
A Complete Reified Temporal Logic and
Its Applications

Guoxing Zhao

A thesis submitted in partial fulfillment of the requirements of the University of

Greenwich for the degree of Doctor of Philosophy

June 2008

The University of Greenwich,

School of computing and Mathematical Science,

30 Park Row, Greenwich, SElO, 9LS

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisors, Dr. Jixin Ma and Dr. Miltos Petridis, for their

great interesting, enthusiasm and guidance in my research. They provided me with many

helpful comments and suggestions during my studies and on the writing of research

papers and this thesis.

I grateful acknowledge Prof. Fuxing Shen (Beijing Normal University), Prof. Rongfang

Bie (Beijing Normal University), Prof. Bin Luo (Anhui University) and Prof. Angsheng

Li (Institute of Software Chinese Academy of Sciences) for their help and suggestions

on my research.

I also would like to thanks my colleges in University of Greenwich and Beijing Normal

University for their helps in my research and daily life.

Finally, I want to thanks my parents for their encouragement and support during many

years of the study.

11

ABSTRACT

ABSTRACT
Temporal representation and reasoning plays a fundamental and increasingly

important role in some areas of Computer Science and Artificial Intelligence. A natural

approach to represent and reason about time-dependent knowledge is to associate them
with instantaneous time points and/or durative time intervals. In particular, there are
various ways to use logic formalisms for temporal knowledge representation and

reasoning. Based on the chosen logic frameworks, temporal theories can be classified

into modal logic approaches (including prepositional modal logic approaches and hybrid
logic approaches) and predicate logic approaches (including temporal argument methods
and temporal reification methods). Generally speaking, the predicate logic approaches
are more expressive than the modal logic approaches and among predicate logic
approaches, temporal reification methods are even more expressive for representing and
reasoning about general temporal knowledge. However, the current reified temporal
logics are so complicate that each of them either do not have a clear definition of its
syntax and semantics or do not have a sound and complete axiomatization.

In this thesis, a new complete reified temporal logic (CRTL) is introduced which has
a clear syntax, semantics, and a complete axiomatic system by inheriting from the initial
first order language. This is the main improvement made to the reification approaches
for temporal representation and reasoning. It is a true reified logic since some

meta-predicates are formally defined that allow one to predicate and quantify over
prepositional terms, and therefore provides the expressive power to represent and reason
about both temporal and non-temporal relationships between prepositional terms.

For a special case, the temporal model of the simplified CRTL system (SCRTL) is
defined as scenarios and graphically represented in terms of a directed, partially

weighted or attributed, simple graph. Therefore, the problem of matching temporal
scenarios is transformed into conventional graph matching.

For the scenario graph matching problem, the traditional eigen-decomposition graph

ABSTRACT

matching algorithm and the symmetric polynomial transform graph matching algorithm
are critically examined and improved as two new algorithms named meta-basis graph
matching algorithm and sort based graph matching algorithm respectively, where the
meta-basis graph matching algorithm works better for 0-1 matrices while the sort based
graph matching algorithm is more suitable for continuous real matrices.

Another important contribution is the node similarity graph matching framework
proposed in this thesis, based on which the node similarity graph matching algorithms
can be defined, analyzed and extended uniformly. We prove that that all these node
similarity graph matching algorithms fail to work for matching circles.

IV

CONTENTS

CONTENTS

v-/-H^\i J. EJ Jx. I J.1^1 I MS\Jlr U v> A J._J JA •• -1-

SECTION 1.1 MOTIVATION: MATCHING TEMPORAL KNOWLEDGE 1
Section 1.1.1 Point based Approaches.. 2

Section 1.1.2 Interval based Approach... 2

Section 1.1.3 Point and interval based Approach... 4

SECTION 1 .2 OBJECT: A FRAMEWORK TO REPRESENT AND MATCH TEMPORAL SCENARIOS
...
SECTION 1.3 OUTLINE OF THE MAIN CONTRIBUTIONS..5
SECTION 1.4 THESIS STRUCTURE... 6

CHAPTER 2 LITERATURE REVIEW.. 8

SECTION 2.1 REVIEW OF TEMPORAL LOGICS.....8
Section 2.1.1 Prepositional modal logic approaches ... 8

Section 2.1.2 Hybrid logic approaches... 12

Section 2.1.3 Temporal argument approaches.. 13

Section 2.1.4 Temporal reification approaches .. 15

SECTION 2.2 REVIEW OF GRAPH MATCHING ALGORITHM ... 19
Section 2.2.1 Explicit search methods .. 20

Section 2.2.2 Implicit search methods .. 21

Section 2.2.3 Node similarity based methods ... 22

CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC 24

SECTION 3.1 FIRST ORDER LOGIC24
Section 3.1.1 Syntax. ... 24

Section 3.1.2 Semantics .. 29

Section 3.1.3 Soundness and Completeness.. 30

Section 3.1.4 Many Sorted First Order Logic... 30

CONTENTS

SECTION 3.2 PREDICATE TEMPORAL LOGICS..-32
Section 3.2.1 BTK........ ... 35

Section 3.2.2 TR......... ... 35

Section 3.2.3 MK......38

SECTION 3.3 THE COMPLETE REIFIED TEMPORAL LOGIC SYSTEM CRTL...................... 41
Section 3.3.1 Syntax..... ... 41

Section 3.3.2 Examples of all kinds of functions and predicates 43

Section 3.3.3 Semantics .. 45

Section 3.3.4 CRTL with Durations.. 46

Section 3.3.5 Property... 47

Section 3.3.6 The Simplified CRTL System SCRTL .. 48

CHAPTER 4 SCENARIOS AND THEIR GRAPHICAL

REPRESENTATION... 50

SECTION 4.1 DEFINITION OF SCENARIOS ...50
Section 4.1.1 Time... 51

Section 4.1.2 State...52

Section 4.1.3 Scenario .. 52

Section 4.1.4 Graphical representation.. 53

Section 4.1.5 Matrix representation of scenario... 56

SECTION 4.2 SCENARIO WITH INCOMPLETE KNOWLEDGE ... 57
Section 4.2.1 Definition of partial scenario.. 57

Section 4.2.2 Graphical representation .. 58

Section 4.2.3 Matrix representation.. 59

SECTION 4.3 SCENARIO WITH GENERAL TEMPORAL RELATIONS59
SECTION 4.4 MATCHING TEMPORAL SCENARIOS ... 62

Section 4.4.1 Similarity based on embedded mapping... 62

Section 4.4.2 Similarity based on graph matching... 64

CHAPTER 5 GRAPH MATCHING ALGORITHMS FOR

MATCHING SCENARIOS.. 66

VI

CONTENTS

SECTION 5.1 GRAPH MATCHING PROBLEMS IN THIS THESIS...................................—... 66
Section 5. LI Definition of graph matching problems...... .. 66

Section 5.1.2 Random generation of matrices. ... 70

Section 5.1.3 Evaluation criterions... .. 71

Section 5.1.4 Comparison of several graph matching algorithms 72

SECTION 5.2 EIGEN-DECOMPOSITION GRAPH MATCHING ALGORITHM AND ITS
IMPROVEMENT ..78

Section 5.2.1 Eigen-decomposition graph matching algorithm 78

Section 5.2.2 Computational complexity .. 80

Section 5.2.3 Three limitations ... 81

Section 5.2.4 Improvement.. 85

Section 5.2.5 Comparison... 94

Section 5.2.6 Conclusion .. 97

SECTION 5.3 SYMMETRIC POLYNOMIAL TRANSFORM GRAPH MATCHING ALGORITHM
AND ITS IMPROVEMENT... 98

Section 5.3.1 Symmetric polynomial transform graph matching algorithm............. 98

Section 5.3.2 Computational complexity .. 100

Section 5.3.3 Analysis... 101

Section 5.3.4 Constraint.. 102

Section 5.3.5 Improvement.. 102

Section 5.3.6 Comparison... 103

Section 5.3.7 Conclusion .. 107

SECTION 5.4 NODE SIMILARITY GRAPH MATCHING ALGORITHMS 108
Section 5.4.1 Node similarity graph matching framework..................................... 108

Section 5.4.2 Examples of node similarity based graph matching algorithm........ 109

Section 5.4.3 Node attribute functions.. 112

Section 5.4.4 Comparisons ... 116

Section 5.4.5 Computational Complexity... 120

Section 5.4.6 Extensions... 121

Section 5.4.7Limitation.. 122

CHAPTER 6 APPLYING MATCHING ALGORITHMS FOR

Vll

CONTENTS

•• -I- ArU

SECTION 6.1 INTRODUCTION OF EXPERIMENTS ... 126
SECTION 6.2 EXPERIMENTS ... 127
SECTION 6.3 CONCLUSION.. ... 138

CHAPTER 7 CONCLUSIONS .. 139

CHAPTER 8 FUTURE WORK... 142

SECTION 8.1 REIFICATION OF GENERAL LOGIC SYSTEMS .. 142
SECTION 8 .2 GRAPHICAL REPRESENTATION OF TEMPORAL MODELS 1 43
SECTION 8.3 TESTING GRAPH MATCHING ALGORITHMS FOR CERTAIN PROBABILITY
DISTRIBUTIONS ... 143
SECTION 8.4 GENERAL EIGEN-DECOMPOSITION GRAPH MATCHING ALGORITHM........ 143
SECTION 8.5 EXTENDING NODE SIMILARITY BASED GRAPH MATCHING ALGORITHMS 144
SECTION 8.6 TESTING REAL LIFE EXAMPLES144

REFERENCES .. 146

APPEDNIX A A SOUND AND COMPLETE REIFIED TEMPORAL

L^/ \j-I- v> .. _I."¥\J

APPEDNIX B A NAVIGATION-BASED ALGORITHM FOR

MATCHING SCENARIO PATTERNS... 146

APPEDNIX C MATCHING CASE HISTORY PATTERNS IN

CASE-BASED REASONING... 146

APPEDNIX D MATCHING SCENARIOS PATTERNS BY USING

LINEAR PROGRAMMING .. 146

APPEDNIX E USING EIGEN-DECOMPOSITION METHOD FOR

WEIGHTED GRAPH MATCHING ... 146

Vlll

LIST OF FIGURES

LIST OF FIGURES

Figure 1.1 A case of drill-sticking [JAS2002] ... 3

Figure 1.2 Acase history.4
Figure 3.1 Structure of BTK .. 34

Figure 3.2 Sort hierarchy for TR [Reil989] .. 35

Figure 3.3 Structure of TR...37

Figure 3.4 Structure of MK... 39

Figure 3.5 Structure of CRTL43

Figure 3.6 Structure of CRTL with duration. ... 46

Figure 3.7 Structure of SCRTL... ... 49

Figure 4.1 Merging the begin-node of tj and the end-node of tj as a common node if

Figure 4.2 Scenario graph of Si ... 56

Figure 4.3 Scenario graph of 82 ... 59

Figure 4.4 Scenario graph of drill-sticking .. 62

Figure 5.1 LSKPGM, HAGM, SPGM and EDGM for matching dense isomorphic

graph pairs..73

Figure 5.2 LSKPGM, HAGM, SPGM and EDGM for matching sparse isomorphic

graph pairs.......74

Figure 5.3 LSKPGM, HAGM, SPGM and EDGM for matching dense graph pairs

with perturbation coefficient s=0.10...75

Figure 5.4 LSKPGM, HAGM, SPGM and EDGM for matching sparse graph pairs

with perturbation coefficient 8=0.10.. .. .76

Figure 5.5 CPU time consuming comparison of LSKPGM, HAGM, SPGM and

EDGM... 77

Figure 5.6 Mean error of EDGM algorithm relative to noise.................................. 82

Figure 5.7 Graph pairs with multiple eigenvalues. .. 83

Figure 5.8 Graphs with similar rows of absolute eigenvector 84

IX

LIST OF FIGURES

Figure 5.9 EDGM, MBGM for matching isomorphic sparse graph pairs............... 94

Figure 5.10 EDGM, MBGM for matching sparse graph pairs with perturbation

coefficient 8=0.10... 95

Figure 5.11 EDGM, MBGM for matching sparse graph pairs with perturbation

coefficient c=0.15 ...96

Figure 5.12 CPU time Consuming of EDGM and MBGM..................................... 97

Figure 5.13 Re-order of the nodes of a graph.. 101
Figure 5.14 STGM, SPGM for matching dense graph pairs with perturbation

coefficient s=0.10... 104

Figure 5.15 STGM, SPGM for matching dense graph pairs with perturbation

coefficient 8=0.20...105

Figure 5.16 STGM, SPGM for matching sparse graph pairs with perturbation

coefficient s=0.10... 106

Figure 5.17 CPU time Consuming of SPGM and STGM...................................... 107
Figure 5.18 Nine algorithms for matching isomorphic sparse graph pairs............ 117

Figure 5.19 Nine algorithms for matching dense graph pairs with perturbation

coefficient 8=0.10... 118

Figure 5.20 Nine algorithms for matching sparse graph pairs with perturbation

coefficient s=0.10... 119

Figure 5.21 CPU time Consuming of nine algorithms... 120

Figure 5.22 Two Circles... 124

Figure 5.23 Self-similar graph... 125

LIST OF TABLES

LIST OF TABLES

Table 4.1 HOLDS function of a scenario... 58

Table 5.1 Generating real matrices... 71

Table 5.2 Generating symmetric matrices.. 71

Table 5.3 Algorithmic definition 5.6 of the meta-basis.. 93

Table 5.4 Computational complexity of NSGM algorithms.................................. 121

XI

GLOSSARY

GLOSSARY

, l,m,n

tm

u

A,B

BTK

CS

CRTL

D

EXPTIME

EDGM

FS

Ht

a constant

a function

natural numbers

a temporal term

a term

a non-temporal term

variables

Hermitian matrices

the temporal argument method in [BTK1991]

a set of constants

the complete reified temporal logic

the domain of a model

the exponential time complex class

Umeyama's eigen-decomposition graph matching algorithm

a set of functions

graphs or real matrices

the minimal tense logic

XII

GLOSSARY

M(p,q)

M(p, :

MBGM

MK

NP-complete

NSGM

Perm(n)

PS

PSPACE-complete

SCRTL

SG(n)

SPGM

STGM

TM

TA

TR

X

a language

the (i, j)-th entry of matrix M

the matrix whose (i, j)-th entry is the (p(i), qG))-th entry of M

the matrix whose (i, j)-th entry is the (i, qG))-th entry of M

the matrix whose (i, j)-th entry is the (p(i), j)-th entry of M

the meta-basis graph matching algorithm

the reified temporal logic approach by Ma and Brian

the non-determined polynomial time complex class

the node similarity graph matching algorithms or framework

the set of all permutation matrices of n elements

a set of predicates

the polynomial space complex class

the simplified complete reified temporal logic

the set of all permutations of n elements

the symmetric polynomial graph matching algorithm

the sort based graph matching algorithm

the hybrid temporal logic approach by Reichgelt

the temporal argument method by Reichgelt

the reified temporal logic approach by Reichgelt

a unitary matrix

Xlll

GLOSSARY

, <E>, <A>, modal operators

<!>, <E>, <A> modal operators

<G>, <P>, <F>, <H> modal operators

a, p, y, 9, (|> formulae

e a real number

^,rj matrix eigenvalues

•||F Frobenius norm

This thesis will deal with two different research subjects: reified temporal logic and

graph matching, hi order to coincide with the notations in both fields, some symbols

have double meaning, such as the M stands for a model in temporal logic and a matrix in

graph matching. This can be easily distinguished because that the chapter 3 and chapter

4 discuss the reified temporal logic while the chapter 5 and chapter 6 handle the graph

matching problems.

Symbols Chapter 3-4 Chapter 5-6

p a predicate a permutation vector

I the interpretation of a model an identity matrix

M a model a matrix

P a set of predicates a permutation matrix

Pk a predicate a permutation matrix

S the set of sorts a similarity matrix

81,82 scenarios similarity matrices

XIV

GLOSSARY

T a set of temporal elements the transpose of a matrix

U a set of non-temporal elements a unitary matrix

V a set of variables a unitary matrix

XV

CHAPTER 1 INTRODUCTION

Chapter 1 Introduction

The term temporal logic is used to describe any system of rules and symbolism for

representing, and reasoning about, propositions qualified in terms of time.

The logical study of time dates back to the days of Aristotle, while modern research

on time started since 1960 when Arthur Prior firstly interprets modality as tense [Pril967,

Pril969]. After that, the temporal logic is extended in many different ways. These

extensions can be roughly classified into two groups: extending fundamental logics and

extending time primitives. The fundamental logic evolves from prime modal logics to

hybrid logics [BT1999, Alt2006], first order logics [TM1989, STL1987, BTK1991] and

temporal reifications [Allenl983, TM1989, MK1996]; while the time primitives advance

from points [GHR1994] to intervals [A111983, A111984], and finally both points and

intervals are taken as time primitives [KM 1992].

In applications, the temporal logic is widely used in computer science including:

program specification [EGR1994], databases [SJ1999, DDL2002], real time systems

[Ostl989, LT2002], distributed systems [CDF1995, DLH1998]; artificial intelligence

including natural language processing [Dowl979, Tayl985, Ricl989], planning

[CM1998, May2006], case based reasoning [Jacl997, Han2000, JAS2002].

The matching of temporal knowledge is what we shall study in detail in this thesis.

Section 1.1 Motivation: Matching Temporal Knowledge

Object similarity plays an important role in case-based reasoning [Koll996,

Leal996, and Watl997], pattern recognition [Gib2004, TK2006], web search engine

[Lev2006], and cluster analysis [Roml989]. Similar objects are usually supposed to

CHAPTER 1 INTRODUCTION

have similar properties and solutions. In order to use case based reasoning techniques on

temporal knowledge or recognize temporal patterns, one has to explore some kinds of

similarity among these temporal knowledge or temporal structures. There are already

some approaches for matching temporal knowledge and patterns which are classified

here as point based approaches, interval based approaches and point and interval based

approaches.

Section 1.1.1 Point based Approaches

Examples of these are that of Nakhaeizadeh [Nakl994], of Branting and Hasting

[BH1994], of Jaczynski [Jacl997], and of Hansen [Han2000].

Problems

The underlying time models employed in the above systems are point-based, and

therefore, it is required that absolute time points or intervals delimited by a pair of points,

must be associated with the time-dependent statement being addressed. However, there

are many applications in which there may be just some relative temporal knowledge

about the time-depended statements to hand, where their precise time characters such as

the exact starting and finishing time are not available (e.g., "John ran 3 miles yesterday

morning", "John arrived at the office before Mary went to home", etc.).

Section 1.1.2 Interval based Approach

Jaere, Aamodt and Skalle [JAS2002] propose a method for representation and

reasoning with temporal case within case based reasoning framework for unwanted

events predictions. Based on Alien's theory [A111983, A111984], time is represented as

intervals and time-relations between intervals; and every temporal case is represented by

a labeled graph as:

CHAPTER 1 INTRODUCTION

Ixl erratic flow out

erratic torque

input case

hook load increasing

finding

increasing drag

erratic drag

erratic increasing torque

increasing torque

increasing pressure

Figure 1.1 A case of drill-sticking [JAS2002]

Figure 1.1 shows a simple case after the raw data has been transformed into

qualitative findings. There are seven intervals (named Ixl, 1x2, ..., 1x7) with

corresponding time relationships and finding attributes to indicate the symptoms during

that time. For example, "hook load increasing meets erratic flow out" is described by

"Ixl has finding hook load increasing", "1x2 has finding erratic flow out" and "Ixl

meets 1x2".

In addition to the similarity degree for the non-temporal part, an extra temporal

similarity measurement named the temporal path strength is introduced [JAS2002]. To

enable intervals to be related to each other so that a similarity assessment of parameters

can be made in order to predict particular states, a dynamic ordering algorithm is

developed for matching temporal paths. Such an algorithm requires the corresponding

CHAPTER 1 INTRODUCTION

temporal knowledge to be complete for both the input case and the current case.

Problems

The fundamental logic of this approach is based on Alien's interval theory, which

itself has been argued lacking clarity of its semantics and completeness [GAL 1990].

The matching algorithm proposed in [JAS2002] lacks a theoretical foundation of its

effectiveness or generality. So using this framework for other problems, one may need to

develop another matching algorithm for the new fields.

Section 1.1.3 Point and interval based Approach

In [MK2003], a framework for Historical Case-Based Reasoning which allows the

expression of both relative and absolute temporal knowledge, representing case histories

in the real world is presented.

The concepts of fluents, elemental cases, and case histories are formally defined. A

graphical representation of case histories is also provided, where every case history can

be described as a simple attributed graph as figure 1.2 [MK2003].

Figure 1.2 A case history.

The formalism is founded on a general temporal theory that accommodates both

points and intervals as primitive time elements. A case history is formally defined as a

collection of (time-independent) elemental cases, together with its corresponding

temporal reference. Case history matching is two-fold, i.e., there are two similarity

values that need to be computed: the non-temporal similarity degree and the temporal

similarity degree. On the one hand, based on elemental case matching, the non-temporal

CHAPTER 1 INTRODUCTION

similarity degree between case histories is defined by means of computing the unions

and intersections of the involved elemental cases. On the other hand, by means of the

graphical presentation of temporal references, the temporal similarity degree in case

history matching is transformed into conventional graph similarity measurement.

Problems

Although this is a general and efficient representation of temporal cases, there are

still two problems left.

Firstly, the fundamental temporal theory this representation based on is the temporal

theory of Ma and Knight in [MK1994, MK1996], which has not been proved to be

complete.

Secondly, an efficient graph matching algorithm has to be provided to make this

representation applicable to real problem.

These two problems are what we try to solve in this thesis.

Section 1.2 Object: A Framework to Represent and Match Temporal

Scenarios

This thesis tries to accomplish the following two tightly associated goals:

• A sound and complete reified temporal logic system for describing time

structure, representing temporal information and reasoning about temporal

knowledge.

• A graphical representation of temporal information and an efficient matching

algorithm for reasoning of temporal knowledge.

Section 1.3 Outline of the Main Contributions

Aimed at the two goals listed above, the following works have been done:

CHAPTER 1 INTRODUCTION

• Based on the review and comparison of the existing important temporal logic

systems, a complete reified temporal logic system is proposed, which has a

clear syntax, semantics, sound and complete axiomatic deduction system and

enough expressive power to talk about the generalities of the temporal aspect of

assertions.

• Umeyama's eigen-decomposition graph matching (EDGM) algorithm

[Umel988] is critically examined and three important constraints are pointed

out for matching general graphs by the EDGM algorithm. In order to match

arbitrary graphs, a new approximate formula is presented together with

theoretical proof of its accuracy. Based on this approximate formula, a

unitary-invariant meta-basis graph matching (MBGM) algorithm is proposed as

an improvement of the traditional eigen-decomposition method.

• Almohamod's symmetric polynomial transformation graph matching (SPGM)

algorithm is critically examined and greatly improved by a new matching

algorithm based on vector sort, named as STGM algorithm.

• A node similarity graph matching framework is presented to generally discuss

all the node similarity graph matching (NSGM) algorithms. An interesting

result shows that all the node similarity based graph matching algorithms fail to

work for circles.

• These node similarity graph matching algorithms are applied to match general

scenario graphs. The testing result shows that the meta-basis graph matching

algorithm is more suitable for scenario graphs.

Section 1.4 Thesis Structure

The rest of this thesis is organized as follow:

In chapter 2, a detailed review will be provided to introduce some current temporal

logic systems. They are rationally classified according to fundamental primitive logic

and time primitives, and critically examined by theoretical and practical criterions

including clarity of definition, soundness and completeness, expressiveness, etc.

CHAPTER 1 INTRODUCTION

In chapter 3, a complete reified temporal logic system CRTL is proposed. This work
is done by applying the idea of Reichgelt's reified temporal logic [Reil989] to
reconstruct the reified logic system of Ma [MK1996] using the first order language. A
simplified sub system SCRTL is also introduced in this chapter.

In chapter 4, temporal scenarios are introduced together with graphical
representations and matrix representations. Some examples are illustrated to show how
temporal knowledge is expressed by this framework. Based on this graphical
representation, the pattern matching problem of the temporal scenario is transferred into
graph matching problem.

In chapter 5, the eigen-decomposition graph matching algorithm and the symmetric
polynomial graph matching algorithm are critically examined. The unitary-invariant
meta-basis method and sort based method are proposed as improvements to the
eigen-decomposition approach and symmetric polynomial transformation approach
respectively.

In chapter 6, these node similarity graph matching algorithms are applied to scenario
graphs.

Finally, a summary of conclusion and recommendations for future work are
presented in chapter 7 and chapter 8.

There are also five appendices for this thesis. These are five of my published papers
tightly associated with this research and titled as "A sound and complete reified
temporal logic" [ZMS2008], "A Navigation-based Algorithm for Matching Scenario
Patterns" [MZH2007], "Matching Case History Patterns in Case-Based Reasoning"
[ZLM2006], "Matching Scenarios Patterns by Using Linear Programming" [ZLM2007]
and "Using Eigen-decomposition Method for Weighted Graph Matching" [ZLT2007]
respectively.

CHAPTER 2 LITERATURE REVIEW

Chapter 2 Literature Review

Since the research associates with two subjects: completeness of temporal logic and

graph matching algorithms, this section contains literature reviews in these two fields.

Section 2.1 Review of Temporal Logics

The term temporal logic has been broadly used to cover all approaches to the

description of time structure and representation of temporal information within a logical

framework. Based on the selections of time primitives, temporal logics can be classified

into: point based, interval based, point and interval based; while according to the

fundamental logic, temporal logics are grouped as: modal logic approaches and predicate

logic approaches.

In this thesis, the main temporal logic systems are classified according to the above

classifications; and this research pays more attentions to the three criterions: clarity of

definition, "soundness and completeness", expressiveness.

Section 2.1.1 Prepositional modal logic approaches

Prepositional modal logics follow the traditional modal logic way to define

temporal connectives by modal operators.

Point based

These approaches semantically re-interpret the classical possible-worlds by making

each possible world represent a different time. It accommodates the concepts of time by

means of extending the propositional modal temporal operators such as <F>cp, <P>q>,

<H>cp and <G>cp, representing that formula cp "will be true", "was true", "will always be

CHAPTER 2 LITERATURE REVIEW

true" and "was always true", respectively.

A simple system Ht, named as Minimal Tense Logic, was firstly studied by Lemmon

and Scott in the 1960s with unpublished work (see in [GHR1994]) and this system was

first published by Prior in [Pril957, Pril967, Pril969].

The syntax and semantics of Ht are defined as the same way of classical modal

logics. Four axioms and two inference rules are chosen as its deduction system, which

are:

1 Axioms:

1.1

1.2

1.3

1.4

2 Inference rules:

2.1 Generalization: (p |-<G>cp, and (p |-<H>cp

2.2 Modus Ponens: {(p, (p—»(|>} l-(|)

The Ht system was proved to be sound, complete and computable [GHR1994]. The

satisfiability problem for the flow of integer-like time in this logic system has been

proved to be NP-complete by Sistla and Clarke [SCI985].

Lots of time properties can be expressed in the Ht system, such as transitivity,

linearity, density, finiteness. However, it has been proved that simple irreflexivity cannot

be defined by the Ht system [GHR1994].

Soon after its introduction, the basic "<P><F><G><H>" syntax of Ht was extended

in various ways, and such extensions have continued to this day. Some important

CHAPTER 2 LITERATURE REVIEW

examples are the next operator and US logic system which will be introduced below.

The US logic system is proposed by Kamp [Kami968], which enriched tense logic

by the addition of two new binary connectives, the "since" operator <S> and the "until"

operator <U>, where <S>pq denotes "q has been true since a time over which p was

true" and <U>pq stands for "q will be true until a time over which p is true". The syntax

and semantics are defined as the normal modal logic.

Some time afterward, Kamp announced axiomatizability results for the US-tense

logics of various classes of linear orders. His completeness proof was (in his own words)

"by no means simple", and have never been published, though a manuscript treating

certain classes of linear orders is in existence. This work has been revised by Burgess as

an axiomatization for the classes of arbitrary linear orders and of dense and discrete

orders, with and without first and last elements. He also proved the soundness and

completeness of such US-tense logic system using maximal consistent sets [Bur 1982].

The satisfiability problem of US temporal logic system for integer-like time flow is

proved to be PSPACE-complete [SCI985].

The US tense logic is more expressively powerful than the Ht system. The US logic

system has been proved to be expressively complete over integer time and Dedekind

complete time [GHR1994], which means that all monadic formulae can be equivalent

expressed in US logic system. However, US system is not expressively complete for the

rational number time Q. This negative result prompted Jonathan Stavi to develop a fixed

point extension of US logic which is expressively complete over the rational numbers Q

[Stal979].

Interval based

A propositional modal logic of time intervals HS was proposed by Halpern and

Shoham [HS1986].

In HS system, six modal operators were defined: , <E>, <A>, , <E> and

10

CHAPTER 2 LITERATURE REVIEW

< A >, which have the following intended readings:

(p 9 holds at a strict beginning interval of the current one.

<E>cp 9 holds at a strict end interval of the current one.

<A>cp 9 holds at an interval met by the current one

9 9 holds at an interval which has the current one as a beginning interval

<E>9 9 holds at an interval which has the current one as an ending interval

< A >9 9 holds at an interval meeting the current one

The formulae of HS are defined as the same way of classical modal logic.

However, the semantics of HS can not follow the traditional modal logic; in fact, it

has been carefully redefined based on interval set. Given a partial order (or temporal

frame) (T, <), the interval set of such frame is defined as the set INT of all closed

intervals [ti, t2]={teT: ti<t<t2 }.

The axioms and inference rules of HS system were not provided by Halpern and

Shoham in [HS1986], which have been supplemented by Venema in [Venl990]. Venema

represented the interval set on a two-dimensional plane, proposed adequate axioms and

inference rules to make the HS system sound and complete over linear temporal flows.

For its computability, HS has been proved to be non-computable. In fact, Halpern

and Shoham [HS1986] have proved that the satisfiability problems of HS formula over

the natural number, rational number and general linear flow are nj -complete,

r.e.-complete and co-r.e.-complete respectively.

Since every time point p was taken as an interval [p, p] in HS system, point-based

modal temporal logics can be directly embedded in the HS system. Alien's 13 temporal

relations are also definable by the HS formulae [HS1986]. On the other hand, Venema

11

CHAPTER 2 LITERATURE REVIEW

has proved [Yen 1990] that there is no finite functionally complete set of interval tense
operators over the dense linear order, which indicates that HS system is not as powerful
as first order logic approaches.

Section 2.1.2 Hybrid logic approaches

The term hybrid logic refers to a number of extensions to propositional modal logic
with more expressive power, though still less than first-order logic. Unlike ordinary
modal logic, hybrid logic makes it possible to refer to states (possible worlds) in
formulae. This is achieved by a class of formulae called nominals, which are true in
exactly one state.

Point based

Blackburn and Tzakova introduced a general hybrid temporal logic BT [BT1999],
where three new modal operators are defined: current state binder ^, accessible state
binder -U and nominal operator @. A point based temporal logic is introduced based on
these modal operators.

For each modal operator, the syntax and semantics were formally defined; axioms
and inference rules for the operator were also provided. Blackburn and Tzakova also
proved the soundness and completeness of the BT system.

Areces, Blackburn and Marx [ABM2000] have proved that the satisfiability problem
of hybrid temporal logic BT is in NP over strict total orders and in EXPTEVIE over all
frames.

It also has been claimed [BT1999] that the hybrid logic system BT is more
expressive than the modal temporal logic approaches, where the since and until modal
operators can be directly defined on the state binders and nominal operator. The time
irreflexivity can be easily formulated by >LxH-nX, which is not definable in modal logic
approaches.

Reichgelt [Reil989] presented a modal temporal logic TM, which is actually a

12

CHAPTER 2 LITERATURE REVIEW

hybrid temporal logic of time points. In TM system, although syntax and semantics are

well-defined, it does not have its own axioms and inference rules, so it lacks sound and

complete deduction system. TM is essentially a subsystem of BT.

Interval based

Altaf [Alt2006] proposed minimal hybrid logic for intervals, named IHL. IHL has 4

modal operators <D>, <U>, <F>, <P> and nominals, which have the following intended

readings:

<D>(p (p holds at an interval during the current one

<U>(p (p holds at an interval which contains the current interval

<F>(p q> holds at an interval after the current one

<P>(p (p holds at an interval before the current one

In Altaf's work [Alt2006], the syntax and semantics of IHL system are formally

defined. A tableau system is proposed as the auto theorem proof system for IHL. The

soundness and completeness are also theoretically proved. For its computability, the

satisfiability problem of IHL formula has been shown to be EXPTEVIE-complete for

minimal interval structures.

Although the hybrid logic approaches are more powerful than propositional modal

logic approaches, Areces, Blackburn and Marx [ABM2000] have proved that hybrid

logic is the bounded fragment of first order logic, so all the formulae in hybrid logics can

be equivalent expressed in first order logic approaches.

Section 2.1.3 Temporal argument approaches

Compared with modal logic approaches using modal operators to express temporal

knowledge, predicate temporal logic approaches are normally many-sorted languages

including a sort of temporal elements and a sort of non-temporal elements. There are

13

CHAPTER 2 LITERATURE REVIEW

usually three kinds of functions and predicates: (i) temporal predicates that take only

temporal terms as arguments to describe temporal relationships; (ii) non-temporal

predicates that take only non-temporal terms as arguments to describe non-temporal

relationships; (iii) mixed predicates that take both temporal and non-temporal terms as

arguments to describe global relationships between temporal and non-temporal terms.

For the temporal argument methods, the temporal dimension is captured by

augmenting each time-variable proposition or predicate with an extra argument-place, to

be filled by an expression designating a time.

Point-based

Reichgelt [Reil989] introduced a temporal argument method TA within the many

sorted first order logic framework. In the TA system, time structure is simply described

by an explicit ordering relation <. And the mixed predicate is just expressed by an

additional temporal argument, for example the two-place predicate love(x, y) is

redefined as love(x, y, t).

Since TA is proposed within the first order logic framework, its syntax, semantics,

axioms and inference rules are automatically inherited from the standard first order logic.

Its soundness and completeness also holds without any additional proof.

Interval based

In [BTK1991] Bacchus, Tenenberg and Koomen introduced another temporal

argument method BTK within the many sorted first order logic framework. BTK has two

sorts 'u' and 't' stand for non-temporal and temporal elements. Functions are classified

as temporal functions and non-temporal functions according to their range; while

predicates are classified as temporal, non-temporal and mixed due to the arguments they

takes.

The BTK system describes an interval just by two time points. For example Bob is

sleeping during 0:00 to 7:00 is formulated as Sleeping(Bob, 0:00, 7:00). This treatment

14

CHAPTER 2 LITERATURE REVIEW

is indeed point based, where interval is defined by open or close intervals with two

points as ends, which may lead to the so-called Dividing Instant Problem [All 1983,

Gal 1990, Vill994], that is the puzzle encountered when attempting to represent what

happens at the boundary instant (point) which divides two successive intervals.

In short, since temporal argument approaches try to devise temporal logics by means

of simply including time elements as additional arguments to functions and predicates in

first order language, the method of temporal argument directly employs the syntax,

semantics and the axiomatic system of the standard first order logic, and therefore, the

completeness and soundness of temporal argument theories remain as default. Compared

with modal temporal logics, on one hand, the method of temporal argument has more

expressive power in representing properties of the time itself. For instance, using the

method of temporal argument, the irreflexivity of time can be simply characterized by:

Vt~'(t<t). On the other hand, since the first order logic is not generally computable, it

obtains more expressive power and loses some efficiency in the meanwhile. In addition,

since time is represented just as an additional argument(s) to functions and/or predicates,

neither conceptual nor notational special status to time is accorded in temporal argument

approaches. Therefore, it is not expressive enough to talk about the generalities of the

temporal aspect of assertions. For example, Shoham [Shol987] claimed that using the

method of temporal argument, one cannot express common-sense knowledge such as

"effects cannot precede their causes".

Section 2.1.4 Temporal reification approaches

As an alternative approach, reified temporal logics reify standard propositions of

some initial language (e.g., the classical first-order logic or modal logic) as objects

denoting prepositional terms. Propositional terms are related to temporal objects or other

prepositional terms through an additional sort of "meta-predicates" [MK1996, Shol987],

such as HOLDS (or TRUE), OCCUR and CAUSE, etc.

15

CHAPTER 2 LITERATURE REVIEW

Point based

McDermott's logic [McD1982] is probably one of the earliest and most influential

formalisms in AI that possess the characteristics of temporal reification. In this system,

an infinite collection of states (or points) is introduced as the set of primitive temporal

elements, where, for general treatment, states are partially ordered by the "no later than"

relation <. hi order to model continuous change, it is assumed that between any two

distinct states, there is a continuum of states, so this time structure is actually linear

dense order and isomorphic to the real line.

McDermott's dichotomy, i.e., facts and events, are the two basic entities that are

associated with time. A fact is something that may be true in some states and false in

others, so fact p is true at time s can be formulated as (T s />); on the other hand an event

is something happening, for example event e happens during si to s2 is denoted as

OCC(si, 52,

As pointed out by Shoham [Shol987], although McDermott gives the semantic of

what may be regarded as the propositional theory, some assertions in his logic lack a

clear meaning. Thus, it does not enjoy a sound and complete deduction system either.

In addition, as BTK does, McDermott's approach also defined interval by two

points, which has been pointed out may cause the Dividing Instant Problem.

Shoham [Shol987] proposed a reified temporal logic STL, which accommodates a

set of temporal constants and variables, as well as a set of non-temporal ones. A

syntactic separation is made between temporal and non-temporal terms.

There are two kinds of atomic formulae:

(1) Formulae of temporal relations tnii=tni2 or tmi<tm2 ;

(2) Formulae of propositions TRUE(tmi, tm2 , r), r is an n-ary non-temporal relation

symbol.

16

CHAPTER 2 LITERATURE REVIEW

However, as argued by Bacchus, Tenenberg, Koomen [BTK1991] and Vila

[V111994], although Shoham himself claims that his logic is a new reified temporal one,

it doesn't really deserve the qualification of reification. STL is essentially a temporal

argument method which has been embedded in BTK system [BTK1991].

Reichgelt [Reil989] proposed a reified temporal logic system TR which is actually

developed totally within the framework of first order logic, and therefore inherits the

syntax, semantics, axioms and inference rules of the first order theory. As a many sorted

first order logic, TR does have a clear syntax, semantics and sound and complete

axiomatization. But in fact, TR is so complicated that Reichelt hasn't provided adequate

axioms to make it a real complete system, since some functions or predicates in TR are

not axiomatic defined.

On the other hand, although TR is a truly reified temporal logic which has great

expressive power, it is difficult for temporal knowledge representation, because every

element has an expression form and a denotation form which have to be carefully

distinguished.

Interval based

Alien [All 1983, All 1984] develops his theory of time and action ITL based on

intervals as primitive rather than as derived structure from points. A set of 13 mutually

exclusive binary relations between two intervals are introduced, i.e., EQUALS,

BEFORE, AFTER, MEETS, MET_BY, OVERLAPS, OVERLAPPED_BY, STARTS,

STARTED_BY, DURING, CONTAINS, FINISHES and FINISHED_BY, which may

be formally defined in terms of the single primitive relation MEETS [AH 1989]. While

McDermott's basic entities associated with time is the dichotomy of facts and events,

Alien introduces three ontological categories, i.e., properties., events and processes, to

time intervals over which they hold or occur. Alien's properties are actually very similar

to McDermott's facts with the only difference Alien interprets his properties over

intervals, while McDermott interprets facts at points. Alien denotes the assertion that

property p holds over interval i by the formula HOLDS(p, i). The assertion that event e

17

CHAPTER 2 LITERATURE REVIEW

occurs over interval i is denoted by Alien with the formula OCCUR(e, i). The most

important divergence from McDermott's logic is that Alien takes time intervals as the

primitive temporal objects, rather than making them up out of points. An advantage of

such an approach is that it excludes the concept of ending-points of intervals, and hence

overcomes the Dividing Instant Problem.

However, on one hand, as shown by Galton [Gal 1990] in his critical examination of

Alien's interval logic, if all intervals are characterized as infinitely decomposable, where

time points are entirely excluded, then reasoning correctly about continuous change is

inadequate.

Alien provided ITL neither a clearly defined semantics, nor a sound and complete

axiomatization. The most important efforts of ITL is taking time intervals as the

primitive temporal objects and fully discussing the relations of two intervals.

Point and interval based

Based on the classical first-order logic as the initial language, a truly reified

temporal logic (MK) is developed by Ma and Knight [MK1996]. Such a many sorted

system recasts various temporal ontology in a general framework. The syntax of RTL

consists of: Terms in the reified language are also partitioned into three different types:

temporal terms, non-temporal terms and propositional terms. Both temporal and

non-temporal terms are defined in the standard first-order way, while propositional terms

are defined in the form of standard formulae of the classical first-order language with

each predicate being a non-temporal predicate taking only non-temporal terms as

arguments. Predicates are distinguished as temporal predicates, non-temporal predicates

and meta-predicates.

The MK system is truly a reified temporal logic which has general expressive power

for temporal knowledge expression and deduction and allows one to reason about the

truth of assertions over time while preserving the first-order structure of the propositions.

Most of the significant ideas presented by [McD1982, A111984, Shol987, Lifl987, and

Gall990], etc., are echoed within the framework.

18

CHAPTER 2 LITERATURE REVIEW

However, the MK system doesn't enjoy a sound and complete axiomatic deduction

system.

In a word, although most modal logic approaches, hybrid logic approaches, and

temporal argument methods do have formal definition and complete axiomatization,

their expressive power are limited; on the other hand, temporal reification methods are

powerful enough to talk about general temporal assertions, they are not clearly defined

or axiomatized.

Section 2.2 Review of Graph Matching Algorithm

Graphs are a powerful and versatile tool used for the description of structural objects

which has been widely used in mathematics, computer science, artificial intelligence,

biology, geography, or even politics, for representing structural objects and concepts. In

general, in terms of their graph representation, parts of object can be represented by the

vertices whilst the relationships between parts can be represented by the edges.

Therefore, the task of calculating the similarity degree between two objects can be

simply transferred into the problem of matching the corresponding pair of graphs.

There are a large number of applications of graph matching which have covered

many different areas of human social and scientific life including image recognition

[IZ1986, WFK1997, LRS1991, CR1992], robot vision [Wonl992], chemical structure

analysis [RB1979, TA1997], case based reasoning [Poo 1993], machine learning

[MB1996], videos indexing [SBV2001].

Various algorithms for graph matching problems have been developed, which,

according to Gold and Rangarajan [GR1996], can be classified into two categories: (1)

search-based methods which rely on possible and impossible pairings between vertices;

and (2) optimization-based methods which formulate the graph matching problem as an

optimization problem.

In this thesis, we classify the graph matching algorithms a bit different from above

categories where traditional graph matching algorithms are classified into three groups:

19

CHAPTER 2 LITERATURE REVIEW

explicit search methods, implicit search methods and node similarity based methods.

Section 2.2.1 Explicit search methods

Generally speaking, explicit search methods directly search the optimal match

among permutation space (or permutation matrices space). Since the size of the search

spaces increase exponentially according to the graph size, different kinds of heuristic

techniques are developed to reduce the search space to a smaller acceptable size.

A widely known matching algorithm by Ullmann [U111976], based on a

backtracking procedure with an effective look-ahead function to reduce the search space,

is devised for both graph isomorphism and sub-graph isomorphism and is still today one

of the most commonly used for exact graph matching because of its generality and

effectiveness. As a consequence, many maximum sub-graph based or edit distance based

explicit-search graph matching methods exist.

An backtrack search algorithm is presented by McGregor [McG1982] for the

problem of finding the maximal common sub-graph of two graphs is described and used

for analyzing chemical reactions and enumerating the bond changes which have taken

place. In this note the problem is considered of finding the maximal common

sub-graph of two given graphs.

Shapiro and Haralick [SH1981] associated the graph matching problem with a

brute-force backtracking tree search and proposed corresponding algorithms to make the

tree search faster. The similar methods can be found in [TF1983, CYS1996, and

ACT 1997].

Bunke and Shearer proposed a new distance measure based on the largest common

sub-graph of two graphs in [BS1998] and corresponding search algorithm is

characterized in [BFG2002]

Another important algorithm is introduced by Messmer and Bunke [MB 1998] for

error-tolerant sub-graph isomorphism determination. This approach requires exponential

offline computational time and only polynomial online computational time. It also

20

CHAPTER 2 LITERATURE REVIEW

inspired the matching algorithms of [SBV2001].

In conclusion, most of these explicit search methods find the optimal solutions, but

require exponential calculating time in the worst case. Although different kinds of

heuristic techniques are applied, it is difficult to make the algorithm efficient all the

time.

Section 2.2.2 Implicit search methods

Implicit-search methods do not search for the optimal match in permutation space;

instead, the permutation space is transferred into some other continuous real number

space or mixed 0-1 and real number space and meanwhile the graph matching problems

is also represented as an optimization among the continuous or mixed space.

A linear programming approach is proposed by Almohamad and Duffuaa [AD 1993]

for the weighted graph matching problem, where the graph matching problem is

formulated in LI norm as a linear programming problem with computational complexity

O(n6L). Recently, Justice and Hero [JH2006] developed a binary linear program for

computing graph edit distance (the minimum operation making two graph isomorphic),

together with polynomial time methods for determining upper and lower bounds on the

solution of the binary program are derived by applying solution methods for standard

linear programming and the assignment problem.

A quadratic programming approach is proposed by Neuhaus and Bunke [NB2007]

to computing the edit distance of graphs. Whereas the standard edit distance is defined

with respect to a minimum-cost edit path between graphs, the notion of fuzzy edit paths

between graphs is presented together with a quadratic programming formulation for the

minimization of fuzzy edit costs.

Torsello and Hancock [TH2001, TH2003] transform the tree edit distance problem

into a series of maximum weight clique problems and use relaxation labeling to find an

approximate solution.

Many neural networks based approaches have been developed using Hopfield

21

CHAPTER 2 LITERATURE REVIEW

networks [MGA1989, FLD1994, CL1994, PG1995, and SY1998] or self-organizing

map [XO1990, Shal995, GB2002].

Some genetic algorithm based methods may be found in [CWH1997, LH1998,

BMJ1999, MH2000, and MH2001, WI2006, Auw2007].

The computational complexity of these approaches is tightly dependent on the

optimization problem the graph matching problem is reformulated. However, all these

optimizations can either be solve in polynomial computational time to reach a local

optimal solution or need exponential time to get a global optimal solution. Besides, since

these approaches are tightly associated with the specific theories, they lead to another

kind of complexity namely programming complexity, which means that although these

programs cost only polynomial computational time, they cost lots of time to be designed

and implemented.

In addition, since graph matching problems are represented as some optimization

problems, it is usually difficult to analyze the reason of the failure cases, in other words,

it is not easy to improve it or get a theoretical conclusion of their applicable fields.

Section 2.2.3 Node similarity based methods

The node similarity based methods do not use any search, instead, they simply

explore some kind of node similarity between nodes of graph pairs, and get the optimal

solutions by matching those similar nodes.

In [Umel988], Umeyama proposed an eigen-decomposition based graph matching

algorithm (EDGM) for matching both undirected and directed weighted graphs. The

node similarity of two graphs is constructed based on the eigenvector of the adjacency

matrices and the optimal solution is gained by applying the Hungarian algorithm

[Kuhl955, mun!957, AMO1993] on the node similarity matrix.

In [Aim 1991], Almohamod presented a symmetric polynomial transform based

graph matching algorithm (SPGM), where the node similarity of two graphs is

constructed by the coefficient of the polynomial transform of the weights of the edges.

22

CHAPTER 2 LITERATURE REVIEW

In [Kiel999], Kleinberg proposed a hubs and authorities graph matching algorithm

(HAGM) for internet searching, where the node similarity is based on the idea that two

nodes are similarity if their adjacent nodes are similar. An iterative algorithm is provided

to calculate such node similarity. This algorithm has been revised in [Zag2003,

ZV2007].

In [Wyk2002], Wyk presented several Kronecker product successive projection

based graph matching algorithms. The graph matching problem is transferred into the

Kronecker Product Graph Matching formulation, based on which several approaches are

derived, such as the least squares Kronecker product graph matching (LSKPGM)

algorithm, the interpolator-based Kronecker product graph matching (IBKPGM)

algorithm, the gradient-based Kronecker product graph matching (GBKPGM) algorithm

and the orthonormal kernel Kronecker product graph matching (OKKPGM) algorithm.

Although these methods are derived from different theories, they are using the same

idea to matching graphs by the nodes similarity. These methods are mostly only

applicable for certain kinds of graphs, but they can be easily implemented, analyzed and

improved. In addition, most of the node similarity based graph matching algorithms have

low computational complexities and are consequently applicable to large size graphs.

23

CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

Chapter 3 A Complete Reified Temporal

Logic

In this chapter, a reified temporal logic with clear syntax and semantics in terms of a

sound and complete axiomatic formalism will be proposed which retains all the

expressive power of the current temporal reification formulations.

Section 3.1 simply reviews the standard first order logic and many sorted first order

logic. Section 3.2 introduces three well-known temporal logic systems, BTK, TR and

MK. The complete reified temporal logic CRTL is proposed in section 3.3. And a

simplification of CRTL, named SCRTL, is presented in section 3.3.6, which is more

applicable for real problems.

Section 3.1 First Order Logic

First-order logic is a formal deductive system used in mathematics, philosophy,

linguistics, and computer science which employs a wholly unambiguous formal

language interpreted by mathematical structures [Lul989]. First order logic is a system

of deduction extending propositional logic by allowing quantification over individuals of

a given domain of discourse.

We follow the definition in [MT1993].

Section 3.1.1 Syntax

Firstly, we have to introduce the first order language.

24

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC______

Definition 3.1: The alphabet of a first order logic language consists of the following sets

of symbols:

1) Logical symbols: logical implication—», logical not -i, quantifier for all V.

2) Equality symbol: =

3) Variables: V={XQ, xi, X2, ...}

4) Auxiliary symbols: "(" and ")".

NOTE1: Here only three logical symbols are selected and others are defined in

terms of these three.

NOTE2: we use = as the equality symbol of the first order language to distinguish

with the equality symbol = of meta-language, the language we used to talk about first

order language.

Definition 3.2: The signature of a first order logic language is a triple L=<FS, PS>,

where

• FS is a countable set (possibly empty), whose elements are function symbols

with a non-negative integer rank(f) for each function symbol f.

• PS is a countable set whose elements are predicate symbols with a non-negative

integer rank(p) for each predicate symbol p.

It is assumed that the sets FS and PS are disjoint. Functions of rank 0 are called

constants and the set of constants is denoted as CS.

Definition 3.3: The terms of a first order logic language L (referred as TERML) are

inductively defined as:

1) Every constant and every variable is a term.

2) If tnii, tm2, ..., tmn are terms and f is a function of rank n>0, then f(tmi, tm2,

25

CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

tmn) is a term.

Intuitively, a term is an expression stands for an element.

Definition 3.4: The atomic formula of a first logic language L is inductively defined as:

I) Every predicate of rank ° is an atomic formula.

2) If tm), tm2, ... , tmn are terms and p is a predicate of rank n>O, then r(tm\,

tm2, ... , tmn) is a atomic formula, and so is tmJ':==tm2.

Definition 3.5: The formula of a first logic language L (referred as Formd is inductively

defined as:

1) Every atomic formula is a formula.

2) For any two formulae a and p, -,a, (a ~ P) are also formulae.

3) For any formula a and variable Xi, 'v'xia is also a formula.

NOTE: as mentioned above, avp is seen as abbreviation of -,a~p, 3xa is short for

-,'v'x-,a, and so on.

The formulae of FORML are all the expressions can be talked in the first order logic

L. Intuitively, a formula is an expression representing some property of the elements.

In the formulae 'v'Xia, a is said to be the field of the quantifier 'v'Xi.

Let x be a variable appear in formula a, obviously, x may appear in several places in

a, each appearance is called an occurrence.

Definition 3.6: An occurrence of x in formula a is said to be bounded occurrence if it

appears as the form 'v'x, or in the field of quantifier 'v'x. In this case, x is said to be a

bounded variable of formula a. BV(a) denotes all the bounded variables of formula a.

Definition 3.7: An occurrence of x in formula a is said to be free occurrence if it is not

26

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC______

bounded. In such case, x is said to be a free variable of the formula a. FV(a) denotes all

the bounded variables of formula a.

Obviously that a variable x can be both free and bounded occur in formula a, which

means BV(a)nFV(a) may not be empty.

The concept of free and bounded variables is very important for the substitutions of

formulae

Definition 3.8: The result of substituting term tm for variable x in a term tm' or formula

a is recursively defined as:

1) y[tm/x]= if y=x then t else y, when tm' is the variable y.

2) c[tm/x]=c, when tm' is the constant c.

3) f(tnii, tm2 , ..., tmn)[tm/x]= f(tmi[tm/x], tni2[tm/x], ..., tmn[tm/x]), when tm' is

the term f(tnii, mi2, ..., tmn).

4) p(tmi, mi2, ..., tmn)[tm/x]= p(tnii[tm/x], tm2[tm/x], ..., tmn [tm/x]), when a is

the formula p(tnii, tni2, ..., tmn).

5) (p-n)[tm/x]=p[tm/x] ->y[tm/x]

6) (-,p)[tm/x]= -i (P[tm/x])

7) Vyp[tm/x]= if x=y then Vyp else Vy(p[tm/x])

Intuitively, only free occurrences of x can be substituted by term tm.

Definition 3.9: It is said that a term tm is free for x in formula a, if every occurrence of

x in formula a is not in the filed of Vy, where y is a free variable of term tm.

A special case is that variable x is always free for x in any formula a.

For example, let tm=l-y, and a=By(x+y=0), the occurrence of x in a is in the field

27

_______ CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC ______

of 3y, so t is not free for x in a. If we substitute x by t in a, we get

a[tm/x]= 3y(l-y+y=0)= 3y(l =0)

This is absurd in some sense.

Till now, the language of a first order logic system is defined clearly and next step is

providing enough axioms and rules to deduct theorems.

Definition 3.10: The axioms of a first order logic system consist of the following:

• Prepositional axioms:

Axl.

Ax2.

Ax3. (-ip — » -i<x) — » (a — » P)

• Quantifier axioms:

Ax4. Vx(a -> p) -> (Vxa -> Vxp)

Ax5. Vxa -> a[tm / x] , such that t is free for x in a.

Ax6. a — » Vxa , such that x ̂ FV(a).

• Equality axioms:

Ax7. tm = tm

Ax8. tmt =tm, A---Atmn =tmn

Ax9. tmj =tm A---Atmn =m\ -^p(tm1 ,tm2 ,---,tmn)->p(tm,tm2 ,---,tmn)

Generalization:

28

_______ CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC _______

Ax 10: Vxa, if a is an axiom.

Definition 3.11 : A first order logic system L has only MP-rule, that is:

MP: {a, a-»p} |-p

Definition 3.12: A formula a is said to be provable by a set of formulae /"(referred to

F |-a), if there exists a finite formula series ai, 012, ..., a, where each ak is in F, or a

axioms, or is gained by applying the MP-rule for two former formula a\ and Oj (i,j,<k).

This definition is the formal description of what a mathematical proof is. The

relation - between a formula set F and a formula a is usually called deducibility

relation. Formulae proved by empty set (|-a) is called theorems.

Section 3.1.2 Semantics

Definition 3.13: Given a first order logic system L, a Model is a pair M=<D, I>, where

D is a non-empty set called Domain (or Universe, or Carrier), I is an interpretation

function which interpret the signature of L as:

1) For each function symbol f with rank n, I(f):Dn — »D is an n-ary function.

2) For each predicate symbol p with rank n, I(p):Dn -» (0, 1 } is an n-ary predicate.

3) For each variable x, I(x)eD is an element of D.

Given a Model M of L, the constants and variables are interpreted directly and the

term f (tnij , tm2 , • • • , tmn) is interpreted by

m, , tm2 , • • • , tmn)) = I(f)(I(tm1), I(tm2),-•-, I(tmn)) .

For the interpretation I, the symbol Ix=a stands for the same interpretation as I,

except the variable x is interpreted as a. And for a model M=<D, I>, the model Mx=a is

defined as <D, Ix=a>.

29

_______ CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

Definition 3.14: Given a model M, the formulae of L are interpreted as:

1) I(p(tm1 ,tm2 ,...,tmn)) = I(p)(I(tm1),I(tm2),•••, I(tmn))

2) I(a->PHl-I(a))xI(p) and I(-,a)=l-I(a).

3) I(Vxp) = inf{Ix=a (p)}aeD ^ x=a

Definition 3.15: Given a model M=<D, I> of first order logic L,

1) A formula a is said to be satisfied by M (referred as M ha) if I(a)=l.

2) A set of formula F is said to be satisfied by M if M ha for all aeF

3) A formula a is said to be satisfied by a formula set F (referred as F =a), if for

all model M, M |=F implies M =a.

The relation h between a formula set F and a formula a is usually called entailment

relation. Formulae can be satisfied by any model (denoted as =a) is called tautology.

Section 3.1.3 Soundness and Completeness

In the last two sections, two relations, we introduced two relations, deducibility |-a

and entailment ha. The equivalence between these two is termed the soundness and

completeness.

Theorem 3.1: Soundness of FOL. If F |-a, then F ha.

Theorem 3.2: Completeness of FOL. If F =a, then F |-a.

Especially, theorems and tautologies are equivalent.

Section 3.1.4 Many Sorted First Order Logic

These are situations in which it is desirable to express properties of structures of

30

_______ CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC ______

different types or sorts. By adding to the formalism of first order logic the notion of type,

one obtains a flexible and convenient logic called many sorted first order logic, which

enjoys the same property as first order logic. [Wanl952, Gill 956]

Definition 3.16: The alphabet of a many sorted first order logic system consists of the

following symbols:

1) A countable set Su{bool} of sorts.

2) Logical Connectives: — »ofrank(bool2 — »bool), -. ofrank(bool— »bool)

3) Quantifiers: for every sort seS, there is a quantifier Vs of rank (bool— »bool)

4) Equalities: for every sort seS, there is an equality symbol =s .

5) Variables: for every sort seS, there are countable infinite variables VS={XQ:S,

6) Auxiliary symbols "(" and ")"•

The signature also has to be typed.

Definition 3.17: The signature of Su{bool} ranked first order logic language consists

of:

• Function symbols: A set FS of function symbols with a rank function rank:

S — »S. The function with rank (e->s) is called a constant of sort s.

• Predicate symbols: A set PS of predicate symbols with a rank function rank:

S*->{bool}. The predicate with rank(e— »{bool}) is called a propositional

constant.

All the other definitions of terms, atomic formulae, formulae, axioms and inference

rules are the same as FOL.

To define a many sorted logic system, one only has to define the sorts, the signatures

31

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

and special axioms in that theory.

Definition 3.18: Given a many sorted first order logic L with sort S. A model M is

defined as:

1) For each sort seS, there is a non-empty set Ms as its Domain.

2) Each function symbol f rank (si...sn—»s) is interpreted as a

functionfM : M x• • • xMc -> M0 .
1V1 !>, !> n h

3) Each predicate symbol p with rank (si...sn->bool) is interpreted as a predicate

rM :MSi x...xMSn ->{0,l}.

4) Each variable symbol x:s is interpreted as a element (X:S)M in Ms .

All the other interpretations of terms, atomic formulae, formulae are the same as

FOL.

To define a model for a many sorted first order logic, one just has to define its

domain of each sort, and the interpretations of function symbols, predicate symbols and

variables.

Theorem 3.3: Soundness and Completeness. F |-a, if and only if F ha. [Wanl952,

GU1956]

The many sorted first order logic is frequently used in the rest of the thesis. Each

time we only need to describe the sorts, signature and interpretation of the signature.

Section 3.2 Predicate Temporal Logics

We shall discuss some predicate based temporal logic systems which are tightly

associated with our research.

32

_______ CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC ________

Section 3.2.1 BTK

BTK is a non-reified temporal logic system proposed by Bacchus, Tenenberg and

Koomen in [BTK1991]. BTK system is exactly a standard many sorted first order logic

with sorts S={t, u}, where t stands for the temporal elements and u stands for the

non-temporal elements.

Syntax

The signature of BTK is LBTK-^S, PS>, where

FS is the set of function symbols. Every function f eFS has a rank tnxum-^t

(temporal function) or tnxum— »u (non-temporal function).

• PS is the set of predicate symbols. Every predicate pePS has a rank tn—»{bool}

(temporal predicate), or um—»{bool} (non-temporal predicate), or tnxum-> {bool}

(mixed predicate)

All the other definitions of terms, formulae, axioms and rules are in the standard

fashion.

The syntax structure of BTK can be illustrated as figure 3.1

33

CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

temporal terms
(t)

non-temporal terms
(u)

temporal
functions

mixed
predicate~.

non-temporal
functions

)

Figure 3.1 Structure ofBTK

Semantics

{O, 1}

A model of BTK is defined as a triple M=<T, U, I>, where T and U are domains of

temporal elements and non-temporal elements respectively. I is a function interpreting

the signatures and variables of BTK in the standard way.

Property

As a many sorted first order logic system, BTK has simple, clear syntax, which

makes it easy to understand and apply. More important, BTK inherits the sound and

34

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC______

complete inference system from first order logic, which makes the automatic theorem

proving possible.

On the other hand, as a temporal argument method, BTK has expressive limit in

representing the property and relation between the predicates. For example, the sentence

CAUSE(pi,p2) is not a valid formula in BTK.

Section 3.2.2 TR

The TR system is a reified temporal logic system introduced by Reichgelt [Reil989].

Similarly as BTK, the TR logic system is also a many sorted first order logic, but more

complicated. The sorts of TR are S={den, t-den, d-den, exp, p, i, t, c, v}, which have

been organized as Figure 3.2.

Universal

denotations
(den)

expressions

points in time
(t-den)

domain prepositional individual
individuals expressions expressions

(d-den) (p) (i)

time constant variables
expressions expressions expressions

(t) (c) (v)

Figure 3.2 Sort hierarchy for TR [Reil989]

Informally speaking, TR reified both syntax and semantics of temporal argument

methods, where expression exp and denotation den stand for the reifications of syntax

and semantics respectively. The sub-sorts of den, t-den and d-den, express the temporal

domain and non-temporal domain respectively. And sub-sorts of expression exp, p and i,

express the formula and terms of temporal argument methods. Time expression t,

35

_______ CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

constant expression c and variable expression v stand for three special kinds of terms.

Syntax

The signature of TR is LTR=<FS, PS>, where

1) FS is the set of function symbols, which can be can be split into three groups:
individual function DF, propositional function PF and logical function LF.

1.1) Each element of DF is an individual function symbol with rank in^i.

1 .2) Each element of PF is a propositional function symbol with rank in— »p

1.3) LF consists of AND, IF, OR with rank p2-»p, NOT, PAST, FUTURE with

rank p-»p and FORALL, THEREIS with rank ixp->p

2) PS is the set of predicate symbols. PS= {HOLDS (with rank formxt-den-»bool),

< (with rank t-den2^bool), EXISTS (with rank d-denxt-den^bool), T-DEN

(with rank txt-den^bool) and DEN (with rank cxd-denxt-den^-bool)}.

Informally speaking, each n-ary function of temporal argument method is still an
n-ary function with the same rank; each n-ary predicate of temporal argument method is
revised as a propositional function from n terms to propositional expressions; the logical
connectives and quantifiers of temporal argument method are revised as logical
functions from one propositional expression to another. HOLDS relation capture the
meaning of entailment of temporal argument method; <TR indicate the time structure;
EXISTS express if an individual exists at a time point. T-DEN interprets every time
constant as a time point and DEN interpreting the constant symbol as an individual at
some time point.

These complex sorts and signatures make structure of TR very complicated.
Intuitively, the structure of TR can be illustrated as figure 3.3.

36

CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

individual
functions

{IF, AND, OR, NOT,
AST, FUTUR

{FORALL,
THRERIS}

expressions
\ prepositional

function

domain
individuals

denotations

Figure 3.3 Structure of TR

Semantics

Since TR is a many sorted first order logic system, its semantics can simply be

provided by following the semantic definition of standard many sorted first order logic.

Property

As a many sorted first order logic, TR should have a clear syntax, semantics and

sound and complete axiomatization. But in fact, TR is too complicated to provide

adequate axioms to make it a real complete system. For example, to describe the

37

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

function FORALL clearly, Reichgelt uses the following axiom:

Vp:pVt:t-denVv:vVd:d-denVc:c

HOLDS(FORALL(v, p), t)-» DEN(c, d, t) ->HOLDS(SUBST(c, v, p), t)

Then one have to add new axiom to define SUBST(c, v, p), which has not been done

in [Reil989].

On the hand, although TR is a truly reified temporal logic which has great

expressive power, it is difficult for temporal knowledge representation, because every

element has an expression form and a denotation form which have to be carefully

distinguished.

In all, TR brings forward some brilliant idea to reify both syntax and semantics of an

object language, but on the other hand, it is too complicated for real application.

Section 3.2.3 MK

MK is a reified temporal logic system proposed by Jixin Ma and Brian Knight

[MK1996]. MK is again a many sorted predicate logic with sort S={t, u, p} stand for

temporal terms, non-temporal terms and prepositional terms respectively.

Syntax

MK is not given by the standard first order logic language; instead, it is defined by

its own syntax and semantics which are very similar to standard first order logic. MK

has the following signatures:

• TC: a set of temporal individual symbols;

• TV: a set of temporal variables;

• UC:a set of non-temporal individual symbols;

• UV:a set of non-temporal variables;

38

CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

• TF: a set of temporal function symbols;

• UF: a set of non-temporal function symbols;

• LF: the set of connectives functions (NOT, AND}

• TP: a set of temporal predicate symbols;

• UP: a set of non-temporal predicate symbols;

• MP: a set of meta-predicate symbols.

The terms and formulae of MK are defined in the same way of many sorted first

order logic. The structure of MK can be illustrated as figure 3.4

temporal terms
(t) temporal

medicates

/ \temporal
/ j functions

{NOT, AND}

(/non-temporal
functions

non-temporal terms
(u)

propositional
terms

(P)

meta
predicates>

ion-temporal
predicates

{0,1}

Figure 3.4 Structure of MK

Figure 3.4 shows that the structure of MK is also simple and clear as BTK does.

39

_______ CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC _______

Semantics

The model of MK is defined as a triple M= <T, U, I>, where T is a nonempty

universe of temporal individuals; U is a nonempty universe of non-temporal individuals;

and I is an interpretation function, such that:

1) I maps each temporal individual symbol to a member of T;

2) I maps each non-temporal individual symbol to a member of U;

3) I maps each n-ary temporal function symbol tf to an n-ary function I(tf) from Tn

toT;

4) I maps each n-ary non-temporal function symbol uf to an n-ary function I(uf)

from Un to U;

5) I maps each n-ary temporal predicate symbol tp to an n-ary relation I(tp) on Tn ;

6) I maps each (m+n)-ary meta-predicate symbol mp to a (m+n)-ary predicate

I(mp) on Tmx (I(TermPr0positionai))n .

In Ma's original work, I(TermPr0positionai) is defined by:

1) Each n-ary non-temporal predicate symbol up is interpreted as an n-ary

predicates I(up) on U11;

2) I(up(ui, u2,. . ., un))=I(up)(I(ui),

3) I(AND(Pl ,p2)H(pi)Al(p2)

4)

This definition interprets the prepositional term as true or false, I(Termpr0positionai)= {0,

1}, so a meta-predicate is interpreted on Tm* (0, 1}". We shall revise this work by

re-define the interpretation I(Termpr0pOSitionai) by:

40

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

1) Each n-ary non-temporal predicate symbol up is interpreted still as the symbol

itself.

2) I(up(u!, u2,..., un))=I(up)(I(ui), I(u2), ..., I(un))

3) I(AND(Pi, p2)H(Pi) AND I(p2)

4) I(NOT(p))=NOT(I(p))

This definition interprets the propositional terms as propositional tokens. And

meta-predicates are interpreted on time and propositional tokens, which is more

reasonable.

Property

The MK system is truly a reified temporal logic which has general expressive power

for temporal knowledge expression and deduction. However, MK system has not got the

complete axioms to deduce all the theorems. Although it is believable that the axiomatic

system of MK would be very similar to the many sorted first order logic, we will not

provides these axioms, instead, we will revise it under the first logic framework.

Section 3.3 The Complete Reified Temporal Logic System CRTL

To overcome the weakness of existing reified temporal logic systems, we proposed a

well-defined, completely axiomatized reified temporal logic, named CRTL, which is

also simple and applicable for real problems.

Section 3.3.1 Syntax

CRTL is a standard many sorted first order logic with sorts S={t, u, p} stands for

temporal terms, non-temporal terms and propositional terms.

Definition 3.19: The signature of the CRTL is a pair LCRTi=<FS, RS>, where

1) FS is the set of function symbols, which can be can be split into four groups: TF,

41

_____CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_____

UF, RF and PF defined as:

1.1) Each symbol tf in TF is a temporal function with rank tnxum-»t.

1.2) Each symbol uf in UF is a non-temporal function with rank tnxum->u

1.3) Each symbol pf in PF is a propositional function with rank tnxu

1.4) Each symbol If in LF is a logical function with rank pn—»p

2) PS is the set of relation symbols which can be split into three groups:

2.1) Temporal predicates TP with rank tn-»bool

2.2) Non-temporal predicates UP with rank un—»bool

2.3) Meta predicates MP with rank tnxpm—»bool.

In some sense, CRTL is an intermix system of BTK, TR and MK. The two kinds of

functions, temporal and non-temporal functions, and three kinds of predicates are

reserved in CRTL, only the mix-predicates are revised as meta-predicates. TR's

reification of the syntax part is used here, where formulae of temporal argument methods

are re-interpreted as propositional terms here. The structure of MK system is kept by

CRTL with some necessary extensions.

The structure of CRTL can be illustrated as figure 3.5.

42

CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

temporal terms
(t) temporal

predicates

\ temporal ,
Vfunctions / propostional

functions

nonvtemporal
functions

propositional
terms predicates

non-temporal terms

logical
functions

{0,1}

"non-temporal
predicates

Figure 3.5 Structure of CRTL

Section 3.3.2 Examples of all kinds of functions and predicates

Here we use a simple example to demonstrate all kinds of functions and predicates.

We choose the human society as an example, where non-temporal sort u stands for

all the humans and t stands for the time we used in our daily life composed of years,

months and days which is formally expressed as integer-like time.

Temporal functions

Temporal functions map temporal or/and non-temporal elements to temporal

elements. For example:

Next_day: t-»t maps a day to its next day.

Birthday: u-»t maps each human to its birthday.

43

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

Non-temporal functions

Non-temporal functions map temporal or/and non-temporal elements to

non-temporal elements. For example:

Father: u—»u maps each human to its father.

Propositional functions

Prepositional functions construct some prepositional tokens whose truth values

depend on time. For example:

Richer: uxu—»p means one person is richer than the other, which holds on the certain

time.

Logical functions

Logical functions are constructors for complex propositions. For example:

AND: pxp-»p is the conjunction of prepositional terms.

NOT: p—»p is the negation of prepositional terms

FORALLuj: p—»p, FORALLtj: p—»p are the universal quantification of prepositional

terms.

Temporal predicates

Temporal predicates express the relations of time elements. For example:

MEETS: txt-»{0, 1} denotes the immediate predecessor order relation over time

elements:

Non-temporal predicates

Non-temporal predicates express the relations of non-temporal elements. For

44

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

example:

Older: uxu—»{0, 1} means one person is older than the other.

Meta-predicates

Meta-predicates express the relations of prepositional tokens. For example:

HOLDS: pxt—»{0, 1} denotes proposition p is true at time t.

CAUSES: t3 xp3 -»{0, 1}, where CAUSES(tb t, t2 , pi, p, Pz) denote a causal law,

which intuitively states that, under the precondition that proposition pi hold true over

time ti, the truth holding of proposition p over time t will cause the truth holding of
proposition p2 over time \.i-

Section 3.3.3 Semantics

The semantics of CRTL follows standard many sorted first order logic semantics. A
model M of CRTL is a 4-tuple M=<T, U, P, I>, where T, U and P are non-empty domain
of temporal elements, non-temporal elements and prepositional terms. I is the
interpreting function such that:

1) Each temporal function symbol tf is interpreted as a function TnxUm—»T.

2) Each non-temporal function symbol uf is interpreted as a function TnxUm-»U

3) Each prepositional function symbol pf is interpreted as a function TnxUm—»P

4) Each logical function symbol If is interpreted as a function Pn—»P

5) Each temporal predicate symbol tp is interpreted as a predicate on Tn

6) Each non-temporal predicate symbol up is interpreted as a predicate on Un

7) Each meta temporal predicate symbol nip is interpreted as a predicate on TnxPm

45

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

The interpretation is the same as the revised interpretation of MK system, where

function symbols are interpreted as temporal or non-temporal functions, predicate

symbols are interpreted as temporal, non-temporal and meta-predicates. Meta-predicates

take time elements and propositional terms (or propositional tokens) as its argument, and

this make it possible to qualification over all propositional terms.

Section 3.3.4 CRTL with Durations

In some circumstance, the problem solution depends on not only the meets relations

of time elements, but also their durations. In order to formally define such a system, a

new sort d is added to denotes the length metric and a duration assigning function DUR

is added to indicate the duration of every time element.

The structure is show as figure 3.6.

temporal terms
(t)

norMe

propostional
functions

^temporal
functions

propositional
terms

meta
predicates"

non-temporal terms
(u)

/ \ logical
__y functions

{0,1}

non-temporal
predicates

Figure 3.6 Structure of CRTL with duration

The MK system is somehow a reified temporal logic with durations, and now can be

46

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_______

formally embedded in the CRTL system.

To reduce complexity, usually the non-negative real or rational numbers are chosen
as the domain of the durations. However, this choice is not mandated.

Section 3.3.5 Property

From a theoretical view, CRTL is a many sorted first order logic which enjoys clear
definition of syntax and semantics, sound, complete axioms and deduction rules. This
makes it feasible to directly use Herbrand principal for theorem determination and
auto-proof.

On the other hand, from a practical view, CRTL is an extension of the reified logic
system MK, which means CRTL has even more general expressive power for temporal
knowledge representation and reasoning.

For example, we have introduced formula CAUSES(ti, t, t2, pi, p, p2) denoting the
causal law, which intuitively states that, under the precondition that proposition pi hold
true over time ti, the truth holding of proposition p over time t will cause the truth
holding of proposition p2 over time t2- This can be formally characterized by the
following axiom:

CAUSES(t!, t, t2 , pi, p, p2)AHOLDS(pi, ti) AHOLDS(p, t)-» HOLDS(p2 , t2)

In order to characterize temporal relationships between events and their effects, we
impose the following temporal constraints:

CAUSES(ti, t, t2 , pi, p, p2)-»MEETS(ti, t)A(MEETS(ti, t2)vBefore(ti, t2))

It is important to note that above axiom actually specifies the so-called (most)
general temporal constraint (GTC) [Shol987]. Such a GTC guarantees the
common-sense assertion that "the beginning of the effect cannot precede the beginning
of the cause", namely, there is a time delay between the event and its effect.

47

_______CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC_____

Section 3.3.6 The Simplified CRTL System SCRTL

The logic system CRTL describes a framework for temporal knowledge

representation and deduction. It mainly aims at the logical completeness and expressive

power, in the meanwhile, it lose some efficiency.

SCRTL is a simplified system of CRTL aiming at simplicity and efficiency. The sort

of SCRTL is S={t, p, d}u{bool}, where non-temporal terms are no longer considered.

The signature of SCRTL is L=<FS, PS>, where

• FS contains the duration function DUR with the rank t^d and the propositional

constants PI, P2 , .. .,Pk with rank e—»p

• PS contains the temporal predicate MEETS with rank t2 and the meta-predicate

HOLDS with rank pxt

The structure of SCRTL is illustrated as figure 3.7, which is simple and easy for

practical applications.

Informally speaking, SCRTL only considers n propositions PI, ..., Pn whose truth

value vary with time, and the time structure is described by MEETS relation and DUR

function.

48

CHAPTER 3 A COMPLETE REIFIED TEMPORAL LOGIC

temporal terms
(t)

propositional constant

Figure 3.7 Structure of SCRTL

The application of SCRTL will be discussed in detail in next chapter.

49

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

Chapter 4 Scenarios and Their Graphical

Representation

In chapter 3, the simplified complete reified temporal logic system SCRTL was

introduced. This system can be expediently used for real problem because of its

simplicity. The finite model of SCRTL, which will be termed scenario, is discussed in

this chapter.

Scenarios are defined in section 4.1 and the graphical and matrix representation of

scenarios are discussed in section 4.2 and section 4.3. Section 4.4 introduces some

extensions for representing incomplete knowledge and general time relations and section

4.5 discusses the matching of scenarios.

Section 4.1 Definition of Scenarios

Let us Consider a finite model of SCRTL M-<T, P, R, I>, where T is a finite set of

time elements, P is a finite set of primitive propositions and I is the interpreting function

that:

1) Every prepositional constant Pj is interpreted as a primitive proposition in P.

2) HOLDM cPxT

3) MEETSM <=TxT

4) DURM:T-»R

We will study this model in details for representing temporal knowledge.

50

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

Section 4.1.1 Time

For the reason of general treatments, we shall take the time theory proposed

previously by Ma and Knight [MK1994] as the temporal basis. This time theory

addressed both points and intervals as temporal primitives on an equal footing: neither

points have to be defined as limits of intervals, nor intervals have to be constructed out

of points. The distinction between time intervals and time points is characterized by means

of a duration assignment function, DUR, from the set of time elements to non-negative real

numbers, i.e., R*0. A time element t is called an (time) interval if DUR(t) > 0; otherwise, t is

called a (time) point. Such a temporal theory is indeed an extension to the interval-based

axiomatization of Alien and Hayes [AH1989]. As shown in [MK1994], analogous to the

13 relations introduced by Alien for intervals [All 1983], there are 30 distinct temporal

relations over time elements including both intervals and points, which can be derived

from the single immediate predecessor relation, "Meets". These 30 derived temporal

relations can be classified into the following 4 groups:

• Relations that relate points to points:

(Equal, Before, After}

• Relations that relate points to intervals:

(Before, After, Meets, Met-by, Starts, During. Finishes}

• Relations that relate intervals to points:

(Before, After, Meets, Met-by, Started-by, Contains, Finished-by}

• Relations that relate intervals to intervals:

(Equal, Before, After, Meets, Met-by, Overlaps, Overlapped-by, Starts,

Started-by, During, Contains, Finishes, Finished-by}

51

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

Section 4.1.2 State

For each time element t (point or interval), there are some (possibly zero)

propositions holds true on/over it. The state associate with the time element t is defined

as the set of all holding propositions, namely st = {Pk e P: HOLDS(Pk ,t)}.

Informally speaking, the state and duration describe the properties of the time

elements separately while the MEETS predicate describe the temporal relations between

these time elements.

Section 4.1.3 Scenario

Definition 4.1 A scenario is a 5-tuple S=<T, P, HOLDS, MEETS, DUR>, where

1) T is a finite set of time elements.

2) P is a finite set of propositions.

3) HOLDS=(HOLDS(Si, ti): SjcP, tieT}

4) MEETS={MEETS(ti, tj): for some ti, tjeT}

5) DUR: T—»R+0 indicates the duration of the time elements.

Example 4.1 let Si=<T, P, HOLDS, MEETS, DUR>, where

T={Mon, Tue, Wed, Thur, Fri, Sat}

P={"Blocked nose", "Cough", "Fever", "Headache", "Sore throat"}

HOLDS={ HOLDS(("Blocked nose"}, Mon),

HOLDS(("Blocked nose", "Sore throat"}, Tue),

HOLDS(("Sore throat", "Cough"}, Wed),

HOLDS(("Sore throat", "Cough", "Fever"}, Thur),

52

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

HOLDS({"Fever", "Cough", "Headache"}, Fri),

HOLDS(("Fever", "Headache"}, Sat)

MEETS= { MEETS(Mon, Tue), MEETS(Tue, Wed), MEETS(Wed, Thur),

MEETS(Thur, Fri), MEETS(Fri, Sat)

DUR: (day)=l for all dayeT.

Si is a simple scenario of the flu symptoms.

Section 4.1.4 Graphical representation

Although the above representation of scenario is formal and adequate, it is not

intuitive.

In [KM 1992], a graphical representation for expressing temporal knowledge in

terms of MEETS relations and duration knowledge has been introduced by means of a

directed and partially weighted graph, where time elements are denoted as edges of the

graph, relation MEETS(tj, tj) is represented by ti being in-edge and tj being out-edge to a

common node, and for time elements with known duration, the corresponding edges are

weighted by their durations respectively.

Such a graphical representation can be directly extended to express temporal

scenarios.

In fact, a given scenario S=<T, P, HOLDS, MEETS, DUR> can be represented in

terms of a temporal network, defined as a directed, attributed simple graph Gs , called

scenario Graph, where:

1) Each time element t in T is denoted as a directed edge of the graph labelled by t

that is bounded by a pair of nodes, which are called the head-node, and the

53

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

tail-node, of the edge, respectively.

2) Each relation MEETS(tj, tj) in MEETS is represented by means of merging the

head-node of tj and the tail-node of tj as a common node, of which tj is an

in-edge and tj is an out-edge, respectively (see figure 4.1).

3) Each formula HOLDS(sj, ti) in HOLDS is represented by means of simply

adding Sj as an additional label to the edge labelled by the corresponding ti. For

any time element t in T, if there is no HOLDS knowledge, it will be labelled by

the empty state {}.

4) Each piece of duration knowledge DUR(t) = r in DUR is expressed as a real

number, r, alongside the corresponding edge t.

54

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

o

Figure 4.1 Merging the begin-node of tj and the end-node of tj as a common node if

MEETS(ti, tj)

For example the scenario graph of above example Si is constructed as figure 4.2

55

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

{"Blocked nose"} 1day ^-v {"Blocked nose", "Sore throat"} 1day

{"Sore throat", "Cough", "Fever"} 1day.-^ {"Sore throat", "Cough"} 1day^ , , .-^O ———— ̂ r^ —————
Thur ^ Wed

{"Headache", "Cough", "Fever"} 1day .-.{"Headache", "Fever"} 1day

Fri ^ Sat
l

Figure 4.2 Scenario graph of Si

Section 4.1.5 Matrix representation of scenario

Although the graphical representation is very comprehensive for human; it is not

suitable for storage and manipulation in computers. So the adjacency matrices are

widely used for representing graphs in computers

In what follows, we shall simply assume |P| = n. Corresponding to scenario graph Gs

with m nodes, we define a m-by-m-matrix Ns, named the adjacency matrix (or edge

attribute matrix), where Ns(i, j) is a (n+l)-dimension vector lijeRn+1 , such that:

• For any adjacent pair of nodes i and j in G, if (i, j) is an edge representing time

element t, then lij(k)= 1 if Holds(Pk, t), otherwise lj,j(k) = 0, 1 < k < n; and

lij(n+l) = DUR(t)

• For any non-adjacent pair of nodes i and j in Q Ijj = <w, w, ..., w> (denoted as

10), where w is a negative real number (usually w is set as -1), which will be use

to adjust the edit-distance of deleting operations in graph matching process

Also we shall use Ns,k to denote the matrix whose i-j-entry is the k-th element of

i-j-entry in Ns .

For example, the adjacency matrix of scenario graph figure 4.2 is:

56

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

10
10
10
10
10
10
10

< 1, 0,0,0, 0,1 >

10
10
10
10
10
10

10
< 1,0,0, 0,1,1 >

10
10
10
10
10

10
10

< 0,1,0, 0,1,1 >

10
10
10
10

0 0 '0

10 10 10

'0 '0 10

< 0,1,1, 0,1,1 > 10 10

10 < 0,1,1,1, 0,1 > 10

10 10 < 0,0,1,1, 0,1 >

10 10 10

It can be easily seen that this is not an economic representation. Since the scenario

graph is usually sparse graph, the sparse matrix representation is more suitable, for

example the above matrix can be sparsely represented as:

(3,4, <0,1,0,0,1,1>), (4,5,

<0,1,1,0,1,1>), (5,6,<0,1,1,1,0,1>), (6,7,<0,0,1,1,0,1>), (others, 10)}

Section 4.2 Scenario with Incomplete Knowledge

Scenario of above definition is said to be complete since it contains whole

information of HOLDS, MEETS and DUR predicates. To construct such a scenario, one

has to know all the information of the time elements and propositions, which is usually

unrealizable. So we shall define a model for partial information scenarios.

Section 4.2.1 Definition of partial scenario

Definition 4.2: ^partial scenario is a 5-tuple S=<T, P, HOLDS, MEETS, DUR>, where

1) T, P and MEETS are defined as complete scenario.

2) HOLDS :PxT^ {0,+ 1 ,- 1 } is a function indicating if a proposition holds true on a

time t (+1), or holds false (0), or holds unknown (-1).

3) DUR:T^R u{0, -1} is a function mapping time elements to its duration, or -1

if the duration is unknown.

Example 4.2 For the example4.1, obviously the patient got a fever on Thursday, Friday

and Saturday, and the patient had a normal temperature from Monday to Wednesday.

57

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

Suppose that maybe the patient did not notice if he got fever or not from Monday to

Wednesday, then the scenario will be S2=<T, P, HOLDS', MEETS, DUR>, where

1) T, P, MEETS and DUR are the same as Si.

2) HOLDS' is a function from PxT to {0,+1 ,-1} which can be arranged as table 4.1

Table 4.1 HOLDS function of a scenario

"Blocked

nose"
"Cough"

"Fever"

"Headache"

"Sore

throat"

Mon

1

0

-1

0

0

Tue

1

0

-1

0

1

Wed

0

1

-1

0

1

Thr

0

1

1

0

1

Fri

0

1

1

1

0

Sat

0

0

1

1

0

The -1's indicate the unknown information.

Section 4.2.2 Graphical representation

The graphical representation of partial scenarios is similar to the representation of

complete scenarios except that each edge of a complete scenario is labeled by state and

duration while each edge t of a partial scenario is labeled by an n+1 dimensional vector

lt eRn+1 , where lt(k)=HOLDS(Pk, t) for k<n and lt(n+l)=DUR(t).

For example the partial scenario of example 4.2 can be graphically represented as:

58

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

-1.0,0, 1> x-v <1,Q. -1,0, 1.

. 1, -1.0.1.
Thur v—' Wed

<0. 1.1.1.0. 1> ^ <0,0,1.1.0.
Fri ^ Sat

label=<"Blocked nose", "Cough", "Fever", "Headache", "Sore throat", "Duration">

Figure 4.3 Scenario graph of 82

Section 4.2.3 Matrix representation

The matrix representation of a partial scenario is the same as that for a complete
scenario.

For example the matrix representation of scenario 82 is

1 <1,0,-1,0,0,1> 10 10 10 10 10 0
10 10 <1,0,-1,0,1,1 > 10 10 10 10
la 10 10 <0,1,-1,0,1,1 > 10 10 10
10 10 10 10 < 0,1,1,0,1,1 > 10 10
10 10 10 10 10 < 0,1,1,1,0,1 > 10
10 10 10 10 10 10 < 0,0,1,1,0,1 >
10 10 10 10 10 10 10

As the same, the above matrix can be sparsely written as

>,3,<1,0,-1,0,1,1>), (3,4, <0,1,-1,0,1,1>), (4,5,
<0,1,1,0,1,1>), (5,6,<0,1,1,1,0,1>), (6,7,<0,0,1,1,0,1>), (others, 10)}

Section 4.3 Scenario with General Temporal Relations

In our daily life, we seldom say "MEETS" to express time relations, instead, the

59

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

temporal relations like BEFORE, AFTER are more frequently used. So we define
another schema for temporal scenario where all the 13 possible temporal relations are all
allowed for describing time structures.

Definition 4.3: An extended scenario is a 5-tuple S=<T, P, HOLDS, TRS, DUR>, where

1) T, P, HOLDS and DUR are defined as complete scenario.

2) TRS is the set of time relations. TRS={r(ti,tj): ti, tj are two time elements and r
is one of the 13 possible temporal relations}

Example 4.3 For example Si, if the patient cured on the next Saturday after some
treatments, then the new scenario could be S3=<T, P', HOLDS', TRS, DUR'>, where

T'=Tu{nSat}

2) P'=P and HOLDS'=HOLDS.

3) TRS=MEETSu { AFTER(nSat, Sat)}

4) DUR'=DURuDUR'(nSat)=l

An extended scenario can be easily transferred to a partial scenario by

Before(ti, t2) <-> 3teT(Meets(ti, t) A Meets(t, t2))

Starts(ti, t2) <-> 3t3 ,t,t4 eT(Meets(t3 , ti) A Meets(t3 , t2) A Meets(ti, I)A Meets(t, t4)

A Meets(t2, t4))

Finishes(ti, t2) <-> 3t3 ,t,t4 eT(Meets(t3 , t) A Meets(t3 , t2) A Meets(t, II)A Meets(ti,

t4) A Meets(t2 , t4))

During(ti, t2) ^3t3,t4 eT(Meets(t3 , ti) AMeets(ti, t4) AStarts(t3 , t2) AFinishes(t4 ,

t2»

Overlaps(ti, t2) <-»3teT(Finishes(t, ti) A Starts(t, t2))

60

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

After(ti , t2) <-> Before((t2 ,

Met-by(tb t2) <->Meets(t2 ,

Overlapped-by(ti, t2) <-> Overlaps(t2 ,

Started-by(ti, t2) <-» Starts(t2 ,

Contains(ti, t2) <-> During(t2 ,

Finished-by(ti, t2) <-» Finishes(t2 , ti)

Based on this transformation, the graphical and matrix representations can be

directly used for the extended scenarios. Take the drill-sticking case in figure 1.1 as an

example. There are eight propositions associated with the drill-sticking, which means

P={"hook load increasing", "erratic flow out", "erratic torque", "increasing drag",

"erratic drag", "erratic increasing torque", "increasing torque", "increasing pressure"} .

For the time elements 1x2, since "erratic flow out" holds on it and its duration is

unknown, so 1x2 can be expressed by an edge with label <0, 1, 0, 0, 0, 0, 0, 0, -1>.

Similarly 1x3 can be expressed by an edge with label <0, 1, 1, 0, 0, 0, 0, 0, -1> indicating

that "erratic flow out", "erratic torque" are holding on 1x3 and its duration is unknown.

Because 1x2 is before 1x3, there exists a time elements t2)3 that MEETS(Ix2, t2 ,3) and

MEETS(t2 ,3, 1x3). In the same way, the drill-sticking case in figure 1.1 can be

reconstructed as a scenario graph as figure 4.4:

61

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

.O.Q.O.Q.O.O.O.-1>/~-N <Q,1 ,Q.O.O,0,0,Q,-1> - 1 ' 1 .Q,Q.Q.Q.O.-1> —

<0,0,0,1,0,0,0,0,-1>

L.-1 ,-1 ,-1 ,-1 ,-1 ,-1 ,-1 ,-i> <-i ,-1 ,-1 ,-1 ,-1 ,-1 ,-1 ,-1
<0,0,0,0,0,0,1,1,-1> ^\ ^ <0,0,0,0,0,1,0,0,-1>

label=<"hook load increasing", "erratic flow out", "erratic torque", "increasing drag", "erratic
drag", "erratic increasing torque", "increasing torque", "increasing pressure", "duration">

Figure 4.4 Scenario graph of drill-sticking

Section 4.4 Matching Temporal Scenarios

As introduced in chapter 1, object similarity is very important for case based

reasoning, pattern recognition and cluster analysis. For our cases, we have to explore the

object similarity between scenarios or corresponding scenario graphs.

In this thesis, two different similarity measurements are introduces based on

embedded mapping and graph matching.

Section 4.4.1 Similarity based on embedded mapping

We [MZH2007] propose a similarity measurement of scenarios formulated by the

embedded mapping as following:

Let Si=<Ti, Pi, HOLDSi, MEETSi, DUR^ and S2=<T2, P2, HOLDS2, MEETS2,

DUR2> be two scenarios such that|Tj| < |T2 | , then a embedded mapping 9 is a one to one

function from {1,2,..., |Tj } to {1, 2, . . ., |T2 | } and the scenario similarity is defined as

62

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

a linear combinations of the following similarity:

• Similarity of scenarios size:

IT, Isim8ize (S,,S2) =
I A/2

Similarity of HOLDS relations

1 JJJ, Liter sec tion(s1k , i

where intersection and union are the set-intersection and set-union operators.

Similarity of MEETS relations

SimMEETS (S,, S2 ,9) = 2 ~^f

where NI and N2 are the MEETS-adjacency matrices of scenarios Si and 82

respectively.

• Similarity of durations

N
2DUR(t|)DUR(t?)

SimMEETS (S1 ,S2 ,9) = 2^
2DUR(t|)2 +DUR(t?)2

The overall similarity with respect to embedded mapping 9 is:

, w iSimHOLDs (si» S2»<P) + w 2SimMEETS (St , S2 ,9) + w3SimDUR (St , S2 ,9)
(Wj +W 2 +W 3)

where the wi is the importance coefficient of the similarity of HOLDS, MEETS,

Q \ , S2 ,9) - sze (Wl +w 2 +w3)

63

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

DUR, which can be set originally or obtained by learning process.

• Finally, the similarity between scenario Si and 82 are defined as:

, S2) = max sim(Sj , S2 , cp)

A navigation-based algorithm has been provide to calculate the scenario similarity

defined above and several tests have been done in [MZH2007] which showed that the

above similarity reflects the conventional idea of edit distance, where the closer two

scenarios are to each other, the more similar they are. However, due to embedded

checking of all mappings, the computational complexity of the associated

navigation-based algorithm is exponential. So a quicker algorithm or a better definition

of similarity is needed.

Section 4.4.2 Similarity based on graph matching

Given two scenarios Si and 82, let Gsi and GS2 be their graphical representations,

then the distance of these two scenarios are defined by the distance of the two graphs Gs i

and GS2.

Assume the adjacency matrices are Ns i and NS2, with size mixnii and m2xni2,

respectively. Without losing the generality, we assume mi = m2 = m. In fact, if nil < ni2,

we can simply add ni2 - mi isolated dummy nodes to graph Gs i to get an extended graph,

whose characteristic matrix will have the same size as that of NS2, i.e., m2xni2. Similar

treatment can be applied to the case where m2 < mi.

The similarity degree between £ti and st2 is then defined by:

n+l
mm

Q€perm(m) •sim(s,,s2) = l———j^-sa—————————— (4>1)

k=l

where perm(m) denotes the set of all m-by-m permutation matrices and |«| denotes

64

CHAPTER 4 SCENARIO AND ITS GRAPHICAL REPRESENTATION

the Frobenius-norm which will be discussed in the next chapter.

Since |NsU -QNs2,kQT [<|NSU |F +|QNs2 , k QT | and |QNs2>kQT |F =|Ns2 ,kl!F

n+1

Then 0<
L(Kk |HK,k ||F)
k=l

So it is easy to see that sim(si, 82) falls within the range of [0, 1].

The algorithm for the formula (4.1) will be fully discussed in next chapter.

65

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Chapter 5 Graph Matching Algorithms for

Matching Scenarios

In chapter 4, the scenario pattern matching problem was formulated as the attributed

graph matching problem. So in this chapter, we shall propose effective and efficient

algorithms for matching scenario graphs.

Section 5.1 introduces the graph matching problem selected for this thesis. The

eigen-decomposition graph matching algorithm and the symmetric polynomial

transformation graph matching algorithm are discussed and improved in section 5.2 and

section 5.3. Section 5.4 proposes the similarity graph matching framework to analyze

node similarity based graph matching algorithm uniformly.

Section 5.1 Graph Matching Problems in This Thesis

Firstly, the graph matching problems selected for this thesis have to be clearly

defined.

Section 5.1.1 Definition of graph matching problems

Before bringing forward the formulation of graph matching problem, two important

notions, the permutation and permutation matrices, have to be introduced firstly.

Definition 5.1: A.permutation p is an one-to-one function from {1, 2,..., n} to itself.

(1 2 3 4 5^
For example, denotes the permutation that maps each number in

\ T1 J i. J ** I

66

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

first row to its corresponding number of second row, such as, 1 to 4, 2 to 3. A

permutation p can be simply denoted as a vector (p(l), p(2), ..., p(n))T. So the

12345^
permutation

43152
can be simply written as vector (4, 3, 1, 5, 2) .

The set of all permutations of n elements is denoted as SG(n).

Let p and q be two permutation vectors of n elements and M be a n-by-n matrix then

M(p, q), M(p, :) and M(:, q) denote the matrix whose (i, j)-th entry is the (p(i), q(j))-th,
(p(i), j)-th and (i, q(j)) entry of matrix M respectively.

Definition 5.2: A. permutation matrix P is a n-by-n matrix such that

ij) = l forallj=l,2, ...,n

2) P(i,j) = l fbralli=l,2,...,n

3)

And the set of all n-by-n matrices are denoted as Perm(n);

Definition 5.3: There is a natural one-to-one correspondence between the permutation
set SG(n) and the permutation matrices set Perm(n) defined as:

s2p: SG(n)^Perm(n) such that s2p(p)=In(p,:),

p2s: Perm(n) ->SG(n) such that p2s(P)=Px(l,2,. . .,n)T,

for every permutation peSG(n) and permutation matrix PePerm(n) (see glossary).

So in the rest of the thesis, we will use the lower case p or q to denote a permutation
and the upper case P or Q to denote its corresponding permutation matrix.

For example the corresponding permutation matrix of permutation vector (4, 3, 5, 2)T

67

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

00100

00000

is U(4,3,1,5,2V,:)= 01000

10001

00010

Proposition 5.1: Let p be a permutation. P is the corresponding permutation matrix, then

for every n-by-n matrix M

M(p, :)=PxM and M(:, p)=MxPT

Now considering two graphs G and H with same size n, the graph matching problem

is finding the optimal permutation from the nodes of G to nodes of H to minimize their

"difference".

For any permutation p, these "differences" can be described by

|G-H(p,p)||

Where |«| can be any matrix norm. In this thesis, we choose the Frobenius norm,

which is a popular choice used in [Umel988, Alml991, Wyk2002]. An alternative

choice is LI -norm that can be found in [AD 1993].

Definition 5.4: |U| denotes the Frobenius norm. For every complex matrix M,

HF =JZK
V i'J

Proposition 5.2: Let A, B, M be complex matrices, U and V be unitary matrices then:

A + B||F <||A||F+ ||B||F

I|ABM||A||F ||B||F

68

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

|real(M)|+|imag(M)|£

M + M*
2

2

+

F

M-M*

2

2

F

Proof is trivial.

So the "difference" of two graphs under permutation p can be rewritten as:

|G-PHPT ||

And the attributed graph matching problem can be formulated as:

m

args
PePerm(n)

(5.1)

where Gk, HkeRnxn are the k-th adjacency attributed matrices of attributed graphs G

and H respectively.

This definition is widely used in [Wyk2002, Alml991, and Umel988].

As a special case for m=l, the formula (5.1) reduces to the so called weighted graph

matching problem :

args min G-PHP1
PePerm(n)

(5.2)

Where Q HeR are the adjacency weighted matrices of weighted graphs G and H

Obviously, algorithms for attributed graph matching can be directly applied for

weighted graph matching problems, but not vice versa. However, all the matching

algorithms discussed in this thesis are all applicable for the attributed graph matching

69

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

problems. So in thesis, we pay more attention to the weighted graph matching problems

(5.2) because of its simplicity, and point out how the algorithms are revised for general

attributed graph matching problems (5.1)

Section 5.1.2 Random generation of matrices

Since the graph matching problem is NP-complete [GJ1979, Abdl998, MB1998,

GR1996], all the existing polynomial algorithms fail to work for some cases. Therefore,

it is important to provide statistical evaluations showing the performances and

limitations of the matching algorithms. But, first of all, we need an algorithm to generate

random matrices as samples for graph matching algorithms testing.

The probability distribution of the samples directly influences the statistical

evaluations of these graph matching algorithms. So every evaluation should be provided

together with the probability distribution of its samples or with the random matrices

generating algorithms which actually give the probability distribution in some implicit

form.

Although there are many algorithms for generating orthogonal matrices [Heil978,

Stel980, TT1982], unitary matrices [Zycl994, PZK1998], correlation matrices [DH2000,

DHST2005] and general matrices [CN1997, Mez2007], in this thesis, we shall choose a

simpler way to generate certain kind of random matrices based on the following two

reasons:

• Reduce the computational complexity in order to test enough samples.

• It's hard for one to judge which distribution is better without knowing the real

problem to be solved.

For our experiments, it is important to randomly generate general real and

symmetric matrices, which is implemented in Matlab as following:

70

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Table 5.1 Generating real matrices

function y=Greal(n,type)
//type=0 for sparse matrix.

y=rand(n);
if type==0

y=y.*(rand(n)<l/n);
end

Table 5.2 Generating symmetric matrices

function y=Gsym(n,type)
//type=0 for sparse matrix.

A=rand(n);
if type==0

A=A.*(rand(n)<l/n);
end
y=(A+A')/2;

Although these programs are very simple, it is important for repeating all the

following experiments in this thesis.

Section 5.1.3 Evaluation criterions

To evaluate a given graph matching algorithm, we use two most important criterions,

namely mean error and computational time.

Definition 5.5: Let A be a matching algorithm, for a given graph pairs G and H, the

computational error of the algorithm A is defined by:

(5.3)Error(A,QH)= G-PAHPj - min G-PHP'
V ' 7 II A A llF Peperm(n)H HF

where PA is the optimal matching calculated by algorithm A.

And the mean error is defined as the expected value of certain graph classes, that is

71

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Mean-error(A)=Expectation(Error(A, G, H)),

where G and H are taken as random variables.

In further experiments, the mean error of a matching algorithm is not gained by the
theoretical deduction but via numerical simulation.

Section 5.1.4 Comparison of several graph matching algorithms

Firstly, we compared several standard graph matching algorithms including the
eigen-decomposition method (EDGM), the symmetric polynomial-transformation
method (SPGM), the hubs and authorities method (HAGM) and the least square
Kronecker product-successive projection method (LSKPGM).

72

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 1: matching isomorphic graphs

500 isomorphic graph pairs are generated with size from 5 to 20 and the result is

illustrated as figure 5.1 for dense graphs and figure 5.2 for sparse graphs.

1_e
HI
C
(0
0)
E

0.8

0.6

0.4

0.2

01

-0.2

-0.4

-0.6

-0.8

.1

— * — LSKPGM
— 9 — HAGM
-^ — SPGM

~ D EDGM

-

_

9 —— [IB —— [IB ——— SB —— SB —— SB —— SB —— SB —— SB —— I§B —— HB ——— SB —— SB ——— SB ——— &8 ——— §
y mA NmA N*M y^ M^.< WM trM w^n N?M HmA MTV M^V t*^v u^^ y;

-

-

-

-

I I

10 15
Size of the Graph

20

Figure 5.1 LSKPGM, HAGM, SPGM and EDGM for matching dense isomorphic graph

pairs

73

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

e
UJ
c ro
0)

LSKPGM
HAGM
SPGM
EDGM

Size of the Graph

Figure 5.2 LSKPGM, HAGM, SPGM and EDGM for matching sparse isomorphic

graph pairs

Figure 5.1 shows that all these algorithms can match dense isomorphic graph pairs

perfectly. They almost all get zero error matching result. In statistical sense,

isomorphism between dense graph pairs is easily found. But the case is different for

sparse graph pairs. As shown in figure 5.2, only the SPGM algorithm matches sparse
isomorphic graph pairs effectively, while others get ascending matching errors when the

size of graph increases.

So the SPGM can be a candidate for our scenario graph matching.

74

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 2: matching non-isomorphic graph pairs with perturbations

The same as test 1, 500 isomorphic graph pairs G and H are generated with size

from 5 to 20, for each pair, H is disturbed by adding a perturbation matrix E whose

entries are uniformly random real numbers in the range from 0 to +e. 8 is called

perturbation coefficient, which is set to be 0.10 in this test. The matching results are

shown as figure 5.3 for dense graphs and figure 5.4 for sparse graphs.

LSKPGM
HAGM
SPGM
EDGM

10 15
Size of the Graph

Figure 5.3 LSKPGM, HAGM, SPGM and EDGM for matching dense graph pairs with

perturbation coefficient e=0.10.

Figure 5.3 shows that for graph pairs with small distance, only the EDGM algorithm

get a satisfied matching result, while others all get large matching errors.

75

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

HI
c ro
0)
E

* LSKPGM
HAGM

*—SPGM

EDGM

10 15
Size of the Graph

Figure 5.4 LSKPGM, HAGM, SPGM and EDGM for matching sparse graph pairs with

perturbation coefficient e=0.10.

Figure 5.4 shows that all these four algorithms fail to work for sparse graph pairs
with small distance. Unfortunately, we do have to solve such kind of graph matching
problems since the scenario graph pairs are usually sparse with small distance.

So the EDGM algorithm will be another candidate for our scenario graph matching,

where it has to be revised for sparse graph pairs.

76

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 3: the computational time of these algorithms

Graphs are generated as test 1, and the result is illustrated as figure 5.5.

40

35

30

25

20

15

10

B——B——B——B——B

0)
'•£3

15
0_
O

H*— LSKPGM
-0—HAGM
-*— SPGM
-B— EDGM

10 15
Size of the Graph

Figure 5.5 CPU time consuming comparison of LSKPGM, HAGM, SPGM and EDGM

Figure 5.5 shows that EDGM algorithm costs the least computational time.

Conclusion

Based on these preliminary tests, the SPGM and EDGM algorithms are selected for

our scenario graph matching problems. But, SPGM algorithm only works well for

isomorphic graph pairs while EDGM only works well for dense graphs, so both of them
need to be improved for sparse non-isomorphic graph pairs.

77

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Section 5.2 Eigen-decomposition Graph Matching Algorithm and Its

Improvement

Umeyama [Umel988] presented an Eigen-decomposition based graph matching

algorithm for matching both undirected and directed graphs.

Section 5.2.1 Eigen-decomposition graph matching algorithm

Matching undirected graphs

Let G and H be two weighted undirected graphs. The EDGM algorithm has three

dominated steps:

1) Calculating the Eigen-decomposition of adj acency matrix.

Theorem 5.1: (diagonalization of symmetric matrices) for every symmetric real matrix
TM there exists a real orthogonal matrix O such that D= O MO is a diagonal matrix.

[HJ1985]

From above well known that symmetric matrices G and H can be decomposed as
r-p ___ rp ___ ___G=VDoV and H=WDHW , where DG and DH are the diagonal matrices of the

eigenvalues (in ascending order) of G and H, respectively, and V and W are two
orthogonal matrices.

2) Construct the node similarity matrix

The similarity matrix is constructed by:

S=|v|x|w|T (5.4)

where |v| , |W| denote the matrices whose (j,k)-entry is the absolute value of

corresponding entry of matrices V and W, and S(j,k) means the similarity of the j-th node
of G and the k-th node of H.

78

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

3) Calculate the maximum similarity match.

The optimal matching is calculated by:

args
PePerm(n)

which is called the maximum linear assignment problem.

Given a real matrix M, the maximum linear assignment problem is defined as

max_ assign(M) = arg s max ^ M(i, j) x P(i, j)
PePerm(n) j =j

And the minimum linear assignment problem is defined as

n
min_ assign(M) = args min]TM(i,j)xP(i,j)

PePerm(n) jj=i

Obviously that max_assign(M)=min_assign(-M).

The (maximum or minimum) linear assignment problem can be efficiently solved by
Hungarian algorithm [Kuhl955, muni 957, AMO 1993].

Matching directed graphs

The process of applying the EDGM algorithm for directed graphs is almost the same
as that of undirected graph except the adjacency matrix is replaced by its Hermitian

matrix.

Let G be a directed weighted graph. An important point is that diagonalization
theorem 5.1 doesn't holds for general real matrix. In other words, directed graph G may

not be diagnoalizable in general cases. So in [Umel988] a Hermitian matrix of a graph

G is proposed:

79

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

G-G1

Obviously that Ht(G) is a Hermitian matrix for every real matrix G

Theorem 5.2: (diagonalization of Hermitian matrices) for every Hermitian complex

matrix M there exists a real Unitary matrix U such that D= U*MU is a real diagonal
matrix. [HJ1985]

So Hermitian matrices Ht(G) and Ht(H) can be decomposed as Ht(G)=VDGV* and
__ <fc

Ht(H)=WDHW , where DG and DH are the diagonal matrices of the eigenvalues (in

ascending order) of G and H, respectively, and V and W are two unitary matrices.

The second and third step is the same as undirected graphs.

Matching of attributed graphs

The EDGM algorithm is presented only for weighted graph matching, hi fact it can

be easily extended for attributed graph matching.

Let {Gk:l<k<m}be a attributed graph, where Gk is the k-th adjacency matrix.

Similarly as directed graphs, assume that k-th eigenvector matrix of Ht(Gk) is Vk, then

Similarity of attributed graph G and H can be constructed as

s=|v|x|w|\where|v|=[|v1 | N ••• vm]' and l wl = [lwi| |w2 | ••• wm]

And the optimal matching is calculated by Hungarian algorithm [Kuhl955,

mun!957,AMO1993].

Section 5.2.2 Computational complexity

The computational complexities of the three dominate steps are

1) Calculating Eigen-decomposition of n-by-n matrices : O(n3) [GV 1 996]

80

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

2) Calculating matrices multiplication: O(n3) [Knul998]

3) Using Hungarian algorithm: O(n3) [AMO1993]

So the total computational complexity is O(n3).

Section 5.2.3 Three limitations

The EDGM algorithm only work well for graphs satisfying all the three constraints:

1) Nearly Isomorphic

2) Isolating eigenvalues.

3) Dissimilar rows of absolute eigenvectors.

We use some examples to show how the EDGM algorithm fails to work if any of the
constraint is not satisfied.

The need of the "Nearly Isomorphic" constraint

The same as above tests, 500 pairs of isomorphic graphs G and H are generate. For
each pair G and H, they are made no longer isomorphic to each other by means of
perturbing H with a noise E, ranging from 0 to 0.15. The result is illustrated in figure

5.6.

81

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

HI

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Noise Amplitude

Figure 5.6 Mean error of EDGM algorithm relative to noise

From figure 5.6, we can see that the calculating error of the EDGM algorithm grows

quickly when the noise amplitude or the size of graph increases, which confirms our

claim that the "nearly isomorphic" property is needed for EDGM algorithm.

The need of the "Isolating Eigenvalues" constraint

Here, it shall be demonstrate by example that without the "Isolating eigenvalues"

condition, the EDGM method may fail to work. Consider the following graph pair:

82

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

pi2
T«7

N^_ .X

2 ^2
3

H

Figure 5.7 Graph pairs with multiple eigenvalues.

The adjacency matrices of G and H are:

G =

2000

0200

0023

0002

,H =

2000

3200

0020

0002

G and H are isomorphic since G = PHPT for P =

0001

0010

0100

1000

Let A=Ht(G) and B=Ht(H), the eigenvalues of A and B are

= A,(B)=[-0.1213,2,2, 4.1213]

We get the approximate solution:

PE =Hungarian(|v||w|T) =

0001"

0010

1000

0100

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

|G-PEHPg I = 4.2426, the EDGM algorithm fails to find the best solution, that is,

an isomorphic correspondence between G and H which gives a distance of 0 instead.

The need of the "Dissimilar Rows" constraint

Now, we show that "dissimilar rows constraint" is also needed. For instance

1

H

Figure 5.8 Graphs with similar rows of absolute eigenvector

The adjacency matrices of G and H are:

0100

0000

0030

0001

,H =

1000

0300

0001

0000

G and H are isomorphic since G = PHPT for P =

0001

0010

1000

0100

Let A=Ht(G) and B=Ht(H). The eigenvalues of A and B are

= A,(B) =[-1.2153, 2.6386, 3.6255, 5.9512],

84

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

which are all single and well isolated.

The absolute eigenvectors of Ht(G) and Ht(H) are:

V =

0
0

2 0 0
2 U U

01
10

0
0

w =

0
0

010
001

0 0

And the solution from EDGM algorithm is:

PE = Hungarian(|v||w|T) =

0001

0010

0100

1000

G - PHPT = v2 , the algorithm still fails to find the best permutation because the

matrices \V I and \W\ both have two same rows.

Section 5.2.4 Improvement

In order to theoretically explain why the three constraints are necessary and extend

Umeyama's algorithm for general cases where some of the constraints are not satisfied,

we introduce here a new approximate formula to graph matching problems.

The approximate formula

Given a Hermitian matrix A with A,(A) = [A,, = • • • = Xnl < A,nl+1 = • • • = Xnl+n2 < • • • < A, n]

as its eigenvalues, that is, matrix A has k distinct eigenvalues with repeating times

m,...,nk, respectively, where n^n, we can decompose matrix A=VDAV) where
i=l

V=[Vi,. . .,VJ, and Vj is the eigen-space of the j-th distinct eigenvalue of matrix A.

85

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

A simple but important property for the eigen-decomposition is that
_ .fe

A=(VX)DA(VX) is also an spectral decomposition of matrix A, for every unitary matrix
XeU(ni...,nk), where U(ni,...,nk) denotes the set of all block matrices whose j-th
diagonal matrix is an nj-by-nj unitary matrix.

Proposition 5.3: Let Hermitian matrix B=WDeW*, we have the following theorem:

||A-PBPT ||<||PW-VX|F (||DA ||F +|DB |F)+|DA -DB |F (5.5)

Proof:

IA - PBPT || F = |(VX)DA (VX)* - PWD B W*PT|
IF

(VX)DA (VX)* - (PW)DA (VX)*) + ((PW)DA (VX)* - (PW)DB (VX)*)

+ ((PW)DB (VX)* -(PW)DB (PW)*

|(VX)DA (VX)* -(PW)DA (VX)*|p +|(PW)DA (VX)* -(PW)DB (VX)*||p

+ |(PW)DB (VX)* - (PW)DB (PW)* ||p

|(VX - PW)DA (VX)* ||F + |(PW)(DA - DB)(VX)* ||p + |(PW)DB (VX - PW)*

< |(VX - PW)|p |DA I + ||DA - DB ||p + (VX - PW)* || [DB||F

<|PW-VX||F (|DA |F+ |DB |F) + |DA -DB ||F

So it is reasonable to use the following approximate formula to solve graph
matching problems:

arg s min |PW - VX||F (5.6)
PePerm(n)
XeU(n,,...,nk)

86

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

An error estimation theorem for the approximate formula

We shall theoretically prove the accuracy of solving graph matching problem (5.2)

by approximate formula (5.6).

Theorem 5.3: Let A and B be two Hermitian matrices with eigenvalues

- K v < A, 2 < • • • < Xn and X(B) - P T < P2 < • • • < pn , then

(i) (Weyl-Lidskii [Lidl950]) \K. -p^fA-

(ii) Davis-Kahn sin Q theorem [DK1970] dF (Vt , Wt) = fsin Q(V,, W,)||F <
R

(iii) dp (V, , W;) = min V, - W^ < dF (V,, W,
u

Where V = [V1 ,V2] and

VHAV = ~D A1 0A,l

. 0 DA>2
, WHBW -

"DR1 0
0,1

0 DB2

be two unitary matrices. Such that

, R = BV1 -V1 D A>1 , and

8 = min{|X-p|:X.eMDAjl),pEX) (DB>2)}, X,(DAfl)c[a,b],A,(DB>2)c<R\[a,b], a,be9?is real

field.

The theorem 5.3 only discusses the perturbation of an eigenvalue or its eigenspace.

In our case, we have to prove the total perturbation of all eigenvalues or eigenspaces.

Theorem 5.4: Let A and B be two Hermitian matrices with eigenvalues

(i) (Hoffman-Wielandt [HW1953]) e(A,B) - < A-B (5.7)

2 A-B

87

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Where the eigenvalues and eigenspaces of matrices A and B are A A ,AB , V, W

respectively, which are split into k groups as:

,"•{••• An)] > AB KH>---"nl}>Kl+l/-^nl+n2}'"-{---,Tln}]

'[VpV^-.Vj] , W = [W1 ,W2 ,-,Wj] , such that max(AAj)<min(ABj+1) and

mind^-ri. :Xk e A Ak ,rh e ARl.}
j^^. «-| K IJ K J\,K.' IJ D,J-'

Proof: (Since only (ii) and (iii) are our theorem, so here we just prove (ii) and (iii))

(ii) Let RJ = BVj - VjDA>j then from theorem 5.3 (ii), we get

i- If
J J A 'J||p

||B[V1 ,V2 ,...,Vt]-[V,,V2 ,...,Vk]DA |p = |A-B|p
6 8

From theorem 5.3 (iii) and theorem 5.4 (ii), one gets:

88

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Symmetrically, one can get

min ||W-VU|| <V2" " "F (5.8)
UeU(nlv..,nk)" "F 5

Based on formula (5.5), (5.7) and (5.8), one can easily prove the following
important error estimation theorem.

Theorem 5.5: Let G and H be two weighted matrices. If there exists a permutation PO

such that G = P0HP0T + E. Let and (P, X) be the optimal solution of (5.6), then

/ llr-k II . NT-W II \— —T
G-PHP <

IF
(

Proof: Let A=Ht(G) and B=Ht(H) then from propositions.2

|A-P0BP0'|F = G + GT - G - GT P0HP0T + (P0HP0T)T -- P0HP0T - (P0HP0T)
{ ^

= |G-P0HP*|F =|E|F

So from formula (5.8) we get

min P0W-VX <
X6U(n1;...,nk) M U IIF 5

Since (P,X) minimize formula (5.6),

pw-vx <

So from formula (5.5)

A - PBPT < PW - VX| (|DA ||p + |DB ||F) + |DA - DB||F

89

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Theorem 5.5 shows that then the error of the formula (5.6) solving the weighted

graph matching problems (5.2) is linearly dependent on the distance of the two graphs G

and H. Especially, when G and H are isomorphic, the solution of formula (5.6) is the

isomorphism of G and H.

For the attributed graph matching problems (5.1), we have the similar theorem.

Theorem 5.6: Let {Gj},^},!^ j<m be two attributed graphs and there exist a

permutation matrix P0 and a real number s > 0 , such that G - P0H .P0T < 8 . If (P, X) beii j j up

the argument minimizing

min P^W^W^.-^WJ-W^V^.-^VJX (5.9)
PePeim(n) " lr
XeU(iv-,nt)

Where tk = |MAk)||F +|MBk)|F , then

Where K = max 8k

It can be easily seen from the theorem 5.6 that if the distance between graph G and

H is small enough, then the solution gained from formula (5.6) will be satisfactory. In

other word, theorem 5.5 guarantees the accuracy of the approximate formula (5.6).

Deducing Umeyama's formula

In fact, formula (5.6) is an optimization on the space of permutation matrices and

90

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

unitary matrices, which is a mixed 0-1 non-linear programming. Thus, even for the case

that all the eigenvalues of matrix A and B are single, it is still not easy to reach the

optimization for all graph matching problems. For the case where all the eigenvalues of

matrix A and B are single, formula (5.6) can be specified as:

args min|P[w 1 ,...,wn]-[v1 x 1 ,...,vn xn]|F (5.10)
PePerm(n)
X 1>..,Xn €U(l)

where U(l) is the set of all unit complex numbers.

To reach (5.10), we can minimize the distance of the absolute values as an

approximation:

args min|P[|w 1 |,...,|wn |]-[|v1 |,...,|vI1 |4 (5.11)
PePerm(n)

In this way, we get Umeyama's EDGM algorithm.

The above induction shows the relationship between Umeyama's method and the

approximate formula (5.6), and therefore provides a theoretical support to the claims of

three constraints of EDGM algorithm. In fact, on one hand, formula (5.6) provide a

approximate solution to nearly-isomorphic graph matching with a guaranteed accuracy

as specified by theorem 5.3; on the other hand, with the additional "isolating

eigenvalues" constraint, formula (5.6) turns out to be formula (5.10), which, with the

additional constraint "Dissimilar rows", leads to formula (5.11) that is equivalent to

Umeyama's EDGM algorithm.

Unitary invariant meta-basis for Euclid space

In formula (5.6), the optimization on both permutation matrices and unitary matrices

makes the problem hard to be solved. However, if the unitary matrix X can be

determined somehow beforehand, the problem will become much easier.

The requirement of the unitary matrix X for formula (5.6) is due to fact that there

91

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

are infinite orthonormal basis for a given Euclid space, rather than a unique one. We

shall use an n-by-m matrix V to denote the orthonormal basis of m-dimensional Euclid

space in n-dimensional complex space Cn , where each column of V is a vector of the

basis. Obviously, each matrix VX, XeU(m) is also an orthonormal basis of the Euclid

space. If we can define a meta-basis which is unique for each Euclid space, then X could

be eliminated from formula (5.6).

__ —*• rr-i

Proposition 5.4: Let In =[1, 1,.., 1] be the n-dimensional vector with all its elements as

1, then the vector v=W ln is a unitary invariant vector which is unique for each

Euclid space V.

If the vector v is not a zero vector, then we get a unitary invariant orthonormal

vector of Euclid space V. Using the Gram Schmidt Ortho Normalization, the Euclid

space V can be orthogonally decomposed as V = v 0 Z. The same as Euclid space V, we

can define a unitary invariant vector for space Z. In this way, we define the unitary

invariant meta-basis for a Euclid space V as shown in table 5.3.

We call the matrix V defined here a meta-basis of the given Euclid space V. It is

important to note that, in some cases, V may be a real orthonormal basis of the given

Euclid space, while in other cases, V is just a group of orthonormal vectors of the given

Euclid space (not necessarily to be a basis - it even can be empty). Obviously, for each

Euclid space V, the meta-basis defined in this way is unique.

92

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Table 5.3 Algorithmic definition 5.6 of the meta-basis

Function V=meta-basis(V)
[n, m]=size(V) ; // V is a n-by-m matrix.

V = VV'ln .
/

if norm(v)"0
V'=[]; // V is empty, fail to find,
return;

else if m ==1
V =v/norm(v);
return;

else
v=v/norm(v) ;

V =vtt>Z ;//orthogonal decomposition.
V =[v, meta-basis(Z)]; //recursively

here.
end;

end;

Unitary invariant meta-basis graph matching algorithm

Formula 5.6 can be rewritten as

args min|P[W1 ,...,Wk]-[V1 U1 ,...,VkUk]||I
PePerm(n)

(5.12)

where Vj is the eigen-space of the j-th eigenvalue of matrix A=Ht(G), and Wj is the

corresponding block matrix formed in the same manner as that of Vj, rather than the

eigen-space of the j-th eigenvallue of B=Ht(H).

To eliminated U) in formula (5.12), we use the meta-basis Vj' of Vj and meta-base

Wj'of Wj , rather than Vj and Wj themselves. In this way, since the meta-base is not

dependent on unitary transformation, therefore, formula (5.12) can be simplified as:

args
PePerm(n)

(5.13)

N.B. In the case where the meta-basis of Vj and Wj have different numbers of

93

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

columns, columns from the bigger one will be deleted to make them same.

The formula (5.13) can be simply solved by Hungarian algorithm. Such graph

matching algorithm is named unitary invariant meta-basis graph matching algorithm

(referred as MBGM algorithm).

Section 5.2.5 Comparison

It has been illustrated that the EDGM algorithm can not work well for sparse graph

matching problems. In this section, we compare the MBGM algorithm with EDGM

algorithms for sparse graph matching.

Test 1: matching sparse isomorphic graphs

0.45

0.4

0.35

0.3

0.25
LLJ

-B— EDGM

-* MBGM

10 15
Size of the Graph

20

Figure 5.9 EDGM, MBGM for matching isomorphic sparse graph pairs

94

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 2: matching sparse graph pairs with perturbations

i
LLJ
C
03
Q)
E

10 15
Size of the Graph

20

Figure 5.10 EDGM, MBGM for matching sparse graph pairs with perturbation

coefficient 8=0.10

95

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

i
LU

03
0)

0.55

0.5

0.45

0.4

0.35

0.3

0.05

-B— EDGM
-*— MBGM

10 15
Size of the Graph

Figure 5.11 EDGM, MBGM for matching sparse graph pairs with perturbation

coefficient 8=0.15

96

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 3: CPU time comparison

B— EDGM
MBGM

10 15
Size of the Graph

Figure 5.12 CPU time Consuming of EDGM and MBGM

Section 5.2.6 Conclusion

The tests in section 5.3.5 show that the MBGM algorithm improves the matching

accuracy to a certain extent. Especially for matching sparse isomorphic graph pairs, the

MBGM algorithm almost gets zero error matching result.

But for matching graph pairs with some perturbations, the MBGM algorithm still

has large matching error. Besides, the MBGM algorithm takes more CPU consuming to

get such an improvement of accuracy.

97

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Section 5.3 Symmetric Polynomial Transform Graph Matching

Algorithm and Its Improvement

In [Alml991], Almohamod presented a method based on fundamental symmetric

polynomials for weighted graph matching problems.

A symmetric polynomial is a transformation that maps a set of input data (roots of

the polynomial) into a set of coefficients that are invariant under permutation of the

input data set. In [Aim 1991], a symmetric polynomial is derived for each node in a

graph by considering the weights of the node as the roots of the polynomial and these

nodes are compared one-to-one through their polynomial coefficients.

Section 5.3.1 Symmetric polynomial transform graph matching algorithm

Matching of weighted undirected graphs

___ ^^ ^ >T1 i-p

Let G and H be two weighted undirected graphs, which means G=G and H=H .

The SPGM algorithm has three dominated steps:

1) Constructing node-attribute matrices.

Considering the j-th node of G, it has the weights

The symmetric polynomial Q(G(j,l), G(j,2), . . ., G(j,n)) is defined by

,l), G(j,2), ..-, GG,n))=Qj(x)=n(x-G(j,k))
k=l

which has the following coefficients:

Qj(x)={CG(y), CG(j, 2),..., CG(j, n)}

The resulting coefficients matrix CG, of size nxn, is called a node attribute matrix of

98

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

G. For graph H, the same node-attribute matrix can be constructed as CH-

2) Constructing the node distance matrix

At this stage, it is not known which node in graph H matches the j-th node of graph
G. But a node distance matrix D can be constructed by

Da,k)=J£(CG (J,l)-CH (k,l))2 (5.14)
1=1

Where D(j,k) means the distance of the j-th node of G and the k-th node of H.

3) Calculating the minimum distance match.

Take the matrix D as the cost matrix of assigning n workers to n tasks, and find the
cost minimizing assignment. This can be solved by Hungarian algorithm efficiently.

Matching of weighted directed graphs

The process for applying the SPGM algorithm for directed graphs is almost the
same as undirected graph except the construction of node attribute matrices.

Let G be a directed weighted graph. Then the weight of the out-edge of j-th node is

which differs from the in-edge of j-th node

So the j-th node of graph Q two polynomials can be constructed as

Qj(x)=fl(x-G(j,k)) qj(x)=n(x-G(k,j))
k=l k=l

Therefore, two coefficients matrix CRo and CCo is constructed.

99

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

The final node-attribute matrix is

The second and third steps are the same as that for undirected graphs.

Matching of attributed graphs

The SPGM algorithm is presented only for weighted graph matching. In fact it can

be easily extended for attributed graph matching.

Let (Gk:l<k<m}be a attributed graph, where Gk is the k-th adjacency matrix.

Similarly as directed graphs, the k-th attribute matrix of graph G is

And the node attribute matrix of graph G is

CQ— [CRQi, CCc,!, CRQ2> CCQ2> ..., CR^m,

Then the node distance matrix can be constructed and the optimal matching can be

calculated by Hungarian algorithm.

Section 5.3.2 Computational complexity

The computational complexities of the three dominate steps are

1) Calculating coefficients of 2n polynomials: O(n3) [Alml997]

2) Calculating the distance matrix (5.14): O(n3)

3) Using Hungarian algorithm: O(n3) [AMO1993]

So the total computational complexity is O(n3).

100

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Section 5.3.3 Analysis

The spirit of SPGM algorithm is exploring some kinds of node similarity or distance

based on the node attribute.

The node attribute of a graph must be constructed independent on the order of its

nodes. In other words, the nodes of a graph G can be numbered in some different way,

then one can get different adjacency matrix, but the attribute of a certain node should not

effected by such re-numbering.

Take the j-th node of G as example, although the weights G(j,l), G(j,2) may change

if other nodes are re-ordered, the set {(G(j,l), G(j,2), ..., G(j,n))} remains the same, that

is the out-edge weights of j-th node, so does in-edge weight set { (G(l,j), G(2,j), ...,

G(n,j)) }, so these set can be select as the as the node attribute of j-th node. The SPGM

algorithm uses the coefficients of the polynomial Qj(x) and q,(x) as the attribute of j-th

node, which is equivalent to the set.

For example, figure 5.13 shows that a weighted graph Gl with four nodes has been

re-ordered to G2. The out-edge weights of node YI in graph GI is (0, 1, 2, 3), which has

change to (0, 3, 2, 1) in graph G2. But they are still the same elements just been

re-ordered.

re- order

G2

Figure 5.13 Re-order of the nodes of a graph

101

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

For the undirected graphs, since the out-edge weights are the same as the in-edge

weights, so only the out-edge weights are selected to construct the node attribute

matrices.

Section 5.3.4 Constraint

From the tests in section 5.1.4, it is easily can be seen that the SPGM algorithm

works well only for isomorphic graph pairs. The matching error grows with the distance

between two graphs becomes large.

Section 5.3.5 Improvement

It has been pointed out that the SPGM algorithm tries to construct node similarity

based on some kind of node attribute. Since the sets {(G(j, 1), G(j, 2), ..., G(j, n))} and

{ (G(l, j), G(2, j), ..., G(n, j))} doesn't effected by the order of the nodes of graph G. So

the SPGM algorithm chooses the coefficients of the polynomials transform of the two

sets.

One may ask is it possible just use the two sets {(G(j, 1), G(j, 2), ..., G(j, n))} and

{(G(l, j), G(2, j), ..., G(n, j))} as the node attribute of node j. The answer is positive,

and we present a new sort based graph matching algorithm (STGM), which has three

dominated steps:

1) Constructing node-attribute matrices.

The node attribute of j-th node of G, is constructed as:

[sort (G(j, 1), GO, 2), ..., G(j, n)), sort (G(l, j), G(2, j), ..., G(n, j))]

Where sort() means re-arrange the vector in ascending order

The resulting node attribute matrix

102

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

sort(G(l,l),G(l,2),...,G(l,n)) sort(G(l,l),G(2,l),...,G(n,l))

sort(G(n,l),G(n,2),...,G(n,n)) sort(G(l,n),G(2,n),...,G(n,n))

2) Constructing the node similarity matrix

The node similarity matrix S can be constructed by

S=CGxCHT (5.15)

Where S(j,k) means the similarity of the j-th node of G and the k-th node of H.

3) Calculating the maximum similarity match.

This is the maximum linear assignment problem which can be solved by Hungarian

algorithm efficiently.

The STGM simply takes the in and out edges weights as the node attribute,

constructs node similarity matrix by formula (5.15) and calculates optimal match by

Hungarian algorithm.

Section 5.3.6 Comparison

It has been illustrated that the SPGM algorithm can not work well for matching

graph pairs with perturbations. In this section, we compare the STGM algorithm with

SPGM algorithms for matching graph pairs with perturbations.

103

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 1: matching dense graphs with perturbation

3.5

-*— SPGM

-A- STGM

2.5

CD
C
CO
CD

1.5

size of graph

Figure 5.14 STGM, SPGM for matching dense graph pairs with perturbation coefficient

8=0.10

104

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

size of graph

Figure 5.15 STGM, SPGM for matching dense graph pairs with perturbation coefficient

8=0.20

105

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 2: matching sparse graphs with perturbation

0.35

10 15
size of graph

Figure 5.16 STGM, SPGM for matching sparse graph pairs with perturbation coefficient

£=0.10

106

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test3: CPU time comparison

10 15
size of graph

Figure 5.17 CPU time Consuming of SPGM and STGM

Section 5.3.7 Conclusion

The tests in last section show that the STGM algorithm greatly improves the

accuracy of matching the non-isomorphic dense graph pairs and, to some extent,

improve the accuracy of matching non-isomorphic sparse graph pairs. Besides, the CPU

time consuming of the STGM algorithm decreases instead of increasing compared with

SPGM algorithm.

107

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Section 5.4 Node Similarity Graph Matching Algorithms

We have noticed that the STGM algorithm gets a little matching error for matching

non-isomorphic sparse graph pairs.

In this section, we shall not improve the STGM or MBGM algorithms even better,

but discuss the difficulties in solving graph matching problems in such a way.

Instead of discussing constraints for each algorithm, we shall deal with them

together by the notion of algorithm framework.

Section 5.4.1 Node similarity graph matching framework

The node similarity graph matching framework (NSGM) is a general and abstract

method for solving graph matching problem.

Definition 5.7: Given two graphs G and H, the NSGM framework has the following two

significant steps:

I) Constructing node-similarity matrix S(G, H).

The entry S(G, H)(i,j) denotes the similarity of i-th node of G and j-th node of H. In

some cases, if a node-distance matrix D is provided instead of node similarity matrix,

then similarity matrix S can be simply set as -D or m-D, where m is the maximum

element ofD.

2) Calculating the maximum similarity match.

n

arg s max 2: SCi, j) x P(i, j) (5.16)
PEPenn(n) i,j=!

Requirement

One may ask whether the selection of node similarity function S(G, H) is arbitrary or

not. The answer is negative. Since the entry of S(G, H) denotes the similarity between

108

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

the nodes of graph G and H, the similarity must be independent on the order of the nodes

as discussed in section 5.4.3. So the node similarity function S must satisfy the following

important constraint:

Independence of Order I:

S(PGPT , QHQT) = P x S(G, H) x QT , for all P, Q e Perm(n) (5.17)

The independence of order I constraint is the most important and basic principal for

the node similarity graph matching framework and directly determine the applying scope

of the node similarity graph matching framework.

Section 5.4.2 Examples of node similarity based graph matching algorithm

In this section, we shall introduce some examples of node similarity based graph

matching algorithms.

Theorem 5.7: the following functions are all node similarity functions.

n n

k=l 1=1

3) S3 (G, H) = unvec((H (2) G + HT ® GT)°° x vec(lnxn)),

where m can be any natural number andlnxn is a n-by-n matrix with all entries 1,

® denotes the Kronecker product operator and vec() and unvecQ denote the

vectorization operator and its reverse-

The following proposition is important to prove the above theorem.

Proposition 5.5: Let G be a n-by-n matrix, P and Q be two permutation matrices with p,

q as their corresponding permutation vectors, then

109

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

PGQ(i,j)=G(p(i),qG)) (5.18)

Where PQG(i, j) stands for the (i, j)-th entry if the matrix M=PQG.

Proof to Theorem 5.7:

1)

S, (PGP , QHQT)(i, j) = - PGPT (i, i) - QHQ

n n

= PS1 (G,H)Q(i,j)

2)

S7 (PGPT , QHQT)(i, j) = y y PGPT (k, i) x QHQT (1, j)
2, V " ^v. ^v. / V ~ Js ^^*d £^^i

k=l 1=1

-ZXG(p(k),p(i))xH(q(l),q(j))
k=l 1=1

= XXG(k,p(i))xH(l,q(j))
k=l 1=1

= S2 (G,H)(p(i),qa»

= PS2 (G,H)QT (i,j)

3)

It is well known [Will997] that

vec(AXB) - BT ® Avec(X)

Let Xm(G, H)= unvec((H ® G + HT ® GT)m x vec(lnxn)), then

X0(Q H)=lnxn, Xm+i(Q H)=GXm(G, H)H+GTXm(Q H)HT and S3(Q H)= lim X
m->oo m

110

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

We prove that

Xm(PGPT, QHQT)=PXm(Q H)QT (5.19)

by induction on m.

Obviously, formula (5.19) holds for m=0

Assume (5.19) is true for m=k then

Xm+1 (PGPT ,QHQT)

- PGPTXm (PGPT , QHQT)QHQT + PGTPTXm (PGPT , QHQT)QHT QT

- PGPTPXm (G,H)QTQHQT +PGTPTPXm (G,H)QTQHTQT

= PGXm (G,H)HQT +PGTXm (G,H)HT QT

= p(GXm (G,H)H + GTXm (G,H)HT)QT

= PXm+1 (G,H)QT

Which means (5.19) is true for m=k+l.

From the induction principal (5.19) holds for all integer m.

S3 (PGPT ,QHQT) - lim Xm (PGPT ,QHQT)
m—»oo

= lim PXm (G,H)QT = P lim Xm (G,H)QT = PS3 (G,H)Q1
m—»°o

The function Si, 82 and 83 have been proved to be node similarity functions, so we

can get three corresponding node similarity based graph matching algorithms. It is easily

can be seen that the 83 node similarity function based graph matching algorithm is

exactly the hubs and authorities graph matching algorithm proposed by Kleinberg

[Kiel999]. We also get the following theorems showing that the S2 node similarity

function based graph matching algorithm is exactly the least square Kronecker

product-successive projection graph matching algorithm proposed in [Wyk2002].

ill

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Theorem 5.8: The 82 node similarity function based graph matching algorithm is the

least square Kronecker product-successive projection graph matching algorithm.

Proof: for the LSKPGM algorithm, the node similarity S(i, j) is calculated by

i*n j*n

I I
j :_

n

Where O 1 = @+n, 0 =
vec(H,)

vec(HJ
and n =

For the weighted graphs, where m=l, above formulae degrade to

vec(G)vec(H)
vec

i*n J*n n n

Z Z °k>i G(k,i)xH(l,j)
So the node similarity S(i, j)- k=(M)n+1HH)n+1—— - ̂ ^————————

n n|vec(H)|

Since the solution of maximum linear assignment doesn't effect by a positive scalar,

so the LSKPGM algorithm coincide with the S2-NSGM algorithm.

One may notice that some graph matching algorithms derived from different fields

can be unified by the node similarity graph matching framework. In next section, we

shall introduce more node similarity graph matching algorithms.

Section 5.4.3 Node attribute functions

Obviously, to define node similarity S(Q H), one has to consider both graphs G and

H at the same time. It will be much easier if one can define this similarity by dealing

112

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

with two graphs separately. So a new important notion node attribute function will be
introduced.

Definition 5.8: A node-attribute function is a function f: Rnxn -> Rnxm which satisfies

Independence of Order II:

f (PGPT) - Pf (G), for all G e Rnxn and P e perm(n) (5.18)

Intuitively, the weight matrix of a graph G describes the edge attributes and the node

attribute function f maps these edge-attributes to node attributes of graph G.

The independence of order II constraint has to be satisfied to make sure the node

attributes of a graph are independent on the order of its nodes.

Theorem 5.9: The following functions are all node-attribute functions:

4) f4(GXk,:Hsum(G(k,:)), sum(G(:,k))]

5) f5(G)(k,:)=[poly(G(k,:)), poly(G(:,k))]

6) f6(G)(k,:)=[sort(G(k,:)), sort(G(:,k))]

7) f7(G)(:,k)=di

Proof:

4)

f4 (PGPT)(k,:) = [sum(PGPT (k,:)), sum(PGPT (k,:

= [sum(G(p(k),p)),sum(G(p(k),p))]

= [sum(G(p(k),:)), sum(G(p(k),:

= f4 (G)(p(k),:)

= Pf4 (G)(k,:)

113

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Proof of 5) 6) is the same as 4).

7)

f7 (PGPT)(:,k) = di

,. PG'P1 = diag -

= Pdiag

= Pf7 (G)(:,k)

The next example is more difficult.

Theorem 5.10: Let f8 be a function calculated by the following three steps, then f8 is a

node attributed function satisfying independence of order II.

^^^ y"« T S~*\ S~+ T

1) Calculating the Hermitian matrix Ht(G) := ———— H————

2) Calculating eigen-decomposition of the matrix Ht(G)=VDV*, where D is the

diagonal matrix of eigenvalues in descending order.

Suppose that Ht(G) has k distinct eigenvalue ^ < A, 2 < • • • < A, k with repeat times HI,

n2, . . ., nk and eigenspace Vi, V2, . . ., Vk..

3) Let fg(G)= [Vj , ¥2 , • • • , Vk] , where V^ is the meta-basis of eigenspace Vj.

Proof:

We calculate f8(PGPT) step by step.

Obviously, Ht(PGPT)=PHt(G)PT

114

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Since Ht(G)=UDU*,

Ht(PGPT) = [PV^ , • • • , PVkUk IDtfP^U, , • • • , PVkUk])T , where Ui e U(m)

Calculate meta-basis of PVjUi. The meta-basis is defined by the unitary invariant

vector defined in propositions. 4, so we only have to verify that unitary invariant vector

satisfies the independence of order II.

The unitary invariant vector of eigenspace Vj is ViVi*

The unitary invariant vector of eigenspace PViUi is

So f8(PGPT)=Pf8(G)

Theorem 5.11 : Let fg be a function calculated by the following three steps:

/"t./'-tT f-\ _ r~*£

1) Calculating Hermitian matrix Ht(G) := ———— +————v-1
2* Z*

___ jb

2) Calculating eigen-decomposition of the matrix Ht(G)=VDV , where D is the

diagonal matrix of eigenvalues in descending order.

3) Letf8(G)=|v|

If all the eigenvalues of Ht(G) are single, then f9 is a node attributed function

satisfying independence of order II.

Proof:

The same as theorems. 10, We calculate f9(PGPT) step by step.

Ht(PGPT)=PHt(G)PT

115

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Ht(G)=UDU*, Since all the eigenvalues of Ht(G) is single, then

= [PV1 x 1 ,.",PVk xk]D([PV1 x1 ,-.,PVk xk])T , where Xi eU(l)

Calculate f9(PGP V |[PVlXl , • • • , PVk xk]| = |[PV, , • • • , PVk]| = P | V| = Pf9 (G)

Using the node-attribute function, one can easily construct the corresponding

node-similarity function by the following theorem.

Theorem 5.12: Let f be a node-attribute function, and Sf is defined as:

Sf (G, H) = f (G) x f (H)T (5.20)

Then Sf is a node-similarity function.

The Proof is trivial.

Therefore, each node-attribute function in theorem 5.9, theorem 5.10 and theorem

5.11 defines a corresponding node-similarity function denoted as 84, to 89. The matching

algorithms by node-similarity functions 85 and 85 are exactly the symmetric polynomials

transformation graph matching algorithm SPGM and the improved sort based graph

matching algorithm STGM; The matching algorithms by node-similarity functions 89

and Sg are exactly the eigen-decomposition graph matching algorithm EDGM and the

improved meta-basis based graph matching algorithm MBGM.

The node similarity graph matching algorithm based on the similarity function Si

and S4 and S7 is simply named as Si-NSGM and S4-NSGM and S7-NSGM.

Section 5.4.4 Comparisons

In this section, these node similarity based graph matching algorithms associated

with node-similarity function Si to 89 are numerically compared.

116

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 1: matching isomorphic sparse graph pairs

UJ
0)
O)
£
0)

S1
LSKPGM
HAGM
S4
SPGM
STGM
S7
EDGM
MBGM

Size of the Graph

Figure 5.18 Nine algorithms for matching isomorphic sparse graph pairs

117

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 2: matching non-isomorphic dense graph pairs

LLJ

s
0)

--- S1

LSKPGM
6— HAGM

S4
SPGM
STGM
S7

B— EDGM
MBGM

8 9 10 11 12 13 14 15
Size of the Graph

Figure 5.19 Nine algorithms for matching dense graph pairs with perturbation

coefficient 8=0.10

118

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 3: matching non-isomorphic sparse graph pairs

LJJ
Q)
D)
2
0)

--S1

LSKPGM
HAGM
S4
SPGM
STGM
S7
EDGM
MBGM

6 8 9 10 11
Size of the Graph

Figure 5.20 Nine algorithms for matching sparse graph pairs with perturbation

coefficient 8=0.10

119

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

Test 4: CPU time

S1
LSKPGM
HAGM
S4
SPGM
STGM
S7
EDGM
MBGM

8 9 10 11
Size of the Graph

12 13 14 15

Figure 5.21 CPU time Consuming of nine algorithms

Conclusion

In all the tests above, the STGM algorithm works best. For matching isomorphic

graph pairs (either dense or sparse) and non-isomorphic dense graph pairs, the STGM

algorithm gets almost zero error. For matching non-isomorphic sparse graph pairs, the

STGM still keeps the error very low.

Section 5.4.5 Computational Complexity

All the node similarity based algorithms have two main steps, the calculation of

120

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

node-similarity and the calculation of maximum similarity match. The computational of

the NSGM algorithm based on Si to 89 is list as table 5.4

Table 5.4 Computational complexity of NSGM algorithms

\^
Stepl

Step2

In all

SI

0(n2)

LKPGM

0(n4)

HAGM

0(n3)

S4

0(n3)

SPGM

0(n3)

STGM

O(n2logn)

S7

0(n3)

MBGM

0(n4)

EDGM

0(n3)

0(n3)

0(n3) 0(n4) 0(n3) 0(n3) 0(n3) 0(n3) 0(n3) 0(n4) 0(n3)

Obviously, all these algorithm works efficiently with complexity O(n3) or O(n).

Section 5.4.6 Extensions

Weighted average node similarity

In last section, nine different node similarity functions are constructed, where each

of them expresses certain kind of node similarity of graphs. And these similarities can be

combined into some more complicated similarity functions.

Theorem 5.13: Given m similarity functions Si,..., Sm, the weighted average function

(5.21)

Then S is also a node similarity function.

Based on this weighted average node similarity function, new matching algorithm

can be developed.

Matching attributed graphs

In above discussion, only matching weighted graphs is considered. However, the

node similarity based graph matching algorithm can be easily extended to match

attribute graphs.

Given two attributed graphs G={Gk}, H={Hk}, l<k<m, and Let S be a node

121

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

similarity function, then the node similarity of G and H can be defined by:

m
S(G,H)=£w kS(Gk ,Hk) (5.22)

k=l

Where Wk is the importance coefficient of k-th attribute

Again, we transfer the attribute graph matching problem (5.1) to maximum linear

assignment problem (5.16).

Section 5.4.7 Limitation

In this section, one of the important conclusions of this thesis, which is that all the

node similarity graph matching algorithms fail to work for circles, will be proposed.

Theorem 5.14: All node similarity graph matching algorithms fail to work for circles.

Proof:

Let G and H be two circles as show in figure 5.22, then the adjacency matrices are

010000
000100

001000
• •••••
• • * • • •

000001
100000

Let S be any node similarity function, then S satisfies Independence of Order I, so

"0

0
0
!

0
1

1
0
0
!

0
0

0
1
0
:

0
0

0
0
1

0
0

0
0
0
:

0
0

0"

0
0
;

1
0

? -"

S(PGPT , H) - P x S(G, H), for all P e Perm(n) (5.23)

Specially, Let

122

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

010000
001000
000100
• • • • • •
• •••••
• • • • • •

000001
100000

Then it can be easily verified that P0GP0T = G

So S(G,H) = S(P0GP0T ,H) = P0 xS(G,H)

Which means all rows of S(G, H) are equal

S(G,H) =

ai,2 al
al

a,

Then any permutation PePerm(n) is the solution of maximum linear assignment

problem:

args max]TS(i,j)xP(i,j)
PePerm(n) j =i

Specially the identity matrix I is a optimal solution for the above formula, where

|G-IHIT ||F =|G-H||F =

But in fact graph G and H are isomorphic by the permutation

123

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

100000
001000
010 00p-

000010
000001

So the node similarity based graph matching algorithm fails to find the best match.

H

Figure 5.22 Two Circles

Theorem 5.14 only claims that all the node similarity based algorithms are not

124

CHAPTER 5 GRAPH MATCHING ALGORITHM FOR MATCHING SCENARIOS

applicable for circles, how about others?

In fact, the essence of this failure is that if graph G is self-similar, which means
there is a non-trivial automorphism of graph G, the node similarity based graph matching
algorithm will fail to distinguish those similar nodes of G Figure 5.23 is a simple
example which has non-trivial automorphism, such that nodes 1, 2 and 3 are not
distinguishable and nodes 4, 5 and 6 are not distinguishable.

0*-

Figure 5.23 Self-similar graph

125

CHAPTER 6 APPLYING MATCHING ALGORITHMS FOR SCENARIOS

Chapter 6 Applying Matching Algorithms for

Scenarios

The graph matching algorithms compared and improved in last chapter will be

applied for matching scenario graphs in this chapter.

Section 6.1 Introduction of Experiments

In chapter 4, scenario is defined as a 5-tuple <T, P, HOLDS, MEETS, DUR> and

graphically represented by an attribute graph. The similarity of scenario graphs is

defined as by formula 4.1.

n+1

min Y Nslk -QNs2kQT
Qepeim(m) ^ H sl 'k S2 'k I

sim^S^l—————^-^———————————————

k=l

To evaluate the graph matching algorithms for matching scenario graphs, we shall

randomly generate 30 pairs of scenario graphs (isomorphic or non-isomorphic, dense or

sparse). The meta-basis based graph matching algorithm MBGM, the sort based graph

matching algorithm STGM, and the hubs and authorities graph matching algorithm

HAGM are applied on these scenario graphs to calculate their similarities.

We also use a brutal search method (referred as APGM) to find best matching for

each graph pairs as a standard to evaluate other algorithm. However, the brutal search

method are not applicable for large size graphs (n>10).

126

CHAPTER 6 APPLYING MATCHING ALGORITHMS FOR SCENARIOS

We assume the P={Pi, P2 }, which means only two propositions are considered, and

Wi=w2=w3 which means that PI, P2 and duration are equivalent important to determine

the scenario similarity in our case.

Section 6.2 Experiments

The test results are shown as following tables, where the first and second columns
are two scenario graphs and the 3th-6th columns are similarities calculated by HAGM,

MBGM, STGM and APGM algorithms respectively.

127

S2
H

A
G

M

ED
G

M

ST
G

M

A
PG

M

o
*o

0.
92
47

0.
92
47

0.
71
33

0.
92
47

*o

0.
91
53

0.
91
53

0.
91
53

0.
91
53

0.
63
28

0.
88
40

0.
68
53

0.
88
40

12
8

H
A

G
M

ED

G
M

ST

G
M

A

PG
M

{P
HI

O

0.
63
38

0.
70
25

0.
63
93

0.
81
35

{P
21 1,

P
2}

1.
5

JP
21

0.
3

•o

(P
1

.P
2

I0
6

>

Q

0.
58
41

0.
57
91

0.
60
07

0.
72
68

o

0.
60
93

0.
67
93

0.
59
25

0.
73
07

12
9

Si
S2

H
A

G
M

ED

G
M

ST

G
M

A

PG
M

0.
65
23

1.
00
00

1.
00

00

1.
00

00

, P
2}

06
{P

1.
P

2I
0.

6

0.
79
72

0.
89
21

0.
89
21

0.
89
21

IP
1.

P
2>

0.
6

(P
2}

1
-o

0.
67
92

0.
81
55

0.
66
50

0.
82
20

13
0

Si
S2

H
A

G
M

ED

G
M

ST

G
M

A

PG
M

0.
64

31

1.
00
00

1.
00
00

1.
00

00

0.
62

84

0.
75

30

0.
75

30

0.
75
30

0.
58

64

0.
70
65

0.
70

65

0.
70

65

13
1

S2
H

A
G

M

ED
G

M

ST
G

M

A
PG

M

0.
67

18

0.
71

43

0.
72
19

0.
74
54

0.
82

34

0.
89

24

0.
80

43

0.
89
24

Q
00
-6

{P
2}

{P
1}
0.
5

0.
74

60

0.
91
35

0.
74

60

0.
91

35

13
2

S2
H

A
G

M

ED
G

M

ST
G

M

A
PG

M

(P
2}

1
-P

2
1

0
.2

(P

11
05

~

P1

1Q
.5

nO
.6

nQ

.3

{P
2}

1
>Q

{P
2

}0
2

>Q

(P

1}
05

>Q

fP
1}

0.
5

>
0

0.
67
02

0.
90
69

0.
68
46

0.
90
69

{P
2}

1
>

{P
2}

0.
2

P
1}

0.
5

P
11

0.
5

>

O
—

—
:—

»0

"°
-9

 »
ri—

IU
11

_

0-
3

{V
0.

5

P
2

}1

>Q
P

2
}0

.2

>Q

(P
1}

05

,Q
P

1}
0.

5
>

0

Q

{P
1}

05
>0

f}Q

J
>0

0.
89
51

0.
89
51

0.
89
51

0.
89
51

O

P
2

}/
7

p
1

/2
}0

.3

iP
1>

05

JL

^

n
o

.3

{P
1}

0.
5
*0

O
P

D
0
.5

,

{P
1I

0.
5

>

{P
?

o.
5

0.
75
25

0.
91

78

0.
75
25

0.
91
78

13
3

Si
S2

H
A

G
M

ED

G
M

ST

G
M

A

PG
M

O
IP

21
1

0.
57
10

0.
72
33

0.
57
27

0.
72
33

*o

{P
1

.P
2

I0
6

,Q

{P
1.
P2
}0
.6

0.
57
84

0.
64
79

0.
56
75

0.
72
47

1,
P

2}
 1

.5
IP

21
0.

3

{P
1,

 P
2I

0.
6

-o

0.
61
60

0.
71
20

0.
65
58

0.
71
21

13
4

<N

5!

o
H
C/3

O

oovq
o

1—H

001—I
vo

*o

o ^t u-> o vq
o

Oo oo

oo r-
ON

so
OO

CO

oo i—i
oo u->

•o

<N o os oo

O

Si
S2

H
A

G
M

ED

G
M

ST

G
M

A

PG
M

P
2

}1
(P

1
I0

5

0
{P

1}
°-5

»0

09
.?

>0

0.
71
25

0.
72
92

0.
71
03

0.
79
71

Q

{P
2

}1

>Q
P

2
}0

.2

>
Q

|P

1
}0

5
>

Q
 |

P
1}

0.
5

{
P

1
}
0
.
5

,
,

n
R

,
,

n
,

Q
_

L
_

I—
o

il°

-6
 >

Q
—

llM
-n

O
-

0.
55
13

0.
55
55

0.
54
98

0.
61
63

O
ip2

l1

{P
1/

P
2

}
0.

3
o.

5

0.
68
53

0.
69
99

0.
74
82

0.
80
07

13
6

Si
S2

H
A

G
M

ED

G
M

ST

G
M

A

PG
M

Q

(P
2

}1

>
O

{P
2

}0
2

^

|P
1}

 0
5

>
Q

 {
P

1}
0.

5

0
{P

1}
05

>
0

f}

0
j

>
0

f}
0-

3

0.
53
83

0.
53
95

0.
53
04

0.
57
17

Q

{R
1

/2
J1

5

{P
2

/2

0.
49
23

0.
57
45

0.
52
78

0.
60
49

(P
2

}1

>Q
{P

2
}0

2

^Q

|P
1}

0.
5
^
 {

P
D

0.
5

Q
{P

1}
05

>
0

f}
0
-6

>

Q

flO
-3

0.
57
93

0.
73
37

0.
59
64

0.
73
37

13
7

CHAPTER 6 APPLYING MATCHING ALGORITHMS SCENARIOS

Section 6.3 Conclusion

The tests in last section show that the MBGM algorithm finds the best match in half

(17 out of 30) of the cases. For the other 13 cases, the MBGM still get a satisfactory

matching result with little matching error.

On the other hand, the STGM algorithm only finds the best match for 1/4 (7 out of

30) of the cases. For the other 23 cases, the STGM get large matching error.

One may ask that STGM algorithm seems work very well for the test in chapter 5,

why does it fail to work in the cases of last section?

In fact, the attribute matrix of a scenario graph contains several 0-1 matrices to

denote the holds relation of propositions and a real matrix to denote the duration of time

elements. So in chapter 5 we only deal with the general case, where the elements of the

adjacency matrix are all continuous real numbers. In such cases, the STGM algorithm

gets almost zero matching result.

But for the special cases, where the adjacency matrix is 0-1 matrix, the matching

accuracy decrease since the node attribute degrade as the in-degree and out-degree of the

corresponding node.

In a word, STGM algorithm is suitable for matching continuous real matrices, while

MBGM is more applicable for matching 0-1 matrices.

138

CHAPTER 7 CONCLUSIONS

Chapter 7 Conclusions

In a word, this thesis presented a complete reified temporal logic system and a
graphical representation and matching framework for representing and reasoning about
temporal knowledge.

The complete reified temporal logic, CRTL, proposed in chapter 3 is actually a
formulism and extension of Ma and Knight's reified temporal logic system MK within
first order logic framework. So it simply inherits syntax, semantics, axioms and
inference rules from normal standard many sorted first order logic. Also the well-known
Herbrand's resolution method is applicable for automatic reasoning and proving for
CRTL theories.

On the other side, the CRTL system also can be seen as a reification of the temporal
argument method BTK and a simplification of Reichelt's temporal reified temporal logic
TR. So it retains all the expressive power of the approach of temporal reification.

In all, CRTL tries to balance the expressiveness and complexity without losing

logical clarity and completeness.

The simplified subsystem SCRTL is aiming at the practical application. SCRTL is
still within the first order framework to retain its clear definition and sound and complete
axiomatization; besides, based on its simplicity, the temporal models of SCRTL are
intuitively represented as attribute graphs. For general treatment, these graphically
representations have been extended for scenarios with incomplete knowledge and

general temporal relations.

Based on this graphically representation, the matching of scenarios is transferred

into the graph matching problem.

139

CHAPTER 7 CONCLUSIONS

For the scenario graph matching, the traditional graph matching algorithms are

elaborately classified and selected for matching scenario graphs. Graph matching

algorithms are no longer classified as search-based methods and optimization-based

methods; instead, there are grouped as: explicit-search methods, implicit-search methods,

and node similarity based methods. Explicit-search methods are not suitable for our

cases since they usually require exponential calculating time. Implicit-research methods

are not selected for our scenario graph matching either, due to their complexities of

implementation and improvement. So the node similarity based methods are the best

choice for our scenario graph matching problems.

After initially testing, two important node similarity graph matching algorithms

EDGM and SPGM are selected as candidates for our scenario graph matching.

EDGM algorithm is critically examined and three important constraints have been

pointed out to indicate the applicable fields of this algorithm. To conquer such

constraints, an approximate formula (5.6) for graph matching problem is presented

together with an error estimation theorem to guarantee its accuracy. Based on such an

approximate formula, the meta-basis based graph matching algorithm is proposed.

Numerical tests show that the MBGM algorithm significantly improves matching

accuracy for sparse isomorphic graph pairs, and partially decreases the matching error

for sparse non-isomorphic graph pairs.

The SPGM algorithm is also critically examined, analyzed, and improved as a new

vector sort based graph matching algorithm STGM. Numerical tests illustrate that the

STGM algorithm greatly improve the matching accuracy for dense and sparse

non-isomorphic graph pairs. In addition, the STGM algorithm costs less CPU time in

finding these better matching.

Although random graph tests have shown great improvements of calculating

accuracy for matching graph pairs by SPTM and MBGM algorithms, random scenario

graph tests just provide a satisfying matching result, where the MBGM algorithm is

more suitable and gets a better matching result. These tests on one hand indicate that the

evaluation of graph matching algorithms directly effected by the probability distribution

140

CHAPTER 7 CONCLUSIONS

of random graphs; on the other hand, leave us some future work to develop special graph

matching algorithms for certain kinds of graphs.

The node similarity graph matching framework is a novel feature of this thesis.

Graph matching algorithms are no longer treated separately; instead, they are unified by

a general algorithm framework, although they may derive from many different theories.

This unification makes it possible to define, analyze and extend the node similarity

graph matching algorithms together, instead of dealing with them one by one.

A negative conclusion claims that all these node similarity graph matching

algorithms do not work for matching circles, which on one hand puts forward the

essential limitation of these approaches; and on the other hand, leaves us an important

future work to overcome such constraint to make these algorithm applicable for even

more general cases.

141

CHAPTER 8 FUTURE WORK

Chapter 8 Future Work

There is room for the improvement and generalization of the methods used in this

study. In this chapter, further work to temporal reification and graph matching

algorithms are discussed.

Section 8.1 Reification of General Logic Systems

In chapter 3, a complete reified temporal logic system CRTL is presented within the

many sorted first order logic framework. The CRTL system can be seen as a reification

of syntax of temporal argument methods or modal temporal logic methods. It also has

been pointed out in chapter 3 that Reichgelt's TR system reifies both syntax and

semantics of an object logic system. So TR system is more complicated and expressive.

These approaches can be extended for reification of general logic systems, not only

temporal logic systems. An important work has been done by Gabby, Hodkinson and

Reynolds in [GHR1994], where a more general reification has been proposed, which

also reifies the proof system of the object logic system.

However, general reification needs both logical foundation and computational

algorithms. On one hand, the reification itself has to be clearly defined with sound and

complete axiomatic system. One the other hand, the process from an object logic system

to its corresponding reified logic should be computable or even polynomial-computable.

The relationship between the object logic system and its corresponding reified logic

is also an interesting subject.

142

CHAPTER 8 FUTURE WORK

Section 8.2 Graphical Representation of Temporal Models

The complete reified temporal logic system CRTL defined in chapter3 allows

general functions and predicates. But for the graphical representation of its temporal

model, only the simplest case, temporal model of SCRTL, has been represented as

attributed simple graph and matched by graph matching algorithms.

So a graphical representation of general temporal model is necessary for intuitive

representation of general temporal knowledge. The notion hyper-graph would be

important for such expansion. Formally a hyper-graph is a pair (N, E), where N is the set

of nodes and E is the set of edges, such that each edge eeE is a subset of N.

Meanwhile the normal matching algorithms also has to be extended for matching

such general graphical representation of temporal information. Again, the hyper-graph

matching theory [BDK2005] will be important for such temporal information matching

problems.

Section 8.3 Testing Graph Matching Algorithms for Certain Probability

Distributions

It has been pointed out in chapter 5 and exemplified in chapter 6 that the probability

distribution of random graphs directly effects the evaluation of graph matching

algorithms. So it is important to make it even clearer that how the matching result is

influenced by probability distribution of the graphs.

This work is also important to provide a standard for generally evaluating different

graph matching algorithms.

Section 8.4 General Eigen-decomposition Graph Matching Algorithm

In chapter 5, an important approximate formula 5.6 for graph matching problems

has been proposed together with an error estimation theorem 5.5 to guarantee its

accuracy. We also bring forward a meta-basis based graph matching algorithm based on

143

CHAPTER 8 FUTURE WORK

the approximate formula. But the meta-basis based graph matching algorithm is within

the node similarity graph matching framework, which means it may not work for circles

and some other self similar graphs.

However, the approximate formula 5.6, itself is beyond the node similarity graph

matching framework, which means this approximate formula is suitable for matching

self-similar graphs because of its accuracy guarantee theorem 5.5. So the algorithm

directly solving the approximate formula, which is an optimization on unitary matrices

and permutation space, will be more accurate and applicable for self similar graphs.

Non-linear programming or iterative methods could be good tries for solving the

approximate formula 5.6.

Section 8.5 Extending Node Similarity Based Graph Matching

Algorithms

In chapter 5, one of the important conclusions is that node similarity based graph

matching algorithm doesn't work for circles. Although this theorem claims that there is

somewhere the node similarity graph matching framework can not reach, it doesn't make

it clear enough how far the node similarity graph matching framework can go. In other

words, the boundary of the node similarity graph matching framework is not clear.

On the hand, there are surely some cases (including scenario graphs) that one has to

deal with circles and other self-similar graphs. So it is important to extend these

algorithms to overcome such constraints without lose much efficiency.

Section 8.6 Testing Real Life Examples

This thesis pays more attention to the theoretical work such as the completeness of

the reified temporal logics and the accuracy guarantee theorems of some graph matching

algorithms. Most of the experiments are artificial or randomly generated by algorithms.

A real life test is needed in future work to verify the effectiveness of this theory.

144

CHAPTER 8 FUTURE WORK

Our theory could be applied to the area of medical information systems, where a
patient's medical history is obviously very important for diagnosis. In fact, to prescribe
the right treatment, the doctor needs to know not only the patient's current status, but
also his/her previous health situations, including: How long has the patient been ill? Did
the patient have the same problem or relevant disease previously? Has the patient had
some treatment already before seeing the doctor? Has the patient been allergic to any
drugs in the past? These heath histories could be constructed as a temporal scenario and
matched by the algorithms discussed in chapter 5.

The weather forecast could be another possible application for our theory. Since
without a good understanding of climate phenomena based on past observations the
weather expert cannot make good predictions of the future. In fact, to provide correct
and accurate forecast, the weather expert needs to know not only the current weather
parameters summarized as temperature, air pressure, precipitation amount, wind speed
and residual snow/ice amount, etc., but also the weather scenarios over some certain
prior periods such as, how long did the heat wave last, was there lightning before or
during the rain, did snow melt then refreeze, and so on. Such information can also be
constructed as a temporal scenario and again the graph matching algorithms can be
directly applied.

145

REFERENCES

References

[Abdl998] A. M. Abdulkader: Parallel Algorithms for Labelled Graph Matching. PhD

thesis, Colorado School of Mines, 1998

[ABM1999] C. Areces, P. Blackburn and M. Marx: Hybrid logic is the bounded

fragment of first order logic, in Proceedings of 6th Workshop on Logic,

Language, Information and Computation, pp. 33—50, 1999.

[ABM2000] C. Areces, P. Blackburn and M. Marx: The computational complexity of

hybrid temporal logics. Logic Journal of IGPL 8(5), pp.653-679, 2000

[ACT1997] R. Alien, L. Cinque, S. Tanimoto, L. Shapiro and D. Yasuda: A Parallel

Algorithm for Graph Matching and Its MarPlas Implementation, IEEE

Transactions on Parallel and Distributed Systems, Vol. 8, No. 5,

pp.490-501, 1997

[AD1993] H.A. Almohamad and S.O. Duffuaa: A Linear Programming Approach for

the Weighted Graph Matching Problem. IEEE Trans. PAMI, 15(5), pp.

522-525, 1993
[AH1985] J. Alien and P. Hayes: A Common-Sense Theory of Time. Proceedings of

the IJCAI, 9, 528-531,1985

[AH 1989] J. Alien and P. Hayes: Moments and Points in an Interval-based

Temporal-based Logic. Computational Intelligence (Canada), 5, 225-238,

1989
J. Alien.: Maintaining knowledge about temporal intervals.

Communications of the ACM 26 (11), pp.832-843, 1983

H.A. Almohamad: A Polynomial Transform for Matching Pairs of

Weighted Graphs. Applied Mathematical Modelling, Vol. 15, pp. 216-222,

1991
[Alt2006] H. Altaf, "A Minimal Hybrid Logic for Intervals", Logic Journal of the

146

[A111983]

[Alml991]

REFERENCES

IGPL, 14(1), Oxford University Press, 2006, pp. 35-62.

[AMO1993] R. Ahuja, T. Magnanti and J. Orlin: Network Flows. Prentice Hall, 1993

[Auw2007] S. Auwatanamongkol: Inexact graph matching using a genetic algorithm

for image recognition. Pattern Recognition Letters Volume 28, Issue 12,

pp.1428-1437,2007

[BDK2005] H. Bunke, P. Dickinson and M. Kraetzl: Theoretical and Algorithmic

Framework for Hypergraph Matching. Lecture Notes in Computer Science

Volume 3617, pp. 463-470, 2005

[BFG2002] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone and M. Vento:

AComparison of Algorithms for Maximum Common Subgraph on

RandomlyConnected Graphs: Lecture Notes in Computer Science Vol.

2396, pp.123-132, 2002

[BH1994] L. Branting and J. Hastings: An empirical evaluation of model-based case

matching and adaptation. In Proceedings of the Workshop on Case-Based

Reasoning, AAAI-94, Seattle, Washington pp.72-78, 1994

[BMJ1999] H. Bunke, A. Munger and X. Jiang: Combinatorial Search versus Genetic

Algorithms: A Case Study Based on the Generalized Median Graph

Problem. Pattern Recognition Letters, Vol. 20, pp. 1271.1277, 1999

[BS1998] H. Bunke and K. Shearer: A Graph Distance Metric Based on the Maximal

Common Subgraph, Pattern Recognition Letters, Vol. 19, pp.255-259,

1998
[BT1999] P. Blackburn and M. Tzakova: Hybrid languages and temporal logic. Logic

Journal of IGPL 7(1), pp.27-54,1999

[BTK1991] F. Bacchus, J. Tenenberg and J.A. Koomen: Anon-reified temporal logic.

Artificial Intelligence, 52 pp. 87-108, 1991

[Burl982] J.P. Burgess: Axioms for tense logic. I. "Since" and "until". Notre Dame J.

Formal Logic Volume 23, Number 4 pp.367-374, 1982

[CDF1995] B. Charron-Bost, C. Delporte-Gallet and H. Fauconnier: Local and

temporal predicates in distributed systems: ACM Transactions on

Programming Languages and Systems (TOPLAS) Volume 17, Issue 1,

pp.157-179, 1995

147

REFERENCES

[CL1994] T.W. Chen and W.C. Lin: A Neural Network Approach to CSG-Based 3-D
Object Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 16, No. 7, pp. 719-726, 1994

[CM1998] S. Cerrito and M.C. Mayer: Using linear temporal logic to model and solve
planning problems. Lecture Notes in Computer Science Volume 1480, pp.
141-152, 1998

[CN1997] M.C. Cario and B. L. Nelson: Modeling and generating random vectors
with arbitrary marginal distributions and correlation matrix. Tech. Rep.,
Department of Industrial Engineering and Management Science,
Northwestern University, Evanston, ILU.S.A, 1997

[CR1992] P. Cucka and A. Rosenfeld : Linear Feature Compatibility for
Pattern-Matching Relaxation, Pattern Recognition, Vol. 25, No. 2,
pp. 189-196, 1992

[CWH1997] A.D.J. Cross, C. Wilson and E.R. Hancock: Inexact Matching Using
Genetic Search. Pattern Recognition, Vol. 30, No. 6, pp. 953-970, 1997

[CYS1996] L.Cinque, D. Yashuda, L. Shapiro, S. Tanimoto and B. Alien: An Improved
Algorithm for Relational Distance Graph Matching, Pattern Recognition,
Vol. 29, No. 2, pp.349-359, 1996

[DDL2002] CJ. Date, H. Darwen and N. Lorentzos: Temporal Data & the Relational
Model, First Edition (The Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann, 1st edition, pp.422, 2002

[DH2000] Philip I. Davies and Nicholas J. Higham: Numerically stable generation of
correlation matrices and their factors. BIT Numerical Mathematics, 40(4).
pp. 640-651,2000

[DHST2005] I.S. DHILLON, R.W. HEATH, M.A. SUSTIK and J.A. TROPP:
Generalized finite algorithms for constructing Hermitian matrices with
prescribed diagonal and spectrum. SIAM Journal on Matrix Analysis and
Applications Volume 27, Issue 1, pp. 61 - 71, 2005

[DK1970] C. Davis and W.M. Kahan: The Rotation of Eigenvectors by a Perturbation.
Ill, SIAM J. Numer. Anal. 7, pp. 1-46, 1970

[DLH1998] F. Dietrich, X. Logean and J.P. Hubaux: Testing Temporal Logic Properties

148

REFERENCES

[Dowl979]

[EGR1994]

[FLD1994]

[Gall990]

[GB2002]

[GHR1994]

[Gib2004]

[Gill956]

[GJ1979]

[GR1996]

[GV1996]

[Han2000]

in Distributed Systems. IFIP Conference Proceedings, Vol. 131

Proceedings of the IFIP TC6 llth International Workshop on Testing

Communicating Systems, pp.241- 258, 1998

D. Dowty: Word Meaning and Montague Grammar. Dordrecht: D. Reidel,

1979

M. Enciso, I.P. de Guzman and C. Rossi: A Temporal Logic for Program

Specification. GULP-PRODE (2) pp.309-323, 1994

J. Feng, M. Laumy and M. Dhome: Inexact matching using neural

networks. In E.S. Gelsema and L.N. Kanal (eds): Pattern Recognition in

Practice IV: Multiple Paradigms, Comparative Studies and Hybrid Systems,

pp.177-184, 1994

A.P. Galton: A Critical Examination of Alien's Theory of Action and Time.

Artificial Intelligence 42, pp. 159-188, 1990

S. Giinter and H. Bunke Self-organizing Map for Clustering in the Graph

Domain, Pattern Recognition Letters, Vol. 23, pp. 405.417, 2002

D.M. Gabbay, I. Hodkinson and M. Reynolds: Temporal Logic

Mathematical Foundations and Computational Aspects, Volume 1. Oxford,

1994
W. Gibson: Pattern Recognition. Penguin Books Ltd, 2004

P. C. Gilmore: An Addition to "Logic of Many-Sorted Theories".

Compositio Mathematica (13), pp.277-281, 1956

M.R. Garey, D.S. Johnson: Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman & co., New York, 1979

S. Gold and A. Rangarajan: A Graduated Assignment Algorithm for Graph

Matching. IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 18, No. 4, pp. 377-388, 1996

G.H. Golub and C.F. Van Loan: Matrix Computations, 3rd ed., Johns

Hopkins University Press, Baltimore, 1996

B. Hansen: Weather reasoning predication using case-based reasoning and

Fuzzy Set Theory. MSc Thesis, Technical University of Nova Scotia,

Halifax, Nova Scotia, Canada, 2000

149

REFERENCES

[Heil978]

[HJ1985]

[HS1986]

[HW1953]

[IZ1986]

[Jacl997]

[JAS2002]

[JH2006]

[Kaml968]

[Kiel 999]

[KM 1992]

[KMN1998]

Richard M. Heiberger: Generation of Random Orthogonal Matrices.

Applied Statistics, Vol. 27, No. 2, pp. 199-206, 1978

R.A. Horn and C.R. Johnson: Matrix Analysis. Cambridge University

Press, 1985

J.Y. Halpern and Y. Shoham: A Prepositional Modal Logic of Time

Intervals. LICS1986, pp. 279-292, 1986

AJ. Hoffman and H.W. Wielandt: The Variation of the Spectrum of a

Normal Matrix. Duke Math. J. 20, pp.37-39, 1953

D. K. Isenor and S. G. Zaky: Fingerprint Identification Using Graph

Matching. Pattern Recognition, vol. 19, No. 2, pp. 113-122, 1986

M. Jaczynski: A Framework for the Management of Past Experiences with

Time-Extended Situations. In Proceedings of the 6th International

Conference on Information and Knowledge Management (CIKM'97), Las

Vegas, Nevada, USA, November 10-14, pp. 32-39, 1997

M.D. Jaere, A. Aamodt and P. Skalle: Representing Temporal Knowledge

for Case-Based Prediction. LNCS, Vol. 2416, Proceedings of the 6th

European Conference on Advances in Case-Based Reasoning, pp.174 -

188,2002
D. Justice, A.O. Hero: A Binary Linear Programming Formulation of the

Graph Edit Distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8),

pp.1200-1214,2006

J. A. W. Kamp: Tense Logic and the Theory of Linear Order. Ph.D. Diss.,

University of California, Los Angeles, 1968

J. Kleinberg, J: Authoritative sources in a hyperlinked environment.

Journal of the ACM, Vol. 46, No. 5, pp. 604-632, 1999

B. Knight and J. Ma: A General Temporal Model Supporting Duration

Reasoning. Artificial Intelligence Communication, Vol. 5(2), pp.75-84,

1992
B. Knight, J. Ma and E. Nissan: Representing Temporal Knowledge In

Legal Discourse. Law, Computers, and Artificial Intelligence / Information

and Communications Technology Law, Vol.7 (3), pp. 199-211, 1998

150

REFERENCES

[Knul998]

[Koll996]

[Kuhl955]

[Leal996]

[Lev1972]

[Lev2006]

[LH1998]

[Lidl950]

[Lifl987]

[LRS1991]

[LT2002]

[Lul989]

[May2006]

[MB 1996]

D.E. Knuth: The Art of Computer Programming Volume 2:

Semi-numerical Algorithms. Third Edition, 1998

J. Kolodner: Case-Based Reasoning. Morgan Kaufmann, San Francisco,

California, 1993

H.W. Kuhn: The Hungarian Method for the assignment problem. Naval

Research Logistics Quarterly, 2:83-97, 1955

D. Leake: Case-Based Reasoning: Experiences, Lessons, and Future

Directions. AAAI Press, Menlo Park, California, 1996

G. Levi: A note on the derivation of maximal common subgraphs of two

directed or undirected graphs. Calcolo, Vol. 9, pp. 341-354, 1972

M. Levene: An Introduction to Search Engines and Web Navigation.

Addison Wesley, 2006

H.C. Liu and J.S. Huang J-S: Pattern Recognition Using Evolution

Algorithms with Fast Simulated Annealing. Pattern Recognition Letters,

Vol. 19,pp.403-413, 1998
V.B. Lidskii: The proper values of sum and product of symmetric matrices.

Doklady Akad. Nauk SSSR, 75, pp.769-772, 1950

V. Lifschitz: A Theory of Action. Proceedings of 10th IJCAI, pp.966-972,

1987
S.W. Lu, Y. Ren, and C.Y. Suen: Hierarchical attributed graph

representation and recognition of handwritten Chinese characters. Pattern

Recognition 24, pp.617-632, 1991

G. Liang, Z. Tang: Modeling Real-Time Systems with Continuous-Time

Temporal Logic: Lecture Notes in Computer Science Volume 2495, pp.

231-236,2002
Z. Lu: Mathematical Logic for Computer Science. World Scientific, 1989

M.C. Mayer, C. Limongelli, A. Orlandini and V Poggioni: Linear temporal

logic as an executable semantics for planning languages Journal of Logic.

Language and Information Volume 16, Number 1, pp. 63-89, 2006

B.T. Messmer and H. Bunke: Automatic learning and recognition of

graphical symboles in engineering drawings. In K. Tombre and R. Kasturi

151

REFERENCES

(eds): Graphics Recognition, Lecture Notes in Computer Science 1072,

pp. 123-134, Springer Verlag, 1996

[MB1998] B.T. Messmer and H. Bunke H: A New Algorithm for Error-Tolerant

Subgraph Isomorphism Detection, IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 20, No. 5, pp. 493-503, 1998

[McD1982] D.V. McDermott: A Temporal Logic for Reasoning about Processes and

Plans. Cognitive Science 6, pp.101-155, 1982

[McG1982] J. McGregor: "Backtrack search algorithms and the maximal common

subgraph problem", Software-Practice and Experience, Vol. 12, pp. 23-34,

1982

[McT1908] I.E. McTaggart: The Unreality of Time. In "Mind", 1908

[McT1968] I.E. McTaggart: The Nature of Existence, vol. 1-2, Cambridge University

Press, Cambridge, 1968
[Mez2007] F. Mezzadri: How to generate random matrices from the classical compact

groups. AMS, Vol. 54, 2007
[MGA1989] E. Mjolsness, G. Gindi and P. Anandan: Optimization in Model Matching

and Perceptual Organization, Neural Computation, Vol. 1, pp. 218-229,

1998
[MH2000] R. Myers and E.W. Hancock: election Strategies for Ambiguous Graph

Matching by Evolutionary Optimisation, in Lecture Notes in Computer

Science Vol. 1876: pp.397-406, 2000

[MH2001] R. Myers and E.W. Hancock: Least-commitment Graph Matching with

Genetic Algorithms. Pattern Recognition, Vol. 34, pp. 375-394, 2001

[MH2006] J. Ma and P. Hayes: Primitive Intervals Vs Point-Based Intervals: Rivals

Or Allies. The Computer Journal, Vol.49 (1), 32-41, 2006

[MK1994] J. Ma and B. Knight B: A General Temporal Theory. The Computer Journal,

37(2), 114-123, 1994

[MK1996] J. Ma and B. Knight: A Reified Temporal Logic. The Computer Journal

39(9), pp. 800-807, 1996

[MK2003] J. Ma and B. Knight: A Framework for Historical Case-Based Reasoning.

Lecture Notes in Computer Science, Volume 2689, pp.1067, 2003

152

REFERENCES

[ML2005]

[MT1993]

[Munl957]

[MZH2007]

[MZH2007]

[Nakl994]

[NB2007]

[Ostl989]

[Pel 1969]

[PG1995]

[Poo1993]

J. Ma and B. Luo: Representing and Recognizing Scenario Patterns.

Lecture Notes in Computer Science, Vol.3614, 140-149, 2005

K. Meinke and J.V. Tucker: Many-sorted logic and its applications. John

Wiley & Sons, Inc. New York, NY, USA, 1993

J. Munkres: Algorithms for the Assignment and Transportation Problems.

Journal of the Society of Industrial and Applied Mathematics,

5(l):pp.32-38, 1957

J. Ma, G. Zhao and E. Hancock: A Navigation-based Algorithm for

Matching Scenario Patterns. Proceedings of International Conference on

Artificial Intelligence and Pattern Recognition (AIPR-07), pp.151-158,

Orlando, FL, USA, ISRST 2007

J. Ma, G. Zhao, E. Hancock: A Navigation-based Algorithm for Matching

Scenario Patterns. Proceeding of AIPR07 pp. 151-157, 2007

G. Nakhaeizadeh: Learning Prediction of Time Series: A Theoretical and

Empirical Comparison of CBR with Some Other Approaches. In

Proceedings of the Workshop on Case-Based Reasoning, AAAI-94, Seattle,

Washington pp. 67-71, 1994

M. Neuhaus and H. Bunke: A Quadratic Programming Approach to the

Graph Edit Distance Problem. Lecture Notes in Computer Science

Graph-Based Representations in Pattern Recognition, Volume 4538 pp.

92-102, 2007
J.S. Ostroff: Temporal logic for real time systems. Wiley Advanced

Software Development Series pp.209, 1989

A.N. Prior: Papers on Time and Tense, Oxford: Clarendon Press, 1969

M. Peng and N. Gupta: Invariant and Occluded Object Recognition Based

on Graph Matching. International Journal on Electrical Engineering

Education, Vol. 32,pp.31-38,1995

J. Poole: Similarity in legal case based reasoning as degree of matching in

conceptual graphs. In M.M. Richter, S. Wess, K.D. Althoff, and F. Maurer

(eds.): proceedings of First European Workshop on Case-Based Reasoning,

pp.54-58, 1993

153

REFERENCES

[Pril957] A.N. Prior: Time and Modality, Oxford: Clarendon Press, 1957

[Pril967] A.N. Prior: Past, Present and Future, Oxford: Clarendon Press, 1967

[Pril969] A.N. Prior, A. N: Papers on Time and Tense, Oxford: Clarendon Press,

1969

[PZK1998] M. Pozniak, K. Zyczkowski, M. Kus: Composed ensembles of random

unitary matrices. Journal of Physics, Mathematical and General, Volume

31, Number 3, pp. 1059-1071(13), 1998

[RB1979] D.H. Rouvray and A.T. Balaban: Chemical applications of graph theory. In

RJ.Wilson and L.W.Beineke (eds.): Applications of Graph Theory,

pp. 177-221, Academic Press, 1979

[Reil989] H. Reichgelt: A Comparison of First-order and Modal Logics of Time. In

Jackson, P. and van Harmelen, H.R.F. (eds.). Logic-based Knowledge

Representation, pp. 143-176, 1989

[Rid989] B. Richards, I. Bethke, J. van der Does and J. Oberlander: Temporal

Representation and Inference. London: Academic Press, 1989

[Roml989] H.C. Romesburg: Cluster Analysis for Researchers. Lifetime Learning Pub,

1984
[SBV2001] K. Shearer, H. Bunke and S. Venkatesh: Video Indexing and Similarity

Retrieval by Largest Common Subgraph Detection Using Decision Trees,

Pattern Recognition, Vol. 34, pp.1075-1091, 2001

[SCI 985] A. Sistla and E. Clarke. Complexity of prepositional linear temporal logics.

J.ACM, 33, pp.733-749, 1985

[SH1981] L.G. Shapiro R.M. Haralick: Structural Descriptions and Inexact Matching.

IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 3,

No.5,pp.504-519, 1981

[Shal995] S. Shams: Multiple Elastic Modules for Visual Pattern Recognition. Neural

Networks, Vol. 8, No. 9, pp. 1439-1456, 1995

[Shal999] Y. Shahar: Timing is everything: temporal reasoning and temporal data

maintenance medicine. Eds. W Horn et al., AIMDM'99, LNAI 1620,

Springer Verlag, pp. 30-46, 1999

[Shol987] Y. Shoham: Temporal Logics in AI: Semantical and Ontological

154

REFERENCES

[SSG2005]

[Stal979]

[Stel980]

Considerations. Artificial Intelligence, 33, pp. 89-104, 1987

[SJ1999] R.T. Snodgrass, C.S. Jensen: Developing Time-Oriented Database

Applications in SQL (Morgan Kaufmann Series in Data Management

Systems). Morgan Kaufmann; pp.504 1999

O. Sammoud, C. Solnon, K. Ghedira: Ant Algorithm for the Graph

Matching Problem. EvoCOP 2005, pp.213-223, 2005

J. Stavi: Functional completeness over the rationals. Unpublished, Bar-Ilan

University, Ramat-Gan, Israel, 1979

GW. Stewart: The efficient generation of random orthogonal matrices with

an application to condition estimators. SLAM J. Num. Anal., 17, pp.

403-409, 1980

[SY1998] P.N. Suganthan and H. Yan: Recognition of Handprinted Chinese

Characters by Constrained Graph Matching, Image and Vision Computing,

Vol. 16, pp. 191-201,1998

[TA1997] M. Turner and J. Austin: A neural relaxation technique for chemical graph

matching. Proceedings of 5th International Conference of Artificial Neural

Networks, Cambridge, 1997

B. Taylor: Modes of Occurrence. Aristotelian Society Series, Volume 2,

Oxford: Basil Blackwell, 1985

W.H. Tsai and K.S. Fu: Subgraph Error-Correcting Isomorphisms for

Syntactic Pattern Recognition. IEEE Transactions on Systems, Man and

Cybernetics, Vol. 13, No. l,pp.48-62, 1983

[TH2001] A. Torsello and E.R. Hancock: Efficiently Computing Weighted Tree Edit

Distance Using Relaxation Labeling. Lecture Notes in Computer Science

Energy Minimization Methods in Computer Vision and Pattern

Recognition Volume 2134, pp. 438-453, 2001

[TH2003] A. Torsello and E.R. Hancock: Computing approximate tree edit distance

using relaxation labeling. Pattern Recognition Letters, Volume 24, Issue 8,

pp. 1089-1097, 2003

[TK2006] S. Theodoridis, K. Koutroumbas: Pattern Recognition (3rd edition).

Elsevier, 2006

[Tayl985]

[TF1983]

155

REFERENCES

[TT1982] M.A. Tanner and R.A. Thisted: Generation of random orthogonal matrices.

Applied Statistics 31, pp. 190-192, 1982

[U111976] J.R. Ullmann: An Algorithm for Subgraph Isomorphism. Journal of the

ACM, 23(1):31-42, 1976

[Umel988] S. Umeyama: An Eigen-decomposition Approach to Weighted Graph

Matching Problems. IEEE Trans. PAMI, 10(5), pp. 695-703, 1988

[Venl990] Y. Venema: Expressiveness and completeness of an interval tense logic.

Notre Dame J. Formal Logic Volume 31, Number 4 pp.529-547, 1990

[Vill994] L. Villa:A survey on temporal Reasoning in Artificial Intelligence. AI

Commun. 7, pp. 4-28, 1994

[Wanl952] H. Wang: Logic of Many-Sorted Theories. The Journal of Symbolic Logic,

Vol. 17, No. 2, pp. 105-116, 1952

[Wat 1997] I. Watson: Applying Case-Based Reasoning: Techniques for Enterprise

Systems. Morgan Kaufmann, San Mateo, California, 1997

[WFK1997] L. Wiskott, J. Fellous, N. Krttger, and C. von der Malsburg: Face

Recognition by Elastic Bunch Graph Matching. IEEE Trans. on Pattern

Analysis and Machine Intelligence 19(7), pp.77'5-779, 1997

[WI2006] Y. Wangl and N. Ishii: A genetic algorithm and its parallelization for graph

matching with similarity measures. Artificial Life and Robotics Volume 2,

Number 2, pp.68-73, 2006

[Will997] S. Willi-Hans: Matrix calculus & the Kronecker product with applications

& C++ programs. World Scientific Publishing Company, September 1997

[Wonl992] E.K. Wong: Model matching in robot vision by subgraph isomorphism.

Pattern Recognition, Vol. 25, pp.287-304, 1992

[Wyk2002] B.J. van, Wyk.: Kronecker Product Successive Projection and Related

Graph Matching Algorithms. Ph.D. diss., University of the Witwatersrand,

Johannesburg, 2002

[XO1990] L. Xu and E. Oja: Improved simulated annealing, Boltzmann machine, and

attributed graph matching: In L.Almeida (ed): LNCS 412, pp. 151-161,

1990

[Zag2003] L. Zager: Graph similarity and matching. Master's thesis, Massachusetts

156

REFERENCES

Institute of Technology, 2003

[ZLM2006] G. Zhao, B. Luo and J. Ma: Matching Case History Patterns in Case-Based

Reasoning. Lecture Notes in Computer Science - ICIC(2), Vol.345,

312-321,2006

[ZLM2007] G. Zhao, B. Luo and J. Ma: Matching Scenario Patterns by Using Linear

Programming. Proceedings of the 4th International Conference on Fuzzy

Systems and Knowledge Discovery, Vol.3, pp.346-350, IEEE CS Press,

2007

[ZLT2007] G. Zhao, B. Luo, J. Tang and J. Ma: Using Eigen-Decomposition Method

for Weighted Graph Matching. Lecture Notes in Computer Science -

Advanced Intelligent Computing Theories and Applications. With Aspects

of Theoretical and Methodological Issues: Volume 4681, pp. 1283-1294.

2007

[ZMS2008] G Zhao, J. Ma, F. Shen and M. Petridis: A Sound and Complete Reified

Temporal Logic. In proceedings of the Ninth ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking,

and Parallel/Distributed Computing (SNPD2008)

[ZV2007] L.A. Zager and G.C. Verghese: Graph similarity scoring and matching,

Applied Mathematics Letters, v. 21, n.l, 86-94, 2007.

[Zycl994] K. Zyczkowski et al: Random unitary matrices. J. Phys. A: Math. Gen. 27

pp.4235-4245, 1994

157

APPENDIX A A SOUND AND COMPLETE REIFIED TEMPORAL LOGIC

A Sound and Complete Reified Temporal Logic

Guoxing Zhao 1 , Jixin Ma1 , Fuxing Shen2 and Miltos Petridis 1
School of Computing and Mathematical Sciences, University of Greenwich, U.K

2 College of Information Science and Technology, Beijing Normal University, China
{g.zhao, j. ma, m.petridis}@gre. ac. uk

Abstract

There are mainly two known approaches to the
representation of temporal information in Computer
Science: modal logic approaches (including tense
logics and hybrid temporal logics) and predicate logic
approaches (including temporal argument methods
and reified temporal logics). On one hand, while
tense logics, hybrid temporal logics and temporal
argument methods enjoy formal theoretical
foundations, their expressiveness has been criticised as
not power enough for representing general temporal
knowledge; on the other hand, although current reified
temporal logics provide greater expressive power,
most of them lack of complete and sound axiomatic
theories. In this paper, we propose a new reified
temporal logic with a clear syntax and semantics in
terms of a sound and complete axiomatic formalism
which retains all the expressive power of the approach
of temporal reification.

1. Introduction

Temporal representation and reasoning plays a
fundamental and increasingly important role in most
areas of Computer Science. A natural approach to
represent and reason about time-dependent knowledge
is to associate them with instantaneous time points
and/or durative time intervals. In particular, there are
various ways to use logic formalisms for temporal
knowledge representation and reasoning. Based on the
chosen logic frameworks, temporal theories can be
classified into modal logic approaches and predicate
logic approaches (see Table 1).

Modal logic approaches semantically re-interpret
the classical possible-worlds by making each possible
world represent a different time. It accommodates the
concepts of time by means of extending the
prepositional or predicate calculus to include modal
temporal operators such as Pep, Pq>, Hep and G<p,
representing that formula <p "will be true", "was true",

"will be always true" and "was always true",
respectively. For instance, time transitivity can
expressed by (FF(p-»F(p)A(PP(p-»>P(p) and "Jack will
love Rose forever" can expressed as GLove(Jack,
Rose).

Generally speaking, each of the current temporal
modal logic (US [9], HS [8], BT [5] and HLI [3]) has
its own clear syntax, semantics, fully axiomatized
sound and complete formal deduce system, together
with an algorithm to determine the formula validity or
satisfiability. However, the expressiveness of the
approach of temporal modal logic has been noted to be
limited. For instance, tense logics such as Ht and US
cannot even characterize time irreflexivity, where in
Hybrid logics, such a property has to be characterized
by some non-intuitive formula like jcpP-'cp [5]. In
addition, modal logic approaches cannot express
propositions which associate with more than one time
elements. Therefore, it is difficult to use modal
temporal logics to represent and reason about action,
change, causality, and so on.

Table 1. Some temporal logic approaches
Modal-logic approaches

Tense logic

H,:
Prior (1957)
[12]

US:
Kamp (1968)
[9]

HS:
Halpern and
Shoham
(1991) [8]

Hybrid
logic
BT:
Blackburn
and
Tzakova
(1999) [5]

HLI:
Altaf
(2006) [3]

Predicate-logic
approaches
Temporal
argument
TM:
Reichgelt
(1989) [13]

STL:
Shoham
(1987) [14]

BTK:
Bacchus et
al
(1991) [4]

Reified
logic
TR:
Reichgelt
(1989) [13]

ITL:
Alien
(1983) [1]

RTL:
Ma and
Knight
(1996) [10]

Predicate temporal logic approaches are normally
many-sorted languages including a sort of temporal
elements and a sort of non-temporal elements. There
are three kinds of functions and predications: (i)

158

APPENDIX A A SOUND AND COMPLETE REIFIED TEMPORAL LOGIC

temporal predicates that only take temporal terms as
arguments to describe temporal relationships; (ii)
non-temporal predicates that take only non-temporal
terms as arguments to describe non-temporal
relationships; (iii) comprehensive predicates that take
both temporal and non-temporal terms as arguments to
describe global relationships between temporal and
non-temporal terms.

Temporal argument approaches try to devise
temporal logics by means of simply including time
elements as additional arguments to functions and
predicates in first order language. In this way, the
method of temporal argument directly employs the
syntax, semantics and the axiom system of the standard
first order logic, and therefore, the completeness and
soundness of temporal argument theories remain as
default. Compared with modal temporal logics, on one
hand, the method of temporal argument has more
expressive power in representing properties of the time
itself. For instance, using the method of temporal
argument, the irreflexivity of time can be simply
characterized by: Vt~'(t<t). However, on the other
hand, to express statements involving "tense"
knowledge, the method of temporal argument needs
formulas which are more complicated than those would
be in modal temporal approaches. E.g., using the
method of temporal argument, statement "Jack will
love Rose forever" needs to be expressed as something
like: Vt(t > now) —> Love(Jack, Rose, t)). In addition,
since time is represented just as an additional
arguments) to functions and/or predicates, neither
conceptual nor notational special status to time is
accorded in temporal argument approaches. Therefore,
it is not expressive enough to talk about the generalities
of the temporal aspect of assertions. For example,
using the method of temporal argument, one cannot
express common-sense knowledge such as "effects
cannot precede their causes" [14].

It has been point out that [10], in general, reified
temporal logics that reifies some initial logics are more
expressive in:
• According the special status to time;
• Classifying different types of temporal occurrence;
• Representing incompatibility and negation;
• Reasoning about event, change and causality;
• Representing relationships between events and

their effects.
However, each of the current reified temporal

logics is somehow quite complicated, making it
difficult to have a clear simple description of the
syntax, semantics, and complete and sound
axiomitization. For instance, the syntax and semantics
are actually missing from Alien's interval-based
temporal logic [1], while in Ma and Knight's reified

temporal logic [10] which does have a clear syntax and
semantics, it is difficult (if not impossible) to prove its
completeness and soundness. The only exception is
Reichgelt's TR [13] which is actually developed totally
within the framework of first order language, and
therefore inherits all the properties of the first order
theory. However, TR is too complicated to achieve
acceptable efficiency in applications.

The expressive power of these temporal logic
approaches can be illustrated as Fig. 1, where an arrow
from system X to system Y denotes that X can be
expressed/subsumed from Y.

TenseLogics Hybird Logics Temporal Arguments Reified Logics

Fig.l. Expressiveness of the existing temporal logic
approaches

In this paper, we shall introduce a reified temporal
logic (CRTL) with a clear syntax, and semantics,
where the completeness and soundness of the theory is
guaranteed by the fundamental initial first order
language. On one hand, it is simpler and more efficient
than Reichgelt's reified first order logic [13] which is
the only known reified temporal system with a
complete and sound theory; on the other hand, it
retains all the expressive power of those temporal
predicate approaches including that of Alien [1] and
that of Ma and Knight [10]. The structure of CRTL,
including its syntax and semantics, as well as the
formalism and inference rules are presented in section
2. Section 3 illustrates the expressive power of CRTL.
Finally, section 4 concludes the paper.

2. The language

In CRTL, terms have three types: temporal terms,
non-temporal terms and prepositional terms. Functions
can be either logic or non-logic: logic functions and
non-logic functions. While logic functions map
propositional terms to prepositional terms, non-logic
function are partitioned into three types: temporal
functions that map temporal and/or non-temporal terms
to temporal terms; non-temporal functions that map
temporal and/or non-temporal terms to non-temporal
terms; and propositional functions that map
non-temporal terms to propositional terms. In addition,
relations in CRTL are also partitioned into three types:
temporal relations, non-temporal relations and
meta-relations, where temporal relations take temporal

159

APPENDIX A A SOUND AND COMPLETE REIFIED TEMPORAL LOGIC

terms alone as its arguments, non-temporal relations
take non-temporal terms alone as its arguments and
meta-relations take both prepositional terms and
temporal terms as its arguments.

The structure of CRTL can be represented as Fig.2:

Fig. 2. Structure of CRTL

2.1. Syntax of CRTL

CRTL is a many-sorted first order logic with
equality, including the sort of temporal terms T, the
sort of non-temporal terms U, and the sort of
prepositional terms P. Variables of T, U and P are
denoted by (t,ti,t2,...), (u,ul5u2,...) and (p,pi,p2,...), etc.
The signature of CRTL is 3 tuple L=<C, F, R>, where

1. Each uceC/C is a non-temporal constant
symbol;

2. Each tc e TC is a temporal constant symbol;
F=UFU TFUPFULF
1. Each uf&UF is a non-temporal function

symbol with sort Un xTm -» U;
Each tfeTF is a temporal function symbol
with sort Un xTm ^T;
Each pfePF is a prepositional function
symbol with sort Un -> P;
L/MNOT, AND} U {FORALL-Uj : j eN}
4.1. "NOT" is a function symbol with sort

P->P,
4.2. "AND" is a function symbol with

sortTL P2 -» P,
4.3. Each "FORALL-Uj" is a Uj-bounded

function symbol with sort P— >P
R=URUTRUMR
1. Each ur&UR is a non-temporal relation

symbol with sort Un ;
2. Each treTT? is a temporal relation symbol

with sort Tm ;

2.

3.

4.

3. Each mr&MR is a meta relation symbol with sort Pn xTra
Notel: In this paper, the negation, conjunction and

universal quantifier of prepositional terms are denoted
as "NOT", "AND" and "FORALL", distinct from that
as for conventional well-formed-formulas symbolized
by "-,", "A" and V, respectively.

Note2: Here, connectives and quantifiers of
prepositional terms are taken as functions from
propositional terms to prepositional terms. It is
important to note that, connectives "NOT" and "AND"
are treated as variable-free functions while quantifiers
FORALL-Uj are treated as variable-bounded functions 1 .

Definitions of "term", "atomic formula" and "well-
formed-formula", etc. in CRTL are given in the
conventional way as in standard many-sorted first
order logic.

2.2. Semantics of CRTL

A Modal of CRTL is formally defined as a 4-tuple
M = <U, T, P, a>, where
• U, T and P are non-empty universes, representing

the set of non-temporal objects, temporal time
elements and propositional terms, respectively.

• a is an interpretation function interpreting every
symbol defined in CRTL's signature as below:
1. Each symbol ucet/C is interpreted as a

non-temporal element 0(uc)e(7;
2. Each symbol tceTC is interpreted as

temporal element a(tc)e T;
3. Each symbol ufef/F is interpreted as

non-temporal function from [/"xT™ to C7;
4. Each symbol tfeZF is interpreted as

temporal function from IfxTto T;
5. Each symbol pfePF is a interpreted as a

propositional function from C/1 to P;
6. Symbols NOT, AND and "FORALL-Uj" are

interpreted as functions from propositional
terms to propositional terms.

a

a

1 A variable-binding function fx is a normal function with special
property that every occurrence x in fx() is bounded. In this case, fx is
called a x-bounded function.
For example, Let Q[x, y] be the set of all the 2-variable polynomials
with variables x, y and rational coefficients. Let Sqr and d denote

By
the two functions, square and partial derivation, from Q[x,y] to
Q[x,y], respectively. Then Sqr is a variable-free function, and d_ is a

dy
y-bounded function. Obviously, x in equation Sqr(x+y)=x2+2xy+y2
can be substituted by yA2, which can not be done in _£, \-i-^x + y) — I

dy
That is one of the main differences between variable-free functions
and variable-bounded functions.

160

APPENDIX A A SOUND AND COMPLETE REIFIED TEMPORAL LOGIC

7. Each symbol ur&UR is interpreted as a
non-temporal relation on If ;

8. Each symbol treTT? is interpreted as a
temporal relation on 7™;

9. Each symbol mr&MR is interpreted as a
meta relation on ^xj01.

All the other interpretations to variables, formulas,
connectives and quantifiers are the same as in standard
many-sorted first order logic.

3. The advantages of CRTL

In the above section, we present the syntax and
semantics for a new reified temporal logic, CRTL.
Unlike those existing reified temporal theories most of
which lack of a sound and complete proof theory, the
completeness and soundness of this new logic can be
inherited directly from the initial object language, that
is, the standard first order logic.

CRTL is a true reified temporal logic since a sort of
meta-relations are formally defined which allow one to
predicate and quantify over prepositional terms and
temporal terms together, and therefore provide one the
expressive power to represent and reason about both
temporal and non-temporal relationships between the
prepositional terms. Its expressive power compared
with the other temporal logic systems can be illustrated
as Fig.3, where, as in Fig.l, an arrow from system X to
system Y denotes that X can be expressed/deduced
fromY.

Tense Logics Hybrid Logics Temporal Arguments Reified Logics

Fig. 3. Expressive power of CRTL

Specially, CRTL can be seen as an expansion of
RTL or a simplification of TR. Therefore, it is
straightforward to see that, using CRTL, one can either
directly subsume or equivalently express the other
existing reified temporal theories.

3.1. Expressing time structures

Since CRTL follows the predicate logic approach, it
is handy to express various time structures/models by
means of specializing the set of time elements and the
set of temporal relations. In fact:

3.1.1. Point-based time structure. A typical
point-based time structure can be defined by means of

simply taking the set of time elements as a collection of
points Point, and specifying a primitive temporal relation
< which (partially or totally) orders Point. As derived
time objects, point-based interval may be defined in
terms of the following four forms:

(Pi. P2> = (P I P^Point A pi < p < p2 }
[Pi» P2> = {p I pePoint A P! < p < p2 }
(Pi, P2\ = (P I ptPoint A pi < p < p2 }
[pi> P2\ = {p I p^Point A pi < p < p2 }

Following Alien's terminology [1], the immediate
predecessor order relation over intervals, Meets, can be
defined as in terms of the primitive relation < over
primitive time points:

Meets(ti, t2) <=>
3pi,p,p2 eR(ti = (pi, p) A t2 = [p, p2)

v ti = [pi, p) A t2 = [p, p2))
v ti = (pi, p) A t2 = [p, p2]

V ti = [pi, p) A t2 = [p, p2]

v ti = (p 1? p] A t2 = (p, p2)
V ti = [pi, p] A t2 = (p, p2)

v ti = (PL p] A t2 = (p, p2]
V ti = [pi, p] A t2 = (p, p2])

It is easy to see that the intuitive meaning of
Meets(ti,t2) is that, on the one hand, intervals ti and t2
don't overlap each other (i.e., they don't have any part
in common, not even a point); on the other hand, there
is not any other time standing between them.

Other order relations analogous to those
introduced by Alien for primitive intervals [1], that is,
Equal, Before, After, Met_by, Overlaps,
Overlapped by, Starts, Started_by, During, Contains,
Finishes, Finished_by can also be defined in terms of
Meets. E.g.: Before(ti, t2) <-> 3t(Meets(ti, t) A Meets(t,
t2))

When applied to points and/or point-based
intervals, these 13 can be classified into the following
4 groups:
• Relations that relate points to points:

{Equal, Before, After}
• Relations that relate points to intervals:

{Before, After, Meets, Met_by, Starts, During.
Finishes}

• Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started_by,
Contains, Finished_by}

• Relations that relate intervals to intervals:
{Equal, Before, After, Meets, Met_by, Overlaps,
Overlapped_by, Starts, Started_by, During,
Contains, Finishes, Finished_by}

3.1.2. Interval-based time structure. Alien's
temporal system [1] is a typical interval-based time
theory. One may deduce such a time structure from

161

APPENDIX A A SOUND AND COMPLETE REIFIED TEMPORAL LOGIC

CRTL by means of simply taking intervals alone as
primitive and completely excluding time points from
the sort of time elements. Unlike the Meet relation as
defined in section 3.1.1 as derived relation from <, the
Meets relation here can be defined as primitive over
intervals in terms of the following axioms:
Tl. Vt^t^CMeetsCt!, t2) A Meets(tb t3) A Meets(t4, t2)

That is, if an interval meets two other intervals, then
any interval that meets one of these two must also meets
the other.
T2. Vt3ti,t2(Meets(t!, t) A Meets(t, t2))

That is, each interval has at least one immediate
predecessor, as well as at least one immediate successor.
T3. Vt 1 ,t2 ,t3 ,t4(Meets(t1 , t2) A Meets(t3 , t4) -+

Meets(t!, t4)
V 3f (Meets(t1? t') A Meets(f, t4))
V 3t"(Meets(t3 , t") A Meets(t", t2)))

where V stands for "exclusive or". That is, any two
meeting places are either identical or there is at least an
interval standing between the two meeting places if they
are not identical.
T4. Vti,t2,t3 ,t4(Meets(t3 , tO A Meets(tu t4)

A Meets(t3 , t2) A Meets(t2 , t4)) — >
ti=t2)

That is, the interval between any two meeting
places is unique.

N.B. For any two adjacent time elements tt and t2 ,
that is Meets(ti, t2), ti0t2 will be used to denote their
ordered union. The existence of such an ordered union is
guaranteed by axioms T2 and T3, while its uniqueness is
guaranteed by axiom T4.

Alien's other order relations for primitive intervals
[1] including Equal, Before, After, Met_by, Overlaps,
Overlapped_by, Starts, Started_by, During, Contains,
Finishes, Finished_by can be defined in terms of
Meets.

3.1.3. Point&Interval-based time structure. On the
one hand, it has been argued that defining intervals as
derived temporal objects out of points may lead to the
so-called Dividing Instant Problem [1, 6, 16], that is
the puzzle encountered when attempting to represent
what happens at the boundary instant (point) which
divides two successive intervals. On the other hand, it
has been pointed out both points and intervals are
needed for making temporal reference to instantaneous
phenomena with zero duration, and periodic
phenomena which last for some positive duration,
respectively. For general treatments, one may take the
set of time elements to include both points and
intervals as primitive on an equal footing: points do not
have to be defined as limits of intervals and intervals
do not have to be constructed out of points. An

example of such a theory is that of Ma and Knight [10].
To support a point&interval-based time structure, one
can define a new sort D as the set of non-negative real
numbers, and a duration assigning function DUR from
T to D. If Dur(t) > 0 then t is called an interval,
otherwise, t is called a point. In addition to axioms Tl.
- T4. in section 3.1.2., one needs the following two
additional axioms:
T5. Vti,t2(Meets(tb t2) -> Dur(t,) > 0 v Dur(t2) > 0)

That is, time elements with zero duration cannot
meet each other.
T6. Vt^CMeetsft, t2) ->

Dur(ti 012) = Dur(ti) + Dur(t2))
That is, the ordered union operation 0 over time

elements is consistent with the conventional "addition"
operation over the duration assignment function Dur.

3.2. Expressing temporal causal relationships

To talk about temporal incidence, we define a
meta-relation TrueeM/? over sort PxT by the following
axioms:
<C 1 > VpVt(True(NOT(p), t) «-> ^TRUE(p, t))
<C2> Vp!,p2Vt(True(AND(pi, p2), t) <->

True(p!, t) A True(p2, t))
<C3> VpVt(True(FORALL-u(p), t') <-+
Vu(True(p, t)))

We shall use formula Causes(ti, t, t2 , pi, p, p2) to
denote a causal law, which intuitively states that, under
the precondition that proposition pi hold true over
time ti, the truth holding of proposition p over time t
will cause the truth holding of proposition p2 over time
t2 . This can be formally characterized by the the
following axiom:
<C4> Causes(t!, t, t2 , pl5 p, p2)

A True(pi, ti) A True(p, t) => True(p2, t2)
In order to characterize temporal relationships

between events and their effects, we impose the
following temporal constraints:
(C5) Causes(t!, t, t2 , p ls p, p2)

=> Meets(tl5 1) A (Meets(tt , t2) v Before^, t2))
It is important to note that axiom (C5) presented

above actually specifies the so-called (most) general
temporal constraint (GTC) [14]. Such a GTC
guarantees the common-sense assertion that "the
beginning of the effect cannot precede the beginning of
the cause".

Actually, there are 8 possible temporal order
relations between times ti, t and t2 which satisfy (C5).
These include:
(1) The effect becomes true immediately after the

end of the event and remains true for some time
after the event.

162

APPENDIX A A SOUND AND COMPLETE REIFIED TEMPORAL LOGIC

(2) The effect holds only over the same time over
which the event is in progress.

(3) The beginning of the effect coincides with the
beginning of the event, and the effect ends before
the event completes.

(4) The beginning of the effect coincides with the
beginning of the event, and the effect remains true
for some time after the event.

(5) The effect only holds over some time during
the progress of the event.

(6) The effect becomes true during the progress of
the event and remains true until the event
completes.

(7) The effect becomes true during the progress of
the event and remains true for some time after the
event.

(8) There is a time delay between the event and its
effect.

4. Conclusion

In this paper, we have introduced a new reified
temporal logic, CRTL, with a clear syntax and
semantics, which, by inheriting from the initial first
order language, enjoys a sound and complete axiomatic
system. This is the main improvement made to the
reification approach to temporal representation and
reasoning. It is a true reified logic since a sort of
meta-relations is formally defined that allow one to
predicate and quantify over prepositional terms, and
therefore provides the expressive power to represent
and reason about both temporal and non-temporal
relationships between propositional terms. It is
demonstrated that the new logic proposed here retains
the appealing characteristics of some most
representatively existing temporal systems that utilize
the technique of reification.

5. Reference

1. J. F. Alien, "Maintaining Knowledge about
Temporal Intervals", Communications of the ACM
26(11), 1983, pp. 832-843.

2. J. F. Alien, "Towards a General Theory of Action
and Time", Artificial Intelligence, 23, 1984, pp.
123-154.

3. H. Altaf, "A Minimal Hybrid Logic for Intervals",
Logic Journal of the IGPL, 14(1), Oxford University
Press, 2006, pp. 35-62.

4. F. Bacchus, J. Tenenberg and J.A. Koomen, "A
non-reified temporal logic", Artificial Intelligence, 52,
1991, pp. 87-108.

5. P. Blackburn, M. Tzakova, "Hybrid languages and
temporal logic", Logic Journal of IGPL 7(1), 1999, pp.
27-54.

6. A. P. Galton, "A Critical Examination of Alien's
Theory of Action and Time", Artificial Intelligence,
42, 1990, pp. 159-188.

7. A.P. Galton, "An Investigation of Non-intermingling
Principles in Temporal Logic", Journal of Logic and
Computation, 6(2), 1996, pp. 267-290.

8. J.Y. Halpern and Y. Shoham, "A Propositional Model
Logic of Time Intervals", Journal of the Association
for Computing Machinery, 38(4), 1991, pp. 935-962.

9. J. A. W. Kamp, "Tense Logic and the Theory of Linear
Order". Ph.D. Diss., University of California, Los
Angeles, 1968.

10. J. Ma and B. Knight, "A Reified Temporal
Logic", the Computer Journal 39(9), 1996, pp.
800-807.

11. J. Ma and B. Knight, "A General Temporal
Theory", the Computer Journal 37(2), 1994, pp.
114-123.

12. A.N. Prior, "Time and Modality", Clarendon Press,
Oxford, 1957.

13. H. Reichgelt, "A Comparison of First-order and Modal
Logics of Time", In Jackson, P. and van Harmelen,
H.R.F. (eds.). Logic-based Knowledge Representation,
1989,pp.143-176.

14. Y. Shoham, "Temporal Logics in AI: Semantical and
Ontological Considerations", Artificial Intelligence, 33,
1987, pp.89-104.

15. H. Wang, "Logic of many-sorted theories", Journal of
Symbolic. Logic 17, 1952, pp. 105-116.

16. L. Villa, "A survey on temporal Reasoning in
Artificial Intelligence", AI Commun. 7, 1994, pp.
4-28.

163

APPENDIX B A NAVIGATION-BASED ALGORITHM FOR MATCHING SCENARIO PATTERNS

A Navigation-based Algorithm for Matching Scenario Patterns

Jixin Ma1 , Guoxing Zhao 1 , Edwin Hancock2
School of Computing and Mathematical Sciences, University of Greenwich, U.K.

2Department of Computer Science, University of York, U.K.
j.ma@gre.ac.uk. g.zhao@gre.ac.uk, erh@cs.york.ac.uk

Abstract

This paper presents a unified scheme for formalizing
scenario patterns, which are defined as vectors of states
with the corresponding temporal constraints, whereas
states are represented as collections of Boolean-valued
propositions whose truth-values are dependent on the
time. A temporal network, called scenario graph, is
introduced to graphically represent scenario patterns
formalized in terms of the unified scheme. A
navigation-based algorithm is proposed, and the
simulation experiments demonstrate that the method can
be used to match scenario graphs.

1. Introduction

The notion of state is fundamental for many real-time
applications. In conventional state-based systems, various
states of the world in the discourse are usually represented
in terms of isolated snapshots, while the state histories
(which will be formally characterized as scenario
patterns) with rich internal temporal aspects are neglected
in most approaches.

Pattern recognition aims at the operation and design of
technologies to pick up meaningful patterns in data [10].
While pattern classification is about putting a particular
instance of a pattern in a category, the goal of pattern
matching is to determine how similar a pair of patterns are
[9].

Graphs have been noted as a powerful and versatile
tool used in pattern recognition. As sampled in [4],
applications of graph matching include document
processing, image analysis, biometric identification and
video analysis, etc. However, conventional graph based
approaches in pattern recognition mainly concern
geometric and/or spatial relationships or correspondences,
where complicate temporal relationships between the
modeled objects/elements have not been explicitly dealt
with in most graph-based representation and matching
methods in pattern recognition.

Generally speaking, temporal representation and
reasoning is essential for many areas in computer science,
where one is interested not only in the representation of
distinct episodes of an enterprise, but also in the temporal
relations among the episodes. In particular, an appropriate
representation and recognition of scenario patterns is
necessary for many state-based systems, where the history
of states, rather than isolate states, plays an important role
in solving problems including explanation, diagnosis,
prediction, planning, process management, and history
reconstruction, etc. For instance, in the area of medical
information systems, we may use HasCold, HasFever,
HasCough and HasHeadache to represent that a patient
"has a cold", "has a high fever", "has a dry cough" and
"has a headache", respectively. However, without the
corresponding temporal relations, a pattern in terms of the
collection of these 4 isolate statements (data) is in general
not meaningful/helpful enough for a doctor to prescribe
the right treatments. In fact, the doctor needs to know not
only the patient's individual symptoms, but also the
temporal relations between these symptoms, and
probably, the patient's previous health records, etc.

A natural approach to represent the temporal
constraints on certain states is to associate the states with
time elements. For example, For example, by means of
using the so-called method of temporal arguments [3], we
may use Has(Cold, TCoid), Has(Fever, TFever), Has(Cough,
Tcough) and Has(Headache, THeadac)ie) to represent that a
patient "has a cold", "has a high fever", "has a dry cough"
and "has a headache", over the corresponding times ,
Tcoid, TFever, TCough and THeadache, respectively. Then,
various temporal relations between the involved time
elements will characterize different scenarios patterns. For
instance, as illustrated in Figure 1 and Figure 2
respectively, the following different two sets of temporal
relations, i.e.,
• During(TFever, TCold), Overlaps(TCold, TCough),

Overlaps(TCold, THeadache), After(TCmgk, TFever),
During(THeadache, TCough).

164

APPENDIX B A NAVIGATION-BASED ALGORITHM FOR MATCHING SCENARIO PATTERNS

• During(THeadache, TCoid), During(TFever,
After(TFever, THeadach^), Overlaps(TFever, TCough).

will characterize two distinct medical scenarios pattern
samples with respects to the same collection of
symptoms.

HasCold

HasHeadache

HasFever HasCough

Figure i. Sample 1

HasCold

HasFever
HasHeadache" HasCough

Figure 2. Sample 2

The objective of this paper is to introduce a formal
framework in terms of a unified scheme for formalizing
scenario patterns and the corresponding graphical
representation. The formalism is presented in section 2. In
section 3, a temporal network, called Scenario Graph, is
introduced for graphical representation of scenario
patterns. Illustrated by the experimental results, it is
demonstrated in section 4 that graph-matching algorithms
can be directly adopted for recognizing scenario patterns.
Finally, section 5 provides a brief summary and concludes
the paper.

2. The formalism

We shall use the time theory proposed in [6] as the
temporal basis of the formalism. The theory takes a
nonempty sort, T, of primitive time elements, with a
primitive order relation Meets over time elements, and a
function Dur from time elements to non-negative real
numbers. Time element t is called a point if Dur(t) = 0;
otherwise, i.e., ifDurft) > 0, t is called an interval.

The basic set of axioms concerning the triad (T,
Meets, Dur) is given as below:
(Tl) Afeefcft, t2) AMeets(tb t3) A Meets(t4, t2)

=> Meets (t4, t3)
That is, if a time element meets two other time

elements, then any time element that meets one of these two
must also meets the other. This axiom is actually based on
the intuition that the "place" where two time elements meet
is unique and closely associated with the time elements [2].
(T2) \/t3tht2(Meets(th t) AMeets(t, t2))

That is, each time element has at least one immediate
predecessor, as well as at least one immediate successor.

tb tj AMeets(t3, t4)

Meets(th t4)
V3t'(Meets(t,, t') AMeets(t', t4))
V3t"(Meets(t3, t") AMeetsft", tj)

Here, V stands for "exclusive or". That is, any two
meeting places are either identical or there is at least a time
element standing between the two meeting places if they are
not identical.
(T4) Meets(t3,t]) AMeets(th t4)

AMeets(t3, tj AMeets(t2, t4)

That is, the time element between any two meeting
places is unique.

N.B. hi this paper, for any two adjacent time elements,
that is time elements ti and t2 such that Meets(tj, t2\ we shall
simply use tj ® t2 to denote their ordered union. The
existence of such an ordered union of any two adjacent time
elements is guaranteed by axioms (T2) and (T3), while its
uniqueness is guaranteed by axiom (T4).
(T5) Meets(ti, tj =>Dur(ti) > 0 vDur(tj > 0

That is, time elements with zero duration cannot meet
each other.
(T6) Meets(tj, tj => Durfa ® tj = Durfa) + Dur(t2)

That is, the "ordered union" operation over time
elements is consistent with the conventional "addition"
operation over the duration assignment function, i.e., Dur.

Analogous to those introduced by Alien [1], other order
relations between time elements can be derived in terms of
the primitive relation Meets, as below:

Equal(t,, t ' '(Meets(t ', t,) A Meets(t ', t2)
A Meets(tj, t") A

Meets(t2, t"))
Beforefti, tj <z>3t(Meets(th t) AMeets(t, tj)
Overlaps(th tj <=> 3t,t3,t4fti = t3 @ tAt2 = t@ t4)
Starts(t,, tj <=>3t(t2 = t} ® t)
During(t,, tj <Z>3t3,t4(t2 = t3 ® t} @ t4)
Finishes(t,, tj <£>3t(t2 = t® t,)
After(tb tj ^>Before(t2, t})
Overlapped-by(tlt tj <3> Overlaps (t2, tj
Started-by(t,, tj <>Starts(t2, t,)
Contains^;, tj <=>During(t2, tj)
Finished-by(t!,tj o Finishes (t2, tj,
Met-by(th tj <^>Meets(t2, t,)

In this paper, we shall use the termfluenst to represent
Boolean-valued propositions whose truth-values are
dependent on time. We shall denote the set of all the
fluents as F, and use a "global predicate" [8]: Holds(f, t),
to state that fluent / holds true with respect to time t,
provided that:
(HI) Holds (f, t) <>Vt'(Part(t', t) =>Holds(f, t'))

Here, Partft,, tj denotes that time t} is a part (not
necessarily proper) of time f2 [1, 6]. That is:

Part(t,, tj <=> Equal(th tj vStarts(tj, tj
vDuring(t,, tj vFinishes(t], tj

165

APPENDIX B A NAVIGATION-BASED ALGORITHM FOR MATCHING SCENARIO PATTERNS

Therefore, (HI) states that, if a fluent holds true
throughout an interval if and only if it holds true over/at
every part of the interval.
(H2) Holdstf, t,) A Holds(f, tj A Meets ft j, tj

=>Holds(f,t] @t2)
That is, if a fluent holds true over two adjacent time

elements respectively, then it also holds true over their
ordered union.

A state of the world in the discourse is defined as a
collection of fluents. The set of states is denoted as S. We
shall use Belongs(f, s) to represent fluent/belongs to state
s[l]:
(Bl) 3s Vf(-Belongs(f, s))

That is, there exists a state which is an empty
collection of fluents.
(B2) -<Belongs(f, s) v ̂ Belongs (not(f), s)

That is, any state cannot contain both a fluent and its
negation.
(B3) -Selongs(not(f]), s })
=>3s2 Vf2(Belongs(f2, s2) <z> (Belongs (f2, s,) vf, =fj))

That is, any fluent can be added to an existing state
to form a new state, as long as the state does not contain
the negation of the fluent.
(B4) 57 = s2 <=> Vf(Belongs(f, s,) <z> Belongs (f, s2))

Without confusion, we also use Holds(s, t) to denote
that state s holds for time t, provided that every fluent /
belongs to state 5 holds for time t :
(m)Holds(s, t) <^ Vf(Belongs(f, s) =>Holds(f, t))

In addition, we introduce two binary operators, Union
and Intersection, so that Union(sh s2) and Inter section(sh
sj denote the union, and the intersection, of states Sj and
s2, respectively:
(B5) Belongs(f, Union(si, s2))

•£> Belongs(f, s}) vBelongs(f, 82)
(B6) Belongs(f, Intersection^,, s2))

<=>Belongs(f, sj) A Belongs (f, s2)
Any given scenario, st, is formalized in terms of a

unified scheme, represented as a quadruple:

st = <Statest, Holds31, Meets'1, Dur*l>, such that
Statest ={ssti \ssti eS,i=\,...,m},
Holds5' = {Holdstf't, ?t) | f '>£ T, 1 < i < m}
Meets" = {Meets(f", f")\ for some /"',/" "e 7"}
Dur5' = (Dur(f) = r \ for some f e Tf, re/?}

where Tf is the minimal subset of T closed under the
following rules:

t& 7* o 3t'&Jet(Meets(t, t ') v Meets(t ', t))

3. Scenario Graphs

In [5], a graphical representation for expressing
temporal knowledge has been introduced in terms of a
directed and partially weighted graph. It can be extended
to express scenarios presented in the unified structure as
introduced in section 2. In fact, a given scenario st can be
represented in terms of a temporal network, defined as a
directed, partially weighted/labeled simple graph Gst,
called Scenario Graph, where:
• Each time element t in T1 is denoted as a directed arc

of the graph labeled by t that is bounded by a pair of
nodes, which are called the tail-node, and the
head-node, of the arc, respectively.

• Each relation Meets(tj, tj) in Meets3' is represented by
means of merging the head-node of /,• and the
tail-node of tj as a common node, of which fy is an
in-arc and tj is an out-arc, respectively (see Figure 3).
In this case, arc tt is said to be adjacent to arc tj.

• Each formula Holds(s*h f,) in Holds" is
represented by means of simply adding ss'i as an
additional label to the arc labeled by the
corresponding f'{. For any time element t in Tf, if
there is no Holds knowledge, it will be labeled by the
empty state {}.

• Each piece of duration knowledge Dur(t) = r in Dur3'
is expressed as a real number, r, alongside the
corresponding arc t.

For scenario graph Gst, we define a |7*'|-by-|7"l
Meets-adjacency matrix M5', where

|X if Meets (t^tj)
0, otherwise

4. A navigation-based algorithm

In what follows, by assuming the set of fluents F is
finite, i.e., F = {/},..., /„}, we shall propose a
navigation-based algorithm for matching scenarios
graphs.

4.1 The algorithm

Given two scenarios, stj and st2 , we assume |r/'| <
|r/'|. We use ^ to denote a one-to-one function from {1,
..., \T"\} to {!,..., |7V'|}, and compute the following
similarity degrees:
• Similarity of graph size:

iSt

St

Similarity of Holds relations:
\

simHolds '

Inter sec tion(s ,

166

APPENDIX B A NAVIGATION-BASED ALGORITHM FOR MATCHING SCENARIO PATTERNS

y.,1

Similarity of duration assignments:

simDur (st,,st2 ,(f>) =

• Similarity of Meets relations:
For scenarios st, and st2t we use M, and M2 to denote

their corresponding Meets-adjacency matrices
respectively, and, with respect to fa we derive a \T]S'*\T,st \
matrix M2 from M/ and M2, such that:

Then, the similarity of Meets relations between
scenarios st} and st2, with respect to function fa is defined
as:

<M,,M2'>

where

The overall similarity between scenarios st} and
with respect to function fa is defined as:

st2 ,0) = simsize (stlt st2)
smHolds

sim
, st2 , * , st2 ,

Meets 5^ , st2 ,
Finally, the similarity between scenarios stj and st2 is
defined as:

} = max sim (stl , st2 , 0)sm

4.2 Experimental results

The algorithm has been implemented in MatLab.
What follows describes some experiments conducted,
where the corresponding weights taken in the algorithm
are: w} = w2 = 0.25 and w3 = 0.5.

4.2.1. Test 1. As shown in Figure 3 - Figure 9, for the 7
pairs of scenario graphs (ST! and ST2), the corresponding
results computed from the algorithm provide a well stable
similarity measurement as expected.

{fl}0.5 {G}0.5

{f2}0.5

{fl,f2}0.7 ,£2}0.3

Figure 3. Sim(st34, st3^) = 1

(f2}0.5

O

{fl,£2}0.7 {fl,f2}0.3

Figure 4. Sim(st4,i, st4j2) =0.8333

Figure 5. Sim(st54, sts^) =0.9093

{f2}0.5

{fl,f2}0.7
Figure 6. =0.9310

167

APPENDIX B A NAVIGATION-BASED ALGORITHM FOR MATCHING SCENARIO PATTERNS

{Headache} 2

Figure 7. Sim(st7>1 , st7^) =0.7231

Figure 8. Sim(st8,i, st8^) =0.5429

Figure 9. SimCst,,,, st9)2) =0.5500

4.2.2. Test 2. Figures 10 - Figure 12 represent three
graphs corresponding to real-world scenarios in medical
records, respectively:

*Q
{Cold}2 (Cbld}8

Figure 10. Scenario 1
{Cougji}2

Headache,Cough}2

{Cold}2 {Cold}3 {Cold}4.5 {Cough}2

Figure 11. Scenario 2

{Fever, {Headache,

{Vomit} 0.5
Figure 12. Scenario 3

The computed similarities among these three scenarios
are listed in Table 1.

Table 1. Similarity list

Scenario 1
Scenario 2
Scenario 3

Scenario 1
1
0.7211
0.6878

Scenario 2
0.7211
1
0.6042

Scenario 3
0.6878
0.6042
1

Taking the above given three scenario graphs as the
model graphs, we modified each of them in various ways
to obtain a series of modified scenario graphs. Figure 13 -
Figure 15 show the relationships between the similarity
and the corresponding noise/modification, where each line
represent a collection of scenario graphs including one of
the 3 model scenarios and the series of the corresponding
modified ones.

^
s
\ 0.8
m
i 0.6

a
r
i
t

y

0.4

0.2

0
0 0.5

Noise
Figure 13. Scenario 1 and its modifications

168

APPENDIX B A NAVIGATION-BASED ALGORITHM FOR MATCHING SCENARIO PATTERNS

1
S
i 0.8
m
i 0.6
I
a 0.4
r
i 0.2
t
v 0

0 0.5

Noise

Figure 14. Scenario 2 and its modifications

1

m
i
I
a
r
i
t

y

0.5

0
0 0.5

Noise
Figure 15. Scenario 3 and its modifications

Finally, Figure 16 as shown below provides an
overview of the similarity/dissimilarity among the three
collections of scenario graphs generated in Test 2.

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

O Collectionl
x Collection2
+ Collections

-I- -

o

O
o

o o

'•0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Figure 16. The three collections of scenarios

It is easy to see that the similarity defined here reflects
the conventional idea of edit distance in graph matching.
In other words, the more similar a pair of two scenario
graphs is, the closer they are to each other. Therefore,
given some certain criteria in terms of the
similarity/dissimilarity, it will be straightforward to use
the proposed algorithm to cluster scenario graphs into
various groups.

5. Conclusions

In this paper, we have introduced a framework for
representing and recognizing scenario patterns with rich
internal temporal aspects. The framework consists of a
unified scheme for scenario formalization and a temporal
network for graphical representation. It is shown that
scenario pattern recognition and matching can be simply
transformed into graph matching. However, due to the
embedded checking of all permutations, the
computational complexity associated with the proposed
navigation-based algorithm is actually NP-hard. On the
other hand, it is easy to see that, by means of re-indexing
the arcs of any given scenario graph, the corresponding
Meets-adjacent matrix can be turned out to be strictly
upper-diagonal. In other words, scenario graphs in general
are quite regularly sparse. Therefore, it is believed that
exploiting such kind sparsity can lead to more efficient
algorithms/methods to improve the corresponding
computational complexity. This remains the main target
as for the future work. The future work will also concern
real world applications such as medical treatments and
weather forecasting.

6. References

[1] J. Alien, "Maintaining knowledge about temporal
intervals", Communications of the ACM 26 (11), (1983)
pp.832-843.

[2] J. Alien, and P. Hayes, "Moments and Points in an
Interval-based Temporal-based Logic", Computational
Intelligence 5, (1989) pp.225-238.

[3] B. Haugh, "Non-Standard Semantics for the Method of
Temporal Arguments", Proceedings of 10th IJCAI (1987)
pp.449-455.

[4] C. Irniger, and H. Bunke, "Theoretical Analysis and
Experimental Comparison of Graph Matching Algorithms
for Database Filtering", Proceedings of 4th IAPR
International Workshop on Graph Based Representations
in Pattern Recognition, York, U.K. (2003) pp.118-129.

[5] B. Knight, and J. Ma, "A General Temporal Model
Supporting Duration Reasoning", Artificial Intelligence
Communication, Vol.5(2), (1992) pp.75-84.

[6] J. Ma, and B. Knight, "A General Temporal Theory", the
Computer Journal 37(2), (1994) pp.114-123.

[7] M. Shanahan, "A Circumscriptive Calculus of Events",
Artificial Intelligence 77, (1995) pp.29-384.

169

APPENDIX B A NAVIGATION-BASED ALGORITHM FOR MATCHING SCENARIO PATTERNS

[8] Y. Shoham, "Temporal Logics in AI: Semantical and
Ontological Considerations", Artificial Intelligence 33,
(1987)pp.89-104.

[9] S. Theodoridis and K. Koutroumbas, Pattern Recognition,
Second Edition, Academic Press (2003).

[10] D. Tveter, The Pattern Recognition Basis of Artificial
Intelligence, Wiley-IEEE Computer Society Press (1998).

170

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

Matching Case History Patterns in Case-Based
Reasoning

Guoxing Zhao 1 , Bin Luo2 and Jixin Ma1

School of Computing and Mathematical Sciences, University of Greenwich, U.K.
(g.Zhao,j.ma}@gre.ac.uk

2School of Computer Science and Technology, AnHui University, China
luobin@ahu.edu.en

Abstract. This paper introduces a mechanism for representing and recognizing
case history patterns with rich internal temporal aspects. A case history is
characterized as a collection of elemental cases as in conventional case-based
reasoning systems, together with the corresponding temporal constraints that
can be relative and/or with absolute values. A graphical representation for case
histories is proposed as a directed, partially weighted and labeled simple graph.
In terms of such a graphical representation, an eigen-decomposition graph
matching algorithm is proposed for recognizing case history patterns.

1 Introduction

The notion of case is fundamental for many real life applications. In conventional
case-based systems, various cases in the world under consideration are usually
represented as isolated episodes. Generally speaking, temporal representation and
reasoning is essential for many areas in computer science, where one is interested not
only in the representation of distinct episodes of an enterprise, but also in the temporal
relations among the episodes. In particular, appropriate temporal representation and
reasoning is fundamental for many case-based systems, where the history of cases,
rather than isolated cases, plays an important role in solving problems including
explanation, diagnosis, prediction, planning, process management, and history
reconstruction, etc. For instance, in the area of medical information systems, the
patients' medical histories are obviously very important. In fact, to prescribe the right
treatments, the doctor needs to know not only the patients' current status, but also
their previous health records. Similarly, in weather forecasting, without a good
understanding of climate phenomena based on past observations, the weather expert
cannot make good predictions of the future.

This research is supported in part by National Nature Science Foundation of China
(No.60375010)

171

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

Despite the fact that temporal representation and temporal reasoning have been
neglected in most conventional case-based reasoning systems which only address
snapshot episodes, a few interesting approaches have been proposed to incorporate
the temporal concepts into isolated elemental cases. Examples of these are that of
Nakhaeizadeh [1], of Branting and Hasting [2], of Jaczynski and Trousse [3], of Hansen
[4], and of Jare, Adamodt and Skalle [5]. The underlying time models employed
in most of these systems are point-based, and therefore, it is required that absolute
time points [1-4], or intervals delimited by a pair of points [5], must be associated
with the time-dependent statement being addressed. However, there are many
applications in which there may be just some relative temporal knowledge about the
time-depended statements to hand, where their precise time characters such as the
exact starting and finishing time are not available (e.g., "John ran 3 miles yesterday
morning", "John arrived at the office before Mary went to home", etc.).

Pattern recognition aims at the operation and design of technologies to pick up
meaningful patterns in data [6]. While pattern classification is about putting a
particular instance of a pattern in a category, the goal of pattern matching is to
determine how similar a pair of patterns are [7]. The objective of this paper is to
introduce a mechanism for case history representation and recognition. Section 2
presents the formalism, including: the temporal basis which allows expression of both
absolute time values and relative temporal relations; a formal characterization of
fluents and elemental cases; and two equivalent schemas for case history
representation. A network, called Case History Graph, given in terms of a directed,
partially weighted and labeled simple graph, is introduced in section 3 for graphical
representation of case histories. In section 4, an eigen-decomposition algorithm is
proposed for matching case history graphs, where some illustrated experimental
results. Finally, section 5 provides the conclusions.

2 The formalism

We shall describe the formalism in terms of a many-sorted reified logic with equality
[8], consisting of four disjoint sorts objects T, F, C and H, called time elements,
fluents, elemental cases and case histories, respectively.

Firstly, each time element is defined to be in one of the following four forms:

(PhP2) = {P

\Pi,P2> = (P
(PhP2\ = \P \Pl,P2,P^R A/7; <p <p2 }

\PhP2\ = (P \Pl,P2,P^R *Pl<P<p2}

where R is the set of real numbers, and <, < and = are the conventional order relations
over real numbers.

In this paper, p, and p2 in the above shall be called the left-bound and right-bound
of time element t, respectively. The absolute values as for the left and/or right bounds

172

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

of some time elements might be unknown. In this case, real number variables are used
for expressing relative relations to other time elements.

If the left-bound and right-bound of time element t are the same, we shall call t a
time point, otherwise t is called a time interval. Without confusion, we shall take time
element [p, p\ as identical to p.- Also, if a time element is not specified as open or
closed at its left (right) bound, we shall use "<" instead of "(" and "[" as for its left
bracket; similarly, we shall use ">" instead of ")" and "]" as for its right bracket. In
addition, we define the duration of a time element t, Dur(t), as the distance between
its left bound and right bound:

t = <pi, P2> <=> Dur(t) =p2 -pi

Following Alien's terminology [9], we shall use Meets to denote the immediate
predecessor order relation over time elements, defined by:

Meets(t], t2) <^> 3pj,p,p2 eR(tj = (p,, p) M2 = \p, p2)

It is easy to see that the intuitive meaning ofMeets(tj, t2) is that, on the one hand,
while tj is an "earlier" time element compared with t2, there are no other time
elements standing between them; on the other hand, time elements t] and t2 don't
overlap each other (i.e., they don't have any part in common, not even a point).

Analogous to those introduced by Alien [9], other order relations between time
elements can be derived in terms of the primitive relation Meets, including Equals,
Before! After, Meets/Met-by, Overlaps! Overlapped-by, Starts! Started-by, During! Contains
and Finishes! Finished-by [10]. As shown in [11], such a time model as adapted
describe here has all the expressive power and convenience of the approach that treats
intervals as primitive [9, 10, 12]. Specially, since the open/closed nature of a time
element may be unspecified, it can overcome the disadvantage of conventional
point-based approaches in representing possibly incomplete temporal knowledge, and
bypass some historical puzzles such as the so-called Dividing Instant Problem [13].

In what follows in this paper, we shall use 77? to denote the set of these 13 exclusive
temporal order relations.

Secondly, a fluent is defined a statement (or proposition) whose truth-value is
dependent on times. The sort of fluents F is characterized as the minimal set closed
under the following rules:

fi,f2 eF=>f,vf2 eF

feF=>not(f)eF

173

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

In order to associate a fluent with a time element, we shall use a global-predicate
[8, 14], Holds(f, t), to state that fluent/holds true over time t:

Holds(f, <pi,p2>) ^ Vp3,p4 eR(pi <p3 Ap4 <p2 => Holds(f, <p3,p4>})

Holdsif, <pi, p2>) A Holds(f, <p2, p3>) A Meets(<pi, p2>, <p2, p3>)

Thirdly, an elemental case is defined as a collection of fluents. We shall use
Belongs(f, c) to denote that fluent f belongs to case c [15].

Without confusion, we also use Holds(c, t) to state that case c holds over time t,
provided that every fluent/belongs to case c holds true over time t:

Holds(s, t) <s> V/(Belongs(f, s) => Holds(f, tj)

In addition, we introduce two binary operators, Union and Intersection, over the
sort of elemental cases C, so that Union(ch c2) and Intersection(cj, c2) denote the
union, and the intersection, of case c/ and case c2, respectively:

Belongs(f, Union(cj, c2J) <$=> Belongs(f, c;) v Belongs(f, c2)

Belongs(f, Inter section(cj, c2)) <£> Belongs(f, c/) A Belongs(f, c2)

Finally, a case history h, can be formalized in terms of one of the following two
equivalent schemas:

In the first schema, Schema I, a case history is represented as a quadruple <Caseh,
Holdsh , Relation11 , DM/>, where Caseh is a collection of elemental cases, Holds*1 is a
collection of Holds formulae, Relationh is a collection of temporal order relations, and
Dur*1 is a collection of duration knowledge. That is:

Schema I
h = <Caseh , Holds* , Relation*1 , Du^>

Caseh = {chi | chi&C, i = l,..., m}
Holdsh = {Holds(c\, A) I AeT1, l<i<m}
Relatioh = {Relational, ^2) I for some ^7/2 e7*, Relation i, 2 eTR}
Dur11 = (Dur(t) = r \ for some t&f1 , r&R}

where f1 is the minimal subset of T closed under the following rules:

Ae7V=/, ...,m;
t&f"e> 3t'eI*(Meets(t, t') v Meets(t', t))

It is for the reason of general treatment that the temporal relationships presented in
the above Schema I are given in the form of a collection of order relations each of
which can be any one of those 13 in TR, that is, Equal, Before, After, Meets, Overlaps,
Overlapped-by, Met-by, Starts, Started-by, During, Contains, Finishes and Finished-by.
However, since all these order relations can be derived from the single Meets relation, we
shall have another schema, Schema II, which is equivalent to the Schema I:

Schema II

174

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

h = <Case", Holds11 , Meets", Dur*>
Caseh ={chi \chi eC,i = l, ...,m}
Holdsh = {Holds(chh A) I A-eT7, l<i<m}
Meets'1 = {Meetstf,, ^2) | for some A/2 e

= (Dur(f) - r | for some tef1 , r&R]

3 Graphical Representation of Scenarios

In [16], a graphical representation for expressing temporal knowledge has been
introduced in terms of a directed and partially weighted graph. It can be extended to
express case histories presented in the Schema II as introduced in section 2. In fact, a
given case history h can be represented in terms of a temporal network, defined as a
directed, partially weighted/labeled simple graph Gh , called Case History Graph,
where:

• Each time element t in f1 is denoted as a directed arc of the graph labeled by t
that is bounded by a pair of nodes, which are called the tail-node, and the
head-node, of the arc, respectively.

• Each relation Meets(ti, tj) in Meets'1 is represented by means of merging the
head-node oftt and the tail-node off,- as a common node, of which tj is an in-arc
and tj is an out-arc, respectively (see Fig. 1).

• Each formula Holds(chh ^) in Holds* is represented by means of simply adding
chi as an additional label to the arc labeled by the corresponding **,. For any time
element t in 7*, if there is no Holds knowledge, it will be labeled by the empty
state {}.

• Each piece of duration knowledge Dur(t) = r in Dui* is expressed as a real
number, r, alongside the corresponding arc t.

In what follows, we shall simply assume \F\ = n. Corresponding to case history
graph Gh with m nodes, we define a m*m-matrix JW*, named the characteristic matrix,
where Mh(u, v) is a (n+l)-dimension vector luv eR"+\ such that:

(a) For any adjacent pair of nodes M and v in Gh, if (u, v) is an arc representing time
element t, then luv(K) = 1 if Holds(fk, t), otherwise luv(k) = 0, 1 < k < n; and luv(n+l)
= Dur(f).

(b) For any non-adjacent pair of nodes u and v in G , luv = <w, w, ..., w>, where w is a
negative real number, which will be use to adjust the edit-distance of deleting
operations in graph matching process.
In this paper, we shall use Mhk to denote the matrix whose w-v-entry is the fc-th

element of w-v-entry in M1 .

175

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

Meets(ti,

Fig. 1. Merging the head-node off, and the tail-node off, as a common node ifMeets(tj, tj)

4 Eigen-decomposition graph matching algorithm

Spectral graph theory is a branch in mathematics which aims to characterize the
properties of graphs using the eigen-values and eigen-vectors of the adjacency matrix
or the closely related Laplacian matrix [17]. However, conventional spectral-based
approaches usually deal only with symmetric real matrices, where the adjacency
matrices of directed graphs, like the case history graph introduced in this paper, are in
general asymmetric. Moreover, the entries of the characteristic matrix of a given case
history graph are (n+l)-dimension vectors, rather than single real values as in
conventional spectral-based models. In what follows, we shall extend the so-called
eigen-decomposition graph matching algorithm, proposed by Umeyama [18], to
match case history graphs.

176

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

4.1 Definition of case history similarity

In what follows in this paper, if M is a complex number matrix, we shall use \\M\\to
denote the Frobenius-norm of M, and \M\ to denote the matrix whose elements are the
module of the corresponding elements of M

Given two case histories h\ and h2 , assume the characteristic matrices are M1* 1 and
M , with size m*m\ and m2*m2 . Without losing the generality, we assume m\ = mi =
m. In fact, if m\ < m2, we can simply add m-i~m\ isolated dummy nodes to graph GM
to get an extended graph Ghl , whose characteristic matrix M1* 1 will have the same
size as that of A/12, i.e., m2*m2 . Similar treatment can be applied to the case where m2
<m\.

The similarity degree between h\ and h2 is therefore universally defined by:

rWll2

k=\

where perm(m) denotes the set of all m*m permutation matrices. It is easy to see that
sim(h,, h2) falls in the range of [0, 1].

4.2 Calculating the similarity

The similarity degree between two case graphs defined in section 4.1 only involves
calculating the minimal value with respect to all the possible permutation matrices.
In what follows, we extend Umeyama's algorithm as define for a single pair of
asymmetric matrices to m pairs of asymmetric matrices.

In fact, to calculate
n+\

min
peperm(m) ~

we defined
p., <+«f ,L ~

where k = 1,2, ...,«,
Since E and Eh2 are Hermitian matrices, we can get the eigen-compositionsk

and Ehk 2 as:

177

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

l n r(uk
rh2

rhl rh2where Uk and Uk are unitary matrices, and Dk and Dk are diagonal

matrices formed from the ordered eigen-values of Ek and Ek , respectively. N.B.
Here, * denotes the Hermitian transposition.

Let
uhl \ \u
^ l 5 P :

hi Uhi
n+l

V2 =< Uh2
U.h2 U h2

n+l

Then, we get the optimized permutation matrix p by means of using the Hungarian
algorithm:

p = Hungarian

4.3 Experimental results

The algorithm has been implemented in MatLab. What follows describes some
experiments conducted, where the corresponding weight w was set as -0.3.

As shown in Fig. 2 - Fig. 8, for the 7 pairs of case history graphs, Gthl and G/12 (i
= 1, 2, ..., 7), the corresponding results computed from the algorithm provide a well
stable similarity measurement as expected.

h2 •Fig. 2. The similarity between GI and GI is 1

Fig. 3. The similarity between G2 and G2 is 0.7800

178

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

ff"2>1,
ffM^o.7 qnmjrt

•Hi*

Fig. 4. The similarity between G3hl and G 2̂ is 0.8413

Fig. 5. The similarity between G4hl and G4h2 is 0.9148

hiFig. 6. The similarity between G5n and GS is 0.7301

Fig. 7. The similarity between G6hl and G6K is 0.7669

Fig. 8. The similarity between G7hl and G-T is 0.5711

4.4 Computational complexity

For two given case history graph Ghl and Gh2 with m nodes and « fluents, the
computation consists of two significant parts. The first part involves 2*(«+l)
calculations as for the eigen-decomposition of matrix with size m*m, giving a
complexity of O(«m3). The second part involves in applying Hungarian algorithm to a
matrix of size m*m, giving a computational complexity of O(m3). Therefore, the
overall complexity of matching two case history graphs is O(nm3).

179

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

5 Conclusions

In this paper, we have introduced a mechanism for representing and recognizing case
histories with rich internal temporal aspects, in the domain of case-based reasoning.
The formalism includes two equivalent schemas for case history formalization and a
graphical representation corresponding to the unified second schema. It is shown that
case history pattern recognition and matching can be simply transformed into graph
matching. By means of extending the eigen-decomposition algorithm from weighted
graph to vector labeled graph, we can get ideal results in matching pairs of case
history graphs for most states of affairs. However, in some special states of affairs, the
algorithm may fail to work as expected. The future work of this research includes
identifying the reason of the failure, and improving the algorithm for general real life
applications.

References

1. Nakhaeizadeh, G.: Learning Prediction of Time Series: A Theoretical and Empirical
Comparison of CBR with Some Other Approaches. In Proceedings of the Workshop on
Case-Based Reasoning, AAAI-94. Seattle, Washington (1994) 67-71

2. Branting, L. and Hastings, J.: An empirical evaluation of model-based case matching and
adaptation. In Proceedings of the Workshop on Case-Based Reasoning, AAAI-94. Seattle,
Washington (1994) 72-78

3. Jaczynski, M.: A Framework for the Management of Past Experiences with
Time-Extended Situations. In Proceedings of the 6th International Conference on
Information and Knowledge Management (CIKM'97), Las Vegas, Nevada, USA,
November 10-14, (1997) 32-39

4. Hansen, B.: Weather reasoning predication using case-based reasoning and Fuzzy Set
Theory, MSc Thesis, Technical University of Nova Scotia, Halifax, Nova Scotia, Canada
(2000)

5. Jare, M., Aanodt, A. and Shalle, P.: Representing Temporal Knowledge for Case-Based
Reasoning. Proceedings of the 6th Euroupean Conference, ECCBR 2002, Aberdeen,
Scotland, UK, September 4-7, (2002) 174-188

6. Tveter, D.: The Pattern Recognition Basis of Artificial Intelligence. Wiley-IEEE
Computer Society Press (1998)

7. Theodoridis, S. and Koutroumbas, K.: Pattern Recognition. Second Edition, Academic
Press (2003)

8. Ma, J. and Knight, B.: Reified Temporal logic: An Overview, Artificial Intelligence
Review, Vol. 15. (2001) 189-217

9. Alien, J.: Maintaining knowledge about temporal intervals. Communications of the ACM, Vol. 26
(11), (1983) 832-843

10 Alien J and Hayes, P.: Moments and Points in an Interval-based Temporal-based Logic.
Computational Intelligence, Vol. 5. (1989) 225-238

11 Ma, J and Hayes, P.: Primitive Intervals Vs Point-Based Intervals: Rivals Or Allies?",
the Computer Journal, Vol.49(l). (2006) 32-41

12 Ma, J. and Knight, B.: A General Temporal Theory. The Computer Journal, Vol. 37(2).
(1994)114-123

180

APPENDIX C MATCHING CASE HISTORY PATTERNS IN
CASE-BASED REASONING

13. Ma, J. and Knight, B.: Representing The Dividing Instant. The Computer Journal, Vol.
46(2). (2003) 213-222

14. Shoham, Y.: Temporal Logics in AI: Semantical and Ontological Considerations,
Artificial Intelligence Vol. 33. (1987) 89-104

15. Shanahan, M.: A Circumscriptive Calculus of Events, Artificial Intelligence, Vol. 77.
(1995)29-384

16. Knight, B. and Ma, J.: A General Temporal Model Supporting Duration Reasoning,
Artificial Intelligence Communication, Vol. 5(2). (1992) 75-84

17. Chung, F.: Spectral Graph Theory, CBMS series 92, American Mathematical Society,
Province, RI, 1997

18. Umeyama, S.: An Eigendecomposition Approach to Weighted Graph Matching Problems,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10(5). (1988), 695-
703

181

APPENDIX D MATCHING SCENARIOS PATTERNS BY USING LINEAR PROGRAMMING

Matching Scenarios Patterns by Using Linear Programming

Guoxing Zhao 1 , Bin Luo2 and Jixin Ma 1
1 School of Computing and Mathematical Sciences, University of Greenwich, U.K.

School of Computer Science and Technology, AnHui University, China
{j.ma, g.zhao}@gre.ac.uk, luobin@ahu.edu.cn

Abstract

This paper continues the work presented previously
at ICNC-FSKD-05 for representing and matching
scenario patterns. A unified scheme is presented to
replace the two previous equivalent schemas for
formalizing scenario patterns. In the unified scheme, a
scenario is denoted in terms of a collection of states
with the corresponding temporal constraints, where a
state is defined as a set of Boolean-valued
time-dependent fluents. The concept of a scenario
graph is formally introduced as a directed, partially
weighted and labeled simple graph. Based on such a
graphical representation, an extended linear
programming graph matching algorithm is proposed
for recognizing scenario patterns.

1. Introduction

Like the concept of case in case-based reasoning,
the notion of state in state-based systems is fundamental
for many real-time applications. In conventional
state-based systems, various states of the world in the
discourse are usually represented in terms of isolated
snapshots, while the state histories (or temporal
scenarios) with rich internal temporal aspects are
neglected in most approaches. Over the past three
decades, it has been noted that temporal representation
and reasoning is essential for many areas of Artificial
Intelligence, where one is interested not only in the
representation of distinct episodes of an enterprise, but
also in the history of earlier/future situations [13, 14,
23, 24, 27]. In particular, an appropriate representation
and reasoning for temporal knowledge is necessary for
many state-based systems, where the history of states,
rather than distinct episodes, plays an important role in
solving problems including explanation/diagnosis,
prediction/forecast, planning/scheduling, process
management, and history reconstruction, etc.

A natural approach to represent the temporal
constraints on certain states is to associate the states
with time elements. Generally speaking, there are three

known choices as for the sort of objects to be taken as
time elements: (1) points, i.e., instant without duration;
(2) intervals, i.e., periods with positive duration; and (3)
both points and intervals. In addition, in temporal
systems where time intervals are modeled as time
elements, there are two different approaches. In the
first, intervals are modeled as derived objects
constructed from points, e.g., as sets of points [8, 22],
or as pairs of points [7, 9, 10, 16, 26]. However, it has
been argued in the literature that defining intervals as
objects derived from points may lead to the so-called
Dividing Instant Problem [8, 11, 19]. The second
treatment takes intervals as primitive objects, without
insisting on the existence of "ending-points",
"internal-points", or any points at all. Alien's interval
logic [1, 2, 3, 4], Vilain's temporal system [31], and Ma
and Knight's general time theory [17] are examples that
treat intervals as primitive.

Generally speaking, pattern recognition aims at the
operation and design of technologies to pick up
meaningful patterns in data [29]. While pattern
classification is about putting a particular instance of a
pattern in a category, the goal of pattern matching is to
determine how similar a pair of patterns are [28]. In
state-based systems, certain states may be associated
with specific time elements, where various temporal
relations between the involved time elements will
characterize different scenario patterns.

In [20], a formal method is proposed for
representing and recognizing scenario patterns with rich
internal temporal aspects. This paper continues such a
work by means of unifying the two previous equivalent
schemas for representing temporal scenarios, and
implementing a linear programming graph matching
algorithms for matching scenarios patterns. In section 2,
we introduce the theoretical background of the
formalism, where the graphical representation of
temporal scenarios is formally described in section 3.
Section 4 presents an extended linear programming
algorithm for matching scenario graphs, and provides
some experimental results. Finally, section 5
concludes the paper.

182

APPENDIX D MATCHING SCENARIOS PATTERNS BY USING LINEAR PROGRAMMING

2. The background formalism

As proposed in [20], a simple point-based time
model is adopted as the temporal basis. In such a time
model, time elements are defined as typed point-based
intervals, allowing expression of both absolute time
values and relative temporal relations [21]. Following
the notations taken in [20], we shall use R to denote the
set of real numbers, and T, the set of time elements.
Each time element t is defined as a typed (left-open &
right-open, left-closed & right-open, left-open &
right-closed, left-closed & right-closed) subset of the set
of real numbers R. I.e., each time element must be in
one of the following four forms:

(Pi» Pa) = (P I peR A p t < p < p2 }
[Pi, p2) = {p | peR A pi < p < p2 }
(Pb P2] = (P I peR A P! < p < p2 }
[Pi, Pa] = (P I peR A pi < p < p2 }

In the above, pi and p2 are real numbers, and are called
the left-bound and right-bound of time element t,
respectively. The absolute values as for the left and/or
right bounds of some time elements might be unknown.
In this case, real number variables are used for
expressing relative relations to other time elements (see
later).

In addition, if the left-bound and right-bound of
time element t are the same, t is called a time point,
otherwise it is called a time interval. Without confusion,
time element [p, p] is taken as identical to point p. Also,
if a time element is not specified as open or closed at its
left (right) bound (that is, the left (right) type of the time
element is unknown), we shall use "<" (or ">") instead
of "(" and "[" (or ")" and "]") as for its left (or right)
bracket. Also, the duration of a time element t, D(t), is
defined as the distance between its left bound and right
bound. In other words:

t = <pi, p2> <^> D(t) = Pi - Pi
Following Alien's terminology [1,2, 3], "Meets" is use
to denote the immediate predecessor order relation over
time elements:

Meets(ti, t2) <=> 3pi,p,p2 eR(ti = (pi, p) A t2 = [p,
Pa)

V t, = [pi, p) A t2 = [P, P2)) V ti = (pi, P) A t2 - [p,

p2]
V t! = [pi, p) A t2 = [p, p2] V ti = (pi, P] A t2 - (p,

P2)
V t, = [pi, p] A t2 = (P, P2> V ti = (Pi, p] A t2 - (P,

P2]
V t, = [Pi, p] A t2 = (P, P2]) .*,,/*

It is easy to see that the intuitive meaning of Meets(ti,
t2) is that, on the one hand, time elements t! and t2
don't overlap each other (i.e., they don't have any part
in common, not even a point); on the other hand, there
is not any other time element standing between them.

Analogous to the 13 relations introduced by Alien
for intervals [1, 2, 3], there are 30 exclusive temporal
order relations over time elements including both time
points and time intervals, which can be classified into
the following 4 groups:
• Relations that relate points to points:

{Equal, Before, After}
• Relations that relate points to intervals:

(Before, After, Meets, Met_by, Starts, During.
Finishes}

• Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started_by,
Contains, Finished_by}

• Relations that relate intervals to intervals:
{Equal, Before, After, Meets, Met_by, Overlaps,
Overlapped_by, Starts, Started_by, During,
Contains, Finishes, Finished_by}

N.B. The definition of these derived temporal order
relations in terms of the single relation Meets is
straightforward. E.g.:

Equal(ti, t2) <^> 3t3 ,t4 eT(Meets(t3 , tj) A Meets(t3 , t2)
A Meets(ti, t4) A

Meets(t2, t4))
A fluent is a statement (or proposition) whose

truth-value is dependent on time elements. We use F to
denote the set effluents.

In order to associate a fluent with a time element,
we use a meta-predicate [18, 26], Holds, to substitute
the formula Holds(f, t) for each pair of a fluent f and a
time element t, denoting that fluent f holds true over
timet.
(HI) Holds(fiv f2, t) <=> Holds(f1? t) v Holds(fi, t)
(H2)Holds(f,<pi,p2>)o

Vp3 ,p4 eR(p! < p3 A p4 < p2 => Holds(f, <p3,
P4>))
(H3) Holds(f,<p,,pz>)

A Holds(f, <p2, p3>)
A Meets(<p!, p2>, <p2, p3>)

=> Holds(f, <p,, p3>)
It is worth pointing out that the time model and the
formulae introduce in the above allows temporal
knowledge with absolute values, as well as temporal
knowledge expressed in terms of relative relations. An
example can be found in [20].

We shall represent the static state of the world in
the discourse is defined as a collection of fluents, and
denote the set of all the states as S. In addition, we use
Belongs(f, s) to represent fluent f belongs to state s
[24]:

In [20], two equivalent schemas have been proposed
for representing temporal scenarios. In this paper, by
means of introducing the concept of states, each given
scenario, st, can be formalized in terms of a unified
scheme, represented as a quadruple:

183

APPENDIX D MATCHING SCENARIOS PATTERNS BY USING LINEAR PROGRAMMING

st = <Statest, Holds54, Meets8', Durst>, such that

Holds81 = {Holds(ssti, tstO | tsti€T, 1 < i < m}
Meets81 = (Meets(tst ', tst") | for some tst ',tst"eTst }
Durst - {Dur(t) = r | for some teT81, reR}

where Tst is the minimal subset of T closed under the
following rules:
• t8tie Tst,i=l,...,m.
• teT81 <=> 3t' eTst(Meets(t, t') v Meets(t', t))

3. Scenario graphs

In [15], a graphical representation for expressing
temporal knowledge has been introduced in terms of a
directed and partially weighted graph. It can be
extended to express scenarios presented in the scheme
introduced in section 2. In fact, a given scenario st can
be represented in terms of a scenario graph, which can
be formally defined as a directed, partially
weighted/labeled simple graph Gst, where:
• Each time element t in Tst is denoted as a directed

arc of the graph labeled by t that is bounded by a
pair of nodes, which are called the tail-node, and
the head-node, of the arc, respectively.

• Each relation Meets(ti, tj) in Meets8* is represented
by means of merging the head-node of tj and the
tail-node of tj as a common node, of which ti is an
in-arc and tj is an out-arc, respectively (see Figure
1).

• Each formula Holds(ssti, tstj) in Holds81 is
represented by means of simply adding sstj as an
additional label to the arc labeled by the
corresponding t81;. For any time element t in T81, if
there is no Holds knowledge, it will be labeled by
the empty state {}.

• Each piece of duration knowledge Dur(t) = r in
Durst is expressed as a real number, r, alongside
the corresponding arc t.

In what follows, we shall simply assume |F| = n, that
is, the total number of fluents is n. Corresponding to
scenario graph Gst with m nodes, we define a
m*m-matrix Mst, named the characteristic matrix,
where Msl(u, v) is a (n+l)-dimension vector luveRn+1 ,
such that:

(a) For any adjacent pair of nodes u and v in Gsl, if
(u, v) is an arc representing time element t, then luv(k) =
1 if Holds(fk, t), otherwise luv(k) = 0, 1 < k < n; and
luv(n+l) = Dur(t).

(b) For any non-adjacent pair of nodes u and v in Gst,
luv = <w, w, ..., w>, where w is a negative real number,
which will be use to adjust the edit-distance of deleting
operations in graph matching process.

In this paper, we shall use Mkst to denote the matrix
whose u-v-entry is the k-th element of u-v-entry in Mst.

I Meets(tj,

Figure. 1. Merging the head-node off, and the
tail-node off, as a common node \iMeets(th f/)

4. Extended linear programming approach
for matching scenario graphs

Based on the graph representation of scenarios, we
can match two temporal scenarios by means of
matching their corresponding scenario graphs. We have
explored various graph matching algorithms for our
scenario graph matching, including the
eigen-decomposition approach of Umeyama [30], the
polynomial transform approach of Almohamad [5] and
the linear programming approach of Almohamad and
Duffuaa [6]. The experimental results show that the
linear programming approach gets the most accurate
result within acceptable computational time. Since each
of entries of the characteristic matrix of a given
scenario graph is a («+l)-dimension vector, rather than
a single real value as in conventional spectral-based
models, we need to extend the so-called linear
programming graph matching algorithm for matching
scenario graphs.

4.1. Definition of scenario similarity

In what follows in this paper, if M is a real number
matrix, we shall use ||M||i to denote the Li-norm of M
[6]. Given two scenarios st t and st2 , assume the
characteristic matrices are M811 and Mst2 , with size
m^m! and m2*m2, respectively. Without losing the
generality, we assume mi = m2 = m. In fact, if mi < m2,
we can simply add m2 - IT^ isolated dummy nodes to
graph Gstl to get an extended graph Gst , whose
characteristic matrix Mstl will have the same size as
that of M812, i.e., m2*m2 . Similar treatment can be
applied to the case where m2 < mt .

The similarity degree between stt and st2 is then
defined by:

184

APPENDIX D MATCHING SCENARIOS PATTERNS BY USING LINEAR PROGRAMMING

n+l

mm
peperm(m)~=1

VdlMfll +|K' 2|)^-(vll * 111 II K 111

where perm(m) denotes the set of all m-by-m
permutation matrices. It is easy to see that sim(sti, st2)
falls within the range of [0, 1].

4.2. Calculating the similarity

The similarity degree between two scenario graphs
defined in section 4.1 only involves calculating the
minimal value with respect to all the possible
permutation matrices. In what follows, we extend
linear programming graph matching algorithm as define
for a single pair of asymmetric matrices to n+l pairs of
asymmetric matrices.

In fact, to calculate
«+!,.

I\PM.f / -Mf

we only need to calculate rnin J]\\pMkn -Mk 2 p\\
eera»j~ll »l

We shall use <8> and Vec to denote the Kronecker
product and the vectorization of a matrix formed by
stacking its columns into a single column vector.

From the fact Vec(ABC) = (CT <8> A)Vec(B) ,
we have:

peperm(m) r~T

= min

In order to find the matrix p satisfying the above
minimum requirement, we employ 2m* (n+l)* (n+l)
additional variables ZklJ , YklJ , where 1 < k < m and 1 <
i, j < n+l, to approximately solve the problem in terms
of the following linear programming:

)Vec(p) + Vec(Zk)~ Vec(Yk) =
Such that
(Mf

and

However, the entries of matrix p obtained from the
above linear programming may not be all 0 or 1. If this
is the case, we need to apply the so-called Hungarian
algorithm [12] to matrix p. That is, Hungarian(p) will

be the approximate solution to the corresponding graph
match problem.

4.3. Experimental results

The algorithm has been implemented in MatLab. What
follows describes some experiments conducted, where
the corresponding weight w was set as -0.3.

As shown in Figure. 2 - Figure. 8, for the 7 pairs of
scenario graphs, st^ and stj;2 (i = 2, 4 ••• 8), the
corresponding results computed from the algorithm
provide a well stable similarity measurement as
expected.

(n,£2)0.3 |«2}0.5

((1,0)1

(flfO.5 {iwaT^v^s/ <n,e}o.3

Figure 2. Sim(st2,i, st2>2) = 1

Figure 3. Sim(st3>1 , st3^) =0.8947

(fl.OjO.7

Figure 4. Sim(st44 , st4^) =0.9307

<)0

Figure 5. Sim(st5il , stg^) =0.9537

Figure 6. Sim(st6.i, st6.2) =0.8823
Bi° (0)0,,

{fl,G}0.7

Figure 7. Sim(st7>1 , st7)2) =0.7271

Figure 8. Sim(st8)1 , st8)2) =0.9088

4.4. Computational complexity

For two given scenario graphs Gstl and Gst2 with m
nodes and n fluents, the complexity of the computation
is O(n6*m3 *L), since the linear graph matching problem
can be solved in O(k3*L), where k is the number of

185

APPENDIX D MATCHING SCENARIOS PATTERNS BY USING LINEAR PROGRAMMING

variables (here k = (2m+l)*n2), L is the size of the LP
problem, for details please see [6].

5. Conclusions

In this paper, we have extended the work presented at
ICNC-FSKD05. By means of introducing the concept
of states, we have unified the two previous equivalent
schemas for scenario formalization. In order to
graphically represent a temporal scenario, we have
provided a formal definition of a scenario graph, in
terms of a directed, partially weighted and labeled
simple graph. Therefore, the problem of matching
temporal scenarios is transformed into conventional
graph matching. By means of extending the linear
programming graph matching algorithm from weighted
graph to vector labeled graph, we obtained ideal results
in matching pairs of scenario graphs for most states of
affairs. However, if the number of time elements is
larger than 30, the CPU time is unacceptable. The
future work of this research includes accelerating and
improving the algorithm for general real life
applications.

6. References

[I] J. Alien, "An interval-based representation of temporal
knowledge", Proceedings of the 7th InternationalJoint
Conference on Artificial Intelligence, 1981, pp.221 -226.

[2] J. Alien, "Maintaining knowledge about temporal
intervals", Communications of the ACM 26:11, 1983,
pp.832-843,.

[3] J. Alien, "Towards a General Theory of Action and
Time", Artificial Intelligence 23, 1984, pp. 123-154.

[4] J. Alien and P. Hayes, "Moments and Points in an
Interval-based Temporal-based Logic", Computational
Intelligence 5, 1989,pp.225-238.

[5] H. Almohamad, "A Polynomial Transformfor
Matching Pairs of Weighted Graphs", Applied
Mathematical Modelling, 15(44), 1991, pp.216-222,

[6] H. Almohamad and S. Duffuaa, "A Linear Programming
Approach for the Weighted Graph Matching Problem",
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15 (5), May 1993,pp.522-525,

[7] van P. Beek, "Reasoning about qualitative temporal
information", Artificial Intelligence 58, 1992,pp.297-326.

[8] van J. Benthem. The Logic of Time, Kluwer Academic,
Dordrech, 1983.

[9] B. Bruce, "A Model for Temporal References and Its
Application in a Question Answering Program",
Artificial Intelligence 3,1972, pp. 1-25.

[10] R. Dechter, I. Meiri, I and J. Pearl, "Temporal Constraint
networks", Artificial Intelligence 49,1991, pp.61-95.

[II] A. Gallon, "A Critical Examination of Alien's Theory of
Action and Time", Artificial Intelligence 42, 1990,
pp. 159-188.

[12] W. Harold, "The Hungarian Method for the assignment
problem", Naval Research Logistic Quarterly 2,1995,
pp.83-97.

[13] M. Jare, A. Aanodt and P. Shalle, "Representing
Temporal Knowledge for Case-Based Reasoning",
Proceedings of the 6th Euroupean Conference, ECCBR
2002, Aberdeen, Scotland, UK, September 4-7, 2002,
pp. 174-188.

[14] E. Keravnou, "Modelling medical concepts as
time-objects" Eds. M. Stefanelli and J. Watts, eds.,
Lecture Notes in artificial Intelligence 934, 1995,
Springer pp.67-90.

[15] B. Knight and J. Ma, "A General Temporal Model
Supporting Duration Reasoning", Artificial Intelligence
Communication, Vol.5:2, 1992, pp.75-84.

[16] P. Ladkin, "Effective solutions of qualitative intervals
constraint problems", Artificial Intelligence 52, 1992,
pp. 105-124.

[17] J. Ma and B. Knight, "A General Temporal Theory", \he
Computer Journal 37:2, 1994, pp.114-123.

[18] J. Ma and B. Knight, "Reified Temporal logic: An
Overview", Artificial Intelligence Review 15, 2001,
pp. 189-217.

[19] J. Ma and B. Knight, "Representing the Dividing Instant",
the Computer Journal 46:2, 2003, pp.213-222.

[20] J. Ma and B. Luo, "Representing and Recognizing
Scenario Patterns", Lecture Notes in Computer Science,
Vol.3614, 2005, pp.140-149.

[21] J Ma and P Hayes "Primitive Intervals Vs Point-Based
Intervals: Rivals or Allies", the Computer Journal,
Fo/. 49:7,2006, pp.32-41.

[22] D. McDermott, "A Temporal Logic for Reasoning about
Processes and Plans", Cognitive Science 6, 1982,
pp.101-155.

[23] G. Nakhaeizadeh, "Learning Prediction of Time Series: A
Theoretical and Empirical Comparison of CBR with
Some Other Approaches", In Proceedings of the
Workshop on Case-Based Reasoning, AAAI-94. Seattle,
Washington, 1994,pp.67-71.

[24] Y. Shahar, "Timing is everything: temporal reasoning
and temporal data maintenance medicine", Eds. W Horn
et al,AIMDM'99, LNAI 1620, Springer Verlag, 1999,
pp.30-46.

[25] M. Shanahan, "A Circumscriptive Calculus of Events",
Artificial Intelligence 77, 1995 pp.29-384.

[26] Y. Shoham, "Temporal Logics in AI: Semantical and
Ontological Considerations", Artificial Intelligence 33,
1987,pp.89-104.

[27] R. Snodgrass and I. Ahn, "Temporal Databases", IEEE,
0018-9162/86/0900-0035, 1986, pp.35-42.

[28] S. Theodoridis and K. Koutroumbas, Pattern
Recognition. Second Edition, Academic Press, 2003.

[29] D. Tveter. The Pattern Recognition Basis of Artificial
Intelligence. Wiley-ffiEE Computer Society Press, 1998.

[30] S. Umeyama, "An Eigendecomposition Approach to
Weighted Graph Matching Problems", IEEE
Transactions on Pattern Analysis and Machine
Intelligence 10:5, 1988,pp.695-703.

186

_APPENDIX D MATCHING SCENARIOS PATTERNS BY USING LINEAR PROGRAMMING

[31] M. Vilain, "A System for Reasoning about Time",
Proceedings of the 1st National Conference on Artificial
Intelligence, 1982, pp. 197-201.

187

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

Using Eigen-decomposition Method for Weighted
Graph Matching

Guoxing Zhao 1 ,, Bin Luo2 , Jin Tang2 and Jinxin Ma 1

'School of Computing and Mathematical Sciences, University of Greenwich, U.K.
{g.zhao, j.ma}@gre.ac.uk

2School of Computer Science and Technology, AnHui University, China
{luobin, jintang}@ahu.edu.cn

Abstract. In this paper, Umeyama's eigen-decomposition approach to weighted
graph matching problems is critically examined. We argue that Umeyama's
approach only guarantees to work well for graphs that satisfy three critical
conditions: (1) The pair of weighted graphs to be matched must be nearly
isomorphic; (2) The eigenvalues of the adjacency matrix of each graph have to
be single and isolated enough to each other; (3) The rows of the matrix of the
corresponding absolute eigenvetors cannot be very similar to each other. For the
purpose of matching general weighted graph pairs without such imposed
constraints, we shall propose an approximate formula with a theoretical
guarantee of accuracy, from which Umeyama's formula can be deduced as a
special case. Based on this approximate formula, a new algorithm for matching
weighted graphs is developed. The experimental results demonstrate great
improvements to the accuracy of weighted graph matching.
Keywords: Intelligent Computing, Pattern Recognition, Graph Matching.

1 Introduction

Graphs are a powerful and versatile tool used for the description of structural objects
in many application areas such as case-based reasoning, semantic networks, document
processing, image analysis, biometric identification, computer vision and video
analysis, and so on. In general, in terms of their graph representation, objects can be
represented by the vertices whilst the relationships between objects can be represented
by the edges. Therefore, the task of calculating the similarity degree between two
objects can be simply transferred into the problem of matching the corresponding pair
of graphs.

Various algorithms for graph matching problems have been developed, which,
according to [6], can be classified into two categories: (1) search-based methods
which rely on possible and impossible pairings between vertices; and (2) optimizarion-

This research is supported in part by National Nature Science Foundation of China

188

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

based methods which formulate the graph matching problem as an optimization
problem. Generally speaking, on one hand, search-based methods will find optimal
solutions, but require exponential time in the worst case. On the other hand, normally,
optimization-based methods only require polynomial bounded computation time, but
in some cases may fail to find the optimal solution. Most search-based approaches use
the idea of heuristics [11,14,15], where optimization-based methods have followed
different approaches, including Bayesian methods [5], relaxation labeling [8], neural
network [13], genetic algorithm [9], symmetric polynomials transformation (SPGM)
[1], linear programming (LPGM) [2], and Kronecker Product Successive Projection
methods [3], etc.

Another pioneer optimization-based method is Umeyama's eigen-decomposition
approach (EDGM) [16]. This approach is based on matrix decomposition and norm
from spectral theory. Over the past two decades, Umeyama's method has always been
cited and compared with other approaches again and again. On one hand, it is noted to
be easy to use and computationally efficient; on the other hand, it is criticized to be
inaccurate in general since its mean error in graph matching is above average.
However, the theoretical reason of these has been neglected in the literature and no
investigation has been carried out to explore the scope of graph pairs in which the
EDGM algorithm can provide efficient and effective matching with a high degree of
accuracy.

In this paper, we shall critically examine Umeyama's EDGM approach. In section
2, we provide a brief introduction to the EDGM algorithm and, by means of statistical
demonstration, we shall point out that Umeyama's approach only guarantees to work
well for graphs that satisfy the following three critical conditions: (1) The pair of
weighted graphs to be matched must be nearly isomorphic; (2) The eigenvalues of the
adjacent matrix of each graph have to be single and isolated enough to each other; (3)
The rows of the matrix of the corresponding absolute eigenvetors cannot be very
similar to each other. For general treatments, an approximate formula is proposed in
section 3 for matching any weighted graph pairs, together with a theoretical
discussion of its accuracy. It is shown that, as a special case, Umeyama's original
formula can be directly deduced from the approximate formula. In section 4, a new
graph matching algorithm is proposed based on the approximate formula and
experimental results are provided. Finally, section 5 concludes the paper.

2 The Eigen-decomposition Approach

In [16], an Eigen-decomposition approach was proposed for matching weighted
graphs with the same number of nodes. A weighted graph G can be denoted as an
ordered pair (N, w), where N is a set of nodes and w is a function which assigns a
weight w(vh y,) to each pair of nodes (v,-, vj) (edge of the graph). The adjacency matrix
of a weighted graph G = (V, w) is defined as A G = {gv}, where gv = w(vh y,), i,j = 1,
2, .. ., n, and n is the number of nodes in graph G.

189

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

In this paper, for the reason of simply repression, without confusion, we shall not
distinguish a weighted graph G and its corresponding adjacency matrix A G. In other
words, we shall simply express the adjacency matrix of G as G itself.

The problem of matching two weighted graphs G and H of n nodes is to find a
one-to-one correspondence between the two corresponding sets of nodes that
minimizes the distance between G and H, d(G., H), which can be formulated in terms
of the so-called Frobenius-norm (denoted as IUII) as:

\\F '

d(G,H}= min \PGPT -H\ C2 - 1)
Pe.Perm(n)\\ \\F

where G and H are the adjacent matrices of the weighted graphs to be matched and
Perm{ri) is the set of all n-by-n permutation matrices.

From the definition, the adjacency matrix of any undirected graph G is symmetric.
Therefore, there exists a real orthogonal matrix O such that DG = O^GO is a diagonal
matrix. However, for directed graphs, their adjacency matrices are in general
asymmetric and therefore may be not "real-orthogonally" diagonalizable. To handled
this problem, Umeyama uses the idea of decomposing a matrix uniquely into a sum of
a symmetric and a skew-symmetric matrix. In fact, any real n-by-n matrix G can
be transformed into a complex Hermitian matrix Ht(G):

It is easy to get that, for any two n-by-n real matrices G and H:

\PGPT - H\ = \PAPT - B\\ F

where A=Ht(G) and B=Ht(H). Therefore, the problem of matching two matrices
(symmetric or asymmetric) G and H is transformed into the problem of matching two
Hermitian matrices.

From matrix theory, Hermitian matrices A and B can be decomposed as A=VDA V",
matrix B=WDB W \ where DA and DB are the diagonal matrices of the eigenvalues (in
ascending order) of A and B, respectively, and Fand Ware two unitary matrices.

In [16], the following formula is used to solve general graph matching problems:
P=H\mganan(\W\ \V\ T) (2.2)

where \V\ and Iff I are matrices whose entries are absolute values of the corresponding
entries of V and W, Hungarian(*) denote the Hungarian algorithm [7], which is a
combinatorial optimization algorithm which solves assignment problems in
polynomial time (O(n3)).

The Eigen-decomposition method has been noted to be easy to use and
computationally efficient. On the other hand, it has also been pointed out to be
inaccurate in general since its mean error in graph matching is above average
compared with other approaches. However, no investigation has been carried out to
explore the scope of graph pairs in which the EDGM algorithm can provide efficient
and effective matching with a high degree of accuracy. Based on some theoretical and

190

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

experimental analysis as shown below, we list the three constraints of the EDGM
algorithm in graph matching.
1. "Nearly-Isomorphic": The distance d(G,H) of the two graphs to be matched must

be small enough.
2. "Isolating eigenvalues": All the eigenvalues of the matrix A, as well as matrix B,

has to be single and the distance between two successive eigenvalues has to be
big enough.

3. "Dissimilar rows": Any two rows of matrix \V\ in formula (2.2) cannot be very
similar to each other, and the same requirement applies to \W\.

In fact, these three constraints are necessary and sufficient for the EDGM
algorithm to get good approximations in general graph matching.

2.1 The Sufficiency of the Three Constraints

Firstly, we claim that the EDGM algorithm works very well for the graph pairs satisfy
all the 3 constraints. 500 pairs of isomorphic graphs are generated randomly, which
satisfy constraints 1-3. For each pair G and H, H is disturbed by adding a
perturbation matrix E whose entries are uniformly random real numbers in the range
from -e to +e. Graph size ranges from 5 to 12 and the noise amplitude e is fixed to
0.05, then the mean distance between each pair of graphs is calculated by three graph
matching algorithm: EDGM, SPGM and LPGM. CPU times are also compared.

789
size of graphs

Fig. 1. Mean distance and calculating time of graph pairs satisfy all three constraints

In the above, Fig.l shows that the EDGM algorithm obtains almost the same
results as good as LPGM but uses significantly shorter CPU time for graphs satisfying
the 3 constraints.

191

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

2.2 The Need of the "Nearly Isomorphic" Constraint

Secondly, we carry out tests to investigate the calculating error of the EDGM
algorithm caused by increasing the distances between graph pairs.

The calculating error is defined as:

-H\-d(G,H)

where P is the solution calculated by the EDGM algorithm.
We also generate 500 pairs of isomorphic graphs G and H which satisfy both

constraint 2 and constraint 3. For each pair G and //, we make them no longer
isomorphic to each other by means of perturbing H with a noise e, ranging from 0 to
0.15.

"°' 20 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Noise Amplitude

Fig. 2. Calculating error of EDGM algorithm relative to noise

From Fig. 2, we can see that the calculating error of the EDGM algorithm grows
quickly when the noise amplitude or the size of graph increases, which confirms our
claim that the "nearly isomorphic" property is needed for EDGM algorithm.

2.3 The Need of the "Isolating Eigenvalues" Constraint

Here, we demonstrate by example that without the "Isolating eigenvalues" condition,
the EDGM method may fail to work. Consider

192

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

G =

"2000'

0200
0023
0002

// =

2000

3200
0020
0002

P -1 0

0001
0010
0100
1000W V V ** V/V/V/^* AVV/V

G and // are isomorphic because of H=P0GP0T. Let A=Ht(G) and B=Ht(H), the
eigenvalues of ̂ and 5 are A(A) = A(B) =[-0.1213, 2, 2, 4.1213]

By formula 2.2, we get the approximate solution:

P = Hungarian(\W\V •>- "0010"

0001
0100
1000

\\PGP T - H\\ =4 2426 , the EDGM algorithm fails to find the best solution, that
II \\F

is, an isomorphic correspondence between G and H which gives a distance of 0
instead.

2.4 The Need of the "Dissimilar Rows" Constraint

Now, we show that "dissimilar rows constraint" is also needed. For instance, let
"0100"

0000
0030
0001

H =

"1000"

0300
0001
0000

P = ro

"0001"

0010
1000
0100

Again, G and H are isomorphic since H=P0GP0T. Let A=Ht(G) and B=Ht(H). The
eigenvalues of A and B are A(A) = A(B) =[-1.2153, 2.6386, 3.6255, 5.9512], which
are all single and well isolated.

The absolute matrix of V and W are:

11-
0
0

0 1
1 0

And the solution from EDGM algorithm is:

P = Hungarian(\W\\V\ T) =

0
0

0
0

0001
0010
0100
1000

1 0
0 1

0 0

193

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

|LpGPr -//| =1.4142, the algorithm still fails to find the best permutation
because the matrices \V\ and I W I both have two same rows.

3 A Formula for Graph Matching

In order to explain by theoretical reasons why the 3 constraints are necessary and
extend Umeyama's algorithm for general treatments to cases where some of the
constraints are not satisfied, we introduce here a new approximate formula to graph
matching problems.

3.1 The Approximate Formula

Given a Hermitian matrix A with /l(A) = [^ = • • • = /^ < /^1+1 = • • • = /^1+n2 < • • • < /y
as its eigenvalues. That is, matrix A has k distinct eigenvalues with repeating times
^ , . . . ,nk, respectively, where V" n : = n .Z— ̂ j=l J

Then, we can decompose matrix A=VDA V* where V=[Vj,...,Vk], and Vj is the
eigen- space of the j-th distinct eigenvalue of matrix A..

A simple but important property for the eigen-decomposition is that
A=(yX)DA(VX) is also an spectral decomposition of matrix A, for every unitary
matrix X&U(n]...,nk), where U(ni,...,n$ denotes the set of all block matrices whose
j-th diagonal matrix a Wy-by-w/ unitary matrix.

Let B=WDB W*, it is easy to see that:

PAP T -B\\F <\\PV-WX\\p (\DA \ F +\\DB l) + \\DA -DB\\F

So it is reasonable to use the following approximate formula to solve graph
matching problems:

min \\PV-WXL t3 * 1)
PePerm(n) " " F

3.2 An Error Estimation Theorem for the Approximate Formula

If Hermitian matrix B=WDB W* is gained from A by adding some small perturbation,
that is B = PQ^PQ + E and |£| < £ , then from the matrix perturbation theory
[10,12], it is easy to get:

(13.1) \\DA-DB\\F <e
(T3.2) There exists a unitary matrix X0 & U(n,...,nk) such that

194

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

\\P0 V-WX0 \\ F <J2J

where 8 is a real number only depending on the eigenvalues of matrices A and B.
N.B. We omit the proof of here which can be deduced from Hoffman-Wielandt

theorem [12] and Davis-Kahan sin 0 theorem [4].
Theorem (T3.3): Given two nearly isomorphic graphs G and H, if (P,X)is the
argument that minimize the value of (3.1), then

PGPT -H <

We omit the proof here, which follows from (T3.1) and (T3.2).
From (T3.3), we can see that if the distance between graph G and H is small

enough, then the solution from formula (3.1) will be satisfactory. In other word,
Theorem (T3.3) guarantees that the accuracy of the approximate formula proposed
here.

3.3 Deducing Umeyama's Formula

In fact, formula (3.1) is an optimization on the space of permutation matrices and
unitary matrices, which is a mixed 0-1 non-linear programming. Thus, even all the
eigenvalues of matrix A and B are single, it is still not easy to reach the optimization
for all graph matching problems. For the case where all the eigenvalues of matrix
A and B are single, formula (3.1) can be specified as:

min HPFv. ... v 1 — fu>. r • •• w r ill (3*2)
PePerm(n)

where t/(l) is the set of all unit complex numbers.
To reach (3.2), we can minimize the distance of the absolute values as an

approximation:

mn

In formula (3.3), all the numbers Xj an be eliminated. In this way, we get
Umeyama's formula (2.2).

The above induction shows the relationship between Umeyama's method and the
approximate formula proposed here, and therefore provides a theoretical support to
the claims made in section 2. In fact, on one hand, formula (3.1) provide a
approximate solution to nearly-isomorphic graph matching with a guaranteed
accuracy as specified by (T3.3); on the other hand, with the additional "isolating
eigenvalues" constraint, formula (3.1) turns out to be formula (3.2), which, with
another additional constraint, i.e., "Dissimilar rows", leads to formula (3.3) that is
equivalent to Umeyama's formula (2.2).

195

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

4 Improved Algorithm

In this section, we shall introduce a new graph matching algorithm which can be used
for more general cases where the graph pairs just need to be nearly isomorphic.

4.1 Meta-basis for Euclid Space

In formula (3.1), the optimization on both permutation matrices and unitary matrices
makes the problem hard to solve. However, if the unitary matrix X can be determined
somehow beforehand, the problem will become much easier.

The requirement of the unitary matrix X for formula (3.1) is due to fact that there
are infinite orthonormal basis for a given Euclid space, rather than a unique one. We
shall use a n-by-m matrix V to denote the orthonormal basis of m-dimensional Euclid
space in n-dimensional complex space C", where each column of V is a vector of the
basis. Obviously, each matrix VX, X& U(m) is also an orthonormal basis of the Euclid
space. If we can define a meta-basis which is unique for each Euclid space, then X
will be eliminated from formula (3.1). In fact,

Let F: C°*n — * C be a function which maps an n-by-n matrix to a vector , provided:

for all p e Perm(n\ G e C"xn
We shall call such functions as edge-to-node attribute functions. A simple case of

this kind of function is Fi(G)=[l,l,..,l] r which maps all n-by-n matrices to a constant
vector.

Given a edge-to-node attribute function F, we define a new function

/ . (j c.xy _> Cn such that f(V} = WTF(W T }

where N denotes the set of natural numbers.
It is easy to see that/F)is a vector of Euclid space V and J(VX)=f(V), for all

V e C"*J ,X e U(j) • Thus, for the given Euclid space V,j(V)isa vector in V which is
independent on its orthonormal basis. Based on function/, we then define a unique
meta-basis for any given Euclid space Fin terms of the recursive manner as described
in Table 1.

We call the matrix Y defined here a meta-basis of the given Euclid space V. It is
important to note that, in some cases, Y may be a real orthonormal basis of the given
Euclid space, while in other cases, Y is just a group of orthonormal vectors of the
given Euclid space (not necessarily to be a basis - it even can be empty). Obviously,
for each Euclid space V, the Meta-basis defined in this way is unique.

196

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

Table 2. Algorithmic definition of the meta-basis.

Function F'=meta-basis(F)
[n, m]=size(K); //Visa, n-by-m matrix.
v=VV Tf(W T).

5

if norm(v)==0
K'=[]; // V is empty, fail to find,
return;

else ifm==l
V =v/norm(v);
return;

else
v=v/norm(v);
V = v © Z . //orthogonal

decomposition.
V =[v, meta-basis(Z)];

4.2 Graph Matching Using Meta-basis

Formula 3.1 can be rewritten as

mm
n)

(4.2)

where Vj is the eigen-space of they-th eigenvalue of matrix A=Ht(G), and Wj is the
corresponding block matrix formed in the same manner as that of Vj, rather than the
eigen-space of they-th eigenvallue ofB=Ht(tf).

To eliminated Uj in formula (4.2), we use the meta-basis Vj of Vj and meta-base
WjOf Wj , rather than Vj and Wj themselves. Inthis way, since the meta-base is not
dependent on unitary transformation, therefore, formula (4.2) can be simplified as:

(4.3)mm
PePerm(n)i

N.B. In the case where the meta-basis of Vj and Wj have different numbers of
columns, columns from the bigger one will be deleted to make them same.

Experiments have been conducted in applying formula (4.3) to "nearly
isomorphic" graphs that do not satisfy constraint 2 and/or constraint 3, with respects
to both the calculating accuracy and computational speed.

On one hand, as shown in Fig. 3 and Fig. 4, for nearly-isomorphic graphs, the new
algorithm makes great improvements compared with Umeyama's original algorithm.
It reaches matching results as good as that of LPGM. On the other hand, Fig. 5 shows
that the computational speed of the new algorithm is very close to that of the EDGM
algorithm, but much faster than that of LPGM.

197

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

2.5

0.5

8 9
size of graphs

10 11 12

Fig. 3. Improved algorithm for graphs with multiple eigenvalues

8 9
size of graphs

10 11 12

Fig. 4. Improved algorithm for graph pairs with similar rows

198

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

•*=

30

25

20

15

10

6 8 9
size of graphs

11 12

Fig. 5. Calculating time of Improved algorithm

5 Conclusion and Future Work

In this paper, we have specified the three conditions under which Umeyama's
approach will work well for graph matching. The approximate formula proposed here
can be seen as an extension to Umeyama's formula. Experimental results have shown
that, on one hand, for general treatments, the new approach is more accurate that the
EDGM method, and on the other hand, it is more efficient than LPGM. Also, it is
believed that the new algorithm can be further improved by means of using better
edge-to-node attribute functions, rather than the simplest one we have adopted in this
paper. Due to the length limit of the paper, we leave this as for future work.

References

1. Almohamad H.A.: A Polynomial Transformfor Matching Pairs of Weighted Graphs.
Applied Mathematical Modelling, 15 (44) (1991) 216-222, Elsevier Science

2. Almohamad H.A. and Duffuaa S.O.: A Linear Programming Approach for the Weighted
Graph Matching Problem. IEEE Trans. PAMI, 15(5) (1993) 522-525

3. Barend Jacobus van Wyk.: Kronecker Product Successive Projection and Related Graph
Matching Algorithms. Ph.D. diss., University of the Witwatersrand, Johannesburg (2002)

199

APPENDIX E USING EIGEN-DECOMPOSITION METHOD FOR
WEIGHTED GRAPH MATCHING

4. Davis, C. and Kahan, W.M.: The Rotation of Eigenvectors by a Perturbation. Ill, SIAM J.
Numer. Anal. 7 (1970)1-46

5. Finch, A.M., Wilson R.C. and Hancock, E.R.: Matching delaunay triangulations by
probabilistic relaxation. Proc. of Computer Analysis of Images and Patterns (1995)
350-358

6. Gold S. and Rangarajan A.: A Graduated Assignment Algorithm for Graph Matching.
IEEE Trans. PAMI, 18(4) (1996) 377-388

7. Harold W. K.: The Hungarian Method for the assignment problem. Naval Research
Logistic Quarterly, 2 (1955) 83-97, Kuhn's original publication

8. Hummel, R. and Zuker, S.: On the Foundations of Relaxation labeling processes. IEEE
Trans. PAMI 5 (1983) 267-287

9. Krcmar, M. Dhawan, A.P: Application of genetic algorithms in graph matching. Proc.
of the International conference on Neural Networks 6 (1994) 3872-3876. IEEE Press

10. Ninoslav, T.: Relative Perturbation Theory for Matrix Spectral Decompositions. Ph.D.
diss., Dept. of Mathematics, Univ. of Zagreb (2000)

11. Sanfeliu, A. and Fu, K.S.: A Distance Measure between Attributed Relational Graphs for
Pattern Recognition. IEEE Trans. SMC 13 (1983) 53-363

12. Stewart, G. W. and Sun, J.: Matrix Perturbation Theory. Academic Press, Inc., San Diego
(1990)

13. Suganthan, P., Teoh, E. and Mital, D.: Pattern Recognition by Graph Matching Using the
Potts MFT Neural Networks. Pattern Recognition 28 (1995) 997-1009

14. Tasi, W.H. and Fu, K.S.: Error-Correcting Isomorphisms of Attributed Relational Graphs
for Pattern Recognition. IEEE Trans. SMC 9 (1979) 757-768

15. Ullman, J.R.: An Algorithm for Subgraph Isomorphism. Journal of the Association for
Computing Machinery 23(1) (1976) 31-42

16. Umeyama S.: An Eigendecomposition Approach to Weighted Graph Matching Problems.
1988. IEEE Trans. PAMI, 10(5) (1988) 695-703

200

