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ABSTRACT

ABSTRACT
Temporal representation and reasoning plays a fundamental and increasingly 

important role in some areas of Computer Science and Artificial Intelligence. A natural 

approach to represent and reason about time-dependent knowledge is to associate them 
with instantaneous time points and/or durative time intervals. In particular, there are 
various ways to use logic formalisms for temporal knowledge representation and 

reasoning. Based on the chosen logic frameworks, temporal theories can be classified 

into modal logic approaches (including prepositional modal logic approaches and hybrid 
logic approaches) and predicate logic approaches (including temporal argument methods 
and temporal reification methods). Generally speaking, the predicate logic approaches 
are more expressive than the modal logic approaches and among predicate logic 
approaches, temporal reification methods are even more expressive for representing and 
reasoning about general temporal knowledge. However, the current reified temporal 
logics are so complicate that each of them either do not have a clear definition of its 
syntax and semantics or do not have a sound and complete axiomatization.

In this thesis, a new complete reified temporal logic (CRTL) is introduced which has 
a clear syntax, semantics, and a complete axiomatic system by inheriting from the initial 
first order language. This is the main improvement made to the reification approaches 
for temporal representation and reasoning. It is a true reified logic since some 

meta-predicates are formally defined that allow one to predicate and quantify over 
prepositional terms, and therefore provides the expressive power to represent and reason 
about both temporal and non-temporal relationships between prepositional terms.

For a special case, the temporal model of the simplified CRTL system (SCRTL) is 
defined as scenarios and graphically represented in terms of a directed, partially 

weighted or attributed, simple graph. Therefore, the problem of matching temporal 
scenarios is transformed into conventional graph matching.

For the scenario graph matching problem, the traditional eigen-decomposition graph
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matching algorithm and the symmetric polynomial transform graph matching algorithm 
are critically examined and improved as two new algorithms named meta-basis graph 
matching algorithm and sort based graph matching algorithm respectively, where the 
meta-basis graph matching algorithm works better for 0-1 matrices while the sort based 
graph matching algorithm is more suitable for continuous real matrices.

Another important contribution is the node similarity graph matching framework 
proposed in this thesis, based on which the node similarity graph matching algorithms 
can be defined, analyzed and extended uniformly. We prove that that all these node 
similarity graph matching algorithms fail to work for matching circles.

IV
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CHAPTER 1 INTRODUCTION

Chapter 1 Introduction

The term temporal logic is used to describe any system of rules and symbolism for 

representing, and reasoning about, propositions qualified in terms of time.

The logical study of time dates back to the days of Aristotle, while modern research 

on time started since 1960 when Arthur Prior firstly interprets modality as tense [Pril967, 

Pril969]. After that, the temporal logic is extended in many different ways. These 

extensions can be roughly classified into two groups: extending fundamental logics and 

extending time primitives. The fundamental logic evolves from prime modal logics to 

hybrid logics [BT1999, Alt2006], first order logics [TM1989, STL1987, BTK1991] and 

temporal reifications [Allenl983, TM1989, MK1996]; while the time primitives advance 

from points [GHR1994] to intervals [A111983, A111984], and finally both points and 

intervals are taken as time primitives [KM 1992 ].

In applications, the temporal logic is widely used in computer science including: 

program specification [EGR1994], databases [SJ1999, DDL2002], real time systems 

[Ostl989, LT2002], distributed systems [CDF1995, DLH1998]; artificial intelligence 

including natural language processing [Dowl979, Tayl985, Ricl989], planning 

[CM1998, May2006], case based reasoning [Jacl997, Han2000, JAS2002].

The matching of temporal knowledge is what we shall study in detail in this thesis. 

Section 1.1 Motivation: Matching Temporal Knowledge

Object similarity plays an important role in case-based reasoning [Koll996, 

Leal996, and Watl997], pattern recognition [Gib2004, TK2006], web search engine 

[Lev2006], and cluster analysis [Roml989]. Similar objects are usually supposed to
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have similar properties and solutions. In order to use case based reasoning techniques on 

temporal knowledge or recognize temporal patterns, one has to explore some kinds of 

similarity among these temporal knowledge or temporal structures. There are already 

some approaches for matching temporal knowledge and patterns which are classified 

here as point based approaches, interval based approaches and point and interval based 

approaches.

Section 1.1.1 Point based Approaches

Examples of these are that of Nakhaeizadeh [Nakl994], of Branting and Hasting 

[BH1994], of Jaczynski [Jacl997], and of Hansen [Han2000].

Problems

The underlying time models employed in the above systems are point-based, and 

therefore, it is required that absolute time points or intervals delimited by a pair of points, 

must be associated with the time-dependent statement being addressed. However, there 

are many applications in which there may be just some relative temporal knowledge 

about the time-depended statements to hand, where their precise time characters such as 

the exact starting and finishing time are not available (e.g., "John ran 3 miles yesterday 

morning", "John arrived at the office before Mary went to home", etc.).

Section 1.1.2 Interval based Approach

Jaere, Aamodt and Skalle [JAS2002] propose a method for representation and 

reasoning with temporal case within case based reasoning framework for unwanted 

events predictions. Based on Alien's theory [A111983, A111984], time is represented as 

intervals and time-relations between intervals; and every temporal case is represented by 

a labeled graph as:
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Ixl erratic flow out

erratic torque

input case

hook load increasing

finding

increasing drag

erratic drag

erratic increasing torque

increasing torque 

increasing pressure

Figure 1.1 A case of drill-sticking [JAS2002]

Figure 1.1 shows a simple case after the raw data has been transformed into 

qualitative findings. There are seven intervals (named Ixl, 1x2, ..., 1x7) with 

corresponding time relationships and finding attributes to indicate the symptoms during 

that time. For example, "hook load increasing meets erratic flow out" is described by 

"Ixl has finding hook load increasing", "1x2 has finding erratic flow out" and "Ixl 

meets 1x2".

In addition to the similarity degree for the non-temporal part, an extra temporal 

similarity measurement named the temporal path strength is introduced [JAS2002]. To 

enable intervals to be related to each other so that a similarity assessment of parameters 

can be made in order to predict particular states, a dynamic ordering algorithm is 

developed for matching temporal paths. Such an algorithm requires the corresponding
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temporal knowledge to be complete for both the input case and the current case. 

Problems

The fundamental logic of this approach is based on Alien's interval theory, which 

itself has been argued lacking clarity of its semantics and completeness [GAL 1990].

The matching algorithm proposed in [JAS2002] lacks a theoretical foundation of its 

effectiveness or generality. So using this framework for other problems, one may need to 

develop another matching algorithm for the new fields.

Section 1.1.3 Point and interval based Approach

In [MK2003], a framework for Historical Case-Based Reasoning which allows the 

expression of both relative and absolute temporal knowledge, representing case histories 

in the real world is presented.

The concepts of fluents, elemental cases, and case histories are formally defined. A 

graphical representation of case histories is also provided, where every case history can 

be described as a simple attributed graph as figure 1.2 [MK2003].

Figure 1.2 A case history.

The formalism is founded on a general temporal theory that accommodates both 

points and intervals as primitive time elements. A case history is formally defined as a 

collection of (time-independent) elemental cases, together with its corresponding 

temporal reference. Case history matching is two-fold, i.e., there are two similarity 

values that need to be computed: the non-temporal similarity degree and the temporal 

similarity degree. On the one hand, based on elemental case matching, the non-temporal
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similarity degree between case histories is defined by means of computing the unions 

and intersections of the involved elemental cases. On the other hand, by means of the 

graphical presentation of temporal references, the temporal similarity degree in case 

history matching is transformed into conventional graph similarity measurement.

Problems

Although this is a general and efficient representation of temporal cases, there are 

still two problems left.

Firstly, the fundamental temporal theory this representation based on is the temporal 

theory of Ma and Knight in [MK1994, MK1996], which has not been proved to be 

complete.

Secondly, an efficient graph matching algorithm has to be provided to make this 

representation applicable to real problem.

These two problems are what we try to solve in this thesis.

Section 1.2 Object: A Framework to Represent and Match Temporal 

Scenarios

This thesis tries to accomplish the following two tightly associated goals:

• A sound and complete reified temporal logic system for describing time 

structure, representing temporal information and reasoning about temporal 

knowledge.

• A graphical representation of temporal information and an efficient matching 

algorithm for reasoning of temporal knowledge.

Section 1.3 Outline of the Main Contributions

Aimed at the two goals listed above, the following works have been done:
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• Based on the review and comparison of the existing important temporal logic 

systems, a complete reified temporal logic system is proposed, which has a 

clear syntax, semantics, sound and complete axiomatic deduction system and 

enough expressive power to talk about the generalities of the temporal aspect of 

assertions.

• Umeyama's eigen-decomposition graph matching (EDGM) algorithm 

[Umel988] is critically examined and three important constraints are pointed 

out for matching general graphs by the EDGM algorithm. In order to match 

arbitrary graphs, a new approximate formula is presented together with 

theoretical proof of its accuracy. Based on this approximate formula, a 

unitary-invariant meta-basis graph matching (MBGM) algorithm is proposed as 

an improvement of the traditional eigen-decomposition method.

• Almohamod's symmetric polynomial transformation graph matching (SPGM) 

algorithm is critically examined and greatly improved by a new matching 

algorithm based on vector sort, named as STGM algorithm.

• A node similarity graph matching framework is presented to generally discuss 

all the node similarity graph matching (NSGM) algorithms. An interesting 

result shows that all the node similarity based graph matching algorithms fail to 

work for circles.

• These node similarity graph matching algorithms are applied to match general 

scenario graphs. The testing result shows that the meta-basis graph matching 

algorithm is more suitable for scenario graphs.

Section 1.4 Thesis Structure

The rest of this thesis is organized as follow:

In chapter 2, a detailed review will be provided to introduce some current temporal 

logic systems. They are rationally classified according to fundamental primitive logic 

and time primitives, and critically examined by theoretical and practical criterions 

including clarity of definition, soundness and completeness, expressiveness, etc.
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In chapter 3, a complete reified temporal logic system CRTL is proposed. This work 
is done by applying the idea of Reichgelt's reified temporal logic [Reil989] to 
reconstruct the reified logic system of Ma [MK1996] using the first order language. A 
simplified sub system SCRTL is also introduced in this chapter.

In chapter 4, temporal scenarios are introduced together with graphical 
representations and matrix representations. Some examples are illustrated to show how 
temporal knowledge is expressed by this framework. Based on this graphical 
representation, the pattern matching problem of the temporal scenario is transferred into 
graph matching problem.

In chapter 5, the eigen-decomposition graph matching algorithm and the symmetric 
polynomial graph matching algorithm are critically examined. The unitary-invariant 
meta-basis method and sort based method are proposed as improvements to the 
eigen-decomposition approach and symmetric polynomial transformation approach 
respectively.

In chapter 6, these node similarity graph matching algorithms are applied to scenario 
graphs.

Finally, a summary of conclusion and recommendations for future work are 
presented in chapter 7 and chapter 8.

There are also five appendices for this thesis. These are five of my published papers 
tightly associated with this research and titled as "A sound and complete reified 
temporal logic" [ZMS2008], "A Navigation-based Algorithm for Matching Scenario 
Patterns" [MZH2007], "Matching Case History Patterns in Case-Based Reasoning" 
[ZLM2006], "Matching Scenarios Patterns by Using Linear Programming" [ZLM2007] 
and "Using Eigen-decomposition Method for Weighted Graph Matching" [ZLT2007] 
respectively.
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Chapter 2 Literature Review

Since the research associates with two subjects: completeness of temporal logic and 

graph matching algorithms, this section contains literature reviews in these two fields.

Section 2.1 Review of Temporal Logics

The term temporal logic has been broadly used to cover all approaches to the 

description of time structure and representation of temporal information within a logical 

framework. Based on the selections of time primitives, temporal logics can be classified 

into: point based, interval based, point and interval based; while according to the 

fundamental logic, temporal logics are grouped as: modal logic approaches and predicate 

logic approaches.

In this thesis, the main temporal logic systems are classified according to the above 

classifications; and this research pays more attentions to the three criterions: clarity of 

definition, "soundness and completeness", expressiveness.

Section 2.1.1 Prepositional modal logic approaches

Prepositional modal logics follow the traditional modal logic way to define 

temporal connectives by modal operators.

Point based

These approaches semantically re-interpret the classical possible-worlds by making 

each possible world represent a different time. It accommodates the concepts of time by 

means of extending the propositional modal temporal operators such as <F>cp, <P>q>, 

<H>cp and <G>cp, representing that formula cp "will be true", "was true", "will always be
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true" and "was always true", respectively.

A simple system Ht, named as Minimal Tense Logic, was firstly studied by Lemmon 

and Scott in the 1960s with unpublished work (see in [GHR1994]) and this system was 

first published by Prior in [Pril957, Pril967, Pril969].

The syntax and semantics of Ht are defined as the same way of classical modal 

logics. Four axioms and two inference rules are chosen as its deduction system, which 

are:

1 Axioms:

1.1

1.2

1.3

1.4

2 Inference rules:

2.1 Generalization: (p |-<G>cp, and (p |-<H>cp

2.2 Modus Ponens: {(p, (p—»(|>} l-(|)

The Ht system was proved to be sound, complete and computable [GHR1994]. The 

satisfiability problem for the flow of integer-like time in this logic system has been 

proved to be NP-complete by Sistla and Clarke [SCI985].

Lots of time properties can be expressed in the Ht system, such as transitivity, 

linearity, density, finiteness. However, it has been proved that simple irreflexivity cannot 

be defined by the Ht system [GHR1994].

Soon after its introduction, the basic "<P><F><G><H>" syntax of Ht was extended 

in various ways, and such extensions have continued to this day. Some important
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examples are the next operator and US logic system which will be introduced below.

The US logic system is proposed by Kamp [Kami968], which enriched tense logic 

by the addition of two new binary connectives, the "since" operator <S> and the "until" 

operator <U>, where <S>pq denotes "q has been true since a time over which p was 

true" and <U>pq stands for "q will be true until a time over which p is true". The syntax 

and semantics are defined as the normal modal logic.

Some time afterward, Kamp announced axiomatizability results for the US-tense 

logics of various classes of linear orders. His completeness proof was (in his own words) 

"by no means simple", and have never been published, though a manuscript treating 

certain classes of linear orders is in existence. This work has been revised by Burgess as 

an axiomatization for the classes of arbitrary linear orders and of dense and discrete 

orders, with and without first and last elements. He also proved the soundness and 

completeness of such US-tense logic system using maximal consistent sets [Bur 1982].

The satisfiability problem of US temporal logic system for integer-like time flow is 

proved to be PSPACE-complete [SCI985].

The US tense logic is more expressively powerful than the Ht system. The US logic 

system has been proved to be expressively complete over integer time and Dedekind 

complete time [GHR1994], which means that all monadic formulae can be equivalent 

expressed in US logic system. However, US system is not expressively complete for the 

rational number time Q. This negative result prompted Jonathan Stavi to develop a fixed 

point extension of US logic which is expressively complete over the rational numbers Q 

[Stal979].

Interval based

A propositional modal logic of time intervals HS was proposed by Halpern and 

Shoham [HS1986].

In HS system, six modal operators were defined: <B>, <E>, <A>, <B>, <E> and
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< A >, which have the following intended readings:

<B>(p 9 holds at a strict beginning interval of the current one.

<E>cp 9 holds at a strict end interval of the current one.

<A>cp 9 holds at an interval met by the current one

<B >9 9 holds at an interval which has the current one as a beginning interval

<E>9 9 holds at an interval which has the current one as an ending interval 

< A >9 9 holds at an interval meeting the current one

The formulae of HS are defined as the same way of classical modal logic.

However, the semantics of HS can not follow the traditional modal logic; in fact, it 

has been carefully redefined based on interval set. Given a partial order (or temporal 

frame) (T, <), the interval set of such frame is defined as the set INT of all closed 

intervals [ti, t2]={teT: ti<t<t2 }.

The axioms and inference rules of HS system were not provided by Halpern and 

Shoham in [HS1986], which have been supplemented by Venema in [Venl990]. Venema 

represented the interval set on a two-dimensional plane, proposed adequate axioms and 

inference rules to make the HS system sound and complete over linear temporal flows.

For its computability, HS has been proved to be non-computable. In fact, Halpern 

and Shoham [HS1986] have proved that the satisfiability problems of HS formula over

the natural number, rational number and general linear flow are nj -complete, 

r.e.-complete and co-r.e.-complete respectively.

Since every time point p was taken as an interval [p, p] in HS system, point-based 

modal temporal logics can be directly embedded in the HS system. Alien's 13 temporal 

relations are also definable by the HS formulae [HS1986]. On the other hand, Venema

11
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has proved [Yen 1990] that there is no finite functionally complete set of interval tense 
operators over the dense linear order, which indicates that HS system is not as powerful 
as first order logic approaches.

Section 2.1.2 Hybrid logic approaches

The term hybrid logic refers to a number of extensions to propositional modal logic 
with more expressive power, though still less than first-order logic. Unlike ordinary 
modal logic, hybrid logic makes it possible to refer to states (possible worlds) in 
formulae. This is achieved by a class of formulae called nominals, which are true in 
exactly one state.

Point based

Blackburn and Tzakova introduced a general hybrid temporal logic BT [BT1999], 
where three new modal operators are defined: current state binder ^, accessible state 
binder -U and nominal operator @. A point based temporal logic is introduced based on 
these modal operators.

For each modal operator, the syntax and semantics were formally defined; axioms 
and inference rules for the operator were also provided. Blackburn and Tzakova also 
proved the soundness and completeness of the BT system.

Areces, Blackburn and Marx [ABM2000] have proved that the satisfiability problem 
of hybrid temporal logic BT is in NP over strict total orders and in EXPTEVIE over all 
frames.

It also has been claimed [BT1999] that the hybrid logic system BT is more 
expressive than the modal temporal logic approaches, where the since and until modal 
operators can be directly defined on the state binders and nominal operator. The time 
irreflexivity can be easily formulated by >LxH-nX, which is not definable in modal logic 
approaches.

Reichgelt [Reil989] presented a modal temporal logic TM, which is actually a

12
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hybrid temporal logic of time points. In TM system, although syntax and semantics are 

well-defined, it does not have its own axioms and inference rules, so it lacks sound and 

complete deduction system. TM is essentially a subsystem of BT.

Interval based

Altaf [Alt2006] proposed minimal hybrid logic for intervals, named IHL. IHL has 4 

modal operators <D>, <U>, <F>, <P> and nominals, which have the following intended 

readings:

<D>(p (p holds at an interval during the current one

<U>(p (p holds at an interval which contains the current interval

<F>(p q> holds at an interval after the current one

<P>(p (p holds at an interval before the current one

In Altaf's work [Alt2006], the syntax and semantics of IHL system are formally 

defined. A tableau system is proposed as the auto theorem proof system for IHL. The 

soundness and completeness are also theoretically proved. For its computability, the 

satisfiability problem of IHL formula has been shown to be EXPTEVIE-complete for 

minimal interval structures.

Although the hybrid logic approaches are more powerful than propositional modal 

logic approaches, Areces, Blackburn and Marx [ABM2000] have proved that hybrid 

logic is the bounded fragment of first order logic, so all the formulae in hybrid logics can 

be equivalent expressed in first order logic approaches.

Section 2.1.3 Temporal argument approaches

Compared with modal logic approaches using modal operators to express temporal 

knowledge, predicate temporal logic approaches are normally many-sorted languages 

including a sort of temporal elements and a sort of non-temporal elements. There are

13



CHAPTER 2 LITERATURE REVIEW

usually three kinds of functions and predicates: (i) temporal predicates that take only 

temporal terms as arguments to describe temporal relationships; (ii) non-temporal 

predicates that take only non-temporal terms as arguments to describe non-temporal 

relationships; (iii) mixed predicates that take both temporal and non-temporal terms as 

arguments to describe global relationships between temporal and non-temporal terms.

For the temporal argument methods, the temporal dimension is captured by 

augmenting each time-variable proposition or predicate with an extra argument-place, to 

be filled by an expression designating a time.

Point-based

Reichgelt [Reil989] introduced a temporal argument method TA within the many 

sorted first order logic framework. In the TA system, time structure is simply described 

by an explicit ordering relation <. And the mixed predicate is just expressed by an 

additional temporal argument, for example the two-place predicate love(x, y) is 

redefined as love(x, y, t).

Since TA is proposed within the first order logic framework, its syntax, semantics, 

axioms and inference rules are automatically inherited from the standard first order logic. 

Its soundness and completeness also holds without any additional proof.

Interval based

In [BTK1991] Bacchus, Tenenberg and Koomen introduced another temporal 

argument method BTK within the many sorted first order logic framework. BTK has two 

sorts 'u' and 't' stand for non-temporal and temporal elements. Functions are classified 

as temporal functions and non-temporal functions according to their range; while 

predicates are classified as temporal, non-temporal and mixed due to the arguments they 

takes.

The BTK system describes an interval just by two time points. For example Bob is 

sleeping during 0:00 to 7:00 is formulated as Sleeping(Bob, 0:00, 7:00). This treatment

14
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is indeed point based, where interval is defined by open or close intervals with two 

points as ends, which may lead to the so-called Dividing Instant Problem [All 1983, 

Gal 1990, Vill994], that is the puzzle encountered when attempting to represent what 

happens at the boundary instant (point) which divides two successive intervals.

In short, since temporal argument approaches try to devise temporal logics by means 

of simply including time elements as additional arguments to functions and predicates in 

first order language, the method of temporal argument directly employs the syntax, 

semantics and the axiomatic system of the standard first order logic, and therefore, the 

completeness and soundness of temporal argument theories remain as default. Compared 

with modal temporal logics, on one hand, the method of temporal argument has more 

expressive power in representing properties of the time itself. For instance, using the 

method of temporal argument, the irreflexivity of time can be simply characterized by: 

Vt~'(t<t). On the other hand, since the first order logic is not generally computable, it 

obtains more expressive power and loses some efficiency in the meanwhile. In addition, 

since time is represented just as an additional argument(s) to functions and/or predicates, 

neither conceptual nor notational special status to time is accorded in temporal argument 

approaches. Therefore, it is not expressive enough to talk about the generalities of the 

temporal aspect of assertions. For example, Shoham [Shol987] claimed that using the 

method of temporal argument, one cannot express common-sense knowledge such as 

"effects cannot precede their causes".

Section 2.1.4 Temporal reification approaches

As an alternative approach, reified temporal logics reify standard propositions of 

some initial language (e.g., the classical first-order logic or modal logic) as objects 

denoting prepositional terms. Propositional terms are related to temporal objects or other 

prepositional terms through an additional sort of "meta-predicates" [MK1996, Shol987], 

such as HOLDS (or TRUE), OCCUR and CAUSE, etc.
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Point based

McDermott's logic [McD1982] is probably one of the earliest and most influential 

formalisms in AI that possess the characteristics of temporal reification. In this system, 

an infinite collection of states (or points) is introduced as the set of primitive temporal 

elements, where, for general treatment, states are partially ordered by the "no later than" 

relation <. hi order to model continuous change, it is assumed that between any two 

distinct states, there is a continuum of states, so this time structure is actually linear 

dense order and isomorphic to the real line.

McDermott's dichotomy, i.e., facts and events, are the two basic entities that are 

associated with time. A fact is something that may be true in some states and false in 

others, so fact p is true at time s can be formulated as (T s />); on the other hand an event 

is something happening, for example event e happens during si to s2 is denoted as 

OCC(si, 52,

As pointed out by Shoham [Shol987], although McDermott gives the semantic of 

what may be regarded as the propositional theory, some assertions in his logic lack a 

clear meaning. Thus, it does not enjoy a sound and complete deduction system either.

In addition, as BTK does, McDermott's approach also defined interval by two 

points, which has been pointed out may cause the Dividing Instant Problem.

Shoham [Shol987] proposed a reified temporal logic STL, which accommodates a 

set of temporal constants and variables, as well as a set of non-temporal ones. A 

syntactic separation is made between temporal and non-temporal terms.

There are two kinds of atomic formulae:

(1) Formulae of temporal relations tnii=tni2 or tmi<tm2 ;

(2) Formulae of propositions TRUE(tmi, tm2 , r), r is an n-ary non-temporal relation 

symbol.
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However, as argued by Bacchus, Tenenberg, Koomen [BTK1991] and Vila 

[V111994], although Shoham himself claims that his logic is a new reified temporal one, 

it doesn't really deserve the qualification of reification. STL is essentially a temporal 

argument method which has been embedded in BTK system [BTK1991].

Reichgelt [Reil989] proposed a reified temporal logic system TR which is actually 

developed totally within the framework of first order logic, and therefore inherits the 

syntax, semantics, axioms and inference rules of the first order theory. As a many sorted 

first order logic, TR does have a clear syntax, semantics and sound and complete 

axiomatization. But in fact, TR is so complicated that Reichelt hasn't provided adequate 

axioms to make it a real complete system, since some functions or predicates in TR are 

not axiomatic defined.

On the other hand, although TR is a truly reified temporal logic which has great 

expressive power, it is difficult for temporal knowledge representation, because every 

element has an expression form and a denotation form which have to be carefully 

distinguished.

Interval based

Alien [All 1983, All 1984] develops his theory of time and action ITL based on 

intervals as primitive rather than as derived structure from points. A set of 13 mutually 

exclusive binary relations between two intervals are introduced, i.e., EQUALS, 

BEFORE, AFTER, MEETS, MET_BY, OVERLAPS, OVERLAPPED_BY, STARTS, 

STARTED_BY, DURING, CONTAINS, FINISHES and FINISHED_BY, which may 

be formally defined in terms of the single primitive relation MEETS [AH 1989]. While 

McDermott's basic entities associated with time is the dichotomy of facts and events, 

Alien introduces three ontological categories, i.e., properties., events and processes, to 

time intervals over which they hold or occur. Alien's properties are actually very similar 

to McDermott's facts with the only difference Alien interprets his properties over 

intervals, while McDermott interprets facts at points. Alien denotes the assertion that 

property p holds over interval i by the formula HOLDS(p, i). The assertion that event e
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occurs over interval i is denoted by Alien with the formula OCCUR(e, i). The most 

important divergence from McDermott's logic is that Alien takes time intervals as the 

primitive temporal objects, rather than making them up out of points. An advantage of 

such an approach is that it excludes the concept of ending-points of intervals, and hence 

overcomes the Dividing Instant Problem.

However, on one hand, as shown by Galton [Gal 1990] in his critical examination of 

Alien's interval logic, if all intervals are characterized as infinitely decomposable, where 

time points are entirely excluded, then reasoning correctly about continuous change is 

inadequate.

Alien provided ITL neither a clearly defined semantics, nor a sound and complete 

axiomatization. The most important efforts of ITL is taking time intervals as the 

primitive temporal objects and fully discussing the relations of two intervals.

Point and interval based

Based on the classical first-order logic as the initial language, a truly reified 

temporal logic (MK) is developed by Ma and Knight [MK1996]. Such a many sorted 

system recasts various temporal ontology in a general framework. The syntax of RTL 

consists of: Terms in the reified language are also partitioned into three different types: 

temporal terms, non-temporal terms and propositional terms. Both temporal and 

non-temporal terms are defined in the standard first-order way, while propositional terms 

are defined in the form of standard formulae of the classical first-order language with 

each predicate being a non-temporal predicate taking only non-temporal terms as 

arguments. Predicates are distinguished as temporal predicates, non-temporal predicates 

and meta-predicates.

The MK system is truly a reified temporal logic which has general expressive power 

for temporal knowledge expression and deduction and allows one to reason about the 

truth of assertions over time while preserving the first-order structure of the propositions. 

Most of the significant ideas presented by [McD1982, A111984, Shol987, Lifl987, and 

Gall990], etc., are echoed within the framework.
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However, the MK system doesn't enjoy a sound and complete axiomatic deduction 

system.

In a word, although most modal logic approaches, hybrid logic approaches, and 

temporal argument methods do have formal definition and complete axiomatization, 

their expressive power are limited; on the other hand, temporal reification methods are 

powerful enough to talk about general temporal assertions, they are not clearly defined 

or axiomatized.

Section 2.2 Review of Graph Matching Algorithm

Graphs are a powerful and versatile tool used for the description of structural objects 

which has been widely used in mathematics, computer science, artificial intelligence, 

biology, geography, or even politics, for representing structural objects and concepts. In 

general, in terms of their graph representation, parts of object can be represented by the 

vertices whilst the relationships between parts can be represented by the edges. 

Therefore, the task of calculating the similarity degree between two objects can be 

simply transferred into the problem of matching the corresponding pair of graphs.

There are a large number of applications of graph matching which have covered 

many different areas of human social and scientific life including image recognition 

[IZ1986, WFK1997, LRS1991, CR1992], robot vision [Wonl992], chemical structure 

analysis [RB1979, TA1997], case based reasoning [Poo 1993], machine learning 

[MB1996], videos indexing [SBV2001].

Various algorithms for graph matching problems have been developed, which, 

according to Gold and Rangarajan [GR1996], can be classified into two categories: (1) 

search-based methods which rely on possible and impossible pairings between vertices; 

and (2) optimization-based methods which formulate the graph matching problem as an 

optimization problem.

In this thesis, we classify the graph matching algorithms a bit different from above 

categories where traditional graph matching algorithms are classified into three groups:
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explicit search methods, implicit search methods and node similarity based methods. 

Section 2.2.1 Explicit search methods

Generally speaking, explicit search methods directly search the optimal match 

among permutation space (or permutation matrices space). Since the size of the search 

spaces increase exponentially according to the graph size, different kinds of heuristic 

techniques are developed to reduce the search space to a smaller acceptable size.

A widely known matching algorithm by Ullmann [U111976], based on a 

backtracking procedure with an effective look-ahead function to reduce the search space, 

is devised for both graph isomorphism and sub-graph isomorphism and is still today one 

of the most commonly used for exact graph matching because of its generality and 

effectiveness. As a consequence, many maximum sub-graph based or edit distance based 

explicit-search graph matching methods exist.

An backtrack search algorithm is presented by McGregor [McG1982] for the 

problem of finding the maximal common sub-graph of two graphs is described and used 

for analyzing chemical reactions and enumerating the bond changes which have taken 

place. In this note the problem is considered of finding the maximal common 

sub-graph of two given graphs.

Shapiro and Haralick [SH1981] associated the graph matching problem with a 

brute-force backtracking tree search and proposed corresponding algorithms to make the 

tree search faster. The similar methods can be found in [TF1983, CYS1996, and 

ACT 1997].

Bunke and Shearer proposed a new distance measure based on the largest common 

sub-graph of two graphs in [BS1998] and corresponding search algorithm is 

characterized in [BFG2002]

Another important algorithm is introduced by Messmer and Bunke [MB 1998] for 

error-tolerant sub-graph isomorphism determination. This approach requires exponential 

offline computational time and only polynomial online computational time. It also
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inspired the matching algorithms of [SBV2001].

In conclusion, most of these explicit search methods find the optimal solutions, but 

require exponential calculating time in the worst case. Although different kinds of 

heuristic techniques are applied, it is difficult to make the algorithm efficient all the 

time.

Section 2.2.2 Implicit search methods

Implicit-search methods do not search for the optimal match in permutation space; 

instead, the permutation space is transferred into some other continuous real number 

space or mixed 0-1 and real number space and meanwhile the graph matching problems 

is also represented as an optimization among the continuous or mixed space.

A linear programming approach is proposed by Almohamad and Duffuaa [AD 1993] 

for the weighted graph matching problem, where the graph matching problem is 

formulated in LI norm as a linear programming problem with computational complexity 

O(n6L). Recently, Justice and Hero [JH2006] developed a binary linear program for 

computing graph edit distance (the minimum operation making two graph isomorphic), 

together with polynomial time methods for determining upper and lower bounds on the 

solution of the binary program are derived by applying solution methods for standard 

linear programming and the assignment problem.

A quadratic programming approach is proposed by Neuhaus and Bunke [NB2007] 

to computing the edit distance of graphs. Whereas the standard edit distance is defined 

with respect to a minimum-cost edit path between graphs, the notion of fuzzy edit paths 

between graphs is presented together with a quadratic programming formulation for the 

minimization of fuzzy edit costs.

Torsello and Hancock [TH2001, TH2003] transform the tree edit distance problem 

into a series of maximum weight clique problems and use relaxation labeling to find an 

approximate solution.

Many neural networks based approaches have been developed using Hopfield
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networks [MGA1989, FLD1994, CL1994, PG1995, and SY1998] or self-organizing 

map [XO1990, Shal995, GB2002].

Some genetic algorithm based methods may be found in [CWH1997, LH1998, 

BMJ1999, MH2000, and MH2001, WI2006, Auw2007].

The computational complexity of these approaches is tightly dependent on the 

optimization problem the graph matching problem is reformulated. However, all these 

optimizations can either be solve in polynomial computational time to reach a local 

optimal solution or need exponential time to get a global optimal solution. Besides, since 

these approaches are tightly associated with the specific theories, they lead to another 

kind of complexity namely programming complexity, which means that although these 

programs cost only polynomial computational time, they cost lots of time to be designed 

and implemented.

In addition, since graph matching problems are represented as some optimization 

problems, it is usually difficult to analyze the reason of the failure cases, in other words, 

it is not easy to improve it or get a theoretical conclusion of their applicable fields.

Section 2.2.3 Node similarity based methods

The node similarity based methods do not use any search, instead, they simply 

explore some kind of node similarity between nodes of graph pairs, and get the optimal 

solutions by matching those similar nodes.

In [Umel988], Umeyama proposed an eigen-decomposition based graph matching 

algorithm (EDGM) for matching both undirected and directed weighted graphs. The 

node similarity of two graphs is constructed based on the eigenvector of the adjacency 

matrices and the optimal solution is gained by applying the Hungarian algorithm 

[Kuhl955, mun!957, AMO1993] on the node similarity matrix.

In [Aim 1991], Almohamod presented a symmetric polynomial transform based 

graph matching algorithm (SPGM), where the node similarity of two graphs is 

constructed by the coefficient of the polynomial transform of the weights of the edges.
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In [Kiel999], Kleinberg proposed a hubs and authorities graph matching algorithm 

(HAGM) for internet searching, where the node similarity is based on the idea that two 

nodes are similarity if their adjacent nodes are similar. An iterative algorithm is provided 

to calculate such node similarity. This algorithm has been revised in [Zag2003, 

ZV2007].

In [Wyk2002], Wyk presented several Kronecker product successive projection 

based graph matching algorithms. The graph matching problem is transferred into the 

Kronecker Product Graph Matching formulation, based on which several approaches are 

derived, such as the least squares Kronecker product graph matching (LSKPGM) 

algorithm, the interpolator-based Kronecker product graph matching (IBKPGM) 

algorithm, the gradient-based Kronecker product graph matching (GBKPGM) algorithm 

and the orthonormal kernel Kronecker product graph matching (OKKPGM) algorithm.

Although these methods are derived from different theories, they are using the same 

idea to matching graphs by the nodes similarity. These methods are mostly only 

applicable for certain kinds of graphs, but they can be easily implemented, analyzed and 

improved. In addition, most of the node similarity based graph matching algorithms have 

low computational complexities and are consequently applicable to large size graphs.
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Chapter 3 A Complete Reified Temporal

Logic

In this chapter, a reified temporal logic with clear syntax and semantics in terms of a 

sound and complete axiomatic formalism will be proposed which retains all the 

expressive power of the current temporal reification formulations.

Section 3.1 simply reviews the standard first order logic and many sorted first order 

logic. Section 3.2 introduces three well-known temporal logic systems, BTK, TR and 

MK. The complete reified temporal logic CRTL is proposed in section 3.3. And a 

simplification of CRTL, named SCRTL, is presented in section 3.3.6, which is more 

applicable for real problems.

Section 3.1 First Order Logic

First-order logic is a formal deductive system used in mathematics, philosophy, 

linguistics, and computer science which employs a wholly unambiguous formal 

language interpreted by mathematical structures [Lul989]. First order logic is a system 

of deduction extending propositional logic by allowing quantification over individuals of 

a given domain of discourse.

We follow the definition in [MT1993]. 

Section 3.1.1 Syntax

Firstly, we have to introduce the first order language.
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Definition 3.1: The alphabet of a first order logic language consists of the following sets 

of symbols:

1) Logical symbols: logical implication—», logical not -i, quantifier for all V.

2) Equality symbol: =

3) Variables: V={XQ, xi, X2, ...}

4) Auxiliary symbols: "(" and ")".

NOTE1: Here only three logical symbols are selected and others are defined in 

terms of these three.

NOTE2: we use = as the equality symbol of the first order language to distinguish 

with the equality symbol = of meta-language, the language we used to talk about first 

order language.

Definition 3.2: The signature of a first order logic language is a triple L=<FS, PS>, 

where

• FS is a countable set (possibly empty), whose elements are function symbols 

with a non-negative integer rank(f) for each function symbol f.

• PS is a countable set whose elements are predicate symbols with a non-negative 

integer rank(p) for each predicate symbol p.

It is assumed that the sets FS and PS are disjoint. Functions of rank 0 are called 

constants and the set of constants is denoted as CS.

Definition 3.3: The terms of a first order logic language L (referred as TERML) are 

inductively defined as:

1) Every constant and every variable is a term.

2) If tnii, tm2, ..., tmn are terms and f is a function of rank n>0, then f(tmi, tm2,
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tmn) is a term. 

Intuitively, a term is an expression stands for an element. 

Definition 3.4: The atomic formula of a first logic language L is inductively defined as: 

I) Every predicate of rank ° is an atomic formula. 

2) If tm), tm2, ... , tmn are terms and p is a predicate of rank n>O, then r(tm\, 

tm2, ... , tmn) is a atomic formula, and so is tmJ':==tm2. 

Definition 3.5: The formula of a first logic language L (referred as Formd is inductively 

defined as: 

1) Every atomic formula is a formula. 

2) For any two formulae a and p, -,a, (a ~ P) are also formulae. 

3) For any formula a and variable Xi, 'v'xia is also a formula. 

NOTE: as mentioned above, avp is seen as abbreviation of -,a~p, 3xa is short for 

-,'v'x-,a, and so on. 

The formulae of FORML are all the expressions can be talked in the first order logic 

L. Intuitively, a formula is an expression representing some property of the elements. 

In the formulae 'v'Xia, a is said to be the field of the quantifier 'v'Xi. 

Let x be a variable appear in formula a, obviously, x may appear in several places in 

a, each appearance is called an occurrence. 

Definition 3.6: An occurrence of x in formula a is said to be bounded occurrence if it 

appears as the form 'v'x, or in the field of quantifier 'v'x. In this case, x is said to be a 

bounded variable of formula a. BV(a) denotes all the bounded variables of formula a. 

Definition 3.7: An occurrence of x in formula a is said to be free occurrence if it is not 
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bounded. In such case, x is said to be a free variable of the formula a. FV(a) denotes all 

the bounded variables of formula a.

Obviously that a variable x can be both free and bounded occur in formula a, which 

means BV(a)nFV(a) may not be empty.

The concept of free and bounded variables is very important for the substitutions of 

formulae

Definition 3.8: The result of substituting term tm for variable x in a term tm' or formula 

a is recursively defined as:

1) y[tm/x]= if y=x then t else y, when tm' is the variable y.

2) c[tm/x]=c, when tm' is the constant c.

3) f(tnii, tm2 , ..., tmn)[tm/x]= f(tmi[tm/x], tni2[tm/x], ..., tmn[tm/x]), when tm' is 

the term f(tnii, mi2, ..., tmn).

4) p(tmi, mi2, ..., tmn)[tm/x]= p(tnii[tm/x], tm2[tm/x], ..., tmn [tm/x]), when a is 

the formula p(tnii, tni2, ..., tmn).

5) (p-n)[tm/x]=p[tm/x] ->y[tm/x]

6) (-,p)[tm/x]= -i (P[tm/x])

7) Vyp[tm/x]= if x=y then Vyp else Vy(p[tm/x])

Intuitively, only free occurrences of x can be substituted by term tm.

Definition 3.9: It is said that a term tm is free for x in formula a, if every occurrence of 

x in formula a is not in the filed of Vy, where y is a free variable of term tm.

A special case is that variable x is always free for x in any formula a.

For example, let tm=l-y, and a=By(x+y=0), the occurrence of x in a is in the field
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of 3y, so t is not free for x in a. If we substitute x by t in a, we get 

a[tm/x]= 3y(l-y+y=0)= 3y(l =0) 

This is absurd in some sense.

Till now, the language of a first order logic system is defined clearly and next step is 

providing enough axioms and rules to deduct theorems.

Definition 3.10: The axioms of a first order logic system consist of the following:

• Prepositional axioms: 

Axl.

Ax2.

Ax3. (-ip — » -i<x) — » (a — » P)

• Quantifier axioms:

Ax4. Vx(a -> p) -> (Vxa -> Vxp)

Ax5. Vxa -> a[tm / x] , such that t is free for x in a.

Ax6. a — » Vxa , such that x ̂ FV(a).

• Equality axioms: 

Ax7. tm = tm

Ax8. tmt =tm, A---Atmn =tmn

Ax9. tmj =tm A---Atmn =m\ -^p(tm1 ,tm2 ,---,tmn )->p(tm,tm2 ,---,tmn ) 

Generalization:
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Ax 10: Vxa, if a is an axiom.

Definition 3.11 : A first order logic system L has only MP-rule, that is: 

MP: {a, a-»p} |-p

Definition 3.12: A formula a is said to be provable by a set of formulae /"(referred to 

F |-a), if there exists a finite formula series ai, 012, ..., a, where each ak is in F, or a 

axioms, or is gained by applying the MP-rule for two former formula a\ and Oj (i,j,<k).

This definition is the formal description of what a mathematical proof is. The 

relation - between a formula set F and a formula a is usually called deducibility 

relation. Formulae proved by empty set ( |-a) is called theorems.

Section 3.1.2 Semantics

Definition 3.13: Given a first order logic system L, a Model is a pair M=<D, I>, where 

D is a non-empty set called Domain (or Universe, or Carrier), I is an interpretation 

function which interpret the signature of L as:

1) For each function symbol f with rank n, I(f):Dn — »D is an n-ary function.

2) For each predicate symbol p with rank n, I(p):Dn -» (0, 1 } is an n-ary predicate.

3) For each variable x, I(x)eD is an element of D.

Given a Model M of L, the constants and variables are interpreted directly and the 

term f (tnij , tm2 , • • • , tmn ) is interpreted by

m, , tm2 , • • • , tmn )) = I(f )(I(tm1 ), I(tm2 ),-•-, I(tmn )) .

For the interpretation I, the symbol Ix=a stands for the same interpretation as I, 

except the variable x is interpreted as a. And for a model M=<D, I>, the model Mx=a is 

defined as <D, Ix=a>.
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Definition 3.14: Given a model M, the formulae of L are interpreted as:

1) I(p(tm1 ,tm2 ,...,tmn )) = I(p)(I(tm1 ),I(tm2 ),•••, I(tmn ))

2) I(a->PHl-I(a))xI(p) and I(-,a)=l-I(a).

3) I(Vxp) = inf{Ix=a (p)}aeD ^ x=a

Definition 3.15: Given a model M=<D, I> of first order logic L,

1) A formula a is said to be satisfied by M (referred as M ha) if I(a)=l.

2) A set of formula F is said to be satisfied by M if M ha for all aeF

3) A formula a is said to be satisfied by a formula set F (referred as F =a), if for

all model M, M |=F implies M =a.

The relation h between a formula set F and a formula a is usually called entailment 

relation. Formulae can be satisfied by any model (denoted as =a) is called tautology.

Section 3.1.3 Soundness and Completeness

In the last two sections, two relations, we introduced two relations, deducibility |-a 

and entailment ha. The equivalence between these two is termed the soundness and 

completeness.

Theorem 3.1: Soundness of FOL. If F |-a, then F ha. 

Theorem 3.2: Completeness of FOL. If F =a, then F |-a.

Especially, theorems and tautologies are equivalent. 

Section 3.1.4 Many Sorted First Order Logic

These are situations in which it is desirable to express properties of structures of
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different types or sorts. By adding to the formalism of first order logic the notion of type, 

one obtains a flexible and convenient logic called many sorted first order logic, which 

enjoys the same property as first order logic. [Wanl952, Gill 956]

Definition 3.16: The alphabet of a many sorted first order logic system consists of the 

following symbols:

1) A countable set Su{bool} of sorts.

2) Logical Connectives: — »ofrank(bool2 — »bool), -. ofrank(bool— »bool)

3) Quantifiers: for every sort seS, there is a quantifier Vs of rank (bool— »bool)

4) Equalities: for every sort seS, there is an equality symbol =s .

5) Variables: for every sort seS, there are countable infinite variables VS={XQ:S,

6) Auxiliary symbols "(" and ")"• 

The signature also has to be typed.

Definition 3.17: The signature of Su{bool} ranked first order logic language consists 

of:

• Function symbols: A set FS of function symbols with a rank function rank: 

S — »S. The function with rank (e->s) is called a constant of sort s.

• Predicate symbols: A set PS of predicate symbols with a rank function rank: 

S*->{bool}. The predicate with rank(e— »{bool}) is called a propositional 

constant.

All the other definitions of terms, atomic formulae, formulae, axioms and inference 

rules are the same as FOL.

To define a many sorted logic system, one only has to define the sorts, the signatures
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and special axioms in that theory.

Definition 3.18: Given a many sorted first order logic L with sort S. A model M is 

defined as:

1) For each sort seS, there is a non-empty set Ms as its Domain.

2) Each function symbol f rank (si...sn—»s) is interpreted as a 

functionfM : M x• • • xMc -> M0 .
1V1 !>, !> n h

3) Each predicate symbol p with rank (si...sn->bool) is interpreted as a predicate 

rM :MSi x...xMSn ->{0,l}.

4) Each variable symbol x:s is interpreted as a element (X:S)M in Ms .

All the other interpretations of terms, atomic formulae, formulae are the same as 

FOL.

To define a model for a many sorted first order logic, one just has to define its 

domain of each sort, and the interpretations of function symbols, predicate symbols and 

variables.

Theorem 3.3: Soundness and Completeness. F |-a, if and only if F ha. [Wanl952, 

GU1956]

The many sorted first order logic is frequently used in the rest of the thesis. Each 

time we only need to describe the sorts, signature and interpretation of the signature.

Section 3.2 Predicate Temporal Logics

We shall discuss some predicate based temporal logic systems which are tightly 

associated with our research.
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Section 3.2.1 BTK

BTK is a non-reified temporal logic system proposed by Bacchus, Tenenberg and 

Koomen in [BTK1991]. BTK system is exactly a standard many sorted first order logic 

with sorts S={t, u}, where t stands for the temporal elements and u stands for the 

non-temporal elements.

Syntax

The signature of BTK is LBTK-^S, PS>, where

FS is the set of function symbols. Every function f eFS has a rank tnxum-^t 

(temporal function) or tnxum— »u (non-temporal function).

• PS is the set of predicate symbols. Every predicate pePS has a rank tn—»{bool} 

(temporal predicate), or um—»{bool} (non-temporal predicate), or tnxum-> {bool} 

(mixed predicate)

All the other definitions of terms, formulae, axioms and rules are in the standard 

fashion.

The syntax structure of BTK can be illustrated as figure 3.1
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temporal terms 
(t) 

non-temporal terms 
(u) 

temporal 
functions 

mixed 
predicate~. 

non-temporal 
functions 

) 

Figure 3.1 Structure ofBTK 

Semantics 

{O, 1} 

A model of BTK is defined as a triple M=<T, U, I>, where T and U are domains of 

temporal elements and non-temporal elements respectively. I is a function interpreting 

the signatures and variables of BTK in the standard way. 

Property 

As a many sorted first order logic system, BTK has simple, clear syntax, which 

makes it easy to understand and apply. More important, BTK inherits the sound and 
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complete inference system from first order logic, which makes the automatic theorem 

proving possible.

On the other hand, as a temporal argument method, BTK has expressive limit in 

representing the property and relation between the predicates. For example, the sentence 

CAUSE(pi,p2) is not a valid formula in BTK.

Section 3.2.2 TR

The TR system is a reified temporal logic system introduced by Reichgelt [Reil989]. 

Similarly as BTK, the TR logic system is also a many sorted first order logic, but more 

complicated. The sorts of TR are S={den, t-den, d-den, exp, p, i, t, c, v}, which have 

been organized as Figure 3.2.

Universal

denotations 
(den)

expressions

points in time 
(t-den)

domain prepositional individual
individuals expressions expressions

(d-den) (p) (i)

time constant variables
expressions expressions expressions

(t) (c) (v)

Figure 3.2 Sort hierarchy for TR [Reil989]

Informally speaking, TR reified both syntax and semantics of temporal argument 

methods, where expression exp and denotation den stand for the reifications of syntax 

and semantics respectively. The sub-sorts of den, t-den and d-den, express the temporal 

domain and non-temporal domain respectively. And sub-sorts of expression exp, p and i, 

express the formula and terms of temporal argument methods. Time expression t,

35



_______ CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

constant expression c and variable expression v stand for three special kinds of terms. 

Syntax

The signature of TR is LTR=<FS, PS>, where

1) FS is the set of function symbols, which can be can be split into three groups: 
individual function DF, propositional function PF and logical function LF.

1.1) Each element of DF is an individual function symbol with rank in^i. 

1 .2) Each element of PF is a propositional function symbol with rank in— »p

1.3) LF consists of AND, IF, OR with rank p2-»p, NOT, PAST, FUTURE with 

rank p-»p and FORALL, THEREIS with rank ixp->p

2) PS is the set of predicate symbols. PS= {HOLDS (with rank formxt-den-»bool), 

< (with rank t-den2^bool), EXISTS (with rank d-denxt-den^bool), T-DEN 

(with rank txt-den^bool) and DEN (with rank cxd-denxt-den^-bool)}.

Informally speaking, each n-ary function of temporal argument method is still an 
n-ary function with the same rank; each n-ary predicate of temporal argument method is 
revised as a propositional function from n terms to propositional expressions; the logical 
connectives and quantifiers of temporal argument method are revised as logical 
functions from one propositional expression to another. HOLDS relation capture the 
meaning of entailment of temporal argument method; <TR indicate the time structure; 
EXISTS express if an individual exists at a time point. T-DEN interprets every time 
constant as a time point and DEN interpreting the constant symbol as an individual at 
some time point.

These complex sorts and signatures make structure of TR very complicated. 
Intuitively, the structure of TR can be illustrated as figure 3.3.
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Figure 3.3 Structure of TR

Semantics

Since TR is a many sorted first order logic system, its semantics can simply be 

provided by following the semantic definition of standard many sorted first order logic.

Property

As a many sorted first order logic, TR should have a clear syntax, semantics and 

sound and complete axiomatization. But in fact, TR is too complicated to provide 

adequate axioms to make it a real complete system. For example, to describe the
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function FORALL clearly, Reichgelt uses the following axiom: 

Vp:pVt:t-denVv:vVd:d-denVc:c 

HOLDS(FORALL(v, p), t)-» DEN(c, d, t) ->HOLDS(SUBST(c, v, p), t)

Then one have to add new axiom to define SUBST(c, v, p), which has not been done 

in [Reil989].

On the hand, although TR is a truly reified temporal logic which has great 

expressive power, it is difficult for temporal knowledge representation, because every 

element has an expression form and a denotation form which have to be carefully 

distinguished.

In all, TR brings forward some brilliant idea to reify both syntax and semantics of an 

object language, but on the other hand, it is too complicated for real application.

Section 3.2.3 MK

MK is a reified temporal logic system proposed by Jixin Ma and Brian Knight 

[MK1996]. MK is again a many sorted predicate logic with sort S={t, u, p} stand for 

temporal terms, non-temporal terms and prepositional terms respectively.

Syntax

MK is not given by the standard first order logic language; instead, it is defined by 

its own syntax and semantics which are very similar to standard first order logic. MK 

has the following signatures:

• TC: a set of temporal individual symbols;

• TV: a set of temporal variables;

• UC:a set of non-temporal individual symbols;

• UV:a set of non-temporal variables;
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• TF: a set of temporal function symbols;

• UF: a set of non-temporal function symbols;

• LF: the set of connectives functions (NOT, AND}

• TP: a set of temporal predicate symbols;

• UP: a set of non-temporal predicate symbols;

• MP: a set of meta-predicate symbols.

The terms and formulae of MK are defined in the same way of many sorted first 

order logic. The structure of MK can be illustrated as figure 3.4

temporal terms 
(t) temporal 

medicates

/ \temporal 
/ j functions

{NOT, AND}

( /non-temporal 
functions

non-temporal terms 
(u)

propositional 
terms

(P)

meta 
predicates>

ion-temporal 
predicates

{0,1}

Figure 3.4 Structure of MK

Figure 3.4 shows that the structure of MK is also simple and clear as BTK does.
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Semantics

The model of MK is defined as a triple M= <T, U, I>, where T is a nonempty 

universe of temporal individuals; U is a nonempty universe of non-temporal individuals; 

and I is an interpretation function, such that:

1) I maps each temporal individual symbol to a member of T;

2) I maps each non-temporal individual symbol to a member of U;

3) I maps each n-ary temporal function symbol tf to an n-ary function I(tf) from Tn 

toT;

4) I maps each n-ary non-temporal function symbol uf to an n-ary function I(uf) 

from Un to U;

5) I maps each n-ary temporal predicate symbol tp to an n-ary relation I(tp) on Tn ;

6) I maps each (m+n)-ary meta-predicate symbol mp to a (m+n)-ary predicate 

I(mp) on Tmx (I(TermPr0positionai))n .

In Ma's original work, I(TermPr0positionai) is defined by:

1) Each n-ary non-temporal predicate symbol up is interpreted as an n-ary 

predicates I(up) on U11;

2) I(up(ui, u2,. . ., un))=I(up)(I(ui),

3) I(AND(Pl ,p2)H(pi)Al(p2)

4)

This definition interprets the prepositional term as true or false, I(Termpr0positionai)= {0, 

1}, so a meta-predicate is interpreted on Tm* (0, 1}". We shall revise this work by 

re-define the interpretation I(Termpr0pOSitionai) by:
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1) Each n-ary non-temporal predicate symbol up is interpreted still as the symbol 

itself.

2) I(up(u!, u2,..., un))=I(up)(I(ui), I(u2), ..., I(un))

3) I(AND(Pi, p2)H(Pi) AND I(p2)

4) I(NOT(p))=NOT(I(p))

This definition interprets the propositional terms as propositional tokens. And 

meta-predicates are interpreted on time and propositional tokens, which is more 

reasonable.

Property

The MK system is truly a reified temporal logic which has general expressive power 

for temporal knowledge expression and deduction. However, MK system has not got the 

complete axioms to deduce all the theorems. Although it is believable that the axiomatic 

system of MK would be very similar to the many sorted first order logic, we will not 

provides these axioms, instead, we will revise it under the first logic framework.

Section 3.3 The Complete Reified Temporal Logic System CRTL

To overcome the weakness of existing reified temporal logic systems, we proposed a 

well-defined, completely axiomatized reified temporal logic, named CRTL, which is 

also simple and applicable for real problems.

Section 3.3.1 Syntax

CRTL is a standard many sorted first order logic with sorts S={t, u, p} stands for 

temporal terms, non-temporal terms and propositional terms.

Definition 3.19: The signature of the CRTL is a pair LCRTi=<FS, RS>, where

1) FS is the set of function symbols, which can be can be split into four groups: TF,
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UF, RF and PF defined as:

1.1) Each symbol tf in TF is a temporal function with rank tnxum-»t.

1.2) Each symbol uf in UF is a non-temporal function with rank tnxum->u

1.3) Each symbol pf in PF is a propositional function with rank tnxu

1.4) Each symbol If in LF is a logical function with rank pn—»p 

2) PS is the set of relation symbols which can be split into three groups:

2.1) Temporal predicates TP with rank tn-»bool

2.2) Non-temporal predicates UP with rank un—»bool

2.3) Meta predicates MP with rank tnxpm—»bool.

In some sense, CRTL is an intermix system of BTK, TR and MK. The two kinds of 

functions, temporal and non-temporal functions, and three kinds of predicates are 

reserved in CRTL, only the mix-predicates are revised as meta-predicates. TR's 

reification of the syntax part is used here, where formulae of temporal argument methods 

are re-interpreted as propositional terms here. The structure of MK system is kept by 

CRTL with some necessary extensions.

The structure of CRTL can be illustrated as figure 3.5.
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Figure 3.5 Structure of CRTL 

Section 3.3.2 Examples of all kinds of functions and predicates

Here we use a simple example to demonstrate all kinds of functions and predicates.

We choose the human society as an example, where non-temporal sort u stands for 

all the humans and t stands for the time we used in our daily life composed of years, 

months and days which is formally expressed as integer-like time.

Temporal functions

Temporal functions map temporal or/and non-temporal elements to temporal 

elements. For example:

Next_day: t-»t maps a day to its next day. 

Birthday: u-»t maps each human to its birthday.
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Non-temporal functions

Non-temporal functions map temporal or/and non-temporal elements to 

non-temporal elements. For example:

Father: u—»u maps each human to its father. 

Propositional functions

Prepositional functions construct some prepositional tokens whose truth values 

depend on time. For example:

Richer: uxu—»p means one person is richer than the other, which holds on the certain 

time.

Logical functions

Logical functions are constructors for complex propositions. For example: 

AND: pxp-»p is the conjunction of prepositional terms. 

NOT: p—»p is the negation of prepositional terms

FORALLuj: p—»p, FORALLtj: p—»p are the universal quantification of prepositional 

terms.

Temporal predicates

Temporal predicates express the relations of time elements. For example:

MEETS: txt-»{0, 1} denotes the immediate predecessor order relation over time 

elements:

Non-temporal predicates

Non-temporal predicates express the relations of non-temporal elements. For
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example:

Older: uxu—»{0, 1} means one person is older than the other. 

Meta-predicates

Meta-predicates express the relations of prepositional tokens. For example: 

HOLDS: pxt—»{0, 1} denotes proposition p is true at time t.

CAUSES: t3 xp3 -»{0, 1}, where CAUSES(tb t, t2 , pi, p, Pz) denote a causal law, 

which intuitively states that, under the precondition that proposition pi hold true over 

time ti, the truth holding of proposition p over time t will cause the truth holding of 
proposition p2 over time \.i-

Section 3.3.3 Semantics

The semantics of CRTL follows standard many sorted first order logic semantics. A 
model M of CRTL is a 4-tuple M=<T, U, P, I>, where T, U and P are non-empty domain 
of temporal elements, non-temporal elements and prepositional terms. I is the 
interpreting function such that:

1) Each temporal function symbol tf is interpreted as a function TnxUm—»T.

2) Each non-temporal function symbol uf is interpreted as a function TnxUm-»U

3) Each prepositional function symbol pf is interpreted as a function TnxUm—»P

4) Each logical function symbol If is interpreted as a function Pn—»P

5) Each temporal predicate symbol tp is interpreted as a predicate on Tn

6) Each non-temporal predicate symbol up is interpreted as a predicate on Un

7) Each meta temporal predicate symbol nip is interpreted as a predicate on TnxPm

45



_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

The interpretation is the same as the revised interpretation of MK system, where 

function symbols are interpreted as temporal or non-temporal functions, predicate 

symbols are interpreted as temporal, non-temporal and meta-predicates. Meta-predicates 

take time elements and propositional terms (or propositional tokens) as its argument, and 

this make it possible to qualification over all propositional terms.

Section 3.3.4 CRTL with Durations

In some circumstance, the problem solution depends on not only the meets relations 

of time elements, but also their durations. In order to formally define such a system, a 

new sort d is added to denotes the length metric and a duration assigning function DUR 

is added to indicate the duration of every time element.

The structure is show as figure 3.6.
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Figure 3.6 Structure of CRTL with duration

The MK system is somehow a reified temporal logic with durations, and now can be

46



_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

formally embedded in the CRTL system.

To reduce complexity, usually the non-negative real or rational numbers are chosen 
as the domain of the durations. However, this choice is not mandated.

Section 3.3.5 Property

From a theoretical view, CRTL is a many sorted first order logic which enjoys clear 
definition of syntax and semantics, sound, complete axioms and deduction rules. This 
makes it feasible to directly use Herbrand principal for theorem determination and 
auto-proof.

On the other hand, from a practical view, CRTL is an extension of the reified logic 
system MK, which means CRTL has even more general expressive power for temporal 
knowledge representation and reasoning.

For example, we have introduced formula CAUSES(ti, t, t2, pi, p, p2) denoting the 
causal law, which intuitively states that, under the precondition that proposition pi hold 
true over time ti, the truth holding of proposition p over time t will cause the truth 
holding of proposition p2 over time t2- This can be formally characterized by the 
following axiom:

CAUSES(t!, t, t2 , pi, p, p2)AHOLDS(pi, ti) AHOLDS(p, t)-» HOLDS(p2 , t2)

In order to characterize temporal relationships between events and their effects, we 
impose the following temporal constraints:

CAUSES(ti, t, t2 , pi, p, p2)-»MEETS(ti, t)A(MEETS(ti, t2)vBefore(ti, t2))

It is important to note that above axiom actually specifies the so-called (most) 
general temporal constraint (GTC) [Shol987]. Such a GTC guarantees the 
common-sense assertion that "the beginning of the effect cannot precede the beginning 
of the cause", namely, there is a time delay between the event and its effect.
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Section 3.3.6 The Simplified CRTL System SCRTL

The logic system CRTL describes a framework for temporal knowledge 

representation and deduction. It mainly aims at the logical completeness and expressive 

power, in the meanwhile, it lose some efficiency.

SCRTL is a simplified system of CRTL aiming at simplicity and efficiency. The sort 

of SCRTL is S={t, p, d}u{bool}, where non-temporal terms are no longer considered.

The signature of SCRTL is L=<FS, PS>, where

• FS contains the duration function DUR with the rank t^d and the propositional 

constants PI, P2 , .. .,Pk with rank e—»p

• PS contains the temporal predicate MEETS with rank t2 and the meta-predicate 

HOLDS with rank pxt

The structure of SCRTL is illustrated as figure 3.7, which is simple and easy for 

practical applications.

Informally speaking, SCRTL only considers n propositions PI, ..., Pn whose truth 

value vary with time, and the time structure is described by MEETS relation and DUR 

function.
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The application of SCRTL will be discussed in detail in next chapter.
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Chapter 4 Scenarios and Their Graphical

Representation

In chapter 3, the simplified complete reified temporal logic system SCRTL was 

introduced. This system can be expediently used for real problem because of its 

simplicity. The finite model of SCRTL, which will be termed scenario, is discussed in 

this chapter.

Scenarios are defined in section 4.1 and the graphical and matrix representation of 

scenarios are discussed in section 4.2 and section 4.3. Section 4.4 introduces some 

extensions for representing incomplete knowledge and general time relations and section 

4.5 discusses the matching of scenarios.

Section 4.1 Definition of Scenarios

Let us Consider a finite model of SCRTL M-<T, P, R, I>, where T is a finite set of 

time elements, P is a finite set of primitive propositions and I is the interpreting function 

that:

1) Every prepositional constant Pj is interpreted as a primitive proposition in P.

2) HOLDM cPxT

3) MEETSM <=TxT

4) DURM:T-»R

We will study this model in details for representing temporal knowledge.
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Section 4.1.1 Time

For the reason of general treatments, we shall take the time theory proposed 

previously by Ma and Knight [MK1994] as the temporal basis. This time theory 

addressed both points and intervals as temporal primitives on an equal footing: neither 

points have to be defined as limits of intervals, nor intervals have to be constructed out 

of points. The distinction between time intervals and time points is characterized by means 

of a duration assignment function, DUR, from the set of time elements to non-negative real 

numbers, i.e., R*0. A time element t is called an (time) interval if DUR(t) > 0; otherwise, t is 

called a (time) point. Such a temporal theory is indeed an extension to the interval-based 

axiomatization of Alien and Hayes [AH1989]. As shown in [MK1994], analogous to the 

13 relations introduced by Alien for intervals [All 1983], there are 30 distinct temporal 

relations over time elements including both intervals and points, which can be derived 

from the single immediate predecessor relation, "Meets". These 30 derived temporal 

relations can be classified into the following 4 groups:

• Relations that relate points to points: 

(Equal, Before, After}

• Relations that relate points to intervals:

(Before, After, Meets, Met-by, Starts, During. Finishes}

• Relations that relate intervals to points:

(Before, After, Meets, Met-by, Started-by, Contains, Finished-by}

• Relations that relate intervals to intervals:

(Equal, Before, After, Meets, Met-by, Overlaps, Overlapped-by, Starts, 

Started-by, During, Contains, Finishes, Finished-by}

51



CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

Section 4.1.2 State

For each time element t (point or interval), there are some (possibly zero) 

propositions holds true on/over it. The state associate with the time element t is defined 

as the set of all holding propositions, namely st = {Pk e P: HOLDS(Pk ,t)}.

Informally speaking, the state and duration describe the properties of the time 

elements separately while the MEETS predicate describe the temporal relations between 

these time elements.

Section 4.1.3 Scenario

Definition 4.1 A scenario is a 5-tuple S=<T, P, HOLDS, MEETS, DUR>, where

1) T is a finite set of time elements.

2) P is a finite set of propositions.

3) HOLDS=(HOLDS(Si, ti): SjcP, tieT}

4) MEETS={MEETS(ti, tj): for some ti, tjeT}

5) DUR: T—»R+0 indicates the duration of the time elements. 

Example 4.1 let Si=<T, P, HOLDS, MEETS, DUR>, where

T={Mon, Tue, Wed, Thur, Fri, Sat}

P={"Blocked nose", "Cough", "Fever", "Headache", "Sore throat"}

HOLDS={ HOLDS( ("Blocked nose"}, Mon),

HOLDS(("Blocked nose", "Sore throat"}, Tue), 

HOLDS(("Sore throat", "Cough"}, Wed), 

HOLDS(("Sore throat", "Cough", "Fever"}, Thur),
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HOLDS( {"Fever", "Cough", "Headache"}, Fri), 

HOLDS( ("Fever", "Headache"}, Sat)

MEETS= { MEETS(Mon, Tue), MEETS(Tue, Wed), MEETS(Wed, Thur), 

MEETS(Thur, Fri), MEETS(Fri, Sat)

DUR: (day)=l for all dayeT. 

Si is a simple scenario of the flu symptoms. 

Section 4.1.4 Graphical representation

Although the above representation of scenario is formal and adequate, it is not 

intuitive.

In [KM 1992], a graphical representation for expressing temporal knowledge in 

terms of MEETS relations and duration knowledge has been introduced by means of a 

directed and partially weighted graph, where time elements are denoted as edges of the 

graph, relation MEETS(tj, tj) is represented by ti being in-edge and tj being out-edge to a 

common node, and for time elements with known duration, the corresponding edges are 

weighted by their durations respectively.

Such a graphical representation can be directly extended to express temporal 

scenarios.

In fact, a given scenario S=<T, P, HOLDS, MEETS, DUR> can be represented in 

terms of a temporal network, defined as a directed, attributed simple graph Gs , called 

scenario Graph, where:

1) Each time element t in T is denoted as a directed edge of the graph labelled by t 

that is bounded by a pair of nodes, which are called the head-node, and the
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tail-node, of the edge, respectively.

2) Each relation MEETS(tj, tj) in MEETS is represented by means of merging the 

head-node of tj and the tail-node of tj as a common node, of which tj is an 

in-edge and tj is an out-edge, respectively (see figure 4.1).

3) Each formula HOLDS(sj, ti) in HOLDS is represented by means of simply 

adding Sj as an additional label to the edge labelled by the corresponding ti. For 

any time element t in T, if there is no HOLDS knowledge, it will be labelled by 

the empty state {}.

4) Each piece of duration knowledge DUR(t) = r in DUR is expressed as a real 

number, r, alongside the corresponding edge t.
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o

Figure 4.1 Merging the begin-node of tj and the end-node of tj as a common node if

MEETS(ti, tj)

For example the scenario graph of above example Si is constructed as figure 4.2
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{"Blocked nose"} 1day ^-v {"Blocked nose", "Sore throat"} 1day

{"Sore throat", "Cough", "Fever"} 1day.-^ {"Sore throat", "Cough"} 1day^ , , .-^O ———— ̂ r^ —————
Thur ^ Wed

{"Headache", "Cough", "Fever"} 1day .-.{"Headache", "Fever"} 1day

Fri ^ Sat
l

Figure 4.2 Scenario graph of Si 

Section 4.1.5 Matrix representation of scenario

Although the graphical representation is very comprehensive for human; it is not 

suitable for storage and manipulation in computers. So the adjacency matrices are 

widely used for representing graphs in computers

In what follows, we shall simply assume |P| = n. Corresponding to scenario graph Gs 

with m nodes, we define a m-by-m-matrix Ns, named the adjacency matrix (or edge 

attribute matrix), where Ns(i, j) is a (n+l)-dimension vector lijeRn+1 , such that:

• For any adjacent pair of nodes i and j in G, if (i, j) is an edge representing time 

element t, then lij(k)= 1 if Holds(Pk, t), otherwise lj,j(k) = 0, 1 < k < n; and 

lij(n+l) = DUR(t)

• For any non-adjacent pair of nodes i and j in Q Ijj = <w, w, ..., w> (denoted as 

10), where w is a negative real number (usually w is set as -1), which will be use 

to adjust the edit-distance of deleting operations in graph matching process

Also we shall use Ns,k to denote the matrix whose i-j-entry is the k-th element of 

i-j-entry in Ns .

For example, the adjacency matrix of scenario graph figure 4.2 is:
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10
10
10
10
10
10
10

< 1, 0,0,0, 0,1 >

10
10
10
10
10
10

10
< 1,0,0, 0,1,1 >

10
10
10
10
10

10
10

< 0,1,0, 0,1,1 >

10
10
10
10

0 0 '0

10 10 10

'0 '0 10

< 0,1,1, 0,1,1 > 10 10

10 < 0,1,1,1, 0,1 > 10

10 10 < 0,0,1,1, 0,1 >

10 10 10

It can be easily seen that this is not an economic representation. Since the scenario 

graph is usually sparse graph, the sparse matrix representation is more suitable, for 

example the above matrix can be sparsely represented as:

(3,4, <0,1,0,0,1,1>), (4,5, 

<0,1,1,0,1,1>), (5,6,<0,1,1,1,0,1>), (6,7,<0,0,1,1,0,1>), (others, 10)}

Section 4.2 Scenario with Incomplete Knowledge

Scenario of above definition is said to be complete since it contains whole 

information of HOLDS, MEETS and DUR predicates. To construct such a scenario, one 

has to know all the information of the time elements and propositions, which is usually 

unrealizable. So we shall define a model for partial information scenarios.

Section 4.2.1 Definition of partial scenario

Definition 4.2: ^partial scenario is a 5-tuple S=<T, P, HOLDS, MEETS, DUR>, where

1) T, P and MEETS are defined as complete scenario.

2) HOLDS :PxT^ {0,+ 1 ,- 1 } is a function indicating if a proposition holds true on a 

time t (+1), or holds false (0), or holds unknown (-1).

3) DUR:T^R u{0, -1} is a function mapping time elements to its duration, or -1 

if the duration is unknown.

Example 4.2 For the example4.1, obviously the patient got a fever on Thursday, Friday 

and Saturday, and the patient had a normal temperature from Monday to Wednesday.
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Suppose that maybe the patient did not notice if he got fever or not from Monday to 

Wednesday, then the scenario will be S2=<T, P, HOLDS', MEETS, DUR>, where

1) T, P, MEETS and DUR are the same as Si.

2) HOLDS' is a function from PxT to {0,+1 ,-1} which can be arranged as table 4.1

Table 4.1 HOLDS function of a scenario

"Blocked 

nose"
"Cough"

"Fever"

"Headache"

"Sore 

throat"

Mon

1

0

-1

0

0

Tue

1

0

-1

0

1

Wed

0

1

-1

0

1

Thr

0

1

1

0

1

Fri

0

1

1

1

0

Sat

0

0

1

1

0

The -1's indicate the unknown information. 

Section 4.2.2 Graphical representation

The graphical representation of partial scenarios is similar to the representation of 

complete scenarios except that each edge of a complete scenario is labeled by state and 

duration while each edge t of a partial scenario is labeled by an n+1 dimensional vector 

lt eRn+1 , where lt(k)=HOLDS(Pk, t) for k<n and lt(n+l)=DUR(t).

For example the partial scenario of example 4.2 can be graphically represented as:
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-1.0,0, 1> x-v <1,Q. -1,0, 1.

. 1, -1.0.1.
Thur v—' Wed

<0. 1.1.1.0. 1> ^ <0,0,1.1.0.
Fri ^ Sat 

label=<"Blocked nose", "Cough", "Fever", "Headache", "Sore throat", "Duration">

Figure 4.3 Scenario graph of 82 

Section 4.2.3 Matrix representation

The matrix representation of a partial scenario is the same as that for a complete 
scenario.

For example the matrix representation of scenario 82 is

1 <1,0,-1,0,0,1> 10 10 10 10 10 0
10 10 <1,0,-1,0,1,1 > 10 10 10 10
la 10 10 <0,1,-1,0,1,1 > 10 10 10
10 10 10 10 < 0,1,1,0,1,1 > 10 10
10 10 10 10 10 < 0,1,1,1,0,1 > 10
10 10 10 10 10 10 < 0,0,1,1,0,1 >
10 10 10 10 10 10 10

As the same, the above matrix can be sparsely written as

>,3,<1,0,-1,0,1,1>), (3,4, <0,1,-1,0,1,1>), (4,5, 
<0,1,1,0,1,1>), (5,6,<0,1,1,1,0,1>), (6,7,<0,0,1,1,0,1>), (others, 10)}

Section 4.3 Scenario with General Temporal Relations

In our daily life, we seldom say "MEETS" to express time relations, instead, the
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temporal relations like BEFORE, AFTER are more frequently used. So we define 
another schema for temporal scenario where all the 13 possible temporal relations are all 
allowed for describing time structures.

Definition 4.3: An extended scenario is a 5-tuple S=<T, P, HOLDS, TRS, DUR>, where

1) T, P, HOLDS and DUR are defined as complete scenario.

2) TRS is the set of time relations. TRS={r(ti,tj): ti, tj are two time elements and r 
is one of the 13 possible temporal relations}

Example 4.3 For example Si, if the patient cured on the next Saturday after some 
treatments, then the new scenario could be S3=<T, P', HOLDS', TRS, DUR'>, where

T'=Tu{nSat}

2) P'=P and HOLDS'=HOLDS.

3) TRS=MEETSu { AFTER(nSat, Sat)}

4) DUR'=DURuDUR'(nSat)=l

An extended scenario can be easily transferred to a partial scenario by

Before(ti, t2) <-> 3teT(Meets(ti, t) A Meets(t, t2))

Starts(ti, t2) <-> 3t3 ,t,t4 eT(Meets(t3 , ti) A Meets(t3 , t2) A Meets(ti, I)A Meets(t, t4) 

A Meets(t2, t4))

Finishes(ti, t2) <-> 3t3 ,t,t4 eT(Meets(t3 , t) A Meets(t3 , t2) A Meets(t, II)A Meets(ti, 

t4) A Meets(t2 , t4))

During(ti, t2) ^3t3,t4 eT(Meets(t3 , ti) AMeets(ti, t4) AStarts(t3 , t2) AFinishes(t4 ,

t2»

Overlaps(ti, t2) <-»3teT(Finishes(t, ti) A Starts(t, t2))
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After(ti , t2) <-> Before((t2 , 

Met-by(tb t2) <->Meets(t2 , 

Overlapped-by(ti, t2) <-> Overlaps(t2 , 

Started-by(ti, t2) <-» Starts(t2 , 

Contains(ti, t2) <-> During(t2 , 

Finished-by(ti, t2) <-» Finishes(t2 , ti)

Based on this transformation, the graphical and matrix representations can be 

directly used for the extended scenarios. Take the drill-sticking case in figure 1.1 as an 

example. There are eight propositions associated with the drill-sticking, which means 

P={"hook load increasing", "erratic flow out", "erratic torque", "increasing drag", 

"erratic drag", "erratic increasing torque", "increasing torque", "increasing pressure"} . 

For the time elements 1x2, since "erratic flow out" holds on it and its duration is 

unknown, so 1x2 can be expressed by an edge with label <0, 1, 0, 0, 0, 0, 0, 0, -1>. 

Similarly 1x3 can be expressed by an edge with label <0, 1, 1, 0, 0, 0, 0, 0, -1> indicating 

that "erratic flow out", "erratic torque" are holding on 1x3 and its duration is unknown. 

Because 1x2 is before 1x3, there exists a time elements t2)3 that MEETS(Ix2, t2 ,3) and 

MEETS(t2 ,3, 1x3). In the same way, the drill-sticking case in figure 1.1 can be 

reconstructed as a scenario graph as figure 4.4:
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.O.Q.O.Q.O.O.O.-1>/~-N <Q,1 ,Q.O.O,0,0,Q,-1> - 1 ' 1 .Q,Q.Q.Q.O.-1> —

<0,0,0,1,0,0,0,0,-1>

L.-1 ,-1 ,-1 ,-1 ,-1 ,-1 ,-1 ,-i> <-i ,-1 ,-1 ,-1 ,-1 ,-1 ,-1 ,-1
<0,0,0,0,0,0,1,1,-1> ^\ ^ <0,0,0,0,0,1,0,0,-1>

label=<"hook load increasing", "erratic flow out", "erratic torque", "increasing drag", "erratic 
drag", "erratic increasing torque", "increasing torque", "increasing pressure", "duration">

Figure 4.4 Scenario graph of drill-sticking 

Section 4.4 Matching Temporal Scenarios

As introduced in chapter 1, object similarity is very important for case based 

reasoning, pattern recognition and cluster analysis. For our cases, we have to explore the 

object similarity between scenarios or corresponding scenario graphs.

In this thesis, two different similarity measurements are introduces based on 

embedded mapping and graph matching.

Section 4.4.1 Similarity based on embedded mapping

We [MZH2007] propose a similarity measurement of scenarios formulated by the 

embedded mapping as following:

Let Si=<Ti, Pi, HOLDSi, MEETSi, DUR^ and S2=<T2, P2, HOLDS2, MEETS2, 

DUR2> be two scenarios such that|Tj| < |T2 | , then a embedded mapping 9 is a one to one

function from {1,2,..., |Tj } to {1, 2, . . ., |T2 | } and the scenario similarity is defined as
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a linear combinations of the following similarity: 

• Similarity of scenarios size:

IT, Isim8ize (S,,S2 ) =
I A/2

Similarity of HOLDS relations

1 JJJ, Liter sec tion(s1k , i

where intersection and union are the set-intersection and set-union operators. 

Similarity of MEETS relations

SimMEETS (S,, S2 ,9) = 2 ~^f

where NI and N2 are the MEETS-adjacency matrices of scenarios Si and 82 

respectively.

• Similarity of durations

N 
2DUR(t|)DUR(t?)

SimMEETS (S1 ,S2 ,9) = 2^
2DUR(t|)2 +DUR(t?)2

The overall similarity with respect to embedded mapping 9 is:

, w iSimHOLDs (si» S2»<P) + w 2SimMEETS (St , S2 ,9) + w3SimDUR (St , S2 ,9)
(Wj +W 2 +W 3 )

where the wi is the importance coefficient of the similarity of HOLDS, MEETS,

Q \ , S2 ,9) - sze (Wl +w 2 +w3 )
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DUR, which can be set originally or obtained by learning process. 

• Finally, the similarity between scenario Si and 82 are defined as:

, S2 ) = max sim(Sj , S2 , cp)

A navigation-based algorithm has been provide to calculate the scenario similarity 

defined above and several tests have been done in [MZH2007] which showed that the 

above similarity reflects the conventional idea of edit distance, where the closer two 

scenarios are to each other, the more similar they are. However, due to embedded 

checking of all mappings, the computational complexity of the associated 

navigation-based algorithm is exponential. So a quicker algorithm or a better definition 

of similarity is needed.

Section 4.4.2 Similarity based on graph matching

Given two scenarios Si and 82, let Gsi and GS2 be their graphical representations, 

then the distance of these two scenarios are defined by the distance of the two graphs Gs i 

and GS2.

Assume the adjacency matrices are Ns i and NS2, with size mixnii and m2xni2, 

respectively. Without losing the generality, we assume mi = m2 = m. In fact, if nil < ni2, 

we can simply add ni2 - mi isolated dummy nodes to graph Gs i to get an extended graph, 

whose characteristic matrix will have the same size as that of NS2, i.e., m2xni2. Similar 

treatment can be applied to the case where m2 < mi.

The similarity degree between £ti and st2 is then defined by:

n+l
mm

Q€perm(m) •sim(s,,s2 ) = l———j^-sa—————————— (4>1 )

k=l

where perm(m) denotes the set of all m-by-m permutation matrices and |«| denotes
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the Frobenius-norm which will be discussed in the next chapter.

Since |NsU -QNs2,kQT [ <|NSU |F +|QNs2 , k QT | and |QNs2>kQT |F =|Ns2 ,kl!F

n+1

Then 0<
L(Kk |HK,k ||F )
k=l

So it is easy to see that sim(si, 82) falls within the range of [0, 1].

The algorithm for the formula (4.1) will be fully discussed in next chapter.
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Chapter 5 Graph Matching Algorithms for

Matching Scenarios

In chapter 4, the scenario pattern matching problem was formulated as the attributed 

graph matching problem. So in this chapter, we shall propose effective and efficient 

algorithms for matching scenario graphs.

Section 5.1 introduces the graph matching problem selected for this thesis. The 

eigen-decomposition graph matching algorithm and the symmetric polynomial 

transformation graph matching algorithm are discussed and improved in section 5.2 and 

section 5.3. Section 5.4 proposes the similarity graph matching framework to analyze 

node similarity based graph matching algorithm uniformly.

Section 5.1 Graph Matching Problems in This Thesis

Firstly, the graph matching problems selected for this thesis have to be clearly 

defined.

Section 5.1.1 Definition of graph matching problems

Before bringing forward the formulation of graph matching problem, two important 

notions, the permutation and permutation matrices, have to be introduced firstly.

Definition 5.1: A.permutation p is an one-to-one function from {1, 2,..., n} to itself.

(1 2 3 4 5^ 
For example, denotes the permutation that maps each number in

\ T1 J i. J ** I
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first row to its corresponding number of second row, such as, 1 to 4, 2 to 3. A 

permutation p can be simply denoted as a vector (p(l), p(2), ..., p(n))T. So the 

12345^
permutation

43152
can be simply written as vector (4, 3, 1, 5, 2) .

The set of all permutations of n elements is denoted as SG(n).

Let p and q be two permutation vectors of n elements and M be a n-by-n matrix then 

M(p, q), M(p, :) and M(:, q) denote the matrix whose (i, j)-th entry is the (p(i), q(j))-th, 
(p(i), j)-th and (i, q(j)) entry of matrix M respectively.

Definition 5.2: A. permutation matrix P is a n-by-n matrix such that

ij) = l forallj=l,2, ...,n

2) P(i,j) = l fbralli=l,2,...,n

3)

And the set of all n-by-n matrices are denoted as Perm(n);

Definition 5.3: There is a natural one-to-one correspondence between the permutation 
set SG(n) and the permutation matrices set Perm(n) defined as:

s2p: SG(n)^Perm(n) such that s2p(p)=In(p,:), 

p2s: Perm(n) ->SG(n) such that p2s(P)=Px(l,2,. . .,n)T, 

for every permutation peSG(n) and permutation matrix PePerm(n) (see glossary).

So in the rest of the thesis, we will use the lower case p or q to denote a permutation 
and the upper case P or Q to denote its corresponding permutation matrix.

For example the corresponding permutation matrix of permutation vector (4, 3, 5, 2)T
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00100 

00000

is U(4,3,1,5,2V,:)= 01000

10001 

00010

Proposition 5.1: Let p be a permutation. P is the corresponding permutation matrix, then 

for every n-by-n matrix M

M(p, :)=PxM and M(:, p)=MxPT

Now considering two graphs G and H with same size n, the graph matching problem 

is finding the optimal permutation from the nodes of G to nodes of H to minimize their 

"difference".

For any permutation p, these "differences" can be described by

|G-H(p,p)||

Where |«| can be any matrix norm. In this thesis, we choose the Frobenius norm,

which is a popular choice used in [Umel988, Alml991, Wyk2002]. An alternative 

choice is LI -norm that can be found in [AD 1993].

Definition 5.4: |U| denotes the Frobenius norm. For every complex matrix M,

HF =JZK
V i'J

Proposition 5.2: Let A, B, M be complex matrices, U and V be unitary matrices then:

A + B||F <||A||F+ ||B||F

I|ABM||A||F ||B||F
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|real(M)|+|imag(M)|£

M + M*
2

2

+ 

F

M-M*

2

2 

F

Proof is trivial.

So the "difference" of two graphs under permutation p can be rewritten as:

|G-PHPT ||

And the attributed graph matching problem can be formulated as:

m

args
PePerm(n)

(5.1)

where Gk, HkeRnxn are the k-th adjacency attributed matrices of attributed graphs G 

and H respectively.

This definition is widely used in [Wyk2002, Alml991, and Umel988].

As a special case for m=l, the formula (5.1) reduces to the so called weighted graph 

matching problem :

args min G-PHP1
PePerm(n)

(5.2)

Where Q HeR are the adjacency weighted matrices of weighted graphs G and H

Obviously, algorithms for attributed graph matching can be directly applied for 

weighted graph matching problems, but not vice versa. However, all the matching 

algorithms discussed in this thesis are all applicable for the attributed graph matching
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problems. So in thesis, we pay more attention to the weighted graph matching problems 

(5.2) because of its simplicity, and point out how the algorithms are revised for general 

attributed graph matching problems (5.1)

Section 5.1.2 Random generation of matrices

Since the graph matching problem is NP-complete [GJ1979, Abdl998, MB1998, 

GR1996], all the existing polynomial algorithms fail to work for some cases. Therefore, 

it is important to provide statistical evaluations showing the performances and 

limitations of the matching algorithms. But, first of all, we need an algorithm to generate 

random matrices as samples for graph matching algorithms testing.

The probability distribution of the samples directly influences the statistical 

evaluations of these graph matching algorithms. So every evaluation should be provided 

together with the probability distribution of its samples or with the random matrices 

generating algorithms which actually give the probability distribution in some implicit 

form.

Although there are many algorithms for generating orthogonal matrices [Heil978, 

Stel980, TT1982], unitary matrices [Zycl994, PZK1998], correlation matrices [DH2000, 

DHST2005] and general matrices [CN1997, Mez2007], in this thesis, we shall choose a 

simpler way to generate certain kind of random matrices based on the following two 

reasons:

• Reduce the computational complexity in order to test enough samples.

• It's hard for one to judge which distribution is better without knowing the real 

problem to be solved.

For our experiments, it is important to randomly generate general real and 

symmetric matrices, which is implemented in Matlab as following:
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Table 5.1 Generating real matrices

function y=Greal(n,type) 
//type=0 for sparse matrix.

y=rand(n);
if type==0

y=y.*(rand(n)<l/n);
end

Table 5.2 Generating symmetric matrices

function y=Gsym(n,type) 
//type=0 for sparse matrix.

A=rand(n);
if type==0

A=A.*(rand(n)<l/n);
end
y=(A+A')/2;

Although these programs are very simple, it is important for repeating all the 

following experiments in this thesis.

Section 5.1.3 Evaluation criterions

To evaluate a given graph matching algorithm, we use two most important criterions, 

namely mean error and computational time.

Definition 5.5: Let A be a matching algorithm, for a given graph pairs G and H, the 

computational error of the algorithm A is defined by:

(5.3)Error(A,QH)= G-PAHPj - min G-PHP'
V ' 7 II A A llF Peperm(n)H HF

where PA is the optimal matching calculated by algorithm A.

And the mean error is defined as the expected value of certain graph classes, that is
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Mean-error(A)=Expectation(Error(A, G, H)), 

where G and H are taken as random variables.

In further experiments, the mean error of a matching algorithm is not gained by the 
theoretical deduction but via numerical simulation.

Section 5.1.4 Comparison of several graph matching algorithms

Firstly, we compared several standard graph matching algorithms including the 
eigen-decomposition method (EDGM), the symmetric polynomial-transformation 
method (SPGM), the hubs and authorities method (HAGM) and the least square 
Kronecker product-successive projection method (LSKPGM).

72



CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 1: matching isomorphic graphs

500 isomorphic graph pairs are generated with size from 5 to 20 and the result is 

illustrated as figure 5.1 for dense graphs and figure 5.2 for sparse graphs.
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Figure 5.1 LSKPGM, HAGM, SPGM and EDGM for matching dense isomorphic graph

pairs
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Figure 5.2 LSKPGM, HAGM, SPGM and EDGM for matching sparse isomorphic

graph pairs

Figure 5.1 shows that all these algorithms can match dense isomorphic graph pairs 

perfectly. They almost all get zero error matching result. In statistical sense, 

isomorphism between dense graph pairs is easily found. But the case is different for 

sparse graph pairs. As shown in figure 5.2, only the SPGM algorithm matches sparse 
isomorphic graph pairs effectively, while others get ascending matching errors when the 

size of graph increases.

So the SPGM can be a candidate for our scenario graph matching.
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Test 2: matching non-isomorphic graph pairs with perturbations

The same as test 1, 500 isomorphic graph pairs G and H are generated with size 

from 5 to 20, for each pair, H is disturbed by adding a perturbation matrix E whose 

entries are uniformly random real numbers in the range from 0 to +e. 8 is called 

perturbation coefficient, which is set to be 0.10 in this test. The matching results are 

shown as figure 5.3 for dense graphs and figure 5.4 for sparse graphs.

LSKPGM 
HAGM 
SPGM 
EDGM

10 15 
Size of the Graph

Figure 5.3 LSKPGM, HAGM, SPGM and EDGM for matching dense graph pairs with

perturbation coefficient e=0.10.

Figure 5.3 shows that for graph pairs with small distance, only the EDGM algorithm 

get a satisfied matching result, while others all get large matching errors.
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Figure 5.4 LSKPGM, HAGM, SPGM and EDGM for matching sparse graph pairs with

perturbation coefficient e=0.10.

Figure 5.4 shows that all these four algorithms fail to work for sparse graph pairs 
with small distance. Unfortunately, we do have to solve such kind of graph matching 
problems since the scenario graph pairs are usually sparse with small distance.

So the EDGM algorithm will be another candidate for our scenario graph matching, 

where it has to be revised for sparse graph pairs.
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Test 3: the computational time of these algorithms

Graphs are generated as test 1, and the result is illustrated as figure 5.5.
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Figure 5.5 CPU time consuming comparison of LSKPGM, HAGM, SPGM and EDGM

Figure 5.5 shows that EDGM algorithm costs the least computational time. 

Conclusion

Based on these preliminary tests, the SPGM and EDGM algorithms are selected for 

our scenario graph matching problems. But, SPGM algorithm only works well for 

isomorphic graph pairs while EDGM only works well for dense graphs, so both of them 
need to be improved for sparse non-isomorphic graph pairs.
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Section 5.2 Eigen-decomposition Graph Matching Algorithm and Its 

Improvement

Umeyama [Umel988] presented an Eigen-decomposition based graph matching 

algorithm for matching both undirected and directed graphs.

Section 5.2.1 Eigen-decomposition graph matching algorithm 

Matching undirected graphs

Let G and H be two weighted undirected graphs. The EDGM algorithm has three 

dominated steps:

1) Calculating the Eigen-decomposition of adj acency matrix. 

Theorem 5.1: (diagonalization of symmetric matrices) for every symmetric real matrix
TM there exists a real orthogonal matrix O such that D= O MO is a diagonal matrix. 

[HJ1985]

From above well known that symmetric matrices G and H can be decomposed as
r-p ___ rp ___ ___G=VDoV and H=WDHW , where DG and DH are the diagonal matrices of the 

eigenvalues (in ascending order) of G and H, respectively, and V and W are two 
orthogonal matrices.

2) Construct the node similarity matrix 

The similarity matrix is constructed by:

S=|v|x|w|T (5.4)

where |v| , |W| denote the matrices whose (j,k)-entry is the absolute value of

corresponding entry of matrices V and W, and S(j,k) means the similarity of the j-th node 
of G and the k-th node of H.
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3) Calculate the maximum similarity match. 

The optimal matching is calculated by:

args
PePerm(n)

which is called the maximum linear assignment problem. 

Given a real matrix M, the maximum linear assignment problem is defined as

max_ assign(M) = arg s max ^ M(i, j) x P(i, j)
PePerm(n) j =j

And the minimum linear assignment problem is defined as

n
min_ assign(M) = args min]TM(i,j)xP(i,j)

PePerm(n) jj=i

Obviously that max_assign(M)=min_assign(-M).

The (maximum or minimum) linear assignment problem can be efficiently solved by 
Hungarian algorithm [Kuhl955, muni 957, AMO 1993].

Matching directed graphs

The process of applying the EDGM algorithm for directed graphs is almost the same 
as that of undirected graph except the adjacency matrix is replaced by its Hermitian 

matrix.

Let G be a directed weighted graph. An important point is that diagonalization 
theorem 5.1 doesn't holds for general real matrix. In other words, directed graph G may 

not be diagnoalizable in general cases. So in [Umel988] a Hermitian matrix of a graph 

G is proposed:
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G-G1

Obviously that Ht(G) is a Hermitian matrix for every real matrix G

Theorem 5.2: (diagonalization of Hermitian matrices) for every Hermitian complex 

matrix M there exists a real Unitary matrix U such that D= U*MU is a real diagonal 
matrix. [HJ1985]

So Hermitian matrices Ht(G) and Ht(H) can be decomposed as Ht(G)=VDGV* and
__ <fc

Ht(H)=WDHW , where DG and DH are the diagonal matrices of the eigenvalues (in 

ascending order) of G and H, respectively, and V and W are two unitary matrices.

The second and third step is the same as undirected graphs. 

Matching of attributed graphs

The EDGM algorithm is presented only for weighted graph matching, hi fact it can 

be easily extended for attributed graph matching.

Let {Gk:l<k<m}be a attributed graph, where Gk is the k-th adjacency matrix. 

Similarly as directed graphs, assume that k-th eigenvector matrix of Ht(Gk) is Vk, then 

Similarity of attributed graph G and H can be constructed as

s=|v|x|w|\where|v|=[|v1 | N ••• vm]' and l wl = [lwi| |w2 | ••• wm ]

And the optimal matching is calculated by Hungarian algorithm [Kuhl955, 

mun!957,AMO1993].

Section 5.2.2 Computational complexity

The computational complexities of the three dominate steps are

1 ) Calculating Eigen-decomposition of n-by-n matrices : O(n3) [GV 1 996]
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2) Calculating matrices multiplication: O(n3) [Knul998]

3) Using Hungarian algorithm: O(n3) [AMO1993] 

So the total computational complexity is O(n3). 

Section 5.2.3 Three limitations

The EDGM algorithm only work well for graphs satisfying all the three constraints:

1) Nearly Isomorphic

2) Isolating eigenvalues.

3) Dissimilar rows of absolute eigenvectors.

We use some examples to show how the EDGM algorithm fails to work if any of the 
constraint is not satisfied.

The need of the "Nearly Isomorphic" constraint

The same as above tests, 500 pairs of isomorphic graphs G and H are generate. For 
each pair G and H, they are made no longer isomorphic to each other by means of 
perturbing H with a noise E, ranging from 0 to 0.15. The result is illustrated in figure 

5.6.
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HI
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Noise Amplitude

Figure 5.6 Mean error of EDGM algorithm relative to noise

From figure 5.6, we can see that the calculating error of the EDGM algorithm grows 

quickly when the noise amplitude or the size of graph increases, which confirms our 

claim that the "nearly isomorphic" property is needed for EDGM algorithm.

The need of the "Isolating Eigenvalues" constraint

Here, it shall be demonstrate by example that without the "Isolating eigenvalues" 

condition, the EDGM method may fail to work. Consider the following graph pair:
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pi2
T«7

N^_ .X

2 ^2 
3

H

Figure 5.7 Graph pairs with multiple eigenvalues.

The adjacency matrices of G and H are:

G =

2000

0200

0023

0002

,H =

2000

3200

0020

0002

G and H are isomorphic since G = PHPT for P =

0001

0010

0100

1000

Let A=Ht(G) and B=Ht(H), the eigenvalues of A and B are

= A,(B)=[-0.1213,2,2, 4.1213]

We get the approximate solution:

PE =Hungarian(|v||w|T ) =

0001" 

0010 

1000 

0100
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|G-PEHPg I = 4.2426, the EDGM algorithm fails to find the best solution, that is, 

an isomorphic correspondence between G and H which gives a distance of 0 instead.

The need of the "Dissimilar Rows" constraint

Now, we show that "dissimilar rows constraint" is also needed. For instance

1

H

Figure 5.8 Graphs with similar rows of absolute eigenvector

The adjacency matrices of G and H are:

0100

0000

0030

0001

,H =

1000

0300

0001

0000

G and H are isomorphic since G = PHPT for P =

0001

0010

1000

0100

Let A=Ht(G) and B=Ht(H). The eigenvalues of A and B are

= A,(B) =[-1.2153, 2.6386, 3.6255, 5.9512],
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which are all single and well isolated.

The absolute eigenvectors of Ht(G) and Ht(H) are:

V =

0
0

2 0 0 
2 U U

01
10

0
0

w =

0
0

010
001

0 0

And the solution from EDGM algorithm is:

PE = Hungarian(|v||w|T ) =

0001

0010

0100

1000

G - PHPT = v2 , the algorithm still fails to find the best permutation because the 

matrices \V I and \W\ both have two same rows.

Section 5.2.4 Improvement

In order to theoretically explain why the three constraints are necessary and extend 

Umeyama's algorithm for general cases where some of the constraints are not satisfied, 

we introduce here a new approximate formula to graph matching problems.

The approximate formula

Given a Hermitian matrix A with A,(A) = [A,, = • • • = Xnl < A,nl+1 = • • • = Xnl+n2 < • • • < A, n ] 

as its eigenvalues, that is, matrix A has k distinct eigenvalues with repeating times

m,...,nk, respectively, where n^n, we can decompose matrix A=VDAV ) where
i=l

V=[Vi,. . .,VJ, and Vj is the eigen-space of the j-th distinct eigenvalue of matrix A.
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A simple but important property for the eigen-decomposition is that
_ .fe

A=(VX)DA(VX) is also an spectral decomposition of matrix A, for every unitary matrix 
XeU(ni...,nk), where U(ni,...,nk) denotes the set of all block matrices whose j-th 
diagonal matrix is an nj-by-nj unitary matrix.

Proposition 5.3: Let Hermitian matrix B=WDeW*, we have the following theorem:

||A-PBPT ||<||PW-VX|F (||DA ||F +|DB |F )+|DA -DB |F (5.5)

Proof:

IA - PBPT || F = |(VX)DA (VX)* - PWD B W*PT| 
IF

(VX)DA (VX)* - (PW)DA (VX)*) + ((PW)DA (VX)* - (PW)DB (VX)*)

+ ((PW)DB (VX)* -(PW)DB (PW)*

|(VX)DA (VX)* -(PW)DA (VX)*|p +|(PW)DA (VX)* -(PW)DB (VX)*||p

+ |(PW)DB (VX)* - (PW)DB (PW)* ||p

|(VX - PW)DA (VX)* ||F + |(PW)(DA - DB )(VX)* ||p + |(PW)DB (VX - PW)*

< |(VX - PW)|p |DA I + ||DA - DB ||p + (VX - PW)* || [DB||F

<|PW-VX||F (|DA |F+ |DB |F ) + |DA -DB ||F

So it is reasonable to use the following approximate formula to solve graph 
matching problems:

arg s min |PW - VX||F (5.6)
PePerm(n) 
XeU(n,,...,nk )
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An error estimation theorem for the approximate formula

We shall theoretically prove the accuracy of solving graph matching problem (5.2) 

by approximate formula (5.6).

Theorem 5.3: Let A and B be two Hermitian matrices with eigenvalues 

- K v < A, 2 < • • • < Xn and X(B) - P T < P2 < • • • < pn , then

(i) (Weyl-Lidskii [Lidl950]) \K. -p^fA-

(ii) Davis-Kahn sin Q theorem [DK1970] dF (Vt , Wt ) = fsin Q(V,, W, )||F <
R

(iii) dp (V, , W;) = min V, - W^ < dF (V,, W,
u

Where V = [V1 ,V2 ] and

VHAV = ~D A1 0A,l

. 0 DA>2
, WHBW -

"DR1 0
0,1

0 DB2

be two unitary matrices. Such that

, R = BV1 -V1 D A>1 , and

8 = min{|X-p|:X.eMDAjl ),pEX) (DB>2 )}, X,(DAfl )c[a,b],A,(DB>2 )c<R\[a,b], a,be9?is real 

field.

The theorem 5.3 only discusses the perturbation of an eigenvalue or its eigenspace. 

In our case, we have to prove the total perturbation of all eigenvalues or eigenspaces.

Theorem 5.4: Let A and B be two Hermitian matrices with eigenvalues

(i) (Hoffman-Wielandt [HW1953]) e(A,B) - < A-B (5.7)

2 A-B
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Where the eigenvalues and eigenspaces of matrices A and B are A A ,AB , V, W 

respectively, which are split into k groups as:

,"•{••• An)] > AB KH>---"nl}>Kl+l/-^nl+n2}'"-{---,Tln}]

'[VpV^-.Vj] , W = [W1 ,W2 ,-,Wj ] , such that max(AAj )<min(ABj+1 ) and 

mind^-ri. :Xk e A Ak ,rh e ARl.}
j^^. «-| K IJ K J\,K.' IJ D,J-'

Proof: (Since only (ii) and (iii) are our theorem, so here we just prove (ii) and (iii)) 

(ii) Let RJ = BVj - VjDA>j then from theorem 5.3 (ii), we get

i- If
J J A 'J||p

||B[V1 ,V2 ,...,Vt ]-[V,,V2 ,...,Vk ]DA |p = |A-B|p
6 8

From theorem 5.3 (iii) and theorem 5.4 (ii), one gets:
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Symmetrically, one can get

min ||W-VU|| <V2" " "F (5.8)
UeU(nlv..,nk )" "F 5

Based on formula (5.5), (5.7) and (5.8), one can easily prove the following 
important error estimation theorem.

Theorem 5.5: Let G and H be two weighted matrices. If there exists a permutation PO 

such that G = P0HP0T + E. Let and (P, X) be the optimal solution of (5.6), then

/ llr-k II . NT-W II \— —T
G-PHP <

IF
(

Proof: Let A=Ht(G) and B=Ht(H) then from propositions.2

|A-P0BP0'|F = G + GT - G - GT P0HP0T + (P0HP0T )T -- P0HP0T - (P0HP0T )
{ ^

= |G-P0HP*|F =|E|F

So from formula (5.8) we get

min P0W-VX <
X6U(n1;...,nk ) M U IIF 5

Since (P,X) minimize formula (5.6),

pw-vx <

So from formula (5.5)

A - PBPT < PW - VX| (|DA ||p + |DB ||F ) + |DA - DB||F
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Theorem 5.5 shows that then the error of the formula (5.6) solving the weighted 

graph matching problems (5.2) is linearly dependent on the distance of the two graphs G 

and H. Especially, when G and H are isomorphic, the solution of formula (5.6) is the 

isomorphism of G and H.

For the attributed graph matching problems (5.1), we have the similar theorem.

Theorem 5.6: Let {Gj},^},!^ j<m be two attributed graphs and there exist a

permutation matrix P0 and a real number s > 0 , such that G - P0H .P0T < 8 . If (P, X) beii j j up

the argument minimizing

min P^W^W^.-^WJ-W^V^.-^VJX (5.9)
PePeim(n) " lr 
XeU(iv-,nt )

Where tk = |MAk )||F +|MBk )|F , then

Where K = max 8k

It can be easily seen from the theorem 5.6 that if the distance between graph G and 

H is small enough, then the solution gained from formula (5.6) will be satisfactory. In 

other word, theorem 5.5 guarantees the accuracy of the approximate formula (5.6).

Deducing Umeyama's formula

In fact, formula (5.6) is an optimization on the space of permutation matrices and
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unitary matrices, which is a mixed 0-1 non-linear programming. Thus, even for the case 

that all the eigenvalues of matrix A and B are single, it is still not easy to reach the 

optimization for all graph matching problems. For the case where all the eigenvalues of 

matrix A and B are single, formula (5.6) can be specified as:

args min|P[w 1 ,...,wn ]-[v1 x 1 ,...,vn xn ]|F (5.10)
PePerm(n)
X 1>..,Xn €U(l)

where U(l) is the set of all unit complex numbers.

To reach (5.10), we can minimize the distance of the absolute values as an 

approximation:

args min|P[|w 1 |,...,|wn |]-[|v1 |,...,|vI1 |4 (5.11)
PePerm(n)

In this way, we get Umeyama's EDGM algorithm.

The above induction shows the relationship between Umeyama's method and the 

approximate formula (5.6), and therefore provides a theoretical support to the claims of 

three constraints of EDGM algorithm. In fact, on one hand, formula (5.6) provide a 

approximate solution to nearly-isomorphic graph matching with a guaranteed accuracy 

as specified by theorem 5.3; on the other hand, with the additional "isolating 

eigenvalues" constraint, formula (5.6) turns out to be formula (5.10), which, with the 

additional constraint "Dissimilar rows", leads to formula (5.11) that is equivalent to 

Umeyama's EDGM algorithm.

Unitary invariant meta-basis for Euclid space

In formula (5.6), the optimization on both permutation matrices and unitary matrices 

makes the problem hard to be solved. However, if the unitary matrix X can be 

determined somehow beforehand, the problem will become much easier.

The requirement of the unitary matrix X for formula (5.6) is due to fact that there
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are infinite orthonormal basis for a given Euclid space, rather than a unique one. We 

shall use an n-by-m matrix V to denote the orthonormal basis of m-dimensional Euclid 

space in n-dimensional complex space Cn , where each column of V is a vector of the 

basis. Obviously, each matrix VX, XeU(m) is also an orthonormal basis of the Euclid 

space. If we can define a meta-basis which is unique for each Euclid space, then X could 

be eliminated from formula (5.6).

__ —*• rr-i

Proposition 5.4: Let In =[1, 1,.., 1] be the n-dimensional vector with all its elements as

1, then the vector v=W ln is a unitary invariant vector which is unique for each 

Euclid space V.

If the vector v is not a zero vector, then we get a unitary invariant orthonormal 

vector of Euclid space V. Using the Gram Schmidt Ortho Normalization, the Euclid 

space V can be orthogonally decomposed as V = v 0 Z. The same as Euclid space V, we 

can define a unitary invariant vector for space Z. In this way, we define the unitary 

invariant meta-basis for a Euclid space V as shown in table 5.3.

We call the matrix V defined here a meta-basis of the given Euclid space V. It is 

important to note that, in some cases, V may be a real orthonormal basis of the given 

Euclid space, while in other cases, V is just a group of orthonormal vectors of the given 

Euclid space (not necessarily to be a basis - it even can be empty). Obviously, for each 

Euclid space V, the meta-basis defined in this way is unique.
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Table 5.3 Algorithmic definition 5.6 of the meta-basis

Function V=meta-basis(V)
[n, m]=size(V) ; // V is a n-by-m matrix.

V = VV'ln .
/

if norm(v)"0
V'=[]; // V is empty, fail to find, 
return; 

else if m ==1
V =v/norm(v); 
return; 

else
v=v/norm(v) ;

V =vtt>Z ;//orthogonal decomposition. 
V =[v, meta-basis(Z)]; //recursively 

here.
end; 

end;

Unitary invariant meta-basis graph matching algorithm

Formula 5.6 can be rewritten as

args min|P[W1 ,...,Wk ]-[V1 U1 ,...,VkUk ]||I
PePerm(n)

(5.12)

where Vj is the eigen-space of the j-th eigenvalue of matrix A=Ht(G), and Wj is the 

corresponding block matrix formed in the same manner as that of Vj, rather than the 

eigen-space of the j-th eigenvallue of B=Ht(H).

To eliminated U) in formula (5.12), we use the meta-basis Vj' of Vj and meta-base 

Wj'of Wj , rather than Vj and Wj themselves. In this way, since the meta-base is not 

dependent on unitary transformation, therefore, formula (5.12) can be simplified as:

args
PePerm(n)

(5.13)

N.B. In the case where the meta-basis of Vj and Wj have different numbers of
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columns, columns from the bigger one will be deleted to make them same.

The formula (5.13) can be simply solved by Hungarian algorithm. Such graph 

matching algorithm is named unitary invariant meta-basis graph matching algorithm 

(referred as MBGM algorithm).

Section 5.2.5 Comparison

It has been illustrated that the EDGM algorithm can not work well for sparse graph 

matching problems. In this section, we compare the MBGM algorithm with EDGM 

algorithms for sparse graph matching.

Test 1: matching sparse isomorphic graphs

0.45

0.4

0.35

0.3

0.25
LLJ

-B— EDGM

-* MBGM

10 15 
Size of the Graph

20

Figure 5.9 EDGM, MBGM for matching isomorphic sparse graph pairs
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Test 2: matching sparse graph pairs with perturbations

i
LLJ
C 
03 
Q)
E

10 15 
Size of the Graph

20

Figure 5.10 EDGM, MBGM for matching sparse graph pairs with perturbation

coefficient 8=0.10
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Figure 5.11 EDGM, MBGM for matching sparse graph pairs with perturbation

coefficient 8=0.15
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Test 3: CPU time comparison

B— EDGM 
MBGM

10 15 
Size of the Graph

Figure 5.12 CPU time Consuming of EDGM and MBGM 

Section 5.2.6 Conclusion

The tests in section 5.3.5 show that the MBGM algorithm improves the matching 

accuracy to a certain extent. Especially for matching sparse isomorphic graph pairs, the 

MBGM algorithm almost gets zero error matching result.

But for matching graph pairs with some perturbations, the MBGM algorithm still 

has large matching error. Besides, the MBGM algorithm takes more CPU consuming to 

get such an improvement of accuracy.
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Section 5.3 Symmetric Polynomial Transform Graph Matching 

Algorithm and Its Improvement

In [Alml991], Almohamod presented a method based on fundamental symmetric 

polynomials for weighted graph matching problems.

A symmetric polynomial is a transformation that maps a set of input data (roots of 

the polynomial) into a set of coefficients that are invariant under permutation of the 

input data set. In [Aim 1991], a symmetric polynomial is derived for each node in a 

graph by considering the weights of the node as the roots of the polynomial and these 

nodes are compared one-to-one through their polynomial coefficients.

Section 5.3.1 Symmetric polynomial transform graph matching algorithm 

Matching of weighted undirected graphs

___ ^^ ^ >T1 i-p

Let G and H be two weighted undirected graphs, which means G=G and H=H . 

The SPGM algorithm has three dominated steps:

1) Constructing node-attribute matrices. 

Considering the j-th node of G, it has the weights

The symmetric polynomial Q(G(j,l), G(j,2), . . ., G(j,n)) is defined by

,l), G(j,2), ..-, GG,n))=Qj(x)=n(x-G(j,k))
k=l

which has the following coefficients:

Qj(x)={CG(y), CG(j, 2),..., CG(j, n)} 

The resulting coefficients matrix CG, of size nxn, is called a node attribute matrix of
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G. For graph H, the same node-attribute matrix can be constructed as CH- 

2) Constructing the node distance matrix

At this stage, it is not known which node in graph H matches the j-th node of graph 
G. But a node distance matrix D can be constructed by

Da,k)=J£(CG (J,l)-CH (k,l))2 (5.14)
1=1

Where D(j,k) means the distance of the j-th node of G and the k-th node of H. 

3) Calculating the minimum distance match.

Take the matrix D as the cost matrix of assigning n workers to n tasks, and find the 
cost minimizing assignment. This can be solved by Hungarian algorithm efficiently.

Matching of weighted directed graphs

The process for applying the SPGM algorithm for directed graphs is almost the 
same as undirected graph except the construction of node attribute matrices.

Let G be a directed weighted graph. Then the weight of the out-edge of j-th node is

which differs from the in-edge of j-th node

So the j-th node of graph Q two polynomials can be constructed as

Qj(x)=fl(x-G(j,k)) qj(x)=n(x-G(k,j))
k=l k=l

Therefore, two coefficients matrix CRo and CCo is constructed.
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The final node-attribute matrix is

The second and third steps are the same as that for undirected graphs. 

Matching of attributed graphs

The SPGM algorithm is presented only for weighted graph matching. In fact it can 

be easily extended for attributed graph matching.

Let (Gk:l<k<m}be a attributed graph, where Gk is the k-th adjacency matrix. 

Similarly as directed graphs, the k-th attribute matrix of graph G is

And the node attribute matrix of graph G is

CQ— [CRQi, CCc,!, CRQ2> CCQ2> ..., CR^m,

Then the node distance matrix can be constructed and the optimal matching can be 

calculated by Hungarian algorithm.

Section 5.3.2 Computational complexity

The computational complexities of the three dominate steps are

1) Calculating coefficients of 2n polynomials: O(n3) [Alml997]

2) Calculating the distance matrix (5.14): O(n3)

3) Using Hungarian algorithm: O(n3) [AMO1993] 

So the total computational complexity is O(n3).
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Section 5.3.3 Analysis

The spirit of SPGM algorithm is exploring some kinds of node similarity or distance 

based on the node attribute.

The node attribute of a graph must be constructed independent on the order of its 

nodes. In other words, the nodes of a graph G can be numbered in some different way, 

then one can get different adjacency matrix, but the attribute of a certain node should not 

effected by such re-numbering.

Take the j-th node of G as example, although the weights G(j,l), G(j,2) may change 

if other nodes are re-ordered, the set {(G(j,l), G(j,2), ..., G(j,n))} remains the same, that 

is the out-edge weights of j-th node, so does in-edge weight set { (G(l,j), G(2,j), ..., 

G(n,j)) }, so these set can be select as the as the node attribute of j-th node. The SPGM 

algorithm uses the coefficients of the polynomial Qj(x) and q,(x) as the attribute of j-th 

node, which is equivalent to the set.

For example, figure 5.13 shows that a weighted graph Gl with four nodes has been 

re-ordered to G2. The out-edge weights of node YI in graph GI is (0, 1, 2, 3), which has 

change to (0, 3, 2, 1) in graph G2. But they are still the same elements just been 

re-ordered.

re- order

G2

Figure 5.13 Re-order of the nodes of a graph
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For the undirected graphs, since the out-edge weights are the same as the in-edge 

weights, so only the out-edge weights are selected to construct the node attribute 

matrices.

Section 5.3.4 Constraint

From the tests in section 5.1.4, it is easily can be seen that the SPGM algorithm 

works well only for isomorphic graph pairs. The matching error grows with the distance 

between two graphs becomes large.

Section 5.3.5 Improvement

It has been pointed out that the SPGM algorithm tries to construct node similarity 

based on some kind of node attribute. Since the sets {(G(j, 1), G(j, 2), ..., G(j, n))} and 

{ (G(l, j), G(2, j), ..., G(n, j))} doesn't effected by the order of the nodes of graph G. So 

the SPGM algorithm chooses the coefficients of the polynomials transform of the two 

sets.

One may ask is it possible just use the two sets {(G(j, 1), G(j, 2), ..., G(j, n))} and 

{(G(l, j), G(2, j), ..., G(n, j))} as the node attribute of node j. The answer is positive, 

and we present a new sort based graph matching algorithm (STGM), which has three 

dominated steps:

1) Constructing node-attribute matrices.

The node attribute of j-th node of G, is constructed as:

[sort (G(j, 1), GO, 2), ..., G(j, n)), sort (G(l, j), G(2, j), ..., G(n, j))] 

Where sort() means re-arrange the vector in ascending order 

The resulting node attribute matrix
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sort(G(l,l),G(l,2),...,G(l,n)) sort(G(l,l),G(2,l),...,G(n,l)) 

sort(G(n,l),G(n,2),...,G(n,n)) sort(G(l,n),G(2,n),...,G(n,n))

2) Constructing the node similarity matrix

The node similarity matrix S can be constructed by

S=CGxCHT (5.15) 

Where S(j,k) means the similarity of the j-th node of G and the k-th node of H.

3) Calculating the maximum similarity match.

This is the maximum linear assignment problem which can be solved by Hungarian 

algorithm efficiently.

The STGM simply takes the in and out edges weights as the node attribute, 

constructs node similarity matrix by formula (5.15) and calculates optimal match by 

Hungarian algorithm.

Section 5.3.6 Comparison

It has been illustrated that the SPGM algorithm can not work well for matching 

graph pairs with perturbations. In this section, we compare the STGM algorithm with 

SPGM algorithms for matching graph pairs with perturbations.
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Test 1: matching dense graphs with perturbation

3.5

-*— SPGM

-A- STGM

2.5

CD
C 
CO 
CD

1.5

size of graph 

Figure 5.14 STGM, SPGM for matching dense graph pairs with perturbation coefficient

8=0.10
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size of graph

Figure 5.15 STGM, SPGM for matching dense graph pairs with perturbation coefficient

8=0.20
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Test 2: matching sparse graphs with perturbation

0.35

10 15 
size of graph

Figure 5.16 STGM, SPGM for matching sparse graph pairs with perturbation coefficient

£=0.10
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Test3: CPU time comparison

10 15 
size of graph

Figure 5.17 CPU time Consuming of SPGM and STGM 

Section 5.3.7 Conclusion

The tests in last section show that the STGM algorithm greatly improves the 

accuracy of matching the non-isomorphic dense graph pairs and, to some extent, 

improve the accuracy of matching non-isomorphic sparse graph pairs. Besides, the CPU 

time consuming of the STGM algorithm decreases instead of increasing compared with 

SPGM algorithm.
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Section 5.4 Node Similarity Graph Matching Algorithms 

We have noticed that the STGM algorithm gets a little matching error for matching 

non-isomorphic sparse graph pairs. 

In this section, we shall not improve the STGM or MBGM algorithms even better, 

but discuss the difficulties in solving graph matching problems in such a way. 

Instead of discussing constraints for each algorithm, we shall deal with them 

together by the notion of algorithm framework. 

Section 5.4.1 Node similarity graph matching framework 

The node similarity graph matching framework (NSGM) is a general and abstract 

method for solving graph matching problem. 

Definition 5.7: Given two graphs G and H, the NSGM framework has the following two 

significant steps: 

I) Constructing node-similarity matrix S(G, H). 

The entry S(G, H)(i,j) denotes the similarity of i-th node of G and j-th node of H. In 

some cases, if a node-distance matrix D is provided instead of node similarity matrix, 

then similarity matrix S can be simply set as -D or m-D, where m is the maximum 

element ofD. 

2) Calculating the maximum similarity match. 

n 

arg s max 2: SCi, j) x P(i, j) (5.16) 
PEPenn(n) i,j=! 

Requirement 

One may ask whether the selection of node similarity function S(G, H) is arbitrary or 

not. The answer is negative. Since the entry of S(G, H) denotes the similarity between 
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the nodes of graph G and H, the similarity must be independent on the order of the nodes 

as discussed in section 5.4.3. So the node similarity function S must satisfy the following 

important constraint:

Independence of Order I:

S(PGPT , QHQT ) = P x S(G, H) x QT , for all P, Q e Perm(n) (5.17)

The independence of order I constraint is the most important and basic principal for 

the node similarity graph matching framework and directly determine the applying scope 

of the node similarity graph matching framework.

Section 5.4.2 Examples of node similarity based graph matching algorithm

In this section, we shall introduce some examples of node similarity based graph 

matching algorithms.

Theorem 5.7: the following functions are all node similarity functions.

n n 

k=l 1=1

3) S3 (G, H) = unvec((H (2) G + HT ® GT )°° x vec(lnxn )),

where m can be any natural number andlnxn is a n-by-n matrix with all entries 1,

® denotes the Kronecker product operator and vec() and unvecQ denote the 

vectorization operator and its reverse- 

The following proposition is important to prove the above theorem.

Proposition 5.5: Let G be a n-by-n matrix, P and Q be two permutation matrices with p, 

q as their corresponding permutation vectors, then
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PGQ(i,j)=G(p(i),qG)) (5.18) 

Where PQG(i, j) stands for the (i, j)-th entry if the matrix M=PQG. 

Proof to Theorem 5.7:

1)

S, (PGP , QHQT )(i, j) = - PGPT (i, i) - QHQ

n n

= PS1 (G,H)Q(i,j)

2)

S7 (PGPT , QHQT )(i, j) = y y PGPT (k, i) x QHQT (1, j)
2, V " ^v. ^v. / V ~ Js ^^*d £^^i

k=l 1=1

-ZXG(p(k),p(i))xH(q(l),q(j))
k=l 1=1

= XXG(k,p(i))xH(l,q(j))
k=l 1=1

= S2 (G,H)(p(i),qa» 

= PS2 (G,H)QT (i,j)

3)

It is well known [Will997] that

vec(AXB) - BT ® Avec(X)

Let Xm(G, H)= unvec((H ® G + HT ® GT )m x vec(lnxn )), then 

X0(Q H)=lnxn, Xm+i(Q H)=GXm(G, H)H+GTXm(Q H)HT and S3(Q H)= lim X
m->oo m
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We prove that

Xm(PGPT, QHQT)=PXm(Q H)QT (5.19) 

by induction on m.

Obviously, formula (5.19) holds for m=0 

Assume (5.19) is true for m=k then

Xm+1 (PGPT ,QHQT )

- PGPTXm (PGPT , QHQT )QHQT + PGTPTXm (PGPT , QHQT )QHT QT

- PGPTPXm (G,H)QTQHQT +PGTPTPXm (G,H)QTQHTQT 

= PGXm (G,H)HQT +PGTXm (G,H)HT QT 

= p(GXm (G,H)H + GTXm (G,H)HT )QT 

= PXm+1 (G,H)QT

Which means (5.19) is true for m=k+l.

From the induction principal (5.19) holds for all integer m.

S3 (PGPT ,QHQT ) - lim Xm (PGPT ,QHQT )
m—»oo

= lim PXm (G,H)QT = P lim Xm (G,H)QT = PS3 (G,H)Q1
m—»°o

The function Si, 82 and 83 have been proved to be node similarity functions, so we 

can get three corresponding node similarity based graph matching algorithms. It is easily 

can be seen that the 83 node similarity function based graph matching algorithm is 

exactly the hubs and authorities graph matching algorithm proposed by Kleinberg 

[Kiel999]. We also get the following theorems showing that the S2 node similarity 

function based graph matching algorithm is exactly the least square Kronecker 

product-successive projection graph matching algorithm proposed in [Wyk2002].
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Theorem 5.8: The 82 node similarity function based graph matching algorithm is the 

least square Kronecker product-successive projection graph matching algorithm.

Proof: for the LSKPGM algorithm, the node similarity S(i, j) is calculated by

i*n j*n

I I
j :\_

n

Where O 1 = @+n, 0 =
vec(H,)

vec(HJ
and n =

For the weighted graphs, where m=l, above formulae degrade to

vec(G)vec(H)
vec

i*n J*n n n

Z Z °k>i G(k,i)xH(l,j) 
So the node similarity S(i, j)- k=(M)n+1HH)n+1—— - ̂ ^————————

n n|vec(H)|

Since the solution of maximum linear assignment doesn't effect by a positive scalar, 

so the LSKPGM algorithm coincide with the S2-NSGM algorithm.

One may notice that some graph matching algorithms derived from different fields 

can be unified by the node similarity graph matching framework. In next section, we 

shall introduce more node similarity graph matching algorithms.

Section 5.4.3 Node attribute functions

Obviously, to define node similarity S(Q H), one has to consider both graphs G and 

H at the same time. It will be much easier if one can define this similarity by dealing
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with two graphs separately. So a new important notion node attribute function will be 
introduced.

Definition 5.8: A node-attribute function is a function f: Rnxn -> Rnxm which satisfies 

Independence of Order II:

f (PGPT ) - Pf (G), for all G e Rnxn and P e perm(n) (5.18)

Intuitively, the weight matrix of a graph G describes the edge attributes and the node 

attribute function f maps these edge-attributes to node attributes of graph G.

The independence of order II constraint has to be satisfied to make sure the node 

attributes of a graph are independent on the order of its nodes.

Theorem 5.9: The following functions are all node-attribute functions:

4) f4(GXk,:Hsum(G(k,:)), sum(G(:,k))]

5) f5(G)(k,:)=[poly(G(k,:)), poly(G(:,k))]

6) f6(G)(k,:)=[sort(G(k,:)), sort(G(:,k))]

7) f7(G)(:,k)=di

Proof: 

4)

f4 (PGPT )(k,:) = [sum(PGPT (k,:)), sum(PGPT (k,: 

= [sum(G(p(k),p)),sum(G(p(k),p))] 

= [sum(G(p(k),:)), sum(G(p(k),: 

= f4 (G)(p(k),:)

= Pf4 (G)(k,:)
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Proof of 5) 6) is the same as 4).

7)

f7 (PGPT )(:,k) = di

,. PG'P1 = diag -

= Pdiag

= Pf7 (G)(:,k)

The next example is more difficult.

Theorem 5.10: Let f8 be a function calculated by the following three steps, then f8 is a 

node attributed function satisfying independence of order II.

^^^ y"« T S~*\ S~+ T

1) Calculating the Hermitian matrix Ht(G) := ———— H————

2) Calculating eigen-decomposition of the matrix Ht(G)=VDV*, where D is the 

diagonal matrix of eigenvalues in descending order.

Suppose that Ht(G) has k distinct eigenvalue ^ < A, 2 < • • • < A, k with repeat times HI, 

n2, . . ., nk and eigenspace Vi, V2, . . ., Vk..

3) Let fg(G)= [ Vj , ¥2 , • • • , Vk ] , where V^ is the meta-basis of eigenspace Vj.

Proof:

We calculate f8(PGPT) step by step. 

Obviously, Ht(PGPT)=PHt(G)PT
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Since Ht(G)=UDU*,

Ht(PGPT ) = [PV^ , • • • , PVkUk IDtfP^U, , • • • , PVkUk ])T , where Ui e U(m)

Calculate meta-basis of PVjUi. The meta-basis is defined by the unitary invariant 

vector defined in propositions. 4, so we only have to verify that unitary invariant vector 

satisfies the independence of order II.

The unitary invariant vector of eigenspace Vj is ViVi* 

The unitary invariant vector of eigenspace PViUi is

So f8(PGPT)=Pf8(G)

Theorem 5.11 : Let fg be a function calculated by the following three steps:

/"t./'-tT f-\ _ r~\*£

1) Calculating Hermitian matrix Ht(G) := ———— +————v-1
2* Z*

___ jb

2) Calculating eigen-decomposition of the matrix Ht(G)=VDV , where D is the 

diagonal matrix of eigenvalues in descending order.

3) Letf8(G)=|v|

If all the eigenvalues of Ht(G) are single, then f9 is a node attributed function 

satisfying independence of order II.

Proof:

The same as theorems. 10, We calculate f9(PGPT) step by step.

Ht(PGPT)=PHt(G)PT

115



CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Ht(G)=UDU*, Since all the eigenvalues of Ht(G) is single, then

= [PV1 x 1 ,.",PVk xk ]D([PV1 x1 ,-.,PVk xk ])T , where Xi eU(l)

Calculate f9(PGP V |[PVlXl , • • • , PVk xk ]| = |[PV, , • • • , PVk ]| = P | V| = Pf9 (G)

Using the node-attribute function, one can easily construct the corresponding 

node-similarity function by the following theorem.

Theorem 5.12: Let f be a node-attribute function, and Sf is defined as:

Sf (G, H) = f (G) x f (H)T (5.20)

Then Sf is a node-similarity function. 

The Proof is trivial.

Therefore, each node-attribute function in theorem 5.9, theorem 5.10 and theorem 

5.11 defines a corresponding node-similarity function denoted as 84, to 89. The matching 

algorithms by node-similarity functions 85 and 85 are exactly the symmetric polynomials 

transformation graph matching algorithm SPGM and the improved sort based graph 

matching algorithm STGM; The matching algorithms by node-similarity functions 89 

and Sg are exactly the eigen-decomposition graph matching algorithm EDGM and the 

improved meta-basis based graph matching algorithm MBGM.

The node similarity graph matching algorithm based on the similarity function Si 

and S4 and S7 is simply named as Si-NSGM and S4-NSGM and S7-NSGM.

Section 5.4.4 Comparisons

In this section, these node similarity based graph matching algorithms associated 

with node-similarity function Si to 89 are numerically compared.
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Test 1: matching isomorphic sparse graph pairs

UJ
0)
O)
£
0)

S1
LSKPGM
HAGM
S4
SPGM
STGM
S7
EDGM
MBGM

Size of the Graph

Figure 5.18 Nine algorithms for matching isomorphic sparse graph pairs

117



CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 2: matching non-isomorphic dense graph pairs

LLJ

s
0)

--- S1

LSKPGM 
6— HAGM

S4
SPGM
STGM
S7 

B— EDGM
MBGM

8 9 10 11 12 13 14 15 
Size of the Graph

Figure 5.19 Nine algorithms for matching dense graph pairs with perturbation

coefficient 8=0.10
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Test 3: matching non-isomorphic sparse graph pairs

LJJ
Q) 
D)
2
0)

--S1

LSKPGM
HAGM
S4
SPGM
STGM
S7
EDGM
MBGM

6 8 9 10 11 
Size of the Graph

Figure 5.20 Nine algorithms for matching sparse graph pairs with perturbation

coefficient 8=0.10
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Test 4: CPU time

S1
LSKPGM
HAGM
S4
SPGM
STGM
S7
EDGM
MBGM

8 9 10 11 
Size of the Graph

12 13 14 15

Figure 5.21 CPU time Consuming of nine algorithms

Conclusion

In all the tests above, the STGM algorithm works best. For matching isomorphic 

graph pairs (either dense or sparse) and non-isomorphic dense graph pairs, the STGM 

algorithm gets almost zero error. For matching non-isomorphic sparse graph pairs, the 

STGM still keeps the error very low.

Section 5.4.5 Computational Complexity

All the node similarity based algorithms have two main steps, the calculation of
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node-similarity and the calculation of maximum similarity match. The computational of 

the NSGM algorithm based on Si to 89 is list as table 5.4

Table 5.4 Computational complexity of NSGM algorithms

\^
Stepl

Step2

In all

SI

0(n2)

LKPGM

0(n4)

HAGM

0(n3)

S4

0(n3)

SPGM

0(n3)

STGM

O(n2logn)

S7

0(n3)

MBGM

0(n4)

EDGM

0(n3)

0(n3)

0(n3) 0(n4) 0(n3) 0(n3) 0(n3) 0(n3) 0(n3) 0(n4) 0(n3)

Obviously, all these algorithm works efficiently with complexity O(n3) or O(n ). 

Section 5.4.6 Extensions

Weighted average node similarity

In last section, nine different node similarity functions are constructed, where each 

of them expresses certain kind of node similarity of graphs. And these similarities can be 

combined into some more complicated similarity functions.

Theorem 5.13: Given m similarity functions Si,..., Sm, the weighted average function

(5.21)

Then S is also a node similarity function.

Based on this weighted average node similarity function, new matching algorithm 

can be developed.

Matching attributed graphs

In above discussion, only matching weighted graphs is considered. However, the 

node similarity based graph matching algorithm can be easily extended to match 

attribute graphs.

Given two attributed graphs G={Gk}, H={Hk}, l<k<m, and Let S be a node
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similarity function, then the node similarity of G and H can be defined by:

m
S(G,H)=£w kS(Gk ,Hk ) (5.22)

k=l

Where Wk is the importance coefficient of k-th attribute

Again, we transfer the attribute graph matching problem (5.1) to maximum linear 

assignment problem (5.16).

Section 5.4.7 Limitation

In this section, one of the important conclusions of this thesis, which is that all the 

node similarity graph matching algorithms fail to work for circles, will be proposed.

Theorem 5.14: All node similarity graph matching algorithms fail to work for circles.

Proof:

Let G and H be two circles as show in figure 5.22, then the adjacency matrices are

010000
000100

001000
• •••••
• • * • • •

000001
100000

Let S be any node similarity function, then S satisfies Independence of Order I, so

"0

0
0
!

0
1

1
0
0
!

0
0

0
1
0
:

0
0

0
0
1

0
0

0
0
0
:

0
0

0"

0
0
;

1
0

? -"

S(PGPT , H) - P x S(G, H), for all P e Perm(n) (5.23)

Specially, Let
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010000
001000
000100
• • • • • •
• •••••
• • • • • •

000001
100000

Then it can be easily verified that P0GP0T = G

So S(G,H) = S(P0GP0T ,H) = P0 xS(G,H)

Which means all rows of S(G, H) are equal

S(G,H) =

ai,2 al 
al

a,

Then any permutation PePerm(n) is the solution of maximum linear assignment 

problem:

args max]TS(i,j)xP(i,j)
PePerm(n) j =i

Specially the identity matrix I is a optimal solution for the above formula, where

|G-IHIT ||F =|G-H||F =

But in fact graph G and H are isomorphic by the permutation
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100000
001000
010 00p-

000010
000001

So the node similarity based graph matching algorithm fails to find the best match.

H

Figure 5.22 Two Circles

Theorem 5.14 only claims that all the node similarity based algorithms are not
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applicable for circles, how about others?

In fact, the essence of this failure is that if graph G is self-similar, which means 
there is a non-trivial automorphism of graph G, the node similarity based graph matching 
algorithm will fail to distinguish those similar nodes of G Figure 5.23 is a simple 
example which has non-trivial automorphism, such that nodes 1, 2 and 3 are not 
distinguishable and nodes 4, 5 and 6 are not distinguishable.

0*-

Figure 5.23 Self-similar graph
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Chapter 6 Applying Matching Algorithms for

Scenarios

The graph matching algorithms compared and improved in last chapter will be 

applied for matching scenario graphs in this chapter.

Section 6.1 Introduction of Experiments

In chapter 4, scenario is defined as a 5-tuple <T, P, HOLDS, MEETS, DUR> and 

graphically represented by an attribute graph. The similarity of scenario graphs is 

defined as by formula 4.1.

n+1

min Y Nslk -QNs2kQT
Qepeim(m) ^ H sl 'k S2 'k I 

sim^S^l—————^-^———————————————

k=l

To evaluate the graph matching algorithms for matching scenario graphs, we shall 

randomly generate 30 pairs of scenario graphs (isomorphic or non-isomorphic, dense or 

sparse). The meta-basis based graph matching algorithm MBGM, the sort based graph 

matching algorithm STGM, and the hubs and authorities graph matching algorithm 

HAGM are applied on these scenario graphs to calculate their similarities.

We also use a brutal search method (referred as APGM) to find best matching for 

each graph pairs as a standard to evaluate other algorithm. However, the brutal search 

method are not applicable for large size graphs (n>10).
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We assume the P={Pi, P2 }, which means only two propositions are considered, and 

Wi=w2=w3 which means that PI, P2 and duration are equivalent important to determine 

the scenario similarity in our case.

Section 6.2 Experiments

The test results are shown as following tables, where the first and second columns 
are two scenario graphs and the 3th-6th columns are similarities calculated by HAGM, 

MBGM, STGM and APGM algorithms respectively.
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CHAPTER 6 APPLYING MATCHING ALGORITHMS SCENARIOS

Section 6.3 Conclusion

The tests in last section show that the MBGM algorithm finds the best match in half 

(17 out of 30) of the cases. For the other 13 cases, the MBGM still get a satisfactory 

matching result with little matching error.

On the other hand, the STGM algorithm only finds the best match for 1/4 (7 out of 

30) of the cases. For the other 23 cases, the STGM get large matching error.

One may ask that STGM algorithm seems work very well for the test in chapter 5, 

why does it fail to work in the cases of last section?

In fact, the attribute matrix of a scenario graph contains several 0-1 matrices to 

denote the holds relation of propositions and a real matrix to denote the duration of time 

elements. So in chapter 5 we only deal with the general case, where the elements of the 

adjacency matrix are all continuous real numbers. In such cases, the STGM algorithm 

gets almost zero matching result.

But for the special cases, where the adjacency matrix is 0-1 matrix, the matching 

accuracy decrease since the node attribute degrade as the in-degree and out-degree of the 

corresponding node.

In a word, STGM algorithm is suitable for matching continuous real matrices, while 

MBGM is more applicable for matching 0-1 matrices.
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Chapter 7 Conclusions

In a word, this thesis presented a complete reified temporal logic system and a 
graphical representation and matching framework for representing and reasoning about 
temporal knowledge.

The complete reified temporal logic, CRTL, proposed in chapter 3 is actually a 
formulism and extension of Ma and Knight's reified temporal logic system MK within 
first order logic framework. So it simply inherits syntax, semantics, axioms and 
inference rules from normal standard many sorted first order logic. Also the well-known 
Herbrand's resolution method is applicable for automatic reasoning and proving for 
CRTL theories.

On the other side, the CRTL system also can be seen as a reification of the temporal 
argument method BTK and a simplification of Reichelt's temporal reified temporal logic 
TR. So it retains all the expressive power of the approach of temporal reification.

In all, CRTL tries to balance the expressiveness and complexity without losing 

logical clarity and completeness.

The simplified subsystem SCRTL is aiming at the practical application. SCRTL is 
still within the first order framework to retain its clear definition and sound and complete 
axiomatization; besides, based on its simplicity, the temporal models of SCRTL are 
intuitively represented as attribute graphs. For general treatment, these graphically 
representations have been extended for scenarios with incomplete knowledge and 

general temporal relations.

Based on this graphically representation, the matching of scenarios is transferred 

into the graph matching problem.
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CHAPTER 7 CONCLUSIONS

For the scenario graph matching, the traditional graph matching algorithms are 

elaborately classified and selected for matching scenario graphs. Graph matching 

algorithms are no longer classified as search-based methods and optimization-based 

methods; instead, there are grouped as: explicit-search methods, implicit-search methods, 

and node similarity based methods. Explicit-search methods are not suitable for our 

cases since they usually require exponential calculating time. Implicit-research methods 

are not selected for our scenario graph matching either, due to their complexities of 

implementation and improvement. So the node similarity based methods are the best 

choice for our scenario graph matching problems.

After initially testing, two important node similarity graph matching algorithms 

EDGM and SPGM are selected as candidates for our scenario graph matching.

EDGM algorithm is critically examined and three important constraints have been 

pointed out to indicate the applicable fields of this algorithm. To conquer such 

constraints, an approximate formula (5.6) for graph matching problem is presented 

together with an error estimation theorem to guarantee its accuracy. Based on such an 

approximate formula, the meta-basis based graph matching algorithm is proposed. 

Numerical tests show that the MBGM algorithm significantly improves matching 

accuracy for sparse isomorphic graph pairs, and partially decreases the matching error 

for sparse non-isomorphic graph pairs.

The SPGM algorithm is also critically examined, analyzed, and improved as a new 

vector sort based graph matching algorithm STGM. Numerical tests illustrate that the 

STGM algorithm greatly improve the matching accuracy for dense and sparse 

non-isomorphic graph pairs. In addition, the STGM algorithm costs less CPU time in 

finding these better matching.

Although random graph tests have shown great improvements of calculating 

accuracy for matching graph pairs by SPTM and MBGM algorithms, random scenario 

graph tests just provide a satisfying matching result, where the MBGM algorithm is 

more suitable and gets a better matching result. These tests on one hand indicate that the 

evaluation of graph matching algorithms directly effected by the probability distribution
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of random graphs; on the other hand, leave us some future work to develop special graph 

matching algorithms for certain kinds of graphs.

The node similarity graph matching framework is a novel feature of this thesis. 

Graph matching algorithms are no longer treated separately; instead, they are unified by 

a general algorithm framework, although they may derive from many different theories. 

This unification makes it possible to define, analyze and extend the node similarity 

graph matching algorithms together, instead of dealing with them one by one.

A negative conclusion claims that all these node similarity graph matching 

algorithms do not work for matching circles, which on one hand puts forward the 

essential limitation of these approaches; and on the other hand, leaves us an important 

future work to overcome such constraint to make these algorithm applicable for even 

more general cases.
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Chapter 8 Future Work

There is room for the improvement and generalization of the methods used in this 

study. In this chapter, further work to temporal reification and graph matching 

algorithms are discussed.

Section 8.1 Reification of General Logic Systems

In chapter 3, a complete reified temporal logic system CRTL is presented within the 

many sorted first order logic framework. The CRTL system can be seen as a reification 

of syntax of temporal argument methods or modal temporal logic methods. It also has 

been pointed out in chapter 3 that Reichgelt's TR system reifies both syntax and 

semantics of an object logic system. So TR system is more complicated and expressive.

These approaches can be extended for reification of general logic systems, not only 

temporal logic systems. An important work has been done by Gabby, Hodkinson and 

Reynolds in [GHR1994], where a more general reification has been proposed, which 

also reifies the proof system of the object logic system.

However, general reification needs both logical foundation and computational 

algorithms. On one hand, the reification itself has to be clearly defined with sound and 

complete axiomatic system. One the other hand, the process from an object logic system 

to its corresponding reified logic should be computable or even polynomial-computable.

The relationship between the object logic system and its corresponding reified logic 

is also an interesting subject.
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Section 8.2 Graphical Representation of Temporal Models

The complete reified temporal logic system CRTL defined in chapter3 allows 

general functions and predicates. But for the graphical representation of its temporal 

model, only the simplest case, temporal model of SCRTL, has been represented as 

attributed simple graph and matched by graph matching algorithms.

So a graphical representation of general temporal model is necessary for intuitive 

representation of general temporal knowledge. The notion hyper-graph would be 

important for such expansion. Formally a hyper-graph is a pair (N, E), where N is the set 

of nodes and E is the set of edges, such that each edge eeE is a subset of N.

Meanwhile the normal matching algorithms also has to be extended for matching 

such general graphical representation of temporal information. Again, the hyper-graph 

matching theory [BDK2005] will be important for such temporal information matching 

problems.

Section 8.3 Testing Graph Matching Algorithms for Certain Probability 

Distributions

It has been pointed out in chapter 5 and exemplified in chapter 6 that the probability 

distribution of random graphs directly effects the evaluation of graph matching 

algorithms. So it is important to make it even clearer that how the matching result is 

influenced by probability distribution of the graphs.

This work is also important to provide a standard for generally evaluating different 

graph matching algorithms.

Section 8.4 General Eigen-decomposition Graph Matching Algorithm

In chapter 5, an important approximate formula 5.6 for graph matching problems 

has been proposed together with an error estimation theorem 5.5 to guarantee its 

accuracy. We also bring forward a meta-basis based graph matching algorithm based on
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the approximate formula. But the meta-basis based graph matching algorithm is within 

the node similarity graph matching framework, which means it may not work for circles 

and some other self similar graphs.

However, the approximate formula 5.6, itself is beyond the node similarity graph 

matching framework, which means this approximate formula is suitable for matching 

self-similar graphs because of its accuracy guarantee theorem 5.5. So the algorithm 

directly solving the approximate formula, which is an optimization on unitary matrices 

and permutation space, will be more accurate and applicable for self similar graphs.

Non-linear programming or iterative methods could be good tries for solving the 

approximate formula 5.6.

Section 8.5 Extending Node Similarity Based Graph Matching 

Algorithms

In chapter 5, one of the important conclusions is that node similarity based graph 

matching algorithm doesn't work for circles. Although this theorem claims that there is 

somewhere the node similarity graph matching framework can not reach, it doesn't make 

it clear enough how far the node similarity graph matching framework can go. In other 

words, the boundary of the node similarity graph matching framework is not clear.

On the hand, there are surely some cases (including scenario graphs) that one has to 

deal with circles and other self-similar graphs. So it is important to extend these 

algorithms to overcome such constraints without lose much efficiency.

Section 8.6 Testing Real Life Examples

This thesis pays more attention to the theoretical work such as the completeness of 

the reified temporal logics and the accuracy guarantee theorems of some graph matching 

algorithms. Most of the experiments are artificial or randomly generated by algorithms. 

A real life test is needed in future work to verify the effectiveness of this theory.
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Our theory could be applied to the area of medical information systems, where a 
patient's medical history is obviously very important for diagnosis. In fact, to prescribe 
the right treatment, the doctor needs to know not only the patient's current status, but 
also his/her previous health situations, including: How long has the patient been ill? Did 
the patient have the same problem or relevant disease previously? Has the patient had 
some treatment already before seeing the doctor? Has the patient been allergic to any 
drugs in the past? These heath histories could be constructed as a temporal scenario and 
matched by the algorithms discussed in chapter 5.

The weather forecast could be another possible application for our theory. Since 
without a good understanding of climate phenomena based on past observations the 
weather expert cannot make good predictions of the future. In fact, to provide correct 
and accurate forecast, the weather expert needs to know not only the current weather 
parameters summarized as temperature, air pressure, precipitation amount, wind speed 
and residual snow/ice amount, etc., but also the weather scenarios over some certain 
prior periods such as, how long did the heat wave last, was there lightning before or 
during the rain, did snow melt then refreeze, and so on. Such information can also be 
constructed as a temporal scenario and again the graph matching algorithms can be 
directly applied.
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Abstract

There are mainly two known approaches to the 
representation of temporal information in Computer 
Science: modal logic approaches (including tense 
logics and hybrid temporal logics) and predicate logic 
approaches (including temporal argument methods 
and reified temporal logics). On one hand, while 
tense logics, hybrid temporal logics and temporal 
argument methods enjoy formal theoretical 
foundations, their expressiveness has been criticised as 
not power enough for representing general temporal 
knowledge; on the other hand, although current reified 
temporal logics provide greater expressive power, 
most of them lack of complete and sound axiomatic 
theories. In this paper, we propose a new reified 
temporal logic with a clear syntax and semantics in 
terms of a sound and complete axiomatic formalism 
which retains all the expressive power of the approach 
of temporal reification.

1. Introduction

Temporal representation and reasoning plays a 
fundamental and increasingly important role in most 
areas of Computer Science. A natural approach to 
represent and reason about time-dependent knowledge 
is to associate them with instantaneous time points 
and/or durative time intervals. In particular, there are 
various ways to use logic formalisms for temporal 
knowledge representation and reasoning. Based on the 
chosen logic frameworks, temporal theories can be 
classified into modal logic approaches and predicate 
logic approaches (see Table 1).

Modal logic approaches semantically re-interpret 
the classical possible-worlds by making each possible 
world represent a different time. It accommodates the 
concepts of time by means of extending the 
prepositional or predicate calculus to include modal 
temporal operators such as Pep, Pq>, Hep and G<p, 
representing that formula <p "will be true", "was true",

"will be always true" and "was always true", 
respectively. For instance, time transitivity can 
expressed by (FF(p-»F(p)A(PP(p-»>P(p) and "Jack will 
love Rose forever" can expressed as GLove(Jack, 
Rose).

Generally speaking, each of the current temporal 
modal logic (US [9], HS [8], BT [5] and HLI [3]) has 
its own clear syntax, semantics, fully axiomatized 
sound and complete formal deduce system, together 
with an algorithm to determine the formula validity or 
satisfiability. However, the expressiveness of the 
approach of temporal modal logic has been noted to be 
limited. For instance, tense logics such as Ht and US 
cannot even characterize time irreflexivity, where in 
Hybrid logics, such a property has to be characterized 
by some non-intuitive formula like jcpP-'cp [5]. In 
addition, modal logic approaches cannot express 
propositions which associate with more than one time 
elements. Therefore, it is difficult to use modal 
temporal logics to represent and reason about action, 
change, causality, and so on.

Table 1. Some temporal logic approaches
Modal-logic approaches

Tense logic

H,:
Prior (1957)
[12]

US:
Kamp (1968)
[9]

HS:
Halpern and
Shoham
(1991) [8]

Hybrid
logic
BT:
Blackburn
and
Tzakova
(1999) [5]

HLI:
Altaf
(2006) [3]

Predicate-logic
approaches
Temporal
argument
TM:
Reichgelt
(1989) [13]

STL:
Shoham
(1987) [14]

BTK:
Bacchus et
al
(1991) [4]

Reified
logic
TR:
Reichgelt
(1989) [13]

ITL:
Alien
(1983) [1]

RTL:
Ma and
Knight
(1996) [10]

Predicate temporal logic approaches are normally 
many-sorted languages including a sort of temporal 
elements and a sort of non-temporal elements. There 
are three kinds of functions and predications: (i)
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temporal predicates that only take temporal terms as 
arguments to describe temporal relationships; (ii) 
non-temporal predicates that take only non-temporal 
terms as arguments to describe non-temporal 
relationships; (iii) comprehensive predicates that take 
both temporal and non-temporal terms as arguments to 
describe global relationships between temporal and 
non-temporal terms.

Temporal argument approaches try to devise 
temporal logics by means of simply including time 
elements as additional arguments to functions and 
predicates in first order language. In this way, the 
method of temporal argument directly employs the 
syntax, semantics and the axiom system of the standard 
first order logic, and therefore, the completeness and 
soundness of temporal argument theories remain as 
default. Compared with modal temporal logics, on one 
hand, the method of temporal argument has more 
expressive power in representing properties of the time 
itself. For instance, using the method of temporal 
argument, the irreflexivity of time can be simply 
characterized by: Vt~'(t<t). However, on the other 
hand, to express statements involving "tense" 
knowledge, the method of temporal argument needs 
formulas which are more complicated than those would 
be in modal temporal approaches. E.g., using the 
method of temporal argument, statement "Jack will 
love Rose forever" needs to be expressed as something 
like: Vt(t > now) —> Love(Jack, Rose, t)). In addition, 
since time is represented just as an additional 
arguments) to functions and/or predicates, neither 
conceptual nor notational special status to time is 
accorded in temporal argument approaches. Therefore, 
it is not expressive enough to talk about the generalities 
of the temporal aspect of assertions. For example, 
using the method of temporal argument, one cannot 
express common-sense knowledge such as "effects 
cannot precede their causes" [14].

It has been point out that [10], in general, reified 
temporal logics that reifies some initial logics are more 
expressive in:
• According the special status to time;
• Classifying different types of temporal occurrence;
• Representing incompatibility and negation;
• Reasoning about event, change and causality;
• Representing relationships between events and 

their effects.
However, each of the current reified temporal 

logics is somehow quite complicated, making it 
difficult to have a clear simple description of the 
syntax, semantics, and complete and sound 
axiomitization. For instance, the syntax and semantics 
are actually missing from Alien's interval-based 
temporal logic [1], while in Ma and Knight's reified

temporal logic [10] which does have a clear syntax and 
semantics, it is difficult (if not impossible) to prove its 
completeness and soundness. The only exception is 
Reichgelt's TR [13] which is actually developed totally 
within the framework of first order language, and 
therefore inherits all the properties of the first order 
theory. However, TR is too complicated to achieve 
acceptable efficiency in applications.

The expressive power of these temporal logic 
approaches can be illustrated as Fig. 1, where an arrow 
from system X to system Y denotes that X can be 
expressed/subsumed from Y.

TenseLogics Hybird Logics Temporal Arguments Reified Logics

Fig.l. Expressiveness of the existing temporal logic 
approaches

In this paper, we shall introduce a reified temporal 
logic (CRTL) with a clear syntax, and semantics, 
where the completeness and soundness of the theory is 
guaranteed by the fundamental initial first order 
language. On one hand, it is simpler and more efficient 
than Reichgelt's reified first order logic [13] which is 
the only known reified temporal system with a 
complete and sound theory; on the other hand, it 
retains all the expressive power of those temporal 
predicate approaches including that of Alien [1] and 
that of Ma and Knight [10]. The structure of CRTL, 
including its syntax and semantics, as well as the 
formalism and inference rules are presented in section 
2. Section 3 illustrates the expressive power of CRTL. 
Finally, section 4 concludes the paper.

2. The language

In CRTL, terms have three types: temporal terms, 
non-temporal terms and prepositional terms. Functions 
can be either logic or non-logic: logic functions and 
non-logic functions. While logic functions map 
propositional terms to prepositional terms, non-logic 
function are partitioned into three types: temporal 
functions that map temporal and/or non-temporal terms 
to temporal terms; non-temporal functions that map 
temporal and/or non-temporal terms to non-temporal 
terms; and propositional functions that map 
non-temporal terms to propositional terms. In addition, 
relations in CRTL are also partitioned into three types: 
temporal relations, non-temporal relations and 
meta-relations, where temporal relations take temporal
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terms alone as its arguments, non-temporal relations 
take non-temporal terms alone as its arguments and 
meta-relations take both prepositional terms and 
temporal terms as its arguments.

The structure of CRTL can be represented as Fig.2:

Fig. 2. Structure of CRTL

2.1. Syntax of CRTL

CRTL is a many-sorted first order logic with 
equality, including the sort of temporal terms T, the 
sort of non-temporal terms U, and the sort of 
prepositional terms P. Variables of T, U and P are 
denoted by (t,ti,t2,...), (u,ul5u2,...) and (p,pi,p2,...), etc. 
The signature of CRTL is 3 tuple L=<C, F, R>, where

1. Each uceC/C is a non-temporal constant 
symbol;

2. Each tc e TC is a temporal constant symbol;
F=UFU TFUPFULF
1. Each uf&UF is a non-temporal function

symbol with sort Un xTm -» U;
Each tfeTF is a temporal function symbol
with sort Un xTm ^T;
Each pfePF is a prepositional function
symbol with sort Un -> P;
L/MNOT, AND} U {FORALL-Uj : j eN}
4.1. "NOT" is a function symbol with sort

P->P,
4.2. "AND" is a function symbol with

sortTL P2 -» P,
4.3. Each "FORALL-Uj" is a Uj-bounded

function symbol with sort P— >P 
R=URUTRUMR
1. Each ur&UR is a non-temporal relation 

symbol with sort Un ;
2. Each treTT? is a temporal relation symbol 

with sort Tm ;

2.

3.

4.

3. Each mr&MR is a meta relation symbol with sort Pn xTra
Notel: In this paper, the negation, conjunction and 

universal quantifier of prepositional terms are denoted 
as "NOT", "AND" and "FORALL", distinct from that 
as for conventional well-formed-formulas symbolized 
by "-,", "A" and V, respectively.

Note2: Here, connectives and quantifiers of 
prepositional terms are taken as functions from 
propositional terms to prepositional terms. It is 
important to note that, connectives "NOT" and "AND" 
are treated as variable-free functions while quantifiers 
FORALL-Uj are treated as variable-bounded functions 1 .

Definitions of "term", "atomic formula" and "well- 
formed-formula", etc. in CRTL are given in the 
conventional way as in standard many-sorted first 
order logic.

2.2. Semantics of CRTL

A Modal of CRTL is formally defined as a 4-tuple 
M = <U, T, P, a>, where
• U, T and P are non-empty universes, representing 

the set of non-temporal objects, temporal time 
elements and propositional terms, respectively.

• a is an interpretation function interpreting every 
symbol defined in CRTL's signature as below:
1. Each symbol ucet/C is interpreted as a 

non-temporal element 0(uc)e(7;
2. Each symbol tceTC is interpreted as 

temporal element a(tc)e T;
3. Each symbol ufef/F is interpreted as 

non-temporal function from [/"xT™ to C7;
4. Each symbol tfeZF is interpreted as 

temporal function from IfxTto T;
5. Each symbol pfePF is a interpreted as a 

propositional function from C/1 to P;
6. Symbols NOT, AND and "FORALL-Uj" are 

interpreted as functions from propositional 
terms to propositional terms.

a

a

1 A variable-binding function fx is a normal function with special 
property that every occurrence x in fx( ) is bounded. In this case, fx is 
called a x-bounded function.
For example, Let Q[x, y] be the set of all the 2-variable polynomials 
with variables x, y and rational coefficients. Let Sqr and d denote

By
the two functions, square and partial derivation, from Q[x,y] to 
Q[x,y], respectively. Then Sqr is a variable-free function, and d_ is a

dy
y-bounded function. Obviously, x in equation Sqr(x+y)=x2+2xy+y2
can be substituted by yA2, which can not be done in _£, \-i-^x + y) — I

dy
That is one of the main differences between variable-free functions 
and variable-bounded functions.
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7. Each symbol ur&UR is interpreted as a 
non-temporal relation on If ;

8. Each symbol treTT? is interpreted as a 
temporal relation on 7™;

9. Each symbol mr&MR is interpreted as a
meta relation on ^xj01.

All the other interpretations to variables, formulas, 
connectives and quantifiers are the same as in standard 
many-sorted first order logic.

3. The advantages of CRTL

In the above section, we present the syntax and 
semantics for a new reified temporal logic, CRTL. 
Unlike those existing reified temporal theories most of 
which lack of a sound and complete proof theory, the 
completeness and soundness of this new logic can be 
inherited directly from the initial object language, that 
is, the standard first order logic.

CRTL is a true reified temporal logic since a sort of 
meta-relations are formally defined which allow one to 
predicate and quantify over prepositional terms and 
temporal terms together, and therefore provide one the 
expressive power to represent and reason about both 
temporal and non-temporal relationships between the 
prepositional terms. Its expressive power compared 
with the other temporal logic systems can be illustrated 
as Fig.3, where, as in Fig.l, an arrow from system X to 
system Y denotes that X can be expressed/deduced 
fromY.

Tense Logics Hybrid Logics Temporal Arguments Reified Logics

Fig. 3. Expressive power of CRTL

Specially, CRTL can be seen as an expansion of 
RTL or a simplification of TR. Therefore, it is 
straightforward to see that, using CRTL, one can either 
directly subsume or equivalently express the other 
existing reified temporal theories.

3.1. Expressing time structures

Since CRTL follows the predicate logic approach, it 
is handy to express various time structures/models by 
means of specializing the set of time elements and the 
set of temporal relations. In fact:

3.1.1. Point-based time structure. A typical 
point-based time structure can be defined by means of

simply taking the set of time elements as a collection of 
points Point, and specifying a primitive temporal relation 
< which (partially or totally) orders Point. As derived 
time objects, point-based interval may be defined in 
terms of the following four forms:

(Pi. P2> = (P I P^Point A pi < p < p2 } 
[Pi» P2> = {p I pePoint A P! < p < p2 } 
(Pi, P2\ = (P I ptPoint A pi < p < p2 } 
[pi> P2\ = {p I p^Point A pi < p < p2 } 

Following Alien's terminology [1], the immediate 
predecessor order relation over intervals, Meets, can be 
defined as in terms of the primitive relation < over 
primitive time points: 

Meets(ti, t2) <=> 
3pi,p,p2 eR(ti = (pi, p) A t2 = [p, p2)

v ti = [pi, p) A t2 = [p, p2)) 
v ti = (pi, p) A t2 = [p, p2]

V ti = [pi, p) A t2 = [p, p2 ]

v ti = (p 1? p] A t2 = (p, p2)
V ti = [pi, p] A t2 = (p, p2)

v ti = (PL p] A t2 = (p, p2]
V ti = [pi, p] A t2 = (p, p2])

It is easy to see that the intuitive meaning of 
Meets(ti,t2) is that, on the one hand, intervals ti and t2 
don't overlap each other (i.e., they don't have any part 
in common, not even a point); on the other hand, there 
is not any other time standing between them.

Other order relations analogous to those 
introduced by Alien for primitive intervals [1], that is, 
Equal, Before, After, Met_by, Overlaps, 
Overlapped by, Starts, Started_by, During, Contains, 
Finishes, Finished_by can also be defined in terms of 
Meets. E.g.: Before(ti, t2) <-> 3t(Meets(ti, t) A Meets(t,
t2))

When applied to points and/or point-based 
intervals, these 13 can be classified into the following 
4 groups:
• Relations that relate points to points: 

{Equal, Before, After}
• Relations that relate points to intervals:

{Before, After, Meets, Met_by, Starts, During. 
Finishes}

• Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started_by, 
Contains, Finished_by}

• Relations that relate intervals to intervals:
{Equal, Before, After, Meets, Met_by, Overlaps, 
Overlapped_by, Starts, Started_by, During, 
Contains, Finishes, Finished_by}

3.1.2. Interval-based time structure. Alien's 
temporal system [1] is a typical interval-based time 
theory. One may deduce such a time structure from
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CRTL by means of simply taking intervals alone as 
primitive and completely excluding time points from 
the sort of time elements. Unlike the Meet relation as 
defined in section 3.1.1 as derived relation from <, the 
Meets relation here can be defined as primitive over 
intervals in terms of the following axioms: 
Tl. Vt^t^CMeetsCt!, t2) A Meets(tb t3) A Meets(t4, t2)

That is, if an interval meets two other intervals, then 
any interval that meets one of these two must also meets 
the other. 
T2. Vt3ti,t2(Meets(t!, t) A Meets(t, t2))

That is, each interval has at least one immediate 
predecessor, as well as at least one immediate successor. 
T3. Vt 1 ,t2 ,t3 ,t4(Meets(t1 , t2) A Meets(t3 , t4) -+

Meets(t!, t4)
V 3f (Meets(t1? t') A Meets(f, t4)) 
V 3t"(Meets(t3 , t") A Meets(t", t2))) 

where V stands for "exclusive or". That is, any two 
meeting places are either identical or there is at least an 
interval standing between the two meeting places if they 
are not identical. 
T4. Vti,t2,t3 ,t4( Meets(t3 , tO A Meets(tu t4)

A Meets(t3 , t2) A Meets(t2 , t4)) — > 
ti=t2)

That is, the interval between any two meeting 
places is unique.

N.B. For any two adjacent time elements tt and t2 , 
that is Meets(ti, t2), ti0t2 will be used to denote their 
ordered union. The existence of such an ordered union is 
guaranteed by axioms T2 and T3, while its uniqueness is 
guaranteed by axiom T4.

Alien's other order relations for primitive intervals 
[1] including Equal, Before, After, Met_by, Overlaps, 
Overlapped_by, Starts, Started_by, During, Contains, 
Finishes, Finished_by can be defined in terms of 
Meets.

3.1.3. Point&Interval-based time structure. On the
one hand, it has been argued that defining intervals as 
derived temporal objects out of points may lead to the 
so-called Dividing Instant Problem [1, 6, 16], that is 
the puzzle encountered when attempting to represent 
what happens at the boundary instant (point) which 
divides two successive intervals. On the other hand, it 
has been pointed out both points and intervals are 
needed for making temporal reference to instantaneous 
phenomena with zero duration, and periodic 
phenomena which last for some positive duration, 
respectively. For general treatments, one may take the 
set of time elements to include both points and 
intervals as primitive on an equal footing: points do not 
have to be defined as limits of intervals and intervals 
do not have to be constructed out of points. An

example of such a theory is that of Ma and Knight [10]. 
To support a point&interval-based time structure, one 
can define a new sort D as the set of non-negative real 
numbers, and a duration assigning function DUR from 
T to D. If Dur(t) > 0 then t is called an interval, 
otherwise, t is called a point. In addition to axioms Tl. 
- T4. in section 3.1.2., one needs the following two 
additional axioms: 
T5. Vti,t2(Meets(tb t2) -> Dur(t,) > 0 v Dur(t2) > 0)

That is, time elements with zero duration cannot 
meet each other. 
T6. Vt^CMeetsft, t2) ->

Dur(ti 012) = Dur(ti) + Dur(t2))
That is, the ordered union operation 0 over time 

elements is consistent with the conventional "addition" 
operation over the duration assignment function Dur.

3.2. Expressing temporal causal relationships

To talk about temporal incidence, we define a 
meta-relation TrueeM/? over sort PxT by the following 
axioms:
<C 1 > VpVt(True(NOT(p), t) «-> ^TRUE(p, t)) 
<C2> Vp!,p2Vt(True(AND(pi, p2), t) <->

True(p!, t) A True(p2, t))
<C3> VpVt(True(FORALL-u(p), t') <-+ 
Vu(True(p, t)))

We shall use formula Causes(ti, t, t2 , pi, p, p2) to 
denote a causal law, which intuitively states that, under 
the precondition that proposition pi hold true over 
time ti, the truth holding of proposition p over time t 
will cause the truth holding of proposition p2 over time 
t2 . This can be formally characterized by the the 
following axiom: 
<C4> Causes(t!, t, t2 , pl5 p, p2)

A True(pi, ti) A True(p, t) => True(p2, t2)
In order to characterize temporal relationships 

between events and their effects, we impose the 
following temporal constraints: 
(C5) Causes(t!, t, t2 , p ls p, p2)

=> Meets(tl5 1) A (Meets(tt , t2) v Before^, t2))
It is important to note that axiom (C5) presented 

above actually specifies the so-called (most) general 
temporal constraint (GTC) [14]. Such a GTC 
guarantees the common-sense assertion that "the 
beginning of the effect cannot precede the beginning of 
the cause".

Actually, there are 8 possible temporal order 
relations between times ti, t and t2 which satisfy (C5). 
These include:
(1) The effect becomes true immediately after the 

end of the event and remains true for some time 
after the event.
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(2) The effect holds only over the same time over 
which the event is in progress.

(3) The beginning of the effect coincides with the 
beginning of the event, and the effect ends before 
the event completes.

(4) The beginning of the effect coincides with the 
beginning of the event, and the effect remains true 
for some time after the event.

(5) The effect only holds over some time during 
the progress of the event.

(6) The effect becomes true during the progress of 
the event and remains true until the event 
completes.

(7) The effect becomes true during the progress of 
the event and remains true for some time after the 
event.

(8) There is a time delay between the event and its 
effect.

4. Conclusion

In this paper, we have introduced a new reified 
temporal logic, CRTL, with a clear syntax and 
semantics, which, by inheriting from the initial first 
order language, enjoys a sound and complete axiomatic 
system. This is the main improvement made to the 
reification approach to temporal representation and 
reasoning. It is a true reified logic since a sort of 
meta-relations is formally defined that allow one to 
predicate and quantify over prepositional terms, and 
therefore provides the expressive power to represent 
and reason about both temporal and non-temporal 
relationships between propositional terms. It is 
demonstrated that the new logic proposed here retains 
the appealing characteristics of some most 
representatively existing temporal systems that utilize 
the technique of reification.
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Abstract

This paper presents a unified scheme for formalizing 
scenario patterns, which are defined as vectors of states 
with the corresponding temporal constraints, whereas 
states are represented as collections of Boolean-valued 
propositions whose truth-values are dependent on the 
time. A temporal network, called scenario graph, is 
introduced to graphically represent scenario patterns 
formalized in terms of the unified scheme. A 
navigation-based algorithm is proposed, and the 
simulation experiments demonstrate that the method can 
be used to match scenario graphs.

1. Introduction

The notion of state is fundamental for many real-time 
applications. In conventional state-based systems, various 
states of the world in the discourse are usually represented 
in terms of isolated snapshots, while the state histories 
(which will be formally characterized as scenario 
patterns) with rich internal temporal aspects are neglected 
in most approaches.

Pattern recognition aims at the operation and design of 
technologies to pick up meaningful patterns in data [10]. 
While pattern classification is about putting a particular 
instance of a pattern in a category, the goal of pattern 
matching is to determine how similar a pair of patterns are
[9].

Graphs have been noted as a powerful and versatile 
tool used in pattern recognition. As sampled in [4], 
applications of graph matching include document 
processing, image analysis, biometric identification and 
video analysis, etc. However, conventional graph based 
approaches in pattern recognition mainly concern 
geometric and/or spatial relationships or correspondences, 
where complicate temporal relationships between the 
modeled objects/elements have not been explicitly dealt 
with in most graph-based representation and matching 
methods in pattern recognition.

Generally speaking, temporal representation and 
reasoning is essential for many areas in computer science, 
where one is interested not only in the representation of 
distinct episodes of an enterprise, but also in the temporal 
relations among the episodes. In particular, an appropriate 
representation and recognition of scenario patterns is 
necessary for many state-based systems, where the history 
of states, rather than isolate states, plays an important role 
in solving problems including explanation, diagnosis, 
prediction, planning, process management, and history 
reconstruction, etc. For instance, in the area of medical 
information systems, we may use HasCold, HasFever, 
HasCough and HasHeadache to represent that a patient 
"has a cold", "has a high fever", "has a dry cough" and 
"has a headache", respectively. However, without the 
corresponding temporal relations, a pattern in terms of the 
collection of these 4 isolate statements (data) is in general 
not meaningful/helpful enough for a doctor to prescribe 
the right treatments. In fact, the doctor needs to know not 
only the patient's individual symptoms, but also the 
temporal relations between these symptoms, and 
probably, the patient's previous health records, etc.

A natural approach to represent the temporal 
constraints on certain states is to associate the states with 
time elements. For example, For example, by means of 
using the so-called method of temporal arguments [3], we 
may use Has(Cold, TCoid), Has(Fever, TFever), Has(Cough, 
Tcough) and Has(Headache, THeadac)ie) to represent that a 
patient "has a cold", "has a high fever", "has a dry cough" 
and "has a headache", over the corresponding times , 
Tcoid, TFever, TCough and THeadache, respectively. Then, 
various temporal relations between the involved time 
elements will characterize different scenarios patterns. For 
instance, as illustrated in Figure 1 and Figure 2 
respectively, the following different two sets of temporal 
relations, i.e.,
• During(TFever, TCold), Overlaps(TCold, TCough), 

Overlaps(TCold, THeadache), After(TCmgk, TFever), 
During(THeadache, TCough).
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• During(THeadache, TCoid), During(TFever,
After(TFever, THeadach^), Overlaps(TFever, TCough). 

will characterize two distinct medical scenarios pattern 
samples with respects to the same collection of 
symptoms.

HasCold

HasHeadache

HasFever HasCough 

Figure i. Sample 1

HasCold

HasFever
HasHeadache" HasCough

Figure 2. Sample 2

The objective of this paper is to introduce a formal 
framework in terms of a unified scheme for formalizing 
scenario patterns and the corresponding graphical 
representation. The formalism is presented in section 2. In 
section 3, a temporal network, called Scenario Graph, is 
introduced for graphical representation of scenario 
patterns. Illustrated by the experimental results, it is 
demonstrated in section 4 that graph-matching algorithms 
can be directly adopted for recognizing scenario patterns. 
Finally, section 5 provides a brief summary and concludes 
the paper.

2. The formalism

We shall use the time theory proposed in [6] as the 
temporal basis of the formalism. The theory takes a 
nonempty sort, T, of primitive time elements, with a 
primitive order relation Meets over time elements, and a 
function Dur from time elements to non-negative real 
numbers. Time element t is called a point if Dur(t) = 0; 
otherwise, i.e., ifDurft) > 0, t is called an interval.

The basic set of axioms concerning the triad (T, 
Meets, Dur) is given as below: 
(Tl) Afeefcft, t2) AMeets(tb t3) A Meets(t4, t2) 

=> Meets (t4, t3)
That is, if a time element meets two other time 

elements, then any time element that meets one of these two 
must also meets the other. This axiom is actually based on 
the intuition that the "place" where two time elements meet 
is unique and closely associated with the time elements [2]. 
(T2) \/t3tht2(Meets(th t) AMeets(t, t2))

That is, each time element has at least one immediate 
predecessor, as well as at least one immediate successor. 

tb tj AMeets(t3, t4)

Meets(th t4)
V3t'(Meets(t,, t') AMeets(t', t4)) 
V3t"(Meets(t3, t") AMeetsft", tj) 

Here, V stands for "exclusive or". That is, any two 
meeting places are either identical or there is at least a time 
element standing between the two meeting places if they are 
not identical.
(T4) Meets(t3,t]) AMeets(th t4) 

AMeets(t3, tj AMeets(t2, t4)

That is, the time element between any two meeting 
places is unique.

N.B. hi this paper, for any two adjacent time elements, 
that is time elements ti and t2 such that Meets(tj, t2\ we shall 
simply use tj ® t2 to denote their ordered union. The 
existence of such an ordered union of any two adjacent time 
elements is guaranteed by axioms (T2) and (T3), while its 
uniqueness is guaranteed by axiom (T4). 
(T5) Meets(ti, tj =>Dur(ti) > 0 vDur(tj > 0

That is, time elements with zero duration cannot meet 
each other. 
(T6) Meets(tj, tj => Durfa ® tj = Durfa) + Dur(t2)

That is, the "ordered union" operation over time 
elements is consistent with the conventional "addition" 
operation over the duration assignment function, i.e., Dur.

Analogous to those introduced by Alien [1], other order 
relations between time elements can be derived in terms of 
the primitive relation Meets, as below:

Equal(t,, t ' '( Meets(t ', t,) A Meets(t ', t2)
A Meets(tj, t") A 

Meets(t2, t"))
Beforefti, tj <z>3t(Meets(th t) AMeets(t, tj) 
Overlaps(th tj <=> 3t,t3,t4fti = t3 @ tAt2 = t@ t4) 
Starts(t,, tj <=>3t(t2 = t} ® t) 
During(t,, tj <Z>3t3,t4(t2 = t3 ® t} @ t4) 
Finishes(t,, tj <£>3t(t2 = t® t,) 
After(tb tj ^>Before(t2, t}) 
Overlapped-by(tlt tj <3> Overlaps (t2, tj 
Started-by(t,, tj <>Starts(t2, t,) 
Contains^;, tj <=>During(t2, tj) 
Finished-by(t!,tj o Finishes (t2, tj, 
Met-by(th tj <^>Meets(t2, t,)

In this paper, we shall use the termfluenst to represent 
Boolean-valued propositions whose truth-values are 
dependent on time. We shall denote the set of all the 
fluents as F, and use a "global predicate" [8]: Holds(f, t), 
to state that fluent / holds true with respect to time t, 
provided that: 
(HI) Holds (f, t) <>Vt'(Part(t', t) =>Holds(f, t'))

Here, Partft,, tj denotes that time t} is a part (not 
necessarily proper) of time f2 [1, 6]. That is: 

Part(t,, tj <=> Equal(th tj vStarts(tj, tj 
vDuring(t,, tj vFinishes(t], tj
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Therefore, (HI) states that, if a fluent holds true 
throughout an interval if and only if it holds true over/at 
every part of the interval. 
(H2) Holdstf, t,) A Holds(f, tj A Meets ft j, tj

=>Holds(f,t] @t2)
That is, if a fluent holds true over two adjacent time 

elements respectively, then it also holds true over their 
ordered union.

A state of the world in the discourse is defined as a 
collection of fluents. The set of states is denoted as S. We 
shall use Belongs(f, s) to represent fluent/belongs to state 
s[l]: 
(Bl) 3s Vf(-Belongs(f, s))

That is, there exists a state which is an empty 
collection of fluents. 
(B2) -<Belongs(f, s) v ̂ Belongs (not(f), s)

That is, any state cannot contain both a fluent and its 
negation.
(B3) -Selongs(not(f]), s }) 
=>3s2 Vf2(Belongs(f2, s2) <z> (Belongs (f2, s,) vf, =fj))

That is, any fluent can be added to an existing state 
to form a new state, as long as the state does not contain 
the negation of the fluent. 
(B4) 57 = s2 <=> Vf(Belongs(f, s,) <z> Belongs (f, s2))

Without confusion, we also use Holds(s, t) to denote 
that state s holds for time t, provided that every fluent / 
belongs to state 5 holds for time t : 
(m)Holds(s, t) <^ Vf(Belongs(f, s) =>Holds(f, t))

In addition, we introduce two binary operators, Union 
and Intersection, so that Union(sh s2) and Inter section(sh 
sj denote the union, and the intersection, of states Sj and 
s2, respectively: 
(B5) Belongs(f, Union(si, s2))

•£> Belongs(f, s}) vBelongs(f, 82) 
(B6) Belongs(f, Intersection^,, s2))

<=>Belongs(f, sj) A Belongs (f, s2) 
Any given scenario, st, is formalized in terms of a 

unified scheme, represented as a quadruple:

st = <Statest, Holds31, Meets'1, Dur*l>, such that 
Statest ={ssti \ssti eS,i=\,...,m}, 
Holds5' = {Holdstf't, ?t) | f '>£ T, 1 < i < m} 
Meets" = {Meets(f", f")\ for some /"',/" "e 7"} 
Dur5' = (Dur(f) = r \ for some f e Tf, re/?}

where Tf is the minimal subset of T closed under the 
following rules:

t& 7* o 3t'&Jet(Meets(t, t ') v Meets(t ', t)) 

3. Scenario Graphs

In [5], a graphical representation for expressing 
temporal knowledge has been introduced in terms of a 
directed and partially weighted graph. It can be extended 
to express scenarios presented in the unified structure as 
introduced in section 2. In fact, a given scenario st can be 
represented in terms of a temporal network, defined as a 
directed, partially weighted/labeled simple graph Gst, 
called Scenario Graph, where:
• Each time element t in T1 is denoted as a directed arc 

of the graph labeled by t that is bounded by a pair of 
nodes, which are called the tail-node, and the 
head-node, of the arc, respectively.

• Each relation Meets(tj, tj) in Meets3' is represented by
means of merging the head-node of /,• and the 
tail-node of tj as a common node, of which fy is an
in-arc and tj is an out-arc, respectively (see Figure 3). 
In this case, arc tt is said to be adjacent to arc tj.

• Each formula Holds(s*h f,) in Holds" is 
represented by means of simply adding ss'i as an 
additional label to the arc labeled by the 
corresponding f'{. For any time element t in Tf, if 
there is no Holds knowledge, it will be labeled by the 
empty state {}.

• Each piece of duration knowledge Dur(t) = r in Dur3' 
is expressed as a real number, r, alongside the 
corresponding arc t.

For scenario graph Gst, we define a |7*'|-by-|7"l 
Meets-adjacency matrix M5', where

|X if Meets (t^tj)
0, otherwise

4. A navigation-based algorithm

In what follows, by assuming the set of fluents F is 
finite, i.e., F = {/},..., /„}, we shall propose a 
navigation-based algorithm for matching scenarios 
graphs.

4.1 The algorithm

Given two scenarios, stj and st2 , we assume |r/'| < 
|r/'|. We use ^ to denote a one-to-one function from {1, 
..., \T"\} to {!,..., |7V'|}, and compute the following 
similarity degrees:
• Similarity of graph size:

iSt

St

Similarity of Holds relations:
\

simHolds '

Inter sec tion(s ,
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y.,1

Similarity of duration assignments:

simDur (st,,st2 ,(f>) =

• Similarity of Meets relations:
For scenarios st, and st2t we use M, and M2 to denote 

their corresponding Meets-adjacency matrices 
respectively, and, with respect to fa we derive a \T]S'\*\T,st \ 
matrix M2 from M/ and M2, such that:

Then, the similarity of Meets relations between 
scenarios st} and st2, with respect to function fa is defined 
as:

<M,,M2'>

where

The overall similarity between scenarios st} and 
with respect to function fa is defined as:

st2 ,0) = simsize (stlt st2 )
smHolds 

sim
, st2 , * , st2 ,

Meets 5^ , st2 ,
Finally, the similarity between scenarios stj and st2 is 
defined as:

} = max sim (stl , st2 , 0)sm

4.2 Experimental results

The algorithm has been implemented in MatLab. 
What follows describes some experiments conducted, 
where the corresponding weights taken in the algorithm 
are: w} = w2 = 0.25 and w3 = 0.5.

4.2.1. Test 1. As shown in Figure 3 - Figure 9, for the 7 
pairs of scenario graphs (ST! and ST2), the corresponding 
results computed from the algorithm provide a well stable 
similarity measurement as expected.

{fl}0.5 {G}0.5

{f2}0.5

{fl,f2}0.7 ,£2}0.3

Figure 3. Sim(st34, st3^) = 1

(f2}0.5

O

{fl,£2}0.7 {fl,f2}0.3

Figure 4. Sim(st4,i, st4j2) =0.8333

Figure 5. Sim(st54, sts^) =0.9093

{f2}0.5

{fl,f2}0.7
Figure 6. =0.9310
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{Headache} 2

Figure 7. Sim(st7>1 , st7^) =0.7231

Figure 8. Sim(st8,i, st8^) =0.5429

Figure 9. SimCst,,,, st9)2) =0.5500

4.2.2. Test 2. Figures 10 - Figure 12 represent three 
graphs corresponding to real-world scenarios in medical 
records, respectively:

*Q
{Cold}2 (Cbld}8

Figure 10. Scenario 1
{Cougji}2

Headache,Cough}2

{Cold}2 {Cold}3 {Cold}4.5 {Cough}2 

Figure 11. Scenario 2

{Fever, {Headache,

{Vomit} 0.5 
Figure 12. Scenario 3

The computed similarities among these three scenarios 
are listed in Table 1.

Table 1. Similarity list

Scenario 1
Scenario 2
Scenario 3

Scenario 1
1
0.7211
0.6878

Scenario 2
0.7211
1
0.6042

Scenario 3
0.6878
0.6042
1

Taking the above given three scenario graphs as the 
model graphs, we modified each of them in various ways 
to obtain a series of modified scenario graphs. Figure 13 - 
Figure 15 show the relationships between the similarity 
and the corresponding noise/modification, where each line 
represent a collection of scenario graphs including one of 
the 3 model scenarios and the series of the corresponding 
modified ones.

^ 
s
\ 0.8
m
i 0.6

a
r 
i
t

y

0.4

0.2

0
0 0.5 

Noise
Figure 13. Scenario 1 and its modifications
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1 
S
i 0.8 
m
i 0.6
I
a 0.4
r
i 0.2
t
v 0

0 0.5 

Noise

Figure 14. Scenario 2 and its modifications

1

m
i
I
a
r
i
t

y

0.5

0
0 0.5

Noise
Figure 15. Scenario 3 and its modifications

Finally, Figure 16 as shown below provides an 
overview of the similarity/dissimilarity among the three 
collections of scenario graphs generated in Test 2.

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

O Collectionl
x Collection2
+ Collections

-I- -

o

O
o

o o

'•0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Figure 16. The three collections of scenarios

It is easy to see that the similarity defined here reflects 
the conventional idea of edit distance in graph matching. 
In other words, the more similar a pair of two scenario 
graphs is, the closer they are to each other. Therefore, 
given some certain criteria in terms of the 
similarity/dissimilarity, it will be straightforward to use 
the proposed algorithm to cluster scenario graphs into 
various groups.

5. Conclusions

In this paper, we have introduced a framework for 
representing and recognizing scenario patterns with rich 
internal temporal aspects. The framework consists of a 
unified scheme for scenario formalization and a temporal 
network for graphical representation. It is shown that 
scenario pattern recognition and matching can be simply 
transformed into graph matching. However, due to the 
embedded checking of all permutations, the 
computational complexity associated with the proposed 
navigation-based algorithm is actually NP-hard. On the 
other hand, it is easy to see that, by means of re-indexing 
the arcs of any given scenario graph, the corresponding 
Meets-adjacent matrix can be turned out to be strictly 
upper-diagonal. In other words, scenario graphs in general 
are quite regularly sparse. Therefore, it is believed that 
exploiting such kind sparsity can lead to more efficient 
algorithms/methods to improve the corresponding 
computational complexity. This remains the main target 
as for the future work. The future work will also concern 
real world applications such as medical treatments and 
weather forecasting.
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Abstract. This paper introduces a mechanism for representing and recognizing 
case history patterns with rich internal temporal aspects. A case history is 
characterized as a collection of elemental cases as in conventional case-based 
reasoning systems, together with the corresponding temporal constraints that 
can be relative and/or with absolute values. A graphical representation for case 
histories is proposed as a directed, partially weighted and labeled simple graph. 
In terms of such a graphical representation, an eigen-decomposition graph 
matching algorithm is proposed for recognizing case history patterns.

1 Introduction

The notion of case is fundamental for many real life applications. In conventional 
case-based systems, various cases in the world under consideration are usually 
represented as isolated episodes. Generally speaking, temporal representation and 
reasoning is essential for many areas in computer science, where one is interested not 
only in the representation of distinct episodes of an enterprise, but also in the temporal 
relations among the episodes. In particular, appropriate temporal representation and 
reasoning is fundamental for many case-based systems, where the history of cases, 
rather than isolated cases, plays an important role in solving problems including 
explanation, diagnosis, prediction, planning, process management, and history 
reconstruction, etc. For instance, in the area of medical information systems, the 
patients' medical histories are obviously very important. In fact, to prescribe the right 
treatments, the doctor needs to know not only the patients' current status, but also 
their previous health records. Similarly, in weather forecasting, without a good 
understanding of climate phenomena based on past observations, the weather expert 
cannot make good predictions of the future.

This research is supported in part by National Nature Science Foundation of China 
(No.60375010)

171



APPENDIX C MATCHING CASE HISTORY PATTERNS IN 
CASE-BASED REASONING

Despite the fact that temporal representation and temporal reasoning have been 
neglected in most conventional case-based reasoning systems which only address 
snapshot episodes, a few interesting approaches have been proposed to incorporate 
the temporal concepts into isolated elemental cases. Examples of these are that of 
Nakhaeizadeh [1], of Branting and Hasting [2], of Jaczynski and Trousse [3], of Hansen 
[4], and of Jare, Adamodt and Skalle [5]. The underlying time models employed 
in most of these systems are point-based, and therefore, it is required that absolute 
time points [1-4], or intervals delimited by a pair of points [5], must be associated 
with the time-dependent statement being addressed. However, there are many 
applications in which there may be just some relative temporal knowledge about the 
time-depended statements to hand, where their precise time characters such as the 
exact starting and finishing time are not available (e.g., "John ran 3 miles yesterday 
morning", "John arrived at the office before Mary went to home", etc.).

Pattern recognition aims at the operation and design of technologies to pick up 
meaningful patterns in data [6]. While pattern classification is about putting a 
particular instance of a pattern in a category, the goal of pattern matching is to 
determine how similar a pair of patterns are [7]. The objective of this paper is to 
introduce a mechanism for case history representation and recognition. Section 2 
presents the formalism, including: the temporal basis which allows expression of both 
absolute time values and relative temporal relations; a formal characterization of 
fluents and elemental cases; and two equivalent schemas for case history 
representation. A network, called Case History Graph, given in terms of a directed, 
partially weighted and labeled simple graph, is introduced in section 3 for graphical 
representation of case histories. In section 4, an eigen-decomposition algorithm is 
proposed for matching case history graphs, where some illustrated experimental 
results. Finally, section 5 provides the conclusions.

2 The formalism

We shall describe the formalism in terms of a many-sorted reified logic with equality 
[8], consisting of four disjoint sorts objects T, F, C and H, called time elements, 
fluents, elemental cases and case histories, respectively.

Firstly, each time element is defined to be in one of the following four forms:

(PhP2) = {P

\Pi,P2> = (P
(PhP2\ = \P \Pl,P2,P^R A/7; <p <p2 } 

\PhP2\ = (P \Pl,P2,P^R *Pl<P<p2}

where R is the set of real numbers, and <, < and = are the conventional order relations 
over real numbers.

In this paper, p, and p2 in the above shall be called the left-bound and right-bound 
of time element t, respectively. The absolute values as for the left and/or right bounds
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of some time elements might be unknown. In this case, real number variables are used 
for expressing relative relations to other time elements.

If the left-bound and right-bound of time element t are the same, we shall call t a 
time point, otherwise t is called a time interval. Without confusion, we shall take time 
element [p, p\ as identical to p.- Also, if a time element is not specified as open or 
closed at its left (right) bound, we shall use "<" instead of "(" and "[" as for its left 
bracket; similarly, we shall use ">" instead of ")" and "]" as for its right bracket. In 
addition, we define the duration of a time element t, Dur(t), as the distance between 
its left bound and right bound:

t = <pi, P2> <=> Dur(t) =p2 -pi

Following Alien's terminology [9], we shall use Meets to denote the immediate 
predecessor order relation over time elements, defined by:

Meets(t], t2) <^> 3pj,p,p2 eR( tj = (p,, p) M2 = \p, p2)

It is easy to see that the intuitive meaning ofMeets(tj, t2) is that, on the one hand, 
while tj is an "earlier" time element compared with t2, there are no other time 
elements standing between them; on the other hand, time elements t] and t2 don't 
overlap each other (i.e., they don't have any part in common, not even a point).

Analogous to those introduced by Alien [9], other order relations between time 
elements can be derived in terms of the primitive relation Meets, including Equals, 
Before! After, Meets/Met-by, Overlaps! Overlapped-by, Starts! Started-by, During! Contains 
and Finishes! Finished-by [10]. As shown in [11], such a time model as adapted 
describe here has all the expressive power and convenience of the approach that treats 
intervals as primitive [9, 10, 12]. Specially, since the open/closed nature of a time 
element may be unspecified, it can overcome the disadvantage of conventional 
point-based approaches in representing possibly incomplete temporal knowledge, and 
bypass some historical puzzles such as the so-called Dividing Instant Problem [13].

In what follows in this paper, we shall use 77? to denote the set of these 13 exclusive 
temporal order relations.

Secondly, a fluent is defined a statement (or proposition) whose truth-value is 
dependent on times. The sort of fluents F is characterized as the minimal set closed 
under the following rules:

fi,f2 eF=>f,vf2 eF 

feF=>not(f)eF
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In order to associate a fluent with a time element, we shall use a global-predicate 
[8, 14], Holds(f, t), to state that fluent/holds true over time t:

Holds(f, <pi,p2>) ^ Vp3,p4 eR(pi <p3 Ap4 <p2 => Holds(f, <p3,p4>}) 

Holdsif, <pi, p2>) A Holds(f, <p2, p3>) A Meets(<pi, p2>, <p2, p3>)

Thirdly, an elemental case is defined as a collection of fluents. We shall use 
Belongs(f, c) to denote that fluent f belongs to case c [15].

Without confusion, we also use Holds(c, t) to state that case c holds over time t, 
provided that every fluent/belongs to case c holds true over time t:

Holds(s, t) <s> V/(Belongs(f, s) => Holds(f, tj)

In addition, we introduce two binary operators, Union and Intersection, over the 
sort of elemental cases C, so that Union(ch c2) and Intersection(cj, c2) denote the 
union, and the intersection, of case c/ and case c2, respectively:

Belongs(f, Union(cj, c2J) <$=> Belongs(f, c;) v Belongs(f, c2) 

Belongs(f, Inter section(cj, c2)) <£> Belongs(f, c/) A Belongs(f, c2)

Finally, a case history h, can be formalized in terms of one of the following two 
equivalent schemas:

In the first schema, Schema I, a case history is represented as a quadruple <Caseh, 
Holdsh , Relation11 , DM/>, where Caseh is a collection of elemental cases, Holds*1 is a 
collection of Holds formulae, Relationh is a collection of temporal order relations, and 
Dur*1 is a collection of duration knowledge. That is:

Schema I
h = <Caseh , Holds* , Relation*1 , Du^> 

Caseh = {chi | chi&C, i = l,..., m} 
Holdsh = {Holds(c\, A) I AeT1, l<i<m}
Relatioh = {Relational, ^2) I for some ^7/2 e7*, Relation i, 2 eTR} 
Dur11 = (Dur(t) = r \ for some t&f1 , r&R}

where f1 is the minimal subset of T closed under the following rules:

Ae7V=/, ...,m;
t&f"e> 3t'eI*(Meets(t, t') v Meets(t', t))

It is for the reason of general treatment that the temporal relationships presented in 
the above Schema I are given in the form of a collection of order relations each of 
which can be any one of those 13 in TR, that is, Equal, Before, After, Meets, Overlaps, 
Overlapped-by, Met-by, Starts, Started-by, During, Contains, Finishes and Finished-by. 
However, since all these order relations can be derived from the single Meets relation, we 
shall have another schema, Schema II, which is equivalent to the Schema I:

Schema II
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h = <Case", Holds11 , Meets", Dur*> 
Caseh ={chi \chi eC,i = l, ...,m} 
Holdsh = {Holds(chh A) I A-eT7, l<i<m} 
Meets'1 = {Meetstf,, ^2) | for some A/2 e 

= (Dur(f) - r | for some tef1 , r&R]

3 Graphical Representation of Scenarios

In [16], a graphical representation for expressing temporal knowledge has been 
introduced in terms of a directed and partially weighted graph. It can be extended to 
express case histories presented in the Schema II as introduced in section 2. In fact, a 
given case history h can be represented in terms of a temporal network, defined as a 
directed, partially weighted/labeled simple graph Gh , called Case History Graph, 
where:

• Each time element t in f1 is denoted as a directed arc of the graph labeled by t 
that is bounded by a pair of nodes, which are called the tail-node, and the 
head-node, of the arc, respectively.

• Each relation Meets(ti, tj) in Meets'1 is represented by means of merging the 
head-node oftt and the tail-node off,- as a common node, of which tj is an in-arc 
and tj is an out-arc, respectively (see Fig. 1).

• Each formula Holds(chh ^) in Holds* is represented by means of simply adding 
chi as an additional label to the arc labeled by the corresponding **,. For any time 
element t in 7*, if there is no Holds knowledge, it will be labeled by the empty 
state {}.

• Each piece of duration knowledge Dur(t) = r in Dui* is expressed as a real 
number, r, alongside the corresponding arc t.

In what follows, we shall simply assume \F\ = n. Corresponding to case history 
graph Gh with m nodes, we define a m*m-matrix JW*, named the characteristic matrix, 
where Mh(u, v) is a (n+l)-dimension vector luv eR"+\ such that:

(a) For any adjacent pair of nodes M and v in Gh, if (u, v) is an arc representing time 
element t, then luv(K) = 1 if Holds(fk, t), otherwise luv(k) = 0, 1 < k < n; and luv(n+l)
= Dur(f).

(b) For any non-adjacent pair of nodes u and v in G , luv = <w, w, ..., w>, where w is a 
negative real number, which will be use to adjust the edit-distance of deleting 
operations in graph matching process.
In this paper, we shall use Mhk to denote the matrix whose w-v-entry is the fc-th 

element of w-v-entry in M1 .
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Meets(ti,

Fig. 1. Merging the head-node off, and the tail-node off, as a common node ifMeets(tj, tj)

4 Eigen-decomposition graph matching algorithm

Spectral graph theory is a branch in mathematics which aims to characterize the 
properties of graphs using the eigen-values and eigen-vectors of the adjacency matrix 
or the closely related Laplacian matrix [17]. However, conventional spectral-based 
approaches usually deal only with symmetric real matrices, where the adjacency 
matrices of directed graphs, like the case history graph introduced in this paper, are in 
general asymmetric. Moreover, the entries of the characteristic matrix of a given case 
history graph are (n+l)-dimension vectors, rather than single real values as in 
conventional spectral-based models. In what follows, we shall extend the so-called 
eigen-decomposition graph matching algorithm, proposed by Umeyama [18], to 
match case history graphs.
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4.1 Definition of case history similarity

In what follows in this paper, if M is a complex number matrix, we shall use \\M\\to 
denote the Frobenius-norm of M, and \M\ to denote the matrix whose elements are the 
module of the corresponding elements of M

Given two case histories h\ and h2 , assume the characteristic matrices are M1* 1 and 
M , with size m\*m\ and m2*m2 . Without losing the generality, we assume m\ = mi = 
m. In fact, if m\ < m2, we can simply add m-i~m\ isolated dummy nodes to graph GM 
to get an extended graph Ghl , whose characteristic matrix M1* 1 will have the same 
size as that of A/12, i.e., m2*m2 . Similar treatment can be applied to the case where m2 
<m\.

The similarity degree between h\ and h2 is therefore universally defined by:

rWll2

k=\

where perm(m) denotes the set of all m*m permutation matrices. It is easy to see that 
sim(h,, h2) falls in the range of [0, 1].

4.2 Calculating the similarity

The similarity degree between two case graphs defined in section 4.1 only involves 
calculating the minimal value with respect to all the possible permutation matrices. 
In what follows, we extend Umeyama's algorithm as define for a single pair of 
asymmetric matrices to m pairs of asymmetric matrices. 

In fact, to calculate
n+\

min
peperm(m) ~

we defined
p., <+«f ,L ~

where k = 1,2, ...,«,
Since E and Eh2 are Hermitian matrices, we can get the eigen-compositionsk 

and Ehk 2 as:
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l n r(uk
rh2

rhl rh2where Uk and Uk are unitary matrices, and Dk and Dk are diagonal

matrices formed from the ordered eigen-values of Ek and Ek , respectively. N.B.
Here, * denotes the Hermitian transposition. 

Let
uhl \ \u
^ l 5 P :

hi Uhi
n+l

V2 =< Uh2
U.h2 U h2 

n+l

Then, we get the optimized permutation matrix p by means of using the Hungarian 
algorithm:

p = Hungarian

4.3 Experimental results

The algorithm has been implemented in MatLab. What follows describes some 
experiments conducted, where the corresponding weight w was set as -0.3.

As shown in Fig. 2 - Fig. 8, for the 7 pairs of case history graphs, Gthl and G/12 (i 
= 1, 2, ..., 7), the corresponding results computed from the algorithm provide a well 
stable similarity measurement as expected.

h2 •Fig. 2. The similarity between GI and GI is 1

Fig. 3. The similarity between G2 and G2 is 0.7800

178



APPENDIX C MATCHING CASE HISTORY PATTERNS IN 
CASE-BASED REASONING

ff"2>1,
ffM^o.7 qnmjrt

•Hi*

Fig. 4. The similarity between G3hl and G 2̂ is 0.8413

Fig. 5. The similarity between G4hl and G4h2 is 0.9148

hiFig. 6. The similarity between G5n and GS is 0.7301

Fig. 7. The similarity between G6hl and G6K is 0.7669

Fig. 8. The similarity between G7hl and G-T is 0.5711

4.4 Computational complexity

For two given case history graph Ghl and Gh2 with m nodes and « fluents, the 
computation consists of two significant parts. The first part involves 2*(«+l) 
calculations as for the eigen-decomposition of matrix with size m*m, giving a 
complexity of O(«m3). The second part involves in applying Hungarian algorithm to a 
matrix of size m*m, giving a computational complexity of O(m3). Therefore, the 
overall complexity of matching two case history graphs is O(nm3).
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5 Conclusions

In this paper, we have introduced a mechanism for representing and recognizing case 
histories with rich internal temporal aspects, in the domain of case-based reasoning. 
The formalism includes two equivalent schemas for case history formalization and a 
graphical representation corresponding to the unified second schema. It is shown that 
case history pattern recognition and matching can be simply transformed into graph 
matching. By means of extending the eigen-decomposition algorithm from weighted 
graph to vector labeled graph, we can get ideal results in matching pairs of case 
history graphs for most states of affairs. However, in some special states of affairs, the 
algorithm may fail to work as expected. The future work of this research includes 
identifying the reason of the failure, and improving the algorithm for general real life 
applications.
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Abstract

This paper continues the work presented previously 
at ICNC-FSKD-05 for representing and matching 
scenario patterns. A unified scheme is presented to 
replace the two previous equivalent schemas for 
formalizing scenario patterns. In the unified scheme, a 
scenario is denoted in terms of a collection of states 
with the corresponding temporal constraints, where a 
state is defined as a set of Boolean-valued 
time-dependent fluents. The concept of a scenario 
graph is formally introduced as a directed, partially 
weighted and labeled simple graph. Based on such a 
graphical representation, an extended linear 
programming graph matching algorithm is proposed 
for recognizing scenario patterns.

1. Introduction

Like the concept of case in case-based reasoning, 
the notion of state in state-based systems is fundamental 
for many real-time applications. In conventional 
state-based systems, various states of the world in the 
discourse are usually represented in terms of isolated 
snapshots, while the state histories (or temporal 
scenarios) with rich internal temporal aspects are 
neglected in most approaches. Over the past three 
decades, it has been noted that temporal representation 
and reasoning is essential for many areas of Artificial 
Intelligence, where one is interested not only in the 
representation of distinct episodes of an enterprise, but 
also in the history of earlier/future situations [13, 14, 
23, 24, 27]. In particular, an appropriate representation 
and reasoning for temporal knowledge is necessary for 
many state-based systems, where the history of states, 
rather than distinct episodes, plays an important role in 
solving problems including explanation/diagnosis, 
prediction/forecast, planning/scheduling, process 
management, and history reconstruction, etc.

A natural approach to represent the temporal 
constraints on certain states is to associate the states 
with time elements. Generally speaking, there are three

known choices as for the sort of objects to be taken as 
time elements: (1) points, i.e., instant without duration; 
(2) intervals, i.e., periods with positive duration; and (3) 
both points and intervals. In addition, in temporal 
systems where time intervals are modeled as time 
elements, there are two different approaches. In the 
first, intervals are modeled as derived objects 
constructed from points, e.g., as sets of points [8, 22], 
or as pairs of points [7, 9, 10, 16, 26]. However, it has 
been argued in the literature that defining intervals as 
objects derived from points may lead to the so-called 
Dividing Instant Problem [8, 11, 19]. The second 
treatment takes intervals as primitive objects, without 
insisting on the existence of "ending-points", 
"internal-points", or any points at all. Alien's interval 
logic [1, 2, 3, 4], Vilain's temporal system [31], and Ma 
and Knight's general time theory [17] are examples that 
treat intervals as primitive.

Generally speaking, pattern recognition aims at the 
operation and design of technologies to pick up 
meaningful patterns in data [29]. While pattern 
classification is about putting a particular instance of a 
pattern in a category, the goal of pattern matching is to 
determine how similar a pair of patterns are [28]. In 
state-based systems, certain states may be associated 
with specific time elements, where various temporal 
relations between the involved time elements will 
characterize different scenario patterns.

In [20], a formal method is proposed for 
representing and recognizing scenario patterns with rich 
internal temporal aspects. This paper continues such a 
work by means of unifying the two previous equivalent 
schemas for representing temporal scenarios, and 
implementing a linear programming graph matching 
algorithms for matching scenarios patterns. In section 2, 
we introduce the theoretical background of the 
formalism, where the graphical representation of 
temporal scenarios is formally described in section 3. 
Section 4 presents an extended linear programming 
algorithm for matching scenario graphs, and provides 
some experimental results. Finally, section 5 
concludes the paper.
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2. The background formalism

As proposed in [20], a simple point-based time 
model is adopted as the temporal basis. In such a time 
model, time elements are defined as typed point-based 
intervals, allowing expression of both absolute time 
values and relative temporal relations [21]. Following 
the notations taken in [20], we shall use R to denote the 
set of real numbers, and T, the set of time elements. 
Each time element t is defined as a typed (left-open & 
right-open, left-closed & right-open, left-open & 
right-closed, left-closed & right-closed) subset of the set 
of real numbers R. I.e., each time element must be in 
one of the following four forms:

(Pi» Pa) = (P I peR A p t < p < p2 }
[Pi, p2) = {p | peR A pi < p < p2 }
(Pb P2] = (P I peR A P! < p < p2 }
[Pi, Pa] = (P I peR A pi < p < p2 } 

In the above, pi and p2 are real numbers, and are called 
the left-bound and right-bound of time element t, 
respectively. The absolute values as for the left and/or 
right bounds of some time elements might be unknown. 
In this case, real number variables are used for 
expressing relative relations to other time elements (see 
later).

In addition, if the left-bound and right-bound of 
time element t are the same, t is called a time point, 
otherwise it is called a time interval. Without confusion, 
time element [p, p] is taken as identical to point p. Also, 
if a time element is not specified as open or closed at its 
left (right) bound (that is, the left (right) type of the time 
element is unknown), we shall use "<" (or ">") instead 
of "(" and "[" (or ")" and "]") as for its left (or right) 
bracket. Also, the duration of a time element t, D(t), is 
defined as the distance between its left bound and right 
bound. In other words:

t = <pi, p2> <^> D(t) = Pi - Pi
Following Alien's terminology [1,2, 3], "Meets" is use 
to denote the immediate predecessor order relation over 
time elements:

Meets(ti, t2) <=> 3pi,p,p2 eR(ti = (pi, p) A t2 = [p, 
Pa)

V t, = [pi, p) A t2 = [P, P2)) V ti = (pi, P) A t2 - [p,

p2]
V t! = [pi, p) A t2 = [p, p2] V ti = (pi, P] A t2 - (p,

P2)
V t, = [pi, p] A t2 = (P, P2> V ti = (Pi, p] A t2 - (P, 

P2]
V t, = [Pi, p] A t2 = (P, P2]) .*,,/*

It is easy to see that the intuitive meaning of Meets(ti, 
t2) is that, on the one hand, time elements t! and t2 
don't overlap each other (i.e., they don't have any part 
in common, not even a point); on the other hand, there 
is not any other time element standing between them.

Analogous to the 13 relations introduced by Alien 
for intervals [1, 2, 3], there are 30 exclusive temporal 
order relations over time elements including both time 
points and time intervals, which can be classified into 
the following 4 groups:
• Relations that relate points to points: 

{Equal, Before, After}
• Relations that relate points to intervals:

(Before, After, Meets, Met_by, Starts, During. 
Finishes}

• Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started_by, 
Contains, Finished_by}

• Relations that relate intervals to intervals:
{Equal, Before, After, Meets, Met_by, Overlaps, 
Overlapped_by, Starts, Started_by, During, 
Contains, Finishes, Finished_by}

N.B. The definition of these derived temporal order
relations in terms of the single relation Meets is
straightforward. E.g.:

Equal(ti, t2) <^> 3t3 ,t4 eT(Meets(t3 , tj) A Meets(t3 , t2)
A Meets(ti, t4) A 

Meets(t2, t4)) 
A fluent is a statement (or proposition) whose

truth-value is dependent on time elements. We use F to
denote the set effluents.

In order to associate a fluent with a time element,
we use a meta-predicate [18, 26], Holds, to substitute
the formula Holds(f, t) for each pair of a fluent f and a
time element t, denoting that fluent f holds true over
timet.
(HI) Holds(fiv f2, t) <=> Holds(f1? t) v Holds(fi, t)
(H2)Holds(f,<pi,p2>)o

Vp3 ,p4 eR(p! < p3 A p4 < p2 => Holds(f, <p3,
P4>))
(H3) Holds(f,<p,,pz>)

A Holds(f, <p2, p3>)
A Meets(<p!, p2>, <p2, p3>) 

=> Holds(f, <p,, p3>)
It is worth pointing out that the time model and the 
formulae introduce in the above allows temporal 
knowledge with absolute values, as well as temporal 
knowledge expressed in terms of relative relations. An 
example can be found in [20].

We shall represent the static state of the world in 
the discourse is defined as a collection of fluents, and 
denote the set of all the states as S. In addition, we use 
Belongs(f, s) to represent fluent f belongs to state s 
[24]:

In [20], two equivalent schemas have been proposed 
for representing temporal scenarios. In this paper, by 
means of introducing the concept of states, each given 
scenario, st, can be formalized in terms of a unified 
scheme, represented as a quadruple:
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st = <Statest, Holds54, Meets8', Durst>, such that

Holds81 = {Holds(ssti, tstO | tsti€T, 1 < i < m} 
Meets81 = (Meets(tst ', tst") | for some tst ',tst"eTst } 
Durst - {Dur(t) = r | for some teT81, reR}

where Tst is the minimal subset of T closed under the
following rules:
• t8tie Tst,i=l,...,m.
• teT81 <=> 3t' eTst(Meets(t, t') v Meets(t', t))

3. Scenario graphs

In [15], a graphical representation for expressing 
temporal knowledge has been introduced in terms of a 
directed and partially weighted graph. It can be 
extended to express scenarios presented in the scheme 
introduced in section 2. In fact, a given scenario st can 
be represented in terms of a scenario graph, which can 
be formally defined as a directed, partially 
weighted/labeled simple graph Gst, where:
• Each time element t in Tst is denoted as a directed 

arc of the graph labeled by t that is bounded by a 
pair of nodes, which are called the tail-node, and 
the head-node, of the arc, respectively.

• Each relation Meets(ti, tj) in Meets8* is represented 
by means of merging the head-node of tj and the 
tail-node of tj as a common node, of which ti is an 
in-arc and tj is an out-arc, respectively (see Figure
1).

• Each formula Holds(ssti, tstj) in Holds81 is
represented by means of simply adding sstj as an 
additional label to the arc labeled by the 
corresponding t81;. For any time element t in T81, if 
there is no Holds knowledge, it will be labeled by 
the empty state {}.

• Each piece of duration knowledge Dur(t) = r in 
Durst is expressed as a real number, r, alongside 
the corresponding arc t.

In what follows, we shall simply assume |F| = n, that 
is, the total number of fluents is n. Corresponding to 
scenario graph Gst with m nodes, we define a 
m*m-matrix Mst, named the characteristic matrix, 
where Msl(u, v) is a (n+l)-dimension vector luveRn+1 , 
such that:

(a) For any adjacent pair of nodes u and v in Gsl, if 
(u, v) is an arc representing time element t, then luv(k) = 
1 if Holds(fk, t), otherwise luv(k) = 0, 1 < k < n; and 
luv(n+l) = Dur(t).

(b) For any non-adjacent pair of nodes u and v in Gst, 
luv = <w, w, ..., w>, where w is a negative real number, 
which will be use to adjust the edit-distance of deleting 
operations in graph matching process.

In this paper, we shall use Mkst to denote the matrix 
whose u-v-entry is the k-th element of u-v-entry in Mst.

I Meets(tj,

Figure. 1. Merging the head-node off, and the 
tail-node off, as a common node \iMeets(th f/)

4. Extended linear programming approach 
for matching scenario graphs

Based on the graph representation of scenarios, we 
can match two temporal scenarios by means of 
matching their corresponding scenario graphs. We have 
explored various graph matching algorithms for our 
scenario graph matching, including the 
eigen-decomposition approach of Umeyama [30], the 
polynomial transform approach of Almohamad [5] and 
the linear programming approach of Almohamad and 
Duffuaa [6]. The experimental results show that the 
linear programming approach gets the most accurate 
result within acceptable computational time. Since each 
of entries of the characteristic matrix of a given 
scenario graph is a («+l)-dimension vector, rather than 
a single real value as in conventional spectral-based 
models, we need to extend the so-called linear 
programming graph matching algorithm for matching 
scenario graphs.

4.1. Definition of scenario similarity

In what follows in this paper, if M is a real number 
matrix, we shall use ||M||i to denote the Li-norm of M 
[6]. Given two scenarios st t and st2 , assume the 
characteristic matrices are M811 and Mst2 , with size 
m^m! and m2*m2, respectively. Without losing the 
generality, we assume mi = m2 = m. In fact, if mi < m2, 
we can simply add m2 - IT^ isolated dummy nodes to 
graph Gstl to get an extended graph Gst , whose 
characteristic matrix Mstl will have the same size as 
that of M812, i.e., m2*m2 . Similar treatment can be 
applied to the case where m2 < mt .

The similarity degree between stt and st2 is then 
defined by:
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n+l

mm
peperm(m)~=1

VdlMfll +|K' 2|)^-( vll * 111 II K 111

where perm(m) denotes the set of all m-by-m 
permutation matrices. It is easy to see that sim(sti, st2) 
falls within the range of [0, 1].

4.2. Calculating the similarity

The similarity degree between two scenario graphs 
defined in section 4.1 only involves calculating the 
minimal value with respect to all the possible 
permutation matrices. In what follows, we extend 
linear programming graph matching algorithm as define 
for a single pair of asymmetric matrices to n+l pairs of 
asymmetric matrices.

In fact, to calculate
«+!,.

I\PM.f / -Mf

we only need to calculate rnin J]\\pMkn -Mk 2 p\\
eera»j~ll »l

We shall use <8> and Vec to denote the Kronecker 
product and the vectorization of a matrix formed by 
stacking its columns into a single column vector.

From the fact Vec(ABC) = (CT <8> A)Vec(B) , 
we have:

peperm(m) r~T

= min

In order to find the matrix p satisfying the above 
minimum requirement, we employ 2m* (n+l)* (n+l) 
additional variables ZklJ , YklJ , where 1 < k < m and 1 < 
i, j < n+l, to approximately solve the problem in terms 
of the following linear programming:

)Vec(p) + Vec(Zk )~ Vec(Yk ) =
Such that
(Mf

and

However, the entries of matrix p obtained from the 
above linear programming may not be all 0 or 1. If this 
is the case, we need to apply the so-called Hungarian 
algorithm [12] to matrix p. That is, Hungarian(p) will

be the approximate solution to the corresponding graph 
match problem.

4.3. Experimental results

The algorithm has been implemented in MatLab. What 
follows describes some experiments conducted, where 
the corresponding weight w was set as -0.3.

As shown in Figure. 2 - Figure. 8, for the 7 pairs of 
scenario graphs, st^ and stj;2 (i = 2, 4 ••• 8), the 
corresponding results computed from the algorithm 
provide a well stable similarity measurement as 
expected.

(n,£2)0.3 |«2}0.5

((1,0)1

(flfO.5 {iwaT^v^s/ <n,e}o.3

Figure 2. Sim(st2,i, st2>2) = 1

Figure 3. Sim(st3>1 , st3^) =0.8947

(fl.OjO.7

Figure 4. Sim(st44 , st4^) =0.9307

<)0

Figure 5. Sim(st5il , stg^) =0.9537

Figure 6. Sim(st6.i, st6.2) =0.8823
Bi° (0)0,,

{fl,G}0.7

Figure 7. Sim(st7>1 , st7)2) =0.7271

Figure 8. Sim(st8)1 , st8)2) =0.9088

4.4. Computational complexity

For two given scenario graphs Gstl and Gst2 with m 
nodes and n fluents, the complexity of the computation 
is O(n6*m3 *L), since the linear graph matching problem 
can be solved in O(k3*L), where k is the number of
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variables (here k = (2m+l)*n2), L is the size of the LP 
problem, for details please see [6].

5. Conclusions

In this paper, we have extended the work presented at 
ICNC-FSKD05. By means of introducing the concept 
of states, we have unified the two previous equivalent 
schemas for scenario formalization. In order to 
graphically represent a temporal scenario, we have 
provided a formal definition of a scenario graph, in 
terms of a directed, partially weighted and labeled 
simple graph. Therefore, the problem of matching 
temporal scenarios is transformed into conventional 
graph matching. By means of extending the linear 
programming graph matching algorithm from weighted 
graph to vector labeled graph, we obtained ideal results 
in matching pairs of scenario graphs for most states of 
affairs. However, if the number of time elements is 
larger than 30, the CPU time is unacceptable. The 
future work of this research includes accelerating and 
improving the algorithm for general real life 
applications.
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Abstract. In this paper, Umeyama's eigen-decomposition approach to weighted 
graph matching problems is critically examined. We argue that Umeyama's 
approach only guarantees to work well for graphs that satisfy three critical 
conditions: (1) The pair of weighted graphs to be matched must be nearly 
isomorphic; (2) The eigenvalues of the adjacency matrix of each graph have to 
be single and isolated enough to each other; (3) The rows of the matrix of the 
corresponding absolute eigenvetors cannot be very similar to each other. For the 
purpose of matching general weighted graph pairs without such imposed 
constraints, we shall propose an approximate formula with a theoretical 
guarantee of accuracy, from which Umeyama's formula can be deduced as a 
special case. Based on this approximate formula, a new algorithm for matching 
weighted graphs is developed. The experimental results demonstrate great 
improvements to the accuracy of weighted graph matching.
Keywords: Intelligent Computing, Pattern Recognition, Graph Matching.

1 Introduction

Graphs are a powerful and versatile tool used for the description of structural objects 
in many application areas such as case-based reasoning, semantic networks, document 
processing, image analysis, biometric identification, computer vision and video 
analysis, and so on. In general, in terms of their graph representation, objects can be 
represented by the vertices whilst the relationships between objects can be represented 
by the edges. Therefore, the task of calculating the similarity degree between two 
objects can be simply transferred into the problem of matching the corresponding pair 
of graphs.

Various algorithms for graph matching problems have been developed, which, 
according to [6], can be classified into two categories: (1) search-based methods 
which rely on possible and impossible pairings between vertices; and (2) optimizarion-

This research is supported in part by National Nature Science Foundation of China
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based methods which formulate the graph matching problem as an optimization 
problem. Generally speaking, on one hand, search-based methods will find optimal 
solutions, but require exponential time in the worst case. On the other hand, normally, 
optimization-based methods only require polynomial bounded computation time, but 
in some cases may fail to find the optimal solution. Most search-based approaches use 
the idea of heuristics [11,14,15], where optimization-based methods have followed 
different approaches, including Bayesian methods [5], relaxation labeling [8], neural 
network [13], genetic algorithm [9], symmetric polynomials transformation (SPGM) 
[1], linear programming (LPGM) [2], and Kronecker Product Successive Projection 
methods [3], etc.

Another pioneer optimization-based method is Umeyama's eigen-decomposition 
approach (EDGM) [16]. This approach is based on matrix decomposition and norm 
from spectral theory. Over the past two decades, Umeyama's method has always been 
cited and compared with other approaches again and again. On one hand, it is noted to 
be easy to use and computationally efficient; on the other hand, it is criticized to be 
inaccurate in general since its mean error in graph matching is above average. 
However, the theoretical reason of these has been neglected in the literature and no 
investigation has been carried out to explore the scope of graph pairs in which the 
EDGM algorithm can provide efficient and effective matching with a high degree of 
accuracy.

In this paper, we shall critically examine Umeyama's EDGM approach. In section 
2, we provide a brief introduction to the EDGM algorithm and, by means of statistical 
demonstration, we shall point out that Umeyama's approach only guarantees to work 
well for graphs that satisfy the following three critical conditions: (1) The pair of 
weighted graphs to be matched must be nearly isomorphic; (2) The eigenvalues of the 
adjacent matrix of each graph have to be single and isolated enough to each other; (3) 
The rows of the matrix of the corresponding absolute eigenvetors cannot be very 
similar to each other. For general treatments, an approximate formula is proposed in 
section 3 for matching any weighted graph pairs, together with a theoretical 
discussion of its accuracy. It is shown that, as a special case, Umeyama's original 
formula can be directly deduced from the approximate formula. In section 4, a new 
graph matching algorithm is proposed based on the approximate formula and 
experimental results are provided. Finally, section 5 concludes the paper.

2 The Eigen-decomposition Approach

In [16], an Eigen-decomposition approach was proposed for matching weighted 
graphs with the same number of nodes. A weighted graph G can be denoted as an 
ordered pair (N, w), where N is a set of nodes and w is a function which assigns a 
weight w(vh y,) to each pair of nodes (v,-, vj) (edge of the graph). The adjacency matrix 
of a weighted graph G = (V, w) is defined as A G = {gv}, where gv = w(vh y,), i,j = 1, 
2, .. ., n, and n is the number of nodes in graph G.
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In this paper, for the reason of simply repression, without confusion, we shall not 
distinguish a weighted graph G and its corresponding adjacency matrix A G. In other 
words, we shall simply express the adjacency matrix of G as G itself.

The problem of matching two weighted graphs G and H of n nodes is to find a 
one-to-one correspondence between the two corresponding sets of nodes that 
minimizes the distance between G and H, d(G., H), which can be formulated in terms 
of the so-called Frobenius-norm (denoted as IUII ) as:

\\F '

d(G,H}= min \PGPT -H\ C2 - 1 )
Pe.Perm(n)\\ \\F

where G and H are the adjacent matrices of the weighted graphs to be matched and 
Perm{ri) is the set of all n-by-n permutation matrices.

From the definition, the adjacency matrix of any undirected graph G is symmetric. 
Therefore, there exists a real orthogonal matrix O such that DG = O^GO is a diagonal 
matrix. However, for directed graphs, their adjacency matrices are in general 
asymmetric and therefore may be not "real-orthogonally" diagonalizable. To handled 
this problem, Umeyama uses the idea of decomposing a matrix uniquely into a sum of 
a symmetric and a skew-symmetric matrix. In fact, any real n-by-n matrix G can 
be transformed into a complex Hermitian matrix Ht(G):

It is easy to get that, for any two n-by-n real matrices G and H:

\PGPT - H\ = \PAPT - B\\ F

where A=Ht(G) and B=Ht(H). Therefore, the problem of matching two matrices 
(symmetric or asymmetric) G and H is transformed into the problem of matching two 
Hermitian matrices.

From matrix theory, Hermitian matrices A and B can be decomposed as A=VDA V", 
matrix B=WDB W \ where DA and DB are the diagonal matrices of the eigenvalues (in 
ascending order) of A and B, respectively, and Fand Ware two unitary matrices.

In [16], the following formula is used to solve general graph matching problems:
P=H\mganan(\W\ \V\ T) (2.2)

where \V\ and Iff I are matrices whose entries are absolute values of the corresponding 
entries of V and W, Hungarian(*) denote the Hungarian algorithm [7], which is a 
combinatorial optimization algorithm which solves assignment problems in 
polynomial time (O(n3)).

The Eigen-decomposition method has been noted to be easy to use and 
computationally efficient. On the other hand, it has also been pointed out to be 
inaccurate in general since its mean error in graph matching is above average 
compared with other approaches. However, no investigation has been carried out to 
explore the scope of graph pairs in which the EDGM algorithm can provide efficient 
and effective matching with a high degree of accuracy. Based on some theoretical and
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experimental analysis as shown below, we list the three constraints of the EDGM 
algorithm in graph matching.
1. "Nearly-Isomorphic": The distance d(G,H) of the two graphs to be matched must 

be small enough.
2. "Isolating eigenvalues": All the eigenvalues of the matrix A, as well as matrix B, 

has to be single and the distance between two successive eigenvalues has to be 
big enough.

3. "Dissimilar rows": Any two rows of matrix \V\ in formula (2.2) cannot be very
similar to each other, and the same requirement applies to \W\. 

In fact, these three constraints are necessary and sufficient for the EDGM 
algorithm to get good approximations in general graph matching.

2.1 The Sufficiency of the Three Constraints

Firstly, we claim that the EDGM algorithm works very well for the graph pairs satisfy 
all the 3 constraints. 500 pairs of isomorphic graphs are generated randomly, which 
satisfy constraints 1-3. For each pair G and H, H is disturbed by adding a 
perturbation matrix E whose entries are uniformly random real numbers in the range 
from -e to +e. Graph size ranges from 5 to 12 and the noise amplitude e is fixed to 
0.05, then the mean distance between each pair of graphs is calculated by three graph 
matching algorithm: EDGM, SPGM and LPGM. CPU times are also compared.

789 
size of graphs

Fig. 1. Mean distance and calculating time of graph pairs satisfy all three constraints

In the above, Fig.l shows that the EDGM algorithm obtains almost the same 
results as good as LPGM but uses significantly shorter CPU time for graphs satisfying 
the 3 constraints.
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2.2 The Need of the "Nearly Isomorphic" Constraint

Secondly, we carry out tests to investigate the calculating error of the EDGM 
algorithm caused by increasing the distances between graph pairs. 

The calculating error is defined as:

-H\-d(G,H)

where P is the solution calculated by the EDGM algorithm.
We also generate 500 pairs of isomorphic graphs G and H which satisfy both 

constraint 2 and constraint 3. For each pair G and //, we make them no longer 
isomorphic to each other by means of perturbing H with a noise e, ranging from 0 to 
0.15.

"°' 20 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Noise Amplitude

Fig. 2. Calculating error of EDGM algorithm relative to noise

From Fig. 2, we can see that the calculating error of the EDGM algorithm grows 
quickly when the noise amplitude or the size of graph increases, which confirms our 
claim that the "nearly isomorphic" property is needed for EDGM algorithm.

2.3 The Need of the "Isolating Eigenvalues" Constraint

Here, we demonstrate by example that without the "Isolating eigenvalues" condition, 
the EDGM method may fail to work. Consider
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G =

"2000'

0200
0023
0002

// =

2000

3200
0020
0002

P -1 0

0001
0010
0100
1000W V V ** V/V/V/^* AVV/V

G and // are isomorphic because of H=P0GP0T. Let A=Ht(G) and B=Ht(H), the 
eigenvalues of ̂  and 5 are A(A) = A(B) =[-0.1213, 2, 2, 4.1213]

By formula 2.2, we get the approximate solution:

P = Hungarian(\W\V •>- "0010" 

0001 
0100 
1000

\\PGP T - H\\ =4 2426 , the EDGM algorithm fails to find the best solution, that
II \\F

is, an isomorphic correspondence between G and H which gives a distance of 0 
instead.

2.4 The Need of the "Dissimilar Rows" Constraint

Now, we show that "dissimilar rows constraint" is also needed. For instance, let
"0100"

0000
0030
0001

H =

"1000"

0300
0001
0000

P = ro

"0001"

0010
1000
0100

Again, G and H are isomorphic since H=P0GP0T. Let A=Ht(G) and B=Ht(H). The 
eigenvalues of A and B are A(A) = A(B) =[-1.2153, 2.6386, 3.6255, 5.9512], which
are all single and well isolated.

The absolute matrix of V and W are:

11-
0
0

0 1
1 0

And the solution from EDGM algorithm is:

P = Hungarian(\W\\V\ T ) =

0
0

0
0

0001
0010
0100
1000

1 0
0 1

0 0
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|LpGPr -//| =1.4142, the algorithm still fails to find the best permutation 
because the matrices \V\ and I W I both have two same rows.

3 A Formula for Graph Matching

In order to explain by theoretical reasons why the 3 constraints are necessary and 
extend Umeyama's algorithm for general treatments to cases where some of the 
constraints are not satisfied, we introduce here a new approximate formula to graph 
matching problems.

3.1 The Approximate Formula

Given a Hermitian matrix A with /l(A) = [^ = • • • = /^ < /^1+1 = • • • = /^1+n2 < • • • < /y 
as its eigenvalues. That is, matrix A has k distinct eigenvalues with repeating times
^ , . . . ,nk, respectively, where V" n : = n .Z— ̂ j=l J

Then, we can decompose matrix A=VDA V* where V=[Vj,...,Vk], and Vj is the 
eigen- space of the j-th distinct eigenvalue of matrix A..

A simple but important property for the eigen-decomposition is that 
A=(yX)DA(VX) is also an spectral decomposition of matrix A, for every unitary 
matrix X&U(n]...,nk), where U(ni,...,n$ denotes the set of all block matrices whose 
j-th diagonal matrix a Wy-by-w/ unitary matrix.

Let B=WDB W*, it is easy to see that:

PAP T -B\\F <\\PV-WX\\p (\DA \ F +\\DB l) + \\DA -DB\\F

So it is reasonable to use the following approximate formula to solve graph 
matching problems:

min \\PV-WXL t3 * 1)
PePerm(n) " " F

3.2 An Error Estimation Theorem for the Approximate Formula

If Hermitian matrix B=WDB W* is gained from A by adding some small perturbation, 
that is B = PQ^PQ + E and |£| < £ , then from the matrix perturbation theory
[10,12], it is easy to get: 

(13.1) \\DA-DB\\F <e 
(T3.2) There exists a unitary matrix X0 & U(n,...,nk) such that
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\\P0 V-WX0 \\ F <J2J

where 8 is a real number only depending on the eigenvalues of matrices A and B.
N.B. We omit the proof of here which can be deduced from Hoffman-Wielandt 

theorem [12] and Davis-Kahan sin 0 theorem [4].
Theorem (T3.3): Given two nearly isomorphic graphs G and H, if (P,X)is the 
argument that minimize the value of (3.1), then

PGPT -H <

We omit the proof here, which follows from (T3.1) and (T3.2).
From (T3.3), we can see that if the distance between graph G and H is small 

enough, then the solution from formula (3.1) will be satisfactory. In other word, 
Theorem (T3.3) guarantees that the accuracy of the approximate formula proposed 
here.

3.3 Deducing Umeyama's Formula

In fact, formula (3.1) is an optimization on the space of permutation matrices and 
unitary matrices, which is a mixed 0-1 non-linear programming. Thus, even all the 
eigenvalues of matrix A and B are single, it is still not easy to reach the optimization 
for all graph matching problems. For the case where all the eigenvalues of matrix 
A and B are single, formula (3.1) can be specified as:

min HPFv. ... v 1 — fu>. r • •• w r ill (3*2)
PePerm(n)

where t/(l) is the set of all unit complex numbers.
To reach (3.2), we can minimize the distance of the absolute values as an 

approximation:

mn

In formula (3.3), all the numbers Xj an be eliminated. In this way, we get 
Umeyama's formula (2.2).

The above induction shows the relationship between Umeyama's method and the 
approximate formula proposed here, and therefore provides a theoretical support to 
the claims made in section 2. In fact, on one hand, formula (3.1) provide a 
approximate solution to nearly-isomorphic graph matching with a guaranteed 
accuracy as specified by (T3.3); on the other hand, with the additional "isolating 
eigenvalues" constraint, formula (3.1) turns out to be formula (3.2), which, with 
another additional constraint, i.e., "Dissimilar rows", leads to formula (3.3) that is 
equivalent to Umeyama's formula (2.2).

195



APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR 
WEIGHTED GRAPH MATCHING

4 Improved Algorithm

In this section, we shall introduce a new graph matching algorithm which can be used 
for more general cases where the graph pairs just need to be nearly isomorphic.

4.1 Meta-basis for Euclid Space

In formula (3.1), the optimization on both permutation matrices and unitary matrices 
makes the problem hard to solve. However, if the unitary matrix X can be determined 
somehow beforehand, the problem will become much easier.

The requirement of the unitary matrix X for formula (3.1) is due to fact that there 
are infinite orthonormal basis for a given Euclid space, rather than a unique one. We 
shall use a n-by-m matrix V to denote the orthonormal basis of m-dimensional Euclid 
space in n-dimensional complex space C", where each column of V is a vector of the 
basis. Obviously, each matrix VX, X& U(m) is also an orthonormal basis of the Euclid 
space. If we can define a meta-basis which is unique for each Euclid space, then X 
will be eliminated from formula (3.1). In fact,

Let F: C°*n — * C be a function which maps an n-by-n matrix to a vector , provided:

for all p e Perm(n\ G e C"xn
We shall call such functions as edge-to-node attribute functions. A simple case of 

this kind of function is Fi(G)=[l,l,..,l] r which maps all n-by-n matrices to a constant 
vector.

Given a edge-to-node attribute function F, we define a new function

/ . (j c.xy _> Cn such that f(V} = WTF(W T }

where N denotes the set of natural numbers.
It is easy to see that/F)is a vector of Euclid space V and J(VX)=f(V), for all 

V e C"*J ,X e U(j) • Thus, for the given Euclid space V,j(V)isa vector in V which is 
independent on its orthonormal basis. Based on function/, we then define a unique 
meta-basis for any given Euclid space Fin terms of the recursive manner as described
in Table 1.

We call the matrix Y defined here a meta-basis of the given Euclid space V. It is 
important to note that, in some cases, Y may be a real orthonormal basis of the given 
Euclid space, while in other cases, Y is just a group of orthonormal vectors of the 
given Euclid space (not necessarily to be a basis - it even can be empty). Obviously, 
for each Euclid space V, the Meta-basis defined in this way is unique.
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Table 2. Algorithmic definition of the meta-basis.

Function F'=meta-basis(F)
[n, m]=size(K); //Visa, n-by-m matrix. 
v=VV Tf(W T ).

5

if norm(v)==0
K'=[]; // V is empty, fail to find, 
return; 

else ifm==l
V =v/norm(v); 
return; 

else
v=v/norm(v);
V = v © Z . //orthogonal 

decomposition.
V =[v, meta-basis(Z)];

4.2 Graph Matching Using Meta-basis

Formula 3.1 can be rewritten as

mm
n)

(4.2)

where Vj is the eigen-space of they-th eigenvalue of matrix A=Ht(G), and Wj is the 
corresponding block matrix formed in the same manner as that of Vj, rather than the 
eigen-space of they-th eigenvallue ofB=Ht(tf).

To eliminated Uj in formula (4.2), we use the meta-basis Vj of Vj and meta-base 
WjOf Wj , rather than Vj and Wj themselves. Inthis way, since the meta-base is not 
dependent on unitary transformation, therefore, formula (4.2) can be simplified as:

(4.3)mm
PePerm(n)i

N.B. In the case where the meta-basis of Vj and Wj have different numbers of 
columns, columns from the bigger one will be deleted to make them same.

Experiments have been conducted in applying formula (4.3) to "nearly 
isomorphic" graphs that do not satisfy constraint 2 and/or constraint 3, with respects 
to both the calculating accuracy and computational speed.

On one hand, as shown in Fig. 3 and Fig. 4, for nearly-isomorphic graphs, the new 
algorithm makes great improvements compared with Umeyama's original algorithm. 
It reaches matching results as good as that of LPGM. On the other hand, Fig. 5 shows 
that the computational speed of the new algorithm is very close to that of the EDGM 
algorithm, but much faster than that of LPGM.
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2.5

0.5

8 9 
size of graphs

10 11 12

Fig. 3. Improved algorithm for graphs with multiple eigenvalues

8 9 
size of graphs

10 11 12

Fig. 4. Improved algorithm for graph pairs with similar rows
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Fig. 5. Calculating time of Improved algorithm

5 Conclusion and Future Work

In this paper, we have specified the three conditions under which Umeyama's 
approach will work well for graph matching. The approximate formula proposed here 
can be seen as an extension to Umeyama's formula. Experimental results have shown 
that, on one hand, for general treatments, the new approach is more accurate that the 
EDGM method, and on the other hand, it is more efficient than LPGM. Also, it is 
believed that the new algorithm can be further improved by means of using better 
edge-to-node attribute functions, rather than the simplest one we have adopted in this 
paper. Due to the length limit of the paper, we leave this as for future work.
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