

TO MY PARENTS

ABSTRACT

A novel solution method based on Mono-implicit Runge-Kutta methods has
been fully developed and analysed for the numerical solution of stiff
systems of ordinary differential equations (ODE). These Backward
Runge-Kutta (BRK) methods have very desirable stability properties
which make them efficient for solving a certain class of ODE which are
not solved adequately by current methods.

These stability properties arise from applying a numerical method to
the standard test problem and analysing the resulting stability
function. This technique, however, fails to show the full potential of
a method. With this in mind a new graphical technique has been derived
that examies the methods performance on the standard test case in much
greater detail. This technique allows a detailed investigation of the
characteristics required for a numerical integration of highly
oscillatory problems.

Numerical ODE solvers are used extensively in engineering applications,
where both stiff and non-stiff systems are encountered, hence a single
code capable of integrating the two categories, undetected by the user,
would be invaluable. The BRK methods, combined with explicit
Runge-Kutta (ERK) methods, are incorporated into such a code. The code
automatically determines which integrator can currently solve the
problem most efficiently. A switch to the most efficient method is
then made. Both methods are closely linked to ensure that overheads
expended in the switching are minimal. Switching from ERK to BRK is
performed by an existing stiffness detection scheme whereas switching
from BRK to ERK requires a new numerical method to be devised. The
new methods, called extended BRK (EBRK) methods, are based on the BRK
methods but are chosen so as to possess stability properties akin to
the ERK methods. To make the code more flexible the switching of order
is also incorporated.

Numerical results from the type-insensitive code, SARK, indicate that
it performs better than the most widely used non-stiff solver and is
often more efficient than a specialized stiff solver.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisors Dr. Will
Richards and Dr. Martin Everett for their interest and support in my
work. In particular my appreciation is further extended to Dr.
Richards for introducing me to the project, and for his ongoing

assistance.

I also wish to thank Professor John Butcher, Dr. Jeff Cash, Dr. Graeme
Cooper and Dr. Roland England for their advice and many useful

discussions.

I am also grateful to the computer staff at Thames Polytechnic for
their continuous help in providing resources, and for their general

assistance whenever computer problems arose.

I also wish to thank my family for their support during my studies and
all my colleagues and friends at Thames Polytechnic for making my stay
there a most enjoyable one. In particular, I am extremely grateful to
my fiancée Priti Shah for her careful checking of this manuscript and

her constant encouragement.

Finally, I would like to thank the Science and Engineering Research
Council for their financial support in all the work reported in this

thesis.

NOMENCLATURE

Arg(q)
E(q)
Ec(q)
Ep(q)
eps
exp(a)
h

i

i,J

i,]

Re(q)

Argument of complex q

General stability function of a Runge-Kutta method
Stability function of ERK method

Stability function of BRK method

Smallest machine representable number such that 1+eps>1
exponentional function, e2

Step size

v-1

Superscripts for iteration loops

Subscripts for loop counts

Jacobian matrix of the system under consideration
Approximation to the iteration matrix

Dimension of ODE system

Order of the method

step size, h, multiplied by complex X of scalar test problem
Padé i,j approximation

Real part of complex g

Residual vector

Stiffness ratio at position x

Number of stages of the method

Independent variables

x-value dt nth step

Dependent variable

Numerical solution at position xp

Analytical solution at position x,

Displacement vector

Error vector

tall

Real or complex scalar

General eigenvalues of Jacobian of system
General Angle

Eigenvector corresponding to Xj;

Modulus of complex a

Norm of a

CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

NOMENCLATURE

CHAPTER

CHAPTER

3.1

3.2

1 : INTRODUCTION

The problem considered
Stability

Stiffness

Numerical integrators

1.4.1 Linear multistep methods

1.4.2 Runge-Kutta methods

Selection of an appropriate numerical method

Overview of the thesis

2 : PREDICTING PERFORMANCE

Extension of regions of absolute stability
Application to highly oscillatory problems
Numerical results

Conclusions

3 : BACKWARD RUNGE-KUTTA METHODS
Derivation of Backward Runge-Kutta methods
Order of Backward Runge-Kutta methods
Absolute stability regions of Backward
Runge-Kutta methods

Other stability properties of Backward
Runge-Kutta methods

Implementation details

Problems considered and numerical results

PAGE

11

13

17

17

24

53

61

69

CONTENTS PAGE

CHAPTER 4 : ERROR CONTROL 817
4.1 Embedding 37
4.2 Inverse embedding 89
4.3 Richardson extrapolation 91
4.4 Implementation details 92
4.5 Numerical results 93

CHAPTER 5 : PROBLEMS ASSOCIATED WITH BACKWARD RUNGE-KUTTA

METHODS 102
5.1 Singular jiteration matrix 102
5.1.1 Approximate factorisation 104
5.1.2 Application of approximate factorization 108
5.1.3 Computing to extra precision 112
5.1.4 Decrease order 113
5.2 Incorrectly calculated iteration matrix 114
CHAPTER 6 : TYPE-INSENSITIVE CODE 121
6.1 Motivation 122
6.2 Switching integrator 124
6.2.1 Switching from explicit method to
implicit method 124
6.2.2 Switching from implicit method to
explicit method 128
6.3 Switching order 132
6.3.1 Order reduction 133
6.3.2 Increasing order 134

6.4 General comments 135

CONTENTS

6.5 Numerical results

6.5.1

6.5.2

Integrating non-stiff problems

Integrating stiff problems

6.5.3 General results

CHAPTER 7 : NUMERICAL COMPARISIONS

7.1 The Problems considered

7.2 Non-stiff problems

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6

7.3 Stiff

$7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

7.3.68

Group A
Group B
Group C
Group D
Group E
Summary of non-stiff results
problems
Group A
Group B
Group C
Group D
Group E

Summary of stiff results

CHAPTER 8 : DISCUSSION AND CONCLUSIONS

LIST OF REFFERENCES

APPENDICES

Appendix A Non-stiff results from DETEST package

Appendix B Stiff results from DETEST package

PAGE
136
136
137

138

165
166
169
169
169
169
170
170
170
171
171
171
172
172
173

173

200

204
209
209

222

Chapter 1 : INTRODUCTION

In this chapter the general problem to be solved will be defined and
sufficieht conditions for the existence of a unique solution stated.
The general concept of stability and stiffness as applied to Ordinary
Differential Equations (ODEs) will be introduced. An outline of some
of the methods commonly used in the numerical solution of ODEs will be
discussed and finally a brief overview of the remainder of this thesis

will be presented.

1.1 The problem considered

This thesis is concerned with the numerical integration of the initial

value problen,

dy,

— = £, (%X,¥y,...VN) v,(a) = n,

dx

’ (1.1)
dyN

— = fN(X,¥,,...¥y) yn(a) = ny

dx

X 2 a

ie. a system of first order ODEs. Such systems may arise naturally or
from reducing a higher order equation to a system of first order
equations. Many engineering processes can be eXpressed mathematically
as ODEs, Bjurel et al.[1970], and hence the efficient and accurate
numerical solution of such systems plays an important role in industry.
By expressing f and y as vectors, (1.1) may be rewritten as

dy

— = f(x,v) (1.2)

dx

X »a, y(a) =n
Before a numerical solution to (1.2) is obtained it is natural to

determine conditions under which a unique solution does exist. For the

-1 -

initial value problem (1.2) suppose that f(x,y) is continuous in a
region D where
D={(x,y): ax<Db, Iyl < =} (1.3)

then suppose there exists a finite Lipschitz constant, L, such that

WE(x,y) - f(x,z)n < Liy-zl | (1.4)
for every pair of points (x,y) and (x,z) in D. Then there exists a
unique function y(x) which satisfies (1.2), Henrici[1962]. Clearly

these conditions are very demanding and can accordingly be weakened to
allow a unique solution in some interval |x-a|. Assume that f(x,y) is
continuous in some interval D where

D={ (x,): |x-a] € «, ly-bl B } (1.5)
then suppose there exists a finite constant L such that

nf(x,y) - f(x,z) < Lity-zli (1.6)

holds for every pair of points (x,y) and (x,z) in D and let

M =max H#f(x,y)il (1.7)
(x,y)eD
and
y = min(«,B/M) (1.8)

then there exists a unique solution y(x) of (1.2) in the interval
|x-a|<{». Repeated use of the above, over a sequence of intervals which
together cover the desired integration range, allows a unique solution

over the complete range to be proved.

In practice integration of (1.2) is performed by marching from x = a up
to some finite b.in discrete steps, thus solutions are generated at a =
Xo < Xy < . . . < xyq =b. Such methods are known as discrete variable
methods. A general k-step class of such a method is given by,

k

Ixjyn+j = h®e(Xp,Yn+ks - .- ¥n,h) n=0(1)M-k (1.9)

j=o

given starting values

vi = Sj(h) i=0(1)k-1
where Mh = b-a, h = xp.; - X, here assumed constant and the xjs are
constant. If ®¢ is independent of y,. then the method is explicit
otherwise it is implicit. Most of the common discrete variable methods

are encompassed in (1.9), eg. selecting

k =1,
s i-a

®r = Lcif(xp+bjh, yp+hiajjkj)
i=1 j=1

and «, = 1

(where the constants depend upon the particular method and are defined
later) will produce an s-stage, one step (explicit) class of method
known as Runge-Kutta methods. The simplest of these being the Euler
method,

Vn+1 = ¥p + hk,

ki = f(xp,Vn) (1.10)
Generally a solution at Vn+1 1is produced by taking a sample of the
function at discrete points between Xp and Xp4+,;, producing a set of s
k-values. A linear combination of these k-values are then added to the

solution produced at Xp -

The ability of a numerical method to generate a series of solution‘
values at a set of node points is, however, no guarantee that the
solution produced is a reasonable approximation to the true solution.
The error produced by the method must be investigated. Global

truncation error is defined by

[

en = ¥(Xq) - vp (1.11)
where y(xp) denotes the true, but usually unknown, solution at x,.
Clearly as the step size of the numerical method is reduced the

solution produced by it should approach the true solution ie.

- 3 -

Max I ep4khl » 0 as h > 0 (1.12)
o<n<M-k

A method which satisfies (1.12) is said to be convergent. From a
numerical point of view it is clearly inappropriate to control (1.11)
at each step, as the true solution is unknown. The quantity which is
usually controlled is the local truncation error, Tp4k, Of the method.
This can be thought of as the error introduced by the formula at each

step assuming that no errors have been previously created, ie.

Tj = y(xp) - Sj(h) Jj=0(1)k-1 (1.13)
.k
Tpek = ZxiV(Xpei) - h®s(xXn,v(Xpek), ..., ¥(xy),h) n=0(1)M-k
i=o

The question of 'how accurate is the numerical solution?' can, in part,
be answered by considering the order of accuracy of the 1local
truncation error. A method of order p is defined as having

Max HTp.h = O(hP*?) (1.14)
n=0(1)M-k -

and a method of order at least 1 is said to be consistent. Clearly a
'usable' numerical method must be consistent. Consistency, however,

does not imply convergence, Hall and Watt[1976].

1.2 Stability

Unfortunately the convergence of a method only deals with the behaviour
of the method as h tends to zZero and in practice h must be non-zero.
Clearly any (stability) constraints of a method will depend upon the
problem being solved, thus some standard equation is required. The
equation usually considered is the one dimensional test equation,

v' =\ y(0) =1 (1.15)
where X\ may be complex. By applying a Runge-Kutta method to (1.15) a
stability function, E(q), is formed which will, in general, be a

rational polynominal in q=hx. The absolute stability region of a

- 4 -

numerical method is defined to be a region in the complex plane for
which E(q) is less than one in modulus. By ensuring that q remains in
this stability region then propogated errors will decay as the solution
proceeds. If instead of a single equation a linear system of N
equations is considered, ie.
y' = Jy y(0) = A (1.16)

where J is a constant NxN matrix, A is given and J has eigenvalues Xj
for i=1(1)N, then instead of q we must consider g = hxj; for i=1(1)N.
We must ensure that for all q; such that Re(qj) is less than zero, gqj

lies within the region of absolute stability.

When encountering problems for which Re(x;), for some i, is large and
negative, then clearly a finite stability region will restrict the step
size of the method. When solving such problems the corresponding qj
must always be included in the stability region of the method. Thus
the stability region must include some substantial portion of the
left-hand half plane. If the stability region of a method includes the
whole of the left-hand half plane then the method is said to be
A-stable. A method whose stability region is exactly the left-hand

half plane is said to be a precisely A-stable method.

No explicit k-step method can have this property and the highest
attainable order of an A-stable implicit Linear Multistep method is
two, Dalhquist[1963]. Clearly this stability property places a severe
restriction on the numerical method and in particular Linear Multistep

methods.

A less severe restriction is that of A(x)-stability where « is an angle

in [0,w7/2], as shown in Figure 1.1

A-stability or A(«x)-stability examines the absolute stability region
ie. the rate at which the growth of the true solution to (1.15) is
modelled by the numerical method. By considering the rate at which the
solution grows relative to the exact solution a relative stability
region can also be defined. (Unfortunately the term relative stability
region is used to mean something quite different in the context of
linear multistep methods, Lambert[1973]). Wanner et al.[1978] refer to
this region as the order star of the method. The absolute stability
region and order star of the unique 1-stage 1st order Runge-Kutta

method (Euler) are shown in Figure 1.2.

As Re(q) » -» in (1.15) the ratio y(xp.,)/v(x,) » 0, hence a numerical
method that is to realistically model this ratio must also produce this
behaviour. By applying a Runge-Kutta method to (1.15) and forming the
corresponding numerical ratio, yp4+:/Y¥p, the L-stability of that method
can be assessed. A method is said to be L-stable, in addition to being

A-stable, if when applied to (1.15)

Yn+1
Limit
Re(q)s-= vy,

> 0 (1.17)

holds or L(x)-stable if the method is A(x)-stable.

1.3 Stiffness

In many engineering applications the system of ODEs being integrated
possesses both fast and slow transients which must be followed
correctly. This phenomenon is known as stiffness and must be correctly
modelled by the numerical method. The first formal definition of
stiffness was given by Lambert[1973]. A linear system y' = Ay + o(x)

is said to be stiff when

i) Re(xj) <0 i=1(1)N and

ii) S(x) = Max [Re(xj)| / Min |Re(xj)]| >> 1 (1.18)
i=1(1)N i=1(1)N
where X;j, i=1(1)N are the eigenvalues of the NxN matrix A. This

definition can also be used for non-linear systems if the eigenvalues
of 3f/3y are considered. The system will then be stiff in an interval
I(x) if i) and ii) above are satisfied. The quantity S(x) defines the

(local) stiffness ratio of the problen.

This definition is acceptable if it is not taken too literally. It
Y

should only be used as a guide, as stiffness is more complicated than

this and depends upon the solution method, the problem being solved and

the local accuracy requirements. An improved definition of stiffness is

that of Shampine{1975], which states that a problem is stiff when the

step length is restricted for reasons of stability. But clearly no

numerical figures can be attributed to this definition and (1.18) is

still useful as the formal definition.

1.4 Numerical integrators

The general class of k-step integration method (1.9) incorporates most
of- the commonly used methods with the Euler method being the simplest
and most basic. This thesis although restricted to Runge-Kutta
methods, will use other integrators for comparison purposes, and these

are described below along with a review of Runge-Kutta methods.

1.4.1 Linear Multistep methods

A class of methods, based upon past information, are Linear Multistep

methods, these have the general form,

=

k

IxjVn+ej = IBjfn+; (1.19)
J=0 J=0

If Bk = 0 (xx # O0) then the method is explicit otherwise it is
implicit. When such a method is explicit then (1.19) can be solved
directly otherwise some iterative scheme must be employed. One class
of linear multistep methods commonly used for the numerical integration
of non-stiff problems are Adams methods. These methods are derived by
replacing the function in (1.2) by a polynomial and integrating this,

Shampine and Gordon[1975].

The Adams methods incorporated in the NAG library have explicit
predictors, chosen to maximize the stability region, and implicit
Adams-Moulton methods for the corrector in a PECE implementation. The
implicit method is solved by means of a simple functional iteration and
the error estimation is performed by Milne's device. The NAG

implementation incorporates methods of orders one to twelve.

The most commonly used methods for solving stiff systems are the
Backward Differentiation -Formulae (BDF) popularized by Gear[1971].
These methods have the general form

k

j=o

~Although these are k-step methods, they only require one function
evaluation per iteration at each step. The implicit equations are
solved by a Quasi-Newton method. The BDF methods, orders one to five,
are used in conjunction with starting values obtained by extrapolation
using a divided difference table. The major handicap with BDF methods
is that their stability properties deteriorate as the order jis
increased. When applied to (1.15), BDF methods of order greater than
six are not A(O)-stable and hence they are of little value. Although
the number of function evaluations required is low their overheads are

- 8 -

high. Craigie[1975] describes in detail the complexity of a modern

version of Gear's method.

1.4.2 Runge-Kutta methods

The general form of an s-stage Runge-Kutta method is

s
yn+1 = Yn + hECiki (1.21)
i=1
s
ki = f(xn + hbi, Vo + hfaijkj) i=1(1)s
j=1
The constants aj j and c; characterise the particular method and
s
bj = Lajj (1.22)
j=1

The coefficients can be expressed in terms of a matrix system, called

the Butcher matrix of the method. This is

b, | ay, . . . 35
(1.23)
bg | a,g - - . agg or b | A
Ci Cs CT

where the sxs matrix A is strictly lower triangular for an explicit
method, lower triangular for a semi-implicit (or semi-explicit) method

and full for a fully implicit method.

Due to their simplicity, explicit methods have been very popular and
high order methods have been dérived. The minimum number of stages
required to solve the resulting non-linear order constraint equations
is shown in Table 1.1. A * by the number of stages denotes that the

minimum number of stages is unproven but methods with this number of

stages have been derived.

As will be shown in section 2.2, no explicit Runge-Kutta method can

- 9 -

possess an infinite stability region and hence the step must be
severely restricted when solving problems with fast transients. For
this reason implicit Runge-Kutta (IRK) methods have become very
attractive, as they can be A-stable for high orders. Ehle[1968] proved
that an s-stage 2s order IRK method can be A-stable. However IRK
methods suffer from a severe practical disadvantage. If an s-stage
method is used to solve (1.2), then a system of sN implicit algebraic
equations have to be solved at each step. By using the Newton
iteration process this involves approximately s?N? multiplications for
the LU factorization of the iteration matrix and s?N? multiplications
for the back solvers. This is clearly expensive, expecially for high

order methods.

An enormous improvement in computational efficiency can be achieved if
semi-implicit methods are used, Alt[1972], Norsett[1974],
Crouziex[1976] and Alexander[1977]. By using semi-implicit methods the
process at each step involves the solution of s systems of N algebraic
equations. In solving the algebraic equations an iteration matrix of
the form
I-hajjaf/ay (1.24)

must be evaluated, where the a;;'s are the diagonal elements of the
Butcher matrix. In a semi-implicit method 3f/gdy will be calculated,
and stored, and (1.24) evaluated for each different ajj- But by
selecting all the aj; values the same (1.24) need be evaluated only
once, ie. the method has only one s-fold zero of the stability
function. Such methods are known as Diagonally Implicit Runge-Kutta
methods (DIRK), Alexander[1977]. However, a semi-implicit method can

have at most order s+1.

- 10 -~

Cash{1975] derived a type of Runge-Kutta method that is a significant
departure from traditional methods. These methods are implicit in the
single unknown Vn+: and not in the k values like IRK methods. The

general form of the s-stage method is,

S
Yn+: = ¥p * bzciki
1=1
r
ki = f(xn + hbi, Vn * ?Eaijkj) i=1(1)r (1.25)
=1
S
ki = f(Xp+y + hbj, yp+q +.h£aijkj) i=r+1(1)s
j=r+1

By being implicit in only Yn+1 only one set of algebraic equations
needs to be solved at each step. These Mono-Implicit Runge-Kutta
(MIRK) methods, require only one LU factorization and s back
substitutions, Singhal[1980]. Two important class of methods are
included in MIRK methods, viz. explict Runge-Kutta, r=s, and Backward
Runge-Kutta, r=0. These Backward Runge-Kutta (BRK) methods will be

analysed in detail in this thesis.

1.5 Selection of an appropriate numerical method

When the numerical solution of (1.2) is required the user has a vast
bank of methods to select from. These range from low order to high
order, explicit or implicit methods of either single-step or multistep
or of one of the more unusual methods ie. Rosenbrock, Block implicit
Runge-Kutta, etc. The method chosen must be capable of integrating the
problem efficiently ie. accurately and within a reasonable CPU time.
The problem of selecting an integrator for the whole integration range
is two-fold, firstly if the incorrect method is used the integration
will be inefficient. Secondly the characteristics of the problem may,
and often do, change during the integration range.

.11

Clearly no single numerical scheme (where scheme implies the complete
solution algorithm, ie. numerical integrator and if relevant the linear
equation solver) can possess the correct characteristics to enable it

to efficiently solve non-stiff and stiff ODEs.

A simple solution, is to always employ an implicit method with the
implicit equations being solved by a Newton type process. This will,

however, be inefficient for the non-stiff problems.

A better solution is to use a numerical scheme (integrator plus linear
equation solver) that monitors the characteristics of the problem and
can automatically detect changes in these characteristics and switch to
a scheme that is most appropriate for the problem at that particular
time. Codes that can automatically do this are often referred to as

type-insensitive.

There are two basic switching strategies;
i) incorporate two integrators in a code and switch between the two or
ii) employ only one basic implicit integrator and switch the iteration

process for solving the implicit equations.

Both methods have been investigated and production codes developed.
Petzold[1983] produced a code that switched between Adams and BDF
methods. As stated earlier the main drawback with BDF methods is their
order limitation for practical purposes, they can not be greater than
5. The overheads in linear multistep methods are high and so are the

overheads in switching.

The code of Norsett and Thomsen[1986] keeps the same numerical

- 12 -

integrator, an implicit Runge-Kutta method, and switches the implicit
equation solver. For the non-stiff case simple functional iteration is
used whereas Quasi-Newton is employed for the stiff case. This has the
disadvantage that some iterative scheme must always be employed, which

is expensive. The code is also restricted to a fixed order.

1.6 Overview of the thesis

This thesis is concerned with the development of numerical schemes for
the solution of initial value ODEs. A new graphical technique for
assessing the performance of potential methods is described in chapter

2, with particular attention to highly oscillatory problems.

Chapter 3 develops the theory behind Backward Runge-Kutta methods and
in particular their close coupling with explicit Runge-Kutta methods.
It also shows that they have far superior damping properties than’the
most widely used stiff solvers. Numerical examples are presented,
without the hinderance of error control, that shows the potential of

the methods.

In chapter 4 the error control policies applicable to BRK methods are
explored and it is shown why the normal embedding method, commonly used
for explicit methods, cannot be employed in the BRK case. The error
control policy adopted is discussed and incorporated into the code and

compared with the BDF code implementation of the NAG library.

Most of the numerical integrators incorporated in codes suffer from
some inefficiencies when solving a certain type of problem. It is well
known that BDF methods are extremely inefficient for solving problems
which possess highly oscillatory solutions. Chapter 5 discusses the

- 13 -

class of problem for which BRK methods are inefficient.

Chapter 6 develops the strategies for switching between explicit and
Backward Runge-Kutta methods. Thus a type-insensitive Switching
Algorithm for Runge-Kutta methods (SARK) is devised. The switching of
order is also discussed and implemented in the final code. Numerical
examples are given that highlight the necessity for a code of this

type.

When developing any numerical code for the solution of ODEs it is
impossible to test the code on all systems of ODEs and hence a test
battery is required. The test battery that is commonly used is the
DETEST set of Enright and Pryce{1983]. The code developed in chapter
6, SARK, is compared with the BDF code over the stiff and non-stiff
problems of the set. As BDF methods are not designed to integrate
non-stiff systems the Adams methods, used in the NAG library, are also

tested and compared with SARK over the non-stiff set.

- 14 -

Table 1.1

Order
Stages

Equations
to solve

1234 5 6 7 8 9 10 11

1234 6 7 9 11 16% 17° ———-

N
1 248 17 37 85 200 486 1205 3047

: Minimum number of stages for each order.

X

\

TMAG INARY g

T

T s REAL aq

Figure 1.1 : A(x)-stability region.

- 15 -

IMAGINARY q

Figure 1.2a

: Absolute stability

region of Euler's method.

IMAGI ':‘AR‘I’ Q

- 12 -+~

=

4

N

s
?

4 -

Figure 1.2b

: Relative stability

- 16 -

region of Euler's method.

Chapter 2 : PREDICTING PERFORMANCE

This chapter addresses the problem of assessing the potential
performance of a numerical method, over a wide range of problems. To
fully assess the performance of any method for solving initial value
problems, it must be fully implemented and applied to a large
collection of test problems. To compare a number of methods in this
way is clearly a lengthy process. Furthermbre, minor changes in the
implementation strategy can lead to dramatic improvements or to severe
deterioration, making comparisons difficult to interpret. Consequently
a quick to wuse assessment of potential performance, which is
independent of algorithmic details, is extremely valuable. This can be
used as a sieve to make an initial selection of promising methods which
can then be implemented and fully tested on a batch of test problems.
A new graphical technique is devised that allows this by comparing the
‘numerical approximation with the exponential solution of the standard
test problem in much greater detail than existing techniques. This

method is extremely quick and easy to perform.

If the ODE being integrated is characterised by imaginary eigenvalues,
often giving rise to a highly oscillatory component, then the absence
of A-stability in a numerical method has prompted many authors to
dismiss it as being inadequate. This new technique introduced gives
more insight into this case and as a result this assumption is shown to

be invalid.

2.1 Extension of regions of absolute stability

The simple idea of a region of absolute stability has been extensively
used for assessing methods. The stability region gives some insight
into the stability characteristics of a numerical method when solving

- 17 -

systems of ODEs. Integrating with q (=h\) within the stable region is,
however, no guarantee that the solution produced will model
realistically the solution of the systenm. Indeed if Re(q) is greater

than zero, it could be disasterous to integrate with q within this

region.

Recall the standard test problen,

dy

— = Ay v(0)=1 (2.1)
dx

which has the analytical solution
b3

V(x) = exp(xx) (2.2)

If the analytical solution is examined at a series of node points x, =

nh forn =0, 1, . . . then
v(Xp+y)
= exp(q) (2.3)
v(xp)

When the numerical method is applied to (2.1) with constant step h, the

corresponding numerical ratio is

Yn+1t
= E(q) (2.4)

¥n
This ratio is the stability function of the method and is a numerical
approximation to (2.3). The region of absolute stability of the method
is defined as being the region(s) of the complex plane where propagated
errors decay as the solution proceeds. One way to identify the
stability region of a method is to find its boundary. It can easily be
verified that the boundary is generated from the stability function by
equating its modulus to unity, ie. |E(q)|=1. One such technique for

locating this boundary is the boundary locus method Lambert[1973].

Generally E(q) =# exp(q), but it is hoped that E(q) = exp(q). The

absolute stability region gives only limited indication as to what
18

extent the numerical ratio is a good approximation to the analytical

one.

By expressing
q =a + ib : (2.5)
in (2.3), the analytical ratio can be written as

V(Xp4y)
= exp(a+ib) = exp(a)x{cos(b) + isin(b)} (2.6)

y(xy)
where e2 is a measure of the damping of the component and b, the
argument of q, is its frequency. If a is less than zero the solution
will decay to zero whereas if a is greater than zero the solution grows
in amplitude. The stability function, E(q) should approximate both the
damping and the frequency of the component to produce realistic

results. It follows that we require the approximate relation between

the complex quantities ie.

E(q) = exp(a+ib) (2.7)
to be good in terms of both modulus and argument. This will ensure
that both damping and frequency are realistic. Therefore it 1is

necessary to consider two aspects of the approximation (2.7), viz. the

damping and the frequency.

Analysis of the damping characteristics of a method can be performed by
comparing the modulus of the stability function with the modulus of the

analytical ratio (2.6). Hence we require,

|E(q)| = |exp(a+ib)| = exp(a) (2.8)
By expressing E(q) as Rexp(i®)

[E(q)| =R (2.9)
Therefore from (2.8) and (2.9)

R = exp(a) (2.10)

19

is required. Thus numerical contours expressing the damping

characteristics of the method can be produced by plotting q such that
E(q) = R (2.11)

for various values of R. These can then be compared with the

analytical contours for which exp(a) = R. The latter, from (2.8) are

straight lines logarithmically spaced perpendicular to the real axis.

The ability of a numerical method to model realistically the frequency
of a component can be determined by comparing arg(E(q)) with
arg(exp(q)). Using (2.5) and expressing E(q) as Rexp(ie) then,
arg(exp(q)) = arg(exp(a+ib)) = b (2.12)
and
arg(E(q)) = arg(Rexp(ie)) = © (2.13)
Therefore the frequency of the numerical solution is © which should be
a satisfactory approximation to b. Hence numerical contours can be
produced and compared with the analytical solution in which the

contours are linearly spaced perpendicular to the imaginary axis.

For all Runge-Kutta methods E(q) is a rational polynominal of the form,
E(q) = N(q) / D(q) (2.14)
where N(q) and D(q) are polynomials in q and D(q) = 1 for an explicit
method. Substituting Rexp(i®) for E(q) in (2.14) yields an expression
of the form H
[N(q) - Rexp(ie)D(q)] = O (2.15)

This polynominal equation with complex coefficients can now be solved

]

for q to produce the contours. By taking a series of R values eg. R
.25, .5, 1., 2., 3. and for each value of R varying © in the range 0 <
© < 2m eg. O = 2mj/100 for j =1(1)100 a series of contours of equal R
ie. equal |E(q)| can be generated. Simliarly if o is fixed at a number

- 20 -

of convenient levels eg. © = -3n/4, -w/2, -w/4, O, w/4, n/2, 3w/4 and
for each fixed © solving (2.15) for (complex) q with R = 0.1j for j =
1(1)100, contours of equal arg(E(q)) can be plotted. 1In each case a
polynomial in q must be solved which has complex coefficients. The NAG
subroutine CO2ADF can be used for this. This technique can be thought

of as a logical extension of the boundary locus method.

To illustrate this contouring technique a collection of 4th order
Runge-Kutta methods, whose stability functions are Padé approximations

are examined. The five approximations considered are:

Re,o =1 +q+ q?/2 + q/6 + q*/24

Ry, . = (1 + 3q/4 + q?/4 +q°/24)/(1 - q/4)

R, » = (1 +aq/2 + q?/12)/(1 - q/2 + q?/12) (2.16)
R, » = (1 + q/4)/(1 - 3q/4 + q?/4 - q?/24)

Rog « = 1/(1 - q + q?/2 - q?/6 + g*/24)

These approximations, with the exception of Rz,z, stem from infinite
families of methods typified by; the classical 4-stage 4th order
explicit method (R"o), Lobatto IIIc method (Ra,l)' Chipmann{1971] and
a 4-stage 4th order backward method (RO"). The Rz’z approximation is
defined uniquely from the 2-stage 4th order fully implicit method which

has Butcher matrix shown in Table 2.1.

The only 4th order Padé approximation not in common use as a

Runge-Kutta method is the Ry, .. This approximation can only be derived

from a fully implicit method and it possesses a finite stability region

and is hence of no practical value.

The modulus and argument plots for these five Padé approximations are
shown in Figures 2.1 to 2.5. As all the plots are symmetric about the

.21

real axis, section 3.3, only the positive imaginary axis is displayed.
The contours for the modulus plots are presented at five different
levels of R, viz. R = 1/4, 1/2, 1.0, 2.0 and 3.0, each contour is
represented by a different symbol on the diagram. The argument plots
are shown for ©e[#n/2,27] in intervals of 7/2, again each contour level
is denoted by a different symbol. Both sets of analytical contours are
superimposed on to the corresponding plot and their value denoted by
the symbbl located at one end of the contour. The normal region of
absolute stability can be observed by considering the contour R = 1 of

the modulus plot.

One other desirable stability property required by a numerical method
when solving stiff systems is L-stability (chapter 1). The modulus
| plot has the added advantage of determining whether this property is
present in the method. To be L-stable the contours of Re(q) at -« must
be zero, hence the value of the contours should decrease as Re(q) tends

to -».

Modulus and argument plots for the Padé¢ R‘,"0 approximation are shown in
Figure 2.1. The modulus plot clearly indicates that the method is more
successful at producing the correct damping (amplification) for Re(q)
greater than zero than for Re(qg) less than zero. This is due to the
zeros of the stability function being in the left-hand half plane with
one close to each of the axes. As q approaches any of the zeros the
approximation becomes highly inaccurate. From the argument plot i? is
clear that the zero close to the imaginary axis will distort the
frequency in this region. Also computing with q at 4i will result in
the solution being underdamped, whereas with q at 2.51, within the
absolute stability region, results in an overdamped solution.

22.

Therefore the absurdity of the common assumption'that computing with g
within the absolute stability region guarantees a realistic solution is

immediately clear from these plots.

The two plots generated by the R, , implicit method are shown in Figure
2.2. As this is a rational approximation there are now three zeros and
a pole, the pole being on the positive real axis. Again this
approximation is more successful at producing the correct damping for
Re(q) greater than zero than for Re(q) 1less than zero, providing that
Re(q) is kept away from the pole. The pole and zeros again produce
distortions in the two sets of contours, however as they are further
away from the imaginary axis the method is more successful for problems
with eigenvalues close to this axis. The argument plot highlights the
inability of the method to correctly represent the frequency as q

departs from the origin.

By considering only the modulus plot of the Rz,2 approximation, Figure
2.3, it appears that the method is almost ideal for problems with
purely imaginary eigenvalues. The analytical contour is followed
exactly on this axis; In other words the corresponding method is
precisely A-stable, however, the contours in the negative half-plane
indicate that it is not L-stable. The argument plot reveals that even
though the poles and zeros are well away from the imaginary axis, the
frequency will only be modelled realistically for small q. This
demonstrates that precise A-stability is not a particularly valuable

attribute for solving oscillatory problems.

The next two approximations, R,,; and R, , are mirror images about the
imaginary axis of R, , and R, o respectively with the zeros replaced by

- 28 -

the poles and vice versa. These are shown in Figures 2.4 and 2.5
respectively. From the modulus plot it is apparent that the R1,3
approximation is A-stable and that they are both L-stable. Both
approximations are more successful at producing the correct damping for
the Re(q) less than zero than for Re(qg) greater than zero, providing
that the zero of Ry, at ¢ = - 4 is avoided. The argument plots show
that being able to produce the correct damping for Re(q) less than zero
is not sufficient to produce realistic results. The step size of both

must be restricted to faithfully follow the frequency of the component.

2.2 Application to highly oscillatory problems

The ability of this contouring technique to predict the performance of
numerical methods can be demonstrated by considering a class of problem
in which the dominant eigenvalues of the Jacobian matrix, 3f/3y, are of
the general form a + ib, where |b/a] is much greater than one. Such
problems frequently arise in engineering situations and will severely
tax any numerical method. This type of problem is often described as
highly oscillatory due to dominant eigenvalues of linear problems
giving rise to a solution of the form
exp(ax)sin(bx + ¢) (2.17)

c constant. This leads to the component having a frequency of b/27 Hz.
Irrespective of whether the problem is 1linear, the stability
characteristics of the integrator are clearly of importance. It has
long been understood, Prothero and Robinson[1974], Jeltsh[1978],
Singhal[1980], Gear[1981], that A-stable methods must be employed for

such problems.

If only error propagation is considered, then A-stability appears
desirable if not essential. But the ability to produce the correct

- 24 -

damping and frequency is also of great importance. It is of no value

producing stable results that are physically unrealistic.

The modulus and argument plots clearly show that precisely A-stable
methods will need to restrict the step size to follow any high
frequency component, as indeed will all the methods. None of the 4th
order methods examined will allow a significantly larger step to be
used than another. Therefore the method that is “cheapest”
computationally must be employed, which is the explicit method. Lack
of A-stability will not hinder the method when solving problems with

imaginary eigenvalues.

These predictions can be analysed further by considering a variety of
Runge-Kutta methods applied to the highly oscillatory problems. Three

types of Runge-Kutta method, derived from the same coefficients, are

considered. These are outlined below:

(i) Explicit Runge-Kutta (ERK)

The general form of an s-stage ERK method is

S
Yn+1 = ¥n * chjkj
J=1
j-1
kj = f(xp + hbj, Yn + ?zajiki) j=1(1)s (2.18)
=1

and their stability functions are of the form
S .
Ee(q) = 1 + £65q) (2.19)
j=1
where the value of 63, j = 1(1)s depends upon the chosen method and in

particuilar, 6y = 1/j! for any s-stage s order method, ie. s is less

than five. Clearly

Limit |[Ee(q)]| = = (2.20)
Re(q) » -=

- 25 -

and hence no ERK method can be A-stable.

(ii) Backward Runge-Kutta (BRK)

The general form of an s-stage BRK method is,

S
Yn+1 = ¥p + bﬁCjkj
J=1
j—-1
kj = f(xpss - hbj, vps. - hEajjky) j=1(1)s (2.21)
1=1

Thus BRK methods can be considered as ERK methods integrating from xp,,
to x, with a step of -h, ie. Backward. Therefore any coefficients from
a ERK method can be used to form the corresponding Backward method.

A
Their stability functions, as derived in section 3.1, are of the fornm,

1 1
Ep(q) = 5 = — (2.22)
1 + £8j(-q) Ee(-q)
j=1

where the value of Bj, j = 1(1)s are those of the corresponding ERK
method. A-Stable BRK methods of order up to two, are known, with
higher order methods being A(x)-stable with « close to 90°. Typical «
values attainable are given in Table 2.2, along with the corresponding
« values for the well known BDF methods.

(iii) Mixed Runge-Kutta (MRK)

These are derived by alternately using ERK and BRK methods. First the
ERK method is applied with step h/2 followed by the corresponding BRK
method with the same step. The order of the resulting method is
usually the same as the main ERK method but can be higher, (the
explicit method which generates the mixed method will be referred to as
the main method). For example coupling 1st order Euler with its
corresponding BRK method, Backward Euler, gives rise to the precisely

A-stable 2nd order Trapezoidal rule.

The stability function of a-Runge-Kutta method is generated by applying
- 26 -

the method to the standard test problem, (2.1), with constant step h.
Thus for MRK method, this is

Yn+g = Ee(a/2)yy (2.23)
for the first half step using the ERK method and for the second half
step using the corresponding BRK method,

Vn+1 = Ep(a/2)yney (2.24)

Hence merging (2.23) and (2.24) and using the result of (2.22)

Yn+1
= Ee(q/2)Ep(a/2)
¥n
Ee(q/2)
T — (2.25)
Ee("Q/z)
Thus the stability function of a MRK method has the form
S L3
1 + £6j(q/2)3
‘ot
Ep(q) = —2 (2.26)
1 + £65(-q/2))
j=1

For a MRK method the imaginary axis always forms part of the boundary

of the region of absolute stability. This can be shown by considering'
q = ib in (2.26). Hence

S

1 + £6j(ib/2)3
j=1

S .

1 + gaj(—ib/z)J
j=1

Ep(ib) =

S s
1 + zézj(_1)3(b/2)3 + 1zé2j+l(_1)23+1(b/2)2J+1

- J:z J=i (2.27)
1 . . 2 . .
1 + 25zj(“1)3(‘b/2)J + 1262j+1(“1)2‘]+1(“b/2)23+l
j=2 j=1

...27_

where

s = { s/2 for s even
1 (s-1)/2 for s odd
s. = { (s-2)/2 for s even
‘ (s-1)/2 for s odd

Clearly as the numerator and denominator are a conjugate pair their

moduli are the same, ie.

|Ee(ib/2) |
|Eq(ib)] = =1 (2.28)
|Eg(-ib/2) |

and hence the MRK method is stable along the entire imaginary axis.
This does not mean, however, that all MRK methods are precisely

A-stable, the following theorem demonstrates this.

Theorem 2.1 : A MRK method is precisely A-stable &> the zeros of the

stability function of the main ERK method are all in the left-hand half

plane.

Proof : Let the zeros of the stability function of the ERK method be
a5, j=1(1)s. Where Re(qj) is less than zero for all j, ie. all zeros
are in the left-hand half plane. Then, as q;j for all j are roots of

(2.19)

(a,-9)(d,-q9). . .(ag-q)
Ee(q) = (2.29)
q,d,. . -dg

From (2.25), the stability function of the resulting mixed method is

Eec(q/2)
Ep(q) = — —
Eo(-q/2)
(24,-q9)(29,-9). . .(2qg5-q)
= (2.30)
(2q9,+q) (29,+q). . .(2qg+q)

which has zeros at q = ZQJ for j=1(1)s which are also in the left-hand

half plane. There are poles at q = -2q; for j=1(1)s which are all in
28

the right-hand half plane. If follows from the maximum modulus theorem

that maximum of |Ey(q)| in the left-hand half plane occurs on the

boundary of the region ie. on the imaginary axis. However, from

(2.28), the stability function equals unity on this axis and hence,
|[Eq(q)} < 1 (2.31)

for Re(q) less than zero, ie. it is precisely A-stable if all the zeros

of the stability function of the main ERK method are in the left-hand

half plane.

Now assume that there exists a precisely A-stable MRK for which the
main ERK has a zero in the right-hand half plane, at dp - This implies,
from (2.22), that the corresponding BRK method has a pole at ~dp ie.

in the left-hand half plane. hence

Limit |Eg(q)| = 0 and Limit 1/|E (-q)| = » (2.32)
q - qp q > -qp
thus
Eg(a/2)
Limit Eg(q) = Limit — = = (2.33)
q > -2q, a > -2q, Eg(-q/2)

Thus a mixed method can only be precisely A-stable if all the zeros of

the main ERK method satisfy Re(qj) less than zero for all j=1(1)s.

All s-stage s order ERK methods give rise to precisely A-stable MRK
methods. The location of the zeros for these ERK methods are given in
Table 2.3. To highlight the fact that not all ERK methods produce
precisely A-stable MRK methods the 6-stage 5th order method of
Fehlberg, in MRK mode is shown in Figure 2.6, with the stability region
shaded. The zeros of the main ERK method are given in Table 2.4 and
are clearly not all in the left-hand half plane resulting in a MRK

method which is not precisely A-stable.

- 29 -

A set of Runge-Kutta methods can thus be implemented in three separate
modes viz. ERK, BRK and MRK with each possessing very different

characteristics.

The highly oscillatory case is under consideration. This 1is
characterised by dominant eigenvalues which are essentially imaginary,
hence the modulus and argument plots will be restricted to the
imaginary axis. On this axis |exp(q)| - 1 and arg(exp(q)) has a

saw-tooth profile of period 2w.

Figure 2.7 shows these new modulus and argument plots for Euler (ERK),
Backward Euler (BRK) and the Trapezoidal rule (MRK). The latter being
precisely A-stable produces the correct damping for all imaginary q.
The ERK, on the other hand, underdamps the component and the BRK
overdamps as q departs from the origin. The arg(exp(q)) appears on the
argument plot as the saw-tooth profile. Clearly the ability of the MRK
to reproduce the correct damping is offset by its inability to
correctly predict the frequency for large imaginary (. Clearly
arg(E(q)) is the same for both ERK and BRK modes, and as shown their
ability to accurately represent the frequency is limited to small ¢q

values.

Modulus and argument plots for methods based on 3rd order ERK methods
-are shown in Figure 2.8. It is readily apparent that as the order
increases the range of q for which the correct damping and frequency
can be reproduced also increases. The argument plot clearly shows that
the MRK method can correctly follow the frequency for twice the value
of that allowed by the ERK or BRK methods. This indicates that the MRK
method can be used with twice the step size of that allowed for by the

- 30 -

other modes. It must be remembered, however, that the MRK method
requires, at best, twice as many function evaluations per step as the
corresponding ERK method, (and may be more if repeated iterations are

required to solve the implicit equations).

The ability to extend the range of q for which the correct
characteristics are produced when the order is increased, can be
illustrated by considering the 5th order 6-stage method of Fehlberg and
the 8th order 12-stage method of Verner[1978], Figures 2.9 and 2.10
respectively. As q increases along the imaginary axis the ERK methods
eventually underdamp the solution, modulus plots. Before they do this
however, they overdamp for a small range of gq. This is due to zeros of
the stability function distorting the contours in these regions.
Similarly the Backward methods underdamp in the region of the poles
then eventually overdamp. It is often the presence of zeros or poles,
near or on the imaginary axis, which forces a restriction in the step
size when following the frequency. Methods which do not have zeros or
poles near the imaginary axis do better but even they must be used with
restricted q to follow the frequency. Thus to correctly follow the
component a small step must be employed, which suggests that the

cheapest methods, ie. explicit methods, will be the most efficient.

2.3 Numerical results

To verify these predictions the 6-stage 5th order Fehlberg method,
Figure 2.9, was implemented in ERK, BRK and MRK modes, to integrate the

following s§stem of ODEs,

dy,
_=y2

dx

31

dy.

=y3

dx
xe[0,10] (p2.1)

dy,
—:y‘
dx
dy,

= -10001y, - 10000y,
dx

with initial conditions
y(0) = [0,6,0,-50001]T
The component of interest, y,, has the analytical solution,
y,(x) = sin(x) + 0.05sin(100x) (2.34)
Hence the solution has a high frequency component, about 16Hz,

superimposed upon a pure sine wave, Figure 2.11

A large fixed step was used for all modes, the step size of the MRK
method being twice that of the others to compensate for the double step
that it must perform, ie. it performs two steps of h/2. After only a
few steps the explicit method produced spurious results. In contrast
the BRK method totally damps out the high frequency and produced the
pure sine wave solution, Figure 2.12. The MRK method, however,
recognized the presence of the high frequency, Figure 2.13, and
obtained the correct amplitude, but was unable to represent the high
frequency correctly. As a result the solution produced by the MRK
method is no better, in terms of accuracy than that produced by the BRK
method. Table 2.5 summarises these results. The maximum global error
of the first component is measured as the maximum relative difference
between the analytical solution, (2.34), and the numerical one
throughout the integration range. All CPU times are calculated

relative to the time taken for the ERK method.

_32..

When the step is greatly reduced, all methods can follow the solution
accurately. The explicit method being clearly the most efficient,

Table 2.6.

Hence to follow faithfully the high frequency component an explicit
method is the most efficient. It may, however, be desirable to damp
out the high frequency artificially, if it is of no interest. This may
often be the case in engineering applications. If so the most suitable

method would be the BRK.

This desirable ability to damp out the high frequency oscillation
artificially must, however, be used with caution. Consider the

following system of ODEs,

dy,
__=y2
dt
dy,
——‘=Y§“Y1
dt
te[0,500] (p2.2)

dy,
— = 0.5y,
dt
dy,

= 4y, - 0.5y,
dt

with initial conditions

y(0) = [1,0,1,0]7T
This is a non-linear problem arising from the study of stellar orbits,
Scheid[1983]. The first component represents the radial displacement
of the orbit of the star from a reference circular orbit and y, the
deviation of the star's orbit from the galatic plane. Astronomers

solving p2.2 are interested in two energy levels, viz.

- 33 -

i) E.(t)

(vi + v3)/2

11) E,(t) = (v} + y2)/8

Problem p2.2 solved by a variable step implementation of the 12-stage
8th order method of Verner[1978], with a small initial step, 1.e-5, and
tight error tolerance produces the solution, for Ez(t); shown in Figure
2.14, (details of the variable step algorithm employed are given in
chapter 4). This agrees with the solution produced in Scheid[1983],

which is characterised by a high frequency component driving a low

frequency oscillation.

If the high frequency is of no interest then, by using a large initial
step, it can be damped out artificially. The effect of using a large
initial step, of 100, is shown in Figure 2.15. Clearly, as expected,
the high frequency is damped out, but as this drives the lower
frequency it too disappears. The oscillations near the end of the
integration are caused by the algorithm reducing the step size to
arrive exactly at the end point and in doing so detecting the

oscillations.

2.4 Conclusions

In general a successful integrator of classically stiff problems should
have three characteristics. Firstly they should have no poles or zeros
near the negative real axis. Furthermore they must have

arg(E(q)) = arg(exp(q)) = 0 (2.35)
for q real and negative and

|E(q) | = lexp(q)] (2.36)

(in the absolute sense), for Re(q) less than zero.

_34...

For the highly oscillatory case it has been shown that
IE(q)| = |exp(q)| = 1 (2.37)
can be achieved on the whole of the imaginary plane, but in none of the

cases considered has

arg(E(q)) = arg(exp(q)) (2.38)

been achieved.

A successful integrator will have no poles or zeros close to the
imaginary axis. When integrating these types of problems (highly
oscillatory) neither A-stability or precise A-stability is necessary.

On balance explicit methods will be most efficient for these problems.

- 35 -

1/2 + v3/6 1/4 1/4 + v3/6
1/2 - v3/6 1/4 - v3/6 1/4
| 1/2 1/2

Table 2.1 : Butcher matrix of 2-stage 4th order
Runge-Kutta method

Order I 1 2 3 4 5 6
BRK 90.0° 90.0° 88.2° 83.9° 79.1° 74.3°
BDF 90.0° 90.0° 88.0° 73.0° 51.0° 18.0°

Table 2.2 : Comparison of A(«x)-stability region for BRK

and BDF.
Position
Order of zeros
1 -1.0
2 -0.5 £ 0.51
3 -0.1867309 + 0.4807739i
-0.6265383
4 -0.0426266 + 0.39463301

-0.4573733 £ 0.23510051

Table 2.3 : Location of zeros of s-stage s order ERK
methods

- 36 -

Position
Order of zeros

S -0.4243994

0.02526698 + 0.29668701
-0.2714430 =z 0.28252281
-0.08324843

Table 2.4 : Location of zeros of 6-stage 5th order ERK

method

Step Max. Global Relative
Mode size error y, CPU time
ERK 0.1 8.00 e287 1.00
BRK 0.1 ' 4.99 e-2 1.87
MRK 0.2 9.58 e-2 1.60

Table 2.5 : Comparison of the 5th order method of
Fehlberg in different modes (large step)

Step Max. Global Relative
Mode size error y, CPU time
ERK 0.01 4.04 e-2 1.00
BRK 0.01 2.49 e-2 2.10
MRK 0.02 1.92 e-2 1.42

Table 2.6 : Cdmparison of the 5th order method of
Fehlberg in different modes (small step)

- 37 -

IMAGINARY a
oSO o
"r' < -3 L + 2.S20—-2)
o < A S.200-21
< j,aﬂﬂ o © o 1 -2aD+3d
he = o < o 2.20D+20
< c':' 3 -] < o 3.200+22
o oS, =]
< = - co a ©
< o aa, |® =]
= & . o (=]
< © C Ja +T+ <
< f1 (=] N -+~ -+ 2 [=] o
o - (=]
< = la -+ < °
P s S A o
= « a <
< < o o
(=] o 2 <
<> -) o <
= <
- s o J = <
o
< =1 o Al an o <
- a a <
< o o
<
= o o -
hd o a + a <
o a * '45- Al q
< o -+~
=] a * P 1 <
o -+ 4
<o r-N 4 ﬁ»
= o a * + s T
< o a + -+~ <
o = o
a -
S a o - -+ S P
< o - PS >
o +]
© -
o o -+ S <
< a4 +>
b [=] o
VNS
T g T T - I <
-3 -2 bt § a 1
. . .
Figure 2.1a : Modulus plot of Padé R, , approximation.
’
= IMABINARY q
< = 0 -+ -2 .360+22
o {=1 o o -1 .B7O0~ED
e = —1 a o -7 .2%m0-a1
< = = A = ®.200-21
> < > N < 7 .980-21
3 - ad > 1.970+23
P P “+
v e = & A - 2.380+22
. < = [a -+ e 3.1 4008
> o iy - a +
v > o o -+~
A ST = PN = [
e - > Py ol e
L) v o a + e
e A4 >¢ <
L) (e 7Y 2‘ o * ol
o 4 < & _ ©la « e
o L4
. e A4 > < s o a - e
- - - > © g B e -4
— P 4= N
e - -
e v < e -
R d [-4 b4 °o [} - ** -
h - v X e A4
+ ud h-4 bad e vv >y
+ w v > 4 >
F-S ey et ><_l A4 >
-3 -+ v »> 2 >
A -+ Lo > s
-3 -+ R - > e XX
T a -+ > ST T
o +~ W se -
o A 4 e
© s AL X - - <
o a & PR
< <o <
So o a T
Oooo =
T T T T T T T T T I REAL 2
- -9 — - -2 -1 & 1 F3 3 -

Figure 2.1b :

Argument plot of Padé R, o approximation.

38

coooo IMAG INARY &
°°° °°1 b ﬁa 4 A 2.%ID—-31
< r°° r A S.28D-@1
o° o 1.200+22
o o 2.200+0@
° . S o 3.200+02
(=} =]
<o <1
< cum = =4
ca <
< [} [<
© a <
o =2 o [~ R=R =N = <
- —
= o [=) =} <
< = < o <>
- o © = >
f=1 o a AAAAL =) <
o
e 2 o & - |° -
o a
< = o a Fiaaangt 5 o
al "o =
o = o A - o
-
=) < a * i =
<> (=] Ead -+ I=
= o a e -+ o o T
o
= ° A + a ¢
o a + - 2~
<> o +
o - b o ¢
h] a = L q
< =) < 4= J L h ¢
° g
- .]
o o - o b B 4
< = o “ - 4 1 =P B $
= bt a -~ - D -~ 4
hd o o [
-+
o A -+ P ==} <F
e = *] b h &
e o -+ i 1 %
8 PREAL. q
T T T
- a - . T LI LI +r‘
. .
. . .
Figure 2.2a : Modulus plot of Padé R, , approximation.
13
. IMAGINARY, @
-~ -2 .380+2@
(=] A A -1 .%70+08
< Py — o -7 .a880-~@1
= a [=] o .280-~21
° o <o 7 .9sD-~21
a >¢ 1 . S70+v0@
a o g — 14 2.360+22
< a e 3.i4D~a3d
=]
o a +
< - +-
e, ...{ o +
ey
e < <] o a -
B
> 2~ = o — -
-l -
> < = [=T -] -
o a -+~
£ |
) X3 - -0
> < = -
—
. hd i =) - e,
< el .
> P o a |~
> [=] a
f=) s}
b S = =T T e
> = - e el
> o O _4 bl o
(=] fod e
< =) -4t
> o A*-a~*‘1 e
> e < e
v __ < 2V Ve =
< -~ W VT 4)
14 xx > 2T hd
<z - > 2D = e
v - o
v > > <7
A4 > led oo
A4 hd oo »x L
on <
o
>
| R B R U REAL <
-% -@ -7 -8 ~8 -2 -3 -2 a lvlzlaslalslaelrla

Figure 2.2b

Argument plot of Padé R, ,

39

approximation.

UN-aGN

.Sen—-a1
., AVD~D
. 2PD+3d
.dDD 32
.avpD+aa

MAC INARY a
-1- S D q:q Z
{ (=]
P =] = f o]
O -
A = <
==
o e
o ==
a Q
o k4 =1
r-S [=]
a [=]
-3 e a
o a oC o o
o =] <> o
s <o
Qo =1 o <>
-+
- -o-_‘. ‘r o o -
+ - N & o
-+ -+
+~ |& h © o
-~ - ® |4
D <
-+ -~ =
" P aic
- - 1 B
AF 3#0
- - r
+47 j:>
1 D
-~ T+ .
D
qr q:qr
- REAL o
‘—J-.T—7—Qr<sl—4‘—3‘—z.ﬂ 1[2[3]4]8‘6]7‘8(9

Figure 2.3a : Modulus plot of Padé R, , approximation.

o IMAGINARY a o
-+ -2 .380+3a
PN -1 .=s70+2@
- — o -7 .as0-31
=] 2.28D-31
<o 7 .amp-a1
>¢ 1 .s7D+aa
- Z.38D0+02
= s e e 3.:+D+22
afa
a a
a > — a
a PN
o 2
-y -y
s —
a a
—
(=] A a [~}
2 . .
o =+ o —t
-~
= a - . a o
= ——eeth T2 -— -
o + ©
o -+~ *” Lﬂ,. a
N e -+~ N
- —m M, e
»e 3 e ~+
o - e a o
jnl 2 wm_ . e
A4 Vo L R
(=] Aty o7 — -4 o (=4
o Avv 2 vaa o
S CRBRT TR U7 =Y =
<>
[~ PN o]
=R PP e P -~ —,
{=] [=]
mREAL o
1 L] [—I_
P @ S = ~=F =2 -0 l\ '213T4 S‘el?

Figure 2.3b

Argument plot of Padé R, , approximation.

40

2.%aD-a1
5 .200-a)
p-T=0 1"}
2 .2aD+-22
J.2aD+22

IMAGINARY
e 4=
- Rl % -
- N p P+ -
1 - a
s — +r - g
“+=
-+ d =]
+ + <
4
" -+~
ad e
=] a s a g +
- o AA
+*~ 4 -
a
-+ a +
- Ao AA -
- a
oo a
A o oq . -
R >
+ = o +
- a o a
aal A ==“== o a -
=
a Do T o a
e o =) < -
3 P s R N S -
4 <3 s o a -+
la | < © o it a
4+ =] - < i -
. s = (=1 a
-+ < A4 =) a -~
Pz - o - B o
T 4+ ¢ o = ° +
_ < o o a
A o > 3 o Py -
4 4 o a
- -} < ° o
-+ 4, —p E o B o it >
4+ 4 4: 1 o & o a -
<> o
+ 4 < o o o
<> < -
4 Ar $ 4 > - o o
i REAL a
-1 o 1 T2 Ta 1a 1= le Iz la

Figure 2.4a

Modulus

plot of Padé R, , approximation.

-2 .3680+22
-1 .8S70+38
-7 .8SD—-3d1
2 .39D0—-31
7 .980-d1
1 .B7D @
Z.38D+29
3.1 40+ 22

a IMASINARY a o
s
a o = a
s = < g
a o =
o - <
a =) >
a — o <
PN = < L)
o
“+ a .
- =]
+ - i
+ Al o o <
i o P - S
oy
- i
-, " fh S = = <
- (=)
> o | £ =
+ =]
£ A e = g >
< e,
+~ o <
o o © >
- A O se
. —
T ;r——d‘——ﬂh—1&,° r= -~z
e e -
e L) o O >
L0 -~ o >
f o
e aAc
— =+ =3
3 Pt = >
bl !-mu o <
oV Vo bl < > P A
k] - 5175*510 xx: A4
2 > A4
4 >
I > > A4 a
- > > v
- A4
—— ™ v
7 > 3 7
N xoosv' '%xvv -
oxv
"REAL aQ
T L] T T T
T~¢‘—7—e—e-—4—3—2a l1l213]4l5l3i7i31ﬂ

Figure 2.4b

Argument plot of Padé R, , approximation.

41

IMAQINARY q
4 * *r + 2.%ap-a:
* . A S.a2e0-2:
+ o 1 .280+2a
+ o 2.200+2d
- o 3.280+2@
~
4
a 4~
a
o -
o -
a
(= N ad
< P-S e
o PN
[~ ad
o o -
o a
o
PN +
o
o PN -
o
oF Sag o it -
< = < “
oo e B o A +
o L a4 -
=
4 <L
w °3 = %
< o a -+
A ° o +
-1 <4 < o (=] a 4=
1 9 < +
= o a
4 < ° -+
p = (=] <
4 r a
< 4
: S (=] o
< a 4o
= REAL <
l 1 I 4 3

Figure 2.5a : Modulus plot of Padé R, , approximation.

IMAGINARY q
F= =
= <r -+ ~2.38D+@@
q > o -1 .3S7D+2D
o -] pu o] [(=3 -7 . MDD -3
A a < = @.280-a1
a 9 < > > 7 .9%D-a31
— =) =— py < — >e [4)
a d o >e > v 2.380+2@
+ a F o <> < e 3. «p+22
+~ as — a > e
“+ =1 > -
= b4 N T
e a s = © >
. > e
o - p-S o] < v e
b3 hd e
e DAY e 7= S — B~ e
B3 v »e
R e + aAlo o o
- + Alg o . > - ne 4=
-+ -+~
v e - So , X v e
v e L= 2 7 g
- - ,__,50:: < ne
s e x o s
<o »e 4 e
- w B x o e +
e
><. vv ™ o > A~ 4 ME. *+
> v > v 9w +* =
> Vo9 x - - a
> 2 = e 7 - a
et -~ a
s, > s \ - . a
Bl ~ -
= > ++ a®
° L4
< > e a o
< > a (=]
° o 1 *+ a <
2o *—o—s-v-iAA o
(=33 o= e
o Coo®
mREAL, q
7 T T T
— - -2 -1 @ I1 [z ls]4 T:]3

Figure 2.5b : Argument plot of Padé R, , approximation.

- 42 -

IMAGINARY o
x 12

\ ﬁ\\ s

1

Figure 2.6 : Absolute stability region of Fehlberg's 5th order method
in MRK mode.

- 43 -

MODUL.US EB<a>d
- — 4+~ BRK
o ERK
o MRK
- =
3 —
2 —
3 -
IMAGINARY Q
e L | 2 | > (I =

Figure 2.7a

Modulus plot of Euler based methods.

ARG E<q>

-+ erRK -~ BRK
o MRK
o ANALTTIC

] IMAGINARY q
s

P
3
2 — #“““"“«
7 —
s 1B |2 I I -
-1 =
-
-

Figure 2.7b

44.

Argument plot of Euler based methods.

MODULUE B<dad>

= PRI
a ERK
(=] MR

-

IMASINARY q
-] l k) 2 <

Figure 2.8a : Modulus plot of 3rd order based methods

ARG E<gd>

- . 2 + ERK - BRK
3‘_{ (GA A MR
© ANALYTIC
2 —
1 v—
IMAGINARY a
P I iz i b [| =
-1 =
~z
-2 = _L/'/‘:; d

Figure 2.8b : Argument plot of 3rd order based methods.

45

T MoDuULUEe &¢ad o
Z ERK
o MmK
-~
s —
2 —
4 "'F—- r
R I -]3 l " ITHMAGINARY o
Figure 2.9a : Modulus plot of 5th order based methods.

e ERK -~ PR
A IR
© ANALTYTIC

IMAGINARY o

~ i

12

Figure 2.9b

Argument plot of 5th order based methods.

46.

mMOooULUS B<a)d
- 1

+~ BRK
A BRK
o MR

IMASINARY o

Figure 2.10a : Modulus plot of 8th order based methods.

ARG E<g>

e BRK ~ BRK
oL MR
(=4 ANALYTIC

IMAQINART q

-2 =

Figure 2.10b : Argument plot of 8th order based methods.

.47

1 1 A]

x 107

o T v T Lo T T L b + h rIiME

A] I 1

- 21—

Figure 2.11 : Analytical solution of y,(x) for problem p2.1.

48

x 107

° . T T T T T T T T h rin=

- o]

Figure 2.12 : Solution of y, for p2.1 by BRK method.

| 1

1

x 101

° T ! T ! ! i ’ ' i h Tine

- g

Figure 2.13 : Solution of y, for p2.1 by MRK method.

- 49 -

Figure 2.14 : Energy level E,(t) for p2.2, small initial step.

-

e 1@

P

P

P

v

-
\J

P

-

P

p

P

.

a

e V—v—vryrrv‘vvv*rvivvvhvv'vvvv"bvvv‘va‘f'uvvrv'vvvv—h— ‘e

Figure 2.15 : Energy level E,(t) for problem p2.2, large initial step

- 50 -

Chapter 3 : BACKWARD RUNGE-KUTTA METHODS

This chapter discusses the ©basic characteristics of Backward
Runge-Kutta methods for the numerical integration of stiff systems of
ODEs. In particular the superior damping properties of BRK methods
over linear multistep methods will be discussed. The close coupling of
BRK methods with ERK methods will be emphasized and further absolute
stability regions together with the new modulus and argument plots

presented.

The implementation of fixed step BRK methods into a computer code is
discussed and numerical results presented for a wide range of problems.
These results show the enormous potential of the method for solving

many stiff systems.

3.1 Derivation of Backward Runge-Kutta methods

By considering the MIRK methods of Cash[1975], (1.23), and setting r =

0 then an s-stage class of MIRK method given by,

S
Yn+#1 = ¥n * h.zcikj
i=1
i-1 (3.1)
J=1
is generated. This formula can be considered as an explicit

Runge-Kutta method with step size -h moving backwards from Yp+t tO Yp.
Clearly any coefficients from an ERK method can be used to form the
corresponding BRK method. For example consider the 1-stage 1st order

Euler method,

Yn+1 = ¥n * hk,
(3.2)
k1 = f(xn,Yn)

The corresponding BRK 1is constructed by integrating backwards ie.

replacing x, by x,,, and h by -h, in (3.2). This leads to the
- 51 -

following method,

Yn+1 = Yp * bk, (3.3)
kK, = £(Xp+1.Yn+a)

which is the 1-stage 1st order implicit method, Backward Euler.

Expressing (3.2) as a Butcher matrix, leads to

010 b | A
—_— R — (3.4)
| 1 | cT

From the Butcher matrix of an ERK method the Butcher matrix of the
corresponding BRK method can be derived by applying the following
transformation,

u-b C - A

I
+ (3.5)
I

cT
where C is a sxs matrix with all rows comprising ¢T and u is the

s-component vector (1, . . . ,1)T. Applying this transformation to

(3.4) yields,

1|1
- (3.6)
| 1
the Butcher matrix of Backward Euler. Thus BRK methods are fully

implicit methods but implemented as MIRK methods, ie. implicit in yp4,

only.

3.2 Order of BRK methods

When a BRK method is formed from an ERK method the coefficients remain
the same and hence the same order constraint equations must be upheld.
Thus the order of a BRK method is the same as that of the corresponding

ERK method.

- 52 -

3.3 Absolute Stability regions of BRK methods

Consider the general 3-stage BRK method,
Vn+r = V¥ + hlc,k, + ¢k, + c,k;] (3.7)
where the k values are computed as
Ky = £(Xp+1.Vne)
k, = f(Xq4, - hb,, vp+, - ha,,k,) (3.8)
ky = f(Xp4, - hby, yp+y - hay,k, - ha,,k,)

applied to the standard test problem, (2.1) with constant step h,

ky = \¥p4,
k, = XN(¥p+, - ha,,k,)

= A¥p4+,(1 - ha,,) (3.9)
ky = XMyp+y - hay k, - hay,k,)

o

AVp+1(1 - h(ay, + a,,) + ha,,a,,)
Substituting (3.9) into (3.7) to advance the solution to the next node

point, and setting q = Ah, yields

Yn+:1 = Yn + Yp+149[8: - g6, + q?83] (3.10)
where

51 = Ct + C, + C,

6, = a,, + a,, + a,, (3.11)

53 = Q21x83;
Hence,

Yo+t 1

= (3.12)
Vn 1 - g6, + q%6, - q’6,

Lambert [1973] gives sufficient conditions for a 3-stage ERK method to

be 3rd order. Similiarly the following order equations must be
satisfied,

6, = 1

5, = 1/2 (3.13)

65y = 1/6

for the corresponding BRK method to be 3rd order. Thus for the 3-stage

- 53 -~

3rd order BRK method

1
E(q) = Jnet = (3.14)

Vn 1 -q+ q?/2 - q’/6

Performing this analysis with s-stages will clearly lead to the general
form of the stability function,

1

E(q) = 5 (3.15)
1+ £(-q)Js;

J=1

It will be shown in section 3.4 that this approximation will damp out

the fast transients of a component much quicker than the commonly used

BDF methods.

Let the stability function of the ERK method be Eg(q). To find the
stability region of the corresponding BRK method, it is applied with
step -h to predict yp4, from y,. It follows that the BRK method is
merely a case of interchanging y,,, and y, and replacing h by -h, ie. g

by -q. Thus (2.4) becomes

¥n
= Ee("q) (3-16)
Yn+1
ie
Vn+1 1
= = Ep(q) (3.17)

yn Ee("Q)
The stability function of the BRK method, Ep(q), is thus expressed in

terms of the stability function of the corresponding explicit method.
The stability region of the BRK methods like all Runge-Kutta methods

are symmetric about the real axis. Let the general stability function

be of the form

54

t .
N(qg) I7jq
= 27 (3.18)
S 3
D(q) £6;(-q)J

j=1

where N(gq) = 1 for a BRK method and D(q) = 1 for an ERK method.

To

show that the resulting stability region is symmetrical about the real

axis substitute Rexp(ie) for q in (3.18),

t
N(Rexp(i®)) T ijjx{cos(je) + isin(je)}

S .
D(Rexp(i®))) bjRJx{cos(je) + isin(je)}

j=1
t 3 t 3
£ TjRIcos(je) + it TjRIsin(je)
j=1 j=1
_ (3.19)
S » S »
L 65RJcos(jo) + ir &jRIsin(je)
j:l j=1
Taking the modulus of both sides
t t
IN(Rexp(i®))| {L[L7jRIcos(je)1? + [E7;RIsin(jo)I12}?/?
= I J=7 (3.20)
S . S . .
ID(Rexp(i6))| {[rsjRIcos(je)1® + gzajRJsin(je)JZ}i/z
j=1 j=1
It follows that
t t
IN(Rexp(-i@))| {[LTjRIcos(-je)1* + [L7;RIsin(-jo)1%}"/?
J=1 j=1
T T s . S .
ID(Rexp(-i8))| {[L6jRIcos(-jo)I* + [£6;RIsin(-jo)I2)*/?
Jj=1 J=1
IN(Rexp(i®) |
_ (3.21)
|D(Rexp(i®) |

hence the region of absolute stability of all Runge-Kutta methods are

symmetric about the real axis.

The stability region of a BRK method is closely related to

the

stability region of the corresponding ERK method. Let -qp be on the

- 55 -

boundary of the stability region of the ERK method, ie.
|[Ee(-ap)| = 1 (3.22)
using (3.15) |
1

lEp(ap) | = = 1 (
lEe(—Qb)}

W
N
w

ie. qyp is on the boundary of the stability region of the BRK method.
Similiarly if -q; and -q, are, respectively inside and outside the

stability region of the ERK method, then

lEp(qi)] > 1
and (3.24)

lEb(QQ)I <1

Hence from (3.23) and (3.24) the stability region of the BRK method is
the complementary set of the image of the stability region of the ERK
reflected in the imaginary axis. This is clearly shown by considering

Euler (ERK) and Backward Euler (BRK), Figure 3.1.

As discussed in chapter 2, a region of absolute stability of a method
gives only limited insight into its potential performance. But it is
useful for an indication of the restriction placed on the step size for
solving stiff problems. This can be seen by considering the contour R
= 1 of the modulus plots in Figures 3.2 - 3.5. These figures show

modulus and argument plots for BRK methods of orders 1 to 4.

As with ERK methods, the stability regions of BRK methoas of order 1-4
can only be enlarg?d by the addition of extra costly stages. For 5th
and 6th order methods of 6- and 7-stages respectively, howevér, they
each have 1 free parameter. This free parameter can be adjusted to
enhance the stability region of the method. It cannot, however, be
used to increase the order of the method, ie making this free parameter

equal to 1/6!, for the 5th order method, will not meet the order

56

requirements for a 6th order method. An s-stage s-1 order BRK method

will have a stability function of the form

1
E(q) = e (3.25)
1 + £(-q)3/j! + 84(-q)°
j=1
thus 6y is the free parameter. A numerical search was conducted to

find the value of 6g for which the A(x)-stability region were largest
for s = 6 and 7. A value for b6g was selected, from a plausible range,
and the boundary locus method used to locate the boundary of the
stability region. When a negative root of (2.15) was located, ie. a
point on the boundary in the left-hand half plane, the angle between
the real axis and a line from the origin to this point was calculated.
The smallest angle, «, was noted for each value of 6g. When the
complete range had been swept the process was repeated with a reduced
range, ie. a subset of the original range. This process continued

until the value of 85 to maximize « was determined to a reasonable

accuracy. The &g values obtained in this manner were,

|

6 = 2.3le-4 giving « 79.1° and

6, -2.31e-5 giving « 74.3°.

Figures 3.6 and 3.7 show the stability regions of the 5th and 6th order
methods with 85 set as above. It is apparent from these plots, that
although the 5th and 6th order BRK methods cannot be made A-stable, the
whole of the imaginary axis, in the case of the 6th order method, is
included in the stability region. In fact setting 64=1.2e-3 allows the
whole of the imaginary axis to be included in the stability region of
the 5th order method, however, the method is only A(77.2°)-stable. The
small regions of instability in the left-hand half plane do not

necessarily invalidate the method for solving stiff systems.

Using the 6-stage 5th order methqgfgf_pawson[1967], the coefficients of

the method which possesses this optimal stability region can be
generated. The coefficients, given in Table 3.1, are in their ERK
form, but can be expressed in the fully implicit form by applying the

- simple transformation (3.5).

3.4 Other stability properties of BRK methods

One other important stability property needed by an integrator of stiff
systems is L-stability. The current analysis of L-stability, however,
does not indicate to what extent the numerical ratio E(q) damps out the
fast transients compared to the analytical solution (2.3), ie. how well
the numerical quantity E(q) approximates exp(qg). To reproduce the fast
decay of exp(q) the numerical ratio, E(gq), should have a stability
function of the forn,

1
(3.26)

s
1 + £(-q)Js;

J'—"—l
Clearly no explicit method can do this. The modulus and argument plots
of chapter 2, in part, show the damping ability of the method,‘but they
do not explicity define the amount of damping produced. This can be
rectified if the LP-stability of a method is considered, Richards and

Everett[1983].

A k-step method is said to be LT-stable, if when applied to the

standard test problem (2.1)

Yn+1 1/K
= 0(Re(q)™") as Re(q) » -o (3.27)
Yn

Clearly any l-step L-stable method is at least L'-stable.

The most commonly used methods for solving stiff systems are the BDF

methods. The following theorem ngﬁysprates that as the order of these

methods is increased the order of damping produced decreaseé.

Theorem 3.1 : An order p BDF is L!/P-stable.

A brief sketch of the proof is now given : Consider the general pth

order BDF applied to (2.1)
p-1
(1-aBp) V¥n+p + Lxjypej = O (3.28)
j=o
Then the auxiliary equation corresponding to the 1linear difference
equation (3.29) is
(l—qu)rp + «p_,rp"’ + ...+t @, =0 (3.29)
Let the roots of (3.29) be <¢,, ¢,, . . ., €p which generally will be

distinct so that the general solution to (3.28) will be

p
Vn = LAjcY} (3.30)
i=1
where A; are constant. We note that as Re(q) » -», ¢; » 0 for all

i=1(1)p. It follows that

p p p-+
Yn+p Ajcd'P ’EEAic? Eajci]
=1_; -z ;0 (3.31)
Yn LA;c} (aBp-1)EAjch
i=1 i=1
Hence taking limits of (3.31) as Re(q) » -«
Yn+p 1/p
Limit =
¥n
/ P
1 /P .2Aic?+l
Limit x, *+ «1Limit1%l____ +
qap—l .zAng
i=1
p
.EAIC?+p_1 1'/p
+ ap_,Limit'> (3.32)
.EAiC?
i=1

By dividing (3.29) by 1-gB, and allowing g»-» we see that ¢;»0 for
- 59 -

i=1(1)p. Hence by repeated use of L'Hopitals rule

Yn+pl1/p %o

= Limit
Re(q)»-o

Limit = 0 (Re(q)~*/P) (3.33)

Re(q)s»-

Vn qu—l
Thus a BDF method is L!/P-stable. BRK methods on the other hand
achieve (3.23) for orders 1 to 4 and hence are LP-stable. For p

greater than four BRK methods give an approximation to exp(q) of the

form

(3.34)

4 S .
1 + (-q)i/it + £(-q)ls;
i=1 i=5

Hence a general s-stage BRK method is normally LS-stable but exceptions

can be found, ie. if 6g = 0.

The superior damping properties of BRK methods over the commonly used
BDF methods can be demonstrated numerically by applying them both to
the standard test problem, (2.1) with X real and negative and the

initial condition y(0) = 1.

The extra starting values required by the BDF (for orders greater than
one) are supplied by the analytical solution, (2.2). Two tests were
performed, the results of which are displayed in Table 3.2, one with g
= -1 and the other introducing more damping by setting q = -10, the

analytical solution is also shown for comparison.

For order 1 both BDF and BRK are the same method, Backward Euler and
hence the results are the same. When q = -1 a‘slight improvement in
the BRK methods solution is obtained by the use of a higher order,
whereas there is no significant improvement in the corresponding BDF
solution. Increasing q to -10, however, shows a dramatic improvement

in the BRK solution as order .dis increased compared with the

deterioration of the BDF solution.

3.5 Implementation details

The implementation for a BRK method will now be discussed with
particular reference, for simplicity, to a 2-stage 2nd order BRK

method. The implementation details apply equally well to other orders.

As BRK methods are implicit, in y,,, only, algebraic equations of the

form

s
€(Xp+1,¥n+1) = Yp+e1 — Yn - hIcijk; = 0 (3.35)

i=1

must be solved at each step. There is no guarantee that this equation
has a unique solution for y,,,. However, we attempt to find a solution
using an iterative process. Using a simple functional iteration
process, however, places an unacceptable restriction on the step size.
A more robust method must therefore be employed. The method usually
employed is based on the Newton iteration process which will usually
converge providing that a good initial estimate can be supplied,
without severe restrictions on the step size. This leads to the
following iterative scheme

d€

fyfit)- yli)y = -e(y{iD) (3.36)
Vn+1

where the iteration matrix, 3e/dy,.,, is evaluated at every iteration

for a full Newton method and from (3.35) has the form,

Je s aki
I - h Ecj
Vn+1 i=1 3Vp4,

= (3.37)
dVn+1 Vnp+1

ak, ak,]af(yp4, - ha, k)
I - ha,,

dVn+1

1]

, etc.

ayD+ 1 ayn+ 1

61

where I is the NxN unit matrix. If the ODE under consideration is

linear then the Jacobian matrix is constant ie.

of
= J (3.38)

Vn+1

1f, however, the problem is' non-linear but the solution is slowly
varying then the problem can be considered as static in an interval and
thus (3.39) still holds. For a 2-stage 2nd order BRK method applied to
a linear problem

€(Vn+1) = ¥p+1 — Vp + hlciky + cgk,]

VYp+1 — Yn *+ hlcydypey + €2J(Vpey = Wb, Jdypy) I

[I - hJ + (hJ)%/2lyp+1 — Vn (3.39)
and the iteration matrix, from (3.37), is

(I - hJ + (hJ)?%/2) (3.40)
If the exact iteration matrix, (3.40), is used with exact arithmetic
then, using (3.39) and (3.40), the Newton process, (3.36), can be
rewritten as,

Yn+:1 = Yn+er - (I - hJ + (hJ)?/2]7'x
[(I - hJ + (hJ)z/Z)yn+1 - yn]

= [I - hJ + (hJ)?/2] 'y, (3.41)
Thus the process must converge in one iteration. However, the exact
'iteration matrix is usually unavailable, so an approximatigon to (3.40)
is used. Let this be M, the exact form of M is given later in this
section. Using this the Newton process (3.36) becomes
Vn+r = Yp - MI7'x[(I - hJ + (hJ)?/2)yhiy - Vpl

[T - [M]7*x<[(I - hJ + (hJ)2/2)yn,,] - [M]"'y, (3.42)

Hence if (3.40) is not exact then an iterative scheme is required.
This requires the matrix M to be updated at each iteration, in practice
a modified Newton process is used whereby the iteration matrix is only
updated when it is strictly necessary. More precise details about the

updating of this matrix will be giventlater in this section.
62

The actual procedure used to solve the system of equations is obtained
by rewriting (3.36), using M as an approximation to 3€/3yp4,, as
MAj.+, = -€(V¥ps4y) (3.43)

where

W0 il (3.4

Thus M must be computed as a good approximation to (3.40), especially

B+

as it is only updated when necessary. The simplest approximation is to
compute (3.40) directly ie. evaluate J? and J numerically, by finite
differences, and then construct (3.40). However, this has a variety of
limitations. The squaring of J, for 2nd order, is acceptable but for
higher order methods the evaluation of JS, JS7', . . . is not. The
storage requirements are also very high even if nested multiplication

is used.

To alleviate these problems, the present work involves the direct
evaluation of 3e€/3yp+; by numerical differentiation. Each component of
Vp+1 1S perturbed by an amount B;, where the subscript denotes the ith
component of the vector y,,,, and the corresponding new value of
€(Vp+,) computed. Various fixed perturbations were examined eg. B; =
1.e-10, 1.e-12, but each was found to be unsatisfactory. Hence, some
change relative to the ith component was required. To cope with the
case of any component of y,,, being zero an absolute perturbation was
also added. Thus the perturbation is constructed as a combination of a

relative part and an absolute part,

. Bi = Vn+:0[1,veps]] + SIGN(yp,,.1)veps _ (3.45)
where eps is the smallest positive number representable on the computer
for which (1 + eps) is greater than one. The function SIGN(a,b), which
returns the sign of a with the magnitude of b, is used to ensure that a

zero perturbation is avoided, ie. the relative and absolute changes

- 63 -

always have the same sign.

The solution of (3.43) is then performed by decomposing the iterétion
matrix into a LU product, L being allower triangular matrix with unit
diagonal and U an upper triangular matrix. This reduces equation
(3.43) to

LUAj,, = —€(Vps+y) (3.46)
which is solved by first solving

Uzj4y = -€(Vp+1) (3.47)
and then

LAj, y = Zj4q (3.48)
by forward and backward substitutions in the normal manner to yield the
displacement vector 4A;,,. Equation (3.44) is then used to generate the
next iterative value of yn,;,. This process, (3.46) is continued until

convergence of A;,, is-attained.

Convergence can only be attained if successive iterations tend to some
limit, which ultimately depends upon the approximation M. Consider

two successive iterations

Vir: = Myje + C (3.49)

Vi+r = Mydsl + ¢ (3.50)
using the displacement vector, (3.44), and subtracting (3.50) from

(3.49)

= MiAo (3.51)
Assuming that there exists an exact solution y,,, and defining a
residual vector as
ry = Y%+x - Vn+1 (3.52)
then

- 64 -

ri = Mrj-, = Mir, (3.53)
Now ro, and 4, can be expressed as a linear combination of the
eigenvectors of J, My assuming that they form a basis. Let
N N
Lo = tajl-lj and Ay = ZBJ'MJ' (3.54)
J=1 J'=1
Clearly generating successive iterations brings in the eigenvalues of

M, thus

N N
ri = Eajxiuj and a; = ZBJX}Mj (3.55)
Jj=1 j=1
So clearly for r; and 4; to converge N5 must be less than 1 for all
j=1(1)N, ie. the spectral radius of M, p(M), must be less than 1. This

is also referred to as the amplification factor, Cash and

Singhal[1983].

To examine whether two successive iterations have converged to an
acceptable amount, as 4j,;, is unlikely to equal zero, a convergence
test must be applied. As the Newton process must be solved accurately
the error control must be kept very tight, using a relative error test
will ensure that this happens. Thus convergence of the Newton process
is considered achieved when

uAi.‘.l“

€ stol (3.56)
Max([veps, Hyp+ 1]

where stol is some acceptable local convergence level.

This check, however, causes one more iteration of the Newton process
than is really necessary for the convergence test to be met.
Convergence is attained when (3.56) is satisfied, ie. W4j,,# must be
relatively small, compared with #y,,,#, hence the addition of this

vector to yp+: will make no significant difference to the solution.

- 65 -

Therefore it is advantageous to estimate HAj,,# on the ith iteration.

Consider

viil = myl,, + ¢ (3.57)

Using the result of (3.55) and assuming that |X\,| > |X j=2(1)N ie. X\,

j
is dominant, then on the jth iteration
a5 = BN u, (3.58)

and hence

Bj4q & ByMT 1, X1(51XIM1)
= XA (3.59)
Taking a suitable norm, results in
LS

= %] = p(M) (3.60)

A

JI

Hence the convergence rate of the process is approximately the ratio of
two successive displacement vectors which in turn is approximately the
spectral radius of the iteration matrix. Let the convergence rate of

the process on the ith iteration be CRATEj, thus

—— CRATEi+1 (3.61)
ﬂAi“
and then
“Ai+t“ = HAi“XCRATEi+1 (3.62)

Hence the value of H4; .0 can be obtained on the ith iteration if an
estimate of the convergence rate of the process is obtainable. It can
be assumed that the convergence rate on the (i+1)th iteration,
CRATE;,,, differs from CRATE; by only a factor of two, ie. convergence
is ultimately linear. In any case CRATE;, i = 1, 2, .. must be less
that one to ensure convergence. Hence

CRATEj,, < min(1,2xCRATEi) (3.63)
Thus WA;,,# in (3.62) can be approximated by

WA, ,# = min(1,2xCRATE;)xHa;H (3.64)

- 66 -

which often saves at least one iteration of the Newton process.
Initially CRATE; is set to one and updated subsequently by

CRATE; = max(.2xCRATE;_,,HA;H#/08;_,H) (3.65)
On the first iteration of each new step the convergence rate from the
last iteration of the last step is used. Hence the displacement vector
is never calculated on the (i+1)th iteration but always estimated, and

it is this estimated value that is always used.

This idea can be extended to check for divergence of the Newton
process. If #4y,,# > 10x#A;H, (10 to allow some small increase), then
the scheme is showing signs of divergence and some correcting procedure
must be forthcoming. This idea was first proposed by Hindmarsh[1974]
and later incorporated in most codes that solve systems of equations by

a Newton process.

Clearly there will be occasions when the Newton process is going to be
slow to converge eg. when too large a step is used. For this reason
some limit must be imposed on the maximun number of iterations used.
As a failure of the iteration process must lead to a step reduction and
almost certainly an expensive iteration matrix update, the scheme is
allowed to iterate up to ten times. This figure is, however, rarely
reached as the number of iterations usually does not exceed three or

four.

The system (3.12) can only be solved for 4;,, providing the iteration
matrix, as it is computed numerically, is non-singular, or more
precisely is considered sufficiently well-conditioned for the LU
factorization algorithm to be successful. Any single occurrence of it

being singular can be overcome by changing the step size. An increase

- 67 -

is not advocated as the local accuracy requirements may not then be
met, thus h is reduced. The reduction is performed by halving the step
size and recomputing the complete step. If the iteration matrix is
repeatedly computed as singular then some other action must be

forthcoming, this problem is discussed in detail in chapter 5.

Once the iteration matrix, M , has been evaluated it is the LU
factorization which is stored (ignoring the unit diagonal on L) for
future use and not M itself. As the iteration matrix is computed
numerically, knowledge of the analytical Jacobian matrix J of the

initial value problem, would be of no help in the solution procedure.

The iteration matrix is updated for only one of three reasons, viz.
i) the relative change in the step size exceeds 10%,
ii) the iterations fail to converge after three iterations, or

iii) the iteration process shows signs of divergence.

Due to (3.38) being a polynomial in hJ of degree s it is evident that
any change in the step size will require a re-evaluation of the matrix
M, for good convergent properties to be maintained. This has serious
implications in step control policies and they are discussed in chapter

4.

The initial approximaton yﬁﬂ to yp+: is generated by extrapolation

using a divided difference table that is constructed from consecutive
successful steps of the method. Numerical tests were used to determine
the optimal order of the divided difference table for BRK methods of

order 2, 5 and 8, these are 3, 7 and 10 respectively.

- 68 -

3.6 Problems considered and numerical results

To confirm the potential shown in BRK methods, fixed step versions of
orders 2, 5 and 8 were implemented. As no error estimate was being
incorporated the initial and maximum step sizes were supplied as data,
to enable a crude error control policy. Step increases by a factor of
ten were allowed if the Newton process converged in less than five
iterations with a stopping tolerance, stol, of 1.e-10. (The Hindmarsh

process described in section 3.5 was not implemented at this stage)

The BRK methods have been applied to a large number of problems and
their performance compared to the BDF methods of Gear, incorporated in

the NAG library routine DO2QBF, Gladwell[1974]. Hereafter GEAR refers

to these methods, using a relative error test (CIN(2) = 2), and
numerically evaluated Jacobian matrix. The default initial step size
was used in all cases. Results are shown for four typical problems,

three non-linear and one linear.

In all the following tables and figures the abbreviations below are
used,

TOL : local tolerance to satisfy at each step

Steps : number of steps taken to complete integration

FE : total number of function evaluations (including those

required for the Jacobian matrix evaluation)

JE : total number of Jacobian evaluations

CPU time : CPU time in seconds on a Prime 550

Order : Order of the method used

Sig. Figs. : significiant figures accuracy computed as

lyy - val
0. (3.66)

-log,, = Min [-
YN

- 69 -~

where yy is the numerical solution and yp the corresponding
analytical solution, over the relevant component. The relevant
components being y, V3, V. and y, for problems p3.1, p3.2, p3.3 and

p3.4 respectively

The four systems of ODEs considered are listed below together with
initial conditions, integration range, eigenvalues of the Jacobian

matrix and where appropriate the analytical solution.

dy:
= -10°%,; + yZ + ¥ - 1 - 1/(1+x)*
dx
dy,
—_— = -y, + y§(1+x)z xe[0,10] (p3.1)
dx |
dy, ,
= =-¥>
dx

Initial conditions : y(0) = [1,1,1]T

Eigenvalues : -10%, -1, -2/(1+X)

Analytical solution : y,(x) = exp(-10%x)
v,(x) = 1.0
Va(x) = 1/(1+x)

This non-linear problem has a stiffness ratio of approximately 1.e6.
Initially all components of the solution are of the same magnitude but

as the solution procedes y, decays rapidly to zero.

dy,
_— = ’Y:Yaex
dx
de -y,
= xe[0,10] (p3.2)
dx (1+4x)

- 70 -

dy,
— = -y (1+x)e7X
dx

Initial conditions : y(0) = [le-2, 1e6, 1e6]T

Eigenvalues : -10%, -1/(1+x), O

1}

Analytical solution : y,(x) 10" %exp(-10%x)

v, (X) 108/(1+x)

10%exp(-x)

Va(x)
This problem was constructed so that y, has an extremely rapid

transient but, unlike p3.1 is much smaller in magnitude than the other
components. This situation is very common in engineering problems
especially where variables are converted to SI units, eg. converting to
Pascals may result in some components having extremely large

magnitudes, whereas others are extremely small.

dyl

—_= -y, + 2

dx

dy,

— = -10y, + 20y2

dx

dy, xe[0,20] (p3.3)
= -40y, + 80(y? + y2)

dx

dy,
= -100y, + 200(y% + y2 + y2)

dx

Initial conditions : y(0) = [1,1,1,1]T
Eigenvalues : -1, -10, -40, -100

This is a non-linear problem considered by Cash[1975].

.

dx xe[0,10] (p3.4)

- 71 -

dy,
— = -10001y, - 2y,
dx

Initial conditions : y(0) = [1,-1]T
Eigenvalues : -1 =+ 100i

e Xcos (100x)

[}

Analytical solution : y,(x)

i

v, (X) -e"X[cos(100x) + 100sin(100x)]
This is the only linear problem considered here and is characterised by
a highly oscillatory component. It is well known that BDF methods

perform particularly badly on such problems.

The initial fast transient stage of a stiff system is usually the most
demanding for any stiff integrator, as they only start to work
efficiently when the step size is large. The superior damping
properties of the BRK methods, over the BDF methods, during this fast
transient stage are apparent from Figure 3.8 and Table 3.3 for problem
p3.1. In each case the accuracy of the first component is plotted
closest to 1.e-6, 2.e-6 and 3.e-6. This ensures that no additional
errors are introduced by interpolation. The numbers at the right-hand
end of the graph are the number of steps and function evaluations
respectively, these clearly show the supremacy of BRK methods at
controlling the fast transients. In particular the 8th order method
performs extremely well, being able to integrate upto 3.e-6 in just one

step and still producing an acceptable solution.

Table 3.5, Figure 3.9, summarises the three BRK methods and GEAR over
the whole integration range. The runs were set up so that each took,
approximately the same CPU time. All the BRK methods, with the
exception of the 2nd order method, out performed the GEAR method on
this problem.

- 72 -

Table 3.5 and Figure 3.10 summarises the performance of the methods
over the fast transient stage of the solution for problem p3.2. With
GEAR it is clear that a very small step must be used initally and
maintained for this part of the integration range, whereas the BRK
methods can employ a much larger step and still damp out the component.
Even with this small step the solution produced by the BDF methods lose

accuracy as X increases, this does not happen with the BRK methods.

Integrating over the whole range, Table 3.6 and Figure 3.11, indicates
that not only are the BRK methods faster but they are more accurate
throughout the range. Due to its poor performance on this 2nd order

BRK method is omitted.

Problem p3.3 results are summarised in Table 3.7, Figure 3.12. Even
though GEAR is able to used a larger step than any of the BRK methods
it is still slower and less accurate, with the exception of the 2nd
order BRK method. The somewhat erratic accuracy of all BRK methods can
be partially overcome by using a small initial step, but it does
highlight the need for some form of error control and variable step

policy.

Problem p3.4 is known to severely tax codes based on BDF methods such
as GEAR. This is due to the problem being characterized by a highly
oscillatory component. Table 3.8, Figure 3.13, show results for,
approximately, comparable CPU time. An interesting feature is the high
number of Jacobian evaluations required for the BDF code, this suggests
that the step control policy is allowing the step to change too freely.
Clearly the BRK methods out perform GEAR on this problem.

- 73 -

l
|
0.5 | 0.5
|
0.25 | 0.1875 0.0625
I
0.5 | -0.32392 0.17608 0.14784
|
0.75 | -0.13206 -0.31965 0.63912 9/16
|
1.0 | 0.444708 0.87328 0.25344 -12/7 8/7
" -
I

7/90 0 32/90 12/90 32/90 70/90

Table 3.1 : Coefficients for 6-stage 5th order ERK.

q No. of Final values
steps Order BRK BDF Analytical

-1 20 1 9.5367e-7 9.5367e-7 2.0612e-9
2 1.0995e-8 -4.0863e-6
3 3.0243e-9 3.3444e-7
4 2.2180e-9 4.6533e-7

-10 20 1 1.4864e-21 1.4864e-21 1.3839e-87
2 1.9652e-36 i.5316e—12
v3 7.1451e-48 3.6652e-10
4 6.5734e-57 8.6177e-8

Table 3.2 : Comparison of BRK and BDF on standard

test problem

- 74 -

Method Log,, Steps at order Initial
& Order TOL 1 2 3 4 5 8 FE JE Steps Step
BRK 8 - 30 228 1 30 1.0e-7
GEAR -15 3 S 17 18 646 869 44 689 7.2e-17
BRK 8 - 12 312 1 12 2.5e-7
GEAR -12 3 4 15 18 102 383 25 242 1.5e-12
BRK 5 - 60 402 1 60 5.0e-8
BRK 8 - 3 104 1 3 1.0e-6
BRK 5 - 12 162 1 12 2.5e-7
<

GEAR -7 3 4 10 12 22 133 11 51 4.9e-10
BRK 8 - 1 65 1 1 3.0e-6
BRK 5 - 2 42 1 2 1.5e-6
BRK 2 - 10 42 1 10 3.0e-7
GEAR -2 3 4 4 42 4 11 1.2e-8
Table 3.3 : Transient phase of problem p3.1 (Figure 3.8)

Method Log,, Initial Maximum CPU
& order TOL FE JE Steps Step Step Time
BRK 2 - 432 1 201 5.0e-2 5.0e-2 1.02
BRK 5 - 1830 6 éO4 5.0e-2 5.0e-2 2.03
BRK 8 - 2821 2 101 1.0e-1 1.0e-1 3.07
GEAR -7 424 33 241 4.9e-10 3.6e-1 3.43

Table 3.4’ : Full range of problem p3.1 (Figure 3.9)

- 75 -

Method Log,, Steps at order Initial
& Order TOL 1 2 3 4 5 8 FE JE Steps Step

BRK 8 - 20 468 1 20 5.0e-7
BRK 5 - 100 636 1 100 1.0e-7
BRK 8 - ld 299 1 10 1.0e-6
GEAR -15 2 4 10 14 60 188 15 91 2.4e-10
BRK 5 - 20 204 1 20 5.0e-7
BRK 5 - 10 138 1 10 1.0e-6
BRK 2 - 100 212 1 100 1.0e-7
GEAR -12 3 4 7 18 3 96 9 35 1.5e-8
BRK 2 - 20 72 1 20 5.0e-7
GEAR -10 3 7 S 42 5 15 1.5e-7
GEAR -7 4 19 3 4 1.9e-7
BRK 8 - 2 91 1 2 5.0e-6

Table 3.5 : Transient phase of problem p3.2 (Figure 3.10)

Method Log,, Initial Maximum CPU
& order TOL FE JE Steps Step Step Time
BRK 5 - 2166 6 105 1.0e-1 1.0e-1 2.91
BRK 8 - 3783 9 106 1.0e-1 1.0e-1 4.59
GEAR -10 520 29 385 1.5e-7 6.8e-2 5.16

Table 3.6 : Full range of problem p3.2 (Figure 3.11)

- 76 -

IMAGINARY a
x 127"

REAL o

Figure 3.1a : Stability region of Eulers method.

IMAGINARY q
-1

a = -+
4
8‘$\\+
4
—
* -+
-
3 >. <
2 -
7 -
REAL q
T I, l2
ha -+~
-1 =]
-
—z“». “+
-

—

Figure 3.1b : Stability region of Backward Euler method.

- 78 -

IMAGINARY, &

4 4 ¢+ 5w ¢ * & 2.aeo-a:
F r - - A S.3sp-1
o 1 .200+22
1 - o 2.280+0@
<o 3.2130+22
- 4
- 4=
3 =
- o
- -+
- 27 A4 Aafa a +~
p-S r-9
pY a
- o a +
A a
N a
-+ - o *
V- PV o “
e o
a o a
o
- a I af o *
~] ﬁ: = o
o
a & o P o a
» = |2 o
— —_ <5 REAL g
-3 -z T 2 K 2 ts Fa
.
Figure 3.2a : Modulus plot of BRK 1.
IMAQINARY q
+ + 7 .a=p-a;
o~ a 1 .s70+2®
o 2.360+22
-+~ e = A i
7 =
-~ 4 @
- —
+ a i
-+~ =71 - =
+ -~ & ©
-
-+~ o o
e 3 ™ P-9 o
- a =)
+2 - A (=1
e -9 (=}
-
ot o
- a
k) i (=]
+% o -
+A
REAL g

t i 1 ') 0 1
-8 =7 ~@8 —-8 -4 -3 -2 -a

-4

vz lalalalalsla

Figure 3.2b :

Argument plot of BRK 1.

- 79 -

THMAGINARY, q
- R S e +- 2.=e0-ai
+ P’ P 7@ hd -+
+ - A S.290-31
1N “+- o 1 .280+02
- 4+~ = 2.280+22
- + o 3.a2D+23
- -
- -+~
-T +
- y - - a
A a
- 2 a p-N -+
— A A
-+ N a +
; a
- e
A cooc’oo a
a a
-
A o e a
- a i o < o
o 2 S o
a = = a
+ o -+
a © S © o © a
a{® ° g -
+ a o “hdg ° . © a
— o
- a 170 o9 < o +
o o
a g as hd o a
- = + o 2 +
N b 2 jo > . o a
<o
- 4} * a or © a “+
q o = o
& F a
-+ P (=] (=} o +
a
1 & = = o
- -
P o o
REAL o
! -1 a) Tz l 3
Figure 3.3a : Modul 1
. : ulus plot of BRK 2.
< IMAGINARY g -
_ 4+~ -2.36D+~2@
] A -1 .=7D+aD
P » e o -7 .8%0-a1
(=] 2.200~-21
<> 7 .as0~-a1
v 8 e -+ >¢ 1. S70+ 2D
> - 2.3sD+a2
- »e 3.1eD+2@
“+=
>¢ o a
> —
s 14 ne -+ A
o]
4 e £
> a — a
-4 ;] ad
> L 2>
< ne -+
>
g 7] <
- < b -+ a
o L) +
>¢ —] a
g o< A?_'ﬂ = A
< o < e + a o
<> — hd -+ N o
<> > 3= £ PN o
£~ A 4 -+~ [=1
< >3 fl & r-N _o =
oo > < 4+~ F-S oo
© 2 |+ A =)
- ol L. P a
LS de a o
° o
< _j < g o
L~ £
e v S) -
=)
T T T T REAL 9
-9 ~@ -7 -8 -% -4 -3 -2 -a

l'nlzT:la[s'e'?‘c‘a

Figure 3.3b :

- 80 -

Argument plot of BRK 2.

TMAGINARY \a

- - Py -+ 2.2AD-~-d1
&S T’ -+ A S.2vD-1
s + o 1 .2a0+2@
-+ o 2.2@D+2@
-+ *'+ o 3.2@eD+e2
. ala a -
a 4
-+ a a +
e o a *
P i
-+ +-
-~ oS o < +
-~ a o < PN
- o o A il
i o aPa o -+~
o o > O o a -+
-~ az <> <> = o
< Qo < o el
+~ o 2
a Do o8 a +
el a f—1-3 < g L =] a -+
- a oo < . AA -+
O < |a
b <
A = - d =1 co o~ -
- o a +~
a = = a
-+~ A (=] o -
- a = = P +
- o a
= o 1 =1 o ha
o a
i ~ (= o a -
[} e
4 > = a
b =] = o a +
1 J
\ L <~ °°o [~] o a “+
N o =] < = - -
N T <> o) o a -
4 h S = a
-+ p. S CF < < m e P-N *+
REAL. q
' o 1 |z [
.
.
Figure 3.4a : Modulus plot of BRK 3.
IMAGINARY g
_ . -2.38D+d2
oy A o A -1 .S70+02
o -7 .980-31
-+ a o = @ .2eD-a31
o 7 .9%D-21
20 N = = -5 e 1 .%7D+@2
e o = < 2 .38n+@0
a e 3.1 40+
- + o (=
PN 2>
e + A o
< e + a o =] <
- —
L 4 e + "N o [=] hid
5 o) = < o
14 e "1 a < = <
24 e e = <
<= . S d e Lo 3 -
< e o <
> L4 "+ a © < xx
b4 < L]
e + A o B < >¢
- - ST
< 3z PN [~] < >
P3 v " + A o 3 P b4
> v +*aos 2 < > -
= wv_'t,—o-éo = o >
> 2 | vt = < >C
P > 3 = < > v
< >¢ - - A4
=
< > 4
< > S 2< Tz
2 3 3
=3 >¢|>e -
- o © > <
< > > L-4
hd oL i - < > .
< o = <
4
< -4
o %vv
g
- : . e REAL «
! ! -3 iv 1z T3 1T« ITs 1le 1=

- -y -3 -2

Figure 3.4b :

81

Argument plot of BRK 3.

-~86¢
808808
| B
gogaan
208608
veees
NN -NO
14000 ’
?
H
s
+
']
+ ¢ 9
4
t < 0000000
4 q 0
+ d 00
, o 00 putioonagy
0 i} 00 0
' o 0 =mooo ¢ 0, |2
4 0 0
' 0 s
+ ¢ 0 0
4 0 o, P .
q.v Aa oc mcf <1el«e<<>l
Yﬂp \A Dm ﬂm_”_ln—ﬂn-lllbfli
e, O G U0 O O uw
g 0 o00¢g
) a 0 Q
ot) 0 co ¢
£t 4 o Uy .
0 |
¢ Y %0000
$ Ya,
+|lHLlﬁ|\l!MmlPLPLrL?ff#LLT?+LT+ALT$4;;
t
by , i
Yoreyy
+
ULE R 5L S RPN

-+

Modulus plot of BRK 4.

.
.

Figure 3.5a

-

-

3

z

- -2 -

—

88-~~0800
000408808
(B EBEEEE
abaognoag
enpeEnNNG T
nnesoNn;
N-NON-NO
Tt
+4000XbX :
y
. [4
P9 ‘ w o
0
y AA 0
! 0
~*y 4 N 0
X v, 4 ¢
b 0
> X 4
vhv ¥ ++ q o]
LS X 0
¥ t q
X x P ¥ t !0
X x 4 3 +
X b 1 0
xrxx .vv X ++ ¢ 0
"P ooy "I ox X P oy *~:++ﬂ 0
x ooooo xxx vvvva*mm
3 L TP EE L
Dooogoon o claca=m°° X
< X
. s6-010 004007 cm&mwd x
d o0 ovT PAAA ol k
L]] 4 H ¥ Pu "
et | T I R
AAA ++ f~ Vv v_a
t X
+ft 3 > X
. X > X 0
+ b
z \ X 0
g} | X 0
]
X 0
> X
b J ¢
0
0

Argument plot of BRK 4.

Figure 3.5b

82

MAG1I l’\lAR‘l’ d

Optimal stability region of 5th order BRK.

Figure 3.6
+“__h IMAGINARY o
N
AN\
Figure 3.7 Optimal stability region of 6th order BRK.

.83

.l?.ﬂlﬂ. Al]
» — -~ @eRxK &
1 T 30(220) a sesrm
— <S>
| O——_\"*—h‘_‘j\‘QBO(UG S ame s
—————e12(312 ~ SRK @
[— S v eAx S
. T -F
] - M 2
D —7 7L TV I
4
] wwwa(wu
"‘\t:::::—__«———v 12 ie2)
T ms1033)
7 ai(8s)
1 T c2(a2)
- ,—
-— Q‘?‘:m(‘z)
i 11(a2)
T L T Tf"lx ‘.-.
® I’—I‘TTTTTfTT:TT'T""'";fﬁ’jT T3 X VALUG
Figure 3.8 : Problem p3.1 over initial stage.
S0 MIOS Y3
> 1@
e g aRxK 9
o RK =
W s BRe s
L - - - e - o GEAR

£

\R"-]

| X vaLoe

Figure 3.9

Problem p3.1 over whole range.

84

®1Q
% 1@

mIOK T

-~ Rk o
o ek 3
O BRK
2 CGEAR

~ 1@
]zx VALJUE

Figure 3.12 . Problem p3.3 over whole range.

8IC FI6S T4
+ BRK a
LA BRK S
(=3 BRK 2
o 0 GSEAR
a ~
7 -
g -
pu—
-~
3 -
2 -~
) =
— i a
. I1X VALUES

Figure 3.13 :

Problem p3.4 over whole range.

..86_.

Chapter 4 : ERROR CONTROL

In chapter 3 the potential of BRK methods for solving stiff systems of
ODEs was demonstrated using fixed step mode. However, some means of
controlling the error of the method must be derived to produce an

efficient algorithm.

The global error, the difference between the true solution and the
numerical one at any given point, cannot generally be determined. Thus
the usual measure of control is the local truncation error, ie. the
error committed in one step of the method assuming that no errors have
previously been introduced. In fact the global error is a result of
the local truncation errors, formed over all the previous steps, taken
to construct the numerical solution, accumulated in a non-trivial
manner together with round-off errors. In addition for an implicit
method, since the implicit equations are never solved exactly, furthef
errors are introduced. It can be shown that a bound on the local
truncation error provides a corresponding bound on the global error,

Lambert[1973].

This chapter examines a variety of techniques for estimating the
principal 1local truncation error of a Runge-Kutta method and in
particular BRK methods. By estimating the principal local truncation
error the step size, h, can be adjusted automatically so that in some
region of x where y(x) is changing rapidly h is kept small, while in

regions where y(x) is changing slowly h is made large.

4.1 Embedding

Unfortunately the error term, given by the Taylor series expansion, is
too complicated to be of any practical value, hence the 1local

- 87 -

truncation error must be evaluated numerically. The most commonly used
estimation method for Runge-Kutta methods is that of embedding,

Fehlberg[1970], Verner[1978].

This technique requires an s-stage method (explicit or implicit) of
order p+1, (s,p+1l) to have embedded within it a method of order p,
(s,p). By embedding we mean that the (s,p) method uses the same
function evaluations as the (s,p+1), ie. the same sampling points, but
uses a different linear combination. Assuming that the solution at
Xp-y 1is exact and no computational errors are introduced in computing
the next step and two approximations are generated at Xp = Xp-; *+ h.

Let these be y, and y: for the (s,p+1) and (s,p) methods respectively.

Clearly if y(x,) denotes the true solution at X,, then the (s,p+1)
method generates

Vn = ¥(xp) + hP™2o(y(xy)) + O(hP*?) (4.1)
where o(y(x,)) is the principal error function. The (s,p) method will
produce

Yn = v(xp) + hP*Ix(y(xp)) + O(hP*?) (4.2)
where x(y(x,)) is the principal error function of the (s,p) method.
Subtracting (4.2) from (4.1) yields the difference between the two

estimates

+

Vo - Vn = hP*ix(y(xp)) + O(hP*?) (4.3)

and hence

%
hp+1x(Y(Xn)) = ¥n - Vn

d(h) (4.4)

Thus d(h) is an estimate of the local truncation error of the (s,p)
method at Xn and this must be kept less than a fixed local error
tolerence, TOL, at each step to maintain a bound on the global error.
An absolute error test or a relative error test may be used. In the

- 88 -

latter case
id(h)
T(h) = —m8 (4.5)
fypH
and it is T(h) which is controlled. When the step has been coﬁpleted,
the optimal step size, hpjo, = uh, to be attempted on the next step can
be estimated. This is the step which would exactly satisfy the local
error requirements, TOL. Assuming that the error changes slowly‘along
the integration range then u must be chosen such that
T(u«h) = TOL (4.6)
Clearly from (4.4) and (4.5)
T(uh) = uP*'T(h) (4.7)
and it follows that

TOL 1/(p+1)
u=2c [] (4.8)
T(h)

where ¢ is introduced as a safety factor, usually taken as ce[0.8,1.0]}.
Once p has been estimated from (4.8) then the following step control

policy is adopted:

a) If u < 0.8 the the step is rejected. The step to be attempted on

]

the re-calculation is hpgy = vh, with v = Max[0.1, u], to disallow very

large changes in the step size.

b) If 1 » u » 0.8 the solution produced by the (s,p) method is
accepted. However, it is normal practise to carry forward the solution
obtained from the (s,p+1) method and this is the policy adopted here.

The new step is, however, reduced by setting hpq, = uh.

c) If u > 1 then the step is accepted and again the p+ith order
solution is carried forward. The new step is set at hpey = vh, where v

is constrained by v = Min[10.0, u], again to disallow large changes in
. - 89 -

the step size.

This is a typical error control policy for explicit Runge-Kutta

methods.

4.2 Inverse embedding

This is a similar idea to the embedding technique, section 4.1, but is
valid for the BRK methods derived in chapter 2. An embedded pair
(s,p+1) and (s,p) are required as before. Suppose the implicit
equations are solved for the (s,p+1) method to produce y,, (the scalar
case is depicted in Figure 4.1), so that
]
E(Yn,¥n-1) = ¥n - Yn-1 —12§Ciki =0 (4.9)
The value of y, together with the corresponding k; values will in
general not satisfy the (s,p) equation, ie.
. s
E (Yn:¥Yn-1) = Yn - Yn-1 - ?E?i ki » 0 (4.10)
We could of course solve the (s,p) method equations to produce y;
giving
s
E*(yp ¥n-1) = ¥n - Yn-1 —,?gfi ki = 0 (4.11)
but this will require a great deal more function evaluations to produce
the k{ values which correspond to y; instead of y,. It will also mean

estimating az*/ayn. Alternatively for some vector y;_, we have

S
* * *
E (Yn.Yn—i) = V¥p - ¥n-1 - hEicj kj =0 (4.12)

1=1
Let
*
Yp-1 - ¥p-1 = &
and

- 90 -~

yrl—y“‘_'ﬂ
It is extremely easy to compute « but we really need B. From (4.11)

E*(yz»yl}—q) = E*(Yn - B’Yn-—l)

* BE*
= E (V¥n,V¥n-1) - —(¥n,¥n-1)B8 + HOT
avn '
= 0
Ignoring the higher order terms
3E]! .
B=|—1{ E (Yn,¥n-1) (4.13)
avVn
From (4.10) and (4.12)
*
« = E (Vg,¥p-1)
and
JET] !
B = |—1| « (4.14)
3vn

Thus B can be computed f