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PREFACE

The aim of the thesis was to develop a technique for dynamic grid adaption based on 

the LPE method of Catherall (1991) that can be used on ID, 2D and 3D problems in 

a form that can be attached to computational fluid dynamics (CFD) packages with the 

minimum of additional coding. To this end the adaptive technique was implemented 

to run on real flow problems within the commercial CFD code PHOENICS (Spalding 

1989), on a single problem with the research code PHYSICA (Cross et al 1995),and 

independently on a range of simple test functions.

Most, though not all of the successful work on structured grid adaption has been 

achieved working with inviscid codes that are tolerant of high degrees of grid 

distorsion, and involve problems with distinctive flow features such as very strong 

shocks which make the task of finding something to move the grid to much easier. 

PHOENICS is a viscous code that is not quite so tolerant of poor grid quality and 

some of the problems looked at dont have such clearly defined features. This makes 

the tasks addressed by the current work much harder.

A major requirement of this adaptive technique is that, as it is being developed for use 

with but independent of CFD packages, there should be the minimum of information 

transfer between and disruption to the flow solver. This is a great constriction on the 

development of the technique, as the information that can be reliably passed between 

the adaption tool and the solver consists of the grid coordinates and the values of 

solved variables. Grid cells cannot reliably be added, so adaption must take place by 

redistribution not refinement. Grid cell renumbering may not be possible, so boundary 

conditions must always apply to the same group of cells, regardless of how much the 

mesh distorts. In addition there is no allowance for any prior knowledge of the 

original problem domain. All of the features of a particular geometry can only be 

calculated from the shape and point distribution in the initial grid. Finally, the benefits 

of variations in grid density with the adapted grid must be able to outweigh the errors 

due to grid distortion when solved over by the CFD code.



The main aim, the development of the adaptive technique, has been achieved. 

However, some important features of the technique have not been fully tested. The 

most important of these is adaption in three dimensions. Testing in three dimensions 

was difficult because of the lack of suitable cases with reliable data, and the difficulty 

of comparing results from fixed and from adapted meshes.

Another feature that needs more work concerns weight functions. Many different 

forms were found in literature and several of them were implemented in the course 

of the development of the technique. Unfortunately there was not enough time to fully 

explore the differences, if any, between them.

Within the range of grid quality that can be tolerated by the solver the adaptive grid 

can be an effective tool in improving accuracy, given that there is some strong 

gradient or flow feature in the problem domain, and that the starting grid is neither 

too coarse to pick up the feature nor too fine to render grid redistribution unnecessary.

11



ABSTRACT

This thesis describes the development and implementation of a dynamic adaptive grid 

method for general two and three dimensional static and transient fluid flow problems 

solved over structured grids. The technique automatically manipulates the location of 

grid points within the domain of interest to concentrate cells in regions of high 

solution activity, thus aiming to improve the accuracy of the overall simulation for a 

given number of initial grid cells. To achieve this aim the Laplace Poisson 

Equidistribution equation is used. Furthermore, the work also covers different types 

and treatment of weight functions needed to represent areas of high solution activity 

and a range of techniques necessary to make the use of adaptive grids practical, 

including geometry modelling and grid quality control. The technique is implemented 

on simple functions and within the commercial CFD code PHOENICS, on fluid flow 

problems ranging from convection driven flows to shock capturing. The ability of the 

technique to be used for general grid manipulation is demonstrated by using it to 

couple PHOENICS with a stress code in the simulation of a deflecting beam in a 

uniform flow. In addition, a novel technique to adapt grids to solution phenomena 

using neural nets is demonstrated.
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SYMBOL KEY

9 .. .. Angle

XL,XP,XE .. Weights on the Laplace, Poisson, and Equidistribution terms of

	the LPE equation respectively 

^ .. .. Curvilinear coordinate 

<|) .. .. Adaption Variable 

a .. .. Equation constant

g ij .. .. Modified form of contravariant metric tensor

glj .. .. Contravariant metric tensor

g .. .. Jacobian

Solution curvature

P .. .. Control function

p,q,r .. .. general space coordinates
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u,v .. .. Parametric values

WI, WJ, WK .. Weight function values in X, Y, Z coordinate directions

	respectively

w .. .. Weight function

Z .. .. Parametric equation

Subscripts x , ^ refer to partial differentiation with respect to x, £,. Double subscripts, 

such as (j)^ refer to the second derivative of (j) with respect to x.
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CHAPTER 1: INTRODUCTION

1.1 Introduction to Grid Adaption and CFD

The aim of this chapter is to introduce the concept of grid adaption, to briefly explain 

the different techniques found in literature, and to describe the Laplace Poisson 

Equidistribution algorithm used in the current work.

Computational fluid dynamics (CFD) encompasses the simulation of physical 

phenomena through the use of mathematical equations. It exists because it allows 

physical behaviour to be determined in situations and geometries that could not 

otherwise be measured or explored analytically, and it allows rapid modifications to 

be made to geometrical designs in the virtual world of the computer that would take 

much longer if modifying 'real' models.

Many systems of mathematical equations used in computational fluid dynamics 

involve the solution of partial differential equations on discrete elements or cells that 

define the physical domain. These cells form a grid, and its shape and resolution has 

a profound effect upon the accuracy of the simulation. The finer the grid, the higher 

the resolution and accuracy, but the higher the computational cost in time for the 

computation of the solution and in memory used to store information for each element.

In addition the length scales of various phenomena may vary dramatically across the 

physical domain. If, for instance, a shock wave is being modelled then the required 

grid resolution to accurately fit the shock will be very high. If the grid is uniformly 

distributed, then either an extremely large number of cells will be required or the 

phenomena will be dissipated or lost. An extreme example is given by Quirk (1991) 

for the case of a detonation wave in solid explosives where for the required grid 

resolution within the reaction zone the cell thickness should be in the order of 0.002 

mm in a sample which may measure 100 mm in length by 100 mm in diameter. If the 

location of such phenomena is known beforehand, then the generation of the 

computational grid can be modified to produce a higher resolution in the important
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regions. If their positions are not known, their shapes complex, or in transient cases 

their position moves, the only way to accurately and efficiently model them is to use 

a grid that dynamically adapts to them.

The two techniques used for dynamic grid adaption are grid refinement (figure 1.1), 

which involves the addition and possible subtraction of grid nodes to the original grid, 

and redistribution (figure 1.2), where the positions of the original grid nodes are 

modified. Refinement provides the least cost in computational resources for a 

prescribed level of accuracy. Redistribution provides the best accuracy for a proscribed 

level of cost. The two techniques are not mutually exclusive. The current work is 

concerned with redistribution.

\

Figure 1.1 Refinement (Dannenhoffer 1991) Figure 1.2 Redistribution (Dannenhoffer 1991)

Another approach to see why grid adaption can be useful is to consider truncation 

error due to the Taylor expansion which can be used to discretise partial differential 

equations. The Taylor expansion creates solvable algebraic expressions for the first 

and second order derivatives that consist of terms involving discrete points and a 

truncation error which is a function of the distance between the discrete points and the 

change in value over the points. The truncation error is least when either the distance 

between the points or the change in value is small. By clustering points where the rate 

of change is high and reducing the number of points where the rate of change is low 

a dynamically adapting grid can achieve a constant level of truncation error over the 

whole domain thus minimising the total error.



The type of grid covered in the current work is the structured, body fitted coordinate 

grid, or BFC for short. The BFC grid is formed by the intersection of families of 

curvilinear lines that coincide with the shape of the physical domain at its boundaries 

(figure 1.3). It can be viewed as a regular, rectangular grid that has been pulled and 

stretched until it fits the dimensions of the physical domain. A few other examples of 

grid include cartesian, where the grid is formed by the intersection of three sets of 

mutually perpendicular parallel planes; polar coordinate, where the grid is formed by 

planes intersecting an axis, perpendicular to the axis, and in concentric cylindrical 

surfaces around the axis; and unstructured, where elements may in theory have any 

number of sides and the grid connectivity is controlled by the use of adjacency tables.

Figure 1.3 Example BFC grid

1.2 False Diffusion

False diffusion is a major source of error in CFD techniques. It results from the 

treatment of fluid flow between neighbouring cells in multidimensional grids as one 

dimensional in the basic discretisation of the conservation equations used to model the 

fluid. When the local grid is misaligned with the direction of fluid flow the 

contributions from convection from the neighbouring cells are of poor accuracy. The 

error can be seen as an artificial diffusion term. A much fuller description of false 

diffusion is given by Patankar (1980).



False diffusion has little effect when the grid is aligned with the fluid flow and when 

the ratio of convection to diffusion is low. Otherwise false diffusion can be reduced 

by using complex discretisation schemes on the conservation equations, such as 

SUCCA (Carey et al. 1993), or CUPID (Patel et al. 1988), or by using grid adaption. 

Grid adaption by redistribution can align the grid cells with the local flow direction. 

Grid adaption by both redistribution and refinement can also reduce the local grid cell 

size where false diffusion is worst.

1.3 Grid Quality

Grid quality is difficult to measure because it depends so much upon the problem and 

the capability of the CFD solver which is used to solve it. The basic requirements of 

a good structured grid are that it:

  Accurately defines the geometry of the problem, including internal and 

external boundaries.

  Allows a solution to be generated to the required level of accuracy for the 

minimum use of resources. This can involve variation in grid density.

The degree to which the grid can be skewed to accommodate boundaries and increased 

density in regions of high solution error is governed by the way in which grid 

properties contribute towards error. The two main grid properties that contribute 

towards grid error are:

  Orthogonality. An orthogonal system is defined by Thompson et al. (1985) 

as one where a vector normal to a coordinate surface is parallel to the tangent 

of a coordinate line that crosses that surface. These two vectors are known as 

the contravariant and covariant base vectors respectively and are important in 

the derivation of the metric tensors used to transform grid coordinates from 

physical to curvilinear space (see appendix A). Structured grid orthogonality 

is based on the arrangement of grid nodes.



  Smoothness, defined as the rate of change of the angles between grid cells 

and the rate of change of grid cell volume.

The general requirements for grid quality given by Jacquotte (1991) are orthogonality 

the grid lines close to the boundaries, angles between lines not exceeding 45°, 

deviation of lines from one cell to the next of not more than 10 to 15°, and a rate of 

change of volume not greater than 30%.

Grid cell aspect ratio can contribute to grid quality problems, particularly when 

combined with poor smoothness and orthogonality.

Though there is much literature available on mesh optimisation, with or without grid 

adaption, (Lehtimaki 1995, Knupp 1992, Jacquotte 1992, 1991, Chawner and Anderson 

1991, Lu and Eiseman 1991, Lee et al. 1990 and Thompson et al. 1985), research on 

the actual contributions of grid properties of solution error have been limited (Huang 

and Prosperetti 1994, Lee and Tsuei 1992b, Shirayama 1991). The most interesting of 

these papers is possibly Huang and Prosperetti (1994) who determine formulae for the 

truncation error due to the diffusion term in the Navier Stokes equations, and then use 

the formula to test the influence of grid angle, smoothness and boundary 

orthogonality. Their main conclusions are that grid angle is only significant when very 

small, the importance of grid smoothness is related to the shape of solution, with very 

regular solutions needing smoother grids, and that orthogonality is less important than 

grid density. In other words orthogonality can be disadvantageous when it reduces the 

local grid concentration.

1.3.1 Measuring Grid Quality

Grid skewness is very similar to grid orthogonality and can be measured relatively 

easily using the technique described in Lehtimaki (1995). Here skewness is defined 

as the amount of deformation of the individual grid cells. In two dimensions it is 

calculated for each grid cell by using the areas of both pairs of triangles which are 

formed by splitting it along either of its two diagonals.



If the areas of the triangles are tn and t12 for the diagonal from ij to i+l,j+l; t21 and 

t22 for the diagonal from i+lj to i,j+l', and the maximum lengths of the edges of the 

cell in each curvilinear direction are e } and e2 (figure 1.4) then the skewness p can be 

calculated using equation 1.1.

p=2. (1.1)

Figure 1.4 Definition of Terms in Equation 1.1

A value of 1 for the skewness p indicates a quadrilateral cell. As the cell becomes 

more skewed p decreases. If the cell becomes folded then p becomes negative.

In the system described in figure 1.5 the orthogonality o of the point r,-. can be 

determined using the formula given in Lehtimaki (1995):-

Where

r. .. - r.. 8r. ..= l+lj IJ
r. .-r..

(1.3)



Figure 1.5 Grid Orthogonality 

1.4 Techniques

This section presents examples of the range of adaption techniques found in the 

literature. Features which are common to all adaption techniques are briefly discussed 

first.

All adaption techniques consist of a method to determine where in the physical 

domain extra computational resources are required. The value calculated by this 

method is commonly known as the weight. The weight is usually some function that 

relates to solution error which may be some measure of the truncation error using a 

second coarse mesh, or more simply based on the gradients of chosen solution 

variables. The weight may also be linked to geometrical properties of the grid to assist 

in grid generation. The principal aim of adaption techniques is to evenly distribute the 

weight over the domain so as to evenly distribute and minimise the overall solution 

error by avoiding large peaks and troughs.

A fuller description of methods used to calculate the weight is presented in chapter

2.

In the case of refinement more grid cells are added in regions where the weight 

exceeds some predefined tolerance. In redistribution techniques the grid cell spacing 

is, depending on the technique used, inversely proportional to the weight distribution. 

This is driven by the equidistribution equation, which in one dimension is



w Ax = constant (1.4)

Where w is the weight, and Ax is the grid point spacing.

A second feature common to all adaption techniques is that the final grid itself will 

be able to provide information on the shape of the solution through the distribution 

of its cells. An example of this can be seen in figures 1.1 and 1.2 above where the 

calculated position of pressure waves around the aerofoil can be clearly seen in the 

grid.

1.4.1 Mesh Redistribution Methods

Mesh redistribution methods involve the movement of nodes in, or the recalculation 

of the original grid with the same number of cells, so as to give a better grid 

distribution for the problem.

The main problem in redistribution techniques is balancing the demands of 

equidistribution of error against grid quality. Errors due to grid quality will increase 

and overtake the error modelled by the weight function if the grid is stretched too far.

Grid quality can be measured in terms of orthogonality or skewness, which can be 

looked on as a function of the internal angles of the cell, and smoothness, which is 

the rate of change of cell size. Maintaining grid quality also means avoiding grid line 

cross over and cells which are too small or large. There is some published work 

concerned with optimising grid quality alone. Examples include Lehtimaki (1995), 

Huang and Prosperetti (1994), Lu and Eiseman (1991), Saoub and Vandromme (1991), 

and Shirayama (1991).

The main advantages of grid redistribution techniques include 

  Continuous response to solution behaviour.
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  Fixed storage requirements, though allowances may need to be made to store 

old grids.

  Easier to implement, particularly for three dimensional grids. The flow solver 

may not need to have any knowledge of adaptivity.

  Alignment of grid with the direction of local flow and physical phenomena 

such as shock waves can help to reduce numerical diffusion

Disadvantages include

  Loss of grid quality. Computational effort and coding complexity may have 

to be tied up with monitoring quality.

  Maintenance of internal and external grid boundaries and grid features. This 

is more straightforward where the grid is regenerated using known geometrical 

information about the physical domain, but less so when grid points are moved 

only.

  Disruption to flow solver. If adaption takes place dynamically, that is during 

the course of a single run of the flow solver, then the stored values for the 

solved variables in each cell become invalid once the grid has moved. 

Dannenhoffer (1991) assumes that as the movement in each adaption will be 

small that the solution carried forward to the new grid will be a good guess to 

the new solution. The alternative is to interpolate the solution between grids, 

which may be expensive if the grid is large and particularly for three 

dimensional grids.



1.4.1.1 Equidistribution

The equidistribution equation on its own is the simplest method of grid adaption, as 

well as being the basis for grid movement in other techniques.

There are a range of methods based on the equidistribution equation. The method used 

by Patel, Pericleous and Baldwin (1995) involves equidistribution along lines. Each 

grid line is treated separately, and cell distribution is based on the arc length. Equation 

(1.4) is rewritten as

&s = — (1.5) 
w

where As is the arc length. This is modified to allow for zero values of weight giving

(1.6)
n

W + C

where Asn is the new arc length, &s0, the original arc length and c, some predefined 

function that is fixed for each line. After all of the new arc lengths are calculated they 

are scaled to fit within the limits of the original grid line. Additional terms may be 

added to control the amount of movement in each adaption.

Equidistribution on its own may be very fast, but additional steps, such as Laplace 

smoothing, may be needed in the adaption algorithm to enhance grid quality. Such 

steps may also help to link the movement between neighbouring grid lines that may 

otherwise lead to highly skewed grids.

Examples of equidistribution techniques in literature include Adams and Conlisk 

(1995), Patel et al. (1995), Lin and Wu (1993), Lee and Tsuei (1992a), (1992b), Shyy 

(1992), (1991a), (1991b), (1990), (1986), Harvey et al. (1991), Chang and Shyy 

(1991), Chao and Liu (1991), Pao and Abdol-Hamid (1991), Bockelie et al. (1990), 

Lawal (1990), Mattheij and Smooke (1989), Seibert et al. (1989), Anderson (1987a),
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Eiseman (1987), Eiseman and Bockelie (1987), Coyle et al. (1986), Sanz-Serna and 

Christie (1986), Dwyer (1985) (1984), Rai and Anderson (1982).

1.4.1.2 Poisson Equation

A common method for structured grid generation involves the solution of the Poisson 

equation, where the Laplace equation common in elliptic grid generators is equated 

to some control function. The basic form of the equation is

= < i=l,3 (1-7)

where Q{ is a control function and ^, are the system of coordinates that define 

curvilinear space. This equation is commonly inverted to make the physical 

coordinates the dependent variables, and thus takes the form

E E g %? + E Pk 8 % = 0 i,j, k cyclic d-8) 
i j k

where gij is the contravariant metric tensor, r is the general space coordinate, and Pk 

is the transformed control function. The value of the control function is used to control 

the shape of the grid and the concentration of grid cells. A control function of zero 

means that the equation defaults to the Laplace equation and the resulting grid is equi- 

spaced. A full description of the use of control functions can be found in Thompson 

et al. (1985).

This method can be easily modified to allow for adaption by modifying the control 

function term to include an adaptive term that is related to solution activity. By 

including and weighting both the term to generate the original grid and the term to 

adapt the grid the amount of adaption can be controlled. If the weighting on the terms 

is allowed to vary during the run, then the original grid can be recovered by reducing 

the weight on the adaptive term (Roache et al. 1991). The adaptive form of the 

Poisson equation can be written as

11



o ., ., 6
i j

+ kk =0 u (1-9)

where cw controls the amount of adaption, and Wk is some adaptive weight function.

The Poisson equation is widely used for grid adaption on both two and three 

dimensional grids (Hall and Zingg 1995, Kwon and Jeong 1995, Shen et al. 1993, 

Catherall 1991,Dannenhoffer 1991,Hsu and Lee 1991, Anderson 1990, 1987a, 1987b, 

Tu and Thompson 1990, Noack and Anderson 1989, Kim and Thompson 1988, 

Matsuno and Dwyer 1988, Thompson 1985, Holcomb 1984).

1.4.1.4 Spring Analogy

This method is in more common usage for finite element problems, and in particular 

mixed fluid and structure interactive problems where the mesh may deform about an 

elastic structure (Farhat and Lin 1990, Lesoinne and Farhat 1995). In such problems 

the stress solver required to modify the grid may already be available. The grid can 

be looked at as a pseudo structural problem with each node connected to its 

neighbours by a spring. For grid adaption a force is applied to each node in the mesh 

relating to the value of some function. For moving mesh type problems a range of 

nodes are given an initial displacement and the system allowed to reach a new 

equilibrium. The problem can also be looked at as the minimisation of the energy in 

the system of springs as depicted in figure 1.6.

Figure 1.6 Tension spring analogy
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To prevent excessive grid skewness a torsion spring concept (figure 1.7) may be used 

about each node (Catherall 1991, Harvey et al. 1991, Nakahashi and Diewert 1987, 

1986, 1985).

Figure 1.7 Torsion Spring Analogy

An advantage of this approach is that as it only depends upon a system of nodes and 

links the same technique can be used for both structured and unstructured grids 

(Farhat and Lin 1990).

Other examples of the use of the spring analogy in literature include Hu (1998) at the 

University of Greenwich, Ramakrishnan and Singh (1994), Harvey et al. (1993), 

Davies and Venkatapathy (1992), Palmerio (1992), Niederdrenk (1991), Gnoffo 

(1983). It is also being used in ongoing work at the University of Greenwich in 

coupling structural and CFD codes (Slone 1997).

1.4.1.4 Variational Technique

The variational technique involves the evaluation and minimisation of grid properties 

and solution error, commonly using Euler-Lagrange equations from the calculus of 

variations. The properties commonly checked for include cell volume or area, 

smoothness and orthogonality. The final solved for equation is a weighted combination 

of the above properties.

The integral form of the three terms for orthogonality, smoothness, and solution 

behaviour used by Kim (1987) and others are:-

13



Smoothness

3
Is = JJ/E

Orthogonality

3

o= JJ/E (LID

Solution behaviour

The main advantage of variational techniques is that the individual terms reflect 

physically significant quantities that are easy for the user to understand. However the 

final equations may be more costly to evaluate whilst not producing significantly 

different results from, say, Poisson based schemes (Kim 1987).

Other examples of the use of variational techniques are included in Brackbill (1993), 

Castillo (1991), Desbois (1991), Hsu and Tu (1987), Jacquotte and Coussement 

(1992), Palmerio (1992), Saouab and Vandromme (1991), Singh, Kumar and Tiwari 

(1991), Jeng and Liou (1989), Giannakopoulos and Engel (1988), Kim and Thompson 

(1988), and Brackbill and Saltzman (1982).

1.4.1.5 Mapping Techniques

Mapping techniques involve the adaption of the grid in some form of transformed or 

parametric space which is then mapped back to the physical domain. The parametric 

space may be much simpler than the physical domain and may even be uniform. This 

allows the use of simpler adaption equations, that will in turn probably behave better 

than on a skewed mesh. In addition the grid shape and grid quality can be closely 

controlled as the grid points are mapped back to the physical domain.
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The main strength of mapping techniques is in handling complex geometry, where it 

is much easier to maintain high grid quality and prevent grid cross over.

The weaknesses of these techniques include the time taken for transfer of data from 

parametric space to real space, and the need to know a lot of information about the 

initial grid. It may be necessary to completely regenerate the original grid, so the 

technique may only be practical when a new grid can be generated rapidly, as in the 

case of Alien (1995) where transfinite interpolation is used to generate the grid.

Examples of the use of monitor surface include Alien (1995), Hagmeijer (1994), 

Brackbill (1993), Benson and McRae (1991), Pao and Abdol-Hamid (1991), Bockelie 

et al. (1990), Arina (1989), (1988), Eiseman (1987), (1985a), (1985b), and Eiseman 

and Bockelie (1987).

1.4.1.6 Others

Greenburg (1983) used a linear unimolecular chemical kinetic analogy to determine 

grid point movement.

Another technique is presented by Petzold (1987) who uses a one dimensional moving 

grid scheme to minimise the time rate of change when modelling moving fronts.

1.4.2 Grid Refinement

In grid refinement extra cells are used to resolve the solution in flagged, commonly 

rectangular, regions within the original grid. Regions are flagged where some sort of 

solution error indicator exceeds a defined tolerance level. The solution error indicator 

may be very similar in form to those used for weights in mesh redistribution.

For structured grids there are two principal techniques, grid embedding or grid 

division.
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In grid division (figure 1.8) the grid is held in a complex data structure such as a quad 

tree or oct tree for three dimensions. Flagged cells spawn sub cells in a level below 

them in the grid hierarchy that are formed by subdividing the region covered by the 

original cell. Starting from an initial grid that is already refined it may be possible to 

coarsen regions where solution activity is small. A common restriction on this kind 

of grid is that neighbouring cells can only be one level different. The grid may be 

solved in a partly unstructured way.

Figure 1.8 Top level, initial, and adapted grids 
The two main problems with this kind of adaption are due to the restrictive data

structure involved, which must be built into the underlying flow solver from an early 

stage, and due to the problem of dealing with discretisation and conservation at 

hanging nodes.
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Examples of grid division techniques are included in Davies and Dannenhoffer (1994), 

De Zeeuw (1992), Dannenhoffer (1991), (1987), (1985), Carey et al. (1988), and 

Carey (1987).

Grid embedding (figure 1.9) involves the use of a new separate grid to cover the 

flagged region. The embedded grid is solved as a separate problem, with boundary 

conditions coming from the original grid, possibly in the form of single layer of 

surrounding cells known as halo cells. The solution computed on the embedded grid 

is either stored in its own right or transferred back to the initial grid. The initial grid 

may have embedded regions either be blocked or blanked out, or solve for those 

regions using data interpolated back. The overall data structure of the grid may be 

invisible to the underlying flow solver (Quirk 1991) allowing the choice of solver to 

be much more flexible than would be the case using grid division. At the same time 

the problems of hanging nodes are greatly reduced as no grid solved for contains 

them. They only contribute to the definition of the boundary conditions, the 

calculation of which is invisible to the underlying solver. There is also more flexibility 

over the type and number of cells in the refined region, allowing very high resolution 

to be achieved instantly to model rapidly changing length scales in the solution, if 

required.
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Figure 1.9 Initial and embedded grids

Grid embedding is close to multigrid and multiblock methods. The separation of the 

solution procedure for the different embedded regions may allow the process to be 

easily parallelised. Though the data structure may be much simpler than for grid 

division, data storage for the whole problem may be difficult, especially if the position 

of the embedded regions is to be modified.

Examples of grid embedding techniques are included in Pascau and Caspar (1995), 

Wu (1995), Blom and Verwer (1994a), (1994b), (1994c), Quirk (1991), Thompson and 

Ferziger (1989), Berger (1986), and Berger and Colella (1986).

The main advantages of grid refinement techniques include

  Grid quality maintained. If only rectangular regions are refined the quality 

of the final grid will be no worse than that of the original. In techniques such 

as Local Uniform Grid Refinement (Blom and Verwer 1994a, 1994b, 1994c) 

the grid is always regular, and the underlying solver can take advantage of 

this.
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  Grid geometry maintained. Subdivision of grid cells does not require 

knowledge of the geometry of the whole domain.

The main disadvantages of grid refinement include

  Data structures and storage. The storage requirement will be constantly 

varying, demanding some outside limit of space, or the use of some form of 

dynamic memory allocation.

  Visualisation of results. This is tied in with the implementation, but may be 

especially awkward if the solution is transient.

  Discrete reaction to phenomena. Cells are only subdivided or embedded at 

set threshold values of the error indicator. The subdivisions or embedded cells 

are of fixed sizes.

1.4.3 Hybrid Grids

Hybrid adaption techniques combine grid refinement and redistribution (figure 1.8). 

Hybrid methods potentially offer very fast and efficient adaption to solution 

phenomena, though at the same time need both the data structures required by 

refinement methods and the controls needed to maintain geometry and grid quality 

required for redistribution methods. Because both methods of adaption are available 

the actual amount of movement that occurs due to redistribution may only need to be 

small, so that the problems with excessively skewed grids may be avoided. When the 

grid is refined by halving the flagged grid cells a modest reduction in cell size through 

redistribution will reduce the number of refinement levels necessary to achieve the 

desired accuracy.
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Figure 1.10 Hybrid grid adaption (Lee and Tsuei 1993)

The two choices are refine then redistribute, used by Acharya and Moukalled (1990) 

or redistribute then refine used by Lee and Yeh (1993). Both techniques have their 

advantages. The choice may depend on the type of grid refinement available.

Acharya and Moukalled (1990) use a modified grid embedding technique where the 

refined structured grid is generated using weighting based on solution behaviour. The 

unusual aspect of their work is that the refined region does not have to have a regular 

shape and as a result the embedded grid may be very skewed, particularly at its 

boundaries.

Examples of refinement followed by redistribution in literature can be found in 

Moukalled and Acharya (1991), and Acharya and Moukalled (1990).

Examples of redistribution followed by refinement in literature can be found in Arney 

and Flaherty (1990), Biswas et al. (1993), Lee and Yeh (1993), Lee and Tsuei (1993), 

and Szmelter et al. (1992). Seibert et al. (1989) adapt on the allowable grid then 

coarsen the resulting grid by removing grid points.

1.4.4 Other Methods

Mavriplis (1992) discusses adaption of spectral elements. Beyond redistribution and 

refinement the order of the equations for the cells in question may also be increased.
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1.4.5 Unstructured Grids and Finite Elements

Though much is applicable to any adaptive grid method, the current work is solely 

concerned with structured grids, though it could be easily extended to rectangular 

elements, or 'pseudo' structured grids, so the coverage of adaption for unstructured 

grids is by necessity very light. Adaption for unstructured grids is arguably more 

common than for structured, and there are numerous papers available on unstructured 

grid adaption. No attempt has been made to produce an exhaustive review of 

unstructured grid adaption techniques.

Unstructured grid techniques usually have the advantage of fast grid generation, 

particularly for triangular elements. They may also have a more flexible number of 

grid nodes. These factors make the easiest method of adaption refinement by simply 

adding or redistributing grid nodes to important areas, then recalculating the grid. 

Transfer of data between grids may be more awkward. What has been classed as grid 

redistribution, where the grid nodes retain their connectivity between applications of 

the adaption algorithm, is much more rare, with the main examples being in finite 

element problems where the grid may be moving anyway.

A few examples of adaption in unstructured meshes include Franca and Haghighi 

(1994), Palmerio (1992), Sweby (1988), Carey (1987), and Oden et al. (1986).

1.5 The Laplace-Poisson-Equidistribution Equation

The Laplace-Poisson-Equidistribution, or LPE, equation is the adaptive method 

implemented in this thesis. It is based on the Poisson equation used for grid generation 

and adaption (see 1.4.1.2). As suggested by its name it includes three principal terms, 

a Laplace smoothing term, a Poisson term that promotes the original grid distribution 

and an Equidistribution term that drives the grid adaption. The terms are weighted by 

the user to control how much or how little adaption takes place. The LPE equation can 

be written in the form
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(1-13)

Where KL, XP , XE are the weights on the equations, and (L), (P), (E) represent the 

Laplace, Poisson, and Equidistribution equations respectively. A full mathematical 

description of the terms is given in chapter 2.

The Laplace term is more commonly encountered in elliptical grid generators where 

it is used to produce an evenly spaced grid. No account is made of solution activity 

and when applied to a pre-generated grid it will produce the most orthogonal grid 

point distribution possible. The one characteristic which may not be so useful is a 

tendency for grid points to gather around convex and away from concave surfaces 

(Thompson 1987). However, this characteristic may be of advantage when developing 

grids over aerofoils, where the curve of the aerofoil surface will attract grid points to 

its leading edge, a potential area of high solution activity. The popularity of aerofoils 

as test cases in the open literature suggests that the negative side of the use of the 

terms in the Laplace equation may not commonly be encountered.

The Poisson term includes control functions that will recreate the original grid if the 

weights on the other two terms are set to zero. This term may be important if the 

original grid is skewed for any special reason, as, in the absence of a strong weight 

to drive the grid, the Laplace term will smooth it.

The Equidistribution term used encourages an even distribution of solution activity 

across all grid points, to the exclusion of all considerations of grid smoothness. The 

end result of applying the Equidistribution term alone is a potentially highly skewed 

and unusable grid. Coupled with the other terms it emphasises areas of high solution 

activity in the final grid.

The Laplace-Poisson-Equidistribution equation was first used by Catherall (1991) for 

two dimensional cases. The two dimensional form was implemented and the three 

dimensional form was developed by the author as part of an MSc thesis (Bennett 

1992).
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1.6 Requirements of the Adaptive Grid Algorithm

The main aim of the thesis is the development of an adaptive algorithm based on the 

LPE equation that is three dimensional, code independent and contains all of the tools 

needed to dynamically adapt structured grids. The LPE equation is used because it 

contains terms that maintain grid quality as well as adapt the grid to solution 

phenomena.

A particular feature of the technique described in this thesis is that it assumes that 

there is no prior knowledge of the grid or the physical domain that it encompasses. 

This is important in making the algorithm independent of other codes. This means that 

all geometrical information used to maintain the physical geometry during adaption 

must be generated within the algorithm, using the initial grid only.

Additional methods which are needed to make the adaptive algorithm work include 

tools for

  Maintenance of geometry by modelling lines and surfaces using cubic splines 

and bicubic patches respectively. The splines and patches need to be generated 

using the original grid and points need to be mapped back onto them using a 

location algorithm and interpolation to recover point parameters.

  Recovering control functions needed to recreate the original grid from it,

  Interpolating data between previous and new adapted grids. The principal 

method used in the current work is Shepard's interpolation (Shen et al. 1993).

  Determining weight functions. A range of methods for calculating weights 

which reflect different aspects of solution behaviour have been implemented. 

In addition techniques have been developed to smooth and modify the weight 

function to improve the adapted grid.
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  Maintaining the integrity of grid cells by checking for grid overlaps.

  Displaying the behaviour of the adaption algorithm. A measure of movement 

in terms of a percentage of distortion of the original grid is used to show how 

much adaption has taken place. In addition properties relating to the adaption 

are stored and displayed using a CFD code post processor.

  Accessing solution variables and the grid within the underlying CFD code. 

This is code specific.

The algorithm is not restricted to the whole grid and can instead be used individually 

on a number of subdomains; this extends its applicabilty to block structured type 

meshes.

1.7 Structure of Thesis

The mathematics of the LPE equation are described in chapter 2. 

Chapter 3 describes the additional tools needed to make adaption viable.

Chapter 4 describes general issues which affect the implementation of adaption outside 

the algorithms described in chapters 2 and 3. Examples of its implementation are also 

described within the commercial fluid dynamics code PHOENICS (Spalding 1989) and 

the research code PHYSICA (Cross et al 1995).

Chapters 5 and 6 are used to present results produced using adaption within 

PHOENICS and in an independent implementation in two and three dimensions 

respectively.

Chapter 7 describes how the current grid adaption method can be used to interface 

between a fluids code and a stress code to allow the modelling of fluid structure 

interaction.
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Chapter 8 describes a first attempt on an alternative method of grid adaption using 

neural nets.

Chapter 9 contains possible future work and conclusions.

1.8 Closure

This chapter has introduced CFD, grid quality, the concept of grid adaption and the 

range of techniques used in literature to achieve it. In addition the Laplace-Poisson- 

Equidistribution equation has been introduced and the range of techniques needed to 

make it work listed.

In summary grid adaption is concerned with manipulating the distribution and shape 

of the cells that define the solution domain to achieve the best possible grid for the 

simulation.
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CHAPTER 2: MAIN ALGORITHM

2.1 Introduction

The purpose of this chapter is to show the derivation and discretisation of the full LPE 

equation. The weight term used to determine grid movement is also discussed.

Only the discretisation of two dimensional form of the LPE equation will be presented 

in full in this chapter, though the full three dimensional partial differential equations 

will be listed. The discretisation of the one and three dimensional forms is given in 

appendix A.

2.2 Computational Molecule

The differential equations that make up the LPE algorithm are solved by using finite 

difference approximation.

The basic finite difference approximations, using central difference formulae are

2
.-2r. .+r. . . (2.2)-

(2.3)

The numbering convention used for the following equations is shown in figure 2.1.
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Figure 2.1 Computational Molecule

2.3 Metric Tensors

The transformation of the curvilinear grid into cartesian space is governed by the 

contravariant metric tensors.

A derivation of the metric tensors in three dimensions is given in Appendix A. Here, 

the three distinct metric tensors (noting g12 = g21) are simply listed.

g
(2.4)

g -V (2.5)

1 
g

(2.6)

Where r% is the gradient of the line ^ = constant, and g is the Jacobian. The Jacobian 

cancels out of the full equations
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dx . 3y .r =——1+——1 (2.7)

The three dot products, (V^ r^J, are

'—+1-
\ /

/ V

+1

3* (2.8)

,. .,

S2 Sz

\ /
. dx +1 _

a* (2.9)

S>l S>2 35, 35, )
(2.10)

•4

Using the terminology £,Wfor i+l,i-l, N,S forj+lj-1, gives

(2.11)

(2.12)
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2.4 Derivation of Laplace Term

The Laplace term is used in the LPE equation to promote orthogonality in the adapted 

grid.

The Laplace system in three dimensions is

V2 ^. = 0 i = l,3 (2.14)

When modified to make the x, y and z co-ordinates the dependent variables It takes 

the following form

«'= 1.7 =

Where r represents the co-ordinate direction being solved for, either x, y or z.

In two dimensions this simply reduces to

,,=0 (2.16)

Discretised, using equations 2.1, 2.2 and 2.3, this becomes

(2.17)

Separating the terms in equation 2.17 leads to the algebraic equation

L L L L Lp rp = aE r£ + aw rw + aN rN + as

With the source term / formed by using the comer coefficients
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where

L L L L L

(2'21 >

(2.23)

(2.24)

2.5 Derivation of Poisson Term

The Poisson term is used to promote the original grid distribution in the adaption.

The Poisson equation has been discussed in section 1.3.1.2. The three dimensional 

form shown in equation 1.4 is repeated here.

?. i = l,3 (2.25)

Where Pi represents a control function used to modify grid point locations.

The Poisson equation modified to make x, y and z co-ordinates the dependent variables 

takes the form

333
je**P,rt =0 (2.26)
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In two dimensions this reduces to

r = 0 (2>27)

Discretised, equation 2.27 becomes

12

(2.28)
all g 22

_£ _ ( r -r )P + _ _ (r -r }P = 0 2~\'E 'w' r i —Z-^'N 's) r 2 u

The full details of the transformation of the control function are not important in the 

current work as they are extracted directly from the original grid using equation 2.28. 

They are found by forming simultaneous equations using the initial grid values.

Separating the terms in equation 2.28 leads to the algebraic equation

As the only differences to the Laplace equation are the control functions all terms that 

do not contain them are the same

a p =a L (2-30)

Only the source term is different

s'=s L +*.P(r-r)+*?.P(r-r) (2.31)

2.6 Derivation of Equidistribution Term

The equidistribution term is used to apply a weight to alter the grid distribution.

The equidistribution term is derived from the basic equidistribution equation (1.1) in 

each of the three co-ordinate directions, which can be written in the form
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as.
W. —— = constant (2.32)

Where W,- is the weight function and 51, is the arc length along the / varying line.

The three equations in the system are differentiated to remove the constant, multiplied 

by the term g"r^ and combined to give

3 

i = l

5. H77" = 0 (2.33)

The multiplier puts the equidistribution term into the same form as the second term 

in the Poisson term as shown in equation 2.26.

In two dimensions this reduces to

*%
w/t 
"W

\ /
^22  

2 2

/

WJ 2 2

V

= 0 (2.34)

Where W7 and W7 are the weight functions in the x and y coordinate directions 

respectively.

The discretisation of the equidistribution equation can be simplified by first seeing that 

the denominator of the second term in the brackets is identical to vector dot products 

used to evaluate the metric tensors, which is calculated elsewhere and can be 

substituted in 2.34.

r -r =r 2 4- v 2 O ^^ i I =Ac + yp \&*33)

Equation 2.34 discretised gives
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(2.36)

Where r is the variable being solved for.

Separating the terms in equation 2.36 leads to the algebraic equation

F F F F F c (^ 11\
C, I f » / I

where

ap =aE +aw + aN +as (2.38)

E EaE = a w
4 (r-r)

*»! ^1

(2.39)

a M =<2c = '^) (2.40)

s -.

•g'

-WIrY1
2WL (1

(PE -2pP +pw)

y ^2 *52

•(PN -

(2.41)
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2.7 The LPE Equation

The LPE equation is formed by combining the Laplace, Poisson and Equidistribution 

terms together (equations 2.17, 2.29 and 2.37) into one equation with the user 

controlled constants A,L, Xp, XE , to weight each term respectively.

This leads to the algebraic system

LPE LPE LPE LPE LPE TPEap rp = aE r£ + aw rw +aN rN + as rs + s L™ 

where, using equation 2.30 to remove the Poisson coefficients

LPE LPE LPE LPE LPEap =aE +aw +aN +as

LPE LPE

LPE LPE ,r. L * p . L AF EL N

(2.46)

2.8 Calculation of Weight Functions in the Equidistribution Term

The weight function Wt used in equation 2.32 drives the grid adaption. When the value 

of the weight functions at a point is higher than its neighbours, those neighbours will 

move towards it.

The requirements of the weight function in the current work are

  That its value should represent some measure of solution behaviour or error 

that varies significantly across the domain.

  That it should not go to zero, so as to avoid division by zero in equation
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2.34.

  That it should be calculated from a normalised variable so that its behaviour 

can be predictable making the choice of the user controlled functions easier.

The typical form for most weight functions is

2 .M. (2.47)

where a is a constant and Mk is some function of the solution variables, commonly 

some combination of the first and second derivatives of a chosen variable along grid 

lines. Another form for weight equations is

where (j) is the solution variable and n is a constant.(Nakahashi (1987), Eiseman 

(1987))..

The most common weight function used is based on the gradient of the chosen 

variable. The gradient is probably the easiest measure of solution activity. With no 

extra terms the weight should lead to a constant gradient in the solution over each 

interval in the grid. This can be seen by substituting W=tyx in the equidistribution 

equation 1.1, which gives (j^Ax. Unfortunately, this form risks the weight on a point 

becoming zero, and the associated problems of division by zero in the LPE equations. 

Adaption to ty x forces the grid to align perpendicular to the gradient of (j) (Matsuno 

and Dwyer 1988).

The gradient as a weight function can be found in Jeng and Liou (1993), Lin and Wu 

(1993), Dannenhoffer (1991), Niederdrenk (1991), Lawal (1990), Tu and Thompson 

(1990), Arina (1989), Anderson (1987a), Hsu and Tu (1987) and Thompson et al. 

(1985). Ramakrishnan and Singh (1994), Benson and McRae (1991), and Chao and 

Liu (1991) use a combination of the normalised gradients of a range of variables.
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Jeng and Liou (1992b) combine the gradient with a term for the arc length so that as 

the weight term goes to zero the grid distribution will go towards the predefined value.

(2.49)

where ASj is the initial grid spacing. 

2.8.1 Implemented Weight Functions

In the current work a number of different methods have been implemented, though 

only a few have been seriously tested. Which one is used depends upon the type of 

problem and the choice of variable. In all cases the chosen variable is interpolated 

onto the grid nodes from the cell centres using a series of simple linear interpolations 

and then non-dimensionalised to allow the user defined weight parameters to be 

independent of the magnitude of the chosen variable.

2.8.1.1

This is the simplest weight function. There is no variation in the weights calculated 

at a point in different directions. This form has been used for grid generation for 

coastal configurations, using depth as the dependent variable (Kim and Thompson 

1990), and using relative pressure for three dimensional grids over wings (Roache et 

al. 1991), (Kim and Thompson 1990), (Tu and Thompson 1990). In the current work 

it is used on the magnitude of velocity for convection problems such as the driven 

cavity flow (section 5.3.2) where there are no strong gradients and solution error is 

driven by the advection scheme.

2 8 1 7 • O* A •A^ •*! • **7*f v ' **"^f vv

The term (j)^ takes account of the curvature of the solution. The inclusion of the 

second derivative helps to concentrate grid points about solution extrema, but may 

cause grid cells to oscillate if the solution is very irregular. Terms involving the
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second derivative 0^ are highly desirable as they are good indicators of solution 

activity, but unfortunately tend to be unstable. Examples of the use of this term in 

literature include Shyy (1992), (1991a), (1991b), (1990), Harvey (1991), Acharya and 

Moukalled (1990), Acharya and Patankar (1985), Thompson et al. (1985), (1986), and 

Brackbill and Saltzman (1982).

2.8.1.3 a1+a2<J) x+a3fc

This is similar to the previous method, but with an improved approximation to the 

solution curvature, k, where

xx
(2.50)

Including this extra term allows for solution extrema and also for areas where the 

solution is locally stationary. As the gradient goes to zero, so k will increase. In such 

areas the solution activity may be high, even though the gradient tends to zero. This 

is the main weight function used in the current work. The default constants used are 

a7=l, a2=l, a5=0.01, as in Catherall (1991). Higher values of a3 tend to destabilise the 

solution, though it may not have much effect set at this level. Examples of this weight 

function in literature include Kwon and Jeong (1995), Eiseman (1985a), Haase et al. 

(1985), Thompson (1985), and Noack and Anderson (1990).

2.8.1.4 a,+a2(J) 2 
x

This form helps to contrast high and low gradients. It has been used by Roache et al. 

(1991), Holcomb (1984), and Thompson (1985).

2.8.1.5 (a1+a2l(j) xn l)ni\l/2n

Putting a7=l, a2-\ and n=l and substituting into the equidistribution equation 1.1 

gives d^2jrd^-constant, which implies equal arc lengths along the solution curve, and
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for higher n is related to the truncation error (Nakahashi (1987), Catherall (1991), 

Hagmeijer (1994)).

2.8.1.6 a1+a2V((|) xx)

j can be related to the truncation error in second order accurate solutions to first 

order differential equations, where truncation error is proportional to the second 

derivative multiplied by the grid spacing squared (Catherall (1991)).

2V/I/-I ,   A 2\VZ2.8.1.7 (l+ai<|) xT(l+a2(j> xx2)

This form is an alternative way of using the second derivative <(>,  to (2.8.1.2) used by 

Matsuno and Dwyer (1988).

2.8.2 Choice of Weight Constants

For the majority of the test cases the constants are chosen empirically.

Trial runs and user experience are important, but as long as there is a strong gradient 

to push the grid adaption a ratio of one to one for the first neutral constant to the main 

movement term will generally behave sensibly. Higher values can either be used to 

maintain grid quality or to encourage adaption.

Making the second term in functions 2.8.1.2 and 2.8.1.3 high will increase the effect 

of local gradients, but if too high will emphasise minor perturbations within the 

solution which may be as much a feature of the local grid shape as the actual solution. 

This can cause distorted cells in relatively quiet parts of the grid where little 

movement is expected.

An alternative is to set a given ratio size R for the smallest to the largest step size in 

each coordinate direction to determine the constants in the weight equation. 

(Niederdrenk (1991), Nakahashi and Deiwert (1985), (1986), (1987)).
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Using the relationship

p = *min _ Wx max (2.51)

8* wmax x mm

and starting from the basic equidistribution equation 1 . 1

= constant (2.52)

it is possible to determine the constant ax in the weight equation

(2.53)

by using

(2.54)
~ R \f*x min I I J x max

The weight along each family of grid lines is calculated using the same value a. Then 

a is updated at each call to the weight calculation routines

This method has the advantage of replacing two or three abstract numbers with one 

that has a physical relationship to the problem.

2.8.3 Weight Function Modifications

The weight function is optionally smoothed to reduce small perturbations and extend 

the influence of major solution phenomena by fitting the weight values to curves in 

the direction of action of each weight, defined by simple power laws, between major 

peaks and troughs.

In areas where the weight function is smooth small perturbations may kill the grid as 

it starts to kink towards the minor variations.

It has been shown (Bennett 1992) that smoothing of the weight function may improve
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results by smearing the effect of high gradients over a larger number of cells.

In the current implementation there is an option to make the final weight value at a 

grid point equal to the average of the values calculated from one of the above 

equations on the point and the two neighbouring points.

2.8.3.1 Smoothing by Local Averaging

In order to spread the effect of solution phenomena an attempt has been made to 

extend the simple smoothing or 'smudging' operation carried out previously.

The available options are to smooth just the weight functions in each of their 

respective directions, as before, using

W }KVW (2.55)

Or to smooth the non-dimensionalised dependent variable, (j), using

( nUij + ui-ij + uw + Uij-i + UijJ (2.56) 
(/i +4)

in the 2D case, or,

) (2.57)ij'k (n + 6)

in the 3D case.

One, the other or both can be used. This smoothing step can be repeated many times.

The factor n used when smoothing the variable is controlled by the user.

In practice the smoothing step has on occasion only made an impact when the 

smoothing operation has been repeated 10, 20 or more times, when it begins to make
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an impact on the time taken by the adaptive module to run. Smoothing by local 

averaging is used by Hall and Zingg (1995), Hagmeijer (1994), Benson and McRae 

(1991), Jeng and Liou (1989), and Seibert et al. (1989). Hall and Zingg (1995) also 

use weight clipping, whereby extreme weight values are reduced to an average of their 

neighbours.

2.8.3.2 Exponential Smoothing

Another option available is to use an inverse exponential function to smooth each 

weight function along the grid lines in the co-ordinate direction in which it operates. 

This allows solution phenomena to affect weight values some distance away.

The solution equation can be expressed as

i+2.
(2.58) 

I - z-^i " ' ~
k=i-!L

2

where n is the number of points in that co-ordinate direction, a is a weight controlled 

by the user, and xrxk is the distance between the main point and the one producing an 

additional influence.

The contribution to the weight value from points whose index are beyond the limits 

of the grid are calculated as if the grid was surrounded by mirror images. This has 

been done to ensure that points in the centre of the grid do not have larger weights 

than at the boundary solely because they are closer to more points.

This method is loosely based on the weight function used by Lee and Tsuei (1992a).

The smoothing produced by this method allows more emphasis to be put onto the 

equidistribution term in the main algorithm. This term is powerful yet very sensitive 

to minor variations in local weights and can lead to very distorted grids. The 

smoothing function helps to prevent this.
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2.8.3.3 Power Law Smoothing

In an attempt to increase the range over which major solution phenomena have an 

effect and to smooth out small local perturbations the weight functions can be 

recalculated by fitting them along grid lines to a series of simple curves between local 

function maxima and minima. The curves are calculated by using a power law or 

exponential.

4 —

Weight 

3

Distance

Figure 2.2 Weight function before and after fitting in 'real' case

Figure 2.2 shows how the smoothing function works in practise, the dotted line 

showing the final weight used in the LPE equation for a supersonic wedge cascade 

case where there are a series of reflected shocks that cross the grid line of interest.

For the purposes of this technique local break points are also defined as being at the 

centre of regions where the variation of the weight function is less than a given 

tolerance.
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X

Figure 2.3 Break point at centre of 'flat' region in function

This function generates smooth weight gradients leading from areas of low activity to 

regions of high activity, which in turn leads to smooth variation in the grid spacing. 

Its use makes other smoothing unnecessary. The smoothness of the new weight 

functions allows more extreme parameters to be used within the main algorithm.

As the driving force behind grid point movement is the local gradient of the weight 

function the use of the power law enables the user to either promote the movement 

of grid points out of regions of low activity by using a power of less than one, or to 

concentrate on major phenomena by using a high power. Grid points will tend towards 

being distributed according to the power law, as the algorithm is driven by 

equidistribution.

As each weight function relates directly to one family of grid lines in the structured 

grid, this process of smoothing along grid lines is straightforward. The same technique 

may not be so applicable to unstructured grids unless weight surfaces could be built 

up. Such a technique might be very powerful, though could be complex, especially for 

three dimensional grids.

For power law smoothing of the x direction weight function along a grid line which 

varies predominately in the x direction the equation used to calculate the new weight 

value wx[n is
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X
» = (w -wr )

\a
V   V

1 "V (2.59)

where w^ wx/ are the first and last weight values, xf, xt, x{ are the first, last and current 

x displacements, and a is a user controlled parameter that can control the grid 

variation. As the weight values are linked to physical dimensions not curvilinear 

space, x displacements are used not arc lengths.

X

Fit

Function 
Figure 2.4 Limits of power curve

For completeness the exponential fit has also been implemented, though the power law 

is cheaper and more straightforward to use to fit the function variation. The equivalent 

equation to 2.59 above is

w -w e
X. X,

X.-X, (2.60)

2.9 Closure

This chapter has presented the full discretisation of the LPE equation in one, two and 

three dimensions using central difference formulae. In addition the formulation of the 

weight function used in the equidistribution term to drive grid adaption is presented. 

All adaption methods depend on a weight function that models solution behaviour. 

The range and treatment of these functions varies greatly between different cases and 

different methods. The novel technique presented here to impose a smooth function 

over the weight distribution using a power law or exponential curve is a fast method 

to produce a smooth grid.
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In the full implementation of the LPE equation only its three dimensional form is 

coded. Two and one dimensional problems are dealt with by cancelling the extra terms 

and using the appropriate forms of the metric tensors.

The final discretised equations are solved using a point by point scheme with 

relaxation. Their format would however allow the implementation of a tri diagonal 

matrix algorithm or similar fast solver instead. As the algorithm is designed to be 

attached to a full CFD code it may be possible to use the solvers within that code 

instead.
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CHAPTER 3: ADDITIONAL TOOLS

3.1 Introduction

The purpose of this chapter is to introduce and describe the additional tools needed 

to support grid adaption. These tools are used to manipulate the data from the grid and 

the solution before using the LPE algorithm, and to manipulate the data emanating 

from the LPE algorithm. They are used to refine the main algorithm. Each tool 

represents a necessary part of the grid adaption process. A modular structure ensures 

that the methods each tool uses might be replaced if better techniques become 

available or the criteria upon which they have been chosen change.

The bulk of this chapter describes surface and curve fitting algorithms used to 

maintain the geometry of body fitted coordinate grids whilst allowing grid nodes to 

move on grid boundaries. Other tools described cover interpolation techniques used 

to transfer data from grid cell centres to grid nodes and between grids, a method to 

prevent grid crossover and movement limiting.

3.2 Surface and Curve Fitting

Though it is easy to allow grid points to move on square boundaries by just ignoring 

components of the calculated movement vector, movement along curved and angled 

surfaces and lines can only be allowed if equations to recreate them are known or can 

be calculated.

Allowing grid points to move on boundaries can be a crucial part of the adaptive 

process, as often the boundary regions are the most important parts of the grid. In any 

case leaving the grid fixed in such places whilst allowing movement to take place in 

adjacent nodes can lead to dangerously skewed cells. In addition intelligent use of 

fixed curves and surfaces can be used to maintain important features of the original 

grid. In cases such as the RAE 2822 aerofoil (section 5.3.1) fixed curves are used to

46



allow movement along grid lines parallel to the aerofoil surface so as to maintain the 

initial skewed distribution of grid cells.

As the current work is designed to be independent of CFD codes and in particular grid 

generators, no prior knowledge can be assumed about the grid geometry. All 

information about geometry has to be computed using the original grid point locations. 

Equations for all curves and surfaces designated by the user as important have to be 

developed using assumptions based on the location of the grid points that lie on them 

in the original grid.

In the current work user defined surfaces and curves are modelled using bicubic 

patches and cubic splines respectively. Each curve and surface is broken up into a 

series of segments or patches and a parametric cubic equation is developed for each 

one, using the location of the grid points to calculate the coefficients.

The technique used to model surfaces is based on the work of Agbormbai (1991).

As the current work is concerned with structured grids only, curves are defined as grid 

lines with two indices fixed and one varying, and surfaces as areas with one index 

fixed and two varying.

In the code which accompanies the current work the user can define any number of 

curves and surfaces within the grid. These will be maintained regardless of the local 

grid movement and with the restriction that interior points cannot move beyond the 

original surface boundaries. A feature of the current work is the automatic 

manipulation of user defined surfaces to preserve important geometrical features such 

as peaks and troughs, and discontinuities.

This section describes how the parametric equations for the curves and surfaces are 

developed, and how they are used to recreate the geometry after grid movement has 

taken place.
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3.2.1 Curve Fitting

In the structured grid a curve is defined as a number of connected grid points with 

only one index varying. A curve is modelled by representing it as a series of cubic 

splines covering individual segments or patches of up to four points (figure 3.1).

Figure 3.1 Curve split into segments

The coefficients of the cubic splines are obtained by using the original position of the 

grid points that define the curve. Each segment that defines the curve is treated 

individually and simply by using parametrised space (figure 3.2).

u

Physical Space

Figure 3.2 Parametrised Space

o 1/3 2/3 i 

Parametric Space

Each segment is defined by the following three equations:-

48



(3.1)

2 (3.2)+ tl,2 U +a,3 tt+a

(3.3)

The curve has an associated axis which is implied by the index of its grid points 

which are allowed to vary. This should also correspond to the direction in which it 

stretches most. During adaption each point that lies on the curve is allowed to move 

freely along this axis up to the limits of the curve. Each point is then mapped back 

onto the curve by using this component of its position vector to determine the segment 

it lies in and a parameter to be fed back into equations 3.1-3.3. As one component of 

the position vector is known prior to mapping only two of the above equations will 

be needed. For example for the curve from Xijk to Xi+njk only the coefficients to 

equations 3.2 and 3.3 are calculated.

The values that need to be stored to fit a curve are the component of the original grid 

coordinates that relates to the index which varies to allow parameter recovery and two 

sets of four coefficients for each segment which relate to the two parametric equations.

49



3.2.1.1 Derivation of Cubic Coefficients

The generalised parametric equation Z(u) can be written as

Z(u)=al u 3 +a2 u 2 +a3 u +a

=[u 3 u 2 u l]
(3.4)

Assuming that in parametrised space the points in the segment lie at intervals of 1/3 

between 0 and 1, then the coefficients of the spline can be calculated by building up 

four equations for the four unknowns, given by

Z(0) 0001
0.037 0.111 0.333 1
0.296 0.444 0.667 1
1111

a
(3.5)

Inverting the main matrix to solve for the unknown coefficients gives,

4.5 13.5 -13.5 4.5 
9 -22.5 18 -4.5 
5.5 9 -4.5 1 
1000

Z(0)

(3.6)

Though this system will work best for a regular grid it will still give good results for 

an irregular grid if the calculation of the parameter is accurate enough. Using this 

system does however prevent the need to invert a four by four matrix for each set of 

coefficients for every segment. Though this would not necessarily be too great an 

overhead just for curve fitting, especially as the process only has to take place once 

for each initial grid, for surface fitting each matrix is 16 by 16. Inversion of such large 

matrices for each surface patch is not practical.
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3.2.1.2 'Light' Segments

As segments may occur at the end of curves which have fewer than four points the 

full cubic equation cannot be generated unless extra points are interpolated into the 

region, or overlapping segments are used which do not guarantee continuity in the line 

model. Instead simpler forms of the above equations can be used to generate the 

coefficients for the quadratic and linear equations that can be generated from three 

point and two point segments. These coefficients are treated exactly the same way as 

for the full cubic equation when the curve is recovered, just with the higher order 

terms set to zero.

3.2.1.2.1 Three Point Segment

The three point segment shown in figure 3.3 is parametrised using a quadratic spline 

with coefficients calculated in the same manner as for the cubic spline above.

u=l

Z(u) = a2u + a3

u=0.5
u=0

X

Figure 3.3 Three Point Segment 

The parametric function Z(u) is written:-

+a2 u .~3

=[u 2 u l]
(3.7)

0,
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Assuming the three points occur at the parameter values 0, 1/2 and 1 it is possible to 

solve for the three constants aii=13 , as given by

0 0 1
0.25 0.5 1
111

(3.8)

«

2 -4 2
-3 4 -1
100

(3.9)

3.2.1.2.2 Two Point Segment

u=0

u=l

Figure 3.4 Two point segment

Z(u) = 3jU + a2

X

The two point segment shown in figure 3.4 is parametrised using the linear equation.

Z(u)=al u (3.10)

Where,

a=Z(0)
(3.11)
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3.2.1.3 Curve Recovery

Curve recovery is the mapping of a point back onto a curve after it has been moved 

in one direction by manipulating the remaining two components of its position vector. 

To map the point back onto the curve firstly its location relative to the cells in the 

original grid must be found so that the patch in which it lies can be determined and 

then secondly a parameter has to be recovered by comparing its position to-the 

original grid.

The coordinates of the original curve are stored and the patch positions are known 

implicitly.

The location of the point is determined by using a simple binary search pattern, 

comparing the directional component that relates to the index of the curve which 

varies to the equivalent components of the original points that define the curve. The 

point is compared to the half way point of a domain whose limits are initially defined 

by the start and end points of the curve and then by the centre point and whichever 

limit is on the other side of it until it can only lie in one cell.

The parameter is determined by assuming that it varies in a linear profile between the 

original points of the patch, and by knowing that those points occur at equal intervals 

between 0 and 1.

I
Figure 3.5

In figure 3.5 the parameter v of the point Xp that lies between the original grid points 

Xj and Xi+1 in a patch of N points where i varies from l,Af is found by using
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V =.
W

(3.12)

Note that the points at the ends of the curve are not allowed to move at all. 

3.2.2 Surface Fitting

A surface is modelled as a series of individual patches covering up to four by four 

points. Each patch is modelled using a bicubic equation that contains sixteen 

coefficients, calculated using the location of the original sixteen points.

Figure 3.6 shows a grid broken into patches

-7-77-1"" 
L. f / / ,-

X

Figure 3.6 Surface split into nine patches 

As for curve modelling each patch is fitted in parametric space (figure 3.7).
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u
Physical Space 

Figure 3.7 Patch in Parametric Space

Parametric Space

The generalised parametric bicubic equation can be written in the form

Z(K,V)=[W 3 M 2 U l]

au an

fl33

., a... a.-, a..41 42 43 44

(3.13)

A point is mapped back on the surface after adaption by calculating a new value for 

the component of its position vector that matches the index of the surface that does 

not vary. This is achieved by calculating parameters to pass into the bicubic equation 

using the position of the new point relative to the position of the points in the original 

grid.

Only one set of coefficients need to be generated for each surface patch, as only one 

direction component is effected.

3.2.2.1 Derivation of Bicubic Coefficients

The sixteen unknown coefficients can be found by using the location of the sixteen 

points within the patch. If equation 3.13 is written in the form
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where [P] is the parameter matrix,

[PJ=[K 3V 3, M 3V 2, W 3V, M 3 , K 2V 3, M 2V 2, M 2V, M 2 , MV 3, MV 2, MV, M , V 3 , V 2 , V , l]

(3.15)

And [C] is the coefficient matrix, written as:-

[C]=[nn, a12, a 13, a14, fl21 , fl22, a23, a^, «31 , «32, a33, a34, «41 , a42, a43, a

(3.16)

Then, assuming each point in the patch occurs at intervals of 1/3 between 0 and 1 it 

is possible to build up the system

[Z]=[P][C] <

Where [Z] is given by
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Z(0,0)

33

l

(3.18)

And the coefficients can be found by taking the inverse of [P]

(3.19)

The assumption of the position of the original points in parametric space is important 

to avoid having to invert a 16 by 16 array for each patch. Instead one standard 

inverted array can be used and it is assumed that the parameters can be accurately 

estimated. The parameter matrix [P] in table 3.1 and its inverse [P]' 1 in table 3.2 are 

given on the following page.
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3.2.2.2 'Light' Patches

There is no guarantee that any defined surface will split into patches of exactly four 

points by four points, so a method must be developed to deal with the other cases 

which may occur at its end. The options are to use a modified form of the inverted 

matrix in table 3.2 or to interpolate extra points using the data available to get a 'full' 

patch.

Using a full patch which overlaps the previous patch does not guarantee continuity and 

may cause problems when it comes to locating the position of points which may move 

into this region relative to the points.

A modified form of the matrix had been used in previous work (Agbormbai 1991) but 

involves the storage of a number of matrices for use in specific cases which are rare. 

For surface definition there are eight extra special cases and each matrix for storing 

surfaces is 16 by 16. This when coded gives a considerable overhead to storage 

requirements and is a potential source of error.

For simplicity simple interpolation is used to create the correct number of 'artificial' 

points to define a normal patch in the current work. The accuracy of the parametric 

equation can only depend upon the information that is available when its coefficients 

are calculated. What inefficiency this method may introduce is balanced by the fact 

that the coefficients only have to be generated once for a particular surface.

Simple linear interpolation is used to generate extra points where there are just two 

known points in a particular direction, and a quadratic spline is used where there are 

three.

3.2.2.3 Surface Recovery

Surface recovery is the process by which a point on a surface is moved back to the 

surface after adaption. To allow the point to move back the patch on the original grid
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in which it lies is found then two parameters are estimated based on its position within 

the patch.

It is assumed that the patch locations are given implicitly by the layout of the grid.

The task of locating the point is simplified by the knowledge that it must lie in the 

same subsurface that it was in before adaption, as movement beyond those limits is 

not permitted. The patch location is found using a binary search method, dividing the 

original surface into successive quarters and testing the relative position of the point 

each time until there is only one patch it can lie in.

The cell in the patch in which the point lies is found using the same method. If the 

cell lies on the boundary of the patch then the point is tested against the lines that 

define the edge of the cell to check that it is within the patch. If it is not, then the 

point is tested against the neighbouring patch in the appropriate direction.

The parameters for the patch equation are calculated by using bilinear interpolation 

over the cell in which the point lies, the parameter values being known at the corner 

points. The equations to recover the parameters u and v are,

y I (3.20)

v(x,y)=[x l]
a 7 a .v3 v4

y i (3.21)
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u=0, v=0

u-1, v=l

2 u=l, v=0

Figure 3.8 2D Interpolation Problem

Taking the general case in figure 3.8 where the parameters vary between 0 and 1 

formulae for the coefficients can be built up by inverting the matrix that can be 

assembled up with the information available,

xlyl xl yl 1
x2y2 x2 y2 1
x3y3 x3 y3 1
x4y4 x4 y4 1

aul

au2

a ,u3
a .u4

0
1
0
1

(3.22)

xlyl xl yl 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1

a .vl

v2

v3

_v

0
0
1
1

(3.23)

The result of the interpolation can be scaled to account for the range of values of the 

parameters that the cell covers.
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3.2.3 Surface and Curve Breaking

Surface and curve breaking refers to the process by which user defined surfaces and 

curves are automatically broken into smaller units around important geometrical 

features such as turning points and discontinuities (figures 3.9-3.11). These are places 

where the location of a single point may be vital to the local geometry, and where a 

patch or spline may not be able to adequately model the shape. Points at the end of 

curves and the edges of surfaces do not move. These important geometry defining 

locations will always be maintained.

Spline Moved Points
Spline

Figure 3.9 Problems at Discontinuity Figure 3.10 Problems at turning points

One Patch Over Turning Point

Two Separate Patches 

Figure 3.11 How surface breaking can help

The process has the advantage of reducing the complexity of any curve or surface that 

a patch has to model and therefore it may reduce possible errors although the number 

of light patches may be increased.
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The process is essentially the same for both curves and surfaces.

Curves and surfaces are broken up at turning points by using the direction of the slope 

and at discontinuities by using its rate of change. The slope is monitored by using the 

first and second derivatives of the components of the grid point position vector that 

relate to the fixed indices of the grid relative to the components that vary. The 

derivatives are calculated using second order central difference formula.

In the code that accompanies the current work the user can switch the different 

methods of cutting on and off and set the tolerances used to determine where it takes 

place. No cut is allowed within one patch distance of another. If a conflict occurs then 

the tolerance used is increased and the checking routine run again. Cutting also takes 

place if at any point the gradient becomes infinite.

Simple examples of surface breaking are given in figures 3.12-3.15.

Figure 3.12 Surface with turning point

Figure 3.13 Surface with turning point after cutting
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Figure 3.14 Surface with discontinuity

Figure 3.15 Surface with discontinuity after cutting

3.3 Interpolation

Interpolation routines are used to give the value at a point of a function from a 

discrete set of data at known locations. Interpolation is an important part of grid 

adaption, as the value of any data that vary over a grid may be required at any point 

within its limits, either to allow the solution to be transferred between old and new 

grids, or transfer data from cell centres to cell vertices. The type of interpolation that 

is used depends upon the characteristics of each problem. In every case, the 

interpolation technique must be efficient in time and the use of resources.

Interpolation within curve and surface fitting for calculating the parameters in the 

cubic and bicubic splines has already been described (3.2.1.3 and 3.2.2.3). In both 

cases the parameters are known to vary over a fixed range between known grid points 

over each line or surface. The location of the new grid point is known with respect 

to the known data as the patch in which it lies has to be calculated. Its position will 

however vary between the extremes of the patch and any interpolation scheme must
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give accurate results over the whole range of the patch. For curves, the new point 

must lie between two known data points thus the problem is one dimensional, so a 

simple linear variation is assumed. For surfaces the new point must lie between four 

known data points thus the problem is two dimensional, and a bilinear equation is 

used. The bilinear equation requires the inversion of a four by four matrix, which is 

made possible by knowing the range over which the parameters vary and can be 

manipulated to give an algebraic equation which just requires the location of the 

original grid points.

The adaption algorithm relies upon knowing data at grid points and the current work 

has been implemented within a finite volume CFD code. Interpolation is needed to 

transfer data from the cell centres, the nominal variable position within the control 

volume, and the grid points. In this case the interpolation technique used must be three 

dimensional, but may also be used for two or one dimensional data. The interpolation 

point is never close to any known data location and will tend to lie equidistant from 

the known data. Its location relative to the known data is known implicitly from its 

index. Multiple one dimensional interpolation is used for this problem.

To allow multiple iterations of the adaption algorithm it is necessary to transfer data 

between successive grids. As the adaption algorithm only relies upon the values at grid 

points it is only necessary to transfer the data at those points. The new grid point is 

likely to be close to the previous point, but the location is not known implicitly, 

therefore Shepard's interpolation (section 3.3.2) can be used to give the new data.

After each adaption the grid and therefore the solution moves, so it may be necessary 

to interpolate the solution from the old grid to the new. Whatever happens adaption 

may give a kick to the solution. The simplest option is to assume that the grid has not 

moved significantly and that the previous solution is a good guess for the new grid 

(Danenhoffer 1991). Alternatively the solution can be transferred using the same 

reasoning as for the transfer of data between grid points assuming that cell values lie 

at the cell centres. Shepard's interpolation can be used to give the new data. The only
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additional step is the calculation of the location of the cell centres of the old and new 

grid.

One other approach to interpolating data between grids for steady state calculations 

which is not discussed here is to use a pseudo time step to convert the grid movement 

into a velocity, which is then used with the transformation metrics to give the new 

values of the flow variables. This approach is covered by Benson and McRae (1991).

3.3.1 Multiple One Dimensional Linear Interpolation

Multiple one dimensional linear interpolation is used to calculate data at grid points 

from known values at cell centres. This technique is a combination of successive one 

dimensional linear interpolations used to reduce the three dimensional problem first 

to a two dimensional problem then finally to a one dimensional problem which will 

give the answer (figure 3.16).

! ^

X

Figure 3.16 Multiple One Dimensional Interpolation

The technique uses eight surrounding cells which touch at the point, and eight cell 

corners as the location of the data (figure 3.17). The initial eight points are reduced 

to four by interpolating four pairs in one dimension, then to two by interpolation in 

another.
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Figure 3.17 Point Definition

The first step is,

And,

Followed by,

(z7 -zs )

(3.24)

(3.25)
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<h =(K 4. ((|>2468 * 1357) (v -jc ) (3.26)9p 1357 TT i^ r 1^ 135?;-^iss?^

Boundaries are dealt with by assuming mirror conditions.

This technique is easy to implement and can be easily reduced to fewer dimensions. 

Though it suffers some drawbacks in that it relies upon the interpolation of 

interpolated data, which may increase numerical errors, it is fast. The end result is 

used to give an indication of solution behaviour and absolute accuracy is not a prime 

requirement.

3.3.2 Shepard's Interpolation for Transfer of Data between Grids

Shepard's interpolation is a distance weighted scheme. Its principal advantages are that 

the location of the point at which a new value is required relative to the grid does not 

have to be calculated, and that it is safe, in that it will not produce extreme values.

Shen et al. (1993) discuss Shepard's method for interpolation of scattered data, and 

a modification of it for use on solution-adaptive grids.

For the function f with values fk at nodes (xk,yk) for k = 1..N, the basic method is 

expressed as

N
Wk(x,y)Qt(x,y)

(3.27)

£

With
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= J-, Qt(x,y)=ft (3.28)

This becomes

A

1E-,
otherwise

(3.29)

Where ^ is the distance from the function point (xk,yj to (x,y)

i
T (3.30)

Setting jd=2 was recommended in Shen et al. (1993) and means that the square root 

need no longer be evaluated.

Though this is not the form recommended in the paper for solution adaptive grids it 

is easy to adapt this method to allow it to be used by carefully controlling the number 

of data points used to evaluate the new point. In the current work the default number 

of points used is three in each coordinate direction up to the limits imposed by 

boundaries around the original point. The new point is unlikely to have moved out of 

this region.
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3.3.3 Comparison of Shepard's and Multiple ID Interpolation

The accuracy of Shepard's and Multiple ID Interpolation are compared by using them 

to calculate values on an offset 2D grid based on a known function. The original grid 

is a uniform square with 21x21 points and the function is given in equation 3.31

function = sin(r)

(3.31)

r =

The offset grid was shifted by a fixed value up to half a cell length in X and Y from 

the original grid and contained 20x20 points so that it did not overlap the dimensions 

of the original grid. The total error is calculated by adding up the sums of the 

differences between the correct and interpolated values divided by the correct values. 

The total error against the shift is given in figure 3.18.

guj
« •*.»
.o

1.6 i 

1.4

1.2

1

0.8 

0.6 

0.4 

0.2 -

0

Shepard Interpolation

•Multiple 1D Interpolation

0 0.25 
Shift

0.5

Figure 3.18 Interpolation error against shift

A plot of the correct function along the centre of the grid with the interpolated values 

for comparison is given in figure 3.19.
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Correct Values

Shepard's Interpolation

----Multiple 1D Interpolation

-0.2C -

-0.4C J

Figure 3.19 Correct and Interpolated Function Values

These graphs show that the linear interpolation scheme is more accurate. It is also in 

the order of five times faster than the Shepard's scheme for this grid.

Shepard's interpolation is used in the main algorithm to interpolate values to points 

whose relative location to known function values is not accurately known. Multiple 

ID interpolation requires that the interpolation point can be accurately located in the 

grid as the new value depends on its direct known function neighbours and is therefore 

used where they are inherent to the problem. Both schemes are robust and smooth the 

given function.

3.3.4 Volume and Area Weighting

Volume and area weighting techniques, though not used in the current work were 

investigated as an alternative, particularly to the multiple ID interpolation discussed 

in section 3.3.1. All of the following techniques weigh the influence of the 

surrounding cells on a point by using a function of the areas or volumes of those cells. 

The main restriction on the use of these techniques is the time spent on calculating 

those areas and volumes. If these values can be extracted from the underlying CFD 

code these methods might be more attractive, though that would tie the adaption
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algorithm closer to the code. The multiple ID technique appears to be much faster and 

at least as accurate.

Jacquotte and Coussement (1992) cover a range of different interpolation techniques, 

with a particular emphasis on their use in grid adaption and recovery of values at cell 

vertices from cell centres. They suggest the following approximations of linear 

interpolation, using the areas or volumes of the surrounding cells as a weight:-

E — \ 
A: 6. 

_ i = l,4 T ' I'.

For areas, or

y v;\
, _ Z^ = l,8 '

For volumes.

Or alternatively the following approximation to L2- least square minimisation:-

For areas, or

"^ y.<b.
'i = l,8 lY «~yT

For volumes.
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The following expressions are given to determine the values at boundary points, based 

on linear interpolation, where N is a point that butts onto cell 1 and 4, and P is at the 

corner of cell 1 (figure 3.20).

Figure 3.20 Boundary Interpolation

(3.36)

(3.37)

Jacquotte and Coussement (1992) do not give other routines, but using the same 

techniques it would not be difficult to develop them.

Further techniques, including a cell search algorithm, given in the same paper could 

be adapted to interpolating new values for successive adaptions, or evaluations of new 

values in PHOENICS.

3.4 Cell Integrity Control

A method is necessary to control minimum cell size, as the LPE equation which drives 

the grid adaption does not prevent cells from collapsing in its current form. Collapsed 

grid cells invalidate the grid and cause the solution to diverge or give unpredictable
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results. In the current work a series of geometrical tests are used to prevent grid lines 

from crossing over after each iteration of the LPE equation. An alternative option 

might be to solve the LPE equation using some form of whole field solver or 

tridiagonal matrix algorithm, with suitable modifications to the source term rather than 

the point by point solution used here. It is possible to weight the LPE equation such 

that a corrupted grid is extremely unlikely, but this may prevent effective grid 

movement.

The method used to check against grid cross over involves checking if the calculated 

movement vector applied to an original grid point overshoots either of its 

neighbouring points in one dimension, any line linking any two neighbouring, adjacent 

points in two dimensions, or any surface defined by four neighbouring, adjacent points 

in three dimensions (figure 3.21).

i-l

i+l.j+ljc

i+U

Figure 3.21 ID Movement, 2D Movement and 3D Movement

The points against which the moved point is checked are modified using a clearance 

vector. The clearance vector is evaluated by determining the smallest cell clearance 

in each coordinate direction and multiplying by a user defined ratio. Cell clearance in 

each co-ordinate direction is calculated as the physical distance between points along 

the corresponding grid lines in computational space (figure 3.22).
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Figure 3.22 Possible Movement in 2D

If the movement vector added to the clearance vector goes past a line that connects 

any two surrounding points in 2D, or any face connecting four points in 3D then the 

vector is scaled back until it coincides with the line or surface (figure 3.23).

Overlapping Corrected

Figure 3.23 Position Correction

Each grid node location is updated after its movement vector has been checked. The 

movement vector is checked against the updated grid with information from the 

movement of the preceding grid nodes.

To reduce the possible amount of work, the length of the movement vector is first 

checked against the distance from the moving point to all of its neighbouring points 

to test for the chance of an overlap.

The geometrical tests were based on methods in Bowyer and Woodwark (1983).
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3.4.1 2D Grids

The movement vector is checked against the eight lines by using the equation of each 

line relative to the original position of the point checked.

ax + by + c = 0

Figure 3.24 Problem Definition 

The equation of the line in figure 3.24 is simply,

ax+by+c=Q

Where,

a -y -JL
A - v v C3 39)O — JC« — X- \*J.*J?)

If the coordinates were normalised the distance of the point from the line would be,

s p =axp +by p +c (3.40)
r r Jr

However, the distance is not important, only the side on which the new point lies, and 

all that is important from equation 3.40 is the sign of the result. If the sign of the 

distance s is different from c in equation 3.39, then the point has moved too far and 

must be scaled back.
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If the grid point does overlap then its movement vector is scaled back by finding the 

intersection of a line from the original grid point position to its new position and the 

line it crosses. This is achieved by writing the grid movement line in the form of a 

parametric equation, relative to its original position, which gives,

x=xpt (3.41)

The correct parameter at the intersection is,

I/ ~~  
-c

axp +by.
(3.42)

3.4.2 3D Grids

The easiest entity to check the movement vector against in 3D is a plane defined by 

three points. Each four point face 1234 (figure 3.25) is divided into four such planes 

12C, 23C, 34C, 14C, (figure 3.26) by finding a centre point C. C is defined by taking 

the average of the position vectors of the four known points.

OS

Figure 3.25 Face Definition Figure 3.26 Splitting of Face

The point is checked against all four planes for all 24 faces, though this only takes 

place if a grid overlap is likely. This is achieved by calculating the equations of the 

planes relative to the original position of the point, allowing for the minimum cell 

clearance.
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The equation of an arbitary plane JKL (figure 3.27), is,

ax +by (3.43)

K

Figure 3.27 Plane Definition

As a vector from point / to any other which lies on the plane must be perpendicular 

to a vector normal to the plane's surface, the vector product of JK and JL, the 

equation can be found using the expression

-o (3.44)

Which can be written as the determinant of the matrix,

=o (3.45)

which gives,
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a = (yK -yj} (ZL -Zj) - (ZK -Zj) (yL -^)

b = (zK -zJ )(xL -xJ)-(xK -xJ )(zL -Zj) 

c = (xK -xJ )(yL -yJ )-(yK -yJ )(xL -xJ )

In the same manner as for the two dimensional problem the distance of the point from 

the surface is found using

s =ax +byp +czp +d (3.47)

If the sign of the distance sp is different from the constant d then the point is the 

wrong side of the plane and the magnitude of the movement must be reduced. This 

is achieved by determining the intersection of a line from the original grid point to its 

new calculated position and the plane.

If the line is expressed in its parametric form

y =yp t (3.48)p

Z —7 t 'ti*

Then the correct parameter at the intersection is,

t = ~ d——— (3.49) 
axp +byp +czp
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3.5 Movement Limitation

In the current work a filter is used to screen the grid point movements calculated with 

the adaption algorithm. Using different values for each co-ordinate direction the 

movements in each direction can be restricted to a user defined range. The range is 

determined using scaling factors calculated for the original grid.

Movement greater in magnitude than the upper limit can either be reduced to the 

upper limit, or to zero. Movement less than the lower limit goes to zero.

This filter is useful in some cases to prevent any movement in one or more directions. 

It is also useful in situations when the relative speed of some grid points is too fast, 

as can be the case when the solution is sensitive, or when frequent grid movement is 

imposed to allow the solution to recover faster between adaptions.

3.6 Cylindrical Polar type Grids

There is a class of two dimensional, axisymmetric, BFC style grids that are generated 

by distorting polar coordinate grids. These grids are typically used to model bodies of 

revolution such as flow over a rocket with a circular cross section or pipe flow 

problems. An example of a polar coordinate grid and the BFC equivalent in 

PHOENICS (Spalding 1989) is shown in figures 3.28 and 3.29.
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Figure 3.28 Polar Grid Figure 3.29 BFC Polar Grid

These meshes provide a problem for dynamic adaption. To move points in a purely 

two dimensional manner invalidates the back surface of the grid. To treat the grid as 

a purely 3D case creates problems as the front and back surfaces would have to be 

fitted using the surface modelling technique (section 3.2) and the grid is only one cell 

thick, so that the partial differential equations depend upon mirror image boundary 

conditions and identical movement on both faces cannot be guaranteed.

In the current work this problem is resolved by adapting the upright face of the grid 

only and then rotating it to resolve the back, slanted face (figure 3.30). The point from 

and the angle through which the front surface is rotated is calculated from the original 

grid. The movement of the front face is calculated exactly as if it was a 2D problem.
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Figure 3.30 Rotating Planes

3.7 Closure

This chapter has described the remainder of the tools not covered in chapter 2 needed 

to make dynamic grid adaption practical. There are other methods, not part of the 

present algorithm, available for most of the techniques available here, particularly for 

curve and surface modelling. Other methods include using gradients to determine 

parameters, Bezier curves and Coons patches.
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CHAPTER 4: ASPECTS OF IMPLEMENTATION 

4.1 Introduction

This chapter concerns issues which affect the implementation of grid adaption outside 

of the main algorithm discussed in chapters 2 and 3. These include the organisation 

and control of the adaption algorithm and the interface between the adaption code and 

the CFD code to which it is attached.

The aim of this thesis is to create general purpose grid adaption code that is as 

independent as possible from the calling CFD code. The adaption algorithm needs to 

be treated as far as possible as a black box which reads grid and variable data in and 

sends new grid data out with the minimum of communication. Ideally the user should 

not have to be an expert in grid adaption, and should therefore be able to use default 

adaption parameters with a chance of getting a reasonable adapted grid.

Adaption takes place over defined regions within the problem domain. Each region is 

treated independently. This allows the adaption module to be potentially used for 

multiblock problems.

The adaption module has been implemented in the commercial CFD code PHOENICS 

(Spalding 1989), the in house multi physics code PHYSICA (Cross et al. 1995) and 

independently, to run over simple example problems. These implementations are 

described in this chapter.

More detailed descriptions of the structure and tasks carried out in the adaption 

module, with specific references to the PHOENICS implementation, are given in 

appendices B and C.

4.2 Adaption Organisation

The Adaption code is organised into two modules which concern all tasks which only
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need to take place once, and those which take place many times respectively. The 

tasks in the first module, which is known as the adaption initialisation module, cover 

the determination and calculation of grid geometry. The tasks in the second module, 

known as the adaption calculation module, cover the main adaption algorithm. 

Adaption control is split between these two modules to reduce their dependence on 

each other.

The adaption initialisation module is called only once for each problem. The adaption 

calculation module is called at intervals in the execution of the calling CFD code 

solver defined through its sweep or iteration number.

Independence of the adaption modules from the calling CFD code is primarily 

achieved through the use of an independent data structure and a separate solver for the 

LPE equations. As far as possible all work done by the adaption modules is done in 

their own space, with all information necessary for adaption outside of the flow 

variables solved by the CFD code held outside it. All necessary grid data is read in 

once in adaption initialisation and modified internally at each call to the adaption 

calculation module.

4.2.1 Adaption Initialisation

Adaption initialisation concerns the definition of regions of the main problem domain 

over which adaption needs to take place and features within those subregions that are 

needed to maintain their geometry. Features include surfaces and curves which are 

defined using bicubic patches and cubic splines respectively, as described in section 

3.2 and blanks. Blanks are subregions where no movement is permitted through the 

main adaption algorithm. They allow for obstructions without breaking variable data 

between two separate regions and the implementation of any grid movement that 

needs to take place independently of the main algorithm such as the fluid stress 

interaction discussed in chapter 7.
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Grid Structure

Gnd Coordinates

Adaption Control

Grid Geometry

Figure 4.1 Data flow in adaption initialisation

This module generates grid data files that contain the coordinates of the regions to be 

adapted, parametric data to allow the recovery of defined surfaces and curves, and 

control function data to enable the original grid distribution to influence the main 

adaption algorithm as described in section 2.5.

The original grid is used to generate all data used in the adaption module. This allows 

it to be independent of grid generation software, but means that the definition of 

geometrical features in the adapted grid can only ever be as good as in the original 

grid.

4.2.1.1 Initialisation Control

Adaption initialisation is controlled though the use of a single input file that defines 

multiple adaption regions, surfaces, curves and blanks on the original grid. Control 

over surface and curve fitting is included in the form of tolerances that influence 

surface and curve cutting (section 3.2.3).
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4.2.2 Adaption Calculation

Adaption calculation consists of all parts of the adaption algorithm not covered by the 

adaption initialisation module. This is principally the generation of a new grid based 

on the grid coordinates and geometry of the old grid and a given data set, and is 

described in figure 4.2.

Adapt Control

Variable Data
Grid Coordinates

Grid Structure

Grid Geometry

New Grid

Figure 4.2 Data flow for adaption execution

The tasks in the adaption calculation module are split into three parts, calculation 

initialisation, main calculation and bookkeeping.

4.2.2.1 Calculation Initialisation

Calculation initialisation involves the reading of an adaption control file and checking 

it against the flow problem definition.

4.2.2.2 Main Calculation

The main calculation concerns the generation of a new grid. The main tasks are 

summarised in figure 4.3.
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Variable Data

STEP 1 

Calculate adaption data set

STEP 2 

Calculate weight function

STEP 3
Calculate grid movement 

vector

Optional Interpolation 
Of adaption data set 
for multiple iterations 

of so I ver

STEP 4

Fit vector to curves 
and surfaces

STEP 5 

Apply remaining movement

New gr i d

Figure 4.3 Main Calculation Process Flow

The adaption data set generated in step 1 used for adaption can be a function of many 

flow variables and external data sets. Smoothing can also be carried out on it prior to 

the calculation of the weight function (section 2.8.3).

The weight functions in step 2 are described in section 2.8. The weight functions may 

be smoothed using techniques described in section 2.8.3.

The grid movement vector in step 3 is calculated using the LPE algorithm described 

in chapter 2.
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In step 4 grid movement vectors are first applied to all geometric curves and surfaces 

defined in the adaption domain as described in sections 3.2.1.3 and 3.2.2.3 

respectively. Movement is checked to prevent grid overlapping using the technique 

described in section 3.4.

In step 5 the remaining grid movement vectors are applied.

It is possible to loop between steps 2 and 5 through interpolation of the adaption data 

set between the old and new grids. This allows a relaxation to be used in the scheme 

used to solve the adaption algorithm.

4.2.2.3 Bookkeeping

Bookkeeping involves the calculation of total grid movement, removal of extra 

adaption files and forcing the calling code to dump a final grid file.

4.2.2.4 Adaption Calculation Control

The primary calculation control is through a file that controls when the adaption 

module is called and all parameters that influence the main algorithm, the weight 

function and the interface between the module and the calling code on a region by 

region basis.

This control is supplemented by a number of automatic tools which cover scaling of 

internal tolerances to the grid and flow data, and monitoring of grid and flow solver 

convergence. The adaption data set used to generate the weight function is 

nondimensionalised to allow for consistent adaption parameters to be used over a wide 

range of flow problems with little modification.

4.3 Interface between CFD Code and Adaption Modules

The interface primarily concerns CFD code specific coding in the adaption modules.



It is split into three areas covering the calling of the adaption module and its control, 

data transfer, and several miscellaneous tasks.

The interface also covers the interpolation of the old solution onto the new grid to 

reduce the impact of rapid grid movement on the solution process. Implementation of 

interpolation within the adaption module is not desirable from the software 

engineering point of view as it requires much more data transfer than is needed by 

adaption alone. This leads to reduced data protection and more CFD code specific 

code. An alternative is to treat the flow problem as transient and to rely on grid 

velocity terms within the CFD code, if available, to conserve the flow variables. Tools 

to carry out interpolation are discussed in section 3.3.2.

4.3.1 Calling the Adaption Modules

The adaption initialisation module can be called any time after the initial grid is 

generated and before the solver of the calling CFD code is started. Its activation is 

controlled through either a command coded into the calling CFD code or through a 

switch in the adaption initialisation control file.

The adaption calculation module is called at the end of each iteration or sweep of the 

solver in the calling CFD code. Its activation is controlled through either a command 

coded into the calling CFD code or a switch in the adaption calculation control file, 

and by information passed through to the module from the CFD code. This 

information includes the current sweep number and any flags indicating the 

convergence or failure of the CFD code solver to allow the adaption module to 

execute bookkeeping. The sweep number is used to determine activation of the 

adaption module by being checked against criteria defined in the adaption calculation 

control file. The first call to the module always activates calculation initialisation.
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4.3.2 Data Transfer

In adaption initialisation data transfer consists of reading the original grid in from the 

calling CFD code together with any pointers required to interpret the data.

In adaption calculation data transfer consists of reading in flow variable data and 

pointers and passing out the adapted grid. In addition it may be desirable to write 

adaption data back to the CFD code for visualisation purposes in post processing. 

Such data covers grid movement, grid quality measures and the weight function. This 

requires specific storage space to be set aside in the problem definition in the calling 

CFD code and access to pointers to that storage from within the adaption module.

Another aspect of data transfer are the filters that are needed inside the adaption 

module to translate data into the local adaption format. In the adaption modules all 

work is done on grid nodes. If flow variable data is held in cell centres, or cell faces 

in the case of velocity components on staggered grids, then it needs to be interpolated 

to grid nodes. This is achieved using linear interpolation as described in section 3.3.1.

4.3.3 Miscellaneous Tasks

The interface can also contain the following components :-

  Code to force recalculation of internal CFD code geometrical constants after 

adaption has taken place.

  Code to force a dump of final adapted grid to file. It may also be advantageous 

to dump general data output files at other points in the solution process to 

provide more information about the course of the adapted solution.

  Code to output information at run time about adaption. This may involve 

output of a measurement of movement, or, if some form of run time graphical 

user interface (GUI) is available, a display of parts of the moving grid.

  Code to output macro files linked to flow visualisation tools to automatically 

mark out areas of adaption.
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4.4 Implementation Examples

The CFD flow solvers to which adaption is most likely to be applied use iterative 

schemes to solve complex systems of partial differential equations that represent the 

physics of 'real' problems. The general format of a CFD code that uses an iterative 

solver with adaption is shown in figure 4.4.

CFD
Initialisation

Start Sweep

JL
Execute 
Solver

i

End Sweep

End

Adaption 
Initialisation

Adaption 
Calculation

Reset Geometry

Figure 4.4 Flow chart for adaption in a general iterative CFD code 

4.4.1 PHOENICS Implementation

PHOENICS (Spalding 1989) is a well established general purpose finite volume code 

used to simulate fluid flow, heat transfer and related phenomena. It has the ability to 

use cartesian, polar co-ordinate and curvilinear (body fitted co-ordinate ,or BFC) grids. 

BFC grids can be significantly non orthogonal and are therefore the only ones 

considered for adaption by grid movement. A non orthogonal solver is available if the 

grid is poor, though its use involves a higher computational cost than the standard 

solver.
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PHOENICS uses a staggered grid for the calculation of the components of flow 

velocity at cell boundaries. Other flow variables are calculated at cell centres.

The majority of the test cases in the current work beyond those concerned with fitting 

the grid to simple functions have been run using PHOENICS versions 1.6, 2.0 and 2.1. 

Most of the development of the adaption algorithm has been achieved with 

PHOENICS as the calling CFD code.

PHOENICS is divided into two main programs, a preprocessor called SATELLITE 

and a solver called EARTH. The adaption initialisation module is linked to 

SATELLITE and the calculation module is linked to EARTH.

The data interface is simplified by using the same format for data storage within the 

adaption modules as within PHOENICS. Interpolation of variable data between old 

and adapted grids is implemented but does not completely prevent the disruption to 

the solver that the grid movement causes.

For convenience the two adaption control files can be incorporated into the 

PHOENICS control file Ql as comments.

PHOENICS has a run time GUI. This has been manipulated to plot grid data to the 

screen to allow visualisation of the grid movement.

4.4.2 PHYSICA Implementation

PHYSIC A (Cross et al 1995) is a multiphysics unstructured code under development 

at the University of Greenwich. It is designed to be a framework for multi physics 

continuum mechanics modelling and involves the use of finite volume techniques to 

solve coupled flow and stress problems. A single test case has been run on a grid that 

can be treated as structured for the purposes of adaption (section 5.3.2).

PHYSICA stores flow variables at cell centres and uses Rhie and Chow (1983)
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interpolation to determine convective fluxes at cell boundaries. This is an important 

difference from PHOENICS. As PHYSIC A is also able to solve over irregular shaped 

cells it is generally less sensitive to grid quality than PHOENICS.

PHYSICA consists of one main executable to carry out all tasks that are split between 

SATELLITE and EARTH in PHOENICS so that the structure of the code is the same 

as that given in figure 4.4. The adaption modules are accessed through PHYSICA 

using the built in user module.

The two main problems in transferring the adaption modules from PHOENICS to 

PHYSICA are the interface and the need to use a structured style grid in any sub 

regions where adaption is applied if the current code is to be reused. Implementation 

of an unstructured adaptive grid technique using the same method is beyond the scope 

of this thesis, though the neural net adaption technique discussed in chapter 8 is 

unstructured.

As the adaption technique is designed for structured grids it is necessary to define the 

grid in PHYSICA using nodes that are in structured form. This means that hexahedral 

elements only can be used in regions of adaption and that they be organised in the 

same manner as a structured grid. Extra information is required on the dimensions of 

the 'structured' part of the grid as this is not stored naturally in PHYSICA.

4.4.3 Independent Implementation

The independent implementation is used to adapt grids to fixed functions of a type 

often used to demonstrate features of grid adaption (Biswas et al 1993, Bennett 1991, 

Dvinsky 1991, Acharya and Moukalled 1990, Anderson 1990, 1987, 1987, Arney and 

Flaherty 1990, 1986, Lee and Loellbach 1989, Carey et al 1988, Matsuno and Dwyer 

1988, Holcomb and Hindman 1984, Greenburg 1983, and Brackbill and Saltzman 

1982).

The implementation is split into two separate parts, an initialisation program and a
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calculation program. The implementation depends mainly upon the adaption modules 

already implemented within PHOENICS with additional code to generate the grids 

used in the initialisation phase. In the calculation phase the main flow solver is 

replaced with simple routines to generate the variables used for adaption. As there is 

no need to leave the adaption module during run time the data files used to store 

temporary information are redundant. However the grid is output at regular intervals 

in a format suitable for viewing using PHOENICS visualisation software, or using a 

built in GUI.

4.5 Closure

This chapter has described general issues in the organisation and implementation of 

adaption. The adaption algorithm has been implemented successfully in the CFD codes 

PHOENICS, PHYSIC A and independently, though with some limitations in 

PHYSICA.

A more detailed discussion of the implementation in PHOENICS is given in 

appenicies B and C.
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CHAPTER 5: 2D VERIFICATION TESTS

5.1 Introduction

The aim of this chapter is to present examples of the use of the adaptive algorithm on 

a range of two dimensional cases including both simple mathematical functions and 

complex heat and fluid flow problems.

The improvements in results due to the use of dynamically adapted grids can be 

measured by comparing results obtained using coarse meshes, coarse meshes with 

adaption, fine meshes and experimental results or high quality numerical results. In 

the more complex cases such as the 10 degree supersonic intake different grid 

resolutions are not available but the adapted grid is shown to offer improved results.

The choice of the initial mesh has to be careful. If the initial number of cells is too 

small then though the mesh will move well the resolution of the grid will not have 

improved enough to significantly better the results. If the number of cells is too high 

then little movement will take place and adaption will not improve the results

5.2 Static Cases

The following cases were generated using the independent implementation of the 

adaptive code. In each case the grids were adapted against a static function to 

demonstrate how the LPE method will work in particular circumstances. Most of the 

grids are compared with published results.

With some weights the LPE equation may be unstable in that the grid will converge 

up to a point then diverge. In these cases the adaption has been stopped at the point 

where the grid starts to diverge. Otherwise the problems have been run to 

convergence. Most of the movement occurs in the first five or ten iterations of the 

adaption solver.
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As all grids in the following section are initially uniform, the Poisson weight in the 

LPE equation is set to zero. This is because the Poisson control functions which shape 

the grid will all be zero and the Poisson term will be the same as the Laplace term.

In most of the following cases the functions involve an instantaneous change in value 

at certain positions in the grid and no change elsewhere. To propagate the effects of 

the functions out into the rest of the grid and prevent unpredictable results where a 

point is on the border of the function smoothing is used on either the variable used 

internally to calculate the weight functions in the LPE equation, or on the weight 

functions themselves.

It is important to realise that there is not one single solution to each problem. It 

depends upon what the user wants. To demonstrate this several results are produced 

for the first three cases.

5.2.1 Attraction to a Line

This problem is used to demonstrate basic grid movement. The grid is attracted to the 

centre line by using the simple step function,

(5.1) 

*>0.5

This problem is very similar to the attraction to a line case used in Divinsky (1991). 

A 10x10 grid is used, covering a unit square domain.

The problem is run with three separate sets of parameters to demonstrate their effect 

upon the final grid. In all cases the weight function used is 

xit
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0.01 ss
3
T

(5.2)

Attraction to a Line

Case 1A

Case IB

Case 1C

^L

1

1

1

^E

1

3

10

Power Law

Factor

2

3

3

Number of

Moves

20

16

20

Total X

move %

63.4

133.5

165.8

Total Y

move %

0

0

0

Where \L is the weight on the Laplace term in the LPE equation, and A,E is the weight 

on the Equidistribution term. The power law factor governs the slope of the curve of 

the weight distribution (See 2.10.3.3). Movement is based on the sum of the 

movement of the individual points compared with the sum of the initial distances 

between all individual points and their neighbours in the appropriate coordinate 

direction in the original grid.

Figure 5.1 Case 1A Figure 5.2 Case IB
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Figure 5.3 Case 1C 

Movement is uniform across domain in all cases

The equidistribution term controls how much clustering occurs around the line. The 

power law controls the change in distribution of cells towards the centre line. The 

three cases have an increasing equidistribution weight.

5.2.2 Angled 'Shock' Like Function

This problem is used to demonstrate how the LPE algorithm will adapt a grid to a 

stylised 'shock' like function that has a similar shape to those which occur within 

numerical models of transonic and supersonic flows. The function is a graded, angled 

step, where

<H
0 0.5(3; +14)<*<24

0.5(7 -x) +Q.25y 0.5(y+ 10)<jt<0.5(;y

1 0<x<0.5(;y

(5.3)

This function is used by Anderson (1987a) (figure 5.8, figure 5.9) (1990) (figure 5.10)

A 24x24 grid is used. The domain measures 24x24 units, each cell initially being a 

unit square.
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The problem is run with four power law factors to demonstrate its effect upon the 

final grid. In all cases the weight function used is

= l+5(j> +0.05 ss
3 
T

(5.4)

The weight parameters are designed to accentuate the gradients of the function.

Angled 'Shock' Like Function

Case 2A

Case 2B

Case 2C

Case 2D

^L

1

1

1

1

A,E

2

2

2

2

Power Law 

Factor

3

2

1.5

No Power 

Law

Number of 

Moves

50

50

50

40

Total X

move %

102.0

102.9

98.7

69.7

Total Y 

move %

21.6

24.5

25.6

9.6

Figure 5.4 Case 2A Figure 5.5 Case 2B
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Figure 5.6 Case 2C Figure 5.7 Case 2D
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0.0 l.M

Figure 5.10 Anderson 1990 Poisson

Anderson (1987a) used this case to compare equidistribution (figure 5.8) and Poisson
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(figure 5.9) grid adaption schemes and shows that the Poisson scheme is better.

The function is used here to compare the influence of power law fitting to control how 

much clustering occurs around the shock and how far its effect can be propagated 

towards the boundaries of the domain. Figures 5.4 through 5.6 show a steadily 

decreasing power law producing less clustering around the shock like function, but 

more movement at the grid boundaries. In all three of these cases the grids are smooth 

with a gradual change in cell size towards the function. Figure 5.7 shows the results 

without power law fitting. The clustering within the step is much higher than in the 

other cases, and its influence has been propagated through the entire domain but the 

change in grid size is much more sudden. This result is close to Anderson (1987a) 

(figure 5.9) but shows much more movement away from the step. The overall 

movement in this case is much less than in the other three cases.

5.2.3 Sine Wave

The purpose of this test is to demonstrate how the LPE equation can move a grid to 

a generalised curved function. The function is a graduated step in the shape of a sine 

wave.

<H
0 0<y<ll+4sin(7l;t/12)

0.5(y-114sin(7tjc/12) 11 +4sin(7i;t/12)<y<13 +4sin(7ix/12)

1 13+4sin(7tJt/12)<y'<24

This function is used by Anderson (1987a) (figure 5.14, figure 5.15)

A 24x24 grid is used. The domain measures 24x24 units, each cell initially being a 

unit square.

In all cases the weight function used is
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3 

2\T

(5.6)

Sine Wave

Case 3A

Case 3B

Case 3C

^L

1

1

1

^E

2

3

2

Power Law

Factor

2

3

No Power

Law

Number of

Moves

30

10

20

Total X

move %

18.6

15.2

12.5

Total Y

move %

15.2

40.1

39.3

Figure 5.11 Case 3A Figure 5.12 Case 3B
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Figure 5.13 Case 3C

Figure 5.14 Anderson 1987a 
Equidistribution

Figure 5.15 Anderson 1987a Poisson

As for the angled shock Anderson (1987a) used this case to demonstrate the 

shortcomings of equidistribution alone for adaption (figure 5.14) against the Poisson 

scheme (figure 5.15).

Case 3B shows that a final grid can be reached more quickly with an increased 

equidistribution term, though at the cost of some instability in the solution.

Case 3C shows a good fit of the grid to the step, though points are pulled away from 

the areas in the concave part of the function, leaving the area light in cells. This is 

less of a problem in the first two cases where the power law weight smoothing has 

spread the impact of the function. This distribution could also be improved by
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constraining the horizontal movement of the grid points.

5.2.4 Hat Function

This function shows how the LPE algorithm can move a grid to two competing 

phenomena. The function used is

<H
0 y<x

0.5 y>x, jc 2 + v

1 y>x, x 2 +y 2 <0.3

(5.7)

The function is based on that used by Anderson (1987a) (figure 5.17) to show strength 

of his Poisson scheme, especially where the function shape switches between straight 

and circular.

A 40x40 grid is used over a unit square.

In this case the weight function used is

+ 0.01

('

ss

3 
T

(5.8)

Hat Function

Case 4

V

1

AE

1

Power Law

Factor

No Power

Law

Number of

Moves

15

Total X

move %

21.7

Total Y

move %

21.8
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Figure 5.16 Case 4 Figure 5.17 Anderson 1987a Poisson Scheme

The grid is distorted within the semi circle or hat, as cells are drawn out from this 

region towards its boundaries. It would work better if there were more cells in this 

region initially. The grid at the points where the semi circle and the line meet have 

retained good orthogonality.

5.2.5 Pill Box

A circular function is a frequently used test case for adaption. The form used here is 

the graded step found in Anderson (1990) (see figure 5.21) and (1987b) (figure 5.19 

and figure 5.20). Divinsky (1991) attracts the grid to a circle (figure 5.22), and 

Brackbill and Saltzman (1982) solve a partial differential equation with a circular 

shaped solution.

The function used is
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<H
o 0.35<r

1.75-5r 0.15<r<0.35

0<r<0.15

Where the subscript c refers to the value at the centre of the grid. 

A 30x30 grid is used over a unit square domain.

(5.9)

The weight function used is

+ 0.01 ss
3
T

(5.10)

Pill Box

Case 5

V

2

^E

1

Power Law

Factor

No Power

Law

Number of

Moves

20

Total X

move %

15.8

Total Y

move %

15.8

Figure 5.18 Case 5
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Figure 5.19 Anderson 1987b Poisson with 
Area Control

Figure 5.20 Anderson 1987b 
Equidistribution

Figure 5.21 Anderson 1990 Poisson

5.2.6 Parabola

Figure 5.22 Divinsky 1991 
Harmonic Map

This function is based on that used by Divinsky (1991) (figure 5.24) where grid is 

attracted to the same parabolic line used here to define the function.

The function used is a parabola shaped step

0 ;y>3(jt-0.5) (5.11)
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A 21x21 grid is used, covering a unit square.

The weight function used is

+0.01 I*I i SS

3 
T

(5.12)

Parabola

Case 6

V

1

^E

1

Number of

Smoothing Steps

5

Number of

Moves

17

Total X

move %

50.5

Total Y

move %

23.7

In this and the following case power law fitting of the weight function is not used. 

Instead the variable used to calculate the weights is smoothed by setting its value at 

each point to the weighted average at the point and its neighbours (see 2.10.3.1). This 

process is repeated five times to further even out the function.

Figure 5.23 Case 6 

5.2.7 Parabola with Line

Figure 5.24 Divinsky 1991 Harmonic Map

This problem is designed to show how the LPE Algorithm can adapt a grid to two 

overlapping features. The function used is a parabola shaped step based on that used - 

by Divinsky (1991) (figure 5.26) where the grid is attracted to a line and the parabola.
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0.5
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A 21x21 grid is used, covering a unit square.

y>3(x-0.5)2 , y>x 

y<3(x-0.5)2 , y>x 

>»3(;t-0.5)2 , y<x 

, y<x

The weight function used is

0.01 ss

1 + (*.)') 3 
,T

(5.13)

(5.14)

Parabola with Line

Case 7
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^E

1

Number of

Smoothing Steps

5
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Moves

25

Total X

move %

33.4

Total Y

move %

28.1

Figure 5.25 Case 7 Figure 5.26 Divinsky 1991 Harmonic Map
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5.3 Two Dimensional Flow Examples

The following cases were run using PHOENICS versions 1.6, 2.0 and 2.13 on PC's 

and Sun UNIX workstations. Case 5.3.2, which features driven cavity flow, was also 

run using PHYSICA version 2.

5.3.1 RAE2822 Aerofoil

The RAE2822 aerofoil test case is widely used for validation of compressible CFD 

methods as experimental data for pressure over the surface is readily available.

The case considered here is case 9, where a free stream Mach number of 0.730 

generates a weak shock on the upper surface of the aerofoil at an angle of incidence 

of 3.19 degrees.

5.3.1.1 Boundary Conditions

The angle of incidence of the aerofoil is corrected to 2.79 degrees to allow for 

sidewall effects in the wind tunnel. The free stream flow has a Reynolds number of 

6.5 million. The grid for the problem is shown in figures 5.26 and 5.27, and consists 

of 253x29 cells wrapped around the shape of the aerofoil to form an O grid.
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Figure 5.27a Initial Grid

Figure 5.27b Initial Grid - Detail Around Aerofoil

The standard case is run until convergence. The adapted case is run for 1000 iterations
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before adaption starts and for 500 iterations afterwards.

The under relaxation needed for the solution of the pressure distribution with adaption 

has to be increased from that used for the standard case. In this case the solution tends 

to need time to settle after the grid is modified and can diverge without relaxation.

5.3.1.2 Adaption Parameters

Two adaption domains are used in the problem area, one covering the upper surface 

from about 0.2 chord to the trailing edge, and the other the lower surface from about 

0.1 chord to the trailing edge. The overall grid is very large with a wide variation in 

grid cell size and there is little point in trying to adapt it all. The distance away from 

the aerofoil surface that the domains should stretch is governed by the range of the 

perturbations in the flow caused by the aerofoil and the rate at which the cell spacing 

increases. Movement is limited to the points sliding along grid lines parallel to the 

aerofoil surface. There are no strong gradients to pull distant points on lines normal 

to the aerofoil towards the aerofoil.

Figure 5.28 Domain Choices

The high concentration of grid cells near the surface of the aerofoil must be artificially 

maintained as there is no strong gradient in the flow to force the grid cells to remain 

there. Whatever gradient there is for movement will be aligned with the shock wave,
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if present, and therefore at a steep angle to the aerofoil surface. The Laplace term will 

then dominate the adaption equations and will try to force the cells away from the 

surface. This artificial control is achieved by extensive use of the curve fitting routines 

in the domains to be adapted. This will mean that near the surface of the aerofoil the 

grid points will only be allowed to move over the grid lines defined by the initial grid.

The high variation in pressure in a small area at the leading edge of the aerofoil, 

coupled with a highly skewed local grid prevents effective grid adaption here. Any 

adaption domains defined for the grid must start far enough away from the leading 

edge of the aerofoil to negate any influence it may have. The main area of interest as 

regards grid adaption is the weak shock wave on the upper surface of the grid, so the 

adaption domains can be tailored to fit.

At the trailing edge of the aerofoil the grid is also skewed. There are also potential 

problems dealing with the grid cut and the point where the grid cells collapse. Though 

there should be no strong gradients here to influence adaption elsewhere, the effective 

limit to the adaptive domains is where the grid lines perpendicular to the aerofoil 

surface start to slope.

The extent of the domains is also influenced by the region in the grid above and 

below the trailing edge where the cell size changes rapidly and the cells themselves 

have a very high aspect ratio. In these regions use of adaption can easily lead to grid 

lines kinking and even overlapping due to minor perturbations in the flow.

The extensive use of curve fitting helps to maintain grid smoothness.The fixed curve 

patches are displayed in figure 5.29.
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Figure 5.29 Fixed curves in the adaption domains

The most important part of the grid contains the aerofoil boundary layer cells and this 

is the region for which experimental data is available. It was found in early runs that 

the movement of the grid nodes right on the boundary was more prone to fluctuations 

than in the rest of the flow and more importantly tended to lag behind the movement 

of the points away from the surface. Preventing any movement at the surface was 

undesirable as it left the boundary layer grid cells highly skewed as they leaned 

towards the computed shock. To maintain the orthogonality of the boundary layer cells 

the movement of the boundary nodes was set to that of the nodes on the adjacent grid 

line inside.

The adaption parameters are

First call 

(sweep number)

1000

Last call 

(sweep number)

1900

Frequency 

(sweeps)

100

Internal 

Iterations

10

Relaxation

0.8

The constants used for adaption are given in the following table.
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Domain 1 

Upper Surface

Domain 2 

Lower Surface

LPE Equation

^L

1

V

1

A.p

2

A/p

1

^E

5

^E

2

Variable

Pressure

Pressure

Weight Function

l-H> x+0.01fc 

x3 power law smoothing

l+<j> x+0.01& 

x3 power law smoothing

The grid is moved to pressure in both domains, with a higher weight on the 

equidistribution term on the upper domain. There is not a particularly strong gradient 

in either domain and it is weaker in the lower domain. To have the same parameters 

for the lower domain, domain 2, causes problems as minor pressure perturbations have 

more effect. To maximise the effect of the pressure gradient power law smoothing is 

used for the weight term, with the weights assumed to increase at a rate proportional 

to the distance cubed up to the local maximum. This use of smoothing allows high 

values to be used for the equidistribution term, allowing faster grid movement whilst 

keeping the LPE equation stable.

5.3.1.3 RAE2822 Aerofoil Case 9 Results

The grid has moved to concentrate grid cells both above and below the aerofoil. The 

grid concentration on the upper surface has occurred downstream of the location given 

in the experimental results.

Figure 5.33 shows that though there is little difference in the accuracy of the solution 

on the underneath of the aerofoil, the shock on the upper surface is picked out much 

more clearly and is of the same magnitude as the experimental results. The calculated 

shock occurs downstream of the experimental shock, though it is in the centre of the 

smeared shock predicted by PHOENICS on the original grid. The adaption has 

changed the PHOENICS results and shown the potential to give better results, but also 

possible limitations with PHOENICS.
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Figure 5.34, showing surface pressure coefficients for standard, globally refined and 

adapted refined grids generated by Dannenhoffer (1985) is included to show that the 

apparent change in position of the shock wave due to adaption is not limited to the 

current work alone.

Figure 5.30 Adapted Grid
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Figure 5.34 Surface Pressure calculated with Adapted Grid by
Dannenhoffer (1985)

5.3.2 Driven Cavity Flow

The driven cavity problem is widely used as a test of numerical methods (Ghia 1982) 

and has also been used as an example in literature covering grid adaption (Lin and Wu 

1993, Mavriplis 1992, Moukalled and Acharya 1991, Shen and Reed 1993, Thompson 

and Ferziger 1989).

The dominant source of error in this case is the hybrid advection scheme used within 

the finite volume solver. The accuracy of this scheme depends upon the local 

Reynolds number which is proportional to the local velocity and the cell spacing. 

Reducing cell spacing and aligning the grid to local flow conditions through adaption 

will improve results calculated on coarse grids.

This case is used to demonstrate adaption within PHYSICA as well as for 

PHOENICS.
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5.3.2.1 Boundary Conditions

A wall moving at 1 ms' 1 creates a circulation in a square domain measuring Ixlm. 

The problem is dependent on the Reynolds number, and the results presented are for 

a Reynolds number of 1000.

1ms .1

Y
t.

1m

1m

Figure 5.35 Driven Cavity Definition

The problem was run on 40x40 and 60x60 uniformly distributed and adapted grids in 
both PHOENICS and PHYSICA. For comparison of the effects of adaption the same 

case is also presented on a finer 80x80 uniform grid without adaption in PHOENICS. 
The results were similar enough between PHYSICA and PHOENICS for the 60x60 

uniform case (figure 5.38) to make running the 80x80 PHYSICA case unnecessary.

The PHOENICS cases were run for 2500 sweeps. The PHYSICA cases were run until 

convergence was reached as defined by the default set up file.

With a very fine grid (250x250 cells) PHOENICS reproduced the Ghia results for a 

Reynolds number of 1000 exactly.

5.3.2.2 Adaption Parameters

One domain is used that covers the whole problem area. Curve patches are set up 

along all of the boundaries of the adaption domain except the top, moving, wall to
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allow boundary points to move.

The adaption parameters are

PHOENICS

PHYSICA

First call

(sweep

number)

300

80

Last call

(sweep

number)

600

400

Frequency

(sweeps)

100

40

Internal

Iterations

8

10

Relaxation

1.0

0.9

PHOENICS

PHYSICA

LPE Equation

\

1

1

Ap

0

0

^E

3

3

Variable

Magnitude 

of Velocity

Weight Function

1+(|> 

x3 power law smoothing

Magnitude of velocity is used to drive the grid as there are no other strong gradients 

that exist throughout the whole domain. The form of weight function here is used as 

the only strong gradients within the flow except at the moving wall itself which lie 

at the edges of the main eddy produced by the moving wall. Moving the grid to these 

gradients will pull cells away from where the flow is greatest and needs most 

resolution.

To prevent the flow at the boundary layer dominating all movement, the magnitude 

of <}) is limited to a maximum of 0.6. All values above 0.6 are treated as 0.6, giving 

a high constant weight across the top of the domain which resists movement but lacks 

the change in weight which drives the grid.

The weight for the Poisson term was set to zero as for a uniform grid the control 

functions will be zero and the Poisson term will collapse to the same as the Laplace 

term.
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The different parameters used for PHYSICA and PHOENICS came about because of 

the different response from PHYSICA to adaption.

5.3.2.3 Driven Cavity Results

The PHOENICS run using adaption clocked 4045 seconds on a Sun SPARC 5 

workstation for 5000 sweeps, against 6734 seconds for the fine grid and 3834 seconds 

for the coarse grid.

Figures 5.36 and 5.37 show that the grid cells have concentrated on and are more 

aligned to the main eddy in the cavity in both PHYSICA and PHOENICS.

Figures 5.38 and 5.39 plot the component of flow velocity parallel with the moving 

lid on the centre line of the box for all the flow cases run with the Ghia results 

(1982). They show that significant improvements are offered by adaption within 

PHOENICS over the plain 60x60 grid for Re=1000 and even over the 80x80 grid, 

though the improved results at the most important features, the moving wall and the 

main eddy, are balanced by a mild loss of accuracy elsewhere.

The PHYSICA results show a less marked improvement over the static grid results 

than for PHOENICS, though with less loss of accuracy away from the low velocity 

peak. There is less movement overall in the PHYSICA adapted grid.

Figure 5.40 presents the grid cell spacing along the centre line for the PHOENICS 

adapted grid alongside the grid density for the 60x60 and 80x80 grids. It shows that 

grid density peaks at the moving lid boundary condition and at the centre of the main 

eddy about 0.18 above the base of the cavity at the expense of neighbouring regions.

Figures 5.41-44 present the velocity vectors for the flow field with the different grids. 

The eddy appears to be better defined in the adapted grids than the unadapted grids. 

The eddy in the adapted PHYSICA results is particularly well defined.
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Figures 5.45-46 present records for the rate of convergence of pressure on the 60x60 

grids in PHYSICA and PHOENICS, measured using the residuals or errors in the 

governing equations during the solution procedure. The magnitude of change for each 

record are not comparable between the different cases as the way the residuals are 

calculated in PHYSICA and PHOENICS is different. The PHOENICS test cases were 

considered to have converged when the sum of the absolute values of the residuals 

reduced below l.e-4. Using this criteria the adapted grid converges faster than the 

unadapted grid despite the large disruption to the curve caused by adaption.

The PHYSICA cases also use a tolerance value of le-4 to determine convergence. 

Here the adapted case does not converge faster. The effect of adaption on the residual 

error is also much less than in the PHOENICS cases.

Adaption parameters for PHYSICA will be different than those from PHOENICS 

because of a number of reasons. These include:-

  Reduced sensitivity of PHYSICA to grid quality. This is because it uses Rhie 

and Chow (1983) interpolation against the staggered grid used in PHOENICS.

  Calculation of adaption data set. In PHYSICA the data set used to calculate 

the weight function is stored at the cell centre and calculated prior to entry to 

the adaption module, where it is interpolated to grid nodes. In PHOENICS the 

data set is calculated directly at grid nodes by interpolating and combining 

individual velocity components from cell faces.

  Calculation of velocity at cell centres IN PHYSICA as opposed to cell faces 

in PHOENICS means that velocities at boundary conditions are potentially 

better defined in PHYSICA as in PHOENICS they will be further away. In 

PHYSICA this may lead to a steeper velocity gradient at the moving lid which 

will influence the way in which the adaption algorithm operates over the 

remainder of the domain, reducing the effect of the eddy in the
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Figure 5.36 Grid adapted in PHOENICS 60x60 Cells

Figure 5.37 Grid adapted in PHYSICA 60x60 Cells
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Figure 5.40 Cell Spacing along Centre Line after adaption in PHOENICS
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Figure 5.41 Velocity Vectors on Basic Grid calculated in PHOENICS
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Figure 5.42 Velocity Vectors on Fine Grid calculated in PHOENICS
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Figure 5.43 Velocity vectors on Grid adapted in PHOENICS
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Figure 5.44 Velocity vectors on Grid adapted in PHYSICA
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Figure 5.45 Rates of Pressure Convergence for PHOENICS with and without Adaption
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Figure 5.46 Rates of Pressure Convergence for PHYSICA with and without Adaption

5.3.3 10 Degree Supersonic Wedge Intake

This is a 2D supersonic case with two obstructions, a 10° ramp and a lip, that define 

an idealised jet engine intake.

The flow out from the duct formed by the two obstructions is subsonic. A strong 

shock wave is formed at the mouth of the duct where the flow decelerates. This case 

is used to demonstrate both shock capturing and geometry maintaining features of the 

adaptive algorithm.

5.3.3.1 Boundary conditions

The free stream mach number is 2.0 and the pressure at the duct outlet is constrained 

to a value calculated using a duct outlet mach number of 0.664.

The computational domain is made up of 128x99 cells, with obstructions set up to 

represent the lip and the ramp. The geometry is shown in figure 5.47. The curved 

surface of the leading edge of the lip is modelled by using a high local concentration 

of distorted cells.
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Duct
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Figure 5.47 Initial Problem

5.3.3.2 Adaption Parameters

Two domains are used. Their positions are shown in figure 5.48 This case involves 
capturing the two shock waves that dominate the flow. The sole reason for using two 
domains is to pick up the leading edge shock more clearly, as it is so weak in 
comparison to the bow wave.

ciornl

dor \2

Figure 5.48 Adaption Domains

There is no pressure gradient above the ramp and sufficiently far in front or behind
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the entrance of the intake, so any effort in adapting the grid is wasted here.

An allowance is made for the lip by using a 'blank' patch. This is set up to cover the 

obstruction and a boundary layer of one cell and will block out uncontrolled 

movement in this region and retain its geometry. At the curved leading edge the local 

grid distribution is irregular and has to be maintained to retain the integrity of the 

obstruction. Careful use of curve patches is used to maintain the local grid. The 

geometry protecting curve and blank patches are shown in figure 5.49

currl

curlub 
curlua

curll

Figure 5.49 Geometry Patches

It is necessary to initialise the variable chosen for adaption in the area within the 

obstruction, as the adaptive code will read the relevant values from PHOENICS 

regardless of whether they are solved for or not, and will normalise all values between 

the limits it reads.

The adaption routines are called at

First call 

(sweep number)

10

Last call 

(sweep number)

120

Frequency 

(sweeps)

10

Internal 

Iterations

1

Relaxation

1.0

The first domain uses the parameters
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LPE Equation

^L

2

XP

0

X,E

3

Variable

Pressure

Weight Function

l+<j> x+0.01fc 

0.05 Weighted exponential 

smoothing

whereas the second domain uses the parameters

LPE Equation

^L

1

Xp

0

^E

1

Variable

Pressure

Weight Function

l+l<j> x+0.01fc 

0.05 Weighted exponential 

smoothing

The pressure change in the first domain is much smaller than in the second, therefore 

the equidistribution weight is increased to emphasise the effect of the gradient that is 

available.

The different schemes available for manipulating the weight function were tested and 

the one that seemed to work the best was exponential smoothing. Because there is 

such a strong discontinuity in the flow care must be taken to prevent the grid from 

overlapping in the shock.

5.3.3.3 10 Degree Supersonic Wedge Intake Results

Figures 5.50 and 5.51 show that the resultant grid moves well and shows the shapes 

of the shock waves clearly, though there are still some problems at the leading edge 

of the lip where the lack of a strong gradient or any other confinement allow the 

Laplace term to push the grid out, causing some skewed cells at the start and end of 

this region. These appear to have little effect on the results however. The geometry 

of the obstructions is maintained.

The pressure contour plots show that the point at which the main shock wave connects
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to the lower surface of the ramp appears to have moved back to the lowest point of 

the ramp. The contours are noticeably tighter for the weak leading shock and around 

the front edge of the lip.

The most striking difference between the results on the unadapted and adapted results 

come however on the plots (Figures 5.54, 5.55 and 5.56) taken on lines of grid cells 

at the centre of the duct and at the upper and lower surface. There may be some 

discrepancy as to the exact comparison as the adapted grid lines will be in different 

positions from the original, but what all show is that the pressure on the adapted grid 

rapidly settles to the value of the outlet pressure condition whereas the standard grid 

does not. The spike where the prediction overshoots though still present is smaller and 

the oscillations much reduced.
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Figure 5.50 Original Grid

Figure 5.51 Adapted Grid
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Figure 5.52 Pressure Contours on Fixed Grid
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Figure 5.53 Pressure Contours on Adapted Grid
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Figure 5.54 Pressure Variation on Centre Line Through Duct
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Figure 5.55 Pressure Variation on Line Running over Lip
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Figure 5.56 Pressure Variation over Line Underneath Ramp 

5.3.4 Laval Nozzle

The De Laval nozzle case concerns transonic flow in a convergent-divergent nozzle 

with the exit conditions modified to set up a standing shock wave in the divergent part 

of the nozzle.

The adaptive grid will allow better resolution of the shock through increasing the local 

grid concentration and therefore reducing the change in pressure over individual cells.

5.3.4.1 Boundary Conditions

The inlet Mach number is 0.5. To create the standing shock wave the outlet pressure 

is set to 0.75 of the stagnation pressure, taken from tables for the design conditions 

as 7.83e5. The position of the shock can be calculated analytically at 60% chord 

(Patel, Pericleous and Baldwin 1995).
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The geometry is set up with the throat situated at one-third of the length of the duct 

and uses symmetry. The adapted case was run with 60x5 cells. In addition the same 

case was run without adaption, and also with a finer mesh of 100x7 cells.

The problem is run to convergence. 

5.3.4.2 Adaption Parameters

One domain was used covering the whole problem area. To retain the character of the 

original grid the grid cells were only allowed to move in the axial direction, sliding 

along the original grid lines. These lines were maintained by defining curve patches 

along all axial grid lines.

The main adaption parameters are

First call 

(sweep number)

50

Last call 

(sweep number)

350

Frequency 

(sweeps)

50

Internal 

Iterations

Relaxation

LPE Equation Variable

Pressure

Weight Function

l+2(j) x+0.02& 

x2 power law smoothing

There is a strong gradient to move the grid to but too great a loss in grid orthogonality 

and smoothness can quickly lead to the loss of the solution, so care has to be taken 

to keep movement smooth.

5.3.4.3 Laval Nozzle Results

This case has previously been used to demonstrate adaption by Patel et al. (1995) and 

it is identical except for the method of adaption.
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The solution converged after 1285 sweeps in a time of 100 seconds running on a 

Pentium P100 computer, compared to times of 61 seconds for the unadapted solution 

to converge at 1117 sweeps, and 231 seconds for the fine grid to converge at 1759 

sweeps.

Figure 5.57 shows the fine, adapted and unadapted grids. Figure 5.58 shows the final 

axial grid density of the three cases. Figure 5.59 shows the axial pressure, which is 

uniform perpendicular to the axis.

The final adapted grid shows how a relatively small movement can have a beneficial 
effect upon the results, which are better than for the same sized unadapted grid. Figure 

5.59 shows that for the adapted grid the pressure change is much steeper than for the 
unadapted grid and starts in the same area as the fine grid.

Fine Grid 100x7

Unadapted Grid 60x5

Adapted Grid 60x5

Figure 5.57 Laval nozzle grids
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Figure 5.59 Pressure along axis (Pressure against distance)
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5.3.5 Supersonic Flow Through A Wedge Cascade

This case consists of a completely supersonic flow through a wedge cascade. There 

is a shock wave from the leading edge which is cancelled by its reflection at the 

upstream corner of the cascade, giving a uniform parallel flow between the corners, 

a weak expansion wave off the downstream corner, and two compression waves at the 

trailing edge. Numerical smearing means that the initial shock wave is not completely 

cancelled and reflects down the narrow part of the flow domain.

The adaptive algorithm is used to better resolve the shocks throughout the model. 

5.3.5.1 Boundary Conditions

The cascade has a chord of four units, with the leading ramp, at 18.5°, measuring two 

units, and the parallel section and trailing ramp measuring one each.

The adapted case was run with a grid measuring 112x30 cells. For comparison the 

same case was run without adaption and also with a finer mesh of 168x45 cells, this 

being the fineness of grid suggested by Palacio et al (1990) required for the solution 

to become grid independent.

The Mach number at the inlet at the low end of the domain is set to 3.0. The outlet 

has a fixed pressure calculated from gas-dynamic theory.

Cyclic boundary conditions are applied upstream and downstream of the cascade. 

The flow is isentropic.

All three cases were run for 1000 sweeps, which was sufficient for all of them to 

converge.

This case is based on the PHOENICS library case 523 and Palacio et al (1990).
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5.3.5.2 Adaption Parameters

One adaption patch was used to cover the whole domain. The strong shock wave on 

the leading ramp makes the adaption easier, as the pressure gradients here are strong.

The adaption parameters used are given in the following tables

First call 

(sweep number)

50

Last call 

(sweep number)

500

Frequency 

(sweeps)

50

Internal 

Iterations

5

Relaxation

1.0

LPE Equation

v
0

A/p

1

^E

1

Variable

Pressure

Weight Function

l+l(j) x+0.01£ 

x2 power law smoothing

The Poisson term was used in preference to the Laplace term to balance the 

equidistribution weight as the Laplace term causes the grid lines over the ramps to 

bow out away from the constriction.

The power law smoothing allows the effect of the shock waves on adaption to be 

propagated out into the grid.

Grid nodes were allowed to slide along the upper and lower boundaries using curve 

patches. The automatic curve breaking feature was used to break the lower curve patch 

into five, covering each section of the domain.

5.3.5.3 Wedge Cascade Results

The use of adaption involved an additional overhead of about 25% in CPU time, 1000 

sweeps of the coarse grid taking 991 seconds running on a Sun SPARC 5 workstation 

against 1230 seconds for the adapted grid and 1862 seconds for the fine grid.
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Figure 5.60 shows the fine, adapted and unadapted grids. Figure 5.61 shows the 

pressure contours for the three cases. Figure 5.62 shows the pressure over the lower 

surface of the wedge.

The final adapted grid clearly shows the location of the primary shock, its reflection, 

and the weak expansion waves from the upstream corner of the cascade, as the cells 

contract and align themselves with this important flow phenomena. The grid cells also 

concentrate at the downstream corner of the cascade.

The main drawback of the adapted grid is that the shock wave on the leading edge 

pulls grid nodes away from the first ramp, something which accounts for the 

difference in the pressure distribution over this surface as calculated by the different 

methods. It can be seen from the plots of the pressure contours for the three runs that 

the adapted grid produces much sharper gradients over its shocks than the other two 
cases. However, the reflection of the first shock wave now concentrates slightly 
downstream of the upstream corner on the lower surface, rather than being smeared 
across it, which accounts for the increase in magnitude of the shock waves inside the 
parallel section and the difference in the position of the main pressure peak in figure 

5.62.
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Unadapted Grid

Adapted Grid

Figure 5.60 Wedge Cascade Grids
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Figure 5.62 Pressure Over Lower Surface (Pressure against distance)
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In figure 5.62 non dimensionalised units are used for pressure and distance. The 

pressure is expressed as P/P0 where P0 is the stagnation pressure.

5.4 Closure

This chapter has successfully demonstrated the use of the adaptive algorithm on a 

range of two dimensional test cases. However it is necessary to tailor the algorithm 
using the weight function and relaxation to get the best results in each case. There 

must also be some sort of solution feature that can be used to produce a weight. The 
cases which generate the most movement are those which involve strong shock waves, 
such as the 10 Degree Supersonic Wedge Intake (5.3.3), though the low speed driven 
cavity case (5.3.2) also behaves well with its strong eddy.

Large grid distortion through adaption is not always necessary to get the best results, 
and may instead cause instability in the solution. The Laval nozzle case (5.3.4) shows 
how a low level of smooth movement can produce an improved solution.

145



CHAPTER 6: 3D VERIFICATION TESTS

6.1 Introduction

The aim of this chapter is to present examples of the use of the adaptive algorithm on 

a range of three dimensional cases including both simple mathematical functions and 

complex fluid flow.

There are difficulties in presenting large three dimensional cases as well as comparing 

them to results produced elsewhere. For this reason only three cases are presented 

here.

6.2 Three Dimensional Test Function

The following case was run independently of PHOENICS, adapting the grid to a 

prescribed mathematical function.

6.2.1 Circular Function

This is a test case that was used by Matsuno and Dwyer (1988). who used the same 

function to show how their method worked in one, two and three dimensions. The 

function is circular and similar to the pill box case in section 5.2.5.

Two separate sets of results are produced to show the effect of the method of weight 

smoothing using a power law (section 2.10.3.3).

6.2.1.1 Boundary Conditions

The function the grid is adapted to is

4 =[1 + sign(r-rc )(l -e ( - fl p' +1/2) }]/2 (6.1)

Where
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sign(r-r ) = 1 r>r
c c

sign(r-rc ) = -\ r<rc

P = 1 r-r

, r=0.25

Contours of the function through the centre of the domain are shown in figure 6. 1

The case is solved on a 30x30x30 cell uniform grid over a unit cube.

Figure 6.1 Contours of test function 

6.2.1.2 Adaption Parameters

The grid is adapted over the whole domain. The points on the domain boundaries are 
allowed to slide but show little or no movement due to the circular shape of the 

function. In both cases the grids are moved ten times, with a relaxation factor of 0.9.

In case 1 the parameters used are
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LPE Equation

0

Variable

Prescribed

Weight Function

In case 2, with weight smoothing, the parameters are

LPE Equation

0

Variable

Prescribed

Weight Function

x2 power law smoothing

In the second case surfaces have been set up over the three grid planes that pass 

through the centre of the grid. This is necessary to enforce some symmetry on the 

grid, as the weight smoothing algorithm fits modified weights to an asymmetric curve 

based on which point it determines that the location of the peak of the function lies. 

In the case of a semicirclular or similar function a point at its peak could move to 

either side unless it is constrained to the centre. Otherwise neighbouring points at right 

angles to the function may move in different directions, giving a badly skewed mesh. 

As the majority of real flow cases are not symmetric in this way and the cells are still 

concentrated at the areas deemed important this is not a major problem. This 

asymmetry can be shown in the figures 6.2 and 6.3 which present the function and the 

weight at the end of the run for the two cases.

The use of power law smoothing allows the grid to remain stable with a much higher 

weight on the Equidistribution term in the LPE equation. This allows the grid to move 

faster.
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6.2.1.3 Results

Figures 6.4 through 6.9 show different views of the final grids produced by the 
parameters used in the two cases. Figures 6.10 through 6.12 show the same views of 
the grid produced by Matsuno and Dwyer (1988).

The results from case 1 are similar to those produced by Matsuno and Dwyer (1988) 
with coarser cells adjacent to the fine region and little influence on the parts of the 
grid farthest from the function contours. For case 2, in comparison, the influence of 
the function has been propagated throughout the grid and the most coarse cells are 
those farthest away from the function contours. The exceptions are the eight corners 
where the weight is not propagated because it is based on grid lines which do not 
cross the function. Case 2 has a smooth variation in cell size from the fine region to 
the far parts of the grid, though there is some asymmetry, as mentioned earlier.

The grid from Matsuno and Dwyer (1988) took 38 iterations to converge.

Figure 6.4 Case 1 Figure 6.5 Case 2
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Figure 6.6 Case 1 Figure 6.7 Case 2

Figure 6.8 Case 1 Figure 6.9 Case 2
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Figure 6.10 Matsuno and Dwyer (1988) Figure 6.11 Matsuno and Dwyer (1988)

Figure 6.12 Matsuno and Dwyer (1988)

6.3 Three Dimensional Flow Examples

The following cases were run using PHOENICS version 2.0 on Sun SPARC 

workstations.
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6.3.1 3D Skewed Wedge Cascade

This case consists of isentropic supersonic flow over a double ramp.

This case is a modified version of the two dimensional wedge cascade (see case 

5.3.4), stretched out into a third dimension with the central section skewed at a small 

angle to give angled ramps. The leading angled ramp in turn will produce an angled 

shock wave.

This case is used to demonstrate the ability of the adaptive code to use surface patches 

in the same way as the curve patches demonstrated in Chapter 5.

6.3.1.1 Boundary Conditions

The geometry of the problem in the first Y-plane is identical to the two dimensional 

case (5.3.4), with the centre section swept back at an angle of 13.5°. The geometry is 

shown in figure 6.13.

Figure 6.13 Wedge geometry

Cyclic boundary conditions are applied upstream and downstream of the problem. The 

velocity at the inlet, which lies at the low end of the domain is calculated based on
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a Mach number of 3.0. The outlet, which lies at the high end of the domain, has a 

fixed pressure calculated from gas-dynamic theory.

The domain is defined by 10 by 6 by 28 cells in the i, j, k planes respectively.

The problem was run over 500 sweeps, though this was probably unnecessary as it 

converges fairly quickly.

6.3.1.2 Adaption Parameters

One adaption patch is used to cover the whole problem domain, with surface patches 

set up on the north, south, west and east faces. The automatic surface breaking 

routines cut the west surface that covers the ramps into five sections to allow its 

geometry to be maintained. The breaks are marked in figure 6.19. In addition curve 

patches are set up along the four edges that run from low to high on the domain. In 

other words the grid at the inlet and outlet conditions and on the lines which define 

the geometry of the west face are fixed.

The other adaption parameters are described in the following tables.

First call 

(sweep number)

20

Last call 

(sweep number)

200

Frequency 

(sweeps)

20

Internal 

Iterations

5

Relaxation

0.9

LPE Equation Variable

Pressure

Weight Function

x2 power law smoothing

The problem converges quickly which allows frequent adaption. There is a series of 

definite changes in pressure throughout the domain which makes the adaption easier.
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6.3.1.3 3D Skewed Wedge Cascade Results

The total movement in each of the three coordinate directions x, y and z was 30.3%, 

1.5%, and 11.5% respectively, with the grid fairly well converged. The adaption 

involved an overhead of approximately 60% for the fifty iterations of the adaptive 

solver carried out. The adaptive algorithm is more expensive for three dimensional 

problems than for two dimensions as the number of terms in the solved equations is 

related to n3 as opposed to n2 . The adaption overhead could be reduced by using less 

iterations with terms in the LPE equation optimised to make the grid move faster.

Figures 6.14 and 6.15 show the Y-planes of the original and adapted grid. The adapted 

grid has picked up the main shock on the front ramp, its reflection onto or near the 

start of the constriction, the second reflection from the start of the constriction and the 

start of an expansion wave near the end of the constriction. Grid points have moved 

on all surfaces and the problem geometry has been maintained

The adapted grid has moved to become more orthogonal than the original. Most of the 

east west lines are considerably straighter than in the original grid. This orthogonality 

has had an effect upon the smoothness of the west surface over the ramp where the 

grid, movement has been restricted, as can be seen in figure 6.19, though this should 

not be large enough to damage the results.

Figures 6.16 and 6.17 show pressure contours in the Y-plane going through the centres 

of the six cells of the original and adapted grid. Throughout the grid the pressure 

contours are tighter and the features they describe are better defined.

Figure 6.18 shows surfaces of constant pressure at the same value for the original and 

adapted grid. The shock wave is resolved over a much shorter distance which must 

improve the accuracy of the simulation.

Figure 6.19 shows where the bottom surface is cut into five sections by the surface 

cutting algorithm (3.2.3).
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Figure 6.14 Y-planes of original grid

156



Figure 6.15 Y-planes of adapted grid

157



Figure 6.16 Pressure contours on Y-planes of original grid
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Figure 6.17 Pressure contours on Y-planes of adapted grid
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Adapted Grid

Original Grid 
Figure 6.18 Comparison of the width of the shocks on the leading ramp
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Adapted Grid

Fixed Lines on Lower Surface

Original Grid 

Figure 6.19 Fixed surfaces and curves on bottom surface of original and adapted grids

6.3.2 3D Driven Cavity Flow

This case is a three dimensional version of case 5.3.2. It has been used as a test case 

in literature (Guj and Stella 1993).

6.3.2.1 Boundary Conditions

This problem consists of a Ixlxlm cube with a lid moving at 1ms" 1 from west to east. 

The fluid has a Reynold's number of 1000. As in case 5.3.2 the case is restarted from 

a run with a Reynolds number of 400, which was in turn restarted from a run with a 

Reynolds number of 100.

The cube is split into 60x60x30 uniform cells. 60x60 cells are the minimum used in 

case 5.3.2 to produce reasonable results. Only 30 cells are used on the Z-plane to 

prevent the problem from becoming prohibitively large.
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The case is run for 5000 sweeps. 

6.3.2.2 Adaption Parameters

One domain was used to cover the whole grid. Surfaces were set up on all boundaries 

except the top moving wall. Curve patches were set up along the edges of the grid 

except those that butted onto the moving wall. This allows all grid points to move 

except for those which define the main boundary condition on the top wall.

The adaption parameters used are

First call 

(sweep number)

200

Last call 

(sweep number)

2000

Frequency 

(sweeps)

200

Internal 

Iterations

5

Relaxation

0.9

LPE Equation

^L

1

Ap

0

^E

2

Variable

Magnitude 

of Velocity

Weight Function

1+2(|> 

x3 power law smoothing

<j> was limited to a maximum of 0.6 to avoid the velocity at the moving wall 

swamping other flow features in the domain.

6.3.2.3 3D Driven Cavity Results

Figures 6.20 through 6.24 show different planes of the final grid. The grid is shown 

at intervals of 6 planes in the X and Y directions and 3 in the Z direction, being 

divided up into 61x61x31 planes in all.

Figures 6.25 and 6.26 show plots of vectors indicating the local strength and direction 

of flow for the unadapted and adapted grids respectively. Figures 6.27 and 6.28 show 

surfaces representing the shape of the flow at a constant magnitude of 0.3 for the
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unadapted and adapted grids respectively.

The flow is faster and more developed with the adapted grid, particularly at the low 

and high walls, suggesting that numerical dissipation has been reduced.

The grid has moved to concentrate in the area covered by the main eddy and smoothly 

varying across the domain.
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k = 7 k = 16

Figure 6.20 View of Z-planes of adapted grid (grid is symmetrical)
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j = 19

j = 7 j = 25

= 13 j - 31

Figure 6.21 View of low Y-planes of adapted grid
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j = 31 j = 49

j = 37 j = 55

j = 43 j = 61

Figure 6.22 View of high Y-planes of adapted grid
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i = 1 i - 19

i = 7 i = 25

i = 13 i = 31

Figure 6.23 View of low X-planes of adapted grid
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= 31 i=49
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i=43 i = 61

Figure 6.24 View of high X-planes of adapted grid

168



z = 1 z = 9

z = 3 z = 12

mms^

z = 6 z = 15

Figure 6.25 Velocity plots for original grid

169



\ V\\\\\ I • - -\ \ \ \ \ \ 1 I ' ' ' • "--'•^\\ \\ \ \ I t I ''' »•"'•'>•
I t I It 1 I t ' ' ' n rr"'
I I I t t I I f M / / "'""\\W W-""'"
f I

!

{.1, P& : in ^\^^^^U<^^^ v%- v ^ • i \ \ \^\^^^\<^^^^^^^ K •
I \ \ \\\\\V\VvC>>*- >-v v . 
i \ \\\\NV\\\<^NVS v .i \ \ \ \\\\V\N«;V>>VI>-^^^

^ V V NVVVVVSvSJSJ^-vv^.

z = I z = 9

t i f i I innirrrrr" < i 111 tnnntr"" i i i 11 ntllttrrrr"

r r > >tl i r rr 11111111 >
'{j

t

z = 3 z = 12

z = 6 
Figure 6.26 Velocity plots for adapted grid in Z plane

- 15

170



Figure 6.27 Flow in adapted grid - contour surface of velocity at 0.3ms-i

Figure 6.28 Flow in original grid - contour surface of velocity at 0.3ms" 1
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6.4 Closure

This chapter demonstrates that the LPE algorithm is fully three dimensional. It does 

not however fully prove that the adapted results are superior to the unadapted, though 

experience from the two dimensional cases suggest that they should be. One aspect 

of the adaption algorithm that works well is the surface fitting method (3.2.3) which 

is used to maintain the boundaries of the skewed wedge (6.3.1).

There are problems in comparing unadapted and adapted results in that the position 

of the final adapted grid cells may be so far from the original that any direct 

comparison through a slice of the domain will only be possible with a lot of 

interpolation.
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CHAPTER 7: FLUID STRUCTURE INTERACTION 

7.1 Introduction

The adaptive grid technique is not limited to deforming the grid to a solution. It can 

also be used to modify the grid sensibly to allow for deforming internal and external 

boundaries. An example of this is fluid structure interaction, where the pressure 

exerted by a fluid is allowed to deform an object in the flow. The adaptive grid tools 

can then be used to both adapt to the local solution and to maintain a good quality 

grid around the object. Such problems occur for instance in the study of aerofoil 

flutter (Alien 1995, Sengupta et al. 1991), nuclear reactor safety (Donea et al. 1982), 

and buildings in wind (Slone et al. 1997).

Most techniques currently used for this kind of problem combine finite element codes 
for both fluid and structural modelling. (Donea et al. 1982, Hamdan and Dowling 

1995, SenGupta et al. 1991), though Farhat (1995) uses a finite volume unstructured 
grid solver for the fluid simulation. This enables both sides of the problem to be 

treated in the same way.

Traditionally fluid structure interaction has been modelled by passing data between a 
stress simulation code to a fluid simulation code and the current work is no exception, 

though there is ongoing work at the University of Greenwich concerned with 
developing a fully coupled finite element code (Slone 1997). Though there are 
disadvantages and time penalties involved in using separate codes these are 

outweighed at the current time by the opportunity to use a mature and capable code 

for the fluid simulation code, PHOENICS and an in house stress code FET (Slone 

1997).

FET stands for Finite Element Transient. It is designed to solve the system

F (7.1)
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Where d is displacement, M is the mass matrix, C is the damping matrix, K is the 

stiffness matrix and F is the transient load vector. The three terms on the left hand 

side relate to inertia, numerical damping and stiffness respectively.

In previous work FET has been used both to modify the structure and the surrounding 

grid. The surrounding grid is moved by using the spring analogy to connect grid nodes 

with springs with a low Young's modulus. In the current work it is only used on the 

structure under load.

For the purposes of the current work FET is treated solely as a black box. The only 

information needed is how to import and export data. FET reads data files in the 

neutral .ANL format used by the commercial code FEMGEN. The data files take the 

form of node locations, adjacency information and boundary conditions.

7.2 Algorithm

The algorithm is transient. The adaption module is called at the start of each time step 

before the PHOENICS sweeps begin. The stress code is called from within the 

adaptive module and run independently with data taken from PHOENICS, transient, 

but over one time step only. The time steps for the stress code and the flow code are 

matched. The restart facilities available within FET are used to allow the case to be 

restarted at all except the first time step.

Running the fluids code transient allows the effect of the velocity of the structure to 

be added into the flow simulation by the use of convection terms due to the change 

in volume of the cells adjacent to the deforming structure. These terms are calculated 

automatically within PHOENICS when the appropriate flags are set. Additionally the 

adaptive grid technique may behave poorly when coping with very large grid 

deformation over one move. The length of the time step can be used as a lever to 

control how much deformation takes place at each call to the structural solver.
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The deformation of the structure is calculated by using the pressure on the surface of 

the obstruction calculated by the flow solver. In the finite element approximation the 

pressure over the face of each element is assumed to be constant and the load on each 

node in the boundary is calculated as a function of the pressure on the neighbouring 

elements. This function is internal to the structural code FET.

The stress code is called from within the adaption module and the resulting grid 

deformation passed through to the adaptive grid solver. The stress modified nodes are 

moved in the adaption domain and then the grid is moved around them, keeping them 

fixed. The adaptive grid solver can either be used to just carry out Laplace smoothing 

of the grid, or to adapt to other flow features. One option may be to develop a 

function to produce an artificial variable to drive the grid to better maintain its form 

about the obstruction.

7.3 Implementation

The details of the implementation cover how the two codes are coupled together and 

in particular how the data files for the structural solver FET are prepared from data 

available in PHOENICS. This section also covers the necessary modifications to the 

adaption pre processor S_ADAPT and processor G_ADAPT.

By hiding the stress code inside the adaption module no further modifications are 

made to PHOENICS EARTH beyond those required by the main adaption routines.

This version is limited to two dimensional problems. This greatly simplifies the input 

files to the stress code as the obstruction can be looked at as four sided elements with 

no depth. The third, inactive dimension in PHOENICS is ignored.

7.3.1 S_ADAPT Modifications

The only modification to S_ADAPT, the satellite adaption coding, is the addition of 

an extra adaptive patch type, STRESS, which activates the stress coding in ground and
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sets up a blank, or no movement region up inside the adaptive domain. The additional 

routine WRITANL, used to determine the input files for the stress code could be 

incorporated into S_ADAPT at a future date.

7.3.2 WRITANL

The role of the program WRITANL is to write out an input file for the stress code 

FET in the neutral .ANL file format used by the commercial finite element software 

FEMGEN, using a PHOENICS grid file and a user controlled data file ANLIN.DAT. 

The file includes the specification of all the boundary conditions for the stress code, 

though with all loading set to zero. In addition WRITANL produces an inform file, 

.INF, which contains the number of nodes and elements in the stress model and a 

restart flag, and a file FE.INP which contains the i,j,k locations of cells in the 

PHOENICS grid from which the value of pressure needs to be extracted to complete 

the definition of the loaded boundary conditions for the stress model.

ANLIN.DAT

GRID

O.INF

O.ANL

FE.INP

Figure 7.1 Preparation of Data Files for FET

The format of ANLIN.DAT is local to WRITANL, though it has the same patch style 

layout as the other adaption files. It incorporates patches defining the whole domain 

of the stress model, material properties, fixed boundaries and pressure loaded 

boundaries.
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7.3.3 G_ADAPT Modifications

The stress module is called during the adaption cycle before the adaptive solver is 

used. The only modification to the main adaption coding is this call.

Between the main adaption coding and the stress code is an interface which takes the 

original stress input file O.ANL produced by WRITANL and the data file FE.INP and 

writes out the final stress input file l.ANL, including the pressure values in the 

specification of the boundary conditions taken from PHOENICS at the point in the 

solution cycle where the adaption module is called.

The stress patch is tied to an individual adaption domain. The modified grid is passed 

back to PHOENICS and through the rest of the adaption coding through the domain. 

The stress module is invisible to the rest of the code.

O.INF

O.ANL

FE.INP

Figure 7.2 Interaction between G_ADAPT and FET 

7.3.4 FET Operation

FET reads in the data files l.INF, l.ANL, and SCRIPT, and outputs the result files 

l.STR, l.DIS and l.NEU.

SCRIPT contains data controlling the operation of the solver, including the length of
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the time step.

l.STR is a restart file, which holds the modified nodal positions, strains and stresses, 

l.DIS holds the nodal displacement, and l.NEU is a neutral file used by the package 
FEMVTEW to visualise the results produced by the stress code.

1.INF

1.ANL

SCRIPT

l.STR

1.DIS

l.NEU

Figure 7.3 Input and Output Files for FET 

7.4 Example Case

A simple case of a flexible block structure in an air flow has been run to demonstrate 

the technique.

IT 111 I 11
Figure 7.4 Example stress case 

The block has a fixed base and deflects under the pressure load from the flow.

178



7.4.1 Boundary conditions

20m

2.5m

20m/s

12m

RUBBER 
BLOCK

NO SLIP

O.1m

50m

Figure 7.5 Grid Dimensions

There is a constant inlet velocity of 20 m/s, and the fluid is assumed to be air at 300K 

and 1 atmosphere pressure. The simulation is run over twenty time steps of five 

seconds each. The flow solver is run for fifty outer iterations every time step. A no 

slip boundary condition is placed after the obstruction, helping to create a large 

recirculation behind it.

The block has the material properties of rubber. It has a Young's modulus of 4xl06 

Nm"2 , a Poisson's ratio of 0.475, and a density of 1130 kgrrf3 . Rubber was chosen 

because its properties give enough flexibility to the block to give a large deflection 

in a low speed flow without collapsing. It measures 0.1x2.5m.

A large domain is used to allow the full eddy to develop after the obstruction, and to 

prevent the free boundary at the top of the domain from influencing the results.

The main grid is rigged to provide a fine, regular mesh directly over and around the 

obstruction. Away from the obstruction the grid becomes increasingly coarse to 

minimise the computational resources required for the run.
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The problem was run over 40 time steps of 10 seconds each. 100 sweeps of the 
PHOENICS solver were carried out within each time step.

Figure 7.6 Example stress case grid

7.4.2 Adaption Parameters

The adaption domain is restricted to the regular grid around the obstruction. The LPE 
equation is weighted for Laplace solving only. No account is made for the local flow 
conditions in the grid movement. This means that the only movement that will occur 
will be due to the deflection of the obstruction.
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Figure 7.7 Adaptive domain and blockage in whole domain

Figure 7.8 Adaptive domain with block blanked and block grid

In each call the LPE solver goes through thirty iterations. No interpolation of data is 

used or needed.

7.4.3 Results

Using the adaption estimation based on the spacing in the initial grid the adapted 

region moved a total of 157.8% in the x direction and 9.3% in the y direction.
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Figure 7.9 shows the velocity field for the whole domain without any deformation. 

Figures 7.10 through 7.17 show the grid in the adapted region and its local velocity 

field at different stages during the simulation.

Figure 7.19 shows the displacement of the top left corner of the block against time.
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Figure 7.9 Grid and velocity fields at 30 seconds
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Figure 7.10 Grid and velocity fields at 50 seconds
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Figure 7.11 Grid and velocity fields at 70 seconds

50 m/s

Figure 7.12 Grid and velocity fields at 90 seconds
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Figure 7.13 Grid and velocity fields at 150 seconds •
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Figure 7.14 Grid and velocity fields at 210 seconds
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Figure 7.15 Grid and velocity fields at 300 seconds
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Figure 7.16 Grid and velocity fields at 400 seconds
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Figure 7.17 Displacement of leading corner of obstruction against time

The grid becomes increasingly skewed at the trailing edge as time passed but no lines 

overlap. The adaptive grid solver does move points to fit the grid better to the 

obstruction, but the well documented behaviour of the Laplace term in attracting 

points to convex surfaces and away from concave surfaces here helps to reduce the 

concentration of cells on the leading edge of the obstruction.

The cells above the obstruction become skewed though they remain aligned with the 

local flow.

The behaviour of the grid could possibly be improved by using an artificial 

geometrical or stress based variable instead of or in addition to that used for adaption. 

The artificial variable could involve attraction to the boundary of the obstruction, or 

something based on giving a slope that will push cells in the direction of the major 

movement of the obstruction.
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7.5 Closure

The aim of the work presented in this chapter is to demonstrate that the adaptive grid 

technique can be used for fluid structure interaction problems, not necessarily to prove 

that the method is superior to other methods, though the ability to use a powerful fluid 

dynamics code such as PHOENICS is an advantage.

The use of the adaptive grid technique could also be extended to other problems 

requiring moving grids, including structures or boundaries with prescribed movement, 

such as vibrating aerofoils (Alien 1995), or pulsing blood vessels and other organs (Xu 

et al. 1993).

The work is currently restricted to 2D problems with only one structure being 

deformed. As PHOENICS, FET and the adaptive grid technique are all 3D capable 

codes and there is no reason why the work cannot be stretched to 3D with multiple 

structures. It would also be straightforward to allow other forms of loading such as 

temperature or fixed loads to be added into the simulation of the deformation of the 

structure, as these modes are already allowed for in FET. The codes are on the whole 

kept very separate. Greater integration would involve removing the input and output 

files used by FET and incorporating the information passed to and from it into routine 

calls PHOENICS and adaption data files.
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CHAPTER 8: NEURAL NETS 

8.1 Introduction

The aim of this chapter is to briefly introduce a new technique for grid adaption. This 

technique involves the use of a self organising neural net, or SONN. This chapter is 

based on work published in Patel, Bennett, Zhao and Knight (1995) and Zhao et al 

(1996).

Neural nets commonly consist of one or more layers of artificial neurones or 

processing elements (PE's) that can be trained to resolve certain types of problems by 

being given answers to known problems. In the training phase the links or synapses 
between different PE's are weighted to affect how they respond to given stimulus. 

These weights determine if a given stimulus will cause a PE to activate and represent 
the knowledge held in the net.

Neural nets have been a popular tool for some time and a range of different neural net 
techniques have been used in areas such as pattern recognition and financial 
modelling. A few papers have begun to appear dealing with the use of neural nets for 
grid generation (Hartle 1995, Khan et al 1993), but the level of success has been low. 
These papers revolve around the use of a back propagation network to recognise and 
fit grids to a range of known geometries.

A big advantage in the use of neural nets is that it is possible to state problems with 

a limited understanding of the underlying mathematics. The learning process, involved 

in working with known answers, allows the neural net to develop and refine an 
internal model to allow it to then be used against similar but unsolved problems. This 

capability may be of great importance with adaptive grids in that the user may be able 

to deal with simple terms to control the grid movement without having to be an 

expert.

The SONN is a new technique that has been developed to deal with grid adaption in
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particular, though it has roots in the Kohonen self-organising map (Kohonen 1990). 

8.2 SONN Algorithm

The structure of the SONN exactly mimics the structure of the grid that it is 
modelling, with each grid node represented by a single PE and the connectivity 
between the PE's defined by the grid lines. The technique is naturally unstructured. 
There are no limits to the number of connections between individual PE's, though the 
current implementation is restricted to two dimensions.

Each PE has a single input, which relates to the function that is used to move the grid, 
a number of state variables which relate to its physical position and a number of 
outputs equal to the number of state variables which consist of its new physical 
position after movement. The input can be modelled as being controlled by a separate 
layer of specialist PE's which determine the value of the function which is passed to 
the self organising PE's.

The PE's are organised into neuron groups which relate directly to grid cells. Each PE 
may belong to many groups. Two neuron groups relating to a six node two 
dimensional grid are shown in figure 8.1

PE 's

Y

L,
Group 1 Group 2

Figure 8.1 Two Dimensional Neuron Group

In this case each PE has two state variables, its X and Y location, and two output 
variables, its new X and Y locations.
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The PE's in each group share a common system energy, known as the information 

potential (IP). The self organisation process involves the evening out of IP over the 

network by allowing information to flow between neighbouring groups with different 

information levels. The IP is defined as the density of the information in a group of 

PE's, and is a combination of state variables and inputs. 

The IP is expressed as the product of a state control function Fs and an input control 

function Fl. 

For each group the input control function Fl is 

1 N 
F =- '" Q. 

1 NL.i J 
}=1 

(8.1) 

(8.2) 

Where the neural group has N PE's and Qj is the value of the input function on each 

PE. 

In one dimension the state control function Fs is 

$ $ 
Figure 8.2 One Dimensional Neuron Group 

For the one dimensional case the IP is analogous to the equidistribution equation ( 1.1 ), 

with the weight function w related to the input control function Fl , and the grid cell 

clearance t:S effectively the same as the state control function Fs· 

w ~x = constant (8.4) 
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In two dimensions the state control function is linked to the area of the cell. Other 

grid properties, such as orthogonality, aspect ratio, or skewness, could be used instead. 

(8.5) 

3 

Figure 8.3 State control function Fs 

The neural net is stable if the flow of information is small or non-existent. If there is 

a disturbance in one part of the net its effect is propagated and dissipated by the 

adjustment of state variables until a new equilibrium is reached. 

The equilibrium of the system of N neuron groups is defined as 

N-l 
E= L (lPhI -lPi )2 

i=l 

(8.6) 

The learning process finishes when the equilibrium is less than some defined tolerance 

or when a given number of self organising steps or epochs have been exceeded. 

The flow of IP, the 'learning process' takes place over a senes of epochs and is 

controlled by the modification of the state variables of the PE's. The state variable S 

at iteration t is detennined from 

(8.7) 

Where 
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dE 
~S=-n_ +a~SI I 

I 'I dS -
I 

(S.S) 

E is the equilibrium, defined in equation 8.6, 11 is the learning rate, and a is the 

momentum term. Both the learning rate and the momentum term are small and 

positive. Their value is controlled by the user. 

No known solutions or expected output data are used to train the SONN. It organises 

itself based on input data alone and the user is only interested in its final arrangement. 

There is no separate processing phase. The only part of the operation of the SONN 

that is of interest at this time is the training phase. 

8.3 Implementation 

The SONN is controlled by the user file CONFIG.SNN. It takes data from the file 

MESH.OAT and outputs a modified version of MESH.OAT call NEW _MESH.DAT. 

1 CONF IG SNN 

~ 
MESH. OAT 1----8 ..... 1 NEW_MESH OAT 

Figure S.4 SONN call structure 

CONFIG.SNN controls the learning rate, the momentum term, convergence criteria 

and a maximum size ratio between the smallest and largest cells. 

MESH.OAT contains data on the location and degrees of freedom for all grid nodes, 

the definition of the grid cells, and the initial value of the input function at each node. 

NEW _MESH.OAT has the same format as MESH.DAT but does not contain input 

function values. The format of these two files is unstructured. 

8.4 Neural Net Adaption inside PHOENICS 

As a way of demonstrating the use of neural nets adaption with a flow solver the 
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SONN was used to adapt a grid taken from a problem for which PHOENICS 

calculated results are available. 

In the current work the SONN is essentially a static adaption technique. The reasons 

for this are that the SONN is a third party code (Zhao et al. 1996) written in C++, 

whilst PHOENICS and the adaption routines are written in FORTRAN, and that the 

data structures used by the SONN, being inherently unstructured, are very different 

from PHOENICS. Given time both problems could be resolved, with the SONN 

software either rewritten or linked directly to the FORTRAN code, though the 

implementation would not be platform independent. There is no reason why it could 

not become dynamic in future. 

To give the illusion of dynamic adaption the SONN is run in batch mode with the 

PHOENICS solver EARTH. 

The SONN alone works on information input onto each PE, or grid node. To allow 

its use to be stretched to practical problems coupled with a flow solver it is necessary 

to recover useful data on the grid nodes to drive the grid movement. This is the same 

problem as for the LPE adaption method discussed in this thesis, and the same 

techniques have been used to solve it. For this reason a preprocessor, NEUPHI, was 

written to prepare data for the SONN which interpolates cell centred PHOENICS data 

onto the grid nodes and then applies a weight function. It is worth noting that the raw 

interpolated data alone would only be useful for a minority of flow problems. Though 

arguably different neural net techniques could be used to determine the best treatment 

of the solution data for adaption, at this stage the choice and treatment of the weight 

function is in the hands of the user. 

NEUPHI generates the SONN input file MESH.DAT using the input file NEU.IN. As 

well as generating the input function it also determines the degrees of freedom of all 

grid nodes and the nodes which form each grid cell. 

A post processor, NEUXYZ, was written to recover a new PHOENICS grid from data 
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output from the SONN in the file NEW _MESH.DAT. EARTH always picks up the 

grid file XYZ at the start of each run. NEUXYZ renames the old XYZ file to give a 

history of the adaption, then writes a new file XYZ. 

The final structure of the adaption routine is 

XYZ ~~RTH ~ , 
PHI , 

NEU. IN I-,CEUPHI :> , 
MESH. OAT , 

CONFIG.SNN 1-'0"" ~ , 
NEW_MESH DAT , 
GuxYZ~ 

Figure 8.5 Structure of SONN adaption 

8.5 Example - X-Y Convection in a Skewed Flow 

The choice of example case is limited by the current inability of the neural net to deal 

with awkward geometry, there being no method to maintain geometry except for 

fixing the movement of specific grid nodes in one or more directions. 

The example case chosen here is a simple diffusion problem solved on a uniform 

194 



mesh with an angled flow and different concentrations of a contaminant C which is 

used to drive the adaption. Four different variations of the case are run, three with the 

flow entering the domain at different angles and one with the addition of a wall as a 

boundary condition. 

For the purposes of comparison the same problem was also adapted using the LPE 

method. 

8.5.1 Boundary Conditions 

The problems are solved over a 30x30 cell square uniform grid of unit dimensions. 

The problems are set up with four inlets placed at regular intervals over the west and 

south faces of the domain and outlets on the north and east faces. The inlet velocity 

is uniform over all the inlets. The value of the contaminant C at the inlets alternates 

between 0 and 1 and is shown in figure 8.6. 

c=o 

c=o I C=1 

/ 
/ 

/ 

Figure 8.6 Boundary conditions 

The problems were run for 500 sweeps. 

/ 

The four cases are run with the inlet flow at 11 0, 22° and 45°. A fourth case is also 

run with a wall instead of an outlet on the north face and the inlet flow at 45°, forcing 

the flow to bend over. These changes to the inlet conditions and the outlet were the 

only differences between the four cases. 

8.5.2 Adaption Parameters 
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All four cases were treated with the same adaption parameters

The whole problem domain was adapted by both methods, with points on all 
boundaries allowed to slide.

The SONN was run with 200 epochs, a learning rate of 0.1 and a momentum term of 
0.8. The SONN moved the grid using the gradient of the contaminant C as the input 
control function. The gradient was formed by taking the sums of the gradients along 
the different grid lines smoothed using an x2 power law.

For the LPE method the parameters were

First call 
(sweep number)

10

Last call 
(sweep number)

100

LPE Equation

AT.

1

*P

0

A*

2

Frequency 
(sweeps)

10

Variable

Contaminant 
C

Internal 
Iterations

1

Relaxation

1.0

Weight Function

l+(j) x+0.01& 
Exponential smoothing

8.5.3 Results

Due to the batch mode operation of the SONN it is not possible to directly compare 
the time spent in adaption by the different techniques, but the SONN is not 
prohibitively expensive.

More user control was required than was first expected to deal with the weight 
function used to adapt the grid with the SONN. Together with the additional control 
needed for geometrical control the initial hopes of the SONN being very easy to use 
may not be justified, though it has not been developed far enough at the current time.
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Figure 8.1 Grids adapted by the LPE method and by the SONN
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Figure 8.2 Grids adapted by the LPE method and by the SONN
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Figure 8.3 Contours of contaminant C and grids produced by the SONN
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Figure 8.4 Contours of contaminant C and grids produced by the SONN
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8.6 Closure

The greater experience gained with the use of the LPE adaption algorithm enables a 

better final grid to be produced, but the SONN has potential. With suitable 

modifications to the state control functions any chosen grid properties could be 

improved.

A current limitation of the SONN is that there are no terms controlling grid 

orthogonality. Though it is very hard for grid cross over to occur it is quite possible 

that the grid becomes so skewed that the underlying flow code, in this case 

PHOENICS, will diverge.

A useful part of the work on the SONN has been the recurrence of problems thrown 

up by the LPE adaption method with the response to solution phenomena. Oscillations, 

exaggerated response to minor perturbations and lack of response can be countered 

with the careful use of weight function smoothing, as for the LPE method.

Between each epoch interpolation of the weight function occurs and over many epochs 

important flow perturbations can be smoothed out and lessen the impact of adaption. 

The maximum number of epochs carried out each time the SONN is called must be 

carefully chosen.

Development of a neural net based grid adaption method is continuing at the 

University of Greenwich as part of a new PhD program (Hu 1998).
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 

9.1 General Conclusions

The aim of producing a general, code independent, three dimensional dynamic grid 

adaption algorithm has been successful. Validation tests presented in chapters five and 

six show that the LPE technique can improve the presentation and accuracy of a range 

of flow problems and compares well with other adaptive techniques in literature. 

Chapter seven shows how the technique can be used as a general tool for controlling 

all kinds of grid movement.

The work has thrown up a range of points that relate to all adaptive grid methods, as 

has been found with the work on neural net grid adaption using the SONN method.

• Some knowledge of how the adaptive algorithm works is necessary to get 

most out of it. Though a lot of work has gone into making the algorithm safe, 

including monitoring the solution residuals to check for divergence, the time 

spent choosing and testing the right adaption parameters may make adaption 

uneconomic.

• There must be some property of the flow that provides a strong gradient or 

easily identifiable phenomena to drive grid adaption.

• Grid adaption is not guaranteed to move phenomena that occur out of place 

in a coarse grid to their correct positions.

• The initial resolution of the grid covering the problem domain is critical. It 

must be fine enough to pick up the phenomena that the adaptive algorithm is 

designed to enhance. In contrast too fine a grid and adaption will not make any 

difference.

• Tolerance to grid quality in the underlying CFD code is crucial. It is quite
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possible to get grids that appear reasonable but cause the code to fail.

• The grid movement needed to improve the solution accuracy may be less 

than anticipated (e.g. the Laval nozzle case 5.3.3). Excessive movement may 

outweigh the benefits of grid alignment and density on accuracy because of the 

associated loss of grid quality. Because of this the visual impact on the grid 

of adaption, which is a very useful and important side effect, may lead to 

unrealistic hopes about the quality of the final results.

• The grid at each stage of adaption can only ever be as good as the data 

available at the time when adaption takes place. It is not possible to get the 

best grid for the final solution at the first pass of the adaptive grid solver. 

Indeed, if a grid moves too fast to a temporary solution that has a solution 

feature in the wrong position it may never be possible to recover its correct 
position as the grid in that area may be too coarse. As several passes of the 

adaptive solver should be used in the running of a particular problem so that 
the grid evolves with the solution, the main aim of the adaption algorithm 
should be to make the grid a little better at each call, not necessarily the best 

possible.

The ideal adaption algorithm would involve very small movements at every iteration 
of the flow solver after a certain level of convergence has already been achieved. In 
practice this must be balanced against the requirements of time and disruption to the 
flow solver due to solution interpolation and the need to recompute geometrical data.

9.1.1 Additional Tools

An important part of the work has been the development of a range of tools to model 
and maintain grid geometry and to manipulate the behaviour of the LPE algorithm. 

These tools are modular and are not tied to the LPE algorithm in particular.

Curve and surface modelling using cubic splines and bicubic patches and breaking at
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important geometrical features works well and are useful where complex geometry 

must be maintained, as in the 10 degree supersonic wedge intake case (5.3.5), or 

where important features of the grid need to be maintained, such as the boundary layer 

cells in the RAE2822 aerofoil case (5.3.1).

There are weaknesses in the technique. The grid overlapping algorithm is not perfect 

but will behave on a reasonable grid with reasonable movement. Shepard's 

interpolation to transfer data between grids is safe, easy to implement and can be fast 
but may not be particularly accurate.

9.1.2 The Weight Function

A strength of the current work is the treatment of the weight function which drives 

grid point movement in the adaption algorithm. To stretch the technique from heat 

conduction problems and convective flow to transonic and supersonic cases with 

strong shock waves demands a range of tools to manipulate the variables used to 

generate the weight function and to manipulate the function itself, the most important 

being power law smoothing.

The aim of the weight function is to indicate where there should be a higher 

concentration of grid cells. Though its calculation depends upon some solution 

behaviour it need not be tied too closely to that behaviour to generate the best possible 

grid. Properties such as smoothness and orthogonality may be lost if the grid is moved 

exactly to the variation of some solution data. With this in mind the novel technique 

of weight function smoothing using power laws to influence the range of effect of 

phenomena and grid smoothness has been developed. The technique is fast and 

instantly produces a smoothly varying function to adapt the grid to, avoiding regions 

adjacent to high weight values with a low grid density. The closest techniques 

presented in literature may be the monitor surface used by Eiseman (1987) and 

adaption in parametric space discussed in section 1.2.1.5.

9.2 Future Work
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The main aim of this thesis is to show that the LPE algorithm, with a range of extra 

tools, can be used to improve the performance of CFD codes over a wide range of 

CFD problems. This aim has been achieved, but there is always room for 

improvement. A lot of work has gone into making the technique safe and usable, but 

this is still an area where more work is needed.

9.2.1 Transient Cases

The only transient case presented in the current work is the example case used to 

demonstrate the coupling of stress and fluid flow (7.4). Transient cases are currently 

wholly dependent on the underlying flow code, in this case PHOENICS, and the 

response of the code to grid movement has not always been predictable. More work 

is needed to show that the LPE algorithm is truly useful for transient flow problems.

There may also be problems dealing with a very rapidly varying solution where high 

gradient regions may move to areas of the grid already coarsened in previous time 

steps which may now be unable to accurately resolve the solution enough to attract 

grid nodes back. This will limit the maximum timestep available for the problem. This 

is an area where mesh refinement may work better, as the underlying mesh will 

always be the same. There are some problems, such as the modelling of detonation 

waves, where mesh movement schemes alone may be unable to achieve the length 

scales needed to accurately resolve the problem and some sort of grid refinement 

scheme would have to be used as well, or instead of grid redistribution.

9.2.2 Three Dimensional Cases

The LPE algorithm is fully three dimensional, and its use for three dimensional 

problems has been demonstrated in chapter 6. However, the problems in chapter 6 

only show that it works. No validation has been presented since it is much more 

difficult to compare the adapted and non adapted solutions for three dimensional 

problems than for two dimensional problems. More work is needed to stretch the 

limits of the algorithms performance and prove its value. Suitable three dimensional
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cases are also needed for validation.

9.2.3 New Solvers

The LPE method as implemented here uses the simplest and most reliable of solvers, 

a relaxed point by point iteration scheme. It would however be possible to use some 

form of matrix algorithm such as the TDMA scheme to increase the speed of 

operation and convergence of the adapted grid. Such schemes may help to improve 

the coupling of the response of grid points at different extremes of the adaptive 

domain, and in problems such as the coupling of stress and fluid flow (7.4) will allow 

the grid to sort itself out quickly.

Such schemes are beyond the scope of the thesis as they cannot show that the 

algorithm works any more than the current scheme does, but maybe more important 

in developing the usefulness of the algorithm as a genuine CFD tool. An example of 

where they may be useful is in improving the computation time of three dimensional 

problems.

9.2.4 Linking with Other Codes

The LPE algorithm presented in this thesis is designed to be code independent. 

Though it has been developed as an attachment to PHOENICS, only a handful of 

routines depend directly upon it. It would be straightforward to transfer the algorithm 

to any other flow code using a structured grid or even an unstructured code using 

rectangular or cuboid elements.

It may also be possible to make the algorithm unstructured though this would mean 

that a different scheme would have to be used to discretise the LPE equation, and the 

powerful weight smoothing techniques used in structured grids would have to be 

heavily modified or discarded. A possible way of using function based weight 

smoothing would be to generate some kind of smooth weight surface for two 

dimensional problems or hypercube for three.
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9.2.5 Refinement and Multiblock Implementation

Hybrid schemes coupling refinement and movement are very powerful. The problem 

lies in finding a fluid code that is capable of dealing with hybrid grids. One option 

would be to use the multiblock version of PHOENICS.

Multiblock facilities in PHOENICS have been available from version 2.1 onwards. 

Adaption within individual blocks in the grid is straightforward and requires no 

modification to the current implementation of the LPE method as it is based on 

individual domains within the problem area. The extension to the whole problem 

domain and in particular the crossover region between coarse and embedded fine 

meshes is not straightforward. Alternative options for dealing with embedded fine 

grids include:

• Moving all points over the coarsest grid covering the whole domain, 

including the region covered by fine grid. This is possible as there will be a 

direct correspondence between points in the fine mesh and the coarse. Points 

in the parts of the coarse grid covered by the fine grid would have a function 

value taken from the fine grid. After the adaption of the coarse grid the 

unmoved grid points in the fine grid could either be modified by interpolation 

or by adaption with the previously moved points fixed.

• defining a new method to deal with boundary regions between separate 

adaption domains. Fine regions could be blocked out of coarse grids.

Use of the knowledge gained through manipulation of the weight function could be 

used also to determine regions in an initial single domain that could benefit from 

refinement based on some initial solution. As dynamic allocation of memory is very 

limited in FORTRAN based PHOENICS it may only be possible to implement this 

method as a static option. It would only be possible to modify the grid between runs.

Unfortunately it was not possible to have full access to the multiblock version of
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PHOENICS during the course of this thesis. 

9.2.6 Automation of Parameter Choice

In the current method the user controls not only the choice of the adapted regions but 

also up to 15 adaption parameters. Knowledge of the technique is needed to get the 

most out of it. Any techniques that can be used to reduce this number of parameters 

will greatly increase the usability of the algorithm.

It would be possible to automatically break the problem domain down into areas that 

need adaption by using some measure of solution error or the first and second 

derivatives of a range of solution variables. This would be similar to the measures 

used to flag areas to be refined in grid refinement techniques (1.4.2). Such data could 

also be used to determine which variable or variables are used to drive grid adaption 

and their treatment.

Such a technique would be very powerful in that it would make the use of adaption 

safer and lessen the need for the user to be an expert in adaptive grids. It may not be 

easy to implement, though the pattern matching abilities of some kinds of neural nets 

may be a good starting point.
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APPENDIX A: THE LPE EQUATION IN ONE AND THREE DIMENSIONS 

A.I Introduction

The purpose of this appendix is to expand the discretisation of the LPE equation from 

two dimensions, as presented in chapter 2, into one and three dimensions. This 

appendix also shows part of the derivation of the metric tensors that define the 

transformation from physical to curvilinear space.

A.2 Calculation of Metric Tensors

The contravariant metric tensors are defined as the dot products of the contravariant 

base vectors V^(/=7 3 .

(A.I)

The contravariant base vector V^ is defined as being the normal to the surface where 

is constant.

The contravariant base vectors can be calculated using the relationship

rxr ij,k cyclic (A.2)
>/ ^*

where r^ is the gradient of the line q, = constant.
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(A.4)

The metric tensors gij are (noting g'J = g7')-
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The jacobian g cancels out in the full equations.

A full derivation of the metric tensors is given in Thompson et al. (1985).

The six vector dot products are evaluated using central difference formula as follows
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Using the terminology E,W for i+l,i-l; N,S for j+lj-1; and H,L for k+l,k-l gives
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The tensors as used in the discretisation of the main equations then become
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A.3 Derivation of Laplace Term

The Laplace system in three dimensions is (equation 2.15)

3 3
g y> = o (A.29) 

i=l7=l ^

Discretised, using central difference formula (equations 2.1, 2.2 and 2.3), this becomes
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Separating the terms in equation A.30 leads to the algebraic equation
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The source term J* is

where
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A.4 Derivation of Poisson Term

The Poisson equation in three dimensions is (equation 2.27)

33 3
(A.43)

The first term in the equation is identical to the Laplace equation and breaks down in 

the same way.

The finite difference approximation to the second term of the Poisson equation is

Separating the terms in equations A.30 and A.44 leads to the algebraic equation
pppppppp'

where
fl '= fl i (A.46)
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A.5 Derivation of Equidistribution Term

The equidistribution equation as used in the LPE system is

w^ ~W (A.48)

The discretisation of the equidistribution equation is simplified by first seeing that the 
denominator of the second term in the brackets is identical to vector dot products used 
to evaluate the metric tensors, which is calculated elsewhere and can be substituted 
in A.48.
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Discretised, equation A.48 gives
~r \

.11 (rE- rw)

4

WIE -WIW
WIP\ J

1+
^1 Si

(xE -xw )(xE -2xp +xw )

,22

WJ

g
33

(xN -xs)(xN -2xp +xs )

( rH' ri)

4

WKH -WKL
WKp

I /

1
(vV

Sj S3

(A.50)

= 0

Where r is the variable being solved for.
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Separating the terms in equation A.50 leads to the algebraic equation
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A.6 The LPE Equation

The discretised LPE equation is represented by the combination of the algebriac 
systems given for each of the three terms in equations A.31, A.45 and A.51

LPE LPE LPE LPE LPE LPE LPE ipp (\ C7^ap rp = aE r£ + aw rw +aN rN + as rs + aH rH + aL rL + s LPE (A.*/)

Where, with the terms modified by a user controlled weight XL , A,p , A,E for the Laplace, 
Poisson and Equidistribution terms respectively,

LPE LPE LPE LPE LPE LPE LPEap =aE +a w +aN +as + aH +aL

= ( V + V) aNL + K'a*

LPE LPE

s LPE = KL s L

A.7 The LPE Equation in One Dimension

For the one dimensional system ^ the metric tensor disappears as here is a one to one 
correspondence between physical and curvilinear space.

All other components are set or forced to zero. There are no significant dot products, 
and the metric tensor goes to 1, as the jacobian g cancels out.

The full form of the LPE equation in one dimension is

LPE y s,LPE ± n lPE r ^ c, LPE ( A fi'ttap rp ~aE r£ + aw 7\y + s i/\.o.?j

where
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where the Laplace terms are

L L (A.67)

The Poisson terms are
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And the Equidistribution terms are
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APPENDIX B: SOFTWARE STRUCTURE 

B.I Introduction

This Appendix is divided up into sections covering adaption files, the adaption 

initialisation module S_ADAPT, the adaption calculation module G_ADAPT, and the 

PHOENICS file structure which influences their development. The following adaption 

components are all discussed in relation to their implementation within PHOENICS.

B.2 PHOENICS Components

The structure of PHOENICS is shown in figure B.I.

Q1

<GR D>

EARDAT

RESULT

Figure B.I Main Programs and Data Files within Phoenics
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The main programs of PHOENICS include:-

SATELLITE which is the pre processor that interprets the user controlled file 
Ql and sets up the data files HARD AT and XYZ which define the problem 
within EARTH.

EARTH is the solution processor. It contains a range of iterative solvers to 
resolve the problem defined in the files EARDAT and XYZ and produces the 
results files RESULT and PHI

PHOTON is an interactive post processor which uses the data within PHI and 
XYZ to produce a graphical representation of the solution.

AUTOPLOT is an interactive post processor which uses data from the 
PHOENICS solution as well as tables to produce and compare line plots.

The main files designed to alow user control and pass information between the 
different programs of PHOENICS include:-

Ql contains the definition of the case to be solved. The problem is defined 
using the PHOENICS input language PIL. It is possible to define the grid 
within the Ql file but an outside grid may be read in instead by specifying a 
grid file within Ql (<GRID>).

XYZ contains the location of the grid points that define the problem in a 
defined format. This file is only used for BFC problems. In other cases the 
grid data are passed to EARTH with EARDAT. EARTH only reads the file 
named XYZ but the same file with different names can be produced.

EARDAT contains all the data that define the problem in a form readable by 

the processor EARTH.
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PHI is a result file containing the values within the grid cells of all variables 

solved for. Its two main uses are firstly to allow the solution to be visualised 

using the auxiliary PHOENICS programs PHOTON and AUTOPLOT and 

secondly to allow the problem to be restarted from previous results. 

Simulations run in EARTH can also be restarted using a PHI file.

RESULT is a line printer type results file that contains a range of information 

including all initial settings, selected cell values of variables, information on 

convergence, timing and simple ascii plots.

B.3 Adaption Files

A range of adaption data files exist alongside the two adaption modules S_ADAPT 

and G_ADAPT. These files are used to control the behaviour of the algorithm, pass 

data between the two modules, and provide the user with information on its 

performance.

Summaries of the file interaction within the modified SATELLITE and EARTH are 

given in figures B.2 and B.3 respectively.

DAT/UVDP

COMTROLADP

GRID.ADP

Figure B.2 Main Adaption Files within PHOENICS Satellite
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DATA^DP

CONTROL.ADP

GRID.ADP

ADAPT.ADP

Q1

EARDAT

XYZ

Figure B.3 Main Adaption Files within PHOENICS Earth 

The principal user input files are:-

PATCH.ADP contains the physical definition of the adaption regions, 

surfaces, curves and blanks in the form of named patches.

ADAPT.ADP contains the weights for the LPE equation, the choice of the 

weight function and the frequency of adaption within the defined adaption 

regions.

The files transferring data between the two adaption modules are:-
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DATA.ADP contains and links the adaption regions, surfaces, curves and 

blanks and all the data required to fit those surfaces and curves for use in the 

adaption ground.

CONTROL.ADP contains the control functions required by a poisson grid 

generator to recreate the grids covered by the adaption regions.

GRIDn.ADP contains the latest grids covered by the adaption regions. A new, 
numbered, grid file is dumped at each call from PHOENICS EARTH to the 
adaption module G_ADAPT. The grid data used for adaption are always read 
from the latest grid file GRIDn.ADP. The first grid file is GRID.ADP.

B.4 S ADAPT

A single argument in the Ql file allows access to S_ADAPT. the Ql file is also used 
to pass an argument through to EARTH to allow access to G_ADAPT in EARDAT.

The only other link within S_ADAPT to PHOENICS is to the grid data, which is 
loaded into local arrays within S_ADAPT for processing each adaption region. Though 
this duplicates information held within the adaptive satellite it allows simpler and 
faster access within the adaptive routines and reduces dependence on PHOENICS.

The Ql file can also be used to hold the adaption input files. In PHOENICS version 
2.0 and later the Ql file is used to hold macro files to display the results of the 
problem within the visualiser PHOTON by including the text as comments in a section 
marked at its beginning and end by key words. Any text in the Ql file that begins in 
the third column or later is treated as a comment. In the same manner the adaption 
input files PATCH.ADP and ADAPT.ADP can be included in the Ql file. During the 
execution of SATELLITE the Ql file is read and all of its commands are held in a 

stack within memory. Though the Ql file may remain open it can be accessed by the 
adaptive routines without disrupting SATELLITE. Within S_ADAPT it is scanned for 
a comment beginning with an exclamation mark followed by the key word PATCH.
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The adaption set up information follows. If the keyword is not found then the external 

file PATCH.ADP will be opened instead.

B.4.1 Tasks in S_ADAPT

The main tasks carried out within the adaption code, S_ADAPT, lying within the 

modified satellite are:-

• Input of major physical features of adaption, though not equation choice and 

constants as these may be changed more frequently. The physical features are 

the regions within the grid that will be adapted, curves and surfaces within 

those regions that must be maintained, and blocks within which the grid is not 

allowed to move to account for complex geometry, described here as 'blanks'. 

All features are named, and the first three letters of each name define the 

feature.

• Checking of regions defined within the adaption input file PATCH.ADP 

against each other and the main boundaries of the problem for overlaps. 

Overlaps with other regions are flagged but otherwise ignored. Overlaps with 

main boundaries are flagged and the regions deleted.

• Linking of surfaces, curves, and blanks to specific regions and checking of 

overlaps with other patches of the same type. Note that patches which extend 

outside regions are ignored.

• Division of curves and surfaces into sub curves and sub surfaces around 

important geometrical features (see section 3.2.3) using user defined criteria. 

These criteria are more fully explained in the previous chapter but include the 

options of whether to cut the surfaces or curves at discontinuities and/or 

turning points and at what tolerances of discontinuities or turning points they 

are cut.
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• Division of sub curves and sub surfaces into patches, which are given 

implicitly by the cell dimensions which they cover, and the modelling of those 

patches by the use of cubic splines in the case of curves and bicubic patches 

in the case of surfaces to allow their recovery after the grid points which 

initially define them are allowed to move (see sections 3.2.1.1 and 3.2.2.1)

• Output of the adaption data file DATA.ADP.

• Calculation of the control functions required to generate the original grid 

using a Poisson grid generator to enable the Poisson term in the LPE equation 

to be used. This information is output to the file CONTROL.ADP.

• Output to the file GRID.ADP of the parts of the grid which define the 

adaptive regions. This is done to firstly reduce the dependence of the adaption 

routines on the underlying code, PHOENICS, so that the main adaption routine 

is always reading the grid from independent files then putting the results into 

PHOENICS, and secondly to keep a record of the grids in the regions after 

each time that they are called. Having the grid files in a format private to the 

adaption routines allows fast and easy access to the grid coordinates.

• Output of the adaption information files ADAPT.USE and SATLOG.ADP.

• Output of the adaption control file PLOT.ADP.

B.5 G ADAPT

The role of the adaption module G_ADAPT is to modify selected adaption regions in 

the main grid to improve the accuracy of the solution by using the solution at 

controlled points during the run of the solver.

G_ADAPT is split into three parts, a preliminary phase, involving the processing of 

adaption input files, a processing phase, in which the main algorithm is run, and a
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bookkeeping phase, where extra adaption files are deleted and the total movement of 

the grid calculated.

The adaption routines are first activated at sweep number two to run the preliminary 

phase. Sweep two is chosen instead of sweep one because if the case is being restarted 

from results files dumped by a previous run then the default first sweep number is 

two. Other activations are controlled using parameters in the adaption input file 

AD APT. ADP. The bookkeeping phase is activated when the last sweep of PHOENICS 
takes place.

The adaption module runs over each defined adaption region in turn. Each region is 

treated as an individual problem with no link to the remainder of the regions. This 
allows the storage requirements of the adaption module to be limited to the size of the 

largest defined region rather than the whole simulation. Many internal iterations of the 
adaptive algorithm are possible for each region and can be used to increase the 

movement of the grid at each call to the adaptive routines. This also allows the use 
of relaxation to improve the performance of the solver. A check of the percentage 
movement at each iteration allows movement to be switched off for that region if the 
grid converges or begins to diverge. The number of iterations is limited by the need 
to interpolate the variable needed to move the grid between iterations (see 3.3). The 
interpolation procedure involves some smoothing of the variable so at each call the 
impact of the major flow features which drive the grid will be dissipated.

Towards the aim of making the adaption module independent of PHOENICS all 
working is done in memory independent of PHOENICS.

One call is made to the adaptive code at the end of each sweep, whether for the 

preparatory phase, the main phase or the bookkeeping phase. This is done to keep the 

adaptive code as separate as possible from PHOENICS without seriously affecting its 

performance.
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B.5.1 Communication between Adaption Module and EARTH

The majority of the data on the problem within EARTH is held in a single, large one 

dimensional real array called the F array. A number of functions and common blocks 

are provided within EARTH to access the required parts of the array. The adaption 

module accesses the F array using functions written as part of the module, though 

based on known PHOENICS functions.

Communication is deliberately limited to enable the adaption module to be as 

independent as possible from PHOENICS so that it may easily be bolted onto an 

alternative structured CFD code.

Communication between G_ADAPT and EARTH occurs through the argument list 

passed to it when called from EARTH, the reading of the adaption variable from the 

F array, the writing of sections of modified grid to the F array, the writing of 

information on adaption to prepared locations in the F array for the purposes its 

graphical display, and the access to other variables and the grid stored in the F array 

for the purposes of interpolation between the grids pre and post adaption. The grid 

sections are read into the adaption module from the adaption grid file GRIDn.ADP.

The arguments passed to the adaption module when it is called incorporate the sweep 

and step number and the last sweep and step number, the limits of the problem 

domain and the current iz slab. The limits of the domain and the iz slab number are 

used in the access of the F array.

The adaption module also uses the PHOENICS routines BGEOM, DUMP and 

DUMPXYZ. BGEOM is used internally by EARTH to calculate geometric properties 

for the grid, such as volume, and by the adaption module to reset those properties 

following grid movement. DUMP and DUMPXYZ are used to output PHOENICS data 

files PHI and XYZ respectively.
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B.5.2 Tasks in G_ADAPT

This section covers the tasks carried out within the adaption module G_ADAPT within 

PHOENICS EARTH. The tasks are between the preliminary phase, the main phase 

and the bookkeeping, or final phase, and into the main adaption algorithm and a 

number of secondary functions that mainly involve communication between the 

module and PHOENICS, and between the module and the user.

B.5.2.1 Preparatory Phase in G_ADAPT

The tasks in the preparatory phase include the initialisation of adaption data at the 

start of run time using data in ADAPT.ADP. The code is also checked by carrying out 

one pass without the calculated grid movement passed through to PHOENICS 

EARTH. This phase could be incorporated into the satellite adaption module 
S_ADAPT, but it is computationally cheap compared to the total run time and to the 

run time of PHOENICS SATELLITE, and allows more flexibility in using adaption.

B.5.2.2 Processing Phase in G_ADAPT

The main tasks in the main phase of the adaption routine include:-

• Extraction of the adaption variable. This involves the interpolation and 

manipulation of a chosen variable from cell centres to give a normalised value 

on grid nodes within the region being adapted. This variable is used to 

generate the weight components.

• Calculation of different weight components for each coordinate direction by 

using an arbitrary function on the adaption variable.

• Calculation of movement vectors over adaption region using a point by point 

Jacobi solver on the LPE equation, calculating all movement on the original 

grid before updating it.
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• Checking of movement vectors to maintain surfaces and lines, and prevent 

grid crossover.

• Interpolation of the adaption variable between the old and new grids to allow 

multiple internal iterations of the adaption solver.

The secondary tasks include:-

• Placing modified grid back into PHOENICS after adaption, and the 

reactivation of the routines within PHOENICS that calculate grid constants.

• Calculation and output of temporary grid movement information.

• Extraction and interpolation of variables from the old to the modified grid 

and the writing of these variables back into PHOENICS.

• Placing of information on adaption into PHOENICS arrays to allow the data 

to be displayed graphically using PHOTON and AUTOPLOT. The data may 

optionally include the total grid movement in each coordinate direction, the 

calculated weight function for each direction and the normalised and 

interpolated variable used for adaption. This variable may be a composite of 

a number of PHOENICS variables and there may not be a directly 

corresponding PHOENICS variable stored (see section 4.8).

• Output of PHOENICS result file PHI and grid file XYZ at the beginning of 

each call to the adaption module and at the end of the run. These dumps are 

optional. Each file has a name which is controlled from within the adaption 

module and incorporates the sweep number when it is dumped. The name also 

incorporates the step number if the problem is transient. The files are dumped 

using the PHOENICS routines DUMP for the PHI file and DUMPXYZ for the 

XYZ file.
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B.5.2.3 Bookkeeping Phase in G_ADAPT

The tasks in the bookkeeping phase include :-

• Calculation of final grid movement by comparing the initial and final grids 

held in the files GRIDn.ADP.

• Output of a PHOENICS XYZ grid file. Other file dumps are optional, the 

grid file dump at the end of the run is forced.
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APPENDIX C: PSEUDO CODE FOR ADAPTIVE MODULES 

C.I Introduction

This appendix contains pseudo code to show the structure of the adaption initialisation 

module S_ADAPT and the adaption calculation module G_ADAPT as implemented 

in the pre processor SATELLITE and solver EARTH of the CFD code PHOENICS.

C.2 SATELLITE Adaption S_ADAPT

One call is made to S_ADAPT from PHOENICS when adaption is activated. The 

main role of S_ADAPT is to recover geometrical data on chosen adaption regions 

within the problem domain. This data consists of control functions for the Poisson 

equation (section 2.5) which can be used to generate the local mesh, and coefficients 

of parametric equations which are used to model user defined curves and surfaces.

C.2.1 MAIN

read region definition patches
sort region definition patches PATCHSORT
loop through regions

output regions limits to plot file

get region grid
calculate scale factors for error output and minimum cell 

clearance

output grid to grid file

determine number of and sort blanks in region

determine number of and sort surfaces and curves in region
loop through surfaces and curves

cut surfaces and determine coefficients SURFSORT 
extract surface grid

end loop
determine control functions to regenerate grid (Poisson 

term) 

end loop 

end
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C.2.1.1 PATCHSORT sort region patches

check regions do not overlap and are within grid
link surfaces and curves to regions
link blanks to regions
end

C.2.1.2 SURFSORT Cutting Surfaces and Determining Coefficients
determine direction of surface
break surface into subsurfaces SURFCUT
calculate patch coefficients
end

C.2.1.2.1 SURFCUT Breaking Surfaces
determine maximum gradients and second derivatives
find turning points
if turning points are within 1 patch distance then

multiply turning point tolerance by two
repeat find turning points step 

end if
find discontinuities 
determine subsurface limits 
end

C.3 EARTH Adaption G.ADAPT

G_ADAPT is split into three main parts, STARTADAPT, ADAPT and 
BOOKADAPT, which are concerned with setting up adaption data within PHOENICS 
EARTH, adapting the grid and bookkeeping at the end of the run respectively. The 
adaptive module can be called at the end of each sweep for steady state problems and 
additionally at the start of each time step for transient problems. The first and last 
parts, STARTADAPT and BOOKADAPT are only called once each at the second 
sweep and final sweep of the run respectively for steady state problems. The second 
sweep is used because the numbering conventions used within PHOENICS may mean 
that the run starts at sweep number two. For transient problems STARTADAPT is 
called at the start of the first time step. ADAPT can be called at any sweep between
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the calls to STARTADAPT and BOOKADAPT.

START AD APT reads in adaption data from external adaption files, sets up temporary 

run time files and tests the adaption code.

BOOKADAPT deletes the temporary run time files and determines a measure for the 

total movement.

ADAPT modifies selected regions of the problem domain to given parameters and 

constraints.

C.3.1. MAIN

if sweep equals 2 then

initialise adaption routines STARTADAPT 
else if sweep equals last

dump results files

book keeping BOOKADAPT 
else

dump results files

run adaption routine ADAPT 
end if 
end

C.3.1.1 STARTADAPT Initialise Adaption Routines

delete old adaption grid files

read input file and write direct access adaption parameter file

read screen plot file and write direct access plot file

open log file
run adaption routine with no movement allowed ADAPT

end

C.3.1.2 BOOKADAPT Book Keeping

delete adaption parameter and screen output files

determine total movement measure

end
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C.3.1.3 ADAPT Adaption Routine 
open adaption files 

loop over regions

read region parameters

get region grid from most recent grid file
get control functions for region

get adaption variable normalised at cell vertices GETVAR
loop over internal iterations

calculate adaption weights GETWEIGHT 
calculate grid movement GETMOVE 
if polar type grid then

modify to get correct shape 
end if

interpolate adaption variable from old to new grid 
end loop
determine cell angles, if required 
interpolate solution from old to new grid 
write grid to CFD code 
write grid to file 

end loop
reset geometry information in underlying code 
close adaption files 
end

C.3.1.3.1 GETVAR Get Adaption Variable 
get variable at cell centres from PHOENICS 
interpolate variable to cell vertices 

normalise variable 
end

C.3.1.3.2 GETWEIGHT Calculate Adaption Weights

use chosen weight routine
apply local averaging smoothing to weights, if required
apply power law smoothing to weights, if required
apply exponential smoothing to weights, if required

end
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C.3.1.3.3 GETMOVE Calculate Grid Movement
calculate raw movement from LPE equation
use blank patch data to set movement in chosen regions to zero
cut movement to chosen fraction of minimum cell clearance
set movement at edges to movement one cell in, if required
fit surfaces and curves
apply movement to grid
calculate percentage change in grid
end

c.5


