
o OO S, ^ e) i? «i *5

DOMAIN DECOMPOSITION BASED

ALGORITHMS FOR SOME INVERS E

PROBLEMS

CHARAKA JEEWANA^PALANSURIYA

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the Degree of Doctor of Philosophy

August 2000

Abstract

The work presented in this thesis develop algorithms to solve inverse problems where

source terms are unknown. The algorithms are developed 011frameworks provided

by domain decomposition methods and the numerical schemes use finite volume and

finite difference discretisations.

Three algorithms are developed in the context of a metal cutting problem. The

algorithms require measurement data within the physical body in order to retrieve

the temperature field and the unknown source terms. It is shown that the algorithms

can retrieve both the temperature field and the unknown source accurately.

Applicability of the algorithms to other problems is shown by using one of the

algorithms to solve a welding problem.

Presence of untreated noisy measurement data can severely affect the accuracy

of the retrieved source. It is illustrated that a simple noise treatment procedure

such as a least squares method can remedy this situation.

The algorithms are implemented 011parallel computing platforms to reduce the

execution time. By exploiting domain and data parallelism within the algorithms

significant performance improvements are achieved. It is also shown that by ex-

ploiting mathematical properties such as change of nonlinearity further performance

improvements can be made.

Declaration

I certify that this work has not been accepted in substance for any degree, and is not

concurrently submitted for any degree other than that of Doctor of Philosophy (PhD)

of the University of Greenwich. I also declare that this work is the result of my own

investigations except where otherwise stated.

Student:

Charaka J. Palansuriya

Supervisor:

Dr Choi-Hong Lai

1

Acknowledgements

The author wishes to express his gratitude to the University of Greenwich who is

sponsoring this study.

I would like to thank my supervisors Dr Choi-Hong Lai, Dr Cos Ierotheou and Pro-

fessor Ivoulis Pericleous for their concern and guidance at the various stages of the

research process.

I would particularly like to thank Professor David Keyes for advice and discussions

011the algorithms and their implementations.

I would also like to thank Professor X.-C. Tai for various advice 011sensitivity analy-

sis and Dr Loise Mclnnes for introducing PETSc (along with Professor David Keyes).

Last but not least, I would like to thank my parents for their support.

Charaka J. Palansuriya.

11

Nomenclature

.4 Cell face area; amplitude

c Specific heat capacity

ce Effective specific heat capacity

D Domain

Dx Subdomain i

h eff Effective heat transfer

J Jacobian

k Thermal conductivity

L Differential operator; latent heat

m Iterative step

n Time step; Schwarz iterative step

Qci Qu> Source term

Q p Predicted heat source

T a Ambient temperature

T, u Temperature

T n Ui Initial Conditions

T% U* Sensor temperature

iii

NOMENCLATURE

T p , U p Predicted temperature

T ol Tolerance

T s Solidus temperature; measured temperature

Ti Liquidus temperature

t Time

x, y Cartesian coordinates

x c Cutter point

x s Sensor point

U Temperature vector

u% Temperature in subdomain i

V Correction vector

At Regular time step spacing

Ax, Ay Regular Cartesian grid spacing

p Density

List of Figures

1.1 Sensors are placed between the inner and outer skin of the rocket nozzle. 2

2.1 A hierarchy of decomposition 13

3.1 A visual representation of the problem partitioning 18

3.2 (a) Temperature distribution for t — 0.1, (b) a cross sectional view

at y = 0.1 and t = 0.1 26

3.3 Temperature distributions for (a) t = 0.2 and (b) t — 0.3 27

3.4 Temperature distributions for (a) t = 0.4 and (b) t = 0.5 28

3.5 Source/Sink strength 29

3.G Horizontal solution profile and serial execution times for all three

algorithms 30

3.7 Accuracy of the retrieved temperature field, using Algorithm 1 at (a)

t=0.04 and (b) t=0.06 31

3.8 Accuracy of the retrieved temperature field, using Algorithm 1 at (a)

t=0.09 and (b) t=0.1 32

3.9 Accuracy of the retrieved source using Algorithm 1 33

3.10 Accuracy of the retrieved temperature field, using Algorithm 2, at (a)

t=0.04 and (b) t=0.06 34

3.11 Accuracy of the retrieved temperature field, using Algorithm 2, at (a)

t=0.09 and (b) t=0.1 35

3.12 Accuracy of the retrieved source using Algorithm 2 36

3.13 Accuracy of the retrieved temperature field, using Algorithm 3, at (a)

t=0.04 and (b) t=0.06 37

3.14 Accuracy of the retrieved temperature field, using Algorithm 3, at (a)

t=0.09 and (b) t=0.1 38

3.15 Accuracy of the retrieved source using Algorithm 3 39

v

LIST OF FIGURES vi

4.1 Geometry of the welded work-piece (I = 0.5m, 2h = 0.33 m, d =

0.008m, U w = 0.00333m/s) 41

4.2 Sensors are located near the weld line 42

4.3 Visualization of subdomains 43

4.4 Temperature distribution at t = 75s 47

4.5 Temperature distribution at x=0.25m and t = 75s 48

4.6 Temperature distribution at x=0.25m and t = 82.5s 49

4.7 Temperature history at x=0.25m and y=0m 49

4.8 Accuracy of the temperature distribution at x=0.25m and t=75s. . . 50

4.9 Accuracy of the source retrieval 50

5.1 Retrieved source with 0.1% error in sensor data 53

5.2 Retrieved source with 1% error in sensor data 54

5.3 Retrieved source 10% error in sensor data 54

5.4 Noisy (1%) and smoothed sensor data 55

5.5 Retrieved source using Algorithm 1 with 0.1% error in sensor data. . 55

5.6 Retrieved source using Algorithm 1 with 1% in sensor data 56

5.7 Retrieved source using Algorithm 1 with 10% error in sensor data. . . 56

5.8 Retrieved source using Algorithm 2 with 0.1% error in sensor data. . 57

5.9 Retrieved source using Algorithm 2 with 1% error in sensor data. . . 57

5.10 Retrieved source using Algorithm 2 with 10% error in sensor data. . . 58

5.11 Retrieved source using Algorithm 3 with 0.1% error in sensor data. . 58

5.12 Retrieved source using Algorithm 3 with 1% error in sensor data. . . 59

5.13 Retrieved source using Algorithm 3 with 10% error in sensor data. . . 59

5.14 Retrieved source for the welding problem with 0.1% error in sensor

data 60

5.15 Retrieved source for the welding problem with 1% error in sensor data. 60

5.16 Retrieved source for the welding problem with 10% error in sensor data. 61

6.1 An example of partition for Algorithm 1 64

6.2 An example of partition for Algorithm 2 65

6.3 An example of partition for Algorithm 3 65

6.4 Parallel performance results for Algorithm 1 73

6.5 Parallel performance results for Algorithm 2 74

6.6 Parallel performance results for Algorithm 3 75

LIST OF FIGURES vii

6.7 An example of the implemented partition 76

6.8 Theoretieal and observed run times for Sun Sparc 5s when Proc = 2. 76

6.9 Theoretical and observed run times for Sun Sparc 5s when Proc = 4. 77

6.10 Theoretical and observed run times for Sun Sparc 5s when Proc = 6. 77

6.11 Theoretical and observed run times for Sun Sparc 5s when Proc — 8. 78

6.12 Theoretical and observed run times for Sun Sparc 5s when Proc = 10. 78

6.13 Theoretical and observed run times for Sun Sparc 5s when Proc — 12. 79

7.1 Temperature distribution at y=0.125 for A = 2, o — 40, c = 30

and mesh = 160x40 84

7.2 Reduction in total execution time for A = 2, a = 40, c = 30 and

mesh = 160x40 85

7.3 Change of temperature gradient for A = 2, a = 40, c = 30 and

mesh = 160x40 86

7.4 Reduction in total execution time for A = 2, a = 40, c = 30 and

mesh = 320x80 86

7.5 Reduction in effective number of iterations for A = 2, a = 40,

c = 30 and mesh = 320x80 87

7.6 Reduction in total execution time for A = 2, a = 50, c = 25 and

mesh = 160x40 87

7.7 Change of temperature gradient for A = 2, a = 50, c = 25 and

mesh = 160x40 88

Contents

Acknowledgements ii

Nomenclature iii

List of Figures iv

1 Introduction 1

1.1 Inverse problems 1

1.2 Methods used to solve inverse problems 3

1.3 Objectives 5

1.4 Outline of contents 6

2 Domain decomposition methods 8

2.1 Why use domain decomposition methods ? 9

2.2 Some domain decomposition methods 9

2.3 Problem partitioning and decomposition hierarchy 12

2.4 Domain decomposition software 12

3 A metal cutting problem 15

3.1 The dimensionless 2d nonlinear metal cutting problem 16

3.2 Problem partitioning 17

3.3 Source retrieval 19

3.4 Algorithms 20

3.4.1 Algorithm 1 20

3.4.2 Algorithm 2 22

3.4.3 Algorithm 3 23

3.5 Numerical examples 23

3.6 Validation 23

3.7 Closure 25

Vlll

CONTENTS ix

4 A welding problem 40

4.1 The 2d nonlinear welding problem 41

4.2 Problem partitioning 43

4.3 Source retrieval 44

4.4 Numerical example 45

4.5 Validation 45

4.6 Closure 48

5 Sensitivity analysis 51

5.1 Sensor data smoothing 51

5.2 Examples 52

5.2.1 The metal cutting problem 52

5.2.2 The welding problem 53

5.3 Closure 53

6 Exploiting parallelism 62

6.1 Parallelisation strategies 63

6.2 Parallel performance results 65

6.3 A parallel performance model 66

6.3.1 Computation time 68

6.3.2 Communication time 69

6.3.3 Parallel execution time 70

6.3.4 Experimental results 70

6.4 Closure 72

7 Further performance enhancements 80

7.1 Exploiting nonuniform nonlinearity 81

7.2 Nonlinearity of heat conduction problems 82

7.3 Numerical tests 82

7.4 Closure 85

8 Conclusions and further work 89

References 92

Chapter 1

Introduction

1 .1 Inverse problems

If a problem is specified by a differential equation, its boundary data and its domain,

then the problem is a direct problem. However, if part of the differential equation

is unknown and has to be determined then it is an inverse problem (Colton et al.,

1990). For example, if the source term is an unknown in a heat conduction equation

then the resulting inverse problem has to be solved by using some internal temper-

ature measurements. Typically such inverse problems require either the retrieval of

sources/sinks or conductivity/permeability in the relevant partial differential equa-

tions. However, there are other inverse problems where the aim is to recover the

unknown heat fluxes across a boundary or to retrieve the unknown temperature at

the boundary or, in some situations, to retrieve an unknown boundary.

A great boost to the research in inverse problems was given by the space program

started around 1950s (Beck et al., 1985). The main interest there was the calculation

of surface temperature and heat flux across the outer skin of a rocket nozzle when

it is re-entering the earth's atmosphere. Sensors cannot be placed on the outer skin

since it is exposed to extremely high temperatures. A direct problem cannot be

formulated in such situations. A practical solution available to the scientist was to

attach the sensors inside the rocket nozzle, between the inner and outer skin (see

Figure 1.1), and then to retrieve the temperature at the outer skin (and/or the heat

flux across it). Therefore one needs to solve an inverse problem.

There are many other industrially vital problems that require solutions of inverse

problems. One of them is a oil reservoir simulation. In oil reservoir simulations the

1

CHAPTER 1. INTRODUCTION 2

\ ^ f heat flux

Section A

Temperature sensor

find these

Rocket nozzle Enlargement of section A

Figure 1.1: Sensors are placed between the inner and outer skin of the rocket nozzle.

permeability of the oil fields are unknown and therefore the resulting inverse problem

is to retrieve this unknown coefficient. Another example from industry is the casting

process simulation where the unknown conductivity or the heat transfer coefficient,

during the solidification process, has to be retrieved (Kim and Lee, 1997). Metal

cutting and welding are also widely occurring industrial processes. Such activities

require careful control of temperature to guarantee the quality of the cut or the

weld, to prolong the life of the cutting tool. In order to control the temperature,

the strength of the heat source has to be determined and regulated. Hence, the

inverse problem in these processes is to recover the unknown source. Last, but

not least, thermal imaging is widely used for carrying out non-destructive testing

(Bryan and Caudill, 1994; Patel et al., 1992). Here, the technique is used to recover

information about the internal condition of an object by applying a heat flux to its

boundary and observing the resulting temperature response of the object's surface.

The information is used to retrieve the internal thermal properties of the object, or

the shape of some unknown portion of the boundary. A typical application of this

technique is to detect damage or corrosion in aircraft.

Many more fields of science and technology, such as astronomy, chemistry and

medicine require solutions to inverse problems. The above applications require the

development of accurate, fast and efficient algorithms to solve the relevant inverse

problems.

Development of algorithms to solve inverse problems is complicated due to the

fact that such problems are often ill-posed (not well-posed). A problem is said to be

well-posed provided that the solution (1) exists, (2) is unique, and (3) is stable (Beck

CHAPTER 1. INTRODUCTION 3

et al., 1985). In many inverse problems, including those considered in this thesis,

the existance of the unique solution can be satisfied by using modelling techniques

such as the domain decomposition methods as explained and illustrated in Chapter

3. However, solutions to the inverse problems are not necessarily stable (Beck et al.,

1985; Colton et al., 1990; Bryan and Caudill, 1994). In other words, an arbitrarily

small perturbation in the measured data may produce a large difference in the output

solution. This sensitivity problem is more clearly illustrated and tackled in Chapter

5. Therefore, any algorithm developed for inverse problems should be tested for its

sensitivity to the measured data.

While there is much research work done in the inverse determination of conduc-

tivity properties and coefficients (Beck et al., 1985; Colton et al., 1990; Kunisch

and Tai, 1996), the inverse determination of sources is not well documented in the

literature. The type of inverse problems considered in this thesis is the retrieval of

unknown source terms. The algorithms developed to solve such problems are tested

and validated on nonlinear applications such as metal cutting and welding. The ap-

plications considered may require on-line processing (for example in real-time con-

trol) which in turn requires real time computation. Therefore, various performance

enhancement schemes are considered to speedup the computation. The domain and

data parallelism within algorithms are exploited to speedup the calculations. The

computer simulation of parallel algorithms can be carried out virtually in any re-

search institute due to the wide availability of distributed computing platforms such

as networks of various workstation clusters. In this thesis, an existing networked

workstation cluster is adapted to carry out this type of computer simulation. Further

performance enhancement is also considered on such a network of workstations.

This thesis examines the concept of domain decomposition techniques for the

solution of some inverse problems. A number of novel ideas including a simplification

of mathematical models, numerical procedures, exploitation of parallel properties,

and various performance enhancement techniques are discussed in Chapters C and

7.

1 .2 Methods used to solve inverse problems

Inverse problems are more difficult to solve analytically than direct problems. Exact

solution techniques have been proposed by Burggraf (Burggraf, 1964), Imber and

CHAPTER 1. INTRODUCTION 4

Khan (Imber and Khan, 1972), Langford (Langford, 1967) and others. These tech-

niques have only limited use for realistic problems. Therefore, various approximate

methods have been developed instead to solve such problems. These include graph-

ical(Stolz, 1960), polynomial (Frank, 1963), Laplace transform (Krzysztof et al.,

1981), dynamic programming (Trujillo, 1978), finite difference (D'Souza, 1975), fi-

nite elements (Krutz et al., 1978). A finite volume (FV) method is used in numerical

experiments carried out in this thesis. Although the above methods are used to solve

different types of inverse problems, only the methods used for solving inverse source

problems are discussed in this section.

Attempts to reformulate the inverse problems at the partial differential equa-

tion level and to eliminate the unknown source terms have not been successful in

solving realistic nonlinear problems numerically (Cannon et al., 1990). These meth-

ods use the overspecified conditions, such as extra measurements at a boundary, to

eliminate the unknown source functions from the partial differential equation. The

resulting reformulated problem has the form of a standard boundary value or an

initial boundary value problem but containing sources which are functionals of the

unknoum solution. This recursive nature of the reformulated problem is known to

worsen the stability of the inverse source problem and therefore is not considered in

this thesis.

Domain decomposition techniques were used with various polynomial interpola-

tions (e.g., Lagrange) to approximate the partial differential equations and then to

retrieve the unknown source term (Preziosi, 1993). However, such schemes do not

conserve the physical properties of a problem at the discretised level. The schemes

are neither validated nor shown to be stable. The numerical schemes described there

do not have any error or noise treatment procedures.

The use of least squares method to solve nonlinear problems dates back to 1940s

(Levenberg, 1944). The method minimizes the difference between the measured

value and the true function value. The least squares method is used with some

success to retrieve unknown source function in linear partial differential equations

(Chow et al., 1999). An advantage of the method is that it smooths the noise in the

measurement data to produce stable results. However, the way the method is used

is a trade off between accuracy and stability, that is, a stable solution to the inverse

problem is achieved with less accuracy. Typically, the least squares method is used

to solve the entire inverse problem without considering the physical nature (e.g.,

CHAPTER 1. INTRODUCTION o

discontinuities) of a problem and this is a significant contribution to the inaccuracy

in the solution. As illustrated in this thesis, the use of the method alongside domain

decomposition and FV discretisation, which conserve the physical properties of the

problem even at discretised level (Patankar, 1980; Versteeg and Malalasekera, 1995),

can produce an accurate and stable solution.

A class of methods called regularization methods that modifies the least squares

method is to damp the fluctuation in the unknown function (e.g., source term) (Beck

et al., 1985). The idea behind these methods is that by varying the regularization

parameter the fluctuations in the unknown function can be controlled. These fluctu-

ations may be due to ill-posedness of the problem. One major question that has yet

to be answered is the choice of regularisation parameters, particularly when noth-

ing is known about the function to be retrieved, it is not clear which value of the

regularization parameter is to be used (Tai et al., 1997; Neumaier, 1998; Frommer

and Maass, 1999).

Although all the above methods are computationally intensive, parallel proper-

ties of algorithms for inverse source problems are not fully exploited. This thesis at-

tempts to fill the gap with a systematic way of extracting parallel properties through

different levels of hierarchy of the problems. The exploitation of such properties is

linked with the use of appropriate mathematical models and numerical techniques.

Although the literature has not shown a significant use of parallel computing to

solve inverse source problems, the author feels that the investigation and develop-

ment of parallel algorithms for inverse source problems are vital to industrial real

time simulation. As illustrated in Chapter 6, the performance improvement gained

by the use of parallel computing is considerable.

1 .3 Objectives

The main objectives of this thesis are as follows:

1. Development of accurate and efficient algorithms, based on a domain decom-

position concept, to solve nonlinear time dependent inverse source problems;

given the time dependent temperature measurements at some interior locations

of a physical domain.

2. Examination of suitable techniques to reduce the sensitivity of the algorithms

CHAPTER 1. INTRODUCTION 6

to measurement errors. These techniques should be able to handle a reasonable

level of noise in sensor data.

3. Development of fast algorithms by exploiting various levels of parallelism in

the algorithms.

1 .4 Outline of contents

While this chapter does not serve as a comprehensive review of inverse problems, it

does give a summary of a few industrial related examples as an illustration to an

increasingly important field of modelling. It underlines the importance of parallel

numerical methods for such problems. As stated in the first objective, much of

this thesis discusses the development of efficient numerical algorithms based on a

domain decomposition method. Therefore, Chapter 2 provides a brief review to the

domain decomposition method. The main aim is to bring in a more general concept

of domain decomposition at different levels of a physical problem and to relate the

concept to the algorithm and software development. A typical engineering problem,

namely the metal cutting problem, is being considered in Chapter 3. A simplified

mathematical model is derived resulting in an unsteady nonlinear parabolic problem

with an unknown source term. It shows the use of a domain decomposition method

for partitioning the physical domain into simpler subdomains. Also, the formula-

tion of the source retrieval is explained. By using the framework provided by the

domain decomposition, three algorithms are developed based on a finite volume

discretisation. Their accuracy and the uni-processor performance are illustrated.

Another industrial application, electric arc welding is examined in Chapter 4. This

is a moving source problem where the source strength is unknown. The domain

decomposition method explained in Chapter 3 is used for partitioning the physical

domain and one of the algorithms developed is used to solve this problem. The

accuracy of the temperature and source retrieval are shown. The sensitivity of the

algorithms to measurement errors are examined in Chapter 5. It is shown that the

use of a least squares method to smooth the errors makes the algorithms less sen-

sitive to their presence. The exploitation of various levels of parallelism in order to

develop fast algorithms is examined in Chapter 6. A parallel performance model

developed for one of the algorithms is used to explain the performance of the algo-

rithm in a distributed computing environment. Further performance enhancement

CHAPTER 1. INTRODUCTION i

techniques for the algorithms are considered in Chapter 7. It shows some prelim-

inary results for such a technique. Finally, Chapter 8 makes various conclusions

regarding the algorithms, discusses how the original objectives were met and makes

some recommendations for further research work.

Chapter 2

Domain decomposition methods

Domain decomposition can be described as the division of a problem domain into

a number of subdomains, each containing a complete subproblem. The resulting

subproblems can be solved separately and then combined to give the solution to the

original problem. It is effectively a divide-and-conquer and then re-combine strategy.

During the last decade, domain decomposition based methods were used extensively

to solve a large variety of scientific problems (Chan et al., 1988; Keyes et al., 1991).

Recently such methods were used to solve inverse problems related to the estimation

of coefficients of partial differential equations (Kunisch and Tai, 199G). In this thesis,

as explained in the previous chapter, the development of domain decomposition

based methods to solve inverse problems related to the retrieval of unknown source

terms is examined.

Domain decomposition can be applied at the physical problem level and/or the

discretised problem level. At the physical problem level, the regions governed by

different mathematical models or some other criteria such as different material prop-

erties and/or conductivity are identified and decomposed into different subdomains.

At the discretised level, the resulting system of equations are rearranged as a col-

lection of smaller systems which can be solved independently.

The concept of domain decomposition has been evolving for over a century. The

earliest known domain decomposition algorithm at the physical problem level to

solve elliptic problems was due to Schwarz (Schwarz, 1869). Schwarz considered an

elliptic boundary value problem posed on an irregular domain that was made up

by two regular subdomains and the solutions for each of these subdomains can be

obtained readily. The first algorithm based on the concept of domain decomposi-

8

CHAPTER 2. DOMAIN DECOMPOSITION METHODS 9

tion to treat a variety of large scale computational engineering problems including

elasticity, electrical network, and incompressible and compressible flow was due to

Kron (Kron, 1963).

2.1 Why use domain decomposition methods ?

Domain decomposition simplifies the solution of complex problems, that is, the sub-

problems are much simpler to solve than the original problem. The complexity of a

problem could be due to the original domain containing material inhomogeneities,

rapid change of nonlinearity in a subregion, different physical regions such as solid

and fluid, different mathematical models, etc. Such complexities can be removed

by applying a suitable decomposition of the problem domain. For example, in the

case of material inhomogeneities, domain decompositioning can be applied at points

where material properties change to generate subdomains with homogeneous mate-

rial properties. Similarly, as presented by Lai (Lai et al., 1998), if a domain contains

different mathematical models such as Euler and Navier-Stokes models then domain

decomposition can be carried out to generate subdomains with homogeneous math-

ematical models. Therefore, in applying domain decomposition we are trying to

generate homogeneous and therefore simpler subproblems. An advantage of gener-

ating homogeneous subdomains is that the subproblems can be solved using existing

numerical methods and software.

Algorithms developed using domain decomposition are suitable for sequential

(uni-processor) as well as parallel (multi-processor) computation. The data locali-

ties of such algorithms contribute to various efficiencies at the implementation level,

for example efficient use of cache. Considering parallel computing requirements

(Chapter 6), access of non-local data (i.e., data in other subdomain) can be identi-

fied at the algorithm development phase (Bj0rstad and Karstad, 1995). This helps

to analyse the communication overheads and therefore to design and implement

suitable software with minimal overheads to solve various scientific problems.

2.2 Some domain decomposition methods

The classical Schwarz alternating method (Schwarz, 18C9) is still widely used in

solving contemporary scientific problems (Chan and Mathew, 1994; Smith et al.,

CHAPTER 2. DOMAIN DECOMPOSITION METHODS 10

1995; Keyes et al., 1995; Sirotkin, 1997). The method is used to solve overlap

subdomains. The idea is to partition an irregular domain into regular subdomains

(see Figure 1) and then use an iterative coupling technique for the coupling of

subdomains. The following algorithm describes the Schwarz alternating method

for the differential problem Lu = / defined in D which is partitioned into two

overlapped subdomains D\ and D 2 (see Figure 1) with f\ Di — f t , i = 1,2, and the

problem is prescribed with Dirichlet boundary conditions (j\ and g2 along dD\ f| OD

and dD 2 f| dD respectively. Here the superscript (n) denotes the number of Schwarz

iterations.

f
D,

V
Figure 1: A flask-shaped region similar to that

used by Schwarz.

The Schwarz Alternating Method (Schwarz, 18G9):

begin {

n 0; u 2 |71 := initial approximation;

repeat {

n n + 1;

u[nS> := { solve Lu^ = j\ in D[

subject to

u[nS> = (ji on dDi f]dD

„ . (") (_
U1 171 2 i7i J i

u 2
l) •— { solve Lu2

,S> = f2 in D 2

subject to

u{
2

n) = g2 on dD 2 fl OD

7/(n)| _ 7/(n)| V
u 2 172 — (t l 172 J '

} until converge; } end.

The overlapped approach may not be suitable in situations such as when the meshes

in different subdomains do not match each other or one mesh is finer than the other

CHAPTER 2. DOMAIN DECOMPOSITION METHODS 11

(Lai, 1994). Such problems may be best solved by using a non-overlapped approach

(Figure 2). Various variants of the Schwarz alternating method suitable for solving

non-overlapped subdomains exist (Lai, 1994; Quarteroni, 1995). A gradient variant

of the Schwarz alternating method is described below.

Figure 2: A non-overlapped decomposition.

A Gradient Variant of the

Schwarz Alternating Method (Lai, 1994):

begin {

n := 0; A 0̂) := initial approximation;

repeat {

u[7^ := { solve Lu[n^ = f\ in D\

subject to

u i ^ — S i0 1 1 d D i f] d D

islr = A(,,) 0,1 T

v2*' := { solve Lf/V": = / 2 in D-2

subject to

u 2^ = 92 on dD'2 fl dD
o (n) , .
toT = A W on 7 }:

/\(n+l) \(n) -I-a (u^ — wl 7,))|7 };

n := n + 1;

} until converge; } end.

Here D = D\ L)D 2, 7 denotes the interface of the two non-overlapped subdomains as

depicted in Figure 2 and n\ and n 2 denote the outward normals along 7 with respect

CHAPTER 2. DOMAIN DECOMPOSITION METHODS 12

to Di and D2. An important advantage of the non-overlap approach is its inherent

suitability to parallel computing. That is each subdomain can be independently

solved before updating the interface.

2.3 Problem partitioning and decomposition hi-

erarchy

The problem partition is defined to be the partitioning of a problem by just con-

sidering the physical/mathematical properties. For example, if a problem contains

solid and fluid regions then the problem partition can be applied at the solid-fluid

interface.

Within each subdomain, further decompositioning can be carried out for the

discretised problem. If different discretisations are used in a subdomain then parti-

tioning could be carried out where the discretisation changes.

Additional decomposition can be carried out for the data in a subdomain. For

example, to solve a problem in parallel, mesh partitioning may be required which

means data decomposition needs to be carried out within each subdomain.

The concept that is evolving here is a hierarchy of decomposition (see Figure

2.1). As can be seen, the decomposition hierarchy is suitable for parallel computa-

tion as well as for sequential computation. An example of the concept can be seen

from the problem partitioning carried out in Chapter 3 and the data partitioning

carried out within the resultant subdomains in Chapter 6. The decomposition hier-

archy is a concept which facilitates the development of clear and simple algorithms

that may be easier to implement in terms of software development. The software

developed, as a result, is usually memory and cache efficient. I11 parallel computing

the decomposition provides a framework to develop algorithms which are suitable

for fine-grain as well as coarse-grain parallel computers (Ierotheou et al., 1998).

2.4 Domain decomposition software

As the hierarchical model suggests, domain decomposition may occur at several

levels in software. At the highest level, subproblems resulting from a problem par-

titioning may be of different mathematical models and can be solved by using ded-

icated software. If the problems are continuous and homogeneous, then existing

CHAPTER 2. DOMAIN DECOMPOSITION METHODS 13

physica l /mathemat ica l level

d iscre t i sed
level

• • • • • •

data
level

Domain

Figure 2.1: A hierarchy of decomposition.

software may be used to solve the subproblems. However, if there are disconti-

nuities or inhomogeneities in the resulting "first-level" subproblems then further

domain decompositioning may be applied (domain decompositioning may be ap-

plied until continuous and homogeneous subproblems are produced). At each level

iu the hierarchy a dedicated software may be employed to solve the corresponding

subproblems.

If existing software is used to solve some or all of the subdomains then those

software themselves may employ domain decomposition methods. Software such as

PSPARSLIB (Saad et al., 1998), BlockSolve95 (Jones and Plassmann, 1995) and

PETSc (Balay et al., 1999) are used to solve general sparse matrix systems (such

as the ones dealt in this thesis) in sequential and parallel computing environments.

The above software use Schwarz methods as preconditioners and data partitioning

in parallel routines. The PETSc (Balay et al., 1999) software is used to implement

some of the algorithms developed in this thesis.

PETSc is a public domain software developed at Argonne National Laboratory.

Initially developed in large part to aid the research in parallel domain decomposition

methods it is now a powerful scientific computing environment which is suitable for

both sequential and parallel computing. It is being used extensively by the scientific

computing community to solve large classes of significant problems. It provides

CHAPTER 2. DOMAIN DECOMPOSITION METHODS 14

considerable types of data structures (e.g., different types of vectors and matrices)

and routines (for both direct and iterative methods) in order to solve a problem fast

and efficiently. A complete list of features can be found in (Balay et al., 1999) and

its underlining design principles are discussed by Balay (Balay et al., 1997). It has

many parameters that can be changed at compile or run-time to further enhance

the execution of a code. PETSc can be used with C, C++ or FORTRAN and it

uses MPI (Forum, 1995) for message passing in parallel computing. PETSc can be

used as a stand-alone scientific environment or with your own software; it can even

co-exist with other software environments. In implementing some of the algorithms

developed in this thesis, PETSc is either being used in stand-alone mode or with

the author's own software.

Chapter 3

A metal cutting problem

The properties of a piece of metal may alter and the quality of the cut may degrade

considerably due to high temperatures generated in a cutting process. Therefore,

the determination of the temperature distribution due to the application of a cutting

tool is of industrial interest. An accurate simulation of the temperature distribution

of the metal, subject to cutting, is vital in order to lengthen the life time of the

cutting tool and to guarantee the quality of the cutting. Particularly, the real-time

simulation of the temperature distribution is vital in order to control the cutter

speed and the coolant application. It is important to be able to regulate the cutter

speed and coolant application in order to keep the temperature (especially at the

cutter points) below a threshold. When the temperature rises above the threshold

this will cause deformation of the metal or it may become fatigued. In reality, the

accurate measurement of temperature at the cutter points is not possible. There-

fore, a direct problem cannot be formulated; inverse methods can be used to retrieve

the temperature at these points. It has been shown that accurate estimates can be

obtained using such methods (Beck et al., 1985), but the inverse problem is more dif-

ficult to solve analytically than direct problems. Therefore, various approximation

methods have been developed to solve such inverse problems. These include graph-

ical (Stolz, 1960), polynomial (Frank, 19G3), Laplace transform (Krzysztof et al.,

1981), dynamic programming (Trujillo, 1978), finite difference (D'Souza, 1975), fi-

nite elements (Krutz et al., 1978). Here we use finite volume based methods.

One assumption that has been made in the present investigation concerning cut-

ting is that the application of a cutter at a point is equivalent to the application of

an external heat source at that point. This assumption is physically sensible and

15

CHAPTER 3. A METAL CUTTING PROBLEM 1G

effectively reduces the problem into the inverse determination of heat sources. A

simplified mathematical model is discussed and formulated. To determine the heat

source, certain assumptions, based 011 physical reasoning, have been made. The heat

source strength is then derived. In the development of numerical algorithms for the

cutting problem, a domain decomposition method is applied to the mathematical

model. As will be explained in the following section (section 3.1), domain decom-

position generates well-defined, homogeneous and continuous subproblems whereas

the original problem is ill-posed and discontinuous.

Three algorithms are developed to solve the metal cutting problem and are de-

scribed in the following section. One algorithm is based on an explicit method

(Palansuriya et al., 1998) and the other two are implicit methods (Palansuriya et al.,

1999). Domain decomposition (DD) is first used to partition the original domain into

subdomains, each containing a properly connected, well-formulated and continuous

subproblem. The implementations are carried out using FORTRAN 77. One im-

plicit algorithm is implemented by coupling the state-of-the-art PETSc (Portable,

Extensible Toolkit for Scientific Computation) (Balay et al., 1999) software with

in-house (author's own) software in order to solve the subproblems. The second

implicit algorithm is implemented completely within PETSc. A 2D example is used

to test the algorithms and various comparisons are made.

The following novel contributions are made in this chapter. Firstly, a domain

decomposition method is proposed based 011 the problem partition conce pt explained

in Chapter 2. Secondly, a unique and accurate source retrieval method is developed.

Finally three new algorithms are developed to solve nonlinear time dependent inverse

source problems.

It should be pointed out that the domain decomposition method, as will be

shown in the following sections, not only facilitates the use of existing numerical

method but also promotes the software re-usability.

3.1 The dimensionless 2d nonlinear metal cutting

problem

The metal cutting problem considered here is a 2d thin sheet of metal defined in

the domain D = { (x , y) : 0 < x < 1 and 0 < y < 1}. The material properties

are assumed to be homogeneous across the domain of interest and the following

CHAPTER 3. A METAL CUTTING PROBLEM 17

assumptions are made for idealised cutting :

(a) the application of a cutting tool at the cutter points is

equivalent to the application of a heat source at these points,

(b) no phase changes occur during cutting and

(c) the thickness of the cutter is negligible.

The cutting is considered to be applied along a line parallel to the y - axis at x =

x c . These assumptions lead to the following dimensionless 2d nonlinear, unsteady,

parabolic, heat conduction equation,

~dt = dx^ U ^dx^ + dy^^dy^ + Q c {y,t)6(x - x c) 6 L>, (3.1)

subject to the initial condition u (x , y , 0) = U t (x , y) , boundary conditions u(0, y , t) =

B 0 (y,t), u(l,y,t) = Bi(y,t), u(x,0,t) = C 0 (x,t) and u(x,l,t) = C x (x,t). Here

u(x, y, t) is a dimensionless temperature distribution, k(u) is the conductivity of the

metal, Q c{y, t) is the unknown source being applied at x = x c , S (x —x c) is the Dirac

delta function and Ui, B 0 , B\, Co and C\ are known functions.

Equation (3.1) has two unknowns, namely u (x , y , t) and Q c { y , t) . The boundary

co nd i t i o n s and initial conditions would allow u(x, y, t) to be determined if Q c {y, t) is

known. Therefore, one has to extract certain information from the temperature field

as discussed in Chapter 1. One possible method is to include temperature sensors at

x = x s , such that 0 < x s < x c < 1 in order to obtain the temperature at that point.

L e t t h e t e m p e r a t u r e m e a s u r e d b y m e a n s o f t h e t e m p e r a t u r e s e n s o r s b e u (x s , y , t) =

u * (y , t) . T h e s e n s o r s e f f e c t i v e l y i n t r o d u c e t h e k n o w n f u n c t i o n u (x s , y , t) = u * (y , t)

and may be used in a problem partitioning of the mathematical model.

Note that, it is not necessary to have x s < x c . As the measured temperatures are

only used to retrieve temperatures at the cutting points, similar problem partitioning

can be generated for 0 < x c < x s < 1. The measured temperatures are used to

retrieve temperatures at the cutting points. Such inverse methods avoid the basic

difficulties of a direct method since remote temperatures can be measured more

easily and accurately.

3.2 Problem partitioning

Problem partitioning was defined in the previous chapter as a domain decomposition

method applied at the mathematical/physical problem level (Lai, 1994). In order

CHAPTER 3. A METAL CUTTING PROBLEM 18

to solve the inverse problem given in (3.1) with the additional condition available at

x = x s , problem partitioning is carried out to produce three subdomains, such that

each subproblem may be solved using a different numerical algorithm. The three

subdomains are:

D 1 = { (x , y) : 0 < x < x s and 0 < y < 1}

D-2= {(x, y) : x s < x < x c and 0 < y < 1}

L>3= { (x , y) : x c < x < 1 and 0 < y < 1}

Figure 3.1 shows a visual representation of the subdomains. This problem partition-

v = 0

A*—0 X =

Figure 3.1: A visual representation of the problem partitioning

ing is able to remove the unknown source term Q c (y, t) and the Dirac delta function

which are associated with the differential equation. The three subproblems (SPs)

can be written as follows:

sPv di£ = U k M d S) +

subject to u i { x , y , 0) = U i (x , y) , u i (0 , y , t) = B 0 (y , t) ,

u i (x s , y , t) = u * { y , t) , i i i { x , Q , t) = C 0 { x , t) , u ^ x , 1 , t) = C i { x , t) .

S P 2 - - - f M ^) + % (k (u 2) %) e D 2

subject to u 2 { x , y , 0) = U i (x , y) , u 2 (x s , y , t) = u * (y , t) ,

d U 2 ^ ' y ^ = u 2 { x , 0 , t) = C 0(a;, t) , u 2 (x , 1 ,t) = C x (x , t) .

s p * = H k M d ~ £) + e D 3

subject to u3(x, y ,0) = U i (x ,y) , u 3 (xc , y,t) = u2(zc, y, t),

u 3 { l , y , t)= B i (y , t) ,u 3 (x , 0 , t)= CqOM), u3(a;, 1,£) = Ci(x,t).

CHAPTER 3. A METAL CUTTING PROBLEM 19

Since the temperature values are given at y = 0, y = 1 , x — 0 and there are

temperature sensors located at x = x s , Dirichlet boundary conditions are defined at

the boundary of D x . The solution of the differential equation provides the required

data to calculate the heat flux ^-(x s ,y,t). Therefore, with the knowledge of the

temperatures U2(x s ,y,t) acquired by the temperature sensors at x = x s , an initial

value problem can be formulated in D2- u 2 (x c ,y,t) values may be obtained by

solving this initial value problem, marching along the x direction. Finally, with the

calculated temperatures u 2 (x c ,y,t), another Dirichlet problem can be formulated in

D 3 . The above three subproblems are well-defined (Beck et, al., 1985) (Zwillinger,

1989). Hence a unique solution exists for each subproblem and the union of these

gives the temperature distribution of the original problem.

3.3 Source retrieval

In order to retrieve the heat source, it is physically sensible to assume that the rate

of change of temperature on either side of the cut is directly proportional to the

strength of the heat source. Hence, in the neighbourhood of the cut,

d u
— = a (y , t) Q c (y , t) 8 (x - x c) (3.2)

where a > 1 is a time dependent function that also depends on y . The condition

a > 1 is to ensure an increase in temperature at the cut. Integrating (3.2) across

the cut at a given value of y gives

/ _ ^ d x = a { y , t) Q c { y , t) (3.3)
I X

Here x ~ denotes a spatial point just to the left of x c and x + denotes a spatial point

just to the right of x c . Similarly, integrating (3.1) across the cut and equating the

result to (3.3) leads to

~ + = a iy^)Qc{y,t) (3-4)

Assumption (c) (see Section 3.1) suggests that equation (3.4) can be simplified to:

d u . , , N d u

'to 1 -? " k(u) Tx
M«)|-L+ - - l)Qc (y , t) (3.5)

CHAPTER 3. A METAL CUTTING PROBLEM 20

Define the predicted heat source, Q p , as

Q P (y , t) = ~ k ^ ^ x c = P i y ^) Q c { y , t) (3 - c)

where (3= a — 1. Then substitute Q p into (3.1) to replace Q c and solve the equation

as a direct problem with u p being the corresponding temperature distribution. It-

is clear that the ratio of Q p : Q c must be equivalent to the ratio between their

corresponding temperature distributions, i.e.,

Q P { y , t) _ u p (y , t)
n (A (i \ = (3 - 7)Qc { y , t) u (x c , y , t)

Therefore, in order to determine the proportional factor /3, one needs to solve (3.1)

as a direct problem by using the predicted source Q p (y,t) in order to obtain the

corresponding temperature distribution u p (y,t), then use j3 as determined in (3.G)

t o r e t r i e v e t h e t r u e s o u r c e Q c .

3.4 Algorithms

If the development of a numerical method relates to the use of specialised software

dedicated to a particular problem, it is possible to have a more effective algorithm.

In the present problem, the original mathematical model is divided into three sub-

problems. Two of which belong to the same class (Dirichlet problems), while one

belongs to an initial value problem along the x direction. This thesis follows such a

concept of using specialised (but standard) software to solve homogeneous subprob-

lems.

The following three algorithms are developed using the problem partition de-

scribed in section 3.2 as a framework. In the algorithms, the derivatives are discre-

tised using a first-order forward difference approximation of the temporal derivative

and a second-order Finite Volume (FV) approximation of the spatial derivatives

(Versteeg and Malalasekera, 1995). It is an aim of this thesis to find out if such a

discretisation scheme is accurate enough to retrieve the unknown temperature field

and, particularly, the source term.

3.4.1 Algorithm 1

To solve the problems in SP\ and SP3, a first-order forward difference approxima-

tion of the temporal derivative and a second-order FV approximation of the spatial

CHAPTER 3. A METAL CUTTING PROBLEM '21

(A.T) 2

A t

(AW2

derivatives leads to a five-point explicit scheme. Dropping the subscript used in

denoting the subdomains, the explicit scheme for the subdomains D\ and D 3 can

be written as,

«£ +I) = + (1 - r.of" - r x b ?] - - r y d f]) u ^ +

(3.8)

where (z, j) denotes the th grid point,

A< (3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(n) denotes the time-step, A t is the step size along the temporal axis and A.t, Ay

are the grid spacings along the spatial axis x, y, respectively.

The initial value problem in SP2 is solved by employing a second-order Euler

Predictor-Corrector (P-C) method along the x-axis for each time-step. Again, the

spatial derivatives are discretised using second-order FV approximations and the

time derivative with a first-order finite difference approximation. The two step P-C

method can be written as:

new

(n)
a \

l . (n) , i.(rc)
l xi + l , j ' i , j(n)

a \
2

_ + ? . (»)

h j° i
2

(n)
CLJ

k { n) -f_ Ki , j +1+
h . in)
i , j(n)

CLJ 2

d f

+
1

d f 9

u

V

u

V
+ A x f ,

u

v

u

V
+ ^r {/+/*} . (315>

where,

v =
d u

d x

/ = / / u]
\ = (

\ « i1 \ -&(*(«)£ k ' { u) v '

(3.16)

(3.17)

CHAPTER 3. A METAL CUTTING PROBLEM 22

(3.18)

A second order spatially accurate solution may be obtained for each of the three

subproblems. Therefore, it is expected to have a second order spatially accurate

global solution for the inverse problem (3.1). The effect of the local truncation

error for SP2 is minimized because of the small size of the subdomain which usually

consists of only a few Euler P-C steps. All experiments give stable results as long

as the CFL condition r x , r y < 0.25 is satisfied.

3.4.2 Algorithm 2

Newton's method is applied to D \ and D 3 and leads to an implicit method. Using

Newton's method, the iterative scheme for solving an equation of the type F(U) = 0

may be written as,

{ Solve

J { U m) V m = — F (U m)

Update

U m + 1 — U m + V m

} Repea t u n t i l | | V | | < T o l

For the metal cutting problem,

F(u)=l{k(u)di] + S (i(c/) f >" ? (3-19)

and Jacobian, J (U) , defined as J (U) — F ' (U) is,

J (U) = k " (U) (f x ? + 2 k \ U) f x l + fc'(C/)0 + k (U) g - 2

+ k - m f f + 2 nu)f^ + + - f 0.20)

The matrix generated due to the discretisation of J (U) is a penta-diagonal sparse

matrix. Hence, any existing (preferably robust and efficient) software for solving

such a matrix may be employed to solve D\ and D3. PETSc is used to solve the

linearised systems in D x and D 3 . Subdomain D 2 uses the same Euler P-C method

as in Algorithm 1. This algorithm is fully implicit.

CHAPTER 3. A METAL CUTTING PROBLEM 23

3.4.3 Algorithm 3

All three subdomains are solved by using the Newton's method as described in algo-

rithm 2. This algorithm leads to a global linearised system for all three subdomains

and it is solved by using PETSc.

The implementation of the above three algorithms highlights the fact that the

generation of homogeneous and continuous subproblems due to problem partitioning

facilitates the use of general purpose libraries, as well as the coupling of subdomain-

specialized software solutions.

3.5 Numerical examples

Numerical results are obtained for equation (3.1) with x s = 0.5, x c — 0.6, U i (x , y) —

0, B 0 (y,t) = 0, = 0, Co (x ,t) = 0 and C \(x ,t) = 0. Sensor points are

modelled as a * (y 1 t) = c r y (y — l) 2sin(u;£), with a — 0.1 and U J = 2T X . Non-linear

heat conductivity is given by k(u) = yr^2- Number of grid points along x-axis is 21

and along y- axis is 11. The resulting temperature distributions are shown for time

t — 0 to t, = 0.5 in Figures 3.2 to 3.4. The retrieved source/sink strength is shown

in Figure 3.5, it reflects the shape of the function used in the modelling of sensor

temperatures, i.e. a sinusoidal function in time. Figure 3.0(a) shows the comparison

of temperature distribution at y = 0.4,i = 0.1 between the three Algorithms. The

tolerance, To/, in Algorithms 2 and 3 has been chosen as JO -8 . The numerical

quality of all the three algorithms are t he same. The sequential implementation of

the algorithms was tested for performance using a Sun Sparc 5 workstation. The

run times are shown in Figure 3.6(b). Algorithm 1 does not perform well because

of a very small At. It is necessary to use a small At in order to satisfy the CFL

condition. There is no significant difference between the performance of Algorithm 2

and Algorithm 3. The latter is slightly more efficient since it-solves the subproblems

using one system matrix.

3.6 Validation

In this Section the algorithms are to be validated by using a more difficult source

term, one which contains discontinuities as well as a gentle slope in the source.

CHAPTER 3. A METAL CUTTING PROBLEM 24

To compare the accuracy of the retrieved temperature field and the source term,

an exact source such as the one given below is used. Equation (3.1) is then solved as a

direct problem to obtain the noise-free sensor temperature as well as the temperature

distribution. Then an inverse problem is formulated by assuming that the noise-free

sensor temperatures are given, the source term being unknown. The temperature

distribution from the direct problem is compared with the temperature distribution

obtained from the inverse problem.

The problem considered here is as defined in Section 3.5 but with the following

source term,

Q { x c , y , t) = <

0 , t < 1 1
7 V

3tt(t-J), I < t <0.05+ J

0.15tt, 0.05+ a < t < 0.09+ 11
V — — V

0, t > 0.09 + I

where v is the forward velocity of the cutter. For comparison of accuracy, only the

unsteady source at y — 0 is considered. The source term at y = 0 is,

Q { x c , 0 , t) = <

3ti% t < 0.05

0 .157T, 0.05 < t < 0.09

0, t > 0.09

The following results are obtained using the mesh configuration 40 x 40. Figures

3.7 and 3.8 shows the accuracy of the retrieved temperature field at various time

steps using Algorithm 1 and Figure 3.9 shows its accuracy on retrieving the source

term. Figures 3.10 and 3.11 show the accuracy of the retrieved temperature field

when Algorithm 2 is used. Figure 3.12 shows the accuracy of source retrieval using

Algorithm 2. Figures 3.13 to 3.15 illustrate the accuracy of Algorithm 3. The

above Figures show that the three algorithms give temperature distributions that

are almost the same as the exact answer, even for relatively coarse grid. The heat

source with a discontinuity is retrieved accurately. There is a slight "shock effect"

in capturing the discontinuity in the source term which reflects a small time lag in

capturing it. This has no effect in the situations where the duration of the source

application is predetermined since this provides a priori knowledge about the time

of the source removal. Then the calculation of the source strength retrieval can be

terminated when the source removal time is reached.

CHAPTER 3. A METAL CUTTING PROBLEM 25

3.7 Closure

The assumptions made regarding idealised cutting are reasonable for many prac-

tical situations. However, there are situations where the assumptions will have to

be reconsidered. For example, in the laser cutting of metals, the latent heat of the

metal as well as the variation of liquid fraction will have to be included in the math-

ematical model to take into account the phase change. The homogeneous material

properties assumption is valid, since problem partitioning (domain decomposition)

can be carried out in such a way so that each subdomain will have such properties.

As illustrated in developing the algorithms, problem partitioning also facilitates the

use of existing numerical methods (in subdomains).

The use of alternative numerical algorithms to retrieve the unknown source term

at the cutter is presented. These algorithms are developed by applying domain

decomposition to the problem domain, in order to calculate the temperature held.

Each algorithm is shown to retrieve the temperature field and source term accurately.

The three algorithms perform the computation to the same effective accuracy. Im-

plicit algorithms, Algorithm 2 and Algorithm 3, give better sequential execution

times than Algorithm 1 (contains explicit schemes). Algorithm 3 is slightly more

efficient since this only uses one system matrix.

CHAPTER 3. A METAL CUTTING PROBLEM 20

2D Temperature distribution when t = 0.1

U distribution -»•

Cross sectional view of the U when y=0.1 and t = 0.1

U distribution

Figure 3.2: (a) Temperature distribution for t = 0.1, (b) a cross sectional view at

y — 0.1 and t = 0.1.

CHAPTER 3. A METAL CUTTING PROBLEM 27

2D Temperature distribution when t = 0.2

U distribution -»•

0.3 -

0.25

0.2

0.15

0.1

0.05

0

-0.05

1

2D Temperature distribution when t = 0.3

U distribution -*

0.25

0.2

0.15

0.1

0.05

0

-0.05

(b)

Figure 3.3: Temperature distributions for (a) t = 0.2 and (b) t — 0.3.

CHAPTER 3. A METAL CUTTING PROBLEM

2D Temperature distribution when t = 0.4

U distribution

0.05

-0.05

(a)
2D Temperature distribution when t = 0.5

U distribution

U

0.02

0.01

-0.01

-0.02

-0.03

-0.04

(b)

Figure 3.4: Temperature distributions for (a) t = 0.4 and (b) t = 0

CHAPTER 3. A METAL CUTTING PROBLEM

Source/Sink strength with respect to t and y

SopEce term

Source/Sink Strength

Figure 3.5: Source/Sink strength.

CHAPTER 3. A METAL CUTTING PROBLEM

Temperature distribution at y=0.4 & t = 0.1

0.014

Algorithm 1
Algorithm 2
Algorithm 30.012

0.01

0.008

0.006

0.004

0.002

0
0 0.2 0.4 0.80.6

(a)

Serial execution times
• /Algorithm1 -

delta t = 0.0001
3000-.Algorithm2-

,0
#

2500« deltaj = 0.01 ,0
#

2000- —A- -Agonthnn3- t

ti
m
e
(s

1500.

1000.

deltaj = 001

ti
m
e
(s

1500.

1000. #

500-

o.
.1—Cr"*"*""

500-

o. «

400 800 1600 20000 40000 80000

mesh size

(b)

Figure 3.C: Horizontal solution profile and serial execution times for all three a

rithms.

CHAPTER 3. A METAL CUTTING PROBLEM

0.004

exact temperature
.derived temperature0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0.60 0.2 0.4 0.8
(a)

0.007

exact temperature
derived temperature

0.006

0.005

0.004

0.003

0.002

0.001

0 0.2 0.4 0.6 0.8
(b)

Figure 3.7: Accuracy of the retrieved temperature field, using Algorithm 1 at

t=0.04 and (b) t=0.06.

CHAPTER 3. A METAL CUTTING PROBLEM 32

0.009

exact temperature
erived temperature0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.4 0.6 0.80 0.2
(a)

0.006
^exact temperature
derived temperature

0.005

0.004

0.003

0.002

0.001

0.4 0.6 0.80 0.2
(b)

Figure 3.8: Accuracy of the retrieved temperature field, using Algorithm 1 at (a)

t=0.09 and (b) t=0.1.

CHAPTER 3. A METAL CUTTING PROBLEM

5

retrieved source
true source4.5

4

5

3

2.5

2

5

0.5

0
0

tune

Figure 3.9: Accuracy of the retrieved source using Algorithm 1.

CHAPTER 3. A METAL CUTTING PROBLEM 34

0.004

exact temperature
.derived temperature0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0
0 0.2 0.4 0.6 0.8

x

0.007

exact temperature
derived temperature

0.006

0.005

0.004

0.003

0.002

0.001

0
0.2 0.6 0.80 0.4

x

Figure 3.10: Accuracy of the retrieved temperature field, using Algorithm 2, at (a)

t=0.04 and (b) t,=0.0G.

CHAPTER 3. A METAL CUTTING PROBLEM 35

0.009

exact temperature
erived temperature0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0
0.6 0.80 0.2 0.4

x

0.006

^exact temperature
deriyed temperature

0.005

0.004

0.003

0.002

0.001

0
0.6 0.80.2 0.40

x

Figure 3.11: Accuracy of the retrieved temperature field, using Algorithm 2, at (a)

t=0.09 and (b) t=0.1.

CHAPTER 3. A METAL CUTTING PROBLEM

5

retrieved source
true source

4

3

7

1

0

2
0.030 05 0.06 0.07 0.08 0.09 0.1

time

Figure 3.12: Accuracy of the retrieved source using Algorithm 2.

CHAPTER 3. A METAL CUTTING PROBLEM 37

0.004

exact temperature
.derived temperature0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0
0 0.2 0.4 0.6 0.8

(a)
0.007

exact temperature
derived temperature

0.006

0.005

0.004

0.003

0.002

0.001

0
0.40.2 0.6 0.80

x

Figure 3.13: Accuracy of the retrieved temperature field, using Algorithm 3, at (a)

t=0.04 and (b) t=0.06.

CHAPTER 3. A METAL CUTTING PROBLEM 38

0.009

exact temperature
lerived temperature0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.80.2 0.4 0.60
(a)

0.006
exact temperature

deiived temperature

0.005

0.004

0.003

0.002

0.001

0.4 0.80.2 0.60
(b)

Figure 3.14: Accuracy of the retrieved temperature field, using Algorithm 3, at (a)

t=0.09 and (b) t=0.1.

CHAPTER 3. A METAL CUTTING PROBLEM

5
retrieved source

true source
4

3

2

0

2
0

time

Figure 3.15: Accuracy of the retrieved source using Algorithm 3.

Chapter 4

A welding problem

The welding of metals and alloys is a widely used industrial process. Many types

of analyses have been carried out 011 such problems (Myers et al., 19G7; Taylor

et al., 1999). The numerical thermal analysis of welding is required to take into

account such features as temperature dependent material properties, phase change,

non-uniform distribution of energy from heat source etc. Robust algorithms to solve

such problems efficiently, and in certain circumstances in real-time, are of great

technological and industrial interest.

In this chapter a two-dimensional nonlinear electric arc-welding problem is con-

sidered. It is assumed that the moving arc provides an unknown quantity of energy,

that is, this problem can be treated as an inverse problem with an unknown mov-

ing source. Solutions of such inverse problems are important in regulating the heat

source and therefore the quality of the weld. As in the metal cutting problem, the

solution scheme requires temperature measurements near the weld line in order to

calculate the temperature field and to retrieve the unknown source. One of the

algorithms developed in Chapter 3 is used in the present calculations. As explained

in that chapter, Algorithms 2 and 3 are suitable for single-processor (sequential)

computing. Algorithm 3 is chosen for the present calculations since this is slightly

more efficient (it only uses one system matrix).

The welding problem considered has been computed as a direct problem with

a known heat source (Argyris et al., 1985; Demirdzic and Martinovic, 1993). The

numerical results from the direct problem together with the experimental thermo-

couple measurements (Argyris et al., 1985) are used to validate the results obtained

by means of the inverse problem.

40

CHAPTER 4. A WELDING PROBLEM 41

This chapter will further emphasize the effectiveness of using problem parti-

tioning, described in the previous chapter, in generating standard, well-defined and

continuous subproblems. It also further validates the source retrieval method and

Algorithm 3 developed in previous chapter. It should also be noted that the appli-

cation considered in this chapter, the welding problem, is more complex than the

metal cutting problem (3). The main complexities are the moving source and the

phase change due to welding, hence the numerical schemes described in the previous

chapter have to be modified to take into account these complexities.

4.1 The 2d nonlinear welding problem

The welding problem considered here is the butt welding of two thin steel plates.

Figure 4.1 illustrates the welding process. As in the previous chapter, the material

properties, apart from thermal conductivity, are assumed to be homogeneous across

the domain of interest. It is also assumed that the application of a welding tool at

the weld line is equivalent to the application of a heat source at these points. The

y "

X

2h

Figure 4.1: Geometry of the welded work-piece (/ = 0.5m, 2h = 0.33m, d = 0.008m,

U w = 0.00333m/s).

welding takes place along the dotted line, see Figure 4.1, and due to the symmetry

of the problem only the upper half needs to be considered. Since the thickness

of the plate, d, is very small, only two dimensional heat conduction is considered.

Hence, the heat conduction of the plate is modelled using the following 2d nonlinear,

CHAPTER 4. A WELDING PROBLEM 42

unsteady, parabolic, heat conduction equation,

c'°I = + - 2h"<A(-T - + o- ^

subject to initial condition T (x , r/, 0) = T t (x , y) ,boundary conditions B0(T, y, £)| x= o,

Bi{T,y,t)\ x= i, CQ{T,X, £)| y -o and Ci(T, a:, £)l»=/i- Here T (x,y,t) is the temperature

distribution, k(T) is the conductivity of the steel, t is the time, h e jj is the effective

h e a t t r a n s f e r , . 4 i s t h e s u r f a c e a r e a , TA i s t h e a m b i e n t t e m p e r a t u r e , c e = p c —

i s t h e e f f e c t i v e s p e c i f i c h e a t , p i s t h e d e n s i t y , c i s t h e s p e c i f i c h e a t c a p a c i t y , L

is the latent heat, ^ is the variation of liquid fraction, QW is the heat transfer

rate from the moving arc. Tj, B0, B i, C 0 and C\ are known functions. Since the

source term, QW, in (4.1) is an unknown, the inverse problem here is to retrieve this

unknown heat source. In order to deal with this additional unknown, temperature

measurements near the weld line are required (see Figure 4.2). The sensors are

attached at y — y s , such that 0 < ys < 0.165. Let the temperature measured

by means of the temperature sensors be T (x,y s ,t) = T *(x,t). The measured

temperatures are used to retrieve temperature at the welding points.

0m 0.5m

0.165m

y

X

y s

0m

Figure 4.2: Sensors are located near the weld line.

sensors

o o o o O O O O O O O O

Weld direction

Weld line

CHAPTER 4. A WELDING PROBLEM 43

4.2 Problem partitioning

Domain decomposition was applied to the original domain to generate two well

defined, homogeneous, continuous and properly connected subdomains. The two

subdomains are:

D i = {(a -,y) : 0 < x < 0.5 and 0 < y < y s }

D 2 — { (# , y) : 0 < x < 0.5 and y s < y < 0.1G5}

The domain partitioning is carried out along the sensor points, Figure 4.3. As

explained in the previous chapter, this level of partitioning is defined as problem

partitioning. This problem partitioning removes the unknown source term Q w . The

two subproblems can be written as follows:

0 0.5 m
0

y s

y s

0.165m

Figure 4.3: Visualization of subdomains.

Dl

D2

S P i - - ^ + f y (k (T l) ^) - 2 h e f f A (T l - T a) e A

subject to T i (x , y , 0) = T i { x , y) , B 0 { T , y , t) | I = 0 ,

B i { T , y , t) \ x = i , T \ (x , y s , t) = T * { x , t) , C x (T , x , t) \ y = h .

SP* = £M T 2)^) + % (k(T 2)^)-2h eff A(T 2 -T a)eD 2

subject to T 2 (x , y , 0) = T t (x , y) , B 0 (T , y , t) \ x = 0 ,

B \ { T , y , t) \ x = i , T 2 { x , y s , t) = T * (x , t) ,

d T2(x , ys, t) _ d T i { x , ys, t) t n n ~ +M
% - Q - y >C ' 0 U , X , t) \ y = 0 .

W E L D I N G P R O B L E M 44

4.3 Source retrieval

As in Section 3.1, it is assumed that the rate of change of temperature on either

side of the weld is directly proportional to the strength of the heat source. Hence

in the neighbourhood of the weld,

QRP
c e — = c e a (x , t) Q w (x , t) (4.2)

where a > 1 is a time dependent function that also depends on x . The c :

a > 1 is to ensure an increase in temperature at the weld. Integrating (4.2) across

the weld at a given value of x gives

rvt, oi
c j y _ - f o d y = ce a { x , t)Qw (x , t) { y +- yw) (4.3)

where y+ to y ~ is the area along y - axis which is at the given instance of time under

immediate influence of the electric arc. Assuming linear variation of temperature

along y-axis and integrating (4.1) across the weld leads to

*(T) S E l i t - * (r) g u + £(*(T)g)(*t- «) - 2 k . „ A (T - r.)(„;-*;)
+ Q w (x , t) (y l - y ~) = c e a (x , t) Q „ (x , t) (y + - y ~) (4.4)

Define the predicted heat source Q p as,

Q „ (x , t) = k (T) % | # i - k (T) i g \ y - + l (k (T) f x) (y * - y ~)

- 2 h e t , A (T - T „) (y * - y ~) = p (x , t) Q w (x , t) (4.5)

where /3 = (y+ — y ~) (c e a —1). Then Q v is used in (4.1) (instead of Q w) which is

solved as a direct problem with T p being the corresponding temperature distribution.

Then, the function /? is calculated as follows,

a , ^ Q p (x , t) T p (x , t)
= N = TU~T, 7T (4-°)

T y X iy w , t j

where T (x , y w , t) is the temperature at the weld line retrieved by solving the sub-

problems. That is, to determine the proportional factor /3, replace Q w by Q p in (4.1)

v t O T

CHAPTER 4. A WELDING PROBLEM 45

and solve it as a direct problem in order to obtain the corresponding temperature

distribution T p (x,t). Hence /3 can be computed. Then the true source Q w may be

retrieved from (4.5) after (5 is calculated from (4.G). Note that it is not necessary to

compute {y+ - y~){c ea - 1).

4.4 Numerical example

The two subproblems are solved by using the Newton's method as described in

S e c t i o n 3 . 4 . 3 o f t h e p r e v i o u s C h a p t e r . F o r t h e w e l d i n g p r o b l e m , t h e f u n c t i o n F [T)

and the corresponding Jacobian ,/(T) are defined as follows,

F(T) = c "f " l (k(T) f' -| + 2h -" A(T ~ 7«> < 4-7)

J { T) = c e £ t - k ' ^ - k g i - k " (^) 2 - 2 k ' ^ - g - - k ' % £K ' at ox* ox' ^ox' dx dx dy1

1,°'' k"(dT V U ' dTd
+ ?.l, A 14 M

~ k W ~ ~ » i i d i K " ('

F (T) and J { T) are obtained by a second order finite volume discretisation which

leads to a set of a large sparse linear system and it is solved by using PETSc. The

solution of SP'2 retrieves the temperature at the weld line. The temperature at,

and around, the weld line is used to retrieve the unknown source term as described

above.

4.5 Validation

The source term, Q w , (as well as other coefficients) of equation (4.1) is known.

Numerical results obtained from this direct problem can be used to validate the

numerical results obtained from the inverse problem. A numerical example for the

welding problem as given in (Argyris et al., 1985; Demirdzic and Martinovic, 1993)

is used in validation. The example provides the heat transfer rate from electric arc

to the steel plate, that is a direct problem can be defined. To solve the welding

problem (4.1) the following set of physical data was used in the sample:

Q w - 1350 W

T a = 293 K

h eff = 60 W / m ? K

CHAPTER 4. A WELDING PROBLEM 46

p = 7850 k g / m 3

c = 6 0 7 J / k g K

L = 2 7 2 k J / k g

T s = 1 8 4 3 I <

T i = 1863 K

where T s is the solidus temperature and 7} is the liquidus temperature. The liquid

fraction fi is evaluated as,

f i = {

0 if T < T S

if T . < T < T ,

1 i f T > T ,

The nonlinear conductivity is given by,

k (T) =
+ 64.9448 if T < 1035AT

+ 18.6016 if T > 1035A'

The initial and boundary conditions are,

T i = T a

B o = B , = k % + h , . , , (T - T .) = 0

Co = f = 0

C i = fcf + K f J (T - T a) = 0

The direct problem is solved by using a second order finite volume discretisation.

The source is applied only at cells which were at the given instant of time under

immediate influence of the electric arc. A mesh size of 50 x 50 is used to obtain

the following numerical results. Figure 4.4 shows the two dimensional temperature

distribution at t — 75s. At this time step the arc is passing the midsection of

the plate (x = 0.2b,y = 0). Therefore, the temperature is at its highest at this

section. Thermocouple temperature measurements are available for this problem

from MPA, Stuttgart (Argyris et, al., 1985). Figures 4.5 to 4.7 show the comparison

of numerical results with the thermocouple measurements. Figure 4.5 compares the

CHAPTER 4. A WELDING PROBLEM 47

numerical results with measured results when the arc is passing the midsection of the

plate. Figure 4.G shows the comparison at 7.5s later, as expected cooling has begun

(since the arc has moved downstream from the midsection). Figure 4.7 shows the

temperature history at the midsection, it illustrates the rapid heating to the melting

point when the arc approaches the midsection and the gradual cooling thereafter

when the arc has passed the section.

0.2o 25 n ->

x (m) a3 0-35 a4 0.45

T (K)
2000 -

1500 -

T'
1.8e+03
1.6c+03
1.4e+03
1.2e+03

800 -
500
300

Figure 4.4: Temperature distribution at t = 75s.

To solve the inverse problem, sensors are placed at ys = 0.0033, which is close

enough for accurate measurement but not too close for extremely high temperature.

The following results are obtained using the mesh configuration of 200 x 200. Figure

4.8 shows the accuracy of the retrieved temperature field at x = 0.25 and t — 75s.

At this time step, the electric arc is passing over the point x = 0.25 and y — 0

(midsection), and as expected it generates high temperature values (and gradients)

around this point. Figure 4.9 shows the accuracy of the retrieved source term at

x = 0.25 and y = 0. The source retrieval is only activated when the electric arc

is passing over this point. The run time to simulate 300 seconds of temperature

CHAPTER 4. A WELDING PROBLEM 48

2000

'numerical'
'measured'1800

1600

1400

1200

1000

800

600

400

200
0.06 0.070.04 0.050.030 0.01 0.02

Figure 4.5: Temperature distribution at x=0.25m and t = 75s.

evaluation, for 200x200 mesh with A x — 0.1, is 163 seconds on a Sun sparc-20 with

320Mb memory.

4.6 Closure

As illustrated in here (as well as in Chapter 3), the homogeneous and continuous

subproblems generated due to problem partitioning (domain decomposition) facili-

tate the use of existing numerical methods and software (e.g., PETSc). This is an

important advantage to industry as such numerical methods and software are very

reliable, economical and well tested.

The direct problem is solved satisfactorily, considering that only the mean val-

ues of the material properties are used, apart from the temperature dependent heat

conductivity. The numerical results from this direct problem are used as a set of

validation for the comparison with the numerical results obtained from the inverse

problem. The source retrieval method is equivalent to the one explained in Chapter

3. It is a simple and fast method. As shown in Section 4.5, the domain decomposi-

tion based algorithm retrieves the temperature field and the unknown source term

accurately.

CHAPTER 4. A WELDING PROBLEM

1300

'numerical'
'measured'200

1100

1000

900

800

700

600

500

400

300

200
0.01 0.02 0.03 0.05 0.06 0.070 0.04

Figure 4.G: Temperature distribution at x=0.25m and t, = 82.5s.

2000

'numerical'
'measured'1800

1600

1400

1200

1000

800

600

400

200
50 100 150 200 250 300

Figure 4.7: Temperature history at x—0.25m and y=0m.

CHAPTER 4. A WELDING PROBLEM 50

2000

1800

1600

1400

1200

exact temperature
derived temperature

0.02 0.04 0.06 0.08 0 . 1 0.12 0.14 0.16

Figure 4.8: Accuracy of the temperature distribution at x=0.25m and t=75s.

9e+10

8e+10

7e+10

6e+10

5e+10

4e+10

3e+10

2e+10

le+10

0

retrieved source
true source

74 74.5 75 75.5 76 76.5 77

Figure 4.9: Accuracy of the source retrieval.

Chapter 5

Sensitivity analysis

Physical measurement, however carefully made, always contains some errors (Taylor,

1997). Inverse problems are extremely sensitive to such errors (Beck et al., 1985).

Therefore, any algorithm developed for solving such problems should be tested for its

ability to deal with noisy measurement data. In inverse problems there are a number

of measurement quantities, such as material properties, sensor locations and time,

in addition to temperature. Each is assumed to be accurately known apart from the

temperature. In other words, temperature measurement contains the major source

of error and the error is assumed to be random. Any known systematic errors due

to calibration, presence of sensors, etc. are considered to be negligible.

To test the algorithms developed in Chapter 3, random errors are introduced to

the exact temperature values, T e, as follows,

where, T s is the sensor temperature, T e is the exact temperature, e is a constant in

(0,1], R(i is a vector of uniformly distributed random numbers in [-1,1].

Novel contribution in this chapter is the a priori treatment of sensor data. That

is, the level of noise in the sensor data is smoothed before applying the algorithms

described in earlier chapters to solve inverse problems.

5.1 Sensor data smoothing

One of the simplest noise smoothing techniques that can be applied is to minimise

the problem,

T s = T e + e x R d x max \ T \ (5.1)

min || T-T, Hi, (5.2)

51

CHAPTER 5. SENSITIVITY ANALYSIS 52

The minimisation amounts to a least squares polynomial fitting. As will be shown in

the following section this provides a satisfactory level of noise treatment to retrieve

the unknown source term.

There are many other smoothing techniques that can be applied to reduce noise

(Tai et al., 1997; Lai et al., 1999). One of them is to solve the minimisation problem,

min ||VT||| 2 , subject to the constraint \\T — T s\\ 2
l2 = c 2 , where o is the noise level.

This method is shown to retrieve the discontinuities in source term better than the

least squares method (Lai et al., 1999). However, the method distorts the source

term considerably when sensor data contains 10% noise.

5.2 Examples

In the following examples three levels of error in sensor data are considered; e =

0.001, e = 0.01 and e — 0.1 corresponding to 0.1%, 1% and 10% respectively. Fig-

ures 5.1 to 5.3 show the results of retrieving the source term with noisy sensor data

for the problem described in Section 3.C. It clearly shows that the noisy measure-

ment data can not be directly used to retrieve the source term. Therefore, some

kind of treatment must be applied prior to using such temperature measurements.

Figure 5.4 shows the noisy (1% noise) and smoothed sensor data. This and all

other smoothing are carried out using 7 th degree polynomial fits, this gave the best

fit (correlation coefficient) to the noisy data sets generated. Lower order polynomi-

als gave poor fits whereas higher order ones did not improve upon the 7 th degree

polynomial fits.

In the following examples the noise present in the measurement data is smoothed

using the above least squares method. Then the inverse algorithms are applied to

retrieve the source term.

5.2.1 The metal cutting problem

The three algorithms, with the problem given in Section 3.G, are tested with smoothed

data. Figures 5.5 to 5.13 illustrate the source retrieval using the mesh size of 40, for

the three algorithms, with the three levels of noise mentioned above. The overall

shape of the actual source is maintained for 0.1%, 1% and 10% of random noise.

That is, using such a simple sensor data smoothing, the algorithms can retrieve the

CHAPTER 5. SENSITIVITY ANALYSIS

7

retrieved source

OJo

4

6

5

J \

true source

3Ooo

-1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 5.1: Retrieved source with 0.1% error in sensor data.

unknown source term satisfactorily even when there is 10% noise presence in the

measurement data.

5.2.2 The welding problem

The welding problem described in Chapter 4 is also tested for the sensitivity of

the algorithm to noisy sensor data. Figures 5.14 to 5.16 show the source retrieved

for the three levels of noise with the above smoothing applied to the sensor data.

The source is retrieved accurately for 0.1% and 1% error levels in sensor data. The

retrieved source is less accurate when there is 10% noise in the sensor data.

The heat source retrieval relies on the use of accurate sensors for temperature mea-

surements. However, since there will always be some level of noise presence in mea-

surements, smoothing (noise treatment) is necessary before retrieving the source.

Noise treatment using least squares polynomial fitting is adequate to retrieve the

unknown source term when noisy sensor data are used.

5.3 Closure

(7 / \ / , 7 7 .7 « 5 . ,S7'.7V.S7/7\7 /'V \ N . \ I . Y S I S

rollicvctlSOIIHV

liin-stunit

i i i i i i i i i
0.01 ().().' (KM 0.01 0.0S DDI. 0.0/ DOS 0.0') 0.1

Iiim*

.'III)()

ISO!)

1 000

vQc3Q SOI)

0

soo

line souiit

1000 i i
0.01 0.02 0.0,1 0.0-1 0.0S 0 00 0.0/ 0 OK ()()'>

lime

I I
icli it'Vt'tlst>I I It r

I' ij',11re Kelrievetl source 1(1% error in sen.soi d.il.i

CHAPTER 5. SENSITIVITY ANALYSIS

0.012

0.01

0.008

0.006
*
H

0.004

0.002

0

-0.002
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time

Figure 5.4: Noisy (1%) and smoothed sensor data.

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

-0.5
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 5.5: Retrieved source using Algorithm 1 with 0.1% error in sensor data.

Noisy T*
smoothed T*

retrieved source
true source

CHAPTER 5. SENSITIVITY ANALYSIS 56

retrieved source
true source4.5

4

3.5

2.5

0.5

0
0.01

Figure 5.G: Retrieved source using Algorithm 1 with 1% in sensor data.

I I 1 i
retrieved source

true source

i I I I I I I I I
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0

time

Figure 5.7: Retrieved source using Algorit hm 1 with 10% error in sensor data.

CHAPTER 5. SENSITIVITY ANALYSIS

retrieved source
true source4.5

3.5

2.5

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 5.8: Retrieved source using Algorithm 2 with 0.1% error in sensor data.

retrieved source
true source4.5

2.5

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 5.9: Retrieved source using Algorithm 2 with 1% error in sensor data.

CHAPTER 5. SENSITIVITY ANALYSIS

retrieved source
true source4.5

3.5

2.5

0.5

-0.5
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

time

Figure 5.10: Retrieved source using Algorithm 2 with 10% error in sensor data.

retrieved source
true source4.5

3.5

2.5

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 5.11: Retrieved source using Algorithm 3 with 0.1% error in sensor data.

CHAPTER 5. SENSITIVITY ANALYSIS 59

<uu1_
3O

00

retrieved source
true source

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.
time

Figure 5.12: Retrieved source using Algorithm 3 with 1% error in sensor data.

<DOu.DO
00

n 1 r
retrieved source

true source

_T 1 1 1 r

3 -

? -

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 5.13: Retrieved source using Algorithm 3 with 10% error in sensor data.

CHAPTER 5. SENSITIVITY ANALYSIS 60

4.5c+10

4e+10

3.5e+10

3e+10

2.5e+10

2e+10

1.5e+10

le+10

5e+09

0

retrieved source
true source

74 74.5 75 75.5 76 76.5 77

Figure 5.14: Retrieved source for the welding problem with 0.1% error in sensor

data.

4.5e+10

4e+10

3.5e+10

3e+10

2.5e+10

2e+10

1.5e+10

le+10

5e+09

0

retrieved source
true source

74 74.5 75 75.5 76 76.5 77

Figure 5.15: Retrieved source for the welding problem with 1% error in sensor data.

CHAPTER 5. SENSITIVITY ANALYSIS 61

4.5e+10

4e+10

3.5e+10

3e+10

2.5e+10

2e+10

1.5e+10

le+10

5e+09

0
74 74.5 75 75.5 76 76.5 77

Figure 5.16: Retrieved source for the welding problem with 10% error in sensor data.

retrieved source
true source

Chapter 6

Exploiting parallelism

Algorithms for 2d and 3d inverse problems (as well as direct problems) usually

involve a large amount of computation. Also in many industrial applications real-

time computation (e.g., one minute of temperature evolution is calculated using 110

more than one minute of computation time) is required. Therefore, investigation and

exploitation of parallel properties of algorithms is important in order to produce fast

solutions. Another advant age of parallel computation is that very large problem sizes

(i.e., problem sizes that may not fit into the memory of a single-processing element)

can be solved by using the total memory available from all of the processors.

Although the primary aim is to decrease the program execution time, it is also

important to investigate the scalability and resilience to increasing processor count,

of the algorithms. Another important aspect of parallel implementations is the

portability of the software to other platforms. This portability will ensure that

the software can be run 011much larger (in terms of number of processors) parallel

machines.

The parallel implementations are mainly tested 011a networked workstation clus-

ter (a distributed computing system). This type of parallel computing platform is

becoming increasingly popular, due to low hardware and software costs, increased re-

liability of the networked computers and increased bandwidth of the communication

network (Foster, 1995).

A theoretical performance model is also developed in this chapter to study one

of the implementations. The theoretical model is validated against experimental

results. The study shows the degree of usefulness of such a model for predicting

performance of parallel implementation 011 a network of workstations.

62

CHAPTER 6. EXPLOITING PARALLELISM G3

The parallel properties of the three algorithms are examined with respect to the

metal cutting problem.

Novel contributions in this chapter are the development of parallelisation strate-

gies for implementing the algorithms developed in Chapter 3 in parallel computing

environments. The exploitation of "domain parallelism" and "domain-data paral-

lelism", explained in the following section, will illustrate the simplicity of paral-

lelising the problem partitioning based algorithms. This chapter also introduces a

method of grouping inter-processor communication in the context of domain de-

composition algorithms. The "inter-domain" and "intra-domain" communications,

defined in Section G.3.2, group inter-processor communications in terms of the algo-

rithms and aid developing good parallelisation strategies.

6.1 Parallelisation strategies

Good parallelisation strategies generate a good load balance amongst processors

and reduce the volume of inter-processor communications. Therefore, the follow-

ing parallelisation strategies for the algorithms primarily try to satisfy these two

conditions.

An advantage of using the domain decomposition approach to solve inverse prob-

lems is that the technique naturally provides a coarse-grained parallel algorithm. In

other words, each subdomain generated due to the problem partitioning can be

mapped directly to a processor and these subproblems may be solved concurrently.

This primary level of parallelism is referred to as "domain parallelism" (Ierotheou

et al., 1998). However, domain parallelism has an obvious restriction in that it

is limited by the number of subdomains and therefore it does not scale with an

increasing number of processors. Since each subdomain consists of a homogeneous

subproblem, data partitioning may then be carried out within each subdomain. This

secondary level of parallelism is referred to as "domain-data parallelism" (Ierotheou

et al., 1998). In partitioning the data, the number of grid-points associated with

each of the subproblems is divided amongst the processors as evenly as possible. If

N denotes the number of grid points and P denotes the number of processors and if

is not an integer, then some processors will have more grid points than others. As

a result, the remaining data are distributed as evenly as possible so as to minimise

the load imbalance amongst the processors.

CHAPTER 6. EXPLOITING PARALLELISM G4

Considering Algorithm 1, the computational work performed in subdomain D 2

is much smaller (due to sensor and cutter points being very close to each other) than

D[and Z)3. Also, calculations in D { can be carried out independently and gradients

from D 2 and D 3 at x = x c are used to retrieve the source term. Hence, to minimise

the amount of communications and to give a better load balance amongst the pro-

cessors, the parallel implementation of Algorithm 1 is carried out as follows. D\ is

assigned to one group of processors and D 2 and D 3 are assigned to another group of

processors, see Figure 6.1 (dotted lines represent data partitioning). Each proces-

sor in a group exploits the data-parallelism within the subdomain or subdomains it

owns.

For Algorithm 2, three groups of processors are created, one subdomain for each

group, see Figure 6.1. In order to re-use the in-house software for initial value

problem, D 2 is isolated. Again, each processor within a group exploits the data-

parallelism in the subdomain it owns, see Figure 6.2. In Algorithms 1 and 2, there is

a homogeneous data dependency within each subdomain. Therefore, data partition

along x- and y- axes can be carried out arbitrarily within each subdomain.

In Algorithm 3, all three subdomains are solved using one global linearised sys-

tem. Therefore, data parallelism is used to partition the global linearised system into

blocks. However, data partitioning along the :r-axis may produce blocks with dif-

ferent sparsity structures, depending upon how D 2 is allocated between the blocks,

and therefore with potentially different load balances and interprocessor message

patterns. Hence, data partitioning is only carried out along the y- axis.

D1 D2 D3

Figure 6.1: An example of partition for Algorithm 1

CHAPTER 6. EXPLOITING PARALLELISM G5

D1 D2 D3

Figure 6.2: An example of partition for Algorithm 2

\ \ \ \ \ \ \ \ \ \ \ \ N \ N ^ \ \ \ \

" 77 7 7 7 7 — 7 — // / — / / / / / / / / / / /
D1 D2 D3

Figure G.3: An example of partition for Algorithm 3

6.2 Parallel performance results

The following performance results are obtained for the problem described in Section

3.5. The parallel implementation of Algorithm 1 uses FORTR AN with MPI (Forum,

1995) calls for message passing. The parallel implementations of Algorithm 2 and

Algorithm 3 use PETSc (Balay et al., 1999) in addition to FORTRAN and MPI.

In Algorithms 2 subdomains D y and D 3 are parallelised and solved by PETSc and

subdomain D 2 is parallelised and solved by the inhouse software. In Algorithm 3,

the linearised system is partitioned and solved by PETSc. PETSc uses MPI for

inter-processor communications. The parallel implementations of the Algorithms

were tested on a network of Sun Sparc 5 workstations connected together by an

Ethernet network. The parallel versions are portable to any Unix based platforms

-

CHAPTER 6. EXPLOITING PARALLELISM 66

since FORTRAN, MPI and PETSc are available for these platforms. The execution

times and the speedups are given in Figures 6.4, 6.5 and 6.6. Algorithm 1 shows very

good scalability with increasing number of processors. This is due to the explicit

methods in the Algorithm which avoid global synchronisations. Only halo (ghost)

points need to be communicated between processors. Halo points define a set of

points that is required by a processor, to complete its computation, which resides

in the memories of its neighbouring processors. The other two Algorithms require

additional communications in each step of the iterative scheme that lead to more

moderate speedups.

6.3 A parallel performance model

A theoretical performance model is developed to analyse the performance of the

parallel version of the Algorithm 1 on a network of workstations. The theoretical

model is compared with experimental results. This exercise is carried out to see the

practicality of using a theoretical performance model to optimise a parallel imple-

mentation. It is well known that such a model identifies early potential bottlenecks

and other inefficiencies. Therefore, if necessary, design changes can be made before

developing codes. However, the complexity of the theoretical performance model

will determine how practical it is for design optimization.

The reason for choosing a network of workstations is that this type of distributed

computing platform is becoming more popular and may form the basis of future

parallel computing architectures (McColl, 1995; Burgess and Giles, 1995). Hence,

the performance evaluation of algorithms on such parallel computing platforms is

of interest. Performance evaluation of parallel algorithms is a complex issue due to

many factors that may affect the algorithmic performance on a specific architecture

(Dongarra and Dunigan, 1997). Such factors are due to software and hardware

choices made during an implementation. Software factors include design decisions

made such as the decomposition method, the compiler used and, in the case of

an explicit message passing model, the communication library used (e.g., MPICH

(B. Gropp and Doss, 1994), PVM (Geist et al., 1994) etc.). Some of the hardware

factors include the type of processors used, levels of memory hierarchies in the

platform (Burgess and Giles, 1995; Faringer, 1997; Keyes et al., 1997), processor

to memory bandwidth (Burgess and Giles, 1995), type of communication network

I

CHAPTER 6. EXPLOITING PARALLELISM 67

etc. A detailed discussion of hardware choices and their effect 011the performance

of message passing programs can be found (Dongarra and Dunigan, 1997). The

MPICH communication library, which is used to implement the parallel version of

the algorithm, is an implementation of MPI (Forum, 1995). A study carried out

by Nupairoj (Nupairoj and Ni, 1994) considers the performance characteristics of

different MPI implementations 011a network of workstations. As shown in this study

the performance of an MPI program may vary depending on the implementation

used.

Modelling all factors would be too complex and may not be practical. For ex-

ample, if software overheads such as protocols of a communication library are to be

modelled, then the model would have to be adjusted every time a new communica-

tion library is used. Similarly, hardware features such as processor topologies vary

with different platforms. To keep the performance model relatively simple, explicit

modelling of some hardware and software factors are avoided. Instead, many of

the above factors may be encapsulated by empirical data. For example, a commu-

nication test between two processors could be used to encapsulate communication

protocol complexities, effects of network bandwidth etc. Such tests can be easily

performed on different hardware and software platforms. However, it is important to

be aware of the limits of the empirical data. For example, a communication model

derived from a set of empirical data would be valid within the limits of message

lengths being communicated in the test, and it may not necessarily be valid out of

the limits. Also, the communication test described above will not include the effects

of network contention due to larger number of processors trying to communicate

simultaneously. Such factors become significant particularly when smaller problem

sizes are used with a larger number of processors. This will be illustrated in the

numerical tests given in Section 6.3.4.

Another factor that is not included in the following performance model, but may

be important when solving very large problem sizes (e.g. > 1 million nodes), is the

memory hierarchy (Burgess and Giles, 1995; Faringer, 1997; Keyes et al., 1997).

For the range of problem sizes used in our experiments this factor does not have

any significant influence 011 the predicted performance. The following performance

model is built in order to study the performance results of the parallel execution.

The theoretical performance model may be validated by using the parallel execution

time and it may be used to show the limitations of the model. Computation and

CHAPTER 6. EXPLOITING PARALLELISM 68

communication times for each sub-domain are modelled, in order to describe the

program run-time for a time-step.

6.3.1 Computation time

The sub-domains D x and Z)3 are computed using the five-point explicit scheme (3.8).

Define a single precision floating point operation as the average time to execute an

addition, subtraction, multiplication or division operation. Let N\ and iV3 be the

number of grid points along ^-direction in D x and Z)3, respectively. Also let N y be

t h e n u m b e r o f g r i d p o i n t s a l o n g y - d i r e c t i o n . T h e n f r o m (3 . 8) , w i t h n o n - l i n e a r k (u)

and u*(y,t) as given in Section 3.5, the number of single precision floating point

operations per time step in D\ is N y (45Ni + 22). In D 3 , u*(y,t) is absent, hence

it performs A ŷ(45A 3̂ + 2) single precision floating point operations. Therefore, if

P processors are used and 7\, T 3 are the computational times per time-step per

processor for D x and Z)3 respectively, then

N
Ti = (rf-p 1(45^ + 22) (6.1)

T 3 = i,f^l(45/V 3 + 2) (6.2)

where t r is the computation time for a single precision floating point operation. Sub-

domain Z)2 performs the Euler P-C method (3.15). If the number of grid-points in

the ^-direction is N 2 and the same k(u) as in D u Z)3 is used, then the computation

time for this sub-domain can be written as,

N
T2 = a-/I (96 ^2 + 28) (6.3)

Numerical experiments performed on Sun Sparc 5 workstations showed that an

integer operation takes about the same time as a single-precision floating point

operation. Therefore, the number of integer operations for each sub-domain must

also be considered in-order to establish the theoretical computing time. Note, integer

operations are required in the implementation to manipulate vectors and therefore

all such operations are not apparent from the numerical schemes. The computation

times for each sub-domain, including integer operations, are given by,

T , = [^l(t r (45W 1 + 22) + t,(15 N I + 17)) (6.4)

N
T 2 = r-^l(i r (96iV 2 + 28) + t , { 2 m + 2)) (6.5)

CHAPTER 6. EXPLOITING PARALLELISM G9

/V
T3 = (tr(45A^3 + 2) + ti(15Nz + 32)) (6.6)

where t t is the computation time for an integer operation. The real operations and

integer operations are kept separately because this provides the flexibility to apply

the model to other distributed computing environments where the two operations

may not take the same amount of time.

6.3.2 Communication time

For the type of problem partitioning strategy considered 111this thesis, there are two

types of communications being carried out. Firstly, inter-domain communications

which define the communication between sub-domains or groups of sub-domains.

Secondly, intra-domain communications which define the communication within

the sub-domains (Figure 6.7). In the implementation, calculations in D\ are carried

out 111 a group of processors and calculations in D 2 and D:i are carried out in an-

other group of processors. The inter-domain communication is between the above

two processor-groups. The group that performs D\ computation sends N y single

precision floating point numbers to the other group. Let Tc{l) be the communica-

tion cost of transferring I single precision numbers. Then, the communication cost

for the inter-domain communication, T inter , is

(Note, P is the number of processors in a processor-group.) For intra-domain com-

munication all processors within a group perform this communication simultane-

ously. The sub-domains Dx and D:i communicate N\ and 7V3 lengths of data, re-

spectively, per intra-domain communication, and there are 4 such communications.

These are the two "send" and two "receive" operations required for the data ex-

change between the neighbour processors (i.e., the two-way intra-domain communi-

cation in figure 6.7). I11 D 2 , the length of data being communicated is 1. This is the

temperature at the surface of the partition for each grid point along the x-direction.

There are 8 such communications, 4 for the predictor step and 4 for the corrector

step. Since there are N 2 grid points along the x-direction in D 2 , the total number of

inter-domain communications for this sub-domain is 8N 2 . Let the communication

costs for D u D 2 and D 3 be T Cl , T C2 and T Cs , respectively, then

Tinter = T C (\^]) (6.7)

T c , = 4T c(iV 1) (6-8)

CHAPTER 6. EXPLOITING PARALLELISM 70

I T C2 = SN 2 T c (1) (6.9)

T Cs = 4T c (N 3) (6.10)

I

6.3.3 Parallel execution time

Based on the discussion above, let the two processor groups be (j\ and g2 , then the

run time for each group, T gi and T 92 , can be calculated as:

Tgi = T\ + Tc l + Ti nter (6-11)

T g2 = T 2 + T3 + Tc2 + TC3 4- Ti nter (6-12)

That is,

N N
T gi = r^l(«r(45M + 22) + ^(15^ + 17)) + 4 T c { N {) + T c { \ - ± 1) (6.13)

T g2 — (t r (9 6 N 2 + 45A^3+ 30) + t i (2 9 N 2 + I5./V3+ 34))

N
+ W 2 T c (l) + 4T c(iV 3) + T C (T-^ 1) (6.14)

Therefore the total run-time for the algorithm, T r , is assumed to be the run-time of

the slowest group, i.e.,

T r = max(T 5l , Tg.2) (6.15)

Note, although the message length in inter-domain communication decreases as P

increases, T inter may not necessarily decrease due to the increase in competition

for the communication network. Also, in the domain-data parallel version of the

algorithm there is 110 intra-domain communication when only two processors are

used. Hence, the terms T Cl , Tc 2 and Tc z are dropped in this case.

6.3.4 Experimental results

To collect observed run times for different problem sizes and number of processors,

the domain-data parallel version of the numerical algorithm is implemented using

FORTRAN 77 with message passing MPI (MPICH) calls. This implementation is

tested on a set of Sun Sparc 5 workstations connected together by a 10 Mbits per

second ethernet network which returns performance of up to 600kBytes per second

(the network used is a general purpose network not a dedicated testbed). Each

workstation has a 70 MHz processor and 32 Mbyte RAM.

CHAPTER 6. EXPLOITING PARALLELISM 71

Two of the parameters required for the theoretical model are t r — 6.0 x 10 -7 s

and ti = 6.0 x 10 -7 s. Define I as message length, a communication test was carried

out to obtain communication times, Tc(l), for messages of increasing lengths. For

each length, the send and receive operations are repeated a number of times in order

to get good average times for such operations. The range of the message lengths is

between 1 to 200 since this is the range that is used in the testing of the algorithm.

It is important to note that the communication test only uses two workstations and

may not reflect competition for the communication network that is more likely to

occur due to larger number of processors trying to communicate simultaneously.

Statistical regression was applied to this data to obtain the following relationship

between message length and communication time.

T C { 1) = 1.02 x 10" 3 + 5.19 x 10~ 7/ - 1.36 x 10 -8 / 2 + 1.09 x 10~ 10 /3 (6.16)

According to equation (6.16), the communication startup latency is 1.02 x 10 _,i s.

A cubic polynomial fit to the empirical data is chosen because this gives a better

least-square fit to the data than the linear- or square- polynomial fit. Figures 6.8 to

6.13 show the theoretical and observed run times for different number of processors

and different problem sizes, Proc is the total number of processors used. Since

there are only two groups of processors and the load is evenly balanced between

them, each group gets half of the total number of processors, i.e., P —'-~L.

The problem sizes in Figures 6.8 to 6.13 are displayed as N y x N x , where N y is

the total number of grid point along y-direction and N x is the total number of

grid points along ^-direction. That is, the five problem sizes in Figures 6.8 to 6.13

should be interpreted as 50 x 100, 100 x 100, 200 x 100, 200 x 200 and 400 x 200.

The theoretical and observed times are very close for smaller number of processors,

e.g., Proc — 2,4,6. A significant difference starts to appear, in particular, for

smaller problem sizes, when a relatively higher number of processors is used, e.g.,

Proc — 8,10,12. For smaller problem sizes the communication time, T C{1), plays a

significant part in the overall run times. Prediction of Tc{l), in an ethernet network

becomes very complicated due to the fact that a larger number of processors is

trying to transmit frames (packets) at the same time, this could potentially result

in significant number of frame-collisions in the communication medium. Every time

such a collision is detected, frame transmission is delayed (randomly) and predicting

this delay is difficult for a general purpose ethernet network. For larger problem

sizes the computation time dominates the communication time, hence the effects of

CHAPTER 6. EXPLOITING PARALLELISM

TQ(1) is not significant. In general, the theoretical model gives better predictions for

larger problem sizes, irrespective of the number of processors. For example, when a

problem size of 400 x 200 is simulated, the theoretical run time is very close to the

observed run time (Figures 0.8 to 6.13).

6.4 Closure

By exploiting the parallel properties of the three algorithms described in Chapter 3

faster versions of the algorithms were developed. As shown in section 6.2, the perfor-

mance improvements are significant even on a distributed computing environment

like the network of Sim workstations. It is clear that use of a domain decomposi-

tion method has simplified the parallelisation of the algorithms since subdomains

provided us with coarse-grain level parallel algorithms. Two additional tasks were

required in order to carry out an effective parallelisation. One of them is to consider

whether to combine two or more subdomains into a group of processors or to solve

each subdomain in a group of processors so that a good load balance is obtained

amongst processors and reduced communication costs can be achieved. The other

task is the exploitation of further parallelism within each subdomain in the form of

data partitioning. This adheres to the hierarchical domain decomposition discussed

in Chapter 3.

The performance model developed for Algorithm 1 shows that all the implemen-

tation details have to be considered in order to derive an accurate model. Some fac-

tors, such as communication protocol complexities that were required, were derived

from empirical data. This was necessary in order to develop a useful and practical

model. The performance model gives accurate predictions for large problem sizes.

CHAPTER 6. EXPLOITING PARALLELISM

Sun Sparc 5.0 timings

30000 i

-+—10000 (100x100)

-X— 20000 (100x200)

40000 (200x200)

-o— 80000 (200x400)

25000 -

20000 -

</>

| 15000

10000 -

5000

121 0Serial 2 6 84

Number of processors

Sun Sparc 5.0 Speedups

10

-+— 10000 (100x100)

-x— 20000 (100x200)

—6—40000 (200x200)

—Q— 80000 (200x400)

9

8

7

6

5

4

3

2

2 4 6 8 10 12

Number of processors

Figure 6.4: Parallel performance results for Algorithm 1

CHAPTER 6. EXPLOITING PARALLELISM 74

Serial and parallel run timesfor algorithm 2
(Sun Sparc 5s)

1600

1400

1200
— 1000

V)

<L>800
E 600

400

200

0

1

_ _n_ -20000(200x100)

—-o—. 40000(400x100)

...A-.. 80000(400x200)

*- A- - . . .

L

-CL-
-O-

' A• . . .

- A it IT
" • A - - -A

5 7

Number of processors

i—
11 12

Speedips for algorithm 2

(Sun qsa rc 5s)

CL~
3 O
•D0)d)
Q. 2

_ . a .

•••A-•

• 20000(20Cb<100)

- 40000(400x100)

• 80000(400*200)
**

. . • •-A
0

. . .. •

3 5 7

Mmber of Processors

11 12

Figure 6.5: Parallel performance results for Algorithm 2.

CHAPTER 6. EXPLOITING PARALLELISM

Serial and parallel run times for algorithm 3

(Sun Sparc 5s)

700-I _ -0_ -20000(20Ck100)

600-L - - 0 - - 40000(40Q<100)

500- •--A- •80000(400(200)

2 400<
O)
i 300J

1

' •A- - . . .
A-

'" • A-

200J 3_

100- - - _ _o- • _ _

0-
3 5 7 11 12

Mjmberof processors

Speedups for algorithm 3

(Sun Sparc 5s)

5-1

4-

Q.o3 3-
•D0)
Q.2

</)

.. -A""
' , a - . .

_ . , ,• A-" ""

_ . 0- • •-
.0 - . .

#. * *
. . A " '

.-0- "

•-A

..0

5-1

4-

Q.o3 3-
•D0)
Q.2

</)

. *

* * _ . 20000(20Ck100)

1•
r _ .o_ . 40000(400(100)

-• -A-•- 80000(400(230)
UH

3
V

5 7
*

11 12

ISLmberof processors

Figure 6.6: Parallel performance results for Algorithm 3.

CHAPTER 6. EXPLOITING PARALLELISM

a - intra-domaincommunication

b - inter-domaincommunication

D1 D2 D3

Figure C.7: An example of the implemented partition.

Proc = 2

•x—Theoreticaltime

-o— Observedtime

100
100

I 0.6 -

200
100

200
200

400

200

probleasize

Figure C.8: Theoretical and observed run times for Sun Sparc 5s when Proc = 2.

-

CHAPTER 6. EXPLOITING PARALLELISM

Proc = 4

0.8 I

0 . 7 -

0.6 •

VI 0.5 •w
if 0.4 •
i

0 . 3 -

0 . 2 -

0.1

0
50

100

•x-- Theoreticaltime

-o— Observedtime

_ *>

100
100 100

200
200

400

200

probltBsize

Figure C.9: Theoretical and observed run times for Sun Sparc 5s when Proc = 4.

Proc = 6

0.6

Observedtime
0.5

0.4

0.3

0.2

0.1

0
400200200100

100 100 100 200 200

problta size

Figure 6.10: Theoretical and observed run times for Sun Sparc 5s when Proc = C.

CHAPTER 6. EXPLOITING PARALLELISM 78

Proc = 8

0.4

Observedtime0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
50 100 200 200 400
100 100 100 200 200

problta size

Figure 6.11: Theoretical and observed run times for Snn Sparc 5s when Proc = 8.

Proc = 10

- Theoreticaltime

0.35

0.25•

0.05

0T 1 i I '
50 100 200 200 400

100 100 100 200 200

probleasize

Figure 6.12: Theoretical and observed run times for Sun Sparc 5s when Proc — 10.

CHAPTER 6. EXPLOITING PARALLELISM 79

i

Proc = 12

0.25•

v
I
UII

0.05

0
50 100 200 200 400
100 100 100 200 200

probltBsize

Figure G.13: Theoretical and observed run times for Sun Sparc 5s when Proc = 12.

I

I

Chapter 7

Further performance

enhancements

Performance enhancement in this chapter (and this thesis) refers to the fine tuning of

an algorithm in order to achieve further reduction in total execution time. Paralleli-

sation strategies considered in Chapter Gimproved the performance of the algorithms

significantly. In addition to the parallelisation strategies, there are other factors that

can be considered to improve the performance of an existing algorithm for nonlinear

problems such as those being considered in this thesis. This chapter aims to highlight

such factors and shows a novel approach that can be used to enhance the perfor-

mance of algorithms for nonlinear problems. It is envisaged that such performance

enhancement techniques may be incorporated into future automatic/semi-automatic

parallelisation tools and other automatic/semi-automatic load balancing tools.

Performance enhancement factors can be separated into pre-implementation and

implementation dependent factors (implementation in here and this thesis refers to

software implementation). Pre-implementation factors are mainly due to mathemat-

ical properties of a given problem. Some of the pre-implementation factors include

the choice of overlap region (in Schwarz type domain decomposition), preconditioner

and exploitation of nonuniform nonlinearity. Some of the implementation dependent

factors include the use of good data structures, efficient memory allocation (by us-

ing data locality) and compiler options. Some of the latter approaches are briefly

discussed in previous chapters. The contribution of this chapter is to exploit a

pre-implementation factor, namely the nonuniform nonlinearity, in order to further

enhance the performance of algorithms for nonlinear problems.

80

CHAPTER 7. FURTHER PERFORMANCE ENHANCEMENTS 81

I lie novel contribution of this chapter is the development of a method to ex-

ploit nonuniform nonlinearity in applications in order to improve performance of

algorithms for such applications. A metric is proposed in order to implement (Ik1

method.

7.1 Exploiting nonuniform nonlinearity

As mentioned in Chapter 2, the domain decomposition can be applied by considering

the nonlinear properties of a problem. One factor that may attribute* to the per-

formance is the change of nonlinearity in a partial differential equation. As pointed

out in (Keyes, 1998), when solving a problem with nonuniform nonlinearity, using

an iterative method such as the Newton's method, most of the work is being pen-

formed in the subrcgion where severe change of nonlinearity occurs. The regions

with less severe change of nonlinearity require less work (number of iterations). If

the problem is solved in the original domain, then unnecessary work is forced upon

the regions with less severe change of nonlinearity. This can be avoided and the

amount of computational work can be reduced by applying a domain decomposi-

tion method. If a subrcgion of a domain contains severe change of nonlinearity and

the rest of the domain has moderate change of nonlinearity then tlx" nonuniform

nonlinearity can be exploited as follows. Decompose the domain so that the region

containing the severe change of nonlinearity can be captured into one subdoinain.

Then solve the subdoinain with the severe change of nonlinearity till convergence

and then reset the corresponding region of the full domain with the converged result.

Finally, solve the full domain to convergence. Performance improvement is expected

since unnecessary computational work is avoided.

Since most of the work is done in the subdomain with the severe change of

nonlinearity, it is expected that the number of iterations to solve the full domain,

with the improved initial guess, will be reduced. Since the subdomain is small,

effective number of iteration to solve the nonlinear problem is reduced. Therefore,

total execution time is expected to be reduced. If the severe change of nonlinearity

is confined to a very small region then the overhead is minimal and significant

performance improvement is expected.

The subproblems in subdomains D\ and D 2 in the metal cutting problem (Chap-

ter 3) contain nonlinear heat conduction problems with high degree1 of nonlinearity.

cii.\rrb:n 7. rinrui'ii ni- 'HFOHMa.vcki - : x i i , \ . \ c f . \ i f . \ r s

l h e r e f o r e , s o m e p r e l i m i n a r y s t u d i e s a i t1 c a r r i e d o u t i n (I n s c h a p t e r t o . s e t 't l u >e f l e c

t i v e n e s s o f e x p l o i t i n g s u c l i a p r o p e r t y t o e n h a n c e t h e p e i l o r n i a n c e o f I h e a l g o i i t h t u s

1 h e p r o b l e m c o n s i d e r e d i s s i m i l a r t o t h e m e t a l c u t t i n g p r o b l e m . 1 l o \ v e \ e r , c u r r e n t1v ,

o n l y a s t e a d y s l a t e p r o b l e m i s c o n s i d e r e d i n o r d e i t o s i m p l i f y t h e s t u d s .

7.2 Nonlinearity of heat conduction problems

T os t u d y t h e f e a s i b i l i t y o f e x p l o i t i n g t h e p r o p e r t y o f n o u n n i l o r i n n o n l i n e a r i t \ i n o r d e i

t o f u r t h e r i m p r o v e t h e p e r l o r i m m e e o l I l i e a l g o r i th m I l i e f o l l o w i n g d i m e n s i o n l e s s 2 d

n o n l i n e a r , s t e a d y , h e a t c o n d u c t i o n e q u a t i o n , d e f i n e d i n t h e d o m a i n I) { (• ' . .1y)

0 < x < I a n d 0 < y < I } , i s c o n s i d e r e d :

0 . On 0 i)ii
(k(u) (/ . (/ /)) 0 e D, (7 . 1)

ux (/ . r uy ihy

w h e r e u (x , y) i s a d i m e n s i o n l e s s t e m p e r a t u r e d i s t r i b u t i o n , k (i i) i s t h e c o n d u c t . i v i t y

a n d t h e b o u n d a r y c o n d i t i o n i s i i y o n 0 1) . M e r e / . (/ /) i s t h e m a i n i n g r e d i e n t t h a t

i n t r o d u c e s n o n l i n e a r i t y i n t o t h e p r o b l e m .

D o m a i n d e c o m p o s i t i o n s h o u l d b e a p p l i e d s u c h t h a t m u c h o l I l i e s e v e r e c h a n g e o l

n o n l i n e a r i t y i s r a p t u r e d i n f o o n e s u b d o n i a i n . T h e m a i n c o n c e r n h e r e i s t h e l o c a t i o n

o f t h e d o m a i n p a r t i t i o n i n g s u c h t h a t m u c h o l t h e s e v e r e c h a n g e o l n o n l i n e a r i t y i s

a b l e t o b e c a p t u r e d i n t o o n e s u b d o n i a i n . I h i s c a n b e a c h i e v e d w i t h t h e k n o w l e d g e

o f t h e ; ; 1 ! ' i n (i n t u i t i o n) a s t h e e x a m p l e s h o w s . H o w e v e r , t h e d e v e l o p m e n t o l a

m e t r i c t o m e a s u r e t h e e x t e n t , o l n o n l i n e a r i f y w i l l a i d I h e a u t o m a t i c p l a c e m e n t o l I l i e

d o m a i n p a r t i t i o n i n g . O n e p o s s i b l e m e t r i c i s t o c h o o s e

0 ' i i ,
m a x - (7 . 2)
•r. Cl>OX'

w h i c h h a s a d i r e c t r e l a t i o n s h i p t o t h e c h a n g e o l n o n l i n e a r i t y a l o n g s p a t i a l e o o r d i

n a t e s . A l s o , t h e e x p e r i m e n t s c a r r i e d o u t w i t h p h y s i c a l i n t u i t i o n s h o w I h a t Ih e m e t i i c

g i v e s a g o o d i n d i c a t i o n o l w h e r e t h e d o m a i n p a r t i t i o n i n g s h o u l d b e a p p l i e d

7. 3 Numerical tests

F o r t h e p r e s e n t ,s t u d y , Ih e h e a t c o n d u c t i o n e q u a l i o n (7 I j i s s o l v e d w i i h k (u)

a n d (j Ac:i'p{ ox J). F i g u r e 7 . 1 s h o w s t h e s t e a d y s t a t e t e m p e r a t u r e d i s t r i b u t i o n

i
11CM2

CHAPTER 7. FURTHER PERFORMANCE ENHANCEMENTS 83

for this nonlinear problem. The reduced heat conductivity in the region of high

temperature causes the steady state temperature distribution to develop high gra-

dients and severe change of nonlinearity in the left region of the domain. In this

example, the original domain is decomposed into two subdomains by placing a do-

main partitioning at a point in x-axis such that the left subdomain captures much of

the severe change of nonlinearity. Then the nonuniform nonlinearity is exploited as

follows. First, the left subdomain is solved until a certain convergence criterion has

been satisfied and then the corresponding left region of the original (full) domain is

reset with the converged result. Then the problem in the original domain is solved

until the original problem is converged. To observe the effect on the performance of

the algorithm, the domain partitioning is placed at various positions along x-axis,

based 011physical intuition.

Two methods are compared and are implemented using FORTRAN with PETSc.

One method is to solve equation (7.1) in the original domain without exploiting the

nonuniform nonlinearity. The other method is to carry out the domain decomposi-

tion and then exploit the nonuniform nonlinearity, as described above, in order to

solve the equation (7.1). Two sets of experiments are carried out based 011param-

eters A, a and c. The first set uses A = 2, a — 40 and c = 30 and the second

set uses A = 2, a — 50 and c = 25. Performance is measured in terms of total

execution time and number of effective iterations. In the figures 7.2, 7.4 and 7.G

the "full-domain time" represents the total time it took to solve the problem in the

original domain without exploiting the nonuniform nonlinearity. The "partial-full

domain time" represents the total time it took to solve the problem with the domain

partitioning and then exploiting nonuniform nonlinearity as explained earlier. The

effective number of iterations is calculated as follows. The number of iterations that

were needed to solve the left subdomain is multiplied by the ratio of left subdomain

size to full domain size and the resulting number is then added to the number of

iterations that took to solve the full domain with the reset left subregion.

Figure 7.2 shows the effect 011 the total execution time (in seconds) and the num-

ber of effective iterations as the domain partitioning point is moved along the x-axis.

For this case the minimum execution time is reached at x = 0.21875 which is the

optimum partitioning point, the minimum effective number of iterations is reached

at x = 0.2125. Figure 7.3 shows the change of temperature gradient along x-axis

(0) and it shows the uvax xeD 0 = 0.19375 which is close to the optimum parti-

CHAPTER 7. FURTHER PERFORMANCE ENHANCEMENTS 84

tion point. Figures 7.4 and 7.5 show performance results for a finer grid (320x80)

with the same parameters and they show that the optimum partition point is at

x = 0.2125. It can be seen from these results that the minimum number of ef-

fective iterations does not necessarily correspond to the minimum total execution

time and that the metric places the partitioner closer to both of them. Figure 7.6

shows performance results for the second set of parameters. Here the minimum

total execution time and effective number of iterations are reached at x — 0.1875.

As can be seen from Figure 7.7 the maximum change of temperature gradient is

reached at x = 0.175. It is clear from the results that the metric (7.2) does not

give the optimum partitioning point. However, it gives a good indication of where

the domain partitioning should be placed in order to gain a significant performance

improvement. Other metrics such as max xe0 (|^|) and min xeD () are studied but

metric (7.2) places the partitioning closer to the optimum point.

9

8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
0.60.40.20

X

Figure 7.1: Temperature distribution at y=0.125 for A = 2, a = 40, c = 30 and

mesh = 160x40.

CHAPTER 7. FURTHER PERFORMANCE ENHANCEMENTS 85

40

35

effective iters
partial-full-domain time —

full-domain time

30 -

25 -

20 -

15 -

10 -

X

Figure 7.2: Reduction in total execution time for A = 2, o = 40, c = 30 and

mesh = 160x40.

7.4 Closure

The numerical experiments carried out in this chapter are only a preliminary study

towards the understanding of how to exploit the application nonuniform nonlinearity

in order to gain algorithmic performance : , vements. However, it is clear from

the results as shown above that the exploitation of nonuniform nonlinearity can

yield significant performance improvements if a good metric is used. The overhead

associated with the metric (7.2) is very small. Although the metric used does not give

the optimum partitioning point it does lead to an improved algorithmic performance.

Further studies are required in order see how the nonuniform nonlinearity can

be exploited in time dependent problems such as ones dealt in Chapters .3 and 4.

In time dependent problems, the subdomain partitioning can be carried (nit, at the

beginning of each time step in addition to the beginning of each Newton and/or

linear iteration.

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

CHAPTER 7. FURTHER PERFORMANCE ENHANCEMEN TS 86

100

0

-50

100

-150

-200

0.2 0.4 0.5 0.7 0.S0.6

X

Figure 7.3: Change of temperature gradient for A — 2, a 40, r 30 and

mesh = 160x40.

partial lull-domain lime
full-domain lime

Figure 7.4: Reduction in total execution time for A — 2, A — 40, C 30 and

mesh = 320x80.

CHAPTER 7. FURTHER PERFORMANCE ENHANCEMENTS 87

10.5

effective iters

9.5

8.5

0.18 0.19 0.2 0.23 0.240.21 0.22
X

Figure 7.5: Reduction in effective number of iterations for A — 2, a = 40, c = 30

and mesh = 320x80.

effective iters
partial-full-domain time

full-domain time

35 -x.

30 -

25 -

20 -

15 -

^ 1 I 1 1 1 1
0 15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

X

Figure 7.6: Reduction in total execution time for A — 2, a — 50, c = 25 and

mesh = 160x40.

CHAPTER 7. FURTHER PERFORMANCE ENHANCEMENTS 88

100

d2u/dx2

50

0

-50

-100

-150

-200
0.2 0.3 0.4 0.5 0.6 0.7

X
0.90

Figure 7.7: Change of temperature gradient for A — 2, a = 50, c = 25 and

mesh — 160x40.

Chapter 8

Conclusions and further work

This thesis examines the domain decomposition hierarchy and applies the concept

to two nonlinear time dependent inverse source problems. Three algorithms have

been developed and implemented to test the concept. These algorithms require

the temperature measurements near the unknown source in order to retrieve the

temperature at the source. The temperature at and around the source is used

to retrieve the unknown source term. A unique source retrieval method based on

physical reasoning is developed and used to retrieve unknown source terms.

The domain decomposition method used is shown to simplify the discontinuous

nonlinear problems considered. The subdomains generated due to application of

the method contain homogeneous and continuous subproblems and therefore existing

explicit and implicit numerical schemes were used to solve the subproblems (Chapter

3). The use of existing numerical schemes also enable us to use existing software (e.g.,

PETSc) as an alternative to in-house software developed to solve the subproblems.

The use of existing numerical methods and software provided flexible, efficient, fast

and reliable algorithms. Algorithms developed are validated in the context of a

metal cutting (Chapter 3) and a welding problem (Chapter 4). The algorithms are

shown to retrieve temperature and source terms accurately.

It is shown, in Chapter 5, that a noise treatment procedure such as a least square

polynomial fitting should be applied to the temperature measurements in order to

provide a stable algorithm which retrieves sensible source terms. The least squares

method provides an automatic noise treatment procedure (i.e., no parameter tuning

is necessary) without a priori knowledge. The method isolates the noise treatment

from the rest of the solution process and therefore it can be easily adapted for

89

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 90

different situations.

Parallelism of the algorithms is exploited to develop a faster version of the al-

gorithms. As shown in Chapter 6, the domain decomposition method provides the

primary level parallelism (domain parallelism). Since the subdomains are homoge-

neous, data partition is carried out in each subdomain to provide the secondary level

parallelism (domain-data parallelism). This enabled us to use more processors. Ex-

periments carried out in a network of workstations showed that significantly faster

algorithms can be developed using such a parallelisation strategy.

A preliminary study is carried out to see whether the change of nonlinearity can

be exploited to further improve the performance of the algorithms. The study shows

that a significant performance improvement can be achieved with the use of a good

metric in order to make decisions on the domain partitioning. The metric used in

this thesis gives moderate performance improvements.

As a by-product of this research a set of software tools is developed which can

simulate inverse source problems accurately, even with considerably noisy measure-

ment data, on sequential and parallel computing platforms.

Further work may begin by extending the algorithms for three dimensional com-

putation. This should not provide significant complexities except increase in the

amount of computation and more "sensors" may be required. The increased compu-

tation will provide better speedups in parallel computing platforms due to improved

computation to communication ratio.

The extension of t he algorithms for multiple unknown source terms is straightfor-

ward with extra sensors placed near each additional unknown source. "The domain

decomposition method generates two extra subdomains for each additional unknown

source term. Future studies should also consider location of sensors and the accuracy

of retrieval.

A significantly improved noise treatment process can further increase the accu-

racy of the source retrieval when working with noisy measurement data.

The parallel solution of welding problem can be carried along the same lines as

the metal cutting problem. It should be noted that the amount of computation near

the source is much greater than computation away from the source and that the

source is moving. Therefore, a static domain partition may produce subdomains

with different work loads as the solver is marching along time. 1 his may have

to be dealt with by dynamically allocating a different number of subdomains to

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 91

a processor or dynamically repartitioning the subdomains so that each processor

will have approximately the same amount of work. It may be possible to work out

a reallocation or repartitioning schedule at pre-processor stage as the variation in

computational load is predictable. This will decrease the overheads associated with

working out when and where to carry out the reallocation or repartitioning.

The development of a good metric that exploits the change of nonlinearity of

a differential equation defined in a given domain, as explained in Chapter 7, will

provide significant performance improvements to the algorithms.

Finally this work lays the foundations for an efficient, self contained and reliable

source recovery system which may be encapsulated in an automatic control system

in many production situations.

References

Argyris, J. H., Szimmat, J., and William, K. J. (1985). Finite element analysis of

arc-welding processes. In Lewis, R. VV. and Morgan, K., editors, Numerical

Methods in Heat Transfer , volume 3, pages 1-34. John Wiley and Sons.

B. Gropp, R. Lusk, T. S. and Doss, N. (1994). Portable MPI model implementation.

Argonne National Laboratory.

Balay, S., Gropp, W. D., Mclnnes, L. C., and Smith, B. F. (1997). Efficient man-

agement of parallelism in object oriented numerical software libraries. In Arge,

E., Bruaset, A. M., and Langtangen, H. P., editors, Modern Software Tools in

Scientific Computing , pages 163-202. Birkhauser Press.

Balay, S., Gropp, W. D, Mclnnes, L. C., and Smith, B. F. (1999). PETSc 2.0 users

manual. Technical Report ANL-95/11 - Revision 2.0.24, Argonne National

Laboratory.

Beck, J. V., Blackwell, B., and St.Clair Jr, C. R. (1985). Inverse Heat Conduction:

Ill-Posed Problems. Wiley-Interscience, London.

Bjorstad, P. E. and Karstad, T. (1995). Domain decomposition, parallel computing

and petroleum engineering. In Keyes, D. E., Saad, Y., and Truhlar, D. G.,

editors, Domain-Based parallelism arid problem decomposition methods in com-

putational science and engineering , pages 39-56. siam.

Bryan, K. and Caudill, Jr., L. F. (1994). An inverse problem in thermal imaging.

Technical Report 94-99, Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Cneter, Hampton, VA 23681-

0001.

92

REFERENCES 93

Burgess, D. A. and Giles, M. B. (1995). Renumbe ring unstructured grids to improve

the performance of codes on hierarchical memory machines. Report no. 95/06,

Ninnerical Analysis Group, Oxford University Computing Laboratory.

Burggraf, O. R. (1964). An exact solution of the inverse problem in heat conduction

theory and applications. J. Heat Transfer , 860:373-382.

Cannon, J. R., DuChateau, P., and Steube, K. (1990). Unknown ingredient in-

verse problems and trace-type functional differential equations. In Colton, D.,

Ewing, R., and Rundell, W., editors, INVERSE PROBLEMS IN PARTIAL

DIFFERENTIAL EQUATIONS , volume 1, pages 187-202. SIAM.

Chan, T. F., Glowinski, R., Periaux, J., and Widlund, O. B. (1988). Domain

Decomposition Methods. SIAM. ISBN 0-89871-233-5.

Chan, T. F. and Mathew, T. P. (1994). Domain decomposition algorithms. Acta

Numerica , pages 61 143.

Chow, P. L., Ibragimov, I. A., and Khasminskii, R,. Z. (1999). Statistical approach

to some ill-posed problems for linear partial differential equations. PROBA-

BILITY THEORY AND RELATED FIELDS , 113:421-441.

Colton, D., Ewing, R., and Rundell, W. (1990). Inverse Problems in Partial Differ-

ential Equations. SIAM. ISBN 0898712521.

Demirdzic, I. and Martinovic, D. (1993). Finite volume method for thermo-elasto-

plastic stress analysis. Computer Methods in Apllied Mechanics and Engineer-

ing , 109:331-349.

Dongarra, ,J. J. and Dunigan, T. (1997). Message-passing performance of various

computers. Technical Report UT-CS-95-299, Oak Ridge National Laboratory.

Postcript file available via http ://www .netlib.org/utk/papers/commperf.ps.

D'Souza, N. (1975). Numerical solution of one-dimensional inverse transient heat

conduction by finite difference method. A.S.M.E., Paper No. 68-WA/H 1-81.

Faringer, T. (1997). Estimating cache performance for sequential and data parallel

programs. Proc. of HPCN'91, Springer Lecture Notes in Computer Science,

Vienna, Austria.

REFERENCES 91

Forum, M. P. I. (1995). MPI: A Message-Passing Interface Standard, available from

http://www.mcs.aiil.gov/nipi/.

Foster, I. (1995). Designing and Building Parallel Programs. Addison-Wesley,

ISBN 0-201-57594-9 , Also available electronically, nil is http://www-

unix.mcs.anl.gov/dbpp/.

Frank, I. (1963). An application of least squares method to the solution of the

inverse problem of heat conduction. Heat Transfer , 85C:378 379.

Frommer, A. and Maass, P. (1999). Fast cg-based methods for Tikhonov-Phillips

regularization. SI AM ,J. SCI. COMPUT., 20(5):1831 1850.

Geist, A., Beguelin, A., Dongarra, .1., Jiang, W., Manchek, R., and Sun-

deram, V. (1994). PVM: A Users' Guide and Tutorial for Networked

P a r a l l e lC o m p u t i n g . M I T P r e s s , A l s o a v a i l a b l ee l e c t r o n i c a l l y ,n i l i s

h t t p :/ / w w w .n e t l i b . o r g / p v n i 3 / b o o k / p v n i - b o o k .h t mI .

Ierotheou, C., Lai, C.-H., Palansuriya, C., and Pericleous, K. (1998). Simulation of

2-d metal cutting by means of a distributed algorithm. The Computer Journal!,

41:57 G3.

Irriber, M. and Khan, J. (1972). Prediction of transient temperature distributions

with embedded thermocouples. AIAA ./., 10:784 789.

Jones, M. T. and Plassmann, P. E. (1995). BlockSolve95 users manual: Scalable

library software for the parallel solution of sparse linear systems. Technical

Report ANL-95/48, Mathematics and Computer Science Division, ARGONNE

NATIONAL LABORATORY, 9700 South Cass Avenue, Argonne, IL (30439.

Keyes, D. E. (1998). Trends in algorithms for nonuniform applications on hierarchi-

cal distributed architectures. In Salas, M. and Anderson, W., editors, Workshop

on Computational Aeroseienees for the 21st Century. Elsvier.

Keyes, D. E., Chan, T. F., Meurant, G., Scroggs, .J. S., and Voigt, R. G. (1991).

Domain Decomposition Methods for Partial Differential Equations, siam. ISBN

0-89871-288-2.

REFERENCES 95

Keyes, D. E., Kaushik, D. K., and Smith, B. F. (1997). Prospects for CFI) on

petaflops systems. CFD Review, M. Hafez, et. al., eds., Wiley, available from

http://www.cs.odu.edu/ keyes/papers.html.

Keyes, D. E., Saad, Y., and Truhlar, 1). G. (1995). Domain-Based Parallelism and

Problem Decomposition Methods in Computational Science and Engineering.

siam.

Kim, T. G. and Lee, Z. H. (1997). Time -varying heat transfer coefficients between

tube-shape casting and metal mold. Int. ,/. Heat Mass Transfer, 49:3513 3525.

Kron, G. (19G3). Diakoptics: The Pieceurise Solution of Large-Scale Systems. Mac-

Donald & Co, London.

Krutz, G. W., Schoenhals, R. J., and Ilore, P. S. (1978). Application of finite

element method to the inverse heat conduction problem. Num. Heat Transfer,

1:489-498.

Krzysztof, G., Cialkowski, M. C., and Kaminski, H. (1981). An inverse temperature

field problem of the theory of thermal stresses. Nucl. Eng. Des ., 64:1G9 184.

Kunisch, K. and Tai, X.-C. (1996). Some non-overlapping domain decomposition

methods for inverse problems. Ullensvang. To appear in the proc. of the 9t,h

international conference on domain decomposition methods.

Lai, C.-H. (1994). Diakoptics, domain decomposition and parallel computing. The.

Computer Journal , 37:840 84G.

Lai, C.-H., Cuffe, A., and Pericleous, K. (1998). A defect equation approach for the

coupling of subdomains in domain decomposition methods. Computers Math.

Applic., 35:81 94.

Lai, C.-H., Ierotheou, C., Palansuriya, C., Pericleous, K., Espedal, M., and Tai, X.-

C. (1999). Accuracy of a domain decomposition method for the recovering of

discontinuous heat sources in metal sheet cutting. Computing and Visualization

in Science , 2:149 152.

Langford, D. (1967). New analytic solutions of the one-dimensional heat equation

for temperature and heat flow rate both prescribed at the same fixed boundary

(with applications to the phase change problem). Q. Appl. Math., 24:315 322.

REFERENCES 96

Levenberg, K. (1944). A method for the solution of certain non-linear problems in

least squares. Q. Appl. Math., 2:164-168.

McColl, W. F. (1995). Scalable computing. LNCS, Springer-Verlag, 1000.

Myers, P. S., Uyehara, O. A., and Borman, G. L. (1967). Fundamentals of heat flow

in welding. Welding Research Council Bulletin, 123.

Neumaier, A. (1998). Solving ill-conditioned and singular linear systems: a tutorial

on regularization. SIAM REV., 40(3):636-666.

Nupairoj, N. and Ni, L. M. (1994). Performance evaluation of some MPI implemen-

tations on workstation clusters. Tech. Rep. MSU-CRS-ACS-94, Department of

Computer Science, Michigan State University.

Palansuriva, C. J., Lai, C.-H., Ierotheou, C. S., and Pericleous, K. A. (1998). A

domain decomposition based algorithm for non-linear 2d inverse heat condition

problems. In Mandel, J., Farhat, C., and Cai, X.-C., editors, Domain De-

composition Methods 10, volume 218, pages 515-522. American Mathematical

Society.

Palansuriya, C. J., Lai, C.-H., Ierotheou, C. S., Pericleous, K. A., and Keyes, D.

(1999). Comparison of three algorithms for nonlinear metal cutting problems.

In Lai, C.-H., Bjorstad, P. E., Cross, M., and Widlund, O. B., editors, Domain

Decomposition Methods in Sciences and Engineering, pages 318-325. Domain

Decomposition Press.

Patankar, S. (1980). Numerical Heat Transfer and Fluid Flow. Hemisphere.

Patel, P. M., Lau, S. K., and Almond, D. P. (1992). A review of image analysis

techniques applied in transient thermographic nondestructive testing. Nonde-

structive Testing arid Evaluation, 6:343-364.

Preziosi, L. (1993). An inverse source-sink problem for the nonlinear heat equation.

Math. Comput. Modelling, 17:3-11.

Quarteroni, A. (1995). Domain decomposition methods for wave propagation prob-

lems. In Keyes, D. E., Saad, Y., and Truhlar, D. G., editors, Domain-Based

parallelism and problem decomposition methods in computational science and

engineering, pages 21-38. siam.

REFERENCES 97

Saad, Y., Lo, G.-C., and Kuznetsov, S. (1998). PSPARSLIB users manual: A

Portable Library of Paiullel Sparse Iterative Solvers. Department of Computer

Science, University of Minnesota, Minneapolis, MN.

Schwarz, H. A. (1869). Uber einige abbildungsaufgaben. Gesammelte Mathematische

Abhandlungen , 11:65-83.

Sirotkin, V. V. (1997). The solution of singularly perturbed parabolic problems by

parallel algorithms combining Crank-Nicholson scheme and overlapping schwarz

methods. IMA Journal of Numerical Analysis , 14:1 -28.

Smith, B. F., Bjorstad, P. E., and Gropp, W. D. (1995). Domain decomposition and

multilevel methods for elliptic PDEs: Algorithms, Implementations and theory.

Cambridge University Press.

Stolz, Jr., G. (1960). Numerical solutions to an inverse problem of heat conduction

for simple shapes. Heat Transfer , 82:20-26.

Tai, X.-C., Froyen, J., Espedal, M., and Chan, T. (1997). Overlapping domain

decomposition and multigrid methods for inverse problems. Technical Report

113, Department of Applied Mathematics, University Of Bergen. ISSN 0084-

778x.

Taylor, G. A., Hughes, M., Strusevic, N., and Pericleous, K. A. (1999). Finite-

volume methods applied to the computational modelling of welding phenomena.

In Schwarz, M., Davidson, M., Easton, A., Witt, P., and Sawley, M., editors,

2nd Int. Conf. on CFD in the Minerals and Process Industries , pages 405-410.

ISBN 0643065598.

Taylor, J. R. (1997). An introduction to error analysis. University Science Books,

Sausalito, California, USA, ISBN 0-935702-75-X.

Trujillo, D. M. (1978). Application of dynamic programming to the general inverse

problem, hit. j. numer. methods eng., 12:613-624.

Versteeg, H. K. and Malalasekera, W. (1995). An introduction to Computational

Fluid Dynamics The Finite Volume Method. Longman Scientific k Technical.

Zwillinger, D. (1989). Handbook of Differential Equations. Academic Press Inc., San

Diego.

