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Abstract

Abstract

Computer vision is a rapidly growing area. The range of applications is increasing very 

quickly, robotics, inspection, medicine, physics and document processing are all computer 

vision applications still in their infancy. All these applications are written with a specific 

task in mind and do not perform well unless there under a controlled environment. They 

do not deploy any knowledge to produce a meaningful description of the scene, or indeed 

aid in the analysis of the image.

The construction of a symbolic description of a scene from a digitised image is a difficult 

problem. A symbolic interpretation of an image can be viewed as a mapping from the 

image pixels to an identification of the semantically relevant objects. Before symbolic 

reasoning can take place image processing and segmentation routines must produce the 

relevant information. This part of the imaging system inherently introduces many errors. 

The aim of this project is to reduce the error rate produced by such algorithms and make 

them adaptable to change in the manufacturing process. Thus a prior knowledge is needed 

about the image and the objects they contain as well as knowledge about how the image 

was acquired from the scene (image geometry, quality, object decomposition, lighting 

conditions etc,). Knowledge on algorithms must also be acquired. Such knowledge is 

collected by studying the algorithms and deciding in which areas of image analysis they 

work well in.

In most existing image analysis systems, knowledge of this kind is implicitly embedded 

into the algorithms employed in the system. Such an approach assumes that all these 

parameters are invariant. However, in complex applications this may not be the case, so 

that adjustment must be made from time to time to ensure a satisfactory performance of the



Abstract

system. A system that allows for such adjustments to be made, must comprise the explicit 

representation of the knowledge utilised in the image analysis procedure.

In addition to the use of a priori knowledge, rules are employed to improve the performance 

of the image processing and segmentation algorithms. These rules considerably enhance the 

correctness of the segmentation process.

The most frequently given goal, if not the only one in industrial image analysis is to detect 

and locate objects of a given type in the image. That is, an image may contain objects of 

different types, and the goal is to identify parts of the image. The system developed here 

is driven by these goals, and thus by teaching the system a new object or fault in an object 

the system may adapt the algorithms to detect these new objects as well compromise for 

changes in the environment such as a change in lighting conditions. We have called this 

system the Visual Planner, this is due to the fact that we use techniques based on planning 

to achieve a given goal.

As the Visual Planner learns the specific domain it is working in, appropriate algorithms are 

selected to segment the object. This makes the system domain independent, because 

different algorithms may be selected for different applications and objects under different 

environmental condition.
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Chapter 1: Introduction

1. Introduction

Many industrial applications require some sort of computer interpreted vision system, 

for example quality control inspection, object selection from a bin of parts etc. For a 

computer added vision system to achieve these goals it must posses image 

understanding properties. Image understanding is concerned with the analysis of grey 

scale images to the effect of detecting and identifying given objects in the image. 

Objects are characterised in the image by given features of the two-dimensional (2D) 

grey level distribution. Therefore, to recognise an object, its features must first be 

extracted from the image.

This is a process that requires a number of transforming steps applied to the original 

image to enhance its features and segment it, the resulting image is split into sub-images. 

These features are now known as the signal. The signal is separated from the remainder 

of the image known as the clutter. Since these transformations are applied to the image, 

this part of the image analysis procedure is called the iconic phase. Iconic phase 

algorithms are also known as Image Processing and Segmentation algorithms. 

Such routines are explained well in the books by Gonzalez and Wintz and in C.A. Lindly 

(Gonzalez87,Lindly91).

Any image processing or segmentation procedure has a given error rate which can 

manifest itself in two directions in an industrial application. These are false acceptance 

or false rejection. False acceptance means for example, that a part is falsely accepted 

as flawless while in reality it has some flaws. False rejection means the reverse, the 

rejection of a correct item. Both these problems can be costly both in time and money.

Another problem encountered in industrial inspection systems, is their inflexibility. 

Once the system has been programmed for a specific domain it is unable to adapt to 

changes easily. For instance if the manufacturing process changes or a new object is
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added to the production line, the system may not be able to cope with it. Yet another 

problem encountered by such a system is the available set of image processing and 

segmentation algorithms itself. The algorithms selected by the programmers may not 

be the best for the task at hand, or the algorithms' own thresholds may be set incorrectly, 

dependant on environmental change or another factor not considered.

1.1 Aims of the Project

To overcome these problems within an industrial environment an Adaptive Image 

Analysis System has been proposed and built known as the Visual Planner. The system 

will be able work within many domains, be adaptable to change in the manufacturing 

process and within the industrial environment it is working in.

An industrial vision system should at least have a number of desirable properties in 

order for it to meet the requirements for the inspection task at hand, these are as 

follows:

1) The system should be flexible so that it can easily adapt to changes in the inspection 

task or changes in the manufacturing process.

2) The inspection system should produce a low false alarm rate, i.e. the algorithms must 

be robust. The few false positives the system may produce could, if required, be 

checked manually.

3) It should be able to process simple images. A simple image is one that has been 

captured in an industrial environment from a fixed view point or from a number of 

sensing devices such that three-dimensional (3D) information may be extracted if 

needed. By process we mean that it should be able to apply the appropriate image 

analysis procedures to the image.
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To achieve these requirements each task will be taken in turn and analysed to obtain an 

understanding of the problems encountered at each stage. Clearly a number of aims 

arise from the statements above. These are as follows:

1) The system should be able to select and change image processing and segmentation 

algorithms dependent on the domain knowledge and scene description. This would 

allow the system to update itself if the manufacturing process, inspection task, or 

environmental conditions change.

2) The system should be able to cope with segmentation irregularities, such as cracks in 

edges, region splitting or joining etc.

3) The system must be flexible and easily updated, i.e.., new algorithms, rules, or scene 

information can be added as the need for them arises.

1.2 Objectives

The main design and implementation objectives of this project are as follows:

1) To design and implement an image processing system for the acquisition and 

subsequent image processing of data such as noise removal and edge detection (Lindly 

91).

2) To incorporate artificially intelligent (AI) and robust segmentation algorithms for 

robustness of lines and regions (Nazif 84).

3) To design an AI system that selects appropriate segmentation and image processing 

algorithms given a scene. The algorithms selected will be different for each new scene 

or object presented to it.
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4) To extract geometric information from segmented data. This will include size of 

object in the x and y directions.

5) To design and implement a learning algorithm for objects and their subsequent 

storage to a database.

6) To develop a matching algorithm for objects in a scene to database objects that will 

find a combination of orientation and viewpoint which give a close approximation to 

the actual object.

7) To provide a description of the scene in terms of a user defined goal, eg find fault x.

8) To test the performance of the system with respect to the aims set out above, on a 

real practical problem.

Most of the objectives have been met. A prototype vision system has been developed 

on a Sun IPX workstation in C using the XI1 Window system (Heller 90, Nye 90). The 

image acquisition programs were written in Turbo C (Borland International 88) utilising 

the Matrox frame grabber (Matrox electronic systems Ltd. 91).

1.3 Significance of the Work

The summary below shows the significance of the work undertaken. This is based on 

the review of current vision systems, their limitations and drawbacks. (See chapter 2 

and 3).

1) It is the first implementation that uses a planning technique (Wilensky 83) to select 

and change segmentation algorithms for a particular scenario. This is done through
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planning, replanning different actions, and monitoring the system dependant on a user 

goal.

2) A rule base is used to provide robust segmentation algorithms, i.e. using rules to 

decide whether to join lines, delete lines, split or join regions.

3) The system can be easily updated by adding new segmentation algorithms, and the 

knowledge of when they are to be used. This means that the system can be used in other 

vision domains, and not just for one specific domain as current vision systems are 

designed and implemented.

4) The system proposed here could can be extended towards the more general area of 

vision recognition, Allowing recognition systems to adapt to their environment.

1.4 Vision Systems and their Problems

Computer Vision has progressed considerably on many fronts over the past 20 years 

(Brady 81). There has been a change in the style of research as well as in the substance. 

However, most issues are poorly understood, from the exact form of representation, 

through to the detailed understanding of the individual modules, to topics that have so 

far received little or no attention. A sample of problems follows in the next few 

paragraphs. It is by no means exhaustive.

Faster algorithms need to be developed for image processing. This is due to the size of 

the images produced by the frame grabbing equipment. Traversing such images with 

different filters and edge detectors takes time. However, the rapid development in Very 

Large Scale Integration (VLSI) technology has further motivated research in to what is 

referred to as Local Parallel Programming Architectures (Hennessy 84). It is likely that
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our conception of computation will change as a result of such developments. Vision 

will be one of the first areas to benefit from such advances.

There seems to be a lack of methodologies and formal methods in all parts of vision 

research, from image processing all the way to image understanding. Each program 

developed to date is application specific. That is, each programmer applies the 

algorithms that best suit the environment they are working in, thus vision systems 

become uncertain and unreliable.

Once objects have been segmented and geometric structures have been produced, the 

next step is to match the objects presented to the vision system to objects in a database. 

This works by trying to find a combination of orientation and viewpoint of the object. 

Matching can converge efficiently if the object has strong features. When dealing with 

geometrically well-defined objects analytical techniques may be deployed. However, 

most objects in the world are not so well defined and thus more pragmatic rules of 

thumb are used. This gives rise to problems in database structures and searching 

methods. Results become erroneous and probabilistic which in many vision applications 

is not sufficient. Efficient database design which incorporates artificial intelligence is 

needed, such as that being developed by Pearsons (Pearsons 90), where a technique for 

inducing recognition or discrimination rules are part of the database.

1.5 Recognition

As the goal of all vision systems is to recognise objects and understand scenes, then 

some prior imagery of them is needed. If the computer vision problem were merely to 

recognise or classify a scene from one of several candidates, then we could employ 

special purpose hardware such as the WISARD system (Aleksander 84). This system 

can be trained in literally a few seconds to discriminate between a small set of different 

scenes. It's discrimination abilities far outweigh conventional vision systems in terms
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of speed. The problem with the special hardware approach occurs if discrimination 

between larger sets of scenes is required. When there are several objects, each in any 

orientation and at any relative position, combinatorial explosion is rapidly encountered.

The search space within the database has to be cut down. This can by done in a number 

of ways: 1) Through the transformation of the original object presented to the system, 

into other compact representations (Lindly 91). 2) Through the deployment of physical 

knowledge such as perspective (Foley 82). 3) Through the deployment of knowledge 

about the scene (Learning by example) (Winston 80).

1.6 Levels of Processing

Image processing can be considered to take place at three different levels, as described 

below.

1.6.1 Low Level Processing

Low level routines are used to clean noise from an image and detect edges or highlight 

features we are interested in. This area of vision is also known as image processing.

Image processing has been around for many years and is well established in the field 

of vision. There are many references on the subject such as (Pavlidis 82, Gonzalez 87, 

Lindly 91).

Low level processing is more of an art then a science, as it largely consists of methods 

for the extraction of the important intensity changes in an image that are a prior not 

known. The approach mostly consists of convolving images with local operators, 

Convolution Filter (typically 3*3 pixels) (Lindly 91) to estimate the position, contrast,
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and orientation of the important intensity changes at each pixel position in the image, 

A typical edge detection convolution filter is shown in Figure 1.1.
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Figure 1.1 Edge operator and image.

However, it does raise the question, which operator works well with the scene and what 

parameter values to use such as thresholds? This is a major problem in the vision world. 

Mistakes are often introduced at this fundamental level by the programmer because they 

have selected an inappropriate algorithm or threshold value. It is therefore a necessity 

to acquire some form of statistical knowledge from the image, such as signal-to-noise 

ratio.

1.6.2 Medium Level Processing (Segmentation)

The purpose of this level is to pass onto subsequent algorithms a symbolic 

representation of the scene rather then the pixel grid which the low level routines output. 

The exercise we wish to perform here is called segmentation The original image is split 

into vertices, lines, facets and regions which we hope represent surfaces in the real 

world from which they came.
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Segmentation is an active area of research. The aim of this project is not to produce new 

segmentation algorithms but to select appropriate algorithms for a given scene. The 

segmentation algorithms go through a number of mutations to find an efficient 

segmentation algorithm for a given scene. The algorithms selected and changed are 

again dependent on the scene presented to it and a specific goal given by the user. (A 

basic outline of an Adaptive Image Analysis system is shown in Figure 1.2)

a) 

Image

1 Knowledge Base
Algorithm selection

Result evaluation

Genarate
Segmentation

Algorithms

2 Knowledge Base
Image processing
& Segmentation

selection

3 DataBase
Object/Scene
description

Figure 1.2 Adaptive image analysis system.

1.6.3 High Level Processing

It has already been mentioned that to recognise something requires a prior imagery and 

what is done at this stage is to work backwards. A hypothesis that an object is in the 

scene is generated and then a search is performed to find the orientation and view point 

of the actual object.
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There are two main functions that this stage carries out. These are: object learning, and 

scene description. Each object is taught to the system and stored in a database. Each 

object has to be shown as clearly as possible in order for it to be saved as a perfect 

model in the database. However, this simple approach has several drawbacks. First, the 

teaching process tends to be rather time consuming. If a large number of different 

objects must be inspected, the time consuming teaching must be repeated for each 

object. Secondly, since every object recognition procedure has a given error rate, the 

model obtained through teaching may be incorrect.

Once a number of objects have been saved in the database, the next step is to try and 

describe the scene. This part of the process is a bottom up analysis of the scene. First the 

objects are matched to the database objects (this is not such a simple task as will be 

shown later). Then their relationship to each other and to the viewer is calculated and 

given. Finally the system should be able to adapt, that is learn constant relationships, i.e. 

the sky is always over the horizon. This allows the system to make assumptions about 

occluded objects.

1.7 Knowledge and Vision Systems

If the aim of the vision system is to describe a scene with its own assumptions, then a 

knowledge base is needed to control the process. There are a number of Artificial 

Intelligence formalisms available for this purpose, for example predicate calculus 

(logic), production systems (Hayes-Roth 85), and semantic networks (Levesque 86, 

Nilsson 82).

The advantages of a formal, high level, well behaved knowledge representation system 

is that it is possible to describe very rich scenes and make useful deductions about them. 

In principle it should be possible to deduce what some partially visible object might be
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if there exists a model of what it looks like. In practice this type of common sense 

reasoning is very hard to build.

Identification can be done in several ways as we have seen from the discussion above. 

However we have done nothing as yet to teach the system the objects and the scenes we 

are looking at. A learning process must be put in to the system because identification is 

the implied purpose for learning. According to Winston (Winston 77) learning can be 

done at several different levels in the vision system. These are shown in Figure 1.3.

Learning by 
Programming

t

Learning by 
Being Told

Learning by 
Seeing Samples

Learning by 
Discovery

Figure 1.3 Vision systems learning hierarchy.

As we move from the bottom of the hierarchy (learning by being programmed) to the 

top, the process of learning becomes harder and more ad-hoc. Many structures have to 

be developed and maintained at each level of learning.

Artificial intelligence can also play a major part in the segmentation of images. There 

are many possible ways in which an image can be segmented. For example should 

emphasis be placed on boundary analysis or region growing, or within segmentation 

should priority at some particular stage be given to splitting regions or merging regions!
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The idea behind the current work in this project at this stage is to control such possible 

low level operations within & production system.

Clearly there has been an evolutionary process leading from a purely model based image 

analysis system to rule based systems, with explicit representations of knowledge bases 

and rule bases.

1.8 Structure of this Thesis

Chapter one discusses the aims and objectives of this thesis and introduces the subject 

of Vision Systems, and its difficulties. Levels of processing are introduced and some 

techniques used at each level. Finally Artificial Intelligence techniques are introduced 

and how they might aid in the vision problem.

Chapter two contains a review of the current approaches in the world of vision. It then 

narrows to discuss algorithms, their reliability, and their usefulness.

Chapter three explores the range of vision systems. It reviews some actual industrial 

inspection vision systems, how and why they were implemented and their efficiency. 

The chapter ends with a statement of the questions addressed in this thesis.

Chapter four introduces the concept design of the vision system proposed. It gives an 

overview of the knowledge needed to produce a domain independent visual planning 

system for segmentation algorithm selection.

Chapter five shows what modules the visual planning system proposed here possesses, 

and how such a system achieves the goals specified.
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Chapter six gives an in depth explanation of the design and subsequent implementation 

of the system. It explains how the objects, algorithms and, knowledge acquisition have 

been modelled for storage in the subsequent database or knowledge base. This chapter 

also explains how intelligence has been added for algorithm selection and modification.

Chapter seven shows the validation of the system, how well it works and how 

updateable it is. The application domain selected is based on x-ray data of metal 

castings. A description of the knowledge acquisition process is given and performance 

values depending on the number of faults found within these castings.

Chapter eight critically discusses the current system as defined by the aims of the 

project, weighing what has been achieved against the imitations and drawbacks.

Chapter nine outlines possible further extensions to this work. It also proposes new 

questions raised by this research.
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Chapter 2: A Review of Vision Systems

2. Introduction

This chapter reviews the present state of the art in vision systems and algorithms 

associated with such systems. It has become a known fact that any new vision system 

must incorporate some artificial intelligence. The degree of AI used will depend on the 

application and the environment in which the vision system is working. AI has played 

a major role in the image understanding stage.

From the research carried out on vision systems it has become clear that vision systems 

are uncertain and unreliable. It is therefore an important task to analyse each step of the 

vision cycle to obtain constraints in order to improve the visual task through knowledge 

obtained from the domain.

The visual life cycle can be separated for convenience into three main parts, Low, 

Intermediate, and High levels of data processing. This chapter also looks at work 

related to these classes. Low level data processing has many algorithms (see appendix 

C) that have been available now for many years. These routines however are inherently 

unreliable due to the underlying pixel structure and digitisation techniques. As data is 

transformed from one stage to the next it remains unreliable. It is also a difficult process 

to select a particular set of algorithms that would work well in all circumstances 

without changes, and thus the algorithm selection is left to the judgement of the 

programmer. This introduces yet another factor in to the visual life cycle, uncertainty.

2.1 Low, Intermediate, and High Level Data Processing

Low, intermediate, and high level data processing perform tasks on different data types 

within the visual system. Information is passed through this hierarchy of data processing 

functions until the object or scene of interest may be interpreted.
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2.1.1 Low Level or Feature Enhancement Functions

Low level data processing deals with image acquisition, modelling, and feature 

enhancement functions of images from the real world. This part of the image analysis 

procedure is called the iconic phase. Images go through several transformations to 

enhance the areas of interest (Signal), such as lines, comers and facets. They are also 

used to suppress unwanted features such as noise within an image (Clutter).

It must be emphasized at this point that the decision as to what is signal and what is 

clutter very much depends on the task to be performed. The algorithms selected here 

may not perform well on different types of images or indeed a changing environment. 

Therefore, the algorithms selected at this stage are for a specific task, where the domain 

and environment are static and well known.

2.1.2 Intermediate or Segmentation Functions

Intermediate or Segmentation functions are operations applied on grey scale images or 

binary representations of grey scale images. The result of a feature extraction function 

is not an image but a set of numerical values called feature vectors. Appropriate feature 

extraction functions will lead to feature vectors that are characteristics for the object 

from which the features were extracted. The reason many vision systems use 

binarisation is that it usually simplifies feature extraction. Many industrial vision 

systems binaries the image acquired from the beginning; That is, such systems do not 

allow for the representation and processing of grey scale images. Consequently, vision 

systems of that type, called Binary Vision Systems, cannot perform feature enhancement 

functions.
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Many important computer vision tasks, however, cannot be carried out at all without 

elaborate enhancement filtering. Other tasks may be feasible on a binary system; 

however the robustness (immunity against changes in the environmental conditions) of 

purely binary algorithms is typically much poorer then the robustness of the 

corresponding algorithms performed on grey scale images.

Image Acquisition 
by CCD Camera Gray Scale Image [ 

Stored in Image Buffer I
Feature Enhancement 

Operations

Feature-Enhanced Gray Scale 
Image Stored in Image Buffer

Segmantation 
Function

Feature Extraction 
Operations

Binary Image Stored 
in Image Buffer

Feature Vectors 
Stored in Database

Figure 2.1 Steps of the iconic phase of image analysis.

Generally we can say that the feature extraction tasks become easier, the better the 

proceeding feature enhancement filters work. It is therefore imperative that these filters 

work to their maximum capability at all times. Figure 2.1 illustrates the steps of the 

iconic phase of image analysis.

2.1.3 High Level or Symbolic Phase

The symbolic phase of image analysis requires methodologies for pattern recognition 

or object classification, symbol manipulation, heuristic search, conflict resolve, etc. 

These are exactly the methodologies offered by AI. Research has therefore concentrated
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on developing the symbolic phase with AI techniques. Much research has been carried 

out in this area leaving the other two stages lacking. The aim of this project is to apply 

AI techniques in the low and intermediate levels of image processing to aid in symbolic 

reasoning. If the two lower levels produce better results then it follows that the symbolic 

phase will also become easier and more able to classify or recognise objects, making the 

whole system more robust.

2.2 Recognition of Objects

To recognise an object within a scene requires some sort of a prior knowledge of the 

objects we are trying to describe. Based on what the viewer sees, each of the various 

parts (segments) of the scene is examined to find a plausible explanation in terms of the 

coordinate systems for particular objects. It is therefore necessary to match the segments 

of objects to some sort of database description of the object. That is segments of the 

image are matched against ideal models to give a world model of what the scene actually 

contains.

Much of the pioneering work in image processing and computer vision has been carried 

out by Roberts (Roberts 65). His scene consisted of polyhedral blocks such as a cube, 

a brick, a wedge and a hexagonal prism. The method consisted of edge detection using 

a derivative technique (Roberts-Cross Operator). These edges were grouped together 

into lines. Objects were recognised by scaling and rotating the models and matching 

them with the lines found in the image. These early methods were data-driven (bottom- 

up) processing and involved little or no goal-driven (top-down) processing strategy. 

However, this technique was to be used in later methods such as SCORPIO (Lowe 87).

Image analysis involves segmentation by either detecting regions of change or detecting 

regions of uniformity in grey level scenes. Region based segmentation by region
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growing, where smaller regions are merged into larger ones if they have similar 

properties, has been presented by Brice and Fennema (Brice 70) and Yakimovsky 

(Yakimovsky 73). The opposite to this is to start with large regions and split-and-merge 

them to form uniform regions. A technique for region based segmentation has been 

presented by Horowitz and Pavlidis (Horowitz 74). Edge based segmentation is usually 

easier because it is often easier to model. The discontinuities are detected by various 

forms of differential operators. Two recent trends in image processing have been rule 

based segmentation (Nazif 84), and segmentation using texture and fractal dimension 

(Pentland 84).

Once regions and surfaces have been extracted, the object recognition tasks need to be 

carried out. Thus given a set of observed features we need to determine which model 

produced these features and recover the pose of the object, i.e. what is the relationship 

between the object, the model, and the viewing direction. The object can be represented 

by a world model in which each object is signified by its position and orientation:

W= {(O,, P, 6!)ho

Where Ot is an object, Pt is its position, and ©t is its orientation. Objects can be 

represented using either geometric or non-geometric models. In a geometric 

representation, often simple multi-view models are used when an object only has a small 

number of stable surfaces. In a non-geometric representation models are represented 

using there features such as intensity, comer points, relationships of objects, etc.

2.2.1 Matching

The usual objective of matching is to find the optimal location and orientation. If one 

exists, of objects in the scene based on what the viewer sees or viewer centred model
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(segments), to that of the world model found in the database. This is carried out as part 

of the larger problem of object recognition.

Feature Spaces and Their Attributes
Raw Intensity Matching not tolerant to noise, mainly used as a heuristic 
___________match.___________________________ 
Edges Easy structures to model, give accurate orientation and

positioning of objects, less sensitive to noise then intensity
information.

____________________Edges (Nack 77), Contours (Medioni 84), Surfaces (Pelizarri 89).
Salient Features Structure harder to model, gives very accurate positioning and

orientation of object, can be computationally expensive, can 
be extended to work on 3D objects, more robust then edge
matching.

Points of locally maximum curvature on contour lines (Kanal 81) 
Line intersections (Stockman 82) 
Closed contours (Price 84)
Centres of gravity of closed-boundary regions (Goshtasby 86) 
Recognition and matching of occluded objects (Griffin 89) 

____________________Local axes of symmetry (Seitz 89)________________
Statistical Features Good for extracting size of object or region, good for rigid

transformations, assumption concerning spatial scattering.
Moment invariants (Goshtasby 85) 
Centroid / principal axes (Rosenfeld 82)

Higher-Level Use of relations and other higher-level information, good for 
Features inexact and local matching, good for inferring objects.

Structural features: graphs of subpattern configurations (Mohr 90) 
Syntactic features: grammars composed from patterns (Bunke 90) 
Semantic networks: Scene regions and relations (Faugeras 81)

Table 2.1 Feature spaces used in image matching.

The first step in matching viewer centred images to that of the world model is to select 

defeature space to use. The feature space is the set of features we wish to use from the 

segmented image to match against the object model. This may be the raw pixel values, 

i.e. the intensities, edges, contours, surfaces, salient features such as comers, line 

intersections, points of high curvature, statistical features such as moment invariants or
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centroids, and higher-level structural and syntactic descriptions. Table 2.1 shows 

different feature spaces used in image matching. This table briefly describes the 

attributes of each technique and gives references to works which discuss their use in 

more detail.

The point is that, by choosing the best feature space it is possible to significantly 

improve matching. Features can be found on each object independently in the 

segmentation stage, and this in turn reduces the amount of data to be matched. It is often 

possible to choose a feature space (dependent on the domain) which will eliminate 

uncorrected variations that might otherwise make matching unreliable. This is done by 

extracting only structures of interest. By this we mean finding the pixels in the images 

that accurately represent significant physical locations in the world as opposed to 

lighting changes, shadows or changes in reflectivity. This can be achieved by image 

enhancement routines (Gonzalez 87). Typical enhancement techniques include contrast 

enhancement, which increases the range of intensity values, image smoothing, which 

removes high frequency noise, and image sharpening, which highlights edges. These 

routines force matching to optimize structural similarity and reduce the corresponding 

data to be matched.

2.2.1.1 The Local-Feature-Focus Method

A method for matching due to Bolles and Cain (Bolles 82) known as the Local-Feature- 

Focus method is described in some detail here. It is this algorithm, or parts of it that are 

used within the development of the prototype described in later chapters.

The method is used to locate partially visible two-dimensional industrial objects. The 

key features of each object such as comers, lines, intensity values, and holes are matched 

against the computer aided design (CAD) models of the objects. In their implementation
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there are two types of features, regions and corners. A region is described with respect 

to its colour (black or white), area, and axis ratio (minor and major axes). A corner is 

characterised by the size of its angle. Each object will then contain several of these 

features known as the local features of the object. Each local feature is given a name and 

its position and orientation with respect to its object. A description of an object also 

contains a description of its boundary. This boundary is then translated and rotated 

according to the orientation of the local features, and matched against the CAD 

database. The Local-Feature-Focus method consists of three processing steps. These are 

described below:

Step 1: Reading task information

a) A statistical description of the object is given, i.e., the object model, a list of 

focus features and their nearby features.

b) An Analytical description of the object is given. Here each feature of the object 

is converted in to clusters of objects, used for matching against The CAD 

database.

c) A strategy for locating objects is implemented. By this we mean what features 

are used to match the object, colour, comers, lines etc.

Step 2: Local-Feature Location

a) Locate regional features by finding white regions on a binary image whose 

properties such as area, minor and major axis are sufficiently close to the 

modelled values.

b) Finding comers. The system locates corners by moving a jointed pair of chords 

around the boundaries and comparing the angles between them to find different 

types of corners.
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Step 3: Hypothesis Generation

a) The system hypothesizes objects by recognizing clusters of image features that 

match clusters of object features, and thus producing a list of such features.

b) Given a list of all possible features, a graph-matching technique is used to locate 

the largest cluster of mutually consistent features.

The Local-Feature-Method produces efficient results in finding occluded objects and it 

can reason about features that are not in the field of view. However, such a system needs 

detailed information on objects and their local features. This means that it can be used 

for locating parts that can be described in a CAD database, however, it will not work in 

locating faults on an object unless they can be modelled. Chapter six shows how this 

method is implemented within this prototype, and the modifications needed to make it 

more general for finding objects that cannot easily be modelled.

2.2.1.2 Automatic Selection of Matching Algorithm

We have emphasised above that by selecting the best feature space it is possible to 

reduce the amount of data to be matched. Therefore, the question arises: is it possible 

to select the best feature space given the domain knowledge? i.e. the environmental 

attributes of an image. As yet no attempt to answer this question has been made.

Each feature space is selected dependent on the features the segmentation algorithms 

produce, which in turn are selected for a specific domain. As this project is domain 

independent then it follows that the segmentation algorithms selected for each task in 

turn can select the appropriate matching algorithm dependent on their attributes. (See 

chapter on further extensions).
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2.2.1.3 Similarity Measures

After selecting the feature space to use for matching, the second step is selecting how 

we are to measure the similarity of object within the database and scene. This step is 

closely related with the selection of matching features since it measures the similarity 

between these features. Once features have been extracted from an image, the similarity 

measures evaluate the information in the object model with respect to actual segments.

The criteria used by the similarity measures determine what types of matches are 

optimal. For example, if grey values are used, instead of features, a similarity measure 

might be selected to be more noise tolerant since it was not done during feature 

detection. Table 2.2 gives some similarity matrices used in image matching, along with 

their advantages and references to works within this field.

Correlation is optimized for exact matches, therefore requiring image processing if too 

much noise is present. Edge correlation, i.e. correlation of edge images, is a standard 

approach. Fourier methods (Kuhl 82), such as phase correlation, can be used on raw 

images when there is frequency-dependent noise. Another possible similarity measure, 

suggested by Venot. (Venot 84), is based on the number of sign changes in the pointwise 

subtraction of the two images. This is most advantageous in comparison to classical 

techniques when the images are dissimilar. This technique allows for background 

subtraction and noise elimination and modelling.
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Similarity Metric Advantages
Normalized cross-correlation function 
(Rosenfeld 82)

Accurate for white noise but not toleran 
of local distortion sharp peak in 
correlation space difficult to find

Correlation coefficient (Svedlow 76) Similar to above but has absolute 
measure

Statistical correlation and matched filters 
(Pratt 78)___________ ____

Good if noise can be modeled

Sum of absolute differences of intensity 
(Barnea 72)

Efficient computation, good for finding 
matches with no local distortions

Contour/surface differences (Pelizzari 89) For structural matching
Number of sign changes in pointwise 
intensity differences (Venot 89)

Good for dissimilar images

Higher-level matrices: structural matching: 
tree and graph distances (Mohr 90),

Optimizes match based on features or 
relations of interest

Table 2.2 Similarity Metrics used in image matching

2.2.1.4 Search Space and Strategy

Because of the large computational costs associated with many matching features and 

similarity measures, the last step in the design of a matching method is to select the best 

search strategy. The search space is generally the class of transformations from which 

we would like to find the optimal transformation to match the images. We can evaluate 

each transformation candidate using the similarity measures on the preselected features.
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Search Strategy Advantages and Reference Examples
Decision Sequencing Improved efficiency for similar optimisation for rigid 

transformations (Barnea 72)________________
Relaxation Practical approach to find global transformations 

when local distortions are present, exploits spacial 
relations between features (Price 85, Shapiro 90)

Dynamic Programming Good efficiency for finding local transformations 
when an intrinsic ordering for matching is present 
(Maire 87, Millios 89) _______________

Hough Transform For shape matching of rigidly displaced contours by 
mapping edge space into dual-parameter space 
(Ballard 84, Davis 82)_____________

Linear Programming For solving systems of linear inequality constraints, 
used in finding rigid transformations for point 
matching with polygon-shaped error bounds at each 
point (Baird 84)__________________

Hierarchical Techniques Application to improve and speed up many different 
approaches by guiding search through progressively 
finer resolutions (Davis 82, Paar 90)__________

Tree and Graph Matching Uses tree and graph properties to minimize search, 
good for inexact matching of higher-level structures 
(Gmur 90, Sanfeliu 90)

Table 2.3 Search strategies used in Image registration.

Often, the search space is the space of all possible transformations. Examples of 

common search strategies include hierarchical or multi resolution techniques, decision 

sequencing, relaxation, generalized Hough transforms, linear programming, tree and 

graph matching, dynamic programming, and heuristic search. Table 2.3 shows some 

search strategies used in image matching.
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2.3 Knowledge-Based Systems for Vision

Knowledge based techniques will be used (in this thesis) to extract any techniques that 

lend themselves well to algorithm selection dependent on the domain.

There are currently several ways of representing knowledge commonly used in AI vision 

systems, each with advantages and disadvantages. Semantic networks and frames have 

been used in describing binary predicate calculus and graphical representations by 

Nilsson (Nilsson 82). Semantic networks have been used by Levesque (Levesque 86) 

and production systems or rule based systems by Hayes-Roth (Hayes-Roth 85). These 

AI formalisms have their advantages and disadvantages. Logic is formal, with well 

defined semantics, however, it is not always a very natural tool for scene descriptions 

while production systems are flexible but lack structure. Semantic networks are 

intuitively appealing but usually lack a formal semantic basis so that it is not always easy 

to predict the various side-effects of computations; nevertheless this shortcoming has 

not mattered for small, experimental systems built to pursue limited objectives.

The advantages of a formal, high level, well behaved knowledge representation system 

is that it is possible to describe very rich scenes and make useful deductions about them. 

In principle it should be possible to deduce what some partially visible object might be 

if there exists a model of what it looks like.

The following discussion gives us some idea of the AI techniques used in the vision 

world.
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2.3.1 Semantic Networks and Frames

Semantic networks have been used and implemented by many AI developers. In this 

section we describe a formal type of semantic network based on Nilsson's work 

(Nilsson, 82). This work is important within this project as he presents a way of 

incorporating the optical properties of objects. These optical properties may be used to 

select the appropriate segmentation and image processing algorithms and in turn the 

matching algorithms.

ss / \ ss
Universal

yjGlass 
Objects /

transmission

Figure 2.2 The annotated network.

The network is a directed graph of nodes and arcs in which each arc connects exactly 

two nodes. Nodes represent constants or variables, while arcs show the predicates, EL 

(elements of), SS (subset of) or else a unary function. Figure 2.2 gives an example of 

such a network.
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When trying to identify objects it will be important to know something about the optical 

properties of these objects, for example metal has a shiny reflectance, or that glass is 

transparent etc. The net can easily be annotated to show these, although the provision 

of corresponding low-level processing techniques are not considered at this stage.

2.3.2 Generic Object Descriptions

The frame concept has been adopted for the ACRONYM model based vision system 

(Bruods 79). There is also extensive use of generalised cones, and production systems. 

The use of geometric reasoning to handle spatial relationships is also important. In the 

present discussion we are interested in the representation of objects in a hierarchical 

fashion starting with a coarse description and working down to finer detail. The objects 

are frames in an object graph. (Brooks 81, Brooks 83).

Figure 2.3 A generalised cone motor with shaft and one flange.

The generalised cone is defined by a spine, a cross section and a sweeping rule. A 

simple electric motor, with one flange, is shown in Figure 2.3.

We could define a specific electric motor as a frame.
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Node: Electric-Motor

Class: SIMPLE-CONE 

Spine: STRAIGHT_LENGTH_8 

Sweeping-Rule: CONSTANT 

Cross-Section: CIRCLE_RADIUS_2.5

2.3.3 Winston's Arch

Another example of a semantic network that is often quoted concern the structural 

description of an arch. The importance of the work is that the semantic network was 

learnt by a program devised by Winston (Winston 70, Winston 75, Winston 84). The 

system was given an example of an arch, and then several more examples and counter­ 

examples (near-misses). From each image it would learn that an arch in the network 

must exist, must not exist, or other possibilities. It would learn that an arch consists of 

a brick or wedge supported by two bricks that must not touch. The work shows how 

difficult it is to leam explicit knowledge.

In the long term, the best chance of progress in the area of learning may come from 

research into Connectionist Machines (Neural Networks), which consist of a richly 

interconnected network of tiny, McCulloch Pitts type, processors. During their learning 

phase, the strength of interconnections is determined by reference to a teaching set 

(Rumelhart, 86).

2.3.4 Syntactic Descriptions

An alternate approach to semantic networks is to describe the syntax of a scene in terms 

of small primitive elements that can be combined according to rules specified in a 

grammar. Consider the simple example of the staircase structure in Figure 2.4. The 

primitives could be lines of unit length in the horizontal and vertical directions, denoted
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by h and v respectively. Appropriate parsing techniques, perhaps using some production 

system rules might generate hhvhvhvh as a description of the staircase, low level 

processing, having identified the primitives in the image.

hhvhvhvhvh

Figure 2.4 A staircase structure.

An attempt to model 3D objects in syntax was undertaken by Duda and Hart (Duda 73), 

however, this proved too complex to implement. Large sets of information were 

developed, many with similar features that made the syntax approach ambiguous. For 

limited domains such as the classification of fingerprints or chromosomes, syntax based 

methods do work well (Gonjale 78, Miclet 86).

2.3.5 Rule Based Systems

Production systems are widely employed in vision systems and AI. They can be 

employed to process syntactic definitions of languages (Aho 86), or as the basis of an 

expert system (Jackson 86). The basic components of a production system are: a set of 

rules, a database, and an interpreter (sometimes called a control system).

Object recognition tasks consist fundamentally of searching and matching features, this 

task requires a priori knowledge about such entities as geometry, size, contrast, colour 

and texture. This knowledge can be represented either in procedural or declarative form.
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The procedural knowledge is most effective in this project in representing how certain 

tasks may be carried out, such as image processing or segmentation.

A rule-based system (RBS) has the following properties (Hayes-Roth 85):

1) Incorporates practical knowledge in a production rule system.

2) Knowledge is incremental, skill is proportional to the knowledge base.

3) Solves a wide range of complex problems by choosing and combining results in 

an appropriate fashion.

4) A scheduler adaptively determines the execution sequence.

5) Trace facility and natural language interface.

An RBS is therefore a module based knowledge system, with the knowledge being in 

the following forms:

1) Specific inference from observations,

2) Abstraction, generalisation and categorisation of given data,

3) Necessary and sufficient conditions for achieving a given goal,

4) Likeliest position to look for relevant information,

5) Arbitration.

A production rule has the form:

IF (condition) THEN (action)

Where the condition is called the antecedent and the action the consequent. The 

interpretation of the rule is, if the consequent defines an action then the system executes
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the specified action, if the consequent defines a conclusion, then the system infers a 

conclusion.

A)
Frame Store

Database

Input

Outputs

Object 
I Database

Selected Modules

B) Knowledge Base

Input
Working I!_ 
Memory ||

Data Updates

Outputs

f^   -'I

Rule Memory

dZ~ 7H3t

Fact Memory

Rules & Facts

Rule 
Interpreter Triggering Data Rule and Data 

Element Selection

Selected Rule

Selected Data

Figure 2.5a Architecture of a simple image processing program. 
Figure 2.5b Architecture of a rule based system.

Some examples of rules are given below. These rules have been applied by Nazif and 

Levine (Nazif, 84) in low level image processing. This work has been extended, and 

included within this project. Typical rules in the system are:

RULE (801) 

IF:

THEN:

(1) There is a Low DIFFERENCE in REGION 1

(2) There is a Low DIFFERENCE in REGION 2 

(1) MERGE THE TWO REGIONS.
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RULE: (901)

IF: (1) The REGION HISTOGRAM IS BIMODAL 

THEN: (1) SPLIT THE REGION ACCORDING TO THE HISTOGRAM.

A traditional image processing program differs from a RBS in that it lacks a rule and 

selection subsystem. However, it often has a knowledge database containing model 

information (not rules). Instead of a rule interpreter, there is a user defined program 

consisting of one or more algorithms with control and data flow built into the system. 

These programs lack the flexibility of a RBS. For a modification of its task execution, 

a new program may need to be written because the control and data flow may be 

changed by a new item of data. A RBS is more flexible and thus better suited for 

implementing an adaptive image processing system. The only change needed if more 

information or knowledge is entered, is the addition of a new rule. Figure 2.5a and 2.5b 

show the difference between a traditional image processing architecture and a rule based 

architecture.

Advantages and Disadvantages of Rule Based Systems_____________ 
Main advantages of a RBS._____________________________
1) It presents problem-solving methods in a way which is suitable for 

computers,
2) It is modular,
3) It is incremental,
4) It is explainable,
5) It provides a framework for conceptualising computation,
6) It provides parallel methods for problem solving, and
7) It makes distinction between analytic and imperative know-how._____ 

Main disadvantages of a RBS.___________________________
1) There is no analytical foundation for deciding which problems are solvable,
2) There is no methodology or technique to test consistency and completeness 

of rule set,
3) There is no theory of knowledge organisation,
4) There are no good rule compilers or specialised hardware and,
5) There is no easy way to integrate RBS into data processing.

Table 2.4 Advantages and disadvantages of a RBS.
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There are several advantages and disadvantages to using a RBS. These must be 

considered when developing a vision system depending on the application. These are 

shown in Table 2.4.

2.4 Adaptive Vision Systems

A group at the University of Massachusetts (Kohl 87) have been arguing for some time 

that one must be goal directed in order to do low-level image processing and/or 

segmentation. They argue that the failure of general segmentation techniques can be 

traced to the following:

1) The image is too complex because of the physical situation from which the 

image was derived and/or the nature of the scene, or

2) There is a problem in evaluating different regions/segments.

Images are complex, but some image acquisition process can be modelled, and therefore, 

we can predict the variability of the acquisition process as shown by Krotkov (Krotkov, 

87). The authors suggest that there are no good segmentation evaluation functions. It is 

known that the segmentation process is not unique given any number of parameters 

(Anderson 87).

2.4.1 Anderson *s Segmentation System

Anderson (Anderson 87) has considered a modular, context independent approach to the 

problem of 2D segmentation. The modules are edge and region formation modules as 

shown in Figure 2.6.
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Input
Digitized parameter: Area Ratio p:r 
Range of number of objects: n 
Typical object size: avg. a

p:a, n, avg. a

Estimator
Calculate:
Total perimeter pixels: total p 
Minimum region size: min r 
Edge scale: sigma

sigma
i total p

Edge Detection Module

Edge detection and thinning 
Set gradient thrshold: t, at max

improve t

min r
Region Formation Module

Set local difference limit: d at 
i a mid-range value

Edge picture with improved 
threshold

fine-tune d, computing 
j borders to edges

i Adjust d 
! based on n

| Output
j Segmented image

Figure 2.6 2D edge and region segmentation system.

It is a well known fact that one can get very different segmentation from a picture by just 

changing the parameters. The most important results of his work so far are in the 

authors' view the following:

1) Definitions of the task/goal and parameters for each module in terms of general, 

geometric goals rather than with respect to semantic information,

2) An extensive analysis was done on the relationship between the parameters and 

the false detection errors and the dismissal errors of a true object boundary,
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3) The detection of boundaries is an independent process between edge and region 

formation processes,

4) The idea of feedback within a module and the interdependency between 

modules, implies multiple outputs and therefore the need for fusion, i.e. 

combination rules.

Items' 1 and 2 are issues of local models while items' 3 and 4 are aspects of global 

models. The most popular approach to global models in the context of image 

segmentation is the cooperative network or relaxation approach (Rosenfeld 76). Another 

such model is the Random Markov Fields model used by several researchers (German 

84, Derin 87, Cross 83). The principle of this model is that the effects of members of the 

field upon each other are limited to local interaction as defined by the neighbourhood. 

This is also the weakness of this model because it assumes an a priori spatial 

arrangement of objects and their projection on the image. This assumption is too strong, 

and applicable only in a few, highly controlled experiments. The work of Anderson 

shows that for image segmentation the global models should represent topological and 

integral (size and number of regions/edges) properties that are positional invariant rather 

than neighbourhood dependent.

Experiments undertaken in this research (see chapter 7 and Appendix B) have shown 

that the performance of the image processing and segmentation algorithms cannot be 

improved beyond a limited domain by only adjusting their parameters. The reason for 

this is that many basic assumptions made in the design of such a system are violated 

when different scenarios are encountered.
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2.4.2 The Blackboard Processing System

The Blackboard concept for vision systems was first used in the VISIONS program 

(Hanson 78) developed for interpretation outdoor scenes. The VISIONS system consists 

of knowledge sources (KSs) which are all independent modules. The blackboard is a 

shared memory structure to which all the KSs have access. When a KS is activated it
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Direction

1 i

Huristics 1
comer 1 

detection 1

1 i

Hough 1
circle 1 

detection 1

' i

Hough 1
line 1 

detection 1

]

*V) 1
extended feature 1 

detection 1

Delete false corners

Clip lines

BLACKBOARD

Match extended features

Garbage collection1 1
Control, Resolve Conflict

final matching model and data

Figure 2.7 A schematic diagram of the blackboard processing system.
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uses the knowledge residing on the blackboard to create a new hypothesis and write the 

results back on the blackboard, or it modifies existing knowledge. Furthermore, the KSs 

operate asynchronously, once activated they continue to operate until the task is finished 

The overall goal of the system is to use the blackboard to generate a single hypothesis.

A simple blackboard (Nagao 82) system is shown in Figure 2.7. The line and circle 

detection are via the use of the Hough transform (Hough 62). These three features can 

be considered as being generic. Other features are also extracted using s-graph (s(\y}} 

(Perhins 78).

For this system, two generic features are extracted using the Hough transform, lines and 

circles (or arcs). The circle detector used is essentially that described by Kimme 

(Kimme 75). The results are plotted directly into the image space (Davies 86).

This system cannot be termed truly adaptive as it does not react to changes directly in 

the environment or manufacturing process. However, it does hypothesise about objects 

and learns the best possible solution to be used in future recognition procedures.

2.5 Future Trends

Perhaps the most fundamental differences between present computer vision, compared 

to the old model based systems, stem from the current concentration on topics aimed at 

identifying and understanding the human visual system and reasoning. There is still a 

considerable amount of work oriented towards applications, but it is also increasingly 

based on detailed and precise analyses of specific visual abilities (Marr 82, Gregory 71, 

Gupta 89). The focus of research is more defined in terms of visual abilities than in 

terms of a domain.
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One obvious effect has been a sharp decline in the construction of entire vision systems. 

Most AI vision researchers have abandoned the idea that visual perception can profitably 

be studied in the context of a commitment to a particular program or machine 

architecture. There is for example, no reason to believe that one algorithm is always 

better than another.

We shall expect to see segmentation algorithms that pass their first approximations to 

some knowledge based part of the system, which will in turn produce feedback based 

on domain knowledge and allow intelligent updates to the segmentation.

PAST
Model Based Image Analysis Systems

The model is obtained by training.

PRESENT

Rule Based Image Analysis Systems

Rules and inferencing capabilities are implicit, 
i.e., written into the image analysis programs.

FUTURE

Rule & Knowledge Based Image Analysis Systems

With explicit knowledge base, rule base & general
inferencing capabilities. Konoeledge & rule base
are built by accquiring knowledge and rules from

the user and domain.

Figure 2.8 Expert vision systems - The evolutionary approach.

In addition to the use of a priori knowledge, rules may be employed to improve the 

performance of the system. In particular, decision rules can considerably enhance the 

correctness of the recognition process. Figure 2.8 indicates the steps in the evolutionary 

process leading from a purely model based image analysis system to rule based systems
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with explicit representation of knowledge bases and rule bases. All the models we have 

seen have been hand generated, but in the future, automatic conversions from CAD 

system output will be common. Hence there will be a link into automatic parts handling 

and inspection. The future, commercially, lies in these applications.

Perhaps the biggest challenge is for systems to be able to make intelligent deductions 

and observations about situations they have never seen before, based on what they have 

previously learnt.
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3. Introduction

This chapter describes some systems that are available or under production for industrial 

inspection. It looks at the trends of industrial vision systems within the market to see 

why such vision systems are not yet widely acceptable. This chapter also helps to 

identify current industrial vision systems along with their strengths and shortcomings. 

The main object of this chapter is to see whether the proposed system has been 

implemented already by another researcher either in its overall aim or in its design.

This chapter concludes by summarising the faults in current industrial inspection 

systems and a statement of the questions addressed in this project.

3.1 Industrial Inspection Systems

The probably most frequently given goal (if not the only one) of industrial image 

analysis is to detect and locate objects of given types in the image. That is, an image may 

contain objects of different types, and the goal is to identify parts of the image, if 

existing, which correspond to such objects or pieces of objects.

An industrial vision system must be able to carry out a few "simple" tasks:

1) It must process simple images. A simple image is one captured under controlled 

illumination from a fixed view point such that three-dimensional objects in some 

instances can be regarded as being two-dimensional.

2) The system must operate in real-time (this implies use of specialised hardware). 

It is observed that pipeline processors provide a cost-effective solution for
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speeding up the computation, although in many circumstances multiple pipe­ 

lines may be required (Hennessy 84).

3) The inspection system must produce a low false alarm rate, i.e. the algorithm 

must be robust. The few false positives the system may produce could, if 

required, be checked manually.

4) The system must be flexible so that it can adapt easily to changes in the 

inspection task, or change in the manufacturing process.

An industrial inspection system should fulfill all the above requirements. However, this 

is rarely the case. The usual approach employed in industrial inspection systems is to 

give the system a model of the object it is to detect by teaching it. First the systems are 

shown the bare object, then slowly any other features the object may have associated 

with it, e.g. chips on a PCB (Kara 83). The system is initially shown the unpopulated 

board and then the board with the chips on, so that it can learn which chips to look for 

and on which position of the board. As a result of the teaching process, the system had 

a model of a correct board, obtained solely by utilising the database and matching 

capabilities of the image analysis system.

This simple approach has several serious drawbacks, it is therefore slowly being 

abandoned. First, the teaching process tends to be rather time consuming. If a large 

number of different objects must be inspected, the time consuming teaching must be 

repeated for each object. Secondly, since every object recognition procedure has a given 

error rate, the model obtained through teaching may be incorrect.

Page 45



Chapter 3: Industrial Inspection Vision Systems

There is a more reliable and much faster source from which the model of the object in 

a correct form can be obtained. The object with all it dimensions can be placed in a CAD 

database. This database contains all the information about the object and the part 

placements in a totally correct form. In other words, there exists a priori knowledge in 

the database that can be utilized to facilitate and improve the inspection task.

Where a prior knowledge is not as readily available as in the example above, the a prior 

knowledge used could take the form of general knowledge about a given class of 

objects. This information should consist of how the image was acquired from the scene 

(lighting, imaging geometry and quality, etc.) (Rosenfeld 86, Amir 90). In most existing 

image analysis systems, knowledge of this kind is implicitly "embedded" into the 

algorithms employed in the system. Such an approach assumes that all these parameters 

are invariant. However, in complex applications this may not be the case, so that 

adjustments must be made from time to time to ensure a satisfactory performance of the 

system. A system that allows for such adjustments to be made, e.g. interactively, must 

comprise the explicit representation of the a prior knowledge utilized in the image 

analysis procedure. Consequently, the system must encompass means of knowledge 

representation. Since the a prior knowledge represented in the system must first be 

acquired, the system must also have means (software modules) for knowledge 

acquisition, e.g. by conducting a dialogue with the human operator.

Any object recognition procedure has a given error rate which can manifest itself in two 

directions, false acceptance, or false rejection. False acceptance means for example that 

a part is falsely accepted as flawless while in reality it has some flaws. False rejection 

means the reverse, the rejection of a correct item. False rejection is also called a false 

alarm.
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There is a reciprocity between the false acceptance rate and the false rejection rate. By 

moving up the acceptance threshold, the probability of false acceptance is lowered but, 

by the same token, the probability of a false rejection is increased, and vice versa. It is 

usually a matter of priorities as to which end of the spectrum one wants a vision system 

to operate, e.g. in the aerospace industry where quality standards are very high the 

priority is usually on a minimal false acceptance. In contrast, in the manufacturing of 

consumer goods one usually wants to minimise the false alarm rate. Alarms call for the 

intervention of a human operator, often halting the production process. This can be 

rather costly and, thus, a too high false alarm rate may not be tolerable.

This dilemma can be avoided or at least mitigated if the recognition algorithms are 

employed that are so robust that the probability for a false recognition is sufficiently 

small in the first place. The robustness of the recognition algorithms may be increased 

by making the image enhancement and segmentation algorithms more adaptive and 

efficient. This can be done be selecting the appropriate algorithms and thresholds for a 

given domain.

3.2 The Industrial Vision Market

One reasons for the slow penetration of the use of machine vision in industrial 

manufacturing has been the very strict requirement on both the hardware and the 

software for the task. However the leading industrial vision systems supplier, Computer 

Recognition Systems Ltd. (CRS) strongly believes that industry is teaming with potential 

industrial vision applications and that CRS is set for a period of sustained high growth. 

In the context of the machine vision market in the current climate, these comments 

appear to be far fetched. Industrial companies have not adopted vision technology on a 

large scale and very few suppliers have made any money in the period 1990-1993 (DTI 

93).
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Experts on the vision market argue that the reason so few suppliers have managed to 

make a profit is not due to the failure of vision systems as a technology, nor is it due to 

a lack of interest among users. Rather it is because too many suppliers jumped into the 

market on the basis of there (relatively thin) understanding of the relevant computing 

and optical technologies. They failed to understand that the vision system market is not 

one diversified market, but hundreds of different niche markets. Each market had its 

own domain with its own requirements on the vision tasks that need to be performed. 

They also needed software that could be used again if the manufacturing process 

changed.

The success of CRS is due to four factors: i) it does not take on jobs where there is no 

clear profit, ii) it markets not to industry as a whole but to niches where no one else is 

competing, iii) it has developed a clear technology leadership over some of its rivals, iv) 

it will only design systems using existing software modules which it already has 

available. The last of these factors is very important, as it selects algorithms that are 

known to work well in certain domains.

The failure of vision systems to live up to expectations of market researchers, was not 

just due to management incompetence among suppliers and developers. Technology, 

such as optical character recognition and parts inspection, had been improving rapidly 

throughout the 1980s but failed to reach levels of reliability and reusability for users, for 

the amount they were willing too pay. New research suggests that the market for vision 

systems will grow dramatically when users appreciate the improvements that have been 

achieved. It is also easy to see that unlike many computer-based applications, some of 

the financial payback of vision systems can quickly be ascertained. In inspection 

systems, for example, it is easy to produce figures showing whether or not quality has
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improved. Other benefits, such as improved company profile, are obviously more 

difficult to cost-justify.

3.3 Working Industrial Inspection Systems

The following section is a brief account of some industrial inspection systems in 

working environments or available on the market. However, the companies contacted 

did not want to disclose the full workings of their systems due to the nature of their work 

or for fear of industrial competition. We would like to thank and acknowledge the 

companies involved for their time and information provided by them.

3.3.1 Visual Control by Image Processing

Image Processing (IP) techniques, which permits the conversion of scan pattern signals 

from video and thermal imaging sensors into useful input for a diverse range of control 

applications, are being developed by Ferranti Instrumentations Ltd. Bracknall, UK. 

Image recognition is being used increasingly in situations where observation must be 

conducted under difficult conditions or when tedious surveillance can induce boredom 

or fatigue in human operators. The techniques can also be employed where decision 

making is mechanized or integrated with artificial intelligence systems. Applications 

range from automated instrumentation to robotics and process control systems.

The Ferranti algorithms are based on the latest available IP hardware, using multi­ 

purpose digital frame stores with a range of optional configurations for micro computer 

or main frame interfaces. Functions include image stabilization, freeze frame and auto- 

cuing. An engineering service is available for the adaptation of control algorithms and 

hardware for both slow speed and real time applications.
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The algorithms available are both efficient and fast, as special purpose hardware is used. 

However, there are only a certain amount of algorithms available, which cannot be 

adjusted. The system itself displays no artificial intelligence, but can be connected to 

such a system for recognition and event and action processing.

3.3.2 The Intelledex 386HR

A vision system produced by Intelledex Inc., is a Personal Computer (PC) system with 

user selectional levels of both resolution and grey scale. Higher resolution and finer grey 

scale definitions are used for more complex inspection tasks, while higher processing 

speeds are realized with applications requiring less resolution and grey levels. This 

capability also enables applications with varying inspection requirements to be 

accommodated without operator intervention or the need for multiple systems. Company 

officials believe the Intelledex 386HR is suited for inspection and robot guidance tasks 

in a wide range of industries including electronics, food processing, and 

pharmaceuticals.

The 386HR includes a library of propriety vision algorithms that is the result of over six 

years of development by Intelledex. The Pattern Transform functions can identify 

objects even in situations with widely varying factory lighting. Ledges (edge learning 

program) uses light-to-dark transitions to find edge position, magnitude, and direction 

of all edges between two user defined points. This function is especially useful for 

applications where the edges of objects or faults must be located. Other standard 

functions include windowing, mathematical morphology, connectivity analysis, Roberts 

and Laplace operators , and linear and nonlinear array processing.

Intelledex Inc. is a manufacturer of intelligent robot and vision products. However, to- 

date all their applications have been domain specific, with their algorithms selected for
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a specified application. The Intelledex 386HR has intelligence built in to it, but this 

resides within the algorithms themselves, which are implicitly coded into the algorithms.

3.3.3 Computer Vision and Safety Shield for Robots

Perceptive Systems Ltd. has developed a computer vision system with particular 

applications to robot safety. Vision analysis within the system, called 3DIS, is based on 

aspects of human vision. Just as the eye and brain respond to visual changes or 

movement, so 3DIS can respond, automatically analysing changes that occur in its field 

of vision.

In its production form, 3DIS will give the user the ability to create three-dimensional, 

"intelligent" sensor spaces within the field of view of the system's attached video 

cameras. Depending on the particular application, any movement of a subject into the 

sensor will control the actions of a robot, for example sound an alarm or take a 

photograph.

This system has no bearing on industrial inspection systems, however, it uses many 

well-known algorithms in optical flow (Sabbarao 88).

3.4 Industrial Applications

Most of the systems reviewed in this section for industrial inspection involve a model- 

based approach. However, the models are often not geometrical ones. The model-based 

approach needs to address the following questions:

1. What features need to be extracted to describe an object?

2. How do we match the located features with the models?
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3. How do we represent and group features to describe classes of objects?

To answer these questions we can look more closely at published work within the field 

of industrial inspection. The review is not exhaustive but it will give the reader an idea 

of how industrial inspection systems are being developed.

3.4.1 Metal Surface Inspection

Several systems have been described in the literature (Sardis 79, Mundy 80, Suresh 83). 

In steel making a continuous casting method is employed. This involves the molten steel 

being continually poured into a water-cooled mould. As the steel solidifies, it is drawn 

out in a ribbon along the roll table. The ribbons are cut into sections of predetermined 

length to form slabs. However, these slabs have imperfections that need to be analysed 

before further processing of the slabs can be carried out. Typical types of faults found 

in a slab are shown in Figure 3.1.

Transverse face 
cracks

Roll/Guide 
marks

Lonitudinal
face cracks 

Scab

Comer cracks

Edge tears

Figure 3.1 Faults found on a steel slab.

An automated system will have to locate the various defects, size and width to determine 

the slab's condition, whether it is satisfactory for further processing or requires further
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conditioning, or has to be rejected. Even if the slabs have few imperfections, they tend 

to have many features that must be inspected, such as texture, intainsity, etc.

Suresh describes a system built by Honeywell, (Suresh 83) which works with images in 

the visible band. Images are captured using a camera with an infrared blocking filter. 

Two cameras are used. The data camera views orthogonally to the slab motion, the 

picture is generated using a CCD array.

Once the data has been captured, the images are segmented and the features extracted 

using an array processor. The incoming slab image data is first processed by an edge 

enhancement operator. The Roberts gradient operator (Pratt 78) was chosen for its 

performance in this domain relative to its low computational overload.

The edge enhanced image is then binarised using a threshold to segment out the object 

edges. However, they claim that the selection of a proper threshold is crucial in order 

to reduce the clutter while retaining the primary objects of interest. They decided by 

examining the slab's imagery, which could be divided into three homogeneous zones on 

the imagery statistics. The first zone consists of a narrow, bright strip at the edge of the 

slab. The second zone consists of all vertical striations. Each zone required its own 

threshold, from the image statistics it was found that zones one and two were constant, 

however for the third zone it was necessary to use an adaptive threshold algorithm as 

shown below:

j € zone 3
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For each scan line j, they compute a smoothed sum of the edge enhanced image along 

the scan line. If i denotes the pixel count on the scan line for the third zone this gives the 

smoothed sum SS(i). E^ denotes the edge enhanced image intensity at pixel position] on 

the scan line i. Also a is a suitable constant such that 0<a<l. The threshold T# (i) 

applied to the scan line is then determined as:

Ta(i) = CKj SS(i)

Where coefficient K } is a constant and C is a coefficient that varies. Most of the faults 

are basically fine-line features, the segmentation process consists of edge-enhancement 

and thersholding the image.

During the segmentation process a set of features is computed for each object detected. 

These features are then labelled using a semantic structure of longitudinal and transverse 

edges. The structures are passed to a rule base where object size thresholding takes 

place. Small objects are rejected as noise, while reasonably large objects are presumed 

to be imperfections. The imperfections are then classified in a component classification 

structure.

It is clear from the discussion above that this system has several interesting components 

such as the adaptive thresholding technique, its use of a rule base to eliminate noise and 

finally its use of statistical as well as syntactic/semantic classification techniques. 

However, the system has embedded knowledge of its domain. There is no way of adding 

new imperfections to the list of current imperfections, except by reprogramming the 

system. Finally the results obtained are extracted under very strict and controlled 

conditions, which is very hard to achieve in an industrial environment.
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3.4.2 Timber Defects

The problem in processing lumber images is the great variability amongst them (Conners 

83), even within the same species, no two knots are the same and each type of wood has 

a unique grain pattern. The defects in lumber arise from either biological or 

manufacturing defects. There are a variety of techniques for detecting these defects. 

Laser scanners have been used to detect splits and knots of varying sizes (King 78, 

Mathews 76). The tonal property of the lumber can be used to detect certain types of 

defects: for example clear wood is lighter than knots, holes or cracks. These techniques 

need to be combined with pattern recognition techniques, i.e. holes and knots are 

circular while checks and splits are narrow and long.

It is important to note at this stage, that the defects have been classified with their 

respective attributes. This means that the appropriate algorithms are implemented to 

detect these attributes. This form of knowledge acquisition and matching to algorithms 

is done in all vision systems. However, this knowledge is embedded into the system, 

which means that if a fault that has not been considered arises the system would fail to 

recognise it. Later we present a way of detecting an unknown fault by comparing it with 

perfect object or image attributes if it cannot be classified. The system would then 

undergo a learning process to classify and extract the object attributes and thus select an 

appropriate algorithm for detecting it.

Parallel processing of lumber has been proposed by Conners by subdividing the image 

into a number of rectangles (Conners 83). For each of the image patches, the tonal 

property of the lumber is measured by computing i) the mean, ii) the variance, and iii) 

the skewness. Also, the co-occurrence matrix is used in the texture analysis.

Page 55



Chapter 3: Industrial Inspection Vision Systems

In Conner's initial feasibility study, the combined measures yielded an overall 88.3% 

correct classification on the eight defects most commonly found in lumber. To minimise 

the number of calculations needed to make the required classification he uses a 

sequential classifier based on a production system. The classifier in this case cannot be 

extended to accommodate more faults without again reprogramming the system.

3.4.3 Printed and Integrated Circuit Board Inspection

We are continuing to observe the growth in density of both integrated circuits (ICs) and 

complex multi-layer printed circuit boards (PCB). This has led to problems in using 

traditional techniques for testing. The ICs and PCB fail because of (Pav 83):

1) corrosion or micro cracks, which lead to open or short circuits,

2) oxide breakdown by such processes as static discharge,

3) surface defects such as dust,

4) dirty photo masks,

5) die cracks,

6) packing defects, and

7) thermal mismatch.
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igure 3.2 Decision tree in PCB and 1C Bottom-side inspection.

Tiese problems can be detected by visual techniques such as stereo microscope, x-rays 

md election beams. However, it is very difficult to manually check for defects in such 

boards. It has been reported that humans can detect about 90 percent of faults in a single 

layer PCB. This detection rate goes down to about 50 percent for six layer boards (Yu 

88). Even when fault free power and ground layers have been established using 

electrical testing, the success rate is no better then about 70 percent.
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As we can see the inspection of ICs and PCBs requires some sort of optical inspection 

to determine that the line widths, the line spacing, voids and pinholes are within the 

specification. These tasks cannot be carried out by electrical testing. Further advantages 

of optical testing are that it can check the ICs and PCB against its CAD model and thus 

the method is non-intrusive and hence avoids mechanical damage. A typical decision 

tree in PCB and 1C inspection is shown in Figure 3.2 (Kara 83). If a trustworthy decision 

can be reached right away, then there is no need to go deeper into the tree. If not, then 

the decision criterion is refined by asking additional questions until a decision is reached 

with a sufficiently high confidence level.

It can be seen that even in the relatively simple application of PCB and 1C inspection, 

high level processing is needed. The PCB alphabet comprises of circles, pins, holes and 

lines. However, most problems will have much larger alphabets of objects and sub- 

objects.

While some ideas expressed in detecting PCB faults can be implemented using lower 

level algorithms (Hough 62) more inferencing capabilities are needed. This will allow 

more robust techniques to be used.

3.5 Common Problems in Industrial Inspection Systems

A common problem in vision is to try to match some structure in the processed image 

with a corresponding part of a semantic network. Let the goal network be some structure 

to be matched with some fact network in the database. Each goal or fact network 

contains one or more nodes and arcs. In the simplest case a given goal can be matched 

against a fact in the following way: every node in the goal network is unified with a 

node in the fact network, each arc in the goal is then paired with an arc between 

corresponding fact nodes, Figure 3.3 shows this graphically.
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Fact

Goal

Figure 3.3 Goal and fact network.

There is a problem for the designer of computer vision systems when considering the 

level of domain dependent structures to put in the representation system. This is 

exacerbated when trying to develop a general purpose vision system. The more structure 

there is, the quicker the matching but generality is lost. The chapter on further work 

explains how such structures can be selected dependent on the domain knowledge. In 

simple cases the matching process can often be reduced to finding an isomorphism 

between graphs. However, this process has a high computational overhead. The 

complexity can be reduced if we can make sensible guesses about which substructures 

are the most important in matching. Simon provides a good treatment of the issues 

(Simon 86).

There are other ways to reduce the matching problem. For instance, the degree of a 

match could be determined on a probabilistic basis (Shapiro 83), or operators such as 

"greater than" could work on properties like length or area (Adomi 85). In these cases 

numerical processing may have advantages over symbolic processing in vision (Ambler 

75).
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Problems also arise at the lower levels of vision, image processing and segmentation. 

It is very difficult for the developer to select the appropriate algorithms for the task at 

hand. The main considerations, when selecting an image processing or segmentation 

algorithm are:

1. The information needed to be extracted from the image, i.e. lines, areas, 

syntactic representations etc.

2. To select the thresholds for the algorithms to gain maximum performance,

3. To incorporate any relaxation techniques needed to make the system robust,

4. To consider any computational restraints,

5. Selection of operators that best suits the needs of the system.

It can be seen that selecting the appropriate algorithms is no easy task as there are many 

factors that have to be considered. For instance, knowledge of the domain has to be 

acquired and analysed. Once this is done, the algorithms need to be selected and fine 

tuned to give the best possible results and the correct features need to be extracted for 

the higher level processing routines.

As we can see tuning is an interaction between the domain, image processing and 

segmentation algorithms, and the higher level, symbolic processing algorithms. With all 

this to contend with we are still at the mercy of the programmer's knowledge, have they 

selected the appropriate algorithms? Is the system robust? etc. There are many questions 

that must be answered, which need extensive tests. Evidently there is a great deal of 

uncertainty and unreliability in the whole process.
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3.5.1 Unreliability of Low Level Processes

Low-level processes, such as region, line and surface extraction, vary in unreliable and 

unpredictable ways. This is due to a variety of confounding factors that include surface 

colours and markings, texture, occlusion, the complexity of 3D shapes, uncontrolled 

lighting producing highlights and shadows (Novini 90), and resolution and digitisation 

effects.

3.5.2 Uncertainty

There is inherent uncertainty in every stage of processing. Sensory data is usually locally 

ambiguous and constraints must be introduced at many levels to reduce uncertainty in 

an effective manner. As the data is transformed, it remains unreliable to varying degrees. 

The process of hypothesis generation and validation must work in the face of incomplete 

and inconsistent information.

Another major problem in these systems is the representation and appropriate use of all 

available sources of knowledge during the interpretation process. Each of the many 

different kinds of knowledge that may be relevant at various points during interpretation 

impose different kinds of constraints on the underlying representations. In general, they 

must be sensitive enough to capture subtle differences and variations among objects in 

the same object class, yet be robust enough to capture broadly applicable sketches of 

objects and expected scenarios.

3.6 Questions Addressed

Several questions have come to light during the review of vision systems, both in 

chapters two and three. These questions encapsulate low, medium and high level tasks.
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Clearly there are many possible ways in which an image can be segmented. For example, 

should emphasis be placed on boundary analysis or region growing, or within 

segmentation should priority at some particular stage be given to splitting regions or 

merging others? The idea behind the current work is to control such possible low-level 

operations using the domain knowledge and target matrices within a production system.

Once the image is segmented, what is the best possible structure to model the data? Do 

we save geometric features, or salient features etc.? It is true that the more features we 

model the easier the matching problem becomes, but as stated above generality is lost. 

Some objects may not have well defined geometric features for instance. To have a truly 

adaptive system each structure found must be modelled uniquely. This implies that the 

segmentation algorithms applied to that object must also pass the structure back to the 

inference module, which in turn will select the appropriate matching algorithm known 

to work well with those features. (See chapter on further extensions.)

Current industrial vision systems are developed for the specific domain in which they 

will operate, with the domain knowledge being acquired at that moment in time. This 

raises the question of how flexible is the system? That is, what happens if the inspection 

task or manufacturing process changes? Do we scrap the system, or is it rewritten to 

incorporate the changes? This suggests that the system must be updatable, and thus how 

easy is it for such systems to be updated? The system proposed here is updatable by 

adding the new domain knowledge and if necessary updating the rules and segmentation 

algorithms. At the moment the prototype developed here requires a programmer's 

intervention, however a system is proposed where this can be done interactively by the 

user (see further extensions).

Page 62



Chapter 3: Industrial Inspection Vision Systems

3.7 Summary

The prime objective in undertaking this review was to see if the goal of the proposed 

system has already been achieved in an existing system. The review has shown that no 

existing system has the same aim as the proposed system. Only the metal surface 

inspection system offers an adaptive thresholding technique (Suresh 83), other systems 

developed are purely domain specific. The knowledge required about the objects', noise, 

and environmental conditions are embedded within the system. This makes the system 

inflexible and unable to adapt to change within the inspection task.

We can deduce that, basically, industrial machine vision is a collection of techniques 

(both image/segmentation processing and recognition/matching procedures) specifically 

designed to operate on a given application. Recognizing that machine vision is a 

collection of techniques, and that there is no universal best technique, one can perceive 

a technology for selecting and refining appropriate algorithms where the application 

domain knowledge is given. This in fact is done by human programmers and experts in 

the appropriate domain. Knowledge is acquired by the programmer on the domain to be 

modelled (object description, faults, and environmental conditions) from the expert. The 

programmer then selects the appropriate algorithms to carry out the task. However, 

extensive testing and remodification is carried out until the system meets an acceptable 

performance level. This type of system then becomes inflexible and thus unreliable.
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4. Introduction

This chapter presents a technique for the automatic design of image segmentation 

algorithms. It describes the data and knowledge needed to implement such a system and 

the transformation of the image from a pictorial representation to a symbolic one. We 

describe a way of linking the information retrieved from the image to algorithms that 

may act on such an image using contextual information of the objects.

It has become clear that image segmentation is an essential step in every practical image 

processing system (see chapters 2 and 3), not just industrial inspection applications. 

Current vision systems and in particular their segmentation algorithms suffer from a well 

known problem, they have a poor performance rating on images different from the ones 

used in their initial development and training stage.

We therefore present a system concept for the automatic selection and design of 

segmentation algorithms based on image and object characteristics, and knowledge of 

image processing primitives (the Visual Planner}. The proposed system concept makes 

use of Planning techniques, discussed in Artificial Intelligence (Wilensky 83, Georgeff 

87). This concept provides the essential elements of an automatic segmentation design 

system that will not be scenario dependent and will be adaptive in nature.

4.1 Motivation Behind the Work

The main problem with existing segmentation algorithms is their poor performance on 

a set of images different from the ones used in their initial development and training 

stages. Changes in the image can be defined in terms of content and quality. This 

limitation has created a major bottleneck in most vision systems. It has been this 

limitation that has been the basic motivation behind the research and development of a 

new segmentation approach.
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This new concept selects the segmentation algorithms, and sets their parameters, 

depending on the global image and target characteristics, and contextual scene 

information. To this end an adaptive system has been produced that not only changes 

parameters such as the ones proposed by Anderson (Anderson 87) or Pavlidis (Pavlidis 

82) but also selects the appropriate algorithms available within its database for that type 

of scene.

In designing such a system we must keep in mind that the performance of the 

segmentation algorithms cannot be improved beyond a limited domain by (only) 

adjusting their parameters, as experiments have shown (Chapter 7 and Appendix B). The 

reason for this is that many basic assumptions made in the design of the segmentation 

algorithm are violated when different scenarios are encountered.

To overcome this problem we could use a knowledge based segmentation technique, 

whereby we attempt to select the appropriate segmentation algorithm from a database 

of two or three existing algorithms. However, again experiments have shown that these 

techniques also suffer from a similar problem, i.e. performance cannot be improved 

beyond a limited domain. This is because image processing and segmentation 

algorithms work on a narrow domain and even in their own domain their performance 

is rather unstable. Yet another problem with such a technique, is that most of the 

existing or available algorithms have a large area of overlap, and they do not span the 

space of useful application domain. Again, all these algorithms fail dramatically in many 

instances because they are based on fixed assumptions that in many cases are not 

valid. Consequently, selecting among a set of given algorithms cannot lead to a 

meaningful improvement in performance.

It has become clear that what is needed is a new approach to segmentation, illustrated 

in Figure 4.1, whereby the algorithm design is a planned sequence of different image 

processing primitives. Such a design depends on several inputs.
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1. A desired goal of the segmentation process (i.e. find x fault or find y target, etc.),

2. The input image and target characteristics called the Domain Information (i.e. 

contrast, target size, signal to noise ratio, target average intensity etc.).

3. The contextual information about the objects (i.e. targets are geometric, linear, 

circular, etc.).

a) 
Image

b)
Segmenation 

Goal

o !
Contextual \ 

Information

Image

Extract Image 
Characteristics

Contextual 
Information

\

Segmentation __
1 Plan ~"~

d) 
Segmentation 

Plan

Image Proc. &
Segmentation

Primitives

Image and Object
Characteristics

Database

Image Proc. &
Segmentation

Primitives

Figure 4.1 Concept diagram for automatic segmentation algorithm design.

It can be seen that a different scenario, in terms of goal, image and target characteristics, 

and contextual information will lead to the generation of different plans, based on 

information available from the scene domain.

The more information and knowledge a planner is given, the more accurate are its 

results. This leads us to the question of, how complex can such a visual system become? 

Although it is easy to update algorithms or add new ones do the database, where they 

are used, and under what circumstances they are used in, is a more difficult task to
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achieve. This is due to the fact that a new algorithm may work well together with some 

algorithms and not so well with others. Conflicts may arise due to the nature of the 

algorithms, such conflicts may give unexpected results. The algorithms may require 

information that is not modelled within the object database, this may have to be added. 

As can be seen, the complexity of such a system is unbounded. However, constraints 

can be applied which will make the system practical to use.

4.2 Adaptive System: Overview

A detailed block diagram is illustrated in Figure 4.2. The input to the system would be 

a raw image, a set of image and target characteristics, contextual information, and an 

explicit segmentation goal. The output is a segmentation algorithm specification that 

is a collection of sequential image processing steps. The selected algorithms are tailored 

to a particular scenario. For each different scenario a different plan is created. In 

planning, we start with an initial state and a desirable state or a goal, and attempt to 

devise a plan that can achieve the goal (Wilensky 83, Genersereth 87).

The planning concept is illustrated in Figure 4.3. The initial state in this case is the raw 

image. The goal is the desired segmentation result that can be expressed at different 

levels of abstraction, find target, find straight lines, find x fault, etc. The plan is a set of 

ordered sequential image processing operations. The plan is generated by the planner 

that has access to the knowledge-base. The knowledge base contains information about 

which operations to perform given certain images these rules are called the domain 
rules. The knowledge-base is represented in a rule-base structure, however, other 

structures may be used.
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Characteristics Data 
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Figure 4.2 Detailed diagram of adaptive segmentation design system. 

4.3 The Planner and Planning

The classical definition of the planning problem assumes a state-based representation 

of the world. This means that the world is represented by taking a snapshot of it at one 

particular time and describing the world as it appears in this snapshot. This description 

is generally a set of sentences in some formal language describing what is true in the 

snapshot. The sentences within this project take the form of two types of knowledge: 

contextual information, and image and object characteristics.

The inputs and the outputs of the planning process are illustrated in Figure 4.3. While 

the inputs (initial state and goal) to the planner are described as being real world 

problems, current AI techniques cannot handle the full complexity of our everyday 

world. The actual problem being solved is always in a limited environment, but the term 

real world indicates the environmental goal representing this full complexity.
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The planner's output will be correct only to the extent that the representation modelled 

in the knowledge base correctly reflects the real environment. The output is a sequence 

of primitive actions, i.e. actions for which the planner has not been given any knowledge 

about the details of the means of execution. If the representation is appropriate, these 

actions will be meaningful in the environment and might be carried out by whatever 

agents are accepting instructions from the planner.

All inputs to the planner are in a language provided by the planner, whether it be 

pictorial or as a script of sentences. The three inputs illustrated in Figure 4.3 are 

described bellow:

Figure 4.3 General planning concept in Artificial Intelligence.

1. The initial world state is generally described by a set of sentences, (from an iconic 

representation to a symbolic one in this case) although additional sentences may be 

deduced by the planner from domain constraints that are also provided.

2. The actions that can be taken in the world must be represented in such a way that the 

planner can take the state of the world in which the action is performed and map it into
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the state of the world that will exist after the action is performed. This information is 

kept in the knowledge base.

3. A set of sentences that describes the goal to be achieved is also given. These 

sentences will be interpreted by the planner, and thus take any form desired, for example 

structured language (find crack > 5mm). The planner is then required to produce, as 

output, a description of a sequence of actions that, when applied to the initial state, will 

result in the goal being achieved.

4.4 Capabilities of a Planning System

The sections below describe some features that are desirable in a planning system. Most 

of these capabilities are necessary if a planner is to achieve heuristic adequacy, (i.e. be 

efficient enough to be useful in practice). AJ planning systems generally have several 

of these features, although very few systems have them all.

4.4.1 Domain Knowledge Acquisition

A practical planning system must have some means of acquiring knowledge of their 

domain. This is mainly contextual information of the domain. Dean (Dean 92) was one 

of the first to propose the use of contextual information in practical planners.

4.4.2 Nonlinear Plans

A plan is nonlinear if it contains actions that are unordered with respect to each other, 

i.e. actions for which the planner has not yet determined an order. If a planner can 

represent and reason about nonlinear plans, it can avoid committing to a particular order 

of actions until information for ordering the actions has been accumulated. This implies 

that actions may be run in parallel. In image processing this capability is essential for
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fast execution of algorithms. This makes nonlinear plans very attractive in image 

processing and segmentation.

By allowing nonlinear plans we pose many problems for basic planning algorithms. 

How does the basic planning algorithm reason about how actions that may take place 

concurrently interact with each other? This type of knowledge must be incorporated 

within the knowledge base primitives, for example if one sub-goal is used before 

another what effect will it have on the initial state. The planner must be able to reason 

about this.

4.4.3 Hierarchical Planning

In complex domains it is crucial to plan at different levels of abstraction. For example, 

in planning to detect an object within a scene, the planner should first reason that the 

image processing routines should be executed before the segmentation routines, which 

in turn should be executed before image understanding procedures. This is an abstract 

level of reasoning, where at the most detailed level, the plan for executing segmentation 

algorithms will include specifications of which algorithms work well on particular 

objects. A useful domain independent planning system must support planning at 

different levels of abstraction. This is referred to as hierarchical planning.

Until now image processing and segmentation algorithm implementation within a vision 

system have adopted a bottom up approach, i.e. first the image processing routines were 

implemented and tested, then the segmentation algorithms, and finally the image 

understanding algorithms. This approach the author believes has many serious 

drawbacks: a) such a system development is domain dependent, and cannot work with 

different images, b) the system may not work well if changes occur in the environment, 

such as a change in lighting or if some form of noise is added, and c) appropriate 

algorithms may not have been selected for the task at hand. If errors are introduced at
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the lower stages of development, then they will be inherited and magnified by the higher 

level algorithms casing system failure.

4.4.4 Constraints and Variables

Constraints are used to limit the search space for a proposed plan. Constraints may take 

many forms such as variable limits, e.g. threshold value from 10-20, or constraints on 

different operators, e.g. operator one may not work well with operator two, or 

constraints on the domain, e.g., the average intensity of the domain must be within these 

limits. The method of constraints eliminates a huge search space of different algorithms 

and numerical values such as thresholds, making the planner more practical and reliable.

4.4.5 Replanning

When plans are executed in the real world, events rarely proceed exactly to plan. If a 

planner can change or alter its original plan after an unexpected event (such as an 

environmental change, or modified goal) and continue using the modified plan, it can 

potentially save considerable effort in replanning. This would make the system adaptive 

within its environment. Of course, the number of modifications one might make to an 

existing plan is enormous, so the problem is difficult. This project addresses this 

problem.

4.4.6 Domain Independence

AI planners are domain independent so their techniques are readily available for new 

problems. This means that any image processing domain in this case may be modelled. 

Thus if the manufacturing process changes or a new domain needs to be modelled, then 

we should only need to populate the knowledge base with the new domain knowledge. 

Such a planner provides the user with a knowledge representation module for encoding
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domain-specific knowledge. It is the quality of the knowledge so encoded that 

determines how well the planner performs.

What the domain-independent planning system provides is a representation that is 

particularly geared towards representing actions and reasoning about how their effects 

change the state of the world. By forcing the domain knowledge to be encoded in its 

formalism, the planner is able to use its solutions too many problems within the given 

domain the user chooses to encode.

4.5 The Visual Planner's Knowledge Bases

The Visual Planner developed within this project uses many of the techniques set out 

above. However, it differs from classical planners in that it is geared to work for 

industrial visual applications. Trying to make a complete planner for all world situations 

would be a complex task and beyond the scope of this project, it would also make such 

a planner impractical for the application domain selected (visual segmentation). 

However, within the world of visual inspection it is domain-independent and many 

situations may be modelled and implemented. As the development of such a system is 

a modular approach consisting of the planner and its agents (external modules), there 

has been no need to implement a full blown visual system. This property also has the 

desirable effect of making the system highly updatable and thus increasing its 

application domain.

4.5.1 The Visual Planner's Domain Information

While the desirability of having domain information is obvious for orchestrating initial 

plans and refining plans thereafter, previous classical planners or indeed adaptive visual 

systems have not incorporated such a capability. This is due to the fact that planners 

tried to be too general in nature and thus such capabilities became too complex
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(Waldinger 81), and vision algorithms work on a method of refinement until some 

maximum or minimum is reached (Pavlidis 82). The Visual Planner presented here 

deduces many constraints based on the contextual information of the domain.

4.5.2 Domain Information Acquisition

The Visual Planner provides a method for acquiring domain information by interacting 

with the user. The Domain information acquisition process is a simple module that 

collects characteristics from the images presented to the system and as already stated 

from the user. The diagrams below (Figure 4.4a and 4.4b) shows the image and object 

characteristics acquisition process, and the transformation applied to the data before 

subsequent storage to the relevant databases. The diagram is presented at a number of 

different levels. The data extracted and stored is shown in the Table 4.2.

Attribute Name Description

Average Intensity Histogram 

Maximum Background Threshold 

Minimum Background Threshold 

Maximum (+) Noise Deviation 

Maximum (-) Noise Deviation

Average intensity histogram of all images 
shown to the system in learning mode. 
Maximum intensity value of background 
given by user in sample window of image. 
Minimum intensity value of background given 
by user in sample window of image. 
Maximum positive noise deviation of noisy 
image to clean reference image. 
Maximum negative noise deviation of noisy 
image to clean reference image.

Table 4.2 Image characteristics Information.

The rules which act on domain information (see chapter 6) are called the domain rules. 

The Visual Planners domain rules allow expression of domain constraints. By accessing 

different images, the system can react to changes between two states, thus allowing the
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plan to change on domain knowledge only. For instance, if lighting conditions change 

then the planner can react to the change in the domain and thus alter the plan 

accordingly using the domain rules.

Domain information is gained by the Visual Planner by scanning the image as it is 

presented to it, and detecting any changes in the signal to noise ratio, average intensity, 

etc. If a change is detected, the domain rules specify what plan of action may be taken. 

Chapter 6 shows how the domain rules are used to create an initial image enhancement 

plan.
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Figure 4.4a Level 1 diagram for domain knowledge acquisition.
Figure 4.4b Exploded process 1 from Figure 4.4a "Extract Image Characteristics".
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4.5.3 Object Characteristics

Once the Visual Planner has extracted the domain information from a set of images, we 

must then extract object knowledge. Actual physical attributes (name, size, average 

intensity, colour, etc.) of objects may be stored in a CAD database, however more 

abstract information is also needed. We must be able to describe the objects in terms of 

their general shape, i.e. the object is linear or circular. This type of description is 

necessary when deciding which algorithm or set of algorithms to apply to the object that 

will best describe its segments. The Visual Planner has four predefined descriptions 

shown below, this type of information is known as the contextual information of the 

objects.

1. Linear: This is any object that has straight line segments within it. For example a 

cube is linear, a crack is linear etc.

2. Circular: These objects have a circular or elliptical shape, by this we mean that an 

object or part of an object has a radius and a centre.

3. Geometric: An object is geometric if the object is always of a predefined size, that 

is its size does not vary in any way, and the objects will always have the same lines of 

symmetry.

4. Blob: A blob is an object that has no predefined shape, may vary in size, and has no 

fixed lines of symmetry. This type of object is useful when trying to find objects on 

image attributes such as colour or average intensity only.

The contextual information described above imposes constraints for the object when 

selecting initial algorithms for a plan. The constraints listed here allow us to limit the
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search space for algorithms and produce hierarchical plans (see hierarchical planning 

chapter 5).

4.5.3.1 Extracting Object Characteristics

When extracting object characteristics from a scene, we need as accurate a description 

of the object as possible. This reduces any errors that may be caused due to a poor 

description. The Visual Planner acquires knowledge about an object by interacting with 

the user and inheriting contextual information as described above from other objects.

General information on the object such as name, class of object, etc. is given by the user. 

This information is summarised in Table 4.3.

General Information Description ___    :; -
Main Class The main class describes the object in general e.g.,

	object is crack, cube, resistor, etc. 
Contextual Information General Attributes of object class, e.g. Linear,

: ; Circular, Geometric, or Blob.
Name ^ ^ of object, e.g. Surface crack, red cube, 500

  / <-;::>^^v:^S^5S^^3S-: :^^t:';V': oh  resistor etc. , :.> :; : .:;v^. ;.-,-: :;, ; ; ., ............;...,.,,: r::^--^ :̂ -
Not Subclass ^t^P^ constraint. Current object will not inherit

; ; ^^;.v:;.; ::Y>;;:; ;^^ from the object specified, e.g. Surface
' :̂ : :̂̂ ^ Crack is not of type Internal Crack.^^^-^ .^ -^ ^

Table 4.3 General information held on an object.

The next step is to extract the physical object attributes. Ideally they should be stored in 

some form of CAD database, however, the Visual Planner learns the objects by applying 

segmentation algorithms to a selected object. Each image may have several objects of 

interest, however, only one object at a time may be considered. Once the general 

information on the object is given, the user selects a single object from the image by 

placing a window around it. The object characteristics are then extracted depending on 

the contextual information given previously. For instance if we describe an object as
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being linear the object characteristics extracted are lines and corner-points. Table 4.4 

shows all the physical attributes of an object and what contextual information will apply 

to each attribute. This is then reconfirmed by the user, or if errors have been found it is 

amended by the user.

Object Attribute Contextual Information Description
Average Intensity All Classes || ||;| | Average intensity of obj ect calculated
••^.^ ••-;;:,>••:•• •••'',;•-: -V'-.: :'V ••^•^•^••••''^

Max Intensity Value All Classes Maximum intensity value of object
•• :. : '^- \:- - '••''^•Q^^f--' calculated in all cases. :^:- ::;- :'. ^'^•'•: 
Min Intensity Value All Classes Minimum intensity value of object

calculated in all cases.
.Area W^ : fe-^; All Classes Area of object calculated for all 

"' : ';^:^-:v^0t:..- : '--- : ;r ' classes of objects. ,: : : , : •. :;; ; : ; ; : ; 
Vertices Linear & Geometric Number of vertices counted if class

attributes are linear and geometric.
Lines Linear o^ Number of lines between vertices 
^••. •:,:-. :?:^i^ calculated. ....-.....'••' ... • 
Facets Linear & Geometric. Number of facets calculated within

Major Axis M^ major axis of each object is
, : calculated. This allows the object to

^^;;:^^:^ be in any orientation. .-;;; .:•..•..:..••,•..,:•:•- .-: 
Minor Axis • All Classes Same as above but for minor axis of

^:;M.^ the object •:i,:::\::::: :V::;^:^v' : --v-:!.:;-::;-v^-:: : ;-^:';;-;;,',,::-
Radius Circular, Geometric If an object is circular and geometric

':'•::• :: :̂  i:^:^^^ ; then its radius is calculated.. .. •••: ..•• •••.• •>••, •
Centre Circular Centre value calculated for circular

^•r^i:^ objects. ':^;f:-:^^^: ^ ; ;>;;:. : ; ••;:\-;:X;^'--:

Table 4.4 Physical attributes and the contextual information used to select them.

4.5.3.2 Object Hierarchy

Objects extracted from the images are stored in an object hierarchy. This allows the 

Visual Planner to inherit contextual information and any plans that may exist from other 

objects. This type of structure also allows us to declare an object such that it is not a
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member of a given object class. These are implemented as constraints on objects, and 
thus will allow the Visual Planner to work more efficiently by not producing initial plans 
if one exists for a similar object. The two class constraints are described below:

1. Class: This constrains specific classes in the object hierarchy. This allows the 
propagation of other constraints down to the subclasses, It also aids in the search for 
objects if the general class is known. An example of a class constraint can be given as:

Face Crack OF TYPE Crack.

The contextual information and an initial plan for Face Crack are inherited from a 
similar object of type Crack in this case. The plan may be refined at a later stage if 
needed.

2. Not-Class: This type of constraint is implemented for exceptions. Here we declare 
an object such that it is not a member of a given class. For example, we could declare 
that a Face Crack be a Crack except a member of the Class Internal Crack, more 
formally:

Face Crack OF TYPE Crack.
Face Crack IS NOT OF TYPE Internal Crack.

Here Face Crack inherits all the constraints of class Crack, and excludes all the 
constraints of class Internal Crack. Once again an initial plan for Face Crack is 
inherited, if one exists from a subclass of crack as long as it is not of type Internal Crack. 
Figure 4.5 shows how the class structure of objects is implemented and how contextual 
information is inherited.
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Linear

#Lmes

Figure 4.5 Object Hierarchy: sub-class inherits contextual information and existing 
plan.

4.5.4 Image Processing and Segmentation Database

Appendix C reviews a number of image processing and segmentation techniques. It is 

by no means an exhaustive list but gives the reader an idea of the algorithms 

implemented in this project. More importantly this type of review was undertaken to 

acquire the knowledge needed on the characteristics of such algorithms to classify them 

in terms of where they can be applied, with what thresholds (if any) under different 

scene conditions. This is necessary if algorithms are to be selected automatically and 

then adapted to suit the environment.

It is clear that image processing as opposed to segmentation algorithms perform 

different functions. Image processing routines enhance an image by reducing noise or 

highlighting particular features, they should not change the scene information in any 

destructive way. Whereas segmentation algorithms produce a more symbolic description 

of a scene, giving for example different regions, lines, corner points, etc., in terms of a 

coordinate system.
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So how do we know which image processing and segmentation algorithms we need to 
employ at any moment in time? and how do we model this knowledge?

4.5.5 Image Processing and Segmentation Algorithm Knowledge

The algorithms employed within this project are divided into two sections, image 
processing algorithms, and segmentation algorithms. This is due to the fact that different 
types of knowledge are used to select the appropriate algorithms. Domain rules are used 
to select image processing algorithms, such as noise reduction, image enhancement, and 
background subtraction. The information used to initiate the image processing 
algorithms is extracted from the image and the image characteristics database. As 
opposed to the contextual information used to select segmentation algorithms. It then 
follows that any plan produced will be in two parts: a) the enhancement plan, made up 
of image processing algorithms, and b) the segmentation plan.

The enhancement plan precedes the segmentation plan, and each plan can change 
independently of the other, however, a change in the enhancement plan may effect the 
segmentation plan. Thus replanning is used if the sub-plans do not achieve the goal or 
sub-goal.

Clearly different types of knowledge needs to be kept for each plan. Image processing 
algorithms are selected by domain rules and thus no contextual information on such 
algorithms needs to be stored as image processing algorithms are used to highlight and 
improve the quality of the image, and thus do not extract features of objects. However, 
segmentation algorithms are selected according to the contextual information of the 
domain. If for example we are looking for linear objects such as a crack in an object, 
then only edge detectors and boundary following algorithms may be employed, with an 
appropriate threshold to highlight the crack specified. Table 4.5 shows the knowledge 
stored for each algorithm within the image processing and segmentation knowledge
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base. The object's contextual information maps directly onto the segmentation 
algorithms contextual information.

Image Processing Algorithm Description
Name
ID
Succeeding Algorithm ED

Threshold Max Value 
Threshold Min Value

Segmentation Algorithm

Image processing algorithm name. 
Algorithms identification number. 
A list of algorithm identification numbers 
that can succeed the current algorithm. 
Threshold Maximum Value if applicable. 
Threshold Minimum Value if applicable.

Description
Name
ID
Priority Number

Succeeding Algorithm ID

Threshold Max Value 
Threshold Min Value 
Contextual Information

Segmentation algorithm name.
Algorithm identification number.
What Priority this algorithm has within the
order of the plan.
A list of algorithm identification numbers
that can succeed the current algorithm.
Threshold maximum value if applicable.
Threshold minimum value is applicable.
This is a table of available contextual
constraints, i.e., Linear, Geometric, Circular,
Blob.

Table 4.5 Knowledge held on image processing and segmentation algorithms. 

4.5.6 Algorithm Design Knowledge Base

Once a plan has been orchestrated for a particular object, whether it has been produced 
from scratch or inherited from other objects in the same class it must be stored for future 
use or to be inherited once again by other objects. This is done in the algorithm design 
knowledge base. For each object, its associated plan is stored in its complete form and 
order of execution, with specific thresholds set for each relevant section of the plan. This 
can be summarised in Table 4.6.
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Data_____________________Description __________
Object Class General object class such as crack. 
Object ID Object identification number. 
Algorithm Table [Max-algorithms] Table of associated algorithms.

Algorithm ID Algorithm identification number.
Threshold Value Threshold value of algorithm if required.

Table 4.6 Algorithm design knowledge base structure. 

4.6 Goal Specification

Once all the objects within the domain have been stored in the object characteristics 
database, the user must specify a goal for detection. This can take many forms and 
works on any attribute of the objects modelled within the object characteristics database. 
It is from this goal that an initial segmentation plan is orchestrated to segment any object 
within this database. The goal within the Visual Planner is selected from a list of 
available attributes found within the object characteristics database. The goals can be 
at any level of abstraction, i.e. FIND ALL or FIND SURFACE CRACKS. These goals 
move from a very general find to (find all objects) to a more specific find (find surface 
cracks). They may also be introduced with constraints, such as FIND SURFACE 
CRACKS < 5CM. The plan will be orchestrated on the specific user goals. A problem 
arises on how we divide these goals into more specific goals? This task falls to the Sub- 
Goal Designator that searches the database for the object or objects selected and extracts 
their attributes to make sub goals. For each sub-goal a different sub-plan is created.

The vocabulary used in the Visual Planner is simple but very powerful as any attribute 
may be selected. The vocabulary is shown below, but may be extended if needed to 
accommodate more elaborate search routines.
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6.6.1 Visual Planner Goal Vocabulary

FIND This is the main statement within the Visual Planner. The aim of 

any visual system is to find the object of interest, whether it is in 

a bin of parts or a fault on an object.

ALL This will search for all objects if a specific object name is not 

given.

AREA This puts a limit on the area of objects, e.g. FIND HOLES 

AREA < 10 mm. Area is used with some size constraint and 

object of interest.

<, >, =, <=, >= These are constraints used to limit the search for size, intensity 

values, etc. Any combination may be used to specify ranges.

Any Attribute Any attribute that exists in the objects knowledge base may be 

used to search for objects, e.g. FIND ALL INTENSITY < 100 

AND >50. This will look for all objects with an average intensity 

of 100 or less but grater then 50. Any Attribute may also include 

the name of the object or its main class, e.g. FIND ALL 

CRACKS

The Visual Planner prototype developed here uses only the AND logical operator, but 

could be extended to use NOT and OR, or any other logical operator.
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4.6.2 Sub-Goal Designator

The sub-goal designator takes the main goal and starts to split it into sub-goals. For 

instance if FIND ALL has been specified it will search through the object 

characteristics database and start extracting each object in turn with its attributes, 

constraints and contextual information. Each of these descriptions is passed to the Visual 

Planner where an initial plan is orchestrated for that object producing a sub-plan for that 

object. The sub-goal designator traverses the object characteristics database until no 

more objects exist. The goal to sub-goal split can be shown in Figure 4.6.

Image* MainGoal

/- ~\ 
J Sub-Goal A \ __ ̂

1 Seg. Crack j

( Sub-Goal B \
^\. Seg. Object ̂ y

Sub-Ilan 1
Threshold Edge

Image Detection

Sub-Plan 2
Threshold Edge _ comer point

Image """ Detection ~~~ detection

Boudary
Following

chain
*" code • ;

Figure 4.6 Main goal to sub-goal split and then to sub-plan creation.

If constraints are added (see chapter 5, Constraints), whether they are size constraints, 

specific objects, or attribute constraints, then only those objects that fall within the 

constraints are considered. More specific constraints reduce the search for objects, and 

reduce the time the Visual Planner takes to sort and select the algorithms.
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4.7 Summary

This chapter addressed the motivation behind the work developed within this project. 

It presented a system for the automatic design of image processing and segmentation 

algorithms using a planning technique (The Visual Planner). It described the knowledge 

and data needed to produce such a design (the plan), how this data is acquired, and 

extracted from images presented to the Visual Planner. It showed how the contextual 

information of the object mapped directly onto the contextual information in the image 

processing and segmentation primitives knowledge base. It showed how contextual 

information is inherited from different classes, in order to reduce the time needed in 

creating a plan if one exists for a similar object in the same class.

Finally it describes the goal specification entered by the user to initiate the design of the 

plan, and how the goal can be specified at different levels of abstraction. We showed 

how the main goal is reduced to sub-goals by the sub-goal designator, creating a sub- 
goal for each object found in the object characteristics database that falls within the main 

goal specification.
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5. Introduction

Once all the knowledge and data necessary has been acquired by the Visual Planner we 

may proceed to orchestrate a plan for each object presented to the system. A goal is 

given by the user at some level of detail, such as FIND Surface Crack. The Visual 

Planner then has the image characteristics, contextual information, object attributes and, 

a goal to proceed with the plan. An initial plan is orchestrated for that object comprising 

an enhancement plan and a segmentation plan to provide a complete plan that achieves 

the overall goal.

Once the plan has been formed, it is executed to see if the goal has been satisfied by the 

Execution Monitor. If the goal has failed then the Visual Planner replans by using 

different algorithms if available, or different thresholds depending on v/hich sub-goal 

has failed.

This chapter gives an overview of how initial enhancement and segmentation plans and 

refined plans thereafter are orchestrated. It also shows how the Visual Planner compares 

to other planners and visual systems available today.

5.1 The Initial Plan

Once the Visual Planner has acquired all the data needed and a specific segmentation 

goal, we may start the planning process. The first step for the Visual Planner is to 

produce an initial plan. The initial plan consists of two sub-plans:

a) The Initial Enhancement Plan: This is composed of image processing algorithms 

(Lindley 91), and is used to enhance the image by reducing noise, removing the 

background, and generally highlighting features in an image we are interested in.
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b) The Initial Segmentation Plan: This plan is composed of segmentation algorithms 

(Pavlidis 82), and we hope will extract the features we are interested in from the image 
as a symbolic description.

The two stages of the initial plan are described below, with an outline of the data needed 
to create such plans, and how they are achieved by the Visual Planner.

5.1.1 The Initial Enhancement Plan

The enhancement plan is orchestrated by the Visual Planner by acquiring knowledge of 
the domain from the image characteristics database (see chapter 4). The domain rules 
will then select the appropriate algorithms to enhance the image. This is shown in Figure

5.1.

Image
Characteristics

1
Image

Characteristics 
Database

Image 
Characteristics

Image Processing
Algorithms

Selected 
Enhancement i 

Algorithms

Enhancemant 
Plan

Figure 5.1 Initial enhancement plan.

Page 91



Chapter 5: An Adaptive Visual Planning System

The Visual Planner's domain rules (see chapter 6), are a set of rules that select 

appropriate image processing algorithms depending on the information held in the image 
characteristics database. Domain rules are also used to monitor the image and make any 

changes to the enhancement plan if there is a change in average intensity, or noise within 

the image. The initial enhancement plan will however remain the same for all images 

within that domain unless some change has occurred, such as a change in the overall 

average intensity value, which may have occurred for example due to a change in the 
lighting conditions.

5.1.2 The Initial Segmentation Plan

The initial segmentation plan for a given goal is orchestrated by using contextual 
information of an object and matching it to the same contextual knowledge for the 

algorithms. An initial segmentation plan may also be orchestrated using an existing plan 

for an object in the same class.

The goal specified by the user can be at different levels (FIND ALL = Intensity Value 
< 100 or FIND Internal Crack). However, initial plans are only orchestrated for 

individual objects. The goal is then split up by the sub-goal designator to accommodate 

only individual objects in turn (see sub-goal designator, chapter 4)

Once a goal or sub-goal is given to segment a specific object, for example given the goal 
FIND Crack x, its attributes, contextual information and class are extracted form 

the object characteristics database. This is shown in the structure below.
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MAIN CLASS: Crack

NAME: Crack x

CONTEXTUAL INFORMATION: Linear 

ATTRIBUTES:

AVERAGE INTENSITY: 100 

MAX INTENSITY VALUE: 150 

MIN INTENSITY VALUE: 50 

VERTICES 1 

MAJOR AXIS 100 Pixels 

MINOR AXIS 3 Pixels

The attributes extracted from the object database will depend on the contextual 

information of the object. In this case a linear object has been given as the goal, and 

therefore no size information needs to be extracted unless specifically stated in the goal. 

The class type of the object is also extracted such as crack. This is a simple hierarchical 

object class structure that helps the planner select an existing plan if one exists for a 

similar object with the same class structure. These classes are updatable as more objects 

are added to the object database.

5.1.2.1 The Initial Segmentation Plan Using an Existing Plan

Before an initial plan is orchestrated from scratch for a given object, the Visual Planner 

checks to see if one exists for an object in the same class, with the same contextual 

information (in this case Class Crack, with Linear contextual information.). The 

algorithm design knowledge base is traversed until the same class of object is found. If 

a match exists, then that object's contextual information is extracted by the Visual 

Planner. If they are the same then a match has been found. (See object hierarchy chapter

4).
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If a plan exists for that object class, then the thresholds are changed according to the 

attributes of Crack x. This plan then becomes the initial plan for Crack x. Figure 5.2 
shows how an initial plan may be selected from a set of existing object plans with the 

same class as long as it is not an exception class.

• a) 
Segmanation !

: Goal
:

/ 1
Goal ; Sub-Goal

\ Designator

\

\

)/

b)
Contextual 

Information

Algorithm Design 
Knowledgebase

2
Object 

Database

c)
Segmentation 

Plan

Figure 5.2 Initial segmentation plan orchestrated from an existing plan of a similar 
object.

5.1.2.2 The Initial Segmentation Plan using Contextual Information

If no plan exists, then one must be orchestrated from scratch. This is done by using the 
contextual information and attributes of the object as specified by the goal or sub-goal. 
The Visual Planner starts by matching the contextual information of the object to the 
contextual information of one algorithm within the image processing and segmentation 
primitives database. If many matches are found then it selects the one with the lowest 

priority level. The priority level being the order in which the algorithms must be 
executed. If two or more algorithms exist with the same contextual information and 

priority level, then only one algorithm is selected, and the rest are marked for use by the 
replanner if the algorithm selected fails (see replanner below).
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Once an initial algorithm is selected, the plan is orchestrated by taking succeeding 

algorithms in turn and adding them to the plan until no more succeeding algorithms 

exist with the same contextual information. However, as many succeeding algorithms 

may exist for one particular algorithm one is selected and the rest are marked for reuse 
if the plan fails. The Visual Planner uses a backtracking algorithm to consider all 

possible plans.

If an algorithm requires a threshold value to be set, then the difference between the 

object's background value and average intensity is set as the threshold, however, 
maximum and minimum threshold values are set, according to the background's average 

intensity and the object's average intensity. This is a form of constraint within the 

Visual Planner known as the range constraint (see constraints below). This constraint 

works on algorithms that use variables as parameters. A variable can be considered to 

lie within a certain range, e.g. Threshold Min Value = 10, Threshold Max Value = 
100. This type of limit reduces the number of computations and mutations an algorithm 

would go through in the replanning process (see replanner below). The structure below 
shows how this information is represented.

ALGORITHM NAME:

CONTEXTUAL INFORMATION: 

PRIORITY LEVEL: 

SUCCEEDING ALGORITHM ID: 

THRESHOLD: 

MIN THRESHOLD: 

MAX THRESHOLD:

Sobel Edge Detector

Linear

3

7 ("Boundary following")

Object Background Intensity - Object Intensity

Object Background Intensity

Max Object Intensity

As a different initial plan is created for each sub-goal, it follows that each sub-plan can 

be executed in any order. This makes the plans nonlinear, and they may be executed in 

parallel.
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Figure 5.3 shows how an initial segmentation plan is orchestrated using a given user 

defined goal, the contextual information and characteristics of the object to be 

segmented, and the image processing and segmentation primitives.

a) S 
Segmenation I Goa]

Goal ;
/ Sub-Goal

^\ Designator
\ \ \

b)
Contextual 

Information

1
Image Proc. &
Segmentation

Primaitives

Image Proc. & 
Segmentation

rnmailives

Figure 5.3 Initial segmentation plan. 

5.2 Replanning

The Visual Planner provides a replanning module. This carries out two main tasks: Re­ 
creating and refining initial sub-plans and, replanning after an unexpected event has 

occurred.

The problem is the following: given a plan, a world description, and some appropriate 

description of an unanticipated situation that occurs during execution of the plan (goal 
failure or environmental change), our task is to transform the plan, retaining as much 

of the old plan as is reasonable, into one that will still accomplish the original goal from 

the current situation. This process can be divided into three steps:
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1. Discovering or entering information about the current situation.

2. Creating "fixes" that change the old plan, possibly by deleting part of it and inserting 

some newly created sub-plan.

3. Determining whether any changes effected by such fixes will conflict with the 

remaining parts of the old plan. For example if the environment changes due to an 

increase in lighting then other sub-plans that have already succeeded may fail with this 

change.

The replanning problem as described above has not been fully addressed by any system 

to date. Very few planners provide a replanning capability and, visual systems cannot 

easily adapt to changes in their environment. Since the Visual Planner has a domain- 

independent replanning capability, we will describe this capability in some detail.

5.2.1 Recreating and Refining Initial Plans

When selecting an initial plan for a given goal or sub-goal, whether it is inherited from 

another object in its class, or created using the contextual information and attributes of 

the object and mapping them to the appropriate algorithms, we cannot be sure that they 

will achieve the overall goal. The sub-plans are executed individually by the Execution 

Monitor to see if they extract the appropriate information on the object, and if this object 

can be matched to the same object in the object database. If this is the case the 

sub-plan is valid, and thus stored in the algorithm design knowledge base for that object. 

The sub-plan selected may not be the best plan, but it has extracted enough segments to 

identify the object. The object recognition module within the Execution Monitor (see 

execution monitor functions chapter 6) has an acceptance threshold for each segment 

modelled which may be set as high as 100% if we require all segments to be extracted 

and matched for a given object. This however, will cause more changes in the sub-plan,
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and may cause the sub-goal to fail if no sub-plan can reproduce all the segments of an 

object. A more realistic figure of 90% may be given. The acceptance threshold given 

will depend on the application domain.

The problem arises when a sub-plan fails, and thus the sub-goal fails. This must be fixed 

in order for the overall goal to be achieved. The Visual Planner starts by looking 

for an alternate algorithm to start with. As we have already marked alternate algorithms 

the search space is reduced, if the algorithms were inherited then the initial planning 

process is started form scratch, but excluding the current plan. The whole process is 

repeated until one of two things occur: a) the plan has achieved the goal and extracted 

the object of interest or, b) there are no more algorithms to consider.

If the new sub-plan has succeeded then it is stored in the algorithm design knowledge 

base, and the Visual Planner moves onto the next sub-plan until all sub-goals have been 

achieved. If however, all the new algorithms have failed, then the Visual Planner starts 

with the original algorithm and starts to change the threshold values where appropriate 

within the range specified, from minimum to maximum threshold values. The minimum 

and maximum threshold values are used as constraints, thus limiting the search space. 

By changing the initial thresholds different effects are encountered, and over- 

segmentation may take place. Over-segmentation is the process by which the objects 

being segmented from the background are themselves segmented or fractured into sub­ 

components. However, with over-segmentation we are still able to match the object of 

interest.

If all algorithms and threshold changes have failed then the Visual Planner will interrupt 

the user and ask whether to continue with the other sup-goals or not in order to achieve 

a partial goal. The overall plan will still be able to work, but not at 100% efficiency, for 

example only six sub-plans have succeeded form 10. It will be up to the user to decide
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if this is desirable or new algorithms must be introduced into the Visual Planner. Figure 

5.4 shows how the replanner makes changes to the initial sub-plan.

New 
Sub-Plan

Object
Characteristics

2
Object 

Database

2 \ 
REPLANNER \ Algorithm 

Design KB

Marked | 
.Algorithms

1
Image Proc. &
Segmentation

Primaitives

Figure 5.4 Replanning process for the initial segmentation sub-plan.

5.2.2 Replanning After an Unexpected Event

In real-world domains such as quality control, things do not always proceed as planned. 

Therefore, it is necessary to monitor the execution of a plan and to replan when things 

do not go as expected. In complex or time critical domains, it becomes increasingly 

important to use as much as possible of the old plan, rather then to begin anew when 

new situations arise.

In general, optimal recovery from an arbitrary error poses a difficult problem. Often 

very little of the existing plan can be reused. One can always fall back on solving the
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original problem in the new situation, ignoring the plan that was being executed. Since 
the problem is so difficult, one would not expect impressive performance, in terms of 
producing optimal plans that reuse the original plan, from a domain-independent 
replanner. Producing optimal plans requires domain-specific information for dealing 
with errors. In many domains, the type of errors that are commonly encountered can be 
predicted (e.g. The lighting conditions change, or photographic equipment is out of 
focus).

The Visual Planner uses domain rules to monitor the state of the environment and 
compensates for these by making changes to the enhancement plan using further 
domain rules. As this plan is common to all sub-segmentation plans this need only be 
done once. A problem arises when the changes to the environment change the threshold 
values in the image characteristics. This information must be passed to the algorithms 
in order to change the range (see constraints below) threshold values for future plans. 
An ideal situation would be where the threshold values change automatically both in 
the object knowledge database and any existing plan as environmental changes take 
place. Active database technology would allow for this as events occur (see future 
work).

5.3 Nonlinear Plans

The sub-plans produced by the Visual Planner are initially nonlinear as each sub-plan 
is unordered and they may be executed in any sequence with respect to each other, this 
is advantageous as sub-plans may be made to run in parallel if required. As sub-plans 
are nonlinear they may be changed independently without affecting the overall plan.

Once the sub-plan has been selected, it may be executed in its own right. This causes a 
segmented sub-image to be produced which we hope will have the features necessary 
for matching the object of interest to the object Data base, in order to achieve the sub-
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goal. For each sub-goal a sub-plan is produced which works on the original 

unsegmented image independently. These algorithms may then run in parallel giving 

an effective segmentation and recognition solution. The Visual Planner prototype does 

not execute these sub-plans in parallel, however, it does not matter which sub-plan is 
executed first or last.

5.4 Hierarchical Planning

It is generally recognized that planning in realistic domains requires planning at different 

levels of abstraction (Hobbs 85). This allows the planner to orchestrate plans more 
efficiently. The combinations of concatenating the most detailed possible descriptions 

of actions would be overwhelming without the use of more abstract concepts.

To see how hierarchical planning can help to avoid the combinatorial explosion involved 
in reasoning about primitive actions, consider trying to find an object x in a scene. The 
highest abstract level might be to match jc to a database of objects. The Visual Planner 
can plan sequences of these steps without considering the detailed actions of noise 
reduction, edge detection, or segmentation. Each of these steps can be expanded into 
more detailed actions, finally getting down to which edge detector or noise reduction 

filter to use. Hierarchical abstraction levels provide the structure necessary for 

generating complex plans at the primitive level.

Within the Visual Planner this hierarchical level of abstraction is achieved by looking 
at the object's characteristics and contextual scene information. The hierarchical plans 

are extracted by the sub-goal designator (see module functions). Such a hierarchical 

plan for finding a cube is shown in Figure 5.5.
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Figure 5.5 A hierarchical plan for finding a cube.

The cube is described in terms of vertices, and edges. The hierarchical plan will now 

know only to select edge detectors and comer-point detectors as a cube's contextual 

knowledge would be linear and geometric. Extra scene information is taken directly 

from the scene, and extra object attributes are taken from the database of objects, e.g. 

height, width, average intensity etc. There has been no mention of which algorithms to 

use, however we have limited the search space of algorithms to (in this case) edge 

detectors, corner detectors, and scene enhancement operations. If these operations do 

not achieve the sub-goal then we may replan using similar operators.

As can be seen the Visual Planner is capable of simple image understanding, to see if 

a sub-goal has been achieved. However, more complex scene understanding, including 

3D and occluded objects will have to be carried out by dedicated algorithms, which may 

be selected by the Visual Planner (see future work).
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5.5 The Execution and Monitoring System

The Visual Planner monitors the world directly using domain rules, it can call the 

replanner after it has detected a change in the environment or a sub-goal has failed. 

Often, it is able to retain most of the original overall plan by making some modifications 

to the sub-plans.

This capability extends the capabilities of previous general planning systems by 

exploiting the rich structure in the system's plan representation using nonlinear sub-plans 

and integrating the replanner with the planning system itself. This integration provides 

a number of benefits, of which the most important follow: contextual knowledge is used 

to provide a reasonable solution to potential fixes quickly, and the replanner can be 

called as a subroutine to solve problems after the execution monitor has detected a sub- 

goal failure. The last effectively eliminates the problem of needing to check interactions 

between fixes and the overall plan as only independent sub-plans need to be changed.

The replanning part of the Visual Planner tries to change the old sub-plan, using 

heuristics, contextual knowledge, and image attributes. If all possible changes to the 

sub-plan fail, then the overall plan may still work by achieving the other sub-goals. The 

sub-plan that has failed is completely discarded and the performance measure of the 

overall plan is reduced according to the number of sub-goals achieved. For instance, if 

there are ten objects to be found, and one sub-plan fails, then only nine objects have 

been detected successfully, the performance measure will fall to 90%. This may be 

acceptable to the user depending on what object has not been detected and how critical 

the domain they are working in is. The performance measure can be given more 

formally as:
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pm% = (nsp-nf) * (100/nsg)

where: nsg = Number of sub-goals

nf = Number of failures 

pm% = Performance measure

The execution monitor also scans the images as they are presented to the Visual Planner. 

It is during this scan that any environmental changes are detected, that is, if the image 

characteristics presented to the Visual Planner do not match the image characteristics 

in the image characteristics knowledge base, then domain rules are called to either fix 

the problem, or interrupt the user for further information.

5.6 Planning Constraints

One of the Visual Planner's most important advantages over many previous adaptive 

vision systems is the ability to use constraints when producing a plan. This ability is 

important both for domain representation and for finding solutions efficiently. While 

constraints have been used in domain-specific planning systems (Stefik 81), and in 

virtually all complete visual systems, the constraints themselves have been domain 

specific, making them less useful for solving different problems. The Visual Planner 

presented here is the first visual system to use domain-independent constraints.

There are many types of constraints within the Visual Planner described previously. 

Constraints may place restrictions on the properties of an object (e.g. requiring certain 

attribute values for that object). They may also require that certain relationships exist 

between an object and other objects (e.g. crack x is of class crack). The Visual Planner 

provides a general language interface for expressing these constraints and relationships.
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Constraints improve efficiency because large parts of the search space are reduced, since 

only predictions that are consistent with the constraints will be true. Other planning 

systems such as NOAH (Sacerdoti 77) would choose algorithms that may fail, even with 

a backtracking capability, it would still have to search the whole space in the worst case.

Much of the Visual Planner's expressive power and efficiency is rooted in the ability to 

reason about constraints. However, constraints add considerably to the complexity of the 

planner because they interact with all parts of the system. The allowable constraints 

implemented in the Visual Planner are listed below:

1. Class: This constrains specific classes in the sort hierarchy. This allows the 

propagation of other constraints down to the subclasses, It also aids in the search for 

objects; if the general class is known. An example of a class constraint can be given as:

Face Crack OF TYPE Crack.

2. Not-Class: This type of constraint is implemented for exceptions. Here we declare 

an object such that it is not a member of a given class. For example, we could declare 

that a face crack be a crack except a member of the class internal crack, more formally:

Face Crack OF TYPE Crack.
Face Crack IS NOT OF TYPE Internal Crack.

Here face crack inherits all the constraints of class crack, and excludes all the constraints 

of class internal crack.

3. Any Attribute: This requires a specific value for a specific attribute of an object. 

Any attribute is a constraint when specifying a goal. This reduces the search space of 

objects, and will only consider objects with that attribute. For example FIND object x
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WITH intensity = 100. This would constrain the algorithms for selecting only object 

x with its intensity = 100. Numeric values can also be compared with greater then or less 

than,

4. Range: This constraint works on algorithms that use variables as parameters. A 

variable can be considered to lie within a certain range, e.g. Minimum Threshold = 10, 

Maximum Threshold = 100. This type of limit reduces the number of computations 

and mutations an algorithm would go through if we know the range the threshold works 

well within. This allows the replanner to consider only thresholds within this range.

It can be seen that constraints are a major part of the system, they aid in efficiency, both 

in terms of search time, and quality of output. However, the collection of such 

constraints may not be as complete as possible due to the complexity of algorithms and 

objects. It is for this reason that the Visual Planner tries to propagate and inherit as many 

constraints as possible given the contextual knowledge.

5.7 Domain Independence

Since we view domain-independent search control as necessary in complex domains, the 

Visual Planner provides for this in several ways. This chapter has described several 

ways that properties of the domain can be used to control the automatic search, planning 

and execution. The domain knowledge and contextual knowledge available are used by 

the system to control the search for a correct solution, in different modules in the system. 

These constraints make the whole process quicker when producing a plan.

These domain constraints are used to select appropriate algorithms as they are needed 

in the current plan. This permits the plan to shift focus easily among alternatives, which 

cannot be done in systems that use a backtracking algorithm alone.
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5.8 Comparison with Other AI Planning Systems

A planning system must provide at least four of the features in table 4.1 (chapter 4) to 

make it a planner. In particular, an AI planning system is domain-independent, supports 

hierarchical planning, and permits nonlinear plans. Planning is viewed as a search 

through the space of operator applications and plan orderings.

Planner
STRIPS
HACKER
ABSTRIPS
NOAH
NONLN
DEVISER
MOLGEN
Visual Planner

Key: NonL
Const

NonL

#
#
#
#
#

= Non liner,
= Constraints,

Hier

#
#
#
#
#
#

Hier =
Repln

Var

#
#
#
#
#

Hierarchical,
= Replanning,

Const Repln

# #
#
# #

Var = Variables,

DI
#
#
#
#
#
#

#

DI = Domain Independent

Table 5.1 Features of existing systems compared to the Visual Planner.

Sacerdoti's NOAH (Sacerdoti 77) and Fikes and Nilsson's STRIPS (Fikes 81) mark the 

beginning of this approach; their ideas inspired most planning research. Many systems 

developed this paradigm further, e.g. Tate's NONLN (Tate 77) and Vere's DEVISER 

(Vere 83). Table 5.1 summarizes the previously discussed capabilities (chapter 4) 

provided be each of these systems as compared to the Visual Planner within this project.

These systems are dedicated planners as compared to the Visual Planner which works 

only in a visual domain and thus the comparison is by no means used to show that the 

Visual Planner is better than these systems. The comparison of features is used to show 

that the Visual Planner is truly an adaptive, domain-independent planning system. These 

planning systems have other features that far surpass the Visual Planner's capabilities.
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Since STRIPS solved such a simple problem, it technically does not fit the definition of 

an AI planning paradigm. However, it marks the beginning of this approach in AI 

planners. STRIPS restricted itself to linear plans at the same level of abstraction. These 

restrictions greatly reduce the planning problem, but also make the representation so 

weak that it is not useful for practical problems. ABSTRIPS (Lifschitz 87), a descendent 

of STRIPS did permit hierarchical planning, but inherited the other limitations of 

STRIPS. It kept track of abstraction levels by assigning each predicate name a level 

number, and then formed a complete plan based on all predicates with less then a given 

level number.

The first planner to introduce multiple goals was the HACKER system (Sussman 75). 

The planner was still linear, but this research showed that interaction between goals can 

be complex. HACKER was initially forced to produce incorrect plans for such problems, 

and it corrected these by having a plan modification technique for fixing bugs in its 

plans.

NOAH was the first system to qualify as an AI planner under the definition, since it 

produced nonlinear, hierarchical plans, while avoiding some weaknesses of linear 

planners such as HACKER. NOAH could not avoid producing incorrect plans because 

of the complexity introduced by non-linearity. The major limitation in NOAH was that 

it did not backtrack so could only find a solution if it happened to guess correctly at 

every choice point within the hierarchy.

NONLIN further extended NOAH, and the most important addition within this system 

was backtracking to modify already created plans. DEVISER added temporal reasoning 

capabilities to the NONLIN planner. While DEVISER did not allow general constraints, 

it did permit specification of temporal constraints. This can be very advantageous for 

real time applications, however, this may be at the cost of efficiency.
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MOLGEN (Stefik 81) is a planner that is domain-specific for planning experiments in 

molecular genetics. However, it is important in the history of planning as it introduced 
the use of constraints.

5.9 Summary

In this chapter we explored a new system concept and its building blocks for the design 

of a scenario and domain independent, imaging segmentation system (the Visual 
Planner).

We described how initial enhancement plans are produced, and how such plans may be 

changed by monitoring the world using domain rules. We also described how initial 
segmentation sub-plans are selected and changed to achieve a given sub-goal.

The main advantage of the Visual Planner is its ability to react to new or unexpected 
events. In many cases it is able to retain most of the plan and change the plan to avoid 

problems caused by these unexpected events. It cannot solve difficult problems 
involving drastic changes to the expected state of the world, whatever the domain may 

be at the time. However it does handle many types of small errors (bad lighting, more 

noise, etc.) that may crop up frequently in the domain in which it is working.
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6. Introduction

This chapter describes the design and specification of the Visual Planner and the 

modules used within it. It attempts to give the reader a good understanding of the 

system, the structures it uses, and how we use a planner to select appropriate algorithms 

and thresholds within an adaptive system.

The Visual Planner operates in three modes: image processing mode, learning mode, and 

goal specification and detection mode. The image processing mode allows the user to 

become familiar with the image processing functions implemented within the Visual 

Planner. It has no influence on the Visual Planner, but will give the user an idea of how 

different algorithms have different effects on images. In the learning mode the system 

extracts knowledge from the image, objects, and the user to orchestrate an initial 

enhancement and segmentation plan for each object. The initial plan is developed over 

a number of algorithm and threshold changes based on performance measures given by 

the user and those calculated by the execution monitor. During the detection of objects 

the planner monitors the images to see if any unexpected events have occurred within 

the image (change in lighting conditions, new algorithm added by the user). These 

events may be initiated by the execution monitor or the user. The Visual Planner will 

then try to alter the plan if necessary by replanning to reflect these changes.

6.1 The Visual Planner's Operational Modes

The Visual Planner has two main modes of operation, the learning mode and the goal 

specification and detection mode. All AJ/expert systems must be trained in some way, 

and then be able to use the acquired knowledge to achieve their goal. The Visual Planner 

is no exception, and thus learns the necessary information needed from the image and 

interactively from the user (see chapter 4). Other knowledge such as the image
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processing knowledge is explicitly written into the code, but can easily be taught to the 
system (see future work).

6.1.1 The Visual Planner's Learning Mode

The Visual Planner needs to acquire knowledge about the domain it will be working in. 

This is done in a number of ways: characteristics from the image are extracted, 
characteristics from the objects are extracted, and general knowledge from the user is 

acquired. By this we mean that the objects presented to the Visual Planner are classified 

as being liner, geometric, circular or a blob. The image processing primitives are 
embedded within the system, however, constraints are used to limit the choice of the 

image processing primitives and thresholds used by the Visual Planner.

One of the inputs to the system is the information about the scene and image. Image 

matrices are used to characterise the scene. Image matrices form an essential part of any 
multi-scenario automated image processing system. The image matrices are divided 

into two categories: target matrices, and scene matrices.

Each of these metric categories have different influences on different steps in the Visual 

Planner. For example target matrices have more relevance to the segmentation process 

as opposed to scene matrices which initiate the image enhancement algorithms. The 

Visual Planner uses a defined set of matrices (ATRWG 85), which are measures that 

quantify local and global characteristics of an image.

Different images and targets have different characteristics. For each of these situations 

a plan is made. The rules for planning are based on the contextual constraints and the 

goal of the segmentation given by the user. The way the rules for planning are fired, 

depends on the image matrices. Therefore, the system behaves similarly in similar 

situations. If the image matrices change, the plan will be forced to change to reflect this.
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6.1.2 The Visual Planner's Goal Specification and Detection Mode

Once the system has acquired the knowledge necessary, i.e. image and object 

characteristics, we can proceed to specify a segmentation goal. This goal can be at 

different levels of abstraction, e.g. Find AH Where Intensity < 100 or more specifically 

Find Surface Crack. Thus, each goal must be split into sub-goals by the sub-goal 

designator. Each sub-goal will then correspond to a particular object within the scene, 

and thus a segmentation sub-plan will be created for that object.

After the Visual Planner has orchestrated a sub-plan to detect the relevant object or 

target, it automatically scans the images with the image processing primitives selected 

within the sub-plan. If the goal has been achieved then the sub-plan is stored in the 

algorithm design knowledge base.

This process, however, can be interrupted by events that occur during the execution of 

the plan. These events can be both automatic and interactive. The automatic events 

occur when the planner recognises a problem in the domain. This usually occurs if the 

image matrices change in any way (such as lighting, nose, unexpected image) or the 

Visual Planner has failed to achieve the goal. Reactive events occur when the user 

interrupts the execution and asserts a new situation into the process. This could be any 

number of things such as: the user is not satisfied with the results (i.e. the goal has 

succeeded but not to the satisfaction of the user), new image processing primitives are 

added or updated and the user wants the Visual Planner to take these into account. In 

any case the replanner is called and the appropriate actions are carried out depending 

on the problem.

In order for The Visual Planner to see if it has achieved the sub-goal some form of 

matching or registration must take place. This is carried out by the execution monitor. 

The execution monitor matches the segments produced by the sub-plan to the object
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characteristics database. It is to this part of the system that high-level image 

understanding procedures may be added. The present Visual Planner does not 

incorporate such procedures, but instead uses a simple matching technique by 

comparing the segments produced to the local features of an object, such as average 

intensity, size, corners, edges and area in the object characteristic database. This is a 

simplified method of that proposed by Bolles and Cain (Bolles 83) known as the local- 

feature-focus method. A measure of how certain the Visual Planner has achieved the 

sub-goal is also given by the execution monitor. For instance if we are looking for a 

cube, and the execution monitor gives a matching strength of x, and x is greater then 

some predefined threshold then it has achieved the sub-goal.

Selecting a certainty measure for a sub-goal will once again depend on the application 

domain. The threshold can be as low as 60% in consumer goods and as high as 95% in 

precision engineering. This threshold measure of certainty may be set by the user. The 

user must also decide what weighting each segment of an object will have up to 100%. 

For example a hole may have a specific intensity value within an image, and no 

predetermined size. Its contextual information is a blob, this means that more emphasis 

will be placed on finding it by intensity value rather then size. An example of specifying 

some weights is shown below:

Class

Name

Contextual Information

Attributes:
Average Intensity 

Min Intensity 

Max Intensity 

Major Axis 

Minor Axis

Hole

Surface Hole

Blob

100

95

110

20

5

Weighting

Weighting

Weighting

Weighting

Weighting

40

20

20

10

10
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When specifying weights, the user is helped by the contextual information. As in this 

example, a surface hole is a blob and therefore more emphasis is placed on average 
intensity values. However, for linear objects more emphasis should be placed on the 

number of lines, for geometric objects the size is more important and so on.

6.2 Image Characteristic for Domain Rules

Global knowledge about the image (average intensity, lighting conditions, signal-to- 

noise ratio and, background information) is very important in a domain independent 
imaging system. This type of knowledge can, by itself orchestrate a simple initial 
enhancement plan. So what type of global image characteristics are needed? and what 

can be extracted? In more complex domains detailed knowledge must be given if for 
instance the global characteristics change in every image. However, in industrial 
applications the images remain roughly the same. The background is fixed, lighting 
conditions are fixed, and camera geometry is known. It is therefore relatively simple to 
extract image characteristics from a given scene.

The Visual Planner extracts four types of characteristics from the scene: signal-to-noise 
ratio, appropriate thresholds, average intensity, and image background intensity. The 
signal-to-noise ratio is used to select an appropriate noise suppression algorithm if 
needed and, the thresholds are used for binarisation and digitisation, Average intensity 
is used to monitor domain change's form one image to another, and background 
intensity is used to extract the background or clutter from the signal. The algorithms 
that extract this information are described in turn and how it effects the image 

enhancement algorithm selection within the plan.
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6.2.1 Noise Detection

Much progress in cleaning noise can be made by making some simple assumptions 
about the character of the noise and the nature of the uncorrupted image. It is, for 
instance, reasonable to assume that grey levels can be distorted randomly above and 
below their true values. However, there are circumstances in which this may not be the 
case. If the noise is known to behave in a different way then other techniques must be 
used to clean it. Without some analytic knowledge of its behaviour these algorithms 
cannot be implemented on all images. To acquire such knowledge needs some pre­ 
processing of the image in its environment. For instance in an industrial inspection 
system there are many forms of ambient noise such as dust, industrial fog, and bad 
lighting conditions. To clean such an image we have to test the image quality.

6.2.1.1 Image Quality

We can define a clean image g(ij) as being the average of a number of noisy images. 
The noise can then be defined as being the root-mean-square deviation of a noisy image 
n(ij) from the mean g(ij) image (Pratt 78). Figure 6.1 shows two histograms and a 
deviation graph of an image. Histogram 'a' shows an individual noisy image, histogram 
*b' shows the average of eight similar images, and graph 'c' shows the deviation of the 
noisy histogram 'a' from the mean histogram *b'. The graphs were calculated as shown 

below:

A histogram of an image is calculated by counting all pixels with a particular intensity 
value. The intensity values vary between 0 and some maximum grey value (0-255).

g(s) = Histogram g(i j). Calculating the same for n(i j) = n(s) 

sd[s]=|g(s)-n(s)|
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where sd[s] is the deviation at each intensity level. This gives us values above and below 

true values. These values are used as reference deviation histograms.

Deviation Ia-b| 
3000-,

Pixel Count Pixel Count

0

I FF 0
Intensity Intensity

FF 0 FF
Intensity

Figure 6.1 a) noisy histogram, b) average of eight images, c) deviation graph.

Such noise measurements can be acquired by the Visual Planner very easily. This 

knowledge can then be stored in the image characteristics database for use by the Visual 

Planner when selecting an algorithm for cleaning the noise.

6.2.1.2 Selecting a Noise Threshold

The Visual Planner computes both maximum and minimum noise thresholds and the 

standard deviation at all intensity levels, it is these values that are used to select an 

algorithm for noise reduction using the above method. The maximum and minimum 
threshold values are selected from the deviation graph in Figure 6. Ic. The maximum 

peak is selected for the maximum threshold and the minimum peak for the minimum 

threshold value. The noise suppression algorithm selected must reduce the noise 

between these two peaks and reduce the noise over all the deviation histogram values. 

A measure of performance is calculated by counting the number of times the clean 

image deviation falls above or below the reference deviation histogram.
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The Visual Planner uses two algorithms for noise suppression, the Mean Filter 

(Gonzalez 84, Pratt 78), and the Median Filter (Huang 78, Lev 76) (see Appendix C). 
The domain rules will select the algorithm (see domain rules below).

6.2.2 Thresholding

Thresholding an image is an important part of image processing. A grey scale image is 
binarised to extract, for example, the signal from the clutter. If the objects in the scene 
occupy a distinctive grey level range then they can be extracted by thresholding. The 
proper choice of the threshold is very important if one wants to extract the objects 
correctly. The Visual Planner selects an initial threshold using the knowledge of objects 
within the scene and the grey level histogram.

6.2.2.1 Threshold Selection

One simple approach to segmentation is to segment the grey-level image G at a value 
Tto produce a binary image B. A threshold operation is defined as:

WG9 <T

How do we select a single value for 7? Usually, Tis obtained from the histograms of the 
image. If we have a simple image such that the objects have a mean intensity value m 0 
with a small variance and similarly for the background m^ then if m0 and mb are 
sufficiently far apart such that they do not overlap, the histogram is said to be bimodal 
(Figure 6.2). In this case, the threshold value can be chosen to be the mid-value between 
these two peaks. This is often called the mode method (Prewitt 66).

Page 118



Chapter 6: A Working Design for the Visual Planner

Pixel Count

I Mb 
DH-Vete

Figure 6.2 A bimodal histogram.

If there are N objects with distinct grey-levels, the image may be segmented by multiple 
thresholds:

IF
Rtj =N-\

Rtj = 1
otherwise

The desired object can then be thresholded out of the image R. Several methods have 
been developed for automatically selecting the threshold values which have been 
reviewed in (Weszka 78, Rosenfeld 82, Sahoo 88, Pun 80, Pun 81, Dove 62).

6.2.2.2 Visual Planner Threshold Selection

The Visual Planner thresholds the image in two ways as described above, first by using 
background information, if available or, secondly by using object information. The 
object information used is the average intensity of each object and its minimum and 
maximum intensity values to select multiple thresholds. Figure 6.3a shows a binarised
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image calculated using the mean intensity of the image and Figure 6.3b shows the same 
image if background knowledge is available.

Figure 6.3a Image binarised using mean of image.
Figure 6.3b Image binarised using background to set threshold.

It can be seen that using the background knowledge, better results are obtained. The 
image is better represented with less blurring and fewer false detections.

If we are to use multiple thresholds then the image is subjected to each object intensity 
value threshold in turn. This causes a set of sub-images to be generated. These sub- 
images are then added and a binarised image is produced. However this is a time 
consuming process if many objects exist within the object characteristics database, 
therefore the Visual Planner sees if the image can be binarised using the histogram first. 
The Visual Planner checks to see if the histogram is bimodal, if it is, then it is split at the 
mid point between two peaks. This can be extended to use multiple thresholds on the 
histogram.
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6.2.3 Background Information

Knowing the background in any image is a very important aspect of a visual system, 

where the background is any unwanted information (the clutter). If the background is 
uniform and static, i.e. its average intensity is equal throughout then we can give it this 
information interactively by teaching it the background. The background is taught to the 
Visual Planner by giving it samples of the background. A histogram for each sample is 
calculated at each stage. The histograms are then added and maximum and minimum 
threshold values are selected from this histogram, using its maximum and minimum 
histogram range values.

A problem arises however, when using only the background histogram information to 
segment an image. If the object intensity value overlaps the background intensity value 
as shown in Figure 6.4 then under-segmentation takes place losing part of the object. 
This situation must be avoided at all costs, we therefore use the object intensity value 
to segment the image. This gives us over-segmentation, however, other object attributes 
such as size, area, and lines can be used in detecting an object. In any case the Visual 
Planner will not be able to produce a full strength match, and false targets may be picked 
up. The Visual Planner's match strength will also depend on its contextual information. 
For instance if the object of interest is geometric and has well defined features then the 
overlap will not generate a large problem, as matching in this case is determined mainly 
on size, lines, and corner points.

Pixel Count
Legend 

Background 
Object 
Overlap

, Intensity0 FF 
Figure 6.4 Histogram showing object and background overlap.
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6.2.4 Average Intensity of an Image

If the image average intensity value changes dramatically when the background should 
be uniform and static, and does not comply with the object's intensity values, then we 
can say there has been a change in the environment, a new situation has occurred and 
we may take appropriate actions to replan using the domain rules.

An average histogram for all images presented to the system both in learning mode and 
detection mode is shown below (Figure 6.5). The histogram shows the mid value for all 
images and the overall range of the histogram, both in width and height.

Pixel Count
MaxPeak

Height

Histogram Range

Figure 6.5 Average histogram of all images presented to the Visual Planner.

6.3 Domain Rules

Domain rules are used to select noise reduction and enhancement algorithms from the 
domain knowledge acquired by the Visual Planner. The domain rules carry out two 
tasks: a) they orchestrate an initial enhancement plan, and b) they are used to initiate 
replanning actions if the domain knowledge changes. Each image is scanned as it is 
presented to the Visual Planner to detect these changes.
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6.3.1 Domain Rules for Noise Suppression Algorithm

The Visual Planner starts by selecting the first available noise suppression algorithm (the 
mean filter). A noisy image n(ij) which has been previously used in calculating the 
clean reference image g(i j) is then subjected to this filter, its deviation is then calculated 
and compared to the reference deviation of the noisy image. This yields three types of 
information: a) a new maximum noise peak, b) a new minimum noise peak and, c) a 
measure of its performance.

We can calculate a measure of performance by comparing each intensity value in the 
two deviation graphs as shown below:

sr = number of pixels at grey level r, 0 <= r <= M
M = number of intensity levels
sd(s) = reference deviation (clean image to noisy image)
g(s) = new deviation graph (filtered image to clean image)

WHILE r <= M

{
IF g(sr) < sd(sr) THEN performance = performance + 1

sr = sr +l

This information is stored by the Visual Planner, and the next algorithm (median filter) 
is subjected to the same tests. The domain rules below show how the comparison of 
these results select the algorithm. The rules return an overall measure of its performance. 
The algorithm with the highest overall performance measure is selected.

DRuIe (1) EF max_clean_peak < max_noise_threshold 

THEN measure=measure+l
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DRule (2) IF min_clean_peak < min_noise_threshold 

THEN measure=measure+l

DRule (3) IF deviation_error < 50% 

THEN measure=measure+l

The maximum performance measure any noise algorithm can have using these rules is 

three. The deviation error must be under 50% this means no noise has been added, but 

also no noise has been subtracted. However, we do not know exactly how much noise 
has been cleaned for each algorithm. We therefore compare the error measure 
(magnitude of error for each pixel value) produced by each algorithm and select the one 
with the least error. If their overall performance measures are equal then the rules below 
are fired. These rules select the algorithm with the minimum error measure in the range 

of 0-number of intensity levels.

DRule (4)
IF noise algorithm 1 performance measure = noise algorithm 2 performance measure 

THEN{

for each algorithm CALL DRule (5)

CALL (algorithm selected)

DRule (5)
IF error_measure < min_error_measure 

THEN{
min_error_measure=error_measure 

algorithm_selected=current_algorithm
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6.3.2 Enhancement Domain Rules

Enhancement is a method that attempts to improve the appearance of an image i.e. make 

the features of an image more apparent for image processing routines, and can provide 

additional visual information (Andrews 74). The Visual Planner uses histogram 

equalisation (Gonzalez 87) to highlight features. Histogram equalisation is a nonlinear 

operation, it involves pointwise mapping of each intensity value to another globally.

Pixel Count Pixel Count

b) -

Max Min 
Range

Figure 6.6 a) image histogram with low contrast, b) histogram equalised.

The idea behind this technique is to derive a histogram from an image by recording the 

number of pixels at particular grey levels. The histogram often yields useful information 

about the nature of the image. If there is a bias towards the lower or higher intensity grey 

levels, we could rightly deduce from this that a more equitable sharing of the pixels 

among the grey levels would affect the image appearance. Figure 6.6a shows a 

histogram with a low intensity value. Figure 6.6b shows the same histogram after the 

enhancement operation. The domain rules that achieve this operation are shown below:

DRule (6)
IF Histogram Range Max Value < Mid Histogram Value for all images 

THEN Call (histogram equalisation)
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DRuIe (7)

IF Histogram Range Mm Value > Mid Histogram Value for all images 

THEN Call (histogram equalisation)

The domain rules above check to see if the current image histogram is bunched below 
or above the average histogram mid-value position. If so, the histogram is equalised to 
produce a better spread of pixel information more in line with the average histogram of 
all images. The domain rules that enhance the image are very important within the 
Visual Planner, as lighting conditions may change the image average intensity values.

Pixel Count Pixel Count

T
Mid-Value Mid-Value

Figure 6.7 a) Normal image histogram, b) Same histogram with constant light change.

The Visual Planner also provides rules if the histogram range has moved to the left or 
right of the average mid-value histogram. This means that a constant light source has 
been added or subtracted from the image globally. Figure 6.7a shows the original 
histogram of an image and Figure 6.7b shows the same histogram with a global constant 

light change.

DRule (8)
IF Histogram Range <= Histogram Range Value for all images AND

IF Mid Histogram Value > Mid Histogram Value for all images

THEN Call (Darken Histogram(Mid Histogram Value for all images - Mid Histogram Value))
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DRule (9)

IF Histogram Range <= Histogram Range Value for all images AND

IF Mid Histogram Value < Mid Histogram Value for all images

THEN Call (Brighten Histogram(Mid Histogram Value for all images - Mid Histogram Value))

Rule 8 darkens the image, and moves the histogram to the left, whereas rule 9 brightens 
the image, and moves the histogram to the right. These transformations are global 
changes to the image. They change the brightness of an image.

6.3.3 Average Intensity Change Domain Rules

These rules monitor the histogram changes within an image. Rule 10 sees if the 
histogram range has increased for some reason. It could be that a new object has been 
encountered or more light from one source has been added, or some type of unknown 
noise has been introduced. In any case this type of problem cannot be solved by the 
Visual Planner and thus user intervention is required. The 10% is added to the histogram 
as a relaxation figure. Selecting a relaxation figure is a matter of trial and error 
depending on how many false alarms are raised. This may be increased or decreased any 
time dependent on the accuracy required for the application domain. Rule 11 Monitors' 
the height of the histogram, once again if the height has changed then a new object has 
been added within the histogram range or another event has occurred, control is passed 
to the user to resolve the situation. The user may ask the system to ignore the event or 
halt the process, and add more information to the Visual Planner.

DRule (10)
IF Histogram of ALL Image Range + 10% < Current Histogram 

THEN CALL (USER)
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DRule (11)

IF Histogram of ALL Images Max_Peak +10% < Current Histogram Max_Peak 

THEN CALL (USER)

These rules can be applied in any order, except for rules that change the image attributes 

such as histogram equalisation. If this rule is applied at the beginning then the rest of the 

rules cannot be fired as equalisation produces unpredictable histograms. If the rule is 

fired at the end then a corrupt image is subject to the rest of the rules, once again rasing 

false alarms and unpredictable transformations on the image. It is therefore better to 

apply this rule at the beginning of the rules, this will bring the histogram close to the 

average histogram, if information has not been lost.

6.3.4 Threshold Domain Rules

These rules binarise the image according to the histogram. If the histogram is bimodal 

then we can split the image according to the histogram, thus separating the regions of 
interest. If however the histogram is not bimodal the image is split using multiple 

thresholds selected form the target characteristics.

DRule (12)
IF Histogram is BIMODAL

THEN CALL (Binaries Image, Threshold=Max Background Intensity Value)

DRule (13)
IF Histogram is NOT BIMODAL

THEN CALL (Multiple Threshold Selection Function)

These rules just separate the foreground from the background, and are used to reduce 

the search space for objects within an image, as we need only consider objects in the 

foreground.
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6.4 Sub-Goal Designation

Before we can continue to produce segmentation sub-plans, we must first produce the 

sub-goals from the overall goal. As has been stated the goal can be given at any level of 

abstraction, with many types of search criteria. The sub-goal designator splits the main 

goal into sub-goals according to the objects that meet the search criteria. Each sub-goal 

corresponds to one object in the object characteristics database, and can be best 

illustrated using some examples as shown below:

1. Goal Find Cubes:

This is the main goal to find all cubes. In this case cube is the main class of 

object, all objects with the class cube will be extracted from the object 

characteristics database. For each object within the class cube, its domain 

information is extracted and object characteristics such as threshold values. For 

each object a sub-goal is then created. Find cube would then be separated into:

Sub-Goals: Find Cube x, Find Cube y, Find Cube z, etc.

The cube's attributes, and contextual information are extracted for use by the 

Visual Planner for producing initial plans. If no objects exist within the objects 

characteristics database the goal is invalid.

2. Goal Find Intensity Value <= 100:
Here no objects are specified but we are interested in all objects that have an 

average intensity value of less then or equal to 100. The object characteristics 

database is searched for objects that have this attribute and they are once again 

extracted with their contextual information. Sub-goals are then deduced 

depending on the objects' contextual information and other attributes.
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As stated earlier any attribute that exists for an object can be used as a goal, we can even 

search for individual objects, by making the goal very specific, such as giving the name 
of the object. Here the goal will become the sub-goal as only one object of that name 
will exist in the object characteristics database. The sub-goal designator also checks that 
a goal can be met, i.e. there exists an object in the object characteristics database that 
matches the search criteria. This process can be shown in Figure 6.8.

Invalid Goal

Figure 6.8 Sub-goal creation.

The vocabulary parser takes the goal specified by the user and makes sure that the goal 

is valid semantically, e.g. Find X Intensity <100 AND Intensity >100. We cannot have 

an object X that has an intensity value < 100 AND > 100. This is an invalid goal. Also 

the Visual Planner's interface prevents illegal syntax, as the vocabulary is limited, it thus 

becomes an easy task to check for errors.
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6.5 The Initial Segmentation Planning Process

Armed with the knowledge necessary and a user defined goal we may start the planning 
process. It has been stated that for each sub-goal an initial sub-plan is created, This can 
be inherited or created.

Each sub-goal is passed to the Visual Planner along with the enhanced image to be 
segmented. Each sub-goal presented to the system will have to be achieved, it is 
therefore important to have the objects to be segmented in the image, and that the object 
has been registered in the object database before a sub-plan can be formed.

We can also have more then one object in the image, that is, we could have three types 
of cube, by specifying Find all Cubes as the main goal, a sub-goal will be created for 
each cube in the object characteristics database. This saves time compared to creating 
sub-plans one by one. One advantage of the Visual Planner is that it can inherit sub- 
plans for objects, so if we specify Find all Cubes, the first sup-plan for cube ;c will be 
created, and the rest (cube y, cube z, etc.) will be inherited with appropriate threshold 
values changed, as long as there are no exception classes. The planning rules specified 
below show how initial sub-goals are changed into initial sub-plans:

PRule (1)
IF Sub-Goal.Object_Class = Algorithm_Design.Object_Class

AND Sub-Goal.Object_Class.Exception o Algorithm_Design.Object.Class

AND Sub-Goal.Object_Class.Contexnial.information=Object_Class.Name.Contextual.information

THEN {
Inherit Sub-Plan from Algorithm Design Knowledge base

Change Threshold Values
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Rule 1 will attempt to inherit an existing sub-plan, if one exists in the algorithm design 

knowledge base. This is selected based on the class of the object. It will not inherit a 
sub-plan if the exception class has been set e.g.,

Class Cube

Name Cube x

Exception Cube y

Here Cube x will not inherit any sub-plan from Cube y, if one exists, it will instead 
attempt to inherit another sub-plan of class Cube, if one exists. If the classes match and 
there is no exception constraint, we then look at the contextual knowledge of the object 
that is to inherit the sub-plan, and try to match it to the object that will give the plan. If 
they are the same then Cube x will be able to inherit the sub-plan. The sub-plan 
thresholds are then changed according to the new object's intensity values. The new sub- 
plan is then executed to see if it has achieved the sub-goal (see execution monitor 

below).

If the object extracted from the sub-goal cannot inherit a plan, then one must be created, 
using the contextual information of the object and its threshold values (object attributes). 
This is done by the Visual Planner using the rules below:

PRuIe (2)
Initial Algorithm = Call Initial-Algorithm-Selection() 

IF Initial Algorithm = NULL THEN

ERROR "Cannot Initiate Sub-Plan"

ELSE
CALL PRule(3)
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PRule(3)

IF Initial Algorithm.Contextual Information = Sub-Goal.Object Name.Contextual Information 

THEN

{
CALL Make_Sub-Plan (Initial Algorithm) 

Set Threshold Values 

Save_plan In algorithm table

} 
ELSE

ERROR "No plan can be created for object"

Rule 2 looks in the image processing and segmentation database to see if an algorithm 

exists with the same contextual information that matches the contextual information of 

the object. Initially only one algorithm is selected which has a priority level 1. This 

algorithm is then passed to Rule(3). Rule(3) then checks to see that the initial algorithm's 

contextual information matches the objects contextual information. If it does then 

procedure Make _Sub-plan (Initial algorithm) is called, which makes the sub plan for 

the object by extracting the succeeding algorithm form the current algorithm. This is 

done until no succeeding algorithm exists, and that all possible sub-plans have been 

created for a given object.

The algorithm below is used for selecting an initial algorithm for each sub-plan created 

known as the initial algorithm selection planning algorithm:

Variables used:
Min-C-I-Count: A count that holds the minimum number of contextual information items found in any

list of contextual information items. 

Alg-C-I-Count: A count that holds the number of contextual information items in the list of contextual

information for a given algorithm.

Weighting: Used to select algorithm according to best weighting factor. 

Initial-Algorithm. Initial algorithm selected for each sub-plan.
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Preconditions for each initial sup-plan algorithm:

Min-C-I-Count = 5 Initially this count is set to 5 as their are four types of contextual information

i.e., Linear, Geometric, Circular and, Blob. This makes sure that at least one

algorithm is selected.

Priority-level =1 Only consider priority level one algorithms. 

Weighting = 0 Make weighting for each algorithm = 0. 

Initial-Algorithm = Null

FOR each segmentation algorithm in database = Priority-level DO

{
Rule 1: IF Algorithm.Contextual-Information = Object.Contextual-Information THEN

Weighting = Weighting + 1 

ELSE

Break 

Rule 2: IF Alg-C-I-Count < Min-C-I-Count THEN

{
Weighting = Weighting + 1

Min-C-I-Count = Alg-C-I-Count

} 
ELSE

Break 

Rule 3: IF Weighting = 2 THEN

Initial-Algorithm = Current-Algorithm 

}/*EndFOR*/ 

Return (Current-Algorithm)

For each initial algorithm selected according to the sub-plan an initial segmentation plan 

must be created. This algorithm is called Make-Sub-Plan and is shown below:

Variables used:
Current-Algorithm: Algorithm currently being considered by the planner. 

Next-Algorithm: Algorithm that will be appended to the plan. 

Succeeding-Alg-List: Succeeding algorithm list. 

Succeeding-Alg: Succeeding algorithm under consideration by planner.
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Precondition per Initial-Algorithm: 

Current-Algorithm=Initial-Algorithm 

Weighting = 0 

Min-C-I-Count = 5

WHILE Current-Algorithms has Succeeding-Alg-List DO

FOR each Succeeding-Alg in Succeeding-Alg-List DO

Rule 1: IF Succeeding-Alg EXISTS in Sub-Plan THEN

Break 

Rule 2: IF Succeeding-Alg.Contextual-Information = Object.Contextual-Information THEN

Weighting=Weighting + 1 

ELSE

Break 

Rule 3: IF Succeeding-Alg. Alg-C-I-Count < Min-C-I-Count THEN

Weighting = Weighting +1

Min-C-I-Count = Succeeding-Alg. Alg-C-I-Count

ELSE
Break 

Rule 4: IF Weighting = 2 THEN
Next-Algorithm = Succeeding-Alg

} /*End FOR*/
Current-Algorithm = Next-Algorithm 

APPEND (Current-Algorithm, Sub-Plan) 

Min-C-I-Count = 5 

} /*End WHILE*/

If any part of the sub-plan requires threshold values, then these are set according to the 

object and background intensity values. This sub-plan is then saved in a table and the 

rules are recursed to see if another sub-plan can be made for the object, and so on until 

no more plans exist. All possible plans are created at this stage for efficiency reasons
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when replanning. The sub-plan that is initially selected will be the one that has the 
lowest priority sum for all algorithms within that sub-plan. This ensures that a short plan 
is selected. The initial planning process is shown in Figure 6.9.

1
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1-n

Sub-Goals

/ 1 \ ^ ! IP & Segmentation Image Processing / „.,.., \ Obiect Contextual Object
Database Algorithms i ™ onthrrT / Infonnatjor Characteristics 
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Figure 6.9 Sub-Plan Creation.

After a number of plans have been created for one object the initial sub-plan selected 
will be executed to see if it has achieved the sub-goal. If it has, then the sub-plan is 
added to the algorithm design knowledge base. This is done by the execution monitor.

6.6 Execution Monitor Functions

The execution monitor carries out a number of functions that are summarised below: 

1) Executes the sub-plan on the image.
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2) Gives a performance measure for the sub-plan, i.e., found object x with 95% 

matching strength using simple object recognition.
3) Initiates a replan if the sub-goal fails.

4) Gives a performance measure of the overall plan functionality (see execution and
monitoring system chapter 5). 

6) Interrupts the user if a sub-goal cannot be achieved.

6.6.1 Executing a Sub-Plan

After the image has been enhanced by the domain rules a segmentation sub-plan is 
executed by the execution monitor. The algorithms within the sub-plan are executed and 
a symbolic representation of the image is extracted. The feature vectors extracted will 
depend on the contextual information of the object.

6.6.2 Matching Feature Vectors to the Object Database

Once the plan is executed, we wish to see if it has achieved the sub-goal. It is therefore 
necessary to match the features extracted by the sub-plan to the features in the object 
database. As we know what object we are looking for, we can go directly to that object 
in the object database. The local-feature-focus method (Bolles 83) is used to match 
features in the scene to the object database. It is at this stage that any matching algorithm 
can be chosen to match features in the object database.

The local-feature-focus algorithm starts by trying to match intensity areas that match the 
object, this would be the object size and area (average intensity, max intensity value, 
min intensity value, area, major axis, and minor axis). If an area that meets these criteria 
is found, then we try to find vertices, lines, facets, radius, and centre dependent on the 
contextual information of the object, i.e. what has been modelled. If a match is found 
that meets all the criteria then the object has been found, and a 100% matching strength
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is returned and the sub-plan is stored in the algorithm design knowledge base. However, 

if one or more of the criteria fail then the image is scanned again to see if another area 

exists. If it does then this area is subjected to the same tests. If no area is found that 

matches the criteria 100% then a reduced matching strength is returned, dependent on 

the number of attributes matched. If this is above the performance threshold value 

specified by the user then the sub-plan is stored in the algorithm design knowledge base. 

If not, a replan (see replanning below) is initiated until the sub-goal is achieved or fails 
completely.

If the sub-goal cannot be achieved then the user is interrupted and informed which sub- 

goal has failed. The user is then asked if the system should continue with the other 

objects. If so, the overall performance measure is reduced and the process starts again 
for the next sub-plan.

6.7 The Replanner and Replanning Actions

It is the replanners job to resolve any problems within a sub-plan. As there are a number 

of different problems encountered there are a number of replanning rules that must be 

fired depending on the problem.

If a sub-goal fails to recognise the object it was intended to, then a number of actions 

are executed to remedy this problem. A backtracking technique is used to alter the sub- 

plan, this technique is good for an image processing system, as the sub-plan need not be 

executed form the start if a change has occurred, but only form the new branch. This 

saves time executing the image processing and segmentation algorithms. By using 
backtracking, only in the worst case will the whole sub-plan have to be executed.
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BACKTRACK

IF Sub-Plan Failed THEN {

Current- Algorithm = Preceding-Algorithm

REMOVE(Used- Algorithm from Current- Algorithm. Succeeding Algorithm List)

EF Current- Algorithm. Succeeding Algorithm List = NULL THEN

Call BACKTRACK 

ELSE{

Call Make_Sub-Plan(Current-Algorithm) 

APPEND(New Sub-Plan, Old Sub-Plan) 

EXECUTE (Sub-Plan)

The algorithm Backtrack tries to find an alternate sub-plan if a goal has failed for some 
reason. It starts by backtracking to the preceding algorithm and placing this algorithm 
in the variable Current-Algorithm. It then removes the succeeding algorithm that was 
used in the sub-plan from its succeeding algorithm list. If there are no more succeeding 
algorithms in the Current-Algorithm Succeeding Algorithm List, Then this path is 

exhausted and the algorithm is recursed, backtracking again to the previous algorithm. 
If however, there is a succeeding algorithm, Make_Sub-Plan(Current-Algorithm) is 
called and a new section of sub-plan is created.

This new section is then appended to the old truncated section, and the sub-plan is 
executed once more. If it fails again the whole process is repeated. Figure 6. 10 shows 
the original path of a sub-plan (1,2,4,6) all the possible sub-plans that can be created 
using the backtracking algorithm from this network is shown in Table 6. 1.
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Figure 6.10 Algorithm network with original path (sub-plan).

Sub-Plan ID

1
2
3
4
5
6

Sub-Plan

1,
1,
1,
1,
1,
1,

2,
2,
2,
2,
3,
3,

4,
4,
3,
3,
5,
5,

6
5,
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6
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Table 6.1 Possible sub-plan creation by replanning.

Threshold Algorithm

IF No Alternative Algorithm Exists AND

IF Threshold_Change_Count <20 AND

IF Threshold < Max_Threshold Constraint AND

IF Threshold > Min_Threshold Constraint

THEN RETRY (Algorithm)

ELSE Object Not Found

The threshold algorithm is a set of conditions that refines the threshold of the algorithm 

if a threshold exists, for instance it may change the threshold of an edge detector in the 

positive and negative directions, both directions being tested in turn. This could be done
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in parallel to save time. It is limited by a number of constraints, first the number of 

changes that may take place on an algorithm, and secondly if the threshold change is 

within the limitation constraints of the algorithm. This stops the algorithms from 

changing the threshold forever. This algorithm is only applied to sub-plans if the 

backtracking algorithm has failed to achieve the sub-goal. It could have been done 

during the planning process, but once again this would have been inefficient, and 

reduced the effect of the backtracking technique used. Also, the thresholds selected 

initially form the domain knowledge produce a best first approximation.

Failed

IF No Alternative Algorithm Exists AND 

IF No Threshold Change Can be Made 

THEN {

Object Not Found

CALL (User)

If an alternative algorithm cannot be found or no threshold exists within the algorithm 

for tuning, then we can assume that the object of interest in the scene does not exist or 

cannot be found using the available algorithms. In this case the user should add more 

algorithms to the image processing and segmentation database and start the replanning 

process again.

6.8 Summary

This chapter has explained the main components that form the Visual Planner. It has 

described how they act and react to certain events that occur within the domain, and 

intervention from the user, how a goal is given to the system and how sub-goals are 

created and satisfied. Some example rules and algorithms have been given in an intuitive 

form to aid in the understanding and development of such a system.
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We have shown how the planning rules traverse through a network of image processing 

and segmentation algorithms using contextual information of the object and the 

algorithm to select a path (sub-plan). We have also described the execution monitor, 

which executes sub-plans, checks that they have succeeded, and initiates replanning. 

The next chapter shows the results obtained on a set of x-ray images (appendix B) and 

the validation of the system based on how well it has performed.
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7. Introduction

This chapter presents the test data used to validate the system and the results produced 
by the Visual Planner. The system was tested as a whole and the results compared to an 
expert's interpretation of the images. A Database driven test design (Beizer 83, Hetzel 
73) was used as the Visual Planner is too complicated (Hanson 78) to test at the 
component level. This means that we have not tried to formally prove the system module 
by module, but have instead tested the Visual Planner on the results it gives as a 
complete system.

Comparisons of the results produced by the Visual Planner and those given by the 
experts were measured using the Chi Square Test (Owen 90). This test is appropriate 
because it allows us to calculate the deviation of the observed and expected values of 
our results, thus giving a measure of accuracy. The Visual Planner was also compared 
to, and tested against Anderson's (Anderson 87) Parameter tuning system.

7.1 Validation Aim

Validation within the Visual Planner was carried out to assure the quality of software, 
and to prove that it is a viable alternative for manufacturers. The aim of the validation 
was to determine whether the Visual Planner can reach a 95% accuracy level within the 
visual task, and if not what level can it reach within a given domain? The Visual Planner 
may then be used by programmers as a tool for larger and more specialized image 
understanding systems in the appropriate domain.

7.2 Image Acquisition

Images must somehow be captured and converted in order for the Visual Planner to per­ 
form all the necessary processing. A device called a frame grabber is employed to take

Page 144



Chapter 7: Test Domain, Result, and Validation

an analogue signal and digitise it into discrete picture elements, or pixels, for subsequent 
transfer to computer memory. The laboratory set-up employs a CCD cameras and a 
frame grabber with adequate RAM to store a digitised images, having a resolution of 
512*480 pixels with 0-255 shades of grey. As each image is 512*480 pixels with 0-255 
shades of grey, the storage requirements are very high. Typically on image will require 
about 250 K Bytes of memory.

7.3 Test Domain

The test domain used for the system was based on x-ray data of metal castings provided 
by the x-ray department at Stone Foundries Ltd. A sample of the images used to test the 
system are shown in appendix A. The data is separated into several categories shown in 
the tables below. At present, these castings are x-rayed and then the images are manually 
inspected by a domain expert.

The system was taught using a sample of x-rays from the data provided by Stone 
Foundries. 16 clean images were used to extract domain knowledge and reference 
information. Pratt (Pratt 78) used 8 images to calculate image quality, however 16 
(above this number the histogram did not change drastically) images were used as we 
also needed to calculate the average intensity histogram. 240 images were used to teach 
the system different types of faults (see Appendix B), once again their intensity 
histograms where added to the average intensity histogram. This was done as it gave a 
better indication of the environment we were working in. The Visual Planner was then 
tested using 200 (20 images for each fault tested, see Appendix B) images with different 
faults. These results were then compared to the expert's interpretation of the data. The 
results were compared in two ways: a) to see if the Visual Planner compared to the 
experts in detecting the correct fault by name, b) to see if the visual planner picked up 
a fault at all or no fault, or was uncertain if a fault existed. Uncertain in this case means
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that the Visual Planner may have found an object but could not match as many attributes 

as would be necessary to make a positive identification.

Another 200 tests were carried out on a random sample of the 200 (20 for each fault 

tested, see appendix B) test images, but with the environment slightly changed in some 

way. In this instance lighting condition were changed by adding and reducing light, and 

noise was introduced to the image manually by adding a filter in front of the camera 

lens, and finally the lens focus was changed to give a blurred image. For each change 

in the environment 5 images were tested from each group of faults.

Finely these results were compared to Anderson's Parameter tuning system, to see how 

well the Visual Planner performed, as a result of knowledge acquired from the domain. 

This test also proves that the Visual Planner's success is not only attlibuted to the 

matching algorithm used, as the same matching algorithm was used for both systems.

Table 7.1 shows an expert's classification of defects found on the x-ray images. These 

are not only defects in the metal, but defects in the images themselves and objects that 

are not part of the x-ray, but added manually.

Category One: Spurious Images_____Defect Code_____ID No.

§!yS>-'Artifacts ?:&?iiijlji£
:^;®£ '"Emulsion Marks • :H£:£g::£:;.^ •^•/• : lF^^jj$^£^-^^l:^f^
'-•• • •' ',- '• '.- '. ' '.' T** 1 T"* " •'•' • '''•'•'••'.•..'•••••••'.-'.'''•• •'.- '• ".'•'•-.'.'•:' •' •• •-.:•••';."'- .'•'.:''•'-."•.-••• ' i ^r*i .' '•;.".' -:••-•:•;.' .'•'••..••"•' •.'•'-"..- .'•«». '•* '.•'.-'.-••'•'•'.'••'-i :->;;;.;.;••:;:- ./Film Fog •:\:^|^\-:-:-^.^:^..>;^ ^: \vt:^;^;-v-:^;3;^;iP 

Difrraction mottle :̂ 0^ :̂^ I>^'J>^§^.^:SI
•^: : ;;-5;f : . •. Image Caused by Scatter;^-J^:^:^ SC ^ff!y :̂^^::jS,
^ff:̂ ^
Jc&j- :-( ,• .ExcessMetal : '^ ; -^l-f^^E^^S;:Kl::- ; ;SSISK' 

Surface Irregularities ^M^-^SM-W® 
Identification ^ -'^ ID vSS^^^J 
Pick Up (Lead, Ceramic, tape, etc) PU 10

Table 7.1 Category One Defects.
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Film fog for instance, is caused by the lens of the x-ray camera not being clean or the 

quality of the film itself. This can effect and change the enhancement plan if it is 

encountered as it makes the image blurred. Artifacts on the image can range from dust 

particles to finger prints, hi any case they are unwanted noise, once again this may have 

an effect on the plan.

Identification marks are put onto the x-ray so that each image has an identification of 

what it is. This usually takes the form of letters and numbers to uniquely identify each 

x-ray. These marks must be considered, and taught to the system by showing them to the 

Visual Planner. This makes sure that their intensity values are added to the average 

intensity histogram of the image characteristics, and thus become part of the 

background.

Category TWO: ;^;: ;-;••• •" : -; :v-. ^A^'^.;kAv':: - : .' :'••• • ,:;:;/•-;:.•:/:•;;••:•.••.; v.-.-; .;,;-.;: :- :

Images due to Internal Defects______Defect Code ID No.

; Gas Hole or Pore Gas or G 11
Pinhole/GasPorosity A^'C^Jf-iSA •:':• For" .•••.• .:-f;:--^?Mv':S-A' I :2"- : ' : . : -i-- :

'A;:::;;:';..-Blowhole • ' : ' " ''^ : ^^:A|^: ^::••;• B/H.•:^--A;^:V:^;A3;/§-;.- -13. •. x;:v
I Shrinkage '^"^V^Iv^rS SH : •'••;y];'::J;'^SSf:;fi 14^;S

*Microshinkage
*Filamentary Shrinkage 
Sealed Hot Tear
Flowline FL 

\:;'v. *Oxide .•••;.'.'^:/:i::;A^:';•"".- •••• : ;'.//A. 
Dense Inclusion
Internal Crack CR 
Hot Tear '' ''' ' '^;.;:^--j. ' '"'HT : ;. • SS%S 
Broken Core C/Br

* Faults not tested due to lack of data or too small to be tested due to resolution.

Table 7.2 Internal defects found in x-ray images.
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Table 7.2 shows internal defects found m the castings. It is this data used to test the 

system. However, due to the resolution of the camera as described above some of these 
defects were too small to pick up and are only included here for completeness. Some 

defects described here ware also not tested because no x-ray images of the faults were 
available.

The information available on these faults from the experts at Stone Foundries is that 
there are two main types of faults: a) most internal faults are linear, and b) pore holes 
and other holes are mostly undefined m shape, but can be recognised by their size, 
intensity, and grouping. This information is very limited, but will suffice to give the 
Visual Planner contextual domain information when selecting algorithms. We can 

specify that cracks and tears are linear and pore holes and gas holes are blobs.

An x-ray image showing features of both categories listed above is shown in Figure ?. 1. 
Here we can see that the image has identification marks, a crack of some type and some

pore holes.

Figure 1.1 x-rav image with some faults.
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7.4 Domain Information Acquisition

A number of images (16) that did not contain faults (as agreed by the experts) were 

shown to the Visual Planner in its learning mode. These images were used to extract the 

domain information. A small set of these images are shown in Appendix A. These 

images were used to calculate average intensity of the domain, signal-to-noise ratio, 

distribution of average intensity histogram, and background intensity information. These 

images are used as reference images, and thus would be the normal working 

environment (image characteristics) for the system. It is the deviation from the average 

reference histogram (see chapter 6) that will cause an event within the Visual Planner 

that may require a replan or some sort or user intervention if the change cannot be 

resolved.

The characteristics extracted form the images (average reference histogram and noise 

deviation histogram) were used in an attempt to determine using the domain rules the 

following:

a) If low-level enhancement would benefit the segmentation process as the image 

presented may already be a binarised, well defined image.

b) If the objects to be identified were well defined compared to the background 

data of each object, i.e., the histograms of the foreground and background do not 

overlap.
c) If thresholding techniques could be used for segmentation or elimination of 

background noise, and data.

d) Determining intensity characteristics of the object and the background for 

multiple threshold selection.
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7.5 Sample of Results

The results given here show a sample of the images used to test the system. More sample 

images can be seen in appendix A along with their attributes. The samples selected here 

show two types of faults, Blowholes (Figure 7.2a) and Cracks (Figure 7.2b). In the 

following sections we describe the image characteristics, object characteristics, and the 

algorithms and thresholds selected to achieve the goal.

Figure 7.2 a) Test image with Blowhole. b) Test image with Internal Crack.

The tests were carried out twice, once under normal working conditions, as taught to the 
svstern and once with the domain slightly changed. The domain was changed in this case 

by increasing the light source by adding a constant increase in light below the x-rays.

The histograms below show how such a change effected an x-ray. Figure 7.3a shows an 

x-ray in its normal environment with its associated intensity histogram and Figure 7.3b 

shows the same image with a constant light source added, along with the new histogram.
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shows the average histogram of all images shown to the Visual Planner after noise 

suppression has taken place on all these images.

Attribute Name __________________Value_________
Maximum Background Threshold 94 Intensity Value 
Minimum Background Threshold 20 Intensity Value 
Maximum (+) Noise Deviation 1586 Pixel Count 
Maximum (-) Noise Deviation -1529 Pixel Count

Table 7.3 Image Characteristics 

7.5.2 Object Characteristics

The object characteristics of the Blowhole and the Internal Crack are shown in Table 
7.4. This includes contextual information given by the user and object attributes 

extracted from the image.

General Information________________Value_____________
Main Class Crack Hole 
Contextual Information Linear Blob 
Name Internal Crack Blowhole 
Not Subclass Flowline Gas Hole

Object Attribute _____________Value ______
Average Intensity 127 31
Max Intensity Value 132 35
Min Intensity Value 120 29

'•Area . .... .^J^./^^^.^^®;^^::^^-' '^& .:. 32
Vertices ••^:: ; -; ; .'>"v: : ;- : :--'- : ,' ." '-^-^V^^v '''\v ;'-:j^:'- :;;;-; •... ....... •
Lines . .. :.•••.:(:•••-^^y/ : Q'••"•-'•'"'•'••' 1 : •'•" : '•'•"•'•'' ''•'••'' : ''--.- :;; ; ^^.:;.:-'
Facets ,;: ":: •^•:. /•• -x;,'.)• ...,:, :
Major Axis 16 10
Minor Axis 3 7
Radius
Centre "'" '"'"'" - ;: •••y-.,---.-:- •;.. x^ ^.•••.-••-'.:':.. : .

Table 7.4 Object characteristics and contextual information for Internal Crack and 
Blowhole.
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7.5.3 Sub-Plan Creation

Once the image and object characteristics have been acquired by the Visual Planner it 
starts to create sub-plans given a user goal. As we want to segment two types of faults 
(Internal Crack and Blowhole) two specific goals were given as shown below:

Goal a) Find All Internal Crack 
Goal b) Find All Blowhole

After the goal has been given the sub-goal designator takes over. As the goals were 
specific the sub goals came out to be the same as the main goal. However, when given 
a more general goal the sub-goal designator produced more sub-goals. For instance 
when asked to Find All Objects Average Intensity <= 35 the sub-goals produced were 
as follows:

Sub-goal a) Find Gas Hole 
Sub-goal b) Find Pore Hole

Any object held in the object characteristics database that had an average intensity value 
less then 35 was extracted. For each sub-goal a sub-plan is created or inherited 
dependent on the deductions made by the Visual Planner, e.g. Gas Hole is a Blob of 

class Hole.

7.5.3.1 Enhancement Plan Creation

The enhancement plans for the Internal Crack and the Blowhole was created using only 
image and object attributes based on their intensity values. The Median filter was 
selected for noise reduction as it performed better then the Mode filter in terms of
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suppressing noise (see chapter 5). This filter was selected in the training stage by the 

noise domain rules. The results of the Median and Mode filter are given below:

Median Filter

Maximum noise deviation = 1529 Pixel Count 
Minimum noise deviation = -2635 Pixel Count 

Performance error per intensity value = 24 Intensity Count

Mode Filter
Maximum noise deviation = 1563 Pixel Count 
Minimum noise deviation = -3421 Pixel Count 
Performance error per intensity value = 72 Intensity Count

As we can see both noise suppression filters failed to reduce the noise deviation on the 
negative scale, as compared to Table 7.3. However, there were less errors per intensity 
value produced by the Median filter as only 24 out of the 256 intensity values fell 
outside the maximum and minimum noise deviation threshold values, and thus this filter 

was selected.

Table 7.5 shows' the enhancement plans and threshold values set for both the Internal 
Crack and the Blowhole. The enhancement plans were not changed in any way after the 

initial selection.

Internal Crack Blowhole
Enhancement Plan Median Filter Median Filter
•••.^:,,,- :- : V;^;:X;;:^T-'-^ Digitisation ^ Digitisation
^S^^ :,- *Min=29,Max=35
* Threshold values selected for algorithms ^

Table 7.5 Initial enhancement plan and threshold values.
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The initial enhancement plan selected to digitise each image as only one object of 

interest was given in each of them. The domain rules, in this case have selected to leave 

all intensity values in the image that are between the maximum and minimum threshold 

values of the object. All values out of this range were set too black (intensity value 0). 

7.5.3.2 Segmentation Plan Creation 

As each object used in this test has different contextual information (one being a blob 

and the other linear), a different segmentation sub-plan is orchestrated. The initial 

segmentation sub-plan orchestrated by the Visual Planner for the Blowhole was 

sufficient in order to segment the image and thus no replanning was needed. The 

Internal Crack sub-plan, however, underwent a mutation from its initial plan (Sobel edge 

detection, Robust line rules, and Boundary following) to the sub-plan and threshold 

values shown in table 7.6. 

Internal Crack 
Segmentation Plan Sobel Edge Detector 

*157 
Robust Line Rules 
Dilate 
Erode 
Boundary Following 
Calculate Major Axis 
Calculate Minor Axis 

* Threshold values selected for algorithm 

Blowhole 
Region Splitting 

*Min=29> Max=35 
Robust Region Rules 
Calculate Area of Regions 
Calculate Major Axis 
Calculate Minor Axis 

Table 7.6 Initial segmentation sub-plans and threshold values. 

The Internal Crack is Linear, so only algorithms that work on linear objects are used. In 

this case the Internal Crack is Linear but not Geometric and thus the Internal crack has 

no specific size, comers or facets. Therefore the major and minor axis are used as 

constraints, if an object found falls below or equal to these constraints within the 

boundary then the sub-plan has achieved its sub-goal. The Sobel edge detector (Ballard 
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82) was used to find the edges of the Crack, it was then subjected to the robust edge 
detection rules (Panayiotou 93) which join broken lines and delete unwanted ones. This 
was succeeded by a dilation that fills troughs on edges and then Erode that erodes the 

edges reducing the spikes produced by the edge detector (Lindley 91). Boundary 
following (Dudani 76) is then used to detect all closed regions produced by the edge 
detector. Finally each area within a closed boundary is calculated giving the major and 
minor axis.

The contextual information used when describing the Blowhole was Blob. This means 
that the object has no predefined size, but can be matched using its area and intensity 
values. In this case a Region Splitter (Gonzalez 87) was used to segment regions that fell 
within the maximum and minimum threshold values of the object. The area, major axis 
and minor axis of each region detected was then calculated. If these values match or fall 
above or below the object's major and minor axes respectively, compared with the 
values in the object database then the Blowhole has been detected The area of a 
Blowhole may vary, however. When we give the Visual Planner the attributes of the 
Blowhole, we attempt to give it the smallest and largest possible values for both its 

minor and major axes.
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a)
Mathematical
Morpholgy

Openmng/Closing

b) Mathematical
Morpholgy

Openning/Closing

Edge Detection 
Sobel, Prcwitt or

Figure 7.5a All possible plans for Internal Crack. 
Figure 7.5b All possible plans for Blowhole.

Figure 7.5a and 7.5b shows all the possible segmentation plans that can be selected from 

the algorithm and image processing database, given the contextual information of the 

object (Crack is Linear and Blowhole is a Blob). The sub-plan used is selected by the 

planning rules as shown in chapter 6.
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7.5.4 Replanning Events

The Visual Planner was shown images with a slightly different light intensity to see if 

the domain rules and replanning actions achieved their tasks. The histograms below 

(Figure 7.6a and Figure 7.6b) show the average histogram of all images taught to the 
Visual Planner and a histogram of an image with lighting conditions increased uniformly 
across the image.

Pixel Count Pixel Count

0
Mid-Value Mid-Value

Figure 7.6a Average histogram of all images in normal environment. 
Figure 7.6b Histogram of image with lighting conditions changed.

As we can see the histogram has moved to the right increasing the intensity values. The 
algorithms selected for the initial plan would no longer work as the object's intensities 
have changed. The enhancement and segmentation plans for the Internal Crack and 
Blowhole are shown in Table 7.7.
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Internal Crack Blowhole
Enhancement Plan Darken Image Darken Image

Median Filter Median Filter 
Digitisation Digitisation

*Min=200, Max=220 *Min=29, Max=35

Segmentation Plan Prewitt Edge Detector Region Splitting
*150 *Min=29, Max=35 

Robust Line Rules Robust Region Rules 
Dilate Calculate Area of Regions 
Erode Calculate Major Axis 
Boundary Following Calculate Minor Axis 
Calculate Major Axis 
Calculate Minor Axis

* Threshold values for algorithms

Table 7.7 Enhancement and segmentation sub-plans after replanning.

As we can see the initial enhancement plan has changed, and now includes the algorithm 
that darkens the image globally. The Blowhole algorithms and thresholds have not 

changed beyond this point. However, the sub-plan for the Internal Crack has changed 

both in algorithm structure and threshold values. This may be due to the fact that the 
crack had a higher intensity value then the Blowhole, and thus may have lost some 

information when the lighting conditions changed.

7.5.5 The Replanning Path

In order to see more clearly how a replan takes place we will follow through some of the 

possible paths that were considered by the Visual Planner in order to produce its 

amended plan for the Internal Crack. For each image processing algorithm we have an 

ID number associated with it as shown below:
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ID Algorithm

1 Sobel Edge Detector

2 Prewitt Edge Detector

3 Laplacian Edge Detector

4 Robust Line Rules

5 Mathematical Morphology
6 Thinning

7 Boundary Following

It is these numbers that show how the paths are formed. Table 7.8 show's some plans the 
Visual Planner considered and failed on before changing the threshold value for each 
failed plan.

Plan 
Plan
Plan
Plan
Plan
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Plan
Plan
Plan
Plan
Plan
Plan
Plan
Plan
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Table 7.8 Some replans produced by the Visual Planner to find Internal Crack.
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7.6 The Chi Square Test

The aim of this test is to see if a 95% detection in faults can be reached and at what 

accuracy level determined by the user. The matching strengths used range from 60% 

(consumer products) to 100% (critical domains). With the matching strength set to 60% 
in the object recognition module, we are telling the Visual Planner, that it need be at 

least 60% certain that it has segmented and matched the object to the object database, 
and thus giving a low false alarm rate. However, if a matching strength of 100% is 

given, the Visual Planner must match all the features segmented from the object to the 
object database. This will produce a high alarm rate as the Visual Planner will fail to 
achieve the desired matching strength.

For each certainty threshold or similarity measure (60%-100%) we would like to reach 
a 95% confidence level. We thus can formulate a null hypothesis, that the expected 
frequency of correctly identified faults or objects will by 95% and 5% for incorrectly 
identified objects, and plans that, although produced a match, were under the matching 

strength.

The Chi Square tests in (Appendix B) are based on a set of 100 randomly selected 
images, and use two degrees of freedom with the critical value set at the 5% level = 
5.99. This value reduces the risk of the plan working by chance. If A2 is less then the 
critical value, then the Visual Planner has reached a 95% confidence level at the relevant 
matching strength criterion. The tests were carried out on test data that did not differ 
from the training set used. By this we mean that environmental changes did not take 

place.

Although the test is a measure of the overall performance of the system, in terms of 
matching the segments to the object database in order to achieve the goal, we cannot be 

certain on how well the system will work if other matching algorithms are used. It must
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be made clear that we are not trying to find a best matching algorithm this can be 

proved in a comparison (see appendix B) with Anderson's parameter tuning system 
(Anderson 87).

7.7 Anderson's Parameter Tuning System (Comparison)

The use of Anderson's parameter tuning system, within this project, is to prove that the 
Visual Planner's results are not dependent completely on the efficiency of the matching 
algorithm. Moreover on the ability of the Visual Planner to produce enhancement and 

segmentation plans with appropriate thresholds, which correctly reflect the state of the 
domain.

The tests wtve carried out on one class of fault, that of Crack and more specifically on 
the following faults Sealed Hot Tear, Flowline, Internal Crack, and Hot Tear, these are 
all liner faults, with different attributes (see Appendix A). The algorithms selected for 
this test are those initially produced by the Visual Planner for Internal Crack (Sobel 
Edge Detector, Robust Line Rules, Dilate, Erode, and Boundary Following). These 
algorithms seem to be a fair set of algorithms used by the Visual Planner to detect linear 

faults.

The threshold value for the Sobel Edge Detector changed from 255 down to 0 in steps 
of 5. This was done until the matching algorithm found a match. If a match was found 
within the specified matching strength, then it was recorded as correct. If a match was 
found, but was under the specified matching strength, then this was recorded as 

uncertain. The test was carried out on 100 images with no domain change and on a 100 

images with the domain changed.
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7.8 System Validation

By looking Figure 7.7 at the results we can say that the Visual Planner reached a 95% 

confidence level at approximately the 90% matching strength level. After this point the 

uncertainty factor rose dramatically, i.e. more false alarms. Even though the system 

could find the errors it was not certain of the results, and thus did not achieve the goal.

Figure 7.7 shows that if the Visual Planner is uncertain a false alarm has been raised. If 

the Visual Planner is incorrect then it has failed to detect the object, or it has detected 

a false target, or it has identified the fault wrongly. Correct means that the Visual 
Planner has detected a fault correctly, and has matched its feature vectors above the 

matching strength given by the user.

200

75 80 85 
Matching Strength %

95 100

Correct

Legend 

—HI— Incorrect Uncertain

Figure 7.7 Results obtained from the Visual Planner with no environmental changes.

By using Anderson's parameter tuning system that used the same sub-plan created by the 

Visual Planner initially for Internal Crack (Anderson 87), we achieved an 85% accuracy
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level at approximately 80% (Figure 7.8) matching strength on the same set of images, 
with the same matching algorithm.

For each match weighting used with the test, the threshold changed from 255 down to 
0. Before approximately the 70% mark (within this domain) the Anderson system does 

not produce enough threshold changes in order to find a correct match, as the changes 
stop when the matching algorithm has found a match (correct or incorrect). Before this 
point under segmentation takes place, and the matching algorithm does not need to be 
all that certain of a match, and thus usually a false target is detected. By about the 85% 
mark the threshold values have changed so many times that over-segmentation is 
encountered, and thus the likelihood of a false target being detected is increased until 
there comes a point where it's inevitable.

100

65 70 75 80 85 
Matching Strength %

90 95 100

Correct

Legend 

"— Incorrect Uncertain

Figure 7.8 Results obtained with Andersen's Parameter Tuning system.

We can therefore conclude that algorithm parameter tuning has a limited success in 
improving the segmentation process. Moreover, algorithm and parameter tuning, along 
with domain information has a better performance measure.
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7.9 System Validation With Environment Changes

Using a sample of data (200 x-rays) with the environment changed in some way, the 
system was once again tested (Appendix B). The aim of this test was to see if the 
domain rules worked in changing the image characteristics. It is these tests that validate 
the domain rules and show how complete these rules are. The same criteria was once 
again used to test the system, i.e. a 95% accuracy level with a matching strength range 
of 60%-100%.

With the environmental conditions slightly changed (Light increase, light decrease, 
Random noise added, and image out of focus. Appendix B) the Visual Planner seemed 
to be more uncertain (more false alarms) of its results. The number of erroneous 
identifications has risen to approximately 5%-7%. This may not seem to be a drastic 
change from the previous results of 2%-3%, however, more replanning was needed and 
this was time consuming. The results show that the Visual Planner can detect 95% of 
errors with approximately a 75% matching strength. The matching strength has reduced 
to 75% from 90% previously, however, we have shown that the Visual Planner can 
adapt to environmental changes within the manufacturing process and still be able to 
identify faults. The graph below (Figure 7.9) shows the results obtained from the Visual 
Planner with environmental changes. Anderson's Parameter Tuning system could only 
match, approximately 25% of objects at approximately the 70%-80% matching strength 

mark.
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200

65 70 75 80 85 
Matching Strength %

90 95 100

Correct
Legend 

—Hi— Incorrect Uncertain

Figure 7.9 Results obtained from the Visual Planner with environmental changes.

7.10 Summary

This chapter described the test domain used to test the Visual Planner. The test data used 
based on x-rays of metal castings was not used in the development of the system. This 
shows that the Visual Planner is truly domain independent. We have shown that the 
Visual Planner can detect 95% of errors with a matching strength level of 90%. We can 
thus say that the Visual Planner can be used to produce segmentation algorithms in 

domain critical applications.

The Visual Planner is able to detect objects even if the environment has changed in 
some predefined way, i.e. lighting conditions have changed or more noise has been 

introduced in some way. The results here show that The Visual Planner is able to adapt 

and compensate for changes in the environment using the domain rules and replanning 
actions. Even if the environment changes the Visual Planner is still able to detect 95% 

of errors with a matching strength of 75%.
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8. Introduction

This chapter presents an assessment of the applications' domain in which the Visual 
Planner may work well in given the results. It also presents the achievements and 
limitations of the Visual Planner as described by the project aims.

8.1 Applications for The Visual Planner

It has become clear that the Visual Planner should work well in many industrial 
application domains. It has shown that it is able to detect objects and faults from a set 
of images different from the ones used for its initial training and development. The 
simple prototype developed here is limited in many ways (see below), but it has been 
shown that the technique used works.

In its current form the Visual Planner may be used to select appropriate algorithms for 
a full blown visual inspection system. This eliminates the programmer's need for 
selecting the appropriate algorithms, and thus reducing uncertainty and unreliability 
within the system.

If the Visual Planner were to be incorporated within a full visual inspection system, in 
order to take advantage of its replanning capabilities, the system would have to be 
expanded and made more configurable (see chapter on further work).

The review of visual inspection systems undertaken (chapter 2 and chapter 3) indicates 
that the field is very active. Image recognition and understanding has an appeal to 
researchers and companies interested in its practical applications. The Visual Planner 
can be used by researchers, as a prototype in the field of active vision due to its ability 
in selecting threshold values and different algorithms. (Ballard 87, Poggio 87, Bajcsy
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88), or by companies interested in having a system that is updatable, and will not 
become redundant if their domain changes in any way.

8.2 Implementation

What has been achieved is a small research prototype that produces segmentation 
algorithms for given objects. The algorithms selected for this task, and their thresholds 
if any, have been selected and changed in order for them to achieve their goals. The 
results and validation show that different algorithms and thresholds need to be selected, 
and not just the parameters of given algorithms changed (Anderson 87). The ability to 
acquire knowledge about the domain and image processing characteristics has shown 
that the system is domain independent and thus adaptive in nature.

8.3 Significance of the Work

The significance of the work in the authors' opinion is that:

1. It is the first implementation, to the writer's knowledge, which uses a planner with 
contextual information on the domain and image processing and segmentation primitives 
to select such algorithms for the visual task.

2. The fundamental design and implementation of the system does not restrict its use to 
any one visual domain. This is due to the modularity of the Visual Planner and to the 
fact that the system is oriented solely around the concept of planning.

The clear distinction between the inference engine and the knowledge base, makes it 
possible to remove one knowledge base from the Visual Planner and replace it with 
another.
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3. The Visual Planner provides a domain-independent formalism for describing a 
domain at different levels of abstraction listed below:

a) High Level - Object contextual information describing the general shape of the 
object i.e. Blob, Liner, Geometric, Circular.

b) Medium Level - size, area, number of facets, number of lines etc.
c) Low Level - average intensity, background intensity, intensity threshold values 

domain contextual information such as lighting conditions, noise etc.

At each level we also include actions that can be taken to achieve a given goal. For 
example given a geometric object, initially select algorithms known to work well in 
calculating area, size, edges etc. At the second level of abstraction rules are used which 
select appropriate segmentation primitives given the object characteristics, i.e. lines are 
well defined, fault x is variable in size with an intensity value between min and max. 
The third level of abstraction is used to select algorithms in order to extract the intensity 
characteristics, by adding nose reduction algorithms based on the noise model taught to 
the system, or changing the contrast of an image based on the average intensity of all 
images.

The Visual Planner is more advanced then other adaptive vision system, primarily 
because it uses constraints, and employs contextual information to represent and reason 
about different world states.

4. The Visual Planner uses production rules to carry out its actions. The use of 
production rules (Davis 82) seems to be a natural way of expressing things about the 
domain, and the use of such rules seem to be comprehensible and intuitive to 
programmers. Thus, the general form of the representation and the way it is employed 
should not be unfamiliar to the average user.
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More specifically, however, consider the source of the knowledge. It is supplied by 

human experts who are attempting to formalize their own domain knowledge. As such, 

the rules within the Visual Planner embody accepted patterns of human reasoning, 

implying that they should be relatively easy to understand.

5. In real-world domains, things do not always proceed as planned, making it necessary 

to monitor the execution of a plan and to replan when things do not go as expected. In 

complex visual domains it becomes increasingly important to use as much as possible 

of the old plan, rather than to begin again. The Visual Planner's execution monitor 

detects unexpected events within the domain, and can determine how they affect the plan 

being executed. In many cases, it can retain most of the original plan by making changes 

in that plan to avoid problems caused by these unexpected events. For example when 

lighting conditions change, we are able to keep most cf the plan by inserting an 

algorithm that would change the contrast in an image.

If a new object is added to the inspection line then we can also inherit existing plans 

based on the object characteristics and match them against existing objects. If we decide 

to produce object x in a different colour then no part of en existing plan needs 

to be changed, as intensity value does not matter except for unexpected events.

6. The Visual Planner provides a menu driven image processing interface in which the 

user experiments with image processing algorithms, which are applied to the image. 

This can aid the user in deciding what algorithm constraints to put on the objects of 

interest. This section could be extended so that a user could construct and execute 

sequences of algorithms.
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1. The most important features of the Visual Planner are summarised below:

1) Domain independence.

2) Different abstraction levels.

3) Nonlinear actions.

4) Constraints.

5) Replanning.

8.4 Limitations

The Visual Planner has several limitations both as a planner and as a visual system. In 

this section we summarize many restrictions incorporated within the Visual Planner. 

These restrictions are categorised in two sections: a) the planning system, and b) the 

visual problems.

Despite these limitations, there are useful problems that can be addressed within them. 

Visual inspection is one of them, as shown by the results. These limitations permit an 

efficient system that works well in a practical domain. However, many of these 

limitations allow the system to come to a solution in a reasonable amount of time, 

otherwise we could encounter combinatorial explosions. For example if every 

combination and permutation of algorithm was used within the Visual Planner to 

achieve a given goal, then the system would become unusable as the number of 

algorithms grew. It would be far better to relax the constraints on a few algorithms 

within the Visual Planner, this would depend on the domain.

There are, naturally, some domains that the Visual Planner would not work well in. For 

instance a surveillance system that detects if any object has entered its boundary. The 

simplicity of these domain means that little use is made of the Visual Planner, although 

changes in lighting conditions may be monitored. However, many of the more
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complicated (and computationally expensive) features go unused. All the work carried 
out by the Visual Planner is unnecessary when something far simpler would do.

8.4.1 Planning Limitations

1. Like other classical planners, the Visual Planner employs a state-transition approach 
to representing a dynamic world. Actions change the world from one discrete state to 
another. The Visual Planner extends previous adaptive vision systems by allowing 
replanning after unexpected events, and being hierarchical, by saving search time as 
part of the planning process. However, sophisticated reasoning about time and 
modelling of dynamic processes are not possible within the present framework.

2. Having discrete actions means that the effects of an action occur instantaneously as 
far as the Visual Planner is concerned. However, it is not designed to monitor the world 
as it is planning, and therefore cannot react immediately to a changing environment.

3. A major limitation of Visual Systems is that they require complete and correct 
knowledge of the world. This is, of course, unrealistic in the real world, although there 
are certainly useful problems to be solved in domains where the state of the world is 
known. The Visual Planner alleviates this problem somewhat by analysing the state of 
the world by itself, but the system does no sophisticated reasoning about uncertainty of 
an object, i.e. The Visual Planner will not deduce that it is probably looking at object x 
and thus change the plan to give a stronger match. This limitation is also extended into 
the execution monitoring and replanning modules, which require correct information 
about unexpected events, such as changes in lighting conditions and noise.

4. Some rules, such as the domain rules, and the image processing primitive selection 
rules are implicitly embedded within the system. This is a limitation, as the rules 
encoded may not work well for all domains, and changing such rules requires
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programming effort. It would be better to use an interactive method (see future work) 
for specifying the rules, and which primitives work well in what situations.

5. Since the Visual Planner is intended for use by programmers and users alike, this 
meant a restriction had to be placed on its vocabulary in order to make it easy to use. 
However, such a restriction may limit the search for objects in complex domains.

8.4.2 Visual Limitations

1. As with most visual systems, the Visual Planner is limited by the hardware used for 
image acquisition. High resolution cameras are available but are expensive. If cheaper 
cameras with less quality are used then some details within the image may be lost. 
Selecting a camera will depend on the domain. If we are looking for small cracks, or the 
granularity and texture of some object, then a high resolution microscope camera may 
be needed, if we are looking for heat traces then an infrared camera may be required. 
The tests carried out within this project used one CCD camera with 512*480 resolution, 
and 256 shades of grey to take pictures of x-rays. In fact we should have used an x-ray 
camera directly to give a better quality image. It is therefore safe to assume that the same 
results may not have been acquired if the appropriate camera was used, and that better 
results may have been given by the Visual Planner as the x-rays used suffered from 
different types of unwanted and unmodelled noise (finger prints and dust).

2. If a system is to be truly domain independent, then the best characteristics of each 
object must be extracted and saved. The question arises of how we model all these 
characteristics and attributes within a variant data structure? It is known that the more 
information we have on an object the better we can select segmentation algorithms. The 
Visual Planner uses a variant structure that models only certain information, such as 
average intensity, size, lines, facets, vertices, and class of object depending on the 
objects' contextual information. This is very limiting, we may want to model texture or
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any number of other attributes. The difficulties here are how many attributes within 

different domains exist, and what effect would all these attributes have on the planning 
process i.e. the time it takes to plan and replan.

3. If the average intensity histogram differs from image to image too much, i.e. the 
background is not uniform or static, then the image intensity threshold values calculated 

may not be appropriate for use on an image acquired for segmentation. Therefore new 
objects may be lost in this information unless they really stand out, i.e. domain rules 

become useless. However, objects may still be extracted on their characteristics and 
attributes by the Visual Planner, but not with such certainty and accuracy.

4. Sometimes, it is not possible to set segmentation process thresholds such that all the 
objects of interest are located with respect to the background without over-segmenting 

the image. Over segmentation is the process by which the objects being segmented from 
the background are themselves segmented or fractured into sub-components. For 

example if two objects exist within an image (one is dark and one is light) by trying to 

extract the darker object we may over-segment the lighter object. In such cases 
background subtraction may be needed, or completely segmenting the image into 
regions, using both splitting and merging methods based on object characteristics.

5. The opposite to over-segmentation is under-segmentation. Most often with under- 

segmentation, objects of interest are separated from the background, but are adjacent or 
overlapping and are therefore segmented into only one composite object rather then 

discrete components. The solution to under segmentation is to avoid it at all costs. This 
however, is not always possible. The Visual Planner may use multiple thresholds, based 

on the object intensity information, but if two objects exist with approximately the same 

average intensity then the same threshold will be selected, and thus it will not be able 

to separate the objects.
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8.5 Conclusion and Summary of Results

Most segmentation schemes incorporated into vision systems today are based on the 
principle of boundary detection (Dudani 76) or region splitting and merging (Gonzalez 
87). These techniques assume that a significant grey-level change occurs between the 
signal and clutter. However, this is most often an erroneous assumption, and so these 
techniques are fragile, and quite commonly require well controlled conditions or human 
supervision. Effects of uneven sampling, lighting, shadowing, partial occlusion, clutter, 
noise, object-to-background changes, etc., contribute to errors in these segmentation 
processes that are manifest as false segmentation, as shown by the test carried out on 
Anderson's parameter tuning system (Anderson 87). Errors in the segmentation process 
can produce partial segmentation of the objects of interest, such as when two 
overlapping objects may be segmented as one (clumping of objects), and poor 
segmentation of objects and background, which may result in the calculation of 
erroneous features.

This thesis examined whether it was possible to select appropriate algorithms for image 
enhancement and segmentation dependent on the contextual information of the domain, 
object characteristics, and knowledge about image processing primitives. A domain 
independent Visual Planner was proposed and built for this purpose. Clearly such a 
system is only as good as the knowledge acquired by the system. The more information 
the Visual Planner has, the better its performance. The results show that the Visual 
Planner was able to select algorithms, form plans, and refine such plans for this 

purpose.

The final results obtained in the previous chapter were of a sample of 400 x-ray images 
shown to the Visual Planner at random; 200 of which had different domain changes 
within them, notably lighting changes, noise, and the image being out of focus. It is, 
however, not clear that the population was high enough to give a complete validation
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of the system. There may have been images that could not be taken into account which 

would have caused unusual effects in the system. Although every possible care has been 
taken to test the system to the full, using man made data, and real data, the system 
cannot be formally proven due to its complexity.

Selecting a different matching algorithm may have changed the results, however, the 
validation undertaken was not used to validate the matching algorithm, but to see if the 
Visual Planner could produce sub-plans that achieved a given goal. We have shown that 
the Visual Planner can adapt and change sub-plans to achieve sub-goals, while retaining 
most of the original plan. For a true validation to take place the system would have to 
be tested under different domains, although the test data used to develop the system was 
different from the test data used to validate the Visual Planner. A comparison with 
Andersen's parameter tuning system was undertaken to prove that the Visual Planner's 
results were not just based on the efficiency of the matching algorithm.

The results show that the Visual Planner can detect 95% of faults taught to the system 
with approximately 90% matching strength given the object attributes weighting, using 
the current matching algorithm and 95% of faults with approximately 75% matching 
strength with the domain changed in some way. What was interesting however, was the 
fact that incorrect identifications were constant throughout. This implies that the Visual 
Planner could identify 95% of faults overall, but was not confident of the results. If a 
better matching algorithm was used we could increase the accuracy level. We could also 
use different matching algorithms dependent on the features segmented, i.e. algorithms 
known to work well with specific features (see future work).

The Visual Planner has shown improvement over current domain dependent visual 
systems both in its flexibility by being upgradable and adaptable, and in its not being 
written and trained for any specific domain and making it domain independent and 
reusable. We have shown that the Visual Planner can be used by programmers as a tool
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when designing a visual system for a specific domain. This reduces uncertainty and 

unreliability as to which algorithms and thresholds to select when designing a system. 

The Visual Planner's domain rules and replanning actions can be used within any visual 

system to adapt to changes in the environment.

The next chapter tries to suggest solutions to the limitations given above and answer 

some of the questions raised during this work.
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9. Introduction

It can be seen that the Visual Planner proposed is an adaptive and expandable visual 
system, as it is able to use contextual information to create initial plans and refined plans 
thereafter. Such plans use image processing and segmentation routines to achieve a 
given goal. The system can also react to changes in the environment and replan for a 
given situation. However, in the previous chapter a number of limitations came to light 
within the Visual Planner. These limitations were in two parts:

1. The actual planning concept.
2. The visual part of the system.

To overcome these problems further experiments and research would be useful in the 
following areas:

1. Developing an interface for adding and amending domain rules, planning and 
replanning rules.

2. Implementing the Visual Planner using an Active Database.
3. Adaptively selecting a matching algorithm for a given object in a scene.
4. Extending the Visual Planning concept.

These topics will be discussed in turn, with some suggestions and examples on how such 
extensions might be incorporated within the Visual Planner. The chapter ends with the 
new questions that have come to light during this research.

9.1 Further Experiments and Research

A number of extensions needed to the Visual Planner have come to light during this 
research. However, it is not clear what side effects these actions will have on the overall
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system performance, as no experiments have been conducted. These extensions are 
discussed below, giving some examples on how they may be implemented.

9.2 Adding and Changing Rules Interactively

At the moment the rules for selecting appropriate sub-plans and refined plans in the 
Visual Planner are encoded within the system. There is no easy way of adding new rules 
or even amending rules within the Visual Planner. As there are two main types of rules 
within the Visual Planner (Domain Rules, Planning and Re-planning Rules), we could 
have two different interfaces for specifying and modifying rules. One would be for 
adding and making changes to the Domain Rules, and handling environmental change, 
the other would be an interface for the Planning and Re-Planning Rules.

9.2.1 Adding and Changing Domain Rules

Domain Rules mainly work on a histogram of an image. At the moment the Visual 
Planner leams the domain it is working in by accumulating an average histogram of all 
the images presented to it. The variation of the histogram of a given image from the 
average histogram is then calculated. If the variation falls outside a predefined threshold 
value, then a re-plan is initiated. However, the problem lies with these threshold values, 
simply they cannot be changed without some programming effort, and even if they were, 
we could not be sure we had set appropriate thresholds given a particular domain.

To overcome this problem the Visual Planner should present a histogram of an image 
and the average histogram of all images to the user. The user may then interactively 
specify maximum or minimum threshold values on the average histogram, exclude part 
of the histogram altogether on the image histogram, move the histogram of the image 
to compensate for light changes, or equalise the image before it is added to the average 
histogram. The Visual Planner would then use the values on the average histogram as 
constraints for that domain. If the constraints are violated in any way, than the Visual
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Planner will initiate an alarm and interrupt the user. The changes made to the image 
histogram should then be made to all images presented to the Visual Planner thereafter. 
As the user makes changes to the histogram, or sets threshold values, then these should 
be reflected in the current image. This would allow the user to see what effects his 
changes would have on the image, thus allowing them to highlight particular objects or 
compensate for bad lighting conditions due to poor equipment such as camera, or light 
source.

A simple example could be as follows: 
The user wants to reduce the alarm 
rate initiated if the maximum height 
value on the average histogram is 
violated. This could be done by 
moving the maximum value pointer on 
the histogram to a higher position as 
shown in Figure 9.1.

New 
Max-Height

Max-Height

Figure 9.1 Average histogram with 
selected height value.

The change will not affect any image presented to the Visual Planner, however, it would 
modify the Domain Rule (DRule 11, see chapter 6) that detects the violation from:

DRuIe(ll)
IF Histogram of ALL Images Max_Peak + 10% < Current Histogram Max_Peak 

THEN CALL (USER)

to:
DRule (11)

IF Histogram of ALL Images Max_Peak + New Max_Height < Current Histogram Max_Peak 

THEN CALL (USER)
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9.2.2 Adding and Changing Planning and Re-Planning Rules

The rules for planning and selecting initial sub-plans, and refined plans thereafter are 
embedded within the Visual Planner. This however, is very restrictive as the rules 
developed here requires considerable programming effort and are difficult to test. The 
Planning and Re-planning Rules traverse their way through a network of algorithms, 
driven by the contextual information of the object and how well the algorithm works on 
each object, i.e. the space of useful application domain overlap is reduced. However, we 
may wish to traverse the network given other restrictions and constraints, or even relax 
the rules so that author algorithms that would not be considered, will be. For example 
suppose we wish to select the fastest possible segmentation process for an object. At the 
moment the rules work in such a way that a sub-plan is created by moving to succeeding 
algorithms until no more algorithms exist. The sub-plans created can therefore be longer 
than may actually be needed. It is feasible for example that an object may be segmented 
on just a thresholding technique (a priority level 1 algorithm).

In this case the rules that drive the search must be changed in some way so as to allow 
the Visual Planner to execute the sub-plans as each new algorithm is added to a sub- 
plan. Once the goal has been achieved, we do not need to consider any more algorithms 
for that particular object. A user interface could be added that gives the user a list of 
current Planning Rules and a list of structures that could be used on these rules as shown 
in table 9.1 below:

By editing the rules using the structures available, different search strategies could be 
used. In our example we could change Rule 4 to execute the algorithms as they are 
added to the sub-plan. If the execution is successful then the goal has been achieved, and 
thus the sub-plan would be saved. This type of interface would require some expertise 
to use, however, scripts of such rules could be written and saved for future use.
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Planning Rules
RULE 1: IF Succeeding-Alg EXISTS in Sub-Plan THEN
... .:.;;;. ':- : '< :-^f;\^^' :: ••/'•.- '•••. '•• • "• .•..•;'"•'••.. ' "Break •"••• :;-" ' " ' ' ; '^'': :^ +".*'^-'J': ". -•^-'- '

RULE 2: IF Succeeding-Alg.Conlextual-Infbrmation = Object. Contextual-Information THEN
'^• ; .'- :V; -. : V^;.V;-::; :: -:^ : ;; ; ^ 1 '^'':-':':̂ -.'^'-^': :::-' :.''''^'

RULE 3: IF Succeeding- Alg. Alg-C-I-Count < Min-C-I-Count THEN
: liM^:ii3i^.-,-.,v,, .,,,,,,,.•:,,,,,..,, , ^;:-xi : -;;:: ;;v^':^- ; ;:: vv;:::; ^±-;: ,^;.-' • ' ' Weighting = Weighting +1 '"' '•' ' : ".'•.-.••' • .' : ' ;; ' ''' ;; '' : "'•' '•••' : -''

Min-C-I-Count = Succeeding-Alg.Alg-C-I-Count

:.; : ; i - ; : : V V: ;-. : - ,• ' : " ::Break" ' " ' ^•^'••??;^'^^-\ 
:V.; ;f'^'R-:iF Weighting = 2 THEN : '- : '\ : ":^';' ;: -; ;: "

Next-Algorithm = Succeedihg»Alg
Structures Available ____________ 
IF, THEN, ELSE, BREAK •• ••'^^'^•^^••^ 
EXECUTE,

Table 9.1 Planning Rules and user commands that ma be added to such rules. 

9.3 Active Database Extension

It is proposed by Panayiotou and Naqvi (Panayiotou 95) that the development of such 

a system should be undertaken on an Active Database (Naqvi 93). The philosophy of an 

active database is the provision of a flexible, adaptive, and active capability. An active 

database system has the notion of event-condition-action. Such a philosophy is ideal for 

a system such as the Visual Planner as it is stimulated by mainly undefined external 

events such as a change in lighting, noise, etc. The Visual Planner would then allow us 

to deal with the event accordingly, depending on the domain rules. The major change 

here is that events can have priority levels, thus if the environment changes in any way 

the Active Visual Planner would stop the current planning process and deal with the 

event.

An active database management system (DBMS) manages knowledge as well as 
providing the traditional database functionality. Thus, the architecture of an active
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database management system, in contrast to that of a passive DBMS, also has the 
capability to deal with rules. Rules such as Domain Rules can thus be easily changed, 
added, or deleted, much the same way as data can in a passive DBMS. This capability 
would allow us to change rules interactively as described above.

An active database provides a premium over the knowledge based approach in that it 
allows fast evaluation of knowledge in response to a change in the application domain 
space, i.e. external environmental events would be handled almost instantaneously by 
an active database implementation of a Visual Planner. The use of an active database 
would allow the domain knowledge to be stored in a central repository making it easily 
accessible, it would then be easy to compare an external event with a similar event that 
occurred previously. Re-planning would thus become easier as we could take the course 
of action that was taken when a similar event occurred as an initial plan template. An 
active database also supports other types of knowledge representation schemes (not just 
production rules), such as frames and semantics. This is an important factor within a 
visual system, as different representation schemes may be used for an appropriate search 
or goal match (Minsky 75).

An active database is highly concurrent, therefore such a system can process many 
images concurrently. This eliminates the limitation within the current visual planning 
prototype where each sub-plan is executed sequentially. Executing sub-plans on the 
same image concurrently can course problems, however, an active database has the 
capability of managing resources, in this case the image. Sub-plans cannot work on the 
same copy of an image, as algorithms within each different sub-plan may produce 
undesirable results causing the sup-plans to fail for no apparent reason. An active 
database would make copies of each image for a sub-plan to work on.
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9.4 Adaptively Selecting Matching Algorithms

As we have seen in chapter seven, the success of the Visual Planner is influenced by the 
matching algorithm selected, in this case the local-feature-focus method (Bolles 83) has 
been used. However, This algorithm works well on specific features, and occluded 
objects are not considered within this implementation of the method.

We have seen from the review in chapter two that there are many ways an object can be 
recognised, and different similarity measures can be given dependent on the noise and 
the features extracted. Here we give an extension to the Visual Planner, which we 
believe is not only feasible, but more practical. Selecting a matching algorithm will 
depend on what features have been extracted by the sub-plan and what features are 
modelled within the object database. The matching algorithm can be selected from one 
of two places, a) the image processing and segmentation primitives database, where the 
appropriate matching algorithm is extracted with the segmentation algorithm selected, 
or b) from the object database, dependent on the contextual information of the object 
and thus the features to be extracted.

The matching algorithm is selected dependent on what feature space we need to 
compare. For example if an object is Linear then we may wish to match the object on 
it's edges (Nack 77), contours (Medioni 84), or surfaces (Pelizzari 89).

Selecting an algorithm to compute the similarity measure as already stated in chapter 
two is closely related with the selection of matching features since it measures the 
similarity between features extracted from the image and the model of the object. The 
selection of the similarity measure algorithm will then depend on which matching 
algorithm was selected. We could also use the image noise characteristics in selecting 
a similarity measure algorithm as we already have a model of the noise within the
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image characteristics database. This would make the algorithm selected more tolerant 
to noise if needed.

9.5 Extending the Visual Planning Concept

The Visual Planner developed here does not have the complexity of most classical 
planners, in that such complexity is not needed as we are not trying to solve the general 
problem of planning. However, extensions to the Visual Planner, would allow it to work 
more efficiently and increase its application domains. The list below gives some ideas 
which could be implemented to produce a more adequate system.

1. One advantage of the Visual Planner over other visual systems is that it could work 
in parallel as each sub-plan is nonlinear i.e. each sub-plan can be executed independently 
to achieve a partial goal. However, many algorithms selected may be common too many 
sub-plans. A resource manager could be added which detects this and produces plans 
that may share the image. This would make the execution of the overall plan much 
quicker and more efficient. Figure 9.2 shows how a resource manager could be used to 
produce composite sub-plans.

Sub-Plan A

^

Sub-Plan B

Figure 9.2 Resource Manager produces composite plan.

In this example the Resource Manager uses sub-plan A and sub-Plan B to produce a 
composite sub-plan as Algorithms 1 and 2 are common. We have effectively reduced 
the execution time by Algorithm 1 Execution Time + Algorithm 2 Execution Time.
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2. The Visual Planner does not detect changes in the environment as it is actually 
planning and replanning. It is therefore not a real-time system and cannot work on 
continuous moving images. We have proposed a system using active database 
technology (Naqvi 93, Panayiotou 95) which can monitor the world as changes occur 
by calculating the number of sign changes in pomtwise intensity values (see chapter 3) 
from the image currently being processed to the image that has just been captured 
(Venot 89). If the change is greater then some predefined threshold value, then an event 
could be initiated which interrupts the planning process and resolves the difference.

3. The Visual Planner may not select the best possible plan to achieve a sub-goal, it will 
select a sub-plan that satisfies the goal, but it may not be the most efficient. To select 
the best possible plan it would require every plan selected to be executed with different 
threshold values within the threshold range constraints. Each sub-plan would then have 
to be compared to all other possible sub-plans' performance measures. This would 
clearly be time consuming, thus making the Visual Planner inadequate. However, this 
type of search may be needed in safety critical domains where only the beast possible 
plan would suffice. This could be implemented as an option within the Visual Planner 
only to be used within such domains. Changing the planning and replanning rules may 
also produce better results, such as finding the shortest route through the network of 
succeeding algorithms. Whatever the method, better search techniques will be needed 
to make the Visual Planner more efficient.

9.6 New Questions Addressed

1. It has been said that we cannot have a truly adaptive system (Kohl 87) due to the fact 
that an image is too complex either because of the physical situation from which the 
image was derived, the nature of the scene, or there is a problem in evaluating different 
regions or segments. The results presented here however, showed that we can have a 
semi-adaptive system that can overcome problems within a scene by using domain rules 
to adjust for the physical situation from which the image was derived. As to the fact that
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there is a problem evaluating different regions or segments, we have proposed a system 
that uses different matching algorithms dependent on the contextual information and 
characteristics of the objects to interpreting the scene.

The author has shown that we can at least have a semi-adaptive system, which acquires 
knowledge about its environment, and uses this knowledge to achieve a given goal.

2. The Visual Planner uses production rules to reason about changes in the environment, 
objects and in planning (Hayes-Roth 85, Nazif 84). However, is this the best possible 
method of implementing such a system? Chapter two has given some advantages and 
disadvantages of production systems. It has shown that other AI techniques (Semantic 
networks and frames, Syntactic descriptions, etc.) may be more useful for limited 
domain such as the classification of fingerprints. Selecting an AI technique to use will 
then depend on the domain we wish to model. The question then is, can we select an 
appropriate AI technique that works well given the domain?

Selecting among a number of techniques to produce a sub-plan, may at first seem not 
so difficult, if for example the Visual Planner was used to count a staircase structure we 
would say that a syntactic description (Miclet 86) of the object need only be calculated 
and compared to the syntactic description of the model. This is most efficient and very 
robust as we are basically matching the alphabet of the image to the alphabet of the 
model. However, The object has to be modelled using this alphabet, and if we wish to 
use for instance a production system, then the model will also have to be contained in 
a different form, one of lines, vertices and facets. The point is, that mixing different 
representations of knowledge and models will produce a far too complicated system 
that cannot by easily updated. However, for well defined domains where we know that 
the domain can be modelled using a syntactic description, or frames, or rules, then we 
should be able to select between the different techniques.
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3. The Visual Planner does no high level reasoning about its domain, its aim is to 
produce segmentation algorithms given a predefined goal and the knowledge and data 
needed to produce such algorithms. However, we have seen that some sort of matching 
algorithm is needed to see if it has achieved its goal. The question then arises whether 
the Visual Planner can be made to understand a given scene and reason about this scene? 
If so we can imagine a system that produces plans for identifying objects related 
to other objects, without having to fully detect them in a scene, such objects may be 
occluded or out of the field of view that may have to be inferred by the Visual Planner 
(Mohr 90, Bunke 90). However, without closer inspection of the object occluded we 
cannot infer that it does or does not have a fault.

9.7 Summary

This chapter presented some extensions that could be carried out within the current 
framework of the Visual Planner to produce a more efficient and reliable system. It 
shows how active database technology could be used to control events, conditions, and 
actions with greater ease and reliability. We also discussed how we could adaptively 
select a matching algorithm given the features extracted from a sub-plan. We also 
showed how such an algorithm became part of that sub-plan, and thus the overall plan.

Finally the new questions that have come to light during this research were addressed 
and some possible solutions were given.
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Appendix A: Test Images and Domain

The x-rays above show a sample of clean (no faults) 

images and their associated histograms. The 

histograms show that the images are birnodal, and 
thus with the knowledge of the background 

intensity" values we can segment the background 

from the foreground using a simple thresholding 

technique. Figure A! shows the average histogram
0 "j" /"» | OO T*; •« '*-^ O fTOC ^"f^ O H* O f* i/"/"I""""/^ ? •»•»-$/*< •» •*"•>• "I-.Ck"*"! C* 1! "Ht " T*^> r^ r*£b 

*. w * Wvi* i A A A i CL £.. W O., t-iiw ^/CLWiVii^ V/ i-iJ-X\-i ill i-Wi 1*M v V i C^jlliiw

Pixel Count
Legend

Background j 
Foreground

Mid¥ku8(!!5)

Average histogram.

The table below (Table Al) shows the image characteristics for this domain, based on 
the set of clean images used in the training stage of the Visual Planner.

•w <*•* *—^

Attribute Name
Maximam Background Threshold 
Minimum Background Threshold. 
Maximum (-«-) Noise Deviation ':$; 
Minimum (-) Noise Deviation

136 :,.'• Intensity Value 
.17 Intensity Value/ 
1570 Pixel Count:\^ 
-1522 Pixel Count -^
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A2 Sample of Object Attributes

Main Class
miorm

C''?v
ii^«,4. V

\»f«Y Trst^T^^V Vail If* -V«.C..*« ilitw.iiO,iv¥ Y CUUw

Area

Major AXIS 
Minor Axis

Area

Major Axis 
Minor Axis

Value 
Crack

43

16

65

26
10

Pixel Count 
1 I

Internal Crack

i Object Attribute
i Main Class
j Contextual Information
; Name
i Average Intensity
1 Max Intensity Value
I Min Intensity Value

:
Crack
Linear
Hot Tear
239
241
23/i

2/5



Appendix A: Test Images and Domain

Object Attribute
Main Class
Contextual Information 
Name •'•' . 
Average Intensity

+2 •*

Max Intensity Value 
Min Intensity Value 
Area : 
Major Axis 
Minor Axis

Value Pixel Count

Hole 
Blob 
Blowhole
35 •.::. 
39 .
32 •'.. 
67 '-. : 
17 , : . •• 
14' ' -

Object Attribute
Main Class - ; ,- ;:-.-./-;i 
Contextual Information

Average Intensity ̂  -•• 
Max Intensity Value 
Min Intensity Value 
Area ^. ::::\. : :.;,:^--::^^\- • 
Major Axis •'' ;;":Vf:. :;;' ; :- 
Minor Axis ; : - : '^->'V:'S

Value Pixel Count

Hole .• :.-, : .;.. 
:B16b''..S& 

: Gas Porosity

34 i
Gas Porosity

Please note: Figures of faults are not to scale.
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Bl Test Results on 200 Normal Images

Appendix B: Test Results

Defect Code and ID No.

Tsize

Test

Gas 
11

30

20

For 
12

10

20

B/H 
13

50

20

SH
14

20

20

S/HT 
17

20

20

FL 
18

20

20

DI
20

10

20

CR
21

60

20

HT
22

10

20

C/Br
23

10

20

Results at 60% Matching Strength
•
X
9
•

•

1

20

0

1

d

19

1

0

b

20

0

0

20

0

0

20

2

2

c,c

20

0

0

20

0

0

20

0

0

18

2

0

e,e

19

1

0

e

Results at 65% Matching Strength
•

X
9
*

•

1

20

0

0

19

1

0

b

20

1

1

c

20

0

0

20

0

0

20

1

2

c,a

18

2

0

b,b

20

0

0

19

1

0

e

19

1

1

c

Results at 70% Matching Strength

•

X
9
•

•

1

19

1

0

e

18

2

2

c,c

19

1

2

c,d

20

0

0

20

0

0

20

0

2

d,d

19

1

0

b

20

0

0

19

1

0

d

20

0

0
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Results at 75% Matching Strength
•
X
9
•

t

1

18

2

1

c,e

19

1

0

b

20

0

1

d

18

2

2

a,c,d

20

0

0

19

1

2

b,d,d

19

1

0

b

19

1

0

a

20

0

0

20

0

0

Results at 80% Matching Strength
•
X
9
•

t

19

1

2

d,d,e

19

1

0

a

18

2

2

b,c,d

19

1

2

c,d,e

19

1

0

e

18

2

2

a,d,d,
e

20

0

0

20

0

1

d

20

0

0

20

0

0

Results at 85% Matching Strength
•

X
9
•

f

19

1

1

b,d

19

1

2

c,d

20

0

0

18

2

1

a,d,e

20

0

1

d

19

1

1

d,e

19

1

2

c,d

19

1

1

a,d

20

0

1

c

20

0

0

Results at 90% Matching Strength
•

X
9
•

i

20

0

3

d,d,d

19

1

1

a,c

20

2

2

b,c,d

19

1

2

e,d,d

20

0

1

d

18

2

3

c,d,d,
e

19

1

2

a,d,d

20

0

0

18

2

2

a,d,d,
e

20

0

0
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Results at 95% Matching Strength
•
X
9
•

t

1

18

2

5

a,c,
4*d

19

1

4

a,
4*d

19

1

6

e,
6*d

19

1

6

c,
5*d

19

1

5

c,
4*d

18

2

10

b,e,
10*d,

20

0

6

6*d

20

0

2

d,d

19

1

4

d,d,d,
d,e

20

0

0

Results at 100% Matching Strength
•
X

9
•

T

18

2

16

a,c, 
15*d

19

1

17

b, 
17*d

19

1

18

a, 
18*d

20

2

15

b,c, 
14*d

20

0

17

17*d

18

2

18

a,b, 
18*d

19

1

13

13*d, 
e

20

0

16

16*d

19

1

14

b, 
14*d

20

0

5

5*c

KEY:

Tsize : Test Image Sample Size
• : Correct
X : Incorrect
? : Uncertain
i : Information on errors:

a: Wrongly identified fault i.e. picked up another fault
b: Picked up false target
c: Uncertain of object and object absent
d: Uncertain of object and object present
e: Object not picked up i.e. sub-plan failed.
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B2 Test Results on 200 Images with Environmental Changes

Change in lighting and noise (out of focus, dirt on lens etc.)

5 images tested with increased lighting conditions

5 images tested with reduced lighting conditions

5 images tested with camera out of focus

5 images tested with a filter in front of lens to introduce random noise.

Defect Code and ID No.

Tsize

Test

Gas 
11

30

20

For 
12

10

20

B/H 
13

50

20

SH 
14

20

20

S/HT 
17

20

20

FL 
18

20

20

DI
20

10

20

CR
21

60

20

HT
22

10

20

C/E
23

10

20

Results at 60% Matching Strength

•
XL+

KL-

XN

XF
7
•

•

1

18

1

1

0

e,e

16

2

1

1

2

a,a,c,
c,e,e

19

1

0

b

19

1

0

e

19

1

0

a

20

0

18

1

1

0

a,a

20

0

19

1

0

b

20

0
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Results at 65% Matching Strength

•
XL+

XL-

XN

XF
9
•

•

1

19

1

0

b

17

1

1

1

1

a,a,b, 
d

19

1

0

e

18

1

1

0

b,b

19

1

0

b

20

1

d

17

2

1

0

b,b,e

19

1

1

b,d

20

0

20

0

Results at 70% Matching Strength
•
XL+

XL-

XN

XF
9
•

*

1

18

2

0

b,b

18

1

1

0

b,e

19

1

0

b

19

1

2

b,d,d

19

1

0

b

19

1

1

b,d

17

2

1

1

a,b,b, 
c

19

1

0

b

20

0

20

0

Results at 75% Matching Strength

•
XL+

XL-

XN

XF
9
•

•

1

17

1

2

2

b,b,b, 
d,d

17

2

1

0

b,b,b

19

1

1

b

19

1

0

a

19

1

0

b

19

1

1

b,d

18

1

1

2

b,b,d, 
d

19

1

0

b

20

0

20

0
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Results at 80% Matching Strength

•
XL+

XL-

XN

XF
9
•

*

1

18

2

3

b,b,d, 
d,d

17

3

4

a,b,b, 
4*d

19

1

1

b,d

19

1

1

d,e

19

1

3

b,d,d, 
d

19

1

2

b,d,d

17

2

1

2

a,b,b, 
d,d

19

1

1

b,d

19

1

0

20

0

Results at 85% Matching Strength

•
XL+

XL-

XN

XF

9
•

•

1

17

2

1

4

b,b,b, 
4*d

18

1

1

4

b,b,
4*d

19

1

5

b,5*d

18

2

5

a,b, 
5*d

19

1

6

a,6*d

19

1

3

b,d

18

1

1

5

b,c,
5*d

19

1

4

b,4*d

20

1

d

20

0

Results at 90% Matching Strength

•
XL+

XL-

XN

XF

9
•

*

1

17

3

9

a,b,b, 
c,8*d

16

3

1

7

b,b,c, 
c,5*d

19

1

10

b, 
10*d

18

2

12

b,c, 
ll*d

19

1

14

b, 
14*d

20

12

12*d

18

1

1

10

a,c, 
9*d

19

1

9

b,9*d

19

1

2

b,2*d

20

1

d
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Results at 95% Matching Strength
•

XL+

XL-

XN

XF
9
»

•

1

18

2

19

b,b, 
19*d

17

1

2

16

a,b,b, 
16*d

19

1

18

a, 
18*d

18

1

1

17

b,b, 
17*d

19

1

18

c,
18*d

20

20
20*d

17

1

2

16

b,b,c, 
15*d

19

1

15

b, 
15*d

19

1

9

c,8*d

20

7
7*c

Results at 100% Matching Strength
•
XL+

XL-

XN

XF

9
•

•

1

18

1

1

18

b,b,2 
18*d

17

2

1

17

b,b,c, 
16*d

19

1

19

b,19* 
d

18

2

17

b,c, 
16*d

18

1

1

18

a,b, 
18*d

19

1

19

b, 
19*d

17

1

1

1

17

b,b,c, 
16*d

19

1

20

c, 
19*d

20

20

20*d

20

20

20*

KEY: Tsize 
•
XL+ 
XL- 
XN 
XF
9
•

•

1

Test Image Sample Size
Correct
Incorrect when light is added
Incorrect when light is subtracted
Incorrect when noise is added
Incorrect when out of focus
Uncertain
Information on errors:

a: Wrongly identified fault i.e. picked up another fault
b: Picked up false target
c: Uncertain of object and object absent
d: Uncertain of object and object present
e: Object not picked up i.e. sub-plan failed.
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B3 Chi Square Test on Normal Images

Appendix B: Test Results

60% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

99

1

0

100

Expected

95

2.5

2.5

100

(0-E)

4
-1.5

-2.5

0

(0-E)2

16

2.25

6.25

(0=E)2

E

0.168421

0.9

2.5

3.568421
A2 = 3.568421

65% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

98

2

0

100

Expected

95

2.5

2.5

100

(0-E)

->

-0.5

-2.5

0

(0-E)2

9

0.25

6.25

(0-E)2

E

0.094737

0.1

2.5

2.694737
= 2.694737

70% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

96

3

1

100

Expected

95

2.5

2.5

100

(0-E)

1

0.5

-1.5

0

(0-E)2

1

0.25

2.25

(0=E)2

E

0.010526

0.1

0.9

1.010526
A2 = 1.010526
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75% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

97

1

2

100

Expected

95

2.5

2.5

100

(0-E)

2
-1.5

-0.5

0

(0-E)2

4

2.25

0.25

(0=E)2

E

0.042105

0.9

0.1

1.042105
= 1.042105

80% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

93

3

4

100

Expected

95

2.5

2.5

100

(0-E)

=2

0.5

1.5

0

(0-E)2

4

0.25

2.25

(0=E)2

E

0.042105

0.1

0.9

1.042105
X2 = 1.042105

85% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

93

2

5

100

Expected

95

2.5

2.5

100

(0-E)

=2

-0.5

2.5

0

(0-E)2

4

0.25

6.25

(0-E)2

E

0.042105

0.1

2.5

2.642105
= 2.642105
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90% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

90

3

7

100

Expected

95

2.5

2.5

100

(0-E)

=5

0.5

4.5

0

(0-E)2

25

0.25

20.25

(0=E)2

E

0.263158

0.1

8.1

8.463158
= 8.463158

95% 
Matching 
Strength

Correct

Incorrect

Uncertain
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76

4

20

100

Expected

95

2.5

2.5

100

(0-E)

=19

1.5

17.5

0

(0-E)2

361

2.25

306.25

(0=E)2

E

3.8

0.9

122.5

127.2
= 127.2

100% 
Matching 
Strength

Correct

Incorrect

Uncertain
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17

4

79

100

Expected

95

2.5

2.5

100

(0-E)

=78

1.5

76.5

0

(0-E)2

6084

2.25

5852.25

(0-E)2

E

64.04211

0.9

2340.9

2405.842
= 2405.842
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Appendix B: Test Results

60% 
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Correct

Incorrect

Uncertain
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95

4

1

100

Expected

95

2.5

2.5

100

(0-E)

0

1.5

-1.5

0

(0-E)2

0

2.25

2.25

(0=E)2

E

0

0.9

0.9

3.8
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65% 
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Correct

Incorrect

Uncertain
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94

5

1

100

Expected

95

2.5

2.5

100

(0-E)

=1

2.5
-1.5

0

(0-E)2

1

6.25

2.25

(0-E)2

E

0.010526

2.5

0.9
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= 3.410526

70% 
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Correct

Incorrect

Uncertain
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93

6

1
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Expected

95

2.5

2.5

100

(0-E)
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3.5

-1.5

0

(0-E)2

4
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E
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4.9

0.9
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75% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

92

5

3

100

Expected

95

2.5

2.5

100

(0-E)

-^

2.5

0.5

0

(0-E)2

9

6.25

0.25

(O^E)2

E

0.094737

2.5

0.1

2.694737
A2 = 2.694737

80% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

86

6

8

100

Expected

95

2.5

2.5

100

(0-E)

=9

3.5

5.5

0

(0-E)2

81

12.25

30.25

(0=E)2

E

0.852632

4.9

12.1

17.85263
A* = 17.85263

85% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

77

7

16

100

Expected

95

2.5

2.5

100

(0-E)

=18

4.5

13.5

0

(0-E)2

324

20.25

182.25

(0-E)2

E

3.410526

8.1

72.9

84.41053
A2 = 84.41053
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90% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

50

7

43

100

Expected

95

2.5

2.5

100

(0-E)

=45

4.5

40.5

0

(0-E)2

2025

20.25

1640.25

(OE)2

E

21.31579

8.1

656.1

685.5158
= 685.5158
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Matching 
Strength

Correct

Incorrect

Uncertain

Observed

16

6

78

100

Expected

95

2.5

2.5

100

(0-E)

=79

3.5

75.5

0

(0-E)2

6241

12.25

5700.25

(0=E)2

E

65.69474

4.9

2280.1

2350.695
= 2350.695

100% 
Matching 
Strength

Correct

Incorrect

Uncertain

Observed

0

7

93

100

Expected

95

2.5

2.5

100

(0-E)

=95

4.5

90.5

0

(0-E)2

9025

20.25

8190.25

(0-E)2

E

95

8.1

3276.1

3379.2
A2 = 3379.2
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B5 Images Showing Environmental Changes

Figure Bl Normal image.

Figure B2. Image out of focus.
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Figure B3. Image with random noise.

FT-" 
r

Figure B4. Image with low lighting
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B6 Anderson T s Parameter Timing V the Visual Planner

The figures below show the difference between Andersen's (Andersen 74) parameter 

tuning system, compared to the Visual Planner. The results show that parameter toning 

has a limited success over the Visual Planner. The segmentation process is not as 

efficient as that produced by the Visual Planner. The parameter tuning system is also 

slower then visual planner. This is due to the fact that with each parameter change the 

algorithms had to be executed.

B6.1 Test on Non-Corrupted Image

Figure B5 Non-corrupt image with Internal Crack
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B6.1.1 Anderson's Parameter Tuning System Results.

Figure B6 a) Threshold at 240, under-segmentation. 
b) Threshold at 200, under-segmentation

Figure B6 c) Threshold at 150, Internal Crack found
d) Threshold at 100, over-segmentation.

The matching algorithm found the crack after 12 iteration using Anderson's parameter 

tuning system from intensity level 255 down to intensity level 195 with a threshold
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change of -5 for each intensity level. It continued to find the crack for a furthei 

iterations down to intensity level 145.

B6.1.2 The Visual Planner's Segmentation Plans.

Figure B7 a) Visual Planner's enhancement plan. 
b) Visual Planners segmentation plan.

The Visual Planner Produced the followin enhancement and sementation sub-lans:

Median i-ilter
Digitisation *Mm=143, Max=

.nresriQiG values tor algorithms

Sobel Edge Detection *157 
Dilate

Thinningw
Robust Line Rules 
Boundary Following

The Visual Planner went through 2 mutations from the initial algorithm selected before 

it found a match and produced the segmentation plan above. The digitisation threshold 

values were set according to the average background intensity value (143) and the
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«/ V X

at the average object Intensity value (157).

B6.2 Test on Corrupted Image

Pise! Count

Figure image with Internal Crack.

236



B6.2.1 Anderson's Parameter Tuning System OE

Figure B9 a) Threshold at 240. under-segmentation.
b) Threshold at 200, Crack appears, but image too corrapt.

Figure B9 c) Threshold at 150, over-segmentation, 
d) Threshold at 100, over-segmentation.

Anciersoifs parameter tuning system could not produce a strong enough segmentati 

in order to get a match, the system failed with this image.
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B6.2.2 The Visual Planner's Segmentation Plans

Pixel Const

a

Pixel Count

Figure

^V S\/Vu Jrr
a) Original image histogram.
b) Domain Rules darken image.

Figure Bl 1 a) Visual Planners enhancement plan.
b) Visual Planners segmentation plan.

Segmentation Plan
Light Decrease Domain Rule *-2
Median Filter
Digitisation *Min=143, Max=191

^Threshold values for algorithms

Sobel Edge Detection * 157
Dilate
Erode
Thinnins***•
Robust Line Rules 
Boundarv' Following
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Appendix C

Image Processing and

Segmentation Characteristics
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Appendix C: Image Processing and Segmentation Characteristics 

Cl Introduction

This section discusses and lists the different image processing and segmentation 
algorithms implemented in this project. It shows the thresholds needed if any and the 
references where the reader may find the work for a better explanation. It also shows 
which algorithm succeeds the current algorithm in order for a sub-plan to be formulated. 
It thus gives the information needed to declare each algorithm to the Visual Planner.

C2 Image Processing Techniques

Here the image processing techniques used within the Visual Planner are given. Image 
processing enhances an image or the features we are interested in for segmentation to 
take place.

C2.1 Noise Reduction Filters

Only simple features have been implemented, however, many others exit based on these 
ideas that work on an iterative scheme (Lev 76). These algorithms are common to all the 
sub-plans and thus have no declared succeeding algorithms, the image processing 
algorithms are executed by the domain rules dependent on the quality (noise 
characteristics) of the image.
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Noise Reduction Filter Attributes

Mean Filter Simple to implement, easy calculation working out the mean of
the pixels (local average). Can Blur edges. (Gonzalez 84).

Mean Filter (Threshold) Same as above but change only takes effect if T (threshold) >
predetermined value. Stops bumng but difficult to determine 
value for T at each step. (Pratt 78).

Median Filter Calculate median at each step and set value. Requires partial sort
(time consuming). Does not blur edges.(Huang 78, Lev 76).

Table Cl. Noise reduction filters and their attributes. 

C2.2 Histogram Transforms

Histogram Transform techniques use intensity mapping in an attempt to improve 

appearance as shown in the table below.

Feature Enhancement_______________Attributes__________
Histogram Equalisation Gives a more equatable sharing of pixels, it is monotonic i.e.,

dark areas remain dark and light areas remain light. It does not 
alter the information in a scene, just changes grey level gradients. 
(Pavlidis 82).

Local Enhancement Same technique as above is used, but used for each pixel in a
window W. Enhances detail over a small area to give better 
quality. It is however computationally expensive, and may not 
produce the desired result. (Gonzalez 87).

Table C2. Feature Enhancement techniques by histogram equalisation.

C2.3 Edge Detection

Primitive edge detection tries to determine whether a component of a boundary in an 
image passes through or near a given pixel. This is done by examining the rate of change 

of intensity near the pixel. Sharp changes (steep gradient) are good evidence of an edge,
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slow changes will suggest the contrary. Figure C. 1 shows some templates used for edge 

detection.

Sobel Edge Operators Prewitt Edge Operators Laplacian 1 Operator Laplacian 2 Operator

-1 0 I 1 i
-2 I 0 I 2

-i i o : i

Vertical

2 I 1 -2 0

1000!
I———i———I———I

-2 ! 0

-1 ! -2 -1
1___L

Horizontal Vertical

0 I -1 0
-1 ! 4 -1

j 0 i -1 0

Horizontal

Figure C.I Different edge operators..

These operators use a different threshold values dependent on the features we wish to 

highlight. The table C.3 shows some advantages and disadvantages of such templates.

Edge Operator Advantages and Disadvantages
Sobel edge templates

Prewitt edge templates

Laplacian

Different thresholds highlight different features. 
Gradient magnitude and gradient direction can be 
calculated. It is slow as two templates are used 
(Ballard 82). More accurate then Prewitt operators 
(Davis 84).

Same as above, but less efficient as it enhances the 
effects of noise. (Prewitt 70).

Zero-crossing (Marr 80) avoids thresholding and 
thinning, gives closed curves, does not give response 
where intensity is changing smoothly (Robinson 77). 
However, it responds strongly to noise and corners 
(Rosenfeld 82) and gives response on both sides of an 
edge.

Table C.3. Edge Operators.
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The Laplacian templates are implemented in the Visual Planner, however, they have not 

been used in any sub-plan by the Visual Planner, as it can not achieve a given goal when 

using such templates this is because within the test domain of castings the Laplacian 
filter detected too many false edges. The Visual Planner has no control over the 

Laplacian as it does not use threshold values.

C2.4 Mathematical Morphology

After the Sobel or Prewitt edge templates have been applied the image is transformed 
into a number of white lines on a black background. These lines however, have spikes 

or troughs that brake the flow of the line. There are two operations known as erosion 
and dilation (Gonzalez 87). We can use these two methods one after the other to produce 
different effect on images. For instance erosion followed by dilation gives us an opening 

effect and thus damps down spikes in an image. Dilation followed by erosion gives us 
a closing effect and thus fill troughs on an edge.

C2.5 Thinning

After edge detection and opening and closing operations have been applied on an edge, 
thinning is then applied. Thinning is the process of reducing an edge to a one pixel wide 

connected frame. Thinned objects are called the skeleton of the body (Sherman 59). 
Thinning is used here so that boundary following may take place. This is not essential, 

but allows the boundary following algorithm to work more efficiently, by only 
considering one pixel rather then a neighbourhood of pixels.
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C3 Segmentation Techniques

Segmentation is a form of pixel classification, i.e. we are assigning each pixel into a 

class of pixels based on some property of the pixel. Segmentation algorithms can be 

divided into two classes: i) based on pixel similarities, or ii) based on surface 
discontinuities. The former method involves regions and the latter edges. This section 

explains some segmentation techniques used within this project. It explains the 

thresholds used within these algorithms.

C3.1 Thresholding and Digitisation

Thresholding is probably the most simple of all segmentation techniques. It simply sets 
a region to black if it is below a certain threshold value, usually determined from the 
histogram of the image (Prewitt 66) or white if it is above a given threshold value. This 

produces a binary image. Binary images are useful, however, we do lose grey scale 
information. Several methods have been developed for automatically selecting threshold 
values, these have been reviewed in (Wezka 78, Rosenfeld 82).

Digitisation is based on the thresholding method, however, grey scale values are left in 
tact. Here the image is split according to two threshold values as shown below:

, = OIFG,<Tmm

y = New intensity value at a given pixel location (i,j).

;> = Current image intensity value at a given pixel location (i j)
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It can be seen from this method that we need knowledge of the object of interest to set 
the threshold values Tmin and Tmax . The Visual Planner uses this method as we haveilLUl Hl<U*k.

object characteristics, and for each object its maximum and minimum intensity values 
that can be used for T^ and T^ respectavly. If this algorithm is selected by the Visual 
Planner then the threshold values are extracted by the knowledge available on the 
algorithms. This knowledge is embedded within the algorithm i.e., what type of 
thresholds are needed from the object or image characteristics database.

C3.2 Region Segmentation

Region segmentation (Brice 70, Feldman 74) is used to split an image into connected 
clusters of pixels. Each pixel can only belong to one region, and all pixels have to 
belong to some region. Region segmentation achieves the same results as multiple 
thresholding, however knowledge of the objects is not needed to set the threshold values 
that will connect adjacent pixels. The advantages of using region based segmentation 
over edge detection and boundary following are:

1) there are fewer regions then pixels,
2) regions are connected and unique.

The disadvantages of using region segmentation are:

1) a region could be considered to be a single surface (under segmentation),
2) assumptions are made about the uniformity of image features when selecting 
threshold values i.e. the surface will always bee between Tmin and Tmax ,
3) surface properties or reflection could produce noise, i.e. increase or decrease its 
average surface intensity above or below a given threshold.
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There are two types of region based segmentation, Region Growing and Region 
Splitting. In Region Growing each pixel is considered to be a separate region and 
adjacent regions are merged if they have similar properties such as grey level. This is 
done according to some predefined threshold value. Region Splitting (Robertson 73) is 
exactly the opposite to region growing. The image is regarded as being a single region, 
and each region is recusivly subdivided into subregions. This once again can be used 
with some predefined object or background threshold, or the bimodality of histograms 
may be used to split regions (Prewitt 70, Nazif 84).

C3.3 Hough Transform

The Hough Transform (Hough 62) aims to bypass the detection of boundaries and 
generate information about parameter features such as circles and straight lines directly 
from information about edge locations. The Hough transform works in transform or 
parameter space. The parameters used describe the features we are looking for. The 
Hough transform within the Visual Planner is used to locate circular objects, Suppose 
we wish to locate circles of radius R in an image, such a circle centred at (a,b) has 
equation

(x-a)2+(y-b)2 = R2 

parametrically

(a+R cos6,b+R sinG)

Each edge pixel generated by some edge operator is then considered. The edge may be 
part of a circle, or part of another feature, or just noise. If however, it is part of a circle 
for which we are searching then we know that the centre of this circle must satisfy:

(a,b) = (x+R cos6+R sin9) 0<=6<27c
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The Hough transform is clearly computationally expensive, however, it is very good at 
finding circles or ellipses in the presence of noise, or if an object is partially occluded.

C3.4 Boundary Following

Boundary following is a region extraction method for finding a region outer boundary. 
The criteria used for defining region boundaries may be based on image properties such 
as pixel intensities, colour, or texture information (Dudani 76).

The boundary following algorithm used within the Visual Planner is that proposed by 
Dudani (Dudani 76). This algorithm has a number of desirable properties, such as 
producing the chain code of a boundary (see Chain Code below) which is used later for 
corner detection (see corner detection below), and area information.

The boundary following algorithm starts by scanning an edge detected image from left 
to right and top to bottom. Once an edge pixel is found it is used as the initial boundary 
point. The boundary point is then flagged as used, so it is not considered again. Each of 
the current pixels eight neighbours (0-7) are then searched to find the next boundary 
point, as shown in Figure C2.

0
(i-lj-l)

—————

(i-lj)

2 
(i-lj+l)

*7

(ij-l)

(U)

3 
(U+l)

6 
(i+lj-1)

5 
(i+lj)

4 
(i+lj+l)

Figure C2 Order of search for Boundary Following.
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The next boundary point found then becomes the current boundary point and is flagged 
as used. The whole process is repeated until no more joining boundary points exist. Each 
boundary point is saved in an array of points.

C3.5 Chain Code

Chain codes are used to represent a boundary by a connected sequence of straight line 
segments of specified length and direction (Gonzalez 87). The boundary following 
algorithm described above gives us the direction of the boundary, if we then count the 
number of adjacent points that are in the same direction we have the chain code of the 
object. An example is shown in Figure C3.

Chain Code: 3335575755711111

Figure C3 Formation of Chain Code. 

C3.6 Corner Detection

The corner detector used here is a heuristic detection method based on the chain code 
(Panayiotou 93) of an object. Initially we start by considering the first and last points in 
the chain code to be comers. If the object is closed then the first and last points will be 
the same. A comer is selected within the chain code if the direction of the succeeding 
values are in the same direction and their gradient magnitude is greater then some 
predefined threshold. The threshold selected depends on the average size of all the 
objects in the objects characteristics database, if the objects are small in terms of pixel
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values, then the threshold selected will be small, typically two to three pixels, if the 

objects are large and well defined, then the threshold values are increased, typically 20- 
30 pixels. Such a corner detector needs knowledge of object sizes. This is particularly 

suited for the Visual Planner as such information is readily available. Other algorithms 
such as the Plessy Algorithm (Noble 88) could have been used, as this works on chain 

codes, however, this algorithm is computationally expensive.

C4 Robust Segmentation Algorithms

A number of algorithms based on the work carried out by Nazif (Nazif 84) are also 
implemented within this prototype and have been extended by Panayiotou (Panayiotou 

93). This was carried out as the segmentation algorithms presented above may not 
always work to their full potential, e.g. Due to some domain change in lighting we ave 

lost some line information. Even though Domain Rules are used to detect and correct 
such changes, information may have been irretrievably lost. A set of rules (Nazif 84) are 
used after different algorithms are selected which will join or delete lines if an edge 

detection algorithm has been selected, or refine regions by splitting or merging them if 
a region based segmentation technique is used.

C5 Algorithm Knowledge

This section describes which algorithm succeeds the current algorithm, along with their 
contextual information and parameters passed to them used for threshold values if 

applicable. The table below shows what knowledge is kept on each algorithm within 
the Visual Planner.
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Algorithm

Thresholding 
Priority=l

lilge Detection 
Algorithms 
(Sobel, Prewitt and 
Laplacian) 
Priority=l

Thinning 
Priority=2

Mathematical 
Morphology 
Priority=2

Hough Transform 
Priority=2

Robust Line Rules 
Priority=2

Boundary 
Following 
Pnority=3

Chain Code 
Priority=4

Comer Point 
Detector 
Prionty=5

Region growing 
Priori ty=l

Region splitting 
Priority=l

Robust Region 
Rules 
Priori ty=2

Succeeding Algorithm List

Edge Detection 
Algorithms 
Region growing 
Region splitting

Mathematical Morphology 
Thinning 
Robust line rules 
Hough Transform

Mathematical Morphology 
Robust line rules 
Boundary following

Robust line rules 
Boundary following 
Thinning

Boundary following 
Mathematical morphology 
Thinning

Chain code

Corner point detector

Robust region rules

Robust region rules

Contextual 
Information

Linear 
Circular 
Geometric 
Blob

Linear 
Circular 
Geometric 
Blob

Linear 
Geometric 
Blob

Linear 
Geometric 
Blob

Circular

Linear 
Geometric 
Blob

Linear 
Geometric 
Blob

Geometric

Geometric

Blob

Blob

.Blob

Threshold 
Parameters

Tmm,Tmm = Min& 
Max intensity values 
of object to be 
segmented

T = Threshold value 
depending on object 
intensity.

x,y radius = major 
axis/2 and minor 
axis/2

Tmax, Tmm = °tyeCt ™aX

and min Intensity 
values.

Tmax> T^ = object max 
and min Intensity 
values.
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