

PLEASE NOTE: This is the Authors’ Accepted Manuscript version. The final publication is

available at Springer via http://dx.doi.org/10.1007/s10878-012-9511-x.

Citation: Kellerer, Hans, Soper, Alan J. and Strusevich, Vitaly A. (2013) Preemptive scheduling
on two identical parallel machines with a single transporter. Journal of Combinatorial
Optimization, 25 (2). pp. 279-307. ISSN 1382-6905 (Print), 1573-2886 (Online)
(doi:10.1007/s10878-012-9511-x)

http://dx.doi.org/10.1007/s10878-012-9511-x
http://gala.gre.ac.uk/8516/
http://gala.gre.ac.uk/8516/
http://dx.doi.org/10.1007/s10878-012-9511-x

Preemptive Scheduling on Two Identical Parallel Machines
with a Single Transporter

Hans Kellerer
Institut für Statistik und Operations Research, Universität Graz,

Universitätstraße 15, A-8010, Graz, Austria
e-mail: hans.kellerer@uni-graz.at

Alan J. Soper and Vitaly A. Strusevich
School of Computing and Mathematical Sciences, University of Greenwich,
Old Royal Naval College, Park Row, Greenwich, London SE10 9LS, U.K.

e-mail: {A.J.Soper,V.Strusevich}@greenwich.ac.uk

Abstract

We consider a scheduling problem on two identical parallel machines, in which the
jobs are moved between the machines by an uncapacitated transporter. In the processing
preemption is allowed. The objective is to minimize the time by which all completed jobs
are collected together on board the transporter. We identify the structural patterns of an
optimal schedule and design an algorithm that either solves the problem to optimality or
in the worst case behaves as a fully polynomial-time approximation scheme.

Keywords: Scheduling with transportation · Parallel machines · Approximation scheme

1 Introduction

We consider a processing system that consists of two identical parallel machines. The jobs
are delivered to the system by a single transporter, moved between the machines by that
transporter, and on their completion are transported away. This paper is a complete version
of that by Kellerer et al. (2010), where due to the format of that publication not all proofs
were included.

Integrating scheduling and logistics decision-making into a single model can be seen as one
of the current trends of scheduling theory. In these enhanced models it is required to combine
typical scheduling decisions with various logistics decisions, normally related to inventory
control, machine breakdowns, maintenance, and various transportation issues.

In the scheduling literature there are several approaches that address the issue of schedul-
ing with transportation. Normally, transportation occurs between the processing stages, and
therefore more often than not the processing system is a multi-stage or shop system, e.g., the
flow shop and the open shop. Recall that for two machines, e.g., denoted by A and B, in the
case of the flow shop each job is first processed on machine A and then on machine B, while
for the open shop, the processing route of each job is not known in advance. In both shop
models, each job is seen as consisting of two operations, and the operations of the same job
are not allowed to overlap. As a rule, for the problems considered and reviewed in this paper
the objective is to minimize the completion time of all jobs on all machines.

In our study, we focus on approximability issues, which have been a topic of considerable
interest in the area. A polynomial-time algorithm that creates a schedule with an objective

1

function value that is at most ρ ≥ 1 times the optimal value is called a ρ−approximation
algorithm; the value of ρ is called a worst-case ratio bound. A family of ρ−approximation
algorithms is called a fully polynomial-time approximation scheme (FPTAS) if ρ = 1 + ε for
any ε > 0 and the running time is polynomial with respect to both the length of the problem
input and 1/ε.

Reviews of four known types of scheduling models with a transportation component can
be found in the papers by Lee and Strusevich (2005) and Lushchakova et al. (2009). Two of
these types (the robotic cells and the transportation networks) appear to be less relevant to
this study and are not discussed below.

The model with Transportation Lags is the most studied among those that combine
scheduling with transportation. Here it is assumed that there is a known time lag between
the completion of an operation and the start of the same job on the machine that is next in
the processing route. These lags can be interpreted as transportation times needed to move
a job between the machines, provided that the transportation device is always available. A
detailed review of the complexity results on open shop and flow shop scheduling with trans-
portation lags is given by Brucker et al. (2004). For the general case with job-dependent
transportation lags, the two-machine open shop problem is unary NP−hard even if for any
job the durations of its operations are equal. A 3

2− approximation algorithm for this problem
is due to Strusevich (1999). The two-machine flow shop problem is unary NP-hard even if all
processing times are unit, see Yu et al. (2004); several 2-approximation algorithms are given
by Dell’Amico (1996). A polynomial-time approximation scheme for the classical flow shop
problem developed by Hall (1998) can be modified to handle the transportation lags.

The model that we study in this paper belongs to the class of Models with Interstage
Transporters. For the two-machine flow shop the general model of this type is introduced by
Lee and Chen (2001). Assume that there are v transporters each capable of carrying c jobs
between the machines. The transportation time from A to B is equal to τ , while the travel
time of an empty transporter from B to A is equal to σ. The problem with c = 1 and σ = 0
is shown to be unary NP-hard by Hurink and Khust (2001). The problem with v = 1 and
c ≥ 3 is unary NP-hard, while the case of c = 2 is open, see Lee and Chen (2001). The open
shop version of this problem is addressed by Lee and Strusevich (2005) and Lushchakova et
al. (2009).

There are no known approximation results for these models, apart from the two-machine
flow shop and open shop with a single uncapacitated transporter, i.e., v = 1 and c ≥ n. For
both the flow shop and open shop models, it is assumed that the jobs are brought by the
transporter to one of the machines, moved between the machines in batches, and when the
processing is over, the transporter collects the jobs together and carries them away. For this
model, the objective is to minimize the time by which all completed jobs are collected on
board the transporter.

The classes of heuristic flow shop schedules in which the jobs are split in at most b batches
on each machine are studied by Lee and Strusevich (2005) for b = 2 and by Soper and
Strusevich (2007) for b = 3, and b+1

b −approximation algorithms are designed, these ratios
being the best possible as long as a heuristic schedule contains at most b batches. For the
open shop counterpart of the above problem with τ = σ a 7

5− approximation algorithm is
developed by Lushchakova et al. (2009).

The problem that we study in this paper belongs to the same family, and its main features
are as follows. There are two identical parallel machines, M1 and M2. The processing time of
a job j ∈ N = {1, 2, . . . , n} is equal to pj . At time zero, the jobs are brought to the system by
a transporter. Each job is either processed without preemption on one of the machines or its

2

processing is split into several portions. In the latter case, the total duration of the portions
of a job j is still equal to pj . For a job to be (partially) processed on a machine, it must be
delivered there by the transporter. A move of the transporter between the machines takes τ
time units, and the number of jobs transferred by a move can be arbitrary. Extending the
notation adopted by Lee and Strusevich (2005), we call this problem TP2|v = 1, c ≥ n|Kmax,
where Kmax is the time by which all completed jobs are collected together on board the
transporter.

We are aware of only one other study that combines scheduling on parallel machines with
transportation, namely the paper by Qi (2006). As in our case, Qi’s model also involves
two parallel identical machines. However, there are several points of difference between the
two models. First, the type of transportation used by Qi is essentially a transportation
lag. Second, there is no preemption allowed in Qi’s model. Third, the jobs are known to be
assigned to the machines in advance and are moved only to be processed on the other machine
and returned to the originally assigned machine.

The remainder of this paper is organized as follows. In Section 2 we establish properties
of schedules that are optimal for problem TP2|v = 1, c ≥ n|Kmax, and derive lower bounds
on the optimal length. Section 3 describes and analyzes an algorithm that creates a schedule
with an even number (either two or four) of moves of the transporter, while the case of the
schedules with three moves is considered in Section 4. Section 5 presents an approximation
algorithm that outputs a non-preemptive schedule. Some concluding remarks are contained
in Section 6.

In all NP-hardness proofs the following decision problem is used.

Partition: Given positive integers e1, . . . , er and E such that
∑r

j=1 ej = 2E, does there
exist a partition of the index set R = {1, . . . , r} into two subsets R1 and R2 such that∑

j∈R1 ej =
∑

j∈R2 ej = E?

It is well known that Partition is NP-complete in the ordinary sense.

2 Feasible Schedules: Properties, Structure and Lower
Bounds

In this section, we describe properties of optimal schedules for problem TP2|v = 1, c ≥
n|Kmax, identify possible shapes of their structures and establish lower bounds on the optimal
value of the objective function.

In problem TP2|v = 1, c ≥ n|Kmax the jobs of a set N = {1, 2, . . . , n} have to be processed
on any of two identical processing machines, M1 and M2. The processing time of a job j ∈ N
is equal to pj . Since the machines are identical, we may assume that all jobs are brought by
the transporter to machine M1 at time zero, so that the first move of the transporter is made
from machineM1 to machineM2. Sometimes we refer to machineM1 as the top machine and
to machine M2 as bottom machine; also the transporter will be said to move down if it moves
from M1 to M2, and to move up otherwise. On their arrival, some of the jobs will be left at
M1 to be processed and totally completed on that machine. Some other jobs will be moved to
machine M2 to be processed and totally completed on that machine. There may be jobs that
are partly processed on M1 and partly on M2; however each such job has to be transported
to the corresponding machine for (partial) processing. The transporter can move any number
of jobs at a time, and the length of a move in either direction is equal to τ time units. While

3

a job is being transported it cannot be processed on either machine; besides, it is not allowed
to process a job on both machines simultaneously. The objective is to minimize the length of
a schedule, i.e., the time Kmax by which all completed jobs are collected together on board
the transporter.

For problem TP2|v = 1, c ≥ n|Kmax, let S∗ denote an optimal schedule, i.e., Kmax(S
∗) ≤

Kmax(S) for all feasible schedules S. There are three possible types of a feasible schedule S:

Type 0: all jobs are processed on one machine M1;

Type 1: the number of moves of the transporter in S∗ is odd (upon their completion the
jobs are collected at machine M2);

Type 2: the number of moves of the transporter in S∗ is even (upon their completion the
jobs are collected at machine M1).

In what follows, we assume that a Type 0 schedule is not optimal; otherwise, the problem
is trivial.

Given a schedule S, the set of jobs that are processed only on machineM1 (or on machine
M2 only) is denoted by W1(S) (W2(S), respectively). Notice that set Wi, i ∈ {1, 2}, includes
the jobs that are processed on machine Mi without preemption, as well as those jobs that are
processed on Mi in several portions, but not on the other machine. Let Q(S) denote the set
of jobs processed with preemption, partly on machine M1 and partly on machine M2. If no
confusion arises, we may drop the reference to a schedule and write W1, W2 and Q.

If in a schedule S some job j is fractional, i.e., j ∈ Q(S), then we denote by xj and yj
the total length of the time intervals during which job j is processed on machine M1 and
machine M2, respectively. Obviously, xj + yj = pj . For a non-empty set H ⊆ N of jobs,
denote p(H) :=

∑
j∈H pj and for completeness define p(∅) := 0. In a similar sense, we use

the pieces of notation x(H), y(H), etc.

Definition 1 For problem TP2|v = 1, c ≥ n|Kmax, a class of feasible schedules in which (i)
the first move of the transporter starts at time zero, and (ii) the last move does not transfer
any jobs that need to be completed is called Class S.

The following two lemmas show that the search for an optimal schedule can be reduced
to schedules of Class S.

Lemma 1 For problem TP2|v = 1, c ≥ n|Kmax, the search for an optimal schedule can be
limited to the schedules in which the first move of the transporter from M1 to M2 starts at
time zero.

Proof: If in a feasible schedule S each job is processed on one machine only (i.e., Q(S) = ∅),
then without increasing the value ofKmax schedule S can be transformed into another schedule
in which (i) all jobs to be processed on machine M2 are brought there by the first move of
the transporter and (ii) that move starts at time zero.

Now, for schedule S, suppose that Q(S) 6= ∅ and that the first move of the transporter
starts at time t1. Let N(t1) be the set of jobs such that for each job j ∈ N(t1) either its full
processing on machine M1 or the processing of its portion on M1 is completed before time
t1. In set N(t1), distinguish between the jobs of set W1(S) and those of set Q(S) by defining

4

W (t1) :=W1(S)∩N(t1) and Q(t1) := Q(S)∩N(t1). In turn, set Q(t1) can be partitioned as
Q(t1) = Q′(t1) ∪Q′′(t1), where set Q′(t1) consists of all jobs of Q(t1) that are transported to
M2 at time t1 by the first move of the transporter. Denote the duration of the processing of
job j ∈ Q′(t1) on machine M1 before time t1 by x′j . Since the jobs of set W (t1) do not have
to be moved between the machines and the jobs of set Q′′(t1) are not moved to M2 at time
t1, it follows that, without increasing the length of the schedule, we can

(i) interchange the jobs and portions of jobs in such a way that machine M1 first processes
the jobs of set Q′(t1) (each job as one portion), followed by the remaining jobs (or
portions of jobs) of set Q(t1);

(ii) start the first move of the transporter at time x′(Q′(t1)), on completion of all portions
of jobs of set Q′(t1) on M1.

In the resulting schedule S′, the processing on machine M2 starts upon arrival of the
transporter at time x′(Q′(t1)) + τ . Let k be a job of set Q′(t1) whose portion completes on
machine M1 at time x′(Q′(t1)) in schedule S′. Without changing the length of the schedule
Kmax(S

′), we can start the first move of the transporter at time x′(Q′(t1))−x′k and move the
processing of the portion of job k to machineM2 to start at time x′(Q′(t1))−x′k+τ , so that the
processing of the other jobs and portions of jobs on M2 can still start at time x′(Q′(t1)) + τ .
Repeating this process, we obtain a schedule S′′ such that Kmax(S

′′) = Kmax(S
′) ≤ Kmax(S)

and in S′′ the first move of the transporter starts at time zero.

Lemma 2 For problem TP2|v = 1, c ≥ n|Kmax, the search for an optimal schedule can be
limited to the schedules in which the last move of the transporter does not deliver to a machine
M ∈ {M1,M2} the jobs of set Q(S) which still have to be processed on M .

Proof: We present the proof for the case that the last move of the transporter is made
from machine M2 to machine M1, i.e., the initial schedule S is a Type 2 schedule; the case of
schedule S being a Type 1 schedule is symmetric.

Suppose that in S the transporter starts its last move at time t to arrive at M1 at time
t+τ . Assume that among the jobs brought by this move, there is a non-empty set Q′ ⊆ Q(S)
of fractional jobs, each of which still has to be processed on M1. Denote the start time of the
first job (or a portion of a job) on machine M1 after time t+ τ by t0 and denote the duration
of the processing of job j ∈ Q′ on machine M1 after time t0 by x′j . Interchange the jobs and
portions of jobs processed on M1 after time t0 in such a way that machine M1 starting at
time t0 processes the jobs of set Q′ (each job as one portion), followed by the remaining jobs,
if any. Call the resulting schedule S′. Let l be the job of set Q′ that starts on machine M1

at time t0. Without changing the length of the schedule, we can start the last move of the
transporter at time t0 + x′l − τ and move the processing of the portion of job l to machine
M2 to start at time t0 − τ , so that the processing of the other jobs and portions of jobs on
M1 can still start at time t0 + x′l. Repeating this process, we obtain a schedule S

′′ such that
Kmax(S

′′) ≤ Kmax(S
′) = Kmax(S) and in S′′ the last move of the transporter does not deliver

any jobs of set Q(S) that need further processing on M1.

We now derive several lower bounds on the length of a feasible schedule.

Define

T =
p(N)

2
+ τ . (1)

5

Lemma 3 For any schedule S that is feasible for problem TP2|v = 1, c ≥ n|Kmax, the lower
bound

Kmax(S
∗) ≥ T (2)

holds.

Proof: For schedule S, let X denote the total load on machine M1, i.e., the sum of the
processing times of the jobs and portions of jobs processed on M1. If S is a Type 1 schedule
then Kmax(S

∗) ≥ X + τ and Kmax(S
∗) ≥ p(N)−X + τ . Otherwise, if S is a Type 2 schedule

then Kmax(S
∗) ≥ X and Kmax(S

∗) ≥ p(N)−X+2τ . In either case, the required lower bound
(2) follows immediately.

It is not possible that there is exactly one move in an optimal schedule, since the length
of such a schedule would be equal to p(N) + τ , which is larger than p(N), the length of a
Type 0 schedule. Thus, in each Type 1 schedule there are at least three moves, so that the
first move and the last move of the transporter are made from the top machine M1, and the
schedule terminates when all completed jobs are collected on board of the transporter at the
bottom machine M2. For any Type 1 schedule S the lower bound

Kmax(S) ≥ pj + τ (3)

holds for each job j ∈ N . Indeed, if a job pj is completed on the top machine M1, it has to
be moved to machine M2, where the schedule terminates. If it is completed on machine M2,
it has to be brought there before its (possibly, partial) processing may start on that machine.
This implies the bound (3).

In each Type 2 schedule the first move of the transporter is made from the top machine
M1, the last move is made from the bottom machine M2, and the schedule terminates when
all completed jobs are collected on board of the transporter at the top machine M1.

It is clear that for any Type 2 schedule S a lower bound

Kmax(S) ≥ pj (4)

holds for each job j ∈ N . Besides, if in a Type 2 schedule S job j or its part is processed on
machine M2 then

Kmax(S
∗) ≥ pj + 2τ . (5)

To see this, notice that job j must be brought to M2 and returned to M1, and while it is
processed on M2 or being moved it cannot be processed on M1.

Definition 2 A job j ∈ N is said to have rank r, r ∈ {0, 1, 2, 3} if

pj + rτ ≥ T. (6)

It is clear that a job of rank r − 1 is also a job of rank r, r ∈ {1, 2, 3}. The rank of a job
plays an important role in the proof of the main statement of this section, Theorem 1, and
in several auxiliary statements.

In the proofs and algorithms presented in this paper, we will often use the following
splitting procedure.

Procedure Split(X,Y, γ)

Input: Two sets X and Y = {σ(1), . . . , σ(y)} of jobs and a bound γ such that |X| ≥ 0,
|Y | = y > 1, and p(X) < γ, p(X) + p(Y) > γ

6

M1 Z1 k

M2 k Z2

@@R ���@@R���

(a)

M1 Z1 k

M2 k Z2

@@R ���@@R ���

(c)

M1 Z1 k

M2 k Z2

@@R ���@@R ���

(b)

Figure 1: A preemptive schedule S4(k) with four moves

Output: A set Y ′ ⊂ Y and a job u ∈ Y that is split in two portions pu = xu + yu, so that
p(X) + p(Y ′) + xu = γ

Step 1: Considering the jobs of set Y in the order given by the list σ, find the position v,
where 1 ≤ v ≤ y such that

p(X) +
v−1∑
j=1

pσ(j) < γ, p(X) +
v∑
j=1

pσ(j) ≥ γ.

Step 2: Output Y ′ := {{σ(1), . . . , σ(v − 1)}}, u := σ(v), xu := γ−p(X)−p(Y ′), yu := pu−xu.
It is clear that the running time of Procedure Split is linear in |X ∪ Y |.
Given a schedule S, the set of whole jobs that are processed on machineM1 (or on machine

M2 only) is denoted by Z1(S) (Z2(S), respectively). If no confusion arises, we may drop the
reference to a schedule and write Z1 and Z2.

Lemma 4 Let A and B be disjoint sets of jobs such that p(A) ≤ T and p(A) + p(B) > T .
Suppose that Procedure Split(A,B, T) is run and a set B′ ⊂ B and a job k ∈ B\B′ are
found such that p(A) + p(B′) + xk = T , where 0 < xk < pk. Define Z1 := A ∪ B′ and
Z2 := N\ (Z1 ∪ {k}). Let S4(k) be a Type 2 schedule shown in Figure 1. Then either

• job k is a rank 2 job,

• or Kmax(S4(k)) = T , provided that p(Z2) ≥ 2τ .

Proof: In schedule S4(k) only job k is fractional, and p(Z1) + xk = p(Z2) + yk + 2τ = T .
If yk + 2τ > T − xk = p(Z1), then pk + 2τ > T , i.e., job k is a rank 2 job, and the structure
of schedule S4(k) is as shown in Figure 1(a) or (b). If yk + 2τ ≤ T − xk = p(Z1) then
job k is delivered to machine M1 before all jobs of set Z1 are completed on that machine.
Furthermore, due to the condition p(Z2) ≥ 2τ , the next downward move of the transporter is
finished no later than all jobs are completed on machine M2. Thus, the structure of schedule
S4(k) is as shown in Figure 1(c) and Kmax(S4(k)) = T .

Lemma 5 Let A and B be disjoint sets of jobs such that p(A) ≤ T−τ and p(A)+p(B) > T−τ .
Suppose that Procedure Split(A,B, T − τ) is run and a set B′ ⊂ B and a job k ∈ B\B′ are
found such that p(A) + p(B′) + xk = T − τ , where 0 < xk < pk. Define Z1 := A ∪ B′ and
Z2 := N\ (Z1 ∪ {k}). Let S3(k) be a Type 1 schedule shown in Figure 2. Then either

7

A Z1 k

B k Z2

@@R ��� @@R

(b)

A Z1 k

B k Z2

@@R ��� @@R

(a)

Figure 2: A preemptive schedule S3(k) with three moves

• Kmax(S3(k)) = T

• or job k is a rank 3 job and Kmax(S3(k)) = pk + 3τ .

Proof: In schedule S3(k) only job k is fractional, and the load of each machine is equal to
T − τ , i.e., p(Z1) + xk = p(Z2) + yk = T − τ . If yk + 2τ ≤ (T − τ)− xk = p(Z1) then job k is
delivered to machineM1 before all jobs of set Z1 are completed on that machine, the structure
of schedule S3(k) is as shown in Figure 2(a), and Kmax(S3(k)) = T . If yk+2τ > (T − τ)−xk,
then pk + 3τ > T , i.e., job k is a rank 3 job. Moreover, job k can only start on M1 at time
yk + 2τ , so that Kmax(S3(k)) = pk + 3τ and the structure of schedule S3(k) is as shown in
Figure 2(b).

Lemma 6 For problem TP2|v = 1, c ≥ n|Kmax, suppose that S is a schedule with at least
five moves. If for some job j ∈ N the inequality

pj + 3τ > Kmax(S) (7)

holds, then
pj > 2τ (8)

and
pj > p(N)/4. (9)

Proof: Since there are at least five moves in schedule S, it follows that a lower bound

Kmax(S) ≥ 5τ (10)

holds. Then (7) implies (8). Due to (2), we deduce from (7) that pj + 3τ > T = p(N)/2 + τ ,
which together with (8) yields (9).

Theorem 1 For problem TP2|v = 1, c ≥ n|Kmax, the search for an optimal schedule can be
limited to schedules with at most 4 moves of the transporter.

Proof: Suppose that S0 is an optimal schedule with at least five moves, and there is no
optimal schedule with less than five moves. For schedule S = S0 inequality (10) holds. To
prove the theorem, we will show that we can always construct a schedule S∗ with 2, 3 or 4
moves and such that Kmax(S

∗) ≤ Kmax(S
0).

If necessary, renumber the jobs in such a way that

p1 ≥ p2 ≥ p3 ≥ max {pj |j ∈ N\ {1, 2, 3}} . (11)

8

A Z1

B Z2

@@R ���

(b)

A Z1

B Z2

@@R ���

(a)

Figure 3: A schedule with two moves

Rank 0 job. Assume that job 1 has rank 0. Construct the following schedule S2(1)
with two moves, in which machine M1 processes job 1 alone and the rest of the jobs are
processed on machine M2. The first move of the transporter (from M1 to M2) starts at
time zero, and the second move (from M2 to M1) starts at τ + p(N) − p1 to complete at
2τ + p(N) − p1. See Figure 3(a) with Z1 = {1} , Z2 = N\ {1}. We use (6) with r = 0 to
deduce 2τ + p(N) − p1 ≤ 2T − T = T ≤ p1, so that Kmax(S2(1)) = p1, and this schedule is
optimal due to (4).

In the rest of this proof, it is assumed that there is no job of rank 0.

Rank 1 job. Suppose that job 1 has rank 1, which is equivalent to p1 ≥ p(N)/2, i.e.,
there are no other rank 1 jobs.

Construct a Type 1 schedule S3(1) in which machineM1 processes only job 1 while machine
M2 processes the rest of the jobs. At time zero, the transporter leaves job 1 on machine M1,
moves to M2 to deliver the jobs of set N\ {1}, immediately returns to machine M1, and then
moves the completed job 1 from M1 to M2.

If Kmax(S3(1)) = 3τ , which happens if p1 < 2τ , then Kmax(S3(1)) < 5τ ≤ Kmax(S
0).

Otherwise, since p1 ≥ p(N)/2 ≥ p(N) − p1, it follows that Kmax(S3(1)) = p1 + τ . If there
exists an optimal Type 1 schedule then S3(1) is optimal due to (3).

Thus, in our further analysis of the rank 1 job, we assume that an optimal schedule S0 is a
Type 2 schedule, i.e., in this schedule there are at least 6 moves, and therefore Kmax(S

0) ≥ 6τ
and additionally Kmax(S

0) < Kmax(S3(1)) = p1+ τ . Notice that this implies that in schedule
S0 job 1 is fully processed on machineM2, since otherwise we would have Kmax(S

0) ≥ p1+2τ
due to (5).

Consider the situation that
p2 + 2τ < T.

Run Procedure Split({1} , N\ {1} , T) to find a set H1 ⊆ N\ {1} and a job k such that
p1+p(H1)+xk = T . If xk = 0, then we create a schedule with two moves in which machineM1

processes the jobs of set H1∪{1}, while machine M2 processes the remaining jobs; the length
of this schedule is T ; see Figure 3 with Z1 = H1 ∪ {1} , Z2 = N\Z1. If 0 < xk < pk, then
notice that pk+2τ ≤ p2+2τ < T . If for set Z2 = N\ (H1 ∪ {1, k}), the inequality p(Z2) ≥ 2τ
holds, then due to Lemma 4 applied to A = {1} and B = N\ {1}, the structure of schedule
S4(k) with four moves is as shown in Figure 1(c), and Kmax(S4(k)) = T , so that this schedule
is optimal due to (2). On the other hand, if p(Z2) < 2τ , then we derive p1+ p(H1)+ p(Z2) =
p(N) − pk > T, and since p1 + p(H1) < T , we can run Procedure Split({1} ∪H1, Z2, T) to
find a set H ′1 ⊆ Z2 and job h ∈ Z2 such that p1+ p(H1)+ p(H ′1)+xh = T . If xh = 0, then we
create a schedule with two moves in which machineM1 processes the jobs of set H1∪H ′1∪{1},
while machine M2 processes the remaining jobs; the length of this schedule is T , see Figure 3
with Z1 = H1∪H ′1∪{1} , Z2 = N\Z1. If 0 < xh < ph, then notice that ph+2τ ≤ p2+2τ < T .

9

Define Z ′1 := H1∪H ′1∪{1} and Z ′2 := N\ (Z ′1 ∪ {h}). If the inequality p(Z ′2) ≥ 2τ holds, then
due to Lemma 4 applied to A = {1} ∪H1 and B = Z2, the structure of schedule S4(h) with
four moves is as shown in Figure 1(c) with k = h, so that Kmax(S4(h)) = T and this schedule
is optimal due to (2). On the other hand, if p(Z ′2) < 2τ , then Kmax(S4(h)) = τ + yh+3τ and
since yh < p(Z2) < 2τ , we conclude that Kmax(S4(h)) = 4τ + yh < 6τ ≤ Kmax(S

0).

Assume now that
p2 + 2τ ≥ T,

i.e., job 2 is a rank 2 job. Notice that p(N)− p2 = 2T − 2τ − p2 ≤ T .
If in schedule S0 job 2 or its part is processed on machine M2, then (5) holds for j = 2.

We can create a schedule S2(2) with two moves, in which machine M2 processes job 2 alone
and the rest of the jobs are processed on machine M1; see Figure 3 with Z1 = N\ {2} ,
Z2 = {2}. The first move of the transporter (from M1 to M2) starts at time zero, and the
second move (from M2 to M1) starts at τ + p2 to complete at 2τ + p2 ≥ p(N) − p2. Thus,
Kmax(S2(2)) = p2 + 2τ , and this schedule is optimal due to (5) with j = 2.

If in schedule S0 job 2 is fully processed on machine M1, then Kmax(S
0) ≥ p1 + p2.

However, Kmax(S
0) < p1 + τ implies that p2 < τ , which together with p2 + 2τ ≥ T yields

3τ > T . We use Kmax(S
0) ≥ 6τ to derive Kmax(S

0) > 2T > p(N), i.e., S0 is worse than a
Type 0 schedule, which is not possible.

No Rank 1 jobs. From now on, we assume that there is no job of rank 1, so that
pj < T − τ for each j ∈ N .

In the remaining part of this proof, a job j ∈ N is called special, if (i) job j is a rank 3
job, and (ii) pj + 3τ > Kmax(S

0). Let g denote the number of special jobs. As follows from
Lemma 6, for each special job j the inequalities (8) and (9) hold, so that g ∈ {0, 1, 2, 3}.

If g ∈ {0, 1}, then run Procedure Split({1} , N\ {1} , T − τ) to find a set H1 ⊂ N\ {1} and
a job k ∈ N\ {1} such that p1+p(H1)+xk = T −τ . If xk = 0, we construct a non-preemptive
schedule with three moves of length T , in which machineM1 processes the set of jobs H1∪{1},
and machine M2 processes the rest of the jobs. If xk > 0, then notice that job k is not special
since pk ≤ p1, i.e., either job k is not a rank 3 job and pk + 3τ < T , or it is a rank 3 job but
pk + 3τ ≤ Kmax(S

0). Applying Lemma 5 with A = {1} and B = N\ {1}, we derive that for
schedule S3(k) either Kmax(S3(k)) = T or Kmax(S3(k)) = pk + 3τ ≤ Kmax(S

0) holds.

If g = 2, then we have two special jobs, job 1 and job 2. Run Procedure
Split({1} , N\ {1, 2} , T − τ) to find a set H1 ⊂ N\ {1, 2} and a job k ∈ N\ {1, 2} such that
p1 + p(H1) + xk = T − τ . As above, if xk = 0, we construct a non-preemptive schedule with
three moves of length T . If xk > 0, notice that job k is not special since pk < p2 ≤ p1, i.e.,
job k either is not a rank 3 job and pk+3τ < T , or it is a rank 3 job but pk+3τ ≤ Kmax(S

0).
Applying Lemma 5 with A = {1} and B = N\ {1, 2}, we derive that a Type 1 schedule S3(k)
is of structure shown in Figure 2(a) and Kmax(S3(k)) = T .

Finally, assume that g = 3, i.e., we have three special jobs: job 1, job 2 and job 3. Let R
denote the set of all other jobs; none of these jobs is special.

We prove that in the case under consideration job 2 cannot have rank 2. Assuming the
opposite, we derive

p2 + 2τ ≥ T =
p(N)

2
+ τ ≥ p1

2
+
p2
2
+
p3
2
+ τ ,

which reduces to
p2
2
+ τ ≥ p1

2
+
p3
2
.

10

However the latter inequality is impossible due to p1 ≥ p2 and (8) with j = 3.
Thus, job 2 is not a rank 2 job, i.e., p2 + 2τ < T . It follows that p1 + p3 + p(R) =

(2T − 2τ) − p2 > T . On the other hand, p1 + p(R) = p(N) − p2 − p3 < p(N) − p(N)/4 −
p(N)/4 = p(N)/2 < T . Run Procedure Split({1, R} , {3}, T) to find the value x3 such that
p1 + p(R) + x3 = T . Notice that job 3 is not a rank 2 job since p3 ≤ p2 < T − 2τ . Applying
Lemma 4 with A = {1, R}, B = {3} and k = 3, we derive that a Type 2 schedule S4(3) with
four moves is of structure shown in Figure 1(c) and Kmax(S4(3)) = T .

This completes the proof of the theorem.

An immediate implication of Lemmas 1 and 2 and of Theorem 1 is that an optimal schedule
will be sought for among the schedules of Class S with two, three or four moves.

Lemma 7 For problem TP2|v = 1, c ≥ n|Kmax, the search for the best schedule with two
moves can be limited to the non-preemptive schedules.

Proof: Suppose for a schedule S ∈ S the set Q(S) of fractional jobs is not empty. By
Lemma 1 each job j ∈ Q(S) is brought to machine M2 by the first move of the transporter
that starts at time zero, and has to be completed subsequently onM1. However, by Lemma 2,
the second (last) move of the transporter cannot deliver any unfinished jobs.

Lemma 8 For problem TP2|v = 1, c ≥ n|Kmax, let S3 ∈ S be a schedule with three moves in
which some jobs are fractional. Then without increasing the value of the objective function,
schedule S3 can be transformed into either a non-preemptive schedule or into a schedule S3(k)
in which only some job k ∈ Q(S3) remains fractional. In the latter case, the lower bound

Kmax(S3(k)) ≥ pk + 3τ (12)

holds.

Proof: Suppose that in schedule S3 ∈ S a job j ∈ Q(S3) starts its processing on machine
M1. Since the first move of the transporter starts at time zero, it follows that job j is brought
to machine M2 by the third (last) move. However, upon arrival at M2 job j requires further
processing, which contradicts Lemma 2.

Thus, any job of set Q(S3) starts its processing on machine M2 and is delivered there at
time τ . After their processing on machine M2 is finished, all these jobs together are delivered
to M1 to be completed on that machine.

Suppose that |Q(S3)| = ` ≥ 2, and renumber (if required) the jobs of this set so that
Q(S3) = {1, 2, . . . , `}. Without increasing the objective function, we can transform schedule
S3 into a new schedule S′3 in which:

• the jobs of set Q(S3) are processed on machineM2 in the time interval [τ , τ + y(Q(S3))]
and are followed by an arbitrary sequence of the whole jobs;

• the second move of the transporter (fromM2 toM1) starts immediately after all portions
of the fractional jobs are completed on M2, i.e., at time τ + y(Q(S3));

• the jobs of set Q(S3) are processed on machine M1 as a block after all whole jobs on
that machine.

11

M1 Z1

M2 Z2

@@R���@@R

(b)

M1 Z1

M2 Z2

@@R��� @@R

(a)

Figure 4: A non-preemptive schedule with three moves

Thus, in schedule S′3, the set of jobs is partitioned into the set of fractional jobs Q(S
′
3) =

Q(S3) and the sets Z1(S′3) and Z2(S
′
3) of the whole jobs assigned to machineM1 and machine

M2, respectively. It follows that

Kmax(S3) ≥ Kmax(S
′
3) = max

{
p(Z1(S

′
3)) + x(Q(S3)) + τ , τ + y(Q(S3)) + p(Z2(S

′
3)),

τ + y(Q(S3)) + τ + x(Q(S3)) + τ} .

Run Procedure Split(∅, Q(S3), y(Q(S3)), which will scan the jobs of set Q(S3) in the order
of their numbering and find a job k ≤ ` such that

k−1∑
j=1

pj < y(Q(S3)),
k∑
j=1

pj ≥ y(Q(S3)).

If
∑k

j=1 pj = y(Q(S3)) then schedule S′3 can be transformed into a non-preemptive sched-
ule S′′3 shown in Figure 4 with Z1 = Z1(S

′
3) ∪ {k + 1, . . . , `} and Z2 = Z2(S

′
3) ∪ {1, . . . , k}. It

is clear that

Kmax(S
′′
3) = max

{
p(Z1(S

′
3)) + x(Q(S3)) + τ , τ + y(Q(S3)) + p(Z2(S

′
3)), 3τ

}
≤ Kmax(S

′
3).

Alternatively, create a schedule S3(k) shown in Figure 2 with Z1 = Z1(S
′
3)∪{k + 1, . . . , `}

and Z2 = Z2(S
′
3)∪{1, . . . , k − 1} and the fractional job k split by yk = y(Q3(S3))−

∑k−1
j=1 pj ,

xk = pk − yk, so that

y(Q3(S3)) = yk +

k−1∑
j=1

pj , x(Q3(S3)) = xk +
∑̀
j=k+1

pj .

Thus, we obtain that

Kmax(S3) ≥ Kmax(S3(k)) = max
{
p(Z1(S

′
3)) + x(Q(S3)) + τ , τ + y(Q(S3)) + p(Z2(S

′
3)),

τ + yk + τ + xk + τ} ,

which in particular implies the required lower bound (12).

Lemma 9 For problem TP2|v = 1, c ≥ n|Kmax, the search for the best schedule with four
moves can be limited to the schedules in which some jobs are assigned to be processed preemp-
tively on both machines.

Proof: Suppose S∗4 is the best schedule with four moves in which no job is processed on both
machines. Let Z1 and Z2 denote the sets of jobs assigned to machine M1 and to machine
M2, respectively. It follows that Kmax(S

∗
4) ≥ max {p(Z1), p(Z2) + 2τ}. But there exists a

two-move schedule of length max {p(Z1), p(Z2) + 2τ}, as shown in Figure 3.

12

Lemma 10 For problem TP2|v = 1, c ≥ n|Kmax, let S4 be a schedule with four moves. Then

Kmax(S4) ≥ 4τ + y(Q), (13)

where Q is the set of jobs that are processed with preemption on both machines.

Proof: In schedule S4 ∈ S, any job of set Q = Q(S4) is delivered to M2 either by the first
move of the transporter (and each of these jobs is brought back to be completed onM1 by the
second move) or by the third move of the transporter (and each of these jobs is completed on
M2 before it is brought back to M1 by the last move of the transporter). This implies that
no job of set Q is processed on machine M2 between the second and the third moves of the
transporter. The desired lower bound (13) follows immediately.

Theorem 2 For problem TP2|v = 1, c ≥ n|Kmax, let W ∗2 be a set of jobs such that p(W
∗
2) ≤

T − 2τ and p(W ∗2) ≥ p(W) for any set W ⊆ N with p(W) ≤ T − 2τ . Let S∗4 be the best
schedule with four moves. Then

Kmax(S
∗
4) ≥ y∗ + 4τ , (14)

where

y∗ =
p(N)− p(W ∗2)

2
− 2τ . (15)

Proof: Suppose that in schedule S∗4 machineM2 processes a setW2 of jobs that are processed
on this machine only and a setQ of the jobs that are processed preemptively on both machines.

It is clear that the length of schedule S∗4 cannot be shorter than the total processing of
the jobs assigned to machine M1, i.e.,

Kmax(S
∗
4) ≥ p(N)− p(W2)− y(Q),

Due to Lemma 10, we have that

Kmax(S
∗
4) ≥ y(Q) + 4τ .

For a fixed set W2, let y be the root of the equation

p(N)− p(W2)− y(Q) = y(Q) + 4τ ,

i.e.,

y =
p(N)− p(W2)

2
− 2τ .

Then Kmax(S
∗
4) ≥ y + 4τ , and by definition of set W ∗2 the lower bound (14) holds.

The examples below exhibit instances of problem TP2|v = 1, c ≥ n|Kmax for which an
optimal schedule includes two, three or four moves of the transporter. The examples also
demonstrate that all established lower bounds are tight.

In all five listed instances the transportation time τ is equal to 4. Optimal schedules for
Instances 1 and 2 have no preemption; in the other schedules exactly one job is fractional.
For Instances 1-4 the value of T is a tight lower bound, possibly together with another bound.
For Instance 5, the optimal length of the schedule is strictly larger than T . Here T = 16, so
that either W ∗2 = {2} or W ∗2 = {3} (as in Figure 7(b)), and p(W ∗2) = 7 < T − 2τ = 8, see
Theorem 2. Thus, the value of y∗ = 0.5 is computed in accordance with (15).

13

Instance p1 p2 p3 T Kmax(S) Tight lower bound Moves in S∗ Chart of S∗

1 10 7 5 15 15 (2,5) 2 Figure 5
2 10 7 3 14 14 (2) 3 Figure 6(a)
3 9 2 9 14 14 (2,12) 3 Figure 6(b)
4 10 8 8 17 17 (2) 4 Figure 7(a)
5 10 7 7 16 16.5 (14) 4 Figure 7(b)

Table 1: Instances of the problem

M1 1 3

M2 2

@
@@R �

���

Figure 5: An optimal schedule with two moves for Instance 1

Lemmas 1 and 2, Theorem 1 and the presented examples imply that we can search for an
optimal schedule among the schedules of class S, which include either an even (two or four)
number of moves or three moves. We split our further consideration accordingly.

In this paper, in various algorithms we use the following statement; see Lemma 4.6.1 in
Kellerer et al. (2004).

Theorem 3 Consider the subset-sum problem of the form

max
∑

j∈H pjxj∑
j∈H pjxj ≤ c

xj ∈ {0, 1} , j ∈ H ⊆ N,
(16)

This problem admits an FPTAS that for a given positive ε either finds an optimal solution
x∗j ∈ {0, 1} , j ∈ H such that ∑

j∈H
pjx
∗
j < (1− ε)c

or finds an approximate solution xεj ∈ {0, 1} , j ∈ H, such that

(1− ε)c ≤
∑
j∈H

pjx
ε
j ≤ c.

M1 1 2

M2 2 3

@
@@R �

��� @
@@R

(b)

M1 1

M2 2 3

@
@@R�

��� @
@@R

(a)

Figure 6: An optimal schedule with three moves for Instances 2 and 3

14

M1 1 2

M2

2

3

@
@@R�

���@
@@R�

���

(b)

M1 1 2

M2 2 3

@
@@R �

���@
@@R�

���

(a)

Figure 7: An optimal schedule with four moves for Instances 4 and 5

Such an FPTAS requires no more than O(n/ε) time.

3 Finding the Best Schedule with an Even Number of Moves

In this section, we show that finding the best schedule with two moves is an NP-hard problem.
We also give an algorithm that behaves as an FPTAS, provided that the number of moves in
an optimal schedule is either 2 or 4.

Theorem 4 For problem TP2|v = 1, c ≥ n|Kmax, finding the best schedule with two moves
is NP-hard in the ordinary sense.

Proof: To prove the theorem, we provide a reduction of an arbitrary instance of Partition
to the decision version of problem TP2|v = 1, c ≥ n|Kmax with n = r + 1 jobs.

Define τ := 2E and pj := ej , j = 1, 2, . . . , r, while pr+1 := 4E. We show that for the
constructed instance a schedule S with two moves such that Kmax(S) ≤ 5E exists if and only
if Partition has a solution.

Suppose that Partition has a solution, and R1 and R2 are the required subsets with
e(R1) = e(R2) = E. Define a schedule S with two moves of the transporter, in which
machine M1 processes the jobs of the set R1 and job r + 1 in the time interval [0, 5E], while
machineM2 processes the jobs of set R2 in the time interval [2E, 3E] . The transporter brings
the jobs of set R2 to machine M2 at time 2E, waits till the jobs are completed and brings
them back to M1. It is easy to verify that Kmax(S) = 5E.

Suppose that schedule S with two moves and of length at most 5E exists. Due to Lemma 7,
there is no fractional job in S. Job r + 1 is processed on machine M1; otherwise, Kmax(S) ≥
τ + pr+1 + τ = 6E. Let the total processing time on machine M2 be denoted by X. If
X < E then Kmax(S) ≥ pr+1 + (2E −X) > 5E, which is impossible. If X > E, then
Kmax(S) ≥ 2τ +X > 5E. Therefore, X = E. This implies that the total processing time on
machine M1 is equal to 5E. If for i ∈ {1, 2} we denote the subset of jobs of set {1, 2, . . . , r}
assigned to machine Mi by Ri, then the sets R1 and R2 form a solution to Partition. This
proves the theorem.

Theorem 5 For problem TP2|v = 1, c ≥ n|Kmax with p(N) ≥ 4τ , finding the best preemptive
schedule with four moves is NP-hard in the ordinary sense.

Proof: As in the previous NP-hardness proof, we reduce Partition to the decision version
of problem TP2|v = 1, c ≥ n|Kmax. Without loss of generality, in this proof we assume that
in Partition the value of E is at least 2.

15

Define n := r+2, τ := E2+1, pj := 2ejE, j = 1, 2, . . . , r, pr+1 := 2E2+4 and pr+2 := 3.
We show that for the constructed instance a preemptive schedule S with four moves such
that Kmax(S) ≤ 4E2 + 5.5 exists if and only if Partition has a solution. Notice that
p(N) = 6E2 + 7 > 4τ , as required.

Suppose that Partition has a solution, and R1 and R2 are the required subsets with
e(R1) = e(R2) = E. Define a schedule S4(k) as in Figure 8 with Z1 = R1 ∪ {r + 1}, Z2 = R2
and k = r + 2 split by xk = yk = 1.5. It is easy to verify that Kmax(S4(k)) = yr+2 + 4τ =
4E2 + 5.5.

Now let a schedule S with four moves and with Kmax(S) ≤ 4E2+5.5 exist with Z1 and Z2
being the sets of the whole jobs assigned to machineM1 andM2, respectively. In this schedule
job r + 1 cannot be fractional, since otherwise due to (5), Kmax(S) > pr+1 + 2τ = 4E

2 + 6.
Thus, job r+1 belongs to Z1. Due to (13), the total length Y of all fractional jobs on machine
M2 is at most 1.5 time units.

For schedule S, suppose that p(Z2) > 2τ . Since Kmax(S) ≥ τ + Y + p(Z2) + τ , we deduce
that Y + p(Z2) ≤ 2E2 + 3.5. If Y ≥ 1, then since p(Z2) is integer, we have that actually
p(Z2) ≤ 2E2 + 2 = 2τ , a contradiction. On the other hand, if 0 < Y < 1, then due to
integrality of p(Z2), we derive that p(Z2) = 2E2 +3. If job r+2 does not belong to Z2, then
there exists a non-negative integer x such that p(Z2) = 2E (E + x). However, the equality
2E (E + x) = 2E2 + 3 implies that x = 3/ (2E) < 1, which is impossible. Otherwise, if job
r + 2 belongs to Z2, we deduce that Z2 = {r + 2} ∪R2, where p(R2) = 2E2, i.e., the sets R2
and R1 = {1, 2, . . . , r} \R2 form a solution to Partition.

From now on, assume that p(Z2) ≤ 2E2 + 2 = 2τ . If p(Z2) < 2E2 then the total load
on machine M1 becomes p(N) − Y − p(Z2) > 6E2 + 7 − 1.5 − 2E2 = 4E2 + 5.5. Thus,
2E2 ≤ p(Z2) ≤ 2E2 + 2.

If set Z2 contains job r + 2, then, since the processing time of any job except r + 2 is an
even number, if follows that p(Z2) is odd, so that in fact p(Z2) = 2E2 + 1. This means that
for some positive integer x we have p(Z2) = 2E(E−x)+3 = 2E2+1, which yields x = 1

E < 1,
a contradiction.

Now, if set Z2 does not contain job r + 2, then for some non-negative integer x we have
p(Z2) = 2E(E + x) ≤ 2E2 + 2, which yields x ≤ 1

E , and since x is integer we deduce that
x = 0. As above, we can define R2 := Z2 and R1 := {1, 2, . . . , r} \R2 and obtain a solution
to Partition. This proves the theorem.

The following algorithm uses the FPTAS for the subset-sum problem for finding a solution
to problem TP2|v = 1, c ≥ n|Kmax that is as close to the optimum as desired.

Algorithm MoveEven

Step 1. Compute T in accordance with (1).

Step 2. Given an ε > 0, run an FPTAS for the subset-sum problem of the following structure

max
∑

j∈N pjxj∑
j∈N pjxj ≤ T

xj ∈ {0, 1} , j ∈ N.
(17)

For a found solution of problem (17), determine Z ′1 :=
{
j ∈ N |xεj = 1

}
and Z ′2 :={

j ∈ N |xεj = 0
}
and create schedule S′2 shown in Figure 3 with Z1 = Z ′1 and Z2 = Z ′2.

If p(Z ′1) ≥ (1− ε)T , then go to Step 7.

16

M1 Z1 k

M2 k Z2

@@R ���@@R���

Figure 8: Schedule S′′4 with four moves and yk = y∗

Step 3. Given an ε > 0, run an FPTAS for the subset-sum problem of the following structure

max
∑

j∈N pjxj∑
j∈N pjxj ≤ T − 2τ

xj ∈ {0, 1} , j ∈ N,
(18)

For a found solution of problem (18), determine Z ′′2 :=
{
j ∈ N |xεj = 1

}
and Z ′′1 :={

j ∈ N |xεj = 0
}
. Create schedule S′′2 shown in Figure 3 with Z1 = Z ′′1 and Z2 = Z ′′2 . If

p(Z ′′2) ≥ (1− ε) (T − 2τ), then go to Step 7.

Step 4. Find set B2 := {j ∈ N |pj + 2τ > T} of the jobs of rank 2. If either p(Z ′′1) ≤ 4τ or
p(B2) ≥ T , then go to Step 7; otherwise go to Step 5.

Step 5. If p(Z ′′2) ≥ 2τ , select an arbitrary job k ∈ Z ′′1 \B2, define yk := (T − 2τ) − p(Z ′′2)
and xk := pk − yk, make a schedule S′4 with four moves as shown in Figure 1(c) with
Z1 = Z ′′1 \ {k}, Z2 = Z ′′2 and go to Step 7; otherwise go to Step 6.

Step 6 Compute y∗ by formula (15) with W ∗2 = Z ′′2 . Select an arbitrary job k ∈ Z ′′1 \B2,
define yk := y∗, and xk := pk − yk, make a schedule S′′4 with four moves as shown in
Figure 8 with Z1 = Z ′′1 \ {k}, Z2 = Z ′′2 and go to Step 7.

Step 7. Output the best of the found schedules as schedule Sε.

It is clear that Algorithm MoveEven requires O(n/ε) time. Below we analyze its perfor-
mance.

Theorem 6 For problem TP2|v = 1, c ≥ n|Kmax, Algorithm MoveEven behaves as an FP-
TAS, provided that there exists an optimal schedule S∗ either with two or with four moves.

Proof: Suppose first that in an optimal schedule S∗ the transporter makes two moves.

Consider schedule S′2 found in Step 2. Notice that p(Z
′
1) ≤ T . We have that Kmax(S

′
2) =

max {p(Z ′1), p(Z ′2) + 2τ}. If p(Z ′1) ≥ (1− ε)T , then we derive p(Z ′2) + 2τ ≤ 2T − (1− ε)T =
(1 + ε)T . Thus, due to (2) we obtain that Kmax(S

′
2) ≤ (1 + ε)T ≤ (1 + ε)Kmax(S

∗).

Similarly, for schedule S′′2 found in Step 3, notice that p(Z
′′
2) + 2τ ≤ T . We have that

Kmax(S
′′
2) = max {p(Z ′′1), p(Z ′′2) + 2τ}. If p(Z ′′2) ≥ (1 − ε) (T − 2τ), then we derive p(Z ′′1) =

p(N) − p(Z ′′2) = 2 (T − τ) − p(Z ′′2) ≤ 2 (T − τ) − (1 − ε) (T − 2τ) = (1 + ε)T − 2ετ . Thus,
due to (2) we obtain that Kmax(S

′′
2) ≤ (1 + ε)T ≤ (1 + ε)Kmax(S

∗).

If for schedule S′2 found in Step 2 the inequality p(Z
′
1) < (1 − ε)T holds, then due to

Theorem 3, the solution found by the FPTAS is an optimal solution to problem (17). This

17

means that the value p(Z ′1) cannot be enlarged and the value p(Z
′
2) + 2τ cannot be reduced,

as long as we require p(Z ′1) ≤ T , i.e., Kmax(S
∗) ≥ p(Z ′2) + 2τ , provided that there are two

moves in schedule S∗.

Similarly, if for schedule S′′2 found in Step 3 the inequality p(Z
′′
2) < (1− ε) (T − 2τ) holds,

then due to Theorem 3, the solution found by the FPTAS is an optimal solution to problem
(18). This means that the value p(Z ′′2)+2τ cannot be enlarged and the value p(Z

′′
1) cannot be

reduced, as long as we require p(Z ′′2) ≤ T−2τ , i.e., Kmax(S
∗) ≥ p(Z ′′1). The algorithm outputs

schedule Sε such that Kmax(S
ε) ≤ min {Kmax(S

′
2),Kmax(S

′′
2)} = min {p(Z ′2) + 2τ , p(Z ′′1)},

which is optimal, provided that there are two moves in schedule S∗.

Thus, if there are two moves in an optimal schedule, Algorithm MoveEven outputs a
schedule of a length that is at most 1 + ε times the optimum.

The conditions of Step 4 describe situations in which the algorithm still outputs the best
of the two-move schedules found so far, and such a schedule is optimal. If p(Z ′′1) ≤ 4τ then
no schedule with four moves can be shorter than Kmax(S

′′
2) = p(Z ′′1), i.e., for an optimal

schedule with an even number of moves the equality Kmax (S
∗) = min {Kmax(S

′
2),Kmax(S

′′
2)}

holds. For the set B2 of rank 2 jobs found in Step 4 suppose that p(B2) ≥ T . If in schedule
S∗ each job of set B2 is processed only on machine M1, then Kmax(S

∗) ≥ p(B2). In this
case, schedule S′′2 found in Step 3 is optimal, since no job of rank 2 may belong to set Z

′′
2 ,

so that Z ′′2 = N\B2, Z ′′1 = B2 and Kmax(S
′′
2) = p(B2). If in S∗ a job of rank 2 is processed,

even partly, on machine M2 then due to (5) we deduce that Kmax(S
∗) ≥ pu + 2τ , where

u ∈ B2 is the shortest rank 2 job. In this case, schedule S′2 found in Step 2 is optimal, since
Z ′1 = N\ {u} , Z ′2 = {u} and Kmax(S

′
2) = pu + 2τ .

In the rest of the proof, it is assumed that there are four moves in an optimal schedule
S∗. We arrive at Step 5 if p(Z ′′1) > 4τ and p(B2) < T . Consider the sets Z ′′1 and Z

′′
2 found

in Step 3. Since no rank 2 job belongs to set Z ′′2 , we deduce that B2 ⊂ Z ′′1 and there exists a
job k ∈ Z ′′1 \B2 such that pk + 2τ < T .

If p(Z ′′2) > 2τ , then due to Lemma 4, we can create schedule S
′
4 shown in Figure 1(c) with

Kmax(S
′
4) = T , which means this schedule is optimal; see Step 5.

On the other hand, if p(Z ′′2) ≤ 2τ , then p(Z ′′1) = p(N)−p(Z ′′2) ≥ (2T − 2τ)−2τ = 2T−4τ .
Recall that the FPTAS in Step 3 solves the corresponding subset-sum problem optimally, so
that for the value y∗ found by formula (15) withW ∗2 = Z ′′2 the lower boundKmax(S

∗) ≥ y∗+4τ
holds. Notice that

y∗ =
p(Z ′′1)

2
− 2τ .

so that it follows from p(Z ′′1) > 4τ that y∗ > 0. Since the solution found by the FPTAS
is an optimal solution to problem (18), it follows that for any job k ∈ Z ′′1 the inequality
p(Z ′′2) + pk > T − 2τ holds, which is equivalent to p(Z ′′1) − pk < T . Thus, we derive from
p(Z ′′1) ≥ 2T − 4τ that

pk > p(Z ′′1)− T = y∗ +
p(Z ′′1)

2
+ 2τ − T ≥ y∗.

In Step 6, the algorithm selects a job k ∈ Z ′′1 \B2 and assigns it to be processed on machine
M2 for y∗ time units, where as proved above, 0 < y∗ < pk. For job k ∈ Z ′′1 \B2, we derive

p(Z ′′1)− pk =
p(Z ′′1)

2
+
p(Z ′′1)

2
− pk ≥

p(Z ′′1)

2
+ (T − 2τ)− (T − 2τ) = p(Z ′′1)

2
.

In schedule S′′4 job k is delivered back to machineM1 at time 2τ+y∗ =
p(Z′′1)
2 < p(Z ′′1)−pk,

so that the structure of schedule S′′4 is as shown in Figure 8 with Z1 = Z ′′1 \ {k}. Since

18

Kmax(S
′′
4) = y∗ + 4τ = p(Z ′′1)− y∗ =

p(Z′′1)
2 + 2τ , this schedule is optimal due to (14).

Notice that if an instance of the problem contains a job of rank 0, Algorithm MoveEven
outputs schedule S′′2 as an optimal schedule. Indeed, for a rank 0 job k we have that pk ≥ T , so
that p(N\{k}) ≤ T−2τ and in Step 3 we will have Z ′′1 = {k}, Z ′′2 = p(N\{k}). Such a schedule
is shown in Figure 3(a). This observation allows us to exclude from further consideration the
instances of the problem with a rank 0 job, since for the purpose of finding a global optimal
solution there is no need to create schedules with more than two moves.

4 Finding the Best Schedule with Three Moves

In this section, we show that for problem TP2|v = 1, c ≥ n|Kmax finding the best schedule
with three moves is an NP-hard problem and give an algorithm that for many instances finds
an exact solution, but in general behaves as an FPTAS.

In this section we refer to a rank 3 job as long ; otherwise, if a job does not satisfy (6) for
r = 3, it is called short. As seen from the consideration below, the presence of the short jobs
is crucial for fast finding an exact solution to the problem.

As proved in Lemma 8, the search for the best schedule with three moves can be limited
to (i) non-preemptive schedules with the closest possible loads on the machines (see Figure 4),
or (ii) a preemptive schedules with a single fractional job (see Figure 2), for which the value
of the objective function meets a lower bound.

First, we prove that under some conditions finding such a schedule is an NP-hard problem.

Theorem 7 For problem TP2|v = 1, c ≥ n|Kmax with no short jobs and p(N) ≥ 4τ , finding
the best non-preemptive schedule with three moves is NP-hard in the ordinary sense.

Proof: As in the previous NP-hardness proofs, we reduce Partition to the decision version
of problem TP2|v = 1, c ≥ n|Kmax.

Define n = r, τ = E and pj = 2ej , j = 1, 2, . . . , n. We show that for the constructed
instance a non-preemptive schedule S with three moves and such that Kmax(S) ≤ 3E exists
if and only if Partition has a solution. Notice that p(N) = 4E = 4τ , as required.

Suppose that Partition has a solution, and R1 and R2 are the required subsets with
e(R1) = e(R2) = E. Define a schedule S as in Figure 4(a) with Z1 = R1. It is easy to verify
that Kmax(S3) = 3E.

Suppose that a non-preemptive schedule S with three moves and with Kmax(S) ≤ 3E
exists. The first (downward) move starts at time zero, the second (upward) move starts at
time τ = E, and the final (downward) move starts at 2E and completes at 3E. All jobs
assigned to machine M1 are processed in the time interval [0, 2E], while those assigned to
machine M2 are processed in the interval [E, 3E]. If Ri denotes the set of the jobs of set
{1, 2, . . . , n} assigned to machine Mi, for i ∈ {1, 2}, then the sets R1 and R2 form a solution
to Partition. This proves the theorem.

Theorem 8 For problem TP2|v = 1, c ≥ n|Kmax with no short jobs and p(N) ≥ 4τ , finding
the best preemptive schedule with three moves is NP-hard in the ordinary sense.

Proof: As in the previous NP-hardness proofs, we reduce Partition to the decision version

19

of problem TP2|v = 1, c ≥ n|Kmax. Without loss of generality, in this proof we assume that
in Partition the value of E is at least 3.

Define n = r + 3, τ = E2 + 1, pj = 2ejE, j = 1, 2, . . . , r, pr+1 = pr+2 = pr+3 = 3. We
show that for the constructed instance a preemptive schedule S with three moves such that
Kmax(S) ≤ 3E2 + 6 exists if and only if Partition has a solution.

Notice that p(N) = 4E2+9 > 4τ , as required. Besides, there is no short job, since pj ≥ 3
for all j ∈ N , so that pj + 3τ ≥ 3 + 3τ = 3E2 + 6 > T =

(
4E2 + 9

)
/2 +E2 + 1 = 3E2 + 5.5.

Suppose that Partition has a solution, and R1 and R2 are the required subsets with
e(R1) = e(R2) = E. Define a schedule S3(k) as in Figure 2(b) with Z1 = R1 ∪ {r + 1},
Z2 = R2 ∪ {r + 2} and k = r + 3 being the fractional job with xr+3 = yr+3 = 1.5. Since
yr+3+2τ > p(Z1) and xr+3+2τ > p(Z2), we deduce that Kmax(S3(k)) = pr+3+3τ = 3E

2+6.

Now let a preemptive schedule S with three moves and with Kmax(S) ≤ 3E2 + 6 exist.
Due to Lemma 8 exactly one job k is fractional and Kmax(S) ≥ pk + 3τ . This implies
that the fractional job is one of the jobs of the set {r + 1, r + 2, r + 3}. Without loss of
generality, assume that job k = r+ 3 is fractional, and it is processed on machine M1 during
xk time units and on machine M2 during yk = 3 − xk time units. Additionally assume
that p(Z2) ≤ p(Z1). If either p(Z1) > 2τ + yk or p(Z2) > 2τ + xk, then we would have
Kmax(S) ≥ max {p(Z1) + xk, p(Z2) + yk} + τ > 3τ + pr+3 = 3E2 + 6, which is impossible.
Thus, p(Z2) ≤ 1

2 (p(Z1) + p(Z2)) ≤
1
2 (4τ + yk + xk) = 2τ + 1.5 = 2E2 + 3.5. Since for

each job of set Z2 the processing time is integer, we obtain that actually p(Z2) ≤ 2E2 + 3.
Set Z2 contains l jobs of length 3, where l ∈ {0, 1, 2} (i.e., some or none of jobs r + 1
and r + 2). For l ∈ {0, 1} we have that for some non-negative integer x the inequality
p(Z2) = 2E(E + x) + 3l ≤ 2E2 + 3 holds, which yields x ≤ 3−3l

2E < 1. For l = 2 we have that
p(Z2) = 2E(E − x) + 6 for some non-negative integer x, and p(Z1) = p(N) − pk − p(Z2) =
2E(E+x). Since Kmax(S) ≥ p(Z1)+ τ , we deduce 2E(E+x) ≤ 2E2+5, so that x ≤ 5

2E < 1.
Since x must be integer, we conclude that x = 0. If the set Ri denotes the set of the jobs
of set {1, 2, . . . , r} assigned to machine Mi, for i ∈ {1, 2}, then the sets R1 and R2 form a
solution to Partition. This proves the theorem.

Algorithm Move3 presented below finds the best schedule with three moves for problem
TP2|v = 1, c ≥ n|Kmax.

Algorithm Move3Try

Step 1. Compute T in accordance with (1).

Step 2. Take an ε > 0 and run an FPTAS for the subset-sum problem of the following
structure

max
∑

j∈H pjxj∑
j∈H pjxj ≤ T − τ

xj ∈ {0, 1} , j ∈ H,
(19)

where H = N . For a found solution of problem (??), define H(1) =
{
j ∈ H|xεj = 1

}
.

Step 3. Create a non-preemptive schedule S3 shown in Figure 4 with Z1 = H(1). If p(H(1)) <
(1− ε) (T − τ), then go to Step 4.

Step 4. Determine set B := {j ∈ N |pj ≥ 2ε (T − τ)}. Let |B| = h. Renumber the jobs of
set B so that p1 ≤ p2 ≤ . . . ≤ ph. Define k := 1 and k := h.

(a) Compute k =
⌈(
k + k

)
/2
⌉
. If k = k, then go to Step 5.

20

(b) Define Nk = N\ {k}. Compute εk = pk/(T − τ), take ε = εk and apply an FPTAS
to the subset-sum problem of the form (??) with H = Nk. For a found solution of

problem (??), define H(1) =
{
j ∈ H|xεj = 1

}
.

(c) If p(H(1)) ≥ (1− εk) (T − τ), then define k := k; otherwise define k := k. Return
to Step 7(a).

Step 5. For the current value of k, define Z1 := H(1) and Z2 := N\ (Z1 ∪ {k}). Create a
schedule S3(k) shown in Figure 2(b).

The statements below analyze the performance of Algorithm Move3.

Theorem 9 For, problem TP2|v = 1, c ≥ n|Kmax for finding the best candidate schedule
with three moves Algorithm Move3 behaves as an FPTAS that requires at most O((n log n) /ε)
time.

Proof: If in Step 3, p(H(1)) ≥ (1− ε) (T − τ), then p(H(1)) ≤ T − τ ≤ p(N\Z1) ≤
(1 + ε) (T − τ) and Kmax (S3) = max {τ + p(N\Z1), 3τ}, i.e., schedule S3 is either optimal
with Kmax (S3) = 3τ or Kmax (S3) = τ + p(N\Z1) ≤ (1 + ε)T − ετ ≤ (1 + ε)Kmax (S

∗).

If
p
(
H(1)

)
< (1− ε) (T − τ) (20)

then due to Theorem 3, the value p
(
H(1)

)
is optimal for the corresponding subset-sum prob-

lem of the form (??), i.e., p
(
H(1)

)
≥ p(X) for any set X ⊂ H such that p(X) ≤ T − τ . Thus,

in this case schedule S3 is the best non-preemptive schedule with three moves.

A possibly better schedule can be found among the preemptive schedules. Recall that in
such a preemptive schedule S3(k) there is exactly one fractional job k; see Figure 2. Below we
show that under the condition (20), the duration pk of the fractional job cannot be smaller
than 2ε (T − τ).

Indeed, suppose that for schedule S3(k), the sets of the whole jobs on machine Mi is
denoted by Zi, i ∈ {1, 2}. The fractional job is split between the machines so that pk = xk+yk,
where

= p (Z2) + yk = T − τ . (21)

The latter equation implies that max {p(Z1), p (Z2)} < T − τ . Since p
(
H(1)

)
≥

max {p(Z1), p (Z2)}, it follows from (20) that

max {p(Z1), p (Z2)} < (1− ε) (T − τ) ,

which leads to pk > 2ε (T − τ).
In a preemptive schedule S3(k) with the fractional job k either Kmax(S3(k)) = T or, if

job k is a Rank 3 job, the length Kmax(S3(k)) is given by pk + 3τ . Thus, we need to find the
shortest k with pk ≥ 2ε (T − τ) that can be fractional in schedule S3(k). This is done by the
binary search procedure that is outlined in Step 4. Notice only that job k can be fractional,
for which p(H(1)) + pk ≥ (T − τ) for the corresponding set H(1).

To justify the binary search to be performed in Step 4, we apply the following reasoning. If
in some iteration of the search procedure for the current job k we find the set H(1) = H

(1)
k such

that p
(
H
(1)
k

)
< (1− εk) (T − τ), then due to the choice of εk the inequality p

(
H
(1)
k

)
+ pk <

21

T − τ holds, so that job k cannot be fractional. In this case, we continue our search among
those jobs that are longer than pk. To show that the required fractional job cannot be found
among the jobs with indices less than k, assume that for some k′ < k the set H(1) = H

(1)
k′

is found such that p
(
H
(1)
k′

)
≥ (1− εk′) (T − τ), which implies that p

(
H
(1)
k′

)
+ pk′ ≥ T − τ ,

so that job k′ can be fractional. Since pk ≥ pk′ , we derive that p
(
H
(1)
k′

)
> p

(
H
(1)
k

)
. The

latter inequality is impossible if k /∈ H(1)
k′ , since p

(
H
(1)
k

)
≥ p(X) for any set X ⊆ N\ {k}.

On the other hand, if k ∈ H(1)
k′ then we derive that p

(
H
(1)
k

)
< p

((
H
(1)
k′ ∪ {k′}\ {k}

))
, again

a contradiction.

If for the current job k, the set H(1) is such that p(H(1)) ≥ (1− εk) (T − τ), then job k
can be fractional and we need to consider only those jobs that are shorter than pk. Eventually
in at most O(log h) iterations the shortest possible fractional job will be found.

For the found job k, in Step 5 schedule S3(k) is found with the split pk = xk + yk of job k
defined by (??). If job k is a Rank 3 job, i.e., pk ≥ T −3τ , we deduce from p(Z1)+xk = T −τ
that p(Z1)+pk = T −τ +yk, and therefore 2τ +yk > p(Z1); similarly, 2τ +xk > p(Z2). Thus,
in this case, schedule S3(k) is as shown in Figure 2(b), and Kmax(S3(k)) = pk + 3τ . This
schedule is optimal due to the choice of job k. If job k has a smaller rank, i.e., pk < T − 3τ ,
then both inequalities 2τ + yk ≤ p(Z1) and 2τ + xk ≤ p(Z2) hold, i.e., schedule S3(k) is as
shown in Figure 2(a), and Kmax(S3(k)) = T .

The best of all found schedules is the best candidate schedule with three moves. Step 4
involves sorting which requires O(h log h) time and O(log h) applications of an FPTAS. Since
each time the FPTAS is run with εk ≥ 2ε, the running time for each run does not ex-
ceed O(n/ε). Thus, the overall running time of running Algorithm Move3 does not exceed
O((n log n) /ε).

Thus, Algorithm Move3 behaves as an FPTAS, provided that there exists an optimal
schedule with three moves, and finds an optimal schedule in some cases.

The general algorithm for handling problem TP2|v = 1, c ≥ n|Kmax involves the following
stages:

1. Create a schedule S0 in which all jobs are processed on machine M1.

2. Run Algorithm MoveEven.

3. Run Algorithm Move3.

4. Output the best of all found schedules.

It follows from the results of Sections 3 and 4 that for some instances of the problem the
final algorithm will find an optimal schedule, while for others it will behave as an FPTAS.
The running time of the algorithm does not exceed O(n log n+ n/ε).

5 Non-Preemptive Schedules

In this section, for problem TP2|v = 1, c ≥ n|Kmax we study the quality of the non-preemptive
schedule compared with that of the global optimal schedule. We exhibit an instance of the
problem for which the length of a non-preemptive schedule cannot be less than 4

3 times
the optimal length and present an algorithm that delivers the best possible non-preemptive

22

schedule. In Step 3 the algorithm outputs a schedule with two moves and in Step 4 it outputs
a schedule with three moves. The length of the best of all found schedules is at most 43 times
the optimum length.

Algorithm NoPmtn

Step 1. Create a schedule S0 in which all jobs are processed on machine M1.

Step 2. Compute T in accordance with (1).

Step 3. If there exists a job k ∈ N such that

pk ≥ T,

perform Step 3(a), otherwise perform Step 3(b).

(a) Create a schedule S2 shown in Figure 3(a) with Z1 = {k} and Z2 = N\ {k}.
(b) Take ε = 1

3 and apply an FPTAS to the subset-sum problem (17). For a found

solution, define N1 =
{
j ∈ N |xεj = 1

}
and N2 = N\N1.

(b.1) Create a schedule S′2 shown in Figure 3(b) with Z1 = N1 and Z2 = N2.
(b.2) If |N2| ≥ 2, take an arbitrary job q ∈ N2 and create a schedule S′′2 shown in

Figure 3(a) with Z1 = N1 ∪ {q} and Z2 = N\Z1.

Step 4. If there exists a job k ∈ N such that

pk + τ ≥ T,

perform Step 4(a), otherwise perform Step 4(b).

(a) Find a schedule S3 with three moves shown in Figure 4 with Z1 = {k} and Z2 =
N\ {k}.

(b) Take ε = 1
3 and apply an FPTAS to the subset-sum problem (??) with H = N . For

a found solution, define N1 =
{
j ∈ N |xεj = 1

}
and N2 = N\N1. Create a schedule

S′3 with three moves shown in Figure 4 with Z1 = N1 and Z2 = N2.

Step 5. Output the best of all created schedules as a heuristic schedule SH .

The running time of Algorithm NoPmtn does not exceed O(n). Below we analyze its
worst-case performance.

Theorem 10 For problem TP2|v = 1, c ≥ n|Kmax, Algorithm NoPmtn outputs a non-
preemptive schedule SH such that

Kmax(S
H)

Kmax(S∗)
≤ 4
3
. (22)

For any ε > 0 there exists an instance of problem TP2|v = 1, c ≥ n|Kmax for which the length
of the best non-preemptive schedule S is no less than

(
4
3 − ε

)
Kmax(S

∗).

23

Proof: We start with proving the bound (22) and then prove that this bound is the best
possible as long as the search for a heuristic solution is limited to the class of non-preemptive
schedules.

We split the proof into several parts, based on the assumption regarding the type of an
optimal schedule.

Case 0. If there exists an optimal schedule in which all jobs are assigned to one machine,
then schedule S0 is optimal.

Case 1. Assume that an optimal schedule S∗ is a Type 2 schedule and analyze the
schedules created in Step 3.

Suppose that there exists a rank 0 job k ∈ N . This implies that

pk ≥
p(N)

2
+ τ ,

and
pk ≥ p(N)− pk + 2τ .

The latter inequality guarantees that

Kmax(S2) = max {pk, p(N)− pk + 2τ} = pk,

so that S2 is an optimal schedule due to (4).

In Step 3(b) for each job j ∈ N the inequality

pj < T

holds. Analyzing schedule S′2, we derive that

Kmax(S
′
2) = max {p(N1), p(N)− p(N1) + 2τ} .

Since p(N1) ≤ T , we only need to consider the situation that Kmax(S
′
2) = p(N)− p(N1)+

2τ .

A possible outcome of the FPTAS is that a solution xεj , j ∈ N , will be found such that

(1− 1
3
)T ≤

n∑
j=1

pjx
ε
j = p(N1) ≤ T,

so that

Kmax(S
′
2) = p(N)− p(N1) + 2τ ≤ p(N)−

2

3
T + 2τ

= 2(T − τ)− 2
3
T + 2τ =

4

3
T.

An alternative outcome of the application of an FPTAS with ε = 1
3 to problem (17) is

that the problem will be solved optimally and for the found solution xεj , j ∈ N , the inequality

(1− 1
3
)T >

n∑
j=1

pjx
ε
j = p(N1)

24

holds. Notice that p(N1) < 2
3T =

1
3p(N) +

2
3τ and p(N2) >

2
3p(N)−

2
3τ . For schedule S

′′
2 we

have that
Kmax(S

′′
2) = max {p(N1) + pq, p(N)− p(N1)− pq + 2τ} .

For any job q ∈ N2, it follows that that pq ≤ p(N1) <
2
3T and p(N1) + pq > T , so that

pq+ p(N1) ≤ 4
3T . If |N2| = 1, then the latter inequality implies that the bound (22) holds for

SH = S0. Otherwise, if |N2| ≥ 2, then

p(N)− p(N1)− pq + 2τ ≤ p(N)− T + 2τ = 2(T − τ)− T + 2τ = T,

and for SH = S′′2 the bound (22) holds.

Case 2. Assume that an optimal schedule S∗ is a schedule with three moves and analyze
the schedules created in Step 4.

Suppose that there exists a rank 1 job k ∈ N . We deduce

pk ≥
p(N)

2
,

which is equivalent to
pk ≥ p(N)− pk.

The latter inequality implies that

Kmax(S3) = max {τ + pk, p(N)− pk + τ , 3τ} = max {τ + pk, 3τ} ,

so that schedule S3 is in fact optimal due to (3).

In Step 4(b) for each job j ∈ N the inequality

pj + τ < T

holds, which means that

pj <
p(N)

2
. (23)

We show that the FPTAS will always find a solution xεj , j ∈ N , such that

(1− 1
3
) (T − τ) ≤

n∑
j=1

pjx
ε
j ≤ T − τ , (24)

so that
2

3
(T − τ) ≤ p(N1) ≤ (T − τ) .

If (24) were not true, then the instance would not contain a job k such that

pk >
2

3
(T − τ) ,

otherwise, the FPTAS would assign xεk = 1 and k ∈ N1.
If the outcome of the FPTAS is such that the inequality

(1− 1
3
) (T − τ) >

n∑
j=1

pjx
ε
j = p(N1)

25

holds, it follows that any job k ∈ N2 is such that p(N1) + pk > T − τ . However, since
pk ≤ 2

3 (T − τ), we derive that p(N1) + pk <
4
3 (T − τ) . This implies that

2

3
(T − τ) ≤ p(N2\ {k}) < T − τ ,

and the existence of such a set N2\ {k} should have been identified by the FPTAS due to
Theorem 3. Due to the derived contradiction, under the condition (23) the FPTAS will find
a solution that satisfies (24).

Analyzing schedule S′3 we derive that

Kmax(S
′
3) = max {p(N1) + τ , p(N)− p(N1) + τ , 3τ} .

If the maximum in the right-hand side of the above equality is equal to 3τ , then S′3 is
optimal. Otherwise,

p(N1) + τ ≤ (T − τ) + τ = T

and

p(N)− p(N1) + τ ≤ p(N)− 2
3
(T − τ) + τ

= 2(T − τ)− 2
3
(T − τ) + τ

=
4

3
(T − τ) + τ ≤ 4

3
T.

Thus, for SH = S′3 the bound (22) holds.

We have proved that for the best of the schedules found by Algorithm NoPmtn the bound
(22) holds.

To see that the bound (22) cannot be improved for a non-preemptive schedule, consider
the following instance of problem TP2|v = 1, c ≥ n|Kmax. There are three jobs with p1 =
p2 = p3 = 2 and τ = ε. The best non-preemptive schedule SN is a schedule with two
moves in which two jobs are processed on machine M1 and one job on machine M2, so that
Kmax(S

N) = 4. The best preemptive schedule S∗ is a schedule with three moves in which
one of the jobs is split between the machines, with 1 unit of processing on each machine. We
have that Kmax(S

∗) = 3 + ε and

Kmax(S
N)

Kmax(S∗)
=

4

3 + ε
>
4

3
− ε.

This completes the proof of the theorem.

6 Conclusion

The paper presents an algorithm for the problem on two identical parallel machines to mini-
mize the length of a schedule, i.e., the time by which all completed jobs are collected together
on board the transporter that brings all jobs to one of the machines and moves the jobs
between the machines. The algorithm either solves the problem optimally, or behaves as an
FPTAS for those instances that can be proved NP-hard. An important feature of the algo-
rithm is the use of an FPTAS for the subset-sum problem that is known to delver an exact

26

optimal solution under certain conditions. The paper continues the study of scheduling mod-
els with a single uncapacitated transporter, see Soper and Strusevich (2007) and Lushchakova
et al. (2009).

It would be interesting to extend this approach to uniform machines, i.e., machines of
different speeds. An ultimate research goal in this area will be the study of general models
with more than two machines and several transporters of different capacities.

Acknowledgement

The first and third authors were partly supported by the EPSRC funded project
EP/I018441/1 “Quadratic and Linear Knapsack Problems with Scheduling Applications”.

References

Brucker P, Knust S, Cheng TCE, Shakhlevich NV (2004) Complexity results for flow-shop
and open-shop scheduling problems with transportation delays. Ann Oper Res 129: 81—106

Dell’Amico M (1996) Shop problems with two machines and time lags. Oper Res 44: 777—787

Hall LA (1998) Approximability of flow shop scheduling. Math Progr B 82: 175-190

Hurink J, Knust S (2001) Makespan minimization for flow-shop problems with transportation
times and a single robot, Discrete Appl Math 112: 199—216

Kellerer H, Mansini R, Pferschy U, Speranza MG. (2003) An effi cient fully polynomial ap-
proximation scheme for the Subset-Sum Problem. J Comput Syst Sci 66: 349-370.

Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems, Springer, Berlin

Kellerer H, Soper AJ, Strusevich VA (2010) Transporting jobs through a processing center
with two parallel machines. In: Wu W, Daescu O (eds) COCOA 2010, Part I, Lect Notes
Comput Sci 6508, pp. 408—422

Lee C-Y, Chen Z-L (2001) Machine scheduling with transportation times. J Schedul 4: 3-24

Lee C-Y, Strusevich VA (2005) Two-machine shop scheduling with an uncapacitated inter-
stage transporter. IIE Trans 37: 725—736

Lushchakova IN, Soper AJ, Strusevich VA (2009) Transporting jobs through a two-machine
open shop. Naval Res Log 56: 1—18

Qi X (2006) A logistic scheduling model: scheduling and transshipment for two processing
centers. IIE Trans 38: 609—618

Soper AJ, Strusevich VA (2007) An improved approximation algorithm for the two-machine
flow shop scheduling problem with an interstage transporter, Int J Found Comput Sci 18:
565—591.

Strusevich VA (1999) A heuristic for the two-machine open-shop scheduling problem with
transportation times. Discrete Appl Math 1999: 287—304.

Yu W, Hoogeveen H, Lenstra JK (2004) Minimizing makespan in a two-machine flow shop
with delays and unit-time operations is NP-hard. J Schedul 7: 333—348.

27

	8516
	8516_SOPER_STRUSEVICH_P2tauJCOR1May04 (AAM) (2013)

