
TO A.

OFT

A.

F*. X E

Douglas Ray/Hainlin

Submitted to the Council for National Academic Awards

in partial fulfilment of the requirements for the degree

of Doctor of Philosophy

Sponsoring Institution

Thames Polytechnic

May 1986

^

Validation of Queries to a Relational Data Base

Douglas Ray Hainline

This thesis addresses the problem of preventing users of a
data base system from interrogating it with query
language expressions which are syntactically and
semantically valid but which do not match the user's
intentions. A method of assisting users of a relational data
base to formulate query language expressions which are valid
representations of the abstract query which the user wishes
to put is developed.

The central focus of the thesis is a method of
communicating the critical aspects of the semantics of
the relation which would be generated in response to a
user's proposed operations on the data base. Certain classes
of user error which can arise when using a relational
algebra query system are identified, and a method of
demonstrating their invalidity is demonstrated. This is
achieved by representing via a graph the consequences of
operations on relations. Also developed are techniques
allowing the generation of pseudo-natural language text
describing the relations which would be created as the
result of the user's proposed query language operations.

A method of allowing the creators of data base relations to
incorporate informative semantic data about their relations
is developed. A method of permitting this data to be
modified by query language operations is specified.
Pragmatic linguistic considerations which arise when this
data is used to generate pseudo-natural language statements
are addressed, and examples of the system's use are given.

K: M o IAJ i_ EE: D CB IE: M EE M i s

The author wishes to acknowledge with gratitude the
early helpful advice of Dr Barry Alldred, representing
this work's initial external sponsor, IBM. He also is
indebted for the long support and encouragement of both
of his supervisors, Tom Crowe and Dr Roger Johnson. The
latter was a particularly fruitful source of critical and
constructive ideas, as well as displaying patience and a
faith in the work which at times seemed to surpass all
understanding. He finally wishes to thank his wife, Dr
Judith Shapiro, for serving both as proof-reader and as
a conscript test-subject.

B r M o o o 2 H M 2 H B

Set: t. :i. on Page

1. INTRODUCTION AND BACKGROUND

1.1 Introduction....................................... 1

1. 2 Background to Query Language Research. 2

1.2.1 Motivation for research into

validation...................................... 3

1.2.2 Validation...................................... 5

1.2.2.1 Overview...................................... 5

1.2.2.2 Data Validation............................... 6

1.2.2.3 Program Validation............................ 6

1.2.2.4 Validation in the Data Base Context........... 7

1.2-3 Query Validation Techniques..................... 9

1.2.3.1 Syntax Checking............................... 9

1.2.3.2 Data Base Object Existence and
Type Checking. 10

1.2.3.3 Display of Execution Tree..................... 10

1.2.3.4 Run Time Analysis of Executing
Query. .. 11

1.3. User interfaces with data bases. 11

1.3-1 Natural language communication
with a data base. 11

1.3-2 Pseudo-natural language systems.................. 15

1.3-3 Query validity's relationship to
data models and language choice................ 17

1.3-3-1 Query Validity in the Context of
Data Models.................................... 17

1.3.3.2 Query Validity and Query Language
Type... 18

1.3-3-3 Suitability of Relational Algebra
as a Query Language............................ 18

1.3./1 A Review of User Performance Studies............. 20

1.4 Classification of Queries.......................... 25

Table of Contents 1

Section Page

I.U.I The Abstract Query and its notations............. 25

1.U.2 Meaningful and Meaningless Queries............... 28

1.U.3 Other Approaches to Query
Classification. 31

1.5 Review of Work Related to
Reverse Translation. 35

1.5.1 Natural Language Generation:
Background. 35

1.5-2 Natural Language Generation:
Non-Database Examples............................ 37

1-5-3 Natural Language Generation:
a Database Example............................... 38

Table of Contents

Section Page

2. FOUNDATIONS OF REVERSE TRANSLATION

2, 1 Introduction

2. 2 Data Models. 41

2. 2. 1 The Relational Model. 41

2.2.1.1 Definitions.................................... 41

2.2.1.2 The Relational Algebra 42

2.2.2 The Entity/Relationship Model and its
Application in Reverse Translation. 52

2. 2. 3 Reduced Relations and Normal Forms. 55

2.2.4 Relational Families 56

2. 2. 5 Assumptions and Constraints. 59

2.2.6 Aims and Limitations
of Reverse Translation. 6O

2. 3 The Method of Reverse Translation. 61

2.3.1 A Summary of the Reverse
Translation Process. 61

2.3.2 Information carried by
the Reverse Translation. 65

2.3.2.1 Alternative approaches to
descriptions of relations. 65

2.3-2.2 Information about the "degree"
of individual entity participation
in a predication. 68

2.3.2.3 Information about Selections of
Sub-sets of Entity Sets. 69

2.3.2.4 Information about Entity Set
Correspondence in Complex Associations. 70

Table of Contents

Section Page

3. DATA STRUCTURES TO SUPPORT REVERSE TRANSLATION

3- 1 Introduction. 71

3-2 Base Relation Nodes: Entity Nodes
and Predication Nodes.r . 73

3-2.1 Predication Nodes. 73

3-2.1.1 Role in Reverse Translation.................... 73

3-2.1.2 Predication phrases........................... 76

3.2.1.2.1 Overview 76

3-2.1.2.2 Main Predication Phrase Set................. 78

3.2.1.2.3 Case Indicator Phrases Set................. 79

3-2.1.2.4. Permutations and Mapping. 80

3.2.2 Entity Nodes.................................... 82

3.2.2.1 Role in Reverse Translation................... 82

3-2.2.2 Terminology................................... 83

3-2.2.3 Predication Roles............................. 8/1

3.2.2.U Domain Information............................ 85

3.2.2.5 Domain Information Storage.................... 87

3.3 An Example of a Base Relation Graph
and its Reverse Translation........................ 88

3.3.1 Generalised RT Base Relation Graph............... 88

3. 3.2 An Instance of a Base Relation Graph. 88

3-3.3 Generating a Reverse Translation
from an RT Graph................................. 89

3.3.3.1 Discussion and Justification
of the Method.................................. 89

3-3-3-2 Predication Phrases............................ 89

3. 3. 3- 3 Indicator Phrases. 89

3.3.3.^ Edegree Phrases. 90

3. 3. /I Reverse Translation of RT Graph
of SPJ. ... 90

Table of Contents

Section Page

3-& Derived Relation Nodes: Logical Nodes, Comparison
Nodes and Value Nodes.............................. 91

3. 4. 1 Logical Nodes. 91

3.U.2 Comparison Nodes................................ 92

3.^.3 Value Nodes...................................... 93

Table of Contents

Sect ion Page

4. RELATIONAL OPERATIONS AND REVERSE TRANSLATION

4 . 1 Introduction. 94

4 . 2 PROJECTION. 95

4. 2. 1 Effect on relation semantics. 95

4.2.2 Effect on RT Graph............................... 96

4.2.3 Example Queries.................................. 97

/I. 2. a Effect on Translation. 98

4. 2. 4. 1 The Edegree of Entities. 99

4. 2. ii. 1. 1 Entities of Edegree N. 99

4. 2. 4.1.2 Entities of Edegree 1....................... 99

/I. 2. 5 Reverse Translation Examples. 100

4. 2. 5- 1 Reverse Translation of SP. 100

4.2.5.2 Reverse Translation of P. 100

H. 3 PERMUTATION....................................... 100

H. 3.1 Effect on relation semantics.................... 100

U.3.2 Effect on Graph 101

li . 3. 3 Example Query. 102

ti . 3. tL Effect on Translation. 103

4.3.5 Reverse Translation of JPS...................... 103

H, H SELECTION. .. 103

li. li . 1 Effect on relation semantics. 103

ti. H. 2 Effect on RT Graph. 104

U.H.3 Example .. 105

U.4.4 Effect on translation. 105

4.4.5 Reverse Translation of SPJ1. 106

4.5 The Set Operations. 106

Table of Contents

Section Page

4. 5. 1 INTERSECTION. 10?

4.5.1.1 Effect on relation semantics.................. 107

4.5.1.2 Effect on RT Graph. 10?

4.5.1.3 Terminology. 108

4. 5. 1. 4 Example Query. 109

4.5.1.5 Effect on translation......................... 109

4.5.1.6 Reverse Translation of PLi.................... 110

4.5.1.7 Entity Node Chains
and Relation Semantics........................ Ill

4. 5- 2 DIFFERENCE. 11*1

4.5.2.1 Effect on relation semantics.................. 114

4.5.2.2 Effect on RT Graph. 115

4. 5.2.3 Terminology. 115

4.5.2.4 Example Query................................. 115

4.5.2.5 Effect on translation......................... 116

4.5.2.6 Reverse Translation of PLd.................... 118

4.5.3 UNION... 118

4.5.3.1 Effect on relation semantics.................. 118

4.5.3.2 Effect on Graph. 118

4.5.3.3 Example Query. 119

4.5.3.4 Effect on translation......................... 120

4.5.3.5 Reverse Translation of PLu.................... 120

4.6 JOIN... 1?0

H. 6. 1 Effect on Relation Semantics. 120

/I.6.2 Effect on RT Graph. 121

k. 6.3 Example Query........................... 121

U.. 6. tl Effect on translation. 123

li . 6. 5 Reverse Translation of PSRL. 124

Table of Contents 7

Section Page

U.6.6 Cartesian Product............................... 12&

U.6.6.1 Effect on RT Graph and Translation............ 12H

U.6 .6. 2 Reverse Translation of PSPRL. 126

Table of Contents 8

Sect i on Page

5 ENTITY QUALIFICATION

5-1 Introduction...................................... 127

5-2 Terminology introduced in this Chapter............ 12?

5-2.1 Qualification Sub-graph types,.................. 12?

5-2.2 Canonical form. 128

5.2.3 Sub-graph Reduction. 129

5- 2. 4 Sub-graph Transferral. 129

5-3 Attaching Qualification Sub-Graphs
to each other.................................... 129

5- 3- 1 Introduction. 129

5-3-2 Attaching Simple Comparison Sub-Graphs
to Simple Comparison Sub-graphs. 130

5- 3- 3 Reverse Translation of SPJ2. 133

5-4 Reduction and Checking of
Qualification Sub-Graphs. 133

5. 4. 1 Introduction. 133

5 . 4 . 2 Reduction Tables................................ 137

5 . 4 . 3 Attaching a Simple Comparison Sub-graph
to a Complex Qualification Sub-Graph. 144

5 . 4 . 4 Attaching a Simple Logical Sub-graph
to an Entity Node with a Complex
Qualification Sub-graph. 146

5.4.5 Transferring Complex
Qualification Sub-graphs. 148

Table of Contents

Section Page

6 SET OPERATIONS

6.1 Introduction. 150

6.2 Predication-identical Graphs. 152

6.2.1 Terminology introduced in this Chapter.......... 152

6.2.2 Examples.. 152

6.2.2.1 Examples of Relations with
Non-Predication-Identical Graphs. 152

6.2.2.2 Examples of Relations with
Predication-Identical Graphs. 153

6.2.3 The Significance of
Predication-Identicality. 153

6.3 Trapping Errors in Set Operations
on Relations known to conform
to certain constraints.

6.3-1 Known set relationships
among relations.

6.3-2 Valid and Invalid Operations
on Sets with known Relationships. 155

6. ti Tests Applicable to Set Operations. 155

6. U. 1 Testing for Relation Identity................... 155

6. li . 2 Testing for inclusion and disjointness. 156

6.U.2.1 General Algorithm............................. 156

6.&.2.2 Testing for disjointness...................... 156

6. k. 2.3 Testing for set inclusion. 157

6.5 Processing an INTERSECTION........................ 158

6.5.1 Predication-identical and
non-identical graphs............................ 158

6. 5- 2 Graph Reduction Following Intersection. 160

6.5-3 Attaching Qualification
Sub-graphs to Entity Nodes
of prodected-out attributes..................... 161

Table of Contents 10

Section Pege

APPLICATIONS OF REVERSE TRANSLATION

7 . 1 Introduction. 36/1

7 2 The Connection Trap

7. 3 The "Selection Trap". 168

7. 3- 1 Background. 168

7-3-2 Example queries on a
single binary relation. 169

7-3-3 Discussion of Example Queries 170

7- 3- ^ Four Example Queries. 1 73

7-3-4.1 Persons who speak French173

7. 3. U. 2 Persons who speak only French. 17^

7-3.U.3 Persons who speak a language
other than French. 175

7 . 3- ii . U Persons who don't speak French176

7. ii The "Difference Trap". 177

Table of Contents 11

Section Page

8 CONCLUSIONS

8. 1 Introduction. 188

8.2 Methods for simplifying utterances................ 188

8.2.1 Predication Lowering. 188

8.2.2 Entity sub-set naming. 190

8.3 Indicating Scope. 193

8. a Handling Double Negation. 197

8. 5 Ambiguous Reference. 199

8. 6 Universal Quantification. 201

8.7 An Assessment of Reverse Translation
and Directions for Further Research............... 2O8

8.8 Practical Applications
of Reverse Translation. 210

Table of Contents 12

Section Pa£e

Bibliography

Appendix I: "Query Validation: reverse translation and

the connection and selection trap"

Appendix II: Reverse Translation Grammar

Appendix III: Program Listing

Table of Contents 13

This thesis describes an approach to providing a

significant measure of semantic validation for user queries

to a relational database. The problem addressed is the

question of how to provide assurance to the casual user of

a formal query language that a particular query expression

constructed by him corresponds to his intentions. The query

language chosen to illustrate the approach is relational

algebra.

The method expounded in the thesis has been realised in a

computer program. This program accepts relational algebra

queries typed in by the user, and returns a pseudo-natural

language "reverse translation" of the query. The following

is an example of the system in operation:

Consider a database consisting of two two-column

relations: PSL, associating Persons and the Languages

spoken by them; and PRL, associating Persons and the

Languages they read. The system described in this thesis

can take as input the superficially-similar relational

algebra query expressions (PSL % [Person]) - PRL %

[Person]) and (PSL - PRL) % [Person] (a difference between

two projected relations, and a projection of two

differenced relations, respectively) and generate text

which will allow the user to see the difference between

Summary

the semantics of the two queries. The first expression

yields persons who speak a language but read none. The

second expression returns the broader set (which includes

the first group) of persons who speak a language which they

do not read.

The methods developed in this thesis to accomplish

the "reverse translation" are a novel approach to query

validation and constitute an original contribution to

knowledge. The layout of the thesis is as follows:

Chapter I places the problem of query validation

within the context of validation in general, reviews

research into the types of errors that database users make

in placing queries, distinguishes among three levels of

reference for the term 'query', analyzes queries in terms

of their component features, and surveys related work.

Chapter II expounds the foundations of the approach

developed in the remainder of the thesis by setting out

precise definitions for the relational approach to data

base design, and discussing the relevance of the

Entity/Relationship approach to the present work. It then

summarises the method used (translation of Relational

Algebra expressions into information-bearing graphs),

and discusses the kind of validating information conveyed

to the user by the process.

Summary

Chapter III describes the abstract data structure (a

directed graph) which is the underlying mechanism through

which "reverse translation" is achieved.

Chapter IV continues the exposition of the techniques

of reverse translation by describing the effect of each

Relational Algebra operator on the graphs attached to the

relations upon which these operators are applied. Example

queries using each operator demonstrate the pseudo-natural

language text generated from the graphs of the relations

derived from Relational Algebra queries.

Chapter V takes up the methods needed to deal with

"qualified entities" (those which have been affected

directly or indirectly by a Relational selection

operation).

Chapter VI deals with the methods needed to handle

Relational set operations.

Chapter VII provides a set of example queries illustrating

various possible user "traps", and demonstrates the

application of the techniques developed in previous

chapters to each of them.

Chapter VIII concludes with a discussion of the promise and

limitations of the approach developed in the thesis, with

particular reference to possibilities for further research.

Summary

A list of references is followed by appendices containing

listings of the Pascal code used to implement the approach

of the thesis, and examples of sessions creating domains

and base relations.

Summary

CIMV MOXJDJM x

3MOa: JL

1.1 Introduction

The evolution of computer technology has steadily

expanded both the scope of applications for which

computers can be used, and the number of people brought

into direct contact with computer-based systems. The

development of direct-access mass storage technology

allowed the modelling of complex systems in data bases,

while visual display units allowed new layers of users

casual access to this data, mediated by query languages.

The relationships and properties of the objects

represented in a database can be modelled via several

formalisms. One of the simplest of these, sustaining a

large proportion of database-oriented research, is the

relational approach, which provides the data model

assumed in this thesis.

Each relation in a relational data base is normally

intended to represent collections of real-world

objects. Each relation also has an "intention" which can

be expressed by a user who understands the application

and the data base model of it. A user who understands

both the semantics of a query language and the intention

of the relations which are used as arguments to query

language expressions will be able to describe the

intention of the relation which is yielded by the query

process.

The fact that human beings can "generate" descriptions of

derived relations suggests that it would be useful to

investigate the possibility that a machine can do the

same thing. A machine-implementable method for generating

descriptions of derived relations would be a powerful

method of validating that the relation derived as the

result of a complex query expression was indeed the

relation desired by the user.

In pursuit of this goal, this thesis develops a method of

constructing, for the base relations of a relational

data base, graph structures which can be used to assist

users of the data base in formulating query language

expressions which are valid representations of the

abstract query which the user wishes to make. The base

relation graphs can be manipulated by expressions of the

relational algebra to produce modified graph structures

corresponding to the derived relations which would be

produced by the relational algebra expression. These

structures can in turn be used to generate pseudo-natural

language text for understanding the meaning of the

derived relations. This technique gives an end user the

possibility of checking that his proposed query

language expressions correspond to his intensions.

1 2 Background to Query Language Research

1.2.1 Motivation for research into validation

One of the central trends which has characterised the

evolution of computing systems is the expansion of the

class of users who can interact directly with the system.

Strong economic imperatives motivate this trend. The

CODASYL End User Facilties Committee summarises this

development in the following words:

Data processing hardware trends are well known.
There continues to be steady and dramatic
decreases in costs coupled with equally
steady and dramatic improvement in raw
performances. The non-hardware costs of data
processing, however, are primarily people
related costs which are rising due to both
inflation and scarcity of trained Programming
professionals.... To adapt to these trends, it
is desirable to bring the end user into the act
in partnership with data processing professionals
to shorten the application development cycle. At
the same time, it is necessary to develop
facilities that enable the end users to do a
great deal of their data processing, independent
of data processing personnel. [CODASYL EUF 1979]

The Committee distinguished "end users" who "are

generally not trained in programming or other data

processing technologies*1 from "system users," and divides

the former group into three broad classes.

(1) Indirect users, who deal with the system
through other people.

(2) Intermediate end users, who specify the
information requirements to be provided
by data processing.

(3) Direct end users, who are
"functional professionals and their
personnel who directly interact with the
computer in accomplishing their work. They
include accountants, engineers. salesmen.

etc." [CODASYL. ibid.]

It ±B "direct end users" in the CODASYL EUFC sense to

whom the research results in this thesis are expected to

be relevant.

A large proportion of direct end user/computer system

interactions will involve integrated data base

management systems, accessed in the ad hoc query mode

(excluding modifications of the data base such as

updates). In order to perform successful retrievals from

a data base, a user must be familiar with the application

being modelled, with the data model used to provide a

logical organisation of the data, and with the query

system used to manipulate the data model.

Familiarity with the application on the part of the user

will be assumed in this study, although "familiarity"

will not be taken to mean "perfect knowledge". Methods of

teaching new users about the semantics of a particular

data base model of a real world system are worthy of

separate investigation. Some of the techniques developed

here could be used to impart information about base

relations and domains, but a detailed investigation of

this possibility is beyond the scope of this thesis.

The core of the query system used to manipulate the data

model will be a relational algebra, similar to the

Information System Base Language (ISBL) developed at the

IBM UK Research Laboratories to interface with the

Peterlee Relational Test Vehicle (PRTV), a working data

base management system. [Todd. 1976]

1.2.2 Validation

1.2.2.1 Overview

Data is a representation via symbols of some aspect of

the world. In the typical data processing system data is

transformed by programs. The input data and the

transforming programs are valid when they represent the

world according to our intentions. Human intentions are

the ultimate measuring stick for every dimension of

validity.

Validity is not necessarily an absolute concept. Data

which is valid for one application may be invalid for

another due to lack of precision. [Crowe and Jones, 1975]

An error in occurences of one kind of data may of much

greater consequence than an error in occurences of

another kind. (For example, customer bank balance in

comparison to customer date of birth). A program may

work for normal sets of inputs, but not for unusual sets.

A statement about the validity of a program must refer to

the range of data for which the program is claimed to be

valid. The choice of this range is a human decision.

1.2.2.2 Data Validation

Data ±B validated by applying logically redundant

techniques: it is recorded more than once, perhaps in

different modes, and corresponding values matched. It is

checked to see if it contravenes known constraints.

[Hammer and McLeod, 1975; Hammer, 1976] Where data is

processed repeatedly and output to a user community

familiar with the application that the data is supposed

to model, the user community itself can serve as a

validation mechanism by calling attention to anomalous

results.

1.2.2.3 Program Validation

The validation of programs in realistic applications

environments is usually done by comparing the output

from sets of test data with precomputed results. [Beizer,

1983; Myers, 1979] Another approach is to apply

techniques to create a formal proof that a program is

correct. [Anderson, 1979] Closely related to the

technique of program-proving is the approach which has

concentrated on developing formal specification methods,

which will permit designers to precisely delineate a

proposed program's behaviour prior to its creation.

[Hoare, 198U] However, neither program proving nor formal

specification methods have, as yet, been widely

applicable to programs and systems of programs of

realistic sire. For very large systems, even the more

pragmatic test data method may not be adequate to test

all realistic possibilities. This problem has stirred

research into programming language design, and

programming practice studies, whose aim is to facilitate

the writing of programs which are easy to understand and

thus, presumably, less prone to logical errors.

[Green, 1980] Current work in this whole area is

concentrated on large-scale software systems, whose very

size and complexity introduce problems which are not

present in small programs.

1.2.2.U Validation in the data base context

Those who employ a query language face the problem of

the validation of their query language expressions Just

as professional programmers face the problem of the

validation of their programs. Query language users have

both advantages and disadvantages as compared to

programmers.

On the one hand, an ad hoc query expression will not

be, in the nature of things, subject to the kind of

testing and checking that can be applied to programs of

professional programmers. It is unlikely to be run with

sets of test data. Anomalous results from a

wrongly-constructed query will not necessarily be

recognised as such.

On the other hand. a query language is a simpler

construct than a fully general programming language. The

relational algebra, for instance, has no transfers of

control and no recursion. It has only one data structure,

the relation. In the query context,these are constructed

entirely from pre-defined relations. Queries in the

algebra can always be constructed as a series of single

operations on singlets or pairs of relations. This

simplicity makes possible a high degree of syntactic and

semantic error detection, to trap queries which cannot be

valid. Of greater difficulty is the task of validating

queries which may or may not be valid, according to the

user's intentions. As one researcher has commented.

Since syntactic errors will probably be caught
by the system, semantic bugs are the main object
of study...the main problem in database access
debugging will be the determination that a
semantic error has occurred: [since]
syntactically correct functions will produce a
reasonable event, how are users to know that
there is a bug? [Shneiderman, 1978b]

8

1.2.3 Query Validation Techniques

1.2.3.1 Syntax checking

A query language expression which does not conform to the

structural constraints of the query language processor

cannot be processed at all, and the invalidity of the

query will be obvious.

1.2.3.2 Data base object existence and type checking

A query which makes reference to non-existent data base

objects is certainly invalid if those objects are

relation or attribute names, and may be invalid if those

objects are values. Where a domain has a limited number

of values a query which makes reference to that domain

can be scanned before processing , and the non-existence

of the value referred to (as a necessary and not a

contingent fact) can be indicated to the user.

A system which has more than one data type can flag

data-type errors. Where constraints such as minimum and

maximum values exist on data, constraint-breaking queries

can be signalled.

One approach of interest has been to design a

"co-operative" query system which spots user

misconceptions. For example, where a query would result

in a necessarily null result, the system explains why

this is so. [Janas, 1979: Kaplan. 1982]

Previous query language studies uniformly report poor

spelling by users as a major cause of errors, suggesting

that the incorporation of spelling correctors will be

standard in future systems which must deal with

non-professional users. [Durham, Lamb and Saxe. 1983;

Peterson, 1980] Related to simple misspelling errors are

synonym errors. in which users give an alternate,

synonymous, name to a data base function, relation, or

attribute.

A query expression which conforms to the syntax of the

query language and the semantic constraints of the data

base will execute and produce results. This does not

guarantee that the expression is the embodiment of the

query the user wants to ask. Additional techniques can

be marshalled to allow the user to check the conformity

of the query language expression to the user's

intentions.

1.2.3.3 Display of execution tree

Some queries can only be satisfied by a group of

operations, whether formulated as a single complex

expression or as a series of unary or binary operations

with explicitly-named intermediate relations. It may be

conjectured that the sub-set of such queries which

10

include some operations which can be carried out in

parallel with each other will be more difficult to

comprehend than those in which the chain of operations

has a definite linear ordering. A graphical display of

the actual tree of the order of execution could be useful

in making the logic of the query explicit.

Semantically-equivalent alternate execution trees (such

as are generated by a query optimiser) might also prove

of value in demonstrating to a user the semantics of a

query expression.

1.2.3*4 Run time analysis of the executing query

As a query is executed, the cardinality of the

intermediate relations may convey information to the

user, who will possibly have some rough idea of the

cardinality to be expected from them. Values which are

orders of magnitude larger or smaller than expected would

signal possible faulty logic in the formulation of the

query. (An evaluation of the PRTV system reported that

its users found the ability to see the cardinality of

intermediate relations "particularly useful" [Storey,

19793)

1.3. User interfaces with data bases

1.3.1 Natural language communication with a data base

One approach to minimising incorrect queries is to bypass

11

the necessity for the user to learn a conventional query

language by giving the computer the ability to understand

the user's language. Proponents of this approach argue

that a typical user "has only ... [a] vague understanding

of the actual structure of the data base" and that we

cannot "expect him to express his queries in a langage

that requires knowledge of how the data is actually

structured" [Harris, 1977] The attempt to develop

"natural language front ends" to data base systems was

begun in the mid-1960s, and is currently the focus of

renewed research and development [Blanning, 198/i; Bole,

1980].

The ability of a computer to deal usefully with a

realistic range of natural language input is closely

related to its ability to store information about the

world to which that input refers. This has meant that, so

far, natural language systems have been able to accept

input about very limited domains only. [Rich, 198U].

However, precisely because data base applications can

indeed be about limited domains, there have been

successful, albeit restricted, applications of natural

language processing in this field. Most natural language

research relevant to data base studies has centered on

systems which include a deduction capability as a

central feature. A deductive system allows the user to

store information of the kind "Every X is a Y", "A is an

X", and then ask "Is A a Y?" without having to store the

12

fact that "A is a Y" explicitly. Davey surveys a number

of these systems and discusses their limitations. [Davey,

1978] Chang and Lee provide an introduction to the field

of mechanical theorem proving upon which "deductive"

query systems are built, and classify the kinds of

queries such systems are designed to answer. [Chang,

1973] Although we may expect future data base systems,

particularly those with natural language interfaces, to

include a deductive component, most current practical

systems leave deduction to the user. (The deduction may

be embedded in the process of query language expression

formulation.)

For casual users, whose access to the data base is

infrequent and who have a low tolerance for difficulties

in using a database interface, some form of natural

language dialogue system is indicated. Pioneering work

in this field was begun by E.F. Codd, who notes

To have any hope of being viable, a natural
language query system must "talk back" to the user
using the same natural language he uses, except
that its style has to be much more precise than
that of the average user. Accordingly, there must
be a natural language generator as well as a
natural language analyzer in a viable natural
language query system....

Incidentally, very little work on the
generation of natural language has been
published...and none of this appears to treat the
problem in the context of query formulation. [Codd,
1978]

The question must be asked, if dialogue-based natural

language systems are sucessfully developed, will they not

render obsolete all other query language systems? That

13

the answer Is no is suggested by two observations about

such systems:

(1) the computer resources required by natural

language analyzers will confine their implementation to a

restricted set of systems for some time to come. Natural

language interpretation by computer requires

representation, storage and rapid access to real-world

knowledge by the interpreting program, in order to

supplement syntactical analysis with semantic analysis.

So far this has only been practical where the world to

which the natural language conversation refers is a very

limited one. Certain data base applications do fit this

requirement but the rather limited practical application

of such systems to date suggests that we are far from

seeing them replace formal query languages.

(2) the dialogue mode, necessary because of the

inherent ambiguity of natural language, may be bothersome

to a user who is capable of formulating queries in a

formal query language. We include "direct end users," in

the CODASYL EUFC sense, in this category. As M. Zloof has

observed:

...there is no one language which satisfies
the needs of the entire spectrum of potential
users, but rather classes of languages suitable
to classes of users. We start by dividing the
potential user community into three fuzzy
categories:

1. Casual users:
2. Non-programmer professionals;
3. Application programmers.

... A non-programmer professional...is a person
motivated by the Job and familiar with the
particular application. One can expect such a

user to learn an easy-to-use formal language and
be familiar with the concepts normally required
by a relational model. In this category one can
include secretaries, clerks, engineers,
analysts, etc. [Zloof. 1978)

This view is in contrast to the categorical exclusion of

formal query languages as end-user interfaces expressed by

Harris above.

1-3.2 Pseudo-natural language systems

Many query languages, including several designed for a

relational data base, use English keywords to achieve a

superficially English-like appearance. Whether this is an

improvement over a purely symbolic language is an open

question. As one researcher notes:

The pseudo-English used in query systems has
often been more unnatural than computer languages
themselves...[and] The actual effectiveness of
pseudo-natural language systems has to be
carefully evaluated, since the examples presented
in the literature are generally chosen to convey
the strength rather than the weakness of the
given approach. [Wiederhold, 1977]

Another potential difficulty with pseudo-natural language

systems was highlighted by a study made by three

researchers investigating programming errors. [Green,

1980] They reported the results of an experiment to test

the design of conditional statements, comparing user'

errors made with a language requiring ALGOL 60-like

conditionals (IF Bl T§EN BEGIN S1;S2 END ELSE BEGIN S3

END) against those made with a language permitting a more

"natural" structure (IF Bl THEN SI; S2 ELSE S3 END).

This experiment found what the experimenters expected to

15

find with the first language: syntax errors and

consequent debugging difficulty due to failure to match

BEGINS and ENDs. However, to their surprise, the

experimenters found that almost none of their subjects

was able to use the second, "natural", language to

program a solution that required the nesting of

conditionals, even though the instructions had included

worked examples of Just such problems. As they report of

their subjects' problems

The clue to their strange inability seems to
be given by their frequent complaint, when
shown the solution, "But that's not English!"
What seems to have happened is that subjects
learning language 1 could see quite readily
that the language was not English, so they
were forced to read the instructions we gave
them. Subjects learning language 2, however,
decided that it was so like English that it
was all quite obvious and natural, so they
only needed to skim through the instructions,
only to come to grief when they met a problem
requiring the un-English construction,

IF green THEN
IF Juicy THEN . . .

. . .we seem to have an interesting suggestion
that making programming languages look like
natural languages may actually make them
harder...

The last few years have seen rapid growth in the use of

microcomputers with sufficient power to sustain query

interfaces with a degree of (claimed) natural language

capacity. The market is now providing both the impetus

for the development of natural language interfaces and a

test of their perceived usefulness. Thus the debates

cited above may relatively soon receive an empirical

Judgement.

16

1.3.3 Query validity* s relationship to data models
and language choice

1.3.3.1 Query validity in the context of data models

Considered from the viewpoint of their predisposition

towards valid use, query languages whose expressions must

be formulated in the context of a complex data structure

would intuitively seem to be at a disadvantage when

compared to query languages whose arguments are simpler

data structures. This argument was often advanced by

advocates of the relational approach, and the assertion

subjected to several attempts to test it

empirically. [Date and Codd, 1974; Greenblatt and Waxman,

1978; Kuhn and Shneiderman, 1978; Lochovsky. 1978;

Reisner, 1977]

Interest in, and theoretical elaboration of, the

relational approach occurred just at the beginning of the

era of, and was partially motivated by, the expansion of

the number of end users of data base systems which has

marked the last decade. There is an element of paradox in

the fact that, although one of the main arguments for the

relational system is its conceptual simplicity, Just this

very simplicity can give rise to new difficulties in the

field of query validation. As one researcher has

commented:

Information obtained from traditional data
processing systems regarding typical queries
cannot be extrapolated to relational data base
systems since the greater flexibility of the
relational systems promotes more complex queries.
No real experience of relational data base

17

systems over a wide variety of applications has
been obtained. [Hall, 1975]

1.3.3.2 Query validity and query language type

Relational data bases can sustain a variety of query

langages, including the types previously discussed.

These languages are usually elaborations of one of the

two approaches first delineated by E.F. Codd, and

called by him "relational algebra" and "relational

calculus". The distinction between the two lies in their

respective procedurality: the "algebra" defines the

resultant relation by explicitly specifying the

operations to be done on constituent relations to produce

it, where the "calculus" is simply an expression

specifying the resultant relation. Query languages have

been designed which are more or less direct

implementations of the algebra. Calculus-based systems

are more usually embedded in a front end which

shields the end user from the somewhat daunting

predicate calculus-style expressions. The power of the

two approaches is equivalent.

1.3.3.3 Suitability of Relational Algebra as a Query Language

It should not be assumed that professional

non-programmers will be unable or unwilling to learn a

simple, albeit mathematically-flavoured, query language.

Here experience with the programming language APL may be

18

relevant. Despite its lack of control structures, its

cryptic error message* and its limitation to a single

general data type. the ease of use and simple syntax of

this language has allowed it to be taken up by a

substantial group of users falling into the "professional

non-programmer" class, including not only engineers but

also managers. The relational algebra is qualitatively

more simple than APL and is thus not an unrealistic

choice as a language for end-user oriented research.

One experiment which tested user performance using an

algebraic language, a keyword-oriented "mapping" language

(SEQUEL) and the forms-oriented Query-By-Example found

better performance with Query-By-Example, whose users got

75X of their queries correct, as against 73* for the

SEQUEL users and 67# for the algebra users. [Greenblatt

and Waxman. 1978] However, as noted by another researcher

in this field, the great variability among the groups of

test subjects raises doubts about the applicability of

the results claimed. [Shneiderman, 1978] (For instance,

the algebra users were almost evenly divided between

males and females, while the Query-By-Example users were

three-quarters male.) Another criticism of this

experiment is that the algebraic language used, SQUARE,

has a rather opaque syntax: there are no distinct

operators for each operation, but rather the location of

the relation names and the type of brackets determines

the kind of operation to be carried out. (In contrast,

19

the ISBL relational algebra used to illustrate this

thesis has a distinct operator for each operation.)

1.3.U A Review of User Performance Studies

In "The Use of Psychological Experimentation as an Aid to

the Development of a Query Language" P. Reisner presents

a number of conclusions and further hypotheses generated

by an experiment testing the usability of two relational

query languages, SQUARE and SEQUEL. [Reisner, 1977] Five

types of "minor error" were identified:

(1) Ending Errors; users often employed "syntactic

variants" of data base object names and keywords, such as

"supplied" for "supplier", or "name" for "names".

(2) Straightforward spelling mistakes.

(3) Synonym errors; "AVR" for "AVG".

(4) Quotation Mark errors; the version of

SEQUEL used in this experiment requires users to omit

quotation marks from numeric data values, while requiring

them around string values, a common programming language

convention. However, users evidently found this "rule and

exception" more difficult to apply than a simple

requirement to enclose all data values of whatever type

in quotation marks.

(5) Punctuation errors; omission of periods,

commas, colons, etc. Reisner noted that "the high

frequency of these came as a surprise," and recommended

20

that future systems include a spelling corrector, a

synonym dictionary and a stem-matching procedure,

perhaps in the form of an interactive dialogue interface.

Major errors were classified as "format errors", which

would prevent the query from compiling, and "substance

errors" which would run but produce a wrong answer. The

latter were Judged to be less serious than the former,

since a format error showed that a user did not

understand the syntax of the language at all. While this

Judgement is understandable in a teaching situation, in

actual use the more serious error, in terms of its

consequences, would be a "substance error", since it can

go undetected. (A "format error" signals its presence

unmistakably.)

One of the more interesting results of this experiment,

bearing directly on the work of this thesis, was the

remarkable consistency with which users made "substance

errors". The test population was divided into four

groups: non-programmers using SQUARE, non-programmers

using SEQUEL, programmers using SQUARE and programmers

using SEQUEL. Great - variation was exhibited between

programmers as a group and non-programmers (78* of

programmers' queries were essentially correct, as against

6OX of non-programmers). Choice of language, while of

little importance for programmers, affected

non-programmers performance significantly (using SQUARE,

21

non-programmers got only U3X of their queries correct;

with SEQUEL, the percentage correct increased to 56.)

Showing little variation, however, was the percentage of

queries called by the experimenters "substance errors,*1

which produced an answer, but the wrong one. About one

out of ten queries put by each group fell into this

category, with both programmers and non-programmers,

SEQUEL users and SQUARE users, erring with the same

frequency. (The range was from 11.5X to 1O.2X.)

If these results are indicative of what may be expected

when casual users have access to a data base via a query

language, the importance of developing methods to

minimise the occurrence tf "subs

ance errors" is clear.

User errors were also classified by the experimenters

according to their probable causes. Using this scheme,

the following six types of causes of error were

identified:

(1) Intrusion errors; these were errors

"directly traceable to the wording of the English

question." An example was a question asking for the

"names" of personnel, held in the data base under the

column NAME. Many users formulated their query using

the term NAMES, evidently carrying the English

22

language phrase directly into the query.

(2) Omission errors; where the English

sentence asked for information that required certain

query language expressions, but contained no direct

"clue" signalling that the particular expression was

necessary. An example was the question "How many 7^7s

are dispatched from LaGuardia Airport?" The SEQUEL

expression required was

SELECT NUMBER-DISPATCHED
FROM DISPATCH
WHERE AIRPORT - "LAGUARDIA"
AND PLANE = 7^7

The experimeters conjectured that leaving out the word

"plane" from the English expression caused some

subjects to miss out the last clause in the formal

query.

(3) Prior-knowledge errors; evidently, some

subjects already "knew" certain

computer-communication conventions which happened not

to be the conventions being used by the query system.

An example was using alternative abbreviations for

common system functions, such as AVR for AVG.

(U) Domain incompatibility errors; where two

columns appeared to hold values from the same

underlying domain, but did not, subjects sometimes

formed queries as if they did, being misled by

similarity of attribute names. An example would be

the attempt to intersect airport names with person

names, each (incompatible) set being represented by a

23

column labeled NAME.

(5) Consistency errors: these were described

as those arising from the assumption by subjects that

the query language used was strictly consistent. An

example would be the expectation that quote marks

must be applied to all constants, regardless of their

data type. The experimenters conjectured that this

was "simply a preference for one rule over two."

(6) Overgeneralisation errors; Some errors

seemed to be caused when "subjects appeared to

develop rules for query writing (not necessarily

consciously), and then used these rules in

inappropriate places." An example would be using the

table DISPATCH successfully to answer a query about

"planes dispatched", and (falsely) assuming that

"dispatched" in English is always rendered as

"dispatch" in the query language, when in fact the

system Includes such column titles as

NUMBER-DISPATCHED.

In this paper Reisner proposed a preliminary measure of

query complexity, based on the number of

"transformations" necessary to turn a natural language

expression into a formal query language expression. This

approach assumes that a "query" is identical to a

particular natural language expression embodying it. It

thus would be reasonable to assume that the more complex

and difficult to comprehend the natural language

2 a

expression is, the more errors are likely to be made by a

user attempting to translate the natural language

expression into a formal language. For example, if the

user's query is "how many dumbo Jets fly from Heathrow

daily?" and the existing data base records information on

"7&7s" instead of dumbo Jets, then a transformation is

needed at this point from "74?" to "jumbo Jet".

The above assumption may be criticised on the following

grounds: many users do not begin with someone else"s

natural language formulation of a query, but with an

abstract query. which can take more than one natural

language form. In the next section we discuss the concept

of the abstract query.

1. U Classification of Queries

1.4.1 The Abstract Query and its notations

The term "query" can have at least three distinct,

although related, meanings when used to refer to

manipulation of a data base. Although the meaning of the

term in this thesis will usually be clear in context, a

systematic exposition of its meanings and their

implications is a necessary preface to further

discussion.

In The Logic of Questions and Answers Belnap

and Steel develop an approach which they name an

"eroteric logic" to capture the grammar and semantics of

questions and answers. [Belnap and Steel, 1976] Although

their work was "guided by the potential applicability of

eroteric logic to current problems in data processing" it

is at too high a level of abstraction to be directly

applicable to current data base query studies.

Nevertheless, a number of their insights and

characterisations of questions illuminate the process of

query specification. Particularly useful is their

insistence that

The meaning of a question addressed to a query
system is not to be identified with how the system
processes the query (and is not to be Identified
with a program at any level), but rather it is to
be identified with the range of answers that the
question permits. That is, for a query system and a
user to agree on the meaning of a question is for
there to be agreement as to what counts as an
answer to the question, regardless of how, or if.
any answer is produced. This conceptual feature is
Important because only if one has an analysis of
questions that is independent of computers and
programs can he sensibly ask such questions as
these: What sorts of questions would I really like
to ask? For various sorts of questions is my query
system able to answer them? (Is it "complete" in
these respects?)

We shall make use of their distinction between a question

as an abstract object, and the notation which may be

employed to represent that object (called by them an

"interrogative"). We distinguish between the abstract

query. and two forms of notation for it: its

expression(s) in natural language. and its

expression(s) in a query language. In general,

there may be many equivalent forms of each of these two

notations.

26

AB an example, a particular abstract query may be

expressed in the following equivalent natural language

notations:

Find all salesmen who earn more than £10,OOO/year.

List every salesman with an annual salary greater
than £1O,OOO.

Find each employee who makes better than £10K and
who is a salesman.

Of course these notations are only equivalent if certain

assumptions are true. (For instance, that annual earnings

are the same as annual salary.) Such assumptions are not

marginal to the process of query formulation, but involve

the way in which the data base view of the world being

modelled has been organised. Allowing the user to

comprehend this view -- to know the data base

definitions, categories, business rules, relationships,

constraints -- is critical to allowing him to formulate

queries correctly.

The same abstract query, some of whose natural

language representations are illustrated above will also,

in general, have multiple possible correct query language

notations. In fact, it will have "families" of notations.

one family for each alternate schema of the data base

affecting the objects referred to in the query. Thus if

the categorisation of employees into employee-types

(salesmen, clerks, production workers) is carried out by

having a separate relation for each type, the following

27

queries would be equivalent in the ISBL Relational

Algebra:

LIST SALESMEN:[SALARY > 10OOO] % [E-NAME]

LIST SALESMEN* [E-NAME, SALARY] : [NOT (SALARYO10OOO)])X [E-NAME]

A schema which grouped together all employees into a

single relation, representing their type by an attribute

value, would support the following equivalent queries:

LIST EMPLOYEES:[TYPE="SALESMAN" AND SALARY>10000] % [E-NAME]

LIST (EMPLOYEES:[TYPE="SALESMAN"]X[E-NAME])
(EMPLOYEES:[SALARY > 10000]X[E-NAME])

In this thesis we shall, therefore, distinguish between

(1) the abstract query, for which there is no

single representation,

(2) the abstract query expressed in a

natural language notation. noting that there will

in general be many possible equivalent natural language

notations for a given abstract query, and

(3) the abstract query expressed as a

query language expression, with the latter having

many possible equivalent forms.

1. U. 2 Meaningful and Meaningless Queries

Our concern is to assist the user in mapping an abstract

query to a valid query language expression. Before we

are able to engage this question, it is necessary to

delineate the boundaries around the class of possible

abstract queries which can in fact be considered.

Clarification is again available from the work of Belnap

28

and Steel.

In the terminology of Belnap and Steel, data base queries

are elementary which questions. These are

questions to which there corresponds a set of statements

which are directly responsive to the question asked. What

counts as an answer to this sort of question must be

well-defined. (They contrast such questions to

"problem-solving situations" and "please relieve my vague

puzzlement situations". An example of the latter would be

"Who is that man living next door?", since it is not

clear what kind of answer would satisfy the questioner: a

proper name, some sort of description, or what?)

Which-questions implicitly present a set of

alternatives, one or more of which is the answer to the

question.

In the context of this thesis, a meaningful abstract

query is one that can be cast into at least one

semantically and syntactically valid query language

notation (in the sense of section 1.2.3-2 in this

chapter) such that the response to that query can in

principle be judged true or false. A query language

expression which elicits a false response from a data

base may still be a valid expression of a meaningful

query, since the software which implements the query

language may have faults, or incorrect data may be

present in the data base. We have asserted that it is

29

wrong to identify an abstract query with any string of

symbols. Statements about the "meaning" of an abstract

query are statements about the truth or falsity of the

response to that query were it to be cast in the form of

a query language expression and put to a data base. (For

an analogous approach to the question of natural language

semantics, see [Sampson, 19753.) From this it follows

that assertions about the meaningfulness of an abstract

query can only be made in the context of a particular

query language system and a particular data base schema.

Given a relational database whose domains are

entity-identifiers for persons and entity-identifiers for

languages, and for which the query language is a pure

relational algebra, queries about aircraft schedules are

meaningless (because the relevant entities are not

represented in the data base), and queries about number

of persons represented in the data base are meaningless

(because the only quantifiers sustained by the pure

algebra are those of first-order predicate calculus:

"some", "all" or "none"). An abstract query which

specifies the retrieval of data, any part of which refers

to non-existent data base objects, or which requires a

non-existent query language function, is meaningless.

(Note that an abstract query may be meaningful, but its

query language expression be invalid, due to user

misspellings, misconception of the data base schema, and

so forth. This is not the same thing.) This thesis deals

30

with ensuring valid query language expressions for

meaningful abstract queries.

1. U. 3 Other Approaches to Query Classification

James Martin defined a simple query as one that may

be made on a single file (or relation), considered to

hold information on occurences of entities (E) in the

form of values (V) formatted as attributes (A). [Martin,

1977] Letting A(E)=V symbolise the statement that

attribute A of entity E has value(s) V. Six permutations

of query types that result from replacing one, and then

two, of the known values with query-indicators are shown

in Figure 1.1 for the relation shown in Table 1.1.

3Num Mon Income
SALESMEN] [MONTHS] [MONEY]

23
256
271

23
256

Jan ! 850
Jan
Jan

Feb
Feb

*

455
970

*

*

670
480

Table 1.1 From Martin [1977).

31

1. A(E)=? What is the value of attribute A of entity E?
How much did salesman 271 earn in January?

((S: [SNum=27l]) : [Mon = "Jan fl])X[Income]

2. A(?)=V What entity E as a value of attribute A equal
to V?
What salesmen earned more than £100O in January?

((S: [Income>lOOO]): [Mon="Jan"3)X[Snum]

3. ?(E)=V Which attribute or attributes of entity E have
value V?
In which months did salesman 271 earn more than
£1000?

((S: [Income>1000]): [Snum=271])X[Mon]

?(E)=? What are the values of all attributes of entity
E?
What are salesman 271's earnings for each month?

S: [Snum=271]XCMon, Income]

5- A(?)=? What are the values of attribute A for all
entities?
What did all salesmen earn in January?

S:[Mon="Jan"]X[SNum, Income]

6. ?(?)=V What are the attributes of all entities having
value V?
List the salesmen who earned more than fiooo
in any month, and the month itself.

S:[Income>lOOO]X[SNum, Won]

Figure 1.1: J. Martin's Classification of Query Types

32

Lacroix and Pirotte defined a query with respect to the

"objects" and "properties" of the data retrieved as a

result of the query:

Very generally, a query requests one or
several sets of objects which satisfy certain
properties; these properties are in turn
expressed with the help of other objects and
properties.... In general, properties make
reference to data base relations and objects of
other domains. [Lacroix and Pirotte, 1977]

Sundgren distinguished between queries about the world

being modelled in the data base, and queries about the

data base itself. while noting that there need be no

structural difference between these two types of query if

their respective data bases are modeled on identical

principles. [Sundgren, 1975] (In relational terms, this

would require that the data dictionary be itself a set of

relations.) He categorised queries along a second axis,

dividing them into yes-no type queries, retrieval

queries, and process queries. By the latter he meant

queries in which

The operator or the parameter part will contain
a processing request, meaning that not only
should a specified set of messages be retrieved,
they would also be processed in a certain way
before presentation. For instance, the processing
request could imply aggregation and statistical
analysis.

He noted that retrieval queries are the most fundamental

type of query, inasmuch as most process queries will

require an initial retrieval and yes-no queries may be

considered a special case of retrieval queries. He

observed that

Many retrieval queries conform to the pattern,
For objects having the property P, retrieve the

33

values of the attributes Al,...,Am...

Sundgren drew a distinction between attributes involved

in specifying the property P, so-called "alpha"

attributes, and attributes to be displayed, the "beta"

attributes. An example of both sorts of attributes would

be the request to "PRINT the SNum [a beta attribute] of

each salesman with Income > 850 [an alpha attribute].

A similar definition of a query is made by Ghosh , who

described a query as having two parts,

One is called the qualification part and
the other the target part. The qualification
part specifies the properties that have to be
satisfied by an individual of the universe in
order that it may be a relevant piece of
information for the query. The target part of the
query specifies what information about the
Individuals, who are relevant to a query, are
[sic] needed for the answer. [Ghosh, 1977]

It is interesting to note that almost all of the above

authors approach the defining of queries by assuming that

the target of a valid query is a set of nameable objects/

entities/individuals which is to be retrieved. (The

exception is James Martin, whose queries 5 and 6 call

for the retrieval of tuples.) The general assumption is

that it is a single column that will remain, a

relation of degree one. But we often want to retrieve

more complex tuples: for instance, persons, and the

languages they speak. Not two relations, one holding

persons and the other languages, but the person-language

pairs. Outside of the data processing context, there is

no word for such associations. [Kent, 1978] (Within the

data processing context. we might call associations

"records" or "tuples".) This lack of vocabulary for many

kinds of associations implies that there is no "natural"

mental concept for them. This in turn suggests that

perhaps it would be easy to formulate queries where the

objects used in associations were either single entity

sets, or tuples which were intuitively one entity and a

group of attributes -- and hard to formulate queries

where genuine relationships among entities needed to be

retrieved. This possible problem is relevant to one of

the design choices made in designing the system described

in this thesis, where the problem of articulating complex

relationships among the objects described by a tuple is

central.

Using the terminology of the authors Just cited, we

shall assume that it Is in the specification of the

properties or "alpha attributes" or

qualification parts that the greatest difficulty lies

for end users.

1. 5 Review_____of____work_____related____to____Reverse
Translation

1.5-1 Natural Language Generation; Background

The algorithmic generation of grammatical sentences in

natural language -- in contrast to its inverse, the

algorithmic classification of any candidate natural

language word-string as grammatical or not -- is a

trivial matter, provided that two conditions are met:

35

First, that a sub-set of all possible grammatical

 entence-forms Is acceptable (since a complete grammar of

a natural language involves thousands of rules).

Second, that the definition of "grammar" is restricted to

syntax rules only (permitting, for instance, the

generation of sentences such as "colourless green ideas

sleep furiously"). Given these limitations, a simple

phrase-structure grammar implemented as a set of

production rules and drawing on stocks of words as its

terminal strings can generate natural language sentences.

(There are also numerous other grammatical formalisms

available for language generation, although most of these

have been developed as part of research into natural

language understanding.)

Of interest in the database query context are those

natural language generation systems which have as their

purpose the conveying of information about some

computationally-tractabledomain of information held in

machine-accessible form.

In such applications, the theoretically challenging

aspect of natural language generation consists in

defining the method of mapping between the domain about

which one wishes to convey information, on the one hand,

and a set of natural language sentences conveying the

desired information, on the other.

36

Natural Language Generation; Non-Database Examples

Davey developed a computer program that produced English

discourse, using a systemic grammar. [Davey, 1978] The

program was described as "capable of describing in a

sequence of English sentences any game of noughts and

crosses (tic-tac-toe), whether given or actually played

with the program." It was written in POP-2, and took

between thirty seconds and three minutes to produce each

sentence. The intension of the author was to model the

way a human speaker chooses to present information in

sentences, taking into account what has already been said

and what the hearer can be expected to know.

As part of a user-friendly command interface, the UNCLE

system generates natural language explanations of

exception conditions which can occur when users make

errors in operating system commands. [Efe, Hopper and

Miller, 1983] The system analyzes operating system

messages and maps them onto a meaning-representation

system. This system consists -of five "paradigms", which

are supposed to be used by human beings when they speak,

each one of which represents a different sort of entity

relation. When one of these paradigms can be filled in by

the message analyzer, and combined with a particular case

structure, it corresponds to a particular

37

phrase-structure grammar production rule. This rule can

then be invoked to generate a sentence which is

eemantlcally equivalent to the operating system message,

but which uses the terminology, concepts, and assumptions

of the particular user for whom the system is tailored.

The UC natural language help facility for the UNIX

operating system includes a language generator, although

at the time of the most recent report on the system its

designers reported that it was "quite sketchy, largely

because most of our effort has gone into request

understanding rather than answer generation." [Arens,

Chin and Wilensky, 1984]

1.5-3 Natural Language Generation; a Database Example

James Longstaff and colleagues produced a query system

which generated natural language sentences

corresponding to partial queries put in a relational

calculus. [Longstaff. Poole and Roper, 1978] In response

to an incomplete query calling for the retrieval of some

of the attributes of a particular entity, the system

would offer the user the chance to select either a

universal or existential quantifier for each of the other

entities to which the target entity was related.

Given a database with a schema consisting of three

38

"entity relations" (SUPPLIER, with attributes SNO. SLOG,

SNAME; PROJECT, with attributes JNO, JNAME, and JLOC; and

PART, with attributes PNO and PTYPE) and one

"relationship relation" (SUPPLY. with attributes SNO,

JNO, PNO, and DR), a partial query put by a user might be

SELECT SUPPLIER [SNAME, SLOC]

WHERE PART [PTYPE] = A AND PROJECT [JLOC] = SJ

The system would respond.

Select names and locations of suppliers where

each supplier has supplied (all/a) part(s) of

Type A to (all/a) prodect(s) located in S3.

(The quantifiers enclosed in parentheses represent

choices to be made by the user.)

It is not clear from the cited paper how the system as

described would cope with negations, or with schemas

where the same set of entity sets were related in more

than one way (for instance, with an additional three-part

relation, PROMIS.ED, having the same attributes as

SUPPLY).

The method utilised to generate natural language

sentences depends critically on the fact that the

so-called "relational calculus" query expression is a

39

description of the final relation desired by the user, as

opposed to a specification of the procedures (relations

and operations upon them) which should generate that

relation. This work thus has no directly-transferable

techniques which could be applied to a natural language

generation system for a "relational algebra" query

processor, where a query is put by the user explicitly

specifying the relations and operations upon them which

should yield the desired result. However, although the

system described here was not developed further, it must

be acknowledged as the first developed "Reverse

Translation" approach to query validation.

JIV~E SMV-.J JL 3 s ̂ a:

OAAJL

2.1 Introduction

This chapter introduces and defines the terms which will

be used in the remainder of the thesis, and illustrates

the relational algebra which will be employed in

demonstrating reverse translation.

2.2 Data Models

2.2.1 The Relational Model

2.2.1.1 Definitions

Given the domains, not necessarily distinct, Dl,

D2, . . . ,Dn, a relation on these domains is a set of

tuples where for each tuple its first element is a

member of Dl, its second a member of D2 ... and its Nth a

member of Dn. The value of "n" is in relational

terminology the degree of the relation. (For reasons

to be made clear, we shall henceforth use the term

"Rdegree" for "degree" in the sense Just defined.) The

number of distinct tuples is the relation's

cardinality. The i-th element of each tuple

constitutes an attribute - of the relation: attribute

names must be distinct within a relation. Relation names

must be distinct within a data base. A set of attributes

which uniquely defines a tuple is a key of the

relation.

As an example, consider the many:many relation PSL

(Table 2.1) which records persons and the languages

spoken by each person. (This example also displays the

conventions which will be followed henceforth in

displaying examples of relations, their names, domains,

attributes and tuple values. Relation names will be

displayed in upper-case type, attribute names will be

underlined, and domain names will be in upper case,

appearing beneath attribute names and enclosed in square

brackets.)

Relation
it cunt: __ ___^.

Attribute
Names ----->

Key --- >

Domain
Names ----->

!
i
!
»
t

;
i
t
t

rs>L,

P

p.k

[PERSONS]

Adam
Adam
Gunther
Jean
Uli
Uli
Uli
Zahld

L

[LANGUAGES]

! English
! French
! German
! French
! English
! French
! German
? English
!

t
t
t
r
t
I
t
t
t

Table 2.1able 2.1. The relation PSL.

2.2.1.2 The Relational Algebra

A set of relational algebra operators can be

defined which when combined with relations in expressions

112

yield relations as results. The following algebraic

operators constitute a formal Query language which has

the power of the first-order predicate calculus. (Actual

implementations which have used a relational algebra as a

query language have supplemented it with additional

functions. The following examples demonstrate the

syntax of each relational operation which has been given

a Reverse Translation extension. The syntax and

conventions of the query language thus defined are based

closely on, but not identical to, the Information System

Base Language (ISBL) of the Peterlee Relational Test

Vehicle. [Todd, 1976] They differ from ISBL in the

following ways:

(1) The DIVISION operator, used for formulating queries

with universal quantification, is not included. DIVISION

is in fact a redundant operator, if DAFFERENCE,

PROJECTION and JOIN (Cartesian Product) are available.

The problem of Reverse Translation of queries involving

universal quantification is taken up in Chapter Eight.

(2) PERMUTATION of a relation is handled in ISBL via a

PROJECTION operation in which no attributes are dropped.

Here, for clarity, it has been given a special operator

of its own.

(3) RENAME of attributes, necessary to permit the set

operations and join, has also been given a special

operator, again for clarity. In ISBL its syntax was part

of the definition of the PROJECTION operation.

(U) SELECTION in ISBL includes the possibility of complex

expressions which include logical operators (AND, OR and

NOT). Any relation yielded by such an expression

can also be derived by an equivalent series of

SELECTION, INTERSECTION. UNION and DIFFERENCE

operations. In the interests of simplicity, the

SELECTION demonstrated in this thesis will be defined for

single comparisons of one attribute to a value from the

domain of that attribute. (This also excludes the

so-called RESTRICTION comparison between two attributes.)

(5) ISBL permits complex relational expressions, in which th

result of one expression could be used as an argument to

another. However, to facilitate discussion and

illustration of the Reverse Translation method. all

query examples in this thesis using more than one

operator will be formed as multi-statement queries

utilising explicit, named intermediate relations.

ftft

SELECTION Selection acts on a single relation

to produce a second relation which is a sub-set of the

first, bavins only those tuples which are specified in a

comparison operation between an attribute and a value

from the domain of that attribute.

An example of selection:

PI <- PSL : [L « "French"]

Relation
Name ----- PI

Attribute
Names ----->

Key — — ->

Domain
Names -----> [PERSONS] [LANGUAGES]

Adam
Jean
Uli

! French
! French
! French

Table 2.2. The relation PI

* PROJECTION PROJECTION acts on a single relation

to produce a second relation having only those attributes

which were named in the PROJECTION operation.

An example of projection

P2 <- PI X[P]

Relation

Attribute
Names ----->

Key —— -->

Domain
Names ----->

t
t
i
i

Table 2.3- The

r f.

P

P

[PERSONS]

Adam *
Jean !
Uli !

t

relation P2.

Set operations The next three operations take as

operands two relations of identical degree whose

respective attributes must be drawn from the same domain.

To illustrate the set operations assume a relation P3t

formed by selecting all English-speakers from PI and

then projecting on the P attribute.

Relation
Name ---

Attribute
Names ---•

Key ——

Domain
Names

P3

P

P

«- ^^

Adam
Uli
Zahid

Table 2.U. The relation P3

U UNION UNION acts on two relations to produce a

third containing all of the tuples appearing in either

operand.

An example of UNION

PU <- P2 U P3

Relation
Name ---- PH.

Attribute
Names —--->

Key --___>

Domain
Names ----->

P

P

[PERSONS]

Adam
Jean
Uli
Zahid

Table 2.5. The relation Pk

DIFFERENCE DIFFERENCE produces a relation whose

tuples are those which are in the left-hand operand but

not in the right hand operand.

An example of DIFFERENCE:

P5 <- P2 - P3

Relation
Name ---

Attribute
Names ----->

Key --- — >

Domain
Names ----->

P5

P

P

[PERSONS]

Jean

Table 2.6. The relation P5.
INTERSECTION INTERSECTION produces a relation

having only those tuples which are in both the left-hand

and right-hand operand relations. INTERSECTION is

actually redundant, in two respects:

(1) if DIFFERENCE is defined, INTERSECTION is

unnecessary, since A ~ B <=> A - (A - B);

(2) if JOIN is defined, INTERSECTION is unnecessary

•ince it is merely an equi-doin over all attributes.

However, it is found in most if not all relational query

languages and is therefore included for convenience.

An example of INTERSECTION:

P6 <- P2 ~ P3

Relation
N ame ---

Attribute
Names ----->

Key —- — >

Domain
Names ----->

P6

P

P

[PERSONS]

! Adam
! Uli
i

Table 2.7. The relation P6

* JOIN JOIN takes as operands two relations and

produces a relation which is the concatenation of the

operands except for specified attributes which are

shared. The tuples of the resultant relation are drawn

from those tuples of the operand relation sharing

identical values ("equi-Join") in the specfied common

attributes. The attributes to be shared in each relation

are specified by having identical names. If no attributes

in each relation have names in common, a full Cartesian

product results (each tuple of the first relation is

Joined to every tuple of the second relation).

To illustrate JOIN, assume we have a relation PRL.

recording persons and the languages they read, which we

wish to JOIN to the "speakers" relation PSL

illustrated in Table 2.1

PRL
P
[PERSONS] [LANGUAGES]

!
i
i
t
t
t
»

;

Adam
Gunther
Mike
Uli
Uli
Uli
Zahid

The relation

i
»
!
i
!
i
i
i

English
German
Danish
English
French
German
Chinese

t
i
t
t
i
!
t

PRL.

PSL @ [L -> LS]
PRL § [L -> LR]
PSRL <- PSL * PRL

(Rename the non-participating
attributes.)

(JOIN PSL and PRL over the
commonly-named attribute, P.)

Relation
Name ---• PSRL

Attribute
Names -----> LS LR

Key

Domain
Names ----->

P, LS. LR

[PERSONS] [LANGUAGES] [LANGUAGES]

! Adam
! Adam
! Gunther
! Uli
! Uli
! Uli
! Uli
! Uli
! Uli
! Uli
! Uli
! Uli
! Zahid
f

»
»
i
i
t
»
!
t
f
t
i
t
t
i

English
French
German
English
French
German
English
French
German
English
French
German
English

?
t
i
;
i
»
t
t
t
i
i
t
i
t

English
English
German
English
English
English
French
French
French
German
German
German
Chinese

i
t
t
t
t
t
i
f
»
t
t
»
;
t

50

Table 2.9- The relation PSRL.

n PERMUTATION The PERMUTATION of a relation produces a

new relation with the same population of tuples, but

reordered according to the order specified in the

PERMUTATION operation.

LSP <- PSL [L. P]

Relation
Name ---- LSP

Attribute
Names ----->

Key

Domain
Names -----> [LANGUAGES] [PERSONS]

!
t
t
t
j
t
i
!
t

English
French
German
French
English
French
German
English

t
t
t
t
!
i
i
t
i

Adam
Adam
Gunther
Jean
Uli
Uli
Uli
Zahid

t
t
!
t
i
!
i
i
t

Table 2.1O. The relation LSP.

51

e Rename Like PERMUTATION, RENAME is not an operator

proper but is a necessary auxiliary to permit operations

whose syntax expects particular values for attribute

names.

SSL <- PSL [P -> S]

Relation
Name ---• SSL

Attribute
Names ---

Key — —— >

Domain
Names ----->

S, L

[PERSONS] [LANGUAGES]

1
1

t
»
t

!
t
»
?

Adam
Adam
Gunther
Jean
Uli
Uli
Uli
Zahid

i
!
;
i
i
t
i
t
T

English
French
German
French
English
French
German
English

»
i
i
;
i
!
t
!
t

Table 2.11. The relation SSL.

2.2.2 The Entity/Relationship Model
Application in Reverse Translation

and its

Because the relationships between the values in a tuple

are critical to understanding the meaning of a relation,

constant reference to them will be made in the remainder

of this thesis. A reasonably well-understood vocabulary

and rudimentary underlying semantic model with which to

conduct this discussion is therefore needed, and a form

of the Entity-Relationship model to supplement the

conceptual tools already defined has been chosen. In the

taxonomy of the principal author of the

Entity-Relationship approach, we will use a "Generalised

Entity-Relationship Model without Attributes" [Chen,

1981].

This thesis will refer frequently to entities and to the

relationships which hold among the entity occurences

represented in the tuples of a relation which has been

created as the result of the execution of a user's query.

The terms "entity occurence", and "entity set", will be

used as equivalent to "attribute value" and "domain",

respectively, in the standard relational terminology. The

possibility of distinguishing between an entity occurence

and its representative within data base is allowed, at

the level of text generation. The term "relationship",

with no formal relational equivalent, cannot be dealt

with so casually and this concept is thus the object of

more extensive treatment in section 3 of this chapter.

Although the Reverse Translation system is designed for

translation of relational algebra queries put to a

relational database, the relational terminological

apparatus alone, even as supplemented by the

Entity/Relationship model, is both too abstract and too

meagre to provide a sufficient basis for discussion of

methods of generating meaningful translations of

53

relational query language expressions. For example, as

many others have pointed out, there is no place in the

pure relational formalism for inclusion of information

about the kind of relationship obtaining among the

objects which make up a tuple of a relation. [Schmidt and

Swenson, 1975; Sowa, 1975]

In the relation (Table 2.1) used to provide examples of

the conventions used in this thesis, it will be necessary

for the user of the database to know that the

relationship recorded here is one of "speaks" (in the

PERSON to LANGUAGE direction) and "is spoken by" in the

LANGUAGE to PERSON direction. Since this information is

not part of the relational apparatus, if it is to be used

as a component of a Reverse Translation facility, it must

be added as part of an extension made to the relational

system. (In an unextended system, this sort of

information may be held as unformatted descriptive text

associated with a particular relation, or deduced by the

user through applying his world-knowledge to the names

given to the relation, its domains and its attributes.)

The subject of developing a data model powerful enough to

incorporate in a natural manner real-world semantics of

interest to users is one which is advancing rapidly. The

data model assumed in this thesis is intensionally one

which is shorn of the refinements which are possible, in

order to concentrate on a single aspect of user interface

5tt

design.

2.2.3 Reduced Relations and Normal Forms

relation embodies relationships among entities. The

simplest embodiment of a relationship in a relation is

one n-ary relationship per relation, and one relationship

per n-ary relation. But perfectly valid relations may

exist which complicate matters in two (not mutually

exclusive) ways:

A relation could hold multiple relationships among the

entity-identifiers of a given tuple. For example, the

relation PRLA which recordswhich persons read which

languages, and which languages use which alphabets.

PRLA
P
[PERSONS] [LANGUAGES] [ALPHABETS]

! Adam
! Adam
! Gunther
! Gunther
! Ivan
! Ivan
! Ivan
! Mehmet
! Mehmet
t

i
i
i
i
j
t
j
t
?
!

French
German
English
German
Farsi
French
Russian
Turkish
Turkish

!
i
t
i
i
t
i
;
i
t

Latin
Latin
Latin
Latin
Arabic
Latin
Cyrillic
Arabic
Latin

t
;
t

j
|
t

j
!
!
t

Table 2.8. The relation PRLA

55

In this case, the requirement that all relations be held

in Third Normal Form would eliminate examples of the

above type. But the Third Normal Form requirement is not

sufficiently powerful to ensure the degree of simplicity

in the relational schema required for the implementation

of Reverse Translation. This is because a relation in

Third Normal Form can still represent multiple

relationships between the set of attributes making up the

key, on the one hand, and any number of non-key

attributes each of which is uniquely determined by the

key. (An example would be a relation in which the first

attribute is a unique identifier for a person, the second

is that person's birthdate, the third is the name of the

country in which the person was born, the fourth is the

person's height, and so on.)

2.2. b Relational Families

Any relation of relational degree N (N > 1) which

has an attribute consisting of M entity identifiers can

be decomposed into M constituent relations of

relational degree N-l, by creating a new relation for

each distinct value of the "absorbed" -attribute. For

example, instead of relation PSL, we could have

relationsPSLF(everyone whospeaksFrench), PSLG (the

German-speakers), and so on. These relations would

constitute a "family", although as relational objects

they would have the same properties and status as all

other relations of Rdegree one drawn from the PERSONS domain

Intuitively we could recognise each of these relations as

actually holding information about two entity types, one

of which (the LANGUAGE entity-type) had been "absorbed"

into the "meta-schema" of the system with the consequence

that it is no longer recognised by the query language.

(We cannot use the query language to formulate the query,

"list everyone who speaks French," but rather must rely

solely on our "meta-schema" knowledge about the meaning

of each relation.) Where the "family" of

language-speaking relations has been grouped together

into one relation, our necessary "meta-schema" knowledge

is restricted to awareness of the existence and

"intension" of only one relation.

Conversely, any "family" (in the sense described in the

preceding paragraph) of M relations (M > 1) of the same

relational degree N and whose attributes are drawn from

set-operation compatible domains, can be "fused" into a

single relation of relational degree N+l with a

new attribute having M distinct values and drawn from

a (possibly new) domain whose values express the

relationship holding among the original attributes. Using

the example from the previous paragraph, we could "fuse"

the PSL relation with anyotherrelation of Rdegree two

whose attributes were drawn from the PERSONS and

LANGUAGES domains, provided that their key definitions

57

were identical, by adding a third attribute to make

explicit the nature of the relationship between the

entities in the first two attributes. Thus PRL and

PSL could be "fused" in a new relation of Rdegree three,

the new third attribute displaying values from a domain

whose entities included the occurences "speaks" and

"reads".

Logical schema design in practice must steer a middle

course between these two possibilities, guided by the

necessity not unnecessarily to multiply relations, by an

anticipation of the kinds of queries users are likely to

put on the data base and by an awareness of the way in

which users "naturally" conceptualise the world being

modelled in the data base.

2.2.5 Assumptions and Constraints

A "Base Relation" is one which cannot be derived from

other relations, and has been input into the system ab

initio. For the sake of simplicity we will impose the

constraint that all Base Relations of our system

exemplify one and only one relationship per relation.

"Families'* of relations in the above sense are also

excluded. In the examples which illustrate this

thesis. all relations other than Base Relations will be

"derived relations," and will be considered to have been

generated in response to a query. This requirement is

more powerful than (but includes) the constraint that all

base relations be held as reduced third normal

form relations. (A reduced relation is one which

cannot be split by projections into two relations which

could then be joined to produce the original relation. It

necessarily has a degree at most one greater than the

degree of the key.) As will be demonstrated. certain

queries on base relations will yield derived relations as

answere to the query which do embody both types of

simultaneous multiple relationships described above. Thus

a tuple in a base relation will be an Instance of a

single relationship among its participating entities.

A further simplifying constraint, necessary if the

previous one is to hold, will be the restriction of

entities "eligible" for participation in the system to

59

those entity sets such that each entity can be

represented In the system by a single identifying value.

(For example, a "date" would have to be represented by a

Julian value. as opposed to being a concatenation of

values for day, month, and year.)

With this perspective, algebraic queries on base

relations can be seen as specifying operations which

modify the objects (relationships and entities) whose

identifiers make up the tuples of the base relations

which are the arguments to the query.

2.2.6 Aims and Limitations of Reverse Translation

It is necessary to distinguish two possible sources of

user confusion when dealing with syntactically and

semantically valid queries which, however, may not

correspond with the user's intensions.

An expression in a formal query language may be difficult

to understand because it involves a large number of

operations on many relations. It is reasonable to assume

that, everything else being equal, increasing the number

of operations making up a query will tend to increase

the difficulty of understanding the meaning of the

resulting relation, even if this relationship is not

linear. This source of difficulty is inherent in the

problem. This thesis primarily concerns itself with a

60

second possible source of user confusion: user

uncertainty about or positive misunderstanding of the

semantics of a particular sequence of operations on a

relation or relations. The operators of relational

algebra, and their equivalents in any formal query

language, are simply not in sufficiently close

psychological congruence to their effects to be easily

and painlessly comprehended, especially by intermittent

users.

2.3 The Method of Reverse Translation

2.3.1 A Summary of the Reverse Translation Process

The Reverse Translation process accepts as input a

syntactically valid query (in Relational Algebra) put to

relations which have previously been created

incorporating additional extra-relational information

about the relationship among the entities which make up

the domains taking part in the relation. To aid precision

in the ensuing discussion, this "extra" information

will be called the "predication" of a given relation. A

"predication" as used in the remainder of this thesis

will refer to the descriptive information relevant to the

relationship among the entities in a relation. (The

word "relationship" must be used in other contexts when

discussing aspects of the Reverse Translation process,

and also has an abstract flavour which is misleading when

used to describe the actual strings of text which bear

61

the information needed for Reverse Translation. Therefore

we have chosen to conscript a word from philosophy which

has an original meaning not opposed to the meaning we

will make it use here, but which will not be confused

with any other sense of the information which exists

among objects.) All Base Relations are described by a

single unmodified predication. Each Base Relation has a

distinct predication. A derived relation will be

described by one or more modified or unmodified

predications. In the relation recorded in Table 2.1, for

example, the predication between the "persons" and

"languages" domains is represented by the strings

"speaks" and "is spoken by".

The essential idea behind Reverse Translation is to add

to the data base system the information which has been

"factored out" of the sets of values which recorded in

the system. This information -- the predication -- is

held In such a way that it may be manipulated by the

relational operations that are intended to be applied to

the data, either before or in parallel with the execution

of a query. The Reverse Translation system delivers as

output, one or more statements in a stylised

pseudo-natural language format which may be interpreted

by the user as describing the "meaning" of the relation

which would be generated as a result of executing the

proposed query.

62

It is intended that the user will be able to compare his

intended abstract query (using this term in the sense

elucidated in Chapter I) with the abstract query

described by the Reverse Translation. Any discrepancy

between the two would signal a faulty query language

expression. which may then be inspected. and, if

necessary, corrected.

It is not a goal of Reverse Translation to fool the

user into thinking that he is conversing with a

pseudo-human entity. The "utterances" of Reverse

Translation have as their goal the conveyance of precise

information about possibly complex objects. The

achievement of this goal will, in certain situations,

require the generation of output text which is

"unnatural", in the sense that no human would speak this

way "naturally". Consideration of the pragmatics of text

generation for maximising human understanding is beyond

the scope of this thesis, and in any case would require

large-scale empirical testing in realistic conditions.

It is perhaps valuable, however, to point out that the

use of stylised, pseudo-natural language in situations

where precision is critical and users are in the

"professional end-user" category has long been

acceptable: examples include real-time military and

civil aviation communications.

Since the ultimate aim of Reverse Translation is to aid

63

users to validate their queries, using

computer-generated pseudo-natural language statements,

there is clearly a good deal of scope for overlap with

such topics as Man-Machine Interface studies, Cognitive

Psychology, and Linguistics. Insights from these fields

would potentially impact the presentation of the

information carried by Reverse Translations: the

particular choice of words to convey meaning, the layout

of text on the screen, the possibility of using different

type fonts to distinguish among objects of different

types, and so on. Similarly, the modes of use of a

Reverse Translation system might fruitfully be subject to

many experimentally-tested design variations: some or all

users might benefit from a brief training period to

become accustomed to the syntax and semantics of a

Reverse Translation description of a relation, for

instance. But the core of this thesis is the method

proposed for allowing the underlying semantic structure

of derived relations to be represented in terms of the

way in which their original ancestor relations were

described by these relation's creators and as a proposed

query might modify these descriptions. This basic method

__ Reverse Translation Graphs -- lends itself to

sustaining many possible implementations, with respect

to the questions of text presentation and modes of use

mentioned previously. The particular implementation

chosen to illustrate this thesis does not claim to be

based on more than the designer's intuitions. and is in

any case easily modifiable.

2.3.2 Information carried by the Reverse Translation

2.3.2.1 Alternative approaches to descriptions of relations

From the standpoint of how a Reverse Translation could

carry information to the user, two approaches are

possible. These are identical in ultimate semantic

content, but vary in their ease of interpretation.

(1) The Reverse Translation could be phrased in terms

of an assertion about the derived relation as a

whole.

(2) It could be phrased in terms of an assertion

which is true for any single tuple in the

relation.

Where the query operation has yielded a relation

consisting solely of a pre-defined entity type (such as

"persons" in the example above), both approaches are

equivalent as regards the ease with which a Reverse

Translation can be generated and the comprehensibility of

the final result from the user's viewpoint. The advantage

of the second approach is seen when the final relation to

be translated consists of associations of entities, such

that the association considered as a single "thing" has

no natural name. In such a case clarity is aided by

65

generating a complete sentence wherein the entities

involved in the relation play traditional grammatical

roles.

It is worth noting that the attempts to define queries by

various authorities quoted in Chapter I almost all assume

that the final object to be retrieved is a set of

identifiers of a single distinctly-named entity type.

This is not always the case, however, and it

may, incidentally, be hypothesized that the attempt to

retrieve tuples which cannot be conceptualised as members

of a single (composite) entity type may be particularly

error-prone.

An example of the latter would be a request to retrieve

tuples of degree two such that each tuple consists of the

name of a person who speaks French or English, or both,

and a language from that sub-set spoken by him. In

practice this request will almost certainly always be

given a natural language expression like "get the names

of people who speak French or English, along with the

languages they speak", leaving it to the user's

world-knowledge to work out the particular valid query

from the number of distinct valid queries which could,

arguably, be a response to that request.

In this case, the relational algebra expression wanted is

evidently the following:

66

A <- PSL : [L-"French"] U PSL : [L-"English")

A consists of Just those tuples from PSL where the

value in the "L" attribute was "French", or "English"

But any of the following expressions, consisting of

additional operations on the relation A derived above,

could be presented as valid solutions also.

(1) Al <- A % [P] and A2 <- AX [L]

Persons who speak French or English, in Al, and the

languages in question, in A2.

(2) A3 <- Al * PSL

Each tuple of A3 consists of a person who speaks French

or English, plus a language spoken by him. The latter

will include French, or English, but all of his other

languages as well.

(3) Att <- A3 % [P] and A5 <- A3 % [L]

The same misunderstanding as Al, but compounded with

the misunderstanding of A3*

This thesis does not investigate methods of aiding users

67

to increase the precision of their formulation of natural

language expressions of abstract queries prior to

submitting them to a computer for processing. Rather, it

is an exploration of a method of allowing a machine to

formulate a human-comprehensible expression of a

relational algebra expression of a query. In order to

avoid what appears to be a possible source of confusion

(the attempt to speak always of relations as if each

tuple were a representation of some sort of nameable

entity), Reverse Translations will be complete assertions

about tuples. They will be intended to be assertions

which apply to any single tuple in the relation they are

describing, formulated in terms of the entity types, and

relationships among them, which are directly or

indirectly represented in each tuple.

2.3.2.2 Information about the "degree" of individual
entity participation in a predication

A central part of the semantics of the relationship

among entities in a tuple is the question of the

"degree" of the relationship. In certain queries this

may be the most crucial fact, and may play a major role

in causing user confusion. The term "degree" in this

context must not be confused with the completely

different concept known as the "degree" of a

relation. Rather. we want to consider the "degree of an

entity within a relation". The concept we are concerned

with is the following: holding all other attribute values

68

fixed, how many tuples differing only in having distinct

individuals of the entity set under consideration can

there legally be in a given data base? (A suggestive way

of describing this concept might be to call it the

"degree of freedom" of an entity in a given relation.) In

a relation in third normal form, the relationships

between any element of the key (assuming the key is a

composite key made up of more than one attribute) is N:M;

between the key as a whole and any non-key columns, N:l;

between candidate keys, 1:1. In the

persons-speaking-languages relation, for instance, both

the person and language entity-types participate with

degree N. (It would be possible to hold relationship

information more precisely. For instance, to record that

intra-key relationships are N:2. This possibility is not

considered further in this thesis, although modifying the

Reverse Translation system to incorporate such a

refinement would appear to be straightforward.)

2.3.2.3 Information about selections of sub-sets
of entity sets

Many queries involve the selection of sub-sets of entity

identifiers which fulfill a certain condition. Where

such a sub-set would replace the full range of possible

entity identifiers, this fact must be incorporated into

the Reverse Translation. In the previously-cited example,

a query might direct the selection from the base relation

of all those tuples where the language value was

69

"French".

2.3.2.U Information about entity set
correspondence in complex associations

Even a very short sequence of operations can produce a

derived relation with very complex semantics as regards

the relationships existing among the entities

represented in it. This is especially liable to be the

case where some or all of these entities are no longer

represented by attributes in the final relation. Where

two or more such entities from the same domain are

present in a relation, there must be some way of

asserting either their identity, or lack of it. An

illustration of this problem, and a solution to it, are

taken up in Chapter Five.

70

THREE

DATA. STRUCTURES TO

REVERSE XOIM

3.1 Introduction

The goal of Reverse Translation is to be able to map

any sequence of relational algebraic operations into a

pseudo-natural language text which will convey to the

user the meaning of the relation derived from these

operations. In order to accomplish this an intermediate

structure is needed which will simultaneously faithfully

reflect the semantics of the sequence of operations

and serve as a basis for text generation. In this

chapter the intermediate data structure devised to play

this role is described. First the data structure which is

created by the user and which is associated with the Base

Relations is shown, along with an example of the

graph-creation process. Then the elaborated graphs

associated with queries on Base Relations are shown for

each Relational Algebraic operator, along with examples

of the Reverse Translation output generated from each

graph.

The information necessary to sustain Reverse Translation

is represented by creating a labelled directed graph,

henceforth termed a Reverse Translation (RT) graph, for

each Base Relation at the time of the Base Relation's

creation. With respect to its traversal by the Reverse

Translation Generation algorithm, this graph is an n-ary

tree made up of two kinds of nodes: Predication

Nodes, and Entity Nodes. ("Non-navigational" links may

71

also exist bewteen Entity Nodes in graphs of relations

which are derived from other relations.) Relational

algebra operators applied to relations may add additional

Logical Operator Nodes. Predication Nodes are used to

store information solicited from the relation's creator

about the relationship which obtains among the entity

types whose occurrences will make up the attributes of

the relation. Information about these entity types is

accessed via Entity Nodes, which are descendants of

Predication Nodes.

The actual generation of pseudo-Natural Language Reverse

Translations requires in addition to RT graphs

information specific to the entities (considered in

isolation from other entity sets) making up the domains

of each relation. This information is input at domain

creation time and held with the usual information about

the domain. (The terms "entity type" and "domain" are

equivalent in this thesis.) The application of relational

algebra operators to relations results in the creation

of several kinds of Operator Nodes. Predication Nodes,

Entity nodes and Operator nodes together make up a

derived graph, for the derived relation. This derived

graph records the modifications that the relational

algebraic operations have made in the derived relation

and is used to generate the Reverse Translation.

A Base Relation Graph consists solely of a Predication

72

Node and Entity Nodes which are the Predication

Node*s only descendants. Derived graphs may in addition

have one or more Operator Nodes, consisting: of Logical

Nodes, Comparison Nodes and Value Nodes. All information

is carried in the nodes, links being used merely to

navigate among them. A Reverse Translation is generated

by visiting, in order, each of the nodes of the graph and

generating at each node text which will in the aggregate

have the form of stylised pseudo-natural language

statements.

3. 2 Base Relation Nodes; Entity Nodes and Predication
Nodes

3-2.1 Predication Nodes

3.2.1.1 Role in Reverse Translation

Predication Nodes hold information about the kind of

relationship which obtains among the values of each

tuple. They express, in Sowa*s terms, the "intension" of

each relation. [Sowa, 1983] Each Base Relation has one

and only one predication node. Predication Nodes are by

far the most complex type of node, since they must bear

most of the information conveyed by the reverse

translation process, and because they are the node most

subject to user definition.

Underpinning the Predication Node construct is the

following assumption: someone who creates a Base

Relation, as previously defined, must be able to generate

a sentence which will transmit the meaning, or

73

relation. (All tuples In a relation have equal status:

for instance, there is no concept of ordering among

tuples.) This sentence must include a reference to

each attribute, but a sentence which consisted only of

such references could not be a full description of a

relation. Since attribute values are the only objects

held in a relation, and since other relations with the

same attributes (drawn from the same domains), in the

same order, could always be created. there must be

"something else" associated with each distinct relation

which distinguishes it from all other relations with the

same "surface structure".

This can be illustrated by the two relations representing

speakers and readers of languages, PSL and PRL , whose

"surface structure" of attributes is identical. The

"something else" which justifies the existence of two

distinct relations can be represented as strings of words

which link the attribute values, and which are different

for the two different relations. A PERSON speaks the

associated LANGUAGE in PSL, and reads it in

PRL. Anything which might represent the "speaks"

relationship has been "factored out" of PSL precisely

because it is true for every tuple. Ironically, it is

precisely those strings which carry the meaning of a

tuple which do not appear in a relation.

A Base Relation of Rdegree N will have a Predication Node

with N Entity Nodes as descendants. The Predication Node

will be termed a predication of Pdegree N. The number of

immediately-descendant Entity Nodes of a Predication Node

is fixed at the time of its creation by the user and does

not subsequently change.

/ Pi \\ /
_____/

/__ __\.
t II I

! Entity-1 ! ! Entity-2 !
i it i

Figure 3.1. A generalised Predication Node (PI)
with two descendant Entity Nodes.

75

3.2.1.2.1 Overview

A Predication Node consists of a set of Predication

Phrases which are chosen by the Base Relation's creator

to express the relationship existing among the values of

each tuple in a Base Relation. Each phrase in the

Phrase Set is in turn a set of strings. A "slot" precedes

the first phrase, and follows it and all other phrases.

The number of slots equals the degree of the Base

Relation and the Pdegree of the Predication Node. Thus

there are Pdegree-1 phrases in a Phrase Set. (Subsequent

projection operations may change the degree of the

relation being described by a Predication Node, but the

latter's Pdegree remains constant.) This is equivalent to

having one slot per Base Relation attribute. Each slot is

a link to an Entity Node. Each collection of

strings, when uttered with the appropriate Entity names

appearing in the "slots", should be semantically

equivalent to each other, differing only in that each

enunciates the predication for a different permutation of

the relation's attributes. (The responsibility for

ensuring that this is the case belongs to the creator of

the Base Relation.) The relation's creator supplies the

appropriate Predication Phrase for each permutation of

the relation's attributes. in both singular and plural

forms, and in both positive and negative senses, at the

time the relation is created. (See Figure 3-^)

76

It Is the relation creator's responsibility to ensure

that all of the sets of phrases in each sense group are

equivalent to each other, and that each accurately

expresses the relationship obtaining among the

entity-types they link. From the system standpoint, each

phrase set consists of simple, uninterpreted strings.

(The system does not, for instance, hold an English

grammar "knowledge base" with information about the

semantics of prepositions and verbs.)

Thus a Predication Node and its descendant Entity Nodes

are intended to carry either strings or references to

strings such that the "meaning" of their Base Relation

can be conveyed. The particular set of strings which is

generated during Reverse Translation will be termed "the

Reverse Translation" of a relation. Occasionally the term

"the description" of a relation will be used, as a

synonym. All or part of a particular Reverse Translation

will sometimes be referred to as an "utterance".

Base Relations of degree N will have N-factorial

semantically-equivalent predication phrase sets. Each

such set consists of a main predication phrase, and N-2

case indicator phrases which link the entities not

linked by the main predication phrase.

3.2.1.2.2 Main Predication Phrase Set

77

The main predication phrase is that phrase which

carries the principal burden of communicating the

"meaning" of the relation. It may be thought of as

corresponding to the "verb" in a sentence. (The actual

grammatical categories of the instances of domain

representatives which occur in a tuple is irrelevant,

because the Reverse Translation always refers to

a domain representative as a member of a domain,

i.e. as a noun. For example, the Reverse Translation

graph of a binary relation recording VERBs in one column

and possible ADVERBs modifying them in another, would

have a Main Predication Phrase describing the

relationship between them.)

Predication phrases will always be placed between

phrases applying to entities. In a binary relation, the

Main Predication Phrase will be the only component of a

phrase. Note that a Main Predication Phrase may include

"case indicating" prepositions, or any string

whatsoever. In a binary relation which records a

reflexive relationship between its two attributes, the

Main Predication Phrase will be identical in both

permutations. The Main Predication Phrase exists in both

singular and plural forms, and in both positive and

negative senses. (The conventions of English grammar do

not require the other "case-indicating" phrases to be

inflected for number or sense.)

78

Each permutation of the main predication phrase, unlike

members of the Case Indicator Phrase Set described in the

following section. exists in both a "positive" and

"negative" sense. The "positive"sense is that which

describes the relationship among the entities of a Base

Relation tuple. The "negative" sense is useful in order

to provide paraphrases of Reverse Translations of certain

possible query expressions. For example, in a relation

listing persons and the languages they read, it is

necessary to be able to generate a phrase to indicate

that "X reads Y", but also a phrase to communicate the

negation of this fact. This can be done either by simply

negating the user-supplied positive phrase ("it is not

the case that X reads Y"), or by allowing the

relation's creator to choose the phrase that he believes

best transmits the intended negative sense (perhaps that

"X does not read Y", "X cannot read Y", "X is illiterate

in Y", etc.) and generating that instead. This will have

advantages when confronting the problem of double

negations.

3.2.1.2.3 Case Indicator Phrases Set

Case Indicator Phrases are those which, in

relations of degree three and higher, are needed to

supplement the information carried in the Main

Predication Phrase. As with the Main Predication Phrase,

79

these phrases may be any string whatsoever (although they

typically will be, or at least include, prepositions such

as "to" or "with").

Main Predication Case Indicator
Phrase Phrase

Positive Sense

C X 3 supplies C Y 3 to C Z 3
C X 3 supplies C Z 3 with C V 3
C Y 3 is supplied by C X 3 to E Z 3
C Y 3 is supplied to C Z 3 by C X 3
C Z 3 is supplied with C Y 3 by C X 3
C Z 3 is supplied by C X 3 with C Y 3

Negative Sense

C X 3 does not supply C Y 3 to C Z 3
C X 3 does not supply C Z 3 with C Y 3
C Y 3 is not supplied by C X 3 to C Z 3
C Y 3 is not supplied to C Z 3 by C X 3
C Z 3 is not supplied with C Y 3 by C X 3
C Z 3 is not supplied by C X 3 with C Y 3

(X, Y. and Z are references to Entity Nodes.)

Figure 3.2 Predication Phrase Sets

3.2.1.2.U Permutations and Mapping

The system has solicited a predication phrase set from

the user at relation creation time for each permutation

of the relation's attributes. Therefore, whatever

permutation of the relation's attributes obtain when it

is necessary to generate a Reverse Translation, the

appropriate phrase set can be selected. However, a

predication of degree three or higher, which has one or

more arguments consisting of entities whose parent

columns have been projected out, cannot simply take the

permutation of its relation. as can predications of

80

relations which have not had attributes projected out.

This is because more than one permutation of the

"missing" entities is possible which leaves the

remaining entities in correspondence with their

attributes. To see this, consider the relation SPJ,

consisting of information about which Suppliers supply

which Parts to which Projects. Now suppose that a

relation Rl is defined, derived from SPJ by

projecting out attribute P. There are three possible

phrase sets which refer to the remaining entities

Supplier and Project in the correct order: (Part),

Supplier, Project; Supplier, (Part), Project; Supplier,

Project, (Part). (The entity corresponding to the

projected-out attribute is enclosed in parenthesis.) The

choice of which of these phrase sets to utter is

arbitrary from the point of view of their equivalence.

The Reverse Translation system chooses a set which refers

first to all of the remaining entities, in the order

which corresponds to the order of their matching

attributes, and only then to the "missing" ones. In this

case there is only one such phrase set, the one

corresponding to Supplier, Project, (Part). (Were

the Supplier attribute to now be projected out, there

would be two possible choices: Project, (Supplier),

(Part) and Project, (Part), (Supplier). The choice is

made by the system using an algorithm which returns the

first permutation which meets the requirements stated

above from the set of reverse lexicographically-ordered

81

Pdegree! permutations. [Page and Wilson, 1979]

Reverse lexicographical ordering is chosen because in

this implementation a table of the twenty-four

permutations of four objects is used, rather than an

algorithm generating each permutation in turn. Holding

the permutations in reverse lexicographical order allows

the same table to be used for permutations of fewer than

four objects also, since each permutation table

for N items is are "nested" within the table for N+l

items. However, this does restrict predication nodes --

and therefore Base Relations -- to a maximum of four

arguments. This maximum could be expanded to five, with a

table having one hundred and twenty entries. Allowing

predication nodes of any number of arguments would

require replacing the table-lookup approach with a

(slower) permutation-generation algorithm. Since

predications are not dynamic with respect to the number

of arguments they take, and since a full range of Queries

can be illustrated with predications of three arguments,

the table-lookup approach was chosen.

3-2.2 Entity Nodes

3-2.2.1 Role in Reverse Translation

Entity nodes hold information about the objects

represented in relational systems by tuple values. They

are the things about which something is predicated by

virtue of their appearance in the relation. Each node

82

holds a reference to a particular collection of

information about the domain its entity set is drawn

from. This information is not specific to any particular

relation, but holds true for all occurrences of

representatives of this domain in the data base. (This is

described in detail in the next section.)

In addition to a domain reference, the Entity Node holds

information specific to the particular appearance of

occurrences of representatives of the domain in this

relation: whether or not its original attribute has been

projected out, or what attribute it appears under, if it

has not been projected out; and its "Edegree": whether or

not a particular value of a domain representative

occurring in a tuple has been uniquely determined by the

other tuple values, or not. Finally, when each Entity

Node is originally created, it is given a unique internal

identity value. (See Figure 3.4) Entity Nodes of derived

relations may have descendant nodes carrying information

about them.

3.2.2.2 Terminology

An Entity Node whose corresponding attribute has not been

projected out will be termed a Participating Entity

Node. An Entity Node whose corresponding attribute has

been projected out will be termed a Non-participating

Entity

Node.

A SELECTION operation may add information about an Entity

Node. The new information added as the result of a

SELECTION will be held in a graph, which will be termed

a Qualification Sub-graph. The Qualification

Sub-graph is a descendant of that Entity Node whose

corresponding attribute has been the argument of a

selection expression. This is described in detail in

Sections U . k . 3 and 5.2-5-3.

3.2.2.3 Predication Roles

If the Entity Node is going to play a role in the

relation such that it could more usefully be Reverse

Translated with a name other than its domain name, then

this alternative name is held in the Entity Node. This

"Predication Role name" can be helpful in overcoming

ambiguity where a relation has more than one attribute

drawn from the same domain. In a Base Relation the

requirement that each attribute have a distinct name

prevents intra-entity ambiguity from occurring,

especially if the relation's creator chooses attribute

names which are suggestive of the role played by the

entities filling that attribute. But if one or more of

the common-domain attributes gets projected out, the

attribute name as such is no longer available. In this

case the Predication Role name helps maintain the

84

distinction between entitles from the same domain.

/ \
/ V
\ /
____/ / \

-\.
1 1

Entity-1 ! ! Entity-2 !
i i i

Figure 3.3. Entity nodes.

3.2.2.2 Domain information

Each Entity Node refers to a particular domain. Each

domain in the system have the following information

recorded about it at domain creation time:

entity set name, both singular and plural forms.

animation flag, is an individual of this domain

"animate"? The only practical effect of this is in the

choice of pronouns: animate domains are referred to by

"who", inanimate ones by "which".

representation flag: whether or not individuals are

represented in this domain by their "own" names, or by

special codes. If they are represented, the singular and

plural forms of their representative's names are

recorded. As an example, languages are recorded

directly using their own names ("French", "German",

85

etc.) but suppliers are represented by Supplier Codes.

This information is used when uttering qualifying graphs:

thus the system will describe "a Language, which is

French," but "a Supplier, whose Supplier Code is S123".

self-identification flag: a Boolean value which is

TRUE if the values which represent individual entities

can always appear in a Reverse Translation without a

prior reference to their domain or domain-representative.

If they can be, the domain is said to be

"self-represented" and the Reverse Translation generation

algorithm may optionally omit reference to the domain (or

domain representative) from which the values are

taken. An example of the distinction in practice would

be. assuming that the domain of persons is not

self-representing but the domain of languages is, a

Reverse Translation fragment consisting of "at least one

PERSON, whose name is Smith, speaks [a LANGUAGE, which

is] French." In this fragment, domains are in upper case,

domain representatives are underscored, and the part of

the Reverse Translation phrase which can be optionally

omitted (given that the domain of LANGUAGES is

self-representing) is enclosed in square brackets.

data type and range data: what datatype the values

which will represent individual entities in the system

will be.

86

comparison phrases; a default set of phrases for the

relational comparison operators ("<". '* = ", etc.) is

available, but the user can override these and supply his

own if a tailor-made set of phrases would add clarity.

(This is most likely to occur where a domain's values are

judged to be self-identifying, as described above. For

instance, objects and values from a domain of AGE might

be usefully compared with the phrases ** is younger than**,

"is", etc.)

3.2.2.3 Domain Information Storage

All information about domains is stored in an array of

domain records where it may be accessed by the Reverse

Translation generator whenever the latter must utter

information relating to a particular entity node.

3.3 An Example of a Base Relation Graph and its
Reverse Translation

3.3.1 Generalised RT Base Relation Graph

/ i: <predication> (a phrase set) *.
/ 2: <per§utation> (K.pdegree!) \

/ 3s <sense> (positive or negative) \
\ 4: (pdegree) (= nutber of descendant /
\ nodes -- fixed) /
V____________________/

! 1: <dowin> ! ! ! ! !
! 2: <Edegree> ! ! ! f !
! 3: (attribute) ! ! ' ! !

! 5: <role> ! f ! ! !

87

Figure 3.U Information Held in Predication
and Entity Nodes

3.3.2 An Instance of a Base Relation Graph

SPJ

/
(doiain)
<Edegree>
(attribute)
(id)
(role)

! SUPPLIER !
! N !
! i ISNQ] «
! 003 !
! none !
i i
i i

1

1

! PART
! H
! 2 [PN03
! 023
! none
i

!

i
i

!
i

i
i

i

/ 1: (predication): (See Figure 3.2) *
/ 2: (periutation): 1

/ 3: (sense) : positive
\ 4: (pdegree) : 3 /
\ I
____________________/
/ !

/

PROJECT
N
3 UNO]
019
none

Figure 3.5 The Base Relation Graph for SPJ

SS

3.3-3 Generating a Reverse Translation from an RT Graph

3.3.3.1 Discussion and Justification of the Method

A Reverse Translation is a generated by an in-order

traversal of a Reverse Translation Graph. At each

node, text is output which depends on the state of the

node, and for Derived Relation Graphs (discussed in the

following chapters) on the particular state of a "sense

marker" which is global to the node. The principles

involved may be seen by an examination of the

considerations involved in choosing; the wording of each

phrase generated from the graph illustrated in Figure

3- 5.

3.3.3.2 Predication Phrases

The Predication Phrases ("supplies", "to" etc.) are

simply those supplied by the relation's creator, with

the proper sense, number and permutation.

3.3.3.3 Indicator Phrases

The user must be able to see to which attribute value an

Entity Node whose attribute has not been projected out

is referring, and must be able to distinguish between

these Entity Nodes and those whose attributes have been

lost through projection. If a relation has attributes

from common domains, generating their domain names alone

will not distinguish between them. Both of these

89

objectives can be accomplished simultaneously by

including in the Reverse Translation of Participating

Entity Nodes. the name of the attribute to which they

correspond. This is done by enclosing the attribute name

in square brackets and putting it immediately after the

Entity Node's domain name in the Reverse Translation. As

a possibly useful measure of linguistic redundancy, the

domain name of Participating Entity Nodes is also

preceded by the Indicator Phrase, "the indicated". This

is done to reduce the possibility of one-character

attribute names in the Reverse Translation being

overlooked.

3.3.3.4 Edegree Phrases

The degree of participation of the entity in the

predication is signalled by an "Edegree phrase" which is

the final phrase in the Reverse Translation of the Entity

Node. For Participating Entity Nodes of Edegree N the

phrase is "and possibly other" followed by the domain

name.

3-3.U Reverse Translation of the RT Graph of SPJ

The indicated Supplier [SKO), and possibly other Suppliers,
supplies
the indicated Part [PMQ], and possibly other Parts
to
the indicated Project [JNOJ, and possibly other Projects

90

3.& Derived Relation Nodes; Logical Nodes. Comparison
Nodes, and Value Nodes

3.ft.l Logical Nodes

The Logical Nodes are those which result from one of the

three set operations, UNION, INTERSECTION, and,

DIFFERENCE. and from the JOIN. UNION creates an OR

Logical Node, DIFFERENCE a NOT Logical Node, while both

INTERSECTION and JOIN create an AND Logical Node. A

Logical Node is not intended to represent the

algebraic operation which created it, but rather holds a

token for the logical relationship brought into being

between the RT graphs of the operand relations by the

relational algebraic operation which operated on their

parent relations. This token is illustrated in Figure 3.U

by "<L>". A Logical Node becomes the root node of the

(derived) RT graph which is composed as the result of the

operation. A Logical Node always has as descendant graphs

in such a case the graphs of the two operand relations.

The left descendant graph is the graph of the relation

on the left of the operator in the Relational Algebra

expression, and the right-hand graph is the graph of

relation to the right of the operator. The complete graph

of the derived relation may sometimes be transformed into

an equivalent graph, possibly with fewer constituent

elements, according to rules explained in Chapter Five.

As a result of the algorithms which create Reverse

Translation graphs, OR nodes can also be the parent nodes

of Comparison Nodes, or of OR or AND nodes, while AND

nodes can be the parent nodes only of Comparison Nodes or

91

AND nodes. Examples of these graphs used to represent

derived relations can be found in the following chapter,

with a Justification for the special status of OR nodes.

——-- \

\
/ \

/ \

Figure 3«4. A Logical Operation Node.

3-&«2 Comparison nodes

A Comparison Node is a node with a single descendant

Value Node, holding a token for the comparison operator

used in a SELECTION operation, illustrated by "<c>"

in Figure 3«4. In the SELECTION expression,

Rl <- PI : [P^'French 11]

a Comparison Node holding a token for the "=" operator is

created.

_/

Figure 3.4.1. Comparison Node

3.4.3 Value nodes

92

A Value Node Is a simple leaf node which holds a string

equivalent of the value in a SELECTION operation

(illustrated in Figure 3-1.1 by **<v>" . In the SELECTION

expression,

Rl <- PI : [P=*'French**]

a Value Node holding the string "French** is created.

! <v> !
i i

Figure 3.6 A Value Node.

93

SMCDX

A.

Introduction

This chapter introduces the actual process of Reverse

Translation by examining the effect of each relational

operation on an example Base Relation Graph (BRG),

(defined in Sections 3.1 - 3.2) illustrating the Hbefore"

and "after" states of the graphs associated with the

parent relation(s) and the derived relation.

A relation which is derived from a monadic relational

algebra operation (a PROJECTION, PERMUTATION, or

SELECTION on a single relation) will inherit a graph

which is composed of a modified variant of the ancestor

relation's graph. (See Figures 4.1 - tt.2) A relation

derived from a dyadic operation (UNION, DIFFERENCE,

INTERSECTION or JOIN) will inherit a graph composed from

both graphs of its parent relations. (See Figures

The derived graph of the resultant relation is

emphatically not an "execution tree", although

occasionally it may bear a superficial resemblance to

one. (An execution tree would add a new node for each new

operation, with the last operation being the root node of

the tree. An RT graph, although a tree, and affected by

each new operation in which its parent relation takes

part, does not necessarily have a new node added at the

root of the tree as the result of an algebraic operation,

and in fact may not have new nodes added at all.)

For the derived relation's graph to be of value to the

user, it must serve as the input to a Reverse Translation

algorithm. A given RT graph can be Reverse Translated in

more than one semantically-equivalent way, given the

conventions of English. It may also be subject to prior

manipulations which preserve its semantics but enhance

the user's comprehension of the graph's meaning when its

Reverse Translation is generated. The full

Reverse Translation system incorporates both further

graph manipulations and additional linguistic choices

incorporated in the Reverse Translation algorithm itself,

which are not illustrated in this chapter. The pragmatic

considerations that guide the choices made in further

graph manipulation and in the generation of a Reverse

Translation are taken up in detail in Chapters Five

and Six. In this chapter each derived graph is

accompanied by the Reverse Translation which would be

generated in the absence of further meaning-preserving

manipulations and without regard to possible

simplifications in the generation of its Reverse

Translation.

U.2 PROJECTION

U.2.1 Effect on relation semantics

A PROJECTION strips out one or more attributes from a

95

relation. In terms of the user-supplied tuple-description

of the relation, a PROJECTION withdraws the specific

occurrence of an entity value from each "slot" in the

relation corresponding to the attribute or attributes

projected out. If before a PROJECTION a relation told us

that John speaks French and English, and Mike English and

German, then projecting out the attribute holding the

language values leaves us with a relation from which

we can learn only that John and Mike speak one or more

languages.

PROJECTION is the operation which, viewed from the

Reverse Translation perspective, has the most radical

impact on relation semantics. This will be seen to be

especially so, where the attributes projected out have

been created by compounding two or more attributes from

distinct relations in previous intersections, differences

or Joins. This will be demonstrated in Chapter Five.

U.2.3 Effect on Graph

The effect of a PROJECTION on the RT graph of the

derived relation is to set the relevant attribute value

of the Entity Node of each discarded entity-set in each

Predication Node to zero. (To enhance the visual

impact of the PROJECTION operation, the convention by

which the effect of PROJECTION on an Entity Node will be

illustrated in this thesis is a small open box at the

96

point of attachment between the prodected-out Entity Node

and the link by which it is attached to its

Predication Node. This is merely a presentation device.)

The effect of PROJECTION is illustrated by Figure 4.1

where the Base Relation SPJ is projected on attributes

SNO, PNO, with attribute JNO (representing Projects)

being discarded. All information relating to JNO is lost

from the tuples of the resulting relation. SP, but is

retained in the graph of SP . In the case of a

PROJECTION on a Derived Relation Graph (DRG) to produce a

further DRG, where a given projected-out attribute may

be referred to by more than one Entity Node (the

descendants of different Predication Nodes), every such

Entity Node's attribute value must be set to indicate a

missing attribute.

U.2.U Example Queries

SP <- SPJ % [SNO, PNO] (Graphs illustrated in
Figure 4.1.)

P <- PC % [P] (Graphs not illustrated.)

97

SPJ

/ supply
\

I II II I

! Supplier ! ! Part ! ! Project !
i it ii i

11
\ '' /

V

SP
/—————————————\

/ supply ^
\ /

/I^. the effect
__/__ __!__ _[]__ <-- of

! ! ! ! ! ! PROJECTION
! Supplier ! ! Part ! ! Project ! on PNO

Figure a.l The effect of a PROJECT!
U . 2 . 5 Effect on Translation

The disappearance of an entity through PROJECTION may

impact its Reverse Translation in three ways.

(1) An entity which has been projected out of a tuple (a

Non-participating Entity Node) must now have its current

absence (but previous existence) signalled by a different

Indicator Phrase. The exact phrase used to replace it

depends on several factors which are discussed in

Chapter Seven. The Indicator Phrases shown here are those

which are generated for Base Relation Graphs. The two

possibilities, corresponding to Entity Nodes of Edegree

1, and Nodes of Edegree N, are discussed in Section

4.2.5.1.

(2) The Attribute Reference (" ([<attribute name>]) ")

must vanish, since the corresponding attribute has been

eliminated through the PROJECTION.

(3) The Edegree Phrase may be changed, depending on the

Edegree of the affected Entity Node (1 or N). Both cases

are discussed, and the choices made Justified, in the

next two sections.

4.2.5-1 The Edegree of Entities

4.2.5.1.1 Entities of Edegree N

In the case of a BRG, the Indicator Phrase for a

PROJECTED-out Entity Node of Edegree N will be "at

least one". This particular Indicator Phrase incorporates

the Edegree information which, for Participating Entity

Nodes, is carried in the Edegree Phrase ("and possibly

others"), which can, consequently, be dropped in the

interests of minimising verboseness. This is illustrated

in Section 4.2.6.1.

4.2.5.1.2 Entities of Edegree 1

An Entity Node of Edegree 1 in a BRG cannot have an

Indicator Phrase of "at least one" since it represented

99

in fact the only entity occurrence which could have

appeared in this column. Its Indicator Phrase will

accordingly be "a/an". Unlike the case of Entity Nodes of

Edegree N, the Edegree information is not clearly

signalled by the new Indicator Phrase, and so the Edegree

Phrase is retained. This is illustrated in the example in

Section U.S.6.2.

£.2.6 Reverse Translation Examples

tt.2.6.1 Reverse Translation of SP

The indicated Supplier [SNQ], and possibly other Suppliers,
supplies
the indicated Part [PNQ], and possibly other Parts,
to
at least one Project

4.2.6.2 Reverse Translation of P

The indicated Person tPJ, and possibly other Persons,
Mas born in
a Country, and it alone

4.3 PERMUTATION

U.3.1 Effect on relation semantics

The PERMUTATION of a relation A to produce a relation

B will affect B's semantics with respect to its

participation in any operation whose outcome is dependent

on the order of the participant relation's attributes.

In the syntax of the relational algebra used to

illustrate this thesis, this is the case for the set

operations UNION, DIFFERENCE and INTERSECTION. For

instance. consider a relation of degree two, with both

100

attributes drawn from the domain of PERSONS, representing

the relationship of teacher-student between the first and

second attributes. Now consider a second relation, also

of degree two and with both attributes drawn from the

domain of persons, representing parents and offspring. If

the first relation is intersected with the second, the

resultant relation represents all pairs of PERSONS such

that the first person teaches and is the parent of the

second. If the first relation is now permuted (so

that they "change places"), then its intersection with

the second (parents-offspring) relation gives a relation

representing all pairs of PERSONS such that the first

person teaches and is the offspring of the second.

b .3.2 Effect on Graph

The PERMUTATION of a relation's attributes will have two

effects on its graph:

(1) it will notionally re-set the order of the

Predication Node's pointers to the entity argument slots.

The practical effect of this will be to present the

descendant Entity Nodes of the Predication Node to any

processing algorithm in a revised order, reflecting the

permutation of the relation. (Figure 4.2)

(2) it will change the permutation indicator value

and therefore will alter the particular predication

101

Phrase Set which will be generated in the Reverse

Translation. As described in Section 3.2. the Predication

Node has been supplied by the user, at relation creation

time, with a set of descriptive phrases for each

permutation of the entity arguments of the relation. The

current phrase set is indicated by the permutation

indicator value.

U.3.3 Example Query

JPS <- SPJ ft [JNO, PNO, SNO]

SPJ
f

/ supply
\
\

\
\
/

/
/ i

I II II I

! Supplier ! ! Part ! ! Project !

1 1

/——————————————I

JPS / supply \
\ \

\
\

i it it i

! Project ! ! Part ! ! Supplier !
i ii ii i

Figure ii. 2 The effect of a PERMUTATION

102

The order of entity appearance is altered to correspond to

the new attribute order, and the appropriate predication

phrase (corresponding to the new entity order) will be

generated.

3.5 Reverse Translation of 3PS

The indicated Project [JH01, and possibly other Projects,
is supplied Mith
the indicated Part [PNG], and possibly other Parts
by
the indicated Supplier [SN01, and possibly other Suppliers

U SELECTION

Effect on relation semantics

A SELECTION chooses a sub-set of the tuples of the

operand relation. In terms of the user-supplied

description of the tuples of a relation B created as the

result of SELECTION on a relation A, a SELECTION provides

us with additional information about the entity

occurrence represented by the attribute selected on. In a

Base Relation we know only that what is true for the

domain from which entity representative occurrences are

drawn is true for each entity occurrence. In the derived

relation we are able to assert additionally that the

value of each occurrence of an entity representative

corresponds in a manner specified by the SELECTION

expression to a. sub-set of the possible entity

representative values which might occur in this position.

1O3

Thus the practical effect of SELECTION on a domain with

well-ordered values is to tell us the following: either

what particular domain value every occurrence of that

domain in this attribute is. for a SELECTION expression

with the equality operator; or. to tell us either or

both of the inclusive or exclusive upper and lower

limits of the domain values which may be taken by

occurrences found in this attribute (the lesser-than,

lesser-than-or-equal, greater-than-or-equal and

greater-than operators), with zero or more values which

the occurrence may not have (the not-equality operator).

There is more than one way to represent such knowledge of

permitted and non-permitted domain values internally. The

method chosen in the work reported in this thesis was to

hold the information in a way maximally consistent with

the rest of the RT apparatus. This is as a graph.

U.U.3 Effect on RT Graph

A SELECTION on a given attribute in a Base Relation Graph

has the effect of attaching a Qualification Sub-graph to

the selected-on attribute's Corresponding Entity Node. A

SELECTION made on an attribute which has not

previously been the argument in a SELECTION expression

adds a single Comparison Node with a Value Node as its

sole descendant to the Corresponding Entity Node in the

104

. U. U Example

SPJ1 <- SPJ : [PNO > "PI"]

Effect on translation

The effect of attaching a Qualification Sub-graph to an

Entity Node is to insert a qualifying phrase (underscored

in the example below) into the Reverse Translation

following the entity reference and preceding the Edegree

phrase. If the domain which is represented by the

thus-modified Entity Node is one whose entity occurrence

values have been declared at domain-creation time to be

represented by values from another domain, then the

phrase "whose" is generated, followed by the of the name

of the domain's representative, followed by the RT phrase

for the value of the Comparison Node, followed by the

string held in the Value Node.

The cases of more complex Qualification Sub-graphs, and

of Qualification Sub-graphs after their parent Entity

Nodes have been made Non-Participant nodes through

projections, are taken up in Chapter Five.

105

\
t

\SPJ f - ' v

Y
/ ' v

II II I

Supplier ! ! Part ! ! Project !
ii it i

SPJ1 /
t

1
\
\
I

1

supply

i
i

\
\
\

/
\
\

It

1 Supplier ' ! Part ! ! Project '
i ii it i

I

/ > <-- the effect of a
__/ SELECTION

! PI !
i i

Figure 4.3 The effect of a SELECTION on an
unqualified Entity Node.

11 . ti. 6 Reverse Translation of SPJ1

The indicated Supplier [SN03, and possibly other Suppliers,
supplies
the indicated Part [PM01,
xhose Part-nutber is greater than PI,
and possibly other Parts
to
the indicated Project UN03, and possibly other Projects

U.5 The Set Operations

The set operations will be illustrated two relations: One

will be the relation PSL,PERSONS and the LANGUAGES they

speak, introduced in Chapter Two and illustrated in

Table 2.1. The other will be the relation PRL,

106

4-5.1 INTERSECTION

U.5.1.1 Effect on relation semantics

The effect of intersecting two relations A and B to

produce a relation C is to produce a relation in which

the following can be said of each of its tuples:

everything which was true for a tuple of relation A is

true for a tuple of relation C, and everything which was

true for a tuple of relation B is true for a tuple of

relation C.

U.5.1.2 Effect on RT Graph

The effect of intersecting two Base Relation RT graphs is

to unite them via an AND Logical node, and to link each

participating Entity Node (any Entity Node which

corresponds to an existing attribute in its relation) in

the left-hand graph to its equivalent in the right-hand

graph. This is illustrated in the diagrams by arcs

between node boxes, but actually implemented via

setting the unique node identity value of each

participating Entity Node in the right-hand graph to the

value of its equivalent in the left-hand graph. The

necessity for this linkage, and its effect on the Reverse

Translation of the derived graph is explained in

Section 4.5.1.7.

107

The resulting list of (notionally) linked Entity Nodes

will be termed an Entity Node Chain. and the

left-most Entity Node will be termed the

PrincipalEntityNode. In the immediately-following

example graph there are two Entity Node Chains. The

Entity Nodes referring to the same (non-projected)

attribute will be termed Corresponding Entity

Nodes, The Entity Nodes in a given Entity Node Chain

will be termed Equivalent Entity Nodes.

Equivalent Entity Nodes are all Corresponding Entity

Nodes (assuming that they refer to a non-projected out

attribute) but not all Corresponding Entity Nodes are

necessarily Equivalent Entity Nodes. Note that Equivalent

and Corresponding Entity Nodes must be drawn from the

same domain (although not all Entity Nodes drawn from the

same domain are necessarily Equivalent or Corresponding

Entity Nodes).

Although not illustrated in this chapter. a further

process of transferring Equivalent Entity Nodes'

Qualification Sub-graphs, if such exist, to the

Principal Entity Node will also take place, as described

in Chapter Five. The information which is thereby

recorded, linking Equivalent Entity Nodes, will be used

by the RT generation algorithm, as explained in Chapter

Six.

1O8

U. 5«1•^ Example Query

PLi <- PRL ~ PSL

U.5.1.5 Effect on translation

Where the derived graph has not been reduced, the left

descendant graph will be uttered. Then a linking phrase is

generated, which will be "and" in the case of RT

Graphs derived strictly from Base Relation Graphs. Then

the right descendant graph will be uttered. The existence

of an Entity Node Chain (Entity Nodes in the

right-hand graph corresponding to an Entity Node in the

left hand graph) has no effect on the Reverse

Translation where the Entity Nodes concerned represent

attributes which have not been projected out. The

Justification for this is the following: where a Reverse

Translation is about an existing entity representative,

it is sufficient to make reference to the particular

attribute it occurs in, to be unambiguous about which

possible entity representative is being referred to. The

opposite case is considered in the next Section.

109

/
\

reads / speaks .
\ /

Person Language

\ " /
X!!/
\/

PLi

Person

1 !

Language

reads /
\

speaks

Person Language ! Person
i

(Note that Entity node links are not upletented
as pointers but rather via equating Entity Node
identity values.)

Language

A A

1 1

1

1 1

) !
i

Figure The effect of INTERSECTION

. 5.1.6 Reverse Translation of PLi

The indicated Person CP1, and possibly other Persons,
reads
the indicated Language [LJ, and possibly other Languages,
and
the indicated Person [P], and possibly other Persons,
speaks
the indicated Language [L], and possibly other Languages

110

Jl.5-1.7 Entity Node Chains and Relation Semantics

The crucial role of Entity Node Chains in maintaining a

true representation of the semantics of relational

operations may be seen if we consider the following two

sequences of operations:

Sequence I

PI <- PSL % [P]
P2 <- PRL % [P]
Rl <- PI ~ P2

Sequence II

R2 <- PLi X [P] (See Section U . 5 . 1. *l Figure

Rl
P

[PERSONS]

1 Ada*
' Sunther
1 Uli
! Zahid

R2
P

[PERSONS!

!~Adaii '

! 6unther '
! Uli

Table 4.2. The relations Rl and R2

Rl

1 1

/
/

\
/ reads \

\ '
/ ———————— <

ii ii

Person ! ! Language I !

A

1

\

/ speaks \

\ '
\ (

1 \
1 I 3

i i i

Person ! ! Language !
i i i

t
i

Figure U.5 The RT Graph of Rl

111

I I
I A | .

I I \
\

/ reads * / speaks \
\ I \ '
_____/ _____//X /Vit ii ii

Person ! ! Language ! ! Person ! ! Language !
ii ii ii i

A A |

I I)

I I

Figure U.6 The RT graph of R2

The differences in these two graphs represent crucial

differences in the semantics of the sequence of

relational operations: PROJECTIONS, on the one hand, and

DIFFERENCE, INTERSECTION, and JOIN, on the other, are not

commutative. The two relations Rl and R2 are

distinguished by the fact that the first was created by

projecting and then intersecting, and the second was

created by intersecting and then projecting. If

both sequences of operations yielded identical RT graphs,

then these graphs would not be accurate representations

of the semantics of their relations. The practical effect

of switching the order in which PROJECTION is done is to

make Rl contain all those people who speak one or more

languages, and read one or more languages (but not

necessarily the same ones), while R2 contains those

people who speak one or more languages which they

112

also read. This critical distinction, resulting from

a single reversal in the sequence of relational

operations, would appear to be fertile ground for user

confusion. The Reverse Translation process must be able

to handle the distinction.

The problem can be seen to arise in the text generated

for any Non-principal, Non-participating Entity Node.

Recalling the Reverse Translation for the graph of the

relation PLi (Figure H..H), we see that projecting out

the Language Entity Nodes (yielding R2) will raise the

question: how to indicate that the Language referred to

in the second predication is the same Language as the one

referred to in the first predication, now that we are

deprived of the ability to refer to its attribute name?

Rl does not present such a problem. The Languages read

and spoken are not necessarily the same ones, and thus

the second mention of a Language requires no reference

back to the previous mention of a Language. (Of course,

the Indicator Phrase given must not imply such a

connection.)

Reverse Translation of Rl

The indicated Person [p], and possibly other Persons,
reads
at least one Language,
and
the indicated Person [p], and possibly other Persons,
speaks
at least one Language

In the case of R2, such a reference must be included

113

Node is uttered, it must be put on a stack of

previously-uttered Entity Nodes. Prior to uttering an

Entity Node, we must search this stack to see if a Node

with the same Node-id (that is, one which precedes the

current node in a chain) has already been uttered. If

so, the Indicator Phrase must refer to this

previously-uttered node. The effect of this solution is

seen in the Reverse Translation of R2.

Reverse Translation of R2

The indicated Person IP], and possibly other Persons,
reads
at least one Language,
and
the indicated Person tP], and possibly other Persons,
speaks
that Language

DIFFERENCE

4.6.1 Effect on relation semantics

Theeffect of differencing relation B from relation A to

produce a relation C is to produce a relation for which

the following can be said for each of its tuples:

everything which was true for a tuple of A is still true

for a tuple of C, but whatever was true for a tuple of B

is not true for a tuple of C.

ft.6.2 Effect on RT Graph

lift

descendant the graph of the relation being differenced

from (the relational expression which occurs on the left

side of the NOT Operator), and as its right descendant

the graph of the relation being differenced.

Participating Entity Nodes in the right-hand graph are

linked in an Entity Node Chain to their equivalent Entity

Nodes in the left-hand graph, in the fashion illustrated

in Section 4.6.

. 6.3 Terminology

A predication which is the immediate right descendant of

a NOT Logical Operator will be termed a Negated

Predication. (This is not to be confused with the

"negative sense" set of Main Predication Phrases held in

the Predication Node, although the negative sense phrases

are intended to provide an optional means of generating

the Main Predication Phrase of a Negated Predication.)

. 6 . 4 Example Query

PLd <- PRL - PSL

115

PRL PSL

/ reads

\
\
/

/
i i

Person ! !

\
/

/~A

\

Language

/ \
/ speaks \

\
\
\

ii ii

! Person ! ! Language ! ! Person ! ! Language !
i ii i

\l
PLd

i i
______! _ I

/ ! !

/ x /
/ reads * / speaks \

__ '/ \
/_ __ _/_ _\

i ii ii ii
! Person ! ! Language ! ! Person ! ! Language
i ii ii ii

A A ||

I \ II

Figure U.?. The effect of a DIFFERENCE.

4.6.5 Effect on translation

If no transformations are carried out on the deri

graph, then its Reverse Translation will simply be

Reverse Translation of the left descendant of the

node, followed by the conjunction phrase "but it is

the case that", followed by the utterance of the ri

descendant Predication Node. The latter is a Nega

Predication. Its descendant Entity Nodes will have tr-

Reverse Translation effected in the following ways:

116

(1) The Indicator Phrase of Non-participating Entity

Nodes of Negated Predications is altered from "at least

one" to "any". Were no alterations to be made, we would

be presented with Reverse Translations like "but it is

not the case that the indicated Person ... speaks at

least one Language", which does not convey the required

meaning so clearly as the word "any".

(2) The Edegree information of each Participating Entity

Node is omitted. It is superfluous, if it is the same as

the Edegree information of the left-hand graph's

Equivalent Entity Nodes, and incorrect, if it is

different. Were the key of PSL to be the attribute P

alone, then the Reverse Translation of the LANGUAGE

Entity Node would be "the indicated Language [L], and it

alone." But this would not be correct if carried over to

the Entity Nodes of the Negated Predication in the

derived relation PLd, as it would possibly lead the user

to infer that the negation applied to the Edegree phrase,

rather than to the whole predication. The Reverse

Translation fragment "but it is not the case that the

indicated Person [P], and he alone, speaks the indicated

Language [L], and it alone," raises the possibility that

multiple speakers and/or multiple-language speaking

capacity is being asserted, which is not the case.

Therefore the Edegree phrases of Non-principal Entity

Nodes which are the immediate descendants of negated

117

predications are omitted.

li . 5 . 2 . 6 Reverse Translation of PLd

The indicated Person IP], and possibh other Persons,
reads
the indicated Language [LI, and possibly other Languages,
but it is not the case that
the indicated Person tP3,
speaks
the indicated Language EL)

U. 5. 3

U. 5-3-1 Effect on Relation Semantics

The effect of unioning a relation A with a relation B to

produce a relation C is to produce a relation for which

the following can be said for each of its tuples: either

everything which was true for a tuple of A is still true

for a tuple of C, or everything which was true for tuple

of B is still true for a tuple of C. "Or" is "weak" or

"inclusive" or, and thus both assertions may be valid for

a tuple of C.

U. 5- 3. 2 Effect on Graph

A UNION operation on Base Relation graphs creates a graph

which is composed of the graphs of the parent relations

as left and right descendants from an OR Logical Node.

[Fig. U.8] Corresponding Entity Nodes (Entity Nodes

referring to the same attribute, as defined in Section

U.5.1.3) in the left and right descendant graphs are not

linked by an Entity Node Chain. (Note that this is

118

in contrast to their treatment in INTERSECTION and

DIFFERENCE operations.) This is because the predications

in the left-hand graph do not necessarily apply to the

entities represented in the right-hand graph, and vice

versa. For any given tuple (the object of all Reverse

Translation text), all that can be said is that either

the Reverse Translation of one operand relation describes

it. or the Reverse Translation of the other does, or

possibly both do.

^•5•3•3 Example Query

PLu <- PRL U PSL

PRL PSL

/ reads \
\ ';——(

Person

-\.
Language

/ sceatE
\

Person Language

\/
PLu

\

/ reads
\

I speaks *
\ /
______/

i i i
' Person ! '
• i t

Language Person Language '

Figure 4.8. The effect of a union.

119

V

ii.. 5 . 3 . ti Effect on translation

The phrase "either" IB uttered, followed by the utterance

of the left descendant graph, followed by the utterance

of the phrase "or", followed by the utterance of the

right descendant graph, followed by the phrase "or both".

^.5.3.5 Reverse Translation of PLu

either
the indicated Person [P3, and possibly over Persons,
reads
the indicated Language fL), and possibly ether Languages.
0_-J

the indicated Person [p], and possibly other Persons,
speaks
the indicated Language EL], and possiblv rtner Languages
or both.

ii . 6 JOIN

ti . 6 . 1 Effect on Relation Semantics

The effect of joining a relation A with a relation B ever

a common attribute to produce a relation C is to produce

a relation for which the following can be said for each

of its tuples: everything which was true for a tuple of A

is still true for the inherited partial tuple of A which

forms part of a tuple of C, and whatever was true for a

tuple of B is also true for its incarnation as part of a

tuple of C. The two part-tuples making up a complete

tuple of C share a common tuple value.

120

U.6.2 Effect on RT Graph

A JOIN operation over two relations unites the graphs of

the participating relations with an AND Logical Node,

and connects the Equivalent Entity Nodes. which

correspond to those attributes in each relation over

which the JOIN has been made, in an Entity Node

Chain. This is done with notional identity links by

setting the right-hand graph's Entity Node identity

values equal to the left-hand graph's corresponding

Entity Node identity values. Note that an intersection

operation is identical to a JOIN where all attributes

participate in the JOIN. It is instructive to compare the

graph illustrated in Figure U.9 with, in the first

instance, that of a full INTERSECTION (illustrated in

Figure Zl. U) , and in the second instance, that of a

zero-common-attributes JOIN, (illustrated in Figure

il. 10). The only visible distinction among the

respective RT graphs is in the notional links between

Equivalent Entity Nodes in the left- and right-hand

graphs, but the semantic differences (which RT must

communicate) are crucial.

a.6.3 Example Query

(To conform to the required syntax for the JOIN

operation, we must assure that attributes not

participating in the JOIN have different names. This is

121

done using the rename facility, which is illustrated

first.)

PSL g [L -> LS] (Rename the non-participating

PEL § t L -> LR] attributes.)

PSRL <- PSL * PRL

(JOIN PSL and PRL over the commonly-named attribute. P.)

PRL PSL

/ reads
\

\
/ \

/ speaks \
\ '
______/

A- / V

Person Language Person Language

PSRL

I * I

\
\.

/
/

/ V
/ reads \

/
/

A

\
/ x

/ speaks \

\
__\.

Person Language Person ' Language !

Figure 4.9 RT Graph of the relation shown in Table 2.8

122

U.S.ft Effect on translation

Because the root node of an RT graph produced by a JOIN

operation is an AND Logical Node, the algorithm for

generating its Reverse Translation is identical to

that for INTERSECTION operations: the Reverse Translation

of the left-hand descendant graph will be generated,

followed by "and", followed by the Reverse Translation of

the right-hand graph. Note that in a JOIN, unlike an

intersection, not all attributes are merged, and

thus not all Participating Entity Nodes are linked. In

this example this is reflected in the Reverse

Translation's generation of the attribute names following

each entity. The generation of the attribute names is

crucial for drawing the user's attention to the

distinction between the first, spoken, Language, (in

attribute LR). and the second, read. Language, (in

attribute LS). It is instructive to compare the Reverse

Translation for the above operation to the Reverse

Translation for the intersection of the same two

relations. In the latter case, "the indicated language"

is the same language. the single value appearing in the

column of the attribute L. In the operation under

scrutiny here, there are two distinct languages being

referred to (whether or not they have the same value):

the language held by attribute LR, and the language

held by attribute LS.

123

The question then arises, what happens if the attributes

LS and LR are projected out, leaving only

attribute P? The solution to this problem is taken up

in the next Chapter.

U.S.5 Reverse Translation of PSRL

The indicated Person [P], and possibly other Persons,
speaks
the indicated Language [LS3, and possibly other Languages,
and,
the indicated Person IP], and possibly other Persons,
reads
the indicated Language [LR], and possibly other Languages.

4.8.6 Cartesian Product

4.8.6.1 Effect on RT Graph and Translation

A JOIN of two relations with no commonly-named attributes

results in a Cartesian product of the two relations. The

RT graph of the derived relation is exactly identical to

the RT graph of the equi-join illustrated above, but

there are no "sideways links 1* between Entity Nodes,

because there are no shared attributes. Entity Node links

denote that the Entity Node in question is described by

more than one Predication.

This graph may be compared to the RT graph of a

UNION. The graph of a UNION is likewise devoid of Entity

Node links,because it asserts that a tuple of the derived

relation is described by one or the other of the

descriptions of its parent relations. A Cartesian JOIN

asserts that a tuple of the derived relation is described

124

by both descriptions, but that the first description

applies to the first elements of the new tuple (derived

from the left-hand parent relation). the other

description applying to the remainder of the tuple

(derived from the other parent).

PSL § [L -> LS] (Rename all attributes. As there are
PSL Q [P -> PS] now no commonly-named attributes a

full Cartesian product will result
PRL @ [L -> LR] when PSL and PRL are JOINed.)
PRL £ [P -> PR]

PSPRL <- PSL PRL

PRL PSL

/ \
/ reads \
\ /
________/
/ \

./____ ___\.
i it ii
! Person ! ! Language ! !
i it ii

/
/ speaks

\
\

Person ! !
i t

\
\
i

1
V

_J __
Language

1 1

\/
PSPRL

\

/ reads
V
V

i i
Person ! !

\

\

Language ! !
t i

/
/
\
V-

Person

\
speaks \

—— (
\ \

i i
! ! Language
i t

Figure ft.io The RT Graph of the relation shown in Table 2.9

125

6.2 Reverse Translation of PSPRL

The indicated Person [PS], and possibly other Persons,
speaks
the indicated Language [LSI, and possibly other Languages,
and,
the indicated Person [PR], and possibly other Persons,
reads
the indicated Language [LR], and possibly other Languages.

126

IMOX JLVO X^I

ayvx.ii

5.1 Introduction

Chapter Four introduced the concept of Qualification

Sub-graphs modifying Entity Nodes as a method of

representing the effect of a SELECTION. In that chapter.

only the attaching of a Qualification Sub-graph to an

Entity Node in a Base Relation Graph was considered. An

Entity Node in a Base Relation Graph does not have a

Qualification Sub-graph prior to participating in an

operation, and thus the attaching to it of a descendant

graph is a straightforward matter. This chapter completes

the discussion of Qualification Sub-graphs by extending

it to cover all cases where an Entity Node might be

modified by the attachment to it ofa Qualification

Sub-graph. The ground prepared in this chapter will be a

necessary foundation for discussing the processing of

derived relations in the general case, which is taken up

in the following chapter.

5.2 Terminology introduced in this Chapter

5-2.1 Qualification Sub-graph types

A Qualification Sub-graph [introduced in Section 3-2.2.2)

will be termed a Simple Comparison Sub-graph if its

root node (pointed to by the Entity Node which it

modifies) is a Comparison Node. A single Logical Operator

Node with two Simple Comparison Sub-Graphs as descendants

will be called a Simple Logical Sub-graph. All other

127

cases, where more than one Logical Node (AND or OR nodes)

appears in the sub-graph, and which will not have a

Comparison Node as the root node, will be termed Complex

Qualification Sub-graphs.

5-2.2 Canonical form

In the course of creating RT graphs, whenever two Simple

Comparison Sub-graphs are first united by a Logical Node,

the resulting pair of (leaf) Value Nodes are put into

"canonical form". This is done by comparing the left-hand

Value Node to its right-hand Value Node, and reversing

pointers from the Logical Node if the left-hand Value Node

holds a value which is lexicographically greater than the

right-hand Value Node. Note that the concept of

lexicographical ordering operates at the level of the

internal representation of the entity identifiers, and

thus is valid even for those domains which are declared by

the user not to be ordered. (For example, the value

"French" is less than the value "German", even if the

domain of languages has been declared to be one which does

not permit such comparisons at the query language level.)

Holding Sub-graphs in canonical form is necessary for the

efficient operation of Sub-graph reduction, described in

the next section.

128

I

1 <L> ! Where <L> 15 either
! __ ' 1AI or 'IT.

\

/ <C»> / <C2 > Where (CB > is any
__ / __ / comparison operator.

!<Vi> ! ! <V2 >! Where "V/ and
!__! !__! *V2 ' are values.

This graph is in canonical form iff V2 >= V'i.

Figure 5.1 A canonical form for Simple Logical Sub-graphs

5.2.3 Sub-graph Reduction

If a Simple Comparison Sub-graphs in Canonical Form is

replaced by a single Simple Logical Sub-graph with the

same truth value, then the former Sub-graph will be said

to have been reduced.

5.2.& Sub-graph Transferral

If a Qualification Sub-graph which is a descendant of an

Entity Node is detached from that node and attached to

another Entity Node, the graph is said to have been

transferred.

5.3 Attaching Qualification Sub-Graphs to each other

5.3-1 Introduction

The example of a SELECTION in Chapter Four was on a

Entity Node which had not yet been the object of a

129

SELECTION, or of any other operation which would attach a

Qualification Sub-graph to it. Attaching a Qualification

Sub-graph to a previously "un-Qualified" Entity Node thus

did not involve any graph manipulation. In this section

the problem of attaching Qualification Sub-graphs to

Entity Nodes which already have Qualification Sub-graphs

is addressed. As the next chapter will demonstrate, the

necessity for attaching a Qualification Sub-graph to an

already modified Entity Node arises when a SELECTION

occurs on that Entity Node's corresponding attribute, or

when a JOIN or INTERSECTION operation adds qualified

Entity Nodes to an Entity Node Chain through Sub-graph

Transferral.

First the case of Simple Comparison Sub-graphs is

illustrated, followed by the case of Complex Qualification

Sub-graphs. Then the notion of Sub-graph reduction is

explained.

5.3.2 Attaching Simple Comparison Sub-Graphs to
Simple Comparison Sub-graphs

Attaching a Simple Comparison Sub-graph to an Entity Node

having a descendant Simple Comparison Sub-graph will

create a Simple Logical Sub-graph, with each of the

original Sub-graphs descendants of an AND Logical Node.

(This graph may, however, be reduced as explained in

Section 5.4.) The justification for this is

straightforward. The original Qualification Sub-graph

carried information about the particular values that the

130

modified Entity Node's representatives in a tuple can

take. The information carried by the new Qualification

Sub-graph must be added in a way that preserves the

previous information. An uncomplicated way to do this is

simply to unite the two graphs by making them descendants

of an AND Logical Node. This allows us to take advantage

of the fact that we already have created the apparatus to

create and process trees which descend from AND Logical

Nodes, including the generation of Reverse Translations

from them. (See Chapter A.5.1.)

As an example. consider the relation SPJ1 (Section

U.U.2), which consists of all those tuples from SPJ such

that the Part Numbers representing Parts in the PNO

attribute are greater than 1. Let SPJ2 be the relation

consisting of all tuples from SPJ1 such that the Part

Numbers representing Parts in the PNO attribute are less

than 6.

SPJ2 <- SPJ1 : [PNO < 6]

131

SPJ1 / supply \
\ /

______________/
/ ! ^

__/__ __;__ ____
I II II i

' Supplier ! ! Part ! (Project '
i ii ii i

1 1
V!!/
M

SPJ2 / supply
\ '
\

\
\

! Supplier ' ! Part ! ! Project !

i
I * I

I I

/ \

I I

it

Figure 5.2 Attaching a Simple Comparison
Sub-graph to an Entity Node with an
existing Simple Comparison Sub-graph

132

5-3-3 Reverse Translation of SPJ2

The indicated Supplier ISNO], and possibly other Suppliers,
supplies
the indicated Part CPN03,
Hhose Part-nuiber
is greater than 1
and
is less than i
and possibly other Parts
to
the indicated Project [JNO], and possibly other Projects

5. b Reduction and Checking of Qualification Sub-Graphs

The previous example assumed that the AND-composition of

two Simple Comparison Sub-graphs was a straightforward

operation, as indeed it was for the comparison

operators and values (" > 1" and " < 6") selected.

However, we must consider other cases. There is nothing to

prevent the user from constructing query expressions which

would yield the AND-composition of Simple

Comparison Sub-graphs with such comparisons as (" > 1" and

M > 4"). This particular example would in fact be

equivalent to a single Simple Comparison Sub-graph with

the comparison "> U". There are two query paths by

which this position could be reached.

Sequence I

51 <- SPJ : [SNO > 1]
52 <- SI : [SNO > U]

Sequence II

Rl <- SPJ : [SNO > 1]
R2 <- SPJ : [SNO > 4]
R3 <- Rl ~ R2

Either of these would yield the following Simple

133

Logical Sub-graph attached to the Principal Supplier

Entity Node:

I I

' \

1 1 ! ' 4 !
i it i

Figure 5.3 Redundant Information

The fragment of Reverse Translation that would be

generated therefrom, is

the indicated Supplier [SNO],
whose Supplier-Code
is greater than 1
and
is greater than 4

This is undesirable for two reasons. Firstly, it is

redundant, since if a Supplier's Supplier-Code is greater

than H t it is necessarily also greater than 1 and it is

unnecessary to say so. Secondly, and more serious, a

casual reading by a user might lead him to believe that

the derived relation contained the Supplier Codes of

Suppliers whose Supplier Codes were greater than 1, and

the Supplier Codes of Suppliers who.se Supplier Codes were

greater than b . The decision to make a Reverse Translation

take the form of an assertion about a single tuple, and

thus make the text generated from Qualification Graphs

refer explicitly to single individuals, was motivated in

part to overcome problems of this kind. (This is a

classic illustration of the difference between the way in

which the terms "and" and "or" may be understood in the

casual use of natural language, as contrasted to their

precise use in logic.)

It may be noted here that Sequence I could be a perfectly

valid sequence of operations, motivated, perhaps, by a

desire to first view the subset of all tuples with

Suppliers whose Supplier Number was greater than 1, and

then to view the subset within this subset of all those

with a Supplier Number greater than four. Getting this

sequence backwards (as in Sequence IA) yields a final

relation S2A with the same semantics as S2, but should

signal user confusion, since the final operation cannot

change its operand relation S1A.

Sequence IA

S1A <- SPJ : [SNO > U]
S2A <- S1A : [SNO > 1]

But an even worse mistake can occur, which can be

seen if we consider the following sequences:

Sequence III

51 <- SPJ : [SNO > U]
52 <- SI : [SNO < 3]

Sequence IV

Rl <- SPJ : [SNO > 4]
R2 <- SPJ : [SNO < 3]
R3 <- Rl " R2

In Sequence III, S2 will necessarily be an empty

relation, since SI can have no Suppliers whose Supplier

135

Codes are less than 3. (Like Sequence IA, the

final operation could not affect its operand relation.)

Likewise, in the semantically-identical Sequence IV, Rl

and R2 are disjoint, and therefore R3 will necessarily

be an empty relation. Either of these queries could

result from user confusion about the effect of the

"AND" (INTERSECTION) operator in relational algebra, which

is by no means a formal counterpart of the word "and" in

English. It may be counter-intuitive that to get a

relation containing both Suppliers whose Supplier Codes

are greater than U, and Suppliers whose Supplier Codes

are less than 3, we must not use the AND (INTERSECTION)

operator.

Within a "pure" Reverse Translation approach, we might be

justified in ignoring the anomalous cases illustrated

above. The RT graphs which would be created for the

derived relations in Sequences I-IV, and the actual text

generated from them, would still be valid descriptions of

their associated relations. The description would be

redundant in the first case, and would be a description of

an impossible relation in the second case.

(However, the description would still be valid. A relation

defined as having tuple values which are some value and

are not that value simultaneously is an empty relation.)

136

I

1 Supplier
i

\

13! ! 4 !

Figure 5-4 An Impossible Entity

5.4.2 Reduction Tables

If the aim of Reverse Translation is to provide validation

of queries, to permit the user to formulate the

kind of query expressions described in the previous

section would be perverse if a solution can be found. The

solution to the problems raised in the previous sections

is to implement a method whereby the proposed composition

of two Simple Comparison Sub-graphs can be checked for

redundancy or impossibility. The approach described allows

us to simplify Qualification Sub-graphs where the

proposed operation is evidently purposeful (as in Sequence

I, where a smaller sub-set is being extracted from within

a sub-set), and to signal evidently purposeless

operations, (as in Sequences la - IV, where the result

relation is either necessarily empty or identical to one

of its parents.)

137

The method of solution involves implementing the procedure

illustrated in Tables 5.1 - 5.U. These record the actions

to be taken upon input of all possible variants of

two Simple Logical Sub-graph arguments, together with the

Logical Node (an AND or OR node) with which it is proposed

to compose them. (These tables are actually implemented

as a procedure.) The procedure they illustrate must be

invoked whenever there is an attempt to attach a Simple

Comparison Sub-graph to an existing Qualification

Sub-graph. The procedure will return one of the following:

(1) an indication that an error has occured. An attempt to

AND the Simple Logical Sub-graphs of Sequences III and IV

would yield this result.

(2) a pointer to a Simple Comparison Sub-graph which will

be either one of the argument sub-graphs, and one of

the three "no change" tokens for "left", "right",

"either". This will occur if one of the qualifications is

subsumed in the other, or if they are both the same. An

attempt to AND the Simple Logical Sub-graphs of Sequences

I and II would yield this result. (To anticipate

discussion in the next Chapter, it can be noted here that

if attaching Sub-graphs to every Principal Entity Node

gives the same "no change" token we have a "sub-set

error".)

(3) a pointer to a Sub-graph which will be composed from

138

the Simple Logical Sub-graphs which are input to the

procedure as its arguments, and a "new graph" token. This

pointer may be to either a Simple Logical Sub-graph

composed from the two Simple Comparison Sub-graph

arguments, or to a Simple Comparison Sub-graph whose

operator token is composed from the operator tokens of its

arguments.

The use of these Reduction Tables will prevent the

creation of RT graphs with the kind of redundant

Qualification Graphs illustrated in Figure 5-3- Not only

can Qualification Graphs be reduced to equivalent but more

compact forms, but with them we are able to detect

queries which would create "impossible" (necessarily

empty) or "redundant" (identical to an operand) relations.

The next chapter demonstrates the use of these tables in

this way.

Key to Tables 5.1 -- 5-4

L: denotes that the left-hand argument graph replaces the
proposed composed graph.

R: denotes that the right-hand argument graph replaces the
proposed composed graph.

E: either argument graph may replace the proposed composed
graph.

N: a Simple Logical Sub-graph replaces the proposed
composed graph, with a Comparison Node different from
the Comparison Nodes of either argument graph.

error: the proposed composed graph is disjoint,

null: the proposed composed graph is nil.

139

:: *
right: !! /"<"\

1 !$ \ /
e i! _'_
f !'. !k2~!
t :: '__•

1 i! 'rn i : rr\

j_ :'i V7
'kl ! !! jki'i

1 _ ! !! ! _ ! L

, .; ,

/<Y\ !! /< = ~\
\——— > ! ! __J

~ " ~ —— * •»

'kl ! !! !kl !
' _ ! !! ! _ ! L

} I

/< All ! A !
__/ i! ' __ !

! ! ! / \
!k"l"! !! /<~>\ /"<"\
'__' !! __/ __/

11 -'_ J-
!! !kl ! !k2 !

' !! _!_
/"= v :: /~_~\
\ _ / ! ! \ " /

! !! _!_
!kl ! !! !kl !
1 _ ! !! ! _ ! L

i 1 1 i
/>= ~\ ;• !~~A ~~'
V__/ !!

!kf ! !! />= / < \
!__' !! __/ __/

11 _. _ _. _
II 1111 1 LrO 1
II . K 1 . ' K- .

|ll |

/~A |! !~~*~~!
__/ !! ' ___ '

i 1 1 / \
!ki~! 1: /Y\ /Y\
'_.! !! __/ N__/

!! ! !
!! !kl ! !k2 !
|| i i i i

i
/<V\

i

!k2~!
• — •

r\-\

i
!kl !
1 _ ! L

1
/<v\
\ _ /

1

!kl !
1 _ ! L

___ — __ — _____
i

1 A |

1 1

1 t

/< >\ /<= \

\ ____ / \ ____ /

1 1

!kl ! !k2 !

1
/Y\
\^_l
!

!kl !
! _ ! L

i
I "A".

1 t

1 1

/>A /<A
\ _ / \ _ /
! _!_

IkYl !k~2 !

i'~"A "~f

i i
i i

/~>~\ /<A
\ _ / \ _ /

i i
!kl~! fk2"
! ! ! !

i
/<" >\

•

!k2~!
i i

res

1

'kl !
i i ^

i
• /<Y\

U. /
i

'kl !
' _ ! L

i
1 A |

1 1

/ \

l~~\ /0\
\ _ / \ _ /

i 1

!kl ! !k2 !
lilt

1

/Y\
3/
!

'kl !
' _ ! L

i
1 A |

i 1

/ \
/ »

/">="\ /< 7A
\ _ / \ _ /
' _ ! _

!kl ' !k2 !

i
i A |

1 1

/ \

/">" /< >\

____ / \ ____ /

1 1

!kl ' !k2 !
i i i i

,;"•"}
i

!k2 '
i i

error

error

1/"="\

\ _ /
i

!k2~!
i i

R

error

,/"="\

\ /

i ^i i
i i

R

i
/ — \ / ~ *
\ _ /i
!k2~!
i i

R

i
/>="\

•
!k2~'

1 1

error

error

/>="\
_/

t
!k2 !
! _ !

R

error

I

/>=~^
t /

i
!k2~'
i i

R

/>=~\
\ _ /

i
!k2~!
i i~~ R

,/">"\

T"

!k2~!
• — •

error

error

(

I \ \
\

\ _ /
i'k'2" 1

i i

R

error

,
/Y\
\ /

!
!k2~!
i i

R

,
/Y\
\ /

•
!k2~!
i i~~ R

Table 5.1 Reduction of Intersections, kl < R2

140

! ! !
right: !! / < \

1 " v__/
e i! _'_
f !i !k2 !
t !! ! _ !

iii i

'.__/ !! (^1
iii i

iki ! :: ik 1
1 _ ! !! ! _ ! E

, {, ,

/<= V !! / < \
\ _ / : : \ _ /
-'_. !1 J_

!kl ! '.: !k2 !
1 _ ! !! ! _ ! R

, ,, ,

/o\ :: MY
^ _ / !! \ _ /
ii' i

fkl ! !! !k2 !
i i 1 1 IIP__ . i i . __ . n

i i
i i

i i

/ V\ ; i
'• _ / ! ! error

' ! !
'kl ! !!
i 1 ll I i

I I _, ______ __ . __
I i

i » l I >

/>= \ 11 error
\ / i!

i ; i

!kl~! !!
i i ii

i . •

/ > \ ! ! error
\ / ! ',
"T jj

!k"i~! !!
! ' ! ii

i
/<="N
\ _ /

i

!k2 !
i i

i

\ _ /
'

Iki I
i i L

,
/<="*

___y
|

I k !
1 _ ! E

,

ro
\ _ /i
1 k !
1 _ I N

i
/ =~\

___y
!

!k2~!
1 _ ! I

i
/v\
\ _ /

i
I k 1

1 _ ! N

error

1

/< >\
\ _ /
!

IkY'
i i

i

/
i

Iki !
i i |_

1

/YN
__/
!

I k !
1 _ ! N

/ N /

\ _ /
I

1 k" 1
i i ^

error

. — ______ —— _________

/~A
\ _ /

i
I k !

1 _ I N

,/">"s

\ /
i!k"2"

1 _ ! L

i
/Y\
\ _ /

i

!k2~!
• — •

error

t
/Y\
\ _ /

1 k I
1 _ I R

error

tl~=~\

\ _ /
i

'k !
'_'E

i/"="\

v _ /
1

ikf'

1 _ I R

error

1

/>="\
\ _ /

i!k"2~!

• — •

error

t

/Y\
v _ /
'

1 k" 1
I _ 'N

i
/Y\
\ _ /
!

1 k !
I _ IN

1

/v\
V ___ /

1

1 kl '

! _ 'L

i
/>="\
\ _ /

;•Y 1
'—'E

,
/Y\
\ /
T
Iki'l
I _ !N

i
/Y\
\ _ /

i
!k2 !
t 1

error

error

i/">"N

\ _ /
i

I k !
1 _ 'R

error

i
/y\\ /•
Ik2~!

1 _ 'R

i
/Y\
\ /~r
'"k" 1

1 _ IE

Table 5.2 Reduction of Intersections, kl = k2

141

! ! '
right: !! / < *

e !! _'_
f !! !k2~!
t !! !__'

U ,
/< \ :; /Y\
\ / ! ! x /

1 ;: !~
(ki ' :: !kYi
' _ ' !! ! _ ! R

1 J
!!
! i

i ii i 1 1
/<= \ !! / < \
\ / j ; \ /

' 1 1 '
'kl ! !! !k2 !
' _ ! !! ! _ ' R

I j
ii

1 1
/< A ;; null

i 1 1 1 1
'kl ! ! !
' _ ! !!

, ,, ,
/ V\ i : / Y\
\ / u \ /

i ii i
!kl~! ii !k2~!
! _ ! ii ! _ ! R

1 1
1 1
1 1 1 1
1 1
1 1

______ __ _l 1 ____ _ _ . _ _

1 1 11 1

/>-'\ !! null
N / ! !
"7" . .

'kl" 1 !!
1 _ ! !!

i 1 1
/ > V !! null
N _ / !!

i j i
!kl~! !!
' ! !!

i
/<A

— —

!k2~!
i i

i
/<= \
\ /

i
!k2~!
' _ ' R

— —

/<=~\
\ /

i
!k2~'
1 _ ! R

null

i
/<="\
\ /

i
!k2~'
1 _ ! R

null

null

i
K)\

i
!k2~!
• — •

,
/<" >\
\ /

i
!k2~!
1 _ ' R

i
/< >\
\ /

i
!k2~!
' _ ! R

null

i
/< >\
\ /

i
!k2~!
1 _ ! R

null

null

1
/Y\

i
'12"'
i i

i
1 L) !
1 1

/ \
/Y\ /Y\
\ _ / x _ /

1 1

'kl ' !k2 '
• — • — •

1 U !
i i

/ _\ _
/<=" /"= \
_ / \ _ /

I i
'kl ! !k2 '

,
/< >\

t

1 L 1 1
. I 1

1 _ ' L

1

' U !
i i

/ \
/V\ /"= \
\ _ / \ _ /
' J_

'kl ! 'k2 !
i ii t

j
/>= \
\ /

i

'kl '
!__! L

i/">"\

\ _ /
i

'kl '
1 ' L

i
/>="\

i
!k2 !
i i

i•"u" 1
i i

/ \/"<"\ /~>=\

V _ / \ _ /
1 1

!kl ' !k2~!
• — • • — •

t
! U !
i i

/ V
/<="\ />="\
\ _ / \ _ /

i i
fkl ' !k2 !

1

ll'}\

— — —

!kl !
1 _ f L

i
! U !
i i

/ \
/V\ />="\
\ _ / \ _ /

1 1

!kl ! !k2 '
i ii i

i
/>A
\ _ /i
'kl '
1 _ ' L

i
/Y\
\ _ /i
!kl~!
1 _ ! L

i
/Y\

. —
!k2~!
i i

,
! U !
i i

/ _v_
/~< \ / >"\
\ _ / \ _ /

i i
'kl ' !k2 !
i it i

i
?Yi
1 1

J ^/<= \ 1 >\
\ __ 1 \ __ 1

1 1
!kl~' !k2~!

i
/0\

1

'kl '
1 _ ! L

,
?Yi
1 1

/ \
/"=" N /Y\
\ _ / \ _ /i i
'kl ! !k2 !
i ii i

i
/ > \
\ /

i
IkYl
1 _ ! L

i
/Y\
\ _ /i
'kl !
1 _ ! L

Table 5.3 Reduction of unions, kl < K2

142

! ! !
rjght: !! l~<~\

e !! _'_
f Si !k2 !

it IS ' '

' ! ! '
/"<"\ !! /"<"\
\ _ / ! ! \ _ /

' ! ! !
!kl ! !! Ik2~'
1 _ ! J! ! _ ! R

1 i

' :; *
/<="\ i : /<="\
\ _ / 1! \ _ /

i I 1 1
1 1

'kl ! Si !kl !
* _ ! !! ! _ ! R

:;
/o\ :: /o\

•. _ / ! ! \ _ /
ijj i

j kl ! !! 'kl !
! _ ! !! ! _ ' R

' !! '/v\ - /<=\
__ / : : \ _ /iii i
!kl ! !! !k !
!_J - '__' N

t ;;

/>="\ !! null
__' 1!

1 ' > 1 1

; kl ! !!
' _ ' !!

' !! '
T>"\ !! /<>\
\ _ / i : __/

1 i J 1
!U~! !! ! k !

! _ ! !! ! _ ' N

1
/<="\ :
— —

!k~2~! !
' _ ' !

i/<"="\

\ _ /
i

!k2~!
' _ ! R

i
/<="\
\ _ /

i
' k '
'_J E

null

i
/<="\
^ _ /

i
!kY'
! _ ! R

null

null

1
/< >\

— -—

'kY 1
i i

i
/o\
\ _ /

!
!k2~!
' ' R

null

.
/<" >\
\ _ /

.!~k~!

f t £

null

null

i
/< >
\ _ /

i
!k2"!
! _ ' R

_f/v\
1

!k2~!
i i

i/<"="\

\ _ /
i

1 k '
1 _ ' N

1

/<="\
\ _ /

i
! k !
) _ ! R

null

1

/v\
\ /

1

! k !
! _ ! E

i
/>=
_ /

i
!k2~!
! _ ! R

i
/>="\
\ _ /

i
! k !
' _ ! N

1
/M

V
'kY',
i i

null

null

null

1

/>="\
\ _ /

i
!k~2 !
' _ !R

1/>="

_ /
i

' k '
' _ 'E

i
/>="\
\ _ /

t
!k2"!
1 _ 'R

1 i
i/"n

i'k"2~!

i i

,
/<" >\
\ _ /

i
' k '

1 _ f N

null

i
/<" >\
\ _ /

i
'kl !
! _ 'R

i
/>="\
\ _ /

1!k" ~!

' _ IN

i
/>="\
\ _ /

i
!k2 !
'__!R

i
/ > \
\ _ /

i
'kl !
1 _ ' L

Table 5.U Reduction of Unions, kl = K2

5.ft.3 Attaching a Simple Comparison Sub-graph to
a Complex Qualification Sub-Graph

Previous examples in this chapter have assumed that, at

most, an Entity Node prior to its final processing is

qualified with a Simple Comparison Sub-graph (a single

Comparison Node pointing to a single Value Node). Now the

case of Complex Qualification Sub-graphs is considered.

If a Complex Qualification Sub-graph already exists, then

its root node is either an OR Logical Node or an

AND Logical Node. If the root node is an OR, then this

algorithm is invoked again for both of this node's left

and right descendants. This algorithm guarantees that if a

Qualification Sub-graph has OR nodes, they will always

occur above all other nodes. It also implies that whenever

an OR node is encountered, then both the descendant

sub-trees of the OR node will have the new Simple

Comparison Sub-graph attached as a component (although the

resulting Sub-graph may be reduced). This is equivalent to

the distributive logical identity,

(A OR B) AND C <=> (A AND C) OR (B AND C)

If the node pointed to is an AND Logical Node, then if the

Comparison Node of the Simple Comparison Sub-graph to be

attached is a token for the ">" or ">=" comparators, then

descend to the AND node's left leaf Simple Comparison

Sub-graph, reduce the left leaf Simple Comparison

Sub-graph with the new Simple Comparison Sub-graph, and

reduce the result (which will be a Simple Comparison

Graph) again with the AND node's right leaf Simple

Comparison Sub-graph.

If the Comparison operator is "<" or "<=", apply this

procedure to the right leaf Simple Comparison Sub-graph.

If the Comparison operator is the equality operator, apply

the procedure to both leaves, which will eliminate them

both. Then apply it to the results, which will eliminate

one of them. This is equivalent to replacing the AND

Logical Node with the new Simple Comparison Sub-graph.

If the Comparison operator of the Simple Logical Sub-graph

to be added is the inequality operator, then if its leaf

value is greater than or equal to the leaf value of the

AND node's right descendant Simple Comparison Sub-graph,

or less than or equal to the value of the left descendant

Simple Comparison Sub-graph, then reduce it with the

appropriate one of these Sub-graphs (to allow the

reduction procedure to generate a warning or error

message). Otherwise, create a new AND node pointed to by

the immediate ancestor AND node. Let the Simple

Comparison Sub-graph be the new AND node's right

descendant and let the original AND node's left descendant

be the new AND node's left descendant. If the left

descendant of the new AND node is a Simple Comparison

Sub-graph, then stop. Otherwise (the left desecendant is

an AND node), compare the current AND node's right

descendant value with the right descendant value of its

left descendant AND node, and put into lexicographical

order by swapping value nodes if necessary. If the value

nodes hold identical values eliminate the current AND node

and its right descendant and issue a "redundant operation 11

message. This guarantees that if there is an "AND node

chain" the chain will always have Simple Comparison

Sub-Graphs as descendants of its right-hand pointers and

AND nodes as descendants of its left-hand pointers, except

for the final leaf. The Value Nodes of such a chain will be

in lexicographical order. Such a chain will only be the

case if there are Comparison Nodes holding inequality

operator tokens, since otherwise the Query Graph reduction

procedure will always reduce the graph to a Simple Logical

Sub-Graph or Simple Comparison Sub-Graph.

5 . U . 4 Attaching a Simple Logical Sub-graph to an Entity
Node with a Complex Qualification Sub-graph

SPJ3 <- SPJ2 : [PNO < > 3]

\

SPJ2

supply

! \
.!___ ____

i i i

! Supplier ! ! Part ! ! Project !

SPJ3

i i
i i">~\ /~<~\

1 1 ! ! 6 !
i ii i

11
11

\ "/
\/

/
\

supply

____.

/
\
\

i ii it i
! Supplier ! ! Part ! ! Project !

I A

i * i rr_ _/ / \ _•_
! ! 6 '
i i i

Figure 5-5 The effect of selection on an
Entity Node with a Complex Qualification Sub-graph

Transferring Complex Qualification Sub-graphs

The next chapter demonstrates the necessity for

transferring a Complex Qualification Sub-graph from one

Entity Node to another Entity Node which may already have

its own Complex Qualification Sub-graph. This transferral

is accomplished by decomposing the graph to be transferred

into one Simple Comparison Sub-graph at a time, and

then attaching it to the target Entity Node using the

algorithm given in Section 5.U.3. Each Simple Comparison

Sub-graph taken from the Complex Qualification Sub-graph

being transferred results in the contraction of the graph

through loss of the transferred sub-graph and its AND node.

The "before" and "after" positions are illustrated in

Figure 5-6.

1U8

BEFORE

II II

1 Part ! ! Part !
ii ii

! A ! transfer ! A !
I I (===z==r=== I I

/ \ / "~"\

/ \ I \

II I i

A ! / < \ ! A ! / <
! \ / ! ! \

/ \ __' / \ __'_
i i i ij i i i i i i

i iii i iii

! 0 ! ! 3 ! '1''4!
i i i i i i i i

AFTER

i i
ii ii

! Part ! ! Part !
ii ii

	i
I A |

I I

/ \

I I" A ~~! /~~<~~v

1 \ /

i

/ \ _'_
! ! I 7 !
i iii

! \ /
/ \ _'_

i 1141
! ' ' '
i i

/~>=~\ /7 7\
_/ _/ i i
i ii i

Fieure 5.6 Transferral of a Complex Qualification Sub-graph

149

MOXO JL 3:

6.1 Introduction

Chapter Four described the Reverse Translation approach to

generating Reverse Translation graphs for derived

relations. Only Base Relations were used to illustrate

the effect of each relational operation. The concepts

advanced in that chapter were:

(1) PROJECTION is represented in a graph by setting the

attribute reference of the relevant Entity Nodes to zero.

(2) SELECTION is represented by attaching a Qualification

Sub-graph to the relevant Entity Node. Chapter Five

extended the work on SELECTION by demonstrating how

repeated SELECTIONS built a Sub-graph tree, whose

construction required the possible simplification of

Sub-graphs and perhaps the flagging of semantic errors.

(3) UNION is represented by making the operand graphs the

descendants of an OR Logical Node.

(U) DIFFERENCE is represented by making the operand

graphs the descendants of a NOT Logical Node, and

connecting corresponding Entity Nodes in an Entity Node

Chain.

(5) INTERSECTION and JOIN are represented by making the

operand graphs the descendants of an AND Logical Node, and

connecting corresponding Entity Nodes (if any) in an

Entity Node Chain.

These operations may be divided into two classes from the

150

viewpoint of Reverse Translation: (1) those operations

which take as an argument a single relation (PROJECTION,

PERMUTATION and SELECTION), and (2) those which take as

arguments two relations (UNION, INTERSECTION, DIFFERENCE

and JOIN). An operation of the first class generates an RT

graph which is a simple modification of the graph of its

parent relation and which requires no further

transformation beyond the measures described in Chapter

Four, and in the case of SELECTION, a test/reduction of

the selected-on attribute's corresponding Principal Entity

Node's Qualification Graph as described in Chapter Five.

An operation of the second class is a more complex matter,

since it produces & derived relation whose graph must, to

reflect the semantics of its parent relation, be composed

from the graphs of the operand relations. This chapter

takes up the creation, and possible reduction, of RT

graphs whose parent graphs may be Complex RT graphs.

The three set operations UNION, DIFFERENCE and

INTERSECTION are considered first. The discussion of each

particular operation is preceded with an explanation of

the treatment that is applicable to any set operation, to

trap queries which must signal user confusion. Chapter

Five described a mechanism for reducing redundant

Qualification Sub-graphs and also checking for "no-change"

or "necessarily empty" result relations. In that chapter,

this mechanism was applied to cases of repeated SELECTION

on a single relation. In this chapter the same mechanism

151

is extended to cover each of the set operations

6.2 Predication-identical Graphs

6.2.1 Terminology introduced in this Chapter

Two graphs are predication identical if and

only if they are identical down to Entity Node level. This

means they are predication-identical if each corresponding

pair of Predication Nodes are the same permutation and

the same sense of the same predication, if each

Predication Node has the same configuration of present and

absent Entity Nodes and if each corresponding pair of

Entity Nodes has the same entity identifier. (The effect

of the latter requirement is to ensure that each graph has

the same configuration of Entity Node Chains.)

6.2.2 Examples

6.2.2.1 Examples of Relations with
Non-Predication-Identical Graphs

Assume PI is a relation of degree two, with both

attributes (PNO1 and PNO2) drawn from the domain of Parts,

related by the predication "includes" in the PNO1 to PNO2

direction and "is included in" in the PNO2 to PNO1

direction. Then let

P2 <- PI # [PN02, PN01]

The graphs of PI and P2 meet every criterion for

152

predication-identicality except for their not being of

the same permutation. Let

P1A <- PI % [PN01] P1B <- PI % [PN02]

The graphs of P1A and P2A meet every criterion for

predication-identicality except for not having the same

configuration of present and absent Entity Nodes. (The

PROJECTION operation on each relation has projected-out

non-corresponding Entity Nodes.)

6.2.2.2 Examples of Relations with
Predication-Identical Graphs

P3 <- PI : [PNO1 > 10]

PH <- PI : [PN02 = 5 3

P5 <- PU : [PNO1 < 20]

PI, P3, P4-, P5 are all predication-identical.

P6 <- P3 - P5

P7 <- PI - PH

P6 and P7 are predication-identical.

6.2.3 The Significance of Predication-identicality

Two predication-identical graphs may be reducable to the

left-hand graph augmented with the (possibly transformed)

153

Qualification Sub-graphs of the right-hand graph.

6.3 Trapping Errors In Set Operations on Relations
known to conform to certain constraints

6.3.1 Known set relationships among relations

In general, we may note that some set operations can be

syntactically valid but yield a result which is

tautological, that is, which contains no information not

present before the operation. Any operation which

necessarily yields an empty relation, or a relation which

is identical to one of the operand relations, should be

identified and reported as such to the user. (Reverse

Translation as such is not the only possible method for

signalling the existence of an invalid query in these

cases However, the techniques used for implementing

Reverse Translation lend themselves easily to use in

flagging such invalid queries.) Table 6.3 records

semantically invalid operations on relations for which it

is Known (either directly or by deduction) that the

following relationships apply:

A: R2 is a proper subset of Rl.

B: Rl is a proper subset of R2.

C: Rl and R2 are disjoint.

D: Rl and R2 intersect.

E: Rl is identical to R2.

Table 6.1 Possible relationships between any two
set-operation compatible relations Rl and R2

6.3.2 Valid and Invalid Operations on Sets With Known
Relationships

The validity of these five cases under the three set

operations is recorded in the following table, where "V"

means (potentially) valid and a number refers to a

footnote explaining why this operation is a tautology:

Rl U R2 Rl ~ R2 Rl - R2
Case

A

B

C

D

E

1

2

V

V

1/2

2

1

3

V

1/2

V

3

3

V

3

1: Yields Rl.
2: Yields R2.
3: Yields a relation with cardinality zero.

Table 6.3 Tautological set operations between
two relations, Rl and R2

6.^ Tests Applicable to Set Operations

6./4-.1 Testing for Relation Identity

We must first check to see that the user is not dealing

with two identical relations, by comparing their current

graphs using the function "Compare" [Appendix, Program

Listing.] This function takes as a parameter two pointers

to RT graphs and compares the graphs pointed to on a

node-by-node basis, returning TRUE if the graphs are

identical in every respect. If this occurs, an

appropriate error message is generated. (This is Case

"E" of Table 6.1.) If we chose not to distinguish between

155

cases of set operations between identical relations and

maladroit attempts to combine relations, one of which is

a proper sub-set of the other, this comparison for graph

identity could be dispensed with since identical relation

errors would be caught by the sub-set test.

6.4.2 Testing for inclusion and disjointness

6.4.2.1 General Algorithm

Assuming that the query passes the "identity test" of the

previous section the following algorithm can be

applied:

For each of the right-hand graph's Entity Nodes do the
following:

IF it corresponds to an existing attribute,
THEN

IF it has a Qualification Sub-graph
THEN

Copy its Qualification Sub-graph

Copy the Qualification Sub-graph of the
Node which would be its Principal Entity Node were
they to be linked in an Entity Node Chain.

Attempt to merge them using the algorithm
described in Chapter Five.

Keep count of the number of left graph, right
graph, new graph, and error conditions returned.

6.U.3.2 Testing for disjointness

If one or more errors were returned during the

course of Qualification Sub-graph transfer, then the two

relations are disjoint. (Case "C" of Table 5-2) (If an

RT graph includes OR Logical Nodes above Predication

Nodes, then the disjoint test is failed only if both

156

descendants of the OR node return disjoint indicators.)

Unlike subset errors, disjoint errors can be detected

whether or not the graphs of operand relations are

predication-identical. If we know that all values of the

attribute of the first relation in the example mentioned

above are less than ten, and all corresponding values in

the second relation are greater than ten, then we do know

that the attributes in question have no values in common,

making the relations disjoint.

6.^.3.3 Testing for set inclusion

If the two operand RT graphs are predication-identical,

the count of the number of "no change" values returned

while transferring the right-hand graph's Qualification

Sub-graphs to the Principal Entity Nodes of the left-hand

graph is significant: if after the entire operation,

there were zero changes, then one operand is a sub-set of

the other. (Cases "A" or "B" of Table 6.1.) If the two

relations are not predication-identical, then it is not

possible to test whether one was necessarily a sub-set of

the other, within the terms of the data model used in

this thesis.

For example, consider two relations, not

predication-identical. Assume that, for each relation,

only one attribute has been the object of a previous

SELECTION. One relation might have an attribute for which

157

is recorded in its corresponding Entity's Qualification

Sub-graph, created via a previous SELECTION, that all its

values are less than 10. The second relation's equivalent

attribute might have a similar Qualification Sub-graph

recording values of less than 5. But the second relation

could have values in its attribute not present in the

first. Therefore it is not necessarily a sub-set of the

first.

If set relationships among relations were among the

constraints enforced and recorded, then it would be

possible to carry out the sub-set test on those relations

known, via the system schema, to be identical. For

example, if we knew that a relation SP % [SNO] was

identical to a relation SD % [SNO], then sequences of

SELECTIONS on these relations followed by INTERSECTIONS,

JOINS or DIFFERENCES could be put to the sub-set test.

6. 5 Processing an INTERSECTION

6.5.1 Predication identical and non-identical graphs

The derived graph of an INTERSECTION operation which has

passed the tests for identity, the sub-set condition (if

applicable) and disjointness will be composed of the two

operand relation's graphs, in the following way:

Create an AND Logical Node and make it the root node of

the derived relation's graph. Create a copy of the

158

right-hand relation's graph and make it the right

descendant of the AND node. Make a copy of the left-hand

relation's graph and make it the left descendant. Link

all Equivalent Entity Nodes in an Entity Node Chain.

Transfer all Qualification Sub-graphs from the right-1-vand

graph to their Principal Entity Nodes. If the right hand

graph is not predication-identical to the left-hand

graph, then stop. (If predication-identicallity does

obtain between the two descendant graphs, carry out the

operations spelled out in Section 6.5.2.) The new graph

will be composed of the two operand graphs as

descendants of an AND Logical Node, all

corresponding Entity Nodes linked in an Entity Node

Chain, with the Qualification Sub-graphs of the of

Entity Nodes representing non-projected out attributes in

the right-hand graph transferred to their Principal

Entity Node and dropped from the contributing Equivalent

Entity Node.

Such transferral for Entity Nodes linked in an Entity

Node Chain is justified on the grounds that all of the

Entity Nodes in a particular chain correspond to the same

attribute, and thus bear information about every value of

that attribute in a tuple of its relation. In a chain

that has been created by an INTERSECTION or JOIN

operation this information is simultaneously true for any

value of that attribute. Put another way, whatever can be

said about one Entity Node in euch a chain can be said

about every other Entity Node in the chain. Thus no

information is lost by putting all Qualification

Sub-graphs on one Entity Node in the chain. The positive

159

justification for doing so is to allow the Reverse

Translation to give all of the "qualifying" information

held by Qualification Sub-graphs at the first encounter

with a particular entity's Entity Node chain, rather than

dispersing this information throughout the Reverse

Translation.

6.5.2 Graph Reduction Following Intersection

The INTERSECTION of two predication-identical graphs can

always be reduced, as follows.

(1) Carry out the algorithm for INTERSECTION, above.

(2) Now transfer any remaining Qualification Sub-graphs of

projected-out Entity Nodes in the right hand graph to

their corresponding Entity Nodes in the left hand graph.

(The two graphs are identical down to Entity Node level,

so this may be accomplished by visiting each Entity Node

in the right hand graph in tandem with an identical

traversal of the left hand graph. Where a projected-out

Entity Node has a Qualification Sub-graph, this is

transferred to its corresponding Entity Node in left hand

graph. The attachment is via an AND Logical Node which

becomes the root node of the left hand Entity Node's

Qualification Sub-graph, with this Entity Node's previous

Qualification Sub-graph as the left descendant and the

transferred Qualification Sub-graph as the right

160

descendant. The two sub-graphs are reduced as for the

transferral of Qualification Sub-graphs between

non-projected out Entity Nodes, except that the tables for

the UNION operation are used instead of the tables for the

INTERSECTION operation. (The Logical Node linking reduced

graphs remains an AND Logical Node. however.) The

Justification for this is given in Section 6.5.3.

(3) Delete the root AND Logical Node and the right hand

graph, and make the augmented left hand graph's root node

the root node of the relation.

6.5.3 Attaching Qualification Sub-graphs to Entity Nodes
of projected-out attributes

An Entity Node of an attribute which has not been

projected out refers to an existing value. It tells the

range within which this value can lie, and possibly what

values it is not. An Entity Node of a projected-out

attribute, unless it is of Edegree 1, refers to many

possible values. The logic of set union applies.

Reduction of predication-identical graphs with no

projected-out nodes. Following the algorithm for

INTERSECTION, first the corresponding Entity Nodes are

linked. Then the Qualification Sub-graphs of the right-hand

graph are transferred to the Principal Entity Nodes of the

left-hand graph.

161

O f-.J

I
10

 1
~ 1

•"

•
—

.
_

1
t.n

• -

_

_
\

"

"
\

_ *
r

. —
"i C

D

'
—

1
•

—
—

.

—
—

1
•

%
x

-
— 1

•

"l

s-
x-

*-.

•
— 1

"l X
X

• — 1

^
.^

1
--

x-
-.

•

— I

,1.
._

.J

._
J

._
.J

"

,
^
 .

.
— • —

•
_

•

•—

•
—

t"

-
w

•

«
—

-
—

 '
>

•
—

—

*
"
"

-

'
-

'
-

C
O

-o "T
3 *-—

 •
k-

rf
•

ro -i

• —

' —

• —
 •

O
i -i

«-*
••

0 •—
..

r~
i

r-
»-

C
O c= -o T

D ? ~T
3

cu r-
t-

i_
rf

 .
rn ri !-

+
•

•-*
^.

•-^
.

•-

•-

"^

^

..
. +^

S

*

if
t

c: T
3 "2
-

•
*
^
.,

~
*
^

*-
•

*
^

^

-
^

en cr •a

i
•o

_

~
^

--

-^ ^-
*

•-«
..

.-

j-

^

,
—

1
c^

n
• —

._
.-' !
-i*

• -
_

_!

"
J

|
._

.J "-
[-

I
I

ix "
~i ^-^
.

. — i I
"^

' ^
1

'~,
f'

• — !
•~-

^^

' ̂
1

••
v

• —

.
.1

X"

~~
-

x
^.

•

—

. J

•
—

.
_ • — >—
 -

•
—

.
_

• -

>

• —
 -

.
_

• —
 •

>

• —

.
_.

—

. _

._
..-

.

C
O c. -a -a *-»
 •

ro -i -c
>

eu i !-»
•

.
-

.
_

.
-

-o -1 0 1 _
 *

.

0 1-
*" ~ en cr -a -o ro -i —
^i

a. -i •"*
•

1 1

o ro

\
i~

i
1

!
-
*
•

*
^
-«

'
-

/

"
^

'
-

S

*
^
^

eo -o T
3

-<

~^
--

•*
-

-^
*

*
^ en -a ~a * —
 '

-•<

~~
~

^_

**

As the two graphs are predication-identical, they

may now be reduced to:

\
Supply \

! Supplier ! ! Part ! ! Project !

i i

163

MOXM

SiSIOX JLVO

M3/V3S

7.1 Introduction

In this chapter the Reverse Translation method is

applied to several situations which can constitute

"traps" for the naive user. The first trap considered is

the well-known "Connection Trap", whose existence was

documented simultaneously with the original formulation

of the relational model. Then a family of traps which

will be termed "commutation traps", for predications of

degrees two and three is examined.

7•2 The Connection Trap

The "connection trap" was first discussed by EF Codd in

the paper which introduced the relational model to the

computing community [Codd, 1970]. "Connection traps" can

arise when performing JOIN operations on relations which

are themselves projections of other relations. In this

situation, a resulting relation may have the "surface

structure" of the base relation. but contain spurious

tuples not in the original. The following example

illustrates the problem.

16/i

Given the relation

SPJ
SNO PNO JNO

[SUPPLIER] [PART] [PROJECT]

1 1
1 1
1 2
i

i 1
1 1
1 i
i

1 1 !
1 2 !
1 1 !
i i

with the meaning that Supplier SNO supplies Part-type PNO

to Project JNO, let

51 <-- SPJ #[SNO, PNO]
52 <-- SPJ %[PNO, JNO]

then

SI
SNO PNO
[SUPPLIER] [PART]

1 1 '1 !

(The meaning of SI is that Supplier SNO supplies

Part-type PNO to one or more projects.)

and

S2
PNO

[PART]

' 1
1 i
i

JNO
[PROJECT]

! 1
! 2
i

(The meaning of S2 is that Part-type PNO is supplied to

Project JNO by one or more Suppliers.) The connection

trap can arise if SI and S2 are re-joined, with PNO

as the common attribute.

165

S3 <-- SI * S2 (Join over PNO.)

S3
SNO PNO JNO

[SUPPLIER] [PART] [PROJECT]

1 1 '1 '1 !

! 1 ! 1 '2 !
'2 '1 '1 !
'2 '1 '2 !
i i i i

The last tuple did not exist in the original relation.

Its appearance here is an artefact of the semantics of

the JOIN operation. The application of Reverse

Translation graphs to generate descriptions of the

relations provides a way to avoid confusing S3 with SPJ:

/ \
SPJ / supply \

\ /
\/

Supplier ! ! Part ! ! Project

Figure 7-1 The graph of SPJ

SI / supply
\
\
/ i

\
i

i

\

ii

! Supplier ! ! Part ! ! Project !

Figure 7.2 The graph of SI

166

S2 / supply ^
\ /
__________ __/
/ ! " \

__[]__ __' __ ______
i ii ii i

1 Supplier ! ! Part ! ! Project !

Figure 7.3 The graph of S2

S3 /
/

/
/ supply
\
V
/

i i
i i

i i

jpplieri ! Part

\
\
/

/
\
i

[]
i i

1 ! Project

i
—— \

\
/ \

/ supply \

\ l
\ 1
i ! \

i i i

C] ! !
ii ii ii

1 ! Supplier 1 ! Part ! ! Project

Figure 7-^. The graph of S3

The semantics of SPJ are clearly visible in Figure

7.1. The entities within a given tuple are clearly bound

up in a single, indivisible relationship. The effect of

projection on SPJ is also clearly seen in Figure

7.2 and Figure 7-3, and the effect of the JOIN in

creating a relation with a quite different meaning from

SPJ is illustrated by the graph shown in Figure 7.4,

which contrasts clearly with the graph of SPJ shown in

Figure 7.1.

167

The actual Reverse Translations which will be generated

when the two RT graphs are processed likewise stand in

sharp contrast to each other.

The Reverse Translation of SPJ:

The indicated Supplier tSNQ], and possibly other Suppliers,
supplies
the indicated Part [PNO], and possibly other Parts,
to
the indicated Project [JN01, and possibly other Projects.

The Reverse Translation of S3:

The indicated Supplier [SN01, and possibly others,
supplies
the indicated Part [PNO], and possibly others,
to
at least one Project
and
At least one Supplier
supplies
the indicated Part [PNO], and possibly other Parts,
to
the indicated Project [JNQ], and possibly other Projects.

7.3 The Selection Trap

7-3.1 Background

Another possible trap due to user misunderstanding of the

semantics of query expressions can arise when the

SELECTION operation is invoked to extract all attribute

values in an N:M relationship which do not take part in

the relationship with a designated value of another

attribute. This might be conjectured to be particularly

liable to occur if the selection is followed by a

PROJECTION prior to display of the final result, since,

as in the "connection trap", the "surface structure" of

168

the resulting relation will be identical to that

yielded by a correctly-formulated query. Example 4.5.7,

introduced to illustrate the concept of the Entity Node

Chain and its reflection in Reverse Translation text

generation was an example of this trap, as applied to two

different relations with different predications. In this

section the importance of the problem and its solution

is elucidated by positing a query environment of

extreme simplicity, and demonstrating how the Selection

Trap can arise even here. The data to be queried is held

in a single, binary relation incorporating a simple

predication: the relation PSL, illustrated in Table

2.1. The importance of the Selection Trap can be seen by

the following demonstration of four quite simple queries

which could be put to this single relation.

7.3-2 Example queries on a single binary relation

1.

A natural language
representation of
a query.

Find...

Persons who speak
French.

A sequence of Relational

2. Persons who speak
only French.

3. Persons who speak
a language other than French

H. Persons who do not speak
French.

Algebra operat
answering the

LIST

PI <-
LI <-

P2 <-
Rl <-
R2 <-
L2 <-

Rl <-
L3 <-

P2 <-
PI <-
LI <-
L/i <-

PSL :
PI X

PSL %
PSL :
Rl %
P2

PSL :
Rl X

PSL X
PSL
PI X
P2

ions
query.

[L =
[P]

[P]
[L 0
[P]
R2

[L 0
: [P]

[P]
[L =
[P]
LI

"French"]

"French"

"French"

"French"]

169

7.3-3 Discussion of Example Queries

The first and third queries have relatively

straightforward Relational Algebra solutions, inasmuch as

the sequence of operators and arguments correlates

closely to their equivalent natural language expressions.

Even if the final projection -- which. strictly

speaking, is required if the derived relation is to match

exactly the request -- is omitted, the extra column of

information in the resulting binary tuples does not

obscure the desired information. But the second and

fourth expressions are not at all obvious, and this is

particularly the case when seen in the context of the

"easy" queries one and three. The natural language

expression of the fourth query, so linguistically close

to the expression for the first query, invites the unwary

user to attempt its solution by making a correspondingly

simple modification to the Relational Algebra expression

of the first query. Af the first query ("Persons who

speak French") was satisfied by the expression

"L='French'", then what could be more "natural" than to

assume that "Persons who don't speak French" can be found

by the expression "L <> 'French'". The result will be a

valid query but not the query the user wanted to make.

(It will in fact be the solution to Query 3.)

The predisposition to fall into this trap will be all the

greater if the user has previously encountered and

170

successfully queried a "many:one" relation of degree 2

(for example, a relation recording persons and their

countries of birth), for which the simple substitution of

"<>" for "=" will yield semantically valid results.

"Persons not born in France" can be thus found but not

those who lack French as a language.

All of these queries involve the SELECTION operation.

SELECTION is, arguably, the easiest of the relational

operators to understand. It is an operation which is

implemented on every single-file, micro-computer

"database" system. It is interesting to note, then, that

the most obvious characteristic of the "difficult"

queries, two and four, is that the SELECTION expression

involved is exactly the opposite of that suggested in

the accompanying natural language expression of the

query. To find persons who speak only French, it is

necessary to SELECT out those who speak anything else and

remove them from the total population. Thus to find the

monolingual French-speakers, it is necessary,

counter-intuitively, to construct a SELECTION expression

where the Language does not equal French. And to find

those who don't speak French, it is necessary to first

SELECT those for whom "Language = French", and then

extract them. Again, the query operation which appears

easiest, the SELECTION, has as its most prominent

component an expression which appears to be the opposite

of its nearest lexical linguistic counterpart in any

171

likely natural language expression. Of course, if we

normally expressed ourselves with compounded negations,

the previous argument would not hold. If most users

tended towards formulating Query 2 in terms like "those

persons for whom it is not the case that they speak a

non-French Language", then the corresponding sequence of

relational operations would exhibit a kind of

linguistic/psychological congruency to the natural

language expression. This discussion assumes that

compounded negations are more difficult for human beings

to process, and will therefore be avoided by users in the

formulation of their queries. (For a discussion of this

question and a brief review of experimental work

verifying this assumption, se« Johnson-Laird [1983],)

The key operation for the "difficult" queries, two and

four, is the final DIFFERENCE operation, the fourth step

in the query. Even moderately sophisticated users (the

user population assumed by this thesis) are likely by

this point to want to confirm their assumptions about

the meaning of the relation that would be have been

created by this stage.

The Reverse Translation approach to query validation is

to give the user another means, in addition to the

formal query language, to see what the meaning of his

query expression is. The following are the graphs, and

Reverse Translations generated from them, associated with

172

each of the queries above.

1 Persons who speak French.

PI <- PSL : [L = "French"]
LI <- PI % [P]

LI

\
\

\
speak N

Person ' ! Language

~--~\

\ /

IFrench!
i i

Figure 7-4 The RT graph of LI.

Reverse Translation of LI.

The indicated Person [P], and possibly other Persons,
speaks
at least one Language,
which is French,
and possibly other Languages.

7.3.4.2. Persons who speak only French

P2
Rl
R2
L2

PSL
PSL
Rl
P2

X

X

[P]
[L 0
[P]

R2

'French 1 ']

L2

\

Person

speaks

\
M

Language

/ speaks

Person

\
[]

Language !

'French!

Figure 7.5 The RT graph of L2

Reverse Translation of L2

The indicated Person [P], and possibly other Persons,
speaks
at least one Language
but it is not the case that
the indicated Person [P]
speaks
any Language
which is not French

174

7.3-^-3 Persons who speak a language
other than French.

Rl <- PSL : [L <> "French"]
L3 <- Rl X [P]

L3

I \
I speak \
\ /
_______/

/ \
/ ____ ___[3_____

i ; i
Person ! ! Language !

i

/ < > \
__/

t

! French!

Figure 7.6 The RT graph of L3

Reverse Translation of L3.

The indicated Person [P3, and possibly other Persons,
speaks
at least one Language,
which is not French

175

7 . 3- U . U . Persons who don't speak French

P2
PI
LI

<- PSL % [P]
<- PSL : [L = "French"]
<- PI X [P]
<- P2 - LI

speaks

"\

\
/ \

/ spears y
\ '

' \
/ V /

/ t] /

Person
1 | it
I ! Language ! !
ii it

i i
Person ! j L

\ i
Language !

i

__/

IFrench!

Figure 7-7 The RT graph of

Reverse Translation of

The indicated Person [p], and possibly other Persons,
speaks
at least one Language
but it is not the case that
the indicated Person tPJ
speaks
any Language
which is French

If the domain of Languages has been marked as

"self-identifying" by its creator at domain-creation

time, then the Reverse Translation generation algorithm

will generate the following, less clumsy, version of the

above:

176

Alternate Reverse Translation of

The indicated Person IP], and possibly ctier Persons,
speaks
at least one Language
but it is not the case that
the indicated Person [p]
speaks
French

7 . b The "Difference Trap"

Section 7.3 illustrated the "Selection Trap" for the

simplest possible case, a single binary relation. There

it was suggested that the counter-intuitive quality of

the SELECTION operation needed to formulate certain

queries was a possible cause of confusion which Reverse

Translation could help to counter. However, an equally

plausible argument could be made that the real culprit

was the DIFFERENCE operation, involving as it does the

the requirement to answer a query by first formulating

intermediate relations and then differencing them. Scope

for confusion can exist whether or not a SELECTION

expression is involved.

This section puts Reverse Translation to a test of its

efficacy when DIFFERENCE without SELECTION is involved.

The method is applied to "Difference Traps" which can

arise when querying a more complex data base,

comprising in this example two distinct predications,

each with three arguments. The following examples will

177

utilise two relations: Relation P records the

promises that suppliers have made to deliver parts to

projects. Relation D records those deliveries that

were actually made. Both relations have the same surface

structure, but different predications. A user wishing to

find out about the reliability of Suppliers -- how well

promises matched deliveries -- could conceive of a number

of queries to put which would yield lists of Suppliers

who had demonstrated various modes of unreliability. The

following examples demonstrate how Reverse Translation

delineates the precise distinction among each of four

different ways in which a Supplier can be unreliable.

SND

ISSUERS

i
i
i
4
1

2
2
2
2
7
•J

3
Z
3
4
4
4
4
5
5
5

P

P_NO

] [PARTS]

1
1
•5

2
1
1
i,

2
1
1
2
2
1
1
2
i

1
1
0

JND

[PROJECTS!

1
2
i
2
i
2
1
2
1
T

1

2
i
2
1
~
i

1
0

1

SJO PNO JNO

[SUPPLIERS] [PARTS] [PROJECTS]

1 i 1
i 1 2
1 2 1
1 2 2
2 1 1
2 1 2
9 9 1

2 2

Table 7.1 Promises and Deliveries

178

(Note that the tuples of relation D have been aligned

with their equivalents in relation P purely as a

presentation device to aid the reader in checking the

results of differencing D from P. The empty lines in

D are not intended to have any other significance.)

Now consider the problem of querying this data base to

find out about the performance of suppliers. Who, if

any, are completely reliable, who not at all, what are

the particular ways in which those suppliers in between

the extremes express their reliability and unreliability?

A DIFFERENCE is the simplest meaningful query on this

pair of relations which will yield information mentioned

in the previous paragraph.

Rl

Rl <- P

PNO JNO

[SUPPLIERS] [PARTS] [PROJECTS!

3
3
4
4
4
5

Table 1.2. Unfi11ed promises

Figure 7.8 illustrates the RT graph yielded by this

operation.

179

Rl

/•

/
/ protised

\

/ ;

Supplier ! ! Part

.

\
\
/

/
\

v
! ! Project

\
\

\
/ \

/ delivered \

\
! \

/ ! \
ii i i ii

1 ! Supplier ! ! Part ! ! Project

Figure 7.8 The RT Graph of Rl

The Reverse Translation of this graph is

The indicated Supplier [SN03, and possibly other Suppliers,
proiised
the indicated Part tPNO], and possibly other Parts,
to
the indicated Project [JN03, and possibly other Projects
but it is not the case that
The indicated Supplier [SN03,
delivered
the indicated Part [PNO],
to
the indicated Project [JN03

Now let

R2 <- Rl % [SNO]

R2

SNO

180

[SUPPLIERS]

3

4

5

Table 7-3 Unreliable Suppliers I

The RT graph of Rl will now be modified as illustrated

in Figure 7.9-

R2

t __________ — , , ______

/ ' '

; '
\
\

\
\

/ pronsed \ / delivered \
\ / /
______________/ ______________/
/ ! \ / ' \

i II II II I I II I

' Supplier ! ! Part ! ! Project ! ' Supplier ! ! Part ! ! Project !
i ii i i it it it i

Figure 7-9 The RT Graph of R2

181

The Reverse Translation of this graph is

The indicated Supplier tSNQ], and possibly others,
promised
at least one Part, and possibly others,
to
at least one Project, and possibly others
but it is not the case that
The indicated Supplier [SNO],
delivered
that Part,
to
that Project

It is useful to contrast the RT generated from the above

operations with that generated by a superficially-similar

query.

S3 <- P %[SNO]
Sk <- D *[SNO]
R3 <- S3 -

S3 SH R3

SNO SN£ SNO

[SUPPLIERS] [SUPPLIERS] [SUPPLIERS]

1 1
2 2
3 3
4 4
5 5

Table 7 . /l Unreliable Suppliers II (in R3)

The RT graph which would be created as a result of the

above query is illustrated in Figure 7-10.

182

R3

/•

/
/

/
/

/ proiised
\
\
/

/ t]
i i

Supplier ! ! Part
1 !

,

\
\
/

/
\ '
[]

i i
1 ! Project
! !

\

\
\
\

/ \
/ delivered \

/
/

/ ' \
/ [] []

ii ii ii
1 ! Supplier ! i Part ' ' Project
ii it it

Figure 7.10 The RT Graph of R3

The Reverse Translation of this graph is:

The indicated Supplier [SNQ], and possibly other Suppliers,
proiised
at least one Part, and possibly other Parts,
to
at least one Project, and possibly other Projects
but it is not the case that
The indicated Supplier [SN01,
delivered
any Part,
to
any Project

The points to note here are:

(1) the second occurence of Part and Project do not

refer back to the first occurences of these entities.

(2) the use of the phrase "any" when quantifying the

projected-out entities of the right-hand graph. (The use

of the phrase "at least one" instead of "any" would

definitely convey the wrong impression.)

Two other Queries to find sometimes unreliable suppliers

183

are:

Stt <- P X[SNO, PNO]
S5 <- D X[SNO, PNO]
R5 <- SU - S5

S5 R5

SNO PNG SNO PNO SNO PNO

[SUPPLIERS] [PARTS] [SUPPLIERS] [PARTS] [SUPPLIERS] [PARTS]

1
1
2
2
3
3
4
4
5

1
2
1
2
1
T

1

2
i

1
1
2
2
3

4

1
0

1
2
1

1
4
5

Table 7.5 Unreliable Suppliers (III) and Parts

Extracting the Supplier Numbers of delinquent suppliers

through a projection,

R6 <- R5 X[SNO]

R6

SNO
[SUPPLIERS]

3
4
5

Table 7.6 Unreliable Suppliers III

v
CM

r

R6

/——__________ I A | _____________

/ ' \

/ ————————" \

/ \

/ \

/ proiised \
\ /
______________/
/ ! \

/___ __t]__ __[]__
ii ii it ii it i

Supplier ! ! Part ! ! Project ! ! Supplier ! ! Part ! ! Project !

A A I)

!) ' '
i i

/
/
\
\
1

1
i

\
delivered \

/
/
\

[] []

Figure 7.11 The RT Graph of R6

The Reverse Translation generated by this graph is:

The indicated Supplier [SNO], and possibly other Suppliers,
proiised
at least one Part,
to
at least one Project,
but it is not the case that
The indicated Supplier [SNOJ,
delivered
that Part,
to
any Project

Another kind of defaulter would be found with the

following expression.

56 <- P % [SNO, JNO]
57 <- D % [SNO, JNO)
R7 <- S6 - S7

185

S6

SNO JNC SNO

S7

JHO

R7

SNO JNO

[SUPPLIERS] [PROJECTS! [SUPPLIERS] [PROJECTS] [SUPPLIERS] [PROJECTS]

1
1
2
2
3
3
4
4
5
5

1
2
1
2
1
2
1
2
1
2

1
1
2
2
3
3
4

1
2
1
T

1

2
1

4
5
5

Table 7-7 Unreliable Suppliers IV (R7)
and Projects

Extracting the supplier numbers of delinquent suppliers

through a projection.

R8 <- R7 #[SNO]

we get

R8

SNG

[SUPPLIERS]

4
5

Table 7.8 Unreliable Suppliers IV

The corresponding graph is displayed in Figure 7-12

R8

I I

I A | \
\
\

/ \ / \.
/ pronsed \ / delivered \
\ / \ /
______________/ ______________/

i It It II II II I

! Supplier ! ! Part ! ! Project ! ! Supplier ! ! Part ! ! Project !
i II II 1 i It II I

A A | |

1 ________________} ________! !
i i

Figure 7-12 The RT Graph of R8

The Reverse Translation generated by this graph is:

The indicated Supplier [SNQ3, and possibly other Suppliers,
proiised
at least one Part,
to
at least one Project,
but it is not the case that
The indicated Supplier [SN03,
delivered
any Part,
to
that Project

SJMOXSmOMCDO

8. 1 Introducti on

The data structure and associated algorithms described in

the preceding chapters generate useful Reverse

Translations for the kinds of relational algebra

expressions which have been used to illustrate the

technique. These expressions include non-trivial queries,

for which clarification might plausibly be argued to be

n£l£ful to a non-sophisticated user, However, the Reverse

Translation method as so far developed has limitations when

it confronts certain classes of query expression. In the

final chapter some of these limitations are considered and

possible solutions to the problems they presentare

outlined. Directions for further research are indicated and

an overall assessment of the practical usability of Reverse

Translation is made.

8.2 Methods for simplifying utterances

8.2.1 Predication Lowering

The present Reverse Translation system gives all

Predication Nodes "equal status" as nodes in a Reverse

Translation tree. Joins and set operations will compose

Predication Nodes via Logical Nodes of which they will be

the immediate descendants. No Predication Node can be a

descendant of an Entity Node. This has the consequence that

certain plausible sequences of operations will yield

188

unwieldy Reverse Translations.

Consider a personnel database with several

binarypredications, relating PERSONS located-in CITIES,

speaking LANGUAGES, qualified-in PROGRAMMING-LANGUAGES, and

assigned-to PROJECTS. Assume that Edegree information

("and possibly others") is suppressed and that all domains

except PROJECTS have been declared self-identifying. Even

then, a series of selections, joins and projections to

extract everyone who is located in London, speaks French,

is qualified in COBOL and assigned to Project PI will yield

a Reverse Translation tree generating the following Reverse

Translation: "The indicated PERSON [P] is located in

London, AND the indicated Person [P] speaks French, AND the

indicated PERSON [P] is qualified in Cobol AND the

indicated PERSON [P] is assigned to a PROJECT whose Project

Number equals PI." (Of course the exact order in which each

predication is uttered will depend on the order in which

the relation embodying it is joined to the final derived

relation.)

This is arguably a clumsy construction, and could be

improved if we had a rule like the following: when two

predication nodes are descendants of an AND node, and are

linked by one, and only one Entity Node Chain,and if

this graph is then a participant in the creation of a new

AND-linked graph, first do the following to it: transfer

the right-hand Predication Node (and its descendants) to

189

the Principal Entity Node using the Qualification Sub-Graph

transferral algorithm. Mark the (now disconnected) Entity

Node in the transferred sub-graph with a "dummy" marker so

that the RT generation algorithm will utter its relative

pronoun when it is encountered during text generation.

Carrying out these transformations on the hypothetical

graph posited above at each operation would yield a

graph giving the following Reverse Translation: "The

indicated PERSON [P] who is located in London AND who

speaks French AND who is qualified in COBOL is assigned to

a PROJECT whose Project Number equals PI..." Figure 8.1

demonstrates the effect of this transformation.

8.2.2 Entity Sub-set naming

Another method for preventing a Reverse Translation from

becoming unintelligbly complex, would be to allow the user

to intervene at points in the process of query

composition to "trim" entity nodes and rename them. This

intervention would be equivalent to the user's re-defining

a dervied relation as a Base Relation, using a set of

190

I I

I A I

I I \

1 \
I located-in \

\

/ speaks

.__.

' Person
i i

1 ! City
i i

\

1 ! Person Lanquaqe

\ !! /
\!!/
\/

irrench 1

/ located-in

\

A.
i

! Person
i

i i

! ! City
i i

/ speaks

\
! <F'erson/ i ! Language !

[=3
i

[French]

Figure 8.1 Predication-lowering

191

Predication phrases or Entity names meaningful to him and

bearing adequate semantic information to distinguish the

derived relation from any other. This would be done once

the user is satisfied that the derived relation is the

desired one. The information carried in the complex graphs

of the particular derived relation would be transferred to

the predication phrase set alone, and the relation would

"start over" with a minimal graph. This may be analogised

to the way in which new nouns and adjectives are evolved in

natural language through a process of spontaneous creation,

to replace involved subordinate descriptive clauses.

The example Reverse Translation cited in the previous

section might, under this approach, be re-defined by a user

to something like the following: "The indicated

French-speaking London Cobol-programmer is assigned to a

Project whose Project number is PI."

Figure 8.2 demonstrates the effect of such a transformation

on an RT graph.

/ V
/ located-in \
\ /
________ // "\

/ ___ _____ \

1 Person ! ' City

/ speaks \
______/

i \Per5on) ! ! Language

t=]
i

[French]

\ i!
\ii
\/

/ \
/ located-.n \
\ '
\ _________/
' \

__/____ ___V.
' French- ! !

' speaker ! ! City

Figure 8.2 Turning a. Qualified Entity into an
Entity Sub-Set

8.3 Indicating Scope

The system as currently implemented does not provide any

indication of the scope of logical connectives. This may be

seen by considering a query placed on the relations

introduced in Chapter 7, PSL and PRL. Suppose a user wants

to compose a query expression to find those who speak at

193

least one language, but do not read any which they speak.

(They may read some, but none which they speak.) A sequence

of expressions which will yield the desired answer is

Rl <- PSL ~ PRL

R2 <- Rl % [P]

R3 <- PSL % [P]

R/l <- R3 - R2

The RT graph resulting from this sequence is shown in

Figure 8.3-

\
/ speaks \
\ I

\
_____ I] ___ !

i ! ! ! '
1 Person ! ! _ = *,quage ' !
i ___ __> i ________ •• i

* i
i i

-_____! A I _. 	v
/ — \

__/_ _ _\/ \ /
/ speaks \ / read

\ ' \
___________I \.

' / \ / \
! __/____ ___[J___ __/___ __ [3
i i i i i i , i
! ! Person ! ! Language ! ! Person ' I Language !
i i ii ii i i

Figure 8.3 The RT graph of Rti .

Reverse Translation of R4

The indicated Person [P3, and possibly other Persons,
speaks
at least one Language
but it is not the case that
the indicated Person [P3
speaks
at least one Language
and
the indicated Person [P3
reads
that Language

The Reverse Translation as illustrated is ambiguous. There

195

are two possible readings, which are illustrated by

indenting to indicate the scope of the NOT Logical Node.

Interpretation I:

The indicated Person [R], and possibi* ;tf>er Persons,
speaks
at least one Language
but it is not the case that

the indicated Person [P]
speaks
at least one Language

and
the indicated Person [PI
reads
that Language

Interpretation II:

The indicated Person [F'j, and possibly other Persons,
speaks
at least one Language
but it is not the case that

the indicated Person -p]
speaks
at least one Language
and

the indicated Person [p]
reads
that Language

The second interpretation is the correct one.

(Interpretation I is self-contradictory.) Adding a

facility to the current system for some sort of automatic

indenting of Reverse Translation text would not be

difficult. However, its actual effect on aiding correct

user perception of connector scope may not be clearcut and

would require empirical verification. (Other methods of

graphically indicating scope, such as enclosing

logically-connected blocks within brackets, using a

distinct typeface, or setting them apart with blank lines,

or some combination of these, might be equally efficacious

196

or superiour.) The pragmatics of aiding user perception are

beyond the scope of this thesis, but obviously are a

fruitful field for research.

8. fi Handling Double Negations

It can occur that a query will yield a graph in which the

descendant of a NOT Logical Node is itself a NOT Logical

Node. (This happens, for example, in certain queries with

universal quantifiers.) The speakers and readers example

from the previous section can provide us with an example of

this problem, too. Consider the query sequence yielding

those who speak at least one language, and who read all

which they speak.

Rl <- PSL - PRL (Person-language pairs where the
person speaks a language he does
not read.)

R2 <- Rl % [P] (Persons from the above set.)

R3 <- PSL % [P] (All persons who speak a language.)

Rii <- R3 - R2 (Persons who speak a language,
purged of those who speak one they
do not read.)

This sequence will yield the graph in Figure 8. H:

197

speaks

[3

1 Person Language

/
\

\
speaks \

\
/ reads \

Person Language Person Language

Figure 8. U The RT graph of

The Reverse Translation of R/l, indented to show the scope of the

Logical Nodes, is

Tne indicated Person EFJ, and possibly ctner Persons,
speaks
at least one Language
but it is net the case that

the indicated Person [p]
speaks
at least one Language
but it is not the case that

the indicated Person [P]
reads
that Language

198

The Predication Node defining procedure solicited from the

user both positive and negative senses of the Main

Predication Phrase. £ere is where the latter could be used.

Whenever the Reverse Translation algorithm encounters a

double negation situation, as defined above, it could alter

the phraseology it generates for the second NOT Logical

Node from the standard "but it is not the case that" to

simply "but", and then utter the negative sense of the

descendant predication node. Such a strategy applied to the

graph in Figure 8.3 would yield the following Reverse

Translation:

The indicated Person [P3, and possibly other Persons,
speaks
at least one Language
but it is not the case that

the indicated Person [p]
speaks
at least one Language
but

the indicated Person [p]
does not read
that Lanquaqe

The second translation (combined with some method of

indicating scope) is perhaps marginally clearer than the

first, although the improvement is not overwhelming.

8. 5 Ambiguous reference

The potential of multiple reference arise, consider a

binary relation T, with attributes Tutor and Student,

recording who tutors whom. Both attributes are drawn from

199

the domain PERSONS. If we wish to find all those who are

tutored by someone who is himself a tutee, we must, after

suitable renaming of attributes, Join this relation to

itself over the tutee attribute in one relation and the

tutor attribute in the other.

Rl <- § Tutors [Student
R2 <- @ Tutors [Tutor
R3 <- Rl * R2
RU <- R3 % [Student]

-> Both]
-> Both]

A graph of is

,
/

/
/

/ Tutor

\
\
/

[3
i i i

! Person ! !
i > i

\

\
\

\ / \
\ / tutor \

\ /
/ \ /
\ / \

N[] [] Y

Person ! ! Person ! ! Person
II ! i

A 1

1 1

The Reverse Translation generated from the above graph is

-it least one Person
t u t o r s
at. .least one Person
and
that Person
tutors
the indicated Person CPU and possibly other Persons

This is unsatisfactory because it is not clear to whom the

200

"that" refers. A possible solution to this problem, albeit

a clumsy one. is to print Node-id values after each domain

name. This would be going some distance from the "spirit"

of Reverse Translation. It could be argued that if it were

necessary to generate such "unnatural" natural language,

then the cause of user understanding would be Just as well

served by a display of the Reverse Translation graph as

well. As in the discussion of connective scope, the actual

solution chosen should be a pragmatic question settled by

experimentation.

Another possible solution would be to modify the utterance

algorithm to recognise such ambiguous situations by

scanning the stack of uttered Entity Nodes as it is built

up, and generating additional clarifying text when

appropriate (for instance, "the second one" after the

ambiguous "that person" in the example above).

8 . 6 Universal Quantification

It is possible to construct queries which require a

complicated sequence of operations resulting in a

correspondingly complex graph which will host a

correspondingly baroque Reverse Translation, but for which

a relatively simple meaning can be assigned. A good example

of this would be queries involving universal

quantification, obtained via a Cartesian product and a

201

repeated difference. The Reverse Translation of such a

query, although accurate, is of little value in validating

the query sequence.

Consider just the relation PRL, relating PERSONS and the

LANGUAGES they read. In the absence of an explict universal

quantification operator, the following sequence of

operations must be performed to find those who can read all

languages.

Rl <- PRL % [P] (those who have read at least one
language, and,)

R2 <- PRL % [L] (the languages they have read)

R3 <- Rl * R2 (all possible reader-language
pairs, existing and non-existant --
the Cartesian product of Rl and R2)

Rtl <- R3 - PRL (remove from R3 all actual

reader-language pairs -- a person
who has read all languages will
thus have every instance of his
name removed from RU)

R5 <_ p>ft % [p] (leaving those who have not
read all languages)

R6 <- Rl - R5 (remove these from the general student
population to get persons who have
read all languages)

This sequence results in the graph in Figure 8.5:

2O2

/ read

\

R6

' Person ' Language

__ ——_A

read \

/ "\

[J

Person ' Language

ead

i i
1 ! Person

i i

\
[]

_

i 1

read

Language ! ! Person

\

-\
\
[3

anguage

Figure 8.5 The Graph of R6 -- polyglot readers

203

The Reverse Translation, indented to show scope, that is
generated from this graph is:

The indicated Person [p]
reads
at least one Language
but it is not the case that

the indicated Person [p]
reads at least one Language
and

at least one Person
reads
at least one Language

but it is not the case that
the indicated Person [p]
reads
that Language

It does not require field-testing to assert that this is

not helpful. What is wanted is a Reverse Translation along

the lines of "The indicated Person [P] reads all

Languages". Of course, provision of an explicit universal

quantification operator in the query language available to

the user would allow him to avoid the necessity of creating

such complex sequences as the example. But the point is,

there is nothing to prevent a naive user from constructing

the above query and we would, ideally, like to be able to

handle it elegantly. An "intelligent" Reverse Translation

system could recognise such sequences as the above as and

generate suitably terse but meaningful text.

One approach to a solution to this problem might be to

attempt to devise a special "fix", possibly involving

pattern recognition techniques, which would specifically

trap and handle instances of the above graph. But universal

quantification can occur in indefinitely many other

queries as well, including some which can appear

20H

deceptively simple. To see a striking example of this, we

may follow through the steps necessary to answer Query

number 2? in Chapter 7 of [Date, 1981].

"Get JNO values for projects which obtain at least
some of every part they use from supplier SI."

This query assumes the existence of the following relation:

(Sample data values for the base relation and each

intermediate relation are also provide.)

SPJ
SNO PNO JNO
[SUPPLIERS] [PARTS] [PROJECTS]

SNO PNO JNO

! SI ! PI ! Jl !
! SI ! PI ! J2 !
! SI ! PI ! J3 !
! SI ! P2 ! Jl !
! SI ! P2 ! J2 !
! SI ! P3 ! J2 !
! S2 ! PI ! J2 !
! S2 ! PI ! JU !
! S2 ! P2 ! J4 !
! S3 ! P2 ! J2 !
! S3 ? P2 ! J/l !
! S3 1 P3 ! J4 !
! SU ! P3 ! J2 !
! S4 ! P3 ! J3 !
! S/i ! P/i ! J3 !
t ____» ____ i ____ t

Table 8.1 Suppliers, parts, projects

Tl <- SPJ : [SNO = 'SI']

SNO PNO JNO

! SI
! SI
! SI
! SI
! SI
! SI
t

! PI
! PI
! PI
! P2
! P2
• P3
i

! Jl
! J2
! J3
! Jl
! J2
! J2
t

T

1

1

;
t
t
»

205

T2 <- T1X[PNO,JNO] PNO JNO

! PI ! Jl !
! PI ! J2 !
! PI ! J3 !

! P2 ! Jl !
! P2 ! J2

! P3 ! J2 !
j ____ ; ____ t

T3 <-SPJ%[PNO,JNO] PNO JNO

t

»
»
1
I
»

»
f
t
»
1

I

PI
PI
PI
PI
P2
P2
P2
P3
P3
P3
Pa

t
t
t
f
t
t
»
i
i
t
i
i

J
J
J
J
J
J
J
J
J
J
J

1
2
3
a
i
2
a
2
3
a
3

t
1

1
t
»
t
f
t
1
1

J
f

Ti* <- T3 - T2 PNO JNO

t
1
t
1
1
t

PI
P2
P3
P3
pa

! ja
! ja
! J3
! JU
! J3
i

t
j
»
i
t
j

T5 <- TU %[JNO] JNO

! J3 !
! ja !
i f

T6 <- SPJ %[JNO] JNO

T7 <- T6 - T5 JNO

Table 8.2 Intermediate relations

206

T7

supply

1 Supplier ! ! Part ' ' Project !

[3

\

supply

[3

\
\
\
\
\
\

\
/ \

[3

\

supply

i
t 3

II I i I i I i II

! ! Supplier ! ! Part ! ! Project ! ! Supplier ! ! Part

\
/

Project

i I A

I I

I

I I

SI !

i i

Figure 8.6 RT Graph of T7

The Reverse Translation (indented to indicate scope) which

this graph would generate is:

At least one Supplier
supplies
at least one Part
to
tne indicated Project [PNO], and possibly other Projects
6tit it is not the case that

at least one Supplier
supplies
at least one Part
to the indicated Project [PN01
but it is not the case that

at least one Supplier
whose Supplier-Number = SI
supplies
that Part
to the indicated Project

As in the case of the straightforward universal

quantification query illustrated in the previous section,

this is not helpful. There is too great disparity, in terms

of the mental effort needed to equate them, between the

"description" of T7' s semantics generated by the Reverse

Translation technique, and our common sense rendering of

this relation as "projects which get at least some of every

part they use from Supplier SI". In the next section this

problem is taken up more generally and its implications

discussed.

8. 7 An Assessment of Reverse Translation and Directions
for Further Research

The Reverse Translation system presented in this thesis

shares the limitations of all Natural Language processing

systems which work by syntactic rules alone. Natural

Language is a medium which pre-supposes a rich corpus of

shared knowledge on the part of its direct or indirect

208

originator and its receiver. The classic illustration of

this truism is the problem of algorithmically determining

the reference for the pronoun "he". Consider the sentence,

"The boy ran towards the river, and then he fell". A

language processing algorithm can easily be imagined which

could correctly substitute "the boy" for "he" in a

system-generated paraphrase of this sentence. A rule like

"substitute the most recently-generated animate noun" would

suffice. Now consider the sentence, "The gunman fired at

the victim, and then he calmly reloaded." Whereas the

human information processor would have no difficulty in

substituting "the gunman" for "he", no algorithm based

purely on syntax and limited properties of words could

decide whether it was the gunman or his victim who

reloaded. Knowledge about the world of gunmen, guns, firing

and victims is necessary to handle this sentence, which is

superficially similar to the first example.

Turning to the problem of simplifying Reverse Translations,

we may consider the example shown in Chapter Seven, Section

7.3. H.2. The Reverse Translation describes a person for

whom "it is not the case that the indicated Person speaks

any language which is not French." A moment's reflection

yields the much tighter and easier to understand paraphrase

"speaks only French". As suggested in the preceding

section, it is possible that further purely structural

graph manipulations could be added to the Reverse

Translation system, this time to deal with this class of

209

query. For instance, a close equivalent to the quoted

paraphrase would be generated by a rule like, "for a

projected-out Entity Node which is a descendant of a

negated Predication Node and which is not part of an Entity

Node Chain, invert all Logical and Comparison Nodes in its

Qualification Sub-graph and set its Edegree to one."

However. an ever-more-elaborate set of rules to cover

multiple special cases is an unsatisfying method of

approach to this problem. One possible approach to a

solution is some sort of deductive component in the

system, with a relatively small set of powerful, general

rules of the type, "if some X has a relationship with

a set Y, but does not have a relationship with a

sub-set of Y, then it has an exclusive relationship

with the complement of that sub-set." It may be

conjectured that rules of this type, perhaps embodied as

mental models, are what allow humans to deduce that "if

someone speaks a language, but he doesn't speak any

language that isn't French, then he speaks French (and it

alone)." Further elaboration of such a system is beyond

the scope of this thesis, but should be noted as a

potentially fruitful research direction.

8. 7 Practical Applications of Reverse Translation

For the reasons delineated in the previous section it is

unlikely that any Reverse Translation system based on

210

purely syntactic manipulations could ever serve as an

unmediated and general-purpose validation system for naive

users placing; unrestrictedly-complex quer-iee on databases.

H«w«v«r, s useful application of a robust Reverse

Translation, elaborated in the directions indicated in this

chapter, might b« f«und in %h^ &$.*£& ef us'er' ^riiHift£;

Currently, a user who wishes to learn the semantics of a

formal query language without expert human assistance has

two learning techniques available. He can follow examples

provided in written or on-line tutorial exercises, if these

are available. In this case he may find that the examples

provided are taken from an unfamiliar application domain,

or do not illustrate in sufficient detail the kind of query

sequences which are of interest to him. A second learning

approach would be for the user to create and populate his

own database schema and then apply simple query operations

to it, studying the results and generalising from them.

This has the disadvantage that false generalisations can be

drawn, taking what may only be true contingently -- due

to the particular data values present in a relation -- for

a necessary truth.

A Reverse Translation tutorial session would allow the user

to create his own database schema, including the

predication strings linking the domains present in each

relation. He could then see the effect, illustrated by

Reverse Translations, of increasingly-complex query

expressions. Of course, at some point, given the

211

limitations of purely syntax-based natural language

generation, he would be confronted with Reverse

Translations whose complexity rendered them of little

pedagogic utility. If, however, the semantics of each query

language operation had been illustrated and taught before

this point was reached, then Reverse Translation would have

proved to be a useful learning device. Whether or not this

scenario is practical is itself a matter for further

research.

212

Bibliography

Robert B. Anderson
Proving Programs Correct
John Wiley and Sons, 1979

Yigal Arens, David Chin and Robert Wilensky
Talking to UNIX in English: an Overview of UC
Communications of the ACM XXVII (6): 57^-591, June

Eugene Ball, Phil Hayes and Raj Reddy
Computers with Natural Language Communication Skills
Computer Science Research Review 1979-80:39-51
Carnegie-Mellon University

R. Bell and P. Gray
Use of Simulators to Help the Inexpert in Automatic
Program Generation
IFIP 1979: 613-628

Boris Beizer
Software Testing Techniques
Van Nostrand Reinhold, New York, 1983

K. Biss, R. Chien and F. Stahl
R2 -- a Natural Language Question-Answering System
AFIPS Conference Proceedings, Spring Joint Computer
Conference XXXVIII:303-308, 1971

Robert W. Blanning
Conversing with Mangement Information Systems in Natural
Language
Communications of the ACM XXVII(3):201-207, 198U

Daniel G. Bobrow
Natural Language Interaction Systems
Picture Language Machines;31-65
Academic Press, 1970

Leonard Bole
Natural Language Question Answering Systems
Carl Hanser Verlag 1980

Jeffrey Bonar, Elliot Soloway and Kate Ehrlich
Cognitive Strategies and Looping Constructs:
an Empirical Study
Communications of the ACM XXVI(11):853-860, 1983

Bertram C. Bruce
Natural Communication between Person and Computer
in Strategies for Natural Language Processing
edited by Wendy Lehnert and Martin Ringle
Lawrence Erlbaum Associates, 1982

213

A. Bundy, Editor
Artificial Intelligence; an Introductory Course
Edinburgh University Press, 1978

C-L. Chang and R. C-T Lee
Symbolic Logic and Mechanical Theorem Proving
Academic Press, 1973

Peter P. Chen, Editor
Entity-Relationship Approach to Information Modeling and
Analysis; Proceedings of the Second International
Conference on Entity-Relationship Approach,
Washington, D.C., October 12-lU, 1981 ER Institute, 1981

A Status Report on the Activities of the CODASYL
End User Facilities Committee (EUFC)
CODASYL End Users Facility Committee, 1979

Codd, E.F.
A Relational Model of Data for Large Shared Data Banks
Communications of the ACM, XIII(6), 1970

Codd, E.F.
How About Recently? (English Dialog with Relational Data
Bases TJsing Rendezvous Version I)
in Shneiderman, 1978a

Marco Colombetti, Giovanni Guide, Barbara Pernici
and Marco Somalvico
Reasoning in Natural Language for Designing a Data Base
in Artificial and Human Intelligence, edited by
Alick Elithorn and Ranan Banerji
North-Holland, 198/1

Irving M. Copi
Symbolic Logic, lith Edition
Macmillan, 1973

Tom Crowe and John Jones
Potential Fallacies in the Design and Use of Data Bases
Computer Bulletin December 197^

C.J. Date and E.F. Codd
The Relational and Network Approaches:
Comparison of the Application Interfaces
Proceedings of the 197^ ACM-SIGFIDET Workshop.
ACM, New York, 197*1

C.J. Date
An Introduction to Database Systems.
3rd Edition, Addison-Wesley, 1981

Alessandro D'Atri, Marina Moscarini and Nicolae Spyr-atos
Answering Queries in Relational Databases
SIGMOD Record XIII (U): 173-177 . 1983

Anthony Davey
Discourse Production
Edinburgh University Press, 1978

S. M. Deen
Fundamentals of Data Base Systems
MacMillan, 1977

and Peter Hammersley, editors
Databases: Proceedings of the 1st British National
Conference on Databases
Pentech Press, London, 1981

Ivor Durham, David Lamb and James Saxe
Spelling Correction in User Interfaces
Communications of the ACM, XXVI(IO), October 1983

Kemal Efe, Chris Miller and K. Hopper
The Kiwinet-Nicola Approach: Response Generation in
a User-Friendly Interface.
Computer XVI(9):66-8l, 1983.

R. A. Frost
SCHEMA: Yet Another Conceptual Schema Definition Language
Computer Journal XXVI(3):228-23^, 1983

Sakti P. Ghosh
Data Base Organisation for Data Management
Academic Press, 1977

T.R.G. Green and H.T. Smith
Human Interaction with Computers
Academic Press, 1980

T.R.G. Green
Programming as a Cognitive Activity
in Human Interaction with Computers Green, 1980

David Greenblatt and Jerry Waxman
A Study of Three Database Query Languages
in Shneiderman, 1978a

Judith Greene
Thinking and Language
Methuen, 1975

P.A.V. Hall
Optimisation of a Single Relational Expression
in a Relational Data Base System
IBM UK Scientific Centre Report UKSC0076 June 1975

Michael M. Hammer and Dennis J. Mcleod
Semantic Integrity in a Relational Data Base System
Proceedings of the International Conference
on Very Large Data Bases;25-U7. 1975

215

Michael Hammer
Error Detection in Data Base Systems
AFIPS Conference Proceedings XLV:795-801, 1976

L. R. Harris
User Oriented Data Base Query with
the ROBOT Natural Language Query System
International Journal of Man-Machine Studies IX:697-713,

Wilfred Hodges
Log! c
Penguin, 1977

C.A.R. Hoare
Programming: Sorcery or Science?
IEEE Software. I(2):5-l6, April 198U

R.W.A. Hudson and J.A. Self
A Dialogue System to Teach Database Concepts
Computer Journal. XXV(l), 1982

A.T.F. Hutt
A Relational Data Base Management System
Wiley, 1979

S. Isard and H. C. Longuet-Higgins
Question-answering in English
Machine Intelligence VI:2H3-25b, 19?*?

Philip C. Jackson
Introduction to Artificial Intelligence
Petrocelli Books, 1974

1977

Jurgen M Janas
Towards More Informative User Interfaces
Proceedings of the Fifth International Conference
on Very Large Large Data Bases
IEEE, 1979

Matthias Jarke and Jurgen Koch
Range Nesting: A Fast Method to Evaluate Quantified Queries
SIGMOD Record XIII(a):196-206, 1983

Johnson-Laird, P.N.
Mental Models; towards a Cognitive Science of
Language, Inference, and Consciousness
Cambridge University Press, Cambridge, 1983

John D. Joyce and David R
Command Use in a Relational
AFIPS Conference Proceedings

Warn
Database
52, 1983

System

S. J. Kaplan
Cooperative Responses from a Portable
Natural Language Query System
Artificial Antelligence XIX:l65-l87, 1982

216

William Kent
Data and Reality
North-Holland, New York, 1978

Margaret Kuhn and Ben Shneiderman
Two Experimental Comparisons of Relational
and Hierarchic Database Models
IFSM Technical Report No. 31, Department of Information
Systems Management, University of Maryland, 1978

Michel Lacroix and Alain Pirotte
Example Queries in Relational Languages
Technical Note N107
Manufacture Beige de Lampes et de Material Electronique
Research Laboratories, 1976

Michel Lacroix and Alain Pirotte
Domain-oriented Relational Languages
Proceedings of the Third International
Conference on Very Large Data Bases, 1977

Frederick H. Lochovsky
Data Base Management System User Performance
Technical Report CSRG-90, Computer Systems Research Group,
University of Toronto,T1977

Jim Longstaff, F. Poole and J. Roper
An alternative use of Natural Language for querying a
relational database
Proceeedings of ICMQD78, Milan, 1978

Jim Longstaff
Query Specification and Accessing Strategies
for Relational Databases
PhD Thesis, Teesside Polytechnic, March 1980

Jim Longstaff, F. Poole and J. Roper
Teaching Relational Database Interactions
Using Natural Language Responses
in Deen and Hammersley, 1981

Frederick H. Lochovsky and Dlonysios C. Tsichritzis
Data Base Management Systems
Academic Press, 1977

Frederick H. Lochovsky and Dionysios C. Tsichritzis
Data Models
Prentice-Hall, 198?

B.G.T. Lowden and R. Turner
An Introduction to the Formal Specification
of Relational Query Languages
The Computer Journal. XXVIII(:2), 1985

217

James D. McCawley.
Everything that Linguists have Always
Wanted to Know about Logic
University of Chicago Press, 1981

Kathleen R McKeown
Discourse Strategies for Generating Natural Language Text
Artificial Intelligence 27 (1985) 1-41

James Martin
Computer Data-Base Organization. 2nd Edition
Prentice-Hall, 1977

M. Missikoff and M. Scholl
Relational Queries in a Domain Based DBMS
SIGMQD Record XIII(tt):219-227 , 1983

Glenford J Myers
The Art of Software Testing
John Wiley and Sons, 1979

E.S. Page and L.B. Wilson
An Introduction to Computational Combinatorics
Cambridge University Press, 1979

J. L. Peterson
Computer programs for detecting and
correcting spelling errors
Communications of the ACM XXIII(12), 1980

C. J. Prenner
A Uniform Notation for Expressing Queries
Memorandum No. UCB/ERL M77/60
Electronics Research Laboratory
University of California, Berkeley, 1977

Phyllis Reisner
Use of Psychological Experimentation
as an Aid to Query Language Design
IEEE Transactions on Software Engineering
SE-3(3):218-229, May 1977

Allison Rebeca Reuber
An Assessment of the Ability of the Extended Relational
Model to Serve as a Conceptual Schema Language
Master's Thesis, Queen's University, Ontario, 1981

Elaine Rich
Natural Language Interfaces
Computer. XVII:9, September 1984

Nicholas D. Roussopoulos
A Semantic Network Model of Data Bases
PhD Thesis, University of Toronto, 1976

218

Sandra B. Salazar and Gerald A. Wilson
A System for Interactive Error Detection
Proceedings of the Fifth International Conference
on Very Large Data Bases
IEEE, 1979

Geoffrey
The Form

Sampson
of Language

Weidenfeld and Nicolson, 1975

Barbara C. Sangster
Natural Language Dialogue with Data Base Systems:
Designing for the Medical Environment
Information Technology, J.Moneta (editor): 183-187 , 1978

H.A. Schmid and J.R. Swenson
On the Semantics of the Relational Data Model
Proceedings of the 1975 ACM SIGMQD International
Conference on Management of Data
ACM, 1975

G. C. H. Sharman
Update-By-Dialogue : an Interactive Approach to
Database Modification
SIGMOD Journal Proceedings of the International
Conference on the Management of Data; 21-29, 3~5 August
1977

Ben Shneiderman, Editor
Databases: Improving Usability and Responsiveness
Academic Press, 1978a

Ben Shneiderman
Improving the Human Factors Aspect of Database Interactions
ACM Transactions on Database Systems, 3(^)t
December, 19?8b

John F. Sowa
Conceptual Structures
Addison-Wesley, 198*1

Roger Tagg
Query Languages for some Current
in Deen and Hammersley, 1981

DBMS

S. J . P. Todd
The Peterlee Relational
IBM Systems Journal XV (

Test Vehicle -
), 1976

- a System Overview

E. Vandijck
Towards a More Familiar Relational Retrieval Language
Information Systems 2:l6l-l65 (1977)

219

Adrian Walker
Automatic Generation of Explanations
of Results from Knowledge Bases
IBM Research Report RJ3&81, 1982

Gio Wiederhold
Database Design
McGraw-Hill, 1977

Zloof, M.M.
Design Aspects of the Query-by-Example
Data Base Management Language
in Shneiderman, 1978a

220

DATABASES

Proceedings of the 1st British National Conference
on Databases held at Jesus College
Cambridge, 13-14 July 1981

EN«"IKIts
SAVOY PLACE
LONDON WC2R OBI

Ed/ted by

S M Deen, University of Aberdeen
P Hammersley, Middlesex Polytechnic

PENTECH PRESS

London: Plymouth

Contents

The state of the art in database research 1
S M Deen, University of Aberdeen

The extensibility feature of data dictionary systems 42
F S Zahran, London School of Economics

Database processing in RADS - ICL's rapid application 61
development system
AGP Brown, H G Cosh and D J L Gradwell,
International Computers Ltd

The Group-by operation in relational algebra 84
P M D Gray, University of Aberdeen

Query languages for some current DBMS 99
R M Tagg, Consultant

Teaching relational database interactions using 119
natural language responses
J Longstaff, Leeds Polytechnic
F Poole, Sheffield City Polytechnic
and J Roper, Durham University

Query validation: reverse translation and the connection 133
and selection trap
T Crowe, D R Mainline and R G Johnson, Thames Polytechnic

Implementing unknown and imprecise values in databases 146
M A Gray, University of Cambridge

A relational database for minicomputers 159
J R W Glauert, T J King and M Robson, University of Cambridge

Finding an optimal search sequence of files 175
S W Ho, University of Hong Kong

A comparative study of four database management systems 187
B J Lowndes and J W Martin, University of Liverpool

QUERY VALIDATION: REVERSE TRANSLATION AND THE CONNECTION
AND SELECTION TRAP

T Crowe, D R Hainline, R G Johnson

Thames Polytechnic

This paper describes some aspects of
research into the validation of queries
using Reverse Translation and in par­
ticular how the problems of the connection
trap and selection trap can be overcome.

QUEVAL is a prototype software system
developed to validate queries and so help
naive end-users to assert the validity of
their queries when using a query language.
The development of QUEVAL necessitated the
development of a relational database and
its associated relational query language
on a DEC-10 system. This paper explores
in particular the use of Reverse Trans­
lation for the connection and selection
operations.

1. INTRODUCTION

Query languages are an increasingly important end-user
facility in the use of DBMS for the retrieval of information.
This paper describes some aspects of research into the vali­
dation of such queries using Reverse Translation (RT) and in
particular how RT can be used to overcome the problem of the
connection trap as described by Codd and the selection trap.

Traditionally the concept of validation has been applied to
the situation where raw data is validated prior to its use by
tested and proven programs. With the increasing use of data­
bases the reverse is likely to be the case. One-off queries,
ie unproven programs will access the database of validated

133

data. End-users will need help in asserting the validity of
such programs.

The approach taken in this research programme was to build a
prototype software system, QUEVAL, to effect such validation.
To this end a relational database with its associated rela­
tional algebraic query language, has been developed on a
DEC-10 system. To date all the relational algebraic opera­
tions, with the exception of division, have been implemented.
The relational approach was used because it offered a
formalism appropriate to research and the query language is
well documented in the literature. There are many techniques
that can be applied to help in the validation of a query and
it is planned in this research programme to investigate them
by implementing them in stages. The first technique to be
implemented was that of RT.

A user who has initiated the query is able to see that meaning
explicated in a set of natural language sentences generated by
the validation system. This process of understanding extends
to the final relation which is the answer to the query. In
fact, the query in declarative form will be one of the many
possible valid descriptions of the final relation. This
provides a method of checking the semantic validity of a query
expression: the user matches his understanding of the derived
relations against the machine.

There are many interesting aspects to this research work,
particularly in the 'data dictionary' area where it is
necessary to have graph structures to support the RT process.
However, this paper deals with the connection trap and the
selection trap and how they can be overcome using RT.

Codd [1] describes the connection trap, where a potentially
misleading meaning can be attributed to a relation resulting
from the re-joining of the projected components of an all-key
relation. (RT can call attention to the difference in
meaning). An equally misleading result can arise from
syntactically valid selection operations on certain relations.

2. VALIDATION

The error prone and expensive part of any data processing
system is usually the inclusion of new components, whether
these be new programs that must be written and tested or data
that has to be captured and validated. In the context of
traditional data processing the process of validation of data
is reasonably well understood [2], [see Figure 1].

134

i

London

I FILES

/ INPUT /——| VALIDATION H PROCESS "—y OUTPUT /

Fig. 1

Our research has been concerned with the validation, not of
the data but of programs and, in particular, queries.

Figure 2 illustrates a typical systems environment in which a
query language would be used. In such a situation, the
queries are novel and unproven whilst the data tends to be
static and correct (for the intended query).

QUERIE

Fig. 2

It is thus the query (ie the program) that needs to be
verified. This is the converse of the batch data validation
and is rapidly becoming more common as data is collected into
integrated databases and made accessible to new groups of
users through Management Information Systems.

In this situation, the database user is a programmer; his
query will be executed, and the results produced. However,
the classical methods of validating programs are not avail­
able. The query is unlikely to be tested with sets of test
data. There is no previous system, acting as a standard, with
which to compare the output. There is no user community quick

135

to spot anomalies in the output. The queries created by the
competent casual user will require a different approach to
validation, if they are to be validated at all.

3. THE RESEARCH APPROACH

The approach taken in this research has been both develop­
mental and theoretical. QUEVAL, a software package, has been
developed to provide an end user facility for the validation
of queries in the belief that the development of such a
package would generate theoretical problems and lead to a
better understanding of errors inherent in the query process.
QUEVAL has a relational database which stores and manipulates
the data.

The Relational approach was adopted in this research because
it is a formal approach that is both well understood and well
documented .

Following the authors' experience with PRTV [3], a similar but
simplified relational algebra query language was used. The
authors feel that the relational algebra system could also be
considered as a model of a range of other query languages.

The symbols used in our relational algebra expressions and
used in examples in this paper are:

- Difference * Natural join
% Projection + Union
: Selection . Intersection

<•- Assignment -^ Rename of entity

There are many areas of error control that could be
researched, ranging from the well understood techniques of
syntax error detection to an understanding of the propensity
of humans to make errors. This paper concentrates on one
aspect of this range that is the use of Reverse Translation
(RT). The computer system states in English what it under­
stands the query to be by giving a description in English of
the generated answer. In fact, the query in declarative form
will be one of the many possible valid descriptions of the
final relation. This provides a method for checking the
semantic validity of a query expression: the user matches his
understanding of the derived relation against the machine's
Reverse Translation.

The pioneering effort in this field is, of course, the
RENDEZVOUS system being developed by E F Codd and others, [M]
which includes natural language generation as part of dialogue
with the user to enable him to formulate his query precisely
in natural language.

E F Codd notes that "... very little work on the generation of
natural language has been published... and none of this
appears to treat the problem in the context of query formula-

136

tion". Recent work in this country includes a system which
gives a narrative description of any noughts-and-crosses game
[5] i and, closest to our own approach, the system being
developed by Longstaff, Poole and Roper [6] which aims at
reverse translation into natural language of queries formu­
lated in a relational calculus - like language.

The provision of reverse translation of query language
expressions requires two things: the existence of a data
structure capable of capturing the aspects of meaning not
derivable directly from a relation, and the existence of an
"analyser" capable of generating the most comprehensible
natural language expression from this data structure. These
two requirements are in large part separable. An adequate
solution to the first problem in no way guarantees an adequate
solution to the second.

4. THE MEANING OF A RELATION

The relations in QUEVAL are in first normal form and the
meaning of a relation is not deducable from a knowledge of the
domains.

A database does not only contain data but usually has data
about the data, ie a meta database, the data dictionary. In
QUEVAL we have used the data dictionary to contain a clear
understanding of meaning of the relations and by modest
additions to assist in the RT process

In QUEVAL, in addition to the usual information in the data
dictionary for each domain, there is stored the singular and
plural forms of the name of each entity of which the domain
values are representatives. In addition it is recorded
whether the entity is animate or inanimate.

For example:

Domain name: EMP
Singular entity name: EMPLOYEE
Plural entity name: EMPLOYEES
Animate: YES

For each attribute in a relation its domain is recorded. All
the relationships embedded in each relation are recorded. For
each relationship, the domain which fills each argument of the
relationship
is recorded and the attribute in the relation that represents
that role.

For example:

EMPLOYEE (EMP, EMPNAM, LANG, EMPGDE)

137

There is a many to one relationship of speaking as a native
language between the employee and the native language:

Relationship: SPEAKS AS A NATIVE
Argument 1: EMP
Argument 2: LANG
Complexity: MANY TO 1

Thus the relation A, shown in Fig. 3A, gives rise to the
following piece of text, which is expressed as a description
of a single tuple in the relation.

Attribute name EMP LANG

A003 French
AGO? English
A010 English
A016 French
A027 German
A030 English

Fig. 3A Relation A

Thus QUEVAL can generate an English description of relation A:

The indicated EMPLOYEE (EMP) and possibly others, speaks
as a native the indicated LANGUAGE (LANG) and it only.

This sentence it can be seen has been generated from the data
in the data dictionary. Suppose now that a slightly different
design had been adopted in which all languages spoken by
employees were recorded (Relation B, Fig. 3B). The complexity
would have been MANY TO MANY and the resulting text would have
been:

The indicated EMPLOYEE (EMP) and possibly others, speaks
the indicated LANGUAGE (LANG) and possibly others.

Complexity: N:M

Relation B

Attribute EMP LANG

A611 English
B021 English
B021 French
C512 German
C512 French
C512 English

Fig. 3B - Relation B

138

5. AN EXAMPLE OF A RELATIONAL OPERATION

The full range of operations is described in Johnson [?].
When the user makes a query he manipulates one or more
relations. QUEVAL manipulates the relations and the resulting
tuple descriptions in parallel. Thus taking the relation B in
Fig. 3B consider the simple operation of projection.

B1 <r- B [LANG]

The resulting relation is shown in Fig. 4 and lists the
languages spoken by employees.

Attribute name: LANG

French
English
German

Fig. 4 Relation B1

The text that would be produced from this query is:

At least one EMPLOYEE speaks the indicated
LANGUAGE (LANG), and possibly others.

As can be seen with the above example, reference to the
attributes which have been projected out must not simply
disappear from the reverse translation for that would not be
faithful to the actual meaning of the derived relation. For
the relation B1 in Fig. 4, it is not known which employees
have learned these languages, but the history of this relation
proves that for each of these languages, at least one employee
can be found who has learned it.

6. THE SELECTION TRAP

E F Codd [1] described the "connection trap", where a
potentially misleading meaning can be attributed to a relation
resulting from the re-joining of the projected components of
an all-key relation. (We will show later how RT can help to
protect against such a trap).

An equally misleading result can arise from syntactically
valid selection operations on certain relations.

Consider a user wishing to find employees whose native
language is French. He would receive the desired information
from the following query:

F1 <- (A: [LANG = "French"]) % [EMP]

139

To find employees whose native language is not French, a
symmetrical expression is used:

F2 «- (A: [LANG » "French"]) % [EMP]

This slightly more complicated query, which includes a
negation, has an algebraic expression which parallels the
previous, positive, query, with "0" substituted for "=". This
is probably the relationship that most casual users would
expect to exist between the two queries, and their algebraic
expressions, and they would in this case be correct.

Now suppose the user wants the employee numbers of all
employees who have learned French. He again uses a selection
followed by a projection:

F3 *- (B: [LANG = "French"]) % [EMP]

If the user wants the employee numbers of all employees who
have not learned French, a request apparently symmetrical to
the previous request, he may be tempted to use the following:

FH <- (E: [LANG//»French"]) t [EMP]

This formulation is syntactically valid, and does not involve
a violation of data constraints. The resulting relation will
contain many employee numbers, and has a coherent meaning.
However, it was not what was intended.

The user has obtained, not employees who have not learned
French, but employees who have learned one or more languages
other than French.

A user using the reverse translation facility to check the
previous two queries would have received the following
interpretation of F2

The indicated EMPLOYEE, (EMP) and possibly
others, speaks as a native a LANGUAGE which
is not French, and it alone.

F4 would have been rendered

The indicated EMPLOYEE, (EMP) and possibly
others, speaks a LANGUAGE which is not
French, and possibly others.

The latter translation is at least a flag on the selection
trap. More can be done: the natural language rendering of
the complement of the selection expression can be incorporated
into the "and possibly others" phrase which follows a
selection translation in a complex relationship. This would
yield a translation of the last phrase above as "... the

140

indicated LANGUAGE, which is not French, and possibly others,
including French".

To correctly find employees who have not learned French, the
user first creates a relation consisting of those who have
done so, and then differences it from a relation containing
all employees who have learned languages.

F5 <- (B% [EMP]) - ((B: [LANG = 'French']) % [EMP])

THE RT of F5:

The indicated EMPLOYEE (EMP) and possibly
others, speaks one or more LANGUAGES,
but does not speak a LANGUAGE which is French.

7. THE CONNECTION TRAP

It is useful to see how RT might illuminate "connection trap"
problems.

These can arise when components of a relation previously
projected out are re-joined, resulting in a relation whose
"surface structure" is identical to the original relation, but
whose underlying meaning is different.

The following relation and series of operations illustrates
this well-known problem.

Complexity: N:N:N

Relation S

S.CODE P.CODE J.CODE
Domain (Supplier) (Part) (Job)

Attribute SNO PNO JNO

S1 PI J1
51 P1 J2
52 P1 J1

The intended meaning of this relation is that supplier SNO
supplies part PNO to job JNO.

A graphical representation of the relation.

141

S:
S.CODE

SNO

N SUPPLY
N1

P.CODE

PNO

N

J.CODE

JNO

Let

S1«- Supply % [SNO.PNO]
Supply % [PNO, JNO]

Complexity: N:N

Relation

Domain

Attribute

S1
S.CODE

SNO

51
52

P.CODE

PNO

P1
P1

SI:
S,CODE

SNO

N SUPPLY
N

P.CODE

PNO

N

J.CODE

142

Complexity: N:N

Relation

Domain

Attribute

S2
S.CODE

PNO

PI
P1

P.CODE

JNO

J1
J2

S2:

S.CODE

N SUPPLY
Ni

P.CODE

PNO

N

J.CODE

JNO

The Connection Trap can arise when S1 and S2 are re-joined:

S3 *- S1 » S2

Complexity: N:N:N

Relation

Domain

Attribute

S3
S.CODE

SNO

P.CODE

PNO

A graphical representation of S3:

J.CODE

JNO

S1
SI
S2
S2

P1
P1
P1
P1

J1
J2
J1
J2

143

S.CODE

SNO

P. CODE

PNO

J.CODE

JNO

The RT of S:

The indicated SUPPLIER (SNO), and possibly
others, supplies the indicated PARTS (PNO),
and possibly others, to the indicated JOB
(JNO) and possibly others.

The RT of S3:

The indicated SUPPLIER (SNO), and possibly
others, supplies the indicated PART (PNO),
and possibly others, to at least one JOB.

One or more SUPPLIERS supplies the indicated
PART (PNO), and possibly others, to the
indicated JOB (JNO), and possibly others.

The actual relationships embodied in the two relations, S1 and
S3, are made explicit by the RT of each.

Of course, the availability of an RT, or of any other device
for explicating the underlying structure of a relation cannot
guarantee a correct user understanding of a relation's
meaning.

8. CONCLUSIONS

The authors believe that use of reverse translation provides a
significant advance in the development of query languages.
While inexperienced users have a higher error rate, all users
can benefit from the opportunity provided of comparing their
intuition for a particular query with an alternative textual
formulation of that query.

144

The research on this paper, together with the other research
mentioned, confirms the authors in their belief that reverse
translation is both necessary and valuable for query language
systems. This paper has shown the text produced from
relational algebra expressions. No previous work known to the
authors has given detailed consideration to this problem.

The system described here is a prototype system and further
research is needed to improve the natural language text and to
fully develop other facilities. However, the authors believe
the present system represents an advance on other query
systems currently available.

Query languages are not designed specifically to avoid errors
in the formulation of the query, except insofar as good design
inherently must serve that end, and it could be that this
research would lead to a reconsideration of the design of
query languages or more possibly, query systems.

9. ACKNOWLEDGEMENT

The authors would like to express their thanks to Dr B Aldred
of IBM Scientific Centre, Winchester for his helpful
discussions and encouragement during this project.

10. REFERENCES

[1] E F Codd - A relational model of data for large shared
data banks, Comm ACM 13, June, 1970

[2] T Crowe and J H Jones - Fundamental Nature of errors in
data capture; and the use of data dictionary, Management
Datamatics IAG, Amsterdam) 4,3, 1975

[3] S J P Todd - The Peterlee Relational Test Vehicle, IBM
Syst J 15,1 1976

[H] E F Codd - How about recently? (English dialogue with
relational databases using Rendezvous Version 1), in
Schneiderman, B Databases: Improving Usability and
Responsiveness, Academic Press, 1978

[5] A Davey - Discourse Production, Edinburgh University
Press, 1978

[6] J Longstaff, F Poole and J Roper - An alternative use of
Natural Language for querying a relational database,
ICMOD78, Milan, 1978

[7] R G Johnson, T Crowe and D R Hainline - Verifying Queries
from Naive End-users, to be published.

145

>- co
u2
**• ^

oi_CJ2

DCO£=a

xQ
_

Q
_

CD
CO

i_

CD

>

CD

A Reverse Translation Graph has the following structure

RT :: = Entity-Node-RT
t {Fredication-Node-RT + Entity-Node-RT) l..n

Entity-hode-RT :: = Indicator-Phrase
+ Bc'tain-Reference
+ i Attribute-Naae)
+ i Role-Phrase)
+ (Qualification-Phrase
+ \ [Degree-Phrase)

Indicated-Phrase
Dosain-F.eference
Attrifcute-Naie
Role-Phrase
Quali f i :atiori-Fhrase
EDeqree- p hrase

::= [Participating-Phrase ! Non-Participating-Phrase
::= na§e of domain this node correspondE to
::= naie of attribute this node corresponds to
::= "acting as a a + role-nase
::= Introducer + Qualifier-tree
::= [N-phrase i I-phrase 3

Predication-Node-RT ::= t hain-Predication-Phrase ! Case-Indicator-Phrase]
Main-Precication-Phrase ::= E Positive-Predication-Phrase !

Negative-Predicat ion-Phrase 1
:= "and possibly others"
:= "and it alone 8
:= [Representer-phrase ! Rel-prc 3
:= 'whose" + Representative-Nats
:= ["which' ! "who']
:= "the indicated'
:= [Principai-Entity-Phrase i Non-F'rincipal-Entity-Phrase 3

N-phrase
!-phrase
Introducer
Representer-phrase
Rel-prc
F'articipating-Pnrase
Non-Participat ing-Phrase
Principsi-Entity-Fhrase ::= "At least one"
Non-Principal-Entity-Phrase::= E UnBual-Phrase ! Qualif-Phrase
Unqual-Phrase ::= "that 6
Quahf- p hrase ::= "those"
9ualifier -tree ::= [SiRple logical sub-graph ! RT

Appendix II

6 U I } S I 1 UJDJBOJd

III X I QN3 d d V

H
a

g
e

(m
ax

I
e

n
j
t

h
-

.
_

..
,

70
91

 l
.O

H
s
c
 l
e

n
t
M

\c
of

an
y

PR
O

G
R

AM

re
vT

ra
n
sC

IN
P

U
T

.O
U

T
P

U
T

,
F

)
C

O
N

ST
s
tr

«
a
x

=
2

0
;

na
 x

re
a
I

=
53

6
b

•e
n
u
m

a
x

=
2

st
 a

c
k«

o
x

.
=

2
ia

x
v
a
lu

e
s

=
1

de
gm

ax

=
6

a
t

tm
ax

m
a
xp

re
d
s

p
e

ri
n
a
x

s
t

r
1

n
q
)

n
o
ta

ti
o
n

fo
r

d
l

I
h

ig
h

e
r

v
a

lu
e

s
)

C
«
(u

se
d

1n

m
en

u
ro

u
ti
n
e

s

--

m

ax

c
h
o
ic

e
s

p
e

rm
it
te

d
)

(m
ax

n
u
m

b
e

r
o
f

E
no

de
s

w
h

ic
h

ca

n
be

u
tt
e

re
d
)

dm
ax

rm

ax
=

1»
(m
ax

de
gr
ee

of

an
y

re
la
ti
on
)

8;

{m
ax

nu
mb
er

of

co
lu
mn
s

in

an
y

re
la
ti
on
)

i;

{m
ax

nu
mb
er

of

ro
ot

pr
ed
ic
at
io
ns

a

re
la
ti
on

ca
n

ha
ve
)

fc;

{M
us
t

al
wa
ys

te

fa
ct
or
ia
l

of

la
rg
es
t

ba
se

re
la
ti
on
)

{d
eg
re
e

pe
rm
it
te
d)

6;

{m
ax

nu
mb
er

of

en
t

1 t
 y
 /
ao
ma
 i
ns

al
lo
we
d

in

da
ta

di
ct
io
na
ry

6»

{m
ax

nu
mb
er

of

re
la
ti
on
s

--

be
is
e

an
d

de
ri
ve
d

--

al
lo
we
d}

no

ye
s

n
e

ya
 t

1
we

po

 $
11

1
we

{
{a

tt
ri
b
u
te

{

re
la

t
1

o
n
sh

1
p

s
1

ng
u

I a
r

p
i
u

ra
l

e
x
p
o
rt

e
d

o
n

e
m

an
y

=
1

=
0

=
1{T

h
e

fo

ll
o
w

in
g

a
re

sy

n
o

n
ym

s
us

ed

in

ty
p
e

d
e

fi
n
it
io

n
s

T
he

y
a
re

th

e

e
q

u
iv

a
le

n
t

o
f

u
s
e

r-
d

e
fi
n

e
d

e

n
u
m

e
ra

te
d

ty
p
e

s
.

H
o

w
e

ve
r,

u
n
li
k
e

e

n
u
m

e
ra

te
d

ty
p
e

s
,

th
e

y

ca
n

be

In
p
u
t

an
d

o
u
tp

u
t

to

ti
le

s
/t

h
e

s
c
re

e
n

,
u
s
in

g

s
ta

n
d
a
rd

re

a
d

an

d
w

ri
te

p
ro

c
e

d
u
re

s
,

w
h

ic
h

sa

ve
s

w
ri
ti
n

g

s
p
e

c
ia

l
1

/0

p
ro

c
e

d
u
re

fo

r
e

a
ch

ty

p
e

(a

t
th

e

e
xp

e
n
se

o
f

a
c
e

rt
a
in

am

ou
nt

o
f

b
u

il
t-

in

e
rr

o
r

c
h

e
c
k
in

g
)

)

m
y

ow
n

re
a
d
/w

r1
te

a
b
Ie

b
o
o
le

a
n

ty
p
e

)

{
fo

r
•s

e
n
s
e

"
<

q
«
v
.)

o
f

a
p
re

d
ic

a
ti
o
n

)

=
Oi
)

{
fo
r

fu
tu
re

re
se
ar
ch

—

se
ei
ng

1f

•e
nt
it
y-
en
ti
ty
'

)
=

1!
)

v
re
la
ti
on
s

sh
ou
ld

be

tr
an
sl
at
ed

di
ff
er
en
tl
y

fr
om

)
{e
n
t1
 t
y
-a
t

t
r
1b
ut
e

pr
ed
ic
at
io
ns
)

0
;{

to

m

ar
k

th
o
s
e

e

le
m

e
n
ts

o

f
RT

w

h
ic

h

ne
ed

th

e

1
i

{
d
is

ti
n
c
ti
o
n

)

O
J{

•E

d
e

y
re

e
*

(q
.v

.)

v
a
lu

e
s

)
1?

{

O
n
ly

th

e

m
id

d
le

tw

o

us
ed

in

p
re

s
e

n
t

sy
st

e
m

)

2
?

3
',

)

e
n
t

a
t

t
en

 t
~

e
n

t

To
m

ob

 J

1
na

n
1m

 a
t e

an

 1
m

a
t

e

B
o
o
l

In
t

re
l

C
ha

S

t
r

<a
 t

r o
 p

no
 d

e
co

p
n
o
d
e

p
n

od
e

en
od

e
«/

a
lu

e
n
o
d
e

D
r

x
d

n
ax

no

 t
x

S
t
I

S
e

f
N

eq
£

'-
<U

G

e£

G
tf

S
s
/

U
P

)
T

YP
E

=
n;

=

i;
=

o;
=

i;
-

o»
=

i;
=

o;

=
i;

=
25

=

3!

=
5
;

=
1

»
=

2!
=

3
;

=
5
i

=
o;

=

i;

=
2;

{
ma
rk
er
s

fo
r

ca
se

)

{
ma
rk
er
s

to
r

wh
o/
wh
ic
h

di
st
in
ct
io
n

)

{
th
e

di
ff
er
en
t

da
ta

ty
pe
s

al
lo
we
u

in

cu
rr
en
t

sy
st
em

)

{f
or

fu
tu
re

ex
pa
ns
io
n)

{
th
e

di
ff
er
en
t

no
de

ty
pe
s

)

(
th
e

va
lu
es

a
Lo
gi
ca
l

No
oe

(r
op
no
de
)

ca
n

ta
ke

)

=
1J

{
th
e

di
ff
er
en
t

va
lu
es

a
Co
mp
ar
is
on

No
de

ca
n

ta
ke

)
=

2;
=

3;
=

<•;
=

5;
=

t>;
=

?;

{
w

he
n

tw
o

S
im

p
le

L
o
g
ic

a
l

L
u
b
-C

ra
p
h
s

a
re

p

re
ie

n
te

a
as

c
a
n
d
id

a
te

s

fo
r

c
o
m

p
o
s
it
io

n
,

th
e

s
e

a
re

t^

e

p
o
s
s
ib

le

f-
a
g

e

v
a

lu
e

s

w
h
ic

h

th
e

p

ro
c
e

d
u

re

U
re

d
u
ce

ca

n
g
e

n
e

ra
te

>

re
s
u
lt
_

ty
p
e

=

(e
m

p
ty

s
e

t*

u
n
iv

e
rs

a
l

s
e

t*

le
ft
*

ri
g
h
t*

e

it
h
e

r*
co

m
p
o
se

*
n

e
w

o
p

*
In

c
om

pa
 t

Ib
l
e

_
o
p
e

ra
t
o

rs
 »

;

F
il
e

n
a
«
e

ty

p
e

=

AR
R

AY

C
1

..
3
2

D

OF

C
hA

K
i

i
PR

1M
O

S
d
e

fi
n
it
io

n

o
t

~
~

a
p
a
th

-n
a
m

e

)

S
tC

o
lT

y
p
e

=

R
EC

O
R

D

{
h

o
ld

s

a
tt
ri
b
u
te

na

m
es

lo

r
re

la
ti
o
n
a
l

o
p
e

ra
ti
o
n
s

}
c
o

u
n

t
:

0.
 .

a
t

t
m

ax
 »

n
a
m

e
s:

AR

R
AY

C
 1

 .
 .

a
tt
m

a
x

]
O

F
s
t
r

in
gC

 s
 t

r
m

ax
 3

 J
EN

D;
a

n
im

a
te

ty

p
e

=

1
na

n
1m

at
 e

 •
.a

n
 1

m
a

te
 1

{
se

e
e

x
p
la

n
a
ti
o
n

s

to
r

e
a

ch

s
e

t}
nu

m
be

r
T

yp
e

=
s

1
n
g
u
l a

r
4
.p

i
u
ra

 I
i

{
o

f
v
a

lu
e

s
*

a
b

o
ve

>

c
a
s
e

_
ty

p
e

=

n
o
m

..
o
b
j

*

D
o
n
ln

d
e

 x
_

ty
 p

e
=

l.
.d

m
a

x
i

{
re

fe
re

n
c
e

s

to

d
o
m

a
in

d
e

fi
n
it
io

n
s

}
re

 1
 1

nd
e

x~
ty

 p
e

=
l.
.r

m
a

x
;

{
a
lt
to

fo

r
re

la
ti
o

n
s

>
co

 l_
1

n
d
e

l«
_

t
yp

e
=

l.
.d

e
4
B

ia
x
«

{
d
it
to

fo

r
a
tt
ri
b
u
te

s

)
e

o
ls

_
ty

p
e

=

R
EC

O
R

D

{
h

o
ld

s

re
fe

re
n

c
e

s

to

a
tt
ri
b
u
te

s

)
~

N
um

t
c
o

l
in

a
e

x

ty
p
e

*
c
o
ls

:
A

R
R

"A
Y

tc
or

In

d
e

x

ty
p

e
]

OK

c
o
l

In
a
e

x
ty

p
e

!
EN

D;

~
~

V1
 s

1
t_

c
o

u
n

t_
ty

p
e

=

0
..

1
2

«
){

n

o
t

u
se

d

1r
»

c
u

rr
e

n
t

sy
st

e
m

}

a
1 1

 _
1

n
u
e

x_
t

y
pe

=

1
..

 a
 t

t m
o

x
!

p
e

rm
_

ty
p

e
~

=

1
«•

 P
e

rm
m

ax
 \

E
d

e
a

re
e

_
t

yp
e

=
e

x
p
o
rt

e
d

••

a
li
i

m
en

u
C

h
o
ic

e

ty
p

e

-
0
«
.m

e
n
u
n
a
xi

m
en

u
C

h
o
ic

e

ty
p

e

-
*e

n
u
~

ty
p
e

=~

R
tL

C
O

R
O

C
h

o
ic

e
s

t
m

en
u

C
h

o
ic

e

ty
p
e

;
O

p
ti
o
n
s

:
AR

R
AY

t

m
en

u_
C

ho
1c

e
ty

p
e

]
OF

s
t

r
1n

gC
 s

t
r m

ax
 3

;
EN

D;
p

ta
b

le

ty
p

e

=
AR

RA
Y

C
1

..
2

<
*«

1

..
^

3
OF

In

te
g
e

r}
*

p
e

ri
ru

tu
tl
o
n

ta
b
le

}
p
?

o
_

ta
b

re
_

ty
 p

e
=

AR
R

AY

C
In

a
n
im

a
te

..
 a

n1
 i
ra

te
*

n
o
m

«
.o

b
j]

OF

s
t

r 1
n«

j[
s

t
rm

a
x

3
»

y
e

s
n
o
_

ty
p
e

=

no

*.

ye
s

J

{H
e

re

a
re

a
ll

th
e

ty

p
e

d
e

fi
n
it
io

n
s

re
la

ti
n
g

to

th
e

PT

a
p
p
a
ra

tu
s
}

n
o
a
e
p
o
i
n
t
e
r

=
"n
oo
e?

n
o
d
e

_
1

a
_

t
yp

e
-

0
.

.m
a

x1
 n

t
»•

C
ca

ch

rio
oe

ha

s
u
n
iq

u
e

ia

>

p
o

ln
te

rs
ta

c
k

=
PE

C
C

R
O

n
f

:
1

.«
 s

 t
a
c
k
 m

nx
 J

p
o

in
te

rs
.

:
A

R
R

A
Y

C

1
..

s
ta

c
k
m

a
x
j

OF

n
o
d
e

p
o
ln

te
r*

EN
D;

n
o

d
e

ty
p

e

=
ro

p
n
o
d
e

»•

W

d
lu

e
n
o
d
e

i
s
e

t
o

fn
o

d
e

 t
y
p

e
s

=
SE

T
Oh

n
o
u
e

ty
p
e

!
s
e

to
fc

h
a
r

f
SE

T
O

F
c
h

a
r;

ro
p

ty
p

e

-
o
rn

..

n
o

tx

;
(

L
o

g
ic

a
l

N
od

e
ty

p
e

}

c
o

p
ty

p
e

=

S
tt

.»

S
s£

»

<
C

o
m

p
a
ri
so

n

N
od

e
ty

p
e

)

S
e

n
se

_
ty

p
e

=

n
e

g
a
ti
v
e

..

p
o
s
it
iv

e
;

p
h
ra

s
e

_
ty

p
e

=

R
EC

O
R

D

f
fo

r
h
o
ld

in
g

p
re

d
ic

a
ti
o
n

p
h
ra

se

s
tr

in
g

s
M

a
in

 :
ye

 s
no

ty

p
e

;
C

AS
E

M
a1

 n
 ;

ye
sr

!D
_

t
yp

e
CF

n
o
:

<
ca

se

ph
F

as
e

:
S

tr
ln

y
i

y
e

s
:

<
A

lt

p
h

ra
se

s
I

A
R

R
A

Y
lS

en
se

ty

p
e

*
nu

m
be

r
ty

p
e

]
O

F
S

tr
ln

g
C

s
T

rm
a
x
J
>

;
EN

D;
S

e
n
te

n
c
e

_
ty

p
e

=

AR
R

AY

C
l.
.d

e
g
m

a
x
]

OF

p
h

ra
s
e

_
ty

p
e

»

n
o
d
e

=

R
EC

O
R

D
de

 s
ce

n
d

a
n

 t
 s

P
tr

t
yp

eo
 f
n

o
a

e

l.
*c

tr
y
n
id

x
i

tn
u
m

b
e

r
o

f
p

o
in

te
rs

n
o
t

N
IL

}
AR

R
AY

[l
.-

d
e

g
m

a
x
]

OF

n
o

d
e

p
o

1
n

te
r}

n

o
d

e
t

yp
e

}

C
A

S
T

t
yp

eo
 f

n
o

d
e

 :
n
o
d
e

t
yp

e
OF

ro

p
n
o
d
e

I

(O
p

:r
o

p
ty

p
e

)
•

co
pn

oO
e

:
(c

o
p
tc

o
p
ty

p
e

 ;

c
d

e
g

re
e

:
E

de

p
n

o
d

e

en
od

e

:
lP

re
d
_

1
d

p
p
e

 r
m

1
..

rm
a

x
 •

(u

n
ii ?u

e
p
re

d
ic

a
ti
o
n

Id
e

n
ti
fi
e

r)

w
h
ic

h

p
e

rm
u
ta

ti
o
n

It

1
s)

~

"'
 {

n

e
x
t

fi
e

ld

n
o
t

u
se

d

1n
c
u
rr

e
n
t

Im
p
le

m
e

n
ta

ti
o
n

)
p

re
o

ty

p
e

:

e
n
t

a
tt
.«

e
n
t

e
n
t?

(s

o
m

e

p
re

d
ic

a
ti
o
n
s

o
f

~
de

gr
ee

tw

o
ar

e
e

n
ti
ty

/
a
tt
ri
b
u
te

on

es
}

ps
en

se

'.
S

en
se

ty

p
e

*
pn

um
be

r
J

si
n
^u

F
a
r

..

p
lu

ra
l*

A

It
^s

e
n
te

n
ce

s
:

AR
RA

Y
C

p
e

rm
_

ty
p
e

]
OF

S

e
n
te

n
ce

_
ty

p
e

>
;

a
t

tn
um

en
 td

om
al

 n
.

du
m

m
y

e
d
e

y
re

e

n
o
d
e

1d

ro

 l
e

~

t
ri
m

m
e

d

s
h
o
rt

d
e

s
c

.
..

_
.

e
n
t
it
;

{d
o
m

a
in

o
f

th
is

a
rg

u
m

e
n
t)

re
fe

rs

to
)

v
a
lu

e
 n

o
d
e

:
tv

a
lu

e
:s

tr
in

g
C

s
tr

m
a
x
 3

)«

E
N

D
;

to
f

»
n
o
a
e

»
)

0
..

d
e

ym
a
x;

(

a
tt
ri
b
u
te

d

:
d
o
m

ln
c
tr

x

ty
p
c
i

ye
sn

o

ty
p
e

;~
(

fo
r

fu
tu

re

re
s
e

a
rc

h

--
"f

o
r

iir
ip

le
m

e
n

tl
n

g

p
re

d
ic

a
ti
o
n

lo
w

e
ri
n
g
)

e
d

e
y
re

e
_

t
yp

e
 I

n
o
d
e

1d

t
y
p
e

;
A

P
R

A
7

['
N

u
m

b
e

r
ty

p
e

]
O

F
•;

t
r
in

 g
[

s
t

rm
ax

 3
 5

ye
sn

o

ty
p
e

J
C

fo

r
fu

tu
re

re

s
e

a
rc

h

--
f

o
r~

1
m

p
le

rr
e

n
 t
 i

n
g

u
s
e

r
r
e

-d
e

 f
 1

n
1

1
1

o
n

o
f

v
e

rb
o
s
e

re

v
e

rs
e

tr

a
n
s
la

ti
o
n
s

)
s
tr

in
g
C

s
tr

m
a
x
 3

)
 ;

{

d
it
to

a
b
o
ve

)

tT
h
e

s
e

a
re

th

e

d
a
ta

D

ic
ti
o
n
a
ry

ty

p
e

s

t.
h

i
c

h
h
o
la

1

n
f

or
n.

a
11

 o
r»

a
b
o
u
t

t-
a
ch

re

la
ti
o
n

—

o
o

th

I
n

s
c

r
e

I
..
t

i o
r,

s
o

n
e

u
c
ri
v
c
-0

re

 I
 a

 1
1

or
i s

--

o
n
u

ea
ch

d
o
m

a
in

—

•
n

o
te

th

o
t

D
o
n
ir
tln

1s

sy

r,
a
ri
ym

o
u
s,

b
lt
h

e
n
ti
ty

a
s

fa
r

a
s

re
v
e

rs
e

tr

a
n
s
la

ti
o
n

1s

c
o
n
c
e

rn
e

d
.)

a
tt
h
d
rt

y
p
e

=

R
E

C
O

R
D

(I

n
fo

,
on

e

a
ch

a
tt
ri
b
u
te

1n

a

re
la

ti
o
n
)

an
am

e
t

s
tr

1
n
g
C

s
tr

m
a
x
]«

A

tt
d
o
m

a
ln

1d

t

l.
.d

m
a
x
«

(l
o

c
a

ti
o

n

o
f

d
o
m

a
in

1n

oa
t

a
di
et
)

rh
d
rt

y
p
e

=

R
EC

O
R

D

R
na

m
e

R
d

e
g

 r
e

e

K
e

y
c
o
ls

R

p
e

rm

a
tt
ri
b
u
te

p

re
d
s

P
tr

EN

D
;

s
t
r
l
n
g
C
s
t
r
m
a
x
3
»

1
.
.
d
e
g
m
a
x
!

co
ls

ty
pe
?

P
e
rm
~t
 y
pe
 i

A
R
P
A
7
C
1
.
.
a
t
t
m
a
x
3

OF

a
t
t
h
d
r
t
y
p
e
;

l.
.m

a
x
P

re
a
s
i

(e
v
e

ry

re
la

ti
o
n

ha
s

a
t

le
a
s
t

o
n
e

)
A

R
R

A
Y

[1

.
.m

a
x
P

re
a
s
J

O
F

n
o
a
e

p
o
ln

te
r?

O
o
m

D
lc

ty
p
e

=

{
1

n
fo

»

o
n

e
a
ch

d
o
m

a
in

)

R
E

C
O

R
D

e
n
ti
ty

_
s
e

t_
n
a
m

e

:
AR

R
AY

[

n
u
m

b
e

r_
ty

p
e

3

OF

s
tr

ln
g
C

s
tr

ra
x
D

?

a
n
im

a
te

va

 l
u
e

S

e
lf
_

J
D

~
In

a
n

im
a

te

•
y
e

s
n
o
_

ty
p
e

J
a
n
i
m
a
t
e
;

r
e
p
d
a
t
a

:
R
E
C
O
R
D

r
e
p
r
e
s
e
n
t
e
d

:
ye
sn
o

ty
pe
;

C
A
S
E

r
e
p
r
e
s
e
n
t
e
d

:
y
e
s
n
o

ty
pe

no
:

(
>;

OF

ve
s'

.C

re
p
N

a
m

e

:
A

R
K

A
Y

[

s
in

g
u
la

r
E

N
D

;
(o

f
re

p
d

a
ta

re

c
o
rd

)

R
a
n
g
e

d
a
ta

:

R
E

C
O

R
D

d
a
ta

ty
p
e

:

B
o
o
l

..

a
o
ti

C
A

S
E

d
a
ta

ty
p
e

:
B

o
o
l

..

d
a
t

B
o
o
l*

C

ha
»

S
tr

re
l

1
n
t

OF

E
N
D
J
t
o
f

R
a
n
g
e
d
a
t
a

re
co
rd
)(r
m1
n»

rm
ax

(1
ff
l1
n«

1m
ax

pl
ur
al
)

OF

s
t
r
1
n
g
C
s
t
r
m
a
x
3
)
•

;
RE
AD
 ;

1n
t
eg
e

r
)

;

o
rd

e
rd

a
ta

:

R
E

C
O

R
D

o
rd

e
re

d

:
ye

sn
o

ty
p
e

?
c
o
u
p
p
h
ra

s
e

s

:
AR

*R
AY

[S

t/
..
S

s
£
3

OF

s
t
r

1n
g

t
s
t

rm
a

x
3

;
E

N
D

!
(o

f
o
rd

e
rd

a
ta

)

v
a
lu

e
s
e

ta
a
ta

:

R
EC

O
R

D
L
im

it
e

d

:
ye

sn
o

ty
p
e

;
C

AS
E

L
1

m
1

te
d
:~

y
e

s
n
o

ty
p
e

n
o
:

(
>

;
ye
s:

<
va
lu
es

:
H
L
C
O
R
D

co
un
t

:

O
F 1

«
.m

a
x

v
a
lu

e
s
?

f-
a

g
e

S
tr

1
n

g
£

:

A
R

R
A

Y

C
l.
*m

a
x
v
a
l.
u
e

s
 3

OF

s
tr

in
g

C

st
rm

ax
)

»
EN

D
*

{o
f

va
lu

es

re
c
o

ro
})

*
E

N
D

;
{o

f
v
a

lu
e

s
e

td
a

ta
)

o
f

R
C

C
O

R
O

>

ra

ty
p
e

=

A*
RR

AY

C
L
.r

m
a
x
)

OF

rh
a

rt
y
p

e
.

=
AR

RA
Y

C
L
.d

m
a
x
)

OF

D
o

m
D

lc
ty

p
e

*

(e
n

d

of

TY
RE

d

e
fi

n
it

io
n

s
)

U
P

)
VA

R dd

:
od

ty

p
e

;
^s

e
n

se

:
se

ns
e

ty
p
e

;
{f

o
r

c
o

n
tr

o
ll
in

g

d
e

te
rm

in
a
n
t

p
h
ra

se
s}

g

&
u

p
p

re
ss

:
b

o
o

le
a

n
*

(f
o

r
su

p
p

re
ss

in
g

u

tt
e

ra
n

c
e

o
f

e
n
ti
ty

na

m
es

an
d

re
la

ti
v
e

p
ro

n
o
u
n
s

w
he

n
th

e

e
n
ti
ty

1s

s
e

lf
-I

d
e

n
ti
fy

in
g

an
d

th
e

re

a
re

va

lu
e

s
p

re
s
e

n
t}

.j
le

v
e

l
t

.1
..

2*

»
tc

o
n

tr
o

ls

In
d

e
n

ta
ti
o

n

d
e

p
th

o
f

RT

p
h

ra
se

s)

^
p
ro

je
c
te

d

o
u
t:

b
o
o
le

a
n
;

{c
o

n
tr

o
ls

co

m
p
a
ri
so

n

p
h
ra

se
s)

a
tt
ri
b
u
te

na

m
es

o
p

er
at

io
n

"
co

l s
n
I
d
n
o
d
e
s
t
a
c
k

p
o

ta
b

le
P

Fo

ta
b

le
ro

w
T

co
l

I de
bu

 j
Q rd r-

ln
ft

d
d
n
f

n
ex

 t_
no

«1
e_

1d
f f

na
m

e

S
tC

o
lT

yp
e;

:

ch
ar

*
t

co
ls

ty

p
e

;
I
e

f
tn

o
d

e
 s

f t
ic

k
 »

M

ih

tn
o
d
e

s
ta

c
k

:
p
o
1

n
te

rs
t«

c
k
»

P
_

ta
t»

le

ty
p
e

;
{

h
o
ld

pe

 r
m

u
t

a
li
o

n
s

)
P

ro
_

ta
b

T
e

ty

p
e

i
(h

o
ld

s

p
ro

n
o

u
n

s

)
1

r»
tc

 j
e

r;
 {
"r

o
ij

;n
id

co

lu
m

n

In
d

e
x

v
a

ri
a

b
le

s

fo
r

lo
a

d
ln

.j

ta
b
le

s

)
1)

••

m
;>

x1
nt

»
{l
o
o
p

c
o

n
tr

o
l

v
a
ri
a
b
le

)
b

o
o

le
jn

}
{

to

s
w

it
c
h

d
e

b
u
^
jl
n
^

s
ta

te
m

e
n
ts

on

m

e
n
u
_

C
(i
o
1

ce

ty
p
e

;
(h

o
l^

s

u
s
e

r'
s

m
en

u
c
h
o
ic

e
)

rd

t7
r>

e
'

{
fi
e

ld
s

re
la

tl
o
r,

h

e
a

d
e

rs

}
Ir

.T
e

je
rJ

tu

e
-x

t
fr

e
«
-

lo
c
a

ti
o

n

in

rd

a
n
d

d
ii)

1r

»
t

e
jr
r

! {
 h

o
Id

s

re

lo
tl
o
it

lo
c
a

ti
o

n

1n

m
en

u
c
h
o
ic

e

' -
_

lO
_

ty
p
t-

;

an
d

o
ff

)

TT
.X

T
F

1
le

»
{

o
u

r
11
II
 -

p
u
rp

o
s
e

n
a
m

e
t

yf
 e

 •
fi
le

v
a

ri
a

b
le

)

_
d

n
t o

"t
yp

e_
m

en
u

1
tn

er
iu

__
l

i ci
re

 I
In

fl
u

x

ty
p
e

;
d

or
r.

1
nd

 •-•
 x

 2
1

y,
"

c
»

C d
 u

 m
 tr>

 y
u
tt
e

r)
fo

r
1r

,1
t1

aL

c
a
ll

of

X
1n

 c
l

ud
c«

H
D

 1
2X

 T
 >

p
e

r
h

{%
 1

 n
c

lu
d
e

'H
O

l
7X

 ~
>

pe
 r

X
I

i,
c
l

u
d

f*
H

P
 1

Z*
 T

>
p

e
r

s

>i
-

xt
 n

ro

c
s»

 :

i I
>

P

i,
re

d
u
t

L-
•
;)

>p

iT

t
t

.-
r

•
;

~
'•(

.
I

L.
o»

.-»
H

C
 I

Z
>

 T
 >

p
e

r
so

p
.

t
>p

~;
. «

 t

X
1i

,
c

I
m

l
. •

ti
ri
?

v
 T

>
p
rr

 s
<-

nn
t

>[
 ~

|
i

rn
.t

il
i'«

 ;

X
1

i.'
c

I
tu

'r-
 M

iD
 1

/X
 T

 :»
pi

-
r

sc
i,,

-!
.

>
^~

JL
.

i n
 •

 J

•*
1r

,
c
l

n
iji

.
•

MG
 !

 2
X

T
>

p
ci

 -
.o

r.
.jl

 '
',.

P

ro
 j
 e

t
t

•
;

X1
..<

 I
' t

nr
 ir

x
T>

pe
 r

U
,-L

._
I:

i
.J

U
G

 •
 ;

R
E

G
IN

{M
O

 I
n

D
O

tly
)

j

:=

b
O

u
e

ry
Ji

th
e

fa
c
il
it

y

o
n

?
*)

5

ro
«t

=

1 r
io

n
1r

...
itc

Ti

:
.ii

iin
.o

ti-

DO

to
i:

=

lu
-n

i
TO

^i

 i

no

n
rn

iM
r-

fc
jc

i
L
n
lf"

 »

i.r
-.

i
t

nl
 I

 «
T

r<
-w

»
c
o
l

1)
 ?

IF

O

e
b
u
;

T
M

F
\~

w
ri
t

e
In

 (
•

ro
w

 *
c
o
l*

p
ro

n
o
u
n

=
•»

ro

w
*

c
o

lt

p
ro

ta

b
le

C
 r

ow
*

c
o

l]
)»

EN
D;

C
lo

s
e

(F
)

J
re

s
e

t
(F

t
•

TA
BL

E
.P

EP
M

S*
 >

i
FO

R
ro

w

:=

1
TO

2<

i
DO

FO

R
c
o

l
:-

1

TO

*
DO

RE
AD

(F

t
p

ta
b

le

C
ro

w
tC

o
U

);

c
lo

s
e

(F
);

re
s
e

t
(F

,
•H

E
N

U
.H

A
IN

«
)»

P
a
g
e

Lo
ad

m

en
u

C
F»

M
a1

n
m

en
u

)!

c
lo

s
e

(F
);

re
s
e

U
F

,
•M

E
N

U
.O

P
S

M
;

lo
a

d

m
en

uC
F

*
O

ps

m
e

n
u

)!

c
lo

s
e

(F
);

re
s
e

t
'<

F

,
"M

EN
U

 .
D

A
T

A
T

Y
P

E
S

*
>

;
lo

a
d

m
en

u
(F

t
d
a
ta

ty
p
e

m

e
n
u
)!

c
lo

s
e

<

F
>

;

g
e

t
fi
le

na

ra
e(

F

na
m

e
>

;
re

s
e

t
IF

7

F
na

m
e>

«
lo

a
d

d

lc
tU

T
i

c
lo

s
e

(F

)t

U
P

} R
E

P
E

A
T

sh
ow

m

en
u

(M
a

in

m
e

n
u

);
Q

:=

Iq
u
e

ry
<

»
Y

o
u
r

c
h
o
ic

e

•«

0*

m
a

1
n

_
m

e
n

u
.c

h
o

1
 c

e
s
-1

)
 «

C
AS

E
Q

OF
o:

BE

GI
N

EN
D;

It

c r
ea

 t
e_

do
m

a1
 n

;
2:

c

re
a

te
_
re

 l
et

 1
on

5
3
:6

E
G

IN

R
E

P
E

A
T

ne
 w

r
: =

 r
d
n
f

*
u

r
1 1

 e
 I

n
;

g
le

w
e

i:
 =

 1
»

g
se

n
se

 :
=

p
o
s1

t
1 v

e
i

g
su

p
p

re
 s

s
: =

FA
LS

E
 5

g
p
ro

je
c
te

d

o
u

t:
=

F
A

L
S

E
5

p
ro

ce
s

s
c
o

m
ia

n
d

i
u
rU

e
ln

;
IF

n
e

w
r

<
rd

n
f

TH
EN

B

E
G

IN

sh
ow

re

la
tl
o
n
i

n
e

w
D

i

u
tt
e

r(

rd
C

n
e

w
r

3
.p

tr
C

 1
]«

n
e

b
rt

0)

E

N
D

;
w

rl
te

ln
;

U
N

T
IL

NO

T
(D

Q
ue

 r
y

(•
 A

n
o

th
e

r
co

m
m

an
a?

*
)

)
«

EN
D;

<t
l

IF

d
d
n
f>

l
TH

EN
FO

R

1
:=

I

TO

cl
d
n
f-

1

UO

6E
G

I(g

sh
o

w
_u

or
tid

 1
 n

 (
1)

»
p

a
u

se

EN
D

EL
SE

u
rl
te

ln

(*
n
o

d
o

m
a

in
s

d
e

fi
n

e
d

as

y
e

t.
')
;

5
:

IF

ru
n

f>
l

TH
EU

FO
R

R

:=

1
TO

rd

n
f-

1

DO

B
E

G
IN

sh

ow

re
la

ti
o
n

(r
)

»
w

rl
te

ln
S

w

r1
te

ln
(

• =
 =

==
 =

 =
 =

 =
 =

 =
=

=
= =

 =
 =

 =
 r
 =

 =
 =

 =
 =

 =
 =

=
=

=
=

=
=

=
r =

 =
 =

 =
 =

 =
 =

 t
>

;
w

rl
te

ln
;

w
r1

 t
e

ln
(

'R
e

v
e

rs
e

T

ra
n

s
la

ti
o

n
:

•»
;

w
rl
te

ln
;

g
le

v
c
i:
 =

 3
;

g
se

n
se

 :
=

p
o

s1
 1

 1
 v

e
;

g
su

p
p

r
es

s
i =

F
A

LS
E

 i
g
p
ro

je
c
te

d

o
u

t:
=

F
A

L
S

E
5

n

ld
n

o
d

e
s
 t
a
 c

~k
 *

n
f

: =
 1

;
(r

e
s
e

t)

u
tt
e

r
<

rd
C

R
 D

.p
tr

C
ID

*
R

t
D

)i
u
rl
te

ln
i

p
a
u
se

LN

D

FL
S

E

w
r1

te
ln

(«
n
o

re
la

ti
o
n
s

d
e

fi
n

e
d

a
s

y
e

t»
*)

i

b
:

bL
G

IN

u
r1

te
ln

(
*S

w
1

tc
h
lr
ig

d
e

b
u
g

s
ta

tu
s
.*

);

de
bu

g
:=

NO

T
d

e
b

u
g

*
EN

D;
o
th

e
rw

is
e

u
rl
tc

ln
t

'c
h

o
o

se

o
to

*t

m

ai
n

m
e

n
u

.c
h

o
1

c
e

s
-l
 :

 3
)

;
EN

D

(o
f

C
A

S
E

)
U

N
T

IL

(Q

=
0

>
;

re
«
r1

te
(F

,
•

D
AT

 A
 .
la

s
t

ru
n

*
);

du

m
p

d
ie

 t
(F

 >
 ;

c
lo

s
e

(F

);

F
N

D
.

P
^O

C
E

D
U

H
E

a

tt
a

c
h

!
o

p
:

c
p
ty

p
e

i
VA

R
p
i:

n
o
d
e

p
o
lr
it
 e

r
;

p?

:
n
o
d
e

p
o
ln

te
r

)
»

{a
tt

a
c
h

e
s

a
co

p
y

o
f

tr
e

e

p
o

ln
te

d
to

by

p2

to

p

i
>

IF

p
tr

C
1

3
".

d
e

s
c
e

n
d

a
n

ts

=
0

TH
EN

{n

o
g
ra

p
h

a
lr
e

a
d

y

a
tt
a
c
h
e

d
}

B
E

G
IN

p
tr

C
l3

".
d
e

s
c
e

n
d
a
n
ts

:=

1

»
(t

h
e

re

w

il
l

be

no
w

)
N

E
U

C
pt

rC
 l
3
".

p
tr

C
l3

»

co
p
n
o
d
e

);
W

IT
H

p
t
rt

 !
3

K
.p

tr
C

 1
3
"

DO

B
E

G
IN

{w

it
h

th
e

no

de

w
e

'v
e

J
u
s
t

m
ad

e}

c
o
p
:=

x
o
p
;

{E
d
e

g
re

e

:=

}
d

e
sc

e
n

d
a

n
ts

t=

1

5
IF

d
e

b
u
y

TH
EN

B

E
G

IN
w

r1
te

ln
(»

M

e
ha

ve

c
re

a
te

d

a
co

m
p.

op

n
o
d
e

*
w

ho
se

va

lu
e

1s

*t

c
o
p
);

EN
D;

ty
p

e
o

fn
o

d
e

l~

co

p
n

o
d

e
i

N
E«

(p

tr
tl
D

,
v
a
lu

e
n
o
d
e

);
 {

no
w

c
re

a
te

a

V
a
lu

e
n
o
o
e

*
p
o
in

te
d

to

by

th
e

co

p
n

o
d

e
}

s
i

:=

S
v
a
lu

e
i

{n
e

ce
ss

a
ry

st

e
p

du
e

to

PR
IM

E
b
u
g
}

p
tr

C
 I

D
".

v
a
lu

e

:=

s
i;

p
t
r[

 1
 3

.d

e
sc

e
n
d
a
n
t

s
:=

0»

p
tr

[I
3
".

ty
p
e

o
fn

o
d
e

:=

va

lu
e

n
o

d
e

EN

D
EN

D
EL

SE

B
E

G
IN

{t

h
e

re

1s

a
lr
e

a
d

y

a
Q

G
ra

ph
}

o
ld

g
ra

p
h

:=

p
o
ln

te
rs

t
n

f-
1

 3
".

p
t

rC
 1

 3
".

p
 t
rt

 1
 3

5
{s

to
re

te

m
p

o
ra

ry
}

N
E

*(
p
tr

[l
 3

".
p
tr

[
1

3»

R
o
p
n
o
d
e

);

U
IT

H

p
tr

C
 1

3
".

p
tr

L
 1

3"

DO

B
E

G
IN

op

:=

an

ax
 »

ty
p
e

 o
f

no
de

 :
 =

ro
p

n
o

d
e

;
d
e

sc
e

n
d
a
n
ts

:=

2»

p
t

rC
 1

 3

:=

o
ld

g
ra

p
h

 $
N

E
W

(p
tr

t2
3
»

co
p
n
o
d
e

);

JI
T

H

p
tr

C
2

J
"

DO

E
E

G
IN

IF

de

bu
y

TH
EM

E

E
G

IN
w

r1
te

ln
<

»
a
tt
a
c
h
ln

a

Q
gr

ap
h»

ty

p
e

o
f

no
de

sh

o
u
ld

be

^»

1s

•«

p
tr

[1
3
".

ty
p
e

o
fn

o
d
e

)i

w
r

11
 e

 I
n<

 •
 n

um
be

r
o

f
o
e

sc
e

n
d
a
n
ts

1s

'

«p
t r

C
1

3A
 •

de
sc

 e
nd

an
 t

s)
 *

EK

iD
i

p
tr

C
l3

"
.d

e
sc

e
n
d
a
n
ts

:=

1

;
{t

h
e

re

w

il
l

be

no
w

}
t

—

±

,_

f
*
*
1

*

_

^

_
 f

*
^

T

&
»

_
._

_
..

j>
k
.k

*
NE

W
 t
p
t

rC
 l
3
".

p
tr

C
l

3t

co
p
n
o
d
e

);
W

IT
H

pt

 r
C

13
K
.p

tr
C

 1
3*

DC

B

E
G

IN

{w
it
h

th
e

no

de

w
e

'v
e

ju

s
t

m
ad

e}

co
p
:

=X
O

p»
{E

d
e

g
re

e

:=

}
de

 s
ce

n
d
a
n
t

s
: =

1

»
IF

de

bu
g

TH
EN

B

E
G

IN

ln
(*

wr
1t
el
n(
*

we

ha
ve

cr
ea
te
u

a
co
mp
.o
p

no
de
*

wh
os

e
va
lu
e

1s

•«

co
p)
»

EN
D;

ty
p
e

o
fn

o
d
e

t=

co

p
n

o
d

e
;

N
tw

(p

tr
[1

3
»

va
lu

e
n
o
d
e

 >
; {

n
o
 w

c
re

a
te

a

V
a
L
u
tn

o
a
e

,
p

o
ln

te
a

to

by

th

e

co
p

n
o

a
e

)
s
i

:=

S
va

lu
e

i
{n

e
ce

ss
a

ry

st
e

p

du
e

to

PR
IM

E
b
u

g
}

p
t

rC
 1

 3
 "
.v

a
lu

e

:=

s
i;

IF

de
bu

g
TH

EN

B
E

G
IN

w

r1
te

ln
(*

a

va
lu

e
n
o
d
e

w

as

c
re

a
te

d
*

h
o

ld
in

g

th
e

va

lu
e

•»

p
t r

C
 1

 3
".

 v
a

lu
 e

)
;

E
N

D
;

IF

de
bu

.j
TH

EN

w
r1

te
ln

(
p
t r

C
 1

3"
 .
 v

a
l u

e
*

*
1s

th

e

le

a
f.
')
;

p
t

rC
 1

 3
".

 d
e

sc
e

n
d

a
n

t
s

:=

O
i

p
t

rC
 1

 3
".

 t
 y

p
e

o
f n

od
e

•-

va
lu

e
n

o
d

e

EM
U

EN
D

EN
D;

{o

f
W

IT
H}

tN
D

E
N

D
E

N
U

;
{

o
f

J
-l
o
o
p

}
m

1
d
n
o
d
e

s
ta

c
k
.n

f:
-i
r.

 1
d

n
o

o
e

s
td

c
k
.n

t-
i;

EN
D

EN

D

EN
D

{o
f

I-
lo

o
p
}

{W
IT

H
}

EN
D;

RF

 :
=R

F
*I

;
EN

D*

{o
f

a
tt
a
ch

}
PR

O
C

ED
U

R
E

p
ro

c
es

s
co

m
m

an
d

»

P
U

R
P

O
S

E
:

re
a
d
s

re
la

ti
o

n
a

l
a

lg
e

b
ra

q
u
e

ry

1n

fr
o

m

ke
yb

o
a

rd

IN
P

U
TS

:

s
tr

in
g

fr

o
m

ke

yb
o
a
rd

O
U

T
P

U
T

S
M

t
In

p
u

t
s
tr

in
g

1s

s
y
n

ta
c
ti
c
a

ll
y

v
a
li
d
,

c
a
ll
s

a
p
p
ro

p
ri
a
te

re

la
ti
o
n
a
l

a
lg

e
b
ra

p
ro

ce
d
u
re

G

LO
bA

LS

RE
AD

FR

O
M

In

o
n

e

G
LO

bA
LS

W

R
IT

TE
N

T

O
In

on
e

C
A

LL
S

:

S
&

ue
ry

g
e

t_
re

ld
t1

 o
n^

g
e

t_
o
p
_

t
ok

 e
n~

g

e
t

na
m

e
g

e
t

a
t
t

nu
ir

p
ro

T
*

c
t~

s
e

le
c
t

u
n

io
n

In
te

rs
e

c
t

1
on

d

if
fe

re
n

c
e

re

na
m

e
J
o
in

IS

C

A
LL

E
D

bY

:m
a1

n
p
ro

g
ra

m
LA

ST

M
O

DI
FI

ED
:

KN
OW

N
BU

GS
:

NO
TE
S:

th
1&

Is

cr
ud
e

co
mm
an
d

li
ne

pa
rs
er
*

to
r

de
ve
lo
pm
en
t

us
e

on
ly

*
Ex
pe
ct
s

a
si
mp
le

•t
hr
ee
-a
dd
re
ss
•

qu
er

y
<1
.e
.t

of

fo
rm

A

<-

B

bl
no

p
C

or

A

<-

b
mo
no
p

C
3

1f

It

di
sc
ov
er
s

an

er
ro
r

wh
il
e

pr
oc

es
si

ng

1t

pr
in
ts

so

me

de

bu
gg

in
g

da
ta

an
d

re
tu
rn
s

to

ca
ll
in
g

ro
ut

 1
nc
)

VA
R

S
,

va
lu

e
*

C
S

tr

:
S

TR
 I

NG
C

s
t r

in
ax

 3
 i

N
ew

R
*

L
e

ft
R

*
R

lg
h
tR

:

s
tr

1
n
y
[s

tr
rn

a
x
3
i

a
t
t n

a
ve

s
:

st
 c

o
l t

y
p
e

*
o

p
t

ch

:
c
h
a
r*

L
:

In
te

g
e

r?
1

:
In

te
o
e

r.
rl
«

r2

:r
e

l1
n

d
e

x

ty
p
e

;
c
o
l

le
ft
*

c
o
l_

r1
g
h
t

:
c
o
ls

ty

p
e

;
le

g
llc

h
c
ir
s

:
s
e

to
fc

h
a

r;

~
co

l
:

In
te

g
e

r*
co

m
po

p
:

c
o
p
ty

p
e

!
c
o

m
ie

n
:O

..
s
tr

m
d

x
 «

o
k

s
o

fa
r

:
b

o
o

le
a

n
;

B
£G

IN

o
k
s
o
fa

r
:=

TR

U
E

;
cs

tr
:=

*»
 ;

R
ig

ht
R

: =
 »

«»
Le

ftR
: =

 »
•;N

ew
R

: =
 »

«;
s:

 =
«»

;v
ai

ue
: =

 »
«;

C
S

tr
 :
=

S
Q

u
e

ry
(*

E
n

te
r

co
m

m
an

d
I1

n
e

*>
;

co
m

le
n
:

=
le

n
g
t

h
(C

S
tr

)
*»

4
•
•
 1

•

1
.
-
 1

»

a
tt
n

a
m

e
s
.c

o
u
n
t:
=

0
i

N
ew

R
:=

g
e

tn
a
m

e
d
.

C
S

tr
»

C
»
0
".

.»
9
»
,

»
A

»
..

»
2

»
,

«
a

«
..

«
2

«
]

)J
IF

1

>
co

m
le

n

TH
EN

B

E
G

IN

w
r1

te
ln

(*
1

=

•*

1>
«

o
k
s
o
fa

r:
=

T

A
LS

E
iE

N
D

i
U

H
IL

E

s
u
b
s
tr

 <
C

S
tr

f
1,

 1
)

=•

»
DO

1

: =
 1

*1
;

1
: =

 1
*2

»
C

to

Ju
m

p
o

ve
r

<
-

}
L

e
ft
R

:=
g

e
tn

a
m

e
(

1«

C
S

tr
,

C
fO

'..
«
9
»
»

»A
»

..

»
Z

'»

!a
»

..

'i
'D

);
r
l

:=

g
e

t
re

la
ti
o

n

n
u
m

(L
e

tt
R

)«
IF

(r

l=
0
)"

O
R

(1

>
co

m
le

n
)

TH
EN

fa
EG

IN

u
r1

te
ln

(*
1

=

•*

1
)i

w
r1

te
ln

(«
rl

=
•,

rl
)

;
o
k
s
o
f o

r:
 =

FA
Lb

E
EN

D;
c
h
:=

u
n
s
tr

(s
jb

s
tr

(C
S

tr
*

U
 1

)
)

i
yn

iL
E

NO

T
<c

h
IN

C
«
x«

.•
:•

»
•;

•»
•-

•«
•*

•»
••

•,
•f

c*
«
»
o
.»

 3
>

DO
B

E
G

IN

i:
=

1
*
lt

ch
 :

=
u
n
s
tr

(s
u
b
s
tr

tC
s
tr

t1
*1

)
>

E
N

D
;

IF

O
co

m
le

n

TH
EN

BE

G
IN

w

r1
te

ln
<

*1

=
»,

IK

ok

 s
of

 a
r:

 =
F

AL
SE

 ;E
N

D
;

O
p

:=

ch
•

IF

de
bu

a
TH

EN

B
E

G
IN

w

r1
te

ln
(

'c
om

m
an

d
li
n

e

re
a

d

w
as

:
—

>
•*

C

S
tr

,»
<

 —
 »

)5

w
r1

te
ln

«
»
N

e
w

R
 :

--
>

»
fN

ew
P

,
•<

--
•)

;
w

rl
 t
e

ln
<

 »
L
e

f
tR

—
>

 »
tL

e
f

tR
 *

•<
--

•>
;

w
r1

te
ln

(t
Q

p
--

-—
>

»
.0

p
,•

<
--

•>
;

pa
us

e;

EN
D;

IF

o
k
s
o
fa

r
TH

EN

C
AS

E
Op

O

F
•X

«
,

•«
•:

B

E
G

IN
IF

de

bu
g

TH
EN

w

r1
te

ln
<

»
p

ro
J
e

c
t1

n
g

•)
5

c
o

l
le

f
t.
n
u
m

:
=

0«
yn

iC
E

s
u
b
s
tr

(c
s
tr

,1
*1

)<
>

»
C

«

DO

i:
=

i+
i;

i:
=

l+
i;

W
H

IL
E

s
u
b
s
tr

(C
S

tr
,

1,
1)

<
>

»
3»

DO

BE

G
IN

a
tt
n
a
m

e
s*

co
u
n
t:
=

a
tt
n
a
m

e
s.

co
u
n
t+

l«
s:

=
g
e

tn
a
m

e
<

1
«

C
S

tr
*

C
i

O
»
..
»
9
«

f
»

A
»

..
«

2
»

»

»
a
»
..
»
2

»
D

**

IF

de
bu

g
TH

EN

w
r1

te
ln

(»
a
tt
n
a
m

e

—
>

»
,

s*

•<
—

»
>

;
ci

tt
 n

am
es

 .
na

m
es

C
 a

tt
n
a
ir
e

s
.c

o
u
n
t3

:=
s
;

co
l

le
ft
.n

u
m

:=

c
o

l
le

ft
.n

u
m

*

li

c
o
l~

"l
e

f t
 .
co

 Is
C

c
o
l

I e
f t

 .
nu

m
3

:=
g
e

t
a
tt

n
u

m
ls

*
r
l)
;

IF

T
o
l

le
ft
 .
c
o
l
s
C

fo
l

Ie
ft
.n

u
m

3
=

If

TH
tN

ok

so
 f
a
r

:=
F

AL
SE

 ;
IF

N

O
T

~
o
ks

o
fa

r
TH

EN

~
w

r1
te

ln
(

fN
o

su
ch

a
tt
ri
b
u
te

as

»»

s*

•

ch
e

ck

s
p
e

lli
n
g
?

1
)*

W

H
IL

E

is
u
b
s
tr

<
C

S
tr

,1
,1

)=
»

•)

OR

(s
u
b
s
tr

(C
S

tr
*

\
«
1

)=
•*

•)

DO

i:
=

1
*
i;

FN
O;

IF

o
k
s
o
fa

r
TH

EN

p
ro

 J
tc

t
(H

e
wR

«
rl
,c

o
L

le

ft
)'
*

EN
D;

• :

•:
 B

EG
IN

IF

de
ou
g

TH
EN

wr
1t
el
n<
•s
el
ec
tl
ng
*)
»

W
H

IL
E

s
u
b
s
tr

C
C

s
tr

*
1*

1)

<>

*C

 •

0
s

:=
g
e

tn
a
n
e

d
,

C
s
tr

,
C

•
0

•
..
 '9

»
 ,
 •

c
o
l

: =

g
e

t
a
tt

nu
m

 (

s
,

r
l)
;

IF

d
e

b
u
g

TH
EN

5
r1

te
ln

«
*T

h
e

a
tt
ri
b00

1

:=

1+
1«

i:
=

1
*
li

A«
 .
.

»Z
 •

,
»a

»
.

.
»

z»
 3

u
te

->

•»
$
,•

<
-•

»
•

1s

co
lu

m
n

•»

c
o
i:
3
),

s
:=

g
e

tn
a
m

e
d
,

C
s
tr

,
C

•<
•,

»
 =

 ',
«
>

•
3

)•
co

np
op

:=

g
e

t
op

to

k
e

n
(s

);
IF

de

bu
g

T
H

L
N

~
w

rT
te

ln
<

'O
p

e
ra

to
r

an
d

to
ke

n

=
->

•,
s
»
*<

-'
 ,

c
o
m

p
o
p
:2

);
vh

lu
e

t=

ce

tn
a
m

e
M

.
C

s
tr

,
C

'C
'.
.'
9
'»

'A

'.
.«

2
*
.

'd
'.
.'
2

'3
>

;
IF

de

bu
g

TH
EN

w

r1
te

ln
('
A

n
o

th
e

v
a
lu

e

=
->

»
,

v
a
lu

e
,•

<
--

•)
»

se
le

ct
<

N
e

w
R

»

rl
,

c
o
l*

v
a
lu

e
,

co
m

po
p)

<
EN

D;
i«

»
,

»
-*

f
•*

»

:
B

E
G

IN
IF

de

bu
g

TH
EM

*r

1
te

ln
l»

s
e

t
o
p
e

ra
ti
o
n
')
?

1:
 =

 1
+1

»
{s

k
ip

p
a
st

o

p
)

R
1

g
h
tR

:=
"»

R
Iy

h
tR

:=

u
e

tn
a
m

e
d

,
C

s
tr

,
L
'C

'.
.»

9
'»

'A

*
..
'2

',

•d

'.
.

t
2

*3
);

IF

de

bu
g

TH
EN

w

r1
1

e
ln

('
A

ft
e

r
g
e

tn
a
m

e
,

R
lg

h
tR

->

•,
R

 1
y
h
tR

»
•<

--
•)

 ;

r2
:=

g
e

t
re

la
ti
o
n

n
u
m

(R
1

yh
tR

)i
IF

(r

2

*

1)

OR

<
r2

>=

rd

n
f)

TH

EN

o
k
s
o
fa

r
:=

F

A
LS

E
;

IF

o
k
s
o
fa

r
TH

EM

CA
SE

op

OF

'
-

un
1
on
O.
ew
R,

rl
,

r2
)

i
d
1
f
f
e
r
e
n
c
e
(
N
e
w
R
,

rl
,

r2
>»

In
te
rs
ec
t1
on
<N
ew
R,

rl
,

r2
)?

* -
*

t»
t

EN
D

E
f.D

 i
•
•
'

:
B

E
G

IN
'a

'.
.'
z
'3

)
i

R
l&

h
tR

 :
=

ye
t

na
m

e
d
 ,

C

st
 r

 ,C
 '
 P

 •
•

•
• 9

',

•
r2

:=

g
e

t
re

la
ti
o

n

nu
m

C
R

Ig
ht

R
)?

jo

1
n
(N

e
w

R
7

rl
,

r2
,~

E

q£
)»

E
N

D
;

•a
»:

EE

GI
M

EN
D;

OT
HE
RW
IS
E

wr
1t
el
n(
0p
»*

1s

an

un
kn
ow
n

op
er
at
or
.'
)

EN
D;

{o

f
CA

SE

op
)

i;
PR

O
C

ED
U

R
E

1
re

d
u
ce

<

VA
R

n
In

o
d
e

p
o
 I
n
te

r,

o
p
:

o
p
ty

p
e

)}

C
n

1s

a
p
tr

to

a

re
lo

p

no
de

c
a
lle

u

w
he

n
I

an
d

r
p
o
in

te
rs

p
o
in

t
to

Id

e
n
ti
c
a
l

p
re

d
ic

a
ti
o

n
s

sa
m

e
se

ns
e

an
d

p
e

rm
u
ta

ti
o
n
)

V
AR

1

:
1 n

 t
e»

e
r

•
JI

T
H

n
*

DO

FO
R

1
FO

R
1

:=

1
TO

p
tr

C
l
]"

.a
e

 s
c

e
n
a
a
n
t s

.
DC

a

tt
a

c
h

e

o
p
,

p
tr

C
 1

 3
*.

p
t
rt

 1
 3

*.
p
tr

C
 1

 D
,

p
tr

C
2

D
".

p
tr

C
 1

3
".

p
tr

C
l]

)i

E^
D

;
PR

O
C

ED
U

R
E

J
o

in
t

s
:S

T
R

IN
G

;
(n

am
e

o
f

ne
w

re

la
ti
o
n
}

r
l,

r2

:
IN

T
E

G
E

R
;

(R
D

lo

c
a
ti
o
n

o
f

o
p
e

ra
n
d
s
)

op

:
C

op
ty

pc

{"

<,

<=
,

=,
»

,
>,

>=

)>
;

{I
m

p
le

m
e

n
t

fo
r

e
q
u
l-
lo

ln

o
n
ly

)
{R

e
tu

rn
s

ne
w

re

la
ti
o
n

h
e

a
d
e

r
e

n
tr

y

In

R
a
lc

t,

p
lu

s

it
s

d
e

ri
v
e

d

g
ra

p
h

)
VA

R
I,
j,

k
:

In
te

g
e

r*
c
2

:1
n
te

g
e

rT

{t
e

m
p

fi
x
)

8E
G

IN

W
IT

H

R
D

C
rd

n
fD

DO

LE

G
IN

R
na

m
e

'.-

S»
R

D
eg

re
e

t=

RD
C

r
l

D
.R

O
e

jr
e

e

*
RD

C
r2

l.
R

D
e

y
re

e

-
li

r
pe

 ro
i

'.-

1 »
ke

y
c
o
ls

*
nu

m

'-

r
de

gr
e

e

t
FO

R
~I

:=

1

TO

ke
y

c
o
ls

. n
um

LO

k
e

y
_

c
o
ls

.
c
o
ls

C
T

]
:=

i;

{m
a
rk

th

e

ke
y

a
tt
ri
b
u
te

s

)

FO
R

I
:=

1

TO

R
D

[
rl

3.
 R

D
eg

re
e

DO

hI
T

H

a
tt
ri
b
u
te

d
)

DO

bE
G

IN

{t
ra

n
s
fe

r
rl
«
s

a
tt

ri
b

u
te

na

m
es

)

A
na

m
e:

=&
or

rl

1
* A

t
tr

 I
b

u
te

t
I
).

 A
na

m
e

;
A

tt
d
o
m

d
1

n
_

lr
i

:=

RD
C

rl

3.
 a

 1
 1

r
Ib

u
te

C
 I

 3
 .

A
t t

d
o
m

a
1

n
_

I C
 5

E
M

D
i

{n
ow

go

th

ru

an
d

ge
t

a
ll

th
e

re

le
v
a
n
t

a
tt
ri
b
u
te

d
a
ta

fr

o
m

r2

.

th
is

w

il
l

be

e
ve

ry

a
tt
rU

u
te

e

xc
e

p
t

th
e

on

e
b
e

in
g

Jo
in

e
d

o
v
e

r.

If

we

la
te

r
p

e
rm

it

m
u
lt
i-
c
o
lu

m
n

jo
in

s

th
is

w

il
l

ha
ve

to

be

m

o
o
lf
le

d
.)

k:
=

RD

C
rl

3.
R

D
e

n
re

e

*
i;

FO
R

I
:=

1

TO

RD
C

r2

3.
 R

D
eg

re
e

DO

w
IT

h
<

»
tt
r1

b
u
te

[k
3

DO

B
E

G
IN

IF

1
0

C
2

TH
E

N

B
E

G
IN

A
na

ne

: =

RD
C

r2

1.
a

tt
r1

b
u

te
C

ID
.a

n
a

m
e

i
A

t
t

d
o

m
a

in

ID

: =

RO
C

r
l

3.
 a

tt
 r

 1
b

u
t
e

t
I

3.
 A

tt
d

o
m

a
 I
n

ID

EN
D

*,
k

:=

k
*i

~

~
E

N
D

;
IF

k-

1

<>

R
D

e
g

re
e

TH

EN

w
ri
 t
 e

 I
n
 <

«e
 r
ro

r
In

a
tt

ri
b

u
te

tr

a
n
s
fe

r
1n

JO

IN
1)

;

{n
ow

s
e

t
a
ll

L
in

k
e

d

n
o
d
e

s
on

ri
g
h
t

=
th

e
ir

p
a

rt
n

e
rs

n

o
d

e
s

on

L
e

tt
)

t
F

ln
d

n
o

d
e

 s
tR

D
C

rd
n
f

3
.

p
t
r[

 1
3«

e

n
o

d
e

,
m

ld
n
o
d
e

s
ta

c
k
)»

FO

R
i:
=

1

TO

m
1

d
n
o
d
e

s
ta

c
k
.r

if
-l

DO

FO
R

J
:=

I

TO

m
id

n
o
d
e

s
ta

c
k
.n

f-
1

DO

IF
*

(m
ia

n
o

d
e

s
ta

c
k
.p

o
in

te
rs

C
I3

*.
a

tt
n

u
m

=

m
id

n
o
d
e

s
ta

c
k
.p

o
1

n
te

rs
C

J
3
~

.a
tt
n
u
m

)
AN

D (m
1

d
n
o
d
e

s
ta

c
k
.p

o
1

n
te

rs
[I
3
".

a
tt
n
u
in

>
0
>

TH

EN
m

Id
n
o
d
e

st
ct

ck
 .

po
1

n
te

rs
t

J
3
".

n
o
d
e

la

: =

m
ld

n
o
d
e

s
ta

c
k
.p

o
ln

te
rs

C
I3

".
n
o
d
e

_
1

d

•

EN
D

EN
D;

(.o

f
jo

in
}

PR
O

C
ED

U
R

E
P

ro
je

c
ti

S
:S

T
R

IN
G

i
{n

am
e

o
f

ne
w

re

la
ti
o

n
)

r
l

:
IN

T
E

G
E

P
i

tr
d

lo
c
a

ti
o

n

o
f

o
p
e

ra
n
d
}

c
o
ls

1

J
c
o
ls

ty

p
e

);

{n
u
m

b
e

rs

o
f

th
e

co

lu
m

n
s

to

be

~
~

p
ro

je
c
te

d

o
u

t
)

{R
e

tu
rn

s

ne
w

re

la
ti
o
n

h
e

a
d
e

r
e

n
tr

y

in

rd
1

c
t«

p

lu
s

it
s

d
e

ri
v
e

d

g
ra

p
h
)

V
(R

T
h

ro
w

o
u

t:

B
O

O
LE

A
N

;
{f

o
r

a
e

c
ia

in
u

to

p
ro

je
c
t

o
u

t
a

co
lu

m
n
}

I,

J
,

k
:

IN
T

E
G

E
R

*
(l
o

o
p

c
o
n
tr

o
l

an
d

In
d

e
x

v
a
ri
a
b
le

s
)

c
o
ls

2

:
c
o
ls

ty

p
e

i
B

E
G

IN

»T
TH

rd

C
rd

n
fl

DO

U
LG

IN
R

n
a

m
c:

=
S

;
rd

e
g

re
e

!=

rd

C

r
l

D
.r

d
e

g
re

e

-
c
o
ls

l.N

u
m

?

{
£n

ew

k
e

y
c
o
ls

)
""

R
p

e
rm

:=

r3
[

rl

].
R

p
e

rm
;

P
re

d
s

:=

rd
C

r
l

D
«
p
re

d
si

FO
R

i:
=

1

TO

p
re

d
s

DO

p
t

rC
 I

 3
:=

co
p

y
n
o
d
e

ir
d
t

rl

D
.p

tr
C

1
3
>

»
k:

 =
i;

FO
R

l:
 =

 l

TO

rd
L

rl

).
 r

d
e

tr
e

e

DO

bC
O

IN

U
IT

H

A
tt
rl
b
u
te

C
k
]

DO

B
E

G
IN

Th
ro

w
ou

t:=
FA

LS
E

;
FO

R

j:
=

1

TO

C
O

ls

l.f
cu

rn

DO

B
E

G
IN

IF

I

=
c
o
ls

l.
c
o
ls

C
J
]

TH
EN

T

h
ro

w
o

u
t:
=

T
R

U
E

;
IF

NO

T
T

h
ro

w
o

u
t

TH
EN

bE

G
IM

A
na

m
e

:=

rd
C

rl

3
. A

tt
r1

 b
u

te
C

I
3

.A
na

m
e

;
A

tt
d
o
m

a
in

ID

:=

rd
C

r
l

].
 A

tt
 r

 I
b

u
te

 C
 I

 D
 .

 A
t

td
om

e,
 I

n

in
;

k
:=

k
*i

;
~

EN
D;

~

EN
D

EN
D

LN
D

i
IF

d
e

b
u
y

TH
EN

w

r1
te

In
<

 •
*-

1

s
h

o
u

ld

=
rd

e
g

re
e

:

•»

k
-l
»

rd
e

g
re

r)
.

{
H

a
v
ln

y

c
o
p
ie

d

o
il

th
e

In

fo
rm

a
ti
o
n

fr
o
m

th

e

co
lu

m
n
s

we

a
re

k
e

e
p
in

g
*

th
e

n

go

th
ru

an

d
s
e

t
th

e

a
tt
n
u
m

s
o

f
th

e

p
ro

je
c
te

d

o
u
t

no
de

s
to

3

an
d

re
s
e

t
th

e

a
tt
n
u
m

s

o
f

th
e

o
th

e
rs

)

c
o
ls

2.

nu
m

:=

rd

C

r
l

3
.r

d
e

g
re

e
;

FO
R

T
:=

1

TO

co
ls

_
2

«
n

u
in

DO

co

 I
 s

_
2

.
c
o
l
s
t

1
3

:=

m

a
x
ln

t;
 {

 »
u
n
ze

ro
 «

e
v
e

ry

a

tt
ri
o

u
te

)

{t
h

e
n

ze

ro

th
e

p
ro

je
c
te

d

o
u
t

o
n

e
s)

FO

R
1

:=

1
TO

c
o

ls
_

l.
n

u
m

DO

c
o

ls
_

2
.c

o
ls

C

c
o
Is

_
l.
c
o
l

s
i

13

3
:=

O

i

J
:=

 i

;
FO

R
1

:=

1
TO

co

ls

2.

nu
m

00
{n
ow

se

t
th

e
un

ze
ro

ed

on

es

to

th

e
ne
w

1»

2»

3.
»

va
lu

es
)

IF

co

ls

2
.
c
o
l
s
[
1
1

<>

0
TH

EN

BE
GI
N

co
is

_2
.c

oi
sC

 1
3

:-

j;

j:

=

j*

i
EN

D;
FO

R

l:
=

1

TO

p
re

d
s

DO

B
E

G
IN

p

tr
C

1
3

:=

co
p

y
n
o
d
e

lr
d
t

rl

3
.p

tr
C

I3
)i

n
1

a
n

o
d

e
s
ta

c
k
.n

T
:=

l»
f

In
d

n
o

d
e

s
(p

t
rC

 I
 3

 «

p
n

o
d

e
*

ir.1
 d

no
oe

 s
ta

 c
k

)
I

j
:=

U

U

H
lL

E

j
<

m
lo

n
o

d
e

s
ta

c
k
.n

f
DO

{f

o
r

ea
ch

p
n
o
d
e

)
bE

G
lN

m
ld

n
o
d
e

s
ta

c
k
.p

o
in

te
rs

C
J
3
".

p
p
e

rm

:=

m
ap

(m

lu
n
o
d
e

s
ta

c
k
.p

o
in

te
rs

L
j3

"
)»

{f
o

r
e

a
ch

E

no
de

»
)

FO
R

k
:=

1

TO

m
ld

n
o

d
e

s
ta

c
k
.p

o
ln

te
rs

tj
3
*.

d
e

s
c
e

n
d

a
n

ts

DO

B
E

G
IN

m
id

n
o
o
e

s
ta

c
k
.p

o
1

n
te

rs
C

J
3
".

p
tr

C
k
3
*.

a
tt
n
u
m

:=

c
o
ls

_
2

.c
o
ls

C
k
3

E
N

D
*

P
a
g
e

IO

j:
=

J
*
l

(U
h
lL

E
)

E
N

D
{I

lo

o
p
>

F
N

O
to

f
*I

T
H

)
EN

D;

rd
n
f:
=

ra
n
f*

l»

EM
D

;
(o

f
p
ro

je
c
t)

PR
O

C
ED

U
R

E
P

e
ri
tu

te
t

S
:S

T
R

IN
C

«
{n

am
e

o
f

ne
w

re

la
ti
o
n
)

R
l

VA
R

RD

VA

R

RF 00

IN
T

E
uC

R
t

{R
D

lo

c
a
ti
o
n

o
f

o
p
e

ra
n
d
}

RD

tv
p
e

i
iN

T
r&

E
P

;
D

D
_t

y
pe

 t

C
o
ls

1

:
C

o
ls

ty

p
e

);

{n
u
m

b
e

rs

o
f

th
e

co

lu
m

n
s

to

be

~~

~
p
e

rm
u
te

d
*

1n

th

e
ir

ne
w

o
rd

e
r)

{R
e

tu
rn

s

ne
w

re

la
ti
o
n

h
e

a
d
e

r
e

n
tr

y

1n

R
d
lc

t*

p
lu

s

It
s

d
e

ri
v
e

d

g
ra

p
h
)

V
AR

I«

J
:

c
o
l

In
d
e

x
ty

p
e

;
(l
o
o
p

c
o
n
tr

o
l

a
n
d

1
n
o
fx

v
a
ri
a
b
le

s
)

B
E

G
IN

W

IT
H

R

D
TR

F3

DO

B
E

G
IN

R
na

m
e:

 =
 S

»
R

O
eg

re
e

:=

RD
C

R
l

3
.R

D
e

g
re

e

;
K

ey

C
o
ls

.N
u
m

:=

R
D

C
R

13
.K

ey

C
ol

s.
M

um
?

F
0
ft
~

l:
=

l
TO

K

ey

C
o
ls

.N
u
m

DO

FO

R
J
:=

l
TO

C

o
ls

l.N

u
m

00

IF

R
O

C
R

1
3
.K

e
y-

C
o
ls

.C
o
ls

C
 !

3
=

C
o
ls

l.
C

o
ls

C
J
]

TH
EN

K

ey

C
o
ls

T
C

o
l
s[

 I
 3

 t
= J

 ;
R

p
e

rm
:=

ffD

C
R

l
3.

 R
pe

rm
*

{
s
h
a
ll

we

ju
s
t

ch
a
n
g
e

th

e

R
pe

rt
n?

)
FO

K
i:
=

I
TO

R

o
e

g
re

e

DO
W

IT
H

A

tt
rl
b
u
te

m

DO

B
E

G
IN

A

na
m

e
:=

R

D
C

R
l3

.A
tt
r
Ib

u
te

tC
o
 I
 s

1

.C
o
ls

1
1

3
D

.
A

na
m

e
;

A
tt
d
o
*a

1
n
_

IO
:=

RO

CR
1

].
A

tt
rI

b
u
te

C
C

o
ls

_
l.
C

o
ls

C
I

3
D

.A
tt
d
o
m

a
1

n
_

ID

E
N

D
;

FO
R

1
:=

1

TO

p
re

d
s

DO

p
tr

C
1

3

:=

co
p
y_

n
o
d
e

(
rd

[r
1

3
 .
p
tr

C
1

3

) i

{o
f

W
IT

H
:)

EN

D;

R
F

:=
R

F
*I

;
EN

D
;

{o
f

pe
rm

ut
e)

PR
O

C
ED

U
R

E
U

n
io

n
!

S
:
s
t
r

1m
jC

 s
t

rn
.a

x
3

;
{n

am
e

o
f

ne
w

re

la
ti
o
n
)

R
l*

R

2:

IN
T

E
G

E
R

);

{R
D

lo

c
a
ti
o
n

o
f

o
p
e

ra
n
d
)

(R
e

tu
rn

s

ne
w

re

la
ti
o
n

h
e

a
d
e

r
e

n
tr

y

1n

R
o
1

ct
«

p
lu

s

It
s

d
e

ri
v
e

d

g
ra

p
h
}

VA
R 1,

j:I

N
TE

G
ER

;
B

E
G

IN
R

DC
 r

d
n
f

3:
=R

O
C

R
1

3;
W

IT
H

R

O
C

rd
n
f3

DO

B

E
G

IN

R
n
a
«
e

:=
S

;
{N

ow

c
re

a
te

a

ne
w

u
n
io

n

no
de

p
o
in

te
d

to

by

p
tr

[l
)

m
ak

e
It
s

le
ft

d
e

sc
e

n
d
a
n
t

a
co

p
y

o
f

R
l's

g
ra

p
h
*

ta
k
e

It
s

rl
g
n
t

d
e

sc
e

n
d
a
n
t

a
co

p
y

o
f

R
2

*s

g
ra

p
h
.)

Ne

wC

p
tr

C
n
*

R
o
p
n
o
d
e

);
U

IT
H

p
tr

C
1

3
*

DO

B
E

G
IN

ty

p
e

o
fn

o
d
e

:=

R

o
p
n
o
d
e

;
op

:=

o
rx

*
d
e

s
c
e

n
d
a
n
ts

:=

2

;
p
tr

C
l]

:=

co
p
y

n
o
d
e

i
RD

L
r

1
3
.p

t
rC

 1
 3

);

{l
e

ft
}

p
tr

C
2

3

:=

co
p
y~

n
o
d
e

<

RO
C

r2
3
.p

tr
C

 1
 3

);

{r
ig

h
t)

LN

O
;

{W
IT

H
}

EN
D;

rd
nf
 :
=r
on
f+
l

«
(o
f

Un
io
n}

PR
OC
ED
UR
E

Di
ff
er
en
ce
!

S:
st
r1
no
Cs
tr
ma
x3
 •

(n
am
e

of

ne
w

re
la
ti
on
)

Rl
,

R2
:

IN
TE
GE
R)
;

(R
C

lo
ca
ti
on

of

op
er
an
d)

VA
R 1*

j:I

N
TE

G
ER

;
BE

GI
N

R
O

C
rd

nf
 3

:=
R

D
C

R
13

»

P
a

g
e

1
1

W
IT

H

R
O

C
rO

n
f]

DO

D

tG
IN

R
na

m
e:

=
S

;
{M

ow

c
re

a
te

a

ne
w

d

if
fe

re
n

c
e

no

de

p
o

in
te

d

to

by

p
tr

C
l3

sa

ke

It
s

le
ft

d

es
ce

n
d

an
t

a
co

py

o
f

R
l'
s

g
ra

p
h

*
*a

k
e

it

s

ri
a

n
t

d
es

ce
n

d
an

t
a

co
py

o

f
R

2'
s

g
ra

p
h

*}

M
et

. (

p
lr

C
l3

*
R

o
p

n
o

o
et

;
rf

lT
H

p
tr

C
1

3
"

DO

B
E

G
IN

ty

p
e

o
fn

o
d

e

: =

R
o
p
n
o
d
e

i
op

: =

n

o
t
x
;

d
e

sc
e

n
d

a
n

ts

: =

2»
p

tr
tl
D

:=

co

p
y

n
o
d
e

(
RC

C
r

1
3
.p

t
rt

 1
 3

)
•

{l
e

ft
}

p
fr

C
2

3

:=

co
py

~
no

oe
<

R

D
C

r2
3
.p

tr
[1

3
);

{r

ig
h

t}

E
N

D
;

{n
ow

se

t
a
ll

If
n

k
e

d

no
ae

s
on

ri
g

h
t

=
th

e
ir

p
a

rt
n

e
rs

no

de
s

on

L
e

ft
)

F
ln

d
n

o
d

e
st

R

D
C

rd
n

f3
.p

tr
C

1
3

te
n

o
d

e
tm

1
d
n
o
d
e

st
a
ck

>
i

FO
R

1
:=

1

TO

m
lf
ln

o
d
e

s
ta

c
k
.n

f-
1

00

FO

R
j:
 =

1

TO

m
lc

in
o

d
e

s
ta

c
k
.n

f-
1

00

IF

C
m

1
a

n
o

d
e

st
a

ck
•p

o
ln

te
rs

C
1

3
".

a
tt

n
u

m

-
rn

ld
n
o
d
e

s
ta

c
k
.p

o
ln

te
rs

C
J
 3

*.
a

tt
 n

um
)

AN
D <m

1d
 n

od
e

s
ta

c
k
. p

o
1

n
te

rs
M

3
*.

 a
t

tn
um

>
0)

TH

EN
m

ld
n
o
d
e

s
ta

c
k
.p

o
ln

te
rs

C
1

3
".

n
o
d
e

1a

:=

m

id
n

o
d

e
st

a
 c

k
.p

o
ln

te
rs

C
 i
 3

*.
n

o
d

e
~

1
d

»

{W
IT

H}

EN
D;

rd
n

f
: =

rd
n

f *
1

•
{o

f
d

if
fe

re
n

c
e

}

PR
O

C
ED

U
R

E
1

n
te

 r
 s

ec
 t

Io
n
 (

S
:

st
 r

 1
ng

C
s
t r

m
a

x
3?

{n

am
e

o
f

ne
w

re

la
ti
o

n
}

R
l«

R2

1
IN

T
E

G
E

R
);

CR

D
lo

c
a
ti
o
n

o
f

o
p

e
ra

n
d

}

{R
e

tu
rn

s

ne
w

re

la
ti
o

n

h
e

a
d

e
r

e
n

tr
y

1n

R
d1

ct
»

p
lu

s

It
s

d
e

ri
v
e

d

g
ra

p
h
)

V
AR

1«

j»

k
C

lN
T

E
G

E
R

;
B

E
G

IN
RO

C
rd

n
f
]:
 =

 R
D

C
*

1
3*

W
IT

H

R
D

C
rd

nf
3

DO

B
E

G
IN

R

na
m

e
: =

s;
{N

ow

c
re

a
te

a

ne
w

In

te
rs

e
c
t

no
de

p
o
in

te
d

to

by

p
tr

L
l3

m

ak
e

It
s

le
ft

d
e

sc
e

n
d

a
n

t
a

co
py

o

f
R

l's

g
ra

p
h

*
m

ak
e

It
s

ri
g

h
t

d
e

sc
e

n
d
a
n
t

a
co

py

o
f

R
2*

s
g

ra
p

h
.}

N

ew
t

p
tr

C
l3

«

R
op

no
de

)*
W

IT
H

p

tr
[1

3
*

00

B
E

G
IN

ty

p
e

o
fn

o
d
e

:=

R

o
p
n
o
d
e

i
op

:=

a
n
d
xi

d

e
sc

e
n

d
a

n
ts

:=

2

\
p
tr

C
!3

:=

co

py

n
o
d
e

!
RO

C
r 1

 3
. p

t
rC

 1
 3

)
;

{l
e

ft
}

p
tr

C
2

3

:=

co
p

y~
n

o
d

e
(

RO
C

r2
 3

.p
t

rC
 1

 3
)

;
{r

ig
h

t}

E
N

D
;

{n
ow

s
e

t
a

ll

lin
k
e

d

no
de

s
on

ri
g

h
t

=
th

e
ir

p
a

rt
n

e
rs

no

de
s

on

le

ft
}

F1
 n

dn
od

es
C

R
O

C
 r

d
n
 f
 3

*
pt

 rC
 1

3
* e

no
de

«m
1d

no
de

st
a

c
k>

 ;
FO

R
1:

=
1

TO

m
1

d
n

o
d

e
s
ta

c
k
.n

f-
l

00

FO
R

J
t=

1

TO

m
1

d
n
o
d
e

s
ta

c
k
.n

f-
l

DO
IF

(m

ld
no

de
s

ta
c
k
.

po
 I
n
te

r
sC

 1
 3

"»
a
tt
n
u
m

=

m
ld

n
o

d
e

s
ta

c
k
.p

o
ln

te
rs

C
)

 3
"»

a
tt

n
u

m
)

AN
D

(m
ld

n
o

d
e

s
ta

c
k
.p

o
ln

te
rs

C
 1

 3
".

a
tt

n
u

in
>

a
>

TH

EN

PE
G

1N

in
Id

n
o

d
e

st
a

ck
 .

po
1

n
te

rs
C

 \
3
*.

 n
od

e
1d

: =

•

1d
n

od
e

s
ta

c
k
. p

o
ln

te
rs

C
i

3
~

.n
o

d
e

_
1

d

»

{t
ra

n
s
fe

r
Q

yr
a
p
h
)

FO
R

k
:=

1

TO

n
ld

n
o
d
e

s
ta

c
k
 .
p
o
in

t
er

sC
 j
 3

 "
.d

e
sc

e
n
d
a
n
t

s
DO

{

tr
a
n
s
fe

r
(

n
Id

n
o
d
e

s
ta

c
k
. p

o
ln

te
rs

C
 1

 3
**

»
m

Id
n
o
d
e

s
ta

c
k
.
p

o
in

t
er

sC
 j
 3

".
 p

t
rC

k
3)

 »

}
;

EN
D

{k
,iT

H}

EN
D;

rd
n

f
: =

 r
d

n
f

•»
!»

E
N

O
i

(o
f

In
te

rs
e

c
t)

PR
OC
ED
UR
E

Se
le
ct
!

Sr
st
rl
ng
i

{n
am
e

of

ne
w

re
la
ti
on
}

Pi
:

In
te
ge
r;

{R

D
lo
ca
ti
on

of

op
er
an
d}

Co
l

nu
m

Co
l

In
de
x

Ty
pe
;

{C
ol

to

be

se
le
ct
ed

on

}
SV
aT
ue

st
rT
ny
}

{T
or

se
le
ct
io
n*

va
lu
e

to

be

co
mp
ar
ed

to
}

XO
p

CO
pt
yp
e)
;

{"

<.

<=
»

=
f»

t

>«

>
= 3

{R
et
ur
ns

ne
w

re
la
ti
on

he
ad
er

en
tr
y

1n

Rd
1c
t«

pl
us

It

s
de
ri
ve
d

gr
ap
h}

VA
R

1,

J
M

n
te

g
e

r;

s
it

s
tr

 1
n

g
ls

 t
 r

m
ax

 3
»

o
ld

g
ra

p
h

:
n

o
d

e
p

o
ln

te
r*

B
E

G
IN

W

IT
H

R

D
C

ro
n
f3

DO

B

E
G

IN

R
n
a
m

e
:=

S
;

R
D

e
g
re

e

:=

R
O

C
R

l3
.R

D
e

g
re

e
 ;

{d

e
g
re

e

re
m

a
in

s
th

e

sa
m

e}

R
p
e

rm
:=

R

D
C

R
1

].
R

p
e

rm
i

(a
s

a
o
e

s
th

e

p
e

rm
u
ta

ti
o
n
}

K
ey

C

o
ls

.N
u
m

:=
R

D
L
R

1
3
.K

e
y

C
o
Is

.
N

um
;

{n
o
r

do
es

th

e

ke
y

ch
a

n
g

e
}

F
0
ft
~

i:
=

1

TO

K
ey

C

o
ls

.N
u
m

DO

K
e

y
_

C
o

ls
.C

o
l?

C
1

3
:=

R
D

C
R

l3
.K

e
y

_
C

o
ls

.C
o

ls
[1

3
;

FO
R

1:
=

W
IT

H
1

TO

R
D

eg
re

e
A

tt
ri

b
u

te
d

 3

A
tt

d
o

m
ai

n

DO

B
E

G
IN

DO

B

E
G

IN

R
l
3
.A

tt
r1

b
u

te
[1

3
.A

n
a

m
e

»

1
D

:=

R
D

tR
 1

 3
. A

t
tr

 I
b
u
te

C
 1

 3
. A

t t
d

o
m

a
ln

1

0
;

EN
D

FN
D;

3
re

d
s

:=

R
D

C
R

1
3.

P
re

d
s

;
FO

R

1
:=

1

TO

P
re

d
s

DO
PT

RC
 1

3
:=

co

py

no
de

<

R
D

[R
l3

.P
tr

C
1

3

)

FO
R

1
:=

1

TO

p
re

d
s

DO

m
1
d

n
o

d
e

s
ta

c
k
.n

l
:=

1«

f1
n

d
n

o
d

e
s
(R

D
L

rd
n

f3
.p

tr
C

1
3
*

p
n

o
d

e*

m
ld

n
o

d
e

s
ta

c
k
)»

W

IT
H

n

ld
n

o
d

e
s
ta

c
k

00
W

M
IL

T
n

f
>

1
D

O

B
E

G
IN

fO
R

j:

=

1
TO

p

o
1
n

te
rs

C
n

f-
l3

".
d

e
s
c
e

n
d

a
n

ts

DO

B
E

G
IN

{f

o
r

ea
ch

o

f
P

N
o

d
e*

s
ar

g
u

m
en

ts
)

e
rs

C
n

f-
1

3
*.

B
E

G
IN

B
E

G
IN

IF

p
o

In
te

r
i

p
tr

C
 j

=
co

l_
n
u
m

TH

EN

3E
G

1N

0
TH

fN
{a

tt
a

c
h

Q

g
ra

p
h
}

IF

p
o
ln

te
rs

tn
f-

1
 3

~
.p

t
rC

I
3
".

 d
e

sc
e

n
d

a
n

ts

=
{n

o

g
ra

p
h

a
lr
e

a
d
y

a
tt
a
c
h
e

d
)

B
E

G
IN

p
o
1

n
te

rs
C

n
f-

l3
*.

p
tr

t
j
3
".

 d
e

sc
e

n
a
a
n
 t
s

:=

1
H

th
e

re

N
E

y
«
p
o
1

n
te

rs
C

n
t-

l3
".

p
tr

[J
3
".

p
tr

C
 1

 3
«

co
p
n
o
iJ

e
);

W

IT
H

p

o
1

n
te

rs
C

n
f-

l
3K

.p
tr

tj
 3

.p

tr
tl
3
~

DO

B

E
G

IN
c o

p:
=x

 O
p;

de
sc
en
da
nt
s

:=

I
i

ty
pe
of
no
de

:=

co
pn
od
e;

NE
W

(p
tr
C1
3«

va
lu
en
od
e)
;

si

:=

Sv
al
ue
;

{n
ec
es
sa
ry

st
ep

du

e
to

PR
IM
E

bu
g}

p
tr

C
1

3
*.

v
a

lu
e

:=

s
li

p
tr

C
1
3
".

d
e

s
c
e

n
d

a
n

ts

:=

L!
p
tr

C
1

3
".

ty
p
e

o
fn

o
d
e

!=

va

lu
e

n
o

d
e

EN

D

E
LS

E
B

E
G

IN

{t
h

e
re

1s

a
lr

e
a
d

y

a
O

G
ra

p
h

j
{r

e
p

la
c
e

w

it
h

fu

 I
Iy

-p
a
ra

m
e

te
r1

s
e

d

In
s
e

rt

IF

de
bu

g
TH

EN

B
E

G
IN

w
rl
te

ln
<

»
a
tt
a
c
h
in

g

Q
gr

ap
h

to

E
no

de
EN

D; o
ld

g
ra

p
h

:=

p
o

ln
te

rs
C

n
f-

1
3
".

p
tr

[1
3

~
'

s
ln

f-
l3

~
.p

tr
C

 '
 "

-
-

w
il
l

be

n
o
w

}

EN
D

N
E

J
(p

o
1

n
te

rs
ln

f-
l3

"'
.p

tr
[j

 3
~

.p
tr

[
13

»
R

op
no

de
 >

»
W

IT
H

p

o
1
n

te
rs

tn
f-

!3
*.

p
tr

C
J
3
~

.p
tr

L
1
3
~

DO

B

EG
IN

op

:=

a
n

d
x
i

ty
p

e
o

fn
o

d
e

:=
ro

p
n

o
a

e
«

d
es

ce
n

d
an

t
s

: =

2
»

p
tr

[
13

:=

o

la
y

ra
p

h
 i

N
E

l>
(p

tr
C

2
3
t

c
o
p
n
o
a
e

).
yI

T
H

p
tr

t?
3
~

DO

B

E
G

IN
p

o
in

t
e

rs
tn

f-
1
 3

".
p

tr
C

I3
~

.d
e

s
c
e

n
d

a
n

ts

:=

1
;

N
L

u
(p

o
1
n

te
rs

[n
f-

l3
M
.p

tr
C

j3
~

.p
tr

[l
 3

t
co

p
n

o
d

e
);

W

IT
H

p

o
ln

te
rs

C
n

f-
1

3

.p
tr

t
J

3
~

.p
t

rC
l]

~

DO

B
EG

IN
c o

p:
=

xo
p;

{E
de

gr
ee

:=

}

p
ro

c
e

d
u

re
}

w
h
ic

h

ha
s

on
e

a
lr
e

a
d
y
*)

;

•p
tr

C
1

3
;

{s
to

re

te
m

p
o
ra

ry
}

d
e
s
c
e
n
d
a
n
t
s

:=

1
;

ty
pe
ot
no
dc

:=

co
pn
od
e,

NE
W

(p
tr
Cl
3t

va
lu
en
od
e)
;

si

:=

Sv
dl
ue
,

{n
ec
es
sa
ry

st
ep

du
e

to

PR
IM
E

bu
g}

pt
rC
 1
3"
.v
al
ue

:=

si
t

p
t
r
C
I
D
*
.
d
e
s
c
e
n
d
a
n
t
s

: =

u»

p
t
r
C
1
3
~
«
t
y
p
e
o
f
n
o
d
e

!=

va
lu
en
od
e

EN
D

EN
D;

EN
D

EN
D

EN
D

;
(

o
f

j-
io

o
p

}
It

1
d

n
o

d
e

&
ta

ck
.n

f:
=

m
1

d
n

o
d

e
st

a
ck

.n
f-

i;
EN

D
EN

D

EN
D

{o

f
t-

lo
o
p
}

EN
D

to
t

J
IT

H
)

rd
n
f:
=

ra
n
f*

i;

E
N

D
K

o
fS

e
le

ct
)

FU
N

C
TI

O
N

re

d
u
c
e

(

p
tr

l,

p
tr

2
:

n
o
d
e

p
o
ln

te
r»

lo
y
lc

o
p

:
ro

p
ty

p
e

i
VA

R

re
s
u
lt

:
re

s
u
lt

ty
p
e

)

:
n
o
d
e

p
o
l n

t e
r

•
""

{p
tr

l
an

d
p
tr

2

a
re

p
tr

s

to

C
om

po
p

n
o
d
e

s
e

a
ch

o

f
w

h
ic

h

p
o
in

ts

to

a
v
a
lu

e
n
o
a
e

*
M

us
t

a
lr
e

a
d
y

be

1n

c
a
n
o
n
ic

a
l

fo
rm

*}

(K
IT

H
)

EN
D;

VA
R

 k
it

B
£G

IN

k
i:

k

2
:

s
tr

1
n
g
[s

 t
rm

a
x

3*

n
o

d
e

p
o

ln
te

r
5

I

(t
»I

T
H

p
o
in

te
r*

D

O
)

=
p
tr

l~
.p

t
rt

 1
 3

".
v
a
l

=
p
tr

2
".

p
tr

C
n
".

w
a
l

=
NI

L
;

kl

<
k2

TH

EN
F

lo
g
lc

o
p

=
a
n
o
x

/»

A

C

 F

m
*

•»

1

*

*
*
*
*
*
*

t

ue
 i

ue
 i

(g
e

t
le

ft

an
d

ri
g
h
t

le
a
v
e

s
)

S
t£

p
tr

l"
.c

o
p

O
F

TH
EN

B
E

G
IN

S
ef

:

N
e

q
fl

E
q
£
:

C
AS

E
p
tr

2
*.

c
o
p

OF
st
f,

Se
f*

Ne
qf

:
re
su
lt

Gt
f,

Ge
f,

Eq
£

:
re
su
lt

Ss
£

:
BE
GI
N

ot
he
rw
is
e

BE
GI
N

EN
D

(o
f

CA
SE
);

CA
SE

pt
r2
".
co
p

OF
St
f,

Se
f,

Ne
qf

:
re
su
lt

Gt
f,

Ge
f,

Eq
£

:
re
su
lt

Ss
£

:
BE
GI
N

ot
he
rw
is
e

BE
GI
N

EN
D

(o
f

CA
SE
);

CA
SE

pt
r2
".
co
p

OF
St
f,

Se
f,

Ne
qf

:
re
su
lt

Gt
f,

Ge
f,

Eq
f

:
re
su
lt

Ss
£

:
BE
GI
N

ot
he
rw
is
e

BE
GI
N

EN
D

(o
t

CA
SE
);

CA
SE

pt
r2
".
co
p

OF
St
f,

Se
f,

Ne
qf

re
su
lt

Gt
f,

Ge
f,

Eq
f

re
su
l

Ss
£

BE
GI
N

ot
he
rw
is
e

BE
GI
N

EN
D

(o
f

CA
SE
);

B
E

G
IN

G
e£

:

G
tf:

CA
SE

pt
r2
".
co
p

OF
St
f,

Se
f,

Ne
qf

re
su
lt

Gt
f,

Ge
f,

Eq
f

re
su
lt

Ss
f

BE
GI
N

ot
he
rw
is
e

BE
GI
N

EN
D

(o
f

CA
SE
);

C
AS

E
p
tr

2
~

.c
o
p

O
F

S
tf
*

S
e

f,

N
e

q
f

:
re

s
u
l

G
tf
,

G
e

f,

E
q
f

:
re

s
u
lt

:=
le

ft
;

(r
e

d
u
c
e

to

le

ft
)

: =

e
m

p
ty

s
e

t
•

EN
D;

wr
it
e
In
l'
er
ro
r

1n

P_
re
du
ce
'>
EN
D

EN
D;

BE
GI
N

:=
ie
tt
;;

:=

em
pt
 y

se
 t
 i

EN
D;

w
ri
te

 l
n
<

'e
rr

o
r

1n

P
_

re
d
u
ce

•>
E

N
D

EN
D;

B
E

G
IN

:=
co

m
 n

os
e»

:=
r1

g
n
t,
(r

e
d
u
c
e

to

ri
g
h
t

tr
e

e
)

EN
D;

w
ri
te

 I
n
*
'e

rr
o
r

1n

P
_

re
d

u
ce

'>
E

N
D

EN
D;

B
E

G
IN

: =
 ie

f
t;

t
:-

em

pt
y

s
e

t;
EN

D;
w

ri
te

 l
n
('
e

rr
o
r

1n

P
^r

e
d

u
ce

•)
E

N
D

EN
D;

BE
GI
N

:=
co
mp
os
e

',
:=
r1
gh
t;

EN
D;

wr
it
e
In
C'
er
ro
r

1n

P^

EN
D;

BE
GI
N

t
: =
co
mp
os
e»

:=
ri
gh
t;

)E
N

D

Ss
f

Ss
f

ot
he
rw
ls
e

EN
D

Co
f

CA
SE
}*

CA
SE

pt
r2
*.
co
p

OF

St
ft

Se
£«

Ne
qf
t

Gt
ft

Ge
ft

Eq
f

:
Ss
f

:
ot
he
ru
1s
e

EN
D

{o
f

CA
SE
;}
;

BE
GI
N

EN
D;

BE
GI
N

«r
1t
el
n(
'e
rr
or

1n

P_
re
du
ce
'>
EN
D

EN
D;

B
E
G
I
N

ot
he
r*
1s
e

EN
D

(o
f

CA
SE
D } OF

E
LS

E

C
op

=

o
x
t

SO

CA
SE

p
tr

l-
.c

o
p

st
2:

C
A

S
E

p
tr

2
*
.

S
tf
t

S
e

f«

G
tf
t

G
e

ft

S
s
f

o
th

e
rw

ls
e

E
N

D

C
of

C

A
S

E
>

Se
£

:

Ne
qf
:

E
q
£
 :

Ge
£

:

Gt
£

:

Ss
f:

co
p

OF

Ne
q£

Eq
£

re
su
lt

: =

In
co
mp
at
ib
le

op
e

BE
GI
N

EN
D;

BE
GI
N

wr
lt
el
nC
'e
rr
or

1n

P_

EN
D;

BE
GI
N

EN
D

ra
t
or
s

«

re
du
ce
*)
EN
D

CA
SE

pt
r2
".
co
p

OF

St
£,

Se
f*

Ne
q£

:
Gt
£*

Ge
f,

Eq
£

:
Ss
f

:
ot
he
rw
ls
e

EN
D

{O
f

CA
SE
}?

EN
D

BE
GI
N

re
su
lt
:=
r1
9
ht
»

re
su
lt
: ̂

co
mp
os
e

»
BE

GI
N

EN
D;

B
E

G
IN

w

r1
1e

 ln
<

fe
rr

o
r

EN
D.

;
B

E
G

IN

P
F

G
IN

In

P
re

d
u
ce

M
E

N
D

CA
SE

p
tr

2
".

c
o
p

OF

S
t£

«

S
e

f*

N
eq

£
G

t£
«

G
e£

t
E

qf

S
sf

o
th

e
rw

1
se

EN
D

C

of

C
A

S
E

!*
,

C
AS

E
p
tr

2
*.

c
o
p

OF

S
t£

t
S

e
f*

N

e
q
f

:
G

tf
t

G
ef

«
E

qf

:
S

sf

:
o
th

e
rw

1
se

EN
D

C
of

C

A
S

E
);

CA
SE

pt
r2
".
co
p

OF

St
ft

Se
£«

Ne
qf

Gt
f*

Ge
f«

Eq
f

Ss
f

ot
he
rw
1s
e

EN
D

C
of

C

A
S

E
};

re
s
u
lt
:=

ri
g
h
t;

re
s
u
l t

: ̂
co

m
po

se
 i

BE
GI

N
EN

D;
BE

G
IN

w

ri
te

 l
n

('
e

rr
o

r
In

P

.r
ed

u
ce

*)
E

N
D

EN
D;

BE

GI
N

C
A

S
E

p
tr

2
".

c
o
p

OF

S
tf
t

S
e

ft

N
e

q
f

G
tf
t

G
e

ft

E
q
f

S
s
f

o
th

e
rn

1
s
e

E
N

D

C
o
f

C
A

S
E

};

re
s
u
lt

:=

u
n
iv

e
rs

a
l

s
e

t;

re
s
u
lt
:=

le

ft
;

BE
GI

N
EN

D;
BE
GI
N

wr
it
e
In
<»
er
ro
r

1n

P.

EN
D;

B
E
G
I
N

re
su
lt
:=
r1
gh
t»

re
su
lt
:=
co
mp
os
e

i
BE
GI
N

EN
D;

BE
GI
N

w
M
t
e
l
n
l
 '
er
ro
r

1n

P.

EN
D;

b
E
G
I
N

re
s
u
lt
:^

c
o
m

p
o
s
e

 ;
re

s
u

lt
:=

le

ft
;

BE
GI

N
EN

D;
B

E
G

IN

w
r1

te
ln

<
'e

rr
o
r

1n

P.

EN
D;

B
E

G
IN

re
d
u
c
e

 *
)E

N
D

re
d
u
ce

M
E

N
D

re
d
u
ce

•)
E

N
D

CA
SE

pt
r2
".
co
p

OF

St
ft

Se
ft

Ne
qf

t
Gt
ft

Ge
ft

Eq
f

:
Ss
f

:
ot
he
rw
1s
e

EN
D

Co
f

CA
SE
);

re
su
lt
:^
co
mp
os
e;

re
su
lt
 :

 =
 l
ef
ti

BE
GI
N

EN
D?

BE
GI
N

wr
1t
el
n<
'e
rr
or

EN
D;

B
E

G
IN

1n

P
re

d
u
ce

M
E

N
D

o
t
h
e

rw
1

se

EN
D

C

of

C
A

S
E

}
i

E
LS

E

C
k
l

=
k2

}

IF

lo
g
lc

o
p

=
an

ax

re
s
u
lt

:=

In
c
o
m

p
a
ti
b
le

o
p
e

ra
to

rs
;

BE
GI

N
EN

D;
B

E
G

IN

w
ri
te

 l
n
<

'e
rr

o
r

1n

P
_

re
d
u
ce

M
E

N
D

EN
D;

B
E

G
IN

EN

D

EN
D

TH
E

N
B

E
G

IN

r
a
g
e

CA
SE

p
t
r
l
-
.
c
o
p

OF

St
f:

B
E
G
I
N

C
A
S
E

p
t
r
2
"
.
c
o
p

OF

St
f:

r
e
s
u
l
t
:
=
e
1
t
h
e
r
i

Se
f*

N
e
q
f

:
r
e
s
u
l
t
:
=
I
e
f
t
;
;

Gt
f*

Ge
f*

Eq
f

:
re

su
lt

:=

em

pt
y

se
t;

Ss
f

:
BE

GI
N

EN
D;

»
o
th

e
rw

is
e

B

E
G

IN

w
ri
te

 I
n

C
»

e
rr

o
r

1n

P
re

d
u

ce
«

)E
N

D

EN
D

{o

f
C

A
S

E
);

EN
D;

S
e

f:

B
E

G
IN

C

A
S

E
'p

tr
2

*.
c
o
p

&F
S

tf

:r
e

s
u
lt
:=

r1
g
h
t;

S
e

f:

re
s
u

lt
:=

e
1

th
e

ri
N

eq
f

:B
E

G
IN

pt

 r
l"

.c
o
p
:

= s
tf
;

re
su

l t
:=

ne
w

op
 »

EN
D;

E
q
f

:
re

s
u

lt
:=

r1
g

h
t;

G
ef

:B

EG
IN

p
:=

co
p
y

n
o
d
e

(p
tr

l)
;

p
*.

c
o

p
:=

E
q

f;

re
s
u

lt
:=

n
e

w
o

p
«

EN
D;

G
tf

:
re

s
u
lt

:=

em
pt

y
se

t;

ss
f

:
BE

G
IN

EN

D;
o

th
e

rw
is

e

B
E

G
IN

w

r1
1

e
ln

('
e

rr
o
r

1n

P
re

d
u

ce
M

E
N

O

EN
D

{o

f
C

A
S

E
);

EN
D;

Ne
qf

:
B
E
G
I
N

C
A
S
E

p
t
r
2
"
.
c
o
p

CF
St

f«

Ne
qf

:
r
e
s
u
l
t
:
=
r
1
y
h
t
J

Se
f:

B
E
G
I
N

p
:
=
c
o
p
y

n
o
d
e
(
p
t
r
l
)
;

p
"
»
c
o
p
:
=
S
t
£
»

r
e
s
u
l
t
:
=
n
e
w
o
p
;

EN
D;

Eq
f

:
re
su
lt

:=

e
m
p
t
y

se

t;

Ge
f:

BE

GI
N

p
: =

 c
op
y

n
o
a
e
<
p
t
r
1
)
5

p
"
»
c
o
p
:
=
G
t
f
;

Gt
f:

re

su
lt

:=
r1

nh
t;

ss
f

:
BE
GI
N'
EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
r1

1
e

ln
<

 »
e

rr
o
r

1n

P
re

flu
ce

M
E

N
D

EN

D

{o
f

C
A

S
E

>;
EN

D;
E

q
f:

B
E

G
IN

C

AS
E

p
tr

2
*.

c
o
p

OF
St
f

Se
f

Ne
qf

re
su

lt

:=

em

pt
y

se
t;

r
e
s
u
l
t
:
=
l
e
f
t
;

"
re

su
lt

:=

em

pt
y

se
t*

Eq

f
:

re
su
lt

:=

eT

th
er

;
Ge
f

:
re
su
lt

:=

le

ft
;

Gt
f

:
re

su
lt

:=

em

pt
y

se
t;

Ss
f

:
BE

GI
N

EN
D;

~

o
th

e
rw

is
e

B

E
G

IN

w
r1

te
 l
n

("
e

rr
o

r
1n

P

re
d

u
ce

«
)E

N
D

EN

D

C
ot

C

A
S

E
);

EN
D;

Ge
f:

BE

GI
N

CA
SE

p
t
r
2
*
.
c
o
p

OF
St
f:

re
su
lt

:=

em
pt
y

se
t;

Se
f:

RE
GI
N

p:
=c
op
y

no
de
(p
tr
l>
»

p"
*c

op
 :

=
Eq
£

;
re
su
lt
:=
ne
wo
p»

EN
D;

N
e

q
f:

B
E

G
IN

p
l=

c
o

p
y

n
o
d
e

(p
tr

l)
;

p
'.
c
o
p
:=

G
t

L
«

re
s
u
lt
:=

n
e

w
o
p
*

EN
D;

Gt
ft

Eq
f

:
re

su
lt

:=
r1

gh
t

;
Ge
f

:
re

su
lt

 :
=
e1
th
er
i

ss
f

:
BE
GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
ri
te

 l
n

<
*e

rr
o

r
1n

P

re
d

u
ce

»
)E

N
D

EN

D

{O
f

C
A

S
E

);
EN
D;

Gt
f:

BE

GI
N

CA
SE

p
t
r
2
"
.
c
o
p

OF
St
f*

Se

f
:

re
su
lt

:=

em

pt
y

se
t;

Eq
f

:
re

su
lt

:=

em
pt
y

se
T»

Ce
f.

Ne
qf

:
re

su
lt

:=
le

ft
;

~
Gt
f

:
re
su
lt
 :

= e
1t

ht
r5

Ss

f
:
BE
GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
rl
 t
 e

ln
 (

 »
e

r
ro

r
In

P

re
d
u
ce

M
E

N
D

EN

D

{o
f

C
A

S
E

Jt
EN

D;
Ss
f:

BE
GI
N

CA
SE

pt

r2
*.

co
p

OF

St
£.

Se
£«

Ne
q£

,
Gt
£«

Ge
£»

Eq
£

:
re
su
lt

:-

In
co
mp
at
ib
le

op
er
at
or
s;

ss
£

:
BE

GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
r 1

1
e

ln
(

• e
r
r
o

r
1n

P

re
o
u
ce

M
E

N
O

EN

D

(o
f

C
A

S
E

);
EN

D
;

o
th

er
w

is
e

BE
G

IN
EN

D

EN
D

{O

f
C

A
S

E
}

•
EN

D
E

LS
E

to

p

=
o
r»

»

SO

}
B

E
G

IN

C
A

S
E

p
tr

l*
.c

o
p

O
F

S
t£

:
B

E
G

IN

C
AS

E
p

tr
2

~
.c

o
p

O

F
S

t£

:
re

s
u
lt
:=

e
1

th
e

r;

S
e

£
,

N
e

q
f

:
re

s
u
lt
:=

r1
g
h
t

;
E

q
£

:
D

LG
IN p:
=c
op
y_
no
ae
(p
tr
l)
i

p"
«c
op
 :
=S
e£
»

re
su

lt
:=

ne
wo

p!
EN
D;

Ge
£

:
re
su
lt

l~

un
iv
er
sa
l

se
ti

Gt
£:

BE
GI
N p;
=c
op
y

no
de
(p
tr
l)
;

p"
.c
op
:=
Ne
qi
i

re
su
 I
t:
=n
ew
op
 »

EN
D;

ss

£
:

BE
GI

N
EN

D;
o
th

e
rw

is
e

B

E
G

IN

w
ri
te

 I
n
C

*e
rr

o
r

1n

P
re

o
u
ce

»
)E

N
D

EN

D

{o
f

C
A

S
E

};
EN

D;
S

e
t:

B

E
G

IN

C
AS

E
p
tr

2
~

.c
o
p

O
F

S
t£

»

E
q£

:

re
s
u
lt
:

=
le

ft
 •

S
e£

:

re
s
u
lt

:=

e

it
h
e

r;
G

t£
»

G
e£

f
N

eq
f

:
re

s
u

lt

:=

u
n

iv
e

rs
a
l

se
t

5
Ss

£
:

BE
G

IN

EN
D

;
o

th
e

rw
is

e

B
E

G
IN

w

r1
te

ln
<

'e
rr

o
r

1n

P
re

a
u

ce
*)

C
N

D

EN
D

{o

f
C

A
S

E
};

FN
O;

N
e

q
i:

B
E

G
IN

C

AS
E

p
tr

2
".

c
o

p

O
F

S
t£

«

G
t£

:

re
s
u
lt
:=

le

ft
;

N
eq

£
:

re
s
u

lt
:=

e

it
h
e

r
5

S
e£

»
G

e£
»

E
q£

:

re
s
u

lt

:=

u
n
iv

e
rs

a
l

s
e

t;
ss

£
:

BE
GI

N
EN

D;
o
th

e
rw

is
e

B

E
G

IN

w
r 1

1
e

In
 <

»
e

r
ro

r
1n

P

re
d

u
ce

M
E

N
D

EN

D

{o
f

C
A

S
E

};
EN

D;
E
q
£
:

B
E
G
I
N

C
A
S
E

p
t
r
2
"
.
c
o
p

OF

St
£:

B
E
G
I
N

re
su
lt
:=
ne
wo
p

»
p:
=c
op
y

no
de
(p
tr
l)
;

p"
»c
op
t=
Se
£;

EN
D;

N
e

q
f:

re
s
u
lt
:=

u
n
iv

e
rs

a
l

s
e

t;

S
e£

»
G

e
£
:

re
s
u

It
:=

r1
g

h
T

;
E

q£

t
re

s
u
lt
:^

e

it
h
e

r;

G
t£

:
B

E
G

IN P
: =

 c
o
p
y_

n
o
a
e

<
p
tr

1
);

p~

«c
op

:=
G

e£
 5

re
su

l t
:

=n
e«

io
p

i
EN

D
;

S
sf

:

BE
G

IN

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
r1

1
e

 I
n
(»

e
rr

o
r

1n

P
re

a
u
ce

«
)E

N
D

EN

D

{o
f

C
A

S
L
};

EN
D;

G
e

£
I

B
E

G
IN

C

AS
E

p
tr

2
*.

c
o

p

OF
St
£«

Se
/t

Ne
q£

:
re
su
lt

:=

un

iv
er

sa
l

se
t;

Gt
£t

Eq
£

:
re
su
lt
 :

 =
 l
ef
t;

Ge
f!

re
su
lt
:=

ei
th
er
;

ss
i

:
HE
GI
N

EN
D;

o
th

e
rw

is
e

fa

EG
IN

w

ri
te

 l
n

(
"e

rr
o

r
1n

p

re
d
u
ce

M
E

N
D

EN

D
{o

f
C

A
S

E
};

EN
D;

P
a

g
e

G
t£

:
B

E
G

IN

C
A

S
E

p

tr
2

".
c
o

p

O
F

S
t£

:B
E

G
lN
p
: =

 c
op

y
n
o
d
e

(p
tr

l)
;

p
'.c

o
p
C

=
N

e
q
£
 ;

re

s
u

lt
:=

n
e

w
o

p
;

EN
D;

Se
£

:
re

s
u

lt

:=

u
n

iv
e

rs
a
l

s
e

t;

N
eq

£,

Ge
 £

 :
re

s
u

lt
 :

 =
 r

1g
h

t»
""

E

q
£:

B

E
G

IN
re

s
u

lt
:=

n
e

w
o

p
 >

B:=
co

p
y

n
o
d
e

(p
tr

l)
;

p
"*

co
p

:=
G

e
£

5

;
G

t£
 i

re
s
u

lt
:=

e
1
th

e
r;

ss
£

:
BE

GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w

ri
te

ln
('
e

rr
o
r

1n

P
re

d
u

ce
')E

N
D

EN

D
{o

f
C

A
S

E
};

EN
D;

Ss
i:

BE
GI
N

CA
SE

pt
r2
".
co
p

OF

St
£*

Se
£«

Ne
q£

,
Gt
f*

Ge
f*

Eq
i

:
re

su
lt

:=

in
co
mp
at
ib
le

op
er
at
or
s;

Ss
£

:
BE

GI
N

EN
D;

o
th

er
w

is
e

BE
G

IN

w
ri

te
 l
n

('
e

rr
o

r
1n

P

re
du

ce
')E

N
D

EN

D
{o

f
C

A
S

E
};

EN
D;

o
th

er
w

is
e

BE
G

IN
EN

D

EN
D

{o

f
C

A
S

E
)

;
EN

D;
E
N
D

{o
f

C
A
S
E

kl

=

k2

};

C
A
S
E

r
e
s
u
l
t

OF

em
pt

y
se
t*

un

iv
er

sa
l

se
t:

p:
=N
IL
i

In
co
mp
at
ib
le

op
er
at
or
s'

*
w

r1
te

ln
T

fE
rr

o
r

--

ca
n

t
»t

m

ix

o
p

e
ra

to
rs

')
;

le
ft

.
.
.
.
.

ri
gh
t

ei
th
er

co
mp
os
e

p
:=

co
p

y
n

o
d

e
(p

tr
l)

;
p

:
=
c
o

p
y
~

n
o

d
e

(p
tr

2
)

;
p

:
=
c
o

p
y
""

n
o

d
e

(p
tr

l)
 »

B
E

G
IN

{n
e

w
(

p
o

in
te

r*

ro
p
n
o
d
e

);

U
IT

H

p
o
in

te
r"

DO

B

E
G

IN

ty
p
e

o
fn

o
d
e

:=
ro

p
n
o
a
e

;
d
e

s
c
e

n
d
a
n
ts

:
-2

1

o
p
:=

lo
g
1

c
o
p
;

p
tr

C
 I

D
l=

c
o
p
y

n
o

d
e

(p
tr

l)
J

p
tr

C
 2

]
: =

 c
o
p
y

n
o
d
e

(p
tr

2
)

Et
4D

5
p
:=

p
o
1

n
te

r"

}
EN

D
»

n
e

w
o
p
:

{
a
c
ti
o
n

a
lr
e

a
c
fy

a
c
c
o
m

p
lis

h
e

d

)
E

N
D

(o

f
C

A
S

E
}

;

re
d

u
ce

:=
p

EN

D
{o

f
re

du
ce

)
 ;

PR
O

C
ED

U
R

E
u

tt
e

r(
N

IN
o

d
e

p
o

In
te

r;

R
:

R
e

lln
d

e
x

ty
p
e

;
D

:
D

o
m

ln
ri
e

»
_

ty
p
e

>
;

C
O

N
ST

N

U
LL

=

**
»
;{

to
k
e

n

fo
r

«s
ay

n

o
th

ln
g

'^
ln

p
re

d
ic

a
ti
o
n

p
h

ra
se

s)
1n

c
=

2»

V
AR

1
:

0
..
3
;

(d
e

sc
e

n
d

a
n

ts

c
o
u
n
te

r}
s
im

il
a
r

co
u

n
t*

sa

m
e

co
u
n
t

t
0
*»

m
d
x1

n
t;

n
e

xt

:
T

*»
s

t
ac

km
ax

 i~
E

n
ti

ty
*

P
h

ra
se

:

!.
.?

<
»
;

S
E

na
m

e*

K
el

p
ro

*
c
o
p
h
ra

s
e

tr
e

p

na
m

e
h

o
lo

e
r*

P
E

na
m

e*

In
d
T

c
a
to

r*

E
d
e

yp
h
rs

*
P

rd
p
h
rs

«

at
na

m

:
S

tr
1

n
g
ts

tr
m

a
x
]

5
c
a

s
e

£
:

c
a
s
e

_
ty

p
e

{

PR
O

C
ED

U
R

E
1

n
d

e
n

t(
n

:
In

te
g

e
r

)'.
B

E
G

IN

IF

n
>0

TH

EN

w
rl

te
C

*:

n
)

EN
D

;

PR
O

C
ED

U
R

E
re

p
o
rt

;
B

E
G

IN w
r1

te
ln

('
g
s
u
p
p
re

s
s

=
•«

^s

u
p

p
re

ss
*

'g
se

n
se

=

**
g
se

n
se

>
;

w
r1

te
ln

(*
g

le
v
e

l
=

'*

g
le

v
e

l
*

'g
p

ro
je

c
te

o

o
u

t
=

•*

g
p

ro
je

c
te

d

o
u

t)
;

£M
O

«

B
E

G
IN

U

IT
H

N

"
DO

bE

G
IN

IF

de
bu

g
TH

EN

w
r
1

te
ln

 C
u

tt
e

r
c
a

ll
e

d
*

ty
p

e
o

fn
o

d
e

=

•»

ty
p

e
o

fn
o

o
e

);

CA
SE

T

yp
eo

fn
o

d
e

OF
R

o
p

n
o

d
e

:
B

E
G

IN
g

le
v
e

l
I
=

g
le

v
e

l
*

1n
c«

<

In
d

e
n

t
(g

le
v
e

l)
 »

)
IF

O

p
=

0
rx

TH

EN

*r
1

te
ln

(•
te

1
th

e
r

•)

i

u
tt

e
r

<
P

tr
C

 1
3,

R

*
D

)
;

g
le

v
e

i:
=

g
le

v
e

l-
1

n
c
i

{
In

d
e

n
t
(g

le
v
e

l)
 ;

>
C

AS
E

O
p

O
F

O
rx

:

-r
1

 t
e

ln

<
»

o
r

•)
 ;

A
n

d
x:

IF

p
tr

t2
3
*.

ty
p
e

o
fn

o
a
e

=

pn
oa

e
TH

EN

IF

p
t

rC
 2

3
*>

.p
se

n
se

=

n
e

g
a
ti
v
e

TH

EN
w

r1
te

ln
(

»
b

u
t»

>

E
LS

E

w
r1

te
ln

(«
a
n
d
»
)

EL
SE

w

r1
te

ln
(«

a
n

d
»

);
N

o
tx

:

B
E

G
IN

U

rl
te

ln

<
*b

u
t

it

1s

NO
T

th
e

ca

se

th
a

t
')
!

u
se

n
se

J =

n
e

g
a
ti
v
e

EN
D;

EN

D;

to
t

CA
SE

>
u
tt
e

r(

p
tr

C
2

],

R
,

D
)J

g
le

v
e

i:
=

g
le

v
e

l-
1

n
c
i

g
s
e

n
s
e

:=
p

o
s
1

t1
v
e

i
IF

o
p
=

0
rx

TH

EN

w
r1

te
ln

(*
o

r
b
o

th
)'
)

i
E

N
D

it
o
f

R
op

>

C
o

p
n

o
d

e
:

B
E

G
IN

g
le

v
e

l:
=

g
le

v
e

l+
1

n
c
 i

{N
ou

d
e

c
id

e

u
p

o
n

th

e

a
c
tu

a
l

p
h
ra

se

to

u
se

fo

r
th

e

C
o

m
p

a
ri
so

n

o
p

e
ra

ti
o

n
*

•O
rd

e
re

d
*

m
ea

ns

*d
O

es

th
is

d

o
m

a
in

us

e
th

e

d
e

fa
u

lt

p
h
ra

se
s

('
le

s
s

th
a
n

t
e

q
u
a
l

to
'»

e

tc
.)

o
r

d
o

e
s

1t

us
e

so
m

e
d
o
m

a
in

-s
p
e

c
if
ic

p
h
ra

s
e

o
lo

g
y

s
u
p
p
lie

d

bv

th
e

u

s
e

r*

eg

M
s
*

o
r

f
b

r1
g

h
te

r
th

a
n

*.

O
rd

e
re

d

=
No

->

d
e

fa
u
lt

v
a
lu

e
s
.

O
rd

e
re

d

=
Y

es

->

g
e

t
u

s
e

r-
s
u

p
p

lie
d

v
a
lu

e
s

fr
o
m

OD

)

IF

g
p

ro
le

c
te

a

o
u
t

Af
>iO

<c

op
 =

 N
eq

£)

TH
EN

c
o
ijh

ra
s
e

:=

»
o
th

e
r

th
a

n

•
LL

S
E

IF

g

p
ro

je
c
te

d
~

o
u

t
AN

D

(c
o
p
-e

q
£
)

TH
EN

co

p
h
ra

se

:=

»
1

n
cl

u
d

1
n

y
•

E
LS

L
*

co
p

h
ra

se

:=

D
D

LD
]
 .
0
rd

e
rL

a
ta

.C
o
m

p
P

h
ra

s
e

s
fC

o
p
];

IF

(N
O

T
(g

s
u

p
p

re
s
s
))

TH

EN

w
r1

te
(c

o
p
h
ra

s
e

,*

•)
{

u
tt
e

r(

P
tr

fl
3
»

R

.
0

>
;{

s
h

o
u

L
d

p
o
in

t
to

a

V
a

lu
e

n
o

d
e

)
g

le
v
e

l:
>

g
le

v
e

l-
1

n
c
«

E
N

U
H

o
f

C
o

p
n

o
d

e
}

P
n

o
d

e
:

B
E

G
IN

{
Q
le

v
e

l
:
=

g
le

v
e

l*
1

n
c
 i

>

(
In

d
e

n
t

(u
te

v
e

l
)>

}
FO

R

P
h
ra

se

!=

1
TO

D

e
sc

e
n
d
a
n
ts

DO

B

E
G

IN

E
n
t1

ty
:=

C
a
lc

u
la

te
_

C
rd

e
r

C
P

pe
rn

n
P

h
ra

s
e

,
P

_
T

a
b
le

)
»

u
tt

e
r

(p
tr

tE
n
tl
ty

]
,

R
,

D
>

;

IF

P
h
ra

se

<
D

e
sc

e
n
d
a
n
ts

TH

EN

B
E

G
IN

IF

A
lt

se
n

te
n

ce
sC

P
p

e
rm

,
ph

 r
a

se
 3

.M
a

In

=
NO

TH

LN
P

rd
p

h
rs

:=

A

lt

se
n

te
n

ce
sC

P
p

e
rm

,
p

h
ra

s
e

].
C

a
s
e

p

h
ra

se
E

LS
E P

rd
p

h
rs

:=

A

lt

se
n

te
n

ce
sC

P
p

e
rm

,
p

h
ra

s
e

],
A

lt

p
h

ra
se

sC
P

se
n

se
,

P
n
u
m

b
e

r3
i

IF

P
rd

p
h
rs

=

N
U

LL

TH
EN

P

rd
p
h
rs

:
=

»
•;

W
ri
te

ln
(P

rd
p
h
rs

,•

')

EN
D

EN

D
{o

f
p
h
ra

s
e

-l
o
o
p
,

an
d

P
n
o
d
e

:
)

EN
D

?

E
n

o
d

e
:

B
E

G
IN

IF

d

e
b

u
g

TH

EN

w
ri
 t

e
 I
n
t

• E
nt

 e
r

1n
g

E
n
o
d
e

.
M

i
IF

d

e
b

u
g

TH

EN

re
p

o
rt

*
ys

u
p

o
re

ss
:=

F
A

L
S

E
 i

g
p

ro
je

c
te

d

o
u

t
:=

a
tt
n
u
m

=
Q

i

IF

JD
D

C
e

n
T

d
o

m
a

1
n

_
1

d
].

se
lf

1o
=Y

E
S

)
AN

D
(d

e
sc

e
n

d
a

n
ts

>
0

>

TH
EN

IF

p

tr
C

l3
*.

ty
p

e
o

fn
o

d
e

-
C

op
no

de

TH
EN

IF

p
tr

C
ir
.c

o
p

=
E

q£

TH
EN

y
s
u
p
p
re

s
s

:=

TR
U

E
*

{s
e

e

1
f

th
is

e

n
ti
ty

ha

s
be

en

u
tt
e

re
d

b
e

fo
re

}

sa
«

e
_

co
u

n
t:
=

0
»

s

1
m

1
la

r_
c
o

u
n

t:
 =

 0
i

n
e

x
t

: =

n
Id

n
o
d
e

s
ta

c
k
»
n
f-

1
 i

y
jil

L
E

n

e
xt

>

1
DO

IF

n
1

d
n
o
d
e

s
ta

c
k
.p

o
1

n
te

rs
C

n
e

x
t3

~
.n

o
a
e

1d

=

n
o
d
*

TH
EM

sa

m
e

co
u
n
t

: =

sa
ne

co

u
n

t
*1

EL
SE

1d

ne
xtIF

m

ld
n

o
d

e
s
ta

c
k
.p

o
in

te
rs

C
n

e
x
t]

~
.E

n
td

o
m

a
in

1d

=

TH
EN

s
im

il
a

r
co

u
n

t
:=

s
im

il
a
r

co
u
n
t

*
1?

~

xt

:=

n
e

x
t

-T

~

B
E
G
I
N

En
t
do
ma
1n
_1
d

EN
D;

{g
et

In
di
ca
to
r

ph
ra
se

fo
r

th
is

en
ti
ty
)

IF

a
se

n
se

=

p
o

s
it
iv

e

TH
EM

IF

N

O
T

(g
p
ro

J
ec

 t
e

d

o
u
t)

IF

sa

m
e

co
u
n
t

=~
0

TH
E

IF

d
e

s
c
e

n
d

a
n

ts

>
0

E
LS

E
E

LS
E

{s

a
m

e

c
o
u
n
t

>
0»

IF

d

e
s
c
e

n
d

a
n

ts

>
0

E
LS

E

EL
SE

{a

tt
n
u
m

=

0
}

IF

sa
m

e
c
o
u
n
t

=
0

TH
E

IF

d
e

s
c
e

n
d

a
n

ts

>
0

IF

E
a
e

jr
e

e

=
E

LS
E

E

LS
E IF

E

d
e

g
re

e

=
E

LS
E

E
LS

E

{s
am

e
c
o
u
n
t

IF

d
e

s
c
e

n
d
a
n
ts

IF

E

d
e

g
re

e

=
E

LS
E

E

LS
E

E
LS

E

{
Q

se
ns

e
=

n
e

ya

IF

N
O

T(
 g

p
ro

j
ec

 t
e

a

o
u

t)

IF

sa
m

e
co

u
n
t

=~
0

"'

IF

d
e

s
c
e

n
d
a
n
ts

E

LS
E

E
LS

E

{s
am

e
c
o
u
n
t

IF

d
e

s
c
e

n
d
a
n
ts

E

LS
E

E

LS
E

{a

tt
n
u
m

=

0
}

IF

sa
m

e
co

u
n
t

=
0

TH
EN

IF

d
e

s
c
e

n
d
a
n
ts

>

6
TH

EN

IF

E
d
e

g
re

e

=
on

e
TH

EN

E
LS

E

E
LS

E IF

E
d
e

g
re

e

=
on

e
TH

EN

E
LS

E
E

LS
E

{s

um
e

c
o

u
n

t
>

0,

IF

d
e

s
c
e

n
d
a
n
ts

>

f
IF

E

d
e

g
re

e

=
on

e
E

LS
E

E

LS
E

TH
EN

N
{I
t'
s

a
Pr
ln

TH
EN

In
di
ca
te

In
di
ca
te

so

It
's

no
t

a
TH
EN

In
di
ca
te

In
di
ca
te

TH
EN

cl
pa
l

En
cd
e)

rt
=•
th
e

In
di
ca
te
d

r:
='
th
e

In
di
ca
te
d

Pr
in
ci
pa
l

En
od
e)

r:
='
er
ro
r

1'

r:
=*
th
e

In
di
ca
te
d

on
e

on
e

>
C*

on
e

1 v
e«

ut
) TH
E

>
0

>
o»

>
0

TH
EN

TH
EN It
's

T
H
E
N

TH
EN

SO
}

TH
EN

N
{1

t«

T
H
E
N

so

1t

TH
EN

I n
 a
 1

c
a
t

I
n
o
l
c
a
t

In
dl
ca
t

In
dl
ca
t

no
t

a
P

I n
d1
 c
 a

I n
dl
ca

In
dl
ca

s
a

Pr
1

In
dl
ca
t

In
dl
ca
t

' s

no
t

In
dl
ca
t

In
dl
ca
t

o o 0 0 r t t t n e o a 0 o

r
: =

r
: *

r
:-

r
:-

1
n
d

or

or

or cl
pa

r:
='

r:
 =

»
Pr
1

r:
 =
 •

r:
 =
 '

'a

si
ng
le

'
•a
t

le
.a
st

on
e

»
•a

si
ng
le

«
'a
t

le
as
t

on
e

»
pa
l

En
od
e}

=
'a

si
ng
le

'
=

'a
t

Le
as
t

en
e

=
'a
t

le
as
t

on
e

I
En
od
t>
}

er
ro
r

2
•

th
e

In
di
ca
te
d

•
nc
 1
pa
l

En
ou
e)

an

In
di
ca
te
d'

th
e

In
di
ca
te
d

'

In
d

1 c
at

 o

In
di
ca
te

In
di
ca
te

In
dl
ca
t

o
It
's

no
t

a
Pr

TH
EN T
HE
N

I
n
d
l
c
a
t

I
n
d
l
c
a
t

I
n
d
l
c
a
t

=
'a

n
y

'
=

'a
t

le
a
s
t

on
e

'

=
'a

n
y

r
-

•a
n

y

•
r

=
'a

n
y

'
In

c
lp

a
l

E
n

o
d

e
}

o
r

1=

'a

s
ln

o
le

o
r

:=

't
h

o
s
e

'

or

:=

't
h
a
t

»;

IF

In
d
ic

a
to

r^
'

TH
EN

In

d
1

 c
a
t
o
r

: =
 •

LR
R

uR

—
IF

d

e
b

u
y

TH
EN

w

r1
te

ln
('
p

re
p

a
r1

n
g

to

w

ri
te

IF

N
O

T
(g

su
p
p
re

ss
)

TH
EN

w

r1
te

(I
n
d
1

c
a
to

r)
 ;

No

1
n

d
1

c.
p

h
ra

se

a
s
s
ig

n
e

d
';

In
d
1

c
a
to

r'
)»

S
E

na
m

e
: =

 O
C

C
E

nt
do

m
u1

n
1

d
D

*e
n
t1

ty

s
e

t
n
a
m

e
[s

1
n
y
u
la

r
]»

P

E
na

m
e

:
-D

D
L

E
n
t

do
 m

a
1

n
_

T
d
].
e

n
t
1

ty
_

s
e

 t_
na

m
eC

 p
lu

ra
l

3»

IF

ro
le

C
s
ln

g
u
la

r
D

O
'n

o
n
e

'
TH

EN

bE
G

IN
S

E
na

m
e

:=

S
E

na
m

e
*

'
(a

c
ti
n
g

as

a
•

•»
ro

le

[s
in

g
u

la
r]

+•

>

'i
P

E
na

m
e

:=
P

E
na

m
e

*
•

(a
c
ti
n

g

as

'
•»

ro
le

C

p
lu

ra
l

]
*«

)•

EN

D
»

IF

N
O

T
(g

su
p
p
re

ss
)

TH
EN

w

r1
te

<
S

E
n
a
m

e
,'

')
i

IF

(N
O

T
(g

p
ro

ie
c
te

d

o
u

t)
)

AN
L

(N
O

T
(g

s
u
p
p
re

s
s
))

d

tn
a

m

:=

R
D

C
R

1
*a

tt
r1

 b
u
te

[a
tt
n
u
m

J
.a

n
a
m

e
\

w
r1

te
(•

[
••

a
tn

a
m

,
'3

•)

TH
EN

bE

G
IN

EN
D

i

(h
e

re

w
e

g
e

n
e

ra
te

an

y
Q

u
a
li
fi

c
a
ti

o
n

G

ra
p

h
s*

su

ch

as
•w

h
ic

h

Is

g
re

a
te

r
th

an

5
*0

0
0

an
d

le
s
s

th
an

1
0
*0

0
0

•
o

r
•w

h
ic

h

1s

F
re

n
ch

*
•w

h
ic

h

a
re

o

th
e

r
th

an

F
re

n
ch

*
)

IF

0
0
[D

3
.r

e
p
d
a
ta

.
re

p
re

s
e

n
te

d

=
YE

S
TH

EN

B
E

G
IN

•
re

l_
p
ro

t
=

DO
C

D
D

.r
e

p
d

a
t

a
.r

e
p
n
a
m

e
C

 s
in

g
u
la

r]
 »

re
t

p
ro

J
 =

*w

h
o
se

•

•»
re

l
p
ro

EN

D
E

LS
E

r
e

l_
p
ro

:
=

g
e

t_
re

 l_
p
ro

<
n
o
 m

«
L
)

\

g
le

v
e

l
:=

g
le

v
e

l*
 1

»
In

d
e

n
t

(s
ie

v
e

 I
>

;}

IF

(d
e

s
c
e

n
d
a
n
ts

>

0
)

AN
D

(N

O
T

!
g
s
u
p
p
re

s
s
 »

TH

EN

w
r1

 t
 e

 (
re

l_
p
ro

*
'

*)
!

FO
R

1

:
=

1
TO

d

e
s
c
e

n
d

a
n
ts

DO

B

E
G

IN

IF

d
e

b
u
u

TH
EN

B

E
G

IN

w
r1

te
ln

(
'u

tt
e

ri
n
g

d
e

s
c
e

n
d
a
n
ts

.*
)

EN
D;

u
tt
e

r
«

P
tr

C
1

3
»

R
*

E
n
td

o
m

a
1

n
_

1
d

)
E

N
D

;

IF

g
se

n
se

=

p
o
s
it
iv

e

TH
LN

C

AS
E

E
D

e
g
re

e

OF
e

x
p
o
rt

e
d

:
B

E
G

IN
{h

e
re

we

d
o

n
o
th

in
g

s
in

c
e

we

h
a
ve

a
lr
e

a
d
y

p
u
t

th
e

E

d
e

g
p
h
rs

In

fo
rm

a
ti
o
n

e

a
rl
ie

r*

a
ft
e

r
th

e

q
u
a
li
fy

in
g

yr
a
p
h

fo
r

th
is

e

n
ti
ty

)
EN

D;
on

e
:

B
E

G
IN fd

e
a
p
h
rs

:=
*(

a
n
d

th
is

••»

S

E
na

m
e

*
*

o
n

ly
)

•»

tE
d
e

g
p
h
rs

:=

M

a
n
d

no

o
th

e
r

*
•»

P
E

na
m

e
+

•
)•

;)

EN
D

i
m

an
y

:
B

E
G

IN
E

d
e

g
p
h
rs

:
=

•
(a

n
d

p
o
s
s
lo

ly

o
th

e
r

•
*

P
E

na
m

e*
1)

•;

EN
D;

al
l

Z
BE
GI
N

{p
os
si
bl
e

fu
tu
re

de
ve
lo
pm
en
t)

Ed
eg
ph
rs
 :
=•
 (
an
d

al
l

ot
he
r

*
*

PE
na
me
*

•
)•
»

EN
D;

EN
D

C
ot

C

A
SE

)
E

LS
E

{g

se
n
se

=

n
e

g
a
ti
v
e

*
S

O
)

Q
fG

IN

E
d
e

a
p
n
rs

 :
 =

 »
•

;
EN

D;
U

r1
te

ln
(E

d
e

g
p
h
rs

«
*

•)

C
E

d
e

yp
h
rs

b
lo

c
k

:
)

;

p
u
s
h
(N

*
m

l d
n
o
d
e

 s
ta

ck
)

 t
EN

D;

V
a
lu

e
n
o
d
e

:
w

rl
te

ln
t

V
a
lu

e

.»

•>
;

lo
b
a
l

c
a
s
e

)
g

E
M

O
U

o
f

E
lT

H
)

E
N

O
JC

of

F
U

N
C

T
IO

N

re
d

u
c
e

(

p
tr

lt

p
tr

2
:

n
o

u
e

p
o

1
n

te
r«

lo
ij
U

o
p

:
ro

p
ty

p
e

*
VA

R

re
s
u
lt

:
re

s
u
lt
.t
y
p
e

):

n
o
d
e

p
o
ln

t
e

r
»

(a
tr

l
an

d
p
tr

2

a
re

p

tr
s

to

C
om

po
p

n
o
o
e

s
e

a
ch

o
f

w
h
ic

h

p
o
in

ts

to

a
u
a
lu

e
n
o
d
e

.
M

us
t

a
lr
e

a
d
y

be

1n

c
a
n
o
n
ic

a
l

fo
rm

*)

tf
t

R
s
tr

 1
 n

gC
 s

 t
rm

a
x

3i

P
•

Bi
B

:
n
o
d
e

p
o
ln

te
r;

IT

I
'

-
-
-

iG
lN

C

U
IT

H

p
o
in

te
r*

0
0
)

k
i:
=

p
tr

l^
.p

tr
C

 1
3
".

v
a
lu

e
 ;

(g

e
t

le
ft

an
d

ri
g
h
t

le
a
v
e

s
)

k
2

:=

p
tr

2
*.

p
tr

C
!3

".
v
a
lu

e
 ;

P
:=

NI

L
;

IF

k
l

<
k2

TH

EN
IF

lo

u
lc

o
p

=
a
n
a
x

TH
EN

B

E
G

IN

C
AS

E
p
tr

l*
.c

o
p

O
F

S
t£

:
B

E
G

IN

C
AS

E
p
tr

2
".

c
o
p

O
F

s
tf
*

S
e

/«

N
eq

£
:

re
s
u
lt
:=

le
ft
;

C
re

d
u
ce

to

le

ft
)

G
t£

t
G

e£
.

E
q£

:

re
s
u
lt
:=

e

m
p
ty

_
se

t
*

ss
£

:
BE

GI
N

EK
D;

o
th

e
rw

is
e

B

C
G

lh

w
ri
te

ln
<

*e
rr

o
r

1n

P
re

d
u
ce

*)
E

N
D

«»
••

»

E
N

D

to
t

C
A

S
E

};
EN

D;
S

e
t:

B

E
G

IN

CA
SE

p

tr
2
~

.c
o

p

O
F

S
tf

i
S

e£
»

N
e

q
i

:
re

s
u

l
t

: =
 L

e
ft

;i
C

tf
«

G
e£

»
Eq

£
:

re
s
u

lt

:=

em
p

ty

s
e

tt
S

sf

:
BE

G
IN

EN

D;
o
th

e
rw

is
e

B

E
G

IN

w
ri
t

e
L
n
C

'e
rr

o
r

1n

P
re

du
ce

M
E

N
O

EN

D
C

ot

C
AS

E)
 »

EN
D;

N
e

q
f:

B
E

G
IN

C

AS
E

p
tr

2
~

.c
o
p

OF
S

t£
t

S
e£

«
N

eq
£

:
re

s
u

lt
:=

c
o

m
p

o
s
e

;
G

t£
t

G
e£

»
E

q
f

:
re

s
u
lt
:=

 r
1

g
h
t»

{r
e

d
u
c
e

to

ri
g
h
t

tr
e

e
)

ss
f

:
BE

GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
ri
t

e
L
n
('
e

rr
o
r

1n

P
re

ou
ce

M
E

N
D

EN

D
(o

f
C

A
S

L
i;

EN
D;

E
q
£
:

B
E

G
IN

CA

SE

p
tr

?
".

c
o

p

OF
S

t£
»

S
e

i.

N
e

q
£

:
re

s
u
lt
:=

 l
e

ft
;

G
t£

t
G

e£
t

E
q£

'

re
s
u

lt

:=

em
pt

y
s
e

tt
Ss

f
:

BE
GI

N
EN

D;
o
th

e
rw

is
e

BE

G
IN

w

r1
1e

 I
n
('
e

rr
o
r

1n

P
re

au
ce

M
E

N
O

EN

D
(o

f
C

A
S

E
)}

EN
D;

G
e

£
:

B
E

G
IN

C

AS
E

p
tr

2
".

c
o
p

OF
S

t£
«

S
e£

*
N

e
q
i

G
t£

,
G

e£
«

E
q£

S

s£

re
s
u
lt
 :

 =
 c

om
po

se
 t

re
s
u
lt
 :

 =
 r
1

g
h
t

i
BE

G
IN

EN

D;
o
th

e
rw

is
e

BE

G
IN

w

r 1
te

 l
n
('
e

rr
o
r

1n

P
re

au
ce

M
E

N
D

EN

O

(o
f

C
A

S
t)

«
EN

D;
G

t£
:

B
E

G
IN

C

A
S

E

p
tr

2
".

c
o
p

O
F

S
t£

»
S

e£
t

N
e

q
t

G
t£

«
G

e£
(

E
q

f
re

su
lt:

=
co

m
p
o
se

»

re
s
u
lt
:=

r1
g
h
t

5
BE

G
IN

EN

D;
o
th

e
rw

is
e

BE

G
IN

w

r1
1

e
In

 (
'e

 r
 r
o
r

1n

P
re

ou
ce

M
E

N
D

EN

D
(o

f
C

A
S

E
}*

EN
D;

Ss
f:

BE
GI
N

CA
SE

p
t
r
2
"
.
c
o
p

OF

St
ft

Se
f*

Ne
qi
,

Gt
ft

Ge
fi

Eq
f

:
re
su
lt

: =

1n
co
mp
at
1o
le

op
er
at
or
s;

ss
f

:
BE

G
IN

EN

D;
o

th
er

w
is

e
BE

G
IN

w

rl
 t

e
ln

('
e

rr
o

r
1n

P

re
au

ce
M

E
N

D

EN
D

(o
f

C
A

S
E

}
t

LN
D;

o
t
h
e
r
w
i
s
e

B
E
G
I
N

EN
D

EN
D

{o
f

CA
SE
}

t
EN
D

EL
SE

to
p

=
ox
 ,

SO

}
bE
GI
N

CA
SE

pt
rl
'.
CO
p

OF
St
f:

BE
GI
N

CA
SE

p
t
r
2
"
.
c
o
p

OF
S

e£
«

N
eq

£
G

t£
t

G
e£

*
E.

q£

S
s£

re
s
u
lt
 :

= r
1g

h
tJ

re

s
u

lt
 :=

co
m

 p
os

e
'.

BE
GI

N
EN

D;
o
th

e
rw

is
e

BE

G
IN

w

r1
1e

 I
n
('
e

rr
o
r

1n

P
re

d
u
ce

')E
N

D

EN
O

(o
l

C
AS

E)
 t

EN
D;

S
e
£
:

B
E
G
I
N

CA
SE

p
t
r
2
*
.
c
o
p

DF
St
£«

Se
ft

N
e
q
£

Gt
£«

Ge
£*

Eq
f

Ss
f

re
su
lt
:=
r1
gh
t;

re
su
lt
 '•

 -
co
mp
os
e

*
BE

G
IN

EN

D;
o
th

e
rw

is
e

BE

G
IN

w

r1
 t
e

 l
n
('
e

rr
o
r

1n

P
re

au
ce

M
E

N
D

EN

D
(o

f
C

A
S

E
}!

LN
D;

N
e

q
f:

B
E

G
IN

C

AS
T

p
tr

2
".

c
o
p

OF
S

tt
t

S
e£

*
N

eq
f

G
tf
,

G
ef

«
EQ

£
S

sf

re
s
u
lt

:=

u
n
iv

e
rs

a
l

s
e

t;

re
s
u
lt
:=

le

ft
;

BE
GI

N
EN

D;
o
th

e
rw

is
e

BE

G
IN

w

r1
1

e
ln

('
e

r
ro

 r

1n

P
re

au
ce

M
E

N
D

EN

D
(o

f
C

AS
E)

 ;
LN

D;

2
2

E
q

£
:

B
E

G
IN

C

A
S

E

p
tr

2
~

.c
o
p

O
F

S
tf
f

S
e

/,

N
e

q
f

:
re

s
u
l
t

: =
 r
1

 g
 h

t;

G
tf
,

G
e

£
,

E
q
f

:
re

s
u
lt
:=

c
o
m

p
o
s
e

•

ss
f

:
F;

EG
iN

EN

D;
o
t
h
e
r
w
i
s
e

BE
GI
N

wr
It
e
ln
(•
er
ro
r

In

P

r
e
d
u
c
e
»
)
E
M
O

EN
D

Co
t

C
AS

E)
;

EN
D;

G
e

l:

B
E

G
IN

C

A
S

E

p
tr

2
~

.c
o
p

O
F

S
tf
,

S
e

/i

N
e

q
f

: r
e

s
u

l t
 :

 =
 c

om
po

se
 »

G

tf
,

G
e

t,

E
qf

:

re
s
u
lt
:=

L
e

ft
;

ss
f

:
LE

G
IN

EN

D;
o
th

e
rw

is
e

B

E
G

IN

w
r1

1
e

ln
(

"e
rr

o
r

In

F
re

d
u
ce

»
)E

N
D

EN

D

(o
f

C
A

S
E

)
J

EN
D;

Gt
f:

BE
GI
N

CA
SE

p
t
r
2
*
.
c
o
p

OF
St
£«

Se
£«

Ne
q£

:r
es
ul
t

: =
co
mp
os
eJ

Gt
£t

Ge

£»

Eq
£

:
re
su
Lt
:-
le
ft
5

ss
£

:
BE

GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
r

11
 e

 L
n
('
e

rr
o
r

1n

P
re

d
u
c
e

M
E

N
D

E

N
D

C

of

C
A

S
E

};
EN

D;
S

s
£

:
8E

G
IN

C

A
S

E

p
tr

2
~

.c
o
p

O
F

S
tf
,

S
e

£
,

N
eq

£
,

G
t£

t
G

e£
«

E
q£

:

re
s
u
lt

'•-

In
c
o
m

p
a
ti
b
le

o

p
e

ra
to

rs
;

ss
f

:
BE

GI
N

EN
D;

o
th

e
rw

is
e

bE

G
IN

w

r1
te

 I
n

!'
e

rr
o

r
1n

P

re
au

ce
»>

E
N

D

EN
D

C
ot

C

A
S

E
};

EN
D;

o
th

e
rw

is
e

B

E
G

IN
EN

D

E
N

D

(o
f

C
A

S
E

}
;

EN
D

E

LS
E

t

k1

=
k2

}

IF

lo
o
lc

o
p

=
a
n
d
x

TH
E

N

bE
G

IN

C
A

S
E

p
tr

l~
.c

o
p

O
F

S
t£

:
bE

G
IN

C

A
S

E

p
tr

2
*.

c
o

p

O
F

S
tf
:

re
s
u
lt
 :

 =
 e

1
th

e
r;

S

ef
«

N
le

q£

:
re

 s
u
l t

 :
 =

 I
eT

 t
; ;

G

tf
»

G

e
ft

E
qf

:

re
s
u
lt

:=

em
pt

y
s
e

t*

S
sf

:

B
E

G
IN

EN

D
;

o
th

e
rw

is
e

B

E
G

IN

u
r1

1
e

 l
n

("
e

rr
o
r

1n

P
re

d
u
ce

*)
E

N
D

EN

D
{o

f
C

A
S

E
};

EN
D;

S
e

f:

bE
G

IN

C
A

S
E

p
tr

2
".

c
o
p

O
F

S
tf

:r
e

s
u

lt
:=

ri
y
h

t;

S
e

f:

re
s
u
lt
:=

e
1

th
e

ri

N
e

q
f

rb
E

G
IN

p

t
rl
*
.c

o
p
:=

S
tf
 »

re

s
u

 1
1

:=
n
e

w
o
p
 i

EN
D;

Eq
f

:
re
su
lt
:=
r1
gh
t;

Ge
Z

:B
EG
IN

p
:
=
c
o
p
y
_
n
o
d
e
l
p
t
r
l
)
»

p~
«c
op
:=
Eq
i»

re
su
lt
:=
ne
wo
p;

EN
D;

Gt
f

:
re

su
lt

:=

em
pt
y

se
t;

ss
f

:
BE

GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
r

11
 e

 l
n
(

»
e

r
r
o

r
1n

P

re
d
u
ce

M
E

N
D

E

N
D

{o

f
C

A
S

E
};

EN
D;

N
e

q
f:

B
E

G
IN

C

A
S

E

p
tr

2
".

c
o

p

OF
S

tf
,

N
e

q
f

:r
e

s
u
lt
:=

r1
y
h
t;

S
e

f:

B
E

G
IN

p
:=

co
p
y

n
o
o
e

<
p
tr

l)
i

p
**

c
o

p
:=

S
ti
•

re
s
u
lt
:-

n
e

w
o
p
5

EN
D;

Eq
f

:
re
su
lt

:=

em
pt
y

se
t;

Ge
f:

bE
GI
N

p
: =

 c
op
y

n
o
d
e
(
p
t
r
 1
);

p
"
«
c
o
p
:
=
G
t
f
•

G
tf

:
re

su
lt

:=
ri

yh
t;

ss

f
:

bE
G

IN

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
ri
t

e
ln

<
'e

rr
o
r

1n

P
re

du
ce

M
E

N
O

!
»
•
•
»

*
»

E
N
D

Co
f

C
A
S
E
)
;

EN
D;

E
q
f
:

BE
GI
N

CA
SE

p
t
r
2
-
.
c
o
p

OF
St
f

re
su
lt

I-

em
pt
y

se
t*

Se
f

r
e
s
u
l
t
:
=
l
e
f
t
»

Ne
qf

re
su
lt

1=

em
pt
y

se
tt

Eq
£

:
re
su
lt

:=

eT
th
er
i

Ge
f

:
re
su
lt

:=

le
ft
;

Gt
£

:
re
su
lt

:=

em
pt
y

se
t;

ss
f

:
BE

GI
N

EN
D;

~

o
th

e
rw

is
e

B

E
G

IN

w
ri
te

 I
n
 C

'e
rr

o
r

1n

P
re

o
u
ce

t
)E

K:
D

EN
D

C

of

C
A

S
E

);
EN

D;
G

e£
:

B
E

G
IN

C

AS
E

p
tr

2
~

.c
o
p

OF
S

tf
:

re
s
u
lt

: =

e
m

p
ty

s
e

t}

S
e

ft

B
E

G
IN

p
:=

co
p
y

n
o
a
e

(p
tr

l)
5

p
~

.c
o
p
:=

E
q
f»

re

s
u
l t

:=
n
e

w
o
p
*

EN
D;

Ne
qf
:

BE
GI
N

p:
=c
ap
y_
no
ae
<p
tr
1)
»

p*
»c
op
:=
Gt
£»

re
su
lt
:=
ne
wo
p»

EN
D;

G
t£

i
E

q£

:
re

s
u
lt
 :

 =
 M

g
h
t

»
G

ef

:
re

s
u
lt
:=

e
1

th
tr

;
ss

£
:

BE
GI

N
EN

D;
o

th
e

rw
is

e

B
E

G
IN

w

ri
te

 I
n
C

'e
rr

o
r

1n

P
re

au
ce

«)
E

N
D

EN

D
(o

f
C

A
S

E
Jt

EN
D;

G
t£

:
B

E
G

IN

C
AS

E
p
tr

2
~

.c
o
p

OF
S

t£
«

Se
 £

:

re
s
u
lt

:=

em
pt

y
s
e

t;

Eq
£

:
re

s
u
lt

: =

e
m

p
ty

se

T
»

G
e£

f
N

eq
£

:
re

s
u
lt
 :

 =
 l
e

ft
i

G
t£

:

rc
s
u

lt
:=

e
1
th

e
r;

ss

f
:

BE
G

IN

EN
D

;
o
th

e
rw

is
e

B

E
G

IN

w
r 1

1
e

ln
 (

»e
 r

 r
o
r

1n

P
re

a
u
ce

M
E

N
O

EN

D

Co
1

C
A

S
E

);
EN

D;
Ss
f:

BE
GI
N

CA
SE

p
t
r
2
"
.
c
o
p

OF

St
£«

Se
ft

Nc
qf
.

«
Gt
f«

Ge
f«

Eq
f

:
re
su
lt

'• =

I
n
c
o
m
p
a
t
i
b
l
e

o
p
e
r
a
t
o
r
s
;

ss
f

:
BE

GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
r1

1
e

In
 <

»
e

r
r
o
r

1n

P
re

d
u
ce

M
E

N
D

EN

D

(o
f

C
AS

ED
 i

EN
D;

ot
he
rw
is
e

BE
GI
N

E
N
D

E
N
D

{o
f

C
A
S
E
)

;
EN

D
E

LS
E

{o

p

=
o

rx
,

SO

}
b
E

G
IN

C

A
S

E

p
tr

K
.C

O
p

O

F
S

t£
t

B
E

G
IN

C

A
SE

p

tr
2
*.

c
o

p

O
F

S
t£

:

re
s
u
lt
:=

e
1

th
e

r;

S
e£

»
N

eq
£

:
re

s
u
lt
:=

r1
g
h
t

;
E

qf
 :

B

E
G

IN p
:

=
co

py

n
o
d
e

(p
tr

l)
*

p
".

c
o
p
 1

=
S

e
f•

re

s
u
l t

:=
n
e

w
o
p
«

EN
D;

G
e

f:

re
s
u
lt

:=

u
n
iv

e
rs

a
l

s
e

t;

G
tf
:

B
E

G
IN p
:

=
c
o
p
y
_

n
o
d
e

(p
tr

l)
i

p
^
.c

o
p
^
N

e
q
f;

re
s
u
lt
:=

n
e

w
o
p
i

EN
D;

ss

f
:

BE
GI

N
EN

D;
o
th

e
rw

is
e

B

E
G

IN

w
r1

tt
 l
n
<

"e
rr

o
r

1n

P
re

d
u
ce

»
)E

N
D

EN

D
{o

f
C

A
S

E
}!

EN
D;

Se
f:

BE
GI
N

CA
SE

p
t
r
2
"
.
c
o
p

OF
St
f«

Eq
f

:
re
su
lt
 :

=
le
ff
.

Se
f

:
re
su
lt

:=

ei
th
er
;

Gt
f*

Ge
ft

Ne
qf

:
re
su
lt

:=

un
iv
er
sa
l

se
t!

ss
£

:
BE

GI
N

EN
D;

o
th

e
rw

is
e

B

E
G

IN

w
ri
te

 I
n
t'
e

rr
o
r

1n

P
re

du
ce

*>
E

N
D

E
q£ G
e

i

G
t£ S
s£

E
N

L
to

t
C

A
S

E
.J

;
EN

D
;

B
E

G
IN

C

A
S

E

p
tr

2
~

.t
o
p

01
-

S
t

£
»

G
t

£
:

re
s
 u

 1
 1

 :
 =

L
e

tt
;

f j
e
q

£
!
r
e
s
u
l
t
:
-

e
i
t
h
e
r
*

Se
£

,
Ge
 f

 «

Et
,£

I
r
e
s
u
l
t

:-

un
l

u
e

r
s
a
L_
i

e
t

«
s s

 L
:

E >
: G

 i
N

E N
 D

;
o
th

e
rw

is
e

bE

G
IN

w

r
\
t

e
In

 (
•
e

r
r
o

r
in

P

re
o

u
c
e

M
E

N
D

E

N
D

C

ot

C
A

S
E

)*
.

E
M

j
1

B
E

G
IN

C
A

S
E

p
t

r2
 ~

.c
o
p

UF

S
tf
 :

HE

 G
IN

re
s
u
lt
 :

 -
fi
t-

h
o

p
?

p

: =
 c

 o
 p

 y

n
o
d
e

(p
tr

l)
;

p
"«

c
o
p
:=

S
e

/»
EN

D;
re

s
u
lt
 :

=

u
n
lv

e
rs

c
jl

s
e

t»
G

e
f:

rc
s
,u

l
t
:-

r
1

u
h
T

J
E

q£

:
re

s
u
lt
:-

e

it
h
e

r;

G
ti
 :

B

E
G

IN p
:-

c
o
p
y

n
o
d
e

(p
tr

l)
?

re
 s

u
L

1
1 =

ne
w

op
 ;

E
N

D
;

ss
£

:
B

E
G

IN

LN
D

;
o
th

e
rw

is
e

B

E
G

IN

w
ri
te

 I
n

 (
'e

rr
o
r

in

P
re

d
u
te

M
E

N
D

EN

D

{o
t

C
A

S
E

)?
t_N

D
;

B
E

G
IN

C

A
S

L
p
t
r2

".
c
o
p

OF
S

t/
»

S
e

/»

N
e

q
/

:
re

s
u
lt

:-

u
n
1

v
e

rs
d
l_

s
e

ti

G
t/
t

E
q£

:

re
s
u
lt
:=

L
e

tt
;

S
e
f,

c
op

 -
rG

e
i

»

G
e£

 t

re
s
u
lt
 :

 =

S
s

I
o
th

e
rw

is
e

E

N
D

(o

f
C

A
S

D
i

e
1

1
h
e
r
 ;

b
E
G

1
N

E
N
L

i
P
E
G
I
N

w
r
i
t
e
 I

 fi
 (
'
e
r
r
o
r

1n

p
_
r
e
c
i
u
c
e
»
)
E
N
O

C
A

S
E

p
tr

2
~

.c
o
p

OF

S
t

£
:b

E
G

 I
N (.,

:
-
c
o
p
y
 _
n
o
 d
e

(
p

t
r

1
)

»

EN
D;

B
E

G
1M

FN
U

;
S

e
£
t

re
s
u
lt

I-

u
fi
\v

tr
s
d
l_

b
e

t»

e
q

£
•

G
e

£
:

r
e

s
u
lt
l-
r
ig

h
ti

E
(i

£
:

B
E

G
IN

re
s
u
lt
 :

 -
lie

 w
o

p
»

p
:-

c
o
p
y

n
o
u
e

(p
tr

l)
»

E
NO

 ;

G
t

£
:r

e
s
u
lt
:=

e
1

tf
ie

r»

o
th

e
rw

is
e

E
N

D

{o
t

C
A

S
E

)
i

C
A

S
E

p
t

r2
 ~

.c
o
p

OF

S
t

£
t

L
e

/
,

N
e

q
£

,
G

t£
t

G
e

f,

E
q
f

!
S

s£

:
o

t
he

 r
w

1
if

EN
D

(o
t

CA
SE

)
;

o
t

h
e

r
w

1
se

EN
O

(o

f
C

A
S

E
)

i

:N
L)

(o

t
C

A
S

E

k
l

=
k2

}

;

C
A

S
E

re

s
u
lt

O
F

e
m

p
ty

s
e

t,

u
n
1

v
e

rs
a
l_

s
>

e
t:

1n
 c

 o
w

p
d
F

 1
b

I
e

o
n
e

rd
to

rs

:
w

rl
te

ln
T

'E
rr

o
r

--

bE
G

IN

w
r1

1
e

 I
n
i

»
e

rr
o
r

1n

P
_

re
u
u
te

•)
E

M
U

I
Ki

L
;

b
E

C
1

N

re
s
u
lt

'.
-

In
c
o
m

p
a
ti
b
le

o

p
e

r a
 t

 o
 r

 i
 »

f
E

G
I

N
E

N
L>

J
C

L
G

lN

w
r1

te
ln

(
'e

rr
o
r

in

P
_

re
o
 u

c
t

•
)

EN
D

[i
E

&
I N

EN
D

EN
D;

le
ft

r
1
jh

t
e

it
h
e

r
cu

 m
p

-
c

u
t

y
_n

 o
 a

 e
 (

p
t

r
1

)=
T;

1 L
 »

m
ix

o
p
e

ru
to

rs
M

i

=
C

<H
>y

 _
e

(
p

t
r

?
_

-
c

o
p

y
_n

 o
 d

 e
 (

 p
 t
 r

 1

C
n
e

w
(

p
o
in

te
r,

r

W
IT

H

p
o
in

te
r"

UO

B
E

G
IN

P
ag

e

C
o

t
n

e
w

op
 :

CA
SE

J
;

t
y
p
e

o
fn

o
d
e

:=
ro

p
n
o
d
e

»
d
e

s
c
e

n
d
a
n
ts

:=
2

»
o^
'.
'
lo
gi
c
op
!

pt
rC
 1

 j
: -

 c
op
y

no
oe
(p
tr
l)
;

p
t
r
t
2
]
:
=
c
o
p
y
~
n
o
d
e
<
p
t
r
2
>

EN
L

ac
ti
on

al
re
a3
y

ac
co
mp
l1
 s
he
d

)
p

:=
p

o
 I
n
te

r*

1
EN

D;

re
a
u
ce

 :
 =

 p

EN
D

{o

f
re

d
u
c
e

);

y
h
i

ch
*h

1
ch

*
ho

M

ho
n

C
O

N
ST

m
ax

 r
e

a
l

m
en

um
 a

 x

st
 a

c
k

m
ax

m

a
xv

 a
 I
u
e

s
de

 p
«a

 x

a
t

tm
a

x
m

a
xp

 r
e

u
s

pe
 m

m
 a

 x

dm
 a

x
rn

 a
x

^
9

9
.0

;
{c

h
a

n
g

e

th
is

la

te
r)

2

0
}{

u
s
e

d

1n

m
en

u
ro

u
ti
n
e

s

--

m
ax

c
h

o
ic

e
s

p
e

rm
lt
te

a
)

-
12

{m

ax

d
e

g
re

e

o
f

an
y

re
la

ti
o
n
)

=
12

ye
 s

ne
 g

 a
t

1
v e

p
o
s
it
iv

e

fa
tt
rl
tj
u
te

re

 l
a
 1

1o
ns

 h
 i

p

s
1

n
g

u
la

r
o
lu

ra
l

ex
 p

o
rt

 e
o

on
e

fl
a

ny

a
l

I

en
t

at
 t

en
 t

~
en

t
n

o
m

3
D

]

1
n

af
\

1
m

a
t

e
an

 1
*

a
t

e

b
o
o
L

In
t

re
l

C
ha

5

t
r

ua
 t

r
D

pn
o

de

c
o

pn
 o

de

D
no

d
e

?
n
o
d
e

va

 l
u
e

n
o
d
e

or
 x

3
n
ux

1
0
 t

 X

{m
ax

nj
mo
er

of

pr
ed
ic
at
io
ns

a
re
la
ti
on

co
n

ha
ve
)

{M
us
t

al
wa
ys

be

fa
ct
or
ia
l

of

la
rg
es
t

ba
se

re
ld
tl
on
)

{o
eg
re
e

pe
rm

it
te
d)

{m
ax

nu
mb
er

of

en
t1
ty
/d
om
ai
ns

al
lo
we
d

1n

da
ta

di
ct
io
na
ry

{m
ax

nu
mb
er

of

re
la
ti
on
s

--

ba
se

an
d

de
ri
ve
d

--

al
lo
we
d)

{T
h
e

fo

ll
o
w

in
g

a
re

sy

no
ny

m
s

us
ed

1n

ty

p
e

d
e

fi
n
it
io

n
s

T
he

y
a
re

th

e

e
q

u
iv

a
le

n
t

o
f

u
s
e

r-
d
e

fi
n
e

d

e
n
u
m

e
ra

te
d

ty
p
e

s
.

H
o

w
e

ve
r*

u
n
li
k
e

e

n
u
m

e
ra

te
d

ty
p
e

s
*

th
e

y

ca
n

oe

In
p
u
t

an
d

o
u
tp

u
t

to

fi
le

s
/t

h
e

s
c
re

e
n
*

u
s
in

g

s
ta

n
d
a
rd

re

a
d

an
a

w
ri
te

p
ro

c
e

d
u
re

s
*

w
h

ic
h

sa

ve
s

w
ri
ti
n
g

s
p
e

c
ia

l
I/
O

p
ro

c
e

d
u
re

fo

r
e

a
ch

ty

p
e

(a

t
th

e

e
xp

e
n

se

o
f

a
c
e

rt
a
in

am

ou
nt

o
f

b
u
il
t-

in

e
rr

o
r

c
h
e

c
k
in

g
)

)

=
n

=
1

-
n

=
i

-
u;

=
0

:
=

i

=
o;

=

i ;

=
2;

=

3;
=

o;

=
o;

=

i ;
=

n ; o ; i ; 5«

{f
o
r

fu
tu

re

e
x
p
a
n
s
io

n
)

1 ;

2;

35 o ;

i ;

2
b

i
qt

S
t

i
Se
f

3
t

S
s
f

=
i;

=
2

=
3

=
^

-
£>

-
7

U
P
)

T
Y
P
E
re
su
lt

ty

pe

=
(e
mp
ty

se
t*

un
iv
er
sa
l

se
t*

le
ft
*

ri
gh
t*

ei
th
er
*

co
mp
os
e*

ne
wo
p*

In
co
mp
at
ib
le

o
p
e
r
a
t
o
r
s
)
*

Fi
le

na

me

ty
pe

-
AR
RA
Y

[
1.
.3
23

OF

CR
AR
»

St
Co
TT
yp
e~
=

RE
CO
KD

c
o
u
n
t:

0
.

,2
<»

;
n
a
m

e
s:

AR

 R
A

YC
 1

 «
.2

<»
]

OF

s
tr

1
n
g

[b
0
3
;

EM
D

J
C

h
a
rA

rr
a
v
ty

p
e

=

AR
R

AY
 C

 1
 .

 .
 t
 0

]

OF

c
h

a
r'
,

a
n

im
a

te

ty
p

e

=
1

n
a
n
 1

m
a
te

*.
a
n
Im

a
te

«

n
u
m

b
e

r
T

yp
e

=

s1
n
g
u
 l
a
r.

.p
lu

ra
l!

c
a

s
e

_
t7

p
e

=

n
o

ir
..

o
D

J
".

D
om

 1
 r

id
e

x_
t

y
p

e
=

l*
.a

n
ia

x
;

re
 I

1
n
o
e

x
_

ty
p
e

=

l.
.r

m
a
x
»

c
o
l

In
d

e
x

ty
p
e

=

l.
.d

e
q
m

a
x
*

c
o

ls
~

_
ty

p
e

~

=
R

EC
O

R
D

Nu
m:

co

l
I
n
d
e
x

ty
pe
?

c
o

ls
:

A
R

fT
A

Y
C

co
U

in

d
e

x

ty
p

e
]

OF

In
te

g
e

r'
.

E N
O

;
V

1
s
1

t_
c
o
u
n
t_

ty
p
e

=

0
..

1
2

.

a
tt

1
n
a
e

x
ty

p
e

p
e

ri
_

t
y
p
e

"
L

d
e

g
re

e
_

t
yp

e

=
l.
.d

ti
r
r
d
X

i
-

1
••

P
e

rm
m

a
x

*
=

e
x
p
o
rt

e
d

..

a
ll
;

m
en

u
C

h
o

ic
e

ty

p
e

=

O
..
m

e
n
u
m

a
xj

m

e
n

u
~

ty
p

e

=~
R

LC
O

R
D

Ch
oi
ce
s

:
me
nu

Ch
oi
ce

ty

pe
.

Op
ti
on
s

:
AR
RA
Y

[
me

nu

Ch
oi
ce

ty
pe
]

OF

st
rl
ng
C

E N
O ;

2
;

p
ta

b
le

ty

p
e

-

AR
R

AY

[
1

..
2

4
*

1
..

 t

3
OF

In

te
g
e

r*
.

p
ro

_
t

a
b

F
e

_
t y

 p
e

=

AR
R

AY

[
1n

an
1m

«j
 t

e
 .
.

an
 1

 m
a
te

 »

n
o
m

..
0
b
j]

CF

s
tr

1
n

y
C

6
G

]5

y
e

s
n
o
_

ty
p
e

=

no

••

ye
s

J

e
re

a

re

a

ll

th
e

ty

p
e

d
e

fi
n
it
io

n
s

re
la

ti
n
g

to

th
e

RT

a
p
p
a
ra

tu
s
)

n
o
d
e

p
o
ln

te
r

=
"n

o
d

e
?

n

o
d

e
_

1
d

_
ty

p
e

=

O
..
m

a
x
1

n
tl

p
o

ln
te

rs
ta

c
k

=
R

EC
O

R
D

n
f

:
1

..
s
to

c
k
 m

ax
?

p
o

in
te

rs

:
AR

R
AY

C

1
EN

D;
n

o
d

e
ty

p
e

=

ro
p

n
o

ti
e

..

v
a

lu
e

n
o

d
e

?

s
e

to
fn

o
d
e

 t
y
p
e

s

=
SF

T
O

F
n
o
d
e

ty
p
e

;
s
e

to
tc

h
a

r
-

-
"

nc

r
op

 t
 y

 p
e

=
o
rx

,

c
op

 t
 y

pe

=
Ne

 q
 L

-
SE

T
O

F
c
h
a
ri

no
 t

x

OF

n
o
d
e

p
o
ln

te
r;

S
e

n
s
e

_
ty

p
e

=

n
e

g
a
ti
v
e

••

p
o
s
it
iv

e
!

p
h

ra
s
e

ty

p
e

=

R
EC

O
R

D
~

M
a

in
:

y
e

s
n

o
_

t
y
p

t
!

C
AS

E
M

o
1

n
:y

e
s
n

o

ty
p

e

O
F

n
o

:
(

C
as

e
p

h
ra

s
e

:

S
tr

in
g

y
e

s
:

(
A

lt

p
h

ra
s
e

s

:
A

K
R

A
Y

LS
en

se

ty
p
e

*
n
u
m

b
e

r
ty

p
e

]
O

F
S

t
EN

D;
S

en
 t

 e
n

ce
_

 t
 y

p
t

=
AR

R
AY

[

l.
.a

e
^
m

a
x
]

OF

p
h
ra

s
e

_
ty

p
e

.

n
o
d
e

=

R
E

C
U

^D
c
le

it
c
n
d
a
n
ts

:

l«
.d

e
<

jm
a
x»

(n

u
m

b
e

r
o

f
p

o
in

te
rs

n
o
t

N
IL

)
p

tr

:
A

hK
A

Y

C
l*

*u
e

y
m

a
x
D

CF

n
o
a
e

p
o
ln

te
r.

ty
p

eo
tn

o
ae

:

n
o

ae
ty

p
e;

CA
SE

ty

p
eo

fn
o

d
eZ

n
o

d
et

yp
e

OF
ro

p
n

o
d

e
co

pn
od

e

pn
oa
e en

od
e

40
p:
ro
pt
yp
e)
J

(c
op
Cc
op
t
yp
e»

cd
ey
re
e:

id
eg
re
e

ty
pe
!

>
(P
re
a

Id

:
l»
«r
ma
x~
;

(u
ni
qu
e

pr
ed
ic
at
io
n

Id
en
ti
fi
er
)

pp
eF
m

:
Pe
rm

ty
pe

»
(w
hi
ch

pe
rm
ut
at
io
n

1t

1s
)

pr
ed

ty
pe

:
en
f

at
t*
*e
nt

en
ti

(s
om
e

pr
ed
ic
at
io
ns

of

"
~

~
de
gr
ee

tw
o

ar
e

en
ti
ty
/

at
tr
ib
ut
e

on
es
)

ps
en
se

:
Se
ns
e

ty
pe
!

pn
um
be
r

:
si
ng
ul
ar

••

pl
ur
al
*

Al
t

se
nt
en
ce
s

:
AR
RA
Y

Cp
er
m

ty
pe
]

OF

Se
nt
en
ce

ty
pe
)?

a1
1

nu
m

E

nt
 d

om
aI

n
du

m
m

y
e

d
e

u
re

e

no
de

Id

ro

l e
~

t
rim

m
ed

sh

o
rt

d
e

s
c

v
a
lu

e
n

o
d

e
:

lv
a
lu

e
 1

s
tr

ln
g

t8
0

E
N

D
;

{o
f

"n
o

d
e*

}

..

de
gm

ax
t

(
a
tt
ri
b
u
te

d

:
oo

m
ln

de
x

ty
p
e

;
{d

o
m

a
in

ye

sn
o

ty
p
e

;"

e
d
e

g
re

e

ty
p
e

;
no

de

1
d
~

ty
p
e

«

AR
R

AT

['N

u
m

b
e

r
ty

p
e

3

OF

ye
sr

io

ty
p
e

;
s
tr

ln
g
C

e
n

ti
ty

o

f
th

is
re
fe
rs

to
}

ar
gu
me
nt
}

s
tr

1
n
g
[8

C
3
;

{T
h

es
e

ar
e

th
e

d
at

a
D

ic
ti

o
n

a
ry

ty

p
es

*h

1c
h

h

o
ld

In

fo
rm

a
ti

o
n

ab

o
u

t
ta

ch

re
la

ti
o

n

—

b
o

th

B
as

e
re

la
ti

o
n

s

an
d

d
e

ri
v
e

d

re
la

ti
o

n
s

--

an

d
ea

ch

do
m

ai
n

—

n
o

te

th
a
t

D
om

ai
n

1s

sy
no

ny
m

ou
s

w
it

h

e
n

ti
ty

as

fa

r
as

re

v
e

rs
e

tr

a
n

s
la

ti
o

n

Is

co
n

ce
rn

e
d

.}

a
tt
H

d
rt

y
p
e

=

RE
CO

RD
an

am
e

:
s

A
tt
d
o
m

a
ln

1o

EN
D;

l.
.d

m
d
x
»

{l
o
c
a
ti
o
n

o
f

do
m

ai
n

1n

d
a
ta

d
ie

t}

rn
d

rt
y
p

e

=
RE

CO
RD

R

na
m

e
R

d
e

g
re

e

K
ey

c
o
ls

R

pe
rm

a
t
tr

ib
u
te

p

re
d
s

D
tr

EN
D;

1
..
2
4

!
co

ls

ty
p

e
;

P
er

m

ty
p
e

;
A

R
R

A
T

C
1.

.2
4]

OF

a
tt

H
d

rt
y
p

e
't

1*
.m
ax
Pr
ed
s;

{e
ve
ry

re
la
ti
on

ha
s

at

le
as
t

on
e}

AR
RA
Y

Cl
.
.m
ax
Pr
ed
sJ

OF

no
de
po
ln
te
ri

Oa
mD
1c
ty
pe

RE
CO
RD

en
tl
t:

an
im

at
e

va
lu

e
S

e
lf

ID

:
AR

R
AY

C

n
u
m

b
e

r.
ty

p
e

D

OF

s
tr

1
n
g
[8

0
3
i

In
a
n

im
a
te

••

a
n

im
a
te

*
ye

sn
o

_t
yp

e»

re
p
d
a
ta

:

RE
CO

RD
re

p
re

s
e

n
te

d

:
ye

sn
o

ty
p

e
;

CA
SE

re

p
re

s
e

n
te

d

:
ye

sn
o

ty
p

e
OF

no
:

c
>;

ye

s:

(
re

pN
am

e
:

AR
RA

Y
C

s
in

g
u
la

r
E

N
D

;
(o

f
re

p
d
a
ta

re

c
o
rd

}

R
an

g
ed

at
a

:
RE

CO
RD

d
at

at
yp

e
:

B
oo

l
..

d
at

*
CA

SE

d
a
ta

ty
p

e
:

B
oo

l
..

d
at

OF

B

o
o

l*

C
ha

t
S

tr

:
<

>»
re

l
:

(r
ir

ln
*

rm
ax

:

R
E

A
L)

;
In

t
:H

m
1n

«
1m

ax

:
In

te
g

e
r

)
C

N
D

K
o

f
R

an
g

ed
at

a
re

co
rd

}

o
ra

e
rd

a
ta

:

RE
CO

RD
o

rd
er

ed

:
ye

sn
o

ty
p

e
;

co
m

pp
hr

as
es

:

AR
RA

Y
C

N
e

q
f.

.S
s
£
]

OF

st
r1

n
<

jt
80

D
;

EN
D

;
{o

f
o

rd
e

ro
a
ta

}

v
a
lu

e
s
e

td
a
ta

:

RE
CO

RD

L
im

it
e

d

:
ye

sn
o

ty
p

e
;

CA
SE

L
lm

1
te

d
:~

ye
sn

o
_

ty
p
e

OF

no
:

c
);

p
lu

ra
l]

UF

st
r1

n
g
C

6
0
3
>

;

Pa
ge

28

ye
s:

<

va
lu

es

:
RE

CO
RD

co
un

t
:

l«
«m

ax
 v

a
lu

e
s*

S

tr
in

g
*

:
AR

RA
Y

C
1

. .
m

ax
va

 lu
es

 3
OF

s
tr

in
g

Cf

aO
]

J
EN

D
;

{o
f

va
lu

es

re
c
o

rd
))

*
EN

D
i

{o
f

v
a
lu

e
s
e

td
a
ta

)

EM
O

.C

o
f

R
EC

O
R

D
)

ra

ty
p
e

=

AR
RA

Y
C

l.
.r

m
a
x
]

OF

rh
d
rt

y
p
e

;
d

d
^t

yp
e

=

AR
RA

Y
C

l..
d
m

a
x5

OF

D

om
O

U
ty

p

(e
n

d

o
f

TY
PE

d

e
fi

n
it

io
n

s
}

yp
e

i

VA
R gs

en
se

:

se
ns

e
ty

p
e

;
{f

o
r

c
o

n
tr

o
ll
in

g

d
et

er
m

i
g

su
p

p
re

ss
!

b
o

o
le

an
*

{f
o

r
su

p
p

re
ss

in
g

u

tt
e

ra
n

c
an

d
re

la
ti

v
e

pr

on
ou

ns

w
he

s
e

lf
-I

d
e

n
ti

fy
in

g

an
d

th
e

re
g

le
v
e

l
:

0
••

24

;
{c

o
n

tr
o

ls

In
d

e
n

ta
ti

o
n

d

ep
th

g

p
ro

le
c
te

d

o
u

t:

b
o

o
le

an
*

{c
o

n
tr

o
ls

co

m
p

ar
is

o
n

a

tt
 r

1b
u

te
_n

am
es

:

S
tC

o
lT

yp
e*

o

p
e

ra
ti

o
n

:

ch
ar

;
co

ls

:
co

ls

ty
p

e
;

m
ld

no
de

s
ta

ck
 *

le
ft

n
o

d
e

s
T

a
c
k
t

ri
g

h
tn

o
d

e
s
ta

c
k

s

.
:

s
tM

n
g

C
a

o
};

{g

e
n

e
ra

l
pu

rp
os

e
s
tr

i
P

_
ta

b
le

ty

p
e

;
P

ro

ta
b

te

ty
p

e*
In

te
g

e
 r

*
{"

"r
ow

an

d
co

lu
m

n
In

d
e

lo
a
d
in

g

ta
b
le

s

}
0

••

n
a

x
ln

t;

{l
o
o
p

c
o

n
tr

o
l

va

BO
O

LE
AN

;
m

en
u

C
h
o
ic

e

ty
p
e

;
{h

o
ld

s

u
se

r
rd

ty

p
e

*
~

d
d
~

ty
p
e

;
In

te
g

e
r*

{n

e
x
t

fr
e

e

lo
c
a
ti

o
n

In

dd

}
:n

o
d

e_
1d

_t
yp

e
•

TE
XT

*

C
o
u
r

a
ll-

p
u
rp

o
s
e

F

1
le

_
n

a
m

e
_

ty
p

e
»

na
nt

ph
ra
se
s}

e
of

en
ti
ty

na
me
s

n
th

e
e

n
ti

ty

1s
ar

e
va

lu
es

p

re
s
e

n
t}

o
f

RT

p
h

ra
se

s}
p

h
ra

se
s}

:
po
in
te
rs
 t
ac

k
i

ng

ho
ld
er
}

x
v

a
ri

a
b

le
s

fo
r

ri
a
b

le
}

's

m
en

u
c
h
o
ic

e
}

fi
le

v

a
ri

a
b

le
}

p
ta

b
le

pr

o
ta

b
le

ro

w
?

c
o

l

I de
bu

g
0 RO dd rd

n
ft

dd

nf
n

ex
t_

n
o

d
e_

1
d

F f
na

m
e

:
M

a1
n_

m
en

u«
O

ps

m
en

u*
d

at
at

yp
e_

n
en

u
:

R D

{£
P

}
{'R

O
C

E
O

U
R

E
S

}

FJ
N

C
TI

O
N

ge

tn
am

e
(V

AR

l:
ln

te
g

e
r»

s
i:

s
tr

1
n

g
[B

O
 3

 ;
le

g
a
Is

:s
e

to
fc

h
a
r)

1
s
tr

1
n

g
C

8
0
3
*

VA
R

s2

:
s
tr

ln
g

C
b

O
];

ch
 :

ch
ar
»

BE
GI
N

WH
IL

E
(s
ub
st
r(
sl
«

1(
l)
 =
 t

*
>

DO

1:
=

1*
1»

s2
:=
»»
; c
h
:
=
u
n
s
t
r
<
s
u
b
s
t
r
(
S
l
«
1
*
l
»
;

JH
IL

E

ch

IN

le
g

a
ls

DO

B

EG
IN

s2

:
=

S2

ts
u

b
s
tr

(s
i«

1
*

1)
»

1:
=

1*
1»

c
h

:=
u

n
s
tr

(s
u

b
s
tr

(s
l«

1
«
1
)

)
EN

D*

m
en

u_
t
yp

e
;

I
re

ll
n

d
e

x

ty
p

e*

!
d

o
m

ln
d

ex
^t

yp
e;

{d
ui

rm
y

v
a
ri

a
b

le

fo
r

In
it

ia
l

c
a

ll

of

u
tt

e
r}

e
tn

a
n

e
:=

s2

*
ND

;
I F

JN
C

T
IO

N

g
e

t
op

to

k
e

n
i

s
:

st
VA

R
1

:c
o

p
ty

p
e

*~
BE

G
IN

co
p
ty

p
e

•

IF

s
=

•<
•

IF

s
r

t<
 =

 »
IF

s

s
•<

>
•

IF
s

=
»

=
»

IF

s
=

•>
=

•
IF

s

=
•>

•

TH
E

N

TH
E

N

TH
E

N

TH
E

N

TH
E

N
TH

EN

1 1

Set

op

to
ke

n

I-

1
*

T
o

f~
Q

et
_o

p

to
ki

FU

N
C

TI
O

N

g
et

_a
tT

_n
u

i

=
S

t£

E
LS

t
=

S
e

f
EL

SE
=

N
eq

£
E

LS
E

=
fq

?

E
LS

E
=

G
e

f
E

LS
E

=
G

tf

E
LS

E
=

o;
to

ke
n

}
"

nu
m

(
s
i

:s
tr

1
n

g
C

8
0

3
;

r
:

V
AR

~

""
1
M

n
te

g
e

r»

fo
u

n
d

:
b

o
o

le
an

*
s2

:
st

r1
n

<
j[

60
Jt

ra

e
y

ll

..

B

£G
IN 1
:=

i;

fo
u

n
d

:=
F

A
L

S
L

;

P
a0

e
29

rd
e

g
:=

rd

C
rD

.
rd

eg
re

e
*

W
H

IL
E

(1

<=

ra
e

g
)

AN
D

<
N

O
T

(f
o

u
n

a»

00

B
EG

IN
s2

:=

rd

C
r
l.

a
tt

rl
b

u
te

t
1

].
a

n
a

n
e

 »
s
2
:=

T
R

IM
(

S
2
)»

s
2

:=
L

T
R

IM
<

s
2

>
;

fo
u

n
d

:=

<s
l=

s2
>;

IF

N
O

T
(f

o
u

n
d

)
TH

EN

M
~

1

*
1

EN

D
;

IF

N
O

T
(f

o
u

n
d

)
TH

EN

1:
=

0
;

8et

a
tt

nu

m
:=

1
;<

o
f

g
e

t_
a
tt

)

FU
N

C
TI

O
N

g

et

re
la

ti
o

n

nu
m

(
rn

a
m

e
:s

tr
ln

g
C

B
0

]
>

:r
e

l1
n

d
e

x

ty
p

e
;

VA
R

1
:

re
ll

n
d

e
x

ty

p
e

!
s

:
s
tM

n
a

c
a

m
;

fo
u

n
d

:b
o

o
l e

an
;

B
iG

IN
rn

am
e

: =

T
R

IM
(r

n
am

e)
J

rn
am

e
:=

LT

R
IM

C
rn

am
e>

»
1

:=

1
*

fo
u

n
d

:=

fa
ls

e
i

W
H

IL
E

(1

<
ra

n
t)

AN

D
(

N
O

T
(f

o
u

n
a)

)
DO

B

EG
IN

s

:=

rd
C

1
3.

rn
am

e
5

s
:=

 T
R

IM
<S

);
S

:=

L
T

R
lM

(s
 >

»
fo

u
n
d

:=

(r
n

a
m

e

=
s
)i

IF

N
O

T
fo

u
n

d

TH
EN

1

:=

1
*

1
E

N
D

;
IF

N

O
T

fo
u

n
d

TH

E
N

1

:=
O

J

EV
D; Set

re

la
ti

o
n

nu

m
:=

1

r
-

F
U

N
C

T
IO

N

g
e

t
d

o
m

a
in

nu

m
(

d
n
a
m

e
:s

tr
ln

g
t8

0
3
):

d
o
m

1
n
a
e

x

ty
p

e
;

V
A

R

1
:

a
o

m
ln

d
e

x

ty
p

e
;

~

fo
u
n
d
 t
b

o
o

le
a

n
;

s
I

s
t
r

1n
^C

 8
C

D
;

B
iG

IN 1:
=

i;

fo
u

n
d

:=

fa
ls

e
;

d
n

ar
o

e:
=T

R
IM

(d
n

am
e)

•
dn

am
e

: =
 L

TR
IM

 (
an

 a
 m

e)
;

W
H

IL
E

(1

<
d

d
n

f)

AN
D

(!M
O

T(
fo

un
cJ

M

DO

B
EG

IN

s
: =

dd
[

1
3.

en
 1

11
y

se
t

na
m

eC
 s

 In
g

u
la

rD
 •

s
:

= T
R

IM
(s

);

s:
=

L
T

R
IM

(s
)

;
fo

u
n

d

:=

(d
na

m
e

=
s)

 •
IF

NO

T
fo

u
n

d

TH
LN

1

:=

1
*

1
EN

D
;

IF

NO
T

fo
u

n
d

TH

EN

1
:=

0
;

Se
t

d
o

m
a

in

nu
m

:=

1
;

~

FU
N

C
TI

O
N

F

ou
nd

In

<
x
:C

o
l

In
d
e

x
ty

p
e

*
Y

lC
o

ls

ty
p

e
T

:
B

O
O

LE
A

N
;

VA
R

It
C

o
l

In
d

ex

ty
p

e
*

B
E

G
IN Fo

un
d

1n
: =

 F
A

LS
E

;
FO

R
1T

=1

TO

Y
.n

um

DO
IF

V

.C
o

ls
C

I3
=

X

TH
EN

F

o
u
n
d

1
n
:=

T
R

U
E

i

P
R

O
C

E
D

U
R

E

L
o
a
d

M
e

n
u
(

VA
R

F
:

T
E

X
T

*
VA

R

M
tM

en
u

T
yp

e
)

t
BE

G
IN

W
IT

H

M
DO

S:
GI

N C
ho

ic
es

 :
= o

 ;
W

H
IL

E
NO

T
E

O
F

(F
)

DO

B
EG

IN

R
ea

d
ln

(F
t

O
pt

 1
on

sC
C

ho
U

es
 D

)i

C

h
o

1c
es

:=

C
h

o
1c

es
*l

t
EN

D;

EM
D;

E
N

D
;

(o
f

Lo
ad

M

en
u)

FU
NC

TI
ON

 F
ac

to
r i

a
i (

N
: I

NT
EG

ER
):

IN
TE

GE
R;

IF

N
=
D

TH
EN

Fa
ct
or
ia
l

1 =
 1

EL
SE

Fa
ct
or
ia
l
:=
N*
Fa
c
to
r
la
l(
N-
l)
 ;

EN
D;

P
ag

e
30

FJ
N

C
TI

O
N

Co

py

no
de

(
M

N
o

ae
p

o
ln

te
r

>:

N
o

d
ep

o
in

te
r*

VA

R
P

:
N

o
d

ep
o

ln
te

r*
i

:
0.

.2
4;

3E
G

IN

IF

D
eb

ug

TH
EN

Jr

1t
el

n
<«

C
o

p
y_

n
o

d
e

C
a
ll
e

d
.*

);

CA
SE

N

*.
T

yp
eo

fn
o

d
e

OF

R
op

no
de

.
Ne

ti
(P

*
R

op
no

oe
)

»

C
op

no
de

:
N

ew
(P

*
C

op
no

de
)5

Pn
oa

e1
N

ew
<P

*
P

no
de

);

en
oa

e:
N

ew
fP

*
E

no
de

);

V
al

ue
no

de
: N

ev
tP

«
V

al
u

en
o

d
e)

*
EN

D
;

(o
f

C
A

SE
)

P~
:=

N
~;

M
1T

H
N*

DO

BE

GI
N

FO
R

i:
=

1

TO

de
sc

en
da

nt
s

DO

p
*.

p
tr

C
1
3

:=

co
py

_n
od

e
<

p
tr

M
])

»
E

N
L
;(

U
IT

H
)

C
op

y
no

de

:=

P»

C
N

D
i

T
o

t
C

op
yN

od
e)

FJ
N

C
TI

O
N

C

a
lc

u
la

te

O
rd

er

(P
er

m
u

ta
ti

o
n

*
A

rg
um

en
t:

IN

TE
G

ER
;

P:

P
Ta

bl
e

T
yp

e)
:

IN
TE

G
ER

;
B

iG
IN

""

~
C

a
lc

u
la

te
_
0
rd

e
r

:=

P
C

P
er

m
ut

at
lo

n*
A

rg
um

en
t3

»
EN

D
;

{o
f

C
a
lc

u
la

te

o
rd

er
)

{t
h

is

m
us

t
be

m

o
d

if
ie

d

so

th
at

1t

c
o

rr
e

c
tl

y

re
tu

rn
s

th
e

o
rd

er

fo
r

a
re

la
ti

o
n

*
of

an

y
de

gr
ee

*
no

t
ju

s
t

of

de
gr

ee

!•
•<

»
as

It

do

es

no
w

)
PR

OC
ED

UR
E

P
au

se
;

V
AR

C
:

C
h

a
r;

B
E

G
IN w

r
11

 e
ln

 i
R

E
A

D
LN

;

U
r1

te
(

C
h

r(
7)

>;

w

H
te

ln
;

tfR
IT

E
(

'P
re

s
s

RE
TU

RN

to

co
n

ti
n

u
e:

•

)
i

RE
AD

<

C
)

;
E

M
D

U
o

f
P

au
se

)
PR

O
C

ED
U

R
E

S
ho

y
M

en
u

4
M

:
M

en
u

ty
p

e
);

W

AR
I

:
O

..M
en

uM
ax

;
S

:
st

rl
n

sC
&

O
];

B:
GI

N
W

rl
te

ln
;

W
IT

H

M
DO

B

EG
IN FO

R
I

:=

0
TO

C

h
o

1
c
e

s
-l

00

B

E
G

IN
S

:=

O
p

ti
o

n
s

C
I

3
;

U
r1

te
ln

tl
:3

*S
);

EM

D
EN

D;
•J

rl
te

ln
;

EN
D

*
{o

f
S

ho
w

.M
en

u)
FU

N
C

TI
O

N
 n

ap

(p
no

de

:
n

o
d

e)
:

P
er

n
Ty

pe
;

CD
US

T
m

ax
pe

ra
s

=
24

«

VA
R

I.

k
:

0
..

m
ax

ln
t;

co
ls

:

AR
RA

Y
[l

..
d

e
u

m
a
x
]

OF

in
te

g
e

r;
ro

w
*

co
l

:
l.
,m

d
*1

n
t»

fo
un

d
:

O
.«

ff
la

x1
nt

;
{

If

a
re

la
ti

o
n

's

a
tt

ri
b

u
te

s

ha
ve

a

on
e

fo
r

on
e

re
la

ti
o

n
s
h

ip
u

it
tt

th

e
e

n
ti

ti
e

s

o
f

a
o

re
d

i c
at

 1
on

(
th

en

th
is

fu

n
ct

io
n

P
ag

e
3
1

w
O

ul
dn

*t

be

n
ec

es
sa

ry
*

H
ow

ev
er

*
w

he
n

*
re

la
ti

o
n

ha

s
m

or
e

a
tt

ri
b

u
te

s

th
an

a

p
re

d
ic

a
ti

o
n

ha

s
e

n
ti

tl
e

s
*

or

vi
ce

ve

rs
at

th

en

we

m
us

t
MA

P
th

e
p

er
m

u
ta

ti
o

n

o
f

th
e

re
la

ti
o

n

In
to

io
n

to
?

)
th

a
t

of

th
e

p
re

d
ic

a
ti

o
n

*

Fo
r

ex
am

pl
e«

co

n
si

d
er

th

e
re

la
ti

o
n

R

l*

w
it

h

a
tt

ri
b

u
te

s

A
an

d
b.

It

us

ed

to

ha
ve

an

a
tt

ri
b

u
te

C»

bu

t
th

is

w
as

p

ro
je

c
te

d

o
u

t*

If

Me

pe
rm

ut
e

R
l«

ho

w
ar

e
we

to

pe

rm
ut

e
It

s

p
re

d
ic

a
ti

o
n

?

R
(b

ef
o

re

p
ro

je
c
ti

o
n

)
A

B
C

P
La

Co

EC

It
*s

ea

sy

to

se
e

th
at

th

e
re

la
ti

o
n

's

p
er

m
u

ta
ti

o
n

w

il
l

be

th
e

p
re

d
ic

a
ti

o
n

's
.

bo
w

co

n
si

d
er

Rl

A

B
(

R
l

<-

R
X

tA
.B

]
»)

w

it
h

p

re
d

ic
a
ti

o
n

P

Ea

Eb

(E
c)

If

we

p
e

rm
u
te

R

lt

R2

<
-

R
l

XX

C
B

«A
]

ho
w

s
h
o
u
ld

we

*u

t ;
te

r»

It
s

p
re

d
ic

a
ti

o
n

f-

?

P
Eb

(E

c)

Ea

?
o

r
P

Eb

Ea

lE
c)

?

o
r

P
(E

c>

Eb

Ea

?
S

h
a
ll

we

ad
op

t
a

ru
le

th

at

sa
ys

*
pu

t
a
ll

pr
o

je
c

te
d

-o
u

t
e

n
ti

tl
e

s

a
t

th
e

en
d?

(l

e
t

ch
oo

se

o
p

ti
o

n

2
ab

ov
e)

?

An
d

If

th
er

e
Is

m

or
e

th
an

on

e
p

ro
le

c
te

d
-o

u
t

e
n

ti
ty

*
1n

w

ha
t

o
ra

e
r

s
h

a
ll

we

u
tt

e
r

th
em

?

An
d

co
n

si
d

er

th
e

o
p

p
o

si
te

pr

ob
le

m
:

th
e

re
la

ti
o

n

w
it

h

s
e

v
e

ra
l

p
re

d
ic

a
ti

o
n

s
*

eg

R
A

B
C

P
I

Ea

Eb
P

2
E

b
EC

B
iG

IN

W
IT

H
pn

od
e

00

BE
G

IN

{W
e

s
h

a
ll

ch
os

e
fi

rs
t

pp
er

m

su
ch

th

at

ea
ch

a
c
ti

v
e

en

od
e

(t
h

o
se

co

rr
es

p
o

n
d

in
g

to

e

x
is

ti
n

g

-•

n

o
n

-p
ro

je
ct

ed

--

a
tt

ri
b

u
te

s
)

1s

u
tt

e
re

d

b
ef

o
re

an

y
in

a
c
ti

v
e

en

o
ae

.)

k:
 =

c;

IF

de
bu

g
TH

EN

w
r 1

te
ln

 t
*

in
s
id

e

fu
n

c
ti

o
n

HA

P*

oe
sc

en
oa

nt
s

=
•*

ce

sc
en

da
nt

 s
 :

3)
 ;

FO

R
l:

=

1
TO

de

sc
en

da
nt

s
00

IF

p
tr

m
*.

a
tt
n
u
m

>

0
TH

EN

B
E

G
IN

k

:=

k
*

i;
co

ls
 C

k
i

:=

is

EN
D;

{t
he

nu
mb
er
s

of

th
e

ac
ti
ve

en
od
es

ar
e

no
w

in

co
ls

fr
om

c
o
l
C
U

to

ro
w

:=

a

;
R

E
P

E
A

T
fo

u
n
d

:=

O
i

ro
w

: =

ro

w

•»
1 ;

FO
R

c
o
l

:=

1
TO

K

{.k

=
nu

m
be

r
o
f

a
c
ti
v
e

n
o
d
e

s}

00
IF

p
o
ta

b
le

tr

o
u
t

c
o
l]

=
c
o
ls

C

c
o
l]

TH
EN

fo

u
n
d

:=

fo
u
n
d

+1

;

U
N

TI
L

(f
o

u
n

d

=
k)

OR

<r

ow

>
m

ax
pe

rm
s)

*

IF

ro
w

>

m
ax

pe
rm

s
TH

EN

w
r I

te
 ln

(
'e

rr
o

r
1n

MA

P
•>

;
•a

p

'-

ro

w
*

{t
h

is

p
er

n
u

ta
tl

o
n

ha

s
a
ll

th
e

a
c
ti

v
e

no

de
s

fi
rs

t}
EM

O

E
N

O
U

o
f

M
A

P
)

FU
NC

TI
ON

 y
io

TH
<

i :
 IN

TE
G

ER
):

IN
TE

GE
R

;
VA

R
j,

-:

IN
TE

GE
R;

BE
GI

N
j

:=
 A

fa
sd

>;
y

:=
 i

*
W

H
IL

E

w
<

J
0
0

W
:=

d

«1
2

t

IF

j<
w

 T
HE

N
u

:=

»
-i
;

IF

KO
 T

HE
N

w
:=

32

JI
DT

H
:=

 u
;

EN
D;

{o

f
UI

DT
H)

PR
O

C
ED

U
R

E
V

e
ra

a
U

s
e

d
:
A

tt

In
d
e

x
T

yp
e

);
B

tG
IS

•
C

AS
E i: 2: 3: 5: t *

EN
D;

'
E

vo
;{o

fI
O

F
.r

1
te

(
U

r1
te

(
U

r1
te

(
y
r1

te
(

w
r1

te
(

w
M

te
t

F
ir
s
t

S
ec

on
d

T
h
ir
d

F
o
u
rt

h
F

if
th

S
ix

th

V
e

ro
a
U

s
e

)

»>
; * i
 ;

•>
; *)
 ;

•)
i

•)
»

FU
N

C
TI

O
N

P

q
u
e

ry

(S
:
s
tr

ln
g
C

 8
0
];

WA
R

R:

RE
AL

;
B

E
G

IN
w

H
te

(S
)

;
R

ea
d

ln
(R

)
;

M
in

,
M

ax

:
R

E
A

L)
 :

R

E
A

L;

W
H

IL
E

(R

<
M

1n
>

OR

I
y
rl

te
ln

l'
Y

o
u

m

us
t

U
r1

te
(S

>
;

R
e

a
d

ln
(R

);
q

u
er

y
t=

R»

{o
f

R
q

u
er

y)

R
>

M
ax

)
ch

oo
se

a

00

d
e

ci
m

a
l

nu
m

be
r

Ir
on

*
**

B
E

G
IN

M

1
n
:i
2

:3
»

EN
D;

•
to

•«

M

ax
:i2

:3
>;

F
JN

C
T

IO
N

B

U
ue

ry

(S
:s

tr
 I
n
g
C

8
J
])

:
BO

O
LE

AN
;

{
T

h
is

p

ro
ce

d
u

re

1s

d
es

ig
n

ed

to

p
u

t
<i

*y
es

to

u

se
r

a
t

a
te

rm
in

a
l*

an

o
to

g

et

h
is

o

r
ha

ve

a
fi

rs
t

le
tt

e
r

=
»Y

«.

»
y
*,

*N

«,

»n
»

o
r

no
*

ty
p

e
h

er

un
sw

cr
«

q
u
e

s
ti
o
n

to

w
h
ic

h

m
us

t

An

Im
p

ro
ve

m
en

t
w

ou
ld

be

to

ad

d
a

m
ar

ks
*

fe
a
tu

re
*

(b
u

t
w

at
ch

ou

t
fo

r
1
f

a
u

se
r

ty
p

es

on
e

o
r

m
or

e
sp

ac
es

w

il
l

ta
ke

1t

as

a

'n
o

n
-y

e
s
*

an
sw

er
*

An

ex
am

p
le

o

f
It

s

us
e

Is
:

•s
k
ip

th

e
p
a
st

le

a
d
in

g

cl
a
n
ks

an

d
p
u
n
cu

a
tlo

n

...
_

"e
m

p
ty

l1

n
e

f
p
ro

b
le

m
)*

iis

a
t

p
re

s
e

n
t

b
e

fo
re

he

ty

p
e

s
Y

es
*

th
e

p
ro

ce
d
u
re

VA
R
He
lp
*

Fi
ni
sh

:
Bo
ol
ea
n*

(
us
ed

to

ge
t

us
er

re
sp
on
se
s

)

H
el

p

:=

Q
ue

ry

IF

NO
T

(H
e

lp
)

*D
o

yo
u

F
i

(TH
EN

wa
nt

he
lp
?

1
>;

ni
sh

:=

Qu
er
y

(
*D
o

yo
u

wa
nt

to

qu
it
?*

) '
.

VA
R

R
e

sp
o
n
se

:C
h
a
r

•
B

E
G

IN

R
EP

EA
T

w
r1

te
(

'A
n

sw
er

(Y

/N
):

*)

;
RE

PE
AT RE

AD

(
K

es
po

ns
e)

»
{w

il
l

re
ad

th

e
fi

rs
t

c
h

a
ra

c
te

r
In

to

R
es

po
ns

e
an

d
w

il
l

sk
ip

p

as
t

an
y

o
th

er

c
h

a
ra

c
te

rs

ti

ll

1t

g
et

s
to

th

e
e

n
d

-o
f-

l1
n

e
>

U

N
TI

L
(

*O
T

(R
es

po
ns

e
IN

[*

•

1)

)»
U

N
TI

L
R

es
po

ns
e

IN

t
»N

«,
 '
Y

**
 »

n»
 *

»y
 •

3
i

{
d

o
n

't

le
t

«e
m

go

u

n
ti

l
th

ey

an
sw

er
ye

s
o

r
no

!

!
!

)

fc
C

ti
L
K

(

lN
?L

jT

>
;

t
to

IF

(

K
e

if
.o

r.
ie

=

*1
*

i
ar

.y

o
tn

e
r

ru
c
o

ls
h

on

th

e
I
\

r.e

F
es

cc
r.

se

=
•»

•
1

Tr
iE

K

FJ
N

C
TI

O
N

S

q
u

er
y

(S
I

:s
tr

ln
g

tb
O

])
:

s
tr

ln
g

C
B

u
];

(t
a
k
e

s

as

in
p

u
t

m
es

sa
ge

yo

u
w

an
t

to

ap
p

ea
r

on

sc
re

en

a
p
p
e

n
d
s

a
c
o
lo

n

an
a

c
a

rr
ia

g
e

re

tu
rn

.
G

e
ts

u
s
e

r
In

p
u
t*

te

rm
in

a
te

d

by

c
a
rr

ia
g
e

re

tu
rn

.
If

c
a
rr

ia
g
e

re

tu
rn

o
n
ly

1s

In

p
u
t*

re

tu
rn

s

a
s
in

g
le

b
la

n
k
*

M
it
e

rs

o
u
t

a
ll

n
o
n
-p

ri
n
ti
n
g

c
h

a
ra

c
te

rs
.

A
llo

w
s

u
s
e

r
to

e

d
it

h
is

In

p
u
t

u
s
in

g

BS

o
r

C
TR

L
H

.)

V
AR

S

3*

S
2

ts
t

r
1

n
g
[
8

0
];

1
:i
n
te

g
e

r«

B
E

G
IN
re

a
o
ln

;
(f

lu
s
h

In
p
u
t

P
u
ff
e

r)

w
M

te
ln

(S
l)
;

w
r1

te
(»

:
•>

;
R

e
a

d
ln

(S
2

>
;

S
3

: =
*

*
FO
R

1:
 =
 1

TO

le
n.
jt
h(
S2
)

DO

b
F
G
I
N

IF

(
su
bs
 t

 r
(S
^»
1«
 !
»
=
•

•
)

AN
L

(s
ub
s

t
r
(S
2

«
i,
l

)
<=

•"
•>

TH
LN

S
3
:
=
S
3
*
s
u
b
s
t
r
 (
S2
,
1,
1)

EL
Sf

IF

le

n
jt
 h

 (
S

3
)=

l
TH

EN

S
3
:=

»
»

E
Lb

E

S3
 :

=S
UD

 s
 t
r

(S
3,

 1
 *

 (
 I

e
n
yt

 h
 (

S
3

) -
1

)
) E

ND
 »

IF

Ie
n
g
th

ls
3
)=

0

TH
EN

s
q

u
e

ry
:=

»

•
E

LS
E

s
q
u
e

ry
:=

s
3
»

(o
f

S
q
u
e

ry
)

FU
N

C
TI

O
N

Iq

u
e

ry

(S
:
s
t
r

1
ng

[
80

 3
 5

K
1

n
,

M
ax

:

IN
T

E
G

E
R

):

IN
TE

G
E

R
",

(r
e

tu
rn

s

an

In
te

g
e

r*

w
it
h
in

(I

n
c
lu

s
iv

e
)

li
m

it
s

fi
n

an
d

M
ax

s
u
p
p
lie

d

b
y

th
e

p
ro

g
ra

m
m

e
r.

S

1s

an

In
p
u
t

m
e

ss
a
g
e

*
R

e
p
e

a
ts

It
s
e

lf

1
f

th
e

In

p
u
t

In
te

g
e

r
1s

o
u
ts

id
e

th

e

li
m

it
s
,

o
r

1
f

a
n
y
th

in
g

o
th

e
r

th
a

n

a
d
ig

it

1s

ty
p
e

d

1n
*

A
s
in

g
le

c
a

rr
ia

g
e

re

tu
rn

1s

tr

e
a

te
d

as

a

z
e

ro
.

Im
p
ro

ve
m

e
n
ts

w

o
u
ld

b
e

:
re

c
o

g
n

is
e

ty

p
ic

a
l

e
rr

o
rs

:
tr

y
in

g

to

ty
p

e

1 r
t

a
d
e

c
im

a
l

n
u
m

b
e

r*
•l

»

fo
r

•
!•

,
»0

»
fo

r
»C

»
a
l
l
o
w

an

e
s
c
a
p
e

(l
ik
e

•<
•*
)

to

b
y
p
a
s
s

m
a
x
/
m
1
n

c
h
e
c
k
i
n
g

an
d

re
t
ur
n

a
•

1
•

)
VA
R

1,

le
n,

si
gn
,

n,

d
i
g
i
t
,

M
l
n
w
l
d
t
h
,

M
a
x
w
l
d
t
h

:
IN
TE
GE
R;

ch

:
ch
ar
;

si

:
s
t
r
1
n
g
C
8
0
3
i

B:
GI
N

m
1
n
w
1
d
t
h
:
=
3
«

m
a
x
w
l
d
t
h
:
=
6
i
{
t
e
m
p
,

fi
x

--

ch
an
ge

la
te
r)

R
E
P
E
A
T

s1
 :

 =
 s
qu
er
 y
 J
S)
»

si
 :

 =
 t

r
1m
(

I
tr
 1
m
(s
i

))
 «

IF

$!
 =
 •
•

TH
EN

si
:=
»

0»
 ;

si
jn
:

= i
;

IF

s
u
b
s
t
r
 (

 s
i,
 1

 ,
1)
 =
•-
•

T
H
E
N

B
E
G
I
N

s1
nn
:

=
-

1 i
s
i:

=
s
jb

s
tr

(s
l»

2
,

le
n

g
th

(s
l)

-l
)

LN
D

EL
SE

IF

su

b
st

r
(s

i,
i

,1
)

=
•*

•
TH

EN
s
i
:=

s
u
b
s
tr

 (
s
l»

2
»

 l
e

 n
g
th

 (
s
i)
-1

)
;

le
n
:=

le
n
g
th

(s
l)
•

U
H

IL
E

1

<=

le
n

DO

bE

G
IN

ch

:=

u
n
s
tr

(s
u
b
s
tr

(s
i,
 1

,1
)>

;
IF

N

O
T

(c
h

IN

[•
£
>

•.
»
»

9
»
J>

TH

EN

fE
G

IN
w

r1
tc

ln
(»

O
O

P
S

!
••

»
,c

h
,
••

••
«
•

1s

n
o

t
a

d
1

g
1

t.
«
>

;
w

ri
te

In
(•

T
y
p
e

1n

a

n
u

m
b

e
r,

u
s
in

g

0
1

2

..
.

8
9
«
);

1

:=

le
n

•»
i;

n
'.=

m
1

n
-l

EN
D

EL
SE

B

E
G

IN

d
ig

it

:=

o
rd

(
c
h
)-

o
rd

(»
U

*)
 i

n
!=

1

0
*n

*

d
ig

it

E
N

D
;

i:
=

1*

1
E

N
D

;
n

: =

n
»
s1

yn
{

IF

(n

C

*1
n)

OR

(n
>m
ax
)

TH
EN

'*
r
11
 e
ln
 (

• Y
ou

mu
st

ch
oo
se

a
wh
ol
e

nu
mb
er

fr
om

•»

M
1n
:M
 1

 n
w
1o
 t
h

,
•

to

U
N
T
I
L

(n
>=
m1
n)

AN
D

(
n
<
=
m
a
x
)
;

Iq
ue
ry

:=

n»

E^
 D
 »
(o
f

I q
u
e
r
y
)

P
R
O
C
E
D
U
R
E

pu
sh
(

p
:
n
o
d
e
p
o
I
n
t
e
r
;

VA
R

S
:p
o1
nt
er
st
 a
ck
)

;
B-

:G
IN

W

ITH

s
oo

 B
EG

IN
IF

n
f=

s
ta

c
k
ia

x

*
1

TH
EN

w

r1
te

(»
e

rr
o
r

1n

p
ro

c
.

p
u
sh

--

s
ta

c
k

fu
ll

1)

E
LS

E

p
o
in

te
rs

tn
f3

:=
p
;

n
f

: =

n
f

«
1

;
E-J

D
EN

D;
F

jN
C

T
IO

N

n
o
p
(

VA
R

S
:p

o
1

n
te

rs
ta

c
k
):

n
o
d
e

p
o
1

n
te

r»

B
E

G
IN

y
lT

h

S
DO

B

E
G

IN

n
f:
=

n
f-

lt

?
••

*

IF

n
f<

l
TH

EN

w
ri

te

(•
e

rr
o

r
1n

po

p*

tr
y
in

g

to

po
p

an

em
pt

y
s
ta

c
k
')

EL

SE

p
o

p
::

 p
o

In
te

rs
C

 n
f

3
EN

D
EN

D
;

PR
O

CE
DU

RE

fi
n

d
 n

od
es

(

pt
 r

:

n
o

d
e

p
o

ln
te

ri
ty

p
es

ea
rc

h
ed

f o
r

:
n

o
d

et
yp

e*

VA
R

S
:

p
o

ln
te

rs
ta

c
k

>;

VA
R

I
:

1
..

de
gm

ax
;

B
iG

lN
IF

pt

 r
".

ty
p

e
o

f n
od

e
=

ty
 p

es
ea

rc
 h

ed
f o

r
TH

EN

p
u

s
h

tp
tr

*
S

)»
JI

T
h

p

tr
"

DO

B
EG

IN
IF

d

es
ce

n
d

an
ts

>

0
(1

f
1
t*

s

no
t

a
L

ea
f)

TH
EN

FO
R

i:
 =

1

TO

d
e

sc
e

n
d
a
n
ts

DO

f1

n
a
n
o
a
e

s(

p
tr

tl
]«

t
yp

e
se

a
rc

h
e

a
f o

r«
S

)
;

EM
D

EN
D;

PR
OC
ED
UR
E

ca
no
n1
se
(

po
in
te
r

:
no
de
po
ln
te
r

)i

{a

po
in
te
r

to

U

or

"
no
de
}

VA
R n
od
eh
ol
de
r

:
no
de
po
ln
te
ri

B£
GI
N

WI
TH

po
in
te
r*

DO

BE
GI
N

IF

pt
rC
l3
".
pt
rC
l3
".
 v
al
ue

>
p

tr
C

2
3
".

p
tr

C
!3

".
 v

al
u

e
TH

EN

B
E

G
IN

IF

de

bu
g

TH
EN

w

r1
te

(
*s

 M
ap

pi
ng

le

a
v
e

s
*)

?

n
o
d
e

h
o
ld

e
r

:=

p
tr

[2
3
;

p
tr

[?
3

:=

p
tr

[!
3
;

p
tr

C
1

3

:=

n
o
d
e

h
o
ld

e
r

EN
D

EM
D

EN
D:

PR
O

C
ED

U
R

E
lo

w
e

ri

VA
R

p
o
in

t
e

r
:n

o
o
e

p
o
1

n
te

r
)i

{p
o
in

te
r

to

P
no

ae
>

V
AR

te
m

p
i*

te

m
p

2
:

n
o

d
e

p
o

ln
te

ri
B

EG
IN

W

IT
H

p

a
in

te
r"

(p

no
de

3
DO

B

EG
IN

te

m
p

i
:=

co

py

n
o

d
e(

p

tr
C

l3
)»

{p

tr

to

en
od

e
w

hi
ch

w

il
l

be

ra
is

e
d

}
p

tr
ll
3
*.

d
u

m
m

y
T

=

YE
S;

(p
ro

le

:=

s
u

b
o

rd
in

a
te

;
}

{s
o

1t

1s

u
tt

e
re

d

li
k
e

a

co
m

p
ar

is
o

n

no
de

}
W

IT
H

te

m
p

i"

ie
n

o
d

e
to

oe

ra

is
e

d
}

DO

B
EG

IN

IF

d
es

ce
n

d
an

ts

=
0

(n
o

Q

G
ra

ph
}

TH
EN

B

EG
IN

d

es
ce

n
d

an
ts

: =

1*

{b

u
t

we

w
il
l

a
tt

a
c
h

o

n
e}

p

tr
C

1
3

t =

p
o

1
n

te
r«

{t
h

e

pn
od

e*

}
EN

D
EL

SE

(d
es

ce
n

d
an

ts
=

l«

1e

1t

ha
s

G
G

ra
ph

a
lr

e
a
d

y
}

B
EG

IN

te
m

p
2:

 =
p

t
r[

1
3
i

{s
to

re

It
s

Q
G

ra
ph

)
N

E
W

(p
tr

tl
3»

R

op
no

dc
)»

{c

re
a
te

an

AN

D
n

o
d

e)
W

IT
H

pt
rC

 1
3*

DO

bE

G
lN

ty

p
eo

fn
o

d
e

:=

R
op

no
de

;
op

I =

an

dx
 J

p

tr
C

l]

:=

te
m

p2
;

{o
ld

U

G
ra

ph
}

p
tr

C
2

3

:=

p
o
in

te
r!

{n

e
w

*
lo

w
e

re
d
*

p
n
o
o
e

-e
n
o
a
e

g
ra

p
h
)

EN
D

EN
D

E
N

D
!

DO
 1

n
te

r:
=

 t
em

p
1

J
{n

ow

p
o
in

te
r

p
o
in

ts

to

ra
is

e
d

en
od

e}
EN

D;

D
:d

om
1n

oe
x

ty
p
e

):

st
r1

n
g
C

8
0
]»

IF

(d
dC

 D
3
.K

e
p
D

a
ta

.R
e

p
re

se
n
te

d
 =

 V
es

)
TH

EN

B
E

G
IN

re
p

na
m

e
h
o
ld

e
r

:=

dd
C

D
3.

R
ep

O
at

a,
R

e
pn

am
cC

 s
in

g
u
la

r
3

;
ge

t
"2

re
 l_

p
ro

:=

'w

h
o
se

•

»
re

p
_

n
a
m

e
_

h
o
ld

e
r

EN
D

ye
t

re
l

pr
o

:=

P
ro

ta

o
le

C

dd
C

D
3.

 a
n

im
at

e
v
a
lu

e
*

w
h1

ch
c<

is
e3

«
IF

de

bu
3~

TH
E

&

w
r 1

t e
l n

(
• a

nl
m

v
a
l*

ca

se

=•
«

od
l D

3«
an

1m
at

e_
va

lu
e«

w

h
lc

h
ca

se
);

EN
D

*
{o

f
g

e
t_

re
l_

p
ro

}

FU
N

C
TI

O
N

co

m
pa

re

tr
e

e
s
(p

tr
l«

p

tr
2

:

n
o

d
e

p
o

ln
te

r;

n
o

d
es

et

:
se

t
ol

no
oe

 ty
pe

 s
>

:o
oo

 le
a
n

;
C

F
o

r
pr

ed
 1

ca
t

1o
n-

1
o

en
tl

 t
y

te
s
t*

le

t
n

o
d

es
et

:=

C

ro
pn

od
e*

pn

od
e*

en

o
d

ej
Fo

r
to

ta
l-

Id
e

n
ti

ty

te
s
t*

le

t
n

o
d

es
et

:=

C

n
o

d
et

yp
e3

)
VA

R
r

:
b

o
o

le
an

;
1

:
In

te
g

e
r*

B

EG
IN

r
* —

T R

UE
 ;

IF

pt
rl
*.
 t
yp
eo
fn
od
e

=
pt
 r
2"
.
ty
pe
of
no
de

TH
EN

bE
GI
N

CA
SE

pt
rl
".
 t
yp
eo
fn
od
e

OF
ro

p
n

o
d

e
:r

:=

p
tr

l"
,o

p

=
p

tr
2
".

o
t»

co
p

n
o

ae
:

r
:=

p

tr
l

, c
op

=

p
tr

2

,c
o

p
«{

sh
o

u
ld

n

ev
er

g

et

to

a
co

m
p.

no

de
}

FU
N

C
TI

O
N

g

et

re
l

pr
oC

w
hl

 c
hc

as
e

le
as

e
ty

p
e*

VA

R
re

p

na
m

e
h

o
ld

e
r

:
s
tr

in
g

C

b0
3«

B

EG
IN

~

pa
ge

35

EN
D

pn
od

e:

r:
=

<

p
tr

l~
.p

re
d

id

=

p
tr

2
".

p
re

a

Id
)

AM
D

lp
tr
l*
«p
pe
rm

=
pt
r2
"*
pp
er
m

)
A
N
D

tp
tr

1
".

p
s
e

n
s
e

=

p
tr

2
".

p
s
e

n
s
e

)»
e

n
o
a
e

:r
: =

p
tr

l*
«
e

n
to

o
m

a
ln

1o

=

p
tr

2
".

e
n
td

o
m

a
ln

1

v
a
lu

e
n
o
d
e

:
r

:=

p
tr

l*
»
v
a
lu

e

=
p
tr

2
".

v
a
lu

e

i
~

{o
f

C
A

S
E

);

IF

r
(t

h
e

s
e

no

de
s

a
re

th

e

sa
m

e*

so

ch
e

ck

d
e

sc
e

n
d
a
n
ts

)
TH

EU

B
E

G
IN

1:
 =
i;

IF

<
p
tr

l*
.t
y
p
e

o
tn

o
d
e

IN

n
o
d
e

se
t

)
TH

EN
W

H
IL

E
(

r
AN

D
(1

<=

p
tr

l"
.d

e
s
c
e

n
d
a
n
ts

)
)

DO

B
E

G
IN

r:
=

c
o

«
p

a
re

_
tr

e
e

s
<

p
tr

l
»
p

tr
M

]»

p
tr

2
~

.p
tr

t1
3
«

n
o

d
es

et
);

1
:s

1

•»
1

~
EN

D
EN

D

EN
D

(o
f

IF

n
o
d
e

ty
p
e

s
sa

m
e

)
-:L

SE

r:=

FA
LS

E;
co

m
pa

re

tr
e

e
s

:=

r
e N

O ;

PK
O

C
ED

U
hE

S

ho
rt

D
o
m

a
1

n
(D

:I
n
te

g
e

r)
*

VA
R

S
it

S

2:

s
tr

1
n

g
[6

0
3
;

I
:

IN
TE

GE
R;

BE
GI
N

WI
TH

dd
CD
]

DO

BE
GI
N

Si
:=

En
ti
ty

se
t

na
me
Cs
in
gu
la
r]
;

S2

: =

En
ti
ty

Se
t

na
me
tp
lu
ra
1

11

wr
lt
el
n;

~
~

wr
it
ei
n(
»D
OM
AI
N:

*,

0:
3,
*

*,

si
,«

•«

S2
>;

IF

An
im
at
e

va
lu
e

=
An
im
at
e

TH
EN

ur
1t
et
n<
«

An
im
at
e*
)

EL
SE

wr
1t
el
n<
*

In
an
im
at
e*
);

IF

S
e

lf

ID

=
Y

es
TH

EN

w
rT

te
ln

C
*

Se
 I
f-

Id
e

n
t1

fy
ln

g
*)

EL
SE

w

rl
te

ln
C

*
N

ot

S
e

lf
-I

d
e

n
tI

fy
ln

g
*)

•

W
IT

H

R
ep

D
at

a
DO

B

E
G

IN

IF

R
e

p
re

se
n
te

d

=
Y

es

TH
EN

B

E
G

IN

s
it
-

R
ep

N
am

eC
 s

ln
a
u
 la

 r
]»

s2

:=

R
ep

N
am

et
 p

lu
ra

l
);

w
r1

te
ln

(*

R
ep

re
se

nt
ed

P

v:

•»

$
!«

•/
*.

S

2)

EN
D

EL
SE

w

rl
te

ln
t*

S

e
lf

-r
e

p
re

s
e

n
te

d
*)

EN

D*

W
IT

H

R
an

<
je

3a
ta

DO

B

E
G

IN

u
r1

te
(*

D

at
a

ty
p
e

:
•>

;
CA

SE

D
a
ta

ty
p
e

OF

B
o

o
l:

w

rl
te

C
*

B
o

o
le

an
*)

;
In

t
:

w
r1

te
<*

In

te
g

e
r

tf
ro

m

*.
IK

ln
:3

t*

to

•t
IM

a
x
:

3«
 •

)
•)

»
R

el

:
w

r1
te

(*

R
ea

l
(f

ro
m

*,

R
n

ln
:B

:&
f

•
to

**

R
M

ax
:b

:&
(

*)
*)

i
Ch

a
:

w
r1

te
(*

S

in
g

le

c
h

a
ra

c
te

rs
*)

;
S

tr

:
w

r1
te

<
*S

tr
1n

Q
s.

*)
 ;

D
at

:

w
r1

te
<*

D

at
es

*)

 ;

E
N

D
*

(o
f

C
A

S
E

)
{

R
an

ye
O

at
a

:
)

E
N

D
;

W
IT

H

O
rd

e
rD

a
ta

DO

B

E
G

IN

IF

O
rd

e
re

d

=
Ye

s
TH

f.N

B
E

G
IN

w
r1

te
ln

(*
C

o
m

p
a
rI

s
o

n

p
h

ra
s
e

s
:

•)
«

FO
R

I
:=

S

T£

TO

G
T£

DC

B

E
G

IN

S
I

:=

C
om

pP
hr

«*
se

sC
 I

)
;

w
r1

te
ln

(S
l>

;
EN

D
EN

D
E

N
D

;

W
IT

H

V
a
lu

e
S

e
tD

a
ta

DO

B

E
G

IN
IF

L
im

it
e

d

=
Y

es

TH
EN

bE

G
IN

W
IT

H

V
a
lu

e
s

DO

B
E

G
IN

FO
R

i:
=

l
TO

C

ou
nt

DO

B

E
G

IN

u
ri
te

ln
(S

l)
;

*
EN

O
EN

D
EN

D
E

N
D

i

E
M

D
(o

f
W

IT
H

)
EN

D
t

(o
f

S
ho

u_
do

m
a1

n)

PR
OC

ED
UR

E
sh

ow

re
 la

 1
1o

n(
 R

:
In

te
g

er
 >

i
VA

R
s:

s
tr

in
g

;
i,

j:

0
..
2
4

;
ke

y
:

b
o

o
le

a
n

;
b

r
&

!N

W
IT

H

R
U

C
R

3D
O

bC

G
IN

IF

oe
O

uj
j

TH
EN

n

rl
te

ln
c
 *

K
D

eu
re

e
=

••

R
D

eg
re

e)
;

S
: =

 R
na

«e
*

Pa
ge

w
r1

te
ln

<

'R
e

la
ti

o
n

na

m
e:

•«

S

:2
0
)i

{l
is

t
ea

ch

a
tt

ri
b

u
te

,
In

d
ic

a
te

<

••
•>

1f

It

1s

a

KE
Y

a
tt

ri
b

u
te

)

w
r1

te
t*

A
tt

r1
b

u
te

s
:

•)
•

FO
R

i:
 =

 l
TO

R

D
e

u
re

e

DO

B
E

G
IN

S

:=
A

tt
 r

lb
u
te

C
 T

a
.A

n
a
m

e
i

U
rl
te

iS
:

1
0

);

ke
y

: =

FA
LS

E

?
FO

R

o
:

=
1

TO

K
ey

C

o
ls

.N
u
m

DO

IF

I=
K

e
y

C
o

ls
.C

o
ls

C
J
D

TH

EN

ke
y

: =

TR
U

E
*

IF

ke
y

TH
EK

w

ri
te

(•

*
*)

E

LS
E

u
r1

te
(*

•)

E

N
D

;

w
rl

te
ln

;
{n

o
w

sh

ow

th
e

D

O
M

A
IN

e

a
ch

a
tt
ri
b
u
te

1s

d

ra
w

n

fr
o
m

}

w
r1

te
<

*D
o

m
a

1
n

s:

•)
»

FO
R

i:
=

1

TO

R
D

e
yr

e
e

00

B

E
G

IN

s
:=

dd

C

A
tt

ri
b

u
te

d
 3

.
A

tt
d

o
m

a
ln

1d

3.

 E
n
ti
ty

s
e

t
na

m
et

 S
1n

gu
 l
a

r
D

i
w

ri
te

(s
:i

2)

-
-

EN
D;

E
M

D
{o

f
W

IT
H

*
o
f

sh
ow

a

re
la

ti
o
n

}
E

N
D

i
PR

O
C

ED
U

R
E

G
et

F

il
e

N

am
e

(
VA

R
F

il
e

na

m
e:

F

il
e

na

m
e

T
y
p
e

);
VA

R

IM
N

T
F

G
E

R
T

~

~
"

Ch
:

CH
AR

;
B

E
G

IN U
r1

te
(*

F
1

le

na
m

e:

•)
«

i:
= o

;
R

E
A

D
cC

h
>

;
W

H
IL

E

M
O

T
E

O
L

M
IN

P
U

T
)

DO

B
E

G
IN i:

= i
*i

 ;
F

il
e

na

m
eC

 I
 3

:=

C
h
i

R
E

A
D

T
C

h)
;

EN
D;

F
il

e

n
a

a
e

C
l3

:
=

C
h;

FO

R
I

:=

I
*

1
TO

32

DO

F

il
e

n
a
m

e
d
]

:=
•

EM
D;

;
{

In
p

u
t

tr
a

il
in

g

b
la

n
k
s

}

F
U

N
C

T
IO

N

Lo
ad

n
o
d
e

(
VA

R

F
:

TE
X

T
>:

N

o
d
e

p
o
ln

te
r;

VA

R
P

N
o

d
e

p
o

ln
te

r*

S
en

se

S
en

se

ty
p

e
;

N
um

be
r

N
um

be
r

ty
p
e

;
P

e
rm

u
ta

t
on

s
:

l7
.?

<
t»

T

h
is

p
e

rm
.

T
h

is

p
h
ra

se

:
1

»
»
2

4
*

~"
S

S
t
r1

n
g

t
8

0
]*

N
N

o
d
e

ty
p
e

*
B

-I
G

IN
IF

D

eo
uu

TH

EN

u
rl
te

ln
('
L
o
a
d

no
de

C

a
lle

d
.*

>
«

R
e

a
d
ln

tF
t

N
)

;
{f

in
d

o
u
t

th
e

~
ty

p
e

o
f

no
de

w

e
'l
l

be

lo
a

d
in

g
}

IF

D
eb

ug

TH
EN

w

r1
te

ln
l'N

o
d
e

ty
p
e

re

a
d

o
k
a
y
,

no
w

to

c
re

a
te

a

n
o
o
e

.'
)*

C
AS

E
N

O
F

R
o
p
n
o
d
e

:
B

E
G

IN
N

ew
(P

*
R

o
p
n
o
d
e

)*
EN

D;

C
op

no
de

:
B

E
G

IN
N

ew
(P

t
C

o
p

n
o

d
e)

*
EN

D;

P
no

de
:

B
E

G
IN

Ne
w

(P
t

P
no

de
)«

EN
D;

En
oo

e:

BE
G

IN
N

ew
tP

*
E

n
o

d
e

)»
EN

D;

F
ag

*

V
al

u
en

o
d

e:

N
ew

(P
«

V
al

u
en

o
d

eM

EN
D

t
to

t
C

A
SE

}

{n
ow

w

e
h

av
e

c
re

a
te

d

a
no

de

of

th
e

p
ro

p
er

ty

p
e

le
t*

s

f
il
l

1n

th
e

v
a
lu

e
s
)

IF

D
eb

ug

TH
EN

M

r1
te

ln
(*

N
e

w

no
de

c
re

a
te

d

o
ka

y*

no
w

to

f
il
l

1t

1
n

.*
>

;

W
IT

H

P~

DO

B
E

G
IN

R
e

a
d

ln
fF

t
D

e
s
c
e

n
d

a
n

ts
)!

{n

um
be

r
o

f
ti

m
es

th

is

p
ro

ce
d

u
re

*1

L
l

c
a
ll

it
s
e

lf

fr
o

m

th
is

L

e
v
e

l)

IF

D
eb

ug

TH
EN

y
r1

te
ln

C
*T

h
1
s

no
de

ha

s
•

fD
es

ce
n

o
an

ts
:3

»*

d
es

ce
n

d
an

t
n

o
d

es
.•

>
«

T
yp

eo
fn

o
d

e:
 -

N
»

>E

T
yp

eo
fn

o
d

e
OF

R
op

no
de

:
B

EG
IN

R

e
a
d

ln
iF

i
O

p)
 «

EN

D
;

C
op

no
de

:
B

EG
IN

R

e
a
d

ln
lF

,
C

op
)

*
c
D

e
g

re
e

li

EN
D

;

P
no

de
:

B
EG

IN

P
ag

*
38

R
e

a
d

ln
iF

,
P

re
d

Id
)*

R
e

a
d
ln

(F
«

P
p

e
rm

)*
R

e
a

d
ln

tF
,

P
re

d
ty

p
e

);
R

e
a
o
ln

iF
 *

P

se
n
se

)
;

R
e

a
d
ln

(F
,

P
n
u
m

b
e

r)
*

IF

D
eo

ug

TH
EN

W

ri
te

ln
('
P

s
e

n
s
e

an

d
P

nu
m

be
r

re
a
d

o
ka

y*

=
•
*P

se
n
&

e
:3

*P
n
u
m

b
e

r:
3
);

P

e
rm

u
ta

t1
o
n
s
:=

F
d
C

to
r1

a
l(
D

e
s
c
e

n
d
a
n
ts

)
;

FO
*

T
h
is

p

e
rm

:=
l

TO

P
e

rm
u

ta
ti
o

n
s

DO
FO

R
T

h
is

p

h
ra

se

:=

1
TO

D

e
sc

e
n
d
a
n
ts

-1

DO
W

IT
H

A

lt~
se

n
te

n
ce

sC
T

h
1

s
pe

rm
*

T
h
is

p
h
ra

s
e

}
DO

B

E
G

IN

R
e

a
d
ln

T
F

,H
a
1

n
)i

CA
SE

M

ai
n

OF
N

o:

bE
C

IN

R
e

a
d

ln
<

F
,S

>
;

C
as

e
p
h
ra

se
:=

S

E
N

D
;

Y
es

:
B

E
G

IN
FO

R
S

e
n

se
:=

P
o

s1
t1

ve

DO
UN

TO

N
e

g
a
tiv

e

CO

FO
R

N
um

be
r

:=
S

1
n
<

ju
la

r
TO

P

lu
ra

l
DO

B

E
G

IN

R
e

d
d
ln

(F
»
S

)
{

A
lt

p
h
ra

se
sC

S
e

n
se

*
N

um
be

r]

: =

S
EN

D
;

EN
D;

C

of
~V

es
}

EN
D;

Co

t
CA

SE
}

EN
D

;
{o

f
d

o
u

b
le

lo

o
p

an

d
«I

T
H

>
IF

D

eb
ug

TH

EN

hi
r I

t
e

lr
>

<
'N

o
u

o
u

ts
id

e

o
f

p
h
ra

se
s

lo
o

p
*

p
re

p
a

ri
n

g

to

lo
a

d

d
e

s
c
e

n
d
a
n
ts

.*
);

{P
n

o
a

e
t

}
EM

JJ

E
no

de
:

B
E

G
IN

re
a
d
 In

 (
F

*
a
tt
n
u
m

)
»

IF

oe
bu

g
TH

EN

*
r1

te
ln

<
»

a
tt

n
u

m

=
•*

a

tt
n

u
m

);
re

a
d

ln
(F

*E
n

td
o

m
a

1
n

1d

)»
IF

de

bu
g

TH
EN

w

?1
te

<
«E

nt
do

m
a1

n
1d

=

•*

E
n
td

o
m

a
ln

1

d
)i

re
ad
ln
(P
«

Du
mm
y)
;

IF

de
bu
a

TH
EN

w
r
1
t
e
l
n
(
*
d
u
m
m
y

=

•*

Du
mm
y)
;

re
a
d
ln

f"
*

e
d
e

g
re

e
);

IF

de
bu

g
TH

EN

w
r1

te
ln

<
«
e

a
e

u
re

e

=
»•

e

d
e

g
re

e
);

re
a

d
ln

(r
»

n
o

d
e

1

a
)i

IF

de
bu

g
TH

EN

5
r1

 t
e

lr
it
 «

no
de

_1
d

=
•»

n

o
d

e
_

1
d

:3
);

re
a
d
ln

C
F

*
ro

l
eC

 s
1

n
^u

la
 r

 3
)

;
re

a
a

ln
(F

*
ro

l e
C

p
lu

ra
l

D)
 '.

IF

de
bu

g
TH

EN

«
ri
te

In
C

•r
o
le

s
:

•«

ro
le

C
s
in

g
u
la

r3
»

ro
 le

tp
 lu

ra
 I

 3
);

re
a
d
ln

ir
*

tr
im

m
e

d
);

IF

de
bu

i)
TH

EN

w
r1

te
ln

(
• t

 r
im

m
ed

=

•*

tr
1

m
m

e
u
:3

)i
IF

tr

im
m

e
d

=
ye

s
TH

EN

re
a

d
ln

(F
«

s
h
o
rt

d
e

s
c
)i

EN
D

;

V
a

lu
e

n
o

d
e

:
B

E
G

IN

R
e

a
d

ln
(F

*
V

a
lu

e
);

EN
D;

EN

D
;

(o
f

CA
SE

}
IF

de

bu
y

TH
EN

w

r1
te

ln
<

*n
o
w

lo

a
o
ln

y

d
e

sc
e

n
d
a
n
ts

o

f
th

is

n
o
d
e

.*
)!

FO

R
1

:=

1
TO

d

e
sc

e
n

d
a

n
ts

DO

p
tr

C
1

3

:=

lo
a
a

n
o
d

e
(

F
>;

E
N

D
i

(o
f

Lo
aa

no

de

:=

P
*

EN
D;

"

PR
O

C
ED

U
R

E
lo

a
d

d
lc

tt

VA
R

f:

te
x
t)

;
VA

R
p
c
o
u
n
t*

dn

um
*

rn
um

*
I*

J»

K«

LI

IN
T

E
G

C
R

.
s

:
S

TR
IN

G
C

80
D

;
S

en
se

:

S
en

se

ty
p
e

;
N

um
be

r:

N
um

be
r_

t
yp

e
;

re
a
d
ln

(F
«

n
e

xt

n
o
o
e

_
1

d
>

;
{m

us
t

be

C
fo

r
1n

11
 a

ll
 s

a
t

1o
n}

re
a

d
ln

<
F

»

dn
um

T
;

{y
e

t
th

e

nu
m

oe
r

o
f

do
m

ai
ns

st

o
re

d

h
e

re
;

m
us

t
be

0

fo
r

In
it
ia

li
s
in

g

sy
st

e
m

}
d
d
n
f

: =

dn
um

*

1
i

•1
 t
e

ln
(*

d
d

ri
f

no
w

=

•*

o
d

n
f)

»
FO

R
1

:=

1
TO

an

um

00

nI
T

H

dd
C

13

DO

B
E

G
IN

re
ad

ln
tF

*
En

ti
ty

se

t
na

me
Cs

in
gu

la
rD

)
*

re
ad

ln
fF

*
En
t1
ty
_*
et
_n
a»
eC

Pl
ur
al
])
*

re
a
d
ln

(F
*

A
n
1

m
a
te

_
V

a
lu

e
)*

Pa
ge

59

re
a
d

ln
(F

,
S

e
lf

ID

);
U

IT
H

R

ep
D

at
a

DO

B
EG

IN

re
a
d

ln
tF

t
R

e
p

re
s
e

n
te

d
);

IF

R

ep
re

se
n

te
d

=

Ye
s

TH
EN

B

EG
IN

re

a
d

ln
(F

t
R

ep
N

am
eC

S
in

g
u

la
r3

)i

re
ed

ln
C

F
t

Re
pN

am
eC

 P
lu

ra
l

3)
»

EN
D*

EN

D
*

{o
f

R
ep

D
at

a}

•,'
IT

H

R
an

ge
D

at
a

DO

B
EG

IN

re
a
d

ln
(F

t
D

a
ta

ty
p

e
)*

CA

SE

D
at

at
yp

e

OF
B

o
o
lt

C
ha

t
S

tr
t

D
ot

:B

E
G

IN
EN

D;
R

el

:
B

E
G

IN re
a
d

ln
C

F
,

R
H

1n
)«

re

a
d

ln
(F

t
R

M
ax

)»
EN

D;
In

t
:

B
E

G
IN re

a
d

ln
(F

 t
IM

1
n

);

re
a
d

ln
(F

t
IM

a
x
)i

EN
D;

EN
D*

{o

f
C

AS
E}

EN

D
;

{o
f

R
an

ye
D

at
a)

U
IT

H

O
rd

e
rD

a
ta

DO

BE

G
IN

re

a
d
ln

(F
t

O
rd

e
re

d
);

IF

O
rd

e
re

d

=
No

TH

EN

p
co

u
n
t:
=

2

EL
SE

P

co
un

t
: =

6*

FO

R
J
:=

1

TO

pc
ou

nt

DO
re

a
d
ln

(F
t

C
om

pP
hr

as
es

C
03

)*

{o
f

O
rd

e
rL

a
ta

)
EN

D
;

{o
f

O
rd

e
rD

a
ta

}

U
IT

H

V
a
lu

e
S

e
tD

a
ta

DO

B

E
G

IN

re
a
d
ln

(F
f

L
im

it
e

d
)*

IF

L
im

it
e

d

=
Ye

s
TH

EN

B
EG

IN

re
a
d

ln
iF

*
V

al
u

e
s
.C

o
u

n
t)

«

FO
R

J
:=

1

TO

V
al

u
es

.C
o

u
n

t
DO

re
a
d
ln

(F
.

V
a
lu

e
s.

S
tr

1
n
g
£
tJ

D
>

»

EN
D

*
EN

D
;

{o
f

V
a
lu

e
S

e
tD

a
ta

}

{
Lo

op

an
d

yl
T

H

:
}

EN
D*

{
lo

ad

th
e

re
la

ti
o

n

d
e

fi
n

it
io

n
s

)

re
o

d
ln

(F
t

rn
u

m
)*

{

sa
m

e
m

et
ho

d
as

fo

r
lo

a
d

in
g

do

m
ai

ns

)
FO

R
I

:=

\
TO

rn

um

DO
U

IT
H

R

D

C

I!

00

B
E

G
IN

re
a
d
ln

(F

t
R

N
am

e)
*

re
a
d

ln

(F
t

R
D

ca
re

e)
*

re
a
d

ln

(F
t

K
ey

c
o

ls
.n

u
r)

;
FO

R
J
t=

l
TO

Ke

y
co

ls
.n

u
m

DO

re

a
d
ln

(F
t

K
ey

c
o
ls

*
co

l s
C

J3
)

<
re

ad
ln

(F

,
R

Pe
rm

)*
re

a
d

ln

(F
t

P
re

d
s
)i

FO
R

J:
=

1
To

RD
eg
re
e

DO
W
I
T
H

At
tr
ib
ut
e

CJ
D

DO

BE
GI
N

re
 a
d
In
(F
t

An
o
me
);

re
a
d

ln
(F

t
A

tt
ao

m
al

n

1d
)

EN
D

*
{N

ow

lo
ad

th

e
p

re
d

ic
a
ti

o
n

s
}

FO
R

J
:=

1

TO

P
re

d
s

DO

E
iE

O
lN

P

tr
[J

3

•-

L
o
a
d
_

K
o
d
e

 (
F

)
;E

N
D

 *

{L
oo

p
an

d
k!

T
h

)E
N

U
;

w
r1

te
ln

(»
rd

n
f

=
»t

rd

n
f)

*
ro

n
f
I-

rn

um

*
1*

w

r 1
 t

e
ln

 (
"r

d
n

f
u

p
d

at
ed

by

m

um
*

no
w

=

••

rd
n

f)
;

C
lo

s
e

(F
)

;
£N

D
*

{o
f

L
o

ad
_D

1c
t}

PR
O

CE
DU

RE

Du
m

p
N

od
e

(
VA

H
F

tT
e

x
t*

{w
h

e
re

w

e
ar

e
du

m
pi

ng

th
em

}
N

tN
od

ep
ol

nt
er

)*

VA

R
i»

j:

i*
.2

<
i;

T
h

is

pe
rm

.
T

h
is

ph

ra
se

:

1
..
2
4

;
(

1
to

MA

X
of

D

eg
M

ax
 {

P
er

ir.
M

ax

}

Pa
ge

40

P
er

m
u

ta
ti

o
n

s
:

1
..
2
4

;
s:

st

ri
n
g
ce

ci
;

se
ns

e
I

n
e

g
a

t1
v

e
.*

p
o

s
1

t1
w

e
*

n
u

ib
e

r
:

s
in

g
u

la
r

••

p
lu

ra
l*

{c
a
n

we

e

li
m

in
a

te

th
es

e
tw

o?
}

B
EG

IN
IF

D

eb
ug

TH

EN

U
r1

te
ln

(*
D

u
m

p

N
od

e
c
a

ll
e

d
.*

)*

W
IT

H

N
*

00

"
B

EG
IN

W

M
te

tF
*

T
/p

e
o

fn
o

d
e

).
IF

D

eo
uu

TH

EN

U
r1

te
(F

(
•

ty
p

e
o

f
n

o
d

e.

1
=

R
op

t
2

=
C

op
»

3
=

P
re

d
,

<»
=

E
n

ti
ty

*
5

=
V

a
lu

e
*)

*
b

rl
te

ln
(F

)*
U

r1
te

(F
«

D
es

ce
n

d
an

ts
)*

IF

D

eb
ug

TH

EN

U
r1

te
(F

*
'

th
e

nu
m

be
r

o
f

d
es

ce
n

d
an

t
n

o
d

e
s
.*

)*

W
rl

te
ln

(F
)*

IF

D
eb

ug

TH
EN

U

r1
te

ln
(

• D
um

pi
ng

a

no
de

o

f
ty

p
e

**

T
yp

eo
fn

o
d

e)
*

CA
SE

Ty

pe
of

no
de

OF

R
op

no
de

:
B

EG
IN

w

r1
te

<
F

,
O

p)
 »

IF

de
bu

g
TH

EN

w
r1

te
(F

«
*

an

R
o

p
n

o
o

e*
)*

w

rl
te

ln
lF

)
E

N
D

U
o

f
_N

od
e>

C
op

no
oe

:
B

EG
IN

Ir

1
te

<

F
,

C
o

p
)*

IF

de
bu

u
TH

EN

u
r1

te
(F

«
*

a
C

o
p

n
o

d
e.

*)
;

w
rl

te
ln

(F
)

;
w

ri
te

 <
F»

C

D
eg

re
e)

 •
IF

de

bu
g

TH
EN

w

r1
te

(F
«
*

It
s

E
d

e
g

re
e

*)
*

w
r1

te
ln

T
F

)i

EN
D

*
{o

f
C

op
no

de
!

P
no

de
:

B
EG

IN

w
r1

te
(F

»P
re

d

1d
>;

IF

de
bu

g
TH

tF
I

»«
r1

te
(F

«*

In
te

rn
a
l

Id
e

n
ti

fi
e

r
o

f
p

re
a
.M

?

w
rU

e
ln

C
F

)
;

b
rl

te
fF

*
P

P
er

m
)*

IF

C

eo
ug

Th

EN

y
r1

te
(F

«

•
th

e
p

e
rm

u
ta

ti
o

n

o
f

th
is

p

re
d

1
c
a

t1
o

n
.
•)

 •

U
r1

te
ln

(F
>

;
U

r1
te

(F
«P

re
d

ty

p
e

)*

IF

O
eb

uy

TH
EN

u

r1
te

(F
**

an

a
tt

ri
b

u
te

p

re
d

ic
a
ti

o
n

o

r
a

re
la

ti
o

n
s
h

ip
*)

;
U

r1
te

ln
C

F
>

;

P
e

rm
u

ta
tI

o
n

s
:=

F
a
c
ta

ri
a
l(

D
e

s
c
e

n
d

a
n

ts
);

IF

D
eb

ug

TH
EN

U'

r 1
 t
e

ln
(

*N
ow

g

e
tt

in
g

re

ad
y

to

du
m

p
p

re
d

ic
a
ti

o
n

p

h
ra

s
e

s
*)

*

w
r1

te
(F

»

P
S

en
sO

*
IF

D

eb
ug

TH

EN

U
rU

tM
F

*
*

se
n
se

:
0

=
n

e
g

a
ti
v
e

*
1

=
p

o
s
it

iv
e

*)
;

U
rl

te
ln

tF
);

s

u
r1

te
(F

*
P

nu
m

be
r)

*
IF

D

eb
ug

TH

EN

u
M

te
(F

»

•
nu

m
be

r:

C
=

s
in

g
u

la
r*

1

=
p

lu
ra

l*
)*

U

M
te

ln
lF

)*

IF

D
eb

ug

TH
EN

u

r1
te

ln
(*

N
o

w

du
m

pi
ng

p

re
d

ic
a
ti

o
n

p

h
ra

s
e

s
*)

*
FO

R
T

h
is

p

er
m

:=
l

TO

P
er

m
u

ta
ti

o
n

s
DO

FO
R

T
h

T
s_

p
h

ra
se

:=

1

TO

D
es

ce
n

d
an

ts
-1

DO

U
IT

H

A
lt

se

n
te

n
ce

sC
T

h
is

pe

rm
*

T
h

is

p
h

ra
s
e

]
DO

B

EG
IN

U

r1
te

<
F

.M
a1

n
)*

IF

D
eb

ug

Th
EN

y

r1
te

(F
»

*

0
=

a
ca

se

p
h

ra
se

*
1

=
M

ai
n

P
re

d
.

P
h

ra
s
e

.*
)*

U

r1
te

ln
4

F
);

CA

SE

M
ai

n
OF

N
o:

B

cG
IN

S

:=
C

as
e

p
h

ra
se

*
K

r1
te

ln
(F

»
S

)
EN

D
*

Y
es

:
B

EG
IN

FO
R

S
en

se
:=

P
o

s1
t1

ve

PO
W

NT
O

N
ey

o
tl

w
e

DO

FO
R

N
ui

r,
be

r:
=S

1n
gu

La
r

TO

P
lu

ra
l

DO

B
EG

IN

S
:=

A
lt

p

h
ra

se
sC

S
en

se
,

N
um

be
r]

*
u

r1
te

ln
(F

,S
)*

EN

D*
.

EN
D;

(o

f
Ye

s}

EN
D;

{o

f
CA

SE
)

EN
D*

{o
f

do
ua
le

lo
op

an

d
wl
Th
)

EN
D;

{o
f

Pn
od

e}

En
od

e:

BE
GI

N
Ur
lt
ei
F*

At

tn
un

);

IF

De

ou
g

TH
EN

>r

1t
e(

F«

•
th

e
at

tr
ib

ut
e

co
rr

es
po

nd
in

g
to

th

is

en

ti
ty

*)
*

U
rl

te
ln

(F
)*

*
w

r1
te

(F
«

E
nt

do
m

al
n

Id
)*

IF

D
eb

ug

TH
EN

w

ri
te

(F

«*

do
m

ai
n

nu
m

be
r

of

th
is

e

n
ti

ty
*)

*
wr
lt
el
n(
F)
*

wr
1t
e(
F«

du

mm
y)

;
IF

de

bu
g

TH
EN

wr
1t
e(
F«

•
1

=
du
mm
y

no
de

*)
!

w
rl

te
ln

(F
)

«
b

r1
te

(F
«

cd
eg

re
e)

;
IF

De

bu
g

TH
EN

yr

1t
e<

F
,

•
th

e
**

d
eg

re
e*

*
(o

ne
*

m
an

y*

a
ll

)
of

th

is

e

n
ti

ty
*)

*
y

rl
te

ln
iF

);
w

rl
te

tF
*

no
de

Id

)*

IF

de
bu

g
TH

EN

w
rl

te
lF

i
•

no
de

1d

nu

m
be

r
*)

i
w

rl
te

ln
(F

);

P
ag

e
«1

h
r1

te
ln

(F
t

R
ol

eC
s

In
g

u
la

r
3)

 t
V

ir
1

te
ln

(F
«

R

o
le

t
p
lu

ra
 I
 D

)
;

u
r1

te
(F

t
tr

im
m

e
d

);

IF

d
e

b
u

g

TH
EN

w

r1
te

(F
v

*
1

=
tr

im
m

e
d
*

0
n
o
t*

);
w

r1
te

ln
(F

>
;

IF

tr
1i

n
m

ed
=y

es

TH
EM

w

r1
te

ln
(F

«

s
h

o
rt

d
e

s
c
);

EN

D
*

V
a
lu

e
n
o
d
e

:
B

E
G

IN
{a

V

al
ue

no

de

ha
s

no

d
e

sc
e

n
d

a
n

ts
}

y
r1

te
ln

(
F«

V

a
lu

e
)

*
EN

D
*

EN
D;

<o

f
CA

SE
}

IF

D
eb

ug

TH
E

N

U
M

te
ln

t'
N

o
w

d
u
m

p
in

g

th
e

d

e
s
c
e

n
d

a
n

ts
.*

);

FO
R

i:
=

1

TO

D
e

sc
e

n
d
a
n
ts

DO

D

u
n

p
.N

o
d

e
 (

F
t

P
tr

C
ID

)*

CM
D

{o
f

W
IT

H
}

CM
OS

C

ot

D
un

p.
N

od
e}

PR
O

CE
DU

RE

du
m

p
d

1c
t(

V
A

R

F
:

te
x

t)
;

XA
R

p
c
o
u
n
tt

D
nu

m
t

R
nu

ffl
t

It

«J
t

K
:0

..
2

4
»

S
rS

T
R

IM
G

.
B

iG
IN

IF

D
eb

ug

TH
EN

U

r1
 t
e

ln
 (

•
D

u
m

p
in

g

D
a

ta

to

N
E

U
.d

d
.

DA
T

•
)

•
IF

D

eb
ug

TH

EN

U
r
1

t
e

ln
 (

•
d

d
n

f-
1

=

•»

d
d
n
t-

1
);

nr
1t
e(
F»

ne

xt

no

de

1d

)«
IF

de
bu
g

TH
EN
~w
r

1 t
 e
(F
 t

•
th
e

1d

nu
mb
er

of

ne
xt

en
od
e*
)»

-r
U

e
ln

(F
)

;
M

r1
te

(F
t

d
d
n
f-

1
)

•
{p

u
t

th
e

nu

m
be

r
o
f

d
o
m

a
in

s
s
to

re
d

h
e

re
*

m
u

st

be

0
fo

r
In
it
ia
li
si
ng

sy
st
em
}

IF

De
bu
g

TH
EN

ur
1t
e(
F»
*

th
e

nu
mb

er

of

do
ma
in
s/
en
ti
tl
es

st
or
eo
**
);

FO
R

I

:=

1
TO

d

d
n

f-
1

DO

rf
lT

H

d
d
f

I
]

DO

bE
G

IN

(}
IF

D

eb
ug

TH

EN

U
r1

 t
e

 I
n
 (

 *
T

ry
1

ru
j

to

du
m

p
n
u
ib

e
r

»
t

It

•
d
o
m

a
in

*)
;

U
r1

te
ln

<
F

t
E

n
ti
ty

se

t
na

m
et

S

in
g

u
la

r]
);

U

r1
te

ln
(F

t
E

n
t

1
t

y~
se

t~
n

a
m

e

C
P

lu
ra

l]
);

J
r1

te
(F

,
A

n
im

a
te

V

d
lu

e
)U

F

D
eo

uy

TH
EN

y
r1

te
(F

,
•

a
n

im
a

te

=
It

0

o
th

e
rw

is
e

*)
*

U
r1

te
ln

<
F

);
U

r1
te

(F
t

S
e

lf

1
d

)i

IF

D
eb

ug

TH
EN

w

H
te

tF
t*

1=

se

 I
f-

ld
e

n
t
If
 y

 I
n
g
 t

0
n
o
t*

);

U
rl
te

ln
C

F
);

~

IF

D
eb

ug

TH
EN

k
r1

te
ln

(*
N

e
u

tr

y
in

g

to

du
m

p
R

e
p
D

a
ta

.*
);

W

IT
H

R

e
p
D

a
ta

DO

B

E
G

IN

y
r1

te
(F

,
R

e
p

re
s
e

n
te

d
);

IF

D
eb

uu

TH
EN

'J

r1
te

(F
(

*
1

=
re

p
re

s
e

n
te

d

b
y

a
n
o
th

e
r

e
n
tl
ty

t
0

=
n
o
t.
*)

«

k
J
rl
te

ln
lF

)
;

IF

R
e

p
re

se
n

te
d

=

Y
es

TH

EN

B
E

G
IN

U

r1
te

ln
<

F
»

R
ep

N
am

eC
 S

 I
n

g
u

la
r
])

 «

w
r1

te
ln

<
F

,
R

e
p
N

a
m

e
C

P
lu

ra
l

3)
 «

EN

D
{o

f
R

e
p
o
a
ta

)
E

N
D

;

IF

D
eb

ug

TH
EN

w

r1
te

ln
t*

N
o
u

tr
y
in

g

to

du
m

p
R

a
n
g
e

D
a
ta

 .
 *

)
•

U
IT

H

R
a
n
g
e

D
a
ta

DO

B

E
G

IN
U

r1
te

(F
,

D
a
ta

ty
p

e
);

IF

D
eb

ug

TH
EN

U

r1
te

<
F

t*

D
a

ta
ty

p
e

o
f

re
p
s

(o
r

s
e

lf
)*

.0

=
b
o
o
le

o
n
«

1
=

1
n

te
g

e
r

t
*
);

J
rl

te
ln

(F
)

;
C

A
S

E

D
a
ta

ty
p
e

O

F
B

o
o
lt

C
ha

*
S

tr

:B
E

G
IM

EM
D;

R
e

l
:

B
E

G
IN

w
ri
te

(F

t
R

M
ln

)i
lF

D

eb
ug

TH

EN

M
r1

te
(P

t*

M
in

im
um

v
a

lu
e

*)
*

«r
1t
el
n(
F)
;

wr
it
e

(F
t

RM
ax

)»
IF

De
bu
g

TH
EN

«r
1t
e(
F,
*

Ma
xi
mu
m

va
lu
e*
);

w
rl

te
ln

(F
);

£N
D;

In
t

:
BE

G
IN

w
r1

te
(F

t
!M

ln
)*

IF

D
eb

ug

TH
EN

L
rl
tH

F
,

•
M

in
im

um

v
a

lu
e

*)
;

w
rl

te
ln

(F
)

;
u

r1
te

(F
t

IM
a

x
)t

It

D

eb
ug

TH

EU

«
r1

te
(F

f
•

M
ax

im
um

v

a
lu

e
.*

);
w

rlt
el

n(
F

)
;

EN
D;

D

ot
:

BE
SI

N
EN

D;
C

N
D

t
{

o
f

CA
SE

}

EN
D

;
{o

f
R

an
ge

D
at

a}

IF

D
eb

ug

TH
EN

W

r1
te

ln
(*

N
o

M

tr
y

in
g

to

du

m
p

O
rd

er
d

at
a.

 •
) ;

W

IT
H

O

rd
er

D
at

a
DO

BE

G
IN

y
r1

te
(F

t
O

rd
e

re
d

)H
F

D

eb
ug

TH

EN

U
r1

te
(F

t
*

1
=

o
rd

er
eo

v
0

=
n

o
t.

*)
i

Pa
ge

42

y
rl

te
ln

C
F

);
IF

O

rd
e

re
d

=
N

o
TH

EN

p
co

u
n
t

:=

2
EL

SE

FO
R

j:
 =

1

TO

p
co

u
n
t

DO

B
E

G
IN

S

:=

C
om

pP
hr

a&
es

C

03

»
u
r1

te
ln

(F
t

S
)*

EN

D

p
co

u
n
t

:=

b
i

EN
D

«
(o

f
O

rd
e

rD
a
ta

)

yl
T

H

V
a
lu

e
S

e
tD

a
ta

DO

u
rU

e
tF

t
L
im

it
e

d
)*

IF

D

eb
ug

TH

EN

U
r1

te
(F

»
«

W
rH

e
L
n
(F

)
;

IF

L
im

it
e

d

=
Y

es

TH
EN

B

E
G

IN

U
r1

te
(F

*
V

a
lu

e
s-

C
o
u
n
t
li

IF

de
bu

g
TH

EN

w
r1

te
(F

,»

va
lu

es

c
o

u
n

t*
)}

w

r1
te

ln
(F

)t
FO

R
J

:=

1
TO

V

a
lu

e
s.

C
o
u
n
t

DO

B
E

G
IN

S

:=

V

a
lu

e
s
.S

tr
1

n
g
£
[J

3
;

U
r1

te
ln

(F
«

S
)«

EN

D
EN

D
*B

E
G

IN

1
=

li
m

it
e

d

v
a
lu

e

s
e

tt

0
=

n
o
t.
*
)i

EN
D

*
{o

f
V

a
lu

e
S

e
tD

a
ta

)

{}

IF

D
eb

ug

TH
EN

W

ri
te

ln
i(
n
u
m

b
e

r*
«

I*

•
do

m
ai

n
d
u
m

p
e

d
*)

;

{
du

m
p

th
e

re

la
ti
o
n

d
e

fi
n
it
io

n
s

>

E
N

D
H

o
f

L
o
o
p
}

IF

D
eb

ug

TH
EN

U

r1
te

ln
(»

N
o
w

tr

y
in

g

to

du
m

p
R

e
la

ti
o
n
s

d
a
ta

.*
);

«
r1

te
(F

t
rd

n
f-

1
);

{

sa
m

e
m

et
ho

d
as

fo

r
d
u
m

p
in

g

d
o
m

a
in

s
>

IF

D
eb

ug

TH
EN

J
r1

te
(F

»

•
th

e

nu
m

be
r

o
f

re
la

ti
o
n
s

s
to

re
d

1n

th
e

d
ic

ti
o
n
a
ry

.*
);

J
rl

te
ln

lF
)«

FO
R

I

:=

1
TO

ro

n
f-

1

DO
U

IT
H

R

D
C

ID

DO

bE
G

IN
IF

de

bu
g

TH
EN

w

r1
te

ln
(»

N
o
w

d
u
m

p
in

g

re
la

ti
o
n

*
•!

)•

w
ri
te

 I
n

(F
*

R
N

am
e)

;

W
ri
te

(F

«
R

O
e

yr
e

e
)*

IF

D
eb

ug

TH
EN

rf

r1
te

(F
t

*
th

e

d
e

g
re

e

o
f

th
is

re

la
ti
o
n
.*

);
u
rl
te

ln
iF

)
;

U
rl
te

(F

t
K

ey

c
o
ls

.n
u
m

)*
IF

D

eb
uu

TH

E
N

"
M

t1
te

(F
t

*
th

e

nu
m

be
r

o
f

a
tt
s

m
a
ki

n
g

up

th
e

ke

yt

an
d

w
h
ic

h

th
e

y
a
re

!*
)*

U
M

te
ln

lF
 >

;
FO

R
j:
=

l
TO

K

ey

co
ls

.n
u
m

DO

W

r1
te

ln
(F

»

K
ey

c
o
ls

.c
o
ls

C
J
3
)»

w

ri
te

(F

t
R

P
er

m
T

;
IF

D

eb
ug

TH

EN

U
r1

te
(F

»

•
th

e

p
a
rt

ic
u
la

r
p
e

rm
u
ta

ti
o
n

o
f

th
is

re

la
ti
o
n
.•

)«
U

r1
te

ln
(F

>
 ;

w
ri

te

(F
t

P
re

d
s
);

IF

D
eb

ug

TH
EN

d
r1

te
(F

t*

th
e

nu

m
be

r
o

f
p
re

d
ic

a
ti
o
n
s

e
m

b
o
d
ie

d

In

th

is

re

la
ti
o
n
.*

);
U

rH
el

nl
F

 >
»

IF

D
eb

ug

TH
EN

U

r1
te

ln
(*

H
e

a
o
e

r
In

fo

du
m

pe
d*

no

w

b
e

g
in

n
in

g

A
tt
ri
b
u
te

o
a
ta

.*
)*

B
E

G
IN

FO
R

J
:=

1

To

R
D

eg
re

e
DO

U

IT
H

A

tt
ri
b
u
te

C

J]

DO

y
r1

te
ln

(F
*

A
n
a
n
e

);

w
r1

te
(F

t
A

tt
d
o
m

a
ln

Id

);
IF

de

bu
g

TH
EN

w

r1
te

(F
»
«

do
m

ai
n

nu
m

be
r

o
t

ab
ov

e
a
tt
ri
b
u
te

.*
);

U

rl
te

ln
lF

)
E

N
D

;

IF

D
eb

ug

TH
EN

W

r1
te

ln
(*

N
o
u

tr

y
in

g

to

du
m

p
p
re

d
ic

a
ti
o
n
s
.*

);

FO
R

J
:=

I
TO

P

re
d

s
DO

D
um

p_
N

od
e(

F
»

P
tr

C
J
3
)•

E
N

D
iC

of

D
um

p_
D

1c
t)

PR
O

C
ED

U
R

E
c
re

a
te

d
o
m

a
in

*
V

AR SH
ST

RI
NG

;
B

iG
IN

W
IT

H

dd
C

dd
nf

D

DO
B

EG
IN W

r1
te

(
*D

o»
a1

n
na

m
e

(s
1

n
«
iu

la
r>

:
*)

5

K
E

A
D

L
N

(S
l)
*

E
n
ti
ty

se

t
na

m
e

C
s
ln

-j
u
la

r
1

'.-

S
I*

U

r1
te

tT
O

on
a1

n
na

m
e

Ip
lu

ra
D

:
*)

*
R

EA
D

LN

(S
I)

;(I
-L

o
o
p

an
d

hI
T

H

:
}

EN
D

;

E
n

tl
ty

.s
e

t.
n

a
a
e

C

p
lu

ra
l

3
:=

S

I
;

IF

B
u
u
e

ry
<

*A
re

th

e

m
em

be
rs

o
f

th
is

d
o
m

a
in

a

n
im

a
te

?
*)

TH

EN

A
n
im

a
te

va

lu
e

:-

A
n

1
m

a
te

EL

SE

A
n
1

m
a
te

_
va

lu
e

:=

In

a
n

im
a

te
*

IF

B
G

u
e

ry
<

*A
re

th

e

m
em

be
rs

o
f

th
is

do

m
ai

n
s
e

lf
-I

d
e

n
ti
fy

in
g
?
')

TH
EN

S

e
lf

ID
:=

Y
e

s
EL

SE

S
e

lf
II
D

:=
N

o
;

U
lT

H

R
ep

O
at

 a

DO

B
E

G
IN

IF

B
q
u
e

ry
t

il
l

th
is

do

m
ai

n
be

re

p
re

s
e

n
te

d

1n

th
e

d

a
ta

b
a

se

by

d
a
ta

va

lu
e

s
o
f

a
n
o
th

e
r

d
o
m

a
in

?
*)

TH

EN

B
E

G
IN

R

e
p
re

se
n
te

d

: =

Y
e

s;
R

ep
N

am
eC

s
in

g
u
la

r]

: =
S

q
u
e

ry
(
'S

in
g
u
la

r
re

p
re

s
e

n
ta

ti
v
e

na

m
e:

«
)i

R
ep

N
am

eC
P

lu
ra

l
3

: =
 S

q
u
e

ry
 <

"P
lu

ra
l

re
p
re

s
e

n
ta

ti
v
e

na

m
e*

.
»
)i

EN
D

EL
SE

R

e
p
re

se
n
te

d

*.=

N
o*

EN

D
*

{o
f

R
e

p
D

a
ta

)

W
IT

H

R
an

ge
D

at
a

DO

B
E

G
IN

R

EP
EA

T
Sh

ow

M
en

u(

D
a
ta

ty
p
e

M

en
u)

*
D

a
ta

ty
p

e

:=

Iq
u

e
r

y<
*D

a
t a

ty

p
e

co

d
e

:
•»

B

o
o
l*

D

a
t)

«

U
N

T
IL

(

b
a
ta

ty
p
e

>
=

6
o
o
l

)
AN

D
(D

a
ta

t
yr

e
<

 =
 D

a
t

)
;

IF

D
eb

ug

TH
EN

U
r1

t
e

l n
(

'D
a
ta

ty
p
e

re

a
d

ha
s

'*

D
a
ta

ty
p
e

);

C
AS

E
D

a
ta

ty
p
e

O

F
Bo

ol

:
BE

GI
N

EN
D;

In
t

:
BE

G
IN

R
elIM

ln

iM
ax

R
M

ln

R
H

ax

=
Iq

u
e

ry
(*

M
1

n
lm

u
m

p
e

rm
it
te

d

v
a
lu

e
:

.
.

=
Iq

ue
ry

<
*M

ax
1m

um

p
e

rm
it
te

d

v
a
lu

e
:

'»

IM
ln

»

M
a
x
ln

t)

EN
D

*
BE
G
y

<
IN

=
RQ
ue
ry
(*
Hi
 n
lm
um

pe
rm
it
te
d

va
lu
e:

'»
-M
ax
re
al
»

Ma
xr
ea
l)
*

=
R

Q
ue

ry
<*

M
ax

1m
um

p
e

rm
it
te

d

v
a

lu
e

:
*•

R

M
1n

«
K

a
x
re

a
l)

EN
D

*
C

ha
t

S
tr

»

O
a
t:

B
E

G
IN

EN

D
*

EN
D

*
{o

f
C

A
S

E
)

EN
D

*
(o

f
R

an
ge

D
at

a)

JI
T

H

V
a
lu

e
S

e
tD

a
ta

00

B

E
G

IN
IF

B

Q
u
e

ry
l*

d
1

ll
th

is

do
m

ai
n

lo
r

It
s

re
p
re

s
e

n
ta

ti
v
e

s
)

ra
ng

e
o
ve

r
a

li
m

it
e

d

va
lu

e

s
e

t?
*)

TH

EN

B
E

G
IN L
im

it
e

d

:=

Y
es

;
{S

o
li
c
it

th
e

va

lu
e

s
e

t
an

d
s
to

re

1
t>

y
r1

te
ln

l*
n
o
t

y
e

t
Im

p
le

m
e

n
te

d
*)

*
EN

D
E

LS
E

L
im

it
e

d

:=

N
o*

E

N
D

;
(o

f
V

a
lu

e
S

e
tD

a
ta

}

W
IT

H

O
rd

e
rD

a
ta

DO

B

E
G

IN

IF NO
T

(B
Q

u
e

ry
<

*A
re

m

em
be

rs

o
f

th
is

do

m
ai

n
s
tr

ic
tl
y

o
rd

e
re

d
?
*)

)

TH
EN

B

E
G

IN

O
rd

e
re

d

:=

N
o;

U
rl
te

ln
t*

In
p
u
t

th
e

a

p
p

ro
p

ri
a

te

p
h
ra

se
s

fo
r

e
a

c
h

*)
*

U
r1

te
ln

<
*o

f
th

e
se

co

m
p
a
ri
so

n

o
p
e

ra
ti
o
n
s
:

')
»

{
y
r1

te
(*

<

*
)i

P
e

a
o
ln

(S
l)
;

C
o

m
p

P
h

ra
se

sC
S

tn
: =

 S
i;

*r
1

te
<

»
<

=

•
)

t
R

e
a
d
ln

(S
l)
;

C
om

pP
n

ra
s
e

s
[S

e
£

]:
 =

 S
l»

}
U

r1
te

<
*<

>

•)
;

R
e

a
d
ln

(S
l)
;

C
o
m

p
P

n
ra

se
sC

N
e

q
f]
:=

S
l»

U

r1
te

(*
=

*)

•
R

e
a
d
ln

(S
l)
«

C
om

pP
n

ra
se

sC
E

q
£
]:
 =

 S
l«

(w

r1
te

t*
>

=

*)
*

R
e

a
d

ln
(S

l)
;

C
om

pP
hr

as
es

C
G

e£
D

:=
S

i;
W

r1
te

C
*>

*>

;
R

e
a
d
ln

(S
l)
i

C
om

pP
nr

as
es

C
G

t£
D

:=
S

1*
}

EN
D

£L
S

E

B
E

G
IN

C

om
pP

hr
as

es
C

S
t£

3
:=

*l

e
s
s

th
a

n

•»

C
om

pP
h

ra
se

 s
C

N
e

q
/K

 =
«

do
es

n
o
t

e
q

u
a

l
'»

C

o
m

p
P

h
ra

s?
sC

E
q

fD
:=

*e
q

u
a

ls

•;
C

om
pP

hr
as

es
[S

e£
]
:

=
*l

e
s
s

th
a
n
*

o
r

e
q
u
a
l

to

*;

C
o
m

p
P

h
ra

se
sC

G
e

fD
:=

*u
re

o
te

r
th

a
n

*
o
r

e
q
u
a
l

to

'»

C
o«

pP
hr

as
es

C
G

t£
 K

 =
 *

g
re

a
te

r
th

a
n

•;

EN
D

EN
D

*
(o

f
O

rd
e

rd
a
ta

}
d
d
n
f

: =
 d

d
n
f*

1
;

yr
1

te
ln

(*
D

o
m

a
1

n

no
w

ad

de
d

to

d
ie

tl
o
n
a
ry

•)
»

EM
D

{o
f

«
IT

H
)

E
N

D
;

{o
f

C
re

a
te

_
D

o
«
a
in

)

PR
O

C
ED

U
R

E
c
re

a
te

re

la
ti
o
n
*

W
AR

S

l.
S

tN
:

S
TR

IN
U

C
B

O
]*

Pa
ge

P
e

rm
u

ta
tl

o
n

s
t

O
rd

er
*

I«
J«

K
*

D
:C

..
1
2
0
i

C
Pr

m
*

C
p

h
r:

l*

»
2
4

i(
1
n

o
e

x

v
a
rl

a
o

le
s

fo
r

lo
o

p
in

g

J
th

ro
u

g
h

a
ll

v
a
ri

a
ti

o
n

s

o
f

p
re

d
ic

a
ti

o
n

}
HP

P
:

l.
.D

e
g

M
a
x
»

{*
a
1
n

P

re
d

ic
a
ti

o
n

P

h
ra

se
}

S
en

se

I
S

en
se

Ty

pe
*

N
um

be
r

:
N

u
m

b
er

_t
yp

ei

B
£G

IN

IF

D
eb

ug

TH
FN

U

r1
 t

e
Ln

(•
 c

 r
e

re
l

*
ra

n
t

=
•»

rd

n
f:

3
li

w
lT

h
R

D
L

ro
n

f]

DO

B
EG

IN

S
I

:=

S
qu

er
y

C
'R

e
la

t
1 o

n
n

a
m

e
.*

);

RO
C

rd
n

f
j.

R
n

a
m

e
:=

S
i;

w
rl

te
ln

M
l

re
ad

*,

RO

C
rd

n
f

3*
R

na
m

e
12

0)
 5

(W
H

IL
E

L

o
ca

te

R
e

la
ti

o
n

tR

na
m

e*

R
d

U
*

rd
n

f)

O

0
DO

B

EG
IN

W
r 1

 t
e

ln
C

 •
Rn

am
e

1*
 »

•
1s

th

e
na

m
e

o
f

a
re

la
ti

o
n

w

hi
ch

a
lr

e
a
d

y

e
x
is

ts
**

)!
jr

1
te

le
n

«
*U

s
e

a

d
if

fe
re

n
t

n
a
m

e
.*

)*
S

I
:=

S

q
u

e
ry

(*
R

e
la

t1
o

n

na
m

e:

•>
;

EM
Di

R
O

eg
re

e
: =

Iq

u
e

ry
 {

'D
e

g
re

e
:

*t

li

D
eg

H
ax

)*

K
ey

co

ls
 *

nu
m

 :
=

Iq
u

er
y

(•
 H

ow

m
an

y
a
tt

ri
b

u
te

s

1n

th
e

ke
y:

*«

lt

R
D

ey
re

e)
;

IF

E
ev

co

ls
.n

u
m

<

R
D

ej
re

e
TH

EN

B
EG

IN
U

r 1
 t

e
ln

 (
'I
n

p
u

t
th

e
nu

m
be

r
o

f
ea

ch

ke
y

a
tt

ri
b

u
te

.*
);

FO
R

l:
=

l
TO

K

ey

co
ls

*n
u

m

DO
K

e
y_

co
l s

 .
co

ls
C

 I
]
:

=
JQ

ue
ry

 t
*N

e
»
t

a
tt
ri
b
u
te

(n

u
m

b
e

r)
:

• 1
 1

 *
 R

a
e

^r
e

e
)

»
{a

d
d

ch
e

ck

fo
r

d
u

p
li
c
a

te
s
}

EN
D

FO
R

i:
=

1

TO

K
D

eg
re

e
DO

K

ey
_c

o
l s

.c
o

ls
C

 I
 3

 :
 =

 I
»

R
P

er
n

:=

1
i

<.
Ge

t
ea

ch

a
tt

ri
b

u
te

}
FO

R
i:
 =

 l
TO

R

D
eg

re
e

DO

W
IT

H

A

tt
rl
D

u
te

L
 I
]

DO

B
E

G
IN

V
e

rb
a
li
s
e

d
 >

 ;
S

I
:=

S

q
u

e
ry

{*

a
tt

ri
b

u
te

na

m
e:

*)

S

C
U

H
IL

E
L

o
ca

te
_A

tt
 (

A
na

m
e.

K

d1
c«

ra

n
t,

t-

l)

<>

0
DO

B

EG
IN

y
rl

t
e

ln
l

* T
ha

t
na

m
e

ha
s

a
lr

e
a
d

y

be
en

us

ed

1n

th
is

re

la
ti

o
n

*
Tr

y
a
g

a
in

*"
)!

S

I
:=

S

q
u

e
ry

(*

A
tt

ri
b

u
te

na

m
e:

*)

«
EN

D»

)

IF

de
bu

ij
TH

EN

w
r1

te
ln

<
*d

d
N

F

=
•«

o
d
N

F
:3

)f

A
t t

 d
om

ai
n

id

:=

Iq
u

e
ry

{
'd

o
m

a
in

nu

m
be

r
fo

r
th

is

a
tt
ri
b
u
te

:
' t

 l
i

oc
N

F-
1

) i
IF

de

bu
a

TH
EN

n

r
1

te
ln

<
 '

d
o

m
al

 n

*«

d
tt

d
o

m
al

n

1d
:3

«*

Is

*«
ad

C
 a

t
td

om
ci

ln

1d
3.

 e
n

ti
ty

se

t
na

m
eC

 s
in

g
u

la
r

3)
 J

IF

de
bu

g
TH

EN

w
r1

te
ln

{
't

y
p

e
o

f n
od

e
«

no
de

1a

=

'i

ty
 p

eo
f n

oo
e:

 3
i

no
oe

1
d

:3
)i

7

~
IF

de

bu
g

TH
EN

w

r 1
 t

el
n

C
 'E

n
t

do
m

ai
n

Id

=
*7

E
nt

do
m

a1
n_

1d
 :

3
) i

 }
{ {

C
U

H
IL

E

L
o

c
a
te

d

o
m

a
ln

tS
lt

dd

 »

dd
N

F)

=
U

CO

B
E

G
IN

w

r1
 1

 e
ln

(
*

A
~*

do
m

a1
n

o
f

th
is

na

m
e

do
es

n

o
t

e
x

is
t.

 '
)»

U

r1
te

ln
(

'E
x
is

ti
n

g

d
o

m
ai

n
s

a
re

:
•)

;
FO

R
J
:=

l
TO

d

d
N

F
-1

DO

u
rl

 t
e

ln
«
d

o
m

a
1
n

n

a
m

e
>

[J
])

i

do
m

ai
n

:=

L
o

ca
te

d

o
ia

1
n

(S
l,

dd
*

d
d

N
F

)*
tl

-l
o

o
p

an

o
d

I T
H

}
EN

D
;

{
no

w

c
re

a
te

g

ra
p

h

}

IF

D
eb

uy

TH
EN

u

r1
te

ln
<

*P
re

p
a
r1

n
g

to

c
re

a
te

g

ra
p

h
»

*)
i

P
ag

e
*5

P
re

d
s

:=

1
»

{e
v

e
ry

ba

se

re
la

ti
o

n

w
il
l

ha
ve

o

n
ly

on

e
p

re
d

ic
a
ti

o
n

th
is

Is

e

q
u

iv
a
le

n
t

to

re
s
tr

a
in

in
g

a
ll

ba
se

re

la
ti

o
n

s
to

be

h

el
d

1n

re

d
u

ce
d

fo

rm
]

FO
R

I
:=

1

TO

M
an

P
re

ds

Do

p
tr

[

I
D

:=

N
IL

»

N
e

w
(P

tr
tl

]»

P
n

o
d

e)
»

(C
re

a
te

a

P
re

d
ic

a
ti

o
n

n

o
d

e,

p
o

in
te

d

to

by

*r
o

o
t*

o

f
re

la
ti

o
n

as

th
is

1s

a

ba
se

re

la
ti

o
n

's

p
re

d
ic

a
ti

o
n

*
It

s

P
d

eg
re

e
w

il
l

=
R

de
gr

ee

o
f

th
e

re
la

ti
o

n
}

IF

D
eb

ug

TH
EN

nr

 1
1

t-
ln

 («
 M

ew

Pn
od

e
cr

e
a
te

d

o
k
a
y
.*

);
C

IF

de
bu

g
TH

EN

w
ri

te
ln

{*
ty

p
e

o
fn

o
a
e

«

no
de

1d

=

«*

t y
pe

of
no

cl
e

: 3
*

no
oe

1
d

:3
);

}
(

IF

de
bu

g
TH

tN

w
M

te
ln

*
*E

nt
do

m
a

1n
_1

d
•

«
7
E

n
td

o
»
a
1
n

_
1
d

:3
);

}

at
rC

 1
3
*.

 d
es

ce
n

d
an

t
s

:=
R

D
eg

re
ei

p
tr

[1
]"

.p
p

e
rn

I=

1
t

{a

ba
se

re

la
ti

o
n

do

es

n
o

t
ne

ed

to

be

m
ap

pe
d}

JI
T

H

P

tr
tl

3
*

CO

{w
it

h

th
e

P
no

de

w
e'

ve

ju
s
t

c
re

a
te

d
..
.}

B

EG
IN

IF

de
bu

g
TH

EN

w
ri

te
ln

('
m

a
p

p
in

g

co
m

p
le

te
d

*
p

p
er

n

=
't

pp

er
m

)
}

Ty
 p

 e
o

f n
o

d
e:

 =
 P

no
de

 »
P

re
d

1d

:=

rd

n
f*

{t

a
k
e

s

lo
c
a
ti

o
n

o

f
ba

se

re
la

ti
o

n
}

P
se

ns
e

:=

P

o
s
it

iv
e

!
(d

e
fa

u
lt

}
P

n
u

»b
er

:
=

S
in

g
u

la
r;

(d

e
fa

u
lt

}

IF

de
bu

g
TH

EN

w
r1

te
In

<
't

y
p

e
o

fn
o

o
e

*
no

de

1d

=
•*

ty

p
eo

fn
o

o
e

12
«

no
oe

1

o
:3

)J

IF

de
bu

g
TH

EN

n
r1

te
ln

<
fE

nt
do

m
a1

n
Id

=

T
E

n
td

o
m

al
n

1d

:3
>»

IF

D

eb
ug

TH

tN

w
rl

te
ln

<
•D

e
s
c
e

n
d

a
n

ts

=7

R
pe

rm

=
t

PP
er

m
~=

*

'»

D
es

ce
n

d
an

ts
*

R
p

er
m

*P
P

er
m

);

FO
R

1
:=

1

TO

D
es

ce
n

d
an

ts

DO

{c
re

a
te

ea

ch

e
n

ti
ty

no

de
}

&
EG

IN

N
ew

i
P

tr
C

 I
 }

*
C

no
de

)
i

yl
T

H

P
tr

C
 I

 3
"

DO

B
EG

IN
If

de

bu
g

TH
EN

w

r 1
1e

ln
<

»c
re

at
1n

g

E
n

ti
ty

no

de

nu
m

be
r

••

l:
2
)i

T

yp
eo

fn
o

d
e

:=

E
no

de
t

V
e

rb
a
U

s
e

iD
t

u
r1

te
ln

<
«

e
n

ti
ty

:
*)

i

no
ae

1d

:=

n

ex
t

no
de

1d

»
ne

»t
"~

no
de

1d

:=

~n
ex

t~
n

o
d

e
Id

*i

;
IF

de

bu
g

TH
EN

*r

It
e

ln
t•

n
o

3
e

_
1
d

=

**

n
o

d
e

_
1
d

:5
)i

IF

b
q

u
e

ry
(«

U
ll
l

th
is

e

n
ti

ty

p
la

y
a

d
is

ti
n

c
t

ro
le

In

th

is

re
la

ti
o

n
?

1)

TH
EN

B

EC
IN

S
:=

S

q
u

e
ry

('
S

in
g

u
la

r
R

o
le

N

am
e?

*)
;

R
o

le
C

s1
n

g
u

la
r3

:~

S

i
S

:=

S
q

u
er

y<
*

P
lu

ra
l

R
o

le

Na
m

e?
1)

!
R

o
le

C
p

lu
ra

l
}

:=

S
EM

L
EL

SE

B
ED

IN

R
ol

eC
 &

1
n

g
u

la
r

] :
 =

'n
o

n
e

• i

R
o

le
[

p
lu

ra
U

:
=

*n
on

e«

EN
D

;

A
tt

nu
m

:=

I

;
(t

h
e

a
tt

ri
b

u
te

th

is

e
n

ti
ty

re

fe
rs

to

}

E
nt

do
m

dl
n

1d

:=

A
tt

r1
b

u
te

C
1
}.

A
tt

d
o

m
a
1
n

_
1
d

i
IF

de

bu
g~

TH
EN

-r

1
te

ln
(*

E
n

td
o

m
a
1
n

_
1
a

=
«*

E
n

td
o

m
a1

n
_1

d
:3

i
o

a
tt

n
td

o
m

«
1

n
_

1
d

].
e

n
tl

ty
_

s
e

t_
n

a
m

e
C

s
in

g
u

la
r

3)
 5

du

m
m

y
1=

no

t
IF

Fo

un
d

In

(I
*

K
ey

c
o

ls
)

TH
EM

E

D
ey

rc
e

:=

m
an

y
*~

EL
SE

E

D
eg

re
e

:=

on
e

»
IF

de

bu
g

TH
EN

w

r1
te

ln
(»

e
d

e
g

re
e

=

**

e
d

e
g

re
e

:3
)»

D
es

ce
n

d
an

ts

:=

0;

(f
o

r
a

ba
se

re

la
ti

o
n

}
FO

R
J
:=

l
TO

D

e^
H

ax

00

P
tr

C
j3

:=
N

lL
t

EN
D

(I
-l
oo
p

an
a

MI
Th
}

EN
D;

(N
ow

ge
t

th
e

'u
tt
er
an
ce
s

1
fo
r

ea
ch

pe
rm
ut
at
io
n}

{H
er
e

we

wa
nt

to

ye
ne
ra
te

al
l

th
e

pe
rm
ut
at
io
ns

of

a
re
la
ti
on
sh
ip

So
*

fo
r

a
de
gr
ee

th
re
e

re
la
ti
on
sh
ip
*

sa
y*

X
's
up
pl
ie
s'

Y
't
o*

2
Ue

wa
nt

to

so
li
ci
t

fr
om

th
e

us
er

al
l

6
pe
rm
ut
at
io
ns

of

th
is

ph
ra
se
*

So

we

wa
nt

to

ye
t

_
_

X
_
_
„

Y

_
_
_
_

2
_
_

_
_

X

_
_
_

£
__
_.
._
_
—

'
-•
—
—

I
H
 Y

II
II
I

x
_
_
_

z
_

—

—
—
—

-
-
-

—

Ue

w
il
l

do

th
is

by

e

n
u

n
c
ia

ti
n

g

th
e

X*

Y*

2
do

m
ai

n
na

m
es

an

d
In

v
it

in
g

th

e
u

se
r

to

H

il
l

In

th
e

'
'

"

IF

R
u
e

.jr
e

e

=
2

TH
EN

B

E
G

IN

IF

B
q

u
e

ry
C

ls

th
is

an

E

nt
 1

1 y
 /A

tt
 r

lb
u

te

re
la

ti
o

n
s
h

ip
?

*)

TH
EN

P

re
a

ty
p

e:
 s

tn
t_

A
t t

Pa
ge

46

EL
SE

P

re
o

ty

p
e

:=
E

n
t

E
n

t
EN

D
EL

SE

(
R

D
ei

,r
ee

->

2
,

S
C

>~
M

PP

:=

I
q

u
er

y
» •

N
um

be
r

o
f

m
ai

n
p

re
d

ic
a

ti
o

n

ph
 r

as
e

?•
 »

l»
R

O
c
y
re

e
-l

)
i

Pe
r*
ut
»t
.1
on
s

: =

F
ac
 t
or
 l
al
 (
((
De
gr
ee
)

?
FO
R

CP
rm

: =

1
TO

Pe
rm
ut
at
io
ns

00

bE
GI
N

Ur
lt
el
ni

FO
h

C
p

h
r

:=

1
TO

R

O
eg

rc
e

DC
O

ra
*r

;

=
C

a
lc

u
la

te

O
rd

er

cC
P

rm
,

C
p

h
r,

P

T
a
b

le
)*

O
ra

*r

;
=

a
lc

u
la

te

O
rd

er

c
P

rm
,

C
p

h
r,

P

T
a
b

le
)*

IF

ae
bu

g
TH

EM

w
r
1
F

c
ln

(
•C

P
rm

,
C

p
h

r,

O
rd

er

,E
n

ta
o

in
a1

n

1a

=
•»

C

p
n

»
:3

»
C

th
r:

 3
»0

rd
e

r
: 3

,E
n

td
o

m
a
1
n

_
id

:
3)

 I

IF

ae
bu

g
TH

EN

w
r1

 t
e

ln
(*

ty
p

e
o

f
n

o
ae

,
no

de

1d

=
•»

ty

p
eo

T
n

o
ae

 :
3

»
no

de

1
d

:3
)»

IF

de

bu
g

TH
EN

n

r1
 t

e
ln

<
*E

n
td

o
m

a1
n

to

=

•T
E

n
ta

o
m

al
n

1d

:3
>

»
•)

~

~
IF

de

bu
g

TH
EN

w

rl
 t

e
In

C
 «

P
t r

C
O

rd
er

 3
*

.E
n

ta
o

n
.a

1n

la

=
•»

P

t
rC

 O
ra

e
r]

~
.E

n
t

d
o

w
al

n

13
)5

F

de
bu

g
TH

EN

*r
 1

t e
l

n(
 »

F
t

rt
 O

rd
er

 3
*.

 n
od

e
1a

=

T
t

pt
 r

f
o

rd
e

r
3"

 .n
o

d
e

1
d

:3
»
i

IF

u
eb

j>
,

TH
EN

w

M
 t

e
U>

<
• p

tr
C

 o
rd

e
r

]*
 .

ty
p

e
o

 t
n

o
d

e
=

«t

p
tr

C
 o

ra
e

r3
".

T
y

p
e

o
f

no
de

)
•

S
:=

od

C
P

tr
C

O
rd

e
rl

"
.

C
nt

oo
m

d
In

to

].
 E

n
ti

ty

se
t

nd
m

et
 s

 I
n

g
u

l a
r

3
5

~
~

s:
=

P

tr
t

O
ra

e
r3

".
R

o
le

l
s
in

g
u

la
r

3$
IF

s
O

*n
o

n
e

*
TH

EN

•
r

1 t
e

J M
a

c
t

In
g

as

a

•«

S»

•)
•>

;
IF

C

ph
r<

P
D

e<
jr

ee

TH
EN

b
rl

te
t*

<

p
h

ra
se

•«

C

p
h

rl
l.

•
>

•)
«

t
cp

hr
-io

op
)

EN
D;

w
rl

te
ln

;
FO

R
C

ph
r

:=

1
TO

D

es
ce

n
d

an
ts

-1

CO

B
EG

IN

IF

C
p

h
rO

H
P

P

TH
EN

(w

e
a
re

d

e
a
li
n

g

w
it

h

a
ca

se

p
h

ra
s
e

)
B

EG
IN

A

lt

se
n

t
en

 c
e

sC
 C

P
rm

, C
ph

r
].

M
a

1
n

: =
 N

oi

y
rl

T
e

l'
P

h
ra

s
e

«
,C

p
h

r:
2
>

;
S

:=
S

qu
e

ry
(
'(

a

C
as

e
p

h
ra

s
e

).
*)

;
A

lt

se
r>

 te
n

ce
sC

 C
f-

rm
, C

ph
r
].

 C
os

e
p

h
r<

is
e:

 =
 S

t
EN

D
EL

SE

~
(1

t*
s

th
e

m

ai
n

p
re

C
.

p
h

ra
s
e

*
so

ye

t
a
ll

<t
v
a
ri

a
n

ts
)

B
EG

IN

A
lt

se

n
te

n
ce

 s
tC

P
r

in
, C

rh
r
].

 M
ai

n
:

=
Ye

s
;

F
O

R
~S

en
se

:=
P

o
s1

t1
w

e
DO

bN
TO

N

e
^

a
tU

f
DO

&

E0
1N

IF

S

en
se

=N
eg

at
1

we

TH
EN

S

: =
»N

eg
<»

t
1 v

e
•

E
L

S
f

S
:=

«P
o

s1
t1

ve

•
J

FO
R

M
um

be
r

:=
S

1
n

q
jl
a
r

TO

P
lu

ra
l

00

b&
C

lN

IF

N
um

be
r

=
S

in
g

u
la

r
TH

EN

N
:=

«
S

ln
y

u
la

r
•

EL
SE

N

:=
•

P
lu

ra
l

•;

S
i:

=
S

Q
u

e
ry

(S
»

N
»

»
P

h
ra

s
f.

*)
;

A
lt

_
s
e

n
te

n
c
 e

sC
C

P
rm

.C
ph

r
3
.A

I
t.

p
h

ra
s
e

s
 t

S
en

se
t

N
um

be
r

3
: =

S1

EN
D

EN
D

EN
D

E
NO

 •

3
EN

D;

(t
e

m
p

o
ra

ry

d
eo

u
g

g
ln

y
ch

ec
k

FO
R

C
P

rm
:=

l
TO

P

e
rm

u
ta

ti
o

n
s

DO

L-
EG

IN

FO
R

S
en

se

:=

P
o

s
it

iv
e

OQ

w
NT

O
N

e
g

a
ti

v
e

00

FO

R
N

um
be

r
:=

S

in
g

u
la

r
TO

P

lu
ra

l
DO

FO
R

C
p

h
r:

=

1
to

D

es
ce

n
d

an
ts

-

1
DO

B

EG
IN

S

:=

P
tr

(C
a
lc

u
la

te

0
rd

e
r<

C
P

rm
«
C

p
h

r»
P

_
T

a
b

le
)3

".
R

o
le

t
n

u
m

b
er

],

U
r1

te
(S

,«

•>
;

~
IF

A

lt

se
n

te
n

ce
sC

C
P

rm
,C

p
h

r3
.M

a1
n

=

Ye
s

T
HE

N
—

S
:=

A

lt

se
n

te
n

ce
sC

C
P

rm
,C

p
h

r3
.A

lt

p
h

ra
s
e

s
tS

e
n

s
e

,
N

um
be

r]

EL
SE
S

I-

A
lt

se

n
te

n
cc

sC
T

P
rm

 ,C
p

h
r3

.C
as

e
p

h
ra

se
!

M
rl

te
C

S
,*

r

)
*

S
:=

P

tr
t

C
a
lc

u
la

te

0r
d

er
IC

P
rm

.D
es

ce
n

o
an

ts
%

P

ta
b

le
)]

.h

o
ie

L
n

u
m

b
er

3i

jr
1
te

ln
(S

>
;

~
EN

D
EN

D
;

}
(b

iT
H

p

tr
cn

"
>

EN
D;

ra
nt

:=
rd

nf
•!

»
»r

 1
 t

e
ln

(»
R

e
la

t1
o

n

•,

ro
n

f-
i:

3
,

•
no

w

ad
de

d
to

d

ic
ti

o
n

a
ry

.'
);

EN
D

(O
f

U
lT

H

R
O

)
CN

O
;

(o
f

C
re

at
e_

H
el

at
1o

n
3

