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ABSTRACT

This thesis is concerned firstly with the classification and evaluation of 

various numerical schemes that are available for computing solutions for 

fluid-flow problems, and secondly, with the development of an improved 

numerical discretisation scheme of the finite-volume type for solving 

steady-state differential equations for recirculating flows with and without 

sources.

In an effort to evaluate the performance of the various numerical 

schemes available, some standard test cases were used. The relative 

merits of the schemes were assessed by means of one-dimensional 

laminar flows and two-dimensional laminar and turbulent flows, with and 

without sources. Furthermore. Taylor series expansion analysis was 

also utilised to examine the limitations that were present.

The outcome of this first part of the work was a set of conclusions, 

concerning the accuracy of the numerous schemes tested, vis-a-vis their 

stability, ease of implementation, and computational costs. It is hoped 

that these conclusions can be used by 'computational fluid-dynamics' 

practitioners in deciding on an optimum choice of scheme for their 

particular problem.

From the understanding gained during the first part of the study, and in 

an effort to combine the attributes of a successful discretisation scheme, 

eg positive coefficients. conservation and the elimination of 

'false-diffusion', a new flow-oriented finite-volume numerical scheme was
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devised and applied to several test cases in order to evaluate its 

performance.

The novel approach in formulating the new CUPID* scheme (for Corner 

UPw^nDing) underlines the idea of focussing attention at the 

control-volume corners rather than at the control-volume cell-faces. In 

two-dimensions, this leads to an eight neighbour influence for the central 

grid point value, depending on the flow-directions at the corners of the 

control-volume. In the formulation of the new scheme, false-diffusion 

is considered from a pragmatic perspective, with emphasis on physics 

rather than on strict mathematical considerations such as the order of 

discretisation, etc.

The accuracy of the UPSTREAM scheme (for JJPwind in STREAMIines) 

indicates that although it is formally only first-order accurate, it 

considerably reduces 'false-diffusion'. Scalar transport calculations 

(without sources) show that the UPSTREAM scheme predicts bounded 

solutions which are more accurate than the upwind-difference scheme 

and the unbounded skew-upstream-difference scheme. Furthermore, 

for laminar and turbulent flow calculations, improved results are obtained 

when compared with the performances of the other schemes.

# The up-to-date name of the scheme is CUPID; however, in what 

follows the old name, UPSTREAM (Patei, Markatos & Cross (1985b)L will 

be used throughout.
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The advantage of the UPSTREAM-difference scheme is that all the 

influence coefficients are always positive and thus the coefficient matrices 

are suitable for iterative solution procedures. Finally, the stability and 

convergence characteristics are similar to those of the upwind-difference 

scheme, eg converged solutions are guaranteed. What cannot be 

guaranteed, however, is the conservatism of the scheme and it is 

recommended that future work should be directed towards improving that 

disadvantage.
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CHAPTER 1

1. INTRODUCTION

1. 1 Background

The numerical modelling of fluid-flow problems involves phenomena such

as convection and diffusion of momentum, heat and mass which are of

major importance in various engineering fields.

Examples of some of these fields are: 

The Aerospace field:

modelling aircraft wings with respect to drag and lift; and 

modelling missiles with respect to their overall design, etc,

The Medical field:

# modelling of airflow through the human body; and

# modelling of the temperature in the human torso, etc.

The Power field:

# modelling of nuclear reactor cores in critical regions (ie 

nuclear burnout) ; and

# modelling of various engines (eg rocket, car) , etc.



The General field

# Modelling of any situation involving flows created due to various 

types of gradients and the presence of velocities (eg movement 

oi smoke in enclosures due to a fire source, movement of ice 

in lakes, etc).

In recent years, a lot of interest and thought has been directed towards 

the understanding ot transport phenomena and their numerical modelling, 

with regard to accuracy and overall representation.

In general, fluid-flow phenomena are approximated by simple interpolation 

formulae, based on the vast experience .gathered from the past, either 

by intuition or experiments. However, when more complex phenomena 

are considered, these interpolation methods may deteriorate in terms of 

accurate representation of the problem.

Since the knowledge of fluid-flow phenomena is based on the 

conservation laws of physics. usually expressed in terms of 

partial-differential equations, classical methods only serve to provide 

practical solutions to limited problems of importance.

However, the introduction of the computer into the engineering practice, 

has resulted in the rapid growth of a completely new field, formally 

termed 'computational fluid dynamics', which has led to the development 

of new mathematical methods for solving the equations of fluid-flow (ie 

the Navier-Stokes equations) . Nevertheless, there still exist a few 

deficiencies in these new mathematical methods which need to be



resolved carefully, before they become fully reliable, accurate and 

cost-effective.

The detailed study reported in this thesis, is mainly concerned with the 

overall improvement of accuracy and efficiency of the 'control-volume' 

type of numerical solution procedures, used for the partial-differential 

equations that govern fluid-flow phenomena. The control-volume 

method (CVM) is of practical interest to engineers of all fields.

In general, if the computational cost is of no objection, then the 

available methods can perform very well. However, since expensive 

numerical methods are of limited practical importance, the aim of any 

new or improved method should be to combine acceptable accuracy with 

cost. Hence, the aim of the present study is (a) to evaluate the 

cost-effective numerical methods, from the considerable number available 

today; and. (b) to suggest, if possible, new directions in devising such 

efficient methods.

The important negative aspect of most available methods of discretisation 

is 'false-diffusion', present because of non-aligned flows and grids. 

The 'false-diffusion' problem usually occurs because simplifying 

assumptions are made to approximate complex aspects.

The basic assumption leading to 'false-diffusion' is that the flow is 

treated as locally unidirectional, so as to apply easily the approximating 

methods in each of the coordinate directions. This approximation 

provides easy extension of one-dimensional considerations to 

multi-dimensional problems, but involves numerical errors for practical



grid sizes.

The alternative is to model the flow by tracing the local streamlines; that 

would reduce 'false-diffusion', but at the expense of introducing possible 

instabilities.

The ultimate theme of this thesis is to devise, in principle, a numerical 

scheme that reduces 'false-diffusion' without the expense of extensive 

grid refinement, and without any inherent instabilities. This proves a 

daunting task; however, if tackled in an orderly, step-by-step method, it 

would provide valuable information, assisting the practitioner to choose a 

scheme best suited to his particular problems.

1. 2 Literature Survey

During the past decade or so, a vast amount of literature has appeared 

on solution techniques for incompressible flow problems, and it is not 

surprising that modern fluid-dynamics is greatly contributing to the 

current development of the finite-difference/control-volume methods, 

which are of importance to numerical analysts.

Attention is here focussed on the role of convection and diffusion on 

transport in flows of practical interest, which may be single- or 

multiphase, and multidimensional. Only steady-state problems are 

considered, so as to keep the nature of the survey within reasonable 

bounds. However, important contributions which rely on transient 

problems will also be referred to.
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1.21 Classification

The relevant fluid-flow partial-differential equations can be discretised in 

many ways. In what follows, we shall outline the most common 

methods available and providing critical comments on their performance.

1.21.1 Finite-difference methods

The finite-difference method operates directly on the differential equation 

to obtain a set of algebraic equations. The relevant approximations are 

derived via truncated Taylor-series expansions, where the assumption is 

made that the expansion depends on a polynomial in only one of the 

coordinate directions, so that the higher derivatives are rendered 

unimportant. This method of approximation, ie Taylor-series expansion, 

is fairly simple and straightforward, but allows only little flexibility and 

provides less insight into the proper physical meaning of the terms 

involved.

1.21.2 Control-volume methods

The control-volume method operates on the integral of the 

partial-differential equation, over a control-volume enclosing each 

discrete grid-point. Algebraic equations are then obtained by 

representing the variation of the dependent variable between grid points 

via piecewise profiles. This method of approximation is easy to 

understand and lends itself directly to the importance of physical



interpretation; ie the conservation principle is enforced by the very nature 

of the method. Furthermore, there is complete freedom of choice in 

the assumption of profiles for different dependent variables. It is this 

method that was chosen for carrying out the present study.

1.21.3 Finite-Element Methods

The finite-element method approximates the distribution of the dependent 

variable within elements that are defined by mesh lines. The algebraic 

set of equations are then constructed by ensuring continuity of the 

dependent variable between elements, together with the satisfaction of 

some weighted residual or functional of the differential equation over 

each element.

1. 21. 4 Other methods

Other methods, which are not discussed here in any detail, include:

# finite-analytic methods;

# spline methods;

# flux-correction methods; and

# flux-corrected transport methods.

The above methods, although useful in some applications, have not 

reached as yet the level of sophistication of the ones described above, 

and they do not appear to lend themselves for easy generalisation.

-6-



Therefore, attention is now turned to surveying the two most developed 

methods at present, eg the finite-difference and control-volume methods.

1. 22 Finite-Difference and Control-Volume Methods - A Survey

Locally one-dimensional schemes

Over the years a vast amount of literature has appeared with regard to 

the formulation and application of numerical schemes. In general, the 

selection of a particular numerical scheme, from the great number 

available, depends on its accuracy, stability, consistency with physical 

laws (ie the conservation principles), computational cost (ie efficiency) 

and the level of programming (ie the actual coding of the procedure) 

required by the scheme.

The solution of the convection-diffusion equation, which forms a sub-set 

of the fluid-dynamics modelling problems, has posed serious difficulties 

to the numerical analyst. It is the main aim of the present section to 

classify some of the numerical schemes. with regard to their 

introduction, improvements and applications already reported by various 

authors.

The earliest numerical scheme used by numerical analysts was the 

standard central-difference scheme. It is the straightforward way to 

discretise the convection term, leading to a second-order scheme 

derived from the Taylor-series analysis. The earliest attempts to obtain 

a numerical solution of elliptic equations was that by Thorn (1933), who

-7-



was interested in the prediction of the steady, laminar-flow of fluid over 

a circular cylinder. The resulting algebraic equations were solved by 

an interative technique with successive-substitution. However, this 

approximation does not lead to diagonal dominant matrices for cell Peclet 

numbers greater than 2. This was reported by Thorn (1933). together 

with quite accurate predictions for flow Reynolds numbers of the order of 

50. For cell Peclet numbers greater than 2. the central-difference 

scheme formulation can. and often does, lead to oscillations (ie 

'wiggles') in the numerical solution.

The appearance of wiggles is a sign of not conforming to the physical 

law being approximated. Since iterative solution procedures are 

preferred for cost effectiveness (ie to avoid the storage of large 

coefficient matrices) . very inaccurate and sometimes no solution at all 

(ie divergence) are predicted. Thorn and Apelt (1961) reported 

increasing difficulties, also reported by Kawaguti (1961) and Simuni 

(1964). for higher Reynolds numbers. To obtain accurate solutions by 

the use of central-difference schemes, one needs to use very fine grids 

so that the cell Peclet numbers are restricted to below 2; this is a very 

serious restriction due to the power of present day computers and the 

excessive cost it implies. The effect of very fine grids is that the 

importance of the convection term diminishes to a level where it is 

negligible, in other words, the flow is diffusion dominated. A way 

around the need for fine grids is to use under-relaxation to control the 

instability as reported by Thorn and Apelt (1961). Nevertheless, many 

authors have perservered to obtain solutions to various problems using 

the central-difference scheme and its variants (ie the higher-order 

central-difference scheme) .

-8-



Burgraff (1966) made use of the under-relaxation technique of Thorn and 

Apelt (1961) to predict the flow-field in a square cavity, obtaining 

solutions for Reynolds numbers as high as 400. However, Burgraff's 

(1966) work revealed the serious shortcoming of the technique, since 

higher computing times were required to compensate for the instability at 

higher Reynolds numbers.

Among other authors to use and/or report about the central-difference 

scheme, are the following: Blowers (1971). Spalding (1972) de Vahl 

Davis and Mallinson (1976). Raithby (1976a). Chien (1977). Leschziner 

(1977.1980). Lillington and Shepard (1978). Atkins, Maskell and Patrick 

(1980). Stabley. Raithby and Strong (1980). and Barrett (1982).

However, it is the author's opinion that there is a basic weakness in the 

central-difference formulation, in that convection is by its very nature a 

non-symmetrical phenomenon. while central-differencing implies 

otherwise.

It is clear that the aim of the numerical practitioner is to formulate an 

unconditionally stable numerical scheme for the solution of higher 

Reynolds number flows. The development of numerical schemes to 

improve the above mentioned instabilities, can be credited to Courant. 

Isaacson and Rees (1952) for their efforts to develop a solution 

procedure for hyperbolic equations (ie for supersonic flows), where links 

with characteristic methods are demonstrated, together with the use of 

the term 'upstream'. It was shown that when the convection term was 

replaced by an approximation which took into account the local direction 

of the flow (eg the above mentioned assymetry of convection) . this

-9-



greatly Improved the stability of the iterative solution procedure. The 

consequences of the 'upstream'-direction influence generate diagonal 

dominant matrices, leading to the stability of the iterative solution 

procedure. Such numerical schemes, which take into account the local 

direction of the flow are termed 'upwind-differencing' schemes.

The upwind-difference scheme also suggested by Spalding (1966). was 

incorporated into a solution procedure for solving laminar flow problems 

by Runchal and Wolfshtein (1966). The laminar flow problems being 

considered were the impingement of a jet. and the flow in a square 

cavity. The application of the upwind-difference scheme were later 

reported by Wolfshtein (1967). Pun and Spalding (1967) and Runchal. 

Spalding and Wolfshtein (1967). These efforts were also collectively 

reported in detail by Gosman. Pun. Runchal and Spalding (1969). A 

similar numerical scheme was. independently, reported by Greenspan 

(1967).

Numerous applications of the upwind-difference scheme have been 

reported and some of these are listed below for completeness: 

Wolfshtein (1968), Dennis and Chang (1969). Blowers (1971). Runchal 

(1972). Markatos (1974). de Vahl Davis and Mallinson (1976), Raithby 

(1976a). Griffiths (1977). Atias, Wolfshtein and Israeli (1977), Chow 

and Tien (1978), Atkins. Maskell and Patrick (1980). Kellogg, Shubin 

and Stephens (1980). Markatos and Pericleous (1984). and many more.

However, the accuracy of the first-order accurate upwind-difference 

scheme has caused a major controversy among the members of the 

computational fluid dynamics community. Although the expected
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superiority of the upwind-difference scheme over the second-order 

central-difference scheme has been demonstrated and confirmed in 

numerous publications, see for example: Runchal (1972). Raithby and 

Torrance (1974). Castro (1978). Patel. Markatos and Cross (1985a). 

Patel and Markatos (1986a) and many others, there still exists room to 

improve the upwind-difference scheme for flows where there is a 

grid-to-flow angle present. These inaccuracies arise in the presence 

of non-aligned grids to the flow direction as reported by Raithby 

U976a). de Vahl Davis and Mallinson (1976). Leschziner (1980) and 

Patel and Markatos (1986a). Indeed, the well known smearing effect of 

the upwind-difference scheme is clearly illustrated by Raithby (,1976b) 

among others, where the transport of a scalar in a uniform flow-field is 

considered at various angles to the grid lines. The smearing effect, 

when present In multi-dimensional problems, is termed 'false-diffusion' 

[Patankar (1980)1. The conditions which give rise to false-diffusion 

were first determined by Wolfshtein (1968), who obtained an expression 

with the aid of numerical calculations of uniform flow over a square mesh 

at infinite Peciet number. Later, de Vahl Davis and Maitinson (1976). 

and Leschziner (1980). reported similar expressions via analytic means.

The false-diffusion expression, a function of the flow-to-grid skewness 

angle is only applicable to locally one-dimensional differential schemes. 

The actual cause of false-diffusion and the form of the expression is not 

difficult to perceive, since from the physical point of view it is clear that, 

in circumstances where the grids do not follow the flow, the upwinding 

technique should follow the streamlines/characteristics, and not the grid 

lines. However, mathematically, it can be argued that the error is one 

of trying to construct a solution procedure of complex multi-dimensional

-11-



transport phenomena by super-positioning of solutions, which are in 

essence of the one-dimensional transport equation.

Nevertheless, although the upwind-difference scheme has taken a lot of 

criticism, it still provides realistic and plausible solutions for most 

practical problems of importance, if sufficient care is taken to ensure the 

grid-independence of its predictions. The latter, however, can lead to 

high costs and. therefore, there still exists room to improve this 

scheme. This has already been recognised by many practitioners of 

numerical analysis, and indeed, modified versions of the scheme have 

been reported by, for example. Spalding (1972), Raithby and Torrance 

(1974) and Patankar (1980). These modified, but still locally 

one-dimensional, versions of the upwind-difference scheme respond to 

the cell Peclet numbers and not to the local skewness of the flow to the 

grid lines.

A step forward to improving the upwind-difference scheme was proposed 

by Spalding (1972). The proposed scheme termed the 

'hybrid-difference' scheme is a combination of both the central- and 

upwind-difference schemes. The term 'hybrid' arises from the blending 

of the advantages of the two numerical scheme to achieve an improved 

scheme. The hybrid-difference schemes utilises the central-difference 

scheme for mesh Peclet numbers less than |2| and the 

upwind-difference scheme otherwise. However, this scheme still poses 

a restriction on the Peclet number over which the false-diffusion error 

will be present. Therefore, care must be taken to distribute the grids 

so as to utilise the central-difference scheme. This would again prove 

expensive and does little to alleviate the problem of false-diffusion.

-12-



Thus, the hybrid-difference scheme will only produce accurate results for 

the entire range of cell Peclet numbers when the grid is aligned to the 

flow.

The hybrid-difference scheme has been utilised by many authors and 

reported by the following: Markatos (1974.1978), Leschziner (1980), 

Leschziner and Rodi (1981), Man, Humphrey and Launder (1981) and 

others. The paper by Leschziner (1980) is an excellent comparative 

study, using five different flow configurations, and showed that the 

hybrid-difference scheme was the least accurate of the other schemes 

compared.

The locally-exact-difference scheme, first formulated by Alien and 

Southwell (1955) and later reintroduced by ll'in (1969). Spalding (1972) 

and Raithby and Torrance (1974). utilises the analytic solution of the 

one-dimensional convection-diffusion equation. The influence 

coefficients for the scheme involve the evaluation of exponential 

functions, which is expensive. Of course, for one-dimensional 

problems, the scheme is guaranteed to produce the exact solution for all 

Peclet numbers without any false-diffusion. However, the scheme 

suffers from false diffusion in multi-dimensional flow calculations since it 

still neglects the grid-to-flow skewness (see for example: Patel and 

Markatos (1986a)). Modifications of the locally-exact-difference 

scheme have been reported by Dennis (1960,1973), Allan (1962). 

Briggs (1975) and Chien (1977). among others.

Only one of the modified versions of the locally-exact-difference scheme 

is considered here, this being the power-difference scheme of Patankar

-13-



(1980). The power-difference scheme is aimed at reducing the 

computational cost of evaluating the above mentioned exponential 

functions. In the scheme proposed by Patankar (1980), the exponential 

function is replaced by a fifth-order power law. (Various ranges of 

mesh Peclet numbers exist within which a different approximation is 

used). This greatly reduces the time required to evaluate the 

exponential function in the first instance. The scheme has not been 

extensively used since its results are very similar to the hybrid- and 

upwind-difference schemes, and since it does not cure the smearing 

when grid-to-flow skewness exists.

The idea of upwinding was further extended by Leonard (1977) who 

considered the contribution of an extra upstream grid node in 

approximating the convection term. The scheme combines the merits of 

upwind-differencing with those of higher-order quadratic interpolation, but 

still without explicit reference to the actual flow angle. The scheme, 

referred to here by the shorter name quadratic-upstream-difference 

scheme, is claimed to reduce false-diffusion, erroneously to the author's 

opinion. The scheme, as reported by many authors, see for example: 

Han r Humphrey and Launder (1981). Pollard and Siu (1982) and Patel 

and Markatos (1985a). suffers from oscillations since the influence 

coefticients may become negative, infringing the transportive criteria, 

thus making it unbounded.

Indeed, a lot of comvergence problems have been encountered by users 

of the quadratic-upstream-difference scheme, for example: Leschziner 

(1980) and Pollard and Siu (1982). show that the scheme gives rise to 

unbounded solutions with the amplitude of the oscillations being small.
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This is attributed to the central coefficient becoming infrequently zero for 

infinite mesh Peclet number. Man. Humphrey and Launder (1981). 

among others, concluded from their results of both laminar and turbulent 

flow calculations in a square cavity with a moving lid, that the extra 

computational cost per grid point required by the scheme over that for 

the upwind- and hybrid-difference schemes, for a converged solution, is 

more than compensated for by the greater accuracy, when the flow is 

aligned with the grid. However, when this is not possible, very fine 

grids are required to overcome the problems of convergence that may be 

encountered. Apart from these disadvantages, the scheme also 

requires special practices at boundaries together with some modification 

of the influence coefficients, for example: Han, Humphrey and Launder 

(1981) reported that modified influence coefficients were achieved by 

using pseudo sources to give a stable scheme. All these diminish the 

practicality and generality of the scheme.

Extensions of the quadratlc-upstream-difference scheme are reported by 

Leonard, Leschziner and McQuirk (1978) and Pollard and Siu (1982). 

The latter authors reported two modified versions of the 

quadratlc-upstream-dttterence scheme which were termed the extended 

and extended-revised versions. The scheme is first reformulated to 

ensure always positive influence coefficients, in the absence of sources, 

to conform to the boundedness property. This leads to the extended 

version of the quadratlc-upstream-difference scheme. The scheme 

performs well, see Pollard and Siu (1982) and Patel and Markatos 

(1986a), in the absence of sources and when the flow is mainly along 

one of the coordinate directions. However, since sources cannot be 

neglected in real problems, its applicability is still limited.
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The aforementioned deficiencies in the quadratic-upstream-difference 

scheme-extended are rectified by further linearisation of the sources 

according to the practice of Patankar (1980). This leads to the 

revised-extended version of the scheme as reported by Pollard and Siu 

(1982). Unfortunately, no other reported applications of the scheme 

have been traced to date, except that by Pollard and Siu (1982) and 

Patel and Markatos (1986a). The modified schemes although accurate, 

prove expensive, and do not explicitly take into account the flow angle, 

ie they do not address directly the problem of 'false diffusion'.

It Is the author's opinion that the 'way-ahead' is to look towards flow 

oriented schemes, which directly take into account the grid-to-flow 

angle, ie to apply the approximation along the local streamlines.

The earliest reported flow-oriented schemes were those by Le Favre 

(1970) and Zuber (1972). who introduced schemes with explicit 

grid-to-flow angle dependence. However. the schemes were 

non-conservative and thus not fully suitable for general use. Later. 

Ralthby (1976b) formulated what was termed the 

skew-upstream-difference scheme, which was non-conservative. The 

skew-upwind-difference scheme of Raithby (1976b). although formally 

only first-order accurate, yields a significant reduction in skewness errors 

by partially simulating an upwind discretisation coordinate system. In 

this case, skewness errors are entirely absent, that is. the scheme 

tends to simulate the locally multi-dimensionality of the flow. 

Applications of Raithby's (1976b) scheme have been reported by Militzer. 

Nicoll and Alpay (1977), Castro (1978). Leschziner (1980) and 

Lillington (1980.1981). although the difficulty of the scheme to converge
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always, for complex fluid-flow problems, and the possibility of 'wiggles' 

or 'oscillations' still exist. Furthermore, the scheme is complex in its 

implemention in generally available fluid-flow software.

Variations of the skew-upstream-difference scheme have been reported by 

Lillington (1981) termed as the 'vector-upstream-difference scheme' and 

Hassan, Rice and Kirn (1983) reported the 'mass-flow-weighted 

skew-upwind difference scheme'. The former is modified by 

representing the source differently to the original scheme of Raithby 

(1976b) and the latter reformulated the coefficients to ensure always 

positive influence coefficients. Both the above modified schemes have 

been used for complex flow problems by the above authors, but no 

mention of the difficulties of programming matter were stressed upon.

1. 23 Finite-Element Methods - A Survey

A great deal of effort has been devoted recently to the application of 

finite-element methods in fluid-dynamics. Along with this development 

has come the realisation that the normal Galerkin method, the 

finite-element counterpart of the central-difference scheme, is not always 

suitable. This is because convection operators are non-symmetric and 

Galerkin method application leads to occasional spurious oscillations in 

the results, for flows at high Peclet numbers (Gresho and Lee (1979)). 

A similar situation was encountered by the control-volume practitioners in 

the 1960s, and was then overcome by the introduction of the upwinding 

schemes. Indeed, some of the finite-element methods are also subject 

to the same criticisms as the conventional upwind finite-difference
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methods.

Convection dominated phenomena have proven to be one of the most 

difficult types of problems to be successfully dealt with by numerical 

methods. Although the Galerkin method has proved satisfactory in 

applications to linear and non-linear symmetric operators, its applications 

to non-symmetric operators often gives rise to 'wiggles'. These 

'wiggles' can be eliminated only by severe mesh refinement.

An excellent review of the applications of finite-element methods to 

fluid-flow problems is given by Gallaher et al (1978) and Glowinskl 

(1982). Detailed background and general information on developments 

of the method is easily obtained from standard finite-element text books 

(eg Zienkiewicz (1977)). Therefore, the reader should refer to the 

above books for detailed information with regard to the background and 

applications of finite-element methods.

What follows is a summary of most of the earlier and later finite-element 

techniques that are now commonly used by fluid-dynamics practitioners.

To overcome the problems encountered by the Galerkin finite-element 

method for convection-diffusion problems. several upwind type 

finite-element methods have been reported (for example see: Hughes et 

al (1979) and Heinrich et al (1977)). The extended methods for 

two-dimensional flow problems were reported by Heinrich et al (1977).

In general. all such upwinded-finite-element methods suffer from 

numerical/'false diffusion' similar to that experienced by the conventional
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upwind-difference finite-difference methods.

The flow-oriented schemes were the next step to improve the 

finite-element methods. This was reported by Hughes and Brooks 

(1979) where a 'streamline-upwind scheme' similar to the 

skew-upstream-difference scheme of Raithby U976b) was proposed, 

although the solutions were not always bounded. This clearly shows 

that the finite-element methods also suffer from the same deficiencies as 

those of the finite-difference/volume methods.

Superficially, it is easy to conclude that the finite-element methods are 

advantageous over the finite-volume methods since the former can handle 

complex shapes of calculation domains due to the great flexbility in the 

element shapes that can be utilised. However, conservation is not 

usually satisfied over the whole calculation domain. which is a 

disadvantage on all situations where the overall balance of the fluxes are 

important.

A further disadvantage of the finite-element methods is that the 

coefficient matrix is not always regular; thus, computing requirements 

tend to become demanding and always greater than the finite-volume 

methods.

Recently, due to the advent of grid generation techniques, finite-volume 

methods have been utilised to calculate flow-fields for complex 

geometries using 'body-fitted grids' [Malin. Rosten, Spalding and Tatcheil 

(1985)1 and, in general, the computing costs are far less than those 

required by the finite-element methods.

-19-



1.3 Closure

This chapter has presented a classification of the numerical techniques 

used for solving fluid-flow problems, together with a literature survey for 

finite-difference/control-volume methods and finite-element methods.
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CHAPTER 2

2. DIFFERENTIAL EQUATIONS AND FINITE-VOLUME EQUATIONS

2. 1 Introduction

This chapter describes the general mathematical framework (ie the 

Navier-Stokes equations) employed in the calculations of the laminar 

turbulent flows. The partial-differential equations presented here 

express the physical laws of conservation of mass, momentum, enthalpy 

and other conserved fluid properties. Both laminar and turbulent flows 

are modelled by the same set of equations, which is achieved by 

prescribing 'effective' exchange coefficients for the relevant variables. 

The equations are given in cartesian tensor notation form for the general 

time-dependent problem.

2. 2 Conservation Equations

2.21 The partial-differential equations

The equations listed in this section are equally applicable to both laminar 

and turbulent flows.

For multi-dimensional flows, the time-dependent equations for the 

conservation of mass, momentum and any conserved scalar property can 

be expressed in cartesian tensor form as follows [(eg Bradshaw 

(1976)1:
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ft (pu J> = ° (2.21-1);

t (PUL) * ^T {pu J u i- - T L

where:

= 0 (2.21-2a);

au
(2.2i-2b):

and

6 Lj = 0

= 1 L=j

Conservation of scalar property

(2.21-2c).

at (puict) ~ J<t>-J } ~ S4> = ° (2.21-3a);

where 3$ is the source/sink term for 0. and J^ j stands for the diffusion 

fluxes, which are of the following form:

(2.21-3b)

where ovb is the Prandtl number.
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2. 22 The time-averaged form of the equations

The exact time-dependent equations apply to both laminar and turbulent 

flows. In theory, it should be possible to solve these equations for 

turbulent flows directly; however, in practice, their solution is not 

possible at present, or in the foreseeable future [(eg Launder and 

Spalding (1972)3. Simulation of turbulent flows is obtained from the 

equations presented above by means of the following substitution:

<t> = <t> + <j>' (2.22-1);

where <j> is the time-averaged value and the prime. ('). denotes the 

fluctuating part of <t>. The introduction of equations (2.22-1) into the 

equations of Section 2.21 yields the relevant forms of the time-averaged 

equations. These are listed in Appendix A2.1.

2. 23 The general equations to be solved

A review of the relevant partial-differential equations of interest, listed 

above, indicates that they are similar in their structure for all conserved 

properties and can be represented by a single general equation, which 

for steady-state phenomena is as follows:

Polar

13 d ^ dp (-   (rv*) «    (u«» = ~ - Crteff.«,
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(re ff.<t> > = 84, (2.23-la)

Cartesian

<2 ' 23- lb);

where reff $. r and S^ are deduced from the parent equations (see 

Appendix A2. 1).

The terms on the left-hand side of equation (2.23-1) represent the 

transport of <t> by convection and the terms on the right-hand side, 

except 84), represent the diffusion of 0; 3$ is the source expression 

which includes real sources/sinks and terms that do not neatly fit into 

the convection or the diffusion terms.

2. 3 Discretisation Procedure

In Section 2.2 above, the partial-differential equations which govern 

steady-state flow were presented. The task of this sub-section is to 

present briefly the numerical procedure which has been used to solve the 

relevant equations.

The aim is to employ numerical methods, of the finite-volume type. 

The domain of interest is subdivided into a finite-number of 

control-volumes, by using a finite-volume grid. The grid points are 

surrounded by non-overlapping 'control-volumes' which when taken 

together completely fill the domain of interest.
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The finite-volume algebraic equations, at each grid point, are obtained 

by integrating the differential equations over each control-volume. 

Integration enables interpolation assumptions for the variables of values 

and gradients between grid nodes.

The above discretisation method provides a set of algebraic equations 

which are non-linear (by means of their coefficients being functions of 

the dependent variables) and strongly coupled. This necessitates the 

use of iterative solution procedures (iteration as opposed to direct matrix 

inversion) .

2. 31 Finite-domain equations

In this section, the finite-volume algebraic representations for the general 

equations (2.23-1) are derived.

2. 32 Finite-volume grid and variable locations

The domain of interest is sub-divided into finite-volumes by orthogonal 

intersecting grid-lines which are distributed parallel to the coordinate 

axes.

The points of intersection are called grid points or nodes, and represent 

the locations where every scalar is evaluated.

Figure 2.32-1 represents a typical grid arrangement, together with the
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locations of storing and computing the dependent variables in the 

finite-volume grid. All scalar variables (eg. P. k. e. T. H, etc) are 

stored at the grid points whereas the velocity components (eg, u, v) are 

stored midway between two adjacent grid points. This approach [Harlow 

and Welch (1965)] is conventional and termed as the 'staggered-grid' 

arrangement is adopted here. Its advantages are:

* the velocities are available directly for flux evaluations at the 

control-volume faces; and.

* the pressures are stored on either side of velocities, which 

enables pressure gradients (which drive the velocities) to be 

evaluated easily. The '!_' shapes, in Figure 2.32-1 depict the 

manner in which the dependent variables are grouped; in other 

words, the triad of points inside the L's refer to the same 

storage location.

2. 33 General- and boundary-control-volumes

Each dependent variables is defined within a control-volume, over which 

the integration is performed. Since there are three different locations 

for the dependent variables in Figure 2.32-1 there exists three distinct 

types of control-volumes. These are depicted in Figure 2.33-1. The 

shaded areas A. B and C refer to the control-volumes for the u. 4> and 

v variables, respectively.

Each dependent variable has a different representation for near-boundary

-26-



control-volumes. These are depicted in Figure 2.33-2. The shaded 

areas A'. B' and C' refer to the near-boundary control-volumes for the 

u, 4> and v variables, respectively.

This arrangement is utilised so that at the near-boundary control-volume 

faces, the velocity components and the boundary grid points coincide 

with the boundary value.

2. 4 Derivation of Finite-Volume Equations

With reference to the general equation (2.23-1). attention Is focussed 

here on the derivation of the finite-volume, algebraic equations relating 

<t>p to its surrounding neighbours. The notation is depicted in Figure 

2.4-1. The differential equation is integrated over the control-volume 

and each term will be discussed in turn.

2. 41 The diffusion term

Integration of the equation over a typical control-volume P. Figure 

2.4-1. for the diffusion term yields the following expression:

r r -<?!?
xw rs

= [De + DW + Dn + Ds ]<t>p
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where the D's stand for the diffusion expression, evaluated at various 

locations around the point P.

For example:

Ae
De = rd> e = ( ~—*——~ ) T2- (2.41-lb); 

8 ^e 6xe 2 8xe

which is the total flux due to diffusion across the east face of the P 

control-volume.

2.42 The source term

Integration of the source term. 3$. over a typical control-volume P. 

together with the linearisation procedure of Patankar (1980) yields the 

following expression:

xe rn

Jf r S^ dxdr = 3$ rp AX Ar (2. 42-1 a);

w rs
= Sa + Sb 4>p (2. 42-1 b).

The restriction on 85. one of the linearisation coefficients is that it must 

be negative so as to ensure numerical stability [see Patankar (1980)].
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2. 43 The convection term

It is the intention of the present study to evaluate a number of possible 

approximate representations for the convective fluxes across a 

control-volume face, since numerous numerical schemes have been 

reported for this purpose, and none appears entirely satisfactory. 

The integration of the convection term of equation (2.23-la) over a 

typical control-volume, leads to the following expression:

xe rn
J ( r fr ( PvnJ)) + t* ( Pu<t>)} = CP^P ~ E cnb«>nb (2.43-la); 

xw rs

where the C's denote mass fluxes and nb. the neighbouring values 

involved in the calculation. The expression of Ce . say. is:

(pp+pp) 
Ce = pe ueAe = -~   ue Ae (2.43-lb).

In general the expression utilised for the approximation at the 

control-volume faces of the dependent variable of interest is important. 

This is the subject of a later chapter.

2. 44 The overall finite-volume equations

Finally, the overall finite-volume representation can be obtained by 

substituting expressions (2.41-1). (2.42-1) and (2.43-1) into equation 

(2.23-1).
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This representation is given below in a compact form:

Ap<j>p = E Anb 4>nb + S (2.44-1);

where An fc denotes the neighbouring grid-point value contributions to 4>p 

due to the influences of convection and diffusion [Patankar (1980)].

2. 5 Convergence Criteria and Physical Constraints

Since the differential equations are approximated by finite-volume 

equations (2.44-1). it is very important to retain within the discretisation 

procedure, the relevant information from the original partial-differential 

equations. It is on this basis that the finite-volume equations should be 

constructed.

2. 51 Information in analytical solutions

(i) The conservation property

The volume integral (in vector notation) of the differential equation for a 

region (R) bounded by a surface OR) is given by:

{pu<t> - rgrad (4>)) n dSR = J S dR (2.51.1-1) 

SR R

where n is the unit normal vector (positive outwards) to the surface.
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The conservation requirement preserves the integral conservation relations 

of the continuity equation.

(H) The boundedness property

Within a region (R). the maximum principle [Forsythe and Wasow 

(1960)1 implies for S=0. that the solution of a differential equation 

cannot assume either a negative minimum or a positive maximum. This 

implies that the solution must be bounded in the region (R), by the 

values on the surface OR).

That is:

mln (^) < <t> < max (<t>) (2.51.2-1)< <t> < max (<t>sR )

(iii) The transportive property

The transportive property implies that the effect of a perturbation, in the 

absence of sources, does not interfere with the solution (Roach and 

Mueller (1970), Roach (1972)1 in regions of strongly convective flows.

2. 52 Information In discretlsed equations

(I) The conservation property

For the discretised procedure to satisfy the conservation property, the 

integral conservation expression (2.51.1-1) must be satisfied both within
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each control-volume, locally, and over the whole region of interest, 

globally.

Therefore, to meet the requirements of global conservation, flux 

continuity at control-volume faces must be enforced. This is clear from 

expression (2.51.1-1). when written for each control-volume in turn, 

and summed over the domain of interest. To achieve this, the fluxes 

must be continuous at the control-volume faces (ie. reciprocity), thus 

ensuring appropriate cancellations within the domain of interest, leaving 

only the exterior surface integral.

(ii) Boundedness property

The boundedness property for the discretised equations is ensured when 

equation (2.44-1) in the absence of sources, satisfies the following 

expression:

Ap > E Anb ; Anb » 0 (2.52.2-1); 

thus ensuring mass conservation and system boundedness.

For example, consider one-dimensional flow, for which the following 

algebraic equation is valid:

Ap4>p = Ag4)e + Aw<J>w (2.52.2-2a) 

The diagonal dominance of this system is ensured by requiring that:
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<2.52,2-2b>

It follows that:

= |Ap| > lAgl + |A^y| <2.52,2-2c) 

and hence.

IAE I + lAyvl = lAe+Ayyl (2.52.2-2d) 

which implies.

= <t>p < max(4^.4^} (2.52.2-2e).

It is to be observed that 0p lies within the range of its neighbouring 

values, implying physically realistic solutions (ie. no over/under-shoots) . 

It follows that If the numerical scheme in matrix form is diagonally 

dominant, then all coefficients (A^b^ . have the same sign.

Effects of non-dlagonally dominant systems can be illustrated by the 

following simple example:

(2.52.2-2f);

where the coefficient of <J>|_EFT Is negative and that of BRIGHT Is positive. 

This system has the potential for over/under-shoots.
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(ill) Transportlve property

For discretised equations, the links of a grid point with neighbours lying 

outside the domain of interest should not feature in the calculation of the 

value at that grid point. Failure to satisfy this rule, would lead to 

non-positive coefficients, thus violating the boundedness property.

2. 53 Grid-to-flow skewness

In general, flows which are inclined to the grid (eg. recirculations) have 

to be treated by the differencing scheme so as to take into account the 

local direction of the flow. This idea is discussed in detail in a later 

chapter.

2.6 Closure

This chapter has presented, in brief, the mathematical formulation of 

flow and heat/mass transfer phenomena that are considered in this 

thesis.

The partial-differential equations for continuity, momentum and a general 

scalar property, $. have been introduced and discussed.

Furthermore, the finite-volume representation of the partial-differential 

equations has been derived, in a general context, together with the 

introduction of such properties of the original differential equations as
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conservation, boundedness and transportive principles that have to be 

satisified also by the finite-volume equations.
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CHAPTER 3

3. SOLUTION PROCEDURE FOR THE FINITE-VOLUME EQUATIONS

3. 1 Introduction

In the previous chapter the partial-differential equations, relevant to the 

present study, were set out together with the general form of the 

finite-volume equations. The task in this chapter is to present briefly, 

the solution procedure that is used to solve the set of finite-volume 

equations.

Patankar and Spalding (1972) described a three-dimensional calculation 

procedure for parabolic flows; for example, a flow in a duct is calculated 

by marching in the predominant direction of flow. This idea was 

Incorporated into a three-dimensional computational structure [Caretto. 

Gosman. Patankar. Potter and Spalding (1972); Patankar (1975)1.

The particular technique by which the velocity and pressure links are 

handled has been given the name SIMPLE (for Semi-jmplicit Nrtethod for 

Pressure Linked Equations; although the method is actually fully-implicit; 

semi-implicit was used only for euphony).

Later the NEAT (fvJearly D<act Adjustment of Terms) method of Spalding 

(1976) was also incorporated within the SIMPLE method. The method 

is. despite its name, a fully-implicit solution procedure for solving the 

relevant system of equations by cycles of guess-and-correct operations 

on a line-by-line basis, that utilises the tri-diagonal matrix algorithm
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known as TDMA or Thomas algorithm [Smith (1969); Roach (1976) 

Conte and de Boor (1980)].

3.11 The SIMPLE algorithm

A brief description of the SIMPLE solution procedure is presented here 

for completeness, but the reader is referred to Patankar and Spalding 

(1972). and Patankar (1980) for full details.

The algorithm

The momentum equations are solved using a 'guessed' pressure field.

The continuity equation is not directly solved, but is manipulated instead 

to yield an equation for 'pressure-corrections' that are used to correct 

pressures and velocities.

Operations

The following are the formal steps of the solution algorithm [Pun and 

Spaiding (1977)]:

1. Guess the pressure field.

2. Solve the momentum equations on the first line, for u* and v* 

using the TDMA procedure, where the 'starred' velocities 

denote the solution based on the guessed pressure field.
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3. The 'starred' velocities do not. in general, satisfy continuity. 

Substitution of these velocities in the continuity equation yields 

therefore mass errors.

4. The pressure-correction equation is solved, having as its 

source term, the mass errors evaluated in Step 3.

5. The pressure-corrections are applied to correct the velocities 

and pressure, in such a way so as to eliminate the continuity 

errors.

6. Steps (2) to (5) are repeated until convergence to a preset 

tolerance has been obtained.

7. Advance to the next line and repeat Steps (2) to (6).

8. Continue until a domain sweep is completed, (a domain sweep 

consists of visiting every line in the domain).

9. Perform as many sweeps as required for convergence. This 

leads to a converged solution within a preset tolerance.

The above solution procedure is also applicable to three-dimensional 

problems, where 'line' is replaced by 'slab', eg. groups of cells having 

the same z-coordinate.
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3. 12 The NEAT algorithm

The NEAT algorithm, is a line-by-line technique which uses the TDMA as 

its basic unit of operation.

in two-dimensional problems, equation (2.44-1) is solved for all 

4>-variables along a grid-line, where the neighbouring <j>-values used are 

the best estimates available. It is this assumption that enables the 

TDMA procedure to be used. NEAT performs an additional 'block 

correction' between lines, so as to accelerate convergence.

Rearranging equation (2.44-1) gives, for the TDMA procedure, the 

following set of equations (for a constant x-line):

Ap4>p = AM4N + AS4>s + SLUMP (3.12-la)

where SLUMP is given by:

SLUMP = S + A£0E + AwcfrW (3.12-lb).

The TDMA procedure is then applied to equation (3. 12-la) as described 

in Appendix A3. 1 .

The above solution is embodied in the computer code 2/E/FIX 

(2-Dlmensional Elliptic FIXed grid) used in the present study [Pun and 

Spalding (1977)].
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3. 2 Sources of Inaccuracy in Solution Procedures

There are two sources of error which, in general, influence the overall 

accuracy of the solutions obtained by numerical solution procedures, 

such as the one described above.

They are identified as:

(a) errors and uncertainties in physical/mathematical modelling, 

eg. turbulence differential-equation models [Patel. Cross. 

Markatos & Mace (1986)1. two-phase flow iterations, etc; and

(b) errors due to numerical approximations. and computer 

round-off.

Only the first part of the second source of errors. eg. 

numerical-approximation errors, is of importance in this study and it is 

therefore the only one discussed below.

3. 21 Numerical approximation errors

These errors arise because the continuous nature of the equations is 

replaced by a discrete representation (ie. by interpolation formulae). 

These errors are mainly due to the fact that steep gradients which are. 

in general. present in the final solution may not be accurately 

approximated by the numerical formulae used. In case of unwise 

choice of numerical formulae, accurate representations can only be
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achieved by the use of very fine grid distributions; this, however, leads 

to the increase of the computer round-off errors that may affect seriously 

the final outcome.

Furthermore, very fine-grid solutions are too expensive to use. in terms 

of computer resources. One way out of these difficulties is the use of 

better approximations that will improve the accuracy for coarser grids. 

Further discussion on numerical errors is provided in Chapter 5.

3.22 Convergence

The degree of accuracy of the final solution is also dependent on the 

convergence criterion imposed on a given solution procedure. 

Therefore, precise definition of 'converge' is required.

A 'converged' solution in the present study is deemed to be obtained by 

satisfying the following two specific requirements, concerning the error 

levels:

(a) the sum of absolute residual errors in the solution of any 

variable must be low ie. <10~6 ; and

(b) the absolute (volume) continuity errors must be less than 0.1% 

of a typical volume-flow rate.

In general, the latter requirement was satisfied before the former.
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3. 23 Relaxation practice

Due to the non-linear nature and the strong coupling between the 

differential equations, the iterative procedure may necessitate relaxation, 

in order to converge. When the iteration-to-iteration variation in values 

is large, there is a possibility of divergence and to combat this, it is 

advisable to employ some sort of under-relaxation.

The conventional practice was followed, eg:

^present = a*new + d~a)<t>old (3.23-1);

where 4>new ' s tne 4>~value evaluated at the current iteration; $013 is the 

4>-value from the previous iteration, ^present is tne resulting 4>-value at 

the present iteration after being relaxed, and a is the relaxation 

parameter.

3. 3 Closure

This chapter has presented, briefly, the solution procedure by which the 

algebraic equations, derived in Chapter 2. can be solved. The 

procedure used is the SIMPLE algorithm together with the NEAT 

adjustment.

The solution procedure is flexible and general, and may be applied to 

calculate numerous flow situations of practical interest.
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Finally, the accuracy of the numerical solution procedure and constraints 

of convergence were identified.
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CHAPTER 4

4. NUMERICAL SCHEMES

4. 1 Introduction

In this chapter, the numerical schemes for convection considered for this 

Investigation are introduced. The diffusion term is approximated by the 

central-difference scheme, which is. in general, a good approximation, 

since it is third order [Leonard. Leschziner and McGuirk (1978)].

On the contrary, convection, which is by its nature a non-symmetrical 

phenomenon, may Introduce considerable inaccuracy when approximated 

by numerical schemes.

In what follows, thirteen numerical schemes (ie. interpolation techniques) 

for the convection term are described [Patel. Markatos and Cross 

(1985a). Patel and Markatos (1986a)J. with the aim of evaluating and 

comparing their accuracy and practicality of implementation.

4. 11 Diffusion terms

For a general grid. Figure (4.11-1). the integrated diffusion term, in 

two dimensions, is given by:

- <r
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where approximations for the quantities in brackets are sought.

4.11.1 Central-differencing scheme

The central-difference scheme, which is used for the diffusion term 

approximation, assumes in the present study a piecewise linear profile 

between two grid points, as it is usually used to approximate the 

4>-gradient. Therefore the terms in expression (4.11-1) are replaced 

by:

6 W

oxe oxw
(4>w-<J>p)aw

rn .. . , rs
(4.11 .1-1 )

4. 12 Convection term

Integration of the convection term, over a typical control-volume. Figure 

(4. 11-1). yields:

(pu<j>) e ae- (pu0) w aw+ (pv0) n an- (pv<j>) s as (4.12-1).

The objective of the present study is to Investigate various forms of 

approximating the <j>-value used at the control-volume faces (ie. ct>e , <t>w , 

<t> n . 4>s ) . and suggest new ones. The velocities at the faces do not 

need any averaging since when solving for any scalar $ they are already 

located at the cell faces.
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4. 12. 1 Central-difference scheme

The central-difference scheme assumes a linear profile to evaluate the 

convected face values as follows:

<t>e ~ p ^^E + ^^

<^N - 2 ((t>w * ^

1 (4.12.1-1)
<t>n = 2 (4>N

1
2

The influence coefficients

The overall A coefficients of equation (2.44-1) which concern

contributions of both convection and diffusion are. for the

central-difference scheme, as follows:

= Oe - mod ( ) + f-Ce .Ol

Ayy = Dyy - mod t^T") "*"

(4.12.1-2);

AN = Dn - mod (r") + ff-Cn .Ol

cs 
AS = Ds ~ moc^ ^o~^ "*" f^s- 0 !

where the D terms are defined by equation (2.41-lb) and the C terms 

are defined by equation (2.43-lb). and
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IA,BJ = max (A and B).

This is a convenient way of presenting the various schemes and will be 

used for all of them, in what follows.

4.12.2 Upwind-difference scheme

The upwind-difference scheme, first suggested by Courant. Issacson and 

Rees (1952) assumes the upwind-0 value to be convected through the 

faces, instead of the average of two neighbours values of the convected 

property. This leads to the following aproximation for the convected 

<j>-values at the faces:

= 4>R

ue <0

4>w =

= <t>p uw<0

(4.12.2-1 )

vn<°

= <t>S

= 4>p vs <0

The influence coefficients

The influence coefficients for the upwind-differencing scheme are:
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AE = CDe .De-Ce l 

AW =
(4.12.2-2) 

AN = lDn .Dn -Cn l

AS = [DS .DS +CS J 

4.12.3 Hybrid-difference scheme

The hybrid-difference scheme, introduced by Spalding (1972) combines 

the advantages of both the central-difference scheme and 

upwind-difference scheme. It leads to the following expressions for the 

convected face values:

4>e = 4>P me>2De 

= (<t>p+<t>E> m

<t>w =

= I (<t>p+<t>w> mw<2Dw

(4.12.3-1) 

= 4>p

= \

\ (<t>p-«-Os) ms <2Ds

where m's are the absolute values of the mass-flow rates through each 

face denoted by the lower-case subscripts.
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The Influence coefficients

The influence coefficients for the hybrid-difference scheme are:

= IO.De-Ce/2.-Ce l

AW =
(4.12.3-2) 

AN = [O.Dn -Cn/2.-Cn l

AS = [O.DS +CS /2.CS 1

4.12.4 Locally-exact-difference scheme

The locally-exact-difference scheme, traced back to the paper by Alien 

and Southwell (1955) and later rediscovered by Spalding (1972) and 

others, makes use of the one-dimensional analytical solution for the 

convection-diffusion equation (without sources) to approximate the 

convected values across the faces.

Since the analytical solution for the one-dimensional convection-diffusion 

equation is an exponential function, the face values according to this 

scheme are approximated as follows:

exp(Pw)-l

* exp(P)-l

exp(Pe )-l 
+ exp(P)-l

(4.12.4-1 ) 

exp(Pn )-l 

exp(P)-l

exp(Ps )-l
* eXp(P)-r

-49-



where P Is the Peclet number and Pe . Pw etc are the mesh Peclet 

numbers.

The influence coefficients

The influence coefficients for the locally-exact difference scheme are:

AE =
exp(Pe )-l

exp(Pw )-1

(4.12.4-2)

exp(Pn )-l

Po

For details see Appendix A4. 1

4.12.5 Power-difference scheme

The power-difference scheme. an extension of the 

locally-exact-dlfference scheme, makes use of a fifth order power law to 

approximate the exponential functions that occur in the 

locally-exact-difference scheme [Patankar (1980)1. The convected value 

at the faces is approximated as follows:

U+/3e )(}>UpS tream ~ ^e^downstream (4.12.5-1 a)
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where:

(4.12.5-1b)

The influence coefficients

AE = DefO^elPell + t-Ce .OJ

(4.12.5-2)
AN = Dn io.0nipn ii + i-cn ,oj

Ps |I + [CSr 01

4.12.6 Leonard-difference scheme

The Leonard-difference scheme [Barratt (1982)] uses two upstream 

grid-point values to approximate the first-derivative (convection term) by 

the following expressions:

(4.12.6-1)

ax p 2Ax 6AX

The influence coefficients

The influence coefficients for the Leonard-difference scheme are
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= 6De - l2Ce .01

AW = 60* + 1-2CV01

AN = 6Dn - [2Cn ,OJ

AS = 6DS + l-2Cs .01

(4.12.6-2) 
AEE = ICee-°l

ANN =

ASS = - icss .oj

4.12.7 Leonard-upwind-difference scheme

The Leonard-upwind-difference scheme [Barratt (1982)] approximates the 

<t>-value at the faces by using three upstream values, and leads to the 

following expressions:

_ - 18<Eyy

ax 6Ax

(4.12.7-1 )

6AX
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The Influence coefficients

The influence coefficients for the Leonard-upwind-difference scheme are:

= 6De - [18Ce ,0]| : AEE = I-9Cee .OJ 

AW = 60* + 1-18CVOJ : AWW = - [-9CW01

AN = 6Dn - [18Cn .Ol : ANN = I-9Cnn .01

(4.12.7-2) 
AS = 6DS + l-18Cs.01 : ASS = - I[-9CSS .OJ

AEEE = - l-2ceee .oi :

ANNN = - t2cnnn ,oj : ASSS = i[2csss .oi

4.12.8 Leonard-superupwind-difference scheme

The Leonard-superupwind-difference scheme [Barratt (1982)] is devised 

to reproduce the exact solution at the nodal points close to the 

boundaries. To achieve this, the Leonard-difference scheme and the 

Leonard-upwind-difference scheme are used in conjunction with a 

weighting parameter evaluated from the exact solution. According to 

this scheme, the first derivatives are approximated by:

LJDS LUDS
= X () + (1-X) <) (4.12.8-1) 

ax ax ax p

where A is a weighting parameter. For details, see Appendix A4. 2.
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The influence coefficients

The influence coefficients for the Leonard-superupwind-difference scheme 

are evaluated from those of equations (4.12.6-2) and (4.12.7-2). 

Their combination is of the form:

LDS LUDS 
Anb = ^Anb "*" (1~^) ^nb (4.12.8-2).

4.12.9 Quadratic upstream-difference scheme

The quadratic-upstream-difference scheme. proposed by Leonard 

(1979). is claimed to combine the accuracy of quadratic interpolation 

with the stability of upstream weighting. This scheme can be 

interpreted as a pure upwind scheme which is. however, augmented by 

gradient/curvature-type correction terms. This allows the ^ value, for 

example, to respond to the transport processes which occur only in 

directions normal to that considered. In other words, it allows the 

coupling of the component flows through one-dimensional approximations, 

which, however, include only corner nodes when the curvature-type 

corrections are made. According to this scheme, the 0-values 

convected through the control-volume faces are expressed, (see Figure 

4. 12. 9-1) . as follows:
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4>e = 2 (4>p

1 ,Ue-HUe l o v 
—— (4>E + <J\y "" 24>p) 
9

+ Ue-i^e'

(4.12.9-1) 

^ = o

1
8

The influence coefficients

(De-3Ce/8) + Me~ (De-3Ce/4-Cw/8) 

(Dyv+SCw/S) + MW^ (Dw+3Cw/4-^Ce/8)

(Dn-3Cn/8) + Mn~ (Dn-3Cn /4-Cs/8)

(4.12.9-2) 
AS = MS" <Ds+3Cs/8) + Mg 4- (Ds -«-3Cs/4+Cn/8)

(3UDS UDS i 
Sa = Sa - ~ (M

QUDS UDS -^ 4 +(M0 C0-vMp Cp-M^ CW-MS Cs )

where:

MT = (c j ± l c jl ) / (2Cj) j=e.w,n.s.

and
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UDS UOS

are the conventional upwind-difference scheme sources,

4. 12. 10 Quadratic upstream-difference scheme extended

The quadratic upstream-difference scheme extended, reported by Pollard 

and Siu (1982). is an extension of the quadratic upstream-difference 

scheme, in that the influence coefficients are reformulated to ensure 

positive coefficients. For example, when the flow is from left to right, 

and bottom to top. then the quadratic upstream coefficients, neglecting 

diffusion, are:

AE ' = (| Ce) : AN' = {f Cn )

AW' = - ( Ce + Cw) : AS' = - ( Cn + Cs ) (4.12.10-la)

These are replaced in the quadratic-upstream-difference scheme 

extended, by:

AE ' = ( ce ) : AN = { cn >

+ I Ce > : AS' = (| Cs 4- 1 Cn )

: ASS = ° (4. 12-1 0-1 b) 

1 9
Sa = - Q
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where (') denotes without diffusion.

A similar approach for all combination of flows yields the complete set of 

influence coefficients. 

The influence coefficients

The influence coefficients, as reported by Pollard and Siu (1982) are:

= I(De+3Ce/4). (De-SCeM-Cw/e), (De-3Ce/4). (De+3Ce/4-Cw/8)l 

AW = tCDw-SCwM), (0^3^/4+0(3/4). (0^3(^/4) . (Dvy-SCw/^+Ce/S) J

AN = [(Dn+3Cn /4). (Dn-3Cn /4-Cs/8). (Dn-3Cn/4). (Dn+3Cn/4-Cs /8) J

(4.12.10-2). 

AS = t(Ds-3Cs/4). (Ds+3Cs/4+Cn/8>. (Ds+3Cs/4) . (Ds-3Cs/4+Cn/8)l

QUDSE QUDS 9- -Sa = Sa

QUDSE _ QUDS 9 + +
= Sjj •*• ~ (Mg Cg-Myy Cyy-M

4.12.11 Quadratic-upstream-dlfference scheme extended-revised

A further linearisation of the source terms in the 

quadratic-upstream-difference scheme extended, leads to the revised 

version of the scheme. The linearisation is as reported by Patankar 

(1980). ie:

Sa = Sa + SbOp and 85=0 (4.12.11-1);
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where the 4>-values for the linearisation step are obtained from the 

previous iteration cycle.

The influence coefficients

The influence coefficients are as given by equations (4.12.10-2). except 

for the source, which are evaluated as per equation (4.12.11-1).

4. 12. 12 Residual-difference scheme

The residual-difference scheme [Bhattacharyya and Datta (1985)1 is 

obtained by considering the residual of the equations for each coordinate 

direction. The complete equation is manipulated to yield approximations 

which depend on the mesh Peclet numbers and exponentional functions. 

For illustration purposes, consider the one-dimensional equation (with 

sources) evaluated with guessed values of the <t>-variable. and therefore 

presenting a residual. Res:

pu _ p _ _ s 
dx

Substitution of an expression of the form:

4, = AQ + AIX - A2 exp(pux/r) (4.12.12-lb)

leads to:
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(4>E-ct>W> - ~ Q[Px](<J>E-Kt>vr24>p) - 84, - Res (4.12.12-lc)

where

Px = ^Y^ . QfPx] = 1 +

(4.12.1-ld);
IPX I = -~- IPx|>4

and the finite-difference scheme is obtained by setting Res. the residual, 

to zero.

The influence coefficients

The influence coefficients for the residual-difference scheme are:

= De QfPeJ - mod{) + f-Ce ,01

AW = ON QtPw] - mod{ —] +
(4.12.12-2)

AN = Dn QtPn] - mod(^) + ff-Cn .01

Cs 
AS = Ds QfPs] - mod{—} •»•

where Q[P] is given by equation (4. 12. 12-ld)
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4. 12. 13 The skew-difference scheme

The skew-difference scheme is a form of flow-oriented differencing and 

was reported by Raithby (1976b). It aims to reduce or eliminate 

'false-diffusion', an inherent problem of locally one-dimensional 

schemes.

The earliest reported flow-oriented scheme was. to the author's best 

knowledge, the one reported by Le Feuvre (1970) and independently by 

Zeber (1972). However, these were non-conservative, and their use 

was rather limited.

The Raithby skew scheme uses four distinct interpolation regions (to 

account for all possibilities of flow-directions) to evaluate the convected 

4>-value at the. or example, east face of the control-volume. These 

are represented by Figure 4.12.13-1. The approximation for 4>e for the 

particular inclination of Figure 4. 12. 13-1 is:

(pu) e Ay 4>e = ( Ce - Ke ) 2<t>p

where

Q 
2

e Intl. 1/r2mm V
'e 
e

= 172 Ce mln [1. ]/2 tan ee 6x/6y] (4.12.13-lb)

The weighting factor used, for example:
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Fxe ex/ 6y (4.12.13-lc)

has to be restricted to be less than unity to avoid extrapolation, ie: in 

Raithby's skew scheme it is restricted between zero and one. However, 

interpolation is used for weighting functions greater than unity [Lillington 

(1981)]. For Fxe equal to zero, there is no cross-stream velocity 

component and the skew-scheme reduces to the conventional 

upwind-difference scheme.

In essence, the skew-scheme accounts for grid-to-flow skewness (Ie the 

main cause of false-diffusion). but at the expense of stability and 

conservatism.

Similar expressions can be obtained for all other possibilities.

The influence coefficients

The influence coefficients for the skew-difference scheme are:

= De - (Ce/2-Ke ) <l- 

AW = DW + (Cw/2-Kw) (1+SUW )

(4.12.13-2); 
AN = Dn - (Cn /2-Kn ) <1-Svn>

AS = Ds + (Cs/2-Ks ) (1-SVS )

where the S's take the sign of the subscripted velocity components and 

the SE. SW. NE. NW contribution are included in the source term after
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linearisation. For a full formulation see Patel (1985).

4. 2 Overview and Discussion of Influence Coefficients

The main-points that arise from a close inspection of the influence 

coefficients, equations (4.12.2) are:

(1) The central-difference scheme influence coefficients become 

negative for O2D, thus leading to oscillatory and 

non-convergent solutions. The cause of the negative 

coefficients in this instance is because downstream values are 

used in the flux approximations at high Peclet numbers. This 

infringes the transportive property.

(2) The upwind-difference scheme influence coefficients strictly obey 

the transportive property and thus lead to unconditionally 

positive coefficients. This, in turn, leads to physically 

plausible solutions at all Peclet numbers, but its accuracy is 

limited by its first-order discretisation error. However, for 

flows aligned with the grids, the scheme is accurate at high 

Peclet numbers. To reduce the discretisation errors, the 

need arises to use finer grids which may prove expensive.

(3) The hybrid-difference scheme influence coefficients obey the 

transportive property since it is just a combination of the 

central/upwind scheme. This practice ensures stability and 

improves accuracy of pure upwinding.
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(4) The locally-exact-difference scheme influence coefficients are 

always positive and thus convergence and boundedness are 

assured. For one-dimensional, steady-state flow, the scheme 

is guaranteed to produce the exact solution for any Peclet 

number and with a fairly coarse grid.

(5) The power-difference scheme influence coefficients are just a 

variation of the locally-exact-difference scheme, in that it uses 

an approximation for the exponential function in power form.

(6) The Leonard-difference scheme contains two types of influence 

coefficients, but since the effect of the downstream coefficient 

diminished in highly convective cases, the restriction on the 

scheme is O3D, the violation of which will lead to oscillatory 

solutions. In general, however, since all contributions lying 

outside the immediate neighbours are 'dumped' in the source 

term, the scheme is computationally viable.

(7) The Leonard upwind-difference scheme influence coefficients

include a further-downstream contribution. thus needing

modified representations close to the boundary.

(8) The Leonard superupwind-difference scheme influence 

coefficients are just a weighted combination of the 

Leonard/Leonard-upwind difference scheme influence 

coefficients, where the weighting parameter is evaluated from a 

knowledge of the analytical solution. Thus, the influence 

coefficients can never become negative, but the need arises to
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evaluate a series of exponential functions, which can be 

expensive.

(9) The quadratic-upstream-difference scheme influence coefficients 

may suffer from instabilities, that is. the coefficients can 

become negative when convection effects are strong enough. 

Furthermore, negative coefficients appear when (Ap-Sp)<0. A 

simple way to overcome this is to switch over to the 

upwind-difference scheme at certain Peclet numbers. 

However, this treatment destroys generality, which for practical 

implementation, is a strong desideration.

(10) The extended version of the quadratic-upstream-difference 

scheme possesses positive influence coefficients, regardless of 

the magnitude of the convection term, but the source terms 

may still induce negative coefficients.

(11) The revised version of the quadratic-upstream-difference 

scheme extended ensures always positive coefficients. by 

introducing a linear source which depends on the previous 

iteration field values.

(12) The residual-difference scheme influence coefficients are always 

positive, this being achieved by the inclusion of exponential 

functions. The coefficients are similar to the 

central-difference scheme, except for the diffusion terms which 

are appropriately modified.
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(13) The skew-difference scheme influence coefficients can be a 

mixture of both positive and negative. The main grid point 

coefficients (ie. A£. AW, AN, AS) can become negative 

because they include elements of outflows. However, the 

remaining coefficients (ie. ASW« ASE- ANW- ANE-> are always 

positive and have some favourable stabilising consequences, ie. 

they can be included into the source term on the right hand 

side of the algebraic equation.

4.3 Closure

In this chapter, the numerical schemes under investigation were 

introduced together with a discussion of their advantages and 

disadvantages with regards to convergence and computer implementation.

The causes of negative influence coefficients have been discussed and 

are summarised as follows:

(a) infringement of transportive property;

(b) use of higher-order approximations; and

(c) approximations in terms of outflows.
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CHAPTER 5

5. TRUNCATION ERROR AND FALSE-DIFFUSION

5. 1 Introduction

The numerical solution of the convection-diffusion equation involves the 

use of interpolation assumptions, introduced in Chapter 4. for the 

variation of the fluid properties and their gradients between discrete 

points on a computational grid that covers the domain of interest.

The majority of common interpolation assumptions fail to consider obvious 

physical properties of the flow, as for example, the local direction of 

flow within a control-volume. It is this failure that constitutes a major 

weakpoint of convection-diffusion formulations. Hence, the commonly 

misinterpreted term known as 'false-diffusion' has caused considerable 

controversy, misunderstanding and confusion, as it is frequently thought 

of as just a truncation error type of inaccuracy, among the numerical 

analysis practitioners.

It must be mentioned that the interpolation assumptions, unless very 

unwisely done, will not affect the final solution, provided that sufficiently 

large numbers of grid-points are used. However, the use of a large 

number of grid-points is not always feasible, since the computational 

cost in obtaining iterative solutions to a large set of equations increases 

very rapidly and becomes prohibitive. Therefore, sufficiently accurate 

interpolation assumptions must be utilised to obtain accurate solutions 

with relatively coarse grids, particularly when strong convection processes
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are present.

For multi-dimensional, multi-phase flow phenomena involving two or more 

space dimensions and several equations, the power of even present day 

computer capacity and speed generally proves to be the limiting factor in 

the use of very fine grids. Therefore, in reality, if solutions to complex 

problems are to be obtained efficiently, the interpolation schemes for the 

convective transport term are required to be sufficiently accurate. To 

achieve this, the interpolation assumptions should in some way reflect the 

behaviour of the original differential equation. To clarify the problems 

involved, it is important to identify the main sources of 'error' that are 

present within numerical schemes; these being the truncation errors, the 

round-off errors, and the errors due to false-diffusion. The round-off 

errors are a function of the machine used and the number of grid-nodes 

used and fall out of the scope of the present work. Attention therefore 

now turns to the two other types of errors.

5. 2 Truncation Error

Taylor series expansions are often used to represent differentials in an 

approximate manner. The accuracy of these approximations are usually 

indicated by the highest term that is omitted from the series expansion. 

In general, truncation error is the only source of inaccuracy (apart from 

round-off error), when the finite-domain equations are solved accurately, 

for one-d/mensional problems. For completeness, an example of 

central and upwind difference approximations are illustrated below:
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Considering the one-dimensional transport equation:

—(pu4>) - r - = 0 (5.2-1) 
dx

and the Taylor series expansions for the east and west nodal points:

(t>H+ A30 MI P + HOT (5.2-2);

and.

= <t>P ~ YT A<J>' P + ^ A2<t> M p - jy- A34> m P •*• HOT (5.2-3);

where A is the uniform mesh length, and the second and first derivatives 

can be approximated as follows:

(J> M P = — (<t>E-2(t)p^(tiw ) ~ 0(A24> IVP ) (5.2-4)

and

0(A24> Ml p) (5.2-5)

or

0(A<t> M p) (5.2-6).

Expressions (5.2-4.5,6) are the 2nd derivative central-difference
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approximation. 1st derivative central difference and upwind-difference

approximations of orders A2 . A2 and A. respectively.

Analysis of the truncation errors of expressions (5.2-4,5.6) gives:

EXPRESSION TRUNCATION ERROR APPROXIMATION TYPE

5.2-4 1/12 A2 4> IVP Central (diffusion)

5.2-5 l/3A2 <t>'"p Central (convection)

5.2-6 1/2 A 4>''p Upwind (convection)

The controversy relates to the truncation error for expression (5.2-6) 

which is similar in nature to the 2nd derivative (ie diffusive). However, 

deriving finite-domain equations in this manner should be interpreted with 

reservations, since the truncation errors can easily mislead the numerical 

analyst. The argument for this is as follows:

# Taylor series expansions reveals errors of order A2 for the 

central-difference approximation whereas for the 

upwind-difference scheme. it reveals errors of order A. 

Therefore, the central-difference approximation should yield 

more accurate solutions. However, for large A's. the 

central-difference approximation in no way represents the true 

physical solution. This is not true for the upwind-difference 

approximation, since it yields reasonable and realistic solutions. 

The reason is that the central-difference approximation influence 

coefficients become negative for mesh Peclet numbers greater 

than 2.
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# For one-dimensional problems. if the error of the 

central-difference approximation is to be achieved by using the 

upwind-difference approximation, the diffusion coefficient r in 

the latter should be replaced by r+puA/2. a false-diffusion 

coefficient, according to some authors. This is not true, 

however, because if it were than even the locally exact 

approximation, which is the analytical solution itself, reveals a 

false-diffusion coefficient (which is certainly not true).

It is therefore asserted that 'false-diffusion' Is not governed by the order 

of the scheme, since for steady-state, uniform flow in the coordinate 

direction, the first order upwind are locally-exact approximations have no 

false-diffusion but only high truncation errors.

5.3 False-Diffusion

Having just discussed truncation errors as a source of error commonly 

connected with false-diffusion, a view which is indeed misleading, it is 

now the intention to define false-diffusion in its true and more meaningful 

sense, according to the author's opinion, used in the present work.

The proper view of false-diffusion [Patankar (1980)1 is firstly that it is a 

multi-dimensional phenomena; and secondly, that it only exists if the 

numerical scheme falls to account for the true local direction of the flow. 

This is easily understood and illustrated by the following example.

Consider a square region which has four parallel streams of equal
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velocities, but unequal temperatures that come into contact, as depicted 

in Figure 5.3-1. When the diffusion coefficient is non-zero, mixing 

layers will appear, since there is a temperature gradient between THOT 

and TCQLD- and the width of the stream layer will increase in the 

downstream direction. However, if the diffusion coefficient is zero, 

then the temperature discontinuities will persist in the streamwise 

direction and no mixing layers will appear. A method of observing if 

any diffusion is present within a numerical scheme is to set the physical 

diffusion to zero, and observe that for a test problem like the one just 

described, there exists no mixing layers, or. if they do exist, that their 

spread indicates the influence of errors similar to the diffusion term.

As an illustration, the upwind and quadratic upstream-difference schemes 

were used to solve the test case. Results at the grid-points are 

represented in Figure 5.3-2. at a flow angle of 45° to the gridlines. 

Note that, if there was no false-diffusion, we should obtain a sharp 

discontinuity similar to the left boundary condition, moving downstream.

The reason for choosing the UDS and QUDS schemes is because the 

former is supposed to entail false-diffusion errors whereas the latter is 

not [Leonard (1979)]. However, the results seem to suggest that both 

these schemes suffer from false-diffusion. Figures 5.3-4 to 5.3-13 

depict 0-profiles at various downstream stations for the UDS/QUDS 

schemes, together with a nodal-interpolated analytical solution. It is 

easily seen that both the UDS and QUDS schemes smear the profile at 

the very first IX-line from the left hand boundary, although supposedly 

the QUDS does not suffer from false-diffusion [Leonard (1979)]. 

Therefore, in general. higher order interpolation in coordinate directions
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does not eliminate or reduce false-diffusion; it simply reduces the 

truncation error.

The following are therefore the obvious conclusions:

# False-diffusion occurs for flows which are oblique to grid-lines; 

and when there are dependent variable gradients present 

normal to the flow direction.

# False-diffusion can be reduced for the locally one-dimensional 

type of numerical schemes only by grid refinement (ie. by 

diminishing the importance of local convection).

# The cause of false-diffusion is the neglect of the effects of the 

local flow-direction, across each control-volume face, by the 

numerical scheme (ie. the multi-dimensional nature of the flow 

should be taken into account even on the control-volume 

scale).

Approximate expressions of the false-diffusion coefficients are 

given by for two-dimensional situations as follows:

# Wolfshtein (1968) ;

- 0.36p|V| A sin 2e (5.3-la):
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# De Vahl Davis and Maliinson (1976):

2
rfalse - 77-————T P IV! A sin 2e (5.3-lb) 

4(s L n

Leschziner (1980):

3
rfalse - 4 P sln ( 4 +e) IVI A sin 2e (5.3-lc);

where all three relations yield rfa | S0=0 at 9=0. rr/2 and a 

maximum value of 0.36 IV I A at e=Tr/4. This implies that at an 

angle of e=45°, the upwind-difference scheme introduces an 

effective diffusion coefficient equivalent to |Pel-2.8, regardless 

of the magnitude of the real Peclet number. Profiles of 

expressions (5,3-1) are represented in Figure 5.3-3. 

Therefore, considering expressions such as (5.3-la) it is 

necessary to incorporate the flow direction within the 

interpolation assumptions [Raithby (1976a)L to reduce or 

eliminate false-diffusion; Patel. Markatos and Cross (1985a).

5.4 Closure

In this chapter, the topic of truncation error and false-diffusion which 

have caused considerable controversy, misunderstanding and confusion 

among numerical analysis practitioners has been presented.

Distinctions between truncation error and false-diffusion are presented, 

together with an example to illustrate the differences between the two.
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CHAPTER 6

6. APPLICATION TO TEST PROBLEMS

6. 1 One-Dimensional Study

6. 11 Introduction

A comparative study of seven of the numerical schemes presented in 

Chapter 4 was undertaken, to generally evaluate their accuracy, 

numerical stability and CPU requirements, for a series of test problems 

with and without sources.

The numerical schemes are tested for Peclet numbers between 1-10 5 

and mesh Peclet numbers between 0.2-103 . for all test problems [Patel. 

Markatos and Cross (1985a)].

6. 12 Objectives

The objectives of the one-dimensional study are to evaluate the 

discretisation errors that are involved when the flow is in the direction of 

the grid-lines. It is stressed here, that although the upwind-difference 

scheme is used, the scheme suffers from no false-diffusion for 

one-dimensional flow, since there is no grid-to-flow skewness. It is 

true that the scheme overestimates the diffusion, however, this is true of 

all schemes.
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6. 13 The Test Problem

The test problem considered Is the one-dimensional convection-diffusion 

equation with a source term of the form:

S<x> = ax2 + bx + c (6.13-la); 

where a. b and c are constants.

The results obtained, numerically, were compared with the analytic 

solution, which is characterised by a viscous boundary layer of thickness 

17 P. and is:

= Z[epX-i]/[ep-l] + E 

E = a

Z = i-a--c (6.13-lb) 

a 1 = a/3P. b^b/aP + a/P2 

c 1 = c/P + b/P2 + 2a/P3

6. 14 The Schemes Investigated

The schemes investigated for the one-dimensional study are:

1. the central-difference scheme;

2. the upwind-difference scheme;

3. the locally-exact-difference scheme;

4. the Leonard-difference scheme;
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5. the Leonard-upwind-difference scheme;

6. the Leonard-superupwind-difference scheme; and

7. the quadratic-upstream-difference scheme.

The truncation errors for these schemes are tabulated in Table 6. 14. 1 

for S(x>=0.

6. 15 The test cases

The finite-difference schemes were tested over a wide range of Peclet 

numbers for eight test cases with zero, linear and quadratic source 

terms. The number of nodes. N. ranged from 5-100 in steps of 5 for 

all test cases. Table 6. 15. 1 presents a summary of the cases 

considered.

The ranges of Peclet numbers. P and mesh Peclet numbers. Pe studied 

were from 1-105 and 0.2-103 . respectively, for all cases. The 

presented sample results for simplicity refer to Peclet numbers and mesh 

Peclet numbers from 1-100 and 1-50 respectively, since the behaviour 

for the higher Peclet number cases is the same. As seen in Table 

6.15.1. the following one-dimensional convection-diffusion situations 

were considered. Test case 1. was the standard 'no source' situation, 

whereas Test case 2 was one with a constant source term. Test cases 

3 and 4 had linear source terms with positive and negative gradients, 

respectively. Test cases 5-8 all had quadratic source terms, with 

different constants, a. b and c.
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6. 16 Presentation of results

The main results are presented in Table 6. 16. 1 and Figures 6. 16-1 to 

6. 16-13.

Table 6. 16. 1 summarises the results for each scheme under 

consideration, for P=20.

In all figures presented (Figures 6.16-1 to 6.16-13). the accompanying 

table summarises the important characteristics such as maximum error, 

evaluated as:

(6.16-1);

the error norm evaluated by:

t ~ 4>lD 2 ) 1/2 (6.16-2);

and finally, the predicted flux at the outflow boundary, *N. evaluated by:

(6.16-3)

for the finite-difference schemes, and by:

-{ZPep/(ep-l)} + Sa 1 ^ + ^x + c 1 (6.16-4);

for the analytic solution.
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Figure e. 16-1 represents the analytic behaviour of <t> for several Peciet 

numbers for the cases with zero source,

Figure 6. 16-2 compares the solutions obtained by the various schemes 

for the rest case with zero source against the analytic solution. 

Figures 6. 16-3 and 6. 16-4 compare the results of the various schemes 

for the cases with a linear source term with positive and negative 

gradients, respectively.

Figures 6.16-5 and 6.16-6 compare the results of the various schemes 

for the cases with a quadratic source term with positive* and negative 

gradients, respectively.

Figures 6. 16-7 and 6. 16-8 compares the performance of the schemes 

far cases with farg* saurc* terms, gvnvrated by ihv a*prass/ops for test 

case 5-8. in Table 6.15.1.

Figures 6. 16-9 to 6. 16-l£ present typical maximum error profiles as 

functions of the number of nodal points used, for all scheme tested. 

Figure 6.16-13 presents the computational requirements in terms of CPU 

on the Prime series 750 computer.

6.17 Discussion of

Figure 6. 16-1 clearly depicts the viscous boundary layer r where the 

solution. <J>(x^ rapidly changes from <t>(0) to <p(l). The curves tgr 

large Peciet numbers do not vary considerably within the first (N~2) 

nodal points for P»Q.

Figure 6. 16-2 depicts an oscillatory behaviour of the CDS solution and 

indicates that the UDS overpredicts the nodal ^-values further downstream
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of the 70% station. Inspection of the results reveal that the UDS is 

inaccurate even for moderate Peclet numbers, unless the grid is 

sufficiently fine; but that it does predict qualitatively realistic solutions, 

unlike the 'wiggles' of the CDS. The LDS and the LUDS solution are 

not much of an improvement, the former being also oscillatory. In 

contrast, the LSUDS and the LEDS are seen to be in excellent agreement 

with the analytical solution, throughout the domain.

Figures 6. 16-3 and 6. 16-4 correspond to the linear source cases, and 

indicate again that both the CDS and LDS solutions are oscillatory in 

nature. The other comments relating to the case with zero source 

(Figure 6. 16-2) are also valid, the UDS overpredicting 4> downstream, 

and the LSUDS and the LEDS solutions being very accurate over the 

whole domain.

Figures 6. 16-5 and 6. 16-6 correspond to the quadratic source cases, 

and Indicate that both the CDS and LDS are once again oscillatory.

Figures 6. 16-7 and 6. 16-8 correspond to the large source cases, and 

clearly depict the unboundedness in the oscillatory nature of the CDS. 

whereas they indicate that LEDS predicts very good results. The LDS 

appears to predict oscillatory results within the last few nodal points.

Inspection of Figures 6. 16-2 to 6. 16-8 reveals that, in general, all the 

test cases were well modelled by both the LEDS and the LSUDS with 

errors of max( |4>j-0j |/4>N> less than 10~ 6 , for ail Peclet numbers. 

However, considerable errors are indicated when using the LEDS for very 

large source terms. The CDS performed well for mesh Peclet numbers
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less than 2. but was grossly in error for higher Peclet numbers, for both 

test case 1 (with zero source. Figure 6.16-2). and when the type of 

source. S(x>. did not affect the outcome to a great extent (le. when 

the source and solution profiles are similar In shape (Figure 6.16-3)).

Inspection of Table 6. 16. 1 reveals that wiggles are predicted by the 

CDS. whereas the UDS, although always stable, is In considerable error 

at all flow rates and practical mesh sizes. The results indicate that the 

UDS always overestimated the solution by at least 15%. even for relatively 

fine grids, whereas the QUDS underpredicted the solution by only a few 

percent. The LEDS appeared to overestimate the solution for the 

problems with large source terms by around 5% at the extreme, whereas 

the LSUDS was within 0.01% for all test cases considered, including 

those with large source terms. This is expected since the exact 

solution is a combination of an exponential and a cubic, in which case 

the LSUDS is 'exact', except for inaccuracies arising near boundaries. 

Also indicated in Table 6. 16. 1 are the wiggles in the solutions obtained 

by the LDS and QUDS. owing to the ill-conditioned influence coefficients.

It is clear from Figures 6. 16-2 to 6. 16-8 and Table 6. 16. 1 that the 

LSUDS and the LEDS give by far the most accurate solutions, as 

expected. However, before any judgement can be formulated about the 

relative performance of the schemes, it is important to compare the 

profiles of the maximum errors both as functions of the mesh size and of 

the Peclet number, and with respect to the computational requirements 

for the schemes. After all, if a scheme is convergent, a more 

accurate solution may always be obtained by mesh refinement, until 

round-off error dominates truncation error. Therefore, it is the author's
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opinion that accuracy should be compared on the basis of relative CPU 

and storage costs together with convenience of programming effort. This 

Information is provided by Figures 6. 16-9 to 6. 16-13.

Figure 6. 16-9 presents the behaviour of the maximum error with 

increasing Peclet number (from P=10° to 10 5 ) for a constant grid size 

(Ax=0.1). The profiles shapes for the UDS and LUDS are similar and 

those for the LDS and QUDS are also similar. The CDS error profile 

diverges as the Peclet number increases. The LEGS and LSUOS 

profiles are not depicted in Figure 6. 16-9 as they lie close to the 

P-axis.

Figure 6. 16-10 shows that there exists a critical region of the mesh 

size, over which the UDS error is maximum (being from N=15 to N=40 

for this particular case). Outside this region the maximum error does 

not increase with decrease in mesh size. It is interesting to observe 

that for the UDS the error profile flattens out very slowly. The number 

of nodal points, N, required to obtain a given accuracy by the UDS is 

nearly three times that of the LDS (eg LDS requires N=30 and UDS 

requires N=80 for this particular case).

Figures 6.16-11 and 6.16-12 depict the maximum error profiles versus 

N/pl/2 for constant P and constant N. respectively, the range of N for 

the former being between 10 and 100 and the range of P. for the latter, 

being betweeen 10° and 5x1O4 . The error profiles for increasing P 

indicate that the maximum errors tend to zero for both UDS and LUDS, 

but that they tend towards a limiting value, considerably greater than 

zero, for the QUDS and LDS (for this particular case). The profiles for
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the LEDS and LSUDS are not presented, as they lie close to the 

N/pl/2-axis jn Figure 6. 16-12.

Figure 6. 16-13 show crude computational requirements in CPU seconds, 

on a PRIME series 750 computer. It is seen that the time requirements 

for the LDS are about three times those for the UDS. This is true in 

general, so that for a given accuracy (up to a limit) the UDS is 

marginally cheaper than the LDS, considering that the former requires 

less than three times the number of nodes required by the latter for the 

same accuracy. The presented computer time requirements are for 

obtaining a given accuracy and should not be interpreted as machine 

accurate because of the ffmftatfons In the time printout. What is 

established however is that the upwind- and central-difference schemes 

are the least expensive, as expected, closely followed, as may not be 

expected, by the locally exact scheme. it should be mentioned in this 

context that the calculation of the exponentials involved in the latter was 

reprogramed by the author and appeared to be more efficient than the 

standard PRIME-library calculations. In practice, and to avoid overflow, 

asymptotic formulae avoiding calculation of exponentials completely would 

be used for large exponents in all schemes. The LSUDS and the QUDS 

are both about 2.0 times more expensive than the above three schemes, 

for the same number of nodal points, and the LDS and LUDS are about 

3.0 times more expensive.

6. 18 Conclusions

A comparative study in terms of accuracy and computer requirements has
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been presented for seven numerical schemes, which were applied to a 

series of simple one-dimensional convection-diffusion problems including 

linear and non-linear sources. One-dimensionality was imposed in 

order to eliminate the additional complexity of the multi-dimensional 

'false-diffusion'.

The main findings may be summarised as follows:

1. The central-difference and Leonard's LD and LUD schemes 

proved the most unstable. The first two were also Inaccurate 

although they are both second order. This indicates that it is 

not only the order of the scheme that dictates the accuracy of 

the solution in convection/diffusion problems, but also the 

particular formulation which must account for the asymmetric 

nature of convection.

2. The central- and upwind-difference schemes lead to inaccurate 

solutions for moderate and high Peclet numbers, and for 

moderate grids. The upwind-difference scheme presents a flat 

error profile versus number of nodes, for moderately fine grids. 

There is therefore a danger that moderate grid refinement may 

indicate as grid-independent a solution which is still in 

considerable error. Indeed, in order to obtain with the UDS 

the same accuracy as with the LSUDS the number of nodes had 

to be increased to 200. Therefore, for grid-independency 

studies with the UDS a many-fold increase in the number of 

nodes may be necessary.
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For moderate grids, the higher order schemes were. In 

general, more accurate (when convergent!) than the first order 

upwind-difference scheme. An exception was the CDS for 

Pe>2 when it became highly inaccurate. However, all the 

schemes except the central- and locally-exact-difference 

schemes were 2.0 to 3.0 times more expensive than the UDS 

In computational terms.

The LSUDS was. as expected, the most accurate scheme, very 

closely followed by the LEDS and the QUDS. However, the 

latter was sometimes oscillatory. The LEDS was both accurate 

and economical. Furthermore, the influence coefficients (ie 

g m and gp; see Appendix A4. 1) of the LEDS can be calculated 

and tabulated to improve even further the computational 

requirements.

The schemes considered here fail into three categories, in 

order of increasing demand in terms of computational 

requirements, as follows:

(a) Central-difference scheme 

Upwind-difference scheme 

Locally-exact-difference scheme

(b) Leonard superupwind-difference scheme 

Quadratic upstream-difference scheme
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(c) Leonard-upwind-difference scheme 

Leonard-difference scheme

The CPU times required are compared with the UDS. For the 

one-dimensional cases considered. the LDS was found to be 

approximately three times as expensive as the UDS. whereas the 

accuracy was within 10%. unlike the UDS. which was at least 20% in 

error. The LSUDS required just about twice the computer time 

compared to the UDS. but the LSUDS was within 0.01% in error. 

Finally the LEDS required between 2 and 3% less CPU time for a 

maximum error of around 5% (because it required much fewer Iterations 

for a given accuracy). which means that the LEDS could prove a very 

efficient scheme. The combination of the findings of this study on 

accuracy vis-a-vis computer requirements leads to the following general 

conclusions:

(i) When a 5% average error of the numerical solution at the grid 

points is acceptable, one might as well use the UDS with fine 

grids because it is unconditionally stable and convenient in 

programming effort. The total CPU requirements will be the 

same as for the most accurate schemes with coarser grids.

(ii) Should a very accurate solution be required then one should 

abandon the UDS because of its flat error response to further 

grid refinement, and choose either the QUDS or LSUDS or 

LEDS. Of those three the first may be unstable, the second 

is the most accurate and the third the cheapest. The above 

conclusions are based on the detailed study of a series of
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linear one-dimensional problems with linear and non-linear 

sources, only. Therefore, the general applicability of these 

conclusions is by no means established as yet. It is suggested 

that the LEDS may have not received the attention it deserves 

form the computational fluid-dynamics community, and that 

further research in evaluating and developing it (particularly in 

two- and three-dimensional cases, where its application along 

streamlines would also eliminate multi-dimensional false 

diffusion) may prove fruitful. Work on two-dimensional 

problems is reported in the next sub-section.

6. 2 Two^Dimenslonal Laminar Study

6.21 Introduction

A comparative study of eight of the numerical schemes presented in 

Chapter 4 was undertaken, with the intention of getting an insight of the 

problems that occur with regards to convergence and the existence of 

'false-diffusion', due to the multi-dimensional nature of the flow. Four 

standard, well-documented, laminar flows were chosen for the study and 

the schemes were tested for stability under normal, extreme, and even 

hypothetical flow conditions (eg. very high Reynolds number 'laminar' 

flows) [Patel and Markatos (1984. 1985a. 1985b. 1986a)L

However, since the first two cases were considered to check the 

programming, they are not considered here. For further details see 

Patel and Markatos (1985b).
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6.22 Objectives

The objectives of the two-dimensional, laminar study are to evaluate the 

inherent problems of 'false-diffusion' for the locally, one-dimensional, 

coordinate schemes. Some light is shed upon the relative merits and 

performances of the schemes.

6. 23 The schemes investigated

The schemes investigated for the two-dimensional laminar study are:

1. the central-difference scheme;

2. the upwind-difference scheme;

3. the hybrid-difference scheme;

4. the locally-exact-difference scheme;

5. the power-difference scheme;

6. the quadratic-upstream-difference scheme;

7. the quadratic-upstream-difference scheme extended; and

8. the quadratic-upstream-difference scheme extended revised.

6. 24 The laminar test cases

The schemes were applied to a series of uniform property, 

two-dimensional laminar flows, two of which are presented here [Patel & 

Markatos (1986a)l:
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(a) flow through a sudden enlargement in a pipe; and

(b) flow in a cavity with a moving lid.

Only two test cases are presented here, since they exhibit very strong 

effects of 'false-diffusion' but other simple test cases [Patel & Markatos 

(1985a)l were considered just as a means of gaining insight into the 

relative convection-interpolation performances of the various schemes. 

Indeed, the simple test cases (eg. flow in a pipe) provide a means by 

which the programming matters can be checked, ensuring, as far as 

possible, that the incorporation of the schemes in the program are 

error-free [Patel and Markatos (1985b)l,

6.24.1 Flow through a sudden enlargement

Fluid enters the half-open pipe. Figure 6.24.1-1. of length equal to 25 

times the half-open diameter. There Is a recirculation region formed 

behind the closed half of the pipe, within a length £ r from the entrance, 

and the velocity-vector directions within the eddy are inclined at various 

angles to the local grid. This makes the solution to this problem, and 

the next test case, a good test on 'false-diffusion'.

Thejboundary conditions 

The boundary conditions are:

inlet: specified parabolic velocity profile.
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Outlet: au/ax=0 and v=0.

Wail boundaries: u=0 and v=0.

Axis of symmetry: au/dr=0 and v=0

6.24.2 Flow in a cavity with a moving lid

Fluid is forced to rotate within the square cavity by a moving lid of 

specified velocity. Figure 6.24.2-1. This implies that there is no 

predominant flow direction which results in the differential equations 

becoming highly elliptic.

The boundary conditions

Top wall: u=utO p and v=0. 

Other walls: u=0 and v=0.

6. 25 Presentation of results

The schemes were tested over a wide range of Reynolds numbers, 

between 50 and 2000 and with different numbers of grid nodes; between 

100 (10x10) and 1200 (30x40). for artificially high Reynolds numbers 

(104-106 ) 'laminar flows'.
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6. 25. 1 Flow through a sudden enlargement

Fluid flowing in a pipe, containing an abrupt change In cross-sectional 

area, always results in fluid flow reversal In the immediate vicinity of the 

step change. * In general, the flow reversal Is characterised by points 

of flow detachment and re-attachment, and the location of the 

re-attachment point is a function of the following quantities [Pollard 

(1980)1:

(I) the size of the enlargement;

(li) the inlet velocity profile; and

(ill) the inlet Reynolds number.

A study, in detail, for the sudden expansion was reported as early as 

1967 [Macagno and Hung (1967)1. They used an expansion ratio of 

0.5 together with a parabolic profile at the inlet. Their conclusion of 

the results reported were, that there existed a linear relationship of the 

re-attachment length with inlet Reynolds number. Later, Back and 

Roschke (1972) reported re-attachement length relationships with 

Reynolds number, for an expansion ratio of 0. 3846 for both laminar and 

turbulent regions.

* Examples of such flows are encountered in heat exchangers and also 
in biological systems such as prosthetic devices.
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Their results compared with those of Macagno and Hung (1967) 

revealed that the results of Back and Roschke (1972) had a greater 

slope than those of Macagno and Hung (1967), this was explained due 

to the effects which are consistent with the mixing length theory. 

However. Pollard (1980) reported that the slope obtained using uniform 

inlet profiles must be lower than those obtained using a fully developed 

parabolic inlet profile.

Irlbarne. Frantisak. Hummel & Smith (1972) also provided results of 

re-attachment lengths against Reynolds number for an expansion ratio of 

0.505 and reported no change when compared with those of Macagno 

and Hung (1967). However, this is surprising, in that the inlet velocity 

profile were different.

Results were also compared with Back and Roschke (1972). A 

re-examination of their earlier results. Back and Roschke (1976) 

concluded that the inlet velocity profile is an important condition for 

obtaining re-attachment lengths.

Leschziner (1980). compared results predicted by three schemes 

[Spalding (1972). Raithby (1976b) and Leonard (1979)] and reported no 

difference in the predictions of the re-attachment length. Experimental 

results have been reported [Denham and Patrick (1974)] and calculations 

using the upwind-difference scheme have been reported [Atkins, Maskell 

and Patrick (1980)]. It was found that the upwind-difference scheme 

underestimates both the length and the intensity of the recirculation zone 

compared to the central-difference scheme.
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Here attention is directed to the effects on the centreline velocity 

profiles, by varying the Reynolds number, grid size and re-attachment 

lengths predicted by various schemes for a fixed grid size.

Calculations were performed at Re=50 to 1000. although only results for 

Re=200 are presented here. Predictions by using various schemes for 

centreline velocity profiles are shown in Figures 6.25.1-1 and 6.25.1-2. 

for a grid of 16x24. Results for the axial-velocity profiles using grids of 

10x10. 20x20. and 30x30 are presented In Figure 6.25.1-3 for the 

central-difference scheme and Figure 6.25.1-4 for the 

quadratic-upstream-difference scheme.

Table 6.25.1.1 summarises details of computational requirements for 

each scheme, with reference to the upwind-difference scheme. In this 

table. N is the number of iterations required to obtain a given accuracy. 

T is the time in CPU seconds and Nu, Tu are the repsective N and T 

for the upwind-difference scheme.

Results for the re-attachment lengths l r are depicted by Figures 

6.25.1-5 and 6.25.1-6. Table 6.25.1.2 summarises the normalised 

re-attachment lengths obtained by a 16x24 grid for various Reynolds 

numbers and Table 6.25.1.3. the values given by Pollard (1980) and 

Macagno and Hung (1967).

Results for the vortex-centre. Lv , are depicted by Figure 6.25.1-7 

together with results of Macagno & Hung (1967).
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6.25.2 Flow in a cavity with a moving lid

Steady-state flow in a cavity with a moving lid. due to its geometric 

simplicity and highly elliptic character, has become a popular example 

for testing and comparing numerical methods, for several years. 

However, most of the earlier work [Burggraf (1966); Bourcier and 

Francois (1969); Greenspan (1969); Fortin. Peyret and Temam (1971); 

Bosmann and Dalton (1973); Denham and Patrick (1974); Roache 

(1975); de Vahl Davis and Mallinson (1976); Rubln and Khosla (1977); 

Tuann and Olson (1978); Gupta and Manohar (1979a); and. Atkins. 

Maskell and Patrick (1980). dealt with the stream function " vorticity 

formulation.

Burggraf (1966), performed an excellent study of this test case for a 

range of successively finer grids, and various high Reynolds numbers, 

using the central-difference scheme, for the convectlve term.

Calculations were performed for Re=100 and 400. with a grid size of 

10x10. Results for the centreline velocity profiles for Re=100 are 

depicted by Figures 6.25.2-1 and 6.25.2-2. For grid independency 

purposes, solutions for grids of 20x20 and 30x30 were performed. 

Results for the centreline velocity profiles are depicted by Figures 

6.25.2-3 and 6.25.2-4 for the central-difference scheme. Figures 

6.25.2-5 and 6.25.2-6 for the upwind-difference scheme, and Figures 

6.25.2-7 and 6.25.2-8 for the quadratic upstream-difference scheme, 

for Re=400. Finally. Figures 6.25.2-9 to 6.25.2-12 depicts the 

centreline u-velocity profile for the upwind-difference scheme and the 

quadratic upstream difference scheme extended revised for Re=1000 and
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2000 respectively.

Table 6.25.2.1, shows the details for the computational requirements for 

each of the schemes, with reference to the upwind-difference scheme.

Finally. Figure 6.25.2-13. depicts the upstream vortex height for a 

Reynolds number range of 50-500 for the central-, hybrid-, quadratic 

upstream-, quadratic upstream revised extended-difference schemes, 

together with results obtained from various references: [Nallasamy and 

Krishna Prasad (1977); Pan and Acrivos (1967); Bozeman and Dalton 

(1973); and. Burggraf (1966)1.

6.26 Discussion of results

6. 26. 1 Flow through a sudden enlargement

The u-velocity profiles. Figure 6.25.1-1 fall into two groups (ie as 

predicted by first- and second-order methods) whereas the v-velocity 

profiles fall into three groups (ie. CDS/QUDS. QUDSE/R and 

UDS/HDS/LEDS/PDS) .

The second-order methods (namely CDS/QUDS/E/R) predicted similar, 

and in some instances identical, velocity profiles which were always at 

lower values as compared with the first-order methods. This may be 

attributed to the larger discretisation error of the latter.

An examination of Table 6.25.1.1 reveals the following findings, relative 

to the UDS:
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The CDS requires about 24% more computational time per node with an 

increase of 78% in the number of iterations, whereas the QUDS requires 

40% more computational time per node with a decrease of 7% in the 

number of iterations. This shows an advantage in having a higher 

order interpolant (ie. decrease in iteration numbers), the disadvantage 

being that there is an increase in the unit computational time. The 

HDS/LEDS and PDS were all similar in their requirements, which 

suggests that the LEDS does perform well, given that exponential 

functions have to be evaluated. For the QUDSER the time per iteration 

was 40% more than for the UDS. with an increase of 52% in the number 

of iterations required. The QUDSE was similar to the QUDSER in unit 

time, but required less iterations by a factor of 1.7. Figures 6.25.1-3 

and 6.25.1-4. for the CDS and QUDS at Re=200. clearly show that the 

CDS velocity profiles are still grid dependent for a grid size of 30x30. 

whereas the QUDS gives virtually grid-independent results for the 20x20 

grid.

It is worth noting that the 10x10 velocity profiles predicted by the CDS 

and QUDS were identical. The re-attachment length, an important 

feature of this test case, is tabulated in Table 6.25.1.2. together with 

results obtained from other sources Table 6.25.1.3. Predictions have 

been obtained over a range of Reynolds numbers from 50-1000. The 

results for the re-attachment lengths of Table 6.25.1.2 were in good 

agreement with those in Table 6.25.1.3. The predicted re-attachment 

lengths are plotted in Figures 6.25.1-5 and 6.25.1-6. where Figure 

6.25. 1-5 shows * r /h vs Re whereas Figure 6.25. 1-6 shows JB r /d vs Re.

For low Reynolds number flows «300) . the re-attachment length data
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indicate a linear relationship with respect to the Reynolds number. 

[Macagno and Hung (1967); Back and Roschke (1972); and Iribarne. 

Frantisak, Hummel and Smith (1972)] as demonstrated by Figures 

6.25.1-5 and 6.25.1-6. The results confirm the findings of Leschziner 

(1980), and are in close agreement for all schemes.

An important feature of this problem is that the re-attachment length 

increases linearly until it reaches a maximum, then reduces to a 

constant value for turbulent flow.

6.26.2 Flow In a cavity with a moving lid

The velocity profiles depicted in Figures 6.25.2-1 and 6.25.2-2 are all 

in close agreement except for the UDS profiles. which always 

underpredicts (ie. predicts a flatter profile).

An examination of Table 6.25.2.1 reveals the following findings, relative 

to the UDS for Reynolds numbers 100 and 400.

The first order schemes were all found to be similar in their 

computational requirements per iteration except for the LEDS which was 

slightly higher in its requirements.

The QUDS required about 30% more computational time per iteration with 

an increase of 15% in the number of iterations required.
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The QUDSE required twice the computational time per node with a 

2. 5-fold increase In the number of iterations.

The QUDSER required 60% more computational time per node with a 

2-fold increase In the number of Iterations.

Grid Independency studies show that the COS and QUDS are virtually 

identical and are grid Independent for grids of around 30x30, whereas, 

the UDS predicts a much flatter profile and the solution is still grid 

Independent for grids of 30x30. For Reynolds numbers 1000 and 2000. 

the QUOSER predicted results much closer to the true solution whereas 

the UDS predicted highly diffused solutions. The QUDSER. 10x10 grid, 

predicted results similar to the UDS. 30x30 grid, which is clearly 

depicted by Figures 6.25.2-11 and 6.25.2-12 for the high Reynolds 

number flows.

Finally, the upstream vortex heights. Figure 6.25.2-13. all lie in a 

band-width of around ±0. 05 when compared with experimental results.

6.27 Conclusions

A comparative study In terms of accuracy and computer requirements has 

been presented for eight numerical schemes, which were applied to a 

series of two-dimensional convection-diffusion problems, two of which 

were presented.

The main findings of this study may be summarised as follows:
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The CDS/QUDS/E proved the most unstable schemes at high 

Reynolds numbers.

The UDS/HDS/LEDS/PDS/QUDSER suffered from no instabilities 

for the test cases considered here.

# The performance of the QUDS/E/R were found to be accurate 

and Identical for QUDSE/R. when they converged, for all 

Reynolds numbers considered.

# The QUDS/E were found to be unstable for high flow 

rates/coarse grids, unlike the QUDSER which was stable for 

those flows considered.

The QUDSER was the most expensive scheme in terms of 

computational requirements; the reason being that the source 

terms are less implicit in nature than the QUDSE.

In general the QUDSER required twice the number of Iterations 

to secure the same level of accuracy as the QUDSE scheme. 

This is true, independently of the way the source is linearised.

The QUDS/E/R required more iterations to secure convergence 

for flow situations with reclrculating zones.

In terms of accuracy and computational efficiency it appears 

that the QUDS/E/R may offer the best compromise at present, 

however, none of the above schemes is satisfactory from all
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aspects and it is felt that new directions in research on this 

topic are urgently needed.

# The QUDSER predicted highly accurate solution for coarser 

grids, unlike the UDS which even for a three-fold increase in 

grids, predicted results slightly worse than the QUDSER.

# The UDS/HDS requires a many-fold increase in the grids to 

obtain accuracies close to the QUDS/E/R schemes.

6. 3 Two-Dimensionat Turbulent Study

6.31 Introduction

A comparative study of eight discretisation schemes for the equations 

describing convection-diffusion transport phenomena is presented for 

predicting velocity and temperature distributions in enclosures containing 

a fire source. Other similar convective motions which results from 

buoyancy-Induced effects arise, for example, in the insulation of 

buildings, in the space between the cover plates and the absorber of a 

solar collector and in the gas-filled cavity surrounding a nuclear reactor 

core.

To the author's best knowledge the numerical schemes have been tested 

to date only for simplified test cases which help to implement and 

evaluate ideas. However, real practical problems are much more 

complicated by virtue of such physical phenomena as turbulence. The
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uncertainties In modelling turbulence and the relevant errors may be of a
•

much higher magnitude than those Introduced by the numerical schemes. 

Therefore, a study was undertaken to investigate the performance of the 

schemes for a real case, namely the smoke flow in enclosures. The 

practical flow application concerns of course fires and the design of 

reliable safety devices. The problem is physically very complicated as it 

involves turbulence and strong buoyancy forces that interact with both 

mean and fluctuating fields. To the authors' best knowledge, this is 

the first time that such a comparison exercise for practical problems is 

reported, based on the work of Markatos. Malin and Cox (1982); and. 

Kumar and Cox (1983).

6.32 Objectives

The aim of the present work is two-fold:

Firstly, it Is desired to predict the performance of the various scheme, 

for the smoke in enclosure problems.

Secondly, the present two-dimensional study forms a sound basis for 

extensions to three-dimensional studies, which could prove fruitful.

6. 33 The test problem

It is well known that the direction of the flow influences the magnitude of 

false diffusion. This means that the performance of numerical schemes
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in this regard can be 'assessed only by test cases in two- and 

three-space dimensions.

The physical problem considered concerns a two-dimensional rectangular 

enclosure with a heat/smoke source, as depicted by Figure 6,33-1.

The flow domain is extended to the 'free boundary' region outside the 

doorway for computational purposes. In this test case, the flow is 

dominated by buoyancy and the turbulence serves to promote the rate of 

diffusion of mass, momentum and heat/smoke. The process involves 

the drawing of cold air from the bottom of the 'soffit' of height O and its 

spread throughout the enclosure of height H.

Near the left-hand side wall, a heat/smoke source on the floor, creates 

a rising plume. At the ceiling, heated gases exist which form a layer 

that exits from the upper part of the 'soffit'. The length of the 

enclosure Is L. and the length outside the 'soffit' is HI.

The schemes investigated

The schemes investigated for the two-dimensional turbulent study are as 

those for the two-dimensional laminar study (see sub-section 6.23).

The finite-difference schemes were tested for two inputs of heat/mass 

sources, for a grid size of 44x22 in the x- and y-directlons. 

respectively.
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Test case 1:

A low source case was used to evaluate the performance of the schemes

for low and moderate Peclet numbers. The source was 25.0kw.

Test case 2:

A high source case was used to evaluate the performance of the

schemes for high Peclet numbers. The source used was 250. Okw.

Test case considered:

The domain considered was a follows (Markatos. Malln and Cox 

(1982)): L=9m; H=3m; Hl=3m: D=lm and 1.5m; the source was 270Kw 

and spread over a 0.45mxl.73m area. 1.25m from the rear wall.

6. 34 Presentation of results

The results are presented in the form of temperature and velocity profiles 

at various axial stations in the enclosure, as shown in Figure 6.33-1.

The temperature profiles are plotted at the x=6. 77m plane, whereas the 

u-velocity profiles at the x=6.93m plane. The v-velocity is plotted at 

the y=2.438m plane.

Further plots of the u-velocity are also presented at the entrance or 

'soffit' of the enclosure.

Test case 1:

Figure 6.34-1 depicts the temperature profile for the low source
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problem.

Figure 6.34-2 depicts the u-velocity profile for the low source problem.

Figure 6.34-3 depicts the v-velocity profile for the low source problem.

Figure 6.34-4 depicts the u-velocity profile at the entrance of the

enclosure.

Test case 2:

Figure 6.34-5 depicts the temperature profile for the high source

problem.

Figure 6.34-6 depict the u-velocity profile for the high source problem.

Figure 6.34-7 depicts the u-velocity profile at the entrance of the

enclosure, for the high source problem.

6. 35 Discussion of results

Test case 1: low source

The temperature profiles. Figure 6.34-1. show that the HDS and PDS 

are similar in their accuracy within the enclosure, except at the 

boundaries. The UDS and LEDS are quite different in their predictions 

where the latter overpredicts the temperature by about 10% when 

compared with the former. The HDS and PDS underpredict the 

temperature by about 9%. when compared with the UDS.

The u-velocity profiles. Figure 6.34-2. were all in close agreement with 

the UDS. except for the PDS which predicted slightly higher velocities at 

the 20% station, whereas the HDS overpredicted velocities at the ceiling.
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The v-veloclty profiles. Figure 6.34-3, are virtually indistinguishable, 

except at the lower boundary.

The u-velocity profiles at the entrance to the enclosure. Figure 6.34-4. 

once again show that the velocity profiles are very similar except at the 

level of 20% of the height.

Test case 2: high source

Although the temperature profiles. Figure 6.34-5. were all similar in 

shape within the enclosure, it was noted that the HDS and LEDS were 

underpredicted by about 15%. The PDS temperature profile is not 

depicted since it was indistinguishable from the HDS temperature profile.

The u-velocity profiles. Figure 6.34-6. were largely in disagreement with 

each other.

The v-velocity profiles. Figure 6.34-7. are once again similar in shape 

except for the UDS, which lead to a flat profile. The profile shapes 

are similar to those for the low source case.

6.36 Conclusions

A comparative study in terms of accuracy and computer requirements was 

performed for eight numerical schemes. Turbulence was imposed upon 

in order to evaluate the performances of the schemes when applied to 

complex practical problems that are encountered in the standard 

engineering environment.
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An examination of the alternative schemes revealed the principal findings:

# The UDS, HDS. LEGS and PDS schemes predicted the expected 

trends of high temperature close to the ceiling.

# The UDS. HDS. LEDS and PDS schemes required between 

10-11.5 seconds per sweep on the Prime 750 mini-computer.

# For low heat sources, there was an overall disagreement of 

about 10% among the temperature profiles predicted by the 

schemes. For high heat sources the disagreement was even 

higher.

# The highest degree of disagreement among the schemes was 

found at about 75% of the height of the room.

# For low heat sources the vertical velocity profiles predicted by 

the various schemes were in agreement to within 2%. whereas 

the horizontal velocity profiles displayed a maximum level of 

discrepancy of 5%. For higher heat sources large differences 

were observed in the velocity profiles.

# The QUDS. QUDSE and QUDSER schemes failed to converge for 

this test problem, despite the author's best efforts (see 

Appendix A6. 1).

# Later the above schemes will be presented for cases for which
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experimental data exists, to prove which of them is the most 

accurate.

6. 4 Flow at an Angle to the Grid Lines

6.41 Introduction

A comparative study of five of the numerical schemes presented in 

Chapter 4 was undertaken, in general to evaluate, first the effects of 

false-diffusion for schemes which are applied locally one-dimensionally 

and secondly, the effects of the inclusion of the local flow-direction 

within the numerical scheme (ie flow-oriented scheme). The numerical 

schemes were tested for Peclet numbers ranging between 10°-10^ and 

mesh Peclet numbers ranging between 10°/30 - 105 /30 (ie 30x30 

grids). The flow angle ranged between 0° and 45°.

6.42 Objectives

The objectives of the study reported here were to develop a foundation 

for a new convective-term finite-difference scheme and to demonstrate 

the deficiencies of a number of schemes that are commonly used for 

approximating the transport equation. The test case chosen, is a 

standard case of flow at angles to the grid, with a prescribed uniform 

flow. Therefore, in the 2/E/FIX code [Pun and Spalding (1976)1. the 

convective terms in the energy equation were refined using various 

schemes.
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6.43 The schemes investigated

The schemes investigated are:

1. the upwind-difference scheme;

2. the quadratic-upstream-difference scheme;

3. the quadratic-upstream-difference scheme extended revised

4. the residual-difference scheme; and.

5. the skew-difference scheme.

The skew scheme reduces false-diffusion by approximating the

convectlve-flux with a nine-point approximation, bringing within its

calculation procedure the corner cells. SE. SW. NE and NW.

6. 44 The test problem

The transport of a scalar, in the form of a step change, in a uniform

velocity-field, has received considerable attention [see for example.

Ralthby (1976b>, Lilllngton (1981)], Figure 6.44-1.

The velocity-field is inclined at various angles to the grid-lines and the 

2/E/FIX continuity and momentum calculations are bypassed. Two 

uniform inlet boundary conditions are set for the scalar, namely. 

Thot=260° and TCO |(j=10o . for the west and south faces respectively. 

For the purpose of avoiding any mixing, the physical diffusion was set to 

10~ 10 , so that the discontinuity in the scalar would persist through the 

flow domain, and the Peclet number is 10 10 .
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6. 45 Presentation of results

The schemes were tested over a wide range of Peclet and mesh-Peclet 

numbers, together with the following grid-to-flow angles:

ei

82

e3

84
95

66

00

11.3°

21 .8°

31.0°

38.7°

45°

(6.45-1)

The results are presented In the form of <i>-profiles at a constant x-value. 

and also In Table 6.45.1 for e=45°. where the false-diffusion Is at Its 

maximum. The relative error in the diffusion coefficient, for e=8j. 

i=1.6. is tabulated below:

81 0

82 -1A

83 .2A (6.45-2).

84 .27A

85 .34A

85 •35A

Figures 6.45-1 to 6.45-6 depict the 4>-profiles predicted by various 

schemes at a constant x-line (x=0. 5) for 8=8$. 1=1.2. ..6. together with 

the analytic solution depicted by the solid-line with no symbols.
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6. 46 Discussion of results

The scalar transport problem. Illustrated in Figure 6.44-1, is extremely 

effective in identifying the ability of schemes to reduce the smearing 

effects caused by the presence of false-diffusion which depend on the 

angle e between the flow direction and the grid-lines. Table 6.45.1 

reveals the false-diffusion errors for the schemes, and in particular, the 

root-mean square error for the two-nodal point convective-flux 

approximation scheme of the locally one-dimensional kind Is around 

351°. This value decreases at the number of nodal points used to 

approximate the convective-flux, for example the 

quadratic-upstream-difference scheme. However, when the locally 

one-dimensional upwind-difference scheme is applied along local 

streamlines, that is the skew scheme, a 0° root-mean square difference 

is obtained. For the problem under consideration, the false-diffusion 

effect for the skew scheme is zero for e=e°. 45° and 90°. however, for 

the rest of the schemes under investigation, the false-diffusion is at a 

maximum when 9=45°. as shown in Figures 6.45-1 and 6.45-6.

An assessment of Figures 6.45-1 to 6.45-6 reveals the following 

findings, for the schemes under investigation:

# The higher-order interpolation and skew schemes predict 

oscillations for high Peclet numbers and large grid-to-flow 

angles.

# The skew scheme predicts very accurate results for flow angles 

of 45°. where the false-diffusion is at its maximum for the
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other schemes.

The skew scheme, for this particular problem, poses no 

convergence problems. However, since in general It may 

lead to negative coefficients. its application to general 

multi-dimensional problems is severely restricted.

Although the skew scheme is only first-order accurate, it yields 

a significant reduction or virtual elimination of false-diffusion for 

certain grid-to-flow angles (ie 45°).

Although the upwind scheme always converges, it predicts a lot 

of smearing for angles greater than about 10° to either the 

vertical or horizontal.

For the locally one-dimensional schemes. false-diffusion 

Increases continuously from e=0° to e-45°. however for the 

skew scheme. maximum false-diffusion occurs at around 

9=22.5°.

6.47 Conclusions

The skew scheme of Raithby (1976b) is compared with various locally 

one-dimensional schemes (see Section 6.43). On the basis of the test 

problem, the skew scheme is shown to be more accurate than the rest 

for certain grid-to-flow angles. The false-diffusion content of the skew 

scheme is much less than the others and in certain cases it is
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eliminated. The skew scheme is not easy to implement and is 

expensive in the computational sense.

The study leaves no doubt that the locally one-dimensional schemes or 

their varients should not be used in approximating convection processes 

unless the mesh can be either closely aligned with the flow or a very 

fine mesh is used which reduces the importance of convection.

It now appears that to attack the problem of false-diffusion, there exists 

two approaches:

# One, Is to use higher-order approximations with fine meshes. 

However this is not sensitive to grid-to-flow angles.

# Second, is to use local velocity vectors within the approximation 

(eg skew scheme). However, it is important to impose 

certain restrictions and constraints within such schemes to allow 

physical laws of conservation to be fulfilled.

Finally, the present contribution is related to the second of these 

improvements and the next chapter presents a novel approach of 

improving the basic framework of the skew scheme.

6. 5 Overall Conclusions

From the studies of one- and two-dimensional test problems just 

discussed, it is important to extract all relevant information and try and
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conclude what the next step would be in Improving some of the numerical 

schemes. In general, the numerical analyst has a number of possible 

choices of schemes which can be used for a problem. However, it Is 

not clear which particular scheme would be suited to a paricular class of 

problems (eg reclrculations). From the numerous schemes available, 

a majority of them (if not all!) suffer from false-diffusion, and to combat 

this, it is important to inject some basic rules within a new and robust 

numerical scheme. The basis of a new scheme stems from the studies 

just discussed with regards to the treatment of. for example, sources, 

gradients and flow-directions.

f The heat flux that leaves a cell through a particular face must 

be identical to the heat flux that enters the next cell through a 

common face. If this is violated, then the overall balance 

would not, in general, be satisfied, thus heat fluxes at cell 

faces must be carefully treated.

# The conservation of a species must be ensured for any 

numerical scheme that is going to be a 'good' representation of 

a differential equation.

# In ail situations of interest, the value of the dependent variable 

at a given grid-point is always influenced by the neighbouring 

grid-points. It is therefore clear that an increase at one 

grid-point should in general induce an increase in the 

neighbouring grid-points and not a decrease. This leads to 

coefficients of the finite-domain representations to be always of 

the same sign.
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The sources must be treated in a special manner so as to 

reduce the occurrence of unbounded solutions which are source 

dominated. In general, the source should be linearisation 

with a negative-slope. However, depending on the strength of 

the source, it may be possible to violate this rule.

To be consistent with the differential equation, the finite-domain 

equation for a given cell must obey the relation:

ap = Eanb

in the absence of sources and boundary conditions. Indeed, 

in the absence of sources, and uniform <t>-fleld. the centre-cell 

should take the value of its neighbours. It is only poor 

discretisation schemes which fail to achieve this.

Since all iterative schemes are prone to divergence, the 

finite-domain equations must obey certain criteria to ensure 

convergence. The Scarborough criterion is one such rule. 

A sufficient condition for convergence is that:

< 1 for all equations
lap I < 1 for at least one equation 

which is a sufficient condition and not a necessary one.

A numerical scheme which induces a dissipative nature is of no 

use to the numerical analyst, since to reduce the dissipative 

nature of a scheme, one needs to employ very fine grids to
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eliminate the importance of convection. Therefore, a 

successful numerical scheme must be non-dissipative in nature.

# All schemes tested in this chapter (except the SKEW scheme) 

are of the locally one-dimensional type, that is. no true flow 

direction is physically accounted for by the numerical scheme. 

It is therefore stressed that a new numerical scheme which 

could prove successful, must incorporate the local flow 

direction within the numerical approximation profile.

Finally, to summarise, the basic rules that a 'good' scheme should 

satisfy are:

(a) Convergence criteria

# Positive coefficients

(ie

f ap = £a n b (in the absence of sources and boundary

conditions.

t Negative - slope linearisation

(s=sa+s p4>p : Sp<0) .

# Scarborough criterion

£|anbl < i for a n equations 
lap I < 1 at Least one equation
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(b) Physical criteria

# Consistency of fluxes at cell-faces.

# Conservation.

# Non-dlssipative nature.

# Take into account the flow direction,

6.6 Closure

In this chapter, both one- and two-dimensional test problems were used 

to evaluate the advantages and disadvantages of numerical schemes so 

as to develop basic criteria for developing a new numerical scheme.

Embodying all the ingredients of the differential equation and the outcome 

of the study, would ensure physically realistic behaviour of the 

formulation which could be a key to the success of the new scheme.
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CHAPTER 7

7. NOVEL APPROACH

7. 1 Introduction

False-diffusion errors in numerical solutions of convection-diffusion 

problems, in two- and three-dimensions arise from the numerical 

approximations of the convection term in the conservation equations. 

For finite-difference based methods, one way to overcome these errors 

is to use upwind approximations which follow the streamlines. An 

approach such as this, originally derived by Raithby (1976b) and refined 

by a number of others [eg. Lillington (1981) and Castro, Cliffe and 

Norgett (1982)]. is formally called the skew-upwind-difference scheme.

The novel method outlined here, a modified form to that reported earlier 

[Patel. Markatos & Cross (1985b)l retains the general objectives of the 

Raithby approach. but uses an entirely different formulation that 

eliminates the shortcomings of the original scheme of Raithby.

The underlying idea is to focus attention at the corners of the cells in 

the mesh. Markatos (1984). rather than at the cell-faces. Thus, in a 

two-dimensional grid, flow into the control-volume may occur from any of 

the eight neighouring cells, depending on the flow direction.

The objectives are to describe the formulation of the modified novel 

method in this chapter.
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7. 11 Objectives

In this formulation of a numerical scheme, false-diffusion is considered 

from a pragmatic perspective and is performed in the context of a 

control-volume, primitive-variable discretisation of the convection-diffusion 

equation. Previous contributions by the author [Patel. Markatos and 

Cross (1985a); Patel and Markatos (1985b>; Patel and Markatos 

(1986a); and. Markatos and Patel (1986b)] focussed upon assessing 

how interactions between false-diffusion, numerical stability and/or 

oscillations and the source formulation affects the accuracy and 

convergence of the existing published schemes, see Chapter 4. The 

objectives were to clarify the influence of each factor and therefore help 

the practitioner in choosing an appropriate scheme for his particular 

problem. Furthermore, the understanding acquired has lead to a new 

robust and reliable, modified, scheme.

The flow oriented scheme of Raithby (1976b) was evaluated separately. 

Improvements to this family of schemes were identified and then 

implemented, tested and assessed especially with respect to their 

generality and practicability. Although these schemes appeared 

promising, they did suffer certain serious shortcomings, which for the 

Raithby scheme (1976b) may be summarised as follows:

(i) the influence coefficients in the finite-volume equations are not 

constrained to be non-negative. Consequently, there are 

occasions when the scheme will produce non-physical 

oscillatory solutions or fail to converge at all;
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(ID even though the formulation was carried out In the context of 

the control-volume framework (which normally guarantees 

conservation) the scheme may actually be non-conservative; 

and.

(iii) the scheme is complex to implement; also it is slow to 

converge when it does so. and thus, expensive in computer 

time.

The novel method outlined in this paper retains the general objectives of 

the Raithby (1976b) scheme, yet formulates the scheme In such a way 

so as to ensure:

(i) that the influence coefficients are always positive so that 

non-physical oscillations are avoided and convergence is 

enhanced;

(ii) conservation is retained; and.

(iii) the scheme is easy to implement and efficient in computer 

time.

7. 12 Differencing schemes for reducing 'false-diffusion'

Over the last decade or so a wide variety of schemes have been 

proposed to reduce the problems arising from 'false-diffusion'. A wide 

variety of schemes have been suggested and recently many have been
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assessed against suites of test problems which aim to reveal the 

essential limitations of the proposed schemes [Patel. Markatos & Cross 

(1985a); Hung. Launder and Leschziner (1985); and. Patel and 

Markatos (1985a)l. Whilst it is not appropriate to go into detail here, 

it is worth pointing out that all the schemes, which essentially involve 

discretisation improvements on the simple upwind representation of the 

convection term, have severe restrictions on their utility. Most 

higher-order schemes fail to converge at high grid Peclet numbers, 

unless something special is done [Patel. Markatos & Cross (1985b)l. 

Furthermore, for flows inclined to the grids, they do not perform 

substantially better than the rest, because although they reduce the 

truncation/discretisation errors of the variable. 0. in the cell, they are 

not dealing with the multi-dimensional, 'false-diffusion' problem at all.

Raithby (1976b) has described a class of schemes which allow for 

grid-flow direction inclination. These schemes tend to involve (in two 

dimensions) the diagonal neighbouring cells as well as those opposite to 

each face. As highlighted in the introduction, the skew schemes based 

upon Raithby suffer from a number of shortcomings, which have been 

recently illustrated [Hung. Launder and Leschziner (1985)].

7. 13 The novel approach: UPSTREAM scheme

A new scheme is proposed and formulated by adopting new ideas, to 

account for the flow-angles at the corners whilst preserving desired 

properties such as unconditional convergence and conservation. The 

central idea is to concentrate attention at the corners of the finite volume
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cells rather than the cell faces as Raithby (1976b) does.

A description of the 'novel-scheme' and results obtained are presented 

here to demonstrate its potential.

The key to the possible success of the scheme lies in considering the 

control-volume corners and not the four cells-faces. For simplicity, 

referring to the configuration of the flow in Figure 7. 13-1 the Idea is to 

distribute the mass flow rates and transported properties according to the 

angle that the bold arrows at the corners make with the positive 

x-direction.

Considering the SW corner of the P control-volume, the inflow 

contribution is either from W and SW or SW and S. depending on the 

angle e-j. Similarly. considering the NE corner of the P 

control-volume, the outflow contribution is either to N and NE or NE and 

E depending on the angle 63; a similar process also being applied at 

the NW and SE corners. The contributions of the 8-points around the 

P control-volume are approximated by linear profiles.

Considering the SW corner inflow, the west face flux is evaluated as 

follows:

If ei<45

45-e-, 01 r e-| 90-e-|
= cw(max 

pvsAx4>s = cs <t>s ; 

If 0i>45
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ei o~45 i r ei
pusAX4>s = cs {max

If 9i=45 

puwAy<t>w = 

pvsAx<t>s =
(7.13-1)

It is worth emphasising that the above formulation leads to unconditionally 

positive coefficients; and that its implementation in existing codes is 

relatively simple. A similar approach at the remaining corners leads to 

the formulation of the 'novel-scheme'.

Finally, using the constraint:

I Inflows = I outflows (7.13-2);

conservation is ensured. When applying the scheme to the momentum 

equations, satisfaction of equation (7. 13-2) requires an adjustment 

stage, which is applied equally to both relevant convections. Cw . Cs 

(see Figure 7. 13-1).

7.2 Closure

In this chapter, the novel approach namely the UPSTREAM scheme was 

introduced. The scheme is formulated with the knowledge of the 

previous chapters to minimise the errors that arise due to 'false-diffusion'.
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CHAPTER 8

8. APPLICATIONS OF THE NOVEL APPROACH: UPSTREAM SCHEME

8. 1 Introduction

In this chapter, the new numerical scheme, described in the previous 

chapter is evaluated by applying it to various two-dimensional 

laminar/turbulent flows. The results are compared with some of the 

most used scheme presently available, at various Peclet and Reynolds 

numbers.

8. 11 Objectives

The objectives of the present study are to evaluate the relative 

performances of the UPSTREAM scheme with respect to some standard 

and most used schemes.

8. 12 The schemes investigated

The schemes investigated for the present applications are a combination 

of the following:

1. the upwind-difference scheme;

2. the quadratic-upstream-difference scheme;

3. the skew-difference scheme; and.
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4. the upstream-difference scheme.

8.2 The Test Problems

The test problems for the present Investigation are:

1. transport of a scalar in a uniform velocity-field (see Section 

6.44. Figure 6.44-1) ;

2. flow through a sudden enlargement (see Section 6.24.1. 

Figure 6.24. 1-1) ;

3. flow in a cavity with a moving lid (see Section 6.24.2. Figure 

6.24.2-1); and

4. flow of heat/smoke in a rectangular enclosure (see Section 

6.33. Figure 8.2-1).

8.3 Presentation of Results

The results obtained are in the form of ^-profiles, contour-plots and 

vector-plots. The <f>-profiles are depicted at various stations in the 

region of interest, for each of the four test problems.
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8.31 Transport of a scalar In a uniform velocity-field

Figures 8.31-1 to 8.31-6 depict <t>-proflles at a constant x-llne (x=0.5) 

for all four schemes (see sub-Section 8.12) and angles of 0°. 11.3°. 

21.8°. 31°. 38.7° and 45°. respectively, for an 11x11 uniform grid.

Figures 8.31-7 to 8.31-9 depict <j>-proflles at a constant y-llne (y=0.4) 

for four schemes and an angle of 67.5°. for uniform grids of 11x11. 

21x21 and 31x31. respectively, for grid refinement purposes.

8.32 Discussion of Results

The transport of a scalar in a given uniform velocity-field has provided 

an excellent test problem to evaluate the presence of false-diffusion 

within various schemes. Figures 8.31-6 show consistent differences 

between upwind and quadratic-upstream-difference schemes on one 

hand, and skew and upstream-difference schemes on the other, 

particularly in respect of the position of the step and the presence of 

over-undershoots predicted by the quadratic-upstream and skew 

schemes.

The skew and quadratic-upstream difference scheme performances are 

similar for grid-to-flow angles of below 15°, where as the upwind and 

upstream scheme performances are similar for the range of 0°-15°. 

For angles greater than 15°. the quadratic upstream scheme predicts 

overshoots and indeed at 45°. manages to smear the step. However, 

the quadratic upstream scheme smears the step far less than the upwind
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difference scheme for the same grid. The skew scheme predicts highly 

oscillatory solutions for angles greater than 11° and less than 45°. 

The upstream scheme performs better than the other schemes, 

particularly for grid-to-flow angles greater than 11° to either the vertical 

or horizontal and with the absence of any over/undershoots.

Figures 8.31-7 to 8.31-9. serve the purpose of grid-refinement studies. 

For flow-to-grid angle of 67.5°. it is clear that the upwind-difference 

scheme although grid independent, is far from reproducing the step 

change accurately. The skew scheme on the other hand reduces the 

maximum undershoot value with grid-refinement, however, this is rather 

slow and thus a very fine grid is required to obtain wiggle free solutions. 

The quadratic-upstream-difference scheme predicts both 

over/undershoots, which persist with grid refinement, although these can 

again only be eliminated by the use of very fine grids or selective grid 

refinement. The upstream-difference scheme performs very well with 

grid refinement, and predicts no over-undershoots. The general 

tendency of all schemes, is to approach zero degrees, that Is. when the 

velocity vector is orthogonal to the grid.

The excessive spread of 4>. normal to the velocity-vector is easily 

quantified with the aid of:

PUAXAV 
r false - 4 ( Aysln3+AXCOS3e)

which shows that for e=67.5°, rfa | se assumes the value of 0.255A|u|. 

which in turn implies an 'artificial' effective Peclet number of 3. 92. 

Therefore, if a high velocity region is at significantly large flow-to-grid
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angles, and the mesh Peclet number In both x- and y-dlrectlons are 

greater than 2. than the upwind scheme produces solutions which are 

unrepresentative of the physical solution, even with a very fine grid.

8. 33 Flow through a sudden enlargement

Figures 8.33-1 to 8.33-8 depict the ^-profiles at a constant x-line 

(x=0.5) for the upwind-difference scheme with grids of 20x20 and 25x25 

and the upstream-difference scheme with a grid of 20x20. The range of 

Reynolds numbers considered varies between 50-3000.

8.34 Discussion of results

The schemes show a large discrepancy for Re=50 for the same number 

of nodes, with a maximum difference of about 8% close to the axis of 

symmetry. The finer-grid upwind (25x25) and the coarser upstream 

(20x20) difference scheme predict results to within 2% at the symmetry 

plane.

For moderate Reynolds numbers (250-1000). Figures 8.33-2 and 

8.33-3, the upwind (20x20 and 25x25) and the upstream (20x20) 

difference schemes predicted the <t>-profiles with less discrepancy between 

them. The upwind (20x20) and upwind (25x25) predictions were quite 

identical except at the top wall where the recirculation region exists.

For high Reynolds numbers (>1000). Figures 8.33-4 to 8.33-8. the
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existence of the recirculation is quite evident at the centre x-line 

(x=0.5). In general, the upwind-difference scheme smears the profile 

around a height of 0.06 (see Figures 8.33-4 to 8.33-8). The 

upstream-difference scheme with a 20x20 grid predicts the influence of 

the recirculation and shows quite a large difference from the upwind 

4>-values. at around 4>=0. 2.

For Re=3000. the sharp dip at 4>=0.2 for the upwind (25x25) and 

upstream (20x20) shows a discrepancy of around 20%. This is mainly 

due to the effect of upwinding in the coordinate directions as opposed to 

the streamline directions.

It is clearly shown that where the flow is aligned with the coordinate 

direction, the upwind and upstream-difference scheme predictions are 

quite close, as expected.

8. 35 Flow in a cavity with a moving lid

Figures 8.35-1 and 8.35-2 depict the 4>-profiles at a constant x-line 

(x=0.5) for the upwind-difference scheme (20x20 and 25x25) and the 

upstream-difference scheme (20x20). together with experimental results 

obtained from Nallaswamy & Prasad (1977) for Re=100 and 1000, 

respectively.

Figure 8.35-3 and 8.35-4 depict the <t>-proflles at a constant y-line 

(y=0.5) for the upwind-difference scheme (20x20 and 25x25) and the 

upstream-difference scheme (20x20). together with experimental results
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obtained from Nallaswamy & Prasad (1977) for Re=100 and 1000, 

respectively.

8. 36 Discussion of Results

The upwind-difference scheme <j>-profiles (x=0.5). although similar in 

shape, show quite a departure from the experimental results at around a 

height of 0.7 for Re=100. see Figure 8.35-1. In contrast, the 

upstream-difference scheme predicts the experimental values quite 

accurately, taking into account the coarse grid and the sharp gradient 

present near the top of the cavity.

For Re=1000 the discrepancies at the x-centreline. Figure 8.35-2. 

between the upwind (20x20 and 25x25) and the upstream is larger, as 

expected; and there is still a large difference in the minimum value of <t> 

at the centre of the cavity as predicted by the upwind (25x25) when 

compared with the experimental value. On the other hand, the 

upstream (20x20) scheme appears quite accurate within the bulk of the 

cavity, except close to the moving lid. where the sharp kink in the 

profile was not predicted.

The comparison of the profiles at the y-midplane (y=0. 5), see Figures 

8.35-3 and 8.35-4. show quite a difference between the experimental, 

upwind- and upstream-difference schemes; the upwind-difference scheme 

overpredicting by about 25% at a width of about 0.5. The 

upstream-difference scheme predicted results to within 10% of the 

experiments, with the 20x20 grid. In general, the numerically predicted
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profile shapes were similar to those observed experimentally, but the 

upwind-difference scheme predictions were flatter within the centre of the 

cavity.

8. 37 Flow of heat/smoke in a rectangular enclosure

The u-velocity profiles are depicted at the x=2.63m. 5.81m and 8.87m 

planes in Figures 8.37-1 to 8.37-3. respectively; and the temperature 

profiles at x=2. .49m. 5.68m amd 8.86m are depicted in Figures 8.37-4 

to 8.37-6. respectively for the upwind- and upstream-difference 

schemes. Where available, experimental results extracted from Kumar 

and Cox (1983). are also presented.

Contour plots of u-velocity (Figures 8.37-7 and 8.37-8). v-veloclty 

(Figures 8.37-9 and 8.37-10), temperature (Figures 8.37-11 and 

8.37-12) and pressure (Figures 8.37-13 and 8.37-14) are presented 

for the upwind- and upstream-difference schemes, respectively.

Finally, the velocity vectors are presented in Figures 8.37-15 and 

8.37-16 for the upwind- and upstream-difference schemes.

8. 38 Discussion of results

The following discussion is relative to the UDS predictions, unless 

otherwise stated.
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The u-velocity profiles. Figures 8.37-1 and 8.37-3 show that both the 

UDS and upstream schemes predicted similar results. This is not 

surprising, since the upstream scheme was not directly applied to the 

momentum equations but only the energy equation. Thus, the observed 

differences between the predictions of the UDS and upstream schemes 

are only due to the density differences caused by the temperature 

differences. This effect is stronger in the upper half of the enclosure 

at the x=5.81m plane (Figure 8.37-1), and In the lower half of the 

enclosure for the x=8.63m plane (Figure 8.37-2). The velocity profiles 

at the 'doorway'. x=8.87m plane (Figure 8.37-3). are almost identical. 

This Is mainly due to the fact that most of the flow there Is horizontal, 

and so the scheme reverts to the UDS scheme over most of that plane. 

Both schemes lead to poor results at the 5.81m plane (ie no stratified 

flow, as predicted by the experimental results) but this may be due to 

the viscosity value used (see relevant discussion in Markatos, Matin and 

Cox (1982)). It will be interesting in this context to apply the upstream 

scheme to the momentum equations as well. The maximum difference 

between the velocity result predicted by the two schemes is approximately 

8%.

The temperature profiles. Figures 8.37-4 and 8.37-5 show a marked 

difference between the results, especially at the x=2.49m and x=8.86m 

planes in the upper half of the enclosure. The predictions with the 

UPSTREAM scheme are on average 10% to 12% better than those for the 

UDS. However, the 'soffit' temperature is poorly predicted by both 

schemes, where the UDS is again the worse of the two.

The other schemes used for the experimental compartment are not
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presented since similar trends to those of the standard compartment, see 

sub-sections 6.32 to 6.36. high source test cases were evident.

* Preliminary comparisons with experiment tend to favour (within 

10-12%) the LEDS and the upstream scheme.

* The QUDS. QUDSE. QUDSER and Raithby's skew schemes 

failed to converge for this test problem, despite the author's 

best efforts. This is true even for the cases where the 

schemes were introduced only in the energy equation and not 

in the momentum equations. It is true that, by inspecting 

coefficients of these schemes, a technique could have been 

devised to prevent the divergence of these schemes; for 

example, it could have been arranged that above a certain 

mesh Peclet number the QUDS reverted to the UDS. 

However, this would be a problem-dependent choice and 

generality is a strong desideratum, for practical applications.

* Among the schemes that converged for the UDS. HDS. LEDS 

and PDS there is no distinct advantage concerning 

computational time; all requiring between 10-11.5 sees per 

sweep on the Prime 750 minicomputer, for the grid used, and 

about the same total number of sweeps for a given accuracy. 

The upstream difference scheme required about 10% more CPU 

seconds per sweep compared to the UDS scheme CPU time; 

however, this increase is not too great since this scheme also 

requires fewer iterations to converge.
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Inspection of the above results, as well as others not displayed here, 

resulted in the following principal findings:

# The UDS. HDS, LEDS and PDS schemes predicted the expected 

trends of temperature variations. The CDS failed to converge 

for the strong heat source cases.

# For low heat sources, there was an overall difference of about 

10% among the temperature profiles predicted by the schemes. 

For strong heat sources the disagreement was even higher, at 

about 15%.

The highest degree of difference among the schemes was found 

at about 20% of the height of the room.

For low heat sources the vertical velocity profiles predicted by 

the various schemes were in agreement to within 2%, whereas 

the horizontal velocity profiles displayed a maximum level 

discrepancy of 5%. For high heat sources large differences 

were observed in the velocity profiles.

8.4 Conclusions

The overall conclusions of the present study, to compare the predictions 

of the upstream-difference scheme with some of the generally used 

numerical schemes, has revealed that the scheme can predict better and 

accurate results without the added complexity of divergence. The
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upstream scheme has been tested for both laminar and turbulent flows 

where 'false-diffusion' would have existed for the conventional, locally, 

one-dlmenslonal. numerical schemes.

The upstream-dlfference scheme provides an alternative to the UDS/LEOS 

schemes, in that it is unconditionally stable, more accurate by about 

10% for the cases considered, and only marginally (approximately 6% 

fewer steps) more expensive to run.

8.5 Closure

In this chapter the application of the upstream-difference scheme to 

various test cases has been presented, together with comparisons of 

other conventional and generally used numerical schemes and 

experimental results (where available).
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CHAPTER 9

9. CONCLUSIONS

The main points of importance that emerge from the previous chapters of 

this thesis are classified into two sub-sections. These two sub-sections 

are as follows:

(a) one-dimensional study - conclusions; and,

(b) two-dimensional study - conclusions.

This then leads to the classification of the overall points of importance in 

a much general context with regards to stability, accuracy, economy and 

applicability of the various numerical-schemes considered.

9.1 One-Dimensional Study - Conclusions

Of the numerical schemes applied to the one-dimensional test cases, it 

is concluded that the higher-order schemes, in general, perform well, 

although care must be taken to ensure their stability. The accuracy of 

the higher-order schemes is much greater than low-order schemes when 

they converge because the truncation errors, from Taylor series analysis, 

are much smaller and not of the diffusive type. The low-order schemes 

on the other hand prove stable except that they suffer from larger errors 

which are diffusive in nature. It has also been shown that the 

first-order upwind-difference scheme proves more stable and accurate 

than the central-difference scheme which is second-order accurate.
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This arises mainly due to the fact that some physical intuition has been 

incorporated within the formulation of the numerical scheme.

Therefore, the one-dimensional study serves the purpose of clarifying the 

misunderstanding present in the solution of the convection-diffusion 

equation with regards to truncation errors only, since no false-diffusion 

is present in one-dimension. Furthermore, it provides some guidelines 

for numerical analysts and practitioners as to which schemes are stable, 

accurate, economical and physically viable.

9. 2 Two-Dimensional Study - Conclusions

The two-dimensional study was performed to clarify the errors present 

due to the nature of the locally one-dimensional treatment of the flow, 

together with the effect when the flow is skew to the grid lines. It is 

the 'local one-dimensional flow' assumptions that gives rise to 

'false-diffusion', unlike the real one-dimensional flow problems where 

only truncation errors were the cause of inaccuracies. The study 

points. in general. towards the inadequacy of all the locally 

one-dimensional schemes available to-date for evaluating accurate and 

economical solutions with fairly coarse grids.

Extensions exist of the locally one-dimensional upwind-difference scheme, 

namely the skew upstream-difference scheme and the 

vector-upstream-difference scheme. These schemes take into account 

the grid-to-flow angle explicitly with the formulation of the numerical 

scheme influence coefficients. Although they are first-order accurate.
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they have proved quite accurate and are extensively used. However, 

they are restricted to small grid-to-flow angles due to the non-bounded 

nature of the influence coefficients, which results in highly undesirable 

numerical oscillations.

To improve the numerical scheme it was considered in this work to 

formulate the influence coefficients along the lines of the 

skew-upstream-difference scheme, but with simultaneous satisfaction of 

all the conditions of stability. accuracy and possibly free from 

false-diffusion. This was achieved by considering inflows and outflows 

directly at the corners of the control-volume, thus ensuring positive 

influence coefficients. This results in the formulation of the upwind in 

streamline direction-differencing scheme (ie UPSTREAM), which accounts 

for all the above mentioned pitfalls which hinder the performance of the 

various available numerical-difference schemes. The 

upstream-difference scheme is a compromise between accuracy and 

stability. The reason for the compromise is that a stable scheme was 

achieved only by considering a scheme which is applied at the inflow and 

outflow at corners, although only first-order accurate, and the accuracy 

being achieved by careful and simple physical sense being incorporated 

within the formulation, ie the local flow direction dependence of the flow. 

Unfortunately, the new scheme (as well as every other existing 'skew' 

scheme) cannot be guaranteed to be conservative.

The results obtained by the use of the upstream-difference scheme show 

a marked improvement in various test cases considered during the study 

and it is in this direction that future research should be directed for 

fruitful results and major improvements.
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9. 3 Summary of Overall Conclusions and Findings

The important conclusions of the present study have helped to clarify the 

various advantages and disadvantages of locaiiy one-dimensional and flow 

oriented schemes for the solution of muiti-dimensional fluid-flow 

problems.

The important properties that a numerical scheme should satisfy have 

been discussed, these being conservation, boundedness and physical 

insight to the flow problems.

The boundedness property, a requirement for a diagonal dominant 

influence coefficient matrix, ensures numerical stability. Violation of 

this property is the main reason for the failure of the higher order and 

existing flow oriented schemes.

The conservation property, if satisfied leads to the boundednesss 

property.

The relevance of the numerical scheme to the flow structure provides 

great improvements to the physical basis of the link between the upwind 

to that at the current location. This clearly leads to no downwind 

contributions to the evaluation of convected species.

The main contribution of the present work is firstly to clarify the problems 

of the available schemes. These are then utilised to formulate a new 

flow-direction upstream scheme. which is bounded and reduces 

'false-diffusion'. The application and performance of the scheme has
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been demonstrated by applying it to some classical test problems. The 

analysis of which revealed that the new scheme proved accurate and 

economical.

The study also examined the validity of the truncation errors within the 

process of false-diffusion which lead to a more precise and meaningful 

definition of 'false-diffusion'.

The specific findings concerning the performance of various finite-volume 

schemes, for different test cases are summarised below.

Locally one-dimensional schemes

The locally one-dimensional schemes all, in general, give rise to 

excessive errors for flows which are oblique to the grid lines. Some of 

these schemes fail because the restriction on the cell Peclet number is 

not adhered to and others give rise to plausible results.

In general, the lower-order numerical schemes prove well suited for all 

test cases where the flow is directed towards one or the other grid-line 

directions. The reason for this is that even for simple flows, the 

higher-order schemes have to be used with care due to the restriction 

on the cell Peclet number. Furthermore, the aim of reverting to 

higher-order schemes is to improve accuracy and also reduce 

false-diffusion errors; however. locally one-dimensioal numerical 

schemes fail to reduce false-diffusion errors since no explicit information 

of the local velocity direction is utilised within the scheme.
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Stable higher-order schemes, obtained by modifying the nature of the 

influence coefficients and source terms, prove more accurate than their 

original schemes. However, there is an order of magnitude increase in 

overall cost of computing solutions.

The view of the author is that when one wishes to use the locally 

one-dimensional schemes, it is best to use a low-order scheme, since 

with some selective grid refinements, plausible and cost-effective results 

are easily obtained, unlike with the high-order schemes where fine tuning 

of the convergence parameters has also to be considered.

Flow oriented schemes

The flow-oriented schemes, only a few of which exist, are an extension 

of the locally one-dimensional schemes, where the flow direction 

explicitly appears within the formulation of the influence coefficients. 

Once again, the simplest flow-oriented scheme, the skew scheme of 

Raithby (1976b) although only first-order accurate, provides a great 

improvement in numerical accuracy when it converges. However. 

convergence is not so easy when applied to complex problems. The 

downfall of the scheme is that it is not bounded and the conservative 

properties which must be satisfied by a numerical scheme for it to be 

able to predict accurate and economical solutions are not satisfied. 

It is because of the instabilities, due to shortcomings in the influence 

coefficients, that it was found necessary to device a special treatment to 

produce a bounded scheme. This leads to monotonic convergence and 

solutions which are virtually free from false-diffusion.
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The practice devised was to consider inflows and outflows at 'corners' of 

the control-volumes. This stabilises the influence coefficients, since 

non-adjacent face contributions are felt by Its neighbouring cell faces of 

the same control-volume. This leads to non-negative influence 

coefficients.

The above practice leads to a new numerical scheme termed as 

LJPstream in STREAMIine direction scheme, ie UPSTREAM scheme. The 

results obtained by the newly-formulated scheme provides the following 

important points:

# the scheme is bounded and conservative:

# it virtually eliminates false-diffusion;

# it improves convergence and accuracy; and

# it is economical and is comparable to the conventional 

upwind-difference scheme in terms of computational costs.

9.4 Closure

This chapter presented the overall conclusions of the study performed. 

The conclusions of the study prove useful since the work was performed 

in two stages:

# classification of all the schemes in terms of accuracy, economy 

and boundedness; and.

# a new formulation to overcome some of the pitfalls of the 

available schemes to increase the accuracy, economy and
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boundedness. ie the stability of the numerical scheme.

However, there are some shortcomings of the scheme which require 

further examination. These are outlined in the next chapter.
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CHAPTER 10

10. FURTHER RECOMMENDATIONS

Suggestions for Further Work

The available evidence indicates that the UPSTREAM scheme performs 

very well for problems where the flow is inclined to the grid-lines 

together with no other restriction, either on the source term or the 

fineness of the grid. However, since there are many problems of 

practical importance, it is worth persuing and extending the scheme to 

three-dimensional problems with a possible extension to transient 

problems. This in the first instance can be aimed at being applied to 

the improvement of the convected scalar only, since, many test cases 

can be devised to check the formulation.

Regarding the application of the UPSTREAM scheme to the flow-field 

predictions, some areas require further investigation, these are as 

follows:

The weighting procedure, utilised to average the velocity at the 

'cell-corner' in the momentum equation requires a set of rules 

to achieve this uniquely in all situations possible.

Furthermore, it is possible to utilise the one-dimensional 

exponential solution along with the 'corner-approach', instead 

of the first-order approximation, to improve the approximation 

further.
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# The computation of the exponential functions In the previous 

step requires an economical procedure, since in general, 

exponential functions are time-consuming, ie expensive to 

evaluate. In the first instance a polynomial approximation can 

be utilised for the exponential function.

* The UPSTREAM scheme. in its present form, is 

non-conservative, when applied to the velocities, and further 

improvement is required to achieve this.

Finally, the improvements suggested above to further improve the 

UPSTREAM scheme would greatly benefit the computational fluid dynamics 

practitioners, since then a very versatile and highly accurate numerical 

scheme would be available to tackle multi-dimensional, multi-phase 

prolems of real importance which with present day resources and 

numerical schemes is virtually impossible.
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IV III II IV IV IV IV 
Truncation 4>p 4>p 4>p <J>p 4>p 4>p 4>p 

error

Principal Ax3 Ax2 AX Ax3 Ax3 (4x~3)Ax3 Ax3 
part

Scheme COS COS UDS LDS LUDS LSUDS LEDS QUDS

TABLE 6.14.1: TRUNCATION ERRORS FOR THE DIFFERENCING SCHEMES

FOR S(x>=0

Test Peclet number Range of mesh Number of Source term 
case P=pu/r Peclet number nodes S(x>

1
2
3
4
5
6
7
8

1-105
M

H

N

H

H

H

N

0.2-103
M

II

H

n

it

M

n

5-100 0
50

X-x
x^x-i

-X^+X"!
~X2~X+"l
x^x+i

TABLE 6.15.1: ONE-DIMENSIONAL TEST CASES CONSIDERED

-163-



Test 
case

Exact COS UDS LDS LUDS LSUDS LEDS QUDS

0.0183 -0.3279 0.1997 -0.0753 0.1263 0.0183 0.0183-0.1154
0.0183 0.0000 0.1111 0.0161 0.0583 0.0183 0.0183 0.0102
0.0183 0.0123 0.0625 0.0201 0.0298 0.0183 0.0183 0.0181

1.9725
1 .9725
1.9725

2.4918
2.0000
1 .9815

1
1
1

.7004

.8334

.9063

2.1130
1 .9758
1 . 9698

1
1
1

.8105

.9126

.9552

1
1
1

.972

.972

.972

1
1
1

.972

.972

.972

2.1713
1 . 9845
1 .9729

0.0358 -0.3009 0.2153 -0.0553 0.1408 0.0358 0.0379 -0.0921
0.0358 0.0180 0.1278 0.0337 0.0747 0.0358 0.0364 0.0283
0.0358 0.0300 0.0797 0.0375 0.0470 0.0358 0.0360 0.0357

0.0008 -0.3459 
0.0008 -0.0180 
0.0008 0.0053

0.1842 -0.0954 0.1118 0.0008
0.0944 -0.0014 0.0419 0.0008
0.0453 0.0027 0.0127 0.0008

0.0013 -0.1387 
0.0002 -0.0079 
0.0007 0.0005

-0.0283 -0.3953 0.1637 -0.1275 0.0859 -0.028 -0.028 -0.1707
-0.0283 -0.0478 0.0699 -0.0306 0.0140 -0.028 -0.028 -0.0372
-0.0283 -0.0346 0.0185 -0.0264 -0.0161 -0.028 -0.028 -0.0286

-0.0132 -0.3732
-0.0132 -0.0322
-0.0132 -0.0194

0.1758 -0.1107 0.0994 -0.013 -0.013 -0.1516
0.0834 -0.0155 0.0284 -0.013 -0.013 -0.0214
0.0328 -0.0114 -0.0012 -0.013 -0.013 -0.0134

0.0299 -0.3144 0.2048 -0.0633 0.1377 0.030
0.0299 0.0118 0.1190 0.0278 0.0698 0.030
0.0299 0.0240 0.0721 0.0317 0.0414 0.030

0.026 -0.1067
0.029 0.0213
0.030 0.0296

0.0849 -0.2285 0.2547 0.0001 0.1823 0.0848 0.0889 -0.0326
8 0.0849 0.0682 0.1721 0.0829 0.1209 0.0849 0.0860 0.0781

0.0849 0.0794 0.1266 0.0865 0.0953 0.0849 0.0852 0.0848

TABLE 6.16.1: TEST CASE RESULTS FOR P=20. x=0.8 AND N=5,10.20
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Scheme

COS

UDS

HDS

LEDS

POS

QUDS

QUDSE

QUDSER

TABLE 6.25.

Reynolds
Number

50
TOO
150
200

50
TOO
150
200

50
100
150
200

50
100
150
200

50
100
150
200

50
100
150
200

50
100
150
200

50
100
150
200

N

166
194
194
206

110
104

98
102

106
102

98
100

108
104
100
100

112
108
104
106

98
96
96
94

94
92
92
92

134
138
160
138

1.1: COMPUTATIONAL

1

1640
1932
1966
2265

900
860
810
842

866
820
980
818

924
872
818
830

888
844
786
820

1180
mo
1044
1056

1214
1102
1016
1082

1958
1886
1784
1832

DETAILS

N/Nu

1 .506
1 .863
1 .974
2.016

1 .000
1 .000
1 .000
1 .000

0.964
0.981
1.000
0.980

0.982
1 .000
1 .020
0.980

1 .018
1 .038
1 .061
1 .039

0.891
0.923
0.980
0.922

0.933
0.885
0.939
0.902

1 .400
1 .519
1 .633
1 .549

TO OBTAIN

T/Tu

1 .803
2.247
2.427
2.691

1 .000
1 .000
1 .000
1 .000

0.952
0.953
0.963
0.253

1 .015
1 .013
1 .010
1 .009

0.976
0.981
0.970
0.974

1 .296
1 .290
1 .280
1 .239

1 .334
1 .291
1 .281
1 .283

2.141
2.183
2.202
2.200

A GIVEN

T/N

9.880
9.960

10.113
11 . 003

8.273
8.259
8.263
8.255

8.170
8.170
7.959
8.120

8.336
8.385
8.180
8.300

7.929
7.813
7.358
7.736

1 2 . 041
11 . 563
10.873
1 1 . 353

12.913
11.978
1 1 . 043
11.761

12.649
11 .937
11 .130
1 1 . 722

ACCURAC>

USING VARIOUS SCHEMES
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Scheme

COS

UDS

HDS

LEOS

PDS

QUDS

QUDSE

QUDSER

Reynolds
Number

50
100
150
200

50
100
150
200

50
100
150
200

50
100
150
200

50
100
150
200

50
100
150
200

50
100
150
200

50
100
150
200

* r/h

3.95
8.10

12.51
16.66

4.38
8.59
12.84
17.29

4.52
8.91
13.33
17.68

4.52
8.91
13.32
17.68

4.52
8.90
13.32
17.67

4.46
8.88
13.26
17.64

4.46
8.86
13.30
17.64

4.46
8.86
13.30
17.64

fi r/D

1 .97
4.05
6.25
8.33

2.19
4.29
6.42
8.63

2.26
4.45
6.67
8.84

2.26
4.45
6.66
8.84

2.26
4.45
6.66
8.84

2.23
4.44
6.63
8.82

2.23
4.43
6.63
8.82

2.22
4.43
6.65
8.82

fi r/hRe

0.079
0.081
0.083
0.083

0.083
0.086
0.086
0.086

0.090
0.089
0.089
0.088

0.090
0.089
0.089
0.088

0.090
0.089
0.089
0 . 0088

0.089
0.089
0.088
0.088

0.089
0.089
0.089
0.088

0.089
0.089
0.089
0.088

TABLE 6.25.1.2: COMPARISON OF RE-ATTACHMENT LENGTHS USING

VARIOUS SCHEMES
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Reynolds
Number

50
100
150
200

je r/h

4.41
8.81

13.22
17.62

fi r/D

2.2
4.3
6.5
8.8

fi r/hRe

0 . 0882
0.0881
0.0881
0.0881

TABLE 6.25.1.3: REFERENCE RE-ATTACHMENT LENGTHS USED FOR

COMPARISON [POLLARD (1980b); MACAGNO (1963)]

Scheme

CDS

UDS

HDS

LEDS

PDS

QUDS

QUDSE

Re No.

100
400

100
400

100
400

100
400

100
400

100
400

100
400

N

126
191

83
84

79
87

90
89

87
88

91
101

295
277

T

24
56

12
13

11
12

15
15

13
14

18
19

96
84

N/Nu

1 .518
2.274

1
1

0.952
1 .036

1 .084
1 .060

1 .048
1 .048

1 .096
1 .202

3.554
3 . 298

T/Tu

2.000
4.308

1
1

0.917
0.923

1 .250
1 .154

1 .048
1 .077

1 .500
1 .462

8.000
6.462

T/N

0.191
0.293

0.143
0.155

0.139
0.138

0.167
0.169

0.149
0.159

0.198
0.188

0.325
0.303

QUDSER 100 185 48 2.229 4.003 0.259 
400 200 43 2.381 3.308 0.215

TABLE 6.25.2.1: COMPUTATIONAL DETAILS TO OBTAIN ACCURACY USING

VARIOUS SCHEMES FOR RE=100 AND 400
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SOLUTIONS

GRID
NODE

1
2
3
4
5
6
7
8
9

10

Y UDS HDS LEDS PDS QUDS QUDSER RDS SKEW EXACT
DIST

5
1
2
3
5
6
7
8
9
1

. 56E-2

. 67E-1

. 78E-1

.89E-1

.OOE-1

.11E-1

.22E-1

.33E-1

.44E-1

.OOE-0

17.8
37.3
66.6
101
135
166
191
212
227
227

17.8
37.3
66.3
101
135
166
191
212
227
227

17.8
37.3
66.6
101
135
166
191
212
227
227

17.8
37.3
66.6
101
135
166
191
212
227
227

7.17
4.11

20
67

135
201
245
266
266
266

7.69
2.52
2.56

50.3
135
220
271
283
269
269

19.4
41 .9
74.3
111
146
176
201
219
233
233

10
10
10
10

260
260
260
260
260
260

10
10
10
10

260
260
260
260
260
260

ERRORS

GRID
NODE

1
2
3
4
5
6
7
8
9

10

Y UDS HDS LJEDS PDS QUDS QUDSER RDS SKEW EXACT
DIST

5
1
2
3
5
6
7
8
9
1

.56E-2

.67E-1

. 78E-1

.89E-1

.OOE-1

.11E-1

.22E-1

.33E-1

.44E-1

. OOE-0

78
273
566
910
-48
-36
-26
-18
-12
-12

78
273
566
910
-48
-36
-26
-18
-12
-12

78
273
566
910
-48
-36
-26
-18
-12
-12

78
273
566
910
-48
-36
-26
-18
-12
-12

-28
-59
100
570
-48
-22
-6

2
2
2

-23
125

74
403
-48
-15

4
9
3
3

94
319
643

1010
-44
-32
-22
-16
-10
-10

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

KRMS 351 351 351 351 185 136 393

TABLE 6.45.1: COMPARISON BETWEEN VARIOUS SCHEMES FOR FLOW AT 45° 

TO THE r=10-10 . X-STATION=0.5

-168-



Boundary Grid Lines Grid Modes

t

1

t

t

-¥

t

t

t

t

r

r
t

t

Boundary
{

t l i P i

r

__ _ _ i

t

t

i

t

t

t

r

r

r

x
SYHBOL UflRIflBLE

u-ueloc i ty 
v-ueloc i ty

FIGURE 
2.32-1

FINITE-DIFFERENCE GRID AND 
VARIABLE LOCATIONS

-169-



r <y

X

SYMBOL

n
B 
C

CQNTROL-UOLUriE

u-ueloc i ty 
(j)-general van i able

i ty

FIGURE 
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GENERAL CONTROL VOLUMES
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FIGURE 
2.33-2

WALL CONTROL VOLUMES
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FIGURE 
2. 4-1

CONTROL-VOLUMES AND NOTATION FOR 
FINITE-DIFFERENCE EQUATION
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FIGURE 
4.11-1

CONTROL-VOLUME FOR DIFFUSION TERM 
APPROXIMATION C5-STAR CLUSTER)
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FIGURE 
4. 12.9-1

QUADRATIC UPSTREAM-DlFFERENCE SCHEME 
INTERFACIAL VALUES AND NINE-POINT STARS
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FIGURE 
4.12.13-1

INTERPOLATION REGION FOR THE SKEW- 
DIFFERENCE SCHEME
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V 2r 3' 4r 5n 6rT"8T 9x10
e

FIGURE 
5.3-3

FALSE-DIFFUSION COEFFICIENTS PREDICTED BY 
EXPRESSIONS 5.3-la. 1b AND 1c

FIGURE 
5.3-4

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 9=45 DEGREES AT IX=1
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FIGURE 
5.3-5

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 9=45 DEGREES AT IX=2

FIGURE 
5.3-6

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 9=45 DEGREES AT IX=3

-179-



FIGURE 
5.3-7

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 9=45 DEGREES AT IX=4

FIGURE 
5.3-8

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 8=45 DEGREES AT IX=5
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0

FIGURE 
5.3-9

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 9=45 DEGREES AT IX=6

FIGURE 
5.3-10

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 9=45 DEGREES AT IX=7
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0

FIGURE 
5.3-11

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 9=45 DEGREES AT IX=8

FIGURE 
5.3-12

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 6=45 DEGREES AT IX=9
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FIGURE 
5.3-13

PREDICTED AND BEST ANALYTIC SOLUTION 
FOR 9=45 DEGREES AT IX=10

LLJ
_J 
CO

I
»— I
IE 
Q_

0 X-AXIS

FIGURE 
6.16-1

ANALYTIC SOLUTION OF THE ONE-DIMENSIONAL, 
ZERO SOURCE PROBLEM FOR P=0.1.5.10 AND 50
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FIGURE 
6.16-2

NUMERICAL SOLUTION FOR ZERO SOURCE

I-ERROR...
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FIGURE 
6.16-3

NUMERICAL SOLUTION FOR LINEAR, POSITIVE 
GRADIENT, SOURCE
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GRADIENT. SOURCE
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FIGURE 
6.16-5

NUMERICAL SOLUTION FOR QUADRATIC. 
POSITIVE GRADIENT. SOURCE
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FIGURE 
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NUMERICAL SOLUTION FOR QUADRATIC. 
NEGATIVE GRADIENT. SOURCE
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NUMERICAL SOLUTION FOR LARGE SOURCES. 
DETAILS ON GRAPH
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OAt-ERROR...
ERROR NORfl,
FUJI AT 1.1.
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6.16-8

NUMERICAL SOLUTION FOR LARGE SOURCES, 
DETAILS ON GRAPH

FIGURE 
6.16-9

PLOT OF MAXIMUM ERROR VERSUS 
PECLET NUMBER OF N=10
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H = HUflLL

r = RIM

X = XPIPE

H = HUflLL

r = RPIFE

FIGURE 
6,24.1-1

FLOW THROUGH A SUDDEN ENLARGEMENT 
IN A CIRCULAR PIPE

H = HTOP-

H = HUflLL

X = XUIDTH

= UTOP

Y = HEIGHT

U

FIGURE 
6.24.2-1

FLOW IN A SQUARE CAVITY WITH 
A MOVING LID
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o -cos 
* -uos 
a -HOS
A -LEGS

-POS 
O -QUDS 
X -QUDSE 
< -QUOSER

FIGURE 
6.25.1-1

AXIAL VELOCITY PROFILE AT X CENTRELINE 
FOR VARIOUS SCHEMES, AT Re=200

V no
-2

o -cos 
t -uos
O -HOS 
A -LEOS 
M -PDS 
O -QUOS 
X-QUOSE 
<-QUDSER

FIGURE 
6.25.1-2

RADIAL VELOCITY PROFILE AT Y CENTRELINE 
FOR VARIOUS SCHEMES, AT Re=200
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u
O 10 I 10
t 20 I 20
D 30 X 30

FIGURE 
6.25.1-3

AXIAL VELOCITY. GRID REFINEMENT STUDIES 
FOR CDS FOR Re=200

u
o no i no
t 20 I 20
D 30 X 30

FIGURE 
6.25.1-4

AXIAL VELOCITY. GRID-REFINEMENT STUDIES 
FOR QUDS FOR Re=200
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I -POS 
O -QUDS 
X -QUOSE 
< -QUOSER 
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FIGURE 
6.25. 1-5

PLOT OF RE-ATTACHMENT VARIATION WITH 
REYNOLDS NUMBER (fi r /h vs Re)

LR/D 10

_!_____t—————I—————I—————I_____1_____1_____I

* -UOS
a -HOS
X -QUOSE 
< -QUOSER 

-REF( )

FIGURE 
6.25.1-6

PLOT OF RE-ATTACHMENT VARIATION WITH 
REYNOLDS NUMBER (« r /d vs Re)
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FIGURE 
6.25.1-7

CHARACTERISTICS OF RECIRCULATION CENTRE 
VARIATION WITH REYNOLDS NUMBER (LV/D vs Re)

U

o -cos 
t -uos 
a -HOS
A -LEGS 
M -PDS 
O -QUOS 
X -QUOSE
< -QUDSER

FIGURE 
6.25.2-1

AXIAL VELOCITY PROFILE AT X-CENTRELINE, 
FOR VARIOUS SCHEMES, FOR Re=100
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V no
o -cos 
« -uos 
a -HOS
A -LEDS

-POS 
O -QUOS 
X -QUOSE 
< -QUOSER

FIGURE 
6.25.2-2

RADIAL-VELOCITY PROFILE AT X-CENTRELINE, 
FOR VARIOUS SCHEMES. FOR Re=100

U

FIGURE 
6.25.2-3

AXIAL-VELOCITY. GRID REFINEMENT STUDIES 
FOR CDS, FOR Re=400
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-1 O 10 I 10

t 20 I 20
O 30 I 30

FIGURE 
6.25.2-4

RADIAL VELOCITY, GRID REFINEMENT STUDIES 
FOR CDS, FOR Re=400

U

t_____I_____t_____i

O 10 I 10
t 20 I 20
D 30 X 30

FIGURE 
6.25.2-5

AXIAL VELOCITY, GRID REFINEMENT STUDIES 
FOR UDS, FOR Re=400
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t 20 X 20
O 30 X 30

FIGURE 
6.25.2-6

RADIAL VELOCITY, GRID REFINEMENT STUDIES 
FOR UDS. FOR Re=400

U

O 10 X 10
» 20 X 20
a 30 x 30

FIGURE 
6.25.2-7

AXIAL VELOCITY, GRID REFINEMENT STUDIES 
FOR QUDS, FOR Re=400
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Q 30 I 30

FIGURE 
6.25.2-8

RADIAL VELOCITY, GRID REFINEMENT STUDIES 
FOR QUDS. FOR Re=400

U

i____t I________I________1

UOS(IO)
QUOSER
UOS(20)
QUOSER
UOS(30)
QUOSER

FIGURE 
6.25.2-9

AXIAL VELOCITY, GRID REFINEMENT STUDIES 
FOR UDS/QUDSER, FOR Re=1000
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t QUOSER
D UDS(20)
A QUOSER
M UOSOO)

FIGURE 
6.25.2-10

AXIAL VELOCITY, GRID REFINEMENT STUDIES 
FOR UDS/QUDSER. FOR Re=2000

U

-I—————I—————I_____1_____I_____1_____L

t QUDSER 
M UDS(IO)

FIGURE 
6.25.2-11

AXIAL VELOCITY, GRID DEPENDENT STUDIES, 
FOR UDS/QUDSER, FOR Re=1000
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FIGURE 
6.25. 2-12

AXIAL VELOCITY. GRID DEPENDENT STUDIES 
FOR UDS/QUDSER. FOR Re=2000

FIGURE 
6. 25.2-13

COMPARISON OF VARIOUS UPSTREAM VORTEX 
HEIGHTS AGAINST REYNOLDS NUMBER (Lu vs Re)
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APPENDIX A2. 1

The Time-Averaged Conservation Equations

The equations are given in tensor notation.

The continuity equation

d ' v - d- (puj) - Sp

The momentum equation

(PUL) = a - , . % 5u l

where (-) denotes the time-averaged values.

Scalar equation

a_ xT.x . _L
at

where S<j> is the source/sink for the time-averaged quantities.
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APPENDIX A3. 1

The Trl-diagonal Matrix Algorithm (TDMA)

The TDMA. [(Householder (1964)1. is applied at a given constant x-line 

for the general equation of the form:

Ap4>p = AN«>N + As<t>s + S 

which for clarity, is rewritten as:

D L <t>i=

Here, i denotes a location along the y-line and the coefficients are 

evaluated directly from equation (A. 3. 1-la). The 4>-values are then

obtained as follows. 
Suppose that:

where.

A L = AL/(D(. - BL A L _I)

and

B L = (C L + Bt-i B L )/{Dt - B L A L _i
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are clearly recurrence relationships.

The values of A-J and BI are prescribed as follows:

Starting at the high-i end of the system, a backwards substitution is 

applied to obtain the values of 4> on the x-line.
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APPENDIX A4. 1

Locally-Exact-Difference Scheme (details)

Integrating equation:

(r > + s (M.l-la):

twice gives:

* = + cl eU/rx
u

assuming that F and u are constant between two adjacent 'nodal' values. 

Then by evaluating <t> in (A4. 1-1 b) for the west face, between i and i-1. 

and eliminating the constant of integration G-J, we get:

exp(uw/rw(x-x t ))-l
4> L -<J>i-l exp<uw/rw(x L -x L --,))-l 

where the flux at the west face. Jw . has the form:

uw ((t> i - 1 -<J> (.) exp (-uw/rwAx

and similarly Je has the form:

°e (l-expCue/FeAx))

Equations (A4. 1-ld) and (A4. 1-le) can be written in a simpler form by
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Introducing two new functions, these being

gP U) = expU)-l

and

exp(£)-l 

thus giving:

i - gp (uwAx/rw )<t>i_)/Ax 

and

Je = re (gm (ueAx/re )<t>L - gp (ueAx/re )4>t-n >/AX

Finally, the finite-difference form for equation (A4. 1-la) using the 

locally-exact-difference scheme, is:

Je - JVY = S* (A4.1-U).
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APPENDIX A4. 2

Consider equation (4.12.8-1) together with (4.11.1-1) which gives the 

Leonard-superupwind-difference scheme for u>o and P = u/r:

p ——

). l€[3.N-l] (A4.2-la);

together with

4>0 (0) = 0 ; 4^(1) = 1 

Substituting:

exp(Pxj)-l 
* = exp(P)-1 (A4.2-lb);

in (A4.2-la) and simplifying we have:

6 - (6 + HP) eexp(-Pe )+7Peexp(-2Pe )-2Peexp(-3Pe )-/3 A = ———-————————————————————————————————
2Pe (l-exp(-Pe )) 3

(A4.2-1C)

where:

/3 = ~- exp (-Pe )+2PeAx4exp(-Pe >-3Pe ~-exp(-Pe ) (A4.2-ld);

which. when neglected. is the error in the numerical
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Leonard-superupwlnd difference scheme; even then /3<1, so it would be 

wise to neglect such terms as the scheme is already rather involved. 

Similar expressions for A and /3 can be obtained for u<0.

Modifications at the boundary need the introduction of two further 

weighting parameters, y and /z. Once again consider the case u>0 and 

use the finite-difference representation, for i=l:

1 h2'— (4>0

(A4.2-le)

which when substituted by equation (A4.2-1b). yields:

_ exp(-Pe )(1-exp(Pe )) - Pe (1+exp(-PQ ))/2 

(Pe (1-exp(-Pe )) 2/2)

Similarly, at the 'nodal' point i=2, we use an expression of the form of 

equation (A4.2-le), which yields:

(1-exp(-Pe )) - Pe (l+exp(-Pe »/2 y = ———————————————————————— (A4.2-lg)
Pe (l-exp)(-Pe )) 2/2

Similar expressions for the case u<0 can be obtained.
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APPENDIX A6. 1

Quadratic Upstream Difference Scheme Formulation for Non-Uniform Grid

Expressing the * value of the east face of the control volume, using a 

quadratic profile, yields in a compact form, the expression:

~ Q L

where

a L 4>w>/(H-2at) - ~] for p L U L >0

bj. [< + bi*EE)/(l+2bj.> - T for pi.U(.<0 (A6.1-lb);

and

_ DXG(IX+1) . _ DXG(IX-H)
31 ~ 20XG(IX) ' L " 2DXGCIX+2)

where DXG Is the internodal distance (see Table A6.1.1)

After further manipulation, for pjUj>0 and pjUj<0. equation (A6. 1-la) can 

be rewritten as follows:

,1 1 DXG(IX-H) 
*P < 2 + 4 DXG(IX)

4 DXG(IX) DXG(IX-H)
DXGdX+1) + DXGUX) 2 DXG(IX) 
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,1 1 ____DXGUX+1)_____. . 
( 2 - 4 !DXG(IX> + DXGUX+T))' f° r

and

,1 1 _____DXG(IX-t-l)____,{— — — •——————————————————————— \
1 2 4 [DXGCIX+2) -HDXGCIX-H)] 1

1 _ 1 PXGOX+D
2 4 DXG(IX+2>'

( 1 ________[DXG(IX-H )]_________
4 DXG(IX+2)[DXG(IX+2) + DXG(IX-H)] 1

Similarly, expressions for the other control-volume cell-faces are 

obtained and a flux balance is performed, ie:

(pu*) e - (pu*)w + (pv*) n - (pv<t>) s = 0 

Expressing two further parameters, namely:

M L = 1 for FL =

= 0 otherwise (A6.1-lg)

and

ML = 1 for FL =

= 0 otherwise (A6.1-lh);

and substituting expressions of the form represented by equations 

(A6. 1-ld) and (A6. 1-le) . yields an expression of the form:
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Mw Zw Ms Zs

where Z0 are as given above and the notation for oc is given in Tabie 

A6-1.1).

IX IY

ocO

ocl

oc2

ccl-

DXG(IX)

DXGCIX+1)

DXGCIX+2)

DXG(IX-I)

DYG(IY)

DYG(IY-H)

DYGdY+2)

DYG(IY-l)

DXG E distance between 
two nodal points In 
the X-dlrectlon

DYG s distance between 
two nodal points In 
the Y-dlrectlon

TABLE A6. 1. 1
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