. If the step size is restricted on the grounds of accuracy

- 127 -

rather than stability then the lower order embedded pair are unlikely

to satisfy the accuracy requirements. We know that the lower order

pair are failing for accuracy reasons, and not for stability reasons as

its stability region is larger than that of the main method. Thus the

system is not stiff at the current integration point.

If the lower order embedded method is repeatedly able to meet the same

accuracy requirements then the step size of the higher order method

must be restricted for stability reasons. This implies that the

problem is becoming stiff. If the embedded method is successful for

50% of the time over 50 consecutive steps then the problem is deemed

stiff and a switch to the implicit method advocated.

To increase efficiency the step size is increased by a factor of 5 when

the switch is activated. This is primarily due to the "dead band"

introduced in the step control algorithm, chapter 4, to save on

iteration matrix updates. If the BRK method fails to meet the accuracy

requirements with this increased step then a switch back to the

explicit method is performed, otherwise the integration continues with

the implicit method.

Since the ERK and BRK methods share the same coefficients when a switch

is performed, no new coefficients have to be calculated and further

parts of the code can still be used. This makes the overheads in

switching minimal.

6.2.2 Switching from implicit method to explicit method

In order to ensure that the code is competitive the implicit to

explicit switching must also be cheap.

- 128 -

One approach, Shampine[1981], Norsett and Thomsen[1986], is to use the

approximation to the Jacobian matrix of the problem, or the exact

Jacobian matrix if this is supplied to the code, to form some estimate

of the Lipschitz constant. However, in the case of BRK methods this

matrix is not computed As described in chapter 3, it is an

approximation to the iteration matrix that is computed.

The approach taken here is to generate some non-stiff detection schemes

based on the function evaluations available from the implicit method.

These will be the k values after the implicit equations have been

solved to an acceptable tolerance by the quasi-Newton process. Thus

the detection scheme will be a numerical method in its own right.

The only requirements of this new method is that it uses the k values

from the implicit method and must have characteristics like an explicit

method. In particular it must possess a finite stability region.

Taking a linear combination of the k values produced by an implicit BRK

method clearly cannot result in a method with a finite stability

region. If this where so then the corresponding ERK method would have

an infinite stability region!

The general s-stage BRK method is

Vn+t = Vn + hEciki (6.7a)

i-i
ki = f(xn+1 - hbi, yn+! - hEaijkj) (6.7b)

j = *

After a successful step with any Runge-Kutta method the k values are

discarded and a new collection generated on the next step. In fact

the only value carried forward is the solution yn+1 , which becomes yn
- 129 - n

on the next step. By using previous solution values, (y values), the

resulting method becomes akin to linear multistep methods and will

inherit their deficiencies.

If, however, the k values computed on a step are stored and used on the

next step then a new method, an Extended BRK method (EBRK), is

generated, which can possess a finite stability region. Thus instead

of (6.7a)

s t
Vn+i = Vn + hEciki + hZc*k* (6.8)

i=i i=i

is used where kj are selected from the kj, i=l(l)s values from the

previous step. Thus the k values on step n are stored and used on step

n+1. However, to store every k value is unnecessary as they can be

stacked up in one vector viz.

t
Ic*k* (6.9)

i=i

is calculated, constructed and stored on the nth step and used on the

(n+l)th step. Clearly this technique must be employed on the second h

step of the Richardson process.

The solution produced by this EBRK will only be reasonable if

i = 1(1)N is within the stability region of the method for all i such

that Re(qj) < 0. The solution of the EBRK method is compared with that

obtained by the BRK with the second h step and is regarded as

successful if it satisfies the same error tolerance as is employed for

the BRK method. However, the object of using the EBRK methods is to

determine whether the ERK method could be used to perform the

integration efficiently and not to produce a usable solution itself.

If the solutions agree for five consecutive steps then qj is deemed to

- 130 -

be "small" and a switch to the cheaper explicit method performed. The

new step size taken by the ERK method is that last used by the BRK

method.

The weights for the EBRK method were found numerically by a computer

search. Clearly the weights are constrained by the order equations

that must be satisfied for a particular order, ie. for a 3rd order

method there are four equations to satisfy, Table 1.1. The successful

weights being those that would produce stability regions that were

finite and matched the stability regions of the corresponding ERK

method. Initial testing was performed by trying to find a 3rd order

EBRK, for the 3rd order BRK method, with only 1 past k value, ie, t =

1. This, however, did not produce an acceptable stability region. With

t set at 2 the EBRK method with stability region shown in Figure 6.5 is

produced. This is compared with the stability region of the 3rd order

ERK method. The weights for this are

C t = 1.0100 ct = 4.2167

C 2 = -2.0320 c* = -1.5180

C 3 = -0.6767

The method employed was to guess one coefficient, determine the others

by solving four linear equations and plot the corresponding stability

region. Remarkably the objective was to make the region as small as

possible!

For the 5th order methods a 4th order EBRK was initially tested to

determine if the same idea would work for higher orders. Suitable

weights found were, using t = 4,

- 131 -

C t = 0.00000 c* = 0.45371

C 2 = -0.91475 c* = 0.07037

C 3 = 3.37465 c* = 0.16789

C4 = 0.00000 c* = -0.05868

C 5 = -0.29977

C6 = -1.79342

Initial testing was performed with this 4th order EBRK. The method

proved very reliable and was always able to detect when the problem

became non-stiff. Ideally a 5th order EBRK method should be used.

However, no suitable method was found and since the 4th order method

proved so effective it was retained. Simple numerical testing with a

2nd order EBRK for the use with the 3rd order BRK demonstrated that the

order of the EBRK need not match exactly the order of the BRK method.

However, the 3rd order EBRK method was retained for use with the 3rd

order BRK method.

Similarly a EBRK for the 2nd order BRK method is required. This can be

generated by the use of one past value. One suitable choice of weights

is

G! = 0.5 C t = 1.0

C 2 = -0.5

and using the coefficients of Table 6.5 to produce the stability

regions in Figure 6.6. This method is 2nd order.

6.3 Switching order

To meet the requirements of the user and to make the code more flexible

it should ideally be able to select the appropriate order. The orders

employed for this code are 2, 3 and 5 for the explicit methods and

orders 1, 2, 3 and 5 for the implicit ones. The main orders in the

- 132 -

code are 3 and 5 with the others playing a supporting role in case of

serious failures. The 2nd order ERK method being employed mainly so

that the algorithm can recover from the use of lower order BRK methods

eg. being forced to low order if the iteration matrix is regularly

computed as singular.

6.3.1 Order Reduction

As the decision to switch order must be inexpensive, the k values

produced by the main integrator must be used. If the integrator has

order p then clearly, a method of order less than p can be embedded

within this method such that the same function evaluations are used.

When either the ERK or BRK 5th order method is being used a decision

must be made as to whether to switch down to the 3rd order method. By

embedding a 3rd order method within the 6-stages of the 5th the test

can be performed. For the ERK method an embedded 3,2 pair will be

required for the error estimation while for the BRK method the same 3rd

order method used in backward mode can be employed. The weights were

determined numerically by the same method as described in section

6.2.2. The final values chosen were

3rd order 2nd order

d = 0.0831292 0.0031290

C 2 = -0.0029698 0.0070320

C 3 = 0.6187300 0.1285200

C4 = 0.1847500 0.1234860

C s = 0.0800000 -0.0656610

C« = 0.0363636 0.8034940
O

Their stability regions, used in conjuncation with the coefficients of

Table 6.3 are shown in Figures 6.7 and 6.8 for ERK and BRK modes

- 133 -

respectively.

The embedding error test, for the ERK method, is performed by taking

the difference between the 3rd order method and the 2nd after the 5th

order ERK method has taken a successful step. A Fehlberg type test is

then carried out, described in chapter 3, to determine if the lower

order method can match the required accuracy.

For the BRK method the solution obtained from the lower order method,

over the second h step, is compared with the BRK solution produced

there.

The same embedding process can be used for a 2nd order, plus 1st for

the ERK method, within the 3rd order methods. The weights in this case

are

2nd order 1st order

Ci = 1/3 1/5

c z = 1/3 1/5

C 3 = 1/3 3/5

and the same error control test as described above is used. Figures

6.9 and 6.10 present the stability region of these methods used in

conjunction with the coefficients of Table 6.4.

6.3.2 Increasing order

All of the switching strategies developed so far rely on information

readily available at the end of a successful step. The only extra

expense involved is a few multiplications and additions. Various ways

of increasing order were considered that involved computing extra

function evaluations. Only two possibilities came to light that would

- 134 -

not require any additional work. The first was to use another extended

method, ie. using previous k values. However, it proved difficult to

generate the EBRK methods with the required stability and accuracy

properties. When employing the 3rd order method the proposed change is

to 5th order, hence the extended method will require at least 6-stages.

Even by taking all the k values from the previous step a 5th order

method with the correct stability region is not guaranteed. The EBRK

4th order method required 4 previous values, 10-stages in total to

produce the required stability region.

The much simpler option is to continue with the current order method

until the step fails for accuracy reasons. At that point an order

increase is advocated. This method was employed for both the ERK and

BRK methods. If the ERK method is being used, than a step size failure

must be due to accuracy if the stiffness detection scheme was not

triggered. Thus the stiffness prediction scheme must be given priority

over order change. This very simple order increase scheme is justified

purely on the grounds that numerical tests indicate that it works

reasonably well as shown in section 6.5

6.4 General comments

Although two separate numerical methods, ERK and BRK, are employed in

the complete algorithm they are closely related. This makes the final

code relatively compact as often the same piece of code can be used for

both methods by simply switching some of the parameters. For example

one subroutine GFUN calculates the required k values; for the ERK

method this is called as

CALL GFUN(X, Yn , Yn+ t , H,. . .)

and can be called in conjunction with the BRK as

- 135 -

CALL GFUN(X, Yn+1 , Yn , -H,. . .)

In all, five subroutines can be used for both explicit and implicit

methods in this way.

6.5 Numerical results

The numerical results will be split into sections to test the correct

behaviour of all the switching strategies described earlier. The

headings for each table are as used in the previous chapters with

significant figures accuracy measured at the end of the integration

range over the relevant component, ie. y 3 , y 3 , y 4 and y t for problems

p3.1, p3.2, p3.3 and p3.4 respectively.

6.5.1 Integrating non-stiff problems

In this section the ability of the code to select methods for non-stiff

problems is tested. Two problems are considered, one is problem p3.1

with the coefficient -106 of y t changed to -1, yielding problem pS.la,

to make the problem non-stiff. The other is problem p3.2 with a change

in the initial conditions of y 2 and y 3 to -1, producing problem p3.2a.

Clearly in this state stiffness should not be detected and thus the

explicit method should be used throughout the integration range. The

results of integrating these two problems with ERK3, ERK5, (explicit

methods of order 3 and 5), BRK3, BRK5 and SARK are shown in Table 6.6

and 6.7.

The most efficient method for pS.la is clearly the high order explicit

method with the implicit methods being inefficient. Clearly SARK

chooses the correct method of integration by staying with the high

order explicit method. The CPU times produced by SARK are higher than

the ERK5 because of the slight overheads incurred in the switching

- 136 -

stratagies.

For problem p3.2a a similar pattern emerges with the explicit methods

being far superior to the implicit ones. Again SARK can correctly

deduce that the problem can be solved more efficiently by an explicit

method and thus no switching occurs. (Table 6.7).

The other occasion when a non-stiff integrator is required is when a

stiff problem becomes non-stiff. This can be simulated by commencing

the integrating of a non-stiff problem with a stiff integrator. The

detection scheme should detect that the problem is non-stiff and switch

accordingly. Table 6.8 and 6.9 display results that compare BRK5 with

SARK, run in this manner, on problems pS.la and p3.2a. By commencing

the integration of SARK with the 5th order implicit method it clearly

switches over to the cheaper explicit method when the problem is deemed

to be non-stiff. As a result the CPU times produced are superior to

those produced by the 5th order implicit method. For pd.la the ERK

methods integrate for 90.4% of the integration range at a tolerance of

l.e-3 and for 56.1% at a tolerance of l.e-6. On problem p3.2a these

percentages are even higher at 90.5% (l.e-3) and 81.8% (l.e-6), clearly

showing that lack of stiffness is detected.

6.5.2 Integrating a stiff problem

This section examines the ability of the code to select the correct

method when confronted with a stiff problem. The switching of order is

also tested. Clearly no explicit method is able to integrate a stiff

problem efficiently and hence SARK must switch over to an implicit

method. The results of running the stiff problems p3.1 and p3.4 are

shown in Tables 6.10 and 6.11. For problem p3.1 the low order implicit

- 137 -

method is the most efficient, hence SARK should switch over to this

method, which it does, producing comparable accuracy in a faster time.

Problem p3.4 on the other hand is integrated quicker by the high order

method at a tight tolerance and by the lower order method at a high

tolerance. SARK manages to switch to the appropriate method and

produce superior results to either of the implicit methods at both

tolerances. For both problems the BRK methods were used for 99.9% of

the integration. These results show that, not only is the switching of

numerical methods handled correctly, but also the most appropriate

order is selected.

6.5.3 General results

Three problems are considered in depth and compared with results from

both Gear's and Adams methods. The first problem is the one considered

at the start of this chapter as a motivation for a type-insensitive

code. Also considered is the van der Pol equation broken down into a

system of first order differential equations

— — — • = y
dt

te[0,a] (p6.2)

— = -yj + Mi - yf)y 2
dt

with initial conditions y(0) = [1,1] T . This problem is known to change

its characteristics during the integration range and is often cited in

literature, Petzold[1983] , Norsett and Thomsen[1986] , as a test problem

for type-insensitive codes. By selecting different values of X and the

endpoint of the integration range, a, the problem possesses different

characteristics. Three values of X, 5, 10 and 100, are considered over

two different integration ranges a = 10 and 100. With X = 5 and a =

10 the problem is deemed non-stiff. As x and a are increased the

- 138 -

problem becomes stiff er. At the two extremes the problem is clearly

defined as either stiff or non-stiff and hence a general purpose

integrator may be unable to be as competitive as one specially designed

for a specific class of problems. Finially problem p6.3

dt
te[0,10] (p6.3)

—— = -(100 2 + l) yi - 2y 2
dt

with initial conditions y(0) = [1,1] T is used to test the ability of

SARK to cope with an oscillatory solution. The results of integrating

these three problems are set out on in Tables 6.12 to 6.19. Each set

of results is produced by modi f ing the DETEST package, and using the

normalised statistics produced. This takes into account the different

way that codes control the local error. The quantity Iog 10 accuracy is

the expected accuracy of the numerical method over the integration

range for all components. Further details about this, the DETEST

package and the statistics produced are described in the next chapter.

Problem p6.1 was integrated with a small initial step, l.e-6, to ensure

that the BRK methods did not damp out the initial oscillatory solution.

Both GEAR and ADAMS performed badly, Table 6.12 and Figure 6.11, with

the CPU times being over 200 times worse than that of SARK. The low

number of Jacobian evaluations for SARK indicates that the code is

integrating over the oscillatory phase with the explicit methods and

then switching to the implicit method when the solution smoothes out.

The results for various parameters x and a for problem p6.2 are shown

in Tables 6.13 - 6.18 and graphically in Figures 6.12 - 6.17. When X =

5 and a = 10, Table 6.13 and Figure 6.12, the problem is non-stiff and

- 139 -

clearly the ERK methods are more efficient than the BRK methods.

Surprisingly ADAMS performs as badly as GEAR and both are inferior to

SARK which correctly chooses the high order explicit method.

Increasing the value of x to 10 introduces more stiffness into the

system. This is apparent from Table 6.14 and Figure 6.13 which

demonstrates that GEAR is superior to the ADAMS, but it is still

slower than SARK.

With X = 100, Table 6.15, ADAMS is very inefficient as shown by Figure

6.14. Although GEAR is slightly more efficient than SARK, SARK does

select the most efficient method available. It is only the high number

of function evaluations required for all Runge-Kutta based methods that

makes SARK slightly less efficient. If the cost of performing the

function evaluations are removed from the overall CPU time then the

overheads of the method can be assessed. The DETEST package provides

statistics for these figures. As both SARK and GEAR are using a

numerical Jacobian this is valid for both methods. When this is done

SARK far outperforms GEAR, the column entitled OVHD of Table 6.15. The

fact that the efficiencies of Gear and Adams are so different indicate

that the problem is stiff and as a result a specialized stiff

integrator must be more efficient than a type-insensitive code.

Resetting x to 5 and allowing a to increase to 100 returns the problem

to the non-stiff state as indicated by the results of Table 6.16,

Figure 6.15. Again SARK correctly selects the most efficient method

and is far superior to either of the raultistep codes.

Increasing X to 10 produces a stiff problem when the tolerance is high

- 140 -

and a non-stiff problem when it is low, Table 6.17, Figure 6.16. As

the tolerance is decreased the code recognises that the problem can be

integrated more efficiently by the explicit method and thus stays with

ERK5. This problem also indicates that stiffness is not just dependent

upon the problem being solved but is also dependent upon the accuracy

requested.

With X = 100 and a = 100, Table 6.18 and Figure 6.17, the problem

possesses a severe spike in the second component during the

integration. For most of the integration range y z is approximately

-0.1, but at one particular point it shoots down to -133.7 and back to

-0.1 almost immediately. Norsett and Thomsen[1986] use their switching

code to locate the exact position of this spike. They claim that the

spike is at 81.92. This is incorrect. The spike is in fact located at

81.2 which can be picked up accurately by SARK. This can be confirmed

by integrating the problem with a very small time step and tight

tolerance by GEAR. For this choice of parameters ADAMS method is very

inefficient, again indicating that the problem is stiff. Overall GEAR

is marginally more efficient than SARK in terms of CPU time for a

requested accuracy. Clearly, however, the cost in overheads of GEAR is

much higher than the associated cost with SARK even though SARK changes

integrator as well as order. The cost of the overheads in SARK is

between 55% and 70% of the total CPU time, (this depends upon the

integrator being employed), whereas about 93% of the time for GEAR is

involved with overheads.

The final problem considered is p6.3. This is characterised by an

oscillatory solution and thus the explicit method will be superior.

This is confirmed by Table 6.19 and Figure 6.18. SARK correctly

- 141 -

deduces that the step is being restricted for accuracy reasons and thus

the explicit method is used throughout.

These three problems demonstrate that SARK is capable of correctly

selecting the most suitable method available to it and that it is often

superior to specialized integrators. Clearly when the characteristics

of the problem are such that it can be easily categorized as stiff or

non-stiff, then a specialized integrator may be superior. However, it

is often difficult to categorize the problem and furthermore many users

\>f codes are not interested in attempting to categorise the problem.

In such cases SARK is to be recommended.

- 142 -

0

1
4

3
8

12
13

1

1
2

Min.
step

BRK 2.3e-3

ERK 1.3e-3

Table 6.

Min.
step

BRK 2.3e-3

ERK 1 . 3e-3

Table 6.

Max. Max. Error No. of CPU
step error at xen(j steps time

3.46eO 3.2e-6 6.7e-9 536 87.7

l.le-2 1.5e-4 3.0e-6 1127 497.0

1 : Integrating upto x~nri = 64.0
d> I i vi

Max. Max. Error No. of CPU
step error at xen(j steps time

1.3e-2 3.2e-4 2.3e-7 512 78.9

l.le-2 1.6e-3 1.3e-5 298 25.8

2 Integrating upto x~nn = 1.57

0

1
4

3 9
32 32

1932 -7200 7296
2197 2

439
216
-8
27

16
135

25

197 2197

3680 -845
~5l3 4104

-3544 1859 -11
2565 4104 ~^0

0 6656 28561 -9 2 (6,5)
12825 56430 50 55

1408 2197 -1 ^ ,„ ,x n n 1 c A \216 ~ 2565 4104 5 ~ v ~'^'
.139682 -.198633 .724462 .428953 -.141485 .047041 (6,2)
.084227 -.163140 .761013 .405846 -.131970 .044024 (6,1)

Table 6.3a : Coefficients for 5th order related method

Table 6.

(6,5) main method
(6,4) error control for ERK method (6,2) '

stiffness detection
(6,1) .

3b : Description of methods of Table 6 . 3a
- 143 -

0

1
2
1

Table (

1
2

-1 2

121 - - - (3,3) main method 636
2 6 2 ,_ 0 . ^ . To To To < 3 ' 2) error control

25 25 25> (3,2)
stiffness detection

100 100 100 (3Fl)

5.4 : Coefficients for 3rd order related metho

0

1
0

1 0

1 0

(2,2) main method

(2,1) error control for ERK method

Table 6.5 : Coefficients for 2nd order related methods

Log 10
Method Order TOL FE

Sig. Figs. CPU
JE Steps Accuracy Time

ERK

ERK

BRK

BRK

SARK

3 -3
-6

5 -3
-6

3 -3
-6

5 -3
-6

-3
-6

108
849

126
354

468
1374

1566
1704

126
354

—

-

-
—

14
10

14
13

0
0

36
283

21
59

68
282

106
90

21
59

4.16
7.08

4.85
8.31

4.37
6.61

3.71
7.09

4.85
8.31

0.21
1.07

0.17
0.40

0.63
1.98

1.73
1.74

0.20
0.54

Table 6.6 : Results for non-stiff problem p3.1a

- 144 -

Log 10
Method Order TOL FE

Sig. Figs. CPU
JE Steps Accuracy Time

ERK

ERK

BRK

BRK

SARK

Table 6

^

Method

BRK

SARK

Table 6

Method

BRK

SARK

3 -6
-9

5 -6
-9

3 -6
-9

5 -6
-9

-6
-9

.7 : Results

Log 10
Order TOL

5 -3
-6

-3
-6

.8 : Compari

Log10
Order TOL

5 -3
-6

-3
-6

429
4101

126
366

843
2937

1308
1980

126
366

—

-

—

-

13
13

19
15

0
0

for non-st

FE JE

1566
1704

702
1290

son of

FE

1260
1308

576
744

14
13

14
13

BRK5

JE

25
19

13
10

143
1367

21
61

90
414

68
122

21
61

2.61
5.58

1.79
4.51

1.21
4.52

3.16
5.33

1.79
4.51

iff problem p3.2a

Sig. Figs.
Steps Accuracy

106
90

42
71

3.71
7.09

7.60
9.59

0.70
6.77

0.20
0.53

1.23
4.70

1.80
2.66

0.21
0.55

CPU
Time

1.73
1.74

1.08
1.69

and SARK on problem p3

Sig. Figs. CPU
Steps Accuracy Time

44
68

31
53

0.72
3.16

1.14
3.22

1.72
1.80

0.99
1.26

%
ERK

—
-

90.4
56.1

.la

%
ERK

—
-

90.5
81.8

Table 6.9 : Comparison of BRK5 and SARK on problem p3.2a

- 145 -

Log 10
Method Order TOL FE

Sig. Figs. CPU %
JE Steps Accuracy Time BRK

BRK

BRK

SARK

3 -3
-6

5 -3
-6

-3
-6

516
1950

2136
2958

585
1521

12
27

36
36

12
12

58
346

132
222

113
301

3.18
6.45

3.77
4.57

3.04
6.43

0.75
2.96

2.29
3.38

1.50
2.66

99.9
99.9

Table 6.10 : Results for stiff problem p3.1

Method Order TOL FE
Sig. Figs. CPU %

JE Steps Accuracy Time BRK

BRK

BRK

SARK

3 -4
_Y

5 -4
-7

-4
-7

6153
31329

50496
67158

1545
11316

33
39

87
63

14
45

1288
6850

2690
2828

245
1691

1.31
3.25

1.68
4.26

1.47
3.90

7.68
69.19

43.60
54.93

1.82
11.35

99.9
99.9

Table 6.11 : Results for stiff problem p3.4

- 146 -

Method Log 10
& Order Accuracy

ERK 3

ERK 5

BRK 3

BRK 5

SARK

GEAR

-3
-4
-5
-6
-7
-8

-4
-5
-6
-7
-8

-5
-6
-7

-3
-4
-5
-6
-7
-8
-9

-6
-7
-8

-2
-3
-4
-5
-6

FE

53549
56437
62790
76488

105774
168464

56420
57741
59865
63221
68462

14532
39558
68964

6949
10999
14273
20764
28408
36179
43873

4078
8178
17942

58815
58848
58074
54499
63473

JE

—
-
-
-
-
-

—
-
-
-
-

23
23
53

17
20
23
25
25
23
20

8
8
7

2274
2272
2245
2113
2458

Steps

17848
18811
20929
25495
35257
56153

9402
9622
9976
10535
11409

1439
3987
7504

341
557
729
1085
1509
1944
2381

583
1248
2859

44933
44941
44446
41685
48562

CPU
Time

86.98
91.30

100.81
122.87
170.13
269.70

83.00
84.30
87.18
91.69
99.42

26.64
76.87
143.22

10.85
17.20
22.37
32.84
45.27
58.04
70.83

6.78
13.91
30.89

663.13
668.04
662.07
630.86
713.57

ADAMS 2
3
4
5
6
7

97452
128331
132494
106536
159207
90477

42328
64865
70030
68430
98408
45774

583.47
969.94
1022.82
720.44
1404.96
522.39

Table 6.12 : Problem p6.1 (Figure 6.11)

- 147 -

Method Log 10
& Order Accuracy FE

ERK 3

ERK 5

BRK 3

BRK 5

SARK

GEAR

ADAMS

-4
-5
-6
-7
-8

-4
-5
-6
_rr

-8

-3
-4
-5
-6

-3
-4
-5
-6
-7

-4
-5
-6
-7
-8

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

535
1070
2270
4872

10501

299
418
634
953
1493

1672
2453
3986
8233

5228
5349
5083
6209
7842

301
420
636
954
1492

327
389
459
558
722

370
450
447
551
640

JE

—
-
-
-
-

—
-
-
-
-

49
33
45
52

47
33
25
9
9

0
0
0
0
0

29
31
32
38
48

-
-
-
-
-

Steps

166
351
753

1621
3496

41
62
97

152
244

45
101
244
691

123
130
125
188
256

42
63
98

153
243

150
194
270
353
505

224
306
309
413
480

CPU
Time

0.48
0.97
2.11
4.42
9.49

0.17
0.27
0.43
0.68
1.04

0.93
1.49
2.73
6.42

2.55
2.56
3.43
3.16
4.08

0.27
0.37
0.57
0.85
1.33

1.33
1.66
2.16
2.66
3.48

1.43
1.97
2.05
2.76
3.35

Table 6.13 : Problem p6.2, X=5, a=10 (Figure 6.12)

- 148 -

Method Log 10
& Order Accuracy

ERK 3 -5
-6
-7
-8

ERK 5 -4
-5
-6
-7
-8

BRK 3 -4
-5
-6

BRK 5 -4
-5
-6
-7

SARK -4
-5
-6
-7
-8

GEAR -3
-4
-5
-6

ADAMS -3
-4
-5
-6

FE

796
1694
3957
9496

451
588
822
1168
1756

1679
3111
6009

8099
5905
6447
8368

459
592
826
1172
1756

316
410
511
605

547
615
729
762

JE

—
-
-
-

—
-
-
-
—

39
30
38

26
30
32
43

0
0
0
0
0

28
32
34
40

-
-
-
-

Steps

246
546
1313
3162

67
87

122
187
289

55
176
419

220
150
151
196

68
88

123
187
289

151
212
302
387

339
379
528
514

CPU
Time

0.70
1.54
3.66
8.65

0.28
0.37
0.54
0.76
1.15

0.98
2.09
4.31

4.09
2.89
3.10
4.04

0.41
0.52
0.72
1.05
1.63

1.29
1.79
2.37
2.97

2.31
2.68
3.77
3.81

Table 6.14 : Problem p3.2, X=10, a=10 (Figure 6.13)

- 149 -

Method Log 10
& Order Accuracy FE JE Steps

CPU
Time OVHD

ERK 3

•

ERK 5

BRK 3

BRK 5

SARK

GEAR

ADAMS

-4
-5
-6
-7
-8

-5
-6
-7
_Q

-9

-4
-5
-6
-7

-4
-5
-6

-4
-5
-6
-7

-5
-6
-7

-4
-5

Table

4170
4165
4210
4277
4434

4691
4707
4724
4755
4808

440
346
485
686

8120
5838
4818

1429
1132
1051
1595

69
127
187

45772
43673

_
-
-
-
—

—
-
-
-
-

21
16
18
15

42
52
59

32
25
23
16

10
16
19

—
—

6.15 : Problem p6

1078
1080
1086
1111
1164

779
782
785
790
797

7
9

19
53

177
126
86

57
46
45
85

28
54
96

32220
33582

.2, X=100

3.39
3.47
3.52
3.57
3.72

3.48
3.16
3.10
3.13
3.16

0.22
0.19
0.29
0.48

3.81
2.84
2.14

0.81
0.59
0.55
0.95

0.24
0.45
0.73

204.58
208.95

, a=10

0.36
0.23
0.22
0.41

0.21
0.41
0.67

(Figu

- 150 -

Method Log 10
& Order Accuracy FE

ERK 3

ERK 5

BRK 3

BRK 5

SARK

GEAR

ADAMS

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7
-8

-3
-4
-5

-3
-4
-5
-6

-4
-5
-6
-7
-8

-1
-2
-3
-4
-5

-2
-3
-4
-5

5503
10829
23486
51847

114811

3919
5466
7643

10874
16176
24323

18293
37723
87198

57424
57941
67616
86933

5806
7043
10442
16563
25760

3134
3646
3671
4905
6409

4101
4094
4948
6348

JE

—
-
-
-
-

_
-
-
-
-
-

486
411
942

484
323
289
256

33
0
0
0
0

279
273
275
328
379

—
-
-
-•

Steps

1661
3522
7795
17262
38247

547
801
1181
1751
2627
4000

470
1583
5189

1131
1183
1594
2315

698
1074
1680
2692
4243

1470
2013
2615
3572
4900

2854
2986
4128
5427

CPU
Time

5.61
11.31
24.84
54.63

120.85

2.78
4.04
5.70
8.09
12.30
18.46

11.49
26.54
68.07

29.90
30.46
36.70
48.53

4.97
6.34
9.52
15.26
23.77

15.57
17.18
20.26
27.95
37.33

20.59
21.63
30.73
42.30

Table 6.16 : Problem p6.2, X=5, a=100 (Figure 6.15)

- 151 -

Method Logjo
& Order Accuracy

ERK 3 -4
-5
-6
-7

ERK 5 -4
-5
-6
-7
-8

BRK 3 -2
-3
-4
-5

BRK 5 -3
-4
-5
-6

SARK -1
-2
-3
-4
-5
-6
-7

GEAR -1
-2
-3
-4
-5

ADAMS -2
-3
-4
-5

FE

7224
13803
31321
74315

5172
6925
9855
15143
23984

15781
20836
29870
54959

55767
57670
64917
88803

13835
16692
21066
25604
23776
16360
22952

2219
2680
2959
3878
4955

5468
5944
6700
7479

JE

—
-
-
-

—
-
-
-
-

429
371
375
291

569
488
409
303

427
361
375
318
180

0
0

232
220
213
271
296

-
-
-
-

Steps

2213
4428
10380
24759

761
1029
1581
2497
3969

429
671
1252
2674

989
1026
1239
1970

461
623
1136
1729
2233
2701
3797

988
1461
1924
2781
3806

3682
4266
5470
6086

CPU
Time

6.40
12.43
28.82
68.30

3.29
4.92
6.95
10.21
16.23

8.90
12.11
20.47
37.14

27.14
30.14
31.67
45.09

10.13
12.04
17.50
22.88
22.07
15.74
21.96

9.54
13.06
15.97
22.37
30.01

25.64
31.84
38.92
45.38

Table 6.17 : Problem p6.2, X=10, a=100 (Figure 6.16)

- 152 -

Method Log 10
& Order Accuracy FE JE Steps

CPU
Time OVHD

ERK 3

ERK 5

BRK 3

BRK 5

SARK

GEAR

ADAMS

-5
-6
-7
-8

-5
-6
-7
-8

-2
-3
-4
-5
-6

-3
-4

-2
-3
-4
-5
-6

-3
-4
-5
-6

-4
-5

29348
30920
37242
55983

32254
32488
32960
34245

4807
5244
6504
8789
13479

57255
47709

3714
5228
6775

10206
12898

470
628
863
1153

45772
43673

—
-
-
-

—
-
-
-

184
155
130
84
84

511
304

125
130
139
79
91

45
48
59
68

—
-

7616
8144

10275
16551

5362
5401
5483
5695

94
131
224
454
837

1179
955

177
286
317
968
790

224
351
531
763

32220
33582

28.17
29.98
36.45
56.36

24.40
24.37
24.76
25.84

2.81
3.34
4.40
6.58

10.69

26.91
21.92

2.79
3.93
4.82

10.32
10.75

2.02
2.92
4.28
5.94

203.34
210.06

1.61
2.28
2.68
7.10
6.68

1.87
2.72
4.00
5.57

Table 6.18 : Problem p6.3 x=100, a=100 (Figure 6.17)

- 153 -

Method Log 10
& Order Accuracy FE

ERK 3

ERK 5

BRK 3

-2
-3
-4
-5

-3
-4
-5
-6

0
-1
-2
-3
-4
-5

18657
51360

133644
338377

13843
23010
38787
65495

14937
22373
38548
67154

116785
199011

JE

—
-
-
-

-
-
-
-

18
9
8
7

10
11

Steps

5876
16711
44140
112463

2060
3559
6160
10603

1628
2468
4268
7445

12956
22060

CPU
Time

18.95
53.03

138.50
352.22

9.85
16.84
28.56
48.60

15.13
22.96
39.29
68.26

118.97
201.76

BRK 5

SARK

GEAR

ADAMS

2
3
4

3
4
5
6

2
3
4
5

2
3
4
5

10319
28089
56543

13845
23013
38788
65490

3903
5633
8637

13427

5859
7517
10717
14222

12
11
8

0
0
0
0

217
299
452
700

—
-
-
-

555
1528
3124

2060
3560
6160

10602

3158
4726
7408

11641

3361
4788
7872

11698

7.39
20.47
41.63

12.44
20.70
35.43
59.75

23.51
34.07
52.96
82.60

25.81
38.82
64.52
96.97

Table 6.19 : Problem p6.3 (Figure 6.18)

- 154 -

EXPLICIT IMPLICIT

ERK 5/4
EBRK 4

ERK 2/1

ERK 3/2 Step
Fail

ERK 3/2
EBRK 3

ERK 2/1

ERK 2/1 Step
Fail

ERK 2/1
EBRK 2

BRK 5

BRK 3 Step
Fail

BRK 3

BRK 2 Step
Fail

BRK 2

BRK 1 Step
Fail

BRK 1

Figure 6.1: Schema of the complete algorithm

- 155 -

Error
control
fail?

Stiffness
detected?

order
change
detected?

FINISH

decrease

order

Y
\

•• ^>
N

f

Switch
to

BRK

^

\ f

Continue
with
ERK j

1'" ' -v — ' ' ••" ' ' " " "~ v,

Figure 6.2 : Switching strategies for ERK3

- 156 -

A**r
^

S o

o*
o X

=0 -A

=<= -^
4kfc=*^

o a
o a

-t- EMK S MAIN
A ERK -» ERROR
O ERK 2 HBTHODI
a ERK i METHOD!

Figure 6.3 : 5th order Main ERK and embedded (2,1) pair.

_ _ IMAGINARY a
0 ° ° 0 o

0 -..->- «9-t-

0 -f Ck*" -w
0 -t- ,-, „*. Â "SX.

o -J3 a a «fi3 a ° ^ o cT^ A a -«a.
o a-t- A a° -HO.

O C3/— ,

Q° - ^ =2^

o a -1- A. Q. "
o a -f A ' = *

o° * A
0 a A => - « o3

0 a -" -a- c.
o o * A

0 D * A « °
° ° -4- Ca •*-£>.

0 a
0 a -t- A c

o a -t- ^ i —
o a -c A

o a •«- A «° 4s
_ a +. A

1=1 -K

° = -T ^
O C3 A

o a * A
o D •" ^°° : r
0 a •+- ^ ,
O Q -t- ^

' -3 -2 -i e>

-t- ERK a MAIM
A ERK 2 ERROR
O ERK 2 METHOD
a ERK 1 METHOD

A

^

"A
*-A

it-A

*tt

30.

?K
a.
g3
S
%
*i
to

•

•

•

fr_.RBAL. q

Figure 6.4 : 3rd order main ERK and embedded (2,1) pair.

- 157 -

IMAGINARr

O O O o
o ̂

O A

*0

• o
O

o

O

O

-t- ERK 3 MAIN
A ERK 2 ERROR
O BBRK 3

O
O
o
o

^ o

o
k o
o
o
o

Figure 6.5 : Main ERK 3 and EBRK 3.

IHASTNARV a
-t- -+•

-t- -t-
-1- -t-

-»- -*-
-4- -t-

~t- -*- • ~
-f- -t-

-t- -t- -
0 "= 0 _

-t- 0 0 ^.
o o

-»- 0 0-1-

-(=> <= -K •

A. A i -F-
A ^ ^ /i

O H- A. A -»-

^ A
o -»- -i-

0 * * ^ "

o * ^ ^ '

o

0 -1ft A

0 A «

' -z -i a

-4- BRK 2 MAIN
^k ERK 1 ERROR
O EBRK 2

o°o
0 0

_ 0o
o
o
o

0 0
o
o

o °

3

*

»

Figure 6.6 : Main ERK 2 and EBRK 2

- 158 -

o
o

BRK S MAIN
ERK 3 IIA I -<
ERK 3 ORDER

o
o
o
o
o
o
o

-B

<L
_< i
u
s t

Figure 6.7 : ERK 5, ERK 3 and 3rd order embedded ERK.

-f-
-*-
-t-

-+• 3 — •

-*-

o

o
o -»
o
0 2 —
O

0

0 <

9

&

\ ^j
j
1
t
i
q
i
i

e

1- -4- BRK S tlAIM
-4- ^ BRK 3 HA 1-1

-t- O BRK 3 ORDER

-t-
-t-

-t-
-4-

o •+.
^ A A AA H-

OA ^A^ -,-

A A •*"
'A 0 A -H

A 0 ^

k. o
0 A •*•

• °0

°o A

°° ^ "*"<=> •+•
•4-

» ° \
> o •••
> ° ^

O A

0 A *0
\ la 1 3

Figure 6.8 : BRK 5, BRK 3 and 3rd order embedded BRK

- 159 -

11-IAOINARr a

A

o o
o o
o a

o

o

-+• ERK 3 MAIN
A BRK 2 ERROR
O BRK 2 ORDER
C3 ERK 1 ORDER

O
• O

O

i. O

s_ o

• o a
o a

40. O C3

. ?a

i a

Figure 6.9 : ERK 3 and 2nd order embedded ERK.

2 —

0
O

O H
o ->

-*
O

o _,_
o -*•

o
o •*
a —

0 -,

o

<;

S

i

i

e

IMAGINARY a ^ ^_

j •"-"*" -). -t- BRK 3 MAIN
, H- A BRK 2 MAIN

H- O BRK 2 ORDER

_,. -1-
-1-

O

O

A^ ° ^A -*•
A 0 AH-

° ^A *
A ° A •*•
A 0 A -t.

A O A -(-

A 0 A -(.

A 0 A -t-

A ° A -1-
0 *

A O A
0 -H

*. 0 A +.

L °o
: A '

0 "*"
t A -H

0 I-

o •*•
0 ^ -4-

1 i T z

Figure 6.10 : BRK 3, BRK 2 and 2nd order embedded BRK

- 160 -

uooia CPU TIne
BRK 3
ERK S
BRK 3
BRK S
SARK
OEAR
AOArlS

ACCURACY

Figure 6.11 : Problem p6.1.

CPU Tine
H- BRK 3
A SRK S
O BRK 3
O BRK S
O SARK
X BEAR
T ADAMS

ACCURACY

Figure 6.12 : Problem p6.2 X = 5, a = 10

- 161 -

CPU Tine
H- ERK 3
A. ERK 3
O BRK a
a BRK 5
O SARK
X SEAR
T AOAns

UOQ 10 ACCURACY

—z —i a

Figure 6.13 : Problem 6.2 X = 10, a = 10.

ia CPU Tins
-+• CRK 3
^k BRK S
O BRK 3
O BRK S
O SARK
X 9BAR
•sy AOAns

i_aa i ID ACCURACY

Figure 6.14 : Problem p6.2 X = 100,a = 10

- 162 -

- £91 -

OOT = P '01 = X S'9d: 91*9

uvov

XMVS o
s xws a
c >iue o
c
c

001 == X

e i eo-i

WVOV
wvae

C MU8 O
S XUB *?
c xwa -*-

uooia CPU Tins
-t- EF»K 3
A SRK 9
O BRK 3
O BRK S
O SARK
X OEAR
*7 ADAnS

ACCURACY

Figure 6.17 : Problem p6.2 X = 100,a = 100.

CPU Tins

-+• BRK 3
£L BRK 3
O SRK 3
C3 BRK S
O SARK
X BEAR
^ ADAnS

UOC310 ACCURACY

Figure 6.18 : Problem p6.3

- 164 -

Chapter 7 : NUMERICAL COMPARISONS

When a new numerical method is developed it must be rigorously tested

on a wide variety of problems to ensure that its performance is

satisfactory. By "satisfactory", we do not necessarily mean that it

should be compared directly against some other code to ensure that it

can always perform better. Often the new code will tackle an area not

covered extensively by any existing code. Alternatively the new code

may be inferior to the old one for a particular class of problems for

which the old one is specifically designed. However, it is better over

a broader spectrum of problems. SARK falls iato this category. We

expect it to perform less well than a specialist non-stiff solver on

non-stiff problems, and less well than a stiff solver on stiff

problems. SARK should, however, perform better than these specialist

codes when tested over a mixed collection of problems. The codes

selected were the NAG implementation of the ADAMS code, D02QAF, and the

GEAR code, D02QBF.

The aim of this chapter is to compare SARK with two existing highly

developed extensively used codes over an unbiased test set. The

standard test package available for testing ODE solvers is that of

Enright and Pryce[1983], DETEST. This package comprises two problem

sets, one stiff and the other non-stiff. SARK was expected to perform

reasonably well on both sets of problems, but to be beaten on the

non-stiff problems by the ADAMS code and be beaten on the stiff

problems by the GEAR code. However, SARK performed rather better than

this.

We can attempt to rank these codes using a number of criteria eg.

i) storage requirementa,

- 165 -

ii) CPU tine or

iii) compactness of code.

In terms of iii) SARK is some 1000 lines of FORTRAN code whereas GEAR

and ADAMS are typically twice this amount. When considering array

storage, however, SARK will be worse. GEAR requires one vector of size

N, one array of N 2 and one array of size 22xN. SARK on the otherhand

requires 18 vectors of size N, two arrays of N 2 and various smaller

vectors of dimension up to 10. The remainder of this chapter tackles

the ranking according to CPU time.

7.1 The problems considered

The problems considered in this chapter are all taken from the DETEST

package. This is a package that is designed to assess the performance

of a numerical method over a selected set of problems. It has been

widely used for this purpose, eg. Petzold[1983], Norsett and

Thomsen[1986] and many more.

The package is split into two sections, one containing stiff problems

and the other non-stiff. Each section is split into a number of

groups, with each group having a common theme. For the non-stiff

section the groups considered are

A : Single equations

B : Small systems (2-3 state variables)

C : Moderate systems (10-51 state variables)

D : Orbit equations

E : Higher order equations

and for the stiff section the groups are

A : Linear with real eigenvalues

B : Linear with non-real eigenvalues

- 166 -

C : Non-linear coupling

D : Non-linear with real eigenvalues

E : Non-linear with non-linear eigenvalues

Each group contains up to 6 separate problems. A complete list of all

the problems can be found in Enright and Pryce[1983].

The method being assessed is timed over selected problems for a variety

of specified tolerance values. For each problem chosen a series of

statistics are produced that depends upon the choice of two parameters;

one controls how detailed the results are and the other controls the

calculation and tabulation of normalized efficiency statistics.

The first option can produce either global error results at the

endpoint of the integration or the maximum observed global error

throughout the integration range. The maximum global error is assessed

by using an internal integrator, but using a tighter tolerance than

requested for the timed method to compute the "true" solution. For the

non-stiff section this internal routine is the DVERK code of Hull et

al.[1977] and for the stiff section the SECDER code of Addison[1980] .

The maximum global error is then calculated as

Max Max 9yi - yjU)!! (7.1)
xe[0 f xend] i=l,..N

where the vector norm is the maximum norm.

As stiff problems usually pass through two phases, ie. an initial

transient phase and a steady state phase, it appears natural to monitor

the maximum global error rather than just the endpoint global error,

thus the maximum global error is used throughout this chapter.

Unfortunately the internal integrator - for the stiff section is

occasionally unable to complete enough successful integrations for
- 167 -

global errors to be assessed adequately. When this happens no

normalized statistics can be produced for that particular problem.

The methods being tested were executed on each problem considered at

tolerances of l.e-3, l.e-4, l.e-5, l.e-6, l.e-7 and l.e-8 and tabulated

results produced. As each method is not directly controlling the same

quantity, when a tolerance level is selected, a direct comparison of

these results is profitless.

We assume that the numerical method is attempting to keep

global error « CxTOLE (7.2)

where the exponent, E, and the constant of proportionality, C, depend

upon the method and the problem. After deterraing the value of the

global error for each prescribed tolerance the value of C and E are

determined. These can then be used to define the expected accuracy as

a function of the tolerance, TOL. This is the accuracy a user can

expect when a problem is solved with a specified tolerance of TOL. It

is then possible to tabulate cost against expected accuracy. This is

performed in the package by using the normalized option. Thus

different methods can be compared in an unbiased manner. These tables

are reproduced in Appendix A, for the non-stiff cases and Appendix B,

for the stiff cases. Thus in Table B.I, for stiff problem Al , to

achieve a maximum global error of l.e-4, SARK requires 0.57 seconds and

GEAR 1.66 seconds.

This chapter is not intended to solely compare GEAR, ADAMS and SARK

directly as they all clearly tackle different problem areas. It is

rather intended to determine which method should be used for a

particular category of problem. It is also demonstrated that for most

- 168 -

problems a type-insensitive code is a valid alternative to a

specialized code.

7.2 Non-stiff problems

The tabulated results of Appendix A are shown graphically in Figures

7.1 - 7.25. The headings used for each column are the same as those

used in the previous chapter with log lo accuracy being the expected

accuracy as stated above. Each figure shows the CPU time against this

expected accuracy for each method used to solve the non-stiff problems,

viz. SARK, GEAR and ADAMS.

7-2.1 Group A : Figures 7.1 - 7.5

The problems in this group have functions which are relatively

inexpensive to evaluate and hence the Runge-Kutta based code is very

efficient. Clearly SARK integrates with the explicit method

throughout, indicated by no Jacobian evaluations. On the whole SARK is

approximately 2.5 times faster than ADAMS.

7.2.2 Group B : Figures 7.6 - 7.10

Here function evaluations are more expensive yet SARK is able to

perform much better than either GEAR or ADAMS.

7.2.3 Group C : Figures 7.11 - 7.15

Problems C4 and C5 highlight the effect of selecting the incorrect

integrator for a non-stiff system. GEAR is particularly inefficient on

these two problems which have 51 and 30 state variables respectively.

Even though Runge-Kutta based codes are known to perform inefficiently

when function evaluations are computationally expensive, SARK is able

to perform better than ADAMS on these problems.

- 169 -

7.2.4 Group D : Figures 7.16 - 7.20

This group contains one basic non-linear system with a free parameter

that is adjusted to form each problem. As the parameter is increased

the problems become more demanding. SARK clearly performs better than

ADAMS and GEAR on every setting of this parameter, with problem D5

being particularly demanding for the multistep methods.

7.2.5 Group E : Figures 7.21 - 7.25

This group consists of high order equations reduced to a system of

first order equations. Problem E2 is van der Pol's equation with X =

1. Not surprisingly SARK performs well on this problem.

7.2.6 Summary of non-stiff results

Clearly comparing numerical methods is a very difficult process,

especially if a large number of problems are involved, Table 7.1

summarises the results of Appendix A by summing up the CPU times over

tolerances that are common to each method, eg. for problem Al the total

CPU time is accumulated over expected tolerances l.e-4, l.e-5, l.e-6

and l.e-7. The most efficient method being the one with the smallest

total CPU time. Totals over each group are also shown. Taking the set

as a whole SARK is approximately 2.5 times quicker than ADAMS and 6.5

times faster than GEAR. These results show that GEAR is particularly

inefficient for non-stiff problems. In fact SARK out performs GEAR and

ADAMS on every single problem and never switches over to the implicit

method. It is likely, however, that the ADAMS code will be the most

efficient for some problems were the function evaluations are very

expensive.

- 170 -

The type-insensitive codes of Petzold and Norsett and Thomsen both use

the non-stiff set of problems to demonstrate their codes. Both

incorrectly diagnose some of the non-stiff problems as stiff.

Petzold[1983] claims, "Very few of the problems of non-stiff DETEST

were diagnosed as stiff", and Norsett and Thomsen[1986] produce results

for problems A4, A5, B5, Dl, D2 and D5 that require Jacobian

evaluations. This indicates that the stiff mode of solution was

employed for part of the integration range.

7.3 Stiff problems

When a problem is encountered which is known to be stiff a non-stiff

integrator would not be employed. Hence there is little point in

evaluating the performance of ADAMS over this section of DETEST. The

tabulated results of Appendix B are shown graphically in Figures 7.26 -

7.47.

7.3.1 Group A : Figures 7.26 - 7.29

Generally SARK is able to integrate this ^roup of problems faster than

GEAR, except problem A2. This is a problem which has nine state

variables and function evaluations are expensive to evalute.

7.3.2 Group B : Figures 7.30 - 7.34

This group is classified by the problems having an oscillatory

component. As shown in chapter 2, this type of problem is in fact

incorrectly classified as stiff. The performance of SARK clearly

verifies this, as it often performs the integration with the explicit

method only.

The poor performance of GEAR on oscillatory problems has motivated many

- 171 -

modifications to the basic BDF methods, eg. Blended linear multistep

methods (BLM) Skell and Kong[1977], Extended BDF methods (EBDF)

Cash[1980] and Modified EBDF methods (MEBDF) Cash[1983]. All these

methods have been compared with GEAR over a selection of problems

including one oscillatory problem. The MEBDF methods are shown,

Cash[1983], to perform marginally better than the BLM methods on

problem B5 of DETEST. In the same paper MEBDF methods are shown to be

better, by a factor of between 1 and 7, than GEAR on problem B5 and 1.1

times faster over the remainder of the test group. SARK on the

otherhand is between 6 and 15 times faster than GEAR on problem B5 and

over 3 times faster on the remaining problems of the group.

7.3.3 Group C : Figures 7.35 - 7.39

Clearly when using a type-insensitive code to solve a problem there is

a breakeven point where both integrators will be equally efficient.

When this point is encountered the algorithm may produce erratic

results, this is seen on problem Cl. SARK has difficulty in

determining which integrator is more efficient, although whichever it

uses it still performs better than GEAR.

7.3.4 Group D : Figures 7.40 - 7.43

On all the problems in this group GEAR is able to perform better than

SARK. This is not due to deficiencies in the switching strategies but

rather to the nature of the implicit methods used. This is illustrated

by the high number of Jacobian evaluations required by SARK. Repeated

problems with singular Jacobian forces SARK to use a low order implicit

method whereas GEAR can use relatively high order methods.

- 172 -

7.3.5 Group E : Figures 7.44 - 7.47

This group is split fairly evenly between the two methods, SARK

performs better on El and E2 and GEAR on E3 and E4. Neither method was

accurate enough to produce sufficient statistics for a comparison of

problem E5 to be made. Unfortunately the internal integrator, SECDER,

was unable to integrate problem E6 successfully enough to produce a

"true" solution.

7.3.6 Summary of stiff results

Again a summary table is produced, Table 7.2, similar to that produced

for the non-stiff section. For certain problems GEAR is clearly

superior. However, taking an overall view of the stiff section, SARK

is approximately 1.5 times faster than GEAR, even though a specilized

stiff solver would be expected to perform best.

- 173 -

Problem No. of
Identifer tolerances

Total CPU time
SARK GEAR ADAMS

Al
A2
A3
A4
A5

Total

Bl
B2
B3
B4
B5

Total

Cl
C2
C3
C4
C5

Total

Dl
D2
D3
D4
D5

Total

El
E2
E3
E4
E5

Total

Overall

4
4
4
4
3

2
4
4
5
4

4
4
4
3
2

4
4
4
4
2

4
5
5
2
3

Total

0.43
0.27
1.57
0.24
0.16

2.67

1.68
1.01
0.81
3.15
2.71

9.36

2.14
5.58
2.09
5.99
1.59

17.39

2.74
2.57
3.94
4.46
2.94

16.65

2.24
6.34
4.34
0.11
0.16

13.19

59.26

1.94
1.98
5.77
1.54
1.26

12.49

9.46
4.75
4.22

12.02
11.40

41.85

13.98
15.43
13.25
114.16
25.93

182.75

10.89
14.40
23.54
28.73
21.45

99.01

6.07
24.50
17.84
0.85
2.18

51.44

387.54

1.36
1.01
2.83
0.92
0.58

6.70

3.69
3.45
2.19
5.54
5.19

20.06

6.53
13.58
8.13
20.79
3.35

52.38

5.50
5.80
10.89
12.23
8.17

42.59

2.55
9.97
6.35
0.33
0.79

19.99

141.72

Table 7.1 : Summary of non-stiff results

- 174 -

Problem No. of
Identifer tolerances

Total

Bl
B2
B3
B4
B5

Total

Cl
C2
C3
C4

Total

3
4
4
4
4

4
3
4
2

Dl 2
D2 2
D3 2
D6 1

Total

El 3
E2 2
E3 3
E4 2

Total

Overall Total

Total CPU time
SARK GEAR

Al
A2
A3
A4

3
1
2
1

2.63
5.45
1.98
4.23

6.79
3.88
4.56
6.00

14.29 21.23

19.28
2.96
3.76
5.51

17.84

98.17

22.99
14.12
15.09
17.58

179.84

49.35 249.62

3.96
3.22
6.37
3.29

9.03
7.59
8.59
5.19

16.84 30.31

33.87
11.33
46.14
6.83

1.47
2.23
3.53
0-.35

7.68

1.66
0.77

21.14
11.87

3.09
4.82
4.06
9.54

35.44 21.51

214.09 330.35

Table 7.2 : Summary of stiff results

- 175 -

CPU TIME

-*- SARK
&. OESAR
O AOAI-1S

ACCURACV

-e -« -3 -Z

Figure 7.1 : Non-stiff problem Al

CPU TIME
X 1 1 ~" '

1——————T I—————————I————

3 -Z -1

~t- 3ARK
A OEAR
O ADAMS

t_ooia ACCURACT

Figure 7.2 : Non-stiff problem A2

- 176 -

CPU TIME

•+• SARK
A 3BAR
O AOAriS

Figure 7.3 : Non-stiff problem A3

CPU TIME

-t- 3ARK
^ QEAR
C3 AOAt-IS

uooia ACCU«ACT

Figure 7.4 : Non-stiff problem A4

- 177 -

CPU Tine x i a~'
-I- SARK
A. OEAR
O AOAfIS

— i a

Figure 7.5 : Non-stiff problem A5

CPU Tins
-f- SARK
^ C3BAR
O AOAf-IS

Figure 7.6 : Non-stiff problem Bl

- 178 -

CPU TIME

•+• SARK
A 9BAR
O AOAMS

UOI31S9 ACCURAC1

Figure 7.7 : Non-stiff problem B2

CPU Ting

'-. '- '-r '-a

-+• SARK
^ SEAR
O AOAMS

l_OSia ACCURACY
— Z —1

FJp-ure 7.8 : Non-stiff problem B3

- 179 -

CPU Tr~l6

SARK
3SAR

ACCURACY

Figure 7.9 : Non-stiff problem B4

CPU Tine
-I- SARK
£*. OSAR
O ADAMS

1.001 a ACCURACT

Figure 7.10 : Non-stiff problem B5

- 180 -

CPU Ting____
-t- SARK

O ADArlS

ACCURACY

Figure 7.11 : Non-stiff problem Cl

CPU Tins

1———————T

H- SARK
A. SEAR
O ADAnS

ACCURACY

Figure 7.12 : Non-stiff problem C2

- 181 -

CPU Tir-ie

-i————i—-——i—-——i—:——i i r

SARK
OEAK

UOC31 a ACCURACY

-z -i a

Figure 7.13 : Non-stiff problem C3

I T"

SARK
OBAR

UOGl 0 ACCURACY

Figure 7.14 : Non-stiff problem C4

- 182 -

CPU TI~t«

-J- SARK
^ 36AR
O ADAMS

ACCURACY

Figure 7.15 : Non-stiff problem C5

-t- SARK
^ OBAR
O AOAflS

t-OQlSS ACCURAC

Figure 7.16 : Non-stiff problem Dl

- 183 -

Figure 7.17 : Non-stiff problem D2

Figure 7.18 : Non-stiff problem D3

- 184 -

Figure 7.19 : Non-stiff problem D4

CPU Tine
i a____

-+• SARK
^ OBAR
CD ADAP1S

ACCURACY

Figure 7.20 : Non-stiff problem Do

185 -

CPU Tine
-t- SARK
^ SEAR
O AOAnS

Figure 7.21 : Non-stiff problem El

CPU Tins
-t- SARK
^ C3EA«
CD AOAMfi

ACCUKACT

— 1 O

Figure 7.22 : Non-stiff problem E2

- 186 -

CPU T It-IE

-f- 6ARK
^S, SCAR
O AOAMS

•_OC3ia ACCURACV

Figure 7.23 : Non-stiff problem E3

Cf»U TIME
1 a~'

-»- SARK

/i, GEAR
O AOAMS

Figure 7.24 : Non-stiff problem E4

- 187 -

CPU Tine

-t- SASK

A GBAI*
O ADAr-tfl

L.OO10 ACCURACr

Figure 7.25 : Non-stiff problem E5

uooia ACCURACY

Figure 7.26 : Stiff problem Al

- 188 -

CPU TIT-IE
1 <B_____

-t- SARK
A SEAR

ACCURACY

Figure 7.27 : Stiff problem A2

CPU TIME

-t- SARK

ACCURACT

Figure 7.28 : Stiff problem A3

- 189 -

- 061 -

19 meiqoad: 02' L

: 68' L

I t—
k

CO

(—
k I

0> —1 CO CO rt O cr

i — i 0) 3 CO CO

o
»

ra
>

>
x

05 CO CO M
i o cr

i —
 i

0) 3 CO

CO

a
9> 55

CPU TIME

-4- SARK

1 I
uooia ACCURACT

— 1 CJ

Figure 7.33 : Stiff problem B4

CPU Tirte
i a____

I———————I——————|————————,————————,———
~9 -a —» -3 _2

i_ooia

Figure 7.34 : Stiff problem B5

- 192 -

- £61 -

uiaiqoad Jjns : 9£' L

TO meiqojd JJT^S : S8' Z.

_!__________I

CPU TI»1g

SARK
OEAR

U.OO 1 a ACCURACY

Figure 7.37 : Stiff problem C3

CPU Tins

— Z —1

Figure 7.38 : Stiff problem C4

- 194 -

Cf»u TI ne
SARK
OBA«

ACCURACY

Figure 7.39 : Stiff problem C5

ci»u Tine

t-OOia ACCURACY

Figure 7.40 : Stiff problem Dl

- 195 -

-*- SARK
A GEAR

ACCURACY

Figure 7.41 : Stiff problem D2

CPU TIME
i a____

-t- SARK
^ SEAR

UOQ10 ACCURACT

Figure 7.42 : Stiff problem D3

- 196 -

CPU Ti~ie
-4- SARK
A. SEAR

ACCURACY

Figure 7.43 : Stiff problem D6

CPU Tine
SARK
SEAR

t-OOl O> ACCURACY

Figure 7.44 : Stiff problem El

- 197 -

1_OO1 a ACCURACY

Figure 7.45 : Stiff problem E2

UOO1 a ACCURACY

Figure 7.46 : Stiff problem E3

- 198 -

CPU TI'-IE

SARK
<3EAf»

ACCURACY

Figure 7.47 : Stiff problem E4

- 199 -

Chapter 8 : CONCLUSIONS

This chapter summarises the results of the previous chapters and makes

recommendations for future work.

The stability of a numerical method is an area that has received much

attention in recent years with many new stability theories being

proposed. The first recognized stability theory concerned A-stability,

although this has been severely criticised it is the most practical and

hence most widely used. The modulus and argument plots of chapter 2

are a logical extension of this and can be used to evaluate the

potential performance of a method in much greater detail. In particular

the L-stability of the method can be assessed without detailed analysis

being required.

The modulus and argument plots show that the assumption that a

precisely A-stable method must be employed for highly oscillatory

problems is invalid. To follow correctly the frequency and amplitude

of an oscillatory component an explicit method is computationally the

cheapest.

The main objective of this work was to develop a type-insensitive code.

Initially it was expected that three basic integrators were required to

accommodate non-stiff, stiff and oscillatory classifications. For the

non-stiff case the obvious choice was an explicit method in this case

explicit Runge-Kutta methods. These are very competitive especially if

the function evaluations are inexpensive. To complement them a class

of methods derived from MIRK methods were investigated, ie. BRK

methods. In chapter 2 it was shown that the MRK methods cannot

integrate highly oscillatory problems as efficiently as ERK methods and

- 200 -

hence only two categories of integrators were employed in SARK.

The BRK Methods are suitable for solving most stiff systems of ODE as

they possess very high damping properties. Although SARK is

competitive with GEAR and ADAMS it suffers from two slight handicaps.

Firstly the error control policy employed is expensive and secondly the

methods are prone to computing singular iteration matrices when high

order and/or high stiffness ratios are encountered on some linear

problems.

Despite these limitations it was felt that they would complement the

ERK methods much better than any other class of implicit method. On

reflection, however, an improved version of SARK might include BDF

methods to cover cases when the singular iteration matrix problem is

encountered. This would enable such problems to be integrated without

resorting to very low order methods.

Many of the currently used specialized ODE solvers have been under

continuous development for several decades. For example Gear's method

was first published in 1969. Thus such codes are at a highly developed

state. Type-insensitive codes on the other hand are in their infancy

and, including SARK, only three such codes exist. They are, however,

now at a stage where they are competitive with specialized ODE solvers.

Their importance is elevated if the code is used as a black box inside

some other process, eg. solving partial differential equations or

boundary value problems, where the characteristics of the equations are

unknown.

SARK can correctly deduce the characteristics of the equations and

- 201 -

select the category of integrator and the most appropriate order that

will lead to the most efficient solution being produced. The overheads

in deducing which method, and order, to employ are relatively

inexpensive as the decisions are based upon information which already

exists.

When high accuracy is required from the solver a small step is usually

required even when the problem is stiff. In such cases there is little

point in employing an implicit method as this will be expensive. The

code developed automatically accommodates for this in its stiffness

detection mechanism and thus some stiff problems are solved more

efficiently by retaining the non-stiff solver for as long as

possible.

It has long been proposed that if there is any ambivalence in the

system of ODE being integrated then a stiff solver should be used. The

computational danger of doing this is exemplified in chapter 7 where

GEAR is over 6 times slower than SARK over the non-stiff problems.

One important feature of SARK is its compactness, as compared to other

codes, this makes it particularly suitable for implementation on a

small microcomputer.

On the whole SARK is able to solve most systems of DDEs almost as

efficiently as any of its constituent methods. If the characteristics

of the problem change within the integration range then SARK will be

much more efficient. It is also able to integrate most problems of the

DETEST package more efficiently than widely used specialized solvers.

- 202 -

One area where integrators are used extensively is in a continuous

system simulation languague. One such highly developed languague is

ACSL, Mithcell and Gauthier[1986], this allows the user to specify

mathematical models as simple statements. The statements are then

converted into a FORTRAN program and linked with various routines, one

of which is an integrator. The user must select the most appropriate

integrator from those supplied. ACSL supplies eight integrators, these

being;

Adams-Moulton, variable step, variable order;

Gear's method, variable step, variable order;

Euler's method, fixed step;

Runge-Kutta, fixed step, 2nd order;

Runge-Kutta, fixed step, 4th order (default);

Runge-Kutta-Fehlberg, variable step, 2nd order;

Runge-Kutta-Fehlberg, variable step, 5th order.

Clearly the selection of the correct method can be a daunting task,

especially as the user is usually only interested in the solution

produced, ie. the integrator is of secondary importance. A valuable

alternative would be to provide a type-insensitive code, eg. SARK, as a

default integrator, thus allowing the user more freedom to concentrate

on the development of the mathematical model.

- 203 -

REFERENCES

ALEXANDER R [1977]

Diagonally implicit Runge-Kutta methods for stiff systems of ODE. SIAM

J. Numer. Anal. 14 1006-1021.

ALT R [1972]

Deux the'or&ns sur la A-stabilitg des sche'mas de Runge-Kutta simplement

implicition, Rev. Francaise d'Automat. Informat. Recherche

Op^rationelle, 6, s£r. R-3, 99-104

BJDREL G, DAHLQUIST G, LINDBERG B, LINDE S, ODEN L [1970]

Survey of stiff ODE. Dept. of Information Processing, The Royal

Institute of Technology, Stockholm, Sweden.

BURDEN RL, FAIRES JD, REYNOLDS AC [1978]

Numerical Analysis. Prindle, Weber & Schmidt.

BUTCHER JC [1963]

Coefficients for the study of Runge-Kutta processess. J. Austral. Math.

Soc. 3 185-201.

BUTCHER JC [1964]

On Runge-Kutta processes of high order. J. Austral. Math. Soc. 4

179-193.

BUTCHER JC [1965]

On the attainable order of Runge-Kutta methods. Math. Comput. 19

408-417.

BUTCHER JC [1976]

On the implementation of implicit Runge-Kutta methods. BIT 16 237-240.

BUTCHER JC [1987]

The numerical analysis of ODE, Runge-Kutta and general linear methods.

Wiley.

- 204 -

CASH JR [1975]

A class of implicit Runge-Kutta method for the numerical integration of

stiff ODE. J. ACM 22 504-511.

CASH JR [1980]

On the integration of stiff system of ODE using extended Backward

Differentiation formulae. 34 235-246.

CASH JR [1983]

The integration of stiff initial value problems in ODE using modified

extended Backward Differentiation formulae. Comp & Maths, with Appls. 9

645-657.

CHIPMAN FH [1963]

A-stable Runge-Kutta processes. BIT 11 384-388.

CRAIGIE JAI [1975]

A variable order multistep method for the numerical solution of stiff

systems of ODE. Numerical Analysis report 11, University of Manchester,

Dept. of Mathematics, Manchester.

CROUZEIX N [1976]

Sur les me'thodes de Runge-Kutta pour 1'approximation des probl^mes

d'Evolution, Lecture notes in Econom. and Maths. Systems No. 134,

Springer Berlin 206-223.

DAHLQUIST G [1963]

A special stability problem for linear multistep methods. BIT 3 27-43.

DEKKER K, VERWER JG [1984]

Stability of Runge-Kutta methods for stiff non-linear differential

equations, North-Holland, Amsterdam.

EHLE BL [1968]

High order A-stable methods for the numerical integration of

differential equations. BIT 18 276-278.

- 205 -

ENRIGHT WH, PRYCE JD [1983]

Two Fortran packages for assessing initial value problems. Technical

report »167/83, Dept. of Computer Science, University of Toronto,

Toronto, Canada.

FEHLBERG E [1968]

Klassiche Runge-Kutta-Formeln vierter und niedrigere probleme,

Computimg, 6 61-71.

GEAR WC [1971]

Numerical initial value problems in ODE. Prentice-Hall.

GEAR WC [1981]

Numerical solution of ODE : Is there anything left to do? SIAM Rev. 23

19-24.

GLADWELL IG [1974]

Initial value routines in the NAG library. ACM Trans. Maths. Soft. 5

386-400.

HERICI P [1962]

Discrete variable methods in ODE. Wiley.

HINDMARSH AC [1974]

Gear : ODE system solver. UCID 30001 Rev. 2. Lawerence Livermore, Univ.

of California.

JELTSH AA [1978]

Stability on the imaginary axis and A-stability of linear multistep

methods. BIT 18 170-174.

LAMBERT JD [1973]

Computational methods in ODE. Wiley.

LAMBERT JD [1979]

Stiffness. NA report 37, University of Dundee.

- 206 -

LAWSON JD [1967]

An order 5 Runge-Kutta process with extended region of stability. SIAM

J. Numer. Anal. 3 593-345.

MITCHELL EEL, GAUTHIER JS [1986]

ACSL Reference Manuael, Mitchell and Gauthier Associates, Concord,

Mass., USA.

NORSETT SP [1974]

One-step methods of Hermite type for the numerical integration of stiff

systems, BIT 14 63-77.

NORSETT SP, THOMSEN PG [1986]

Switching between modified and fix-point iteration for implicit ODE

solvers. BIT 26 339-345.

PETZOLD L [1983]

Automatic selection of methods for solving stiff and non-stiff systems

of ODE. SIAM J. Sci. Stat. Comput. 4 136-148.

PROTHERO A, ROBINSON A [1974]

On the stability and accuracy of one-step methods for solving stiff

systems of ODE. Math. Comput. 25 145-162.

RICHARDS CW, EVERETT MG [1984]

Backward Runge-Kutta methods for stiff systems of ODE. Submitted to IMA

J. Numer. Anal.

SCHIED RE [1983]

The accurate numerical solution of highly oscillatory ODE. Math.

Comput. 41 487-509.

SHAMPINE LF [1975]

Stiffness and non-stiff differential equation solvers. Numerische

Behandglung vaon Differertialgleichungen. ed. L COLLATZ, Inst. series

Numer. Math. 27 287-301 Birkhauser Basel Switz.

- 207 -

SHAMPINE LF, GORDON MK [1975]

Computer solution of ODE. WH Freeman.

SHAMPINE LF, HIEBERT KL [1977]

Detecting stiffness with the Fehlberg (4,5) formulae. Comp. & Math.

with Appls. 3 41-46.

SINGHAL A [1980]

Implicit Runge-Kutta formulae for the intregration of ODE. PhD. Thesis,

University of London.

SKELL RD, KONG AK [1977]

Blended Linear Multistep methods. ACM Trans. on Maths. Soft. 3 326-345.

VERNER SH [1978]

Explicit Runge-Kutta methods with estimates of the local truncation

error. SIAM J. Numer. Anal. 15 772-790.

WANNER G, HAIRER E, NORSETT SP [1978]

Order stars and stability theorems. BIT 18 475-489.

- 208 -

Appendix A : Normalized results for the non-stiff problems of DETEST

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

63
96

143
212
320

109
109
130
160
207

89
105
124
167
212

JE

0
0
0
0
0

8
11
12 -

14
18

—
-
-
-
—

Steps

10
15
22
34
52

34
53
72
97
137

39
52
68

100
134

CPU
Time

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

.06

.08

.12

.17

.22

.20

.31

.40

.52

.71

.18

.20

.28

.39

.49

Table A.1 : Problem Al (Figure 7.1)

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-3
-4
-5
-6
-7
-8

-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

48
54
74

102
138
189

99
131
161
213

59
78
99

121
146

JE

0
0
0
0
0
0

12
16
15
16

-
-
-
-
-

Steps

6
8

11
16
22
30

47
71

101
146

28
39
52
69
94

CPU
Time

0.03
0.04
0.05
0.08
0.10
0.13

0.28
0.40
0.53
0.77

0.12
0.16
0.21
0.28
0.36

Table A.2 : Problem A2 (Figure 7.2)

- 209 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-2
-3
-4
-5
-6

-2
_o

-4
-5

-2
-3
-4
-5
-6

FE

207
324
539
883

1377

262
321
442
599

188
235
329
415
453

JE

0
0
0
0
0

23
25
35
38

—
-
- •%
-
—

Steps

26
45
75

127
214

129
196
303
453

99
137
202
278
328

CPU
Time

0.16
0.25
0.46
0.70
1 .08

0.78
1.09
1.60
2.30

0.40
0.54
0.79
1.10
1.30

Table A.3 : Problem A3 (Figure 7.3)

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-3
-4
-5
-6
-7
-8

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

FE

41
60
85
145
214
336

63
97

118
139
176

60
81
97

127
131

JE

0
0
0
0
0
0

8
10
10

.11
15

-
-
-
-
-

Steps

4
8

13
21
33
54

24
37
52
70

101

19
30
42
61
70

CPU
Time

0.03
0.04
0.06
0.11
0.15
0.24

0.16
0.25
0.33
0.41
0 .55

0.10
0.15
0.21
0.27
0.29

Table A.4 : Problem A4 (Figure 7.4)

- 210 -

Method

SARK

GEAR

ADAMS

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-3
-4
-5
-6
-7

-2
-3
-4
-5

-2
-3
-4
-5
-6

Table A. 5

Log 10
Accuracy

-2
-3
-4
-5

-1
-2
-3
-4

-1
-2
-3
-4
-5

FE

43
65

105
166
264

83
110
149
174

54
72
93

106
121

: Probl

FE

437
701

1058
1699

443
553
738
1077

316
404
461
608
705

JE

0
0
0
0
0

10
13
14
14

_
-
-
-
—

em A5

JE

0
0
0
0

29
37
44
57

—
-
-
-
-

Steps

6
9

16
26
43

33
49
72
96

22
32
45
57
71

(Figure 7.

Steps

60
101
165
277

229
352
538
855

180
254
330
463
579

CPU
Time

0.03
0.05
0.08
0.12
0.19

0.22
0.30
0.42
0.54

0.11
0.16
0.19
0.23
0.29

5)

CPU
Time

0.39
0.61
1.07
1.77

1.82
2.56
3.73
5.73

0.85
1.17
1.52
2.17
2.79

Table A.6 : Problem Bl (Figure 7.6)

- 211 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-4
-5
— fi
-7
-8

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

145
174
219
291
427

111
155
190
240
300

183
196
210
220
340

JE

0
0
0
0
0

11
15
16
20
21

—
-
-
-
—

Steps

22
26
34
47
70

44
67
94

129
186

106
112
121
141
253

CPU
Time

0.18
0.21
0.26
0.36
0.54

0.45
0.68
0.92
1.43
1.72

0.50
0.56
0.76
0.81
1.32

Table A.7 : Problem B2 (Figure 7.7)

Log 10
Method Accuracy

SARK -4
-5
-6
-7
-8
-9

GEAR -3
-4
-5
-6
-7

ADAMS -3
-4
-5
-6
-7

FE

90
125
175
253
363
520

113
141
179
229
279

94
113
126
159
229

JE

0
0
0
0
0
0

11
11
14
16
18

-
-
-
-
-

Steps

14
19
28
41
59
85

43
64
88
119
168

46
59
70
98
150

CPU
Time

0
0
0
0
0
0

0
0
0
1
1

0
0
0
0
0

.11

.16

.22

.32

.45

.66

.45

.63

.86

.17
. 56

.26

.34

.41

.58

.86

Table A.8 : Problem B3 (Figure 7.8)

- 212 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy FE

-1
-2
-3
-4
-5
-6
_ Y

-1
-2
-3
-4
-5

-1
-2
-3
-4
-5

209
313
459
671
965
1369
1987

222
290
355
469
649

160
192
249
325
406

JE

0
0
0
0
0
0
0

12
15
18
24
32

—
-
-
-
-

Steps

32
49
73

108
157
227
330

130
176
230
333
491

78
113
170
238
320

CPU
Time

0
0
0
0
1
1
2

1
1
2
2
4

0
0
1
1
1

.27

.38

. 55

.82

.18

.66

.48

.17

.58

.08

.95

.24

.47

.68

.00

.43

.96

Table A.9 : Problem B4 (Figure 7.9)

Log 10
Method Accuracy FE

SARK -3
-4
-5
-6

GEAR -2
-3
-4
-5
-6

ADAMS -2
-3
-4
-5
-6

296
409
647
1099

247
292
380
506
707

171
199
253
316
377

JE

0
0
0
0

15
15
19
25
34

-
-
-
-
-

Steps

38
62

106
182

126
170
242
352
525

87
122
169
227
288

CPU
Time

0.
0.
0.
1.

1.
1.
2.
3.
4.

0.
0.
0.
1.
1.

31
44
71
25

21
60
20
10
50

53
70
97
53
99

Table A.10 : Problem B5 (Figure 7.10)

- 213 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

106
157
241
375
593

200
226
294
371
438

121
139
155
201
314

JE

0
0
0
0
0

11
11
14
17
19

—
-
-
-
-

Steps

16
25
39
61
97

48
69
95

138
198

58
64
87
122
225

CPU
Time

0.25
0.38
0.59
0.92
1.45

1.57
2.08
2.85
3.86
5.19

0.70
0.82
1.12
1.61
2.98

Table A.11 : Problem Cl (Figure 7.11)

Log 10
Method Accuracy

SARK

GEAR

ADAMS

-4
-5
-6
-7
— 8

-3
-4
-5
-6
-7

-3
-4
— o
-6
-7

FE

315
324
375
480
663

203
262
306
386
473

433
463
489
541
557

JE

0
0
0
0
0

11
14
15
18
21

-
-
-
-
-

Steps

50
52
59
77

107

49
74
104
147
207

280
294
309
344
365

CPU
Time

0
0
0
1
1

1
2
3
4
5

2
2
3
3
4

.82

.84

.96

.24

.72

.65

.46

.15

.21

.61

.56

.81

.07

.60

.10

Table A.12 : Problem C2 (Figure 7.12)

- 214 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

163
182
215
273
410

169
228
303
372
436

219
235
248
307
341

JE

0
0
0
0
0

10
12
16
19
21

—
-
-
-
-

Steps

24
27
33
44
67

39
60
88

122
172

129
142
144
186
214

C PL-
Time

0.40
0.45
0.53
0.71
1.16

1 .31
1.95
2.76
3.67
4.87

1.28
1.49
1.64
2.31
2.69

Table A.13 : Problem C3 (Figure 7.13)

Method Accuracy FE

SARK -4
-5
-6
-7
-8

GEAR -3
-4
-5
-6

ADAMS -2
-3
-4
-5
-6
-7

163
182
214
271
408

681
792
896

1141

216
210
223
231
262
352

JE

0
0
0
0
0

12
13
14
19

-
-
-
-
-
-

Steps

24
27
32
44
67

38
61
87

122

131
129
135
148
156
225

CPU
Time

1
1
2
2
4

23
29
36
47

4
4
5
6
8

13

.73

.95

.31

.99

.53

.57

.91

.52

.34

.66

.90

.77

.65

.37

.26

Table A.14 : Problem C4 (Figure 7.14)

- 215 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

_o

-4
-5
-6
-7

-1
-2
-3
-4
-5

-1
-2
-3
-4

FE

49
75

112
172
270

217
228
299
390
430

35
54
66
80

JE

0
0
0
0
0

6
6
7

10
11

—
-
-
-

Steps

7
11
17
27
44

15
21
30
41
53

11
17
25
37

CPU
Time

0
0
1
2
3

6
7
9

12
13

0
1
1
1

.61

.98

.42

.14

.37

. 12

.07

.43

.04

.89

.68

.05

.44

.91

Table A.15 : Problem Co (Figure 7.15)

Log 10
Method Accuracy FE

SARK

GEAR

ADAMS

-1
-2
-3
-4
-5

-1
-2
-3
-4

-1
-2
-3
-4
-5

238
358
546
837

1283

288
322 ^
412
559

152
203
261
363
416

JE

0
0
0
0
0

14
18
21
27

-
-
-
-
-

Steps

38
58
90
138
212

121
167
246
371

72
112
172
276
327

CPU
Time

0
0
0
1
1

1
2
2
4

0
0
1
1
2

.33

.49

.75

.17

.79

.57

.23

.87

.22

.51

.77

.28

.94

.27

Table A.16 : Problem Dl (Figure 7.16)

- 216 -

Log 10
Method Accuracy FE

SARK -1
-2
-3
-4
_r

-6

GEAR -1
-2
-3
-4

ADAMS 0
-1
-2
-3
-4
-5

297
378
492
697

1014
1468

334
408
522
743

189
224
277
338
407
510

JE

0
0
0
0
0
0

22
26
26
37

—
-
-
-
-
-

Steps

42
58
81
115
168
243

144
208
321
500

89
130
178
243
312
412

CPU
Time

0
0
0
0
1
2

1
2
3
5

0
0
1
1
2
2

.39

.52

.70

.96

.39

.01

.92

.91

.80

.78

.64

.87

.16

.62

.15

.95

Table A.17 : Problem D2 (Figure 7.17)

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-1
-2
-3
-4
-5

0
-1
-2
-3
-4

0
-1
-2
-3
-4

FE

325
489
719

1212
2105

397
493
646
860
1223

258
325
417
556
665

JE

0
0
0
0
0

28
34
39
47
58

-
-
-
-
-

Steps

41
68

115
201
349

173
252
382
568
882

142
209
298
444
556

CPU
Time

0.42
0.64
0.97
1.91
2.89

2.44
2.35
4.95
6.48
9.76

1.10
1.50
2.10
3.22
4.07

Table A.18 : Problem D3 (Figure 7.18)

- 217 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy FE

0
-1
-2
-3
-4

0
_ -I
-2
-3

0
-1
-2
-3

429
645
883
1270
2136

563
742
1037
1524

352
459
592
786

JE

0
0
0
0
0

45
55
61
75

—
-
-
-

Steps

53
82

129
210

. 355

264
400
671

1103

208
325
461
656

CPU
Time

0.63
0.83
1.18
1.82
3.07

3.33
5.01
7.88

12.51

1.48
2.31
3.46
4.98

Table A.19 : Problem D4 (Figure 7.19)

Log 10 CPU
Method Accuracy FE

SARK

GEAR

ADAMS
-

0
-1
-2
-3
-4

0
-1

0
-1

909
1244
1506
2147
3291

1030
1500

595
851

JE

0
0
0
0
0

84
93

-
-

Steps

113
163
233
354
547

551
981

432
697

Time

1
1
2
2
4

8
13

2
5

.18

.76

.05

.93

.51

.17

.28

.99

.18

Table A.20 : Problem D5 (Figure 7.20)

- 218 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-3
-4
-5
-6
-7

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

FE

156
245
384
611
974

133
174
216
289
404

108
137
169
201
250

JE

0
0
0
0
0

8
11
14
17
23

—
-
-
-
-

Steps

25
39
63
100
161

64
95
132
202
306

46
66
90

119
172

CPU
Time

0.15
0.23
0.38
0.59
0.89

0 . 59
0.85
1.14
1.66
2.42

0.24
0.33
0.45
0.68
1.09

Table A.21 : Problem El (Figure 7.21)

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-2
-3
-4
-5
-6
-7

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

FE

457
614
860
1158
1670
2478

508
578
710
966

1353

344
410
525
666
855

JE

0
0
0
0
0
0

36
37
42
54
71

-
-
-
-
-

Steps

57
82

120
178
269
407

271
360
504
744

1097

215
292
410
543
726

CPU
Time

0.39
0.53
0.74
1.01
1.47
2.20

2.43
3.17
4.26
6.02
8.62

0.95
1.29
1.85
2.49
3.39

'Table A.22 : Problem E2 (Figure 7.22)

- 219 -

Log 10
Method Accuracy FE

SARK

GEAR

ADAMS

-2
-3
-4
-5
-6
-7

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

333
506
740

1046
1452
2169

267
349
487
710

1016

173
227
322
390
501

JE

0
0
0
0
0
0

13
17
24
35
50

—
-
-
-
-

Steps

47
71

108
161
240
360

164
233
359
559
841

99
151
235
301
404

CPU
Time

0.35
0.53
0.78
1.11
1.57
2.44

1.45
2.08
3.03
4.56
6.72

0.51
0.74
1.20
1.61
2.29

Table A.23 : Problem E3 (Figure 7.23)

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-4
-5
-6
-7
-8

-1
-2
-3
-4
-5

-1
-2
-3
-4
-5

FE

39
57
88
133
210

37
52
65
85

112

28
35
48
63
78

JE

0
0
0
0
0

5
5
6
8
9

-
-
-
-
-

Steps

4
7

12
20
33

9
16
23
34
47

7
11
17
24
33

CPU
Time

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

.05

.06

.08

.12

.19

.13

.20

.25

.36

.49

.05

.07

.10

. 14

.19

Table A.24 : Problem E4 (Figure 7.24)

- 220 -

Method

SARK

GEAR

ADAMS

Log 10
Accuracy

-3
-4
-5
-6
-7

-1
-2
-3
-4
-5

-1
-2
-3
-4
-5

FE

45
57
66

109
177

68
107
141
170
207

56
74
89
106
137

JE

0
0
0
0
0

6
9

12
13
14

—
-
-
-
—

Steps

3
6

10
17
28

18
33
46
64
92

12
21
29
41
61

CPU
Time

0.04
0.05
0.07
0.12
0.19

0.25
0.41
0.55
0.71
0.92

0.10
0.15
0.19
0.25
0.35

Table A.25 : Problem E5 (Figure 7.25)

- 221 -

Appendix B : Normalized results for the stiff problems of DETEST

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6

Table B.I

Log 10
Accuracy

-1
-2
-3

-3
-4
-5
-6
-7

Table B.2

Log 10
Accuracy

-3
-4

-3
-4

FE

557
743

1143
1753
2520

166
229
272
379

: Problem

FE

5458
5532
3637

324
416
528
658
827

: Problem

FE

723
1178

303
317

JE

6
4
4
4
4

15
19
21
26

Al

JE

85
81
52

21
25
29
33
40

A2

JE

9
15

28
23

Steps

44
68

135
243
378

68
103
137
203

(Figure 7

Steps

244
243
199

85
134
190
261
362

(Figure 7

Steps

59
15

129
164

CPU
Time

0.57
0.73
1.28
2.04
2.91

1.14
1.66
2.16
2.97

.26)

CPU
Time

2.30
3.34
5.45

3.88
5.59
7.70

10.14
12.96

.27)

CPU
Time

0.81
1.17

2.23
2.33

Table B.3 : Problem A3 (Figure 7.28)

- 222 -

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10
Accuracy

0
-1
-2
-3

oo
-4

Table B.4

Log 10
Accuracy

0
-1
-2
-3
-4

-2
-3
-4

Table B.5

Log 10
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6
_rj

Table B.6

FE

1286
1355
1433
1512

413
511

: Problem

FE

4097
5398
5858
5862
5870

672
879
1186

: Problem

FE

402
433
490
582
730

182
233
287
352
438

: Problem

JE

10
10
10
10

26
30

A4

JE

16
16
15
13
8

41
47
62

Bl

JE

0
0
0
0
0

14
16
19
20
23

B2

Steps

60
68
80
92

113
165

(Figure 7

Steps

401
572
660
710
812

367
564
833

(Figure 7

Steps

65
70
79
94

119

62
91
125
172
249

(Figure 7

CPU
Time

3.53
3.75
3.99
4.23

6.00
8.07

.29)

CPU
Time

4.30
5.43
6.08
6.46
6.74

5.19
7.38
10.42

.30)

CPU
Time

0.62
0.64
0.76
0.94
1.12

1.60
2.25
2.89
3.76
5.22

.31)

- 223 -

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10
Accuracy

—4
-5
-6
-7
-8

_0

-4
-5
-6
-7

Table B.7

Logio
Accuracy

-3
-4
-5
-6
-7
-8

-3
-4
-5
-6

Table B.8

Log 10
Accuracy

-1
-2
-3
-4
-5
-6

-2
-3
-4
-5

FE

504
548
619
734
928

191
249
318
383
465

JE

0
0
0
0
0

14
17
20
22
24

: Problem B3

FE

620
754

1021
1429
1637
1959

261
338
445
606

: Problem

FE

2176
4511
2584
1934
2826
3718

3304 1
3451 1

JE

4
4
2
0
0
0

16
21
24
31

B4

JE

6
5
4
5
9
6

29
38

3558 141
3817 1 51

Steps

81
88

100
119
152

68
99
143
192
266

(Figure 7

Steps

55
76

136
237
271
325

114
156
230
347

(Figure 7

Steps

282
659
357
243
356
542

2343
2331
2466
2663

CPU
Time

0.80
0.84
0 . 95
1.17
1.46

1.78
2.37
3.20
4.20
5.32

.32)

CPU
Time

0.76
1.01
1.48
2.26
2.54
3.02

2.52
3.45
4.76
6.85

.33)

CPU
Time

3.10
6.76
4.05
3.02
4.01
5.50

40.87
43.92
45.71
49.34

Table B.9 : Problem B5 (Figure 7.34)

- 224 -

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10
Accuracy

-3
-4
-5
-6
-7
-8

-3
-4
-5
-6

Table B.

Logio
Accuracy

-4
-5
-6
-7

-3
-4
-5
-6

Table B.

Log 10
Accuracy

-1
_o
-3
-4
-5
-6
-7

-3
-4
-5
-6

FE

491
667
752

1209
948
916

190
253
324
400

JE

9
8
5

10
4
0

18
21
26
28

10 : Problem Cl

FE

1148
999

1050
1637

183
253
324
409

JE

18
11
5
6

17
21
25
25

11 : Problem C2

FE

1504
1501
1518
1540
1522
1724
2216

169
240
322
441

JE

19
16
16
16
9
5
4

16
20
25
27

Steps

45
65

101
146
133
151

81
123
172
239

(Figure

Steps

46
65

116
214

76
117
166
238

(Figure

Steps

51
60
79

105
158
226
315

71
109
161
243

CPU
Time

0.65
1.01
0.94
1.41
1.14
1. 10

1.31
1.90
2.49
3.33

7.35)

CPU
Time

1 .00
0.99
1.23
1.94

1.20
1.79
2.46
3.34

7.36)

CPU
Time

1.24
1.05
1.20
1.49
1.64
2.04
2.75

1.12
1.71
2.41
3.35

Table B.12 : Problem C3 (Figure 7.37)

- 225 -

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10
Accuracy

-2
-3
-4
-5
-6

-1
-2
-3

Table B.

Accuracy

-2
-3

3
2

Table B.

Accuracy

0
-1

0
-1
-2
-3

Table B.

Accuracy

-1
-2
-3

-2
-3
-4

Table B.

FE

1383
1799
3040
4448
5890

232
306
415

JE

9
8
6
5
5

20
20
27

13 : Problem C4

FE

3628
4964

227
270

JE

6
6

17
20

14 : Problem C5

FE

5461
48182

156
182
226
282

JE

85
242

18
18
20
24

15 : Problem Dl

FE

9060
9249
5367

170
248
299

JE

132
147
92

17
23
26

16 : Problem D2

Steps

78
156
419
690
930

101
146
204

(Figure

Steps

638
814

86
109

(Figure

Steps

365
2087

32
47
68
101

(Figure

Steps

354
339
189

71
116
.157

(Figure

CPU
Time

1.32
1.97
3.63
5.41
7.15

1.55
2.16
3.03

7.38)

CPU
Time

4.61
6.11

1.45
1.76

7.39)

CPU
Time

7.94
25.93

0.67
0.80
1.06
1.43

7.40)

CPU
Time

10.50
7.23
4.10

0.87
1.36
1.79

7.41)
- 226 -

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log
Accuracy

-2
-3
-4

-3
-4
-5
-6

Table B.

Accuracy

-2

-4
-5

Table B.

Log 10
Accuracy

-2

-3
-4
—5

Table B.

Log 10
Accuracy

-2
-3

-3
-4
-5
-6

FE

19526
7006

11933

226
308
396
511

JE

138
61
76

22
27
33
39

17 : Problem D3

FE

1643

54
71

JE

44

8
9

Steps

142
401
794

93
139
203
280

(Figure

Steps

73

19
24

CPU
Time

18.42
22.63
23.51

1.43
2.10
2.34
3.84

7.42)

CPU
Time

1.34

0.26
0.38

18 : Problem D4

FE

1528

162
195
271

JE

19

20
21
25

Steps

72

52
68
112

CPU
Time

1.37

0 . 56
0.74
1.09

19 : Problem D5

FE

7204
6395

71
116
150
170

JE

109
128

7
11
14
14

Steps

392
357

26
43
62
80

CPU
Time

5.74
6.83

0.35
0.59
(T.79
0.95

Table B.20 : Problem D6 (Figure 7.43)

- 227 -

Method

SARK

GEAR

Log 10
Accuracy

-4
-5
-6
-7

-3
-4
-5
-6

FE

328
335
368
424

76
113
161
215

JE

0
0
0
0

9
12
15
16

Steps

43
47
51
60

15
27
50
86

CPU
Time

0
0
0
0

0
0
0
1

.48

.51

.67

.66

.41

.63

.97

.49

Table B.21 : Problem El (Figure 7.44)

Method

SARK

GEAR

Accuracy

-2
-3
-4
-5

0
-1
-2
-3

FE

378
545
795
1188

298
372
440
538

JE

0
0
0
0

28
28
31
37

Steps

55
83

125
192

124
184
246
339

CPU
Time

0.31
0.46
0.65
0.98

1.19
1.58
2.08
2.74

Table B.22 : Problem E2 (Figure 7.45)

Method

SARK

GEAR

Log 10 CPU
Accuracy FE

-2
-3
-4

_o

-3
-4
-5

1971
7097

16599

165
251
312
405

JE

51
52
39

15
18
21
25

Steps

99
245
648

71
121
156
216

Time

1
5

13

0
1
1
2

.73

.78

.63

.86

.39

.81

.54

Table B.23 : Problem E3 (Figure 7.46)

- 228 -

Method

SARK

GEAR

Log 10
Accuracy FE

-4
-5
-6
-7

-2
-3
-4
-5

3779
4965
4355
4701

290
400
516
669

JE

87
91
58
52

25
32
38
49

Steps

127
174
299
402

127
202
285
389

CPU
Time

5
6
5
6

1
2
4
5

.75

.12

.98

.81

.98

.97

.10

.44

Table B.24 : Problem E4 (Figure 7.47)

CC m

- 229 -

