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ABSTRACT
A novel solution method based on Mono-implicit Runge-Kutta methods has 
been fully developed and analysed for the numerical solution of stiff 
systems of ordinary differential equations (ODE). These Backward 
Runge-Kutta (BRK) methods have very desirable stability properties 
which make them efficient for solving a certain class of ODE which are 
not solved adequately by current methods.

These stability properties arise from applying a numerical method to 
the standard test problem and analysing the resulting stability 
function. This technique, however, fails to show the full potential of 
a method. With this in mind a new graphical technique has been derived 
that examies the methods performance on the standard test case in much 
greater detail. This technique allows a detailed investigation of the 
characteristics required for a numerical integration of highly 
oscillatory problems.

Numerical ODE solvers are used extensively in engineering applications, 
where both stiff and non-stiff systems are encountered, hence a single 
code capable of integrating the two categories, undetected by the user, 
would be invaluable. The BRK methods, combined with explicit 
Runge-Kutta (ERK) methods, are incorporated into such a code. The code 
automatically determines which integrator can currently solve the 
problem most efficiently. A switch to the most efficient method is 
then made. Both methods are closely linked to ensure that overheads 
expended in the switching are minimal. Switching from ERK to BRK is 
performed by an existing stiffness detection scheme whereas switching 
from BRK to ERK requires a new numerical method to be devised. The 
new methods, called extended BRK (EBRK) methods, are based on the BRK 
methods but are chosen so as to possess stability properties akin to 
the ERK methods. To make the code more flexible the switching of order 
is also incorporated.

Numerical results from the type-insensitive code, SARK, indicate that 
it performs better than the most widely used non-stiff solver and is 
often more efficient than a specialized stiff solver.
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NOMENCLATURE

Arg(q) Argument of complex q

E(q) General stability function of a Runge-Kutta method

Ee (q) Stability function of ERK method

Eb (q) Stability function of BRK method

eps Smallest machine representable number such that l+eps>l

exp(a) exponentional function, ea

h Step size

1 »J Superscripts for iteration loops

ji Subscripts for loop counts

J Jacobian matrix of the system under consideration

M Approximation to the iteration matrix

N Dimension of ODE system

p Order of the method

q step size, h, multiplied by complex x of scalar test problem

Ri,j Fade" i,j approximation

Re(q) Real part of complex q

r Residual vector

S(x) Stiffness ratio at position x

s Number of stages of the method

t,x Independent variables

xn x-value at nth step

y Dependent variable

yn Numerical solution at position xn

y(xn ) Analytical solution at position xn

A Displacement vector

e Error vector



X Real or complex scalar

X^ General eigenvalues of Jacobian of system

9 General Angle

Eigenvector corresponding to X

|a| Modulus of complex a 

llall Norm of a
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Chapter 1 : INTRODUCTION

In this chapter the general problem to be solved will be defined and 

sufficient conditions for the existence of a unique solution stated. 

The general concept of stability and stiffness as applied to Ordinary 

Differential Equations (ODEs) will be introduced. An outline of some 

of the methods commonly used in the numerical solution of ODEs will be 

discussed and finally a brief overview of the remainder of this thesis 

will be presented.

1 . 1 The problem considered

This thesis is concerned with the numerical integration of the initial

value problem,

   =f 1 (x,y 1 ,...yN ) Yi(a) = r\i 
dx

(1.1) 
dyN
   = fN (x,y 1 , . . .yN ) yftU) = nN 
dx

x > a

ie. a system of first order ODEs. Such systems may arise naturally or 

from reducing a higher order equation to a system of first order 

equations. Many engineering processes can be expressed mathematically 

as ODEs, Bjurel et al.[1970], and hence the efficient and accurate 

numerical solution of such systems plays an important role in industry. 

By expressing f and y as vectors, (1.1) may be rewritten as

dy
  = f(x,y) (1.2) 
dx

x > a , y(a) = n

Before a numerical solution to (1.2) is obtained it is natural to 

determine conditions under which a unique solution does exist. For the



initial value problem (1.2) suppose that f(x,y) is continuous in a 

region D where

D = { (x,y): a < x < b, lly« < » } (1.3) 

then suppose there exists a finite Lipschitz constant, L, such that

Hf(x,y) - f(x,z)ll < Llly-zll (1.4)

for every pair of points (x,y) and (x,z) in D. Then there exists a 

unique function y(x) which satisfies (1.2), Henrici[1962] . Clearly 

these conditions are very demanding and can accordingly be weakened to 

allow a unique solution in some interval |x-a|. Assume that f(x,y) is 

continuous in some interval D where

D = { (x,y): |x-a| < «, lly-bll <P } (1.5) 

then suppose there exists a finite constant L such that

llf(x,y) - f(x,z)ll < Llly-zll (1.6) 

holds for every pair of points (x,y) and (x,z) in D and let

M = max Hf(x,y)ll (1.7) 
(x,y)eD

and

7 = min(«,0/M) (1.8)

then there exists a unique solution y(x) of (1.2) in the interval 

|x-a|<7. Repeated use of the above, over a sequence of intervals which 

together cover the desired integration range, allows a unique solution 

over the complete range to be proved.

In practice integration of (1.2) is performed by marching from x = a up 

to some finite b in discrete steps, thus solutions are generated at a = 

x0 < Xj < . . . < XM = b. Such methods are known as discrete variable 

methods. A general k-step class of such a method is given by,

h ) n=0(l)M-k (1.9)

given starting values
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yj. = Si(h) i=0(l)k-l

where Mh = b-a, h = xn+1 - xn here assumed constant and the «js are 

constant. If *f is independent of yn+k then the method is explicit 

otherwise it is implicit. Most of the common discrete variable methods 

are encompassed in (1.9), eg. selecting 

k = 1,

s i-i 
*f =

and « 1 = 1

(where the constants depend upon the particular method and are defined 

later) will produce an s-stage, one step (explicit) class of method 

known as Runge-Kutta methods. The simplest of these being the Euler 

method,

+ hk i

Generally a solution at ynn-i is produced by taking a sample of the 

function at discrete points between xn and xn+ t , producing a set of s 

k-values. A linear combination of these k-values are then added to the 

solution produced at xn .

The ability of a numerical method to generate a series of solution 

values at a set of node points is, however, no guarantee that the 

solution produced is a reasonable approximation to the true solution. 

The error produced by the method must be investigated. Global 

truncation error is defined by
*

en = V< xn) - Vn (1.11) 

where y(xn ) denotes the true, but usually unknown, solution at xn . 

Clearly as the step size of the numerical method is reduced the 

solution produced by it should approach the true solution ie.

- 3 -



Max n en+kll -» 0 as h  » 0 (1.12) 
o<n<M-k

A method which satisfies (1.12) is said to be convergent. From a 

numerical point of view it is clearly inappropriate to control (1.11) 

at each step, as the true solution is unknown. The quantity which is 

usually controlled is the local truncation error, Tn+k , of the method. 

This can be thought of as the error introduced by the formula at each 

step assuming that no errors have been previously created, ie. 

Tj = y(xn ) - Sj(h) j=0(l)k-l (1.13)

k 
Tn+k = E^y^n-Hi) ~ h*f (xn ,y(xn4.k ) , . . . ,y(xn ) ,h) n=0(l)M-k

=o

The question of 'how accurate is the numerical solution?' can, in part, 

be answered by considering the order of accuracy of the local 

truncation error. A method of order p is defined as having

Max HTn+k ll = 0(hp+1 ) (1.14) 
n=0(l)M-k

and a method of order at least 1 is said to be consistent. Clearly a 

'usable' numerical method must be consistent. Consistency, however, 

does not imply convergence, Hall and Watt [1976].

1.2 Stability

Unfortunately the convergence of a method only deals with the behaviour 

of the method as h tends to zero and in practice h must be non-zero. 

Clearly any (stability) constraints of a method will depend upon the 

problem being solved, thus some standard equation is required. The
i

equation usually considered is the one dimensional test equation,

y' = Xy y(0) = 1 (1.15) 

where X may be complex. By applying a Runge-Kutta method to (1.15) a 

stability function, E(q), is formed which will, in general, be a 

rational polynominal in q=hx. The absolute stability region of a

- 4 -



numerical method is defined to be a region in the complex plane for 

which E(q) is less than one in modulus. By ensuring that q remains in 

this stability region then propogated errors will decay as the solution 

proceeds. If instead of a single equation a linear system of N 

equations is considered, ie.

y' = Jy y(o) = A (i.ie)

where J is a constant NxN matrix, A is given and J has eigenvalues \± 

for i=l(l)N, then instead of q we must consider q^ = hX| for i = l(l)N. 

We must ensure that for all q^ such that Re(q^) is less than zero, q^ 

lies within the region of absolute stability.

When encountering problems for which Re(Xj), for some i, is large and 

negative, then clearly a finite stability region will restrict the step 

size of the method. When solving such problems the corresponding q^ 

must always be included in the stability region of the method. Thus 

the stability region must include some substantial portion of the 

left-hand half plane. If the stability region of a method includes the 

whole of the left-hand half plane then the method is said to be 

A-stable. A method whose stability region is exactly the left-hand 

half plane is said to be a precisely A-stable method.

No explicit k-step method can have this property and the highest 

attainable order of an A-stable implicit Linear Multistep method is 

two, Dalhquist[1963]. Clearly this stability property places a severe 

restriction on the numerical method and in particular Linear Multistep 

methods.

A less severe restriction is that of A(<x)-stability where <x is an angle 

in [0,ir/2], as shown in Figure 1.1

  5  



A-stability or A(<x)-stability examines the absolute stability region 

ie. the rate at which the growth of the true solution to (1.15) is 

modelled by the numerical method. By considering the rate at which the 

solution grows relative to the exact solution a relative stability 

region can also be defined. (Unfortunately the term relative stability 

region is used to mean something quite different in the context of 

linear multistep methods, Lambert[1973]). Wanner et al.[1978] refer to 

this region as the order star of the method. The absolute stability 

region and order star of the unique 1-stage 1st order Runge-Kutta 

method (Euler) are shown in Figure 1.2.

As Re(q)  * -« in (1.15) the ratio y(xn+1 )/y(xn ) -» 0, hence a numerical 

method that is to realistically model this ratio must also produce this

behaviour. By applying a Runge-Kutta method to (1.15) and forming the 

corresponding numerical ratio, Yn+i/Vn' tne L-stability of that method 

can be assessed. A method is said to be L-stable, in addition to being 

A-stable, if when applied to (1.15)

Limit      * 0 (1.17) 
Re(q)->-» yn

holds or L(a)-stable if the method is A(<x)-stable.

1.3 Stiffness

In many engineering applications the system of ODEs being integrated 

possesses both fast and slow transients which must be followed 

correctly. This phenomenon is known as stiffness and must be correctly 

modelled by the numerical method. The first formal definition of 

stiffness was given by Lambert[1973] . A linear system y 1 = Ay + o(x) 

is said to be stiff when

- 6 -



i) Re(\i) < 0 i=l(l)N and

ii) S(x) = Max iRe)! / Min (Re) | » 1 (1.18)

where X^ , i = l(l)N are the eigenvalues of the NxN matrix A. This 

definition can also be used for non-linear systems if the eigenvalues 

of af/ay are considered. The system will then be stiff in an interval 

I(x) if i) and ii) above are satisfied. The quantity S(x) defines the 

(local) stiffness ratio of the problem.

This definition is acceptable if it is not taken too literally. It
*

should only be used as a guide, as stiffness is more complicated than 

this and depends upon the solution method, the problem being solved and 

the local accuracy requirements. An improved definition of stiffness is 

that of Shampine[1975] , which states that a problem is stiff when the 

step length is restricted for reasons of stability. But clearly no 

numerical figures can be attributed to this definition and (1.18) is 

still useful as the formal definition.

1 .4 Numerical integrators

The general class of k-step integration method (1.9) incorporates most 

of- the commonly used methods with the Euler method being the simplest 

and most basic. This thesis although restricted to Runge-Kutta 

methods, will use other integrators for comparison purposes, and these 

are described below along with a review of Runge-Kutta methods.

1.4.1 Linear Multistep methods

A class of methods, based upon past information, are Linear Multistep

methods, these have the general form,

(1.19) 

- 7 -



If |3k = 0 («fc * 0) then the method is explicit otherwise it is 

implicit. When such a method is explicit then (1.19) can be solved 

directly otherwise some iterative scheme must be employed. One class 

of linear multistep methods commonly used for the numerical integration 

of non-stiff problems are Adams methods. These methods are derived by 

replacing the function in (1.2) by a polynomial and integrating this, 

Shampine and Gordon[1975].

The Adams methods incorporated in the NAG library have explicit 

predictors, chosen to maximize the stability region, and implicit 

Adams-Moulton methods for the corrector in a PECE implementation. The 

implicit method is solved by means of a simple functional iteration and 

the error estimation is performed by Milne's device. The NAG 

implementation incorporates methods of orders one to twelve.

The most commonly used methods for solving stiff systems are the 

Backward Differentiation Formulae (BDF) popularized by Gear[1971]. 

These methods have the general form

k
(1.20)

Although these are k-step methods, they only require one function 

evaluation per iteration at each step. The implicit equations are 

solved by a Quasi-Newton method. The BDF methods, orders one to five, 

are used in conjunction with starting values obtained by extrapolation 

using a divided difference table. The major handicap with BDF methods 

is that their stability properties deteriorate as the order is 

increased. When applied to (1.15), BDF methods of order greater than 

six are not A(0)-stable and hence they are of little value. Although 

the number of function evaluations required is low their overheads are

- 8 -



high. Craigie[1975] describes in detail the complexity of a modern

version of Gear's method.

1.4.2 Runge-Kutta methods

The general form of an s-stage Runge-Kutta method is

= Vn (1.21)

ki xn + hbi- vn 1-1(1)8

The constants ajj and c^ characterise the particular method and

(1.22)

The coefficients can be expressed in terms of a matrix system, called 

the Butcher matrix of the method. This is

's

1l

ls .
(1.23)

. ass or

where the sxs matrix A is strictly lower triangular for an explicit 

method, lower triangular for a semi-implicit (or semi-explicit) method 

and full for a fully implicit method.

Due to their simplicity, explicit methods have been very popular and 

high order methods have been derived. The minimum number of stages 

required to solve the resulting non-linear order constraint equations 

is shown in Table 1.1. A by the number of stages denotes that the 

minimum number of stages is unproven but methods with this number of 

stages have been derived.

As will be shown in section 2.2, no explicit Runge-Kutta method can

- 9 -



possess an infinite stability region and hence the step must be 

severely restricted when solving problems with fast transients. For 

this reason implicit Runge-Kutta (IRK) methods have become very 

attractive, as they can be A-stable for high orders. Ehle[1968] proved 

that an s-stage 2s order IRK method can be A-stable. However IRK 

methods suffer from a severe practical disadvantage. If an s-stage 

method is used to solve (1.2), then a system of sN implicit algebraic 

equations have to be solved at each step. By using the Newton 

iteration process this involves approximately s 3 N 3 multiplications for 

the LU factorization of the iteration matrix and s 2 N z multiplications 

for the back solvers. This is clearly expensive, expecially for high 

order methods.

An enormous improvement in computational efficiency can be achieved if 

semi-implicit methods are used, Alt[1972], Norsett[1974], 

Crouziex[1976] and Alexander[1977]. By using semi-implicit methods the 

process at each step involves the solution of s systems of N algebraic 

equations. In solving the algebraic equations an iteration matrix of 

the form

I-na^af/ay (1.24) 

must be evaluated, where the a^'s are the diagonal elements of the 

Butcher matrix. In a semi-implicit method 8f/3y will be calculated, 

and stored, and (1.24) evaluated for each different a^. But by 

selecting all the ajj values the same (1.24) need be evaluated only 

once, ie. the method has only one s-fold zero of the stability 

function. Such methods are known as Diagonally Implicit Runge-Kutta 

methods (DIRK), Alexander[1977]. However, a semi-implicit method can 

have at most order s+1.

- 10 -



Cash[1975] derived a type of Runge-Kutta method that is a significant 

departure from traditional methods. These methods are implicit in the 

single unknown yn+ t and not in the k values like IRK methods. The 

general form of the s-stage method is ,

s
vn+t = vn + hECikj 

i=i
r 

^ = f(xn 4- hbj, yn * hEa^k^ i = l(l)r (1.25)
j = i

s
ki = f < xn+i + nbi> vn+i +

By being implicit in only yn+1 only one set of algebraic equations 

needs to be solved at each step. These Mono-Implicit Runge-Kutta 

(MIRK) methods, require only one LU factorization and s back 

substitutions, Singhal[1980] . Two important class of methods are 

included in MIRK methods, viz. explict Runge-Kutta, r=s, and Backward 

Runge-Kutta, r=0. These Backward Runge-Kutta (BRK) methods will be 

analysed in detail in this thesis.

1.5 Selection of an appropriate numerical method

When the numerical solution of (1.2) is required the user has a vast 

bank of methods to select from. These range from low order to high 

order, explicit or implicit methods of either single-step or multistep 

or of one of the more unusual methods ie. Rosenbrock, Block implicit 

Runge-Kutta, etc. The method chosen must be capable of integrating the 

problem efficiently ie. accurately and within a reasonable CPU time.

The problem of selecting an integrator for the whole integration range 

is two-fold, firstly if the incorrect method is used the integration 

will be inefficient. Secondly the characteristics of the problem may, 

and often do, change during the integration range.

- 11 -



Clearly no single numerical scheme (where scheme implies the complete 

solution algorithm, ie. numerical integrator and if relevant the linear 

equation solver) can possess the correct characteristics to enable it 

to efficiently solve non-stiff and stiff ODEs.

A simple solution, is to always employ an implicit method with the 

implicit equations being solved by a Newton type process. This will, 

however, be inefficient for the non-stiff problems.

A better solution is to use a numerical scheme (integrator plus linear 

equation solver) that monitors the characteristics of the problem and 

can automatically detect changes in these characteristics and switch to 

a scheme that is most appropriate for the problem at that particular 

time. Codes that can automatically do this are often referred to as 

type-insensitive.

There are two basic switching strategies;

i) incorporate two integrators in a code and switch between the two or 

ii) employ only one basic implicit integrator and switch the iteration 

process for solving the implicit equations.

Both methods have been investigated and production codes developed. 

Petzold[1983] produced a code that switched between Adams and BDF 

methods. As stated earlier the main drawback with BDF methods is their 

order limitation for practical purposes, they can not be greater than 

5. The overheads in linear multistep methods are high and so are the 

overheads in switching.

The code of Norsett and Thomsen[1986] keeps the same numerical

- 12 -



integrator, an implicit Runge-Kutta method, and switches the implicit 

equation solver. For the non-stiff case simple functional iteration is 

used whereas Quasi-Newton is employed for the stiff case. This has the 

disadvantage that some iterative scheme must always be employed, which 

is expensive. The code is also restricted to a fixed order.

1-6 Overview of the thesis

This thesis is concerned with the development of numerical schemes for 

the solution of initial value ODEs. A new graphical technique for 

assessing the performance of potential methods is described in chapter 

2, with particular attention to highly oscillatory problems.

Chapter 3 develops the theory behind Backward Runge-Kutta methods and 

in particular their close coupling with explicit Runge-Kutta methods. 

It also shows that they have far superior damping properties than the 

most widely used stiff solvers. Numerical examples are presented, 

without the hinderance of error control, that shows the potential of 

the methods.

In chapter 4 the error control policies applicable to BRK methods are 

explored and it is shown why the normal embedding method, commonly used 

for explicit methods, cannot be employed in the BRK case. The error 

control policy adopted is discussed and incorporated into the code and 

compared with the BDF code implementation of the NAG library.

Most of the numerical integrators incorporated in codes suffer from 

some inefficiencies when solving a certain type of problem. It is well 

known that BDF methods are extremely inefficient for solving problems 

which possess highly oscillatory solutions. Chapter 5 discusses the

- 13 -



class of problem for which BRK methods are inefficient.

Chapter 6 develops the strategies for switching between explicit and 

Backward Runge-Kutta methods. Thus a type-insensitive Switching 

Algorithm for Runge-Kutta methods (SARK) is devised. The switching of 

order is also discussed and implemented in the final code. Numerical 

examples are given that highlight the necessity for a code of this 

type.

When developing any numerical code for the solution of DDEs it is 

impossible to test the code on all systems of DDEs and hence a test 

battery is required. The test battery that is commonly used is the 

DETEST set of Enright and Pryce[1983]. The code developed in chapter 

6, SARK, is compared with the BDF code over the stiff and non-stiff 

problems of the set. As BDF methods are not designed to integrate 

non-stiff systems the Adams methods, used in the NAG library, are also 

tested and compared with SARK over the non-stiff set.

- 14 -



Order 

Stages

Equations 
to solve

1234567 8 9 10 11

1234 6 7 9 11 16* 17* ———

1 2 4 8 17 37 85 200 486 1205 3047

Table 1.1 : Minimum number of stages for each order

IMAGINARY

Figure 1.1 : A(cc) -stability region
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IMAGINARY

Figure 1.2a : Absolute stability region of Euler's method

11AQI MART

R6AU <q

Figure 1.2b : Relative stability region of Euler's method
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Chapter 2 : PREDICTING PERFORMANCE

This chapter addresses the problem of assessing the potential 

performance of a numerical method, over a wide range of problems. To 

fully assess the performance of any method for solving initial value 

problems, it must be fully implemented and applied to a large 

collection of test problems. To compare a number of methods in this 

way is clearly a lengthy process. Furthermore, minor changes in the 

implementation strategy can lead to dramatic improvements or to severe 

deterioration, making comparisons difficult to interpret. Consequently 

a quick to use assessment of potential performance, which is 

independent of algorithmic details, is extremely valuable. This can be 

used as a sieve to make an initial selection of promising methods which 

can then be implemented and fully tested on a batch of test problems. 

A new graphical technique is devised that allows this by comparing the 

numerical approximation with the exponential solution of the standard 

test problem in much greater detail than existing techniques. This 

method is extremely quick and easy to perform.

If the ODE being integrated is characterised by imaginary eigenvalues, 

often giving rise to a highly oscillatory component, then the absence 

of A-stability in a numerical method has prompted many authors to 

dismiss it as being inadequate. This new technique introduced gives 

more insight into this case and as a result this assumption is shown to 

be invalid.

2.1 Extension of regions of absolute stability

The simple idea of a region of absolute stability has been extensively 

used for assessing methods. The stability region gives some insight 

into the stability characteristics of a numerical method when solving
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systems of DDEs. Integrating with q (=hx) within the stable region is, 

however, no guarantee that the solution produced will model 

realistically the solution of the system. Indeed if Re(q) is greater 

than zero, it could be disasterous to integrate with q within this 

region.

Recall the standard test problem,

dy
  = Xy y(0)=l (2.1)
dx

which has the analytical solution

y(x) = exp(xx) (2.2) 

If the analytical solution is examined at a series of node points xn = 

nh for n = 0, 1, . . . then

- = exp(q) (2.3)
y(xn )

When the numerical method is applied to (2.1) with constant step h, the 

corresponding numerical ratio is

= E(q) (2.4)

This ratio is the stability function of the method and is a numerical 

approximation to (2.3). The region of absolute stability of the method 

is defined as being the region(s) of the complex plane where propagated 

errors decay as the solution proceeds. One way to identify the 

stability region of a method is to find its boundary. It can easily be 

verified that the boundary is generated from the stability function by 

equating its modulus to unity, ie. |E(q)|=l. One such technique for 

locating this boundary is the boundary locus method Lambert[1973].

Generally E(q) * exp(q), but it is hoped that E(q) « exp(q) . The

absolute stability region gives only limited indication as to what
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extent the numerical ratio is a good approximation to the analytical 

one.

By expressing

q * a + ib (2.5) 

in (2.3), the analytical ratio can be written as

  = exp(a+ib) = exp(a)x{cos(b) + isin(b)} (2.6)
Y(xn )

where ea is a measure of the damping of the component and b, the 

argument of q, is its frequency. If a is less than zero the solution 

will decay to zero whereas if a is greater than zero the solution grows 

in amplitude. The stability function, E(q) should approximate both the 

damping and the frequency of the component to produce realistic 

results. It follows that we require the approximate relation between 

the complex quantities ie.

E(q) « exp(a+ib) (2.7) 

to be good in terms of both modulus and argument. This will ensure 

that both damping and frequency are realistic. Therefore it is 

necessary to consider two aspects of the approximation (2.7), viz. the 

damping and the frequency.

Analysis of the damping characteristics of a method can be performed by 

comparing the modulus of the stability function with the modulus of the 

analytical ratio (2.6). Hence we require,

|E(q)| « lexp(a-i-ib) | = exp(a) (2.8) 

By expressing E(q) as Rexp(ie)

|E(q)| = R (2.9) 

Therefore from (2.8) and (2.9)

R * exp(a) (2.10)
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is required. Thus numerical contours expressing the damping 

characteristics of the method can be produced by plotting q such that

E(q) = R (2.11) 

for various values of R. These can then be compared with the 

analytical contours for which exp(a) = R. The latter, from (2.8) are 

straight lines logarithmically spaced perpendicular to the real axis.

The ability of a numerical method to model realistically the frequency 

of a component can be determined by comparing arg(E(q)) with 

arg(exp(q)). Using (2.5) and expressing E(q) as Rexp(ie) then,

arg(exp(q)) = arg(exp(a+ib)) = b (2.12) 

and

arg(E(q)) = arg(Rexp(ie)) = 0 (2.13) 

Therefore the frequency of the numerical solution is 9 which should be 

a satisfactory approximation to b. Hence numerical contours can be 

produced and compared with the analytical solution in which the 

contours are linearly spaced perpendicular to the imaginary axis.

For all Runge-Kutta methods E(q) is a rational polynominal of the form,

E(q) = N(q) / D(q) (2.14) 

where N(q) and D(q) are polynomials in q and D(q) = 1 for an explicit 

method. Substituting Rexp(ie) for E(q) in (2.14) yields an expression 

of the form

CN(q) - Rexp(i0)D(q)] = 0 (2.15) 

This polynorainal equation with complex coefficients can now be solved 

for q to produce the contours. By taking a series of R values eg. R = 

.25, .5, l., 2., 3. and for each value of R varying 0 in the range 0 < 

0 < 2ir eg. 0 = 27TJ/100 for j =1(1)100 a series of contours of equal R 

ie. equal |E(q)| can be generated. Similarly if 0 is fixed at a number
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of convenient levels eg. 9 = -3*74, -w/2, -w/4, 0, v/4, ir/2, 3ir/4 and 

for each fixed e solving (2.15) for (complex) q with R = O.lj for j = 

1(1)100, contours of equal arg(E(q)) can be plotted. In each case a 

polynomial in q must be solved which has complex coefficients. The NAG 

subroutine C02ADF can be used for this. This technique can be thought 

of as a logical extension of the boundary locus method.

To illustrate this contouring technique a collection of 4th order 

Runge-Kutta methods, whose stability functions are Pads' approximations 

are examined. The five approximations considered are: 

R4>0 = 1 + q + q 2 /2 + q 3 /6 + q*/24 

R 3>1 = (1 + 3q/4 + q z /4 -K[ 3 /24)/(l - q/4) 

R2|2 = (1 + q/2 + q z /12)/(l - q/2 + q z /12) (2.16)

~ 3q/4 + q z /4 - q 3 /24)

These approximations, with the exception of R 2 2 , stem from infinite 

families of methods typified by; the classical 4-stage 4th order 

explicit method (R 4 0 ), Lobatto IIIc method (R 3 t ), Chipmann[1971] and

a 4-stage 4th order backward method (R 0 .). The R 7 7 approximation is** » *• t ^

defined uniquely from the 2-stage 4th order fully implicit method which 

has Butcher matrix shown in Table 2.1.

The only 4th order Fade" approximation not in common use as a 

Runge-Kutta method is the R 3 j. This approximation can only be derived 

from a fully implicit method and it possesses a finite stability region 

and is hence of no practical value.

The modulus and argument plots for these five Pad£ approximations are 

shown in Figures 2.1 to 2.5. As all the plots are symmetric about the
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real axis, section 3.3, only the positive imaginary axis is displayed. 

The contours for the modulus plots are presented at five different 

levels of R, viz. R = 1/4, 1/2, 1.0, 2.0 and 3.0, each contour is 

represented by a different symbol on the diagram. The argument plots 

are shown for Qe[n/2,2Tr] in intervals of ir/2, again each contour level 

is denoted by a different symbol. Both sets of analytical contours are 

superimposed on to the corresponding plot and their value denoted by 

the symbol located at one end of the contour. The normal region of 

absolute stability can be observed by considering the contour R = 1 of 

the modulus plot.

One other desirable stability property required by a numerical method 

when solving stiff systems is L-stability (chapter 1). The modulus 

plot has the added advantage of determining whether this property is 

present in the method. To be L-stable the contours of Re(q) at -« must 

be zero, hence the value of the contours should decrease as Re(q) tends 

to -co.

Modulus and argument plots for the Pad£ R 4 0 approximation are shown in 

Figure 2.1. The modulus plot clearly indicates that the method is more 

successful at producing the correct damping (amplification) for Re(q) 

greater than zero than for Re(q) less than zero. This is due to the 

zeros of the stability function being in the left-hand half plane with 

one close to each of the axes. As q approaches any of the zeros the 

approximation becomes highly inaccurate. From the argument plot it is
*

clear that the zero close to the imaginary axis will distort the 

frequency in this region. Also computing with q at 4i will result in 

the solution being underdamped, whereas with q at 2.5i, within the 

absolute stability region, results in an overdamped solution.
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Therefore the absurdity of the common assumption that computing with q 

within the absolute stability region guarantees a realistic solution is 

immediately clear from these plots.

The two plots generated by the R 3>1 implicit method are shown in Figure 

2.2. As this is a rational approximation there are now three zeros and 

a pole, the pole being on the positive real axis. Again this 

approximation is more successful at producing the correct damping for 

Re(q) greater than zero than for Re(q) less than zero, providing that 

Re(q) is kept away from the pole. The pole and zeros again produce 

distortions in the two sets of contours, however as they are further 

away from the imaginary axis the method is more successful for problems 

with eigenvalues close to this axis. The argument plot highlights the 

inability of the method to correctly represent the frequency as q 

departs from the origin.

By considering only the modulus plot of the R 2 2 approximation, Figure 

2.3, it appears that the method is almost ideal for problems with 

purely imaginary eigenvalues. The analytical contour is followed 

exactly on this axis. In other words the corresponding method is 

precisely A-stable, however, the contours in the negative half-plane 

indicate that it is not L-stable. The argument plot reveals that even 

though the poles and zeros are well away from the imaginary axis, the 

frequency will only be modelled realistically for small q. This 

demonstrates that precise A-stability is not a particularly valuable 

attribute for solving oscillatory problems.

The next two approximations, R 1>3 and R 0(4. are mirror images about the 

imaginary axis of R 3>1 and R 4(0 respectively with the zeros replaced by
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the poles and vice versa. These are shown in Figures 2.4 and 2.5 

respectively. From the modulus plot it is apparent that the R t >3 

approximation is A-stable and that they are both L-stable. Both 

approximations are more successful at producing the correct damping for 

the Re(q) less than zero than for Re(q) greater than zero, providing 

that the zero of R t ^ 3 at q = - 4 is avoided. The argument plots show 

that being able to produce the correct damping for Re(q) less than zero 

is not sufficient to produce realistic results. The step size of both 

must be restricted to faithfully follow the frequency of the component.

2.2 Application to highly oscillatory problems

The ability of this contouring technique to predict the performance of 

numerical methods can be demonstrated by considering a class of problem 

in which the dominant eigenvalues of the Jacobian matrix, 3f/3y, are of 

the general form a ± ib, where jb/a| is much greater than one. Such 

problems frequently arise in engineering situations and will severely 

tax any numerical method. This type of problem is often described as 

highly oscillatory due to dominant eigenvalues of linear problems 

giving rise to a solution of the form

exp(ax)sin(bx + c) (2.17) 

c constant. This leads to the component having a frequency of b/2ir Hz. 

Irrespective of whether the problem is linear, the stability 

characteristics of the integrator are clearly of importance. It has 

long been understood, Prothero and Robinson[1974], Jeltsh[1978], 

Singhal[1980], Gear[1981], that A-stable methods must be employed for 

such problems.

If only error propagation is considered, then A-stability appears 

desirable if not essential. But the ability to produce the correct
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damping and frequency is also of great importance. It is of no value 

producing stable results that are physically unrealistic.

The modulus and argument plots clearly show that precisely A-stable 

methods will need to restrict the step size to follow any high 

frequency component, as indeed will all the methods. None of the 4th 

order methods examined will allow a significantly larger step to be 

used than another. Therefore the method that is "cheapest" 

computationally must be employed, which is the explicit method. Lack 

of A-stability will not hinder the method when solving problems with 

imaginary eigenvalues.

These predictions can be analysed further by considering a variety of

Runge-Kutta methods applied to the highly oscillatory problems. Three

types of Runge-Kutta method, derived from the same coefficients, are

considered. These are outlined below:

(i) Explicit Runge-Kutta (ERK)

The general form of an s-stage ERK method is

kj = f(xn + hbj, yn + hla-jiki) j = l(l)s (2.18)
i = i

and their stability functions are of the form

s
Ee (q) = 1 + E6jqJ (2.19) 

j = 1

where the value of 6 j , j = l(l)s depends upon the chosen method and in 

particuilar, 6j = 1/j! for any s-stage s order method, ie. s is less 

than five. Clearly

Limit |Ee (q) | = « (2.20) 
Re(q) -> -«
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and hence no ERK method can be A-stable. 

(ii) Backward Runge-Kutta (BRK) 

The general form of an s-stage BRK method is,

s
= Vn "I"

j = i
j- 1

kj = f(xn+1 - hbj, yn+1 - hEa-jiki) j=l(l)s (2.21)
i = i

Thus BRK methods can be considered as ERK methods integrating from xn+i 

to xn with a step of -h, ie. Backward. Therefore any coefficients from

a ERK method can be used to form the corresponding Backward method.
% 

Their stability functions, as derived in section 3.1, are of the form,

1 1
Eb (Q) =     i      =      (2- 22 )

(-q)J E(-q)

where the value of 6 j , j = 1(1 )s are those of the corresponding ERK 

method. A-S table BRK methods of order up to two, are known, with 

higher order methods being A(<x)-stable with <x close to 90". Typical <x 

values attainable are given in Table 2.2, along with the corresponding 

<x values for the well known BDF methods. 

(iii) Mixed Runge-Kutta (MRK)

These are derived by alternately using ERK and BRK methods. First the 

ERK method is applied with step h/2 followed by the corresponding BRK 

method with the same step. The order of the resulting method is 

usually the same as the main ERK method but can be higher, (the 

explicit method which generates the mixed method will be referred to as 

the main method). For example coupling 1st order Euler with its 

corresponding BRK method, Backward Euler, gives rise to the precisely 

A-stable 2nd order Trapezoidal rule.

The stability function of a-Runge-Kutta method is generated by applying
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the method to the standard test problem, (2.1), with constant step h. 

Thus for MRK method, this is

Vn+K = Ee (q/2)yn (2.23) 

for the first half step using the ERK method and for the second half 

step using the corresponding BRK method,

yn+1 = Eb (q/2)ynH.fc (2.24)

Hence merging (2.23) and (2.24) and using the result of (2.22)

= Ee(q/2)Eb (q/2) 

E(q/2)
(2.25)

Ee (-q/2) 

Thus the stability function of a MRK method has the form

E6j(-q/2)J

For a MRK method the imaginary axis always forms part of the boundary 

of the region of absolute stability. This can be shown by considering 

q = ib in (2.26). Hence

s
1 -i- £6j(ib/2)J 

1 + E6j(-ib/2)J

Si s 2

S t S 2
E« z1 (-l)J(-b/2)J * 1E6
j=2 J j=l

(2.27,
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where

{ s/2 for s even 
(s-l)/2 for s odd

, (s-2)/2 for s even s • = f (3-2

2 I (s-l)/2 for s odd 

Clearly as the numerator and denominator are a conjugate pair their 

moduli are the same, ie.

|Ee (ib/2)|
|Em (ib)| = ———————— = 1 (2.28) 

|Ee (-ib/2)|

and hence the MRK method is stable along the entire imaginary axis. 

This does not mean, however, that all MRK methods are precisely 

A-stable, the following theorem demonstrates this.

Theorem 2.1 : A MRK method is precisely A-stable 4=» the zeros of the 

stability function of the main ERK method are all in the left-hand half 

plane.

Proof : Let the zeros of the stability function of the ERK method be 

q ,• , j = l(l)s. Where Re(qj) is less than zero for all j, ie. all zeros 

are in the left-hand half plane. Then, as qj for all j are roots of 

(2.19)

(qi-q)(q 2 -q). - .(qs-q)
Ee (q) = ——————————————————— (2.29)

qiq 2 . • -qs

From (2.25), the stability function of the resulting mixed method is

Ee (q/2)

Ee (-q/2)

(2q t -q)(2q 2 -q). . .(2qs-q)
= —————————————————————— (2.30) 

(2q t +q)(2q 2 +q). . .(2qs+q)

which has zeros at q = 2qj for j=l(l)s which, are also in the left-hand

half plane. There are poles at q = -2qj for j = l(l)s which are all in
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the right-hand half plane. If follows from the maximum modulus theorem 

that maximum of |Em (q)| in the left-hand half plane occurs on the 

boundary of the region ie. on the imaginary axis. However, from 

(2.28), the stability function equals unity on this axis and hence,

|Em (q)| < 1 (2.31) 

for Re(q) less than zero, ie. it is precisely A-stable if all the zeros 

of the stability function of the main ERK method are in the left-hand 

half plane.

Now assume that there exists a precisely A-stable MRK for which the 

main ERK has a zero in the right-hand half plane, at qp. This implies, 

from (2.22), that the corresponding BRK method has a pole at ~qp » ie. 

in the left-hand half plane, hence

Limit |E(q)| = 0 and Limit l/|Ee (-q)| = « (2.32)•* -qp

thus

Ee (q/2)
Limit Em (q) = Limit —————— = » (2.33) 

q -> -2qp q •» -2qp Ee (-q/2)

Thus a mixed method can only be precisely A-stable if all the zeros of 

the main ERK method satisfy Re(q-j) less than zero for all j = l(l)s.

All s-stage s order ERK methods give rise to precisely A-stable MRK 

methods. The location of the zeros for these ERK methods are given in 

Table 2.3. To highlight the fact that not all ERK methods produce 

precisely A-stable MRK methods the 6-stage 5th order method of 

Fehlberg, in MRK mode is shown in Figure 2.6, with the stability region 

shaded. The zeros of the main ERK method are given in Table 2.4 and 

are clearly not all in the left-hand half plane resulting in a MRK 

method which is not precisely A-stable.
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A set of Runge-Kutta methods can thus be implemented in three separate 

modes viz. ERK, BRK and MRK with each possessing very different 

characteristics.

The highly oscillatory case is under consideration. This is 

characterised by dominant eigenvalues which are essentially imaginary, 

hence the modulus and argument plots will be restricted to the 

imaginary axis. On this axis jexp(q)| = 1 and arg(exp(q)) has a 

saw-tooth profile of period 2ir.

Figure 2.7 shows these new modulus and argument plots for Euler (ERK), 

Backward Euler (BRK) and the Trapezoidal rule (MRK). The latter being 

precisely A-stable produces the correct damping for all imaginary q. 

The ERK, on the other hand, underdamps the component and the BRK 

overdamps as q departs from the origin. The arg(exp(q)) appears on the 

argument plot as the saw-tooth profile. Clearly the ability of the MRK 

to reproduce the correct damping is offset by its inability to 

correctly predict the frequency for large imaginary q. Clearly 

arg(E(q)) is the same for both ERK and BRK modes, and as shown their 

ability to accurately represent the frequency is limited to small q 

values.

Modulus and argument plots for methods based on 3rd order ERK methods 

are shown in Figure 2.8. It is readily apparent that as the order 

increases the range of q for which the correct damping and frequency 

can be reproduced also increases. The argument plot clearly shows that 

the MRK method can correctly follow the frequency for twice the value 

of that allowed by the ERK or BRK methods. This indicates that the MRK 

method can be used with twice the step size of that allowed for by the
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other modes. It must be remembered, however, that the MRK method 

requires, at best, twice as many function evaluations per step as the 

corresponding ERK method, (and may be more if repeated iterations are 

required to solve the implicit equations).

The ability to extend the range of q for which the correct 

characteristics are produced when the order is increased, can be 

illustrated by considering the 5th order 6-stage method of Fehlberg and 

the 8th order 12-stage method of Verner[1978], Figures 2.9 and 2.10 

respectively. As q increases along the imaginary axis the ERK methods 

eventually underdamp the solution, modulus plots. Before they do this 

however, they overdamp for a small range of q. This is due to zeros of 

the stability function distorting the contours in these regions. 

Similarly the Backward methods underdamp in the region of the poles 

then eventually overdamp. It is often the presence of zeros or poles, 

near or on the imaginary axis, which forces a restriction in the step 

size when following the frequency. Methods which do not have zeros or 

poles near the imaginary axis do better but even they must be used with 

restricted q to follow the frequency. Thus to correctly follow the 

component a small step must be employed, which suggests that the 

cheapest methods, ie. explicit methods, will be the most efficient.

2.3 Numerical results

To verify these predictions the 6-stage 5th order Fehlberg method, 

Figure 2.9, was implemented in ERK, BRK and MRK modes, to integrate the 

following system of ODEs,

dx
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dy 2 
—— 
dx

dx

xe[0,10]

y*

—— = -10001y 3 - lOOOOy, 
dx

with initial conditions

y(0) = [0,6,0,-50001]T 

The component of interest, y t , has the analytical solution,

y t (x) = sin(x) + O.OSsin(lOOx) (2.34) 

Hence the solution has a high frequency component, about 16Hz, 

superimposed upon a pure sine wave, Figure 2.11

A large fixed step was used for all modes, the step size of the MRK 

method being twice that of the others to compensate for the double step 

that it must perform, ie. it performs two steps of h/2. After only a 

few steps the explicit method produced spurious results. In contrast 

the BRK method totally damps out the high frequency and produced the 

pure sine wave solution, Figure 2.12. The MRK method, however, 

recognized the presence of the high frequency, Figure 2.13, and 

obtained the correct amplitude, but was unable to represent the high 

frequency correctly. As a result the solution produced by the MRK 

method is no better, in terms of accuracy than that produced by the BRK 

method. Table 2.5 summarises these results. The maximum global error 

of the first component is measured as the maximum relative difference 

between the analytical solution, (2.34), and the numerical one 

throughout the integration range. All CPU times are calculated 

relative to the time taken for the ERK method.
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When the step is greatly reduced, all methods can follow the solution 

accurately. The explicit method being clearly the most efficient, 

Table 2.6.

Hence to follow faithfully the high frequency component an explicit 

method is the most efficient. It may, however, be desirable to damp 

out the high frequency artificially, if it is of no interest. This may 

often be the case in engineering applications. If so the most suitable 

method would be the BRK.

This desirable ability to damp out the high frequency oscillation 

artificially must, however, be used with caution. Consider the 

following system of DDEs,

dt

______ _ yZ _ y

dt
te[0,500] (p2.2)

—— = 0.5y4 
dt

t - 0.5y 3 
dt

with initial conditions

y(0) = [1,0,1,0]T

This is a non-linear problem arising from the study of stellar orbits, 

Scheid[1983] . The first component represents the radial displacement 

of the orbit of the star from a reference circular orbit and y 3 the 

deviation of the star's orbit from the galatic plane. Astronomers 

solving p2.2 are interested in two energy levels, viz.
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i) E t (t) = (yf + y§)/2

ii) E 2 (t) = (yl * y*)/8

Problem p2.2 solved by a variable step implementation of the 12-stage 

8th order method of Verner[1978], with a small initial step, l.e-5, and 

tight error tolerance produces the solution, for E 2 (t), shown in Figure 

2.14, (details of the variable step algorithm employed are given in 

chapter 4). This agrees with the solution produced in Scheid[1983], 

which is characterised by a high frequency component driving a low 

frequency oscillation.

If the high frequency is of no interest then, by using a large initial 

step, it can be damped out artificially. The effect of using a large 

initial step, of 100, is shown in Figure 2.15. Clearly, as expected, 

the high frequency is damped out, but as this drives the lower 

frequency it too disappears. The oscillations near the end of the 

integration are caused by the algorithm reducing the step size to 

arrive exactly at the end point and in doing so detecting the 

oscillations.

2.4 Conclusions

In general a successful integrator of classically stiff problems should 

have three characteristics. Firstly they should have no poles or zeros 

near the negative real axis. Furthermore they must have

arg(E(q)) = arg(exp(q)) = 0 (2.35) 

for q real and negative and

|E(q)| * |exp(q)| (2.36) 

(in the absolute sense), for Re(q) less than zero.
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For the highly oscillatory case it has been shown that

|E(q)| = |exp(q)| = 1 (2.37)

can be achieved on the whole of the imaginary plane, but in none of the

cases considered has

arg(E(q)) = arg(exp(q)) (2.38)

been achieved.

A successful integrator will have no poles or zeros close to the 

imaginary axis. When integrating these types of problems (highly 

oscillatory) neither A-stability or precise A-stability is necessary. 

On balance explicit methods will be most efficient for these problems.
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1/2 + V3/6 

1/2 - ^3/6

1/4 1/4 + V3/6 

1/4 - V3/6 1/4

1/2 1/2

Table 2.1 : Butcher matrix of 2-stage 4th order 
Runge-Kutta method

Order

BRK
BDF

1

90.0'

90.0*

23456

90.0° 88.2' 83.9' 79.1° 74.3°

90.0° 88.0° 73.0' 51.0' 18.0°

Table 2.2 : Comparison of A(oc)-stability region for BRK 
and BDF.

Order
Position 
of zeros

1 -1.0

2 -0.5 ± 0.5i

3 -0.1867309 ± 0.4807739i
-0.6265383

4 -0.0426266 ± 0.3946330i
-0.4573733 ± 0.2351005i

Table 2.3 : Location of zeros of s-stage s order ERK 
methods
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Order
Position 
of zeros

-0.4243994 
0.02526698 ± 0.2966870i
-0.2714430 ± 0.28252281
-0.08324843

Table 2.4 : Location of zeros of 6-stage 5th order ERK

Mode

ERK

BRK

MRK

Table 2.5

Mode

ERK

BRK

MRK

Table 2.6

method

Step Max. Global Relative 
size error y t CPU time

0.1 8.00 e287 1.00

0.1 4.99 e-2 1.87

0.2 9.58 e-2 1.60

: Comparison of the 5th order method of 
Fehlberg in different modes (large step)

Step Max. Global Relative 
size error Y! CPU time

0.01 4.04 e-2 1.00

0.01 2.49 e-2 2.10

0.02 1.92 e-2 1.42

: Comparison of the 5th order method of
Fehlberg in different modes (small step)
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Figure 2.6 : Absolute stability region of Fehlberg's 5th order method
in MRK mode.
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Figure 2.7a : Modulus plot of Euler based methods

Figure 2.7b : Argument plot of Euler based methods
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Figure 2.11 : Analytical solution of y^x) for problem p2.1
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Figure 2.12 : Solution of y t for p2.1 by BRK method
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Figure 2.13 : Solution of y l for p2.1 by MRK method
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Figure 2.14 : Energy level E 2 (t) for p2.2, small initial step

Figure 2.15 : Energy level E 2 (t) for problem p2.2, large initial step

- 50 -



Chapter 3 : BACKWARD RUNGE-KUTTA METHODS

This chapter discusses the basic characteristics of Backward 

Runge-Kutta methods for the numerical integration of stiff systems of 

DDEs. In particular the superior damping properties of BRK methods 

over linear multistep methods will be discussed. The close coupling of 

BRK methods with ERK methods will be emphasized and further absolute 

stability regions together with the new modulus and argument plots 

presented.

The implementation of fixed step BRK methods into a computer code is 

discussed and numerical results presented for a wide range of problems. 

These results show the enormous potential of the method for solving 

many stiff systems.

3. 1 Derivation of Backward Runge-Kutta methods

By considering the MIRK methods of Cash[1975], (1.23), and setting r = 

0 then an s-stage class of MIRK method given by,

s
h 
i=i

i- 1 (3.1)
k-[ = f(xn+1 - hbif yn+1 - h

j = i

is generated. This formula can be considered as an explicit 

Runge-Kutta method with step size -h moving backwards from yn+1 to yn . 

Clearly any coefficients from an ERK method can be used to form the 

corresponding BRK method. For example consider the 1-stage 1st order 

Euler method,

+ hk i
(3.2) 

ki = f(xn ,yn )

The corresponding BRK is constructed by integrating backwards ie.

replacing xn by xn+1 and h by -h, in (3.2). This leads to the
- 51 -



following method,

+ hk ' (3.3) 

kj = f(xn+1 ,yn+1 )

which is the 1-stage 1st order implicit method, Backward Euler

Expressing (3.2) as a Butcher matrix, leads to 

0 0 b A
(3.4)

II I cT

From the Butcher matrix of an ERK method the Butcher matrix of the 

corresponding BRK method can be derived by applying the following 

transformation,

u-b | C - A
———|————— (3.5)

where C is a sxs matrix with all rows comprising CT and u is the 

s-component vector (1, . . . , 1)^. Applying this transformation to 

(3.4) yields,

(3.6)
I 1

the Butcher matrix of Backward Euler. Thus BRK methods are fully 

implicit methods but implemented as MIRK methods, ie. implicit in yn+1 

only.

3.2 Order of BRK methods

When a BRK method is formed from an ERK method the coefficients remain 

the same and hence the same order constraint equations must be upheld. 

Thus the order of a BRK method is the same as that of the corresponding 

ERK method.
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3.3 Absolute Stability regions of BRK methods 

Consider the general 3-stage BRK method,

Vn+i = Vn + h tc 1k 1 + c 2k 2 + c 3k 3 ] (3.7) 

where the k values are computed as

ki = f ( xn+i 'Vn-i-i )

k 2 = f(xn+1 - hb z , yn+l - ha 21 k t ) (3.8)

k 3 = f(xn+! - hb 3 , yn+1 - ha 3t k t - ha 32k 2 ) 

applied to the standard test problem, (2.1) with constant step h,

(3<9) 

- ha 32k z )

Substituting (3.9) into (3.7) to advance the solution to the next node 

point, and setting q = Xh, yields

Yn+i * Yn + Yn-nqOi ~ <I6 z * Q2 ^3] (3.10) 

where

6 t = ci + C 2 + c 3

6 2 = a 21 + a 3l + a 32 (3.11)

63 = a 2ixa 32

Hence,

yn 1 - qfij + q z6 2 -
(3.12)

Lambert [1973] gives sufficient conditions for a 3-stage ERK method to 

be 3rd order. Similiarly the following order equations must be 

satisfied,

6 t = 1

6 2 = 1/2 (3.13)

6 3 = 1/6

for the corresponding BRK method to be 3rd order. Thus for the 3-stage
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3rd order BRK method

E(q) = Jill = ———————————————— (3.14) 
yn 1 - q + q z /2 - q 3 /6

Performing this analysis with s-stages will clearly lead to the general 

form of the stability function,

1 
E(q) = —————————— (3.15)

It will be shown in section 3.4 that this approximation will damp out 

the fast transients of a component much quicker than the commonly used 

BDF methods .

Let the stability function of the ERK method be E e (q). To find the 

stability region of the corresponding BRK method, it is applied with 

step -h to predict yn+1 from yn . It follows that the BRK method is 

merely a case of interchanging yn+1 and yn and replacing h by -h, ie. q 

by -q. Thus (2.4) becomes

= Ee (-q) (3.16)

ie

= Eb (q) (3.17)
yn Ee (-q)

The stability function of the BRK method, Eb(q) , is thus expressed in 

terms of the stability function of the corresponding explicit method.

The stability region of the BRK methods like all Runge-Kutta methods 

are symmetric about the real axis. Let the general stability function 

be of the form
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t
N(q)
___ = j=1 (3.18) 

s
D(q)

where N(q) = 1 for a BRK method and D(q) = 1 for an ERK method. To 

show that the resulting stability region is symmetrical about the real 

axis substitute Rexp(i9) for q in (3.18),

t 
N(Rexp(ie)) E TjRJx{cos( je) + isin(je)}

D(Rexp(ie)) E 6jRj'x{cos( je) + isin(je)}

t t
E TjRJcos(je) + iE TjRJsin(j
ll __________ il! ————————— (3.19)

E 6jRJ Cos(je) + iE 6jRj'sin(je)

Taking the modulus of both sides

t t 
|N(Rexp(ie))| {CETjRJcos(je)] 2 + CETjRJsin( je) ] 2 } 1/2

————————— »Jli ——————————— ̂ 1 ————————— (3.20)
s s

|D(Rexp(ie))| {CE6jRJcos(je)] 2 + [E6jRj'sin( je) 3 2 ) 1 / 2
j=i j=i

It follows that

|N(Rexp(-ie))

s s
|D(Rexp(-ie))| {[E6jRJ Cos(-je)] 2 + C£6jRj'sin(-je)

i = i i = i

|N(Rexp(ie)|
(3.21)

|D(Rexp(ie)|

hence the region of absolute stability of all Runge-Kutta methods are 

symmetric about the real axis.

The stability region of a BRK method is closely related to the

stability region of the corresponding ERK method. Let -qh be on the
- 55 - D



boundary of the stability region of the ERK method, ie.

!E e (-qb )| = 1 (3-22) 

using (3.15)

1
!E b (qb)l = ——————— = 1 ( 3 - 23 ) 

|E e (-qb )|

ie. qD is on the boundary of the stability region of the BRK method. 

Similiarly if -q^ and -qo are, respectively inside and outside the 

stability region of the ERK method, then

|Eb (qi)l > 1 
and (3.24)

|Eb (q0 )l < i
Hence from (3.23) and (3.24) the stability region of the BRK method is 

the complementary set of the image of the stability region of the ERK 

reflected in the imaginary axis. This is clearly shown by considering 

Euler (ERK) and Backward Euler (BRK), Figure 3.1.

As discussed in chapter 2, a region of absolute stability of a method 

gives only limited insight into its potential performance. But it is 

useful for an indication of the restriction placed on the step size for 

solving stiff problems. This can be seen by considering the contour R 

= 1 of the modulus plots in Figures 3.2 - 3.5. These figures show 

modulus and argument plots for BRK methods of orders 1 to 4.

As with ERK methods, the stability regions of BRK methods of order 1-4 

can only be enlarged by the addition of extra costly stages. For 5th
i

and 6th order methods of 6- and 7-stages respectively, however, they 

each have 1 free parameter. This free parameter can be adjusted to 

enhance the stability region of the method. It cannot, however, be 

used to increase the order of the.method, ie making this free parameter 

equal to 1/6!, for the 5th order method, will not meet the order
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requirements for a 6th order method. An s-stage s-1 order BRK method 

will have a stability function of the form

E(q) = —— —— ————————————— (3.25)

thus 6S is the free parameter. A numerical search was conducted to 

find the value of 6S for which the A(«)-stability region were largest 

for s = 6 and 7. A value for 6S was selected, from a plausible range, 

and the boundary locus method used to locate the boundary of the 

stability region. When a negative root of (2.15) was located, ie. a 

point on the boundary in the left-hand half plane, the angle between 

the real axis and a line from the origin to this point was calculated. 

The smallest angle, «, was noted for each value of 6g . When the 

complete range had been swept the process was repeated with a reduced 

range, ie. a subset of the original range. This process continued 

until the value of &s to maximize <x was determined to a reasonable 

accuracy. The 6g values obtained in this manner were,

66 = 2.31e-4 giving <x = 79.1" and

6 7 = -2.31e-5 giving oc = 74.3*.

Figures 3.6 and 3.7 show the stability regions of the 5th and 6th order 

methods with 6S set as above. It is apparent from these plots, that 

although the 5th and 6th order BRK methods cannot be made A-stable, the 

whole of the imaginary axis, in the case of the 6th order method, is 

included in the stability region. In fact setting 66 =l.2e-3 allows the 

whole of the imaginary axis to be included in the stability region of 

the 5th order method, however, the method is only A(77 .2° ) -stable . The 

small regions of instability in the left-hand half plane do not 

necessarily invalidate the method for solving stiff systems.

Using the 6-stage 5th order method Lawson[ 1967] , the coefficients of



the method which possesses this optimal stability region can be 

generated. The coefficients, given in Table 3.1, are in their ERK 

form, but can be expressed in the fully implicit form by applying the 

simple transformation (3.5).

3.4 Other stability properties of BRK methods

One other important stability property needed by an integrator of stiff 

systems is L-stability. The current analysis of L-stability, however, 

does not indicate to what extent the numerical ratio E(q) damps out the 

fast transients compared to the analytical solution (2.3), ie. how well 

the numerical quantity E(q) approximates exp(q). To reproduce the fast 

decay of exp(q) the numerical ratio, E(q), should have a stability 

function of the form,

(3.26)

Clearly no explicit method can do this. The modulus and argument plots 

of chapter 2, in part, show the damping ability of the method, but they 

do not explicity define the amount of damping produced. This can be 

rectified if the Lr-stability of a method is considered, Richards and 

Everett[1983].

A k-step method is said to be Lr-stable, if when applied to the 

standard test problem (2.1)

p 
t

= 0( Re(q)~r ) as Re(q) -> -« (3.27) 

Clearly any 1-step L-stable method is at least I^-stable.

The most commonly used methods for solving stiff systems are the BDF 

methods. The following theorem demonstrates that as the order of these



methods is increased the order of damping produced decreases.

Theorem 3.1 : An order p BDF is L^P-stable.

A brief sketch of the proof is now given : Consider the general pth

order BDF applied to (2.1)

p-i
(3.28)

Then the auxiliary equation corresponding to the linear difference 

equation (3.29) is

1 + ... + «0 = 0 (3.29) 

Let the roots of (3.29) be c t , c z , . . ., c p which generally will be 

distinct so that the general solution to (3.28) will be

yn = (3.30)

where are constant. We note that as Re(q) -> -«>, c -» 0 for all

1=1 (l)p. It follows that

vn+p

Yn

J-o

PIE;
1=1

Hence taking limits of (3.31) as Re(q) -» -»

Limit
Vn+p

(3.31)

Limit «

P 
E 

. .,,1 = 1
t/P

(3.32)

By dividing (3.29) by l-q£p and allowing q->-<x> we see that Ci-»0 for
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i=l(l)p. Hence by repeated use of L'Hopitals rule

Limit
Vn+p

yn
= Limit 
Re (q)-»-<»

<xo
= 0 (RefqT'/P) (3.33)

Thus a BDF method is L*/P-stable. BRK methods on the other hand 

achieve (3.23) for orders 1 to 4 and hence are Lp-stable. For p 

greater than four BRK methods give an approximation to exp(q) of the 

form

s
+ EC
i=5

(3.34)

Hence a general s-stage BRK method is normally Ls-stable but exceptions 

can be found, ie. if 6« = 0.

The superior damping properties of BRK methods over the commonly used 

BDF methods can be demonstrated numerically by applying them both to 

the standard test problem, (2.1) with X real and negative and the 

initial condition y(0) - 1.

The extra starting values required by the BDF (for orders greater than 

one) are supplied by the analytical solution, (2.2). Two tests were 

performed, the results of which are displayed in Table 3.2, one with q 

= -1 and the other introducing more damping by setting q = -10, the 

analytical solution is also shown for comparison.

For order 1 both BDF and BRK are the same method, Backward Euler and 

hence the results are the same. When q = -1 a slight improvement in 

the BRK methods solution is obtained by the use of a higher order, 

whereas there is no significant improvement in the corresponding BDF 

solution. Increasing q to -10, however, shows a dramatic improvement 

in the BRK solution as order 6Qis_ increased compared with the



deterioration of the BDF solution.

3.5 Implementation details

The implementation for a BRK method will now be discussed with

particular reference, for simplicity, to a 2-stage 2nd order BRK

method. The implementation details apply equally well to other orders.

As BRK methods are implicit, in yn+1 only, algebraic equations of the 

form

s 
~ vn ~ hEc^i = 0 (3.35)

must be solved at each step. There is no guarantee that this equation 

has a unique solution for yn+ t . However, we attempt to find a solution 

using an iterative process. Using a simple functional iteration 

process, however, places an unacceptable restriction on the step size. 

A more robust method must therefore be employed. The method usually 

employed is based on the Newton iteration process which will usually 

converge providing that a good initial estimate can be supplied, 

without severe restrictions on the step size. This leads to the 

following iterative scheme

JJ] = -«(vAJl) (3-36)

where the iteration matrix, 8e/ayn+l , is evaluated at every iteration 

for a full Newton method and from (3.35) has the form,

s 
= I - h

i=1 8vn+i

8k t 
——— = —————— (3.37)

8k
I - ha zl -

af(yn+1 - ha 2l k t )
, etc
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where I is the NxN unit matrix. If the ODE under consideration is 

linear then the Jacobian matrix is constant ie.

3f 
——— = J (3.38)

If, however, the problem is non-linear but the solution is slowly 

varying then the problem can be considered as static in an interval and 

thus (3.39) still holds. For a 2-stage 2nd order BRK method applied to 

a linear problem

~ vn + hEcjkj + C 2k 2 ]

" vn + h [ciJVn+i + c 2J(yn+1 - hb^Jy^)]* 

= [I - hJ + (hJ) 2 /2]yn+1 - yn (3.39) 

and the iteration matrix, from (3.37), is

(I - hJ + (hJ) 2 /2) (3.40) 

If the exact iteration matrix, (3.40), is used with exact arithmetic 

then, using (3.39) and (3.40), the Newton process, (3.36), can be 

rewritten as,

- [I - hJ + (hJ) 2 /2]- 1 x
[(I - hJ + (hJ) 2 /2)yn+1 - yn ] 

= [I - hJ + (hJ) 2 /2]~ l yn (3.41)

Thus the process must converge in one iteration. However, the exact 

iteration matrix is usually unavailable, so an approximation to (3.40) 

is used. Let this be M, the exact form of M is given later in this 

section. Using this the Newton process (3.36) becomes

Vn+i ' yn - [Mr'xUl - hJ + (hJ) 2 /2)yn+1 - yn ]

= [I - [M]- l x[(I - hJ + (hJ) 2 /2)yn+1 ] - [M]- 1 yn (3.42) 

Hence if (3.40) is not exact then an iterative scheme is required. 

This requires the matrix M to be updated at each iteration, in practice 

a modified Newton process is used whereby the iteration matrix is only 

updated when it is strictly necessary. More precise details about the

updating of this matrix will be given later in this section.
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The actual procedure used to solve the system of equations is obtained 

by rewriting (3.36), using M as an approximation to ae/ayn+1 , as

**!+! = -€ < vn+i) < 3 ' 43 > 

where

Thus M must be computed as a good approximation to (3.40), especially 

as it is only updated when necessary. The simplest approximation is to 

compute (3.40) directly ie. evaluate J 2 and J numerically, by finite 

differences, and then construct (3.40). However, this has a variety of 

limitations. The squaring of J, for 2nd order, is acceptable but for 

higher order methods the evaluation of Js , J8" 1 , ... is not. The 

storage requirements are also very high even if nested multiplication 

is used.

To alleviate these problems, the present work involves the direct 

evaluation of 3e/3yn+1 by numerical differentiation. Each component of 

vn+t * s perturbed by an amount |3^, where the subscript denotes the ith 

component of the vector yn+ t » and the corresponding new value of 

e(yn4. t ) computed. Various fixed perturbations were examined eg. 3^ = 

l.e-10, l.e-12, but each was found to be unsatisfactory. Hence, some 

change relative to the ith component was required. To cope with the 

case of any component of yn+1 being zero an absolute perturbation was 

also added. Thus the perturbation is constructed as a combination of a 

relative part and an absolute part,

Pi = yn-*-t[[l. yeP8 ]] + SIGN(yn+t ,l)^eps (3.45)
*

where eps is the smallest positive number representable on the computer 

for which (1 + eps) is greater than one. The function SIGN(a,6), which 

returns the sign of a with the magnitude of b, is used to ensure that a 

zero perturbation is avoided, ie. the relative and absolute changes
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always have the same sign.

The solution of (3.43) is then performed by decomposing the iteration 

matrix into a LU product, L being a lower triangular matrix with unit 

diagonal and U an upper triangular matrix. This reduces equation 

(3.43) to

LUA^ = -€(yn+l ) (3.46) 

which is solved by first solving

Vz i+l = -«(yn+i) (3.47) 

and then

LAi+i = z i+1 (3.48) 

by forward and backward substitutions in the normal manner to yield the 

displacement vector Aj + 1 . Equation (3.44) is then used to generate the 

next iterative value of yn+ t . This process, (3.46) is continued until 

convergence of &±+l is -attained.

Convergence can only be attained if successive iterations tend to some

linit, which ultimately depends upon the approximation M. Consider

two successive iterations

+ c (3.49) 

+ c (3.50)

using the displacement vector, (3.44), and subtracting (3.50) from

(3.49)

(3.51)

Assuming that there exists an exact solution yn+1 and defining a 

residual vector as

r i = vn+t ~ vn+i (3.52) 

then
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(3.53)

Now r0 and A0 can be expressed as a linear combination of the 

eigenvectors of J, u j , assuming that they form a basis. Let

N N 
r 0 = E^^ and A = £0i" (3.54)

Clearly generating successive iterations brings in the eigenvalues of 

M, thus

N N
and A = Ej3x ^ (3.55)

So clearly for r^ and Aj to converge Xj must be less than 1 for all 

j=l(l)N, ie. the spectral radius of M, p(M) , must be less than 1. This 

is also referred to as the amplification factor, Cash and 

Singhal[1983] .

To examine whether two successive iterations have converged to an 

acceptable amount, as ^i +1 is unlikely to equal zero, a convergence 

test nust be applied. As the Newton process must be solved accurately 

the error control must be kept very tight, using a relative error test 

will ensure that this happens. Thus convergence of the Newton process 

is considered achieved when

———— < stol (3.56) 
Max[Veps,Hyn+l ll]

where stol is some acceptable local convergence level.

This check, however, causes one more iteration of the Newton process 

than is really necessary for the convergence test to be met. 

Convergence is attained when (3.56) is satisfied, ie. 8^ + jH must be 

relatively small, compared with Byn+1 ll, hence the addition of this 

vector to yn+ t will make no significant difference to the solution.
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Therefore it is advantageous to estimate HAi + iH on the ith iteration. 

Consider

yjiJ = Myj+t + c (3.57) 

Using the result of (3.55) and assuming that |X t | > jXj| j=2(l)N ie. X t 

is dominant, then on the jth iteration

Aj s P^M! (3.58) 

and hence

= X t Aj (3.59) 

Taking a suitable norm, results in

—— £ |XJ = p(M) (3.60)
HAj»

Hence the convergence rate of the process is approximately the ratio of 

two successive displacement vectors which in turn is approximately the 

spectral radius of the iteration matrix. Let the convergence rate of 

the process on the ith iteration be CRATE-^, thus

- = CRATEi+1 (3.61) 

and then

+ 1 B = HAi HxCRATE i .(. 1 (3.62) 

Hence the value of BA i + l H can be obtained on the ith iteration if an 

estimate of the convergence rate of the process is obtainable. It can 

be assumed that the convergence rate on the (i+l)th iteration, 

CRATEi + t , differs from CRATE^ by only a factor of two, ie. convergence 

is ultimately linear. In any case CRATE^, i = 1, 2, .. must be less 

that one to ensure convergence. Hence

CRATE 1+1 < min(l,2xCRATE i ) (3.63) 

Thus HA^+jfl in (3.62) can be approximated by

+1 H = min(l,2xCRATE i )xBAi B (3.64)
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which often saves at least one iteration of the Newton process. 

Initially CRATEj is set to one and updated subsequently by

CRATEj = ntaxf.ZxCRATEi^.HAiH/HAi^H) (3.65) 

On the first iteration of each new step the convergence rate from the 

last iteration of the last step is used. Hence the displacement vector 

is never calculated on the (i+l)th iteration but always estimated, and 

it is this estimated value that is always used.

This idea can be extended to check for divergence of the Newton 

process. If •Aj+jll > lOxBA-jJ, (10 to allow some small increase), then 

the scheme is showing signs of divergence and some correcting procedure 

must be forthcoming. This idea was first proposed by Hindmarsh[1974] 

and later incorporated in most codes that solve systems of equations by 

a Newton process.

Clearly there will be occasions when the Newton process is going to be 

slow to converge eg. when too large a step is used. For this reason 

some limit must be imposed on the maximun number of iterations used. 

As a failure of the iteration process must lead to a step reduction and 

almost certainly an expensive iteration matrix update, the scheme is 

allowed to iterate up to ten times. This figure is, however, rarely 

reached as the number of iterations usually does not exceed three or 

four.

The system (3.12) can only be solved for Ai+l providing the iteration 

matrix, as it is computed numerically, is non-singular, or more 

precisely is considered sufficiently well-conditioned for the LU 

factorization algorithm to be successful. Any single occurrence of it 

being singular can be overcome by changing the step size. An increase
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is not advocated as the local accuracy requirements may not then be 

net, thus h is reduced. The reduction is performed by halving the step 

size and recomputing the complete step. If the iteration matrix is 

repeatedly computed as singular then some other action must be 

.forthcoming, this problem is discussed in detail in chapter 5.

Once the iteration matrix, M , has been evaluated it is the LU 

factorization which is stored (ignoring the unit diagonal on L) for 

future use and not M itself. As the iteration matrix is computed 

numerically, knowledge of the analytical Jacobian matrix J of the 

initial value problem, would be of no help in the solution procedure.

The iteration matrix is updated for only one of three reasons, viz.

i) the relative change in the step size exceeds 10%, 

ii) the iterations fail to converge after three iterations, or 

iii) the iteration process shows signs of divergence.

Due to (3.38) being a polynomial in hJ of degree s it is evident that 

any change in the step size will require a re-evaluation of the matrix 

M, for good convergent properties to be maintained. This has serious 

implications in step control policies and they are discussed in chapter 

4.

The initial approximaton y{{+i to yn+1 is generated by extrapolation 

using a divided difference table that is constructed from consecutive 

successful steps of the method. Numerical tests were used to determine 

the optimal order of the divided difference table for BRK methods of 

order 2, 5 and 8, these are 3, 7 and 10 respectively.
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3.6 Problems considered and numerical results

To confirm the potential shown in BRK methods, fixed step versions of 

orders 2, 5 and 8 were implemented. As no error estimate was being 

incorporated the initial and maximum step sizes were supplied as data, 

to enable a crude error control policy. Step increases by a factor of 

ten were allowed if the Newton process converged in less than five 

iterations with a stopping tolerance, stol, of l.e-10. (The Hindmarsh 

process described in section 3.5 was not implemented at this stage)

The BRK methods have been applied to a large number of problems and 

their performance compared to the BDF methods of Gear, incorporated in 

the NAG library routine D02QBF, Gladwell[1974]. Hereafter GEAR refers 

to these methods, using a relative error test (CIN(2) = 2), and 

numerically evaluated Jacobian matrix. The default initial step size 

was used in all cases. Results are shown for four typical problems, 

three non-linear and one linear.

In all the following tables and figures the abbreviations below are 

used,

TOL : local tolerance to satisfy at each step

Steps : number of steps taken to complete integration

FE : total number of function evaluations (including those 

required for the Jacobian matrix evaluation)

JE : total number of Jacobian evaluations

CPU time : CPU time in seconds on a Prime 550

Order : Order of the method used

Sig. Figs. : significiant figures accuracy computed as

-Iog 10 = Min
|yN -

,0. (3.66)
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where yjj is the numerical solution and y^ the corresponding 

analytical solution, over the relevant component. The relevant 

components being y 3 y 3f y4 and y t for problems p3.1, p3.2, p3.3 and 

p3.4 respectively

The four systems of DDEs considered are listed below together with 

initial conditions, integration range, eigenvalues of the Jacobian 

matrix and where appropriate the analytical solution.

dyi
—— = -106 y, + yf + yf, - 1 - l/(H-x) 2
dx

= -y z + yid+x) 2 xe[o,io] (ps.i)
dx

— - -y!
dx

Initial conditions : y(0) = [1,1, 1] T 

Eigenvalues : -10s , -1, -2/(l+x) 

Analytical solution : y t (x) = exp(-10s x)

y2 (x) = 1.0

y 3 (x) = 1/(14-X )

This non-linear problem has a stiffness ratio of approximately I.e6. 

Initially all components of the solution are of the same magnitude but 

as the solution precedes y t decays rapidly to zero.

dx

—— = ———— xe[0,10] (p3.2) 
dx (1+x)
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dy,
—— - -y 2 (l+x)e x
dx

Initial conditions : y(0) = [le-2, Ie6, le6] T

Eigenvalues : -10s , -l/(l+x), 0

Analytical solution : y t (x) = 10~ 2 exp(-106 x)

y z (x) = 10fi /(H-x)

y 3 (x) = 106 exp(-x)

This problem was constructed so that y t has an extremely rapid 

transient but, unlike p3.1 is much smaller in magnitude than the other 

components. This situation is very common in engineering problems 

especially where variables are converted to SI units, eg. converting to 

Pascals may result in some components having extremely large 

magnitudes, whereas others are extremely small.

dx

—— = -10y 2 + 20yf 
dx

dy 3 X€[0,20] (p3.3)
—— = -40y 3 + 80(yf + yf) 
dx

—— = -100y4 + 200(y^ + y| * y|) 
dx

Initial conditions : y(0) = [1,1,1,1] T

Eigenvalues : -1, -10, -40, -100

This is a non-linear problem considered by Cash[1975]

dx xe[0,10] (p3.4)

- 71 -



j - 2y 2 
dx

Initial conditions : y(0) = [1,-1] T

Eigenvalues : -1 * lOOi

Analytical solution : y t (x) = e~xcos(100x)

y z (x) = -e~x [cos(100x) + I00sin( lOOx) ]

This is the only linear problem considered here and is characterised by 

a highly oscillatory component. It is well known that BDF methods 

perform particularly badly on such problems.

The initial fast transient stage of a stiff system is usually the most 

demanding for any stiff integrator, as they only start to work 

efficiently when the step size is large. The superior damping 

properties of the BRK methods, over the BDF methods, during this fast 

transient stage are apparent from Figure 3.8 and Table 3.3 for problem 

p3.1. In each case the accuracy of the first component is plotted 

closest to l.e-6, 2.e-6 and 3.e-6. This ensures that no additional 

errors are introduced by interpolation. The numbers at the right-hand 

end of the graph are the number of steps and function evaluations 

respectively, these clearly show the supremacy of BRK methods at 

controlling the fast transients. In particular the 8th order method 

performs extremely well, being able to integrate upto 3.e-6 in just one 

step and still producing an acceptable solution.

Table 3.5, Figure 3.9, summarises the three BRK methods and GEAR over 

the whole integration range. The runs were set up so that each took, 

approximately the same CPU time. All the BRK methods, with the 

exception of the 2nd order method, out performed the GEAR method on 

this problem.
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Table 3.5 and Figure 3.10 summarises the performance of the methods 

over the fast transient stage of the solution for problem p3.2. With 

GEAR it is clear that a very small step must be used initally and 

maintained for this part of the integration range, whereas the BRK 

methods can employ a much larger step and still damp out the component. 

Even with this small step the solution produced by the BDF methods lose 

accuracy as x increases, this does not happen with the BRK methods.

Integrating over the whole range, Table 3.6 and Figure 3.11, indicates 

that not only are the BRK methods faster but they are more accurate 

throughout the range. Due to its poor performance on this 2nd order 

BRK method is omitted.

Problem p3.3 results are summarised in Table 3.7, Figure 3.12. Even 

though GEAR is able to used a larger step than any of the BRK methods 

it is still slower and less accurate, with the exception of the 2nd 

order BRK method. The somewhat erratic accuracy of all BRK methods can 

be partially overcome by using a small initial step, but it does 

highlight the need for some form of error control and variable step 

policy.

Problem p3.4 is known to severely tax codes based on BDF methods such 

as GEAR. This is due to the problem being characterized by a highly 

oscillatory component. Table 3.8, Figure 3.13, show results for, 

approximately, comparable CPU time. An interesting feature is the high 

number of Jacobian evaluations required for the BDF code, this suggests 

that the step control policy is allowing the step to change too freely. 

Clearly the BRK methods out perform GEAR on this problem.
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0.0

0.5

0.25

0.5

0.75

1.0

0.5

0.1875 0.0625

-0.32392 0.17608 0.14784

-0.13206 -0.31965 0.63912 9/16

0.444708 0.87328 0.25344 -12/7 8/7

7/90 0 32/90 12/90 32/90 70/90

Table 3.1 : Coefficients for 6-stage 5th order ERK.

No. of 
steps Order BRK

Final values
BDF Analytical

-1 20 1 9.5367e-7 9.5367e-7 2.0612e-9

1.0995e-8 -4.0863e-6

3.0243e-9 3.3444e-7

2.2180e-9 4.6533e-7

-10 20 1 1.4864e-21 1.4864e-21 1.3839e-87

2 1.9652e-36 1.5316e-12

3 7.1451e-48 3.66526-10

4 6.5734e-57 8.6177e-8

Table 3.2 : Comparison of BRK and BDF on standard

test problem
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Method Log 10 Steps at order Initial 
& Order TOL 1 2 3 4 5 8 FE JE Steps Step

BRK 8

GEAR -15

BRK 8

GEAR -12

BRK 5

BRK 8

BRK 5

GEAR -7

BRK 8

BRK 5

BRK 2

GEAR -2

30 228

3 5 17 18 646 869

12 312

3 4 15 18 102 383

60 402

3 104

12 162

3 4 10 12 22 133

1 65

2 42

10 42

344 42

1

44

1

25

1

1

1

11

1

1

1

4

30

689

12

242

60

3

12

51

1

2

10

11

1

7

2

1

5

1

2

4

3

1

3

1

.Oe-7

.2e-17

.5e-7

.5e-l

.Oe-8

.Oe-6

.5e-7

2

.9e-10

.Oe-6

.5e-6

.Oe-7

.2e-8

Table 3.3 : Transient phase of problem p3.1 (Figure 3.8)

Method Log 10 Initial Maximum CPU
& order TOL FE JE Steps Step Step Time

BRK 2 - 432 1 201 5.0e-2 5.Oe-2 1.02

BRK 5 - 1830 6 204 5.Oe-2 5.Oe-2 2.03

BRK 8 - 2821 2 101 1.Oe-1 l.Oe-1 3.07

GEAR -7 424 33 241 4.9e-10 3.6e-l 3.43

Table 3.4' : Full range of problem p3.1 (Figure 3.9)
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Method Log 10 Steps at order Initial 
& Order TOL 1 2 3 4 5 8 FE JE Steps Step

BRK 8

BRK 5

BRK 8

GEAR -15

BRK 5

BRK 5

BRK 2

GEAR -12

BRK 2

GEAR -10

GEAR -7

BRK 8

20 468

100 636

10 299

2 4 10 14 60 188

20 204

10 138

100 212

3 4 7 18 3 96

20 72

375 42

4 19

2 91

1

1

1

15

1

1

1

9

1

5

3

1

20

100

10

91

20

10

100

35

20

15

4

2

5

1

1

2

5

1

1

1

5

1

1

5

.Oe-7

.Oe-7

.Oe-6

.4e-10

.Oe-7

.Oe-6

.Oe-7

.5e-8

.Oe-7

.5e-7

.9e-7

.Oe-6

Table 3.5 : Transient phase of problem p3.2 (Figure 3.10)

Method Logr Initial Maximum CPU
& order TOL FE JE Steps Step Step Time

BRK 5 - 2166 6 105 l.Oe-1 l.Oe-1 2.91

BRK 8 - 3783 9 106 l.Oe-1 l.Oe-1 4.59

GEAR -10 520 29 385 1.5e-7 6.8e-2 5.16

Table 3.6 : Full range of problem p3.2 (Figure 3.11)
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Method Log 10 Initial Maximum CPU
& order TOL FE JE Steps Step Step Time

BRK 2 - 1160 23 211 l.Oe-12 l.Oe-1 2.64

BRK 5 - 2640 8 203 l.Oe-4 l.Oe-1 3.49

BRK 8 - 3263 10 80 2.5e-l 2.5e-l 3.46

GEAR -6 383 23 206 4.8e-6 l.OSeO 4.40

Table 3.7 : Full range of problem p3.3 (Figure 3.12)

Method Log 10 Initial Maximum CPU
& order TOL FE JE Steps Step Step Time

BRK 2 - 46630 1 20001 5.Oe-4 5.Oe-4 78.8

BRK 5 - 76044 1 10001 1.Oe-3 1.Oe-3 63.5

BRK 8 - 130130 1 10001 l.Oe-3 l.Oe-3 89.9

GEAR -7 11481 623 9794 4.0e-7 3.1e-3 99.5

Table 3.8 : Full range of problem p3.4 (Figure 3.13)
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Figure 3.6 : Optimal stability region of 5th order BRK

ITIASItMA

Figure 3.7 : Optimal stability region of 6th order BRK
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Figure 3.10 : Problem p3.2 over initial stage.

B«K 3
C5E AR

Figure 3.11 : Problem p3.2 over whole range

- 85 -



is Jo mioa

-t- e«tK a
A e«K 3
o

.». i a 
I zx v

FlgUre 3 ' 12 ; P3.3 over whole range.

F1 ^ure 3 ' 13 : Proble<» P3.4 over whole

- 86 -

range .



Chapter 4 : ERROR CONTROL

In chapter 3 the potential of BRK methods for solving stiff systems of 

ODEs was demonstrated using fixed step mode. However, some means of 

controlling the error of the method must be derived to produce an 

efficient algorithm.

The global error, the difference between the true solution and the 

numerical one at any given point, cannot generally be determined. Thus 

the usual measure of control is the local truncation error, ie. the 

error committed in one step of the method assuming that no errors have 

previously been introduced. In fact the global error is a result of 

the local truncation errors, formed over all the previous steps, taken 

to construct the numerical solution, accumulated in a non-trivial 

manner together with round-off errors. In addition for an implicit 

method, since the implicit equations are never solved exactly, further 

errors are introduced. It can be shown that a bound on the local 

truncation error provides a corresponding bound on the global error, 

Lambert[1973].

This chapter examines a variety of techniques for estimating the 

principal local truncation error of a Runge-Kutta method and in 

particular BRK methods. By estimating the principal local truncation 

error the step size, h, can be adjusted automatically so that in some 

region of x where y(x) is changing rapidly h is kept small, while in 

regions where y(x) is changing slowly h is made large.

4.1 Embedding

Unfortunately the error term, given by the Taylor series expansion, is 

too complicated to be of any practical value, hence the local
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truncation error must be evaluated numerically. The most commonly used 

estimation method for Runge-Kutta methods is that of embedding, 

Fehlberg[1970], Verner[1978].

This technique requires an s-stage method (explicit or implicit) of 

order p+1, (s,p+l) to have embedded within it a method of order p, 

(s,p). By embedding we mean that the (s,p) method uses the same 

function evaluations as the (s,p+l), ie. the same sampling points, but 

uses a different linear combination. Assuming that the solution at 

xn_ t is exact and no computational errors are introduced in computing

the next step and two approximations are generated at xn = xn _ t + h.
# Let these be yn and yn for the (s,p+l) and (s,p) methods respectively.

Clearly if y(xn ) denotes the true solution at xn , then the (s,p+l) 

method generates

yn = y(xn ) H- hP+ 2 <&(y(xn )) + 0(hP+3 ) (4.1)

where o>(y(xn )) is the principal error function. The (s,p) method will 

produce

Vn = V( xn) + hP+1 x(y(xn )) + 0(hP+2 ) (4.2)

where x(y(xn )) is the principal error function of the (s,p) method. 

Subtracting (4.2) from (4.1) yields the difference between the two 

estimates

Vn - Vn = hP+1 x(y(xn )) + 0(hP+2 ) (4.3) 

and hence

hp+1 x(y(xn )) = yn - y* = d(h) (4.4)

Thus d(h) is an estimate of the local truncation error of the (s,p) 

method at xn and this must be kept less than a fixed local error 

tolerence, TOL, at each step to maintain a bound on the global error. 

An absolute error test or a relative error test may be used. In the
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latter case
ld(h)H 

T(h) = ———— (4.5)

and it is T(h) which is controlled. When the step has been completed, 

the optimal step size, hnew = nh, to be attempted on the next step can 

be estimated. This is the step which would exactly satisfy the local 

error requirements, TOL. Assuming that the error changes slowly along 

the integration range then n must be chosen such that

T(ah) = TOL (4.6) 

Clearly from (4.4) and (4.5)

T(/ih) = MP^Tth) (4.7) 

and it follows that

PTOL
= c (4.8) 

LT(h).

where c is introduced as a safety factor, usually taken as ce [0.8, 1.0]. 

Once v has been estimated from (4.8) then the following step control 

policy is adopted:

a) If u < 0.8 the the step is rejected. The step to be attempted on 

the re-calculation is hnew = vh, with v = Max[0.1, UL] , to disallow very 

large changes in the step size.

b) If 1 > fi > 0.8 the solution produced by the (s,p) method is 

accepted. However, it is normal practise to carry forward the solution 

obtained from the (s,p+l) method and this is the policy adopted here. 

The new step is, however, reduced by setting hnew =

c) If M > 1 then the step is accepted and again the p+lth order 

solution is carried forward. The new step is set at hnew = vh, where v

is constrained by v = MinflO.O, iu] , again to disallow large changes in
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the step size.

This is a typical error control policy for explicit Runge-Kutta 

methods.

4.2 Inverse embedding

This is a similar idea to the embedding technique, section 4.1, but is 

valid for the BRK methods derived in chapter 2. An embedded pair 

(s,p+l) and (s,p) are required as before. Suppose the implicit 

equations are solved for the (s,p+l) %ethod to produce yn , (the scalar 

case is depicted in Figure 4.1), so that

s
Efyn^n-i) = Vn - Vn-i - hEciki = 0 (4.9)

i = i

The value of yn together with the corresponding kj values will in 

general not satisfy the (s,p) equation, ie.

s
E*(yn .yn-i) = Vn ~ vn-t - h£ci ki * 0 (4.10)

i=i

We could of course solve the (s,p) method equations to produce yn 

giving

s 
E*(yn>yn-i> = yn - Vn-i - *Zc[ k{ = 0 (4.11)

but this will require a great deal more function evaluations to produce 

the k{ values which correspond to yn instead of yn . It will also mean 

estimating 3E*/ayn . Alternatively for some vector y^-i we nave

s 
E*(yn-yn-i) = yn ~ yn-i ~ hEcj ki = 0 (4.12)

Let

«

and
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It is extremely easy to compute <x but we really need p. From (4.11)

= E *
3E~

3yn
HOT

= 0

Ignoring the higher order terms

.*- -i
13 -

8E
(4.13)

L3ynJ
From (4.10) and (4.12)

* , <x = E (yn
and

3E*, -!

<x (4.14)

Thus P can be computed from <x provided an estimate for 3E*/3yn is 

available.

4.3 Richardson extrapolation

One error control policy commonly used is that of Richardson 

extrapolation (halving or doubling). The integration from xn _ 1 to xn 

is performed twice with the same order method. A step of 2h is taken 

and compared with a solution computed by taking two steps of size h.

Let the solution obtained by the 2h step be denoted by y and the 

solution by the two h steps by yn_i^ and yn . Thus using y(xn ) as before 

= y( xn) - (2h)P+1 d>(y(xn )) + 0(hP+ 2 ) (4.15a)

and

= y< xn) - hp+1 <J>(y(xn )) + 0 

Hence, subtracting (4.15b) from (4.15a),

(4.15b)
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hP+ l*(y(xn )) = -!!———— m d(h) (4.16)
1 - 2P+ 1

giving an estimate of the local truncation error, d(h). Using a 

similar approach to the embedding technique the optimal step to be 

attempted next can be estimated by

TOL(2P+1 - 1)
M = C (4.17)

T(h)

where T(h) is as (4.5). The step to be attempted next, hnew , is then 

computed in the same way as with the embedding technique. The solution 

that is carried forward is the solution obtained by the two h steps, as 

this should be the most accuate.

There are two main drawbacks with this technique. The first is the 

amount of work required to perform one successful step ie. the step is 

performed twice with different step sizes to produce an estimate for 

the local truncation error. The second is that an iteration matrix is 

required for both stages, ie. one for the 2h step and one for the two h 

steps. This clearly makes the operation expensive.

4.4 Implementation details

The obvious choice for an error control policy, for ERK methods is the 

embedding technique. This is straight forward to implement and is done 

so as described above.

BRK methods on the other hand have two plausible error control 

techniques, 4.2 or 4.3. Extensive testing of the two techniques 

indicated that the Richardson technique was more reliable and more 

efficient. Table 4.1 shows the results for a typical problem, viz. 

p3.4. Hence this is the error control policy adopted. The basic
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implementation details are described below.

The order in which the integration steps are performed in this 

technique is of great importance. The 2h step must be performed first, 

as it is more likely to fail than the small h steps. The initial 

estimate for yn is obtained by extrapolating the divided difference 

table updated after each successful step. When the 2h step has been 

successfully completed, the solution produced is used to update the 

divided difference table. This old divided difference table is, 

however, not over-written by the new one as a step failure would 

destroy the validity of the table. Therefore this new table is 

calculated and then stored separately. The initial approximation to 

vn-K' tne first n step, is obtained by interpolating the new divided 

difference table. Providing that the first h step is computed 

successfully the second can be performed. An estimate of the solution 

at xn already exists from the 2h step, and this can be used as an 

initial approximation to the solution for the second h step. By using 

this initial approximation the iterations normally converge rapidly, 

usually in 1 or 2 iterations. The test (4.17) is then conducted to 

determine whether the step was successful and determine hnew for the 

next step.

4.5 Numerical results

BRK methods of orders 5 and 8 have been implemented in variable step 

mode and used to integrate the problems considered in chapter 3, viz. 

p3.1, p3.2, p3.3 and p3.4. Due to the lack of error control of the 

methods in chapter 3 the approach adopted here, to analyse the results, 

is somewhat different. The methods can now be controlled by specifying 

a local error tolerance, TOL, that must be satisfied at each step. It
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is, however, not enough to specify some value of TOL and compare this 

with the results of GEAR using the same tolerance level. Both methods 

will use TOL as a local error tolerance but may actually control 

different quantities. Thus the accuracy actually attained by the 

method must be monitored. The approach taken in this chapter is to 

monitor the accuracy at the end of the integration range in terms of 

the number of accurate significiant figures obtained over the relevant 

component. The relevant components being the same as those used in 

chapter 3.

The results of problem p3.1 are tabulated in Table 4.2 and displayed 

graphically in Figure 4.2. Even though an expensive error control 

policy is being employed the BRK methods are able to compute a solution 

more efficiently than GEAR, with the 5th order method marginally 

outperforming the 8th.

With problem p3.2, Table 4.3, Figure 4.3, all methods are capable of 

producing results in a reasonable time when low accuracy is required. 

If more accuracy is requested, however, the 8th order method is best.

Problem p3.3 highlighted the necessity of an error control policy for 

BRK methods (Figure 3.12), Table 4.4 and Figure 4.4, show the effect of 

incorporating an error control policy into the 5th order method. It 

shows that a more uniform accuracy is maintained throughout the 

integration range. The results of Table 4.5 and Figure 4.5 show that 

the 8th order method is extremely inefficient on this problem in total 

contrast to problem p3.2. Clearly the high number of stages of the 

methods, viz. 12, place a severe restriction on it, especially as the 

problem has more state variables than the other three problems
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considered.

When a problem with fewer state variables, problem p3.4, is considered 

the 8th order method again shows its supremacy, (Table 4.6 and Figure 

4.6).
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Method Log 10 
TOL FE

Richardson -3

Inverse
Fehlberg

-4
-5
-6
-8
_Q

-3
-4
-5
-6
_rr

-8
-9

38094
55674
79980
122796
221496
310818

32852
51433
81439
142765
267409
402637
603211

JE

22
16
18
4
6

12

21
30
34
43
45
60
67

Steps

2176
3202
4612
10002
12720
17858

2525
3982
6435
10537
14487
22293
35515

Maximum Accuracy CPU 
Step at xen(j Time

7
5
3
1
1
6

1
1
7
4
3
1
1

.8e-3

.3e-

.7e-

.Oe-

3
3
3

.Oe-3

.9e-4

.8e-

.le-

.6e-

.8e-

.Oe-

2
2
2
3
3

.9e-3

.le-3

2
3
3
5
6
6

2
3
4
4
5
6
6

.02

.00

.78

.52

.03

.67

.46

.12

.05

.68

.03

.05

.81

41
61
87
146
242
340

28
44
72

124
218
329
503

.94

.00

.70

.12

.00

.00

.64

.87

.02

.33

.30

.10

.70

Table 4.1 : Comparison of error control devices

Method Log 10 Maximum Accuracy CPU 
& Order TOL FE JE Steps Step at xend Time

BRK 8

BRK 5

GEAR

-3
-4
-6
-7
-8
-9

-2
-4
-6
-7
-8
-9

-5
-6
-7
-8
-9

-10
-11
-12

1752
1908
2916
3336
3000
4020

972
858
1368
1920
2443
3349

234
293
424
462
619
809

1056
1415

18
24
10
12
10
7

21
11
12
15
10
12

21
25
30
34
43
48
61
76

18
24
54
58
76

104

24
34
60
86

150
228

130
169
241
300
414
576
809
1132

9
8
8
8
2
1

8
3
8
4
6
4

6
4
3
2
1
1
9
6

.6e-

.5e-

.7e-

.4e-

.3e-

.9e-

.Oe-

. le-

.5e-

. le-

.le-

1
1
1
1
1
1

1
1
1
1
2

.7e-2

.4e-

.Oe-

.6e-

.6e-

.7e-

.le-

.Oe-

.Oe-

1
1
1
1
1
1
2
2

5
7
7
9

10
11

4
6
7
8
9

11

3
4
5
6
6
7
8
9

.99

.21

.93

.14

.66

.11

.66

.66

.74

.48

.38

.73

.64

.72

.57

.19

.99

.83

.59

.38

1
2
3
4
3
5

1
1
2
2
4
7

1
2
3
4
5
7

10
14

.97

.15

.60

.09

.88

.26

.36

.29

.11

.99

.04

.95

.78

.39

.43

.08

.66

.57

.31

.14

Table 4.2 : Comparison of problem p3.1 (Figure 4.2)
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Method Log 10 Maximum Accuracy CPU 
& Order TOL FE JE Steps Step at xend Time

BRK 8

BRK 5

GEAR

-2
-3
-7
_o

-9
-10

-3
-4
-6
-7
-8
-9

-10

-6
-7
-8
-9

-10
-11
-12

1212
1200
1488
2052
3133
3589

726
900

1254
1657
2239
3446
4802

180
231
302
382
520
722

1028

11
16
21
28
30
29

22
20
12
10
8

13
13

13
17
20
22
29
40
53

16
16
20
26
48
52

20
42
90
132
196
290
428

102
140
195
274
385
555
813

7.
1.
9.
8.
6.
8.

1.
2.
1.
7.
5.
3.
2.

2.
1.
1.
1.
6.
5.
3.

Oe-1
8e 0
8e-l
3e-l
le-1
4e-l

8e 0
4e-l
le-1
7e-2
3e-2
5e-2
4e-2

6e-l
9e-l
5e-l
Oe-1
8e-2
le-2
4e-2

1
3
4
5
7
8

1
2
4
4
5
6
7

1
2
3
4
4
5
6

.39

.53

.80

.70

.90

.10

.79

.53

.08

.58

.34

.24

.10

.55

.86

.86

.23

.89

.44

.22

1
1
2
3
4
5

1
1
2
3
4
7

10

1
1
2
3
5
7

10

.84

.77

.19

.03

.79

.50

.23

.66

.55

.47

.80

.34

.36

.49

.97

.74

.70

.16

.29

.60

Table 4.3 : Comparison on problem p3.2 (Figure 4.3)

Method Log 10 Initial Maximum CPU 
& Order TOL FE JE Steps Step Step Time

BRK 5 -3 2136 38 80 l.Oe-4 l.le 0 3.47

GEAR -6 383 23 206 4.8e-6 1.Oe 0 4.40

Table 4.4 : Comparison on problem p3.3 (Figure 4.4)
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Method Log 10 
& Order TOL

Maximum Accuracy CPU 
FE JE Steps Step at xend Time

BRK 8

BRK 5

GEAR

-1
-3
-5

-2
-4
-5

-2
-3
-4
— o
-7
-9

-10

3936 51 34 1.4e 0 5.74 5.37
3324 34 42 1 . 2e 0 6.99 4.71
3684 29 60 9.7e-l 9.46 5.47

1854 35 72 9.9e-l 6.99 2.98
2814 28 140 9.8e-l 8.93 5.00
4722 33 346 1 . Oe 0 9.87 9.33

129 12 50 3.0e 0 4.08 1.12
193 14 80 2.7e 0 4.96 1.77
276 22 124 3.1e 0 5.60 2.70
278 16 148 9.3e-l 6.09 3.14
479 27 274 3.9e-l 9.50 5.80
1032 60 578 5.3e-l 9.81 12.18
1146 62 732 3.9e-l 10.47 14.66

Table 4.5 : Comparision on problem p3 . 3 (Figure 4.5)

Method
& Order

BRK 8

BRK 5

GEAR

Log
TOL

-3
-4
-5
-6
-7
-8
-9

-3
-4
-5
-6
-8
-9

-7
-8
-9

-10
-11

10 Maximum Accuracy CPU
FE JE Steps Step at xend Time

23484 12 634 2.3e-2 1.24 21.08
31260 12 838 1.3e-2 2.19 27.93
32964 10 958 1 . 2e-2 2.74 30.16
52668 22 1436 9.6e-3 4.20 46.88
68352 16 1956 7.1e-3 5.34 60.81
82740 12 2982 3.3e-3 6.77 77.16
108024 25 3310 3.1e-3 7.20 92.23

38094 22 2176 7.8e-3 2.02 41.94
55674 16 3202 5.3e-3 3.00 61.00
79980 18 4612 3 . 7e-3 3.78 87.70

122796 4 10002 1 . Oe-3 5.52 146.12
221496 6 12720 l.Oe-3 6.03 242.00
310818 12 17858 6.9e-4 6.67 340.00

11481 628 9794 3.1e-3 1.80 99.53
15985 797 14020 2 . 6e-3 2.59 139.54
23013 1115 20402 1 . 8e-3 3.41 202.76
32907 1577 29296 1 . Oe-3 4.28 290.63
48742 2343 43505 7.9e-4 5.11 426.31

Table 4.6 : Comparison on problem p3.4 (Figure 4.6)
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Figure 4.1 Node layout for inverse embedding method 
(scalar case)
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Figure 4.2 : Problem p3.1
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Chapter 5 : PROBLEMS ASSOCIATED WITH BRK METHODS

All numerical methods used to solve ODEs will be inefficient for some 

class of problem. Thus Adams methods are hopelessly inefficient at 

solving stiff systems and BDF methods are poor when applied to highly 

oscillatory problems. Not surprisingly BRK methods are inefficient for 

some problems.

This chapter sets out the deficiencies of BRK methods and some of the 

routes that have been investigated in the search for a remedy.

5.1 Singular iteration matrix

When integrating a well-behaved system of ODEs we expect the iteration 

matrix associated with the solution of the implicit equations to be 

non-singular. However, in some cases, due to the finite precision of 

the calculations, singular or nearly singular approximations to the 

Jacobian may be produced. This normally happens only very rarely. Any 

isolated occurrence of it can be overcome by simply changing the step 

size. A step increase is not advocated as then the accuracy 

requirements may not be met, thus the step must be reduced. With BRK 

methods the iteration matrix is computed directly from the residual 

vector, €(h), by perturbing the yn values and recomputing e(h), section 

3.5.

Consider the linear system

dx
xe[0,l] 

dy z
—— = -10ayi - (10a + I)y 2 
dx

with initial conditions
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Yi(0) = 2 y z (0) = - 

and a is a positive integer. The Jacobian matrix associated with p5.1

is

J- (5.1)
.-10a - 

which is clearly non-singular.

From chapter 3 the iteration matrix asscoiated with an s-stage BRK

method, for a linear system, has the form

M = (5.2)
= o

A 3-stage 3rd order BRK method will thus have an iteration matrix

comprising

I - hJ + (hJ) 2 /2 - (hJ) 3 /6 (5.3)

Now clearly J 2 and J 3 for problem p5.1 can be constructed as

J 2 = -10*

and (5.4)

J 3 =
10 2<x+10a 10 2<X+10OC+1 

-10 3<x-10 20c-10a -10 3<X-10 2<X-10CC-1

For a large value of <x and moderately sized h

M -h 3J 3 /6 (5.5)

which may be computed as singular since the second column is virtually 

the same as the first and hence the system of equations cannot be 

solved. This is a problem that is inherent to all MIRK based methods, 

Singhal[1980]. The situation degenerates as the order of the method 

increases. Even though the implementation discussed in chapter 3 does 

not compute J directly, the approximation to the iteration matrix, M, 

may be computed as singular.
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This severe drawback of MIRK methods may make them unsuitable as an 

integrator for a class of simple linear ODEs. However, various schemes 

to alleviate this problem are discussed in the following section.

It is important to note that it is not the eigenvalues that cause the 

problems since systems with exactly the same eigenvalues as p5.1 can 

be solved very efficiently. Thus it is untrue to say that BRK methods 

cannot solve stiff systems but rather that they are inefficient at 

solving some stiff systems. For example the problem

—— = -106yi 
dx

(P5.2) 
dy z

dx

has the same eigenvalues as problem p5.1, yet BRK methods are able to 

integrate this problem without any difficulties.

5.1.2 Approximate factorization

Following an approach proposed by Singhal [1980] , the iteration matix

can be factorized as

M = (I-v t hJ)(I-v 2 hJ) . . . (I-v shJ) (5.6)

for an s-stage method. Singhal [1980] shows that a more efficient 

scheme can be produced by taking v^ = v, i=l(l)s. Thus M is 

approximated by

M = (I - vhJ) s (5.7) 

The solution of which will require one Jacobian evaluation, one LU 

decomposition and s back substitutions. Clearly v must be chosen so 

that the approximation to the iteration matrix produces a matrix that 

ensures that the rate of convergence of the Newton process is less than 

one , ie. p(M) < 1, and hopefully p(M) « 1. Singhal [1980] found
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values of v for MIRK methods of order 2, 3 and 4 such that p(M) was 

less than one.

This idea can be extended to allow two free parameters and hence giving 

the scheme more flexibility. Consider

M « (eel + PhJ) 8 (5.8) 

as an approximation to the iteration matrix. The free parameters can 

be found by a minimax process. Consider for simplicity, a linear 

approximate factorization for the 2-stage 2nd order BRK method. 

Application of Newton's method gives

Vi*!0 " AyKl + b (5.9) 

where

A = I - (<xl + j3hJ)~ 2 (I - hJ +(hJ) 2 /2)

b = (ocl + /3hJ)~ 2 yn

To ensure that the approximation is satisfactory p(A) must be less than 

1, ie. the largest eigenvalue of A cannot be greater than one. Now the 

eigenvalues of A can easily be found by replacing J by x$ in (5.9), 

thus A has eigenvalues

1 - (« + miXjr'U - h\i + (hXi ) 2 /2) (5.10) 

These eigenvalues must be minimized with respect to <x and 0 over some 

region of the hx(=q) complex plane. Singhal[1980] considered the 

approximation to the iteration matrix, (5.7), over the complete 

left-hand half plane, ie. Re(q) < 0. By ensuring that (5.10), (with « 

s 1), is analytic in this region then the maximum modulus theorem was 

used to show that the maximum value is attained on the boundary of the 

region, ie. Re(q) = 0. The approach taken here is somewhat different. 

The problems that create severe difficulties for BRK methods have real 

eigenvalues on the negative axis. Thus we perform our minimization 

solely over the real negative axis. Hence we require
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Min Max
- (l-q+q2 /2)

(5.11)
<x,P qe(-«,0] 

Put

W = !/(« + 3q) * q = 

Thus, as there is a 1-1 relationship between q and n, the problem can 

be rewritten to allow a finite range of M to be inspected, ie.

Min Max | e(/Li) I (5.12) 
<x,3 iue[o,i/<x]

where

-2(<x-H3) 2 iu 2 - 2(<x-H3)iu + 1 + 
€ ( M ) = —————————————————————————— (5.13)

for a 2-stage 2nd order BRK method. Clearly (<x+|Bq) must be non-zero to 

ensure that the function is analytic. We take <x as positive and £ 

negative to ensure this.

The NAG subroutine E04CGF was used to determine the values of <x and p 

to minimize e(ju). This routine finds the minimum value of a function 

of N independent variables using function values only. The function 

that E04CGF minimizes is the maximum of e(n) over the finite interval 

[0,l/<x], ie. a minimax problem. This maximum can be determined by 

computing e(0), e(l/cc) and e(jji) at the turning points given by e'(ju) = 

0 such that iue[0,l/<x]. The maximum of the moduli of these value of 

e(M) gives the function values for E04CGF and the minimum of those 

produces the required amplification factor.

This idea can be extended further by using an approximation to the 

iteration matrix

1 + s,hJ 4- 6 2 (hJ) 2 4- . . . + 6m (hJ)m 
MCI —————————————————————————— (5.14)

for the 2-stage 2nd order BRK method. The process (5.14) can however,
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be made more efficient by rewriting and implementing it in the 

following form

-«- ... + ————————— (5.15)
(al+PhJ) 2 (ccI+phJ) 3 (<xI+phJ) 2+m

This has m+2 free parameters which can be adjusted to reduce the 

amplification factor. This involves solving

Min Max
c,p qe(-«,0]

(l-q+q 2 /2)

(cc+|3q) 2 +. . .
(5.16)

for the unknowns a, p, n t , . . ., t^, where the constraints are as 

above.

By extending this idea still further a quadratic factorization can be 

considered. This has the general form for a 6-stage 5th order BRK 

method of

(<x + 0hJ + r(hJ) 2 ) 3 (5.17) 

Like the linear case a number of correction terms can be added to 

enhance the scheme, ie

1 -i- 6 t hJ -»• 6 2 (hJ) z + ... + 6 2m (hJ) zm
(5.18)

4- 0hJ + r(hJ) 2 ) m+6 

which can be written and computed as

(<xI+phJ+r(hJ) 2 ) (<xI+phJ+y(hJ) 2 ) 6 +m 

for efficiency.

(5.19)

The amplification factor can be determined by using a similar idea to 

that mentioned in the previous section, except that with the quadratic 

case there is one extra parameter to solve for, viz. y.

Similarly these ideas can be extended to higher order BRK methods. When
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an approximate factorization is used for a 5th order 6-stage method the 

amplification factors can be very good. The amplification factors 

found for the approximate quadratic factorization of a 6-stage 5th 

order method are shown in Table 5.1. If more than four correction 

terms are added then the time required to perform the back substitution 

stage far outweighs the time saved in reducing the amplification 

factor.

5.1.2 Application of approximate factorization

The general code developed here uses orders 3 and 5 and hence an 

approximate factorization for the 5th order method is required. The 

form of the iteration matrix for a general 6-stage 5th order method is

M = I - hJ -i- (hJ) 2 /2 - (hJ) 3 /6 + (hJ)*/24

- (hJ) s/120 -i- (hJ) 6p (5.20)

where p depends upon the particular 5th order method being employed. 

Thus a linear approximate factorization of (5.20) would be

M - («I + PhJ) 6 (5.21) 

which can be formed cheaply and the LU decomposition successfully 

performed. However, it turns out that this approach cannot produce the 

desired results when it is used on high order methods. There are two 

stages in the process, viz. calculating the residual vector and 

performing the back substitutions. Simple numerical tests shows that 

the residual vector, used to form the iteration matrix, is correct but 

that the back substitution stage of the process goes wrong.

Consider problem p5.1 with <x = 6, then the eigenvalues of J can be 

found by forming the characteristic equation

X 2 + X(10G +1) + 10s = 0 (5.22) 

which clearly has roots at -106 and -1. The -106 egienvalue will be
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referred to as the dominant eigenvalue. The corresponding eigenvectors 

can be formed from each eigenvalue, respectively as [-10~6 ,1] T and

T[-1,1] . Let these vectors be denoted by Vi and V 2 , respectively.

Defining the residual vector for a general s-stage BRK method as

s
r = vn+i ~ vn ~ nZCiki (5.23)

i=i

then for a 6-stage 5th order method applied to a linear problem it is 

r = [I - hJ +(hJ) 2 /2 - (hJ) 3 /3! + . . .

+ p(hJ) 6 ]yS+1 - yn (5.24)

Clearly yft+1 and yn can be formed by taking a linear combination of the 

eigenvectors of J, ie.

0 = a I-:
(5.25a)

(5.25b) 
hence the residual vector, (5.24), can be expressed as

r = a{l + hlO 6 4- (h!06 ) 2 /2 + ... + p(h!06 ) 6 > f-10~6> r-10~6 l

+ b{l + h + h 2 /2 + ... + phs }r-11

+ cf-10- 6] + df-1]
L 1 J L lJ (5.26)

Setting h = 0.1 and using the initial conditions as the starting vector 

y{{ enables a, b, c and d to be computed exactly as

a = c = -999999 

and b = d = -1. 

Now in (5.26)

{1 -i- hlO6 H- (h!06 ) 2 /2 -H . . . H- p(h!06 ) 6 } = 6.049157816 e26

and

{1 + h + h z /2 + ... + ph6 } = 6.059376119 e 2
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with p = 4.81890304 e -4. The residual vector, r, in (5.26) is then

04915781 ef 6 '
1-6.

(5.27) 
04915781 e 32*

which is clearly parallel to [-10~6 ,1] T which corresponds to the 

dominant eigenvalue X = -10s - This quantity is reproduced by the BRK 

methods correctly when integrating this problem, hence the residual 

vector is calculated correctly.

The next stage to check is the back substitution which will find the 

displacement vector, 6. This requires the solution to

[ccl + PhJ] G6 = r (5.28) 

by first forming the factorization and then performing six back 

substitutions in the normal way.

Selecting <x and /3 to maximize the rate of convergence of the Newton 

process, ie. minimize the amplification factor, results in (<xI+phJ) 

being evaluated as

1.096622667508114 e 0 -2.9073996092294181 e-2l ,
I ( 5 . <:» ;

2.90739960924137 e 4 2.9075121789605120 e 4j 

with an amplification factor of 2.51e-2.

Thus (5.28) can be solved by using the residual vector, (5.27), by

first solving

(1.09 ... eO)6 t - (2.90 ... e-2)6 2 = 6.04 ... e26 

(2.90 ... e4)6 t + (2.90 ... e4) 6 2 =-6.04 ... e32
«

and using this result as the right-hand side of (5.28) to perform the 

next back substitution. The displacement vector produced after the 

first back substitutions is

6 4 = 2.0805291579 e22

6 2 =-2.0805291581 e28
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which is clearly parallel to the eigenvector [-10 6 ,1] T which 

corresponds to the dominant eigenvalue -10s . Carrying out all six back 

substitutions lead to the displacement vector set out in Table 5.2.

Clearly after the 6 back substitutions have been performed the 

displacement vector is not parallel to the dominant eigenvalue, in fact 

it is parallel to [-1,1] T which corresponds to the eigenvalue -1. 

Hence the process has managed to switch from following the dominant 

eigenvalue to following the other, the mechanism being the same as in 

the inverse power method, eg. Burden et al.[1978].

The 6-stage 5th order BRK method advances the solution by using

Vn+i = Yn + (5.30)

which can be expressed as

Now

vn

y t = [I - hJ + (hJ) 2 /2 - * . . . + P <hJ) 6 ]y0

(5.31)

(5.32)

and we know

y( o) - y0 (5.33) 

and that

y(°) + d = y0 (5.34) 

where d is the displacement vector. The correct displacement is from

(5.32) and using (5.33)

[I - hJ 4- (hJ) 2 /2 - -i- . + P (hJ) 6 ]y0 - y0

where

= F(hJ)y<

F(hJ) - [- hJ * (hJ) 2 /2 - p(hJ) 6 ]

(5.35)

(5.36)

Now y0 is constructed from a linear combination of the eigenvectors of
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J, (5.25b). Thus (5.35) becomes

F(hJ)[cV t + dV 2 ] = cF(hJ)V 1 + dF(hJ)V 2

= cF(-106h)V 1 + dF(-h)V2

= C(6.049157816 e26)V t + d(6.05366119 e2) (5.37) 

when h = 0.1 and F(hJ) is obtained from (5.26). The two constants c 

and d are also computed from (5.26) as c = -999999 and d = -1. Clearly 

the first term will dominate and thus the displacement vector produced 

by (5.28) should be parallel to the eigenvalue Vj, ie. [-10~6 ,-1] T . As 

the process described above does not do this then instead of 

convergence being attained quickly, it will be an extremely slow 

process or not obtained at all.

If the denominator of the stability function is of high degree in q 

then the method will never work satisfactorily. For lower order 

denominators the method will be more successful but the inverse power 

method effect will still be present and is likely to reduce the 

stiffness ratio that can be successfully tackled. Furthermore if a 

problem with eigenvalues X = -1, -10s and 1 is considered, this is 

easily constructed by simply adding in y 1 = y3 , then the approximate 

factorization will make convergence slow, if obtainable at all.

5.1.3 Computing to extra precision

When the iteration matrix is computed as singular, it is not because 

the system of equations have become unsolvable but rather due to the 

inaccuracies in the representation of real numbers on a computer. By 

working to extra precision the problem can, to some extent, be avoided.

The Prime 550 computer, that has been used for most of the

computational work, supports a 32 bit word length as standard.
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However, when extra precision is required the double precision 

arithmetic option can be envoked. This doubles the size of any single 

variable to 64 bits, this comprises of a 1 bit sign, a 47 bit mantissa 

and a 16 bit exponent, Figure 5.1.

By employing the REAL*16 option, in Prime FORTRAN 77, the standard word 

length can be quadrupled to 132 bits per variable. Using this extended 

precision results in the computations being performed much more 

accurately and hence the likelihood of the iteration matrix being 

computed as singular is less.

However, there is a very heavy penalty, in terms of CPU time, to pay 

for demanding extra precision. Table 5.3 and 5.4 display results for 

timing round a loop to compute various quantities. Clearly the extra 

precision increases the CPU times by a factor in excess of 100. The 

process does, however, alleviate the problem of singular iteration 

matrices to a certain extent. Table 5.5 compares results for running 

problem p5.1, with <x=6, for a standard 5th order method in double 

precision and for one in quadruple precision. The low number of 

Jacobian evaluations, JE, indicate that the extra precision is working, 

but at a high computational cost.

/

5.1.4 Decrease order

This singular Jacobian problem is extremely pronounced with high order 

methods due to the iteration matrix becoming dependent upon high powers 

of J. Thus one simple solution is to decrease order when the problem 

is encountered. The code developed here is designed to facilitate the 

changing of order and hence a simple strategy for decreasing order when 

the singular problem occurs is permissible. Although this is not the

ideal solution, it is felt that there is no simple solution to this
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problem for BRK methods. Thus if more than five step failures are due 

to the iteration matrix then the order is decreased, this continues 

until first order is reached.

5.2 Incorrectly calculated iteration matrix 

Consider integrating

dx

—— = 400y t - 100y 2 y 3 - 3000y£ (p5.3) 
dx *

—— = 30yf 
dx

with initial conditions y(0)=[l ,0,0]T by the 2-stage 2nd order BRK 

methods given by

vn+i = Vn + h < k i + M/2

k i = f(xn+1 , yn+1 ) (5.30)

k 2 = f(xn+1 - h, yn+1 - hkj

The Jacobian matrix of p5.3 can clearly be formed and assuming that the 

problem is slowly varying then the iteration matrix is

[I - hJ -i- (hJ) 2 /2] (5.31) 

which, taking an initial step of 2.e-4 and using the initial values, 

can be constructed as approximately

1.0000008 0 0
-0.08 1 0

0 01
(5.32)

For the 2-stage 2nd order BRK method the residual vector can be formed 

initially as

r = y t - y 0 - Mk t + M/2 (5.33) 

where y0 is given by p5.3 and consequently the initial approximation 

for yj is y0 . The k value required can be computed as
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hk t = O8.e-6, 8.e-2, 0.eO]T

hk 2 = [-8.6-6, 7.6e-2, 3.84e-5]T 

and thus the residual vector is

r = C-8.e-6, 7.8e-2, 1.92e-5]T

which is then used to generate the iteration matrix numerically. This 

is computed as

1.0000007987 e 0 0.0000000000 e 0 5.9604168715 e-8
-7.6160321012 e-2 9.5200013741 e-1 -8.4033373041 e-4
-3.8400008634 e-5 4.7999863720 e-4 1.0000004033 e 0.

which is clearly a good approximation to (5.32). Thus the displacement 

vector can be computed and the process continued resulting in a 

converged solution. This whole process works adequately while h is 

kept small, however, when h is increased by any significant amount the 

residual vector becomes very large in magnitude and the iteration 

matrix computed is totally incorrect. This can be simulated by 

considering an initial step of 0.2, which is not unreasonable 

especially if a high tolerance is requested.

Now rewriting the k values of (5.30) as

kj = fi(xn+l -h, yn.n-hk}, y£.n-hk*, yn-n~hk ?) * = 1.2,3 

where

f t = -0.04y l + O.Oly^

f 2 = 400y! - 100y 2 y 3 - 3000y|

f 3 = 30yf

At the initial step the approximation for y t is y 0 and the k t values 

can be constructed as

k{ = fj(0.2, 1.0, 0.0, 0.0) 
= -0.04

kf = f 2 (0.2, 1.0, 0.0, 0.0) 
= 400
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k? = f3(0.2, 1.0, 0.0, 0.0) 
= 0.0

and k 2 as

kj = f^O.O, 1-0.2(-0.04) , 0-0.2(400), 0-0.2(0)) 
= f t (0.0, 1.008, -80.0, 0.0) 
= -0.04032

k| = f 2 (0.0, 1.008, -80.0, 0.0) 
= -19199596.8

kf = f 3 (0.0, 1.008, -80.0, 0.0) 
= 192000

which results in a residual vector of

r = [8.032 e-3, 1.91991968 e6, 1.92 e4]T

The fact that the residual vector is large in magnitude is itself not 

necessarily a problem. The problem arises when the iteration matrix is 

computed, it should be approximately

1.008032 0 0
-80.32 1 0

0 01

The actual iteration matrix computed is, however

1.00803196 e 0 -1.1920900 e-7 8.0000000 e-2
3.83992065 e 6 -4.8005687 e 4 -8.0000000 e 2

-3.84000087 e 4 4.8006835 e 2 1.0000000 e 0

which is clearly incorrect. This iteration matrix results in a 

displacement vector that forces the solution in completely the wrong 

direction and usually ends up with an overflow being produced which 

aborts the program.

There appears to be no simple solution to this problem as it is 

independent of the order of the methods being employed. The only 

solution is to check for an exceptionally large residual vector and 

halve the step size when it occurs. This will ensure that the 

incorrect matrix is not computed and hence a saving in wasted function 

evaluations.
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This problem, p5.3, is taken from the DETEST package and is problem D2. 

Consequently all problems in group D of the test package are of a 

similar nature and BRK methods will perform inefficiently.
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No. of Amplification

Correction terms factor

6 2.28e-2

1 1.75e-2

2 8.69e-3

3 5.47e-3

4 1.75e-3 

Table 5.1 : Amplification factors for quadratic approximation

Back Displacement vector 
subs. &i 6 2

1 2.0805291579 e22 -2.0805291581 e28

2 7.1556938908 e!7 -7.1557094535 e23

3 2.3228628042 e!3 -2.4611130639 e!9

4 1.2272854297 e!2 8.4523974568 e!4

5 -1.0909971616 e!2 1.0618840290 e!2

6 -9.6917511262 ell 9.6917411131 ell 

Table 5.2 : Displacement vectors
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Quantity computing : sin(x) 

No. of times computed : 10000

precision
time 

(centiseconds)

single real 

double real 

quadruple real

56

98

11620

Table 5.3 : Timing for computing sin(x)

Quantity computing : axb

No. of times computed : 100000

precision
time 

(centiseconds)

single integer 

double integer 

single real

double real

quadruple real

71

165

70

101

6662

Table 5.4 : Timing for computing axb

Mode

double

quadruple

TOL

-4
-5
-6

-4
-6
-7

o
FE

129924
403524
531126

1080
2478
8118

JE

332
11717
16329

34
68

213

Steps

7484
4834
5656

20
32

150

CPU 
Time

195.05
477.86
623.23

44.56
100.71
340.35

Table 5.5 Comparison of double and quadruple 
precision on problem p5.1.
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MANTISSA X EXPONENT ]

Figure 5.1 : 64 bit word length on a Prime 550
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Chapter 6 : TYPE-INSENSITIVE CODE

Many engineering processes give rise to systems of ordinary 

differential equations which require a fast, accurate and reliable 

numerical integrator. The user does not want to explore the extensive 

software available for such calculations. Normally the ODE system used 

to describe the process may be classified into one of three classes 

viz. oscillatory, non-stiff or stiff problem, before the integration 

commences. Each class puts different demands on a numerical solver for 

efficient integration. However, from studying the initial ODE system 

tehere is no simple way of determining the characteristics of the 

problem, in fact many engineering problems will change characteristics 

as the integration proceedes. For example, an integrator for a weapon 

guidance system of a rocket will require a small time step to correctly 

track the initial stages of the trajectory where the thrust rockets and 

fins are deployed, if the velocity is to be calculated correctly. The 

rocket will then go through a relatively steady phase where no vital 

information can be gathered and hence a large time step should be used. 

In the final stage the target may be taking evasive action and again a 

small time step will be required to monitor the flight path accurately, 

ensuring that the rocket hits the target.

One obvious way of determining the characteristics is to evaluate the 

eigenvalues of the initial value problem. This, however, may be very 

time consuming, especially if the system is large or highly non-linear. 

If the user is unsure of the nature of the system then normally the 

safest choice is to employ an implicit method, which will clearly be 

inefficient if the problem is not stiff in any region of the 

integration range.
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This chapter describes an algorithm that takes this important decision 

of method selection away from the user by monitoring automatically the 

state of the equations and selecting the most appropriate integrator. 

The scheme is based on the Backward Runge-Kutta methods of chapter 3, 

and Explicit Runge-Kutta methods. The complete algorithm will switch 

from explict solver to implicit solver depending upon the 

characteristics of the problem at any stage during the integration. A 

facility for changing order is also incorporated into the code to give 

additional flexibility.

6. 1 Motivation for a type-insensitive code

The motivation for creating a numerical code that is capable of 

automatically switching between different solvers is readily seen by 

considering the following system of ODEs ,

—— = -10y t + 500y 2 
dt

dy2
—— = -SOOyj - 10y 2
dt

—— = -4y 3 
dt

te[0,64]

dt

—— = -0.5y 5 
dt

—— = -O.ly6 
dt

with y(0) = [1,1,1,1,1,1] T

This is a problem based on B5 of the DETEST battery, Enright and

Pryce[1983], and is frequently used as a test example. It is
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characterised by an initial oscillatory component which is damped out 

after about 1.5 seconds.

Table 6.1 shows the effect of integrating with an 8th order method in 

ERK and BRK modes on this problem (p6.1), where Max error is measured 

as the maximum absolute error over the integration range.

Clearly the CPU time for the ERK method is unacceptable and hence it 

appears that the explicit method should not be used on this problem at 

all. However, if the integration range is shortened such that the 

oscillatory component is not damped out then a very different picture 

emerges, Table 6.2

The explicit method is far superior over this initial oscillatory stage 

of the integration. When the oscillations have been damped out the BRK 

requires only another 24 steps to complete the integration, whereas the 

ERK method must continue to use a small step.

Clearly the ideal situation, on this problem, would be to integrate up 

to about 1.5 using an explicit method and then switch over to an 

implicit method where the step will be allowed to rise sharply. From 

this example the need for a code that automatically switches numerical 

solvers is apparent, such codes are often referred to as 

type-insensitive.

In Chapter 2 three Runge-Kutta methods were generated from one set of 

basic coefficients viz., ERK, BRK and MRK methods. Chapter 3 showed 

that BRK methods are often capable of integrating stiff systems of ODEs 

efficiently, whereas ERK methods are commonly used for the solution of
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non-stiff DDEs. Although MRK methods can be made precisely A-stable, 

it was shown in chapter 2, that they do not perform significiantly 

better than ERK methods at reproducing the correct characteristics of 

an oscillatory solution, ie. they cannot correctly predict the 

frequency of the component unless the step size is severely restricted. 

We conclude that the oscillatory problems can be integrated efficiently 

by an explicit method. A schematic overview of the explicit and 

implicit methods employed in the algorithm is presented in Figure 6.1. 

The arrows indicate the direction of switching that is used. A 

flowchart illustrating the switching available at any step of the 

algorithm is shown in Figure 6.2 for the 3rd order ERK method, the same 

basic strategy applies to BRK methods.

6.2 Switching integrator

The two classes of integrators employed are the expicit, ERK methods 

and the implicit, BRK methods. The ideas behind the switching 

strategies are basically the same regardless of the order of the method 

currently being employed.

6.2.1 Switching from explicit method to implicit method 

The algorithm starts the integration with the explicit method using a 

very small step, as this is computationally the cheapest and the state 

of the equations are undetermined initially. The explicit method will 

be efficient providing that the system remains non-stiff or 

oscillatory. If the equations are, or become, stiff a change must be 

made to the stiff solver, hence some means of detecting stiffness is 

needed. The approach taken here is to use a stiffness detection scheme 

based on an idea by Shampine and Hiebert[1977].
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Assuming that the integration is being performed by an s-stage method 

of order p+1, (s,p+l), and the error controlled by an embedded (s,p) 

method then after a successful step the error control mechanism will 

select a new step size. This step will be the largest possible to meet 

the accuracy requirements, this may correspond to a q^ value being on 

the boundary of the methods stability region in which case the step 

size is restricted for stability reasons. Alternatively all q^ values 

may be well within the stability region and the step size is restricted 

by accuracy.

The main requirement, apart from reliability, of the stiffness 

detection scheme is cheapness. As the scheme is to be employed after 

every successful step the cost of it must be minimal.

Consider taking a step with the (6,5) and (6,4) Fehlberg methods ie.

= f(xn -i- hai, yn + hEbjjkj) (6.1)

where the constants are given in Table 6.3. At each step six function 

evaluations at discrete points between xn and xn+1 are available. From 

these a (6,2) and a (6,1) method can be constructed ie. 2nd and 1st 

order methods with 6 stages. This is clearly inefficient in a normal 

explicit scheme, but in this case the function evaluations, k values, 

are already available from the (6,5) method. Thus a linear combination 

of them can be taken to form the lower order methods .

For the (6,2) method this will be,
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6

Yn + Zc^i (6.2)

and for the (6,1) method

* (6.3)

where the weights are taken together with the constants from Table 6.3 

to generate the required order method.

The two equations to be satisfied for a 6-stage 2nd order method are

6

E6i = 1 
i=i
6

and ECa = 1/2 (6.4)

By incorporating the coefficients from the main (6,5) method the six 

free parameters can be reduced to four with

6

6

and 5i = 1 - Eci (6.5)
i=z

Similarly for the 1st order method, one free parameter can be removed 

by setting

6

C? - 1 - EC* (6.6) 
i=z

The only requirement of this lower order pair is that their stability 

regions are uniformly larger than that of the (6,5) method.

A computer search was made for a (6,2) and a (6,1) pair which had a 

stability region uniformly larger than the (6,5) method. The 

coefficients produced are the same as those published by Shampine and 

Hiebert[1977] and are given in Table 6.3. On all subsequent plots the
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stability regions for each method will be denoted by the following key;

i) MAIN for the main integrator,

ii) ERROR for the integrator used for error control (ERK only),

iii) ORDER for an integrator use for switching order, and

iv) METHOD for an integrator used to switch numerical method.

The absolute stability regions of the 5th order related methods are 

shown in Figure 6.3. Clearly the embedded explicit methods, ERK 2 and 

ERK 1, used for the switching of numerical methods are uniformly larger 

than the main explicit methods.

Similarly for a (3,3) method with a (3,2) method for error control, 

embedded (3,2) and (3,1) methods for stiffness detection can be found. 

Table 6.4 shows these coefficients and their stability region are shown 

in Figure 6.4.

Clearly this idea of embedding a 2,1 pair within the higher order 

methods for the detection of stiffness, can be extended to higher 

orders. It cannot, however, be used in conjunction with any ERK pair 

lower than 3rd order. For this scheme to work a 2nd and 1st order 

embedded pair are required with stability regions uniformly larger than 

the main method. Hence if the main method is 2nd order, in 2 stages, 

then the embedded 2nd order method must have exactly the same stability 

region as the main method. Thus a switch from ERK 2 to BRK 2 is not 

provided. The 2nd order coefficients are, however, given for 

completeness in Table 6.5.

The main method will select a step size that just meets the accuracy 

requirements. If the step size is restricted on the grounds of accuracy
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rather than stability then the lower order embedded pair are unlikely 

to satisfy the accuracy requirements. We know that the lower order 

pair are failing for accuracy reasons, and not for stability reasons as 

its stability region is larger than that of the main method. Thus the 

system is not stiff at the current integration point.

If the lower order embedded method is repeatedly able to meet the same 

accuracy requirements then the step size of the higher order method 

must be restricted for stability reasons. This implies that the 

problem is becoming stiff. If the embedded method is successful for 

50% of the time over 50 consecutive steps then the problem is deemed 

stiff and a switch to the implicit method advocated.

To increase efficiency the step size is increased by a factor of 5 when 

the switch is activated. This is primarily due to the "dead band" 

introduced in the step control algorithm, chapter 4, to save on 

iteration matrix updates. If the BRK method fails to meet the accuracy 

requirements with this increased step then a switch back to the 

explicit method is performed, otherwise the integration continues with 

the implicit method.

Since the ERK and BRK methods share the same coefficients when a switch 

is performed, no new coefficients have to be calculated and further 

parts of the code can still be used. This makes the overheads in 

switching minimal.

6.2.2 Switching from implicit method to explicit method 

In order to ensure that the code is competitive the implicit to 

explicit switching must also be cheap.

- 128 -



One approach, Shampine[1981], Norsett and Thomsen[1986], is to use the 

approximation to the Jacobian matrix of the problem, or the exact 

Jacobian matrix if this is supplied to the code, to form some estimate 

of the Lipschitz constant. However, in the case of BRK methods this 

matrix is not computed As described in chapter 3, it is an 

approximation to the iteration matrix that is computed.

The approach taken here is to generate some non-stiff detection schemes 

based on the function evaluations available from the implicit method. 

These will be the k values after the implicit equations have been 

solved to an acceptable tolerance by the quasi-Newton process. Thus 

the detection scheme will be a numerical method in its own right.

The only requirements of this new method is that it uses the k values 

from the implicit method and must have characteristics like an explicit 

method. In particular it must possess a finite stability region. 

Taking a linear combination of the k values produced by an implicit BRK 

method clearly cannot result in a method with a finite stability 

region. If this where so then the corresponding ERK method would have 

an infinite stability region!

The general s-stage BRK method is

Vn+t = Vn + hEciki (6.7a)

i-i
ki = f(xn+1 - hbi, yn+! - hEaijkj) (6.7b)

j = *

After a successful step with any Runge-Kutta method the k values are 

discarded and a new collection generated on the next step. In fact

the only value carried forward is the solution yn+1 , which becomes yn
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on the next step. By using previous solution values, (y values), the 

resulting method becomes akin to linear multistep methods and will 

inherit their deficiencies.

If, however, the k values computed on a step are stored and used on the 

next step then a new method, an Extended BRK method (EBRK), is 

generated, which can possess a finite stability region. Thus instead 

of (6.7a)

s t
Vn+i = Vn + hEciki + hZc*k* (6.8) 

i=i i=i

# is used where kj are selected from the kj, i=l(l)s values from the

previous step. Thus the k values on step n are stored and used on step 

n+1. However, to store every k value is unnecessary as they can be 

stacked up in one vector viz.

t
Ic*k* (6.9) 

i=i

is calculated, constructed and stored on the nth step and used on the 

(n+l)th step. Clearly this technique must be employed on the second h 

step of the Richardson process.

The solution produced by this EBRK will only be reasonable if 

i = 1(1)N is within the stability region of the method for all i such 

that Re(qj) < 0. The solution of the EBRK method is compared with that 

obtained by the BRK with the second h step and is regarded as 

successful if it satisfies the same error tolerance as is employed for 

the BRK method. However, the object of using the EBRK methods is to 

determine whether the ERK method could be used to perform the 

integration efficiently and not to produce a usable solution itself. 

If the solutions agree for five consecutive steps then qj is deemed to
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be "small" and a switch to the cheaper explicit method performed. The 

new step size taken by the ERK method is that last used by the BRK 

method.

The weights for the EBRK method were found numerically by a computer 

search. Clearly the weights are constrained by the order equations 

that must be satisfied for a particular order, ie. for a 3rd order 

method there are four equations to satisfy, Table 1.1. The successful 

weights being those that would produce stability regions that were 

finite and matched the stability regions of the corresponding ERK 

method. Initial testing was performed by trying to find a 3rd order 

EBRK, for the 3rd order BRK method, with only 1 past k value, ie, t = 

1. This, however, did not produce an acceptable stability region. With 

t set at 2 the EBRK method with stability region shown in Figure 6.5 is 

produced. This is compared with the stability region of the 3rd order 

ERK method. The weights for this are

C t = 1.0100 ct = 4.2167

C 2 = -2.0320 c* = -1.5180

C 3 = -0.6767

The method employed was to guess one coefficient, determine the others 

by solving four linear equations and plot the corresponding stability 

region. Remarkably the objective was to make the region as small as 

possible!

For the 5th order methods a 4th order EBRK was initially tested to 

determine if the same idea would work for higher orders. Suitable 

weights found were, using t = 4,
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C t = 0.00000 c* = 0.45371

C 2 = -0.91475 c* = 0.07037

C 3 = 3.37465 c* = 0.16789

C4 = 0.00000 c* = -0.05868

C 5 = -0.29977

C6 = -1.79342

Initial testing was performed with this 4th order EBRK. The method 

proved very reliable and was always able to detect when the problem 

became non-stiff. Ideally a 5th order EBRK method should be used. 

However, no suitable method was found and since the 4th order method 

proved so effective it was retained. Simple numerical testing with a 

2nd order EBRK for the use with the 3rd order BRK demonstrated that the 

order of the EBRK need not match exactly the order of the BRK method. 

However, the 3rd order EBRK method was retained for use with the 3rd 

order BRK method.

Similarly a EBRK for the 2nd order BRK method is required. This can be 

generated by the use of one past value. One suitable choice of weights 

is

G! = 0.5 C t = 1.0

C 2 = -0.5

and using the coefficients of Table 6.5 to produce the stability 

regions in Figure 6.6. This method is 2nd order.

6.3 Switching order

To meet the requirements of the user and to make the code more flexible 

it should ideally be able to select the appropriate order. The orders 

employed for this code are 2, 3 and 5 for the explicit methods and 

orders 1, 2, 3 and 5 for the implicit ones. The main orders in the
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code are 3 and 5 with the others playing a supporting role in case of 

serious failures. The 2nd order ERK method being employed mainly so 

that the algorithm can recover from the use of lower order BRK methods 

eg. being forced to low order if the iteration matrix is regularly 

computed as singular.

6.3.1 Order Reduction

As the decision to switch order must be inexpensive, the k values 

produced by the main integrator must be used. If the integrator has 

order p then clearly, a method of order less than p can be embedded 

within this method such that the same function evaluations are used.

When either the ERK or BRK 5th order method is being used a decision 

must be made as to whether to switch down to the 3rd order method. By 

embedding a 3rd order method within the 6-stages of the 5th the test 

can be performed. For the ERK method an embedded 3,2 pair will be 

required for the error estimation while for the BRK method the same 3rd 

order method used in backward mode can be employed. The weights were 

determined numerically by the same method as described in section 

6.2.2. The final values chosen were

3rd order 2nd order

d = 0.0831292 0.0031290

C 2 = -0.0029698 0.0070320

C 3 = 0.6187300 0.1285200

C4 = 0.1847500 0.1234860

C s = 0.0800000 -0.0656610

C« = 0.0363636 0.8034940
O

Their stability regions, used in conjuncation with the coefficients of 

Table 6.3 are shown in Figures 6.7 and 6.8 for ERK and BRK modes
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respectively.

The embedding error test, for the ERK method, is performed by taking 

the difference between the 3rd order method and the 2nd after the 5th 

order ERK method has taken a successful step. A Fehlberg type test is 

then carried out, described in chapter 3, to determine if the lower 

order method can match the required accuracy.

For the BRK method the solution obtained from the lower order method, 

over the second h step, is compared with the BRK solution produced 

there.

The same embedding process can be used for a 2nd order, plus 1st for 

the ERK method, within the 3rd order methods. The weights in this case 

are

2nd order 1st order

Ci = 1/3 1/5

c z = 1/3 1/5

C 3 = 1/3 3/5

and the same error control test as described above is used. Figures 

6.9 and 6.10 present the stability region of these methods used in 

conjunction with the coefficients of Table 6.4.

6.3.2 Increasing order

All of the switching strategies developed so far rely on information 

readily available at the end of a successful step. The only extra 

expense involved is a few multiplications and additions. Various ways 

of increasing order were considered that involved computing extra 

function evaluations. Only two possibilities came to light that would
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not require any additional work. The first was to use another extended 

method, ie. using previous k values. However, it proved difficult to 

generate the EBRK methods with the required stability and accuracy 

properties. When employing the 3rd order method the proposed change is 

to 5th order, hence the extended method will require at least 6-stages. 

Even by taking all the k values from the previous step a 5th order 

method with the correct stability region is not guaranteed. The EBRK 

4th order method required 4 previous values, 10-stages in total to 

produce the required stability region.

The much simpler option is to continue with the current order method 

until the step fails for accuracy reasons. At that point an order 

increase is advocated. This method was employed for both the ERK and 

BRK methods. If the ERK method is being used, than a step size failure 

must be due to accuracy if the stiffness detection scheme was not 

triggered. Thus the stiffness prediction scheme must be given priority 

over order change. This very simple order increase scheme is justified 

purely on the grounds that numerical tests indicate that it works 

reasonably well as shown in section 6.5

6.4 General comments

Although two separate numerical methods, ERK and BRK, are employed in 

the complete algorithm they are closely related. This makes the final 

code relatively compact as often the same piece of code can be used for 

both methods by simply switching some of the parameters. For example 

one subroutine GFUN calculates the required k values; for the ERK 

method this is called as

CALL GFUN(X, Yn , Yn+ t , H,. . . ) 

and can be called in conjunction with the BRK as
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CALL GFUN(X, Yn+1 , Yn , -H,. . . )

In all, five subroutines can be used for both explicit and implicit 

methods in this way.

6.5 Numerical results

The numerical results will be split into sections to test the correct 

behaviour of all the switching strategies described earlier. The 

headings for each table are as used in the previous chapters with 

significant figures accuracy measured at the end of the integration 

range over the relevant component, ie. y 3 , y 3 , y 4 and y t for problems 

p3.1, p3.2, p3.3 and p3.4 respectively.

6.5.1 Integrating non-stiff problems

In this section the ability of the code to select methods for non-stiff 

problems is tested. Two problems are considered, one is problem p3.1 

with the coefficient -106 of y t changed to -1, yielding problem pS.la, 

to make the problem non-stiff. The other is problem p3.2 with a change 

in the initial conditions of y 2 and y 3 to -1, producing problem p3.2a. 

Clearly in this state stiffness should not be detected and thus the 

explicit method should be used throughout the integration range. The 

results of integrating these two problems with ERK3, ERK5, (explicit 

methods of order 3 and 5), BRK3, BRK5 and SARK are shown in Table 6.6 

and 6.7.

The most efficient method for pS.la is clearly the high order explicit 

method with the implicit methods being inefficient. Clearly SARK 

chooses the correct method of integration by staying with the high 

order explicit method. The CPU times produced by SARK are higher than 

the ERK5 because of the slight overheads incurred in the switching
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stratagies.

For problem p3.2a a similar pattern emerges with the explicit methods 

being far superior to the implicit ones. Again SARK can correctly 

deduce that the problem can be solved more efficiently by an explicit 

method and thus no switching occurs. (Table 6.7).

The other occasion when a non-stiff integrator is required is when a 

stiff problem becomes non-stiff. This can be simulated by commencing 

the integrating of a non-stiff problem with a stiff integrator. The 

detection scheme should detect that the problem is non-stiff and switch 

accordingly. Table 6.8 and 6.9 display results that compare BRK5 with 

SARK, run in this manner, on problems pS.la and p3.2a. By commencing 

the integration of SARK with the 5th order implicit method it clearly 

switches over to the cheaper explicit method when the problem is deemed 

to be non-stiff. As a result the CPU times produced are superior to 

those produced by the 5th order implicit method. For pd.la the ERK 

methods integrate for 90.4% of the integration range at a tolerance of 

l.e-3 and for 56.1% at a tolerance of l.e-6. On problem p3.2a these 

percentages are even higher at 90.5% (l.e-3) and 81.8% (l.e-6), clearly 

showing that lack of stiffness is detected.

6.5.2 Integrating a stiff problem

This section examines the ability of the code to select the correct 

method when confronted with a stiff problem. The switching of order is 

also tested. Clearly no explicit method is able to integrate a stiff 

problem efficiently and hence SARK must switch over to an implicit 

method. The results of running the stiff problems p3.1 and p3.4 are 

shown in Tables 6.10 and 6.11. For problem p3.1 the low order implicit
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method is the most efficient, hence SARK should switch over to this 

method, which it does, producing comparable accuracy in a faster time. 

Problem p3.4 on the other hand is integrated quicker by the high order 

method at a tight tolerance and by the lower order method at a high 

tolerance. SARK manages to switch to the appropriate method and 

produce superior results to either of the implicit methods at both 

tolerances. For both problems the BRK methods were used for 99.9% of 

the integration. These results show that, not only is the switching of 

numerical methods handled correctly, but also the most appropriate 

order is selected.

6.5.3 General results

Three problems are considered in depth and compared with results from 

both Gear's and Adams methods. The first problem is the one considered 

at the start of this chapter as a motivation for a type-insensitive 

code. Also considered is the van der Pol equation broken down into a 

system of first order differential equations

— — — • = y 
dt

te[0,a] (p6.2)

— = -yj + Mi - yf)y 2
dt

with initial conditions y(0) = [1,1] T . This problem is known to change 

its characteristics during the integration range and is often cited in 

literature, Petzold[1983] , Norsett and Thomsen[1986] , as a test problem 

for type-insensitive codes. By selecting different values of X and the 

endpoint of the integration range, a, the problem possesses different 

characteristics. Three values of X, 5, 10 and 100, are considered over 

two different integration ranges a = 10 and 100. With X = 5 and a = 

10 the problem is deemed non-stiff. As x and a are increased the
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problem becomes stiff er. At the two extremes the problem is clearly 

defined as either stiff or non-stiff and hence a general purpose 

integrator may be unable to be as competitive as one specially designed 

for a specific class of problems. Finially problem p6.3

dt
te[0,10] (p6.3)

—— = -(100 2 + l) yi - 2y 2 
dt

with initial conditions y(0) = [1,1] T is used to test the ability of 

SARK to cope with an oscillatory solution. The results of integrating 

these three problems are set out on in Tables 6.12 to 6.19. Each set 

of results is produced by modi f ing the DETEST package, and using the 

normalised statistics produced. This takes into account the different 

way that codes control the local error. The quantity Iog 10 accuracy is 

the expected accuracy of the numerical method over the integration 

range for all components. Further details about this, the DETEST 

package and the statistics produced are described in the next chapter.

Problem p6.1 was integrated with a small initial step, l.e-6, to ensure 

that the BRK methods did not damp out the initial oscillatory solution. 

Both GEAR and ADAMS performed badly, Table 6.12 and Figure 6.11, with 

the CPU times being over 200 times worse than that of SARK. The low 

number of Jacobian evaluations for SARK indicates that the code is 

integrating over the oscillatory phase with the explicit methods and 

then switching to the implicit method when the solution smoothes out.

The results for various parameters x and a for problem p6.2 are shown 

in Tables 6.13 - 6.18 and graphically in Figures 6.12 - 6.17. When X = 

5 and a = 10, Table 6.13 and Figure 6.12, the problem is non-stiff and
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clearly the ERK methods are more efficient than the BRK methods. 

Surprisingly ADAMS performs as badly as GEAR and both are inferior to 

SARK which correctly chooses the high order explicit method.

Increasing the value of x to 10 introduces more stiffness into the 

system. This is apparent from Table 6.14 and Figure 6.13 which 

demonstrates that GEAR is superior to the ADAMS, but it is still 

slower than SARK.

With X = 100, Table 6.15, ADAMS is very inefficient as shown by Figure 

6.14. Although GEAR is slightly more efficient than SARK, SARK does 

select the most efficient method available. It is only the high number 

of function evaluations required for all Runge-Kutta based methods that 

makes SARK slightly less efficient. If the cost of performing the 

function evaluations are removed from the overall CPU time then the 

overheads of the method can be assessed. The DETEST package provides 

statistics for these figures. As both SARK and GEAR are using a 

numerical Jacobian this is valid for both methods. When this is done 

SARK far outperforms GEAR, the column entitled OVHD of Table 6.15. The 

fact that the efficiencies of Gear and Adams are so different indicate 

that the problem is stiff and as a result a specialized stiff 

integrator must be more efficient than a type-insensitive code.

Resetting x to 5 and allowing a to increase to 100 returns the problem 

to the non-stiff state as indicated by the results of Table 6.16, 

Figure 6.15. Again SARK correctly selects the most efficient method 

and is far superior to either of the raultistep codes.

Increasing X to 10 produces a stiff problem when the tolerance is high
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and a non-stiff problem when it is low, Table 6.17, Figure 6.16. As 

the tolerance is decreased the code recognises that the problem can be 

integrated more efficiently by the explicit method and thus stays with 

ERK5. This problem also indicates that stiffness is not just dependent 

upon the problem being solved but is also dependent upon the accuracy 

requested.

With X = 100 and a = 100, Table 6.18 and Figure 6.17, the problem 

possesses a severe spike in the second component during the 

integration. For most of the integration range y z is approximately

-0.1, but at one particular point it shoots down to -133.7 and back to

-0.1 almost immediately. Norsett and Thomsen[1986] use their switching 

code to locate the exact position of this spike. They claim that the 

spike is at 81.92. This is incorrect. The spike is in fact located at 

81.2 which can be picked up accurately by SARK. This can be confirmed 

by integrating the problem with a very small time step and tight 

tolerance by GEAR. For this choice of parameters ADAMS method is very 

inefficient, again indicating that the problem is stiff. Overall GEAR 

is marginally more efficient than SARK in terms of CPU time for a 

requested accuracy. Clearly, however, the cost in overheads of GEAR is 

much higher than the associated cost with SARK even though SARK changes 

integrator as well as order. The cost of the overheads in SARK is 

between 55% and 70% of the total CPU time, (this depends upon the 

integrator being employed), whereas about 93% of the time for GEAR is 

involved with overheads.

The final problem considered is p6.3. This is characterised by an 

oscillatory solution and thus the explicit method will be superior. 

This is confirmed by Table 6.19 and Figure 6.18. SARK correctly
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deduces that the step is being restricted for accuracy reasons and thus 

the explicit method is used throughout.

These three problems demonstrate that SARK is capable of correctly 

selecting the most suitable method available to it and that it is often 

superior to specialized integrators. Clearly when the characteristics 

of the problem are such that it can be easily categorized as stiff or 

non-stiff, then a specialized integrator may be superior. However, it 

is often difficult to categorize the problem and furthermore many users 

\>f codes are not interested in attempting to categorise the problem. 

In such cases SARK is to be recommended.
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ERK 1.3e-3

Table 6.

Min. 
step

BRK 2.3e-3 

ERK 1 . 3e-3

Table 6.

Max. Max. Error No. of CPU 
step error at xen(j steps time

3.46eO 3.2e-6 6.7e-9 536 87.7 

l.le-2 1.5e-4 3.0e-6 1127 497.0

1 : Integrating upto x~nri = 64.0
d> I i vi

Max. Max. Error No. of CPU 
step error at xen(j steps time

1.3e-2 3.2e-4 2.3e-7 512 78.9 

l.le-2 1.6e-3 1.3e-5 298 25.8

2 Integrating upto x~nn = 1.57
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0 6656 28561 -9 2 (6,5)
12825 56430 50 55
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.139682 -.198633 .724462 .428953 -.141485 .047041 (6,2) 
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Table 6.3a : Coefficients for 5th order related method

Table 6.

(6,5) main method 
(6,4) error control for ERK method (6,2) ' 

stiffness detection 
(6,1) .

3b : Description of methods of Table 6 . 3a
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0

1
2
1

Table (

1 
2

-1 2

121 - - - (3,3) main method 636
2 6 2 ,_ 0 . ^ . To To To < 3 ' 2 ) error control

25 25 25> (3,2) 
stiffness detection

100 100 100 (3Fl) 

5.4 : Coefficients for 3rd order related metho

0

1
0

1 0

1 0

(2,2) main method

(2,1) error control for ERK method

Table 6.5 : Coefficients for 2nd order related methods

Log 10 
Method Order TOL FE

Sig. Figs. CPU 
JE Steps Accuracy Time

ERK

ERK

BRK

BRK

SARK

3 -3
-6

5 -3
-6

3 -3
-6

5 -3
-6

-3
-6

108
849

126
354

468
1374

1566
1704

126
354

—

-

-
—

14
10

14
13

0
0

36
283

21
59

68
282

106
90

21
59

4.16
7.08

4.85
8.31

4.37
6.61

3.71
7.09

4.85
8.31

0.21
1.07

0.17
0.40

0.63
1.98

1.73
1.74

0.20
0.54

Table 6.6 : Results for non-stiff problem p3.1a
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Log 10 
Method Order TOL FE

Sig. Figs. CPU 
JE Steps Accuracy Time

ERK

ERK

BRK

BRK

SARK

Table 6

^

Method

BRK

SARK

Table 6

Method

BRK

SARK

3 -6
-9

5 -6
-9

3 -6
-9

5 -6
-9

-6
-9

.7 : Results

Log 10 
Order TOL

5 -3
-6

-3
-6

.8 : Compari

Log10 
Order TOL

5 -3
-6

-3
-6

429
4101

126
366

843
2937

1308
1980

126
366

—

-

—

-

13
13

19
15

0
0

for non-st 

FE JE

1566
1704

702
1290

son of

FE

1260
1308

576
744

14
13

14
13

BRK5 

JE

25
19

13
10

143
1367

21
61

90
414

68
122

21
61

2.61
5.58

1.79
4.51

1.21
4.52

3.16
5.33

1.79
4.51

iff problem p3.2a

Sig. Figs. 
Steps Accuracy

106
90

42
71

3.71
7.09

7.60
9.59

0.70
6.77

0.20
0.53

1.23
4.70

1.80
2.66

0.21
0.55

CPU 
Time

1.73
1.74

1.08
1.69

and SARK on problem p3

Sig. Figs. CPU 
Steps Accuracy Time

44
68

31
53

0.72
3.16

1.14
3.22

1.72
1.80

0.99
1.26

% 
ERK

—
-

90.4
56.1

.la

% 
ERK

—
-

90.5
81.8

Table 6.9 : Comparison of BRK5 and SARK on problem p3.2a
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Log 10 
Method Order TOL FE

Sig. Figs. CPU % 
JE Steps Accuracy Time BRK

BRK

BRK

SARK

3 -3
-6

5 -3
-6

-3
-6

516
1950

2136
2958

585
1521

12
27

36
36

12
12

58
346

132
222

113
301

3.18
6.45

3.77
4.57

3.04
6.43

0.75
2.96

2.29
3.38

1.50
2.66

99.9
99.9

Table 6.10 : Results for stiff problem p3.1

Method Order TOL FE
Sig. Figs. CPU % 

JE Steps Accuracy Time BRK

BRK

BRK

SARK

3 -4
_Y

5 -4
-7

-4
-7

6153
31329

50496
67158

1545
11316

33
39

87
63

14
45

1288
6850

2690
2828

245
1691

1.31
3.25

1.68
4.26

1.47
3.90

7.68
69.19

43.60
54.93

1.82
11.35

99.9
99.9

Table 6.11 : Results for stiff problem p3.4

- 146 -



Method Log 10 
& Order Accuracy

ERK 3

ERK 5

BRK 3

BRK 5

SARK

GEAR

-3
-4
-5
-6
-7
-8

-4
-5
-6
-7
-8

-5
-6
-7

-3
-4
-5
-6
-7
-8
-9

-6
-7
-8

-2
-3
-4
-5
-6

FE

53549
56437
62790
76488

105774
168464

56420
57741
59865
63221
68462

14532
39558
68964

6949
10999
14273
20764
28408
36179
43873

4078
8178
17942

58815
58848
58074
54499
63473

JE

—
-
-
-
-
-

—
-
-
-
-

23
23
53

17
20
23
25
25
23
20

8
8
7

2274
2272
2245
2113
2458

Steps

17848
18811
20929
25495
35257
56153

9402
9622
9976
10535
11409

1439
3987
7504

341
557
729
1085
1509
1944
2381

583
1248
2859

44933
44941
44446
41685
48562

CPU 
Time

86.98
91.30

100.81
122.87
170.13
269.70

83.00
84.30
87.18
91.69
99.42

26.64
76.87
143.22

10.85
17.20
22.37
32.84
45.27
58.04
70.83

6.78
13.91
30.89

663.13
668.04
662.07
630.86
713.57

ADAMS 2
3
4
5
6
7

97452
128331
132494
106536
159207
90477

42328
64865
70030
68430
98408
45774

583.47
969.94
1022.82
720.44
1404.96
522.39

Table 6.12 : Problem p6.1 (Figure 6.11)
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Method Log 10 
& Order Accuracy FE

ERK 3

ERK 5

BRK 3

BRK 5

SARK

GEAR

ADAMS

-4
-5
-6
-7
-8

-4
-5
-6
_rr

-8

-3
-4
-5
-6

-3
-4
-5
-6
-7

-4
-5
-6
-7
-8

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

535
1070
2270
4872

10501

299
418
634
953
1493

1672
2453
3986
8233

5228
5349
5083
6209
7842

301
420
636
954
1492

327
389
459
558
722

370
450
447
551
640

JE

—
-
-
-
-

—
-
-
-
-

49
33
45
52

47
33
25
9
9

0
0
0
0
0

29
31
32
38
48

-
-
-
-
-

Steps

166
351
753

1621
3496

41
62
97

152
244

45
101
244
691

123
130
125
188
256

42
63
98

153
243

150
194
270
353
505

224
306
309
413
480

CPU 
Time

0.48
0.97
2.11
4.42
9.49

0.17
0.27
0.43
0.68
1.04

0.93
1.49
2.73
6.42

2.55
2.56
3.43
3.16
4.08

0.27
0.37
0.57
0.85
1.33

1.33
1.66
2.16
2.66
3.48

1.43
1.97
2.05
2.76
3.35

Table 6.13 : Problem p6.2, X=5, a=10 (Figure 6.12)
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Method Log 10 
& Order Accuracy

ERK 3 -5
-6
-7
-8

ERK 5 -4
-5
-6
-7
-8

BRK 3 -4
-5
-6

BRK 5 -4
-5
-6
-7

SARK -4
-5
-6
-7
-8

GEAR -3
-4
-5
-6

ADAMS -3
-4
-5
-6

FE

796
1694
3957
9496

451
588
822
1168
1756

1679
3111
6009

8099
5905
6447
8368

459
592
826
1172
1756

316
410
511
605

547
615
729
762

JE

—
-
-
-

—
-
-
-
—

39
30
38

26
30
32
43

0
0
0
0
0

28
32
34
40

-
-
-
-

Steps

246
546
1313
3162

67
87

122
187
289

55
176
419

220
150
151
196

68
88

123
187
289

151
212
302
387

339
379
528
514

CPU 
Time

0.70
1.54
3.66
8.65

0.28
0.37
0.54
0.76
1.15

0.98
2.09
4.31

4.09
2.89
3.10
4.04

0.41
0.52
0.72
1.05
1.63

1.29
1.79
2.37
2.97

2.31
2.68
3.77
3.81

Table 6.14 : Problem p3.2, X=10, a=10 (Figure 6.13)

- 149 -



Method Log 10 
& Order Accuracy FE JE Steps

CPU
Time OVHD

ERK 3

•

ERK 5

BRK 3

BRK 5

SARK

GEAR

ADAMS

-4
-5
-6
-7
-8

-5
-6
-7
_Q

-9

-4
-5
-6
-7

-4
-5
-6

-4
-5
-6
-7

-5
-6
-7

-4
-5

Table

4170
4165
4210
4277
4434

4691
4707
4724
4755
4808

440
346
485
686

8120
5838
4818

1429
1132
1051
1595

69
127
187

45772
43673

_
-
-
-
—

—
-
-
-
-

21
16
18
15

42
52
59

32
25
23
16

10
16
19

—
—

6.15 : Problem p6

1078
1080
1086
1111
1164

779
782
785
790
797

7
9

19
53

177
126
86

57
46
45
85

28
54
96

32220
33582

.2, X=100

3.39
3.47
3.52
3.57
3.72

3.48
3.16
3.10
3.13
3.16

0.22
0.19
0.29
0.48

3.81
2.84
2.14

0.81
0.59
0.55
0.95

0.24
0.45
0.73

204.58
208.95

, a=10

0.36
0.23
0.22
0.41

0.21
0.41
0.67

(Figu
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Method Log 10 
& Order Accuracy FE

ERK 3

ERK 5

BRK 3

BRK 5

SARK

GEAR

ADAMS

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7
-8

-3
-4
-5

-3
-4
-5
-6

-4
-5
-6
-7
-8

-1
-2
-3
-4
-5

-2
-3
-4
-5

5503
10829
23486
51847

114811

3919
5466
7643

10874
16176
24323

18293
37723
87198

57424
57941
67616
86933

5806
7043
10442
16563
25760

3134
3646
3671
4905
6409

4101
4094
4948
6348

JE

—
-
-
-
-

_
-
-
-
-
-

486
411
942

484
323
289
256

33
0
0
0
0

279
273
275
328
379

—
-
-
-•

Steps

1661
3522
7795
17262
38247

547
801
1181
1751
2627
4000

470
1583
5189

1131
1183
1594
2315

698
1074
1680
2692
4243

1470
2013
2615
3572
4900

2854
2986
4128
5427

CPU 
Time

5.61
11.31
24.84
54.63

120.85

2.78
4.04
5.70
8.09
12.30
18.46

11.49
26.54
68.07

29.90
30.46
36.70
48.53

4.97
6.34
9.52
15.26
23.77

15.57
17.18
20.26
27.95
37.33

20.59
21.63
30.73
42.30

Table 6.16 : Problem p6.2, X=5, a=100 (Figure 6.15)
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Method Logjo 
& Order Accuracy

ERK 3 -4
-5
-6
-7

ERK 5 -4
-5
-6
-7
-8

BRK 3 -2
-3
-4
-5

BRK 5 -3
-4
-5
-6

SARK -1
-2
-3
-4
-5
-6
-7

GEAR -1
-2
-3
-4
-5

ADAMS -2
-3
-4
-5

FE

7224
13803
31321
74315

5172
6925
9855
15143
23984

15781
20836
29870
54959

55767
57670
64917
88803

13835
16692
21066
25604
23776
16360
22952

2219
2680
2959
3878
4955

5468
5944
6700
7479

JE

—
-
-
-

—
-
-
-
-

429
371
375
291

569
488
409
303

427
361
375
318
180

0
0

232
220
213
271
296

-
-
-
-

Steps

2213
4428
10380
24759

761
1029
1581
2497
3969

429
671
1252
2674

989
1026
1239
1970

461
623
1136
1729
2233
2701
3797

988
1461
1924
2781
3806

3682
4266
5470
6086

CPU 
Time

6.40
12.43
28.82
68.30

3.29
4.92
6.95
10.21
16.23

8.90
12.11
20.47
37.14

27.14
30.14
31.67
45.09

10.13
12.04
17.50
22.88
22.07
15.74
21.96

9.54
13.06
15.97
22.37
30.01

25.64
31.84
38.92
45.38

Table 6.17 : Problem p6.2, X=10, a=100 (Figure 6.16)
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Method Log 10 
& Order Accuracy FE JE Steps

CPU
Time OVHD

ERK 3

ERK 5

BRK 3

BRK 5

SARK

GEAR

ADAMS

-5
-6
-7
-8

-5
-6
-7
-8

-2
-3
-4
-5
-6

-3
-4

-2
-3
-4
-5
-6

-3
-4
-5
-6

-4
-5

29348
30920
37242
55983

32254
32488
32960
34245

4807
5244
6504
8789
13479

57255
47709

3714
5228
6775

10206
12898

470
628
863
1153

45772
43673

—
-
-
-

—
-
-
-

184
155
130
84
84

511
304

125
130
139
79
91

45
48
59
68

—
-

7616
8144

10275
16551

5362
5401
5483
5695

94
131
224
454
837

1179
955

177
286
317
968
790

224
351
531
763

32220
33582

28.17
29.98
36.45
56.36

24.40
24.37
24.76
25.84

2.81
3.34
4.40
6.58

10.69

26.91
21.92

2.79
3.93
4.82

10.32
10.75

2.02
2.92
4.28
5.94

203.34
210.06

1.61
2.28
2.68
7.10
6.68

1.87
2.72
4.00
5.57

Table 6.18 : Problem p6.3 x=100, a=100 (Figure 6.17)
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Method Log 10 
& Order Accuracy FE

ERK 3

ERK 5

BRK 3

-2
-3
-4
-5

-3
-4
-5
-6

0
-1
-2
-3
-4
-5

18657
51360

133644
338377

13843
23010
38787
65495

14937
22373
38548
67154

116785
199011

JE

—
-
-
-

-
-
-
-

18
9
8
7

10
11

Steps

5876
16711
44140
112463

2060
3559
6160
10603

1628
2468
4268
7445

12956
22060

CPU 
Time

18.95
53.03

138.50
352.22

9.85
16.84
28.56
48.60

15.13
22.96
39.29
68.26

118.97
201.76

BRK 5

SARK

GEAR

ADAMS

2
3
4

3
4
5
6

2
3
4
5

2
3
4
5

10319
28089
56543

13845
23013
38788
65490

3903
5633
8637

13427

5859
7517
10717
14222

12
11
8

0
0
0
0

217
299
452
700

—
-
-
-

555
1528
3124

2060
3560
6160

10602

3158
4726
7408

11641

3361
4788
7872

11698

7.39
20.47
41.63

12.44
20.70
35.43
59.75

23.51
34.07
52.96
82.60

25.81
38.82
64.52
96.97

Table 6.19 : Problem p6.3 (Figure 6.18)
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EXPLICIT IMPLICIT

ERK 5/4
EBRK 4

ERK 2/1

ERK 3/2 Step 
Fail

ERK 3/2
EBRK 3

ERK 2/1

ERK 2/1 Step 
Fail

ERK 2/1
EBRK 2

BRK 5

BRK 3 Step 
Fail

BRK 3

BRK 2 Step
Fail

BRK 2

BRK 1 Step 
Fail

BRK 1

Figure 6.1: Schema of the complete algorithm
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Figure 6.2 : Switching strategies for ERK3
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Figure 6.3 : 5th order Main ERK and embedded (2,1) pair.
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Figure 6.7 : ERK 5, ERK 3 and 3rd order embedded ERK.
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Figure 6.8 : BRK 5, BRK 3 and 3rd order embedded BRK
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Figure 6.9 : ERK 3 and 2nd order embedded ERK.
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Figure 6.10 : BRK 3, BRK 2 and 2nd order embedded BRK
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Figure 6.11 : Problem p6.1.
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Figure 6.12 : Problem p6.2 X = 5, a = 10
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Figure 6.13 : Problem 6.2 X = 10, a = 10.

ia CPU Tins
-+• CRK 3
^k BRK S
O BRK 3
O BRK S
O SARK
X 9BAR
•sy AOAns

i_aa i ID ACCURACY

Figure 6.14 : Problem p6.2 X = 100,a = 10
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Figure 6.17 : Problem p6.2 X = 100,a = 100.
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Figure 6.18 : Problem p6.3
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Chapter 7 : NUMERICAL COMPARISONS

When a new numerical method is developed it must be rigorously tested 

on a wide variety of problems to ensure that its performance is 

satisfactory. By "satisfactory", we do not necessarily mean that it 

should be compared directly against some other code to ensure that it 

can always perform better. Often the new code will tackle an area not 

covered extensively by any existing code. Alternatively the new code 

may be inferior to the old one for a particular class of problems for 

which the old one is specifically designed. However, it is better over 

a broader spectrum of problems. SARK falls iato this category. We 

expect it to perform less well than a specialist non-stiff solver on 

non-stiff problems, and less well than a stiff solver on stiff 

problems. SARK should, however, perform better than these specialist 

codes when tested over a mixed collection of problems. The codes 

selected were the NAG implementation of the ADAMS code, D02QAF, and the 

GEAR code, D02QBF.

The aim of this chapter is to compare SARK with two existing highly 

developed extensively used codes over an unbiased test set. The 

standard test package available for testing ODE solvers is that of 

Enright and Pryce[1983], DETEST. This package comprises two problem 

sets, one stiff and the other non-stiff. SARK was expected to perform 

reasonably well on both sets of problems, but to be beaten on the 

non-stiff problems by the ADAMS code and be beaten on the stiff 

problems by the GEAR code. However, SARK performed rather better than 

this.

We can attempt to rank these codes using a number of criteria eg. 

i) storage requirementa,
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ii) CPU tine or

iii) compactness of code.

In terms of iii) SARK is some 1000 lines of FORTRAN code whereas GEAR

and ADAMS are typically twice this amount. When considering array

storage, however, SARK will be worse. GEAR requires one vector of size

N, one array of N 2 and one array of size 22xN. SARK on the otherhand

requires 18 vectors of size N, two arrays of N 2 and various smaller

vectors of dimension up to 10. The remainder of this chapter tackles

the ranking according to CPU time.

7.1 The problems considered

The problems considered in this chapter are all taken from the DETEST 

package. This is a package that is designed to assess the performance 

of a numerical method over a selected set of problems. It has been 

widely used for this purpose, eg. Petzold[1983], Norsett and 

Thomsen[1986] and many more.

The package is split into two sections, one containing stiff problems 

and the other non-stiff. Each section is split into a number of 

groups, with each group having a common theme. For the non-stiff 

section the groups considered are

A : Single equations

B : Small systems (2-3 state variables)

C : Moderate systems (10-51 state variables)

D : Orbit equations

E : Higher order equations 

and for the stiff section the groups are

A : Linear with real eigenvalues

B : Linear with non-real eigenvalues
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C : Non-linear coupling

D : Non-linear with real eigenvalues

E : Non-linear with non-linear eigenvalues

Each group contains up to 6 separate problems. A complete list of all 

the problems can be found in Enright and Pryce[1983].

The method being assessed is timed over selected problems for a variety 

of specified tolerance values. For each problem chosen a series of 

statistics are produced that depends upon the choice of two parameters; 

one controls how detailed the results are and the other controls the 

calculation and tabulation of normalized efficiency statistics.

The first option can produce either global error results at the 

endpoint of the integration or the maximum observed global error 

throughout the integration range. The maximum global error is assessed 

by using an internal integrator, but using a tighter tolerance than 

requested for the timed method to compute the "true" solution. For the 

non-stiff section this internal routine is the DVERK code of Hull et 

al.[1977] and for the stiff section the SECDER code of Addison[1980] . 

The maximum global error is then calculated as

Max Max 9yi - yjU)!! (7.1) 
xe[0 f xend ] i=l,..N

where the vector norm is the maximum norm.

As stiff problems usually pass through two phases, ie. an initial 

transient phase and a steady state phase, it appears natural to monitor 

the maximum global error rather than just the endpoint global error, 

thus the maximum global error is used throughout this chapter. 

Unfortunately the internal integrator - for the stiff section is

occasionally unable to complete enough successful integrations for
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global errors to be assessed adequately. When this happens no 

normalized statistics can be produced for that particular problem.

The methods being tested were executed on each problem considered at 

tolerances of l.e-3, l.e-4, l.e-5, l.e-6, l.e-7 and l.e-8 and tabulated 

results produced. As each method is not directly controlling the same 

quantity, when a tolerance level is selected, a direct comparison of 

these results is profitless.

We assume that the numerical method is attempting to keep

global error « CxTOLE (7.2)

where the exponent, E, and the constant of proportionality, C, depend 

upon the method and the problem. After deterraing the value of the 

global error for each prescribed tolerance the value of C and E are 

determined. These can then be used to define the expected accuracy as 

a function of the tolerance, TOL. This is the accuracy a user can 

expect when a problem is solved with a specified tolerance of TOL. It 

is then possible to tabulate cost against expected accuracy. This is 

performed in the package by using the normalized option. Thus 

different methods can be compared in an unbiased manner. These tables 

are reproduced in Appendix A, for the non-stiff cases and Appendix B, 

for the stiff cases. Thus in Table B.I, for stiff problem Al , to 

achieve a maximum global error of l.e-4, SARK requires 0.57 seconds and 

GEAR 1.66 seconds.

This chapter is not intended to solely compare GEAR, ADAMS and SARK 

directly as they all clearly tackle different problem areas. It is 

rather intended to determine which method should be used for a 

particular category of problem. It is also demonstrated that for most
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problems a type-insensitive code is a valid alternative to a 

specialized code.

7.2 Non-stiff problems

The tabulated results of Appendix A are shown graphically in Figures 

7.1 - 7.25. The headings used for each column are the same as those 

used in the previous chapter with log lo accuracy being the expected 

accuracy as stated above. Each figure shows the CPU time against this 

expected accuracy for each method used to solve the non-stiff problems, 

viz. SARK, GEAR and ADAMS.

7-2.1 Group A : Figures 7.1 - 7.5

The problems in this group have functions which are relatively 

inexpensive to evaluate and hence the Runge-Kutta based code is very 

efficient. Clearly SARK integrates with the explicit method 

throughout, indicated by no Jacobian evaluations. On the whole SARK is 

approximately 2.5 times faster than ADAMS.

7.2.2 Group B : Figures 7.6 - 7.10

Here function evaluations are more expensive yet SARK is able to

perform much better than either GEAR or ADAMS.

7.2.3 Group C : Figures 7.11 - 7.15

Problems C4 and C5 highlight the effect of selecting the incorrect 

integrator for a non-stiff system. GEAR is particularly inefficient on 

these two problems which have 51 and 30 state variables respectively. 

Even though Runge-Kutta based codes are known to perform inefficiently 

when function evaluations are computationally expensive, SARK is able 

to perform better than ADAMS on these problems.
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7.2.4 Group D : Figures 7.16 - 7.20

This group contains one basic non-linear system with a free parameter 

that is adjusted to form each problem. As the parameter is increased 

the problems become more demanding. SARK clearly performs better than 

ADAMS and GEAR on every setting of this parameter, with problem D5 

being particularly demanding for the multistep methods.

7.2.5 Group E : Figures 7.21 - 7.25

This group consists of high order equations reduced to a system of 

first order equations. Problem E2 is van der Pol's equation with X = 

1. Not surprisingly SARK performs well on this problem.

7.2.6 Summary of non-stiff results

Clearly comparing numerical methods is a very difficult process, 

especially if a large number of problems are involved, Table 7.1 

summarises the results of Appendix A by summing up the CPU times over 

tolerances that are common to each method, eg. for problem Al the total 

CPU time is accumulated over expected tolerances l.e-4, l.e-5, l.e-6 

and l.e-7. The most efficient method being the one with the smallest 

total CPU time. Totals over each group are also shown. Taking the set 

as a whole SARK is approximately 2.5 times quicker than ADAMS and 6.5 

times faster than GEAR. These results show that GEAR is particularly 

inefficient for non-stiff problems. In fact SARK out performs GEAR and 

ADAMS on every single problem and never switches over to the implicit 

method. It is likely, however, that the ADAMS code will be the most 

efficient for some problems were the function evaluations are very 

expensive.
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The type-insensitive codes of Petzold and Norsett and Thomsen both use 

the non-stiff set of problems to demonstrate their codes. Both 

incorrectly diagnose some of the non-stiff problems as stiff. 

Petzold[1983] claims, "Very few of the problems of non-stiff DETEST 

were diagnosed as stiff", and Norsett and Thomsen[1986] produce results 

for problems A4, A5, B5, Dl, D2 and D5 that require Jacobian 

evaluations. This indicates that the stiff mode of solution was 

employed for part of the integration range.

7.3 Stiff problems

When a problem is encountered which is known to be stiff a non-stiff

integrator would not be employed. Hence there is little point in

evaluating the performance of ADAMS over this section of DETEST. The

tabulated results of Appendix B are shown graphically in Figures 7.26 -

7.47.

7.3.1 Group A : Figures 7.26 - 7.29

Generally SARK is able to integrate this ^roup of problems faster than 

GEAR, except problem A2. This is a problem which has nine state 

variables and function evaluations are expensive to evalute.

7.3.2 Group B : Figures 7.30 - 7.34

This group is classified by the problems having an oscillatory 

component. As shown in chapter 2, this type of problem is in fact 

incorrectly classified as stiff. The performance of SARK clearly 

verifies this, as it often performs the integration with the explicit 

method only.

The poor performance of GEAR on oscillatory problems has motivated many

- 171 -



modifications to the basic BDF methods, eg. Blended linear multistep 

methods (BLM) Skell and Kong[1977], Extended BDF methods (EBDF) 

Cash[1980] and Modified EBDF methods (MEBDF) Cash[1983]. All these 

methods have been compared with GEAR over a selection of problems 

including one oscillatory problem. The MEBDF methods are shown, 

Cash[1983], to perform marginally better than the BLM methods on 

problem B5 of DETEST. In the same paper MEBDF methods are shown to be 

better, by a factor of between 1 and 7, than GEAR on problem B5 and 1.1 

times faster over the remainder of the test group. SARK on the 

otherhand is between 6 and 15 times faster than GEAR on problem B5 and 

over 3 times faster on the remaining problems of the group.

7.3.3 Group C : Figures 7.35 - 7.39

Clearly when using a type-insensitive code to solve a problem there is 

a breakeven point where both integrators will be equally efficient. 

When this point is encountered the algorithm may produce erratic 

results, this is seen on problem Cl. SARK has difficulty in 

determining which integrator is more efficient, although whichever it 

uses it still performs better than GEAR.

7.3.4 Group D : Figures 7.40 - 7.43

On all the problems in this group GEAR is able to perform better than 

SARK. This is not due to deficiencies in the switching strategies but 

rather to the nature of the implicit methods used. This is illustrated 

by the high number of Jacobian evaluations required by SARK. Repeated 

problems with singular Jacobian forces SARK to use a low order implicit 

method whereas GEAR can use relatively high order methods.
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7.3.5 Group E : Figures 7.44 - 7.47

This group is split fairly evenly between the two methods, SARK 

performs better on El and E2 and GEAR on E3 and E4. Neither method was 

accurate enough to produce sufficient statistics for a comparison of 

problem E5 to be made. Unfortunately the internal integrator, SECDER, 

was unable to integrate problem E6 successfully enough to produce a 

"true" solution.

7.3.6 Summary of stiff results

Again a summary table is produced, Table 7.2, similar to that produced 

for the non-stiff section. For certain problems GEAR is clearly 

superior. However, taking an overall view of the stiff section, SARK 

is approximately 1.5 times faster than GEAR, even though a specilized 

stiff solver would be expected to perform best.
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Problem No. of 
Identifer tolerances

Total CPU time 
SARK GEAR ADAMS

Al
A2
A3
A4
A5

Total

Bl
B2
B3
B4
B5

Total

Cl
C2
C3
C4
C5

Total

Dl
D2
D3
D4
D5

Total

El
E2
E3
E4
E5

Total

Overall

4
4
4
4
3

2
4
4
5
4

4
4
4
3
2

4
4
4
4
2

4
5
5
2
3

Total

0.43
0.27
1.57
0.24
0.16

2.67

1.68
1.01
0.81
3.15
2.71

9.36

2.14
5.58
2.09
5.99
1.59

17.39

2.74
2.57
3.94
4.46
2.94

16.65

2.24
6.34
4.34
0.11
0.16

13.19

59.26

1.94
1.98
5.77
1.54
1.26

12.49

9.46
4.75
4.22

12.02
11.40

41.85

13.98
15.43
13.25
114.16
25.93

182.75

10.89
14.40
23.54
28.73
21.45

99.01

6.07
24.50
17.84
0.85
2.18

51.44

387.54

1.36
1.01
2.83
0.92
0.58

6.70

3.69
3.45
2.19
5.54
5.19

20.06

6.53
13.58
8.13
20.79
3.35

52.38

5.50
5.80
10.89
12.23
8.17

42.59

2.55
9.97
6.35
0.33
0.79

19.99

141.72

Table 7.1 : Summary of non-stiff results
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Problem No. of 
Identifer tolerances

Total

Bl 
B2 
B3 
B4 
B5

Total

Cl 
C2 
C3 
C4

Total

3
4
4
4
4

4
3
4
2

Dl 2
D2 2
D3 2
D6 1

Total

El 3
E2 2
E3 3
E4 2

Total 

Overall Total

Total CPU time 
SARK GEAR

Al
A2
A3
A4

3
1
2
1

2.63
5.45
1.98
4.23

6.79
3.88
4.56
6.00

14.29 21.23

19.28
2.96
3.76
5.51

17.84

98.17

22.99
14.12
15.09
17.58

179.84

49.35 249.62

3.96
3.22
6.37
3.29

9.03
7.59
8.59
5.19

16.84 30.31

33.87
11.33
46.14
6.83

1.47
2.23
3.53
0-.35

7.68

1.66
0.77

21.14
11.87

3.09
4.82
4.06
9.54

35.44 21.51

214.09 330.35

Table 7.2 : Summary of stiff results
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Figure 7.2 : Non-stiff problem A2
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Figure 7.3 : Non-stiff problem A3
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Figure 7.4 : Non-stiff problem A4
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Figure 7.7 : Non-stiff problem B2
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Figure 7.9 : Non-stiff problem B4
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Figure 7.10 : Non-stiff problem B5

- 180 -



CPU Ting____
-t- SARK

O ADArlS

ACCURACY

Figure 7.11 : Non-stiff problem Cl
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Figure 7.12 : Non-stiff problem C2
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Figure 7.13 : Non-stiff problem C3
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Figure 7.15 : Non-stiff problem C5
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Figure 7.16 : Non-stiff problem Dl
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Figure 7.17 : Non-stiff problem D2

Figure 7.18 : Non-stiff problem D3
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Figure 7.19 : Non-stiff problem D4
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Figure 7.22 : Non-stiff problem E2

- 186 -



CPU T It-IE

-f- 6ARK
^S, SCAR
O AOAMS

•_OC3ia ACCURACV

Figure 7.23 : Non-stiff problem E3
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Figure 7.24 : Non-stiff problem E4
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Figure 7.25 : Non-stiff problem E5
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Figure 7.27 : Stiff problem A2
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Figure 7.28 : Stiff problem A3
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Figure 7.33 : Stiff problem B4
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Figure 7.34 : Stiff problem B5
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CPU Tins

— Z —1

Figure 7.38 : Stiff problem C4
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Figure 7.39 : Stiff problem C5
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Figure 7.42 : Stiff problem D3
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Chapter 8 : CONCLUSIONS

This chapter summarises the results of the previous chapters and makes

recommendations for future work.

The stability of a numerical method is an area that has received much 

attention in recent years with many new stability theories being 

proposed. The first recognized stability theory concerned A-stability, 

although this has been severely criticised it is the most practical and 

hence most widely used. The modulus and argument plots of chapter 2 

are a logical extension of this and can be used to evaluate the 

potential performance of a method in much greater detail. In particular 

the L-stability of the method can be assessed without detailed analysis 

being required.

The modulus and argument plots show that the assumption that a 

precisely A-stable method must be employed for highly oscillatory 

problems is invalid. To follow correctly the frequency and amplitude 

of an oscillatory component an explicit method is computationally the 

cheapest.

The main objective of this work was to develop a type-insensitive code. 

Initially it was expected that three basic integrators were required to 

accommodate non-stiff, stiff and oscillatory classifications. For the 

non-stiff case the obvious choice was an explicit method in this case 

explicit Runge-Kutta methods. These are very competitive especially if 

the function evaluations are inexpensive. To complement them a class 

of methods derived from MIRK methods were investigated, ie. BRK 

methods. In chapter 2 it was shown that the MRK methods cannot 

integrate highly oscillatory problems as efficiently as ERK methods and
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hence only two categories of integrators were employed in SARK.

The BRK Methods are suitable for solving most stiff systems of ODE as 

they possess very high damping properties. Although SARK is 

competitive with GEAR and ADAMS it suffers from two slight handicaps. 

Firstly the error control policy employed is expensive and secondly the 

methods are prone to computing singular iteration matrices when high 

order and/or high stiffness ratios are encountered on some linear 

problems.

Despite these limitations it was felt that they would complement the 

ERK methods much better than any other class of implicit method. On 

reflection, however, an improved version of SARK might include BDF 

methods to cover cases when the singular iteration matrix problem is 

encountered. This would enable such problems to be integrated without 

resorting to very low order methods.

Many of the currently used specialized ODE solvers have been under 

continuous development for several decades. For example Gear's method 

was first published in 1969. Thus such codes are at a highly developed 

state. Type-insensitive codes on the other hand are in their infancy 

and, including SARK, only three such codes exist. They are, however, 

now at a stage where they are competitive with specialized ODE solvers. 

Their importance is elevated if the code is used as a black box inside 

some other process, eg. solving partial differential equations or 

boundary value problems, where the characteristics of the equations are 

unknown.

SARK can correctly deduce the characteristics of the equations and
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select the category of integrator and the most appropriate order that 

will lead to the most efficient solution being produced. The overheads 

in deducing which method, and order, to employ are relatively 

inexpensive as the decisions are based upon information which already 

exists.

When high accuracy is required from the solver a small step is usually 

required even when the problem is stiff. In such cases there is little 

point in employing an implicit method as this will be expensive. The 

code developed automatically accommodates for this in its stiffness 

detection mechanism and thus some stiff problems are solved more 

efficiently by retaining the non-stiff solver for as long as 

possible.

It has long been proposed that if there is any ambivalence in the 

system of ODE being integrated then a stiff solver should be used. The 

computational danger of doing this is exemplified in chapter 7 where 

GEAR is over 6 times slower than SARK over the non-stiff problems.

One important feature of SARK is its compactness, as compared to other 

codes, this makes it particularly suitable for implementation on a 

small microcomputer.

On the whole SARK is able to solve most systems of DDEs almost as 

efficiently as any of its constituent methods. If the characteristics 

of the problem change within the integration range then SARK will be 

much more efficient. It is also able to integrate most problems of the 

DETEST package more efficiently than widely used specialized solvers.
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One area where integrators are used extensively is in a continuous 

system simulation languague. One such highly developed languague is 

ACSL, Mithcell and Gauthier[1986], this allows the user to specify 

mathematical models as simple statements. The statements are then 

converted into a FORTRAN program and linked with various routines, one 

of which is an integrator. The user must select the most appropriate 

integrator from those supplied. ACSL supplies eight integrators, these 

being;

Adams-Moulton, variable step, variable order;

Gear's method, variable step, variable order;

Euler's method, fixed step;

Runge-Kutta, fixed step, 2nd order;

Runge-Kutta, fixed step, 4th order (default);

Runge-Kutta-Fehlberg, variable step, 2nd order;

Runge-Kutta-Fehlberg, variable step, 5th order.

Clearly the selection of the correct method can be a daunting task, 

especially as the user is usually only interested in the solution 

produced, ie. the integrator is of secondary importance. A valuable 

alternative would be to provide a type-insensitive code, eg. SARK, as a 

default integrator, thus allowing the user more freedom to concentrate 

on the development of the mathematical model.

- 203 -



REFERENCES 

ALEXANDER R [1977]

Diagonally implicit Runge-Kutta methods for stiff systems of ODE. SIAM

J. Numer. Anal. 14 1006-1021.

ALT R [1972]

Deux the'or&ns sur la A-stabilitg des sche'mas de Runge-Kutta simplement

implicition, Rev. Francaise d'Automat. Informat. Recherche

Op^rationelle, 6, s£r. R-3, 99-104

BJDREL G, DAHLQUIST G, LINDBERG B, LINDE S, ODEN L [1970]

Survey of stiff ODE. Dept. of Information Processing, The Royal

Institute of Technology, Stockholm, Sweden.

BURDEN RL, FAIRES JD, REYNOLDS AC [1978]

Numerical Analysis. Prindle, Weber & Schmidt.

BUTCHER JC [1963]

Coefficients for the study of Runge-Kutta processess. J. Austral. Math.

Soc. 3 185-201.

BUTCHER JC [1964]

On Runge-Kutta processes of high order. J. Austral. Math. Soc. 4

179-193.

BUTCHER JC [1965]

On the attainable order of Runge-Kutta methods. Math. Comput. 19

408-417.

BUTCHER JC [1976]

On the implementation of implicit Runge-Kutta methods. BIT 16 237-240.

BUTCHER JC [1987]

The numerical analysis of ODE, Runge-Kutta and general linear methods.

Wiley.

- 204 -



CASH JR [1975]

A class of implicit Runge-Kutta method for the numerical integration of

stiff ODE. J. ACM 22 504-511.

CASH JR [1980]

On the integration of stiff system of ODE using extended Backward

Differentiation formulae. 34 235-246.

CASH JR [1983]

The integration of stiff initial value problems in ODE using modified

extended Backward Differentiation formulae. Comp & Maths, with Appls. 9

645-657.

CHIPMAN FH [1963]

A-stable Runge-Kutta processes. BIT 11 384-388.

CRAIGIE JAI [1975]

A variable order multistep method for the numerical solution of stiff

systems of ODE. Numerical Analysis report 11, University of Manchester,

Dept. of Mathematics, Manchester.

CROUZEIX N [1976]

Sur les me'thodes de Runge-Kutta pour 1'approximation des probl^mes

d'Evolution, Lecture notes in Econom. and Maths. Systems No. 134,

Springer Berlin 206-223.

DAHLQUIST G [1963]

A special stability problem for linear multistep methods. BIT 3 27-43.

DEKKER K, VERWER JG [1984]

Stability of Runge-Kutta methods for stiff non-linear differential

equations, North-Holland, Amsterdam.

EHLE BL [1968]

High order A-stable methods for the numerical integration of

differential equations. BIT 18 276-278.

- 205 -



ENRIGHT WH, PRYCE JD [1983]

Two Fortran packages for assessing initial value problems. Technical

report »167/83, Dept. of Computer Science, University of Toronto,

Toronto, Canada.

FEHLBERG E [1968]

Klassiche Runge-Kutta-Formeln vierter und niedrigere probleme,

Computimg, 6 61-71.

GEAR WC [1971]

Numerical initial value problems in ODE. Prentice-Hall.

GEAR WC [1981]

Numerical solution of ODE : Is there anything left to do? SIAM Rev. 23

19-24.

GLADWELL IG [1974]

Initial value routines in the NAG library. ACM Trans. Maths. Soft. 5

386-400.

HERICI P [1962]

Discrete variable methods in ODE. Wiley.

HINDMARSH AC [1974]

Gear : ODE system solver. UCID 30001 Rev. 2. Lawerence Livermore, Univ.

of California.

JELTSH AA [1978]

Stability on the imaginary axis and A-stability of linear multistep

methods. BIT 18 170-174.

LAMBERT JD [1973]

Computational methods in ODE. Wiley.

LAMBERT JD [1979]

Stiffness. NA report 37, University of Dundee.

- 206 -



LAWSON JD [1967]

An order 5 Runge-Kutta process with extended region of stability. SIAM

J. Numer. Anal. 3 593-345.

MITCHELL EEL, GAUTHIER JS [1986]

ACSL Reference Manuael, Mitchell and Gauthier Associates, Concord,

Mass., USA.

NORSETT SP [1974]

One-step methods of Hermite type for the numerical integration of stiff

systems, BIT 14 63-77.

NORSETT SP, THOMSEN PG [1986]

Switching between modified and fix-point iteration for implicit ODE

solvers. BIT 26 339-345.

PETZOLD L [1983]

Automatic selection of methods for solving stiff and non-stiff systems

of ODE. SIAM J. Sci. Stat. Comput. 4 136-148.

PROTHERO A, ROBINSON A [1974]

On the stability and accuracy of one-step methods for solving stiff

systems of ODE. Math. Comput. 25 145-162.

RICHARDS CW, EVERETT MG [1984]

Backward Runge-Kutta methods for stiff systems of ODE. Submitted to IMA

J. Numer. Anal.

SCHIED RE [1983]

The accurate numerical solution of highly oscillatory ODE. Math.

Comput. 41 487-509. 

SHAMPINE LF [1975]

Stiffness and non-stiff differential equation solvers. Numerische 

Behandglung vaon Differertialgleichungen. ed. L COLLATZ, Inst. series 

Numer. Math. 27 287-301 Birkhauser Basel Switz.

- 207 -



SHAMPINE LF, GORDON MK [1975]

Computer solution of ODE. WH Freeman. 

SHAMPINE LF, HIEBERT KL [1977]

Detecting stiffness with the Fehlberg (4,5) formulae. Comp. & Math.

with Appls. 3 41-46.

SINGHAL A [1980]

Implicit Runge-Kutta formulae for the intregration of ODE. PhD. Thesis,

University of London.

SKELL RD, KONG AK [1977]

Blended Linear Multistep methods. ACM Trans. on Maths. Soft. 3 326-345.

VERNER SH [1978]

Explicit Runge-Kutta methods with estimates of the local truncation

error. SIAM J. Numer. Anal. 15 772-790.

WANNER G, HAIRER E, NORSETT SP [1978]

Order stars and stability theorems. BIT 18 475-489.

- 208 -



Appendix A : Normalized results for the non-stiff problems of DETEST

Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

63
96

143
212
320

109
109
130
160
207

89
105
124
167
212

JE

0
0
0
0
0

8
11
12 -

14
18

—
-
-
-
—

Steps

10
15
22
34
52

34
53
72
97
137

39
52
68

100
134

CPU 
Time

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

.06

.08

.12

.17

.22

.20

.31

.40

.52

.71

.18

.20

.28

.39

.49

Table A.1 : Problem Al (Figure 7.1)

Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-3
-4
-5
-6
-7
-8

-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

48
54
74

102
138
189

99
131
161
213

59
78
99

121
146

JE

0
0
0
0
0
0

12
16
15
16

-
-
-
-
-

Steps

6
8

11
16
22
30

47
71

101
146

28
39
52
69
94

CPU 
Time

0.03
0.04
0.05
0.08
0.10
0.13

0.28
0.40
0.53
0.77

0.12
0.16
0.21
0.28
0.36

Table A.2 : Problem A2 (Figure 7.2)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-2
-3
-4
-5
-6

-2
_o

-4
-5

-2
-3
-4
-5
-6

FE

207
324
539
883

1377

262
321
442
599

188
235
329
415
453

JE

0
0
0
0
0

23
25
35
38

—
-
- •%
-
—

Steps

26
45
75

127
214

129
196
303
453

99
137
202
278
328

CPU 
Time

0.16
0.25
0.46
0.70
1 .08

0.78
1.09
1.60
2.30

0.40
0.54
0.79
1.10
1.30

Table A.3 : Problem A3 (Figure 7.3)

Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-3
-4
-5
-6
-7
-8

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

FE

41
60
85
145
214
336

63
97

118
139
176

60
81
97

127
131

JE

0
0
0
0
0
0

8
10
10

.11
15

-
-
-
-
-

Steps

4
8

13
21
33
54

24
37
52
70

101

19
30
42
61
70

CPU 
Time

0.03
0.04
0.06
0.11
0.15
0.24

0.16
0.25
0.33
0.41
0 .55

0.10
0.15
0.21
0.27
0.29

Table A.4 : Problem A4 (Figure 7.4)
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Method

SARK

GEAR

ADAMS

Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-3
-4
-5
-6
-7

-2
-3
-4
-5

-2
-3
-4
-5
-6

Table A. 5

Log 10 
Accuracy

-2
-3
-4
-5

-1
-2
-3
-4

-1
-2
-3
-4
-5

FE

43
65

105
166
264

83
110
149
174

54
72
93

106
121

: Probl 

FE

437
701

1058
1699

443
553
738
1077

316
404
461
608
705

JE

0
0
0
0
0

10
13
14
14

_
-
-
-
—

em A5 

JE

0
0
0
0

29
37
44
57

—
-
-
-
-

Steps

6
9

16
26
43

33
49
72
96

22
32
45
57
71

(Figure 7. 

Steps

60
101
165
277

229
352
538
855

180
254
330
463
579

CPU 
Time

0.03
0.05
0.08
0.12
0.19

0.22
0.30
0.42
0.54

0.11
0.16
0.19
0.23
0.29

5)

CPU 
Time

0.39
0.61
1.07
1.77

1.82
2.56
3.73
5.73

0.85
1.17
1.52
2.17
2.79

Table A.6 : Problem Bl (Figure 7.6)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-4
-5
— fi
-7
-8

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

145
174
219
291
427

111
155
190
240
300

183
196
210
220
340

JE

0
0
0
0
0

11
15
16
20
21

—
-
-
-
—

Steps

22
26
34
47
70

44
67
94

129
186

106
112
121
141
253

CPU 
Time

0.18
0.21
0.26
0.36
0.54

0.45
0.68
0.92
1.43
1.72

0.50
0.56
0.76
0.81
1.32

Table A.7 : Problem B2 (Figure 7.7)

Log 10 
Method Accuracy

SARK -4
-5
-6
-7
-8
-9

GEAR -3
-4
-5
-6
-7

ADAMS -3
-4
-5
-6
-7

FE

90
125
175
253
363
520

113
141
179
229
279

94
113
126
159
229

JE

0
0
0
0
0
0

11
11
14
16
18

-
-
-
-
-

Steps

14
19
28
41
59
85

43
64
88
119
168

46
59
70
98
150

CPU 
Time

0
0
0
0
0
0

0
0
0
1
1

0
0
0
0
0

.11

.16

.22

.32

.45

.66

.45

.63

.86

.17
. 56

.26

.34

.41

.58

.86

Table A.8 : Problem B3 (Figure 7.8)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy FE

-1
-2
-3
-4
-5
-6
_ Y

-1
-2
-3
-4
-5

-1
-2
-3
-4
-5

209
313
459
671
965
1369
1987

222
290
355
469
649

160
192
249
325
406

JE

0
0
0
0
0
0
0

12
15
18
24
32

—
-
-
-
-

Steps

32
49
73

108
157
227
330

130
176
230
333
491

78
113
170
238
320

CPU 
Time

0
0
0
0
1
1
2

1
1
2
2
4

0
0
1
1
1

.27

.38

. 55

.82

.18

.66

.48

.17

.58

.08

.95

.24

.47

.68

.00

.43

.96

Table A.9 : Problem B4 (Figure 7.9)

Log 10 
Method Accuracy FE

SARK -3
-4
-5
-6

GEAR -2
-3
-4
-5
-6

ADAMS -2
-3
-4
-5
-6

296
409
647
1099

247
292
380
506
707

171
199
253
316
377

JE

0
0
0
0

15
15
19
25
34

-
-
-
-
-

Steps

38
62

106
182

126
170
242
352
525

87
122
169
227
288

CPU 
Time

0.
0.
0.
1.

1.
1.
2.
3.
4.

0.
0.
0.
1.
1.

31
44
71
25

21
60
20
10
50

53
70
97
53
99

Table A.10 : Problem B5 (Figure 7.10)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

106
157
241
375
593

200
226
294
371
438

121
139
155
201
314

JE

0
0
0
0
0

11
11
14
17
19

—
-
-
-
-

Steps

16
25
39
61
97

48
69
95

138
198

58
64
87
122
225

CPU 
Time

0.25
0.38
0.59
0.92
1.45

1.57
2.08
2.85
3.86
5.19

0.70
0.82
1.12
1.61
2.98

Table A.11 : Problem Cl (Figure 7.11)

Log 10 
Method Accuracy

SARK

GEAR

ADAMS

-4
-5
-6
-7
— 8

-3
-4
-5
-6
-7

-3
-4
— o
-6
-7

FE

315
324
375
480
663

203
262
306
386
473

433
463
489
541
557

JE

0
0
0
0
0

11
14
15
18
21

-
-
-
-
-

Steps

50
52
59
77

107

49
74
104
147
207

280
294
309
344
365

CPU 
Time

0
0
0
1
1

1
2
3
4
5

2
2
3
3
4

.82

.84

.96

.24

.72

.65

.46

.15

.21

.61

.56

.81

.07

.60

.10

Table A.12 : Problem C2 (Figure 7.12)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6
-7

-3
-4
-5
-6
-7

FE

163
182
215
273
410

169
228
303
372
436

219
235
248
307
341

JE

0
0
0
0
0

10
12
16
19
21

—
-
-
-
-

Steps

24
27
33
44
67

39
60
88

122
172

129
142
144
186
214

C PL- 
Time

0.40
0.45
0.53
0.71
1.16

1 .31
1.95
2.76
3.67
4.87

1.28
1.49
1.64
2.31
2.69

Table A.13 : Problem C3 (Figure 7.13)

Method Accuracy FE

SARK -4
-5
-6
-7
-8

GEAR -3
-4
-5
-6

ADAMS -2
-3
-4
-5
-6
-7

163
182
214
271
408

681
792
896

1141

216
210
223
231
262
352

JE

0
0
0
0
0

12
13
14
19

-
-
-
-
-
-

Steps

24
27
32
44
67

38
61
87

122

131
129
135
148
156
225

CPU 
Time

1
1
2
2
4

23
29
36
47

4
4
5
6
8

13

.73

.95

.31

.99

.53

.57

.91

.52

.34

.66

.90

.77

.65

.37

.26

Table A.14 : Problem C4 (Figure 7.14)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

_o

-4
-5
-6
-7

-1
-2
-3
-4
-5

-1
-2
-3
-4

FE

49
75

112
172
270

217
228
299
390
430

35
54
66
80

JE

0
0
0
0
0

6
6
7

10
11

—
-
-
-

Steps

7
11
17
27
44

15
21
30
41
53

11
17
25
37

CPU 
Time

0
0
1
2
3

6
7
9

12
13

0
1
1
1

.61

.98

.42

.14

.37

. 12

.07

.43

.04

.89

.68

.05

.44

.91

Table A.15 : Problem Co (Figure 7.15)

Log 10 
Method Accuracy FE

SARK

GEAR

ADAMS

-1
-2
-3
-4
-5

-1
-2
-3
-4

-1
-2
-3
-4
-5

238
358
546
837

1283

288
322 ^
412
559

152
203
261
363
416

JE

0
0
0
0
0

14
18
21
27

-
-
-
-
-

Steps

38
58
90
138
212

121
167
246
371

72
112
172
276
327

CPU 
Time

0
0
0
1
1

1
2
2
4

0
0
1
1
2

.33

.49

.75

.17

.79

.57

.23

.87

.22

.51

.77

.28

.94

.27

Table A.16 : Problem Dl (Figure 7.16)
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Log 10 
Method Accuracy FE

SARK -1
-2
-3
-4
_r

-6

GEAR -1
-2
-3
-4

ADAMS 0
-1
-2
-3
-4
-5

297
378
492
697

1014
1468

334
408
522
743

189
224
277
338
407
510

JE

0
0
0
0
0
0

22
26
26
37

—
-
-
-
-
-

Steps

42
58
81
115
168
243

144
208
321
500

89
130
178
243
312
412

CPU 
Time

0
0
0
0
1
2

1
2
3
5

0
0
1
1
2
2

.39

.52

.70

.96

.39

.01

.92

.91

.80

.78

.64

.87

.16

.62

.15

.95

Table A.17 : Problem D2 (Figure 7.17)

Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-1
-2
-3
-4
-5

0
-1
-2
-3
-4

0
-1
-2
-3
-4

FE

325
489
719

1212
2105

397
493
646
860
1223

258
325
417
556
665

JE

0
0
0
0
0

28
34
39
47
58

-
-
-
-
-

Steps

41
68

115
201
349

173
252
382
568
882

142
209
298
444
556

CPU 
Time

0.42
0.64
0.97
1.91
2.89

2.44
2.35
4.95
6.48
9.76

1.10
1.50
2.10
3.22
4.07

Table A.18 : Problem D3 (Figure 7.18)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy FE

0
-1
-2
-3
-4

0
_ -I
-2
-3

0
-1
-2
-3

429
645
883
1270
2136

563
742
1037
1524

352
459
592
786

JE

0
0
0
0
0

45
55
61
75

—
-
-
-

Steps

53
82

129
210

. 355

264
400
671

1103

208
325
461
656

CPU 
Time

0.63
0.83
1.18
1.82
3.07

3.33
5.01
7.88

12.51

1.48
2.31
3.46
4.98

Table A.19 : Problem D4 (Figure 7.19)

Log 10 CPU
Method Accuracy FE

SARK

GEAR

ADAMS
-

0
-1
-2
-3
-4

0
-1

0
-1

909
1244
1506
2147
3291

1030
1500

595
851

JE

0
0
0
0
0

84
93

-
-

Steps

113
163
233
354
547

551
981

432
697

Time

1
1
2
2
4

8
13

2
5

.18

.76

.05

.93

.51

.17

.28

.99

.18

Table A.20 : Problem D5 (Figure 7.20)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-3
-4
-5
-6
-7

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

FE

156
245
384
611
974

133
174
216
289
404

108
137
169
201
250

JE

0
0
0
0
0

8
11
14
17
23

—
-
-
-
-

Steps

25
39
63
100
161

64
95
132
202
306

46
66
90

119
172

CPU 
Time

0.15
0.23
0.38
0.59
0.89

0 . 59
0.85
1.14
1.66
2.42

0.24
0.33
0.45
0.68
1.09

Table A.21 : Problem El (Figure 7.21)

Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-2
-3
-4
-5
-6
-7

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

FE

457
614
860
1158
1670
2478

508
578
710
966

1353

344
410
525
666
855

JE

0
0
0
0
0
0

36
37
42
54
71

-
-
-
-
-

Steps

57
82

120
178
269
407

271
360
504
744

1097

215
292
410
543
726

CPU 
Time

0.39
0.53
0.74
1.01
1.47
2.20

2.43
3.17
4.26
6.02
8.62

0.95
1.29
1.85
2.49
3.39

'Table A.22 : Problem E2 (Figure 7.22)
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Log 10 
Method Accuracy FE

SARK

GEAR

ADAMS

-2
-3
-4
-5
-6
-7

-2
-3
-4
-5
-6

-2
-3
-4
-5
-6

333
506
740

1046
1452
2169

267
349
487
710

1016

173
227
322
390
501

JE

0
0
0
0
0
0

13
17
24
35
50

—
-
-
-
-

Steps

47
71

108
161
240
360

164
233
359
559
841

99
151
235
301
404

CPU 
Time

0.35
0.53
0.78
1.11
1.57
2.44

1.45
2.08
3.03
4.56
6.72

0.51
0.74
1.20
1.61
2.29

Table A.23 : Problem E3 (Figure 7.23)

Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-4
-5
-6
-7
-8

-1
-2
-3
-4
-5

-1
-2
-3
-4
-5

FE

39
57
88
133
210

37
52
65
85

112

28
35
48
63
78

JE

0
0
0
0
0

5
5
6
8
9

-
-
-
-
-

Steps

4
7

12
20
33

9
16
23
34
47

7
11
17
24
33

CPU 
Time

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

.05

.06

.08

.12

.19

.13

.20

.25

.36

.49

.05

.07

.10

. 14

.19

Table A.24 : Problem E4 (Figure 7.24)
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Method

SARK

GEAR

ADAMS

Log 10 
Accuracy

-3
-4
-5
-6
-7

-1
-2
-3
-4
-5

-1
-2
-3
-4
-5

FE

45
57
66

109
177

68
107
141
170
207

56
74
89
106
137

JE

0
0
0
0
0

6
9

12
13
14

—
-
-
-
—

Steps

3
6

10
17
28

18
33
46
64
92

12
21
29
41
61

CPU 
Time

0.04
0.05
0.07
0.12
0.19

0.25
0.41
0.55
0.71
0.92

0.10
0.15
0.19
0.25
0.35

Table A.25 : Problem E5 (Figure 7.25)
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Appendix B : Normalized results for the stiff problems of DETEST

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6

Table B.I

Log 10
Accuracy

-1
-2
-3

-3
-4
-5
-6
-7

Table B.2

Log 10
Accuracy

-3
-4

-3
-4

FE

557
743

1143
1753
2520

166
229
272
379

: Problem

FE

5458
5532
3637

324
416
528
658
827

: Problem

FE

723
1178

303
317

JE

6
4
4
4
4

15
19
21
26

Al

JE

85
81
52

21
25
29
33
40

A2

JE

9
15

28
23

Steps

44
68

135
243
378

68
103
137
203

(Figure 7

Steps

244
243
199

85
134
190
261
362

(Figure 7

Steps

59
15

129
164

CPU
Time

0.57
0.73
1.28
2.04
2.91

1.14
1.66
2.16
2.97

.26)

CPU
Time

2.30
3.34
5.45

3.88
5.59
7.70

10.14
12.96

.27)

CPU
Time

0.81
1.17

2.23
2.33

Table B.3 : Problem A3 (Figure 7.28)
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Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10
Accuracy

0
-1
-2
-3

oo
-4

Table B.4

Log 10
Accuracy

0
-1
-2
-3
-4

-2
-3
-4

Table B.5

Log 10
Accuracy

-4
-5
-6
-7
-8

-3
-4
-5
-6
_rj

Table B.6

FE

1286
1355
1433
1512

413
511

: Problem

FE

4097
5398
5858
5862
5870

672
879
1186

: Problem

FE

402
433
490
582
730

182
233
287
352
438

: Problem

JE

10
10
10
10

26
30

A4

JE

16
16
15
13
8

41
47
62

Bl

JE

0
0
0
0
0

14
16
19
20
23

B2

Steps

60
68
80
92

113
165

(Figure 7

Steps

401
572
660
710
812

367
564
833

(Figure 7

Steps

65
70
79
94

119

62
91
125
172
249

(Figure 7

CPU
Time

3.53
3.75
3.99
4.23

6.00
8.07

.29)

CPU
Time

4.30
5.43
6.08
6.46
6.74

5.19
7.38
10.42

.30)

CPU
Time

0.62
0.64
0.76
0.94
1.12

1.60
2.25
2.89
3.76
5.22

.31)
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Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10 
Accuracy

—4
-5
-6
-7
-8

_0

-4
-5
-6
-7

Table B.7

Logio
Accuracy

-3
-4
-5
-6
-7
-8

-3
-4
-5
-6

Table B.8

Log 10 
Accuracy

-1
-2
-3
-4
-5
-6

-2
-3
-4
-5

FE

504
548
619
734
928

191
249
318
383
465

JE

0
0
0
0
0

14
17
20
22
24

: Problem B3

FE

620
754

1021
1429
1637
1959

261
338
445
606

: Problem

FE

2176
4511
2584
1934
2826
3718

3304 1
3451 1

JE

4
4
2
0
0
0

16
21
24
31

B4 

JE

6
5
4
5
9
6

29
38

3558 141
3817 1 51

Steps

81
88

100
119
152

68
99
143
192
266

(Figure 7

Steps

55
76

136
237
271
325

114
156
230
347

(Figure 7 

Steps

282
659
357
243
356
542

2343
2331
2466
2663

CPU 
Time

0.80
0.84
0 . 95
1.17
1.46

1.78
2.37
3.20
4.20
5.32

.32)

CPU
Time

0.76
1.01
1.48
2.26
2.54
3.02

2.52
3.45
4.76
6.85

.33)

CPU 
Time

3.10
6.76
4.05
3.02
4.01
5.50

40.87
43.92
45.71
49.34

Table B.9 : Problem B5 (Figure 7.34)
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Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10 
Accuracy

-3
-4
-5
-6
-7
-8

-3
-4
-5
-6

Table B.

Logio
Accuracy

-4
-5
-6
-7

-3
-4
-5
-6

Table B.

Log 10 
Accuracy

-1
_o
-3
-4
-5
-6
-7

-3
-4
-5
-6

FE

491
667
752

1209
948
916

190
253
324
400

JE

9
8
5

10
4
0

18
21
26
28

10 : Problem Cl

FE

1148
999

1050
1637

183
253
324
409

JE

18
11
5
6

17
21
25
25

11 : Problem C2

FE

1504
1501
1518
1540
1522
1724
2216

169
240
322
441

JE

19
16
16
16
9
5
4

16
20
25
27

Steps

45
65

101
146
133
151

81
123
172
239

(Figure

Steps

46
65

116
214

76
117
166
238

(Figure 

Steps

51
60
79

105
158
226
315

71
109
161
243

CPU 
Time

0.65
1.01
0.94
1.41
1.14
1. 10

1.31
1.90
2.49
3.33

7.35) 

CPU
Time

1 .00
0.99
1.23
1.94

1.20
1.79
2.46
3.34

7.36)

CPU 
Time

1.24
1.05
1.20
1.49
1.64
2.04
2.75

1.12
1.71
2.41
3.35

Table B.12 : Problem C3 (Figure 7.37)
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Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log 10 
Accuracy

-2
-3
-4
-5
-6

-1
-2
-3

Table B.

Accuracy

-2
-3

3
2

Table B.

Accuracy

0
-1

0
-1
-2
-3

Table B.

Accuracy

-1
-2
-3

-2
-3
-4

Table B.

FE

1383
1799
3040
4448
5890

232
306
415

JE

9
8
6
5
5

20
20
27

13 : Problem C4

FE

3628
4964

227
270

JE

6
6

17
20

14 : Problem C5

FE

5461
48182

156
182
226
282

JE

85
242

18
18
20
24

15 : Problem Dl

FE

9060
9249
5367

170
248
299

JE

132
147
92

17
23
26

16 : Problem D2

Steps

78
156
419
690
930

101
146
204

(Figure

Steps

638
814

86
109

(Figure

Steps

365
2087

32
47
68
101

(Figure

Steps

354
339
189

71
116
.157

(Figure

CPU 
Time

1.32
1.97
3.63
5.41
7.15

1.55
2.16
3.03

7.38) 

CPU
Time

4.61
6.11

1.45
1.76

7.39) 

CPU
Time

7.94
25.93

0.67
0.80
1.06
1.43

7.40) 

CPU
Time

10.50
7.23
4.10

0.87
1.36
1.79

7.41)
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Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Method

SARK

GEAR

Log
Accuracy

-2
-3
-4

-3
-4
-5
-6

Table B.

Accuracy

-2

-4
-5

Table B.

Log 10 
Accuracy

-2

-3
-4
—5

Table B.

Log 10 
Accuracy

-2
-3

-3
-4
-5
-6

FE

19526
7006

11933

226
308
396
511

JE

138
61
76

22
27
33
39

17 : Problem D3

FE

1643

54
71

JE

44

8
9

Steps

142
401
794

93
139
203
280

(Figure

Steps

73

19
24

CPU
Time

18.42
22.63
23.51

1.43
2.10
2.34
3.84

7.42) 

CPU
Time

1.34

0.26
0.38

18 : Problem D4

FE

1528

162
195
271

JE

19

20
21
25

Steps

72

52
68
112

CPU 
Time

1.37

0 . 56
0.74
1.09

19 : Problem D5

FE

7204
6395

71
116
150
170

JE

109
128

7
11
14
14

Steps

392
357

26
43
62
80

CPU 
Time

5.74
6.83

0.35
0.59
(T.79
0.95

Table B.20 : Problem D6 (Figure 7.43)
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Method

SARK

GEAR

Log 10 
Accuracy

-4
-5
-6
-7

-3
-4
-5
-6

FE

328
335
368
424

76
113
161
215

JE

0
0
0
0

9
12
15
16

Steps

43
47
51
60

15
27
50
86

CPU 
Time

0
0
0
0

0
0
0
1

.48

.51

.67

.66

.41

.63

.97

.49

Table B.21 : Problem El (Figure 7.44)

Method

SARK

GEAR

Accuracy

-2
-3
-4
-5

0
-1
-2
-3

FE

378
545
795
1188

298
372
440
538

JE

0
0
0
0

28
28
31
37

Steps

55
83

125
192

124
184
246
339

CPU 
Time

0.31
0.46
0.65
0.98

1.19
1.58
2.08
2.74

Table B.22 : Problem E2 (Figure 7.45)

Method

SARK

GEAR

Log 10 CPU
Accuracy FE

-2
-3
-4

_o

-3
-4
-5

1971
7097

16599

165
251
312
405

JE

51
52
39

15
18
21
25

Steps

99
245
648

71
121
156
216

Time

1
5

13

0
1
1
2

.73

.78

.63

.86

.39

.81

.54

Table B.23 : Problem E3 (Figure 7.46)
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Method

SARK

GEAR

Log 10 
Accuracy FE

-4
-5
-6
-7

-2
-3
-4
-5

3779
4965
4355
4701

290
400
516
669

JE

87
91
58
52

25
32
38
49

Steps

127
174
299
402

127
202
285
389

CPU 
Time

5
6
5
6

1
2
4
5

.75

.12

.98

.81

.98

.97

.10

.44

Table B.24 : Problem E4 (Figure 7.47)

CC m
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