


ABSTRACT

The work is devoted to the application and further development of modern statistical
methods to study pharmacokinetics of drugs. Specifically, it deals with applications
and development of repeated measures analysis, so called ‘population approach’
methods, in the field of pharmacokinetics. In the first part of the thesis, a new, model-
free approach is developed and tested. It introduces a model-free measure of patient’s
exposure to drugs, and then investigates the relationships between the exposure level
and covariates using various statistical techniques. Classification tree models (CART)
and regression analysis are used to study various subpopulations of interest. It is
shown, via simulations, that the model-free method is capable to identify predictors of
exposure in a wide range of variability in the data. The non-linear mixed effect
modelling is used to confirm the results of the model-free investigation. Model-free
approach is successfully applied to several drugs. Non-linear Mixed Effects
population models developed for the same data agree with its results. Limits of the
new method are also identified. Specifically, it does not allow the estimation of the
variability: either the within-subject (intra-individual) variability in response, or
between-subject (inter-individual) variability of the pharmacokinetic parameters in the
population. The second part of the thesis is devoted to applications of the Non-linear
Mixed Effect methodology to population pharmacokinetics and dose-response
analysis. Population pharmacokinetic and dose-response models of several drugs are
developed. Pharmacokinetic models allow for complete characterisation of the drug’s
pharmacokinetics and its relationships to safety and efficacy. The developed models
are used to explore the relationships between the exposure (individual Bayes
estimates) and demographic predictors of exposure, and safety and efficacy of the
drug. Finally, the developed models are used in simulations to guide the design of new

studies
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1 INTRODUCTION

The work is devoted to application and further development of modern statistical
methods to study pharmacokinetics of drugs. Due to the dual (statistical and
biological) nature of the work, it requires some introduction to the field and definition

of pharmacokinetic terms. Let us begin with such an introduction.

1.1 Overview Of Principles Of Pharmacokinetics

When a drug is given (administered) orally to a human or an animal, it first enters the
systemic circulation (a blood stream) through complex absorption mechanisms
[Rowland & Tozer, 1995]. Following absorption, it is distributed to different tissues
in the body. On passage through organs of elimination (e.g., liver, kidneys, etc.) it is
eliminated (cleared) from the body. The amount of drug in each tissue is not constant.
It rises following administration of the drug, then decreases, and eventually is cleared
completely. Figure 1 depicts the typical pharmacokinetics or time course of the drug
(i.e., time dependence of the amount of the drug in an organ) in different tissues

following a single oral dose of a drug.

(=]
S 4
o - Blood plasma
g
S
58
<
8
8¢
o
2
0
ok
@ X5
T T LI T T 1
0 2 4 6 8 10
Time, t
Figure 1. Typical drug pharmacokinetics after a single oral dose.

Pharmacological action of a drug, positive (efficacy) or negative (toxicity) depends on
the amount of the drug at the site of action. Therefore, for optimal therapy (therapy
that balances desired and side effects of the drug) understanding of the kinetics of the
drug is crucial. However, most internal organs in humans are difficult to access, and

the amount of the drug in the tissue can not be measured directly. Instead one typically
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measures the drug concentration in blood or blood plasma (also in urine, feces, milk,
etc). From this profile (a time course) one can characterise pharmacokinetics of the
drug in the body. The field of science that study the time course of absorption,

distribution and elimination of drugs in the body is called pharmacokinetics (PK)

[Gibaldi & Perrier, 1982].

Several pharmacokinetic parameters are commonly used to characterise drug

pharmacokinetics. The most important are:

e Area under the concentration versus time curve (AUC);

e Maximal achieved concentration (Cpay);

e Time to achieve the maximal concentration (tyax) ;

o (learance (Cl), defined as the proportionality coefficient between the rate of drug
elimination from the body and the drug concentration in plasma. Clearance
represents the volume of plasma that is cleared of drug per unit of time;

o Apparent volume of distribution (V), defined as a proportionality coefficient
between the amount of drug in the body and drug concentration in plasma;

e Bioavailability (F), defined as fraction of the dose absorbed into systemic

circulation;

e Half-life (t,,,) that is the time that takes to lower plasma concentration of the drug
in half.

Repeated administration of a drug eventually (after several doses) yields steady-state
concentrations of the drug in different tissues. These concentrations typically

fluctuate periodically, with the period of dosing. The pharmacokinetic parameters at
steady state may differ from those following a single dose. The relationship between

single and multiple-dose pharmacokinetics is an important feature of the drug kinetics.
1.2 Compartmental Methods

Mathematical models that describe pharmacokinetics may be purely empirical or may
have a physiological meaning. The most widely used pharmacokinetic models are the
so-called compartmental models. They assume that the body consists of several

‘compartments’ storing the drug, as shown schematically in Figure 2. The drug

17



transfers between the compartments and is eliminated following some functional
relationships. The central compartment 1 may, for example, represent blood that

transfers the drug to all the other tissues, presented by peripheral compartments 2 and

3.

k21 k13
2 |77 > | 3
<« <«
k12 ¢ k 1el k31
Figure 2. Three-compartment model with input into and elimination from the

central compartment.

The compartment models aim to describe the disposition of the drug (e.g.,
concentration time course of the drug) in any compartment given concentration
measurements from an individual at known times and the history of dosing. They can

be described by systems of ordinary differential equations of the form,;

_%:_Zkini +zkﬁXj+Ii(t)—kielXi> 1=1,...,n, Eq I
dt =1 J=1 ’
J#i J#i

where X; represents the amount of the drug in the i-th compartment, I; (t) is an input
function into the i-th compartment from outside the system, k;; and k; are the rates of
transfer between the compartments and rates of loss of drug, respectively, and n is the

number of compartments in the model.

Usually, the transfer and the elimination rates, kj; and k; ¢, are assumed to be constant.
Then the system is linear, and the solution is described by a sum of several
exponential terms. Combinations of the rate constants then describe all the

pharmacokinetic parameters of the drug.

The scope of compartmental modelling is to define functional relationships between
the compartments and to estimate the parameters that describe the data. Estimation of
unknown parameters of compartmental models is usually performed with the

nonlinear regression.
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1.3 Variability In Pharmacokinetics

Different people respond differently to the same drug, and the same individual may
have different responses (drug concentrations) on different occasions. Many factors
can contribute to the inter-individual (between subjects) and intra-individual (within a
subject) variability. Factors such as genetics, diseases, age, weight, and gender
contribute to inter-individual variability, while drugs given concomitantly,
environmental factors, non-compliance, food, time of the day and season can
contribute to intra-individual variability. Determining subpopulations with altered
kinetics has the implication for the choice of an appropriate dosing regimen (that is,
the way of administering the drug, such as once or twice a day, orally or

intravenously, etc.).

1.4 Two-Stage Approach

The traditional way to deal with variability is to use the two-stage method. First, the
kinetics is described individually for a number of subjects from a homogeneous
population (holding all factors contributing to variability constant), and
pharmacokinetic parameters are derived for each subject. Then the population values
of each parameter (mean and variance or coefficient of variation) are computed from
the empirical distribution of individual estimates of the parameter. To define the
influence of a specific factor on the drug kinetics, several populations that differ only
in that factor should be compared with respect to their parameters (e.g., young versus

elderly, fed versus fasted, etc.) [Rowland & Tozer, 1995].

This approach is widely used in pharmacokinetic studies, and until recently it has been
the only method used. However, it has many limitations as discussed by Beal and

Sheiner [1985], and Sheiner [1984].

Firstly, the two-stage method can be applied only to small pharmacokinetic studies
under restrictive inclusion criteria. These studies are usually short and well controlled.
They employ few dosing regimens and small number of usually healthy subjects who
do not take other drugs. Many measurements are taken from each person allowing the

description of the kinetics in each individual. To have enough power for comparisons,
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these studies are designed to compare kinetics with respect to only few factors. Thus,

they cannot be used to study several correlated influential factors.

Secondly, in order to distinguish between inter- and intra-individual variability,
traditional studies have to employ artificial and complex designs. These designs are
not representative of clinical practice and usually can not be carried out in studies that

involve real patients.

1.5 Population Approach

In patient studies (population studies), where the primary objective is the investigation
of the drug safety and efficacy, the optimal pharmacokinetic designs are neither
feasible nor desirable. Design of patient studies is dictated by the therapeutic goals.
From the pharmacokinetic prospective these studies have non-experimental
(observational) design. Only a few measurements are usually available per individual.
The timing and number of measurements may differ between subjects, dosing
regimens may also differ. This type of data is called sparse data. The population
included in such studies 1s much broader and less homogeneous. Many factors can
contribute to pharmacokinetic variability of a particular drug in a patient population.
The number of homogeneous subpopulations can also be very large (and unknown a

priori). The two-stage approach is not appropriate in dealing with such data.

A more recent approach for analysing sparse kinetic data from a population (called
population approach) was first proposed by Sheiner et al. [1972]. Its first published
application was five years later [Sheiner & Rosenberg, 1977] and the first software for
analysing data in this manner, NONMEM, was released in 1980 [Beal & Sheiner,
1980]. Since then, the population approach has been an area of active research [Beal,
1998; Grasela & Sheiner, 1991; Sheiner & Grasela, 1991]. The approach uses the
Nonlinear Mixed Effects regression Mode! to analyse the data pooled over all

individuals (see an overview by Sheiner & Ludden [1992])).

The population model combines a pharmacokinetic model, called the structural
model (for example, a compartmental model) and a statistical model. The basic idea
behind the population model 1s that the same mathematical equation describes the

response for any particular individual, but the underlying structural parameters of this
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equation vary from individual to individual. The overall variability in the measured
response reflects the inter-subject variability in kinetics and the residual variation. The

latter includes the intra -individual variability and a measurement error.

Individual structural (pharmacokinetic) parameters are modelled in terms of fixed and
random effects. Fixed effects account for inter-individual differences in the values of
individual covariates (age, sex, liver function, severity of a disease or other
demographic or laboratory data). Random effects of the first type account for
unexplained inter-individual variability in the pharmacokinetic parameters. Random
effects of the second type account for residual variability. The full set of assumptions
and models on (1) pharmacokinetic structural relationships, (ii) inter-individual
variation and (iii) residual error variance build a “pharmacostatistical” population

model.

A form of the Nonlinear Mixed-Effect Model sufficiently general for our purposes is

given by the equation:

Yij = fi(Dik, toiks ti5 @i) + €i§(Dik, to ik tijs Qi) Eq. 2

where the index i=1,...,I denotes the subject (I is the number of subjects), the index
j=1...,Ji denotes an observation (J; 1s the number of observations for the subject i), and
k=1,...,K; denotes a dose administration (K; is the number of doses administered to
the subject i). The observed plasma concentration y;; (or it’s transformed value, such
as log concentration) is a noise-corrupted realisation of the expected value for the j-th
observation on the i-th subject. This model assumes the existence of some parametric
function of time fjj(Di, tb ik, tij; @i) (a structural model) that describes the expected
response (€.g., plasma concentration) in a subject. The vectors Dy and tp i describe
the dosing history of an i subject, and the vector tjj describes times of the
observations. The vector @; is the vector of pharmacokinetic parameters for the i™
subject. The random noise ¢;; that perturbs the expected value of yj; is represented in
(Eq. 2) as a function to indicate that its distribution (e.g., variance) may depend on

dose, time and pharmacokinetic parameters.

The vector of parameters @; vary randomly among the subjects. It is a function
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@i = h(x;; 9, M) Eq.3

of the vector of parameters 8 (the fixed effects that characterise the population), on the
collection x; of covariates, and on the vector of random effects 1; The random effects

ni and €;; are assumed to have zero expectations

E(mi) =0, E(e) =0, Eq. 4

and be statistically independent

Cov(n;, &) =0 . Eq. 5

The variance-covariance matrix of inter-individual random effects and variance of

intra-individual random effects are denoted as Q and o7, respectively, i.c.,

Cov(ny) = Q, Var(gj) =02, 1

L.oLog=1. .0 . Eq. 6

(In a more general model, €; may be a vector; its variance-covariance matrix is then

denoted as ).

Thus, the pharmacokinetics of the drug is completely described within the given
model by (i) vector of the population parameters 9, (i1) vectors of individual random
effects n; (or its variance-covariance ), and (iii) variance of residuals c* (or the

variance-covariance matrix X).

The simplest method for estimation of unknown parameters is the so-called First —
Order method [Sheiner, et al., 1972]. It approximates the nonlinear model with a
model that is linear in all random effects by using a first-order Taylor expansion in all
random effects around zero [Beal, 1984]. To illustrate the method let us rewrite (Eq.

2) and (Eq. 3) in a more general form:

yij=Mij(09X1j977i’gij > Eq.7
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including into X;; the covariates i, the dosage histories Dy, tp i, and the sampling

time histories t;. Then the first-order model can be written as

M, M,
¥, = M,(6,X,,00)+ o (6,X,,00)7 + o (0,X,,00),  Eq.8

y

The estimates of the model parameters 6, Q and X are then obtained by the extended
least squares method [Beal, 1984]. Under the assumption of normality of random

effects, the extended least squares yields maximum likelihood estimates for the first -

order model [Beal, 1984].

The first -order method produces estimates of the population parameters 6, €2 and X,
but it does not obtain estimates of the random inter-individual effects n;. An estimate
of n;, conditional on the first order estimates for 6 and Q (at zero value of X) can be
obtained by maximising the empirical Bayes posterior density of n;, given the vector
y;; for the i™ individual [Beal & Sheiner, 1998]. Since the estimate 1; is obtained after

the population estimates, it is called the posthoc estimate.

The first-order method was implemented in the software NONMEM, and is referred to
as FO method.

In contrast to the first-order method, conditional estimation methods (also
implemented in NONMEM [Beal & Sheiner, 1998]) produce estimates of the
population parameters 8, (2 and £ and, simultaneously, estimates of the random inter-
individual effects ;. They maximise the likelihood for all the data with respect to 6,
X, Q and n;. Different methods use different approximations to the likelihood. These
methods are very time-consuming and prone to problems. Therefore, they are used

only when the FO method produces biased estimates.

The NONMEM software that implements FO and conditional estimation methods has
become a standard for nonlinear mixed effect modelling in the pharmaceutical
industry. The alternatives include other Gaussian maximum likelihood algorithms
based on different linearisations of the model [Lindstrom & Bates,1990; Vonesh,

1992; Vonesh & Carter, 1992; Wolfinger, 1993}, semi-nonparametric maximum
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according to observed interim response, are used more and more often. The mixed-
effects methodology is the only option for deriving dose-response relationships in

such studies.
1.6 Model-Free Approach

Nonlinear mixed-effects modelling is a very powerful technique. However, it has its
own limitations. Firstly, it is a very time intensive method [Steimer, ef al., 1994].
Secondly, it requires an answer to the following question: how do the structural and
covariate models, fjj and h, depend on their arguments? Seldom, if ever, does theory
provide a priori answers to these questions. Exploratory diagnostic techniques have
been developed to guide the selection of model form fj; and covariate dependencies h
[Ette & Ludden, 1995; Mandema, et al., 1992]. The success of these exploratory
methods led to the idea of using nonparametric “exploratory” data analysis methods
developed by Chambers et al. [1983]. Such an analysis is especially useful when the
data has a fairly siniple structure, e.g., in the situation of steady state dosing with the
same dose given to all the individuals. These nonparametric exploratory methods are
essentially a mix of graphical and statistical techniques (see [Pollak, 1990] for a

general survey of exploratory methods).

Motivated by Ebelin e al. [1992 ] and Laplanche et al. [1991], where exploratory
analysis were made primal, a nonparametric, model-free, approach to pharmacokinetic
population analysis has been developed [Gibiansky, et al., 1997, 1999; Nedelman, et
al., 1995,1996]. The basic idea of the model-free approach is to categorise patients
into groups according to their exposure, using graphical algorithms, and then use
various statistical techniques to explore association of these groups with the

covariates.

The approach involves partitioning observed plasma concentrations into several
regions (observation levels) taking into account time of concentration measurements.
Patients are then partitioned into ‘exposure levels’ depending on which observation
level their concentrations fall into. Exposure level serves as a new response - an
ordered factor that characterises the exposure to the drug. It can be explored for an
association with covariates. Depending on the goals of the investigation a variety of

statistical techniques can be used: from univariate measures of association to elaborate
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multivariate classification and regression tree (CART) analysis [Breiman, et al.,
1984]. Quantitative measures of exposure, individual (Area Under Quartile or AUQ)
and population (Area Under Population Curve or AUPC) can also be derived. This
allows for comparisons of exposure for subpopulations. Both, the exposure level and
the individual AUQ, can also be used as a covariate in pharmacodynamic models,

models that relate drug eftect to pharmacokinetic parameters.

The method has been evolving over time. First, it was mostly a qualitative method,
designed to serve as a screening tool for parametric modelling, the aim was to reduce
the number of variables in the model building process. It later developed into an

elaborate statistical technique able to stand on its own.

In the present work the aforementioned techniques are developed and applied to

several drugs under development. The structure of the work is the following.

1.7 Organisation of the thesis

Chapter 2 starts with a simpler, model-free approach. It describes the evolution of the
approach as it is applied to three projects, three different drugs. In the first two
sections (Sections 2.1 and 2.2), model-free approach served as a screening tool: results
were to be incorporated into model building of the nonlinear mixed-effects model
[Nedelman et al., 1995, 1996]. Therefore, the most interest was in qualitative results.
In the third section (Section 2.3) the model-free approach was meant to be the only
technique used for the analysis of the data. This necessitated a considerable
refinement of the method: use of a wider spectrum of modern statistical techniques
and development of quantitative measures of exposure for subpopulations [Gibiansky
et al., 1997]. The fourth section of Chapter 2 (Section 2.4) supports the model-free

approach by an extensive simulation [Gibiansky ef al., 1999].

Chapter 3 is devoted to two applications of the Nonlinear Mixed Effect methodology.
In the first section (Section 3.1), a population pharmacokinetic model for one of the
drugs described in Chapter 2 is developed. To find a form of the structural model,
individual pharmacokinetic models are first developed for data from phase I
‘pharmacokinetic studies using compartmental modelling [Gibiansky, 1995; Nedelman

et al., 1997a]. These data and patient data used in Chapter 2 are then used for the
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development of the population model [Nedelman ef al., 1996]. Initial values of the
population parameters are obtained by the two-stage method [Gibiansky, 1994]. After
model development is completed, simulations are used to assess the bias and precision
of the model parameters. The developed model is used to help design subsequent

studies for the drug [Gibiansky, 1996].

In the second section of Chapter 3 (Section 3.2), the Nonlinear Mixed Effects
Methodology is used to develop a population dose-response model of a drug. The drug
was given to hypertensive patients to reduce their diastolic blood pressure (DBP). If a
patient did not respond (i.e. his/her blood pressure did not drop below a pre-specified
threshold after a pre-specified time), the dose for that patient was increased or a dose
regimen was changed. Thus, different patients received different doses of the drug
during the trials. Only the patients most resistant to the therapy received the highest
doses. In this chapter development of the population model of change in DBP
depending on dose is described. During the trials more cardiovascular adverse events
were seen among African-American patients than among Caucasians. Therefore, these
subpopulations are thoroughly investigated in covariate models. Structural model
relationships were sought among step, linear and sigmoid [Gabrielsson & Weiner,

1997] models. The best structural models turned out to be different for different races.

Finally, Chapter 4 concludes the work by summarising results of all investigations
described in Chapters 2 and 3. The results of the model-free approach of Chapter 2
and model-based approach of Chapter 3 are compared. Differences and similarities of

these approaches are discussed.
1.8 Tools

Software is an essential tool in this work. The main software packages used in the
work include SAS® [SAS Institute Inc., 1990], S-PLUS [1997] and NONMEM
[1992]. SAS was used throughout the work for data management and conventional
statistics. It was also used for the development of the spline-partitioning technique
described in the Sections 2.2, 2.3 and 2.4 of Chapter 2, and for the compartmental
modelling and simulation of Section 3.1 of Chapter 3. S-PLUS is a very powerful tool
for modern statistical techniques, exploratory graphics and visualisation of data. It was

used for tree-based modelling, robust regression and simulation in the Sections 2.3
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and 2.4 of Chapter 2, for exploratory graphics and statistical computing in the Section
3.2 of Chapter 3. NONMEM today is a gold standard in the pharmaceutical industry
for the nonlinear-mixed effect modelling. It was used for model development in the

projects of Chapter 3.
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2 MODEL-FREE POPULATION PHARMACOKINETICS

One of the goals of pharmacokinetics is to characterise the relationship between the
pharmacokinetic parameters of a drug and covariates (such as demographic, disease-
related, etc.) that alter patient’s drug exposure (e.g., AUC). In many situations, finding
such factors and quantifying the differences in exposure in subpopulations is the main
goal of the investigation. A model-free approach deals with such situations
[Gibiansky, ef al., 1997; Nedelman, et al., 1995, 1996]. The basic idea of the approach
is to classify patients into groups according to their exposure and then use various
statistical techniques to explore association of these groups with covariates. In the
following three sections this model-free approach is applied to three situations, each
time the method is more refined and modified to the needs of each project. In the

fourth section the developed technique is tested on simulated data.

2.1 Anxiolytic Compound

2.1.1 BACKGROUND

As part of the development of a new anti-anxiety drug, there was a need to estimate
the systemic exposure to the drug (i.e. AUC of the drug in plasma) from phase I1I
clinical trials (large-scale safety and efficacy trials in patients). In the trials, patients
received the drug three times a day for six weeks. Plasma samples were drawn once a
week at times chosen by the patients. Evaluating pharmacokinetics from such sparse,
arbitrarily timed plasma samples is known as a pharmacokinetic screen [Steimer, et

al., 1994].

2.1.2 DATA

The data was obtained from two phase III trials in patients with generalised anxiety
disorder. The patients received their medication orally at home three times a day, but
not on a rigid 8-hour schedule. Patients were randomised to different treatment groups
and were titrated up (i.e. dose was slowly increased) to the target dose (within a given
treatment) over the first few days of the study. The final daily doses ranged from 3 mg
to 22.5 mg across treatment groups. Figure 3 displays the distribution of daily doses in

the two studies.
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Figure 3. Frequency distributions of prescribed daily doses, after titration and

during the time when blood draws were performed, in the two patient

studies, Study [ s= and Study II :

Some of the daily doses were non-uniformly distributed between the three
administrations. For example, a frequent daily dose of 17.5 mg was divided into 5 mg
in the morning, 5 mg in the afternoon, and 7.5 mg in the evening. The patients took

their medication at home, and maintained a diary recording the doses they took at each

administration, but did not record the time.

Patients returned to their physicians for an evaluation once a week for 6 weeks.
During the weeks 3-6, after the titration period, a blood sample was taken during the
patient’s visit to the clinic. The time of the visit and the time interval since the last
administration of the drug (time post-dose) were not controlled but rather were
determined by the patient's choice of when to take the drug and visit the clinic. When
blood was sampled, patients were asked how long it had been since their most recent
administration of the drug and since the second most recent. Thus, for each patient, in
addition to a weekly diary record of dosages, a report from memory of the times of the
two most recent drug administrations was available. Table 1 displays the numbers of

patients and numbers of blood samples available for analysis.
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Table 1. Numbers of patients and plasma samples

Study Number of patients | Number of samples
I 87 274
11 170 562

2.1.3 OBJECTIVES

The goal of this investigation was to characterise the average exposure to the drug and
relate it to demographic predictors, i.e. identify covariates that affect the exposure to
the drug. Demographic covariates chosen for exploration of their relationships to

exposure were age, gender, race, weight, height, body surface area and smoking.

2.1.4 METHODS

The method is based on partitioning observed plasma concentrations into several
regions, called observation levels, taking into account time of concentration
measurements. Patients are then partitioned into exposure levels depending on which
observation level their concentrations fall into. Exposure level serves as a new
response, an ordered factor that characterises the exposure to the drug. It can be

explored for an association with covariates.

First, observed plasma concentrations are partitioned into quartiles. This partitioning

involves several steps:

. Concentrations are normalised for dose, using weighted average dose
WDOSE. Because it was common to have non-uniform dosage regimens with
a cycle of three dose levels during a day, WDOSE accounted for three doses
prior to blood sampling: D1 - the last dose, D2 - second-to-last dose, and D3 -
third-to-last dose. Weights were chosen to give more importance to more

recent doses:

WDOSE = (4D1 + 2D2 + D3)/7. Eq. 9

31



Previous pharmacokinetic studies [Krause, 1991; Krause, et al., 1990] of the
drug had indicated that concentrations vary proportionally to dose. Dose-

normalisation permitted us to combine observations from many dose levels.

2. A scatter plot of dose-normalised concentrations versus time post-dose was
considered. Most concentrations were obtained within 0 to 8 hours post dose;
few concentrations obtained later than 8 hours were excluded from the

analysis. The time axis was divided into one-hour time intervals from 0 to 8

hours post-dose.

3. Within each one-hour interval, the quartiles of the dose-normalised
concentrations were determined. Figure 4 shows four piecewise constant
functions that within each one-hour interval take on the values of the four
quartiles. These functions thus divide the scatter plot of points into four areas,

which are called observation levels.

(ng/mL/mg)
13 4

Time after last dose(h)

Figure 4. Dose-normalised plasma concentrations from the two patient studies,
with piece-wise constant functions of hourly quartiles of observations.

Regions between step functions are defined to be observation levels.

32



Then patients are partitioned into exposure levels depending on which observation
levels their dose-normalised concentrations fell into. This process is schematically

depicted in Figure 5. One can distinguish four different situations:

A. If all of a patient's observed dose-normalised concentrations fall into one
observation level, the patient is then called an 'all-in-one' patient and is

assigned to the corresponding exposure level (Figure 5A).

B. Suppose that a patient's dose-normalised concentrations fall into two adjacent
observation levels. Let u out of n observations for the patient, be in the upper
of the two adjacent levels and »-u in the lower. Let dy, ...,d,, be the distances
from the points in the upper level to the common boundary, and let d y+1, ... , d
n be the distances for the points in the lower level. If

di+..+dy>dyn +...+dy,
then the patient is assigned to the exposure level corresponding to the upper

observation level; otherwise, the reverse.

In Figure 5B, n =4, u = 2, and since the two points in the third observation
level are farther from the common boundary than are the two observations in

the second level, the patient is assigned to the third exposure level.

C. If a patient's dose-normalised concentrations fall into either the first to third
observation levels or else the second to fourth observation levels, such 'three-
adjacent' patient is assigned to the exposure level corresponding to the middle

of the three observation levels (Figure 5C).

D. If a patient has dose-normalised concentrations spanning the first and fourth
observation levels, then the patient is called an 'all-four' patient and is
considered not to represent a stable type. Such patient is left unclassified as to

exposure level (Figure 5D).
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Figure 5. Dose-normalised plasma concentrations for fictitious patients:

illustration of assignment algorithm. Patient observations fall in A -
one observation level, B — two adjacent regions, C —three adjacent

regions, D — four observation levels.

This classification provides a crude estimate of exposure for each patient; the
exposure level to which a patient is assigned is an ordinal measure of the patient's

dose-normalised exposure to the drug.

The choice of the observation levels and the exposure measure in the model-free
approach is somewhat arbitrary. The four observation levels used in this work were
chosen by the analogy with four quartiles commonly used in the statistical analyses.
One can use an ordinal measure based on more observation levels or create a
continuous measure. For example, some average (over the subject’s measurements) of
standardised distances of the subject’s measurements from the average population

concentrations within the respective time intervals may serve as such a measure. The
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rule of subject’s assignment to the exposure level is not unique as well. One can
imagine more elaborate schemes. As one will be able to see, the present choice made
it possible to obtain meaningful results. More experiments may be needed to find the
best possible exposure measure within the model-free framework. This work focuses
on obtaining practical results and proving of method’s concept with the chosen

exposure measure rather than experimenting with various possible alternatives.

To find predictors that affect exposure, exposure levels are related to demographic
covariates by standard statistical techniques: contingency-table analysis for the
categorical covariates such as smoking, gender, and race; ANOVA for the continuous

covariates such as age and measures of body size.

For comparison of model-free and model-based results, discussed later, a quantitative
measure of an individual exposure, a quartile-based analogue of the AUC, was

created. It is called the area under the quartile, or AUQ.

To compute an AUQ for each patient during each week, a number called a dose-
normalised AUQ is first associated with each exposure level. Figure 6 shows how
such a number is computed for the third exposure level. The shaded area is the area
under the function that defines the middle of the third observation level, the fifth
octile. For the first, second and fourth exposure levels, the first, third and seventh

octiles are used, respectively.

An AUQ for a given patient in a given week is then computed by multiplying the
patient's average weighted dose WDOSE times the dose-normalised AUQ for the

patient's exposure level.
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Figure 6. Definition of the dose-normalised area under the quartile for the

exposure level. Shaded is AUQ for he third exposure level. Thick solid

lines denote boundaries of the exposure levels.

2.1.5 RESULTS

Table 2 shows the frequency distributions of the four types of patients in each study.
The observation levels were determined from the data from the two studies combined;
the purpose of the separation in Table 2 is to check whether there is any large
difference between the studies with respect to frequencies of types. The frequencies
show that 80 percent of subjects were in the two most stable types, all-in-one and two-
adjacent. Only 3 per cent were not classified because of having dose-normalised
concentrations in both the first and fourth observation levels. Results confirm that
patients were similar in two studies with respect to their types; there were no large

differences in the frequencies of types in these studies.
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Table 2. Frequencies of patient types

Frequency
Type (Col %)
Study I Study II Total
41 68 109
All-in-one
47% 40% 42%
_ 26 69 95
Two-adjacent
30% 41% 37%
17 28 45
Three-adjacent
20% 16% 18%
3 5 8
All-four
3% 3% 3%
Total 87 170 257

Table 3 shows the distribution of patients among exposure levels. Due to the way that
exposure levels are constructed, there is no constraint that the patients partition
uniformly among them. Despite this, the distribution across the four levels of
classified subjects is fairly uniform. Furthermore, patients were similar in the studies;

there are no large differences between the studies in frequencies of assigned exposure

levels.
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Table 3. Frequencies of exposure levels

Frequency
Exposure level (Col %)
Study I Study II Total
3 5 8

Unclassified

3% 3% 3%
| 17 37 54

20% 22% 21%
5 16 48 64

18% 28% 25%
; 30 45 75

35% 27% 29%
A 21 35 56

24% 21% 22%
Total 87 170 257

Table 4 contains the main results of the project. Specifically, it summarises the results
of the univariate statistical analysis. Each covariate was tested separately. For
categorical covariates the null hypothesis of no difference was tested against a two-
sided alternative hypothesis of a difference in exposure level depending on the level of
covariate. For continuous covariates the null hypothesis was the hypothesis of no
difference in means of the covariate between different exposure level groups. Testing
was performed at the 95% significance level. The contribution of each covariate to the
exposure level is presented in terms of the p-values, with p <0.05 being regarded as
significant, p < 0.01 more significant, and p < 0.001 regarded as highly significant.
The direction of the influence is also shown. As can be seen, smoking, gender and age
are found to be significantly related to exposure; with smoking being the most
important factor followed by gender, and then by age. Smoking decreased exposure
levels, whereas age increased the levels. Females tended to be in higher levels. Neither

race nor any measure of body size was significantly related to exposure level,
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Table 4. Relationships between demographics and exposure.

Covariate Contribution Direction of effect
on exposure level

Smoking -+

Gender (female) ++

Age + 1

Race _

Weight _

Height )

Surface Area i

- p2005 + p<0.05 ++ p<0.01l, +++ p<0.001.

Figure 7 Model-free AUQs versus model-based AUCs.

These results are reported in Nedelman er al. [1995], where they were used in the
model-based analysis of the drug’s pharmacokinetics. The covariates found to be

important by the model-free method were incorporated into the nonlinear mixed effect
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model. The model (not described in this thesis) confirmed the findings of the model-
free approach. Apparent oral clearance increased in smokers, and decreased in females
and with increasing age. The contribution of these covariates followed the same order

as in model-free approach. Figure 7 shows a strong linear correlation between model-

free AUQs and model derived AUCs.
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2.2 Antifungal Compound

2.2.1 BACKGROUND

The second project is devoted to an anti-fungal drug. Pharmacokinetic studies have
revealed that this drug has a prolonged half-life ranging from 4 to 22 days
[Faergemann, et al., 1991; Jensen, 1989, 1990]. This long half-life may cause marked
accumulation of the drug over the 6 to 24 weeks of administration. Long-term
exposure to high levels of the drug might alter the risk/benefit ratio of treatment with
this agent. Consequently, the investigation was undertaken to identify demographic
predictors of its exposure and to explore whether increased exposure or demographic
predictors of increased exposure were associated with altered safety or efficacy in

patients.

222 DATA

Data was obtained from two efficacy and safety studies (P1 and P2) in patients with
onychomycosis. Patients were directed to take one tablet daily, either placebo or the
‘drug. Dosing continued for 24 weeks in Study P1 and 12 weeks in Study P2. In each
study, there were three treatment arms. One arm received placebo for the entire
duration of dosing. The second arm received active drug at 250 mg/day for the entire
duration of dosing. A third arm received active drug at 250 mg/day for the first half of
the dosing period (12 weeks in Study P1 and 6 weeks in Study P2) followed by
placebo for the second half. Sparse pharmacokinetic samples were obtained in these
efficacy studies. Maximally three plasma samples were collected per patient during
the study. One sample per patient was drawn when the patients visited their physicians
at weeks 4, 12, and 24 in Study P1, and weeks 4, 6, and 12 in Study P2. The times
during the day of the patients' appointments, and consequently, the times post dose of
the blood samples, were not specified in the protocol but rather were determined
solely by the patients' and investigators' convenience - i.e., they were, in the sense of
population screens, "random". Patients kept diaries recording the times of doses taken

on the two evenings prior to blood sampling. Investigators recorded the times of the

blood samples.

In both studies, the times post dose at which the blood samples were drawn generally

fell into three major groups: around 15 hours, 1000 hours, and 2000 hours post dose
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as shown in Figure 8. Indeed, since doses were taken in the evening before the day of
the visit to the physician, blood samples were usually taken around 15 hours after the
tablet was ingested. The second cluster at around 1000 hours comes from the blood
samples at 12 weeks from those patients in Study P1 who received the drug for only
the first six weeks. The third cluster at around 2000 hours comes from the blood
samples at 24 weeks from those patients in Study P2 who received the drug for only

the first 12 weeks.

Log Conc.

24, : \ ' ’ ' ) . ]
0 1 2 3 4 s 6 7 8
Log time after dose
Figure 8. Concentration versus time data for studies P1 and P2 (points) on the

log scales. Superimposed are three splines that define partition

boundaries.

In total, 545 plasma concentrations were available: 327 observations from 130
patients in Study P1 and 218 observations from 89 patients in Study P2. Among them,
29 samples had zero concentrations, i.e. concentrations below the quantification limit
of the bioanalytical assay (BQL). They were excluded since a log scale for
concentrations was used. Two more observations were eliminated because they were

obvious outliers. The resulting data set had 514 observations.

2.2.3 OBJECTIVES

As before, the goals of the model-free population pharmacokinetic analysis were to

partition patients into exposure levels, and subsequently explore the relationship
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between the covariates and exposure levels. It was decided in advance to restrict
consideration to the following covariates:

Demographic: age, sex, race, weight, body surface area, and smoking status;
Lipid levels: LDL (low-density lipoprotein cholesterol) concentration;

Medical conditions: hypertension, peripheral vascular disease.

2.2.4 METHODS

Unlike the previous project, the data was very non-uniformly distributed across time.
There were clusters of many points and there were extended intervals with few or no
points. Consequently, use of a piecewise constant function at equal intervals, to
partition plasma concentrations into quartiles, was not possible. Any other arbitrary
chosen division of time intervals (for example, intervals with equal numbers of points)
was also questionable. Due to the temporal variations of the plasma concentration
data, lumping together distant points was also inappropriate. As a result, interpolation
of the data was used. In particular, nonparametric smoothing splines were used to
separate observation regions instead of piecewise constant functions (see DeBoor,

1978 for a detailed description of smoothing splines or a brief Remark below).

Remark:
Suppose one has a scatterplot of n pairs (x; y). Among all functions f(x)

with two continuous derivatives, a smoothing spline minimises a penalised

residual sum of squares

S (0~ )Y+ AU 0y Eq. 10

<x

— “vn

where A is a fixed constant, called a smoothing parameter, and a <x; < ...
<b. The solution is a natural cubic spline with knots at the unique values of x;
(i.e. x; #x; for any pair of knots x;, x;) . The smoothing parameter A conitrols
the fit. At the one extreme, as A — 0, the penalty term dominates, forcing
f"(x) =0 everywhere, and thus the solution is the least-squares line. At the
other extreme, as A — «, the penalty term becomes unimportant and the

solution tends to an interpolating twice-differentiable function. The
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smoothing spline is a powerful and flexible form of non-parametric regression

technique based on strictly interpolating splines [Silverman, 1985].

To partition plasma concentrations into observation levels a nonparametric cubic
smoothing spline is fitted through the scatter plot of concentration versus time for all
patients, all visits and studies together, as in Figure 8. The resulting curve estimates
“typical” plasma levels as a function of time, dividing the scatter plot into two parts, a
higher and a lower. Then the same nonparametric smoothing is applied separately to
each of the two parts. The resulting curves estimate “typical” lower and upper
concentrations as functions of time. The three curves, three partition boundaries,
divide the points into four regions, four observation levels. Each of these four regions
do not necessary contain 25% of the observations, as in the previous project. The less

uniform the concentrations are distributed at each time interval, the further the regions

are from the quartiles.

Fitting a smoothing spline involves an arbitrarily assigned value of the smoothing
parameter A. The greater the parameter the smoother the fitted curve is. Several values

of A were used, based on experimentation with the smoothing algorithm.

The smoothing was to be applied to a scatter plot of concentration versus time post
dose. However, both concentrations and times post dose ranged over several orders of
magnitude, so the linear scales of concentration and time might not be the most
convenient. Log-transformed concentrations were used on the y-axis. On the x-axis,

both log-transformed and untransformed raw times were tried.

The duration of treatment from the first dose until the plasma sample was drawn
ranged from 4 to 24 weeks. It was suspected that the drug might accumulate in the
blood over such periods. In this case, in order to standardise the concentration values
during different weeks of dosing, the concentrations should be adjusted for the
expected accumulation. Both variants, with and without adjustment, were tried. In one
variant, the concentrations were left unadjusted for accumulation. In the other variant,

they were adjusted by dividing concentrations by a pseudo-accumulation factor,

C
Cos = 70> Eq. 11
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where d is the number of days of dosing prior to the blood sample, and 4 is an
estimate of a parameter that characterises a half-life. Two values of b were used:
0.00165 and 0.0019. This parameter comes from the compartmental modelling and it

is described later in Chapter 3 (where it was denoted by).

Not all possible combinations of the preceding options regarding smoothing
parameter, axis scales, and adjustment for accumulation were used. Complete analyses

were conducted using five different combinations of options. Table 5 exhibits those

combinations.

Table 5. Combinations of parameters used for partition

Transformation Smoothing
Combination by

of time parameter
1 none 0.0019 10,000,000

2 log 0.0019 0.1

3 log 0.0019 1.0

4 log none 1.0

5 log 0.00165 1.0

After observation levels are determined, patients are assigned to the exposure levels
according to the same algorithm as in the previous project. Thus, in the modified
partitioning method piecewise constant boundaries of the observation levels are

replaced by smooth functions of time, namely smoothing cubic splines.

A statistical analysis was performed to explore the association between the exposure
levels and the covariates. The categorical covariates used in the analysis were gender,
age (divided at 40 years from the previous experience with the drug), race, smoking,
history of hypertension, and history of peripheral vascular disease. The continuous
covariates were age, weight, body surface area and LDL cholesterol level. Age was

used both as a continuous and categorical covariate.
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For each categorical covariate, frequency tables were generated and the Fisher's exact
test was applied. The null hypothesis of no difference was tested against a two-sided
alternative hypothesis of a difference in exposure level depending on the level of the

covariate. Testing was performed at a 95% significance level.

For continuous covariates, the distribution of the covariate by exposure level was
summarised by means and standard deviations. Furthermore, the mean of each
continuous covariate was compared across the exposure levels by an analysis of
variance (ANOVA), in which the null hypothesis of equality of the means was tested
against an alternative that the means either increased or decreased linearly with the

exposure levels.

It is important to note that not all of the covariates are independent. It is known that
weight and body surface area differ for men and women; interaction of cholesterol
level and age in the studies with gender could also be suspected. For a continuous
response variable a natural choice of analysis would be to perform a two-way
ANCOVA, with gender and a covariate in the model. The exposure level, however, is
not a continuous variable. Therefore, in order to account for possible confounding of
the effect of the covariate on the exposure level by gender, the two-way ANOV A with
gender and the exposure level as the main effects of the model was performed for all

continuous covariates. The interaction term was also included.

Also, to account for the fact that cholesterol generally increases with age [Braunwald,
et al., 1987] a two-way ANOVA was performed for cholesterol level with age, the
exposure level, and their interaction included in the model. As with the categorical

covariates, testing was performed at a 95% significance level.

The partition algorithm, described above, was implemented in SAS and SAS/IML
language [SAS Institute Inc., 1989a]. The SAS/IML function SPLINEC was used for
spline fitting. The statistical analysis was implemented using SAS/STAT [SAS
Institute Inc., 1989b].
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2.2.5 RESULTS
Figure 8 shows the scatter plot of log concentrations versus log time with the partition
boundaries resulting from combination 4 of the parameters (see Table 5). The other

combinations produced similar plots.

Table 6 displays the percentage of observations assigned to each of the four
observation levels by each Combination of options. As can be seen, five
Combinations yield similar partitions. As expected, the method did not partition the
observations into four equally sized groups; the first and the fourth observation levels

have slightly less observations than the second and the third levels.

Table 6. Frequencies of observation levels
Observation Level
Combination
| 2 3 4
1 22% 28% 29% 21%
2 21% 27% 29% 23%
3 21% 28% 29% 22%
4 23% - 30% 27% 21%
5 21% 28% 29% 22%

Table 7 displays the distribution amongst the exposure levels generated by each of the
five combinations. The five distributions are similar, with combination 4, where no
adjustment for accumulation was made, being the most different. Only 4% of patients
have not been assigned to the exposure levels because they had plasma levels in both
the first and fourth observation levels. As with the observation levels, the distributions
of patients are not uniform over the four exposure levels. The differences between the
first and fourth exposure levels relative to the second and third are more pronounced
than with the observation levels. This suggests that many patients had occasionally but

not consistently high or low plasma levels.
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Table 7. Frequencies of exposure levels

Exposure level
Combination :
1 2 3 4 Unassigned
1 16% 34% 29% 17% 4%
2 15% 35% 30% 16% 4%
3 15% 35% 30% 16% 4%
4 18% 33% 31% 14% 4%
5 15% 35% 30% 16% 4%

Table 8 displays the distributions of patients according to the spread of their plasma

levels among the four observation levels. The results are generally similar, with

combination 4 again differing most from the others. On average, 35% of the patients

were in the most consistent All-in-One category, and another 41% were in the

Two-Adjacent category.

Table 8. Frequencies of patient types
Patient Type
Combination All-in- Two- Three- All-
One*® Adjacent® Adjacent © Four?
1 33% 42% 21% 4%
2 32% 41% 23% 4%
3 31% 43% 21% 4%
4 47% 35% 15% 4%
5 31% 44% 21% 4%

a) All concentrations in one observation level

b) All concentrations in two adjacent observation levels

¢) All concentrations in three adjacent observation levels

d) Concentrations span four observation levels
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Table 9. Frequencies of gender and race versus exposure level
Gender Race
Exposure ,
Total (Row %) (Row %)*
level

Male | Female | Caucasian |Black | Oriental | Other

Unassigned 9 89% 11% 78% 0% 0% 22%

1 33 | 85% 15% 97% 0% 0% 3%

2 76 | 84% | 16% 91% 0% 0% 9%

3 65 | 85% | 15% 88% 2% 2% 9%

4 36 | 89% | 11% 89% 3% 3% 6%

a) Computed as percent of a cell frequency to the Total in the corresponding exposure level

Table 10. Frequencies of age versus exposure level
Age in years
40 and under over 40
Exposure
Total | Total under Total over
level Male | Female Male | Female
40 40

N | % | % | % |N|[% | % | %

Unassigned | 9 4 |144% | 75% 25% 5 136% [100%| 0%
1 33 119 |58% | 79% 21% | 14 [42% | 93% 7%

2 76 | 27 |36% | 78% 22% | 49 [64% | 88% | 12%

3 65 | 15 |23% | 80% 20% | 50 {77% | 86% | 14%

4 36 4 111% | 100% 0% 32 {89% | 88% | 13%

a) Computed as percent of a cell frequency to the Total in the corresponding exposure level;

b) Computed as percent of a cell frequency to the Total under 40 in the corresponding exposure level;

¢) Computed as percent of a cell frequency to the Total over 40 in the corresponding exposure level.

Table 9 - Table 15 display the distributions of covariates by exposure levels: Table 9 -

Table 11 show frequencies of categorical covariates; Table 12 - Table 15 display

means and standard deviations of quantitative covariates. From the results presented

for categorical covariates, it is evident that gender, race and a history of vascular

disease does not influence the assignment to the exposure level: the percentage of

49




males, Caucasians or patients with vascular disease does not change with the exposure
level. Age, smoking and a history of hypertension appear to have an effect on
exposure: percentage of patients over 40 years old, non-smoking patients and patients
with the history of hypertension increases with the exposure level. From the tables for
the continuous covariates, mean age increases with the exposure level. There is also a
slight increase in LDL for women. Means of weight and body surface area do not

change across the exposure levels.

The exposure level assignments in the Table 9 - Table 15 are from combination 3. The

results of the other combinations are similar.

Table 11. Frequencies of smoking, vascular disease and hypertension versus

exposure level

No. of cigarette packs | Vascular .
Exposure . Hypertension
Total per day disease

0 <1 1-2 |>2] No |Yes| No Yes

level

Unassigned | 9 | 100% | 0% | 0% [0%]100% | 0% | 89% 11%

1 33 | 73% | 12% | 15% |0%| 97% | 3% | 100% 0%
2 76 | 80% | 14% | 5% [0%| 99% | 1% | 93% 7%
3 65 | 83% | 8% | 8% (2% 98% | 2% | 88% 12%
4 36 | 97% | 3% | 0% (0% 97% | 3% | 78% 22%
Table 12. Means and standard deviations of age versus exposure level
Age (years)
Exposure
Total Male Female
level
Mean | Std | Mean Std Mean Std
Unassigned 44.9 16.1 46.6 16.3 31.0 0
1 41.9 12.0 | 42.6 12.1 37.8 12.0
2 46.1 119 | 463 12.4 44.6 8.4
3 50.5 11.8 50.2 11.4 51.8 14.5
4 55.7 11.8 55.5 12.4 57.3 5.1
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Table 13. Means and standard deviations of weight versus exposure level

Baseline Weight (kg)
Exposure
Total Male Female
level

Mean | Std | Mean Std Mean Std

Unassigned 80 16 83 14 58 0
1 82 18 84 15 68 29

2 77 13 80 11 65 17

3 83 16 87 14 62 7

4 81 16 83 16 65 14

Table 14. Means and standard deviations of body surface area versus exposure
level
Body surface area (m°)
Exposure
Total Male Female
level

Mean | Std | Mean Std Mean Std

Unassigned 2.0 0.2 2.0 0.2 1.7 0
1 2.0 0.3 2.1 0.2 1.7 0.4
2 1.9 0.2 2.0 0.2 1.7 0.2

3 2.0 0.2 2.1 0.2 1.7 0.1
4 2.0 0.2 2.0 0.2 1.7 0.2
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Table 15. Means and standard deviations of low-density lipoprotein cholesterol

(LDL) versus exposure level

Baseline LDL level (mg/mL)
Exposure
Total Male Female
level
Mean | Std | Mean Std Mean Std
Unassigned 3.1 0.6 3.2 0.6 2.6 0
1 3.2 0.7 3.2 0.7 2.6 0.8
2 3.3 0.9 33 1.0 3.1 0.9
3 3.5 1.2 3.4 1.2 3.6 0.9
4 3.3 1.0 3.3 1.0 3.8 0.2

Table 16 contains the main results of the analysis. Specifically, it summarises the
results of inferences regarding relationships between the exposure level and the
covariates for each of five combinations. Each covariate was tested separately as
described in the Methods (Section 2.2.4). Contribution of each covariate to the
exposure level is shown in the table in terms of the p-values with p < 0.05 being
regarded significant, p < 0.01 more significant, and p < 0.001 regarded as highly

significant. The direction of the influence is also shown.

As can be seen, the five combinations agreed on the importance of smoking and age as
correlates of the exposure level. Four of five combinations also recognised
hypertension as a significant covariate. Sex, race, history of vascular disease, lipid
level (LDL), and two measures of body size (weight and surface area) were all found
not to be significantly associated with the exposure level. Smokers generally had
lower plasma levels; older patients and patients with hypertension (of which there

were only 24) generally had higher plasma levels.
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Table 16.

Relationships between demographics and the exposure level for five

combinations.
Contribution
Direction of effect on

Covariate

Combination exposure level

1 2 3 4 5

Smoking + + + ++ |+ )
Age (>40) | A | | 0
Age [ | | 1
Hypertension + + ++ - ++ A
Gender - - - - -
Race - - - - -
Vacular disease - - - - -
Weight - - - - -
Surface Area - - - . -
LDL - - - - -
- p20.05 + p<0.05, ++ p<0.01; +++ p <0.001.

The results of this analysis were used in the model-based analysis of the drug

discussed in Section 3.1.3 of Chapter 3. The covariates found to be important by the

model-free method were incorporated there into the nonlinear mixed effect model.
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2.3 Antiplatelet And Vasodilative Agent

2.3.1 BACKGROUND

The third analysis deals with a drug indicated for treating the symptoms of

intermittent claudication. The drug increases the distance that patients can walk before

pain prevents their motility.

The aim of the pharmacokinetic analysis of phase III safety and efficacy studies, was

to identify covariates affecting patients’ exposure to the drug and to quantify the

influence of these covariates.

Analysis of phase I pharmacokinetic data of the drug showed proportional increases in
AUC, and less than proportional increases in Cpax, following single doses across the
dose range of 50-200 mg. The time to plasma maximum concentration (tmax) and the
terminal half-life were approximately 3 hours and 12 hours respectively, and were
similar across the doses. Following multiple administration of a 100 mg dose, twice-a-
day (b.i.d.), steady-state plasma concentrations were achieved within 4-5 days. When
administered under fed conditions, there was an increase of approximately 50% in the

Cmax and an increase of 25% in the AUC.
Plasma concentration-time profiles after a single dose or after discontinuing a
multiple-dose regimen had irregular secondary peak(s), as shown in the Figure 9 at 20

- 25 hours post dose for approximately 70% of subjects.

A nonparametric approach for the population analysis was further developed and

applied to the data of the project.
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Figure 9. Plasma concentration versus time after last dose for a typical subject

after eight days of dosing.

2.3.2 DATA

Data come from four randomised, double blind, efficacy and safety studies (I, II, III
and IV) in patients with intermittent claudication. Walking distance at baseline
measured on a treadmill, was one of the main criteria for inclusion in the studies.
Drug (100 mg daily) or placebo was administered for 12, 16 or 24 weeks twice-a-day
(bid), once in the evening and once in the morning, half an hour before the meal.
Patients were evaluated every two to four weeks during their visit to the clinic. They
had to skip their morning dose at the day of the visit (for morning visits), or take their
dose early morning before the afternoon visit. Patients had to come to the clinic for
‘trough’ (at the end of dose interval, right before the next dose) evaluation always
around the same time. At some visits in some of the studies, ‘peak’ evaluations were
also performed. For ‘peak’ evaluation, patients had to take the drug immediately after
the ‘trough’ evaluation and be evaluated 2-4 hours later. The number of patients from
each study on a 100 mg dose, the duration of treatment, and the number of plasma

samples are listed in Table 17.
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Table 17.

Number of patients, samples and treatment duration.

No. patients Treatment Samples per patient
Study on 100 mg duration up to
dose (weeks) “Trough’ ‘Peak’
I 171 24 8 -
Il 95 12 5 2
I 133 24 3 ——--
IV 119 16 3 2

Criteria for inclusion and exclusion of patients were similar across the studies except

for some differences in treadmill set-up and in the baseline walking requirements (See

Appendix A). In addition, patients in the study II had to complete 3 weeks of low fat,

low cholesterol diet prior to the study, and had to adhere to the diet during the study.

Blood samples of non-compliant patients were excluded from the analysis. Non-

compliance was defined prospectively in the clinical protocol. A patient was

considered non-compliant if he/she took less than 75% of the prescribed drug on 2 or

more successive visits or had undetectable plasma levels on 2 or more successive

occasions.
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Samples taken later than 20 hours after the last dose were also excluded. There were
28 samples between 20 and 50 hours, which was insufficient to meaningfully define
the observation regions (this is discussed later in the Methods, Section 2.3.4). Figure
10 shows the distribution of sampling times between 0 and 20 hours. In addition, there
were 39 samples spread from 50 to 3108 hours, which were also excluded from the

analysis. The details concerning the excluded observations are described in Appendix

B.

In total, 2161 plasma concentrations from 462 patients were used in the analysis.

2.3.3 OBJECTIVES

As before, the objectives of the model-free population pharmacokinetic analysis were
to partition patients into exposure levels, and then, explore relationships between the

covariates and exposure levels. The list of covariates included:

Demographics: age, gender, race, weight, body surface area, and
obesity;

Lifestyle: alcohol and smoking habits;

Medical history: myocardial infarction, cerebro-vascular event, and
diabetes;

Disease state: duration of disease and walking impairment at baseline;

Concomitant medications
and medical conditions: drugs and therapeutic subclasses of drugs used by at

least 25 patients.

2.3.4 METHODS

The analysis, as described earlier in Section 2.2.4, was based on partitioning plasma
concentrations into observation levels, and assigning each patient an exposure level.
An investigation of the relationships between the exposure level and covariates was
then conducted. Plasma concentrations were partitioned into observation levels and
patients were assigned to exposure levels following the same procedure as in Section
2.2.4. Further steps dealing with the relationships between the exposure and the
covariates, were considerably refined and expanded as presented in the following

sections.
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It was assumed that there was no accumulation of the drug during the studies and the

disease progression or drug’s pharmacological effects did not affect pharmacokinetics
of the drug. The assumption was supported by phase I studies, where steady state was
reached by Day 4 of twice-a-day dosing. The earliest plasma concentrations were

taken after 2 weeks of dosing in phase III studies, so steady-state should have been

reached by the first evaluation.

In Step 1, as before, three nonparametric cubic smoothing splines were fitted through
the scatter plot of concentration versus time, to estimate partition boundaries as
functions of time after the last dose. The span of times after the last dose was not as
large as in the previous project, so there was no need for transformation of times.
Also, all patients had the same dose throughout all the studies, therefore dose
normalisation of concentrations was not necessary. Raw concentrations, not their log-
transformations were used for partitioning. Log-transformation of the concentrations
in a pharmacokinetic analysis is a customary practice, based on the observation that
plasma concentrations are often log-normally distributed in the population.
Transforming the data therefore allows one to make mean-based comparisons using
the normal theory assumptions. The partitioning algorithm does not use the
assumption of normality, so there is no theoretical advantage in using transformed
data. There were no reasons to expect that the results depend on whether log-

transformed or raw data were used.

The determination of splines depends on the choice of a smoothing parameter. Since
the choice of this parameter is somewhat arbitrary, three different values of the
smoothing parameter were used. The set of four regions obtained for each value of the
smoothing parameter will be further referred to as a Partition set (not a combination as

in Section 2.3, since only one parameter influenced the partition).

In Step II, patients were assigned an exposure level according to the algorithm

described earlier. It was done for several Partition sets.

The next step, Step 111, relates the exposure levels and variability to covariates. Two
types of responses were investigated for association with covariates: 1) For patients
classified into one of four exposure levels, exposure level represented an ordered

categorical response; 2) High and Low variability was another response variable, a
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categorical response. Patients assigned to one of the exposure levels represented the
Low variability group, patients from the ‘unclassified’ group represented the High

variability group.

Table 18 lists all the covariates, their types and levels (for categorical covariates) that
were investigated for association with the exposure level and the variability type. Two
measures of obesity (Obesity, OBES, and %above ideal body weight, PIBW) and body
surface area (BSA) were computed for each patient from their weight, height and

gender as follows [Bayley & Briars, 1996; Rowland & Tozer, 1995]:

Ln(BSA) = -3.751+0.422*In(HGT)+0.515*In(WGT), Eq. 12

where HGT is height (cm), WGT is weight (kg), and BSA is measured in cm’;

50 + 2.3/2.5* max(0, HGT -152)  for males
IBW = Eq. 13
45 +2.3/2.5* max(0, HGT -152)  for females,

and

PIBW = 100 (WGT -1BW)/IBW, Eq. 14

where IBW denotes ideal body weight (kg) and PIBW is percent above ideal body
weight.

Obesity (OBES) was defined as 0, if PIBW < 20, and 1, otherwise.

Concomitant medications were considered in two ways: grouped by their generic
name (irrespective of the dose and manufacturer) and grouped by subclasses of major
therapeutic classes. To be used as covariates, the concomitant medications and groups
of medications had to be used by more than 25 patients. The cut-off of 25 patients was
decided prospectively as approximately 5% of initial 518 patients, before cleaning the

database.
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Table 18

Description of covariates

Covariate

Type

gender, race, obesity (>20% above ideal body weight)

Factor

Demographics jage, weight, body surface area (BSA) , % above ideal

tbody weight

Continuous

Lifestyle

smoking(never/ previously/current),

alcohol (never/ previously/current)

Ordered

categorical

Medical history

diabetes, myocardial infarction, cerebro-vascular event

Factor

duration of disease (0.5to 1; 1to 5 ;

5 to 10; >10 years),

Disease state |baseline walking impairment * (Mild/ Moderate/

Severe)

Ordered

categorical

medical

conditions

Concomitant

medications and

drugs and therapeutic subclasses of drugs used by at
least 25 patients (Yes/No)

Individual drugs: acetaminophen, nifedipine,

combination vitamins and minerals, lisinopril,
mitroglycerin, lovastatin, glyburide, enalapril maleate,
atenolol, furosemide, combination diuretics, verapamil
khydrochloride, digoxin, gemfibrozil, levothyroxine
sodium, vitamin e, diclofenac sodium, potassium
chloride, ranitidine hydrochloride, isophane insulin
suspension;

Groups by therapeutic class: antihistamine drugs,

sympathomimetic (adrenergic) agents, cardiac drugs,
antilipemic agents, hypotensive agents, vasodilating
agents, nonsteroidal anti-inflammatory agents,
antidepressants, benzodiazepines, replacement
kpreparations, diuretics (except potassium sparing
diuretics), antacids and adsorbents, cathartics and
laxatives, misc. GI drugs, insulins, sulfonylureas and

Vthyroid agents

Factor

(Yes/No)

Study design [study

Factor

a) Mild - > 200 m; Moderate - from 100 to 200 m; Severe - < 100 m.
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To count the number of patients on a particular medication or a group of medications,
every patient was assumed to be on a drug, if he/she had at least one plasma sample
while on that medication. For each drug/group of drugs that was used by 25 or more
patients, the indicator variable of whether a person was on that medication at the time

of sampling was recorded for each blood sample.

In total, there were 21 individual drugs and 16 therapeutic subclasses of drugs used by

25 or more patients.

Multivariate Classification Tree-based analysis (CART)

To account for possible confounding by correlated covariates, a binary classification
tree was grown by CART methodology using S-Plus (Version 3.3) [Venables &
Ripley, 1994]. The attractiveness of the tree approach includes the ability to handle
categorical and continuous variables, interaction between variables and missing values
of covariates. Also, the tree is invariant to monotone transformations of variables, thus
relaxing the distributional requirements for independent and dependent variables
[Breiman et al., 1984]. Following in the Remark is the brief description of the
methodology:

Remark: |
Constructing trees is a modelling technique especially suitable for modelling
of a categorical response function of several categorical, factor or continuous
variables. Tree based models seek to partition the space of observations into
the groups (leaves) that are as homogeneous (with respect to response) as
possible within the groups, and as heterogeneous as possible between the
groups. The resulting model consists of a partition of the space of
observations into a set of leaves and a probability distribution over the levels
of response variable for each leaf. The splitting rules uniquely define the
leaves. The tree construction process starts with the tree with just one leaf that
includes all the observational space. The procedure takes the maximum
reduction in deviance (objective function used for the tree modelling, see
[Ciampi et al., 1987]) over all allowed splits of this initial leaf to choose the
first split. The procedure is repeated until the number of observations in each
leaf or its deviance is small. The tree grown by this procedure may overfit the

data; i.e. may describe the training data set well while not adequately
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describing a new data set. The pruning procedure [Breiman et al., 1984], a
methodology analogous to model selection in regression, obtains an optimal
subtree by minimising a cost-complexity measure (a sum of the deviance and a
term proportional to the tree size) of a sequence of subtrees. An even better
way is to grow the tree on one set of data and test it on a different set of data
(external validation) or to split the data to use different data for building and
predicting (internal validation). A detailed description of the tree-based

modelling methods can be found, for example, in [Clark & Pregibon, 1992].

Separate trees were grown for each of three partition sets. Each tree was then pruned
and cross-validation was performed [Venables & Ripley, 1994]. For cross-validation,
the data set was randomly divided into 10 subsets, the tree was grown for each 9/10"
of the data, and the sequence of pruned trees was tested on the remaining 1/10".
Averaging over ten trees for each pruning size gave a cross validated plot of deviance
as a function of the tree size. The tree size that corresponded to a minimum deviance
was considered to be optimal. An overparametrised model (i.e., the model with 1-2
more terminal nodes than in the optimal tree) was considered for further exploration
of subpopulations. The goal of allowing 1-2 more covariates than in the optimal tree
was to check that those covariates (less important according to the tree) would not be
significant in further explorations. This would ensure that the tree model captured all

the important covariates.

Univariate analyses

For the covariates identified as significant by the tree models, nonparametric
Spearman rank correlation analysis [Snedecor & Cochran, 1980] and subgroup
analysis of association between the covariates and response were performed.
Subgroups were defined by the tree models and by the correlation between the

covariates.

Table 19 describes the types of nonparametric association tests used for different types
of variables. The purpose of this analysis was two-fold: first, it was aimed to formally
confirm the results of the tree-based analysis of association of covariates with the
exposure level for patients classified to an exposure group. Second, for all patients,
the analysis was to test the association between patient’s variability type (High/Low)

and the covariates.
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Table 19. Univariate analysis

Response Covariate
Data used Analysis Reference
Type Variable [tYPe
‘ van Elteren
. Categorical Lehmann, 1975
All patients . test
Ordinal ﬁExposure
except Hollander, Wolfe,
. level Jonckheere's
unclassified Continuous Jt 1973; Morris, Dietz,
est

1989

. Kendall, Stuart,
Fisher exact

Categorical 1979; Mehta, Patel,
test
1983
_ Variability tables of
All patients |Categorical
type means and
. standard
Continuous .
deviations,

side-by-side
box plots

~After the tree models identified influential covariates it was important to estimate the
clinical, not statistical importance of these covariates. Therefore, it was important to

quantify the effect of covariates. This was done in Step IV.

In Step IV, scatter plots of concentrations were examined for identified
subpopulations to obtain quantitative information about differences between those
subpopulations. Concentrations from all patients, not only from patients classified into
one of four ‘exposure levels’ were used. Population curves were obtained by lowess
regression (S-Plus, version 3.3) [Venables & Ripley, 1984]) fitted to subpopulations.
Lowess regression is an iterative robust algorithm that fits weighted locally linear

regression to the data. The result is a smooth curve through the data that downweights

outliers [Chambers & Hastie, 1992].

Areas under population plasma concentration-time curves (AUPC) were computed

and compared for subpopulations. In this case a population curve is a purely empirical



curve, a smoothed ‘average’ of the data. Therefore the curve can not be extrapolated
over the boundaries of the data. This means that the computed area under the curve
would depend on the time of the first and the last data point used to compute the
curve. Thus, to be able to compare the areas for subpopulations these areas should be
computed using the same start and stop time. Area Under the Curve (AUC) is a
strictly defined parameter in pharmacokinetics, with defined time intervals (0 to
infinity for a single dose or dosing period for a steady state multiple dosing). Time
intervals of AUPC would not agree with the traditional definition and would depend
on the data points for the subpopulations. Therefore, instead of presenting absolute

values of AUPCs, only a comparison of AUPCs for the subpopulations of interest is
reported.

Quantification of the differences by comparing AUPCs is a univariate procedure: it
accounts for one variable at a time. Correlation analysis of the covariates identified by
the tree models was used to determine the appropriate subpopulations for AUPC

comparisons.

2.3.5 RESULTS

In total, 2161 plasma concentrations from 462 patients were used in the analysis.
Figure 11 shows scatter plots of all available samples for each study. Though timing
and amount of data differed across the studies, the range of concentrations was

approximately the same for all the studies.

Demographics

In order to combine four studies in one analysis, the study population should be
similar. The data in Table 20 - Table 24 describe the distributions of all the covariates
across the studies. Table 20 exhibits the distribution (counts and percentages) of
categorical demographic covariates. Statistically significant differences (Chi-square

test) are marked with the asterisk (*) and p-values are shown for those variables.
Table 21 shows the distribution (counts and percentages) of patients on concomitant

medications or therapeutic subclasses of medications. Thirty seven individual drugs or

groups were used by 25 or more patients. Of them, 11 were distributed differently
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between the studies (p < 0.05 in 2-tail Fisher’s exact test). Only these medications are

presented.
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Figure 11. Plasma Concentration versus time after last dose for four studies.

Table 22 - Table 24 show the distributions of continuous variables: age, % above ideal

body weight, weight and body surface area across the studies.
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Table 20.

Distribution of categorical demographic covariates across the studies.

Frequency
Covariate/ levels N (%)
(p-value)® Study
| II 111 I\Y% Total
# patients (N) 157 88 116 101 462
Gender:
Males 119(75.8)| 76 (86.4) | 88 (75.9) | 79 (78.2) | 362 (78.4)
Females 38(24.2) | 12 (13.6) | 22(19) | 28(27.7) | 100 (21.6)
Race:
Caucasian 137(87.3)| 77 (87.5) | 106 (91.4) | 91 (90.1) | 411 (89.0)
Other 20(12.7) | 11(12.5) | 10(8.6) | 10(9.9) 51(11)
pbesity
No 83(52.9) 149 (55.7) | 63(54.3) | 52 (51.5) | 247 (53.5)
Yes 74(47.1) | 39 (44.3) | 53(45.6) | 49 (48.5) | 215 (46.5)
Current smoking:
No 97(61.9) | 52(59.1) | 56(48.3) | 56(55.5) | 261(56.5)
Yes 60(38.2) | 36(40.9) [ 60(51.7) | 45 (44.5) | 201 (43.5)
Alcohol
consumption: 22(14) | 14 (15.9)| 21(18.1) 80 (17.3)
Never 44(28) |126(29.5)| 25(21.5) NA 117 (25.3)
Previous 91 (58.0) | 48(54.6) | 70 (60.3) 265 (57.4)
Current
FA.mount of alcohol:
Seldom 26 (28.5) | 1939.6) | 27(38.6) | 19(33.9) | 91 (34.3)
Sometimes 35(38.5) | 21(43.8) | 17(24.3) | 20(35.7) 93(35.1)
Daily 30(33.0) | 8(16.7) | 26(37.1) | 17(30.4) 81(30.6)
Disease state
(0.001):
Mild 15(9.6) | 50(56.8) | 11(9.5) | 39(38.6) | 115(24.9)
Moderate 79(50.3) | 24(27.3) | 52(44.8) | 42(41.6) | 197 (42.6)
Severe 63(40.1) | 14(15.9) | 53(45.7) | 20(19.8) | 150 (32.5)

66




Frequency

Covariate/ levels N (%)
(p-value)® Study
Total
I II 111 I\Y%
# patients (N) 157 88 116 101 462

Duration of illness:

6MO to YR 19(12.1) | 6 (6.8) 5(4.3) 6(5.9) 36 (7.8)

1YR to SYRS 66(42.0) | 42(47.7) | 60(51.7) | 48(47.5) | 216 (46.8)
SYRS to 10YRS 45(28.7) | 21(23.9) | 30(25.9) | 28(27.7) | 124 (26.8)
>10YRS 27(17.2) | 19(21.6) | 21(18.1) | 19(18.8) | 86 (18.6)
Diabetes:

NO 115(73.2)| 72 (81.8) | 87(74.0) | 77(76.2) | 351(75.9)

YES 42(26.8) | 16(18.2) | 29(25.0) | 24(23.8) | 111(24.0)
Myocardial
infarction:

NO 122(77.7)| 78(88.6) | 95(81.9) | 80(79.2) | 375(81.1)

YES 35(22.3) | 10(11.4) | 21(18.1) | 21(20.8) 87 (18.8)
Cerebro-vascular
event’ (0.002):

NO 148(94.2)| 73(82.9) | 92(79.3) | 88(87.1) | 401(86.8)

YES 9(5.73) [15(17.05)| 24(20.69) | 13(12.87) | 61(13.2)

a) indicator of significance:
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Table 21.

Use of concomitant medications

Frequency
Concomitant medication or N (%)
therapeutic subclass
(p-value)® Study Total
I II M1 I\Y%
Acetaminophen’ 46 14 41 15 116
(0.0005) (29.3) (159) | (35.3) (14.9) (25.1)
Lovastatin 14 0 18 10 42
(0.0003) (8.9) (0.0) (15.5) 9.9 (9.1)
Verapamil hydrochloride 21 1 2 4 28
(0.0001) (13.4) (1.1) (1.7) (4.0) (6.1)
Gemfibrozil” 9 0 8 10 27
(0.011) (5.7) (0.0) (6.9) (9.9) (5.8)
Ranitidine hydrochloride 16 0 12 0 28
(0.0000) (10.2) (10.3) (6.1)
Diclofenac sodium’ 9 4 11 1 25
(0.041) (5.7) (4.6) 9.5) (1.0) (5.4)
Potassium chloride 8 5 17 1 31
(0.0006) (5.1) (5.7) (14.7) (1.0) (6.7)
Diuretics 92 31 69 46 238
(0.0007) (58.6) (35.2) (59.5) (45.5) (51.5)
ii'mpathomlmetlc agents 37 O 1 ” Lo
(23.6) (37.1) (23.8) (22.5)
(0.0000)
hypotensive agents ™ 20 3 19 2 44
(0.0001) (127) | G4 | (164) (2.0) (9.5)
cathartics and laxative’ 17 10 27 14 68
(0.032) (10.8) (11.4) (23.3) (13.9) (14.7)
2) indicator of significance: * p <0.05; ** p<0.01; *** p<0.00]
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The data in the tables show that the distributions across the studies were similar for
most covariates. The exceptions were Disease State, the history of cerebro-vascular
event and several concomitant medications. Disease State was measured as a baseline
walking distance on a treadmill test until a patient could walk no longer. It was
recorded as follows: Mild - > 200 m; Moderate - from 100 to 200 m; Severe - < 100
m. Studies I and III had more moderate and severe patients than studies Il and IV.
These differences could be attributed to the differences in treadmill set-up between the
studies (See Appendix A) The number of patients with the history of cerebro-vascular

event ranged from 9 (6%) in the Study I to 24 (21%) in the Study III.

In total, there were 21 individual drugs and 16 therapeutic groups of drugs used by 25
or more patients. Of them, 7 individual drugs and 4 groups were distributed differently

between the studies. Some of the differences were due to differences in exclusion

criteria for concomitant medications.

Partitioning

Table 25 displays the percentage of observations assigned to each of the four
observation levels by each partition set. As can be seen, all three partition sets had
similar frequencies of observations in the respective observation levels with fewer

observations in high groups.

Table 25. Frequencies of observations in observation levels.
Value of smoothing Observation level *
Partition set
parameter 1 2 3 4
1 1 28% 30% 27% 15%
2 10 28% 30% 27% 15%
3 100 28% 30% 27% 15%

a) 1 is the lowest, 4 is the highest observation level

Table 26 displays the distribution of patients among exposure levels generated by each
of three partition sets. All the distributions were similar. About 8% of patients were

not assigned to exposure levels because they had plasma concentrations in both the
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first and fourth observation levels. The smaller numbers in the fourth exposure level

suggest that many patients had occasionally, but not consistently, high plasma levels.

Table 26. Distribution of patients among exposure levels
Partition | Value of smoothing Exposure levels
set parameter 1 2 3 4 Unclassified *
1 1 23% | 37% | 23% | 9% 8%
2 10 23% | 37% | 23% | 10% 8%
3 100 23% | 37% | 23% | 9% 8%
a) Concentrations span four observation levels

Table 27 displays the distribution of patients according to the spread of their plasma

concentrations among the four observation levels. The results were similar between

the partition sets. On average, 29% of the patients were in the most consistent All-in-
p g p

one category, and another 38% were in the Two-adjacent category.

Table 27. Distribution of patients among patient types
Patient type
Partition
. : Three d
set All-in-one * Two adjacent All four
adjacent °
1 28% 39% 26% 8%
2 29% 38% 25% 8%
3 30% 37% 26% 8%

a) All concentrations in one observation level;
b) All concentrations in two adjacent observation levels;
¢) All concentrations in three adjacent observation levels;

d) Concentrations span four observation levels.

For each of the three partitions, two earlier studies, I and II, had a greater percentage

of patients in All-four category thus assigned to the unclassified group.
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Tree Models

Cross-validation of the tree models showed that the trees of size 2-3 (depending on the
partition set) had the minimum deviance with the next increase at size 5. Figure 12
shows the plot of deviance versus tree size for one partition set. Sequence of pruned
trees for the whole data set confirmed it (Figure 13), consequently trees with 5
terminal nodes were chosen as the final models. Tree models for all three partition

sets 1dentified the same covariates: concomitant use of diltiazem, current smoking,

age (split at 49.5 or 50.5), and concomitant use of nitroglycerin (Figure 14 - Figure
16). Partition set I differed from partition sets II and III in whether current smoking or
age was split first. In the partition set [ smokers were split at age 49.5, whereas in

partition sets II and III elderly patients (age >50.5) were split according their current

smoking status.

Partition 3
35.0 13.0 1.0 9.6 7.5 58 45 16
1 { | | | | | 1 1 I I { I [
8 _,_l_,__
R
e
8 & |
§
>
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o
o _
®
T T T
5 10 15
size
Figure 12. Cross-validation: deviance versus tree size for Partition 3.

73



Partition 3
7.5 58 45 1.6

13.0 1.0 9.6

I | | ! |

L

ﬁ*\—i

35.0
o I ]
=)

Q
v
o

3

|

Q

> o

[)) [«

© o
o
0 -

D

Figure 13.

10

size

15

Whole data set: deviance versus tree size for Partition 3.

No Diltiazem

No

Nitroglycerin

Nitroglycerin

187

Figure 14.

20

Population

Whole

Diltiazem

Current
Smokers

42

Age<49.5

Age>49.5

21
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Whole
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No Diltiazem Diltiazem

42

Age< 505 Age> 505
34
347
Nonsmokers Current
Smokers
196 151
No
Nitroglycerin Nitroglycerin
20
Age< 675 Age>675
85 91
Figure 15. Final tree model for Partition set 2.
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196 154
No
Nitroglycerin Nitroglycerin
176 20
Figure 16. Final tree model for Partition set 3.

75



Analysis of subpopulations

Correlation analysis (nonparametric Spearman correlation) for the variables identified

by the trees showed that current smoking and age were highly negatively correlated

(r=-0.38, p=0.0001); smoking was also negatively correlated with diltiazem (r=-0.10,

p=0.0001). Nitroglycerin was correlated with all three, positively with diltiazem

(r=0.18, p=0.0001), negatively with smoking and age (p=0.004 and p=0.02,

respectively). This means that younger patients tended to smoke more than older

patients did. Patients not taking diltiazem or nitroglycerin smoked more than patients

on these medications did. Patients taking nitroglycerin were more likely to co-

administer diltiazem as well, and a greater percent of younger patients were taking

nitroglycerin as compared to the elder patients. All of these correlations, except the

negative correlation of nitroglycerin and age, were expected. Therefore the following

subpopulations were considered for further exploration:

1. Patients taking diltiazem versus patients not taking diltiazem;

2. Current smokers versus non-smokers among patients without diltiazem;

3. Current smokers versus non-smokers separately for young (<=50) and elderly
(>50), among patients without diltiazem;

4. Young (<=50) versus elderly (>50);

5. Young (<=50) versus elderly (>50) for current smokers and non-smokers
separately, among patients without diltiazem;

7. Patient taking nitroglycerin versus patients not taking nitroglycerin among non-
smokers without diltiazem;

8. Patient taking nitroglycerin versus patients not taking nitroglycerin among elderly

(>50 ) non-smokers without diltiazem.

Table 28 exhibits the results of the comparison of Areas Under Population Curves
(AUPCs) and statistical inferences regarding relationships between exposure level and
covariates for these subpopulations. Figure 17 - Figure 19 show concentration-time

plots for subpopulations with population curves superimposed.

Comparison of AUPCs and statistical tests of association were performed based on the
order of the covariates in the tree model and correlation between them. The
concomitant use of diltiazem and age were compared in the whole population,

smoking - in patients not taking diltiazem, and nitroglycerin - in non-smokers not
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taking diltiazem. These comparisons showed a 53% AUPC increase in patients on
diltiazem, 20% increase in patients older than 50 years old, 18% decrease in smokers,

and essentially no change in patients on nitroglycerin.
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2000

oad,, ° ° o %o
'}A“fp Qig;g"‘é a0 o

a uooa P g%

S 1 s
o ° °
- ° °°o
3
o A °
T I T T T
0 A —— Diltiazem 15 20
0 — = No Diltiazem
Time (hours)
Figure 17. Observed plasma concentrations and population curves: patients taking
diltiazem versus no diltiazem
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Figure 18. Observed plasma concentrations and population curves for patients not

taking diltiazem: smokers versus non-smokers.
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Figure 19. Observed plasma concentrations and population curves for non-

smokers not taking diltiazem: nitroglycerin versus no nitroglycerin

The tree models identified age as one of the predictors, with a split at approximately
50 years. Age was highly negatively correlated with smoking. Because of this high
correlation, the small differences in assigning patients to the exposure levels in
different partition sets led to interchangeable effects of age and smoking in the tree
models. Not surprisingly, the univariate test of the effect of age showed an increase in
exposure with age and approximately the same as for smoking percent change in
AUPC for young (< 50 years) versus older (> 50 years) patients. However, for
smokers neither the test of significance nor the box plots (Figure 20) were able to

detect an influence of age as a continuous variable.
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reducing the informational content of the concentration data. Thus, both approaches

have their weak points. They complement each other, and their agreement adds

confidence to the results.

The Fisher exact test was used to test the independence of the variability type (Low:
classified versus High: unclassified patients) on the covariates. None of the covariates
identified as significant predictors of the exposure by the tree model showed
differences between classified and non-classified patients. This result indicates that

the exclusion of high variability group of patients from the analysis did not have an

impact on identification of important covariates.

2.3.6 CONCLUSIONS

On the basis of this analysis the following conclusions were made:

1. Concomitant administration of diltiazem increased the drug exposure by 53%;
2. Smoking decreased exposure by 18%;

3. No other covariates explored were predictors of the drug exposure.

4. The nonparametric method developed was shown to be capable of identifying

predictors of exposure and quantifying the influence of important covariates.
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2.4 Model-Free Population Pharmacokinetics: Simulation Study

24.1 BACKGROUND

The objective of the work described earlier was to develop a robust nonparametric
technique, helpful in elucidating the structure of the data. In particular, the goal was to
identify the covariate predictors of total exposure, the metrics related to AUC or
clearance, the most important pharmacokinetic parameters. In the series of data
analysis projects the method grew from crude qualitative one to a complex

quantitative technique that used a variety of modern statistical instruments.

The developed method is a purely empirical technique with no theoretical support.
The questions of bias and precision of the AUPC estimates, of sensitivity and

robustness of assignment algorithm and tree models needed to be addressed.

This project attempts to answer some of these questions. It is achieved by performing
a series of simulations to test the performance of the developed technique under

different conditions and to compare the estimates with the true AUPCs.

242 OBJECTIVES

The general objective of this investigation was to study utility and robustness of the
method, that is:
1. to assess its ability to identify subpopulations with altered exposure;

2. to investigate AUPC as a measure of exposure of the subpopulation.

Specifically, the effect of variability, relative contributions and distributions of

covariates, and the choice of smoothing parameters on the outcome was studied.

2.43 METHODS

Generation of the demographic data

Firstly, demographic data for 1000 subjects was simulated. The real demographic data
from the last project of the previous chapter (anti-platelet drug), frequencies of the
covariates and correlations between them, was taken to be the basis for this
simulation. Each simulated individual had five covariates: four categorical and one

continuous. The categorical covariates mimicked the distributions of concomitant
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diltiazem (Conmed), smoking (Smok), concomitant disease (ConDisease), and gender
(Gender) of the real data. The continuous covariate (Age) did not follow the empirical
distribution. Rather, to study the influence of its distribution on the results, it was

simulated twice: to be uniformly distributed in one simulation, and normally

distributed in the other.

Conmed, Smok, ConDisease, and Gender had values of 0 and 1, Age was a
continuous variable between 40 and 80. Conmed and ConDisease followed the
Bernoulli distribution with the probabilities 0.0996 and 0.0952, respectively. Smoking
followed the Bernoulli distribution with the probability 0.66 if Age was less than 60
and 0.3, otherwise. Gender followed the Bernoulli distribution with a probability of
0.5. Age was uniformly or normally (with mean 60 and standard deviation of 6.67

years) distributed. The correlation between Age and Smok was equal to -0.34, and the

correlation between Conmed and ConDisease was 0.18.

Generation of the pharmacokinetic data

Secondly, plasma concentration-time data was generated for each individual using the

following models:

Typical population clearance Cl,,, was modelled to be a function of Age, Conmed,

ConDisease and Smok as follows:

Age—min(4ge)
Cl =ClL{1-60
por = Clod Age[max(A g —mindge

6

Conmed

*Conmed — 6 *ConDisease + 6, ,*Smok }, Eq. 15

ConDisease

where Cly is the typical clearance for a non-smoker with no Conmed or ConDisease at
the lowest age in the population of simulated individuals. Its value was set to be equal
to the mean clearance of the anti-platelet agent, Cly = 13.6 L/h. Several weighting
schemes (combinations of 0’s) were used to study the effect of relative contributions

of covariates. They were:
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i 0, =085 Orpe =02, Oss =015, Ocpupipense =0.35

2 60,,=04, Oy =02, Oy =01, Oy =04

3 0,03 Oomed =03, G =015, Oorpine = 04 Eq. 16
4 0., =005 O =02, Boo =015, Guipe =035

5. 6, =005 0. 03, 6. =01, 6O.p..=05

Age onmed —

Note that Gender variable was not used as a predictor of clearance.

Individual clearance Cl; and volume V; were modelled to be log-normally distributed

in the population (proportional inter-individual error):

Cl; = Clpop exp(ncii), ne ~ N(O, CVn2)> Ea. 17
d.
Vi= Vpop CXP(T]v,i), Nv ~ N(O: cvnz)’

with the realistic and rather large coefficient of variation cv;, of 30%. Population

volume of distribution Vy,, was taken to be equal to that of the anti-platelet drug, Vpop

=171.5 L.

Predicted individual concentrations were computed according to the one compartment
model, with the first order absorption and the first order elimination following a single

dose [Gibaldi & Perrier, 1982], according to the equation:

Cyreall))=7——" et —e ), Fq. 18

k, =—- Eq. 19

absorption rate constant k, = 0.5 1/h (as for the anti-platelet drug), and the absorbed

dose was D*F =1 (an arbitrary scale factor).
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Proportional intra-individual error was assumed for observed concentrations, 1..

Cy(t) = Cy prealt) *exp(ey),  e~NO,cvy) Eq. 20

To study the effect of variability, a range of cv, from 0 to 50% was investigated,

concentrations with cve = 0%, 10%, 15%, 20%, 30%, 50% were generated.

For each individual, 1 to 8 time points were randomly selected from the following set
of times between 0 and 20 hours: 0, 0.0833, 0.1667, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2,
2.25,2.5,2.75,3,3.25,3.5,4,45,5,5.5,6,6.5,7,7.5,8,8.5,9,9.25,9.5,9.75, 10,
10.25,10.5,10.75, 11, 11.5, 12, 12.5, 13, 13.5, 14, 15, 16, 18, 20. Plasma

concentrations were computed in the chosen points according to (Eq. 15) - (Eq. 20).

Not all combinations of all possible options, described above, were implemented. In
the first three columns, Table 29 lists the combinations of options used to generate the
data. In total, 16 data sets with concentration and demographic data were created, 4 of

them with the uniform and 12 with normal distribution of the continuous covariate.

Table 29. Combination of options used for data generation and for analysis.
Intra-subject o o Value of
Distribution | Weighting scheme .
variability smoothing
of Age (case number)
(%) parameter”
1
2 1,10, 100
0 uniform
3
4 10
0, 10, 15, 20, 1
normal 10
30, 50 5

a. Values of a smoothing parameter used for generating observation level boundaries.

Analysis
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The first goal of the analysis was to qualitatively assess the ability of the partitioning
and tree modelling methodology to identify the influential covariates. Therefore, each
of the created data sets was subjected to model-free population analysis as described

earlier.

Namely, a scatter plot of observed concentrations versus time was divided into four
observation levels, using smoothing splines for partitioning. Each patient was then
assigned a patient level according to position of his observations in regard to the
observation level boundaries. Influence of covariates on the patient level was then
studied by CART as described earlier. As before, cross-validation was used as the

model discrimination criterion in search of the optimal tree size.

To study dependence of the results on a value of the smoothing parameter, three
values of 1, 10, and 100, were used (See Table 29). Partitioning was performed with

each of these values, and resulting trees were compared.

Ability of the tree models to identify the covariates was qualitatively compared for
data sets with different sets of 0’s, different intra-subject variability, and different
distributions of the continuous covariate Gender (normal and uniform distributions

were studied).

The second goal was to assess accuracy of AUPC as a measure of exposure for
identified subpopulations, or more precisely, accuracy of relative change in AUPC for

subpopulations as a measure of difference in exposure for the respective groups.

To do this, area under the curve between 0 and 20 hours (AUCy.50) was analytically

computed for each subject according to

k e
AUC,_,, = __* *(—- -—+ ), Eq. 21

k,—k, V., k, k, k  k

where 7 =20.

Mean or median values of AUC,__, over all individuals in a subpopulation were

regarded to be true AUPC (AUPCtruc)s AUPCtrue, mean and AUPCtruc. med- Empirical
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AUPC:s for subpopulations were computed as described earlier, by fitting weighted
locally linear regression (lowess) curve to concentrations of the respective groups.
True and empirical percent changes in AUPCs between subpopulations were then
compared for data sets with different numbers of subjects, different sets of 0’s,

different residual variability, and different distributions of the continuous covariate.

In total, 40 different partition sets were analysed: tree models were created for them,

true and empirical AUPCs for subpopulations were computed and compared.

2.4.4 RESULTS

No intra-individual variability

Six data sets with no intra-individual variability employed four weighting schemes for
covariates with uniformly distributed Age, and two weighting schemes with normally
distributed Age. Three of those with uniformly distributed Age were analysed three

times each, with different values of smoothing parameters.

In all the cases tree models identified the correct set of covariates. Conmed,
ConDisease, Age and Smok always appeared in the models, and Gender was never
chosen. Order of categorical covariates in the models (closeness to the root) always
corresponded to the weighting scheme: the greater the change in AUPC for respective
subpopulations, the closer was the covariate to the root of the tree. For the continuous
covariate, the result was not the same. Age was chosen as the first splitting point in all
the cases where it was uniformly distributed, no matter the weight of Age. In the data
set with normally distributed Age (where Age was not the most influential covariate),
Age was chosen as a second splitting variable, though all the categorical covariates

had greater weights (Case 5).

The value of the smoothing parameter had no influence on the tree models. It slightly
changed the quartile assignment results (Table 30), but changes did not propagate
further.

In all the cases change in AUPC was a very good approximation of change in true

AUPCs in subpopulations (see Table 31 and Table 32).

87



Table 30. Percent of patients assigned to exposure levels. No intra-subject
variability, weighting scheme 1.
Smoothing Exposure level
parameter 1 2 3 4 Unassigned
1 19.1 32.7 27.4 14.4 6.4
10 19.9 323 26.9 14.2 6.7
100 20.1 333 25.9 12.8 7.9
Table 31. Comparison of change in AUPC with change in AUPCy.. No intra-
subject variability, weighting scheme 1, normally distributed Age.
% % change
Subpopulation Variable” | change AUPC e
AUPC | Mean | Median
Age
(>56/<56) 22.0 21.0 21.6
Whole population Conmed 18.6 14.7 14.2
ConDisease | 32.5 29.1 294
Smok -11.1 -11.5 -10.3
Age<=56 Conmed 24.5 26.8 29.6
Age<=56 ConDisease=0 Conmed 12.3 14.5 16.3
Age>56 ConDisease | 23.1 20.6 22.1
56<Age<58 Smok -146 | -11.0 -11.6
59<Age<65 Smok -11.2 | -103 -10.6
59<Age<63 |Smok=1 Conmed 4.2 2.0 -1.1
Age>65 ConDisease=0 Conmed 26.0 24.8 24.1
Age>65 |Conmed=0 |ConDisease=0 Smok -5.5 -4.9 -4.2
a. Comparison for categorical covariates: Covariate=1 versus =0 (Yes/No).
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Table 32.

Comparison of change in AUPC with change in AUPCe. No intra-

subject variability, weighting scheme 5, normally distributed Age.

% % change
Subpopulation Variable” | change AUPCe
AUPC | Mean | Median
Age
14.9 14.9 16.1
(>56/<56)
Whole population Conmed 26.2 23.0 20.1
ConDisease | 43.8 41.7 45.6
Smok -6.7 -7.2 -5.5
Age
ConDisease=1 10.5 8.4 8.5
(>56/<56)
Age
ConDisease=0 14.8 15.3 15.0
(>56/<56)
Age<56 Conmed 15.8 17.7 18.4
57<Age<65 Conmed 15.3 9.8 11.3
ConDisease=0
Age>66 Conmed 26.3 22.9 23.6
Age>66 |Conmed=0 Smok -5.3 -5.4 -3.7
a. Comparison for categorical covariates: Covariate=1 versus =0 (Yes/No).

Intra-individual variability

Ten analysed data sets with intra-individual variability employed two weighting

schemes and five variability levels, 10 to 50%. In all the data sets Age was normally

distributed, and one value of the smoothing parameter was used.

Table 33 shows the distributions of patient assignment to exposure levels for the data

of weighting scheme 5, with different intra-subject variability. As one might expect,

the percentage of unassigned patients increases as variability increases. It reached 25%

at cve = 50%.

The capability of the tree models to detect influential covariates decreases with

variability. Table 34 exhibits the covariates and their order in the tree models for
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weighting scheme 5 and different intra-subject variability. At the 0% and 10%
variability level, all the covariates were detected, and except for Age, the tree models
correctly ordered their influence. Starting at a 15% variability level, Smok was no
longer detected. At a variability level of 50%, Conmed was not detected, rather

Gender was observed in the model.

Table 33. Percent of patients assigned to exposure levels. Different intra-subject
variability, weighting scheme 5.
Coefficient Exposure level
of variation
1 2 3 4 Unassigned
(Vo)
0.1 19.5 34.6 26.3 11.3 8.3
0.15 17.8 36.7 25.2 9.5 10.8
0.2 17.6 35.9 254 7.8 13.3
0.3 15.8 36.5 22.8 6.2 18.7
0.5 15.8 35.7 18.8 4.4 253
Table 34. Summary of tree models for weighting scheme 5 and normally
distributed Age
Coefficient '
Detected covariates
of variation .
ordered according to the tree model
(%)
0 ConDisease Age Conmed Smok
10 ConDisease Age Conmed Smok
15 Age ConDisease  Conmed
20 Age ConDisease = Conmed
30 ConDisease  Age Conmed
50 Age ConDisease  Gender

Note, that for the weighting scheme depicted in the table Osmok = 0.1 and Ocgnmeq = 0.3.

This means that smoking increased clearance by less than 10% (exactly 10% for a
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person of smallest age with Conmed=0 and ConDisease=0), and Conmed decreased it
by less than 30%. As can be seen in Table 35, Smok decreased AUPCs (true and
empirical) by approximately 8%, i.e. half of intra-subject variability of 15% where
Smok could not be detected. Also, a change of 7% would not be considered as
clinically important. Conmed increased AUPC by approximately 25%, again half of
the variability level where it could not be detected. Gender wrongly entered the tree
model at the 50% variability level, but the mistake was caught at the next stage,

AUPC comparison, where it changed AUPC by 0.3 percent (Table 36).

Table 35. Percent change in AUPCs and in AUPCy,, for subpopulations.
Weighting scheme 5, normally distributed Age, and CV=20%.

% change |. % change AUPCiy,e
Subpopulation Variable®
AUPC Mean Median
Age
18.4 15.4 16.9
(>56/<56)
Whole population Conmed 254 24.2 22.0
ConDisease 45.2 43.0 46.6
Smok -8.2 -1.3 -5.8
Age<53 ConDisease 38.5 37.1 37.4
Age<53 ConDisease=0 Conmed 23.3 25.5 25.7
54<Age<58 ConDisease 29.9 28.3 27.2
59<Age<64 ConDisease 22.2 21.9 22.6
Age>65 ConDisease 39.3 38.7 41.5
Age>65 ConDisease=1 Conmed 24.7 17.3 20.1
a Comparison for categorical covariates: Covariate=1 versus =0 (Yes/No).

Comparison of the percent change in AUPC versus AUPCrye showed a good
agreement between these two measures. Table 35 and Table 36 show percent change
in AUPC and AUPC . for each covariate in the whole population and in various
subpopulations identified by the tree models, for data sets with the coefficient of intra-
subject variability of 20% and 50%, respectively. Changes in AUPC and AUPC are
very close in all subpopulations for 20% variability, and the difference between the

changes is of the same order of magnitude as the difference between mean and median
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AUC,. changes. In the high variability case (Table 36), the difference between

changes in AUPC and AUPC,, was larger (reaching 10% for ConDisease in the

whole population). However, in comparisons made for the appropriate subpopulations

(Age was the first splitting variable, so comparisons for ConDisease should be made

in the respective Age subgroups), the difference partially went away, with a maximum

difference of 6%.

Table 36.

Percent change in AUPCs and in AUPCy,,. for subpopulations.
Weighting scheme 5, normally distributed Age, and CV=50%.

% change | % change AUPC.
Subpopulation Variable®
AUPC Mean Median
Age
26.8 19.1 23.1
(>68/<68)
Whole population Conmed 25.0 25.0 24.7
ConDisease 33.7 44.2 50.2
Smok 1.7 -6.3 -5.4
Age<53 ConDisease 45.1 39.2 38.8
54<Age<67 ConDisease 23.9 26.2 274
54<Age<67 |ConDisease=1 |Gender 0.3 2.3 3.1
Age>67 ConDisease 39.0 40.4 43.8

a Comparison for categorical covariates: Covariate=1 versus =0 (Yes/No).

2.4.5 CONCLUSIONS

This simulation study illustrated that the developed model-free method is able to

identify predictors of exposure in a wide range of variability in the data. In the

presence of 30% inter-subject variability in pharmacokinetic parameters the method

was able to detect the covariates whose contribution to exposure was half the intra-

individual variability level.

The simulation also showed that percent change in AUPC for subpopulations

identified by the tree models is a good approximation of change in exposure for the

respective populations. The maximum difference between the estimated and true
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change in AUPC in the worst case (50% intra-individual variability and 30% inter-

individual variability in parameters) did not exceed 6%.

The choice of smoothing parameters in the partitioning algorithm, relative
contributions of categorical covariates, and correlation between them do not influence
the capability and accuracy of the method. However, the tree models overestimate the
contribution of the continuous covariate. This should be kept in mind when choosing

subpopulations for AUPC curves based on the tree models.
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3 APPLICATIONS OF NONLINEAR MIXED EFFECTS MODELLING

3.1 Population Pharmacokinetics Of An Antifungal Compound

3.1.1 OBJECTIVES

One of the objectives of the clinical studies and analyses presented here was to fully
investigate the multiple-dose pharmacokinetics of the drug, characterising total
exposure to the drug, clinical covariates of exposure, and the relationships between
exposure, safety and efficacy. Earlier studies had indicated that the terminal half-life
was long. A long half-life might contribute to marked accumulation and prolonged
exposure following the extended duration of treatment. Consequently, extent and
duration of exposure were the emphasis of this investigation. The primary objectives
of this project were:

1. To describe the multiple-dose pharmacokinetics of the drug in order to provide a
clear understanding of the duration and extent of systemic exposure following at
least two weeks of dosing;

2. To characterise the relationship between plasma levels and safety in the patient
population;

3. To characterise the relationship between efficacy outcomes, plasma levels and the

demographic predictors of plasma levels.

The first objective was met by building a mathematical model consistent with
observed multiple-dose pharmacokinetic behaviour of the drug. First, the multiple-
dose pharmacokinetics of the drug was investigated by fitting compartmental models
to intensely sampled pharmacokinetic data obtained from healthy volunteers. The
developed model was then incorporated into a nonlinear mixed-effect model for the
drug. The latter model was investigated by its application to sparse data obtained from
patient studies. The model was then used to compute summary measures of duration
and extent of systemic exposure, and to explore the associations between demographic

covariates and pharmacokinetic parameters.

The second objective was met by exploring the relationships between indicators of
safety (namely, frequencies of adverse events and above-normal laboratory values),

and model - derived measures of extent of exposure. The associations between safety
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indicators and demographic variables identified as related to pharmacokinetic

response, were also explored.

The third objective was met by exploring the associations between efficacy outcomes

and demographic variables identified as related to pharmacokinetic response.

An additional objective of the investigation was to use the developed model to guide

the design of a new study, where higher doses of the drug would be employed.

Finally, the secondary objective was to compare the model-free population PK

method, described earlier, with the nonlinear mixed modelling.

3.1.2 INDIVIDUAL COMPARTMENTAL MODEL

3.1.2.1 Data

Data from three pharmacokinetic studies in healthy volunteers were included in this
analysis. Pharmacokinetic assessments in these studies included full concentration-

versus-time profiles, as well as trough levels, (i.e., drawn immediately pre-dose), from

each subject.

Duration of dosing and the longest time post-dose at which plasma levels were

assessed, for each study are presented in Table 37.

Table 37. Duration of dosing and sampling.
Study Weeks of Dosing® Longest Time Post-Dose”
Hl 2 335hr=2 wk
H2 2 1488 hr = 8.9 wk
H3 4 1440 hr = 8.6 wk

a. The duration of the once-a-day dosing period.
b. The longest duration of the post — dosing sampling period (washout) following the last dose of the

multiple-dose regimen.

Study H1 compared fed and fasted conditions in a crossover design in both elderly and
young subjects. Subjects were dosed with 250 mg of the drug once a day in the

morning for 15 consecutive days. Doses 1-5 and 10-12 were taken at home. It was
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assumed that these were all taken at 8 am with breakfast, i.e., under fed conditions as
prescribed in the protocol. Doses 6, 7, 9, 13, and 14 were taken at the study centre at 8
am with breakfast, i.e., under fed conditions. There were two sequences for a
crossover assessment of the effect of food. In sequence 1, dose 8 was taken at the
study centre at 8 am after a 7:30 am breakfast, i.e., fed; and dose 15 was taken at the
study centre at 8 am fasting until noon. In sequence 2, the fed/fasted conditions of
doses 8 and 15 were reversed: day 8, fasted; day 15, fed. Twenty-four-hour trough
levels were drawn following doses 5-7 and 12-14. A 24-hour profile was taken
following dose 8, and a 335-hour profile was taken after dose 15. Each subject thus
provided 33 blood samples in all: 6 troughs, 11-samples on day 8, and 16 samples on
days 15 through 29. (Here pre-dose samples are counted as troughs, not as parts of the
profiles.) Fifteen elderly (ages 61-75 years) and fifteen young (ages 19-33 years)

subjects were separately randomised to each of the two sequences.

Study H2 investigated the pharmacokinetic interactions with other drugs in a
crossover design. No pharmacokinetic interaction was observed, so dosing with the
other drug was equivalent to placebo for our analysis. Subjects were dosed with 250
mg of the drug once a day in the morning for 18 consecutive days. Doses 1-10 were
taken at home under fed conditions. Doses 13-17 were taken under fed conditions at
the study centre. Doses 11, 12, and 18 were taken in the fasted state at the study
centre. There were two sequences of ten subjects each, and the study was a two-period
crossover study. In the first sequence, subjects received 18 doses of the drug in the
first period, and they received placebo in the second period. In the second sequence,
subjects received 18 doses of the drug in the second period, having received placebo
in the first period. Since the study was blinded, subjects in the first sequence had
plasma samples taken after the last active dose through the washout period and
through the second treatment period (drug-placebo). Therefore, subjects in the first

sequence had samples drawn for as long as 1488 hours post dose.

Study H3 compared 125 mg and 250 mg doses in a parallel design. Subjects were
dosed with either 125 mg or 250 mg of the drug, in a parallel design, once a day in the
morning for 30 consecutive days (except for the second day). On days 1, 16, and 30,
doses were taken at 8 am at the study center with fasting until 11 am. Each of these
doses was followed by a PK profile: 48 hours on day 1 (with no dose given on day 2);
24 hours on day 16; and up to 1440 hours on day 30 (through day 58). Doses on days
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4,5,7,8,10, 11, 13-15, 18-20, 22, 23, 25, 26, 28, and 29 were taken at home at 8 am.
It was assumed that these doses were taken with breakfast, i.e., under fed conditions
(the protocol did not specify). Doses on days 3, 6, 9, 12, 17, 21, 24, and 27 were taken
at 8 am at the study centre. It was assumed that these doses were also taken with
breakfast, i.e., under fed conditions (the protocol did not specify). Twenty four hours
after the doses on days 5, 8, 11, 15, 20, 23, 26, and 29, trough blood samples were
taken at the study centre. Each subject provided up to 73 blood samples: 8 troughs, 18
samples on day 1 (through day 2, not counting the pre-dose sample on day 1), 14
samples on day 16, and up to 33 samples on day 30 (through day 58). There were 10

young (18-45 years old), healthy, male volunteers in each dose group.

3.1.2.2 Methods

3.1.2.2.1 Model description

Pharmacokinetic models were investigated within the family of linear, mammillary

models with first-order output from the central compartment.

Mammillary models is a subset of compartmental models in which compartments
exchange the drug only though the central one, there is no direct flow between
peripheral compartments, like in Figure 2. These are the most often used
compartmental models. They correspond to the physiological notion that drug is
distributed and eliminated through the blood, and that blood carries drug to all other
tissues and eliminating organs. The other consideration is a mathematical one: if
measurements are taken only from one compartment (blood, for example), a non-
mammillary multi-compartmental system poses an identifiability problem (the

solution is not unique).

First-order output from the central compartment assumes that the rate of elimination
of the drug from the system is proportional to the amount of the drug in the central

compartment, as in Eq. 1.

It was assumed that the observed plasma concentration represented the concentration
in the central compartment. Based on the previous knowledge of the pharmacokinetics
of the drug [Kovarik, et al.,1992, 1995], input was modelled as zero-order into the

central compartment (i.e. rate of input is constant, it does not depend on the amount of
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drug outside or in the compartment). It was also known, that the pharmacokinetics of
the drug could not be described by a one compartment model [Jensen, 1989, 1990;
Kovarik, et al.,1992]. Therefore, two- and three-compartment models were tried and

compared.

To describe the three-compartment model, let, as before, X;, X, and X; represent drug
amounts in the central and two peripheral compartments, respectively. Then these
quantities are assumed to obey the following system of differential equations in

response to a single dose, D:

Xm/dt = I(t) - (k12 + k3 + kel) X1 +ko; X, + k31 X3 R Eq 22
dXz/dt = k12X1 - k21X2 . Eq 23
dX3/dt = k13X1 - k31X3 s Eq 24

with the following initial conditions

X1(0) = X5(0) = X3(0) = 0. Eq. 25

Here I(t) is the rate of drug input into the central compartment and is assumed to be

given by
0, !t <liag

Iy = FD/taps, Uag< ! <lapst ligg Eq. 26
0, labs * liag < t

where tj,, is the delay between the time of dose until drug first appears in the central
compartment, tops is the duration of zero-order input into the central compartment, and

F is the fraction of dose absorbed.

Let V. be the volume of distribution of the central compartment. The concentration in

the central compartment,
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C@t) = Xi(0)/V,, Eq. 27

can be expressed in closed form as follows. Let by,>b;>b, be the three exponential

decay constants that are the eigenvalues of the system (Eq. 22 - Eq. 25 ) with I(t)=0.

Let us define the following quantities:

s = Velass/F, Fq. 28

c2(t) = D(kar - b)(ksi - b)[exp(bi(t - tiag)) - 1] /[5(b3-b3)(bs-b2)b;]
c3(t) = D(kay - b)(kss - b)[exp(bi(t - tiag)) - 1]/[5(b2-b3)(bs-b3)b3] Eq. 29
cs(t) = D(kz - b (ks - b)[exp(bi(t - tiag)) - 1]/[5(b2-by)(b3-by)by]

Ci = Ci(laps + liag), 1=2,3,4. Eq. 30

Then the concentration C(t) can be expressed as

0’ tstlag
4
C@) = Yci(t)exp(-bi(t-tg)), lag< 1 S laps + biag Eq. 31
i=2
4
Z ci exp (- b (1- tlag)) ) Labs T liag < L.

i=2

C(t) depends on 8 parameters: tisg, tabs, S, b2, b3, ba, ka1, and ks,
Parameters tjg, tabs and s are known to be responsible for absorption and

bioavailability, and may be influenced by food. The other five parameters describe the

distribution of the drug in the body and its elimination, and they usually do not depend
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on food intake. To account for the possible effects of food, three variations of the

above model were compared for studies H1 and H3:
Reduced model: no differences between fasted and fed

Mid model: s differs between fasted and fed; let s, denote the parameter
under the fasted condition; one additional parameter is thereby

introduced

Full model: tlag, tabs, and s differ between fasted and fed; let t15g, tabs ., and
sa denote the three parameters under the fasted conditions; three
additional parameters are thereby introduced relative to the
reduced model, or two additional parameters relative to the mid

model.

For either the mid or the full model, let c;,(t) and c;, represent the coefficients ci(t)
and ¢; modified by the substitution of the fasted for the fed parameters, where

appropriate.

The model was applied to multiple dosing by superposition. An assumption of dose
linearity, necessary for justification of superposition, was based on dose

proportionality in a single-dose study [Kovarik et al., 1992].

Let C(1,d) represent the concentration at time t after the d™ daily dose, assuming that
for a given subject all doses were administered at exactly the same time of day. C(1,d)
can be expressed as the sum of two parts: Cy.;(t,d), the sum of contributions through
the (d - 1)'st dose; and Cy(?,d), the contribution from the d™ dose. C4(t,d) is given by
(Eq. 31).

C4.(t,d) can be found from superposition, by adding contributions from doses through
the (d-1)*. Assume that most doses are administered in the fed state, but that some are

administered in the fasted state, say d |, ...,dr. Then

d-1 4
—b,(24j+t~1;,,)
Cot.d)=>. D e +C(dyedy) =
Jj=l =2
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—b(t— 94p, —(d-1)24b.
(¢ flag)e 24 b, [l—e (d-12 ,]

=Zcie l_e—z4b,. +Cf(dp---,df), Eq. 32

4
i=2

where C,(d,,...,d )1s a correction for the fasting doses:
L (& b (28(d=dy Y-ty a] b, [24(d—dy )+l )
C,d,...d;)= Z Zci’ae ! e e —Zc,.e ' %0 Eq. 33
k=1 \ i=2 i=2

For the population pharmacokinetic analyses, an additional correction was made when
the recorded time of the second-to-last dose was not 24 hours before the time of the

last dose. (In the volunteer studies, nominal dosing intervals of exactly 24 hours were

assumed.)

Let t s be the time between the last two doses. Then, to Cy.;(,d) and Cy(t,d) was

added the correction term Cy; (¢,d) where:

4
=b(t—tig) 1 _~Btiyer -b24
Ca(2,49) :Zcie (e —e™T) Eq. 34
=2

3.1.2.2.2 Model Fitting

Models were fitted by unweighted nonlinear least squares method (OLS) for each

subject separately.
This method is valid and is known to deliver the best result [Amisaki & Eguchi,

1995] if the residual error model is additive, and errors are independently normally

distributed with mean zero, i.e.
2
Cj,obs = Cj,pred + €, €~ N(O: o) )9

where  Cjobs and Cj preq are the observed and predicted plasma concentrations of a
subject. If both assumptions hold, then the least squares estimates are in fact

maximum likelihood estimates.
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However, most often concentrations are distributed log-normally, not normally. To
use OLS method in this situation, the concentrations should be log-transformed. The

following model is then appropriate to fit by OLS method:
ln(cj,obs) = 11'l(c_i,pred) + &j.

Therefore, the log-transformation of concentrations was used in fitting process.
Values below quantification limit (BQL), which on a concentration scale might have
been assigned a value of zero, were treated as missing, and were excluded from the

analysis.

Fitting was done using SAS. A number of routines were developed and various

existing SAS routines were used. Several steps of fitting were employed:

1. Parameters were first estimated by stripping the last profile [Gibiansky, 1994].
The stripping technique assumes that by later times all exponential terms
except the slowest one have already vanished. Therefore the parameters for the
slowest term can be estimated by log-linear regression on several latest data
points. The contribution of this term can then be subtracted from the values of
all the previously observed data points. The procedure can then be repeated for

the next slowest exponential term, and so on till the first [Dunne, 1986].

2. These estimates were then used as initial guesses for nonlinear least squares
fitting to the log concentrations. A Nelder-Mead simplex algorithm within
PROC IML of SAS was used [Gibiansky, 1995; SAS, 1990]. These are

denoted as the second-level estimates.

3 Then, because of evidence that the objective function had multiple local
minima, the data for each subject were fitted using 100 sets of initial guesses
that were selected by allowing each parameter to vary randomly within 100%
of its second-level estimate. The best fits from this process are denoted as the
third-level estimates. In several cases, the sum-of-squared-errors (SSE) for the
mid model was smaller than the SSE of the full model, or the SSE of the

reduced model was smaller than either the mid or the full. In these cases, the
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third-level estimates for the better model were used as initial guesses to

generate revised third-level estimates for the fuller model.

4, Final estimates were obtained by using the third-level estimates as initial
guesses for the secant method of PROC NLIN in SAS [SAS, 1989]. Ina
couple of cases it further improved the fit. Attempts to shorten the analysis and
use a gradient method with the initial guess given by the stripping procedure

(step 1), usually resulted in a failure due to non-convergence.

For Study H1, the final fits for the full, mid, and reduced models were compared by
means of approximate F statistics [Seber & Wild, 1989]. Estimates of bioavailability
tiag and F/V (F/V = taps/s) from the full model under fed and fasted conditions were
compared by signed-rank tests. Estimates of apparent oral clearance CL/F and
terminal half-life t;, (CL/F = D/AUCy.,, t12 = In(2)/by) [Gibaldi & Pérrier,1982] were
compared for elderly and young subjects by Wilcoxon rank-sum tests. A full two-
compartment model, that is, one with ty,, tans, and s differing between fed and fasted
conditions, was also fitted to the data from each subject in H1. The two- and
three-compartment models were compared by approximate F statistics. Diagnostic
plots of standardised residuals assessed the goodness-of-fit of the finally selected

model.

For Study H3, third-stage fits were compared by approximate F statistics, and then
only the mid model was fitted at the fourth stage.

For Study H2, only the mid model was fitted, and only through the third stage.

The availability of two dose levels in Study H3 permitted an assessment of dose -
linearity of the drug, which must be true if superposition is to be valid. As described
above, the mid model was fitted to each subject separately. Under dose-linearity, the
parameters of the model should not depend on the dose level. To test this
independence, parameter estimates from the two dose groups were compared by
Wilcoxon rank-sum tests. Dose proportionality was further investigated by similar

tests applied to AUCq.4g and Cpax for the concentration versus time profile on Day 30.
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Additionally, a linear mixed model (repeated measures) was fitted to all dose -
normalised log concentrations through Day 30, 48 hours post dose. DOSE, DAY, and
TIME were fixed effects and SUBJECT was a random effect in the model.

3.1.2.3 Results

The effect of food on bioavailability was investigated by the comparison of the full,
mid, and reduced models fitted to the data. All three models were fitted separately to
data from each individual in Studies H1 and H3. Minimum Sum of Squared Errors
(SSE) for the full, mid, and reduced models for each subject from these two studies
are shown in Table 38 and Table 39. The p-values from approximate F-tests

comparing mid with the full model and reduced with the mid model are also

presented.

In Study H1, where full concentration-time profiles were obtained under both fed and
fasted conditions, for investigation of a food interaction, the full model was superior
to the mid model with p < 0.05 for 24 of 30 subjects. Absorption and bioavailability
parameters were different under fed and fasted conditions as described later, providing
the evidence to support the importance of accounting for differences between fed and
fasted conditions of dosing on bioavailability when modelling a drug’s

pharmacokinetics.

In Study H3, a food interaction was not investigated in the design, with all plasma
concentration-time samples collected following a dose under fasted conditions.
However, the majority of doses, which were taken at home, were taken under fed
éonditions. For five of the ten subjects at the 250-mg dose, the mid model, which
accounts for food effect on bioavailability, was judged superior to the reduced model
with p <0.05. For all ten of the subjects at the 125-mg dose, where there were more

BLQ values, the reduced model adequately described the data.
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Table 38. Comparison of individual models: Study H1

SSE p-value *
Subject | 2 comp 3 comp Full: 3 comp
Full | Full | Mid | Reduced | o 3 [Full vs Mid | Mid vs Red
1 0.94 ] 0251027 096 o } o
2 1.03 | 023 | 140 | 1.60 wHr o )
3 0.62 | 025 | 246 | 2.73 o o 5
4 | 228 | 054193 201 o o )
5 120 | 021 | 243 | 244 " e 5
6 | 308 | 053] 159 165 "k P .
7 | 054 | 037078 | 098 2 orr "
8§ | 290 | 068079 082 o ) X
9 | 073 | 061067 138 i ) o
10 | 083 | 06438 | 407 : o X
11 | 068 | 032|231 | 241 o o §
12 | 072 | 049|213 | 217 ; o 3
13 | 061 |035]171] 171 " o §
14 | 036 | 032102 183 i o o
15 | 126 | 040 | 416 | 492 o o x
17 | 127 | 031|351 355 e e )
18 | 1.06 | 0.76 | 329 | 331 ; o )
20 | 1.16 | 0.72 | 1.61 | 161 " o 3
21 | 214 | 1.03 | 251 | 295 o o ;
22 | 091 | 042|057 ] 06l o ¥ )
23 | 095 | 035|050 054 o ; -
24 | 066 | 046|096 | 183 * e e
25 | 715 | 556|710 7.13 i : :
26 | 027 | 0.19 | 3.44 | 344 " o :
27 | 085 | 031082 089 " o :
28 | 042 | 0.14 | 689 | 7.04 o o )
29 | 170 | 123 | 492 | 5.06 0 o :
30 | 090 | 041|049 050 e : :
31 | 065 | 027 | 034 | 064 o : P
32 | 047 | 043 | 084 | 153 : ox o

a. Indicators of significance: - p>0.05, * p<0.05, ** p<0.01, *** p<0.001.
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Table 39.

Comparison of individual 3 compartment models: Study H3

Subject S5F p-value*

Full Mid Reduced Full vs Mid | Mid vs Red
125 mg dose group
2 0.98 0.99 1.15 - * *
3 2.35 2.35 2.36 - -
11 2.12 2.12 2.12 - -
12 2.66 2.66 3.53 - * Kk
15 0.79 0.79 0.87 - *
17 1.62 1.63 1.72 - -
19 2.03 2.04 2.35 - *
105 1.96 1.96 2.08 - -
108 3.13 3.14 3.43 - *
404 3.29 3.29 3.30 - -
250 mg dose group
1 6.11 6.11 6.11 - -
6 2.56 2.57 2.62 - -
7 1.5 1.50 1.50 - -
13 1.68 1.69 1.87 - *
14 4.10 4.10 4.13 - -
16 0.72 0.72 0.74 - -
18 1.35 1.35 1.36 - -
109 2.13 2.13 2.18 - -
110 1.61 1.61 1.75 - -
120 3.49 3.49 3.49 - -
a. Indicators of significance: - p=0.05, * p< 0.05, ** p<0.01, *** p<0.00l.

The complexity of the drug pharmacokinetics was investigated by comparing the
results of the two- and three-compartment models for each subject in Study H1. Table
38 shows minimum SSEs for full two- and three-compartment models fitted to each
subject from H1, together with p-values for the approximate F-tests comparing those
two models. For 25 of 30 subjects, the p-value was < 0.05, providing strong evidence
that the plasma concentrations of the drug were more consistent with three phases of

distribution and elimination than with two.
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The three-compartment model fitted the data adequately. For studies H1, H2, and H3,
Figure 21, Figure 22, and Figure 23, respectively, trace the average of all fitted curves
through the average observed concentrations versus time since the start of the study.
The match between the fitted and observed values is good. Figure 24, Figure 25, and
Figure 26 plot standardised residuals versus fitted values. The homogeneity of the

scatter in the plots justifies the choice of the log scale for concentrations.
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Figure 21. Average fitted values and average observed values versus time since

start of dosing for Study H1.
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Figure 22. Average fitted values and average observed values versus time since

start of dosing for Study H2.
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Figure 23. Average fitted values and average observed values versus time since

start of dosing for Study H3.
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Figure 24. Standardised residuals versus fitted values for Study H1.
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Figure 25. Standardised residuals versus fitted values for Study H2.
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Figure 26.

Standardised residuals versus fitted values for Study H3.

Pharmacokinetic parameter estimates from the full model fitted to each subject in
study H1 and the mid model fitted to each subject in studies H2 and H3, are
summarised in Table 40. The parameters are: t 5, the delay until drug appears in the
central compartment, under fed and fasted conditions; t .5, the duration of zero-order
absorption, undef fed and fasted conditions; F/V ¢ = t .5 /s, the bioavailability divided
by the volume of the central compartment, under fed and fasted conditions; t.,, the
terminal elimination half-life, which, according to the model is independent of food;
and CI/F, the apparent oral clearance, under fed conditions only. Summaries for H1
are provided by age group. Parameters from study H3 are summarised by dose.

(Except for the 125-mg dose group in H3, all other doses in all studies were 250 mg).

The effect of food was evident in the food-interaction Study H1: ty,, and F/V .
increased; i.e., absorption was delayed and bioavailability increased (assuming V.,
remained constant) with food. These effects were statistically significant (p < 0.05)
overall and for both elderly and young separately as judged by signed-rank tests (see
Table 41). There also appeared to be an effect of age although it was not statistically

significant. Older subjects exhibited a longer half-life and reduced clearance.
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Table 40. Summaries of Parameter Estimates: Median (Inter-quartile Range)®

tiag tiag tabs tabs F/V. |F/V. |t CI/F
Study fed fasted | fed fasted | fed fasted

(hr) (hr) (hr) (hr) (hr) | (hr) (wks) | (L/h)
H1, 0.70 0.36 2.86 1.78 132 [10.2 2.13 17.2
Elderly (0.58) [(0.27) | (2.07) |(0.72) |(8.5) |(7.8) [(2.08) |(11.5)
H1, 0.69 0.41 1.51 1.61 9.4 7.0 1.57 24.0
Young | (0.64) {(0.40) | (1.18) [(1.17) |(5.0) | (3.9) |(3.15 |(13.4)
H3, - € 0.22 - 0.98 11.0 |7.2 2.23 18.6
250 mg” (0.03) (0.12) [(5.2) |(2.1) |(0.80) |(23.8)
H2 - 0.10 - 1.43 6.5 7.6 1.59 30.8

(0.30) (0.43) | (6.0) | (4D (1.90) |[(19.9)

H3, - 0.20 - 0.92 5.3 5.9 2.14 35.8
125 mg (0.02) (0.34) {(42) |(3.4) [(6.68) |(37.5)
a) Obtained from the individual estimates of the pharmacokinetic parameter in the respective

study or a group (dose or age group) within a study;

b) Excludes one subject for whom a two-compartment model fit adequately but the three-
compartment model yielded k;,=0 with no improvement in overall fit;

c) The mid model did not distinguish between fed and fasted for these parameters. Since the
concentration profiles comprising the bulk of a subjects data were taken in fhe fasted state, the

parameter estimates were associated with the fasted state.

Table 41. P-values of fed versus fasted comparisons in Study H1 by Wilcoxon

signed-rank test.

Sub] ects {ag tabs F/V
All * %k %k . kokk 4

Young * ok * . * %

Elderly ok - *

a. Indicators of significance: - p>0.05, * p<0.05, ** p<0.01, *** p<0.001.

A fundamental assumption for all of the models used here was linearity of

pharmacokinetic response. This assumption implies that:
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a.  The same model should fit both the 125-mg and 250-mg doses, i.e. the fitted
parameters of the model as well as derived pharmacokinetic responses (dose-
normalised AUC, Cmax, etc.) should be the same for individuals from the 125
mg and 250 mg groups;

b.  Observed pharmacokinetic response (dose-normalised concentrations) across

those two doses should be dose proportional.

To test this assumption:

a. All fitted parameters and derived dose-normalised AUC.43 and Cyax of the final
profile (Day 30) were compared for the 125 mg and 250 groups by the Wilcoxon
rank-sum test. Amongst all of the parameters, no differences were significant at
a=0.05 level except for ky; (p =0.009) and b; (p = 0.01). Across subjects, ky; and
b3 were highly correlated, so it was not surprising that either both were significant
or not. Since k;; and b; were parameters related to the tail-behaviour of the
concentration curve, their differences across dose groups may have been due to the

greater number of BLQs at the 125-mg dose. Neither dose-normalised AUCg.45 nor
Cnmax differed significantly between the groups.

b. A linear mixed model was fitted to all dose-normalised log concentrations through
Day 30, 48 hours post dose. DOSE, DAY, and TIME were fixed effects and
SUBJECT was a random effect in the model. DOSE was not significant (but all

the other effects were).

Thus, given the limitations of the data, the evidence is consistent with the assumption

of dose proportionality.

3.1.3 POPULATION MODEL

3.1.3.1 Data

A nonlinear mixed-effects version of the three-compartment model was applied to the
data from Studies P1 and P2 used for the model-free analysis, as described in Section
2.2.2. Since blood sampling was sparse in both studies, data from Study H1 (described
in Section 3.1.2 above) was also included in the analysis. Blood samples from all three
studies had been analysed at the same laboratory. Moreover, all doses in Studies P1

and P2 had been taken under fed conditions (according to the protocols), and full
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pharmacokinetic profiles following dosing under fed conditions were available from
Study H1 for appropriate supplementation of the sparse patient data. Figure 27 and
Figure 28 show the plots of concentrations versus time post dose for Studies H1, P1,
and P2. From Study H1, only the plasma levels from the full profile after doses in the

fed state on day 15 were used in the plot. The overlap of the different symbol types in
these figures justified the pooling of the studies.
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Figure 27. Concentration versus time post dose for Studies:
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Based on the observed difference in pharmacokinetic parameters between fed and
fasted conditions, only those blood levels following doses in the fed state in H1 were
used for the model-based analysis. The consequence of this restriction was that for
subjects in Sequence 1, the 16-sample profile following the fasted dose on day 15 was

excluded; and for subjects in Sequence 2, the 11 -sample profile following the fasted

dose on day 8 was excluded.

Plasma levels below the limit of quantification (BLQ) were retained for the
model-based analysis. This was feasible because the added uncertainty due to lack of

knowledge of the exact level could be incorporated into the model.

3.1.3.2 Methods

3.1.3.2.1 Model description

The general framework of a mixed-effects model (Eq. 2 - Eq. 6) may be represented

for our purposes here as:
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yij = f(Dy, ti; @i) + o(zij, H)e Eq. 35

@i = h(x;; n;, 9) Eq. 36

where:

Qi

is the log concentration for the j™ observation of subject i which occurred at

time t; after the d ;™ dose;

is a vector of the i subject's pharmacokinetic parameters (tiag »t abs, S, b2, b3,

b45 1(219 k31 )

is the predicted log concentration from the three-compartment model described

above.

is a vector of subject-and-time specific covariates that determine the intra-
subject variance at time t;; for subject i. It permits the variance to accommodate
extra variability from two sources. First, observations from patient studies
were expected to be less reliable than those from the pharmacokinetic study
because of less control over the timing of dosing in the former two studies.
Second, some plasma levels in patient studies were below the detection limit
of the assay that was 10 ng/mL. These observations were modelled by
assuming that they had a value of 5 ng/mL (half the limit) but a greater
variance. The extra parameter for the variance associated with these
observations permitted them to be retained while downweighting their

influence on the fit.

Let PATI be an indicator variable for patient versus healthy volunteer:

1, for patients in P1 and P2;
PATI = Eq. 37
0, for volunteers in H1;

and let IBLQ be an indicator variable for an observation being below the

quantification limit:
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1, if the observation is BLQ;
IBLQ = Eq. 38

0, otherwise.
Then PATI; and IBLQ j are the two components of z ;.

o) is a vector of population mean parameters.

o(zij, 9) is the standard deviation of i™ subject’s intra-subject error at time t;;. It

was given the form:

o(PATI, IBLQ, 8) = 0¢s + 0 15 * PATI + 6 5, * IBLQ. Eq. 39

€ 1s an intra-subject random error, assumed to be normally distributed with mean
Zero.

Xj is a vector of the i subject's covariates, as determined by the model-free

screening (age, smoker or not, hypertension or not).

Ni is a vector of inter-subject random effects that is assumed to have a normal

distribution with mean zero and covariance matrix Q.

h is the mapping that determines a subject's pharmacokinetic parameters from 6,
X;, and n;.
The mapping h was one of the two forms:
log(Pary ) = 0 ok + 0 1k *age + 0 5 *smoker + 0 3x *hypertension + Eq. 40
sqrt(Pary) = 0 ox + 0 1k *age + 62 *smoker + 6 3 *hypertension + Eq. 41

where Pary isone of (t1,g, tans, S, b2,b3,b4, ko, k).

Thus, each parameter was assumed to have a log-normal or square-root-normal

distribution with the median determined by a linear function of the components of 9.
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The choice of distribution for each parameter was based on comparing with normal
the distributions of different transformations of individual values of the parameter
obtained from individual fitting of healthy volunteers’ data. Not all of the components
of 8 were nonzero. All 0 ‘s were nonzero. But 8y, 05k, and 03, were assumed to be
zero to start, and then they were allowed be nonzero sometimes for some parameters

as part of the exploratory process of determining what covariates were important.

3.1.3.2.2 Model fitting

The base model without covariates was firstly fit to the data. Different structures of
variance-covariance matrix of random inter-individual effects were tried based on
correlation between the estimates, limitations imposed by NONMEM (blocks of
dimension <5), and of feasibility of convergence. The likelihood ratio test at the
significance level 0=0.05 was used to discriminate between alternative hierarchical
models and the Akaike Information Criterion (AIC) was used to distinguish between
non-hierarchical models [Beal & Sheiner, 1992; Judge et al., 1980]. The alpha level of
0.05 corresponds to a reduction of 3.8 (%, p<0.05; 1 degree of freedom (df)) in the
minimum objective function when one parameter is added to the model. When more
than one parameter was added, the critical reduction in the objective function that
corresponded to a=0.05 was used. In addition to the minimum objective function

value, diagnostic goodness-of-fit plots were used for model building and selection.

The full model was built by adding one covariate at a time to each of the parameters s,
b,, bz, and by (i.e. allowing non-zero 6, 8, or 83 for the respective parameters).
Absorption parameters ti,, tabs, as Well as inter-compartmental rate constants ky; and
k3; were not explored for inclusion of covariates. After the full model was built, the
backward elimination procedure at 0=0.05 significance level was used to arrive at the

final model.

The software NONMEM was used to fit the model to the data. The resulting model
was highly parameterised, and difficulties were encountered with the conditional
estimation method of NONMEM. Consequently, only the first-order method was

used.
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A Monte-Carlo simulation study was conducted to assess the bias and precision of the
NONMEM parameter estimates. It was done to justify the use of the first-order
method as well as validate the code. Ten data sets of y;; ‘s were generated with the
same numbers of subjects and observations, and the same values of day and
time-post-dose, as in the real data set. All ten had had the same values for 6 and Q,
which were similar to the final estimates from the real data. SAS was used to generate

pseudo-random values of ; and € and with them to compute yj;'s.

To validate the modelling approach further, the fit of the finally selected model was

assessed with diagnostic plots of residuals.

3.1.3.3 Results

Parameterisation of the final model had the following form:

sqrt(tiag) = 01exp(m1) ,
log(tavs ) = 0, +m2 :
log(s) =  03+06;;HPRT+n; ,
log(bs) = 0s + 013 AGEl+ns
log(ks1) = 05 + ns :
log(ka1) = 0s +06tme
log(bs) = 04s+0,+17
log(b,) = 04 + 67 + 03 + 014 SMOKE + ng ,
G = 0o+0,0PATI+6y5IBLQ
where

the covariates HPRT and SMOKE are the indicators for hypertension and

smoking with the values 0 — No, and 1 - Yes;

age covariate AGE1 = Age/10; and

indicators PATI and IBLQ are described in (Eq. 37, Eq. 38).

The variance- covariance matrix of random effects was the following:

118



Q=cov(n) =

w, 0
0 wy
0 w,
0 0
0 0

0O O
0 O
0 O

0 0
@y, O
@,; O

0 a,

0

0 0

0 0

0O O

0 O
0O O
0 O
0 O
0 0
W O
0 CU77
0O O

S OO O o O

Wgy |

The final parameter estimates and estimated standard errors of the final model are

presented in Table 42.

Table 42. Parameter estimates of the final population model.

Fixed Standard Random Standard
Estimate Estimate

parameter Error parameter Error

0 0.731 0.047 1 0.0326 0.038

0, 0.839 0.055 22 0.192 0.077

03 -1.28 0.072 ©33 0.269 0.13

04 -6.42 0.13 44 0.0871 0.063

05 -6.24 0.14 ®ss 0.0695 0.079

B¢ 2.49 0.21 W66 0.00735 0.0039

0, 2.35 0.24 W77 8.89%10° | 1.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>