

DOMAIN PARTITIONING AND SOFTWARE
MODIFICATIONS TOWARDS THE

PARALLELISATION OF THE
buildingEXODUS EVACUATION

SOFTWARE

BIBI YASMINA YASHANAZ MOHEDEEN

A thesis submitted in partial fulfilment of the
requirements of the University of Greenwich for

the Degree of Doctor of Philosophy

September 2011

B.Y.Y.MOHEDEEN

ii

B.Y.Y.MOHEDEEN

iii

DECLARATION

I certify that this work has not been accepted in substance for any degree, and is not concurrently

submitted for any degree other than that of Doctor of Philosophy (PhD) being studied at the

University of Greenwich. I also declare that this work is the result of my own investigations

except where otherwise identified by references and that I have not plagiarised the work of others.

X______________________________

Yasmina Mohedeen

X______________________________

Dr. Angus Grandison (first supervisor)

X______________________________

Prof. Edwin Galea (second supervisor)

B.Y.Y.MOHEDEEN

iv

ACKNOWLEDGEMENT

I would like to thank Prof. Ed Galea for giving me every opportunity to fulfil my PhD. An

exceptional mention goes to my brilliant supervisor, Dr. Angus Grandison. I cannot express my

gratitude for his valuable advice, guidance and endless patience, without which I could not have

succeeded in this long journey. I also would like to thank Dr. Peter Lawrence and Dr. Steve

Gwynne for taking their time to review this dissertation.

My parents provided a lifetime of motivation and opportunity for me to pursue my ambition, for

which I will always be indebted. I am also grateful to the people who have supported and

believed in me during this research: my family, the Muthu family, the Cavanagh family, Lauren,

Françoise, my wonderful friends and, last but not least, my FSEG family. Finally, I would like to

offer my gratitude and thanks to Matthew Cavanagh for his precious support, encouragement and

understanding, especially in the last hurdle of this journey.

For the precious bonding at our numerous tea breaks and badminton sessions; Steven‘s constant

support and endless bickering since the beginning of this journey; Yasmine‘s precious advice, the

amusing confusions that our similar names created and for giving me a good run for my money at

being the clumsiest; Claudia, for the infinite patience and politeness for putting up with my

distractions; Aoife, for the valuable literacy advice, for all the interesting views that our opposite

selves brought and for all the kind ‗pick-me-up‘ sticky notes I would find on my desk; Nitish, for

all the crazy laughs at serious moments and our eternal plan to go to punting in Cambridge;

BoumBoum, who believed in me more than I deserve and gave me the confidence to stand up tall

– well as tall as 5ft can allow! One word: Priceless!

B.Y.Y.MOHEDEEN

v

ABSTRACT

This thesis presents a parallel approach to evacuation modelling in order to aid real-time, large-

scale procedure development. An extensive investigation into which partitioning strategy to

employ with the parallel version of the software was researched so as to maximise its

performance.

The use of evacuation modelling is well established as part of building design to ensure buildings

meet performance based safety and comfort criteria (such as the placements of windows or stairs

so as to ease people‘s comfort) . A novel approach to using evacuation modelling is during live

evacuations from various disasters. Disasters may be fast developing in large areas and incident

commanders can use the model to plan safe escape routes to avoid danger areas. For this type of

usage, very fast results must be obtainable in order for the incident commanders to optimise the

evacuation plan along with the software‘s capability to simulate large-scale evacuation scenarios.

buildingEXODUS provides very fast results for small-scale cases but struggles to give quick

results for large-scale simulations. In addition, the loading up of large-scale cases are dependent

on the specifications of the processor used thus making the problem case unscalable. A solution

to address these shortcomings is the use of parallel computing. Large-scale cases can be

partitioned and run by a network of processors, thus reducing the running time of the simulations

as well as the ability to represent a large geometry by loading parts of the domain on each

processor. This scheme was attempted and buildingEXODUS was successfully parallelised to

cope with large-scale evacuation simulations.

Various partitioning methods were attempted and due to the stochastic nature of every evacuation

scenario, no definite partitioning strategy could be found. The efficiency values ranged from

230% (with both cores being used from 10 dual-core processors) when an idealised case was run

to 23% for another test case. The results obtained were highly dependent on the test case‘s

geometry, the scenario being applied, whether all the cores are being used in case of multi-cores

processors, as well as the partitioning method used.

However, the use of any partitioning method will produce an improvement from running the case

in serial. On the other hand, the speedups obtained were not scalable to warrant the adoption of

any particular partitioning method. The dominant criteria inhibiting the parallel system was

processor idleness or overload rather than communication costs, thus degrading the performance

of the parallel system. Hence an intelligent partition strategy was devised, which dynamically

assesses the current situation of the parallel system and repartitions the problem accordingly to

prevent processor idleness and overloading. A dynamic load reallocation method was

implemented within the parallelised buildingEXODUS to cater for any degradation of the parallel

system. At its best, the dynamic reallocation strategy produced an efficiency value of 93.55% and

a value of 36.81% at its worse.

As a direct comparison to the static partitioning strategy, an improvement was observed in most

cases run. A maximum improvement of 96.48% was achieved from using the dynamic

reallocation strategy compared to using a static partitioning approach. Hence the parallelisation of

the buildingEXODUS evacuation software was successfully implemented with most cases

achieving encouraging speedup values when a dynamic repartitioning strategy was employed.

B.Y.Y.MOHEDEEN

vi

TABLE OF CONTENTS

DECLARATION ... III

ACKNOWLEDGEMENT .. IV

ABSTRACT .. V

1 INTRODUCTION .. 1

1.1 EVACUATION MODELLING ... 2

1.1.1 Evacuation software for large-scale evacuation .. 3

1.2 REQUIREMENTS IMPOSED BY THE SOFTWARE DEVELOPERS ... 5

1.3 RESEARCH QUESTIONS .. 6

1.4 OBJECTIVES ... 7

1.4.1 Can parallel computing techniques be usefully applied to buildingEXODUS to

enable faster wall-clock times and also load vast cases, which cannot be loaded on a

single processor? ... 7

1.4.2 Which partitioning techniques will yield the optimal partitioning strategies? 7

1.5 STRUCTURE OF THESIS .. 8

2 BACKGROUND AND LITERATURE REVIEW .. 10

2.1 EVACUATION MODELLING ... 10

2.1.1 Benefits of evacuation modelling .. 11

2.1.2 Types of evacuation models .. 12

2.1.2.1 Modelling Method .. 12

2.1.2.2 Enclosure representation... 13

2.1.2.3 Population representation ... 16

2.2 PARALLEL COMPUTING .. 17

2.3 TERMINOLOGY .. 18

2.3.1 Speedup [37] .. 18

2.3.1.1 Scaled Speedup ... 18

2.3.2 Efficiency [37] .. 19

2.3.3 Amdahl law [80] ... 19

2.3.4 Parallel SimTime Performance Ratio .. 20

2.4 PARALLEL ARCHITECTURE ... 20

2.5 PARALLEL ALGORITHM MODELS .. 22

2.6 RELATED WORK .. 24

B.Y.Y.MOHEDEEN

vii

2.6.1.1 Review of ―The parallel implementation of the social forces Model‖ 25

2.6.1.2 Review of ―A distributed analysis and monitoring framework for the

compact Muon Solenoid Experiment and a pedestrian simulation‖............................. 27

2.6.1.2.1 Multi-threaded Legion analyser .. 28

2.6.1.2.2 Distributed Legion analyser .. 29

2.6.1.3 The parallelisation of traffic models ... 31

2.6.1.3.1 Review of the parallelisation of TRANSIMS ... 31

2.6.1.4 Summary of findings .. 32

2.6.1.5 Communication Package .. 32

2.7 DOMAIN DECOMPOSITION ... 33

2.7.1 Domain Decomposition techniques .. 33

2.7.1.1 Approaches used to improve load balance and minimise communication

costs 34

2.7.1.1.1 Techniques used to optimise load balance .. 34

2.7.1.1.2 Techniques used to minimise communication overhead 35

2.7.1.1.3 Possible compromise between load balance and communication

overhead 35

2.7.1.2 Dynamic repartitioning ... 37

2.7.1.2.1 Review of ―Parallel load balancing for dynamic execution

environments‖. .. 38

2.8 CONCLUDING REMARKS ... 40

3 BUILDINGEXODUS EVACUATION MODEL ... 42

3.1 EXODUS OVERVIEW .. 42

3.2 BUILDINGEXODUS OVERVIEW ... 43

3.2.1 Sub-models ... 43

3.3 LIMITATIONS OF BUILDINGEXODUS .. 44

3.3.1 Benchmark Values .. 45

3.3.1.1 Benchmark test case 1 - 150m x 150m enclosure populated by 10,000

occupants45

3.3.1.2 Benchmark test case 2 - 245m x 245m enclosure populated by 30,000

occupants47

3.3.1.3 Benchmark test case 3 - Multi-storey building populated by 8,120 occupants

 48

3.3.1.4 Benchmark test case 4 - Creation of a 750m x 1,000m enclosure................ 49

3.3.1.5 Benchmark test case 5 – Real geometry: World Trade Centre‘s north tower

 49

B.Y.Y.MOHEDEEN

viii

3.3.1.6 Overview .. 50

3.4 PARALLEL COMPUTING AS A SOLUTION TO THE LIMITATIONS OF BUILDINGEXODUS50

4 PARALLEL IMPLEMENTATION OF BUILDINGEXODUS 52

4.1 PROTOTYPE: MINIEXODUS .. 52

4.1.1 Parallelisation strategies used to parallelise miniEXODUS 53

4.1.1.1 Partitioning strategies attempted .. 55

4.1.2 Remarks .. 58

4.2 PARALLELISATION STRATEGIES EMPLOYED FOR BUILDINGEXODUS 58

4.2.1 At what point does parallelisation become a benefit over the serial algorithm ... 58

4.2.2 Parallel Architecture adopted .. 60

4.2.3 Problem decomposition .. 61

4.2.3.1 Population decomposition .. 61

4.2.3.2 Domain decomposition ... 63

4.2.3.3 Selected decomposition strategy .. 64

4.2.4 Communication Strategy .. 65

4.2.4.1 Halo regions .. 65

4.2.4.1.1 Multi-halo regions ... 66

4.2.5 Movement of People ... 68

4.2.5.1 Person transfer and movement across sub-domains boundaries 68

4.2.5.2 Movement Algorithm ... 70

4.2.5.3 Serial code enhancement .. 70

4.2.5.3.1 New Benchmark values after the serial enhancements 70

4.2.5.4 Parallel movement algorithm ... 73

4.2.5.5 Synchronisation .. 75

4.2.6 Output files ... 75

4.2.6.1 Graphical output ... 75

4.2.6.2 Results output ... 76

4.2.7 Handling of the domain .. 76

4.2.7.1 Whole geometry on each processor .. 76

4.2.7.2 Parts of the geometry on each processor .. 77

4.2.7.2.1 Creation of mini cloned nodes .. 77

4.3 OTHER PARALLELISATION ISSUES .. 78

4.3.1 Size of data transfer of each individual .. 78

4.3.2 Processors sharing the same exit ... 79

B.Y.Y.MOHEDEEN

ix

4.3.3 Thin partitions .. 79

4.3.1 Process of Loading up of the problem in parallel .. 80

4.4 APPROACHES TO ASSESS THE PARALLEL PERFORMANCE OF A SIMULATION 81

4.5 CONCLUDING REMARKS ... 88

5 DOMAIN PARTITIONING OF BUILDINGEXODUS 89

5.1 PARTITIONING STRATEGIES ... 89

5.1.1 Idealised 20 exit test case ... 90

5.1.1.1 Use of single core processors: .. 91

5.1.1.2 Use of dual core processors: ... 91

5.1.2 Equal Partitioning .. 92

5.1.2.1 Equal Partitioning tested on an irregular domain ... 95

5.1.2.1.1 Test 1 – Equal Partitioning method .. 95

5.1.2.2 Equal Partitioning tested on a domain with only one exit 99

5.1.2.2.1 Test 2 – Equal Partitioning method .. 99

5.1.2.3 Equation to find the partition cut .. 101

5.1.2.3.1 Derivation of a formula to work out the partition cut ratios 102

5.1.2.3.1.1 Partition cut formula excluding costs .. 102

5.1.2.3.1.2 Partition cut equation including costs .. 105

5.1.3 Cyclic Equal Partitioning ... 107

5.1.3.1 Equation to estimate the speedup achievable ... 107

5.1.3.2 Equation including costs to estimate the speedup achievable 110

5.1.3.3 Results from testing the Cyclic Equal Partitioning method 112

5.1.3.3.1 Test 1 – Cyclic Equal Partitioning method ... 112

5.1.3.3.2 Test 2 – Cyclic Equal Partitioning method ... 116

5.1.4 Potential Route Map partitioning ... 118

5.1.4.1 Potential Route Map ... 119

5.1.4.2 Partitioning technique using the Potential Route Map 119

5.1.4.3 Results from testing the Potential Route Map partitioning method 120

5.1.4.3.1 Test 1 – Potential Route Map partitioning method: Real life geometry –

Trafalgar Square ... 120

5.1.4.4 Problems associated with the Potential Route Map partitioning method ... 124

5.1.5 Cyclic Potential Route Map partitioning ... 125

5.1.5.1 Results from testing the Cyclic Potential Route Map partitioning method 126

5.1.5.1.1 Test 1 – Cyclic Potential Route Map partitioning method 126

B.Y.Y.MOHEDEEN

x

5.1.5.2 Strategies considered and rejected .. 133

5.1.5.2.1 Exits balancing strategy .. 134

5.1.5.2.2 Partitioning software refining original partitions 140

5.1.5.2.3 Results from using JOSTLE and METIS ... 144

5.1.5.2.4 Alternative Partitioning Strategies .. 145

5.1.5.2.4.1 Partitions based on population density .. 145

5.1.5.2.4.2 Initial serial run to assess movement trends to then partition

accordingly 145

5.1.5.2.5 Test 2 – Cyclic Potential Route Map partitioning method 145

5.1.6 Partitioning software: METIS .. 151

5.1.6.1 Results from testing METIS partitioning ... 151

5.1.6.1.1 Test 1 – METIS partitioning ... 151

5.1.6.1.2 Test 2 – METIS partitioning ... 157

5.1.6.1.3 Test 3 – METIS partitioning ... 159

5.2 CONCLUDING REMARKS ... 163

6 DYNAMIC REPARTITIONING .. 165

6.1 DYNAMIC REPARTITIONING STRATEGY ... 166

6.1.1 Suggested dynamic reallocation algorithm .. 168

6.1.1.1 Creation of Subparts ... 168

6.1.1.2 Added multi-halo regions to permit dynamic reallocation 168

6.1.2 Method to redistribute the load .. 171

6.1.2.1 LPT (Longest processing time) algorithm used for this research 171

6.1.3 Data migration ... 174

6.1.4 Load reallocation at the start of the simulation with no dynamic reallocation . 174

6.1.5 When to reallocate .. 179

6.1.5.1 Time interval of 1s (12 ticks) and 10s (120 ticks) 179

6.1.5.2 Reallocation algorithm called every 30 ticks together with a 75% population

load imbalance criteria.. 181

6.1.5.3 Pop-load vs Work-load ... 183

6.1.5.4 Cost function to determine when to reallocate ... 186

6.1.5.5 Dynamic re-allocation algorithm .. 189

6.1.5.5.1 Testing the dynamic reallocation algorithm using the CPRM partitioning

strategy 190

6.1.5.5.2 Test on the dynamic reallocation algorithm using METIS partitioning

strategy 194

B.Y.Y.MOHEDEEN

xi

6.1.5.5.3 Test to show how both the dynamic reallocation algorithm and static

partitioning method cope with a particular scenario .. 200

6.1.5.5.3.1 Static partitioning technique using the CPRM method on Test Case

11 204

6.1.5.5.3.2 Dynamic reallocation technique using the CPRM method on Test

Case 11 208

6.1.5.5.4 METIS partitioning software on Test Case 11 211

6.1.5.5.4.1 Static partitioning strategy using METIS on Test Case 11 212

6.1.5.5.4.2 Dynamic reallocation strategy using METIS on Test Case 11 213

6.1.5.5.4.3 Idealised static partitioning algorithm on Test Case 11 216

6.2 CONCLUDING REMARKS AND RECOMMENDED PARTITIONING STRATEGY 220

7 CONCLUSION ... 222

7.1 EVACUATION MODELLING ... 222

7.1.1 Research Objectives ... 223

7.2 BUILDINGEXODUS EVACUATION MODEL ... 226

7.3 PARALLEL IMPLEMENTATION OF THE BUILDINGEXODUS EVACUATION MODEL 227

7.4 OPTIMAL PARTITIONING STRATEGY ... 227

7.4.1 Static partitioning technique .. 227

7.4.1 Dynamic reallocation technique ... 228

7.5 FINAL RECOMMENDATION ... 229

7.6 THESIS CONTRIBUTION .. 229

8 FURTHER WORK ... 231

8.1 DIFFERENT PARTS OF THE GEOMETRY INSTEAD OF THE WHOLE GEOMETRY ON EACH

PROCESSOR ... 231

8.2 EXTRA MULTI-HALO REGIONS ASSOCIATED WITH THE DYNAMIC REALLOCATION

STRATEGY .. 231

8.3 COMPLETE REPARTITIONING OF THE GEOMETRY.. 232

8.4 OPTIMAL NUMBER OF SUB-DOMAINS TO PARTITION A GEOMETRY 233

8.5 FURTHER RESEARCH QUESTIONS. ... 234

8.5.1 What happens if one of the processors becomes inactive due to some hardware

failure? 234

8.5.2 Will the current parallel implementation of buildingEXODUS be portable for the

Continuous or hybrid model of the software [36]? ... 234

8.5.3 In a scenario comprising of an unrestricted number of available processors, what

is the optimal number of processors to use in order to benefit from the parallel

implementation? ... 235

B.Y.Y.MOHEDEEN

xii

REFERENCES .. 237

9 APPENDIX .. 254

9.1 PUBLICATION: ... 254

9.2 PARALLELISATION OF THE EXODUS CORE CODES BY THE SOFTWARE DEVELOPMENT

TEAM 256

9.2.1.1 Serial movement algorithm .. 256

9.2.1.2 Serial enhancements ... 256

9.2.1.3 Parallel movement algorithm ... 257

9.2.1.4 Synchronisation .. 259

9.2.1.5 Graphical output ... 260

9.3 DERIVATION OF AN ESTIMATION OF THE WORKLOAD AND THE RATIOS FOR THE

PARTITION CUTS WHEN N PROCESSORS ARE USED, WITHOUT COSTS INCLUDED 262

9.4 DERIVATION OF AN ESTIMATION OF THE WORKLOAD AND THE RATIOS FOR THE

PARTITION CUTS WHEN N PROCESSORS ARE USED, WITH COSTS INCLUDED 269

9.5 DR ANGUS GRANDISON‘S DERIVATION OF SPEEDUP PERFORMANCE FOR A SPECIFIC

TEST CASE WITH N SUB-DOMAIN AND P PROCESSORS ... 276

9.6 DERIVATION OF SPEEDUP PERFORMANCE FOR A SPECIFIC TEST CASE WITH N SUB-

DOMAIN AND P PROCESSORS INCLUDING COMMUNICATION COSTS 279

9.7 FINAL ALGORITHM FOR DYNAMIC REALLOCATION .. 288

B.Y.Y.MOHEDEEN

xiii

TABLE OF FIGURES

Figure 2.1 - Scaling of transistors, the number of transistors is expected to continue to double

about every two years, in accordance with Moore's Law [55]. ... 11

Figure 2.2 – Adapted from the coarse node representation from [48]. 14

Figure 2.3 – Fine Node representation of the enclosure in Figure 1. 15

Figure 2.4 – Frequency at which the positions of 10,000 pedestrians are updated, as a

function of number of worker processes. Each worker executes on one CPU. One additional

CPU is allocated to the manager process. [89] ... 26

Figure 2.5 - Time in seconds to analyse a simulation second. [90] ... 30

Figure 2.6 – Graph containing sub-domains containing elements and how weights can be

associated to the vertices to represent the elements [123] ... 36

Figure 2.7 – Overview of the possible options to consider for this research 41

Figure 3.1 – Interaction of the EXODUS sub-models .. 42

Figure 3.2 – Square geometry measuring 150m by 150m. ... 46

Figure 3.3 – Square geometry measuring 245m by 245m .. 47

Figure 4.1 - Node X virtually exists on three other domains on different processors as a multi-

halo node .. 54

Figure 4.2- Speedup values obtained for using Parallel miniEXODUS with different

partitioning strategies on Test Case 1 populated by 5,000 people .. 56

Figure 4.3 - Speedup values obtained for using Parallel miniEXODUS with different

partitioning strategies on Test Case 1 populated by 15,000 people .. 57

Figure 4.4 - Parallel Architecture adopted .. 61

Figure 4.5 – Population decomposition on a DM system connected via a LAN network 62

Figure 4.6 – Domain decomposition on a DM system connected via a LAN network 64

Figure 4.7 – Halo regions representing boundary nodes .. 66

Figure 4.8 - Node X virtually exists on three other sub-domains on different processors as a

multi-halo node ... 67

Figure 4.9 - Conversion of multiple connected nodes into new sub-domain 68

Figure 4.10 – The movement of an individual across sub-domains in the parallel version of

EXODUS [16] .. 69

Figure 4.11 – Parallel movement algorithm .. 74

Figure 4.12 - Diagram showing a thin partition unable to create distinct halo cells to a

particular processor ... 80

Figure 4.13 - Loading up of the problem in parallel ... 81

B.Y.Y.MOHEDEEN

xiv

Figure 4.14: 1,000m x 100m geometry randomly populated by 100,000 individuals 82

Figure 4.15: 1,000m x 100m geometry compactly populated by 100,000 individuals............. 83

Figure 4.16 – Comparison of the number of movement updates of 100,000 individuals per

second when in sparse and packed conditions when Simulation time equals to 30s. 83

Figure 4.17 - Comparison of the clock-time it takes to reproduce one simulation second when

in sparse and packed conditions when Simulation time equals to 30s. 84

Figure 4.18 – Comparison in the time it takes to reproduce a simulation second at different

stages of a simulation (1s and 30s) in a sparse scenario ... 86

Figure 4.19 - Comparison in the number of movement updates of 100,000 individuals at

different stages of a simulation (1s and 30s) in a packed scenario. ... 87

Figure 5.1 – Geometry of Test Case 4 .. 90

Figure 5.2 - Geometry with four exits on one side ... 93

Figure 5.3 - Geometry partitioned into four sub-domains ... 93

Figure 5.4 - Irregular domain partitioned into four equal sub-domains 94

Figure 5.5 - Equal Partitioning into two and seven sub-domains on the Trafalgar square

replica ... 95

Figure 5.6 - Speedup values from using a replica of the Trafalgar Square 98

Figure 5.7 - Equal Partitioning with using 2 processors ... 100

Figure 5.8 - Equal Partitioning with using 3 processors ... 100

Figure 5.9 - Equal Partitioning from using 4 processors .. 100

Figure 5.10 - Partition cut ratio ... 102

Figure 5.11 - Geometry used to derive the partition cut equation ... 102

Figure 5.12 - Comparison in the speedup values obtained from using different partitioning

technique ... 104

Figure 5.13 - Comparison in the speedup values obtained from using different partitioning

techniques ... 106

Figure 5.14 – Evacuation domain consisting of rectangular geometry, two exits and uniform

population distribution split into two sub-domains .. 108

Figure 5.15 – Evacuation domain consisting of rectangular geometry, one exit and uniform

population distribution split into two sub-domains .. 108

Figure 5.16 - Evacuation domain consisting of rectangular geometry, one exit and uniform

population distribution split into multiple sub-domains .. 109

Figure 5.17 - Generalised domain decomposition for N sub-domains and P processors...... 110

Figure 5.18 – Large open geometry .. 113

Figure 5.19 - Comparison in the speedup values obtained from using different partitioning

technique ... 115

Figure 5.20 - Comparison between the different partitioning methods used 118

B.Y.Y.MOHEDEEN

xv

Figure 5.21 - Potential Route Map ... 119

Figure 5.22 - Example of Potential Route Map partitioning ... 120

Figure 5.23 - Trafalgar Square partitioned using the Potential Route Map partitioning

method .. 121

Figure 5.24 - Efficiency graph when the Potential Route Map was applied to the Trafalgar

Square ... 123

Figure 5.25 - Comparison of speedup values obtained from using the different partitioning

methods on the Trafalgar Square ... 124

Figure 5.26 - Trafalgar Square partitioned using the Potential Route Map partitioning

showing the sub-domain created by D6 ... 127

Figure 5.27 - Trafalgar Square partitioned using the CPRM partitioning showing the cyclic

sub-parts created by D6. Here three sub-parts were used to partition each sub-domain. 128

Figure 5.28 - Maximum efficiency when the CPRM partitioning technique was used on Test

Case 5 ... 131

Figure 5.29 - Comparison from using the CPRM partitioning method to that of the PRM

method. ... 132

Figure 5.30 - Geometry containing unequal sized exits ... 134

Figure 5.31- Thin and small partitions created by the CPRM method on Test Case 5 141

Figure 5.32 - JOSTLE refining the original partitions of Test Case 5 set by the CPRM method

 .. 142

Figure 5.33 – Replica of the Beijing High Street, partitioned using (a) the Potential Route

Map method (1 sub-part at each exit) and (b) the CPRM method with 4 sub-parts at each exit

 .. 146

Figure 5.34 - Maximum efficiency obtained when the CPRM technique was applied to Test

Case 8 ... 149

Figure 5.35 - Speedup values obtained from using different number of sub-parts at each exit

 .. 150

Figure 5.36 - Maximum Efficiency when METIS was used on Test Case 5 154

Figure 5.37 - Comparisons of the CPRM method and METIS on Test Case 5 156

Figure 5.38 - Comparisons of the different partitioning methods (including METIS) used on

Test Case 6 ... 159

Figure 5.39 - Comparison in speedup values from using the CPRM method and METIS on

Test Case 8 ... 163

Figure 6.1 – Illustration of dynamic repartition .. 166

Figure 6.2 – Illustration of dynamic reallocation .. 167

Figure 6.3 - An example of Multi-halo nodes on the Trafalgar Square replica 169

Figure 6.4 - Addition of multi-halo nodes at some boundaries .. 170

Figure 6.5 - Difference between Population Load and Work-load .. 185

B.Y.Y.MOHEDEEN

xvi

Figure 6.6 - Dynamic re-allocation algorithm ... 189

Figure 6.7 - Comparison between the static and dynamic partitioning strategies when the

CPRM was used .. 193

Figure 6.8 - Comparison between the static and dynamic partitioning strategies from using

both CPRM and METIS .. 199

Figure 6.9 - Number of sub-domains which gave the best speedup values 200

Figure 6.10 - Illustration of Test Case 11 .. 201

Figure 6.11 - Population distribution at 0s .. 202

Figure 6.12 - Population distribution at 30s .. 203

Figure 6.13 - Population distribution at 70s .. 204

Figure 6.14 - Initial Partition of Test Case 11 ... 205

Figure 6.15 - Test Case 11 partitioned using the CPRM method with 4 sub-parts at each exit.

 .. 207

Figure 6.16 - Test Case 11 being reallocated by the dynamic algorithm 209

Figure 6.17 - Comparison between static and dynamic reallocation methods using the CPRM

method on Test Case 11 .. 211

Figure 6.18 - METIS partitioning Test Case 11 into 25, 50 and 90 parts 212

Figure 6.19 - Test Case 11 partitioned by METIS showing the initial partitions and then the

first reallocations by the dynamic reallocation algorithm ... 214

Figure 6.20 - Comparison between static partitioning and dynamic reallocation methods

using both the CPRM method and METIS on Test Case 11 ... 215

Figure 6.21 - Ideal partition for Test Case 11 ... 217

Figure 6.22 - Partitions used on the idealised statically partitioned problem 218

Figure 8.1 – Illustration of static partition reallocation .. 232

Figure 8.2 – Illustration of dynamic repartition .. 233

Figure 9.1 – Comparison of Pseudo code for Movement Loop.. 257

Figure 9.2 – Pseudo-code for overlapping communication with computation 259

Figure 9.3 – Communications procedure ((a) send and (b) receive) between sub-domains . 260

Figure 9.4 - Geometry used to derive the partition cut formula .. 262

Figure 9.5 - Geometry partitioned into two unequal parts in the ratio F1:F2 263

Figure 9.6 - Geometry partitioned into three unequal parts in the ratio F1:F2:F3 264

Figure 9.7 - Geometry partitioned into four unequal parts in the ratio F1:F2:F3:F4 266

Figure 9.8 - Geometry partitioned into N unequal parts in the ratio F1:F2:…:FN 268

Figure 9.9 - Geometry used to derive the partition cut formula .. 269

Figure 9.10 - Geometry partitioned into two unequal parts in the ratio F1:F2 270

B.Y.Y.MOHEDEEN

xvii

Figure 9.11 - Geometry partitioned into three unequal parts in the ratio F1:F2:F3 271

Figure 9.12 - Geometry partitioned into four unequal parts in the ratio F1:F2:F3:F4 273

Figure 9.13 – A generalised domain decomposition for N sub-domains and P processors .. 276

Figure 9.14: A generalised domain decomposition for N sub-domains and P processors 279

B.Y.Y.MOHEDEEN

xviii

TABLE OF TABLES

Table 2.1 - Benchmark values for the Multi-threaded Legion Analyser 28

Table 3.1 – Times in seconds for Benchmark test case 1 ... 46

Table 3.2 – Times in seconds for Benchmark test case 2 ... 48

Table 3.3 – Times in seconds for Benchmark test case 3 ... 49

Table 4.1 - Speedup values obtained to test when parallelisation becomes beneficial 59

Table 4.2 - Comparison between the original serial code and the improved serial code for

Benchmark test case 1 .. 71

Table 4.3 - Comparison between the original serial code and the improved serial code for

Benchmark test case 2 .. 72

Table 4.4 - Comparison between the original serial code and the improved serial code for

Benchmark test case 3 .. 72

Table 5.1 - Single core timings with speedup and efficiency values for Test Case 4 91

Table 5.2 – Dual core timings with speedup and efficiency values for Test Case 4 92

Table 5.3 - Initial population distribution in Test Case 5 .. 96

Table 5.4 - Performance values obtained by using the Equal Partitioning method on the

Trafalgar square Test Case 5 ... 97

Table 5.5 - Equal Partitioning method - speedup and efficiency values 101

Table 5.6 - Partition cut (without communication costs) partitioning method - speedup and

efficiency values .. 103

Table 5.7 - Optimal partition cut (with communication costs) partitioning method –- speedup

and efficiency values ... 105

Table 5.8 - Estimation of the communication costs from speedup values obtained 114

Table 5.9 - Results from using the Equal Cyclic Partitioning method on Test Case 6 116

Table 5.10 - Efficiency values for Test Case 6 using the Equal Cyclic Partitioning method. 117

Table 5.11 - Performance ratios over actual simulation times when the Potential Route Map

partitioning was applied to the Trafalgar Square .. 122

Table 5.12 - Speedup values from using the CPRM technique .. 129

Table 5.13 - Efficiency values obtained when the CPRM was used to partition Test Case 5 130

Table 5.14 – Performance ratios over actual simulation times when the CPRM was used to

partition Test Case 5 .. 133

Table 5.15 - Exits' allocation to processors by the CPRM algorithm 135

Table 5.16 illustrates the distribution of the exits before the exit width balancing algorithm

was applied. .. 135

B.Y.Y.MOHEDEEN

xix

Table 5.17 - Distribution of the exits before the exit width balancing algorithm was applied

 .. 136

Table 5.18 - Percentage of the total exits widths allocated to each processor 137

Table 5.19 - Distribution of the exits after the exit width balancing algorithm was applied . 138

Table 5.20 - Percentage of the total exits widths allocated to each processor 139

Table 5.21 - Speedup values obtained when both the old and new exit widths balancing

algorithm was applied to Test Case 5 .. 140

Table 5.22 - Comparisons in the speedup values obtained with and without JOSTLE’s

refinement ... 143

Table 5.23 - Comparison of results from using JOSTLE and METIS on Test Case 5 144

Table 5.24- Speedup values obtained from running Test Case 8 ... 147

Table 5.25 - Efficiency values when the CPRM technique was applied to Test Case 8 148

Table 5.26 - Performance ratios over actual simulation times when the CPRM technique was

applied to Test Case 8 .. 149

Table 5.27 - Speedup values obtained from using METIS on Test Case 5 152

Table 5.28 - Efficiency values from using METIS on Test Case 5 ... 153

Table 5.29 - Performance ratios over actual simulation times from using METIS on Test Case

5 .. 155

Table 5.30 - Results from using METIS partitioning on Test Case 6 157

Table 5.31 - Efficiency values when METIS was used on Test Case 6................................... 158

Table 5.32 - Speedup values from using different number of sub-domains in METIS on Test

Case 8 ... 160

Table 5.33 - Efficiency values when METIS was applied to Test Case 8 161

Table 5.34 - Performance ratios over actual simulation times from using different number of

sub-domains in METIS on Test Case 8 ... 162

Table 6.1 - Scheduling based on the LPT algorithm .. 172

Table 6.2 - Scheduling performed by JOSTLE ... 173

Table 6.3 - Speedup and efficiency values obtained on Test Case 9; when an initial

reallocation is done at the start of the simulation and the system remains static 175

Table 6.4 - Speedup values obtained on Test Case 10; when an initial reallocation is done at

the start of the simulation and the system remains static ... 177

Table 6.5 - Efficiency values obtained on Test Case 10; when an initial repartitioning is done

at the start of the simulation and the system remains static ... 178

Table 6.6 - Speedup and number of times reallocation happened when dynamic reallocation

algorithm called at 1s and then at 10s intervals .. 180

Table 6.7 - Comparison in the speedup values from using both the static and dynamic

reallocation techniques on Test Case 10 .. 182

B.Y.Y.MOHEDEEN

xx

Table 6.8 - Speedup values obtained when the latest formulation of the dynamic reallocation

algorithm (including the gain function) was applied to Test Case 10. 191

Table 6.9 - Efficiency values obtained when the latest formulation of the dynamic reallocation

algorithm (including the gain function) was applied to Test Case 10. 192

Table 6.10 - Speedup values obtained when METIS was applied to Test Case 10 using the

finalised Dynamic reallocation algorithm (using the gain formula). 195

Table 6.11 - Efficiency values obtained when METIS was applied to Test Case 10 using the

finalised Dynamic reallocation algorithm (using the gain formula). 196

Table 6.12 - Performance ratios over actual simulation times when METIS and CPRM were

applied to Test Case 10 using the finalised Dynamic reallocation algorithm (using the gain

formula). ... 198

Table 6.13- Physical explanation of the partitioned Test Case 11 ... 206

Table 6.14 - Speedup and efficiency values when the static partitioning strategy was used for

Test Case 11 ... 207

Table 6.15 - Physical explanation of the partitioned Test Case 11 after being dynamically

reallocated .. 209

Table 6.16 - Results obtained from using the dynamic reallocation algorithm on Test Case 11

 .. 210

Table 6.17 - Speedup and efficiency values obtained when METIS partitioned Test Case 11

using a static method on eight processors .. 212

Table 6.18 - Speedup and efficiency values obtained when METIS partitioned Test Case 11

using the dynamic reallocation algorithm. ... 214

Table 6.19 - Results comparing the speedup values obtained from the above tests............... 219

B.Y.Y.MOHEDEEN

xxi

TABLE OF TEST CASES

Test Case 1 - Geometry modelled on the Beijing High Street. ... 55

Test Case 2 – 1,000m x 100m geometry sparsely populated by 100,000 randomly placed

individuals. ... 82

Test Case 3 – 1,000m x 100m geometry, populated by 100,000 individuals compactly placed

in a region with a 1 node per person density ... 83

Test Case 4 - Idealised 20 exit case .. 90

Test Case 5 - Replica of the Trafalgar square in London populated by 60,000 occupants with

14 exits in total ... 95

Test Case 6 - 500m x 25m with one exit at one end and populated by 25,000 identical

occupants with a response time of zero. ... 99

Test Case 7 - Open rectangular geometry measuring 100m x 1,000m populated by 100,000

people ... 112

Test Case 8 - Replica of Beijing High Street randomly populated by 50,000 occupants with

nine exits in total .. 145

Test Case 9 - The Trafalgar Square replica was used, with seven of the fourteen exits closed

and with a population of 60,000. .. 174

Test Case 10 - Trafalgar Square replica populated with 60,000 people located towards the

centre of the geometry .. 176

Test Case 11 - Rectangular geometry measuring 500 x 700 nodes with 24 exits, 8 operational

and 16 closed. ... 201

B.Y.Y.MOHEDEEN

xxii

TABLE OF EQUATIONS

Eq (1): Speedup .. 18

Eq (2): Efficiency .. 19

Eq (3): Amdahl’s expected speedup ... 19

Eq (4): Partition cut excluding costs .. 103

Eq (5): Partition cut including costs .. 105

Eq (6): Estimated Speedup ... 110

Eq (7): Estimated speedup including costs .. 111

Eq (8): Gain formula .. 187

B.Y.Y.MOHEDEEN

xxiii

B.Y.Y.MOHEDEEN Chapter 1

1

1 INTRODUCTION

Large-scale evacuation is the mass movement of thousands or even millions of people [1] from a

dangerous place, due to the threat or occurrence of a disastrous event, to a place of safety. The

geometry involved is normally a very large area that can hold a large population such as

stadiums, towns, high-rise buildings, etc. Very large events such as sports, religious, cultural and

entertainment events are now regular occurrences. Organisers of these events have the difficult

tasks of planning the evacuation from such places if any need arises. In recent years both man-

made and natural disasters have impacted on the safety of people which have become important

issues to consider by transportation professionals [1 - 3], inferring that planning a large-scale

evacuation has become a necessity [4]. Examples where large-scale evacuations have occurred

are the evacuation of the World Trade Centre, the evacuation of New Orleans when hurricane

Katrina hit the US‘ south coastline in 2005 and the evacuation in response to the 2010‘s love

parade stampede in Duisburg, Germany. Planning and running large-scale trial evacuations can be

very costly [3, 5], both financially and in the number of people required to perform these test

evacuations. These trials must be run a number of times to get a realistic picture of how the

evacuation was performed: to get the optimal evacuation plan, different strategies and scenarios

have to be tested. Moreover to physically evacuate a large area, such as part of a city, is not

feasible and hence no proper evacuation plan can be obtained for these cases.

During live evacuations, incident commanders may have no idea which evacuation routes will

lead the evacuees to safety in the shortest time. This is particular the case if these evacuations

may not be necessarily from a built environment, where an evacuation plan may have already

been devised, but from any open area which does not require an evacuation plan. In a built

environment, people tend to evacuate from the exit they entered the domain [6] and if that

particular route becomes inaccessible due to some damage to it, the evacuees may not be aware of

alternate exit points. Incident commanders must be ready to cater for all the different scenarios

that can arise during these evacuations. A solution to remediate all of these problems is the use of

evacuation modelling. The evacuation model can be linked to CCTV and it is used to dynamically

modify the procedures.

B.Y.Y.MOHEDEEN Chapter 1

2

1.1 Evacuation modelling

For decades, evacuation modelling developers have been designing and improving models that

can predict evacuation movement and behaviour [6 - 15]. The use of evacuation / pedestrian

modelling is well established as part of building design to ensure that buildings meet

performance-based safety and comfort criteria [12, 16 - 22]. During live incidents, incident

commanders can use evacuation models to test different evacuation scenarios to obtain the

optimal evacuation plan [23]. To obtain the best evacuation plan, each simulation must be

performed significantly faster than real-time so that the incident commanders have time to run a

simulation, analyse the results, modify the scenarios, run the simulation again until the best

solution is obtained. However, evacuation models such as the buildingEXODUS that discretise

space and incorporate individual people and their interactions [12, 24] are computationally

expensive [25]. Computational overheads involved in such simulations may mean that the time

taken by the processor to run simulations involving very large populations or very large

geometries (or both) may require several hours.

The evacuation model‘s predicted time to physically evacuate a geometry is called the simulation

time and the computational speed of the processor to simulate the evacuation of that geometry is

called the wall-clock time [26]. The wall-clock time should be considerably faster than the

simulation time to be of any use to incident commanders. Evacuation models which do not use a

formula to predict the movements of its population, will give out different simulation times at

every run. This is due to the unpredictibility of the population‘s movement that the model

promote. On the other hand, in deterministic models; such as in the field of Computational Fluid

Dynamics, the same simulation times are obtained at every run.

The simulations of the evacuation of small geometries are usually done in a very short time. For

example, using the buildingEXODUS evacuation software, the evacuation of 1,000 people from a

supermarket, with the surface area of 4,000m
2

required a simulation time of 86.73s and the wall-

clock time to simulate this case was only 3.12s. Here the wall- clock time is over 27 times faster

than the simulation time. The evacuation of small geometries will not have the need of incident

commanders planning a live evacuation plan, as usually these evacuations are fairly simple and

straightforward.

B.Y.Y.MOHEDEEN Chapter 1

3

On the other hand, large-scale evacuation may need live evacuations plans as incidents are

unfolding. A good example is the evacuation of the world trade centre (WTC). The

buildingEXODUS software was used to simulate the evacuation of the north tower of the WTC

[27 - 29]. This involved a building of 110 storeys and two different target populations, one

involving approximately 8,200 occupants and the other involving 21,000 occupants. With a

population of 8,200, the actual evacuation required around 100 minutes in simulation time while

with a population of 21,000 the evacuation may required approximately 150 minutes. Using a 3.6

GHz Pentium 4 PC with 3.25 GB RAM, these simulations required approximately 25 minutes

and 120 minutes of wall-clock time respectively.

Even at four times faster than real time, the 25 minute simulation of the WTC evacuation is not

sufficiently fast to be of use to incident commanders. Performance would need to be significantly

faster than real time before it may prove useful in such applications, hence the need for a parallel

version.

1.1.1 Evacuation software for large-scale evacuation

There are several evacuation models that can simulate large-scale evacuations and several that are

restricted to simulate only small-scale evacuations. Some examples of models that are capable of

simulating large-scale evacuations are the buildingEXODUS model (30,000 people in a 60,025

m2 area [30]), the PedGo software (80,000 people from a stadium [31]), Simulex [32], Legion

[34, 35] and STEPS can simulate evacuations from stadiums [12, 33]. Some of the models which

can only handle small-scale evacuations are the GridFlow model (can support up to 5,000

occupants [12]) and the EXITT model (can only simulate evacuations from residential buildings

[12]).

There are different types of evacuation models, some which can predict just the evacuation times

and others which incorporate human behaviour and external stimuli to study the various external

influences (fire, smoke etc) in much detail [17] as well as predict the evacuation times. The

ability to simulate the evacuation of large domains depends on how the models represent their

regions and people. The more attributes there are to the regions and people, the more

computationally expensive it is to load and run the simulations.

B.Y.Y.MOHEDEEN Chapter 1

4

There are three main methods to represent a geometry by the models: the coarse node method, the

fine node method, and the continuous method [36]. Models that incorporate the coarse node

approach are not that demanding on the processors and can hence load and simulate large-scale

evacuations [1]. A drawback for those models is that they cannot consider human behaviour and

interactions in detail. These models tend to treat the movement of people like a fluid flow.

Models that use a fine node and continuous approach are much more computationally expensive

to load and run. Computational overheads involved in such simulations may mean that clock

times for simulations involving very large populations or very large geometries (or both) may

require several hours. Indeed simulations, involving extremely large geometries, such as those for

urban-scale applications, if at all possible, may require days [16].

The buildingEXODUS software is one of the evacuation models that can perform large-scale

evacuation, even though it is a fine node model. There is a limit to what extent buildingEXODUS

can perform large-scale simulation as it will depend on the size of the geometry / population

incorporated and the computer hardware used. The memory and processing capabilities of the PC

used determine how large a simulation can be; more memory and processing power will imply a

larger simulation can be formulated. A good alternative to buying a single high performance

computer and simulating the large cases is to make use parallel computing. Parallel computing

can either use multiple processors in a shared-memory environment or use several computers on a

network, called distributed computing, to perform these large simulations. Parallel computing

uses all the computers available as one very powerful virtual computer. Parallel computing is

widely used in many different fields [37, 38]. Some examples are in the Computational Fluid

Dynamics (CFD) field [39 - 41], fire modelling [42, 43], weather modelling [37, 44, 45], biology,

search for extra-terrestrial life [46] and many more areas. However, very little literature is

available on its use to evacuation modelling.

Please see Chapter 2 for a more detailed explanation of the various models and their attributes.

B.Y.Y.MOHEDEEN Chapter 1

5

1.2 Requirements imposed by the software developers

In creating a parallel implementation of the buildingEXODUS software, there are a number of

core requirements that the parallel implementation must satisfy. These requirements are intended

to make the parallel version of the software both flexible and easy to adopt by the existing users.

These include the following considerations:

1. There should be no difference between the input or output files for the serial and parallel

implementations of the software. This will allow applications to be designed and the

results visualised using the familiar serial components of the software.

2. The parallel implementation should work on an arbitrary number of processors.

3. Minimal additional investment (in time and hardware/software) should be required by the

user to effectively run the software.

4. The parallel implementation is intended to function in a Microsoft Windows environment.

5. Ideally the parallel architecture could be office PCs connected by a LAN network.

6. There should only be one EXODUS source code i.e. separate parallel and serial source

codes would not be developed.

Having a single software source code is desirable in order to minimise the effort required to

maintain the product [16].

B.Y.Y.MOHEDEEN Chapter 1

6

1.3 Research Questions

In starting this work, there were two main areas of research that needed to be explored and these

are:

1. Can parallel computing techniques be usefully applied to buildingEXODUS to enable

faster wall-clock times and also to load vast cases, which cannot be loaded on a single

processor?

 How much speed-up (How much faster a parallel version is to its serial version) can be

obtained from using the parallel techniques?

 By using all the combined memory of the different computers on the network, how big a

scenario can be loaded and run?

 Is the parallel system scalable? Will increasing the number of processors on the network

increase the speedup?

2. Which partitioning techniques will yield the optimal partitioning strategies?

 How to partition the problem, so that the communication costs is minimised and the load

balancing is preserved?

 Is a partitioning software better suited for partitioning the problem, or must a specialised

partitioning algorithm be created?

 Is dynamic repartitioning an option to consider? Will extra communication and algorithmic

costs be a limiting factors on the advantages gained from a dynamic repartition?

B.Y.Y.MOHEDEEN Chapter 1

7

1.4 Objectives

The objectives of this thesis are to try to fulfil all the requirements imposed by the software

developers and to resolve those questions asked in the previous section. This thesis presents a

parallel approach to evacuation modelling in order to aid real-time, large-scale procedure

development.

1.4.1 Can parallel computing techniques be usefully applied to buildingEXODUS to

enable faster wall-clock times and also load vast cases, which cannot be

loaded on a single processor?

The parallel version of the buildingEXODUS codes should be compared against the serial version

to confirm that the parallelisation techniques have not modified the evacuation outcome which

the serial version would have given. The parallelised version should be compatible to run on

standard office PCs connected via a LAN network. The performance of the new version must be

tested to see if there have been sufficient improvements in the wall-clock times compared to the

serial version. Large problems, which were previously impossible to load and run on a single PC,

should be tested on the parallel version to confirm its ability to load vast geometries containing a

large number of people.

1.4.2 Which partitioning techniques will yield the optimal partitioning strategies?

A significant exploration of all the domain decomposition strategies must be researched in order

to come up with the most efficient technique.

Whichever strategy is chosen, care must be taken to minimise communication costs amongst the

processors, which otherwise will increase the wall-clock time. Another important factor that is

crucial in maintaining a good parallel performance is load balancing. Much research must be

done in optimising these two functions in order to obtain the optimal parallel decomposition

strategy. A decomposition technique must be devised to both promote the load balance of the

problem and reduce the communication costs associated with a parallel system. In the event of a

B.Y.Y.MOHEDEEN Chapter 1

8

failure in finding a partitioning technique which can be applied to every evacuation scenario, a

dynamic repartitioning approach must be researched. The advantages gained from using a

dynamic approach must be compared to the resulting costs incurred in order to determine which

are the crucial factors affecting this approach.

1.5 Structure of Thesis

Chapter 1. Introduction:

This chapter has introduced the research questions and goals of this thesis and the objectives to

answer them by researching the subject.

Chapter 2. Background and Literature Review:

This chapter provides a state of the art description of the issues raised in chapter 1. Various topics

required for the advancement of this research are elaborated. These topics are: evacuation

modelling, parallel processing and partitioning strategies.

Chapter 3. buildingEXODUS evacuation model:

An overview of buildingEXODUS is described in detail in this chapter. The limitations of

buildingEXODUS are introduced and how parallel processing can be a solution to address these

shortfalls.

Chapter 4. Parallel implementation of buildingEXODUS:

The prototype used to work out the parallelisation strategies to be used on the buildingEXODUS

is described. The software parallelisation strategies applied to buildingEXODUS as well as the

rejected techniques are explained.

Chapter 5. Domain partitioning in buildingEXODUS:

The different decomposition strategies are explained and discussed. An intensive investigation

was researched into which partitioning strategy is capable to partition any type of geometry and

minimise the communication costs whilst maintaining load balance.

B.Y.Y.MOHEDEEN Chapter 1

9

Chapter 6. Dynamic repartitioning in buildingEXODUS:

A dynamic repartitioning strategy is devised and tested in comparison to the results obtained

when the static strategy was employed. Several avenues were explored to culminate in the final

partitioning strategy adopted.

Chapter 7. Conclusions:

A summary of the current research in this thesis is outlined and the concluding recommendation

on the outcome of this research is proposed.

Chapter 8. Further Work:

The suggested future work regarding the work present in this thesis is explained and subsequent

research areas which can improve the findings are advised. Additional research questions were

also raised in this chapter.

B.Y.Y.MOHEDEEN Chapter 2

10

2 BACKGROUND AND LITERATURE REVIEW

2.1 Evacuation modelling

Evacuation modelling is frequently used in a range of sectors [11, 17, 47, 48], such as in the

naval, building, aviation and the rail sector [47]. Given the recent occurrence of several large-

scale man-made and natural disasters [1, 3], the need for analysing a wider range of hazards

(including terrorist attacks) [49] and as a result evacuation planning has become all the more

important [50, 51].

The huge technical progress in computational power has made the application of evacuation

models to large-scale incidents more viable [17, 52, 53]. Ekman et al. [54] concluded that

computer performance growth was over 50% between 1985 and 1996 and has decreased to 41%

in the 1996 - 2004 period. Meanwhile clock frequency has been improving at a rate of 29%

annually with it being 16MHz in 1985 to peaking to 3.4GHz in 2004 [54]. Kareem et al. [55]

states that the performance of modern processors is rapidly increasing with the number of

transistors per chip, increasing exponentially over the last three decades; please refer to Figure

2.1. This conforms to Moore‘s law. Hence, with the current processing power available, many

evacuation models can simulate the evacuation from small-scale environments such as low-rise

buildings (under 22.9 metres [12, 13]), naval vessels and aircrafts [17, 47, 48]. However, due to

high computational costs, not all models cater for the simulation of thousands of people in large-

scale evacuations, such as from high-rise buildings, stadia, and even cities.

B.Y.Y.MOHEDEEN Chapter 2

11

Figure 2.1 - Scaling of transistors, the number of transistors is expected to continue to double

about every two years, in accordance with Moore's Law [55].

2.1.1 Benefits of evacuation modelling

There are many benefits of using evacuation models and these are now discussed. Performing a

full-scale evacuation poses considerable ethical, practical, financial [6, 25] and safety issues [53].

The use of evacuation models can address all of the above problems. Buildings, ships and

airplanes commonly use evacuation modelling for performance-based analysis during their

planning stage [10]. In this day and age, bigger and more complex structures are being

constructed [6]. Bigger cruise ships (Voyager of the seas [56]), airplanes (Airbus‘ A380 [57]) and

buildings are being designed [53]. The constructors can use evacuation modelling to gain

valuable insights about the possible evacuation issues in the planning stages [53], when they still

have time to work towards the best design to optimise the evacuation scenario. The gathering of

large populations in one location can occur for a number of reasons: major sporting events which

can hold up to 70,000 fans [58], large transportation terminals, such as New York Grand Central

Terminal and Pennsylvania Station accommodate 200,000 passengers each weekday [58],

religious pilgrimage, whereby over 2 million pilgrims go to the Hajj pilgrimage every year [59],

B.Y.Y.MOHEDEEN Chapter 2

12

festivals and carnivals with more than one million spectators viewing the annual Tournament of

Roses parade along a 9 km route in Pasadena, California [58], the Love parade 2002 in Berlin had

about 500,000 people [60] are some examples. These require detailed planning to cope with the

range of issues presented by the gathering of large populations. Organisers of these events can use

evacuation modelling to plan the evacuation from these events.

2.1.2 Types of evacuation models

There are various types of evacuation models employing different techniques and ways to

represent their data. An evacuation model can be assembled from a choice of different modelling

methods available and diverse ways to represent its geometry and its population.

A brief description of the different components of an evacuation model is given to better

understand the core features of buildingEXODUS. Each of its features is important in choosing

the appropriate parallel techniques needed to parallelise and partition the software.

2.1.2.1 Modelling Method

According to Kuligowski et al. [12], evacuation modelling uses three main types of modelling

methods: the behaviour model, the movement model and the partial behaviour model.

1. Behaviour model:

The behaviour models try to incorporate human behaviour in the process of evacuation. These

models takes into account, not only the physical environment, but treats its population as active

individuals which can respond to stimuli such as various fire hazards and have individual

behaviour, such as reaction times, exit preferences etc. The buildingEXODUS evacuation model

is an example of this type of model [6, 60, 61].

B.Y.Y.MOHEDEEN Chapter 2

13

2. Movement model:

This type of model concentrates solely on the population capacity of the structure and its various

components [6]. During the simulation, people are assumed to evacuate the structure

immediately, ceasing any other activities. They all evacuate in the direction and speed of egress

predetermined by physical considerations only [6]. These types of models ignore the population‘s

individuality [6] and use an equation method [62] to treat their movement as a fluid [8, 12, 17] or

gas-kinetic flow [17].

3. Partial Behaviour model:

The partial behaviour models primarily calculate the occupants‘ movement, but can have some

behavioural characteristics incorporated [12]. Some behaviour can be represented by pre-

movement time distributions, overtaking, individual characteristics and the effects of smoke on

the occupants [12]. An example of such a model is STEPS (Simulation of Transient Evacuation

and Pedestrian MovementS) which is a movement / partial behaviour model and developed by the

Simulation Group of Mott MacDonald [12, 63 - 66].

2.1.2.2 Enclosure representation

There are three main ways that an evacuation model can represent its geometry: the coarse node

network, the fine node network and the continuous network. It is also possible to have a hybrid

method that mixes these three approaches, currently EXODUS is developing a hybrid version

which can merge the three types of enclosure representations to build a geometry [67].

1. Coarse node representation:

The whole region is divided into partitions, which can represent rooms, corridors, stairs etc. Each

partition becomes a node and are linked to its neighbouring node by an arc. Each node has

various attributes associated with it, such as the number of people it can hold, the flow rate of its

population and calculates the motion of the people inside it by some formula. In these models,

occupants move from segment to segment, and their precise position is less defined [68]. In

models which incorporate the coarse node network, most social interaction elements are made

B.Y.Y.MOHEDEEN Chapter 2

14

inconsequential because evacuation times depend primarily upon node capacity and the traversal

times [14]. Hence, the positions of the people, detailed spatial representation and also the people-

people interactions are not specifically represented. However, these models can simulate large-

scale evacuations as they are less computationally expensive to execute [17]. Figure 2.2 illustrates

this concept.

Figure 2.2 – Adapted from the coarse node representation from [48].

2. Fine node representation:

In a fine network representation, the whole area is discretised into a collection of nodes / cells.

The size of each node varies from model to model. For example EXODUS uses a 0.5m x 0.5m

node spacing, STEPS uses a 0.5m x 0.5.m cell [12] and the CAFE model employs 0.4m x 0.4m

cells [76] whilst EGRESS employs hexagonal cells [12, 69]. Usually each node can hold one

person and each node is connected to its neighbouring nodes by arcs. Hence, each compartment

within a geometry is made up of several nodes. This fine representation also enables an accurate

B.Y.Y.MOHEDEEN Chapter 2

15

representation of an enclosure as well as representing obstacles in that enclosure [48]. In these

models, individuals can be easily located and tracked during the simulation. However, not all

models that incorporate the fine node network can perform large-scale evacuation since it is

computationally expensive to represent each node which can contain several attributes. Figure 2.3

demontrates the fine node network to the same enclosure used in Figure 2.2 to illustrate the

coarse node network.

Figure 2.3 – Fine Node representation of the enclosure in Figure 1.

3. Continuous network representation:

A continuous model applies a coordinate representation of the area, where each point in that

domain has a co-ordinate; such as Simulex [70 - 72], Social forces model [94], Legion [12], and

Pathfinder [73]. The occupants can move from one point in space to another throughout the

B.Y.Y.MOHEDEEN Chapter 2

16

enclosure [12]. These models can find it very computationally expensive to simulate large-scale

evacuations [84].

2.1.2.3 Population representation

There are two ways that an evacuation can represent its population: the Global or the individual

approach [12].

i. Global representation:

These models represent its population as a homogeneous population. Their motion can be

compared to the flow of fluids, the flow of granular materials, gas-kinetic models [17], and even

to the progression of hazardous substance or smoke [14]. This type of global representation

cannot distinguish individuals during the simulation. The movement of the population is

determined by densities, usually a mass density derived from the people‘s positions and a

corresponding locally averaged velocity [17]. Models that features a global representation of its

population are not computationally expensive to run and can hence simulate very large population

[74].

ii. Individual representation:

Models encompassing individual representation tracks the movement of each occupant

throughout the simulation. At any point in the simulation, the model can provide information,

such as the current position or any personal attributes the user might want about each occupant

[12]. Usually these models have many personal attributes, such as age, walking speed etc,

associated to each person. For example, ―EXODUS simulation program furnishes perhaps the

most complete set of social psychological attributes and characteristics for each agent, twenty-

two in all.‖ [14]. Due to the number of attributes associated to each occupant, the models can only

represent as many people as the computational memory available to the user will allow. Hence,

most models employing the individual representation is restricted to the number of people it can

simulate.

B.Y.Y.MOHEDEEN Chapter 2

17

2.2 Parallel computing

Currently, many applications utilise more computing power in terms of memory and performance

than a sequential computer can offer. An example of such an application is in the field of weather

modelling where there are vast data to be analysed and modelled for large regions of the earth.

Parallel processing can provide a solution to this problem by linking a number of CPUs together

connected via a communication system to enable data transfers. Parallel processing is being used

in a variety of fields, such as in the CFD field, weather modelling [37, 44, 45], searching for

extra-terrestrial intelligence [46] and many more areas. There are two main types of parallel

archictures: multi-processor computers having multiple processing elements within a single

machine, while clusters, massively parallel processors (MPPs), and grids use multiple computers

to work on the same task. Since the requirement imposed by the software developers is to use

office PCs connected by a LAN network, the cluster architecture was chosen for this research.

Recently multi-core processors, which are the inclusion of two or more complete computational

cores within a single processor [77], were developed and are easily available [78]. This

technology was conceived when engineers realised that Moore‘s law of doubling the performance

of micro chips every couple of years is no longer physically feasible [77, 79]. Burger [77] states

that compared to a single core processor, a multi-core processor with two cores can increase the

processing speed by 93%. This technology is appealing as a means to improve the speed

performance of buildingEXODUS. However, using a multi-core processor alone does not resolve

the problems posed by loading and running large-scale simulations as the memory available is

still similar to that of a single core processor. However, using a cluster of multi-core processors

on a distributed network is an attractive option to consider. Multi-core and other shared memory

devices within a single computer share the same memory and memory bus. This has the

advantage of simplifying the parallelisation process but will suffer from memory bus contention

that may restrict the potential benefits offered by the extra processing power available. It should

also be recognised that a software designed to run in a distributed fashion will also work on

multi-core processor.

http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Massive_parallel_processing
http://en.wikipedia.org/wiki/Grid_computing

B.Y.Y.MOHEDEEN Chapter 2

18

2.3 Terminology

2.3.1 Speedup [37]

Speedup is a measure to evaluate the performance of a parallel system over a sequential

implementation. It determines the relative benefit of solving a problem in parallel. Speedup,

denoted by Sp, is defined as the ratio of the time taken to solve a problem on a single processor to

the time taken by a parallel system of p processors.

Speedup is defined by the following formula:

 Eq (1): Speedup

Where:

p is the number of processors

T1 is the execution time of the sequential algorithm

Tp is the execution time of the parallel algorithm with p processors

Theoretically, Speedup cannot exceed the number of processors p used. In most cases due

to the costs involved in the parallelisation process. However, if a speedup greater than p is

observed, this is called superlinear speedup. This phenomenon sometimes happens when there

are hardware features that put the serial implementation at a disadvantage. An example of such a

case is the size of a problem might be too large to fit in the cache of a single processor, hence

degrading the sequential performance. The same problem partitioned into smaller parts, will be

small enough to fit into each processor‘s individual cache.

2.3.1.1 Scaled Speedup

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Central_processing_unit

B.Y.Y.MOHEDEEN Chapter 2

19

The speedup obtained when a problem size increases linearly with the number of processors is

termed as a scaled-speedup. A parallel system is considered scalable if the scaled-speedup curve

is close to a linear curve representing the number of processors [37].

2.3.2 Efficiency [37]

Ideally a speedup value equal to p processors is perfect. However, in practice this is seldom

achieved while executing a parallel algorithm. The processors involved cannot dedicate 100% of

their time to the computations as there are communication and synchronisation costs involved and

also times where processors will become idle.

Efficiency (E) is a measure to determine how a processor is usefully employed. It is defined as

the ratio of speedup (S) to the number of processors (p) used.

 Eq (2): Efficiency

In an ideal parallel system, efficiency is equal to one but in practice, depending on

how efficiently the processors are utilised.

2.3.3 Amdahl law [80]

According to Amdahl‘s law, if there is a fraction of the code (f) which is parallelisable with no

scheduling overhead, then the speedup is governed by the following equation:

 Eq (3): Amdahl’s

expected speedup

n: Number of processors

B.Y.Y.MOHEDEEN Chapter 2

20

(1-f): Fraction of the code which is totally sequential

2.3.4 Parallel SimTime1 Performance Ratio

While the computational speedup is important in determining the performance of the parallel

system, another consideration is simulation time. How long it takes to run a simulation is the

consideration which will determine how practical it is to use as an advice tool by incident

commanders for large building based scenarios: as part of an interactive emergency signage

system, a training tool in an interactive desktop environment and as a planning tool for large scale

urban applications. A parallel SimTime performance ratio is used in this case to demonstrate how

fast a computer simulation can render results compared to the actual time to evacuate a geometry.

2.4 Parallel architecture

There are many types of parallel platforms, each with its own characteristics. The two main types

of parallel processing architectures are: parallel processors where different processors share the

same memory of that computer, and distributed computing where each computer is distinct, with

its own processing element together with its own memory. The following are the main types of

parallel architecture currently in use:

 Shared-memory multiprocessors or parallel processors that have more than one processor

connected together that share the same memory [96].

 Parallel vector processors are designed to handle arithmetic operations on vectors.

Although this type of processor was often used to build supercomputers in the past, they

have lost their popularity due to the high cost [96].

 Distributed memory massively parallel processors (MPPs) consisting of many individual

nodes, each essentially an independent computer in itself. Each node consists of at least

one processor, its own memory and is connected to a network which links all the nodes

1
 SimTime: Simulation time (See Section 2.3.4)

B.Y.Y.MOHEDEEN Chapter 2

21

together. Traditional MPP systems may contain hundreds or thousands of individual

nodes and they have custom networks which are very fast [97].

 A computer cluster consisting of several distributed memory computers built from mass

produced PCs and workstations connected via a network [96 - 98]. Cluster computing is

now a popular platform for cost-effective parallel computing [99 - 101]. They are much

cheaper than traditional MPP systems [102], but are more difficult to use since the

network capabilities are currently much lower. The number of nodes used is much lower,

most often involving fewer than 100 computers [97].

 Multi-core processors contain two or more computational cores. Each core is complete

with its own hardware but share the same memory. By dividing the work between two

execution cores, a multi-core processor can perform more work within a given clock

cycle. Multi-core technology allows servers to run tasks in parallel that previously would

have required multiple processors. [77]

 Network / Internet / Grid computing uses processors from different geographical area,

connected together via the internet. Networking computing is not very effective due to the

low communication rate of the network, large latencies, and differing CPU rates of

connected computers [96].

 GPU (graphics processing unit) computing is the use of a GPU to do general purpose

scientific and engineering computations [103]. Both the CPU and the GPU are used as a

co-processing computing model, where the computationally intensive side is accelerated

by the GPU and the sequential part taken care by the CPU [103]. This innovation is

rapidly out-performing the results obtained from using parallel computing [103 - 105].

The downside of this technology is that it may be hard to scale to very large cases due to

the memory constraint on a CPU [104]. This technique, though an attractive option to

consider, cannot be used in this current research due to the high level of communications

and synchronisation required by an evacuation model. The GPUs cannot directly

communicate to each other [106] and hence unable to cater for the necessity of

communications and synchronisation needed to allow the movements of individuals at the

geometric boundaries.

B.Y.Y.MOHEDEEN Chapter 2

22

Due to requirement 5 (Section 1.2) imposed by the software developers that ―the parallel

architecture used for this project will be office PCs connected by a LAN network‖, the cluster

category is the most appropriate architecture to adopt. Each PC on that network has its own local

memory and will need to share information using a parallel communication package. This type of

parallel architecture is highly scalable as increasing the number of PCs combines their individual

memory load to handle larger sized problems with higher memory requirements. However, this

type of architecture is harder to program than systems that use a shared memory aproach which

also significantly reduces comunication costs [107] whereas intensive data communications

amongst the PCs in a distributed memory approach can cause a bottleneck in the communication

link. Although the development of the parallel implementation is initially intended for connected

office based PCs it would potentially be simple to port this to other parallel architectures once

developed.

2.5 Parallel algorithm models

There are various strategies that can be used to parallelise a program. The type of the problem

significantly influences the strategy selected. The different models that can be used are explained

below.

 Data Parallel model [37]: Data parallelism occurs when the tasks are mapped onto

processes and each tasks performs similar operations on different sets of data. Data

parallelism algorithms can be implemented on both shared-address space and message

passing paradigms. A key characteristic of data-parallel problems is that for most

problems, the degree of parallelism is proportional to the size of the problem. Hence the

system becomes highly scalable; adding more processes enables the solving of larger

problems. This strategy will benefit the type of problem that is being investigated in this

thesis. For an evacuation model, a possible decomposition of the task can be the physical

layout being partitioned into sub-regions which are assigned to a processor. Another

possible decomposition of the task can be the division of the population into the number

of processors available and assigns each sub-population to a processor. An example of

this type of application is the matrix manipulation problems [108].

B.Y.Y.MOHEDEEN Chapter 2

23

 Task graph model [37]: This type of model is more suitable for tasks that are closely

related. The interelationships among the tasks are utilised to promote locality and reduce

interaction costs. This model is more suitable for problems with large data and less

computations and favours the use of shared-address space. This type of strategy will not

benefit an evacuation simulation which will involve a large independent population and

intensive complex calculations about their movement coupled with other factors affecting

the occupants. Applications of this model is in the scheduling of real-time tasks [109] and

in the image / video compression / decompression field [110].

 Work pool model [37]: This model performs a dynamic mapping of tasks onto processors

for load balancing. This strategy is more suited for problems which have a small amount

of data compared to the amount of computation. The reason is that each time the dynamic

mapping occurs, data needs to be reallocated. A large amount of data will incur too much

communication costs at each mapping. Consequently, this model is not appropriate for an

evacuation model which can have a large population together with a large domain. An

example of this model is a matrix-vector multiplication [111].

 Master–slave model [37]: This type of model involves a master process giving out jobs to

slave processes and retrieving them. In this system, the slaves are continuously being kept

busy as the master is constantly handing out new jobs when each slave becomes idle.

However, this type of strategy is more suited for problems which have independent jobs

that do not need to be shared with other slave processes. A pedestrian evacuation

simulation requires too many interactions and this type of parallelism will not be suited to

it. However, the idea of a master processor allocating the work at the start and retrieving

them at the end can be an interesting avenue that can be adopted for an evacuation model.

Quinne et al. utilised this paradigm in the parallelisation of the Social Forces model [89].

 Pipeline model [37]: This type of model involves each processor working on some part of

the algorithm. For example, for a pedestrian evacuation algorithm, one CPU can handle

the movement of the individuals, while another CPU can handle the hazards that these

people are being subjected to. This scheme will not be suited for the pedestrian

evacuation software as all the different sub-algorithms are about each person and they

will need to be merged at each time step and thus the communication costs will be too

B.Y.Y.MOHEDEEN Chapter 2

24

high. Another setback is that each CPU must hold the whole of the geometric domain,

thus employing much memory requirement. An example where the pipeline model is

being applied is in the model-based image coding algorithms [112].

 Hybrid Model: This model can merge any of the above models and use some of their

capabilities. A good example that can apply for an evacuation software is merging the

data parallel model with the master-slave approach. This newly hybrid model can have a

master processor which initially partition the data (according to the data parallelism) and

allocates the tasks to the slave processors. The master can work on the tasks itself and

finally retrieves and compile the results after the simulation.

2.6 Related Work

Much research on the parallelisation of movement models have been studied in the field of traffic

simulation [81 - 87]. However, not much literature can be obtained about the parallelisation of a

pedestrian / evacuation software. As in pedestrian movement models, which can represent their

occupants either as a homogeneous mass or as individuals, many traffic models have incorporated

the microscopic approach of representing its agents as individual objects interacting with each

other, rather than simulating the traffic as a fluid flow [83, 84]. Similarly to how evacuation

modelling is used to ensure buildings meet performance based safety and comfort criteria, traffic

modelling is routinely being used in emergency planning and management in order to decide on a

proactive evacuation [88]. The only literature found concerning the parallelisation of a pedestrian

evacuation software similar to what is being researched in this thesis were the works of Quinn et

al. [89] and of Karavakis [90]. PEDFLOW, a multi-agent simulation system designed to represent

conflicting pedestrian flow at a detailed level, has been implemented in a parallel processing

language but uses a shared data structure approach [91]. As is MassMotion, a suite of software

tools that analyses and represents behaviour of individuals in the built environment, which has a

64-bit Multi-threaded design taking full advantage of multi-core processors and hence a shared-

memory approach [92, 93], unlike the distributed approach being researched for this thesis.

B.Y.Y.MOHEDEEN Chapter 2

25

2.6.1.1 Review of ―The parallel implementation of the social forces Model‖

A review of Quinn. et. al‘s paper titled ―The parallel implementation of the social forces Model‖

[89] is presented in this section. The social forces model [94] is a pedestrian evacuation simulator

that represents the population microscopically. Quinn et al. compares the temporal performance

of the Cellular automata (CA) and social forces models. In both models, every person is

individually represented and they have distinct attributes associated. The Social Forces model

uses the continuous network to map its geometry, unlike the CA models which discretise its

region into cells (40 cm on a side). Hence, the disadvantage of the social forces model is that it

takes much longer to update the position of each individual compared to the time the CA model

takes to update the position of the same population. Experiments have shown that when both

models were used to simulate the evacuation of the same population, the social forces model was

about 100 times slower than the CA model. Quinn et al. resolved this problem by parallelising the

social forces model.

Their design process was to use the master / slave approach. The master reads in the geometric

layout, scenario and population details and send these information to the appropriate slave

processor. At each time step, the master process gathers data from the slave processes and passes

this information to the appropriate rendering engine. The slave processes are interconneted on a

2D virtual grid. Each worker has part(s) of the domain allocated to it and at each boundary of the

domain, ―Ghost cells‖ are created and they represent the boundaries of the neighbouring

processes. When occupants move within the domain controlled by one process, no

communication is necessary to other worker processes. However, if an occupant has reached the

boundary of the domain, then necessary details about that occupant needs to be communicated to

the appropriate neighbour process and when the occupant has moved out of the main domain

controlled by a process, then that process must hand over that person to the neighbouring process.

The Message passing interface (MPI), as explained in Section 2.6.1.5, was used to enable the

interprocessor communications.

The developers suggests that the shape of each sub-domain is encouraged to be as square as

possible as this decreases the communication overhead and thus maximising the speed-up of the

parallel program. The parallel implementation of the social forces model was benchmarked on

SWARM, a linux-based multicomputer consisting of 2.4 GHz Inter Xeon CPUs conneted by a

B.Y.Y.MOHEDEEN Chapter 2

26

gigabit Ethernetswitch. The test case simulated the evacuation of 10,000 people from an airport.

Since the airport layout was long and narrow, the region was partitioned in a 1D grid.

Encouraging speed-up was achieved and the system was scalable, with ten worker processes and

a master process (11 processes overall), the system was able to update the positions of the 10,000

pedestrians nearly 50 times per second. Figure 2.4 shows the results obtained when different

number of processes was used.

Figure 2.4 – Frequency at which the positions of 10,000 pedestrians are updated, as a function of

number of worker processes. Each worker executes on one CPU. One additional CPU is

allocated to the manager process. [89]

The parallel implementation achieves good results if the pedestrians are evenly distributed across

the area as each worker process contains roughly the same sized domain. However, if the

occupants are concentrated in one area, then some processes take longer to complete one time

step, thus slowing down the whole system‘s parallel execution time which is determined by the

processor finishing last. An unbalanced workload can reduce or even eliminate the performance

benefit of adding more processes. The developers believe more research needs to be done to

optimise the speed-up by finding the most appropriate partitioning technique to divide its domain.

While the updates of the positions of the population has improved considerably from using the

serial version, no information about the speed-up (How much faster a parallel performance is

compared to its corresponding serial version) is made available. A considerable improvement in

B.Y.Y.MOHEDEEN Chapter 2

27

the position updates of the population does not necessarily imply a similar improvement in the

parallel performance of the process and would tend to give an optimistic view of the potential

speed-up. The parallel performance may be adversely affected by the communication costs the

system has incurred or by the load balancing of the problem, thus counteracting the benefits of

the improvement achieved in the position updates. The ultimate goal of the parallelisation of a

problem is to achieve good speed-ups and no mention about that outcome was made.

2.6.1.2 Review of ―A distributed analysis and monitoring framework for the compact Muon

Solenoid Experiment and a pedestrian simulation‖.

A review of Karavakis‘ dissertation titled ―A distributed analysis and monitoring framework for

the compact Muon Solenoid Experiment and a pedestrian simulation.‖ [90] is carried out in this

section. Legion Studio has been modified to work in a parallel processing framework [89]. The

pedestrian software mentioned in this section is called Legion Studio and has a commercial

worldwide usage. Similar to EXODUS, Legion Studio is both a behaviour and movement model

which represent its population microscopically. However, it represents its geometry with a

continuous space description which is computationally more expensive to run. Even with these

expensive configurations, Legion Studio is able to simulate large areas such as airport terminals,

sport venues, shopping centres and venues for major international events such as the Olympics.

To help with running these large cases efficiently, Legion Studio adapted one of its application to

employ the benefits of multi-threading capabilities of multicore PCs as well as the ability to

perform on a distributed environment.

The Legion Studio pedestrial simulation software comprises of three applications: the Model

Builder, the Simulator and the Analyser. The Model Builder creates a model for the space needed

for the simulation; the Simulator is used to run a simulation of how pedestrians move within that

space; and the Analyser is used to run a series of analysis on the simulated space. The Analyser

can used both an On-line analysis of the simulation as well as an off-line analysis of a recorded

simulation. The only difference between the on-line and the off-line Legion analysis is that during

the on-line analysis, the Analyser communicates with the simulator. Unlike the current research

for the development of a parallel version of the whole EXODUS software, only Legion Studio‘s

B.Y.Y.MOHEDEEN Chapter 2

28

Analyser application was adapted to benefit from the use of Multi-threading and distributed

computing.

2.6.1.2.1 Multi-threaded Legion analyser

Similarly to MassMotion‘s [92, 93] use of multi-threaded capabilities, Legion‘s Multi-threaded

Analyser creates a thread pool with a size equal to the number of the CPU cores. This

implementation has managed to improve the performance of the software as well as optimising

memory management. Six models with different levels of complexity and size were used on a 2

GHz of CPU dual-core system with 2 GB of memory to benchmark the multi-threaded

application. The times published as well as a calculated speedup are illustrated in Table 2.1:

Table 2.1 - Benchmark values for the Multi-threaded Legion Analyser

Models Entities
Simulation

time

Total Time

HH:MM:SS
Speedup

Original
Multi-

threaded

PM Peak (Small-sized) 350 3hrs 00:39:45 00:17:43 2.24

UP Demo (Small-sized) 552 1hr 00:07:50 00:05:08 1.53

Gatwick Airport Station Re-

development (Medium-sized)
1200 1hr 00:22:32 00:09:31 2.37

New WTC Model (Medium-

sized)
2500 1hr30mins 01:41:22 00:34:58 2.90

London Olympic Park 2012

(Large-sized)
51000 14 mins 02:16:25 01:29:50 1.52

HOS Case3 (Large-sized) 52000 19 mins 01:25:04 00:57:41 1.47

Using the multi-threading capabilities of both cores of a dual-core PC realise better speedup

values compared with the results obtained if only one core was utilised. It can also be observed

that the speedup is very problem dependent and these results represent low scale parallelism (2

processors). The attraction of using both cores with the added benefits of sharing the same

B.Y.Y.MOHEDEEN Chapter 2

29

memory, thus reducing the communication costs, is very encouraging option to consider for this

current research. However, using both cores from the dual-core processors may potentially incur

memory bus contention and thus degrade the performance of the parallel system.

2.6.1.2.2 Distributed Legion analyser

The main objective for developing a distributed version of the software was to allow the

simulation of larger and more complex cases. In the early stages of development, the OpenMP

standard [95] was considered, but was abandoned because OpenMP can only be used in a shared-

memory environment. Similar to what is being designed for the parallelisation of

buildingEXODUS, the distributed-memory approach was implemented by Legion Studio by

using a master-slave strategy connected via a network. As stated by Karavakis that MPI being the

most popular message passing library for parallel computing, the same library as well as a master-

slave approach is being strongly considered for this current research.

The London 2012 Olympic park populated by 56,500 entities was used as a test case to

benchmark their distributed version. However, the published values are not the total time it takes

to analyse the whole simulation but a second of the total time involved to analyse the whole

problem. Figure 2.5 shows how scaling the problem by adding more processors favourably

improved the time it takes to analyse the above population in one second.

B.Y.Y.MOHEDEEN Chapter 2

30

Figure 2.5 - Time in seconds to analyse a simulation second. [90]

From the graph above, a very encouraging trend is apparent in the performance of the distributed

system when one second is being analysed. However, like Quinn et al. [89], these values do not

offer a true representation of the performance of the whole simulation but only a time-step of it.

During a whole simulation there are different levels of computations involved, for example it may

be more computationally demanding to simulate congestion compared to just having free-flow

movements. In addition, a load imbalance generated by an uneven population distribution during

a simulation can seriously hinder a parallel system. A time step out of a whole simulation cannot

represent these factors. The results above do not reflect the complete picture of the simulation and

hence a true representation of the speedup of the whole system cannot be measured. It would

have been interesting to learn about the difference in the actual original and distributed total time

it took to run the case, as published for the Multi-threaded version.

B.Y.Y.MOHEDEEN Chapter 2

31

2.6.1.3 The parallelisation of traffic models

Traffic simulation models can use both a macroscopic model which characterise the traffic flow

with fluid dynamics approaches [83, 84] or a microscopic approach which deals with the

individual behaviour of each agent [81, 83, 85]. Due to the high fidelity of the microscopic

model, computational demands of large-scale traffic simulation can be high, leading to the need

to parallelise the models [83, 84]. The parallel architecture used can vary from using

supercomputers [83] to a modest cluster of 10 - 20 standard PCs connected via standard LAN

technology [81]. Several methods can be used for the parallelisation strategy, where the domain

decomposition is a common choice. A domain decomposition can be performed to the area and

the agents moving in or out of the sub-domains need to be communicated across [81, 84].

Another possible strategy is to use functional decomposition where different modules can run on

different computers [81]. For example, the micro-simulation can run on one computer while an

on-line routing module could run on another. It was found that while the functional

decomposition technique was easier to implement, it poses severe limitation on the speed-up

achievable [81]. Due to the easier accessibility to the literature about TRANSIMS (Transportation

Analysis and Simulation System) [81, 82], a more detailed review is presented in the next Section

2.6.1.3.1.

2.6.1.3.1 Review of the parallelisation of TRANSIMS

TRANSIMS [82] was originally developed by Los Alamos National Laboratory to run

exclusively on a Linux cluster environment. It performs a domain decomposition (into sub-

domains) by using METIS (a partitioning software) and uses MPI (a communicating package) to

communicate the movement of the agents passing on the boundaries of those sub-domains.

TRANSIMS Version 4 (V4) was designed and it allows the software to run efficiently on

powerful Windows desktop machines and added many new capabilities. However, TRANSIMS

V4 is unable to use the processing power of multicore and cluster systems, which are necessary to

run highly detailed models of entire metropolitan areas, in a reasonable amount of time.

TRANSIMS are researching into moving from using desktop machines towards running it as a

remote, but very fast cluster application. Following the parallelization of the microsimulator and

B.Y.Y.MOHEDEEN Chapter 2

32

router, mechanisms for effective load balancing need to be found and implemented to achieve

additional performance gains. The parallelization research is expected to continue for some time

before the TRANSIMS software can make full use of the available cluster hardware.

2.6.1.4 Summary of findings

For this current research, there are two main decomposition methods that are attractive options: a

geometric decomposition and a load (population) decomposition. The likeliest Parallel algorithm

model to apply for this research is the hybrid model, making use of the data parallel model

together with the master-slave approach. In the geometric decomposition, the problem itself is

divided amongst the processes and each process solves its part of the problem by using the same

algorithm. For example in the case of the simulation of a pedestrian evacuation software, the

whole geometry will be partitioned into sub regions and each CPU will simulate the movement of

the people in its sub-domain. Communications will only happen when there are people crossing

over the boundaries. An additional advantage of this paradigm is that the domain size will be

significantly reduced, thus lightening the memory requirement of each CPU. A load

decomposition involves the problem to partition its computational load, rather than its spatial

domain. This method can be computationally expensive to adopt due to the constant interactions

of the individuals and also may pose a limiting factor to the size of the problem since each

processor must hold the whole geometric domain. Both methods are further elaborated in Section

4.2.3.

2.6.1.5 Communication Package

There are a number of free communicating packages that support Windows, such as PVM

(Parallel Virtual Machine) and MPI (Message Passing Interface). Both the PVM and MPI

packages have their own advantages and disadvantages, but MPI is the standard, which is widely

implemented [37] and is used nearly everywhere [113, 114]. It is generally considered that PVM

supports a heterogeneous environment and not MPI. However, MPI specification is designed to

encourage heterogeneous implementation, which both the MPICH and Local Area Multi-

B.Y.Y.MOHEDEEN Chapter 2

33

computer (LAM) implementations support [113]. The MPI package provides a richer source of

communication methods than PVM [115].

2.7 Domain Decomposition

Domain decomposition can involve the decomposition of partial equations in the solving of

equations or can be used to partition a domain or graph [116]. There are domain decomposition

algorithms to partition the former and other partitioning techniques for the latter problems. Due to

the nature of this dissertation whereby there is a physical domain to be partitioned, the term

‗Domain decomposition‘ referred from this point forward is intended for this sort of problem.

Domain decomposition is the partitioning of the physical domain into a set of sub-regions where

each sub-region is allocated to a processor. Each processor solves the problem within its sub-

region and communicates with other processors only to update the elements located on the

boundaries [89, 117, 118]. Many applications use this approach of decomposition, namely in the

field of traffic modelling [81], pedestrian evacuation modelling [89, 90], and particle tracking

[117, 119]. An optimised domain decomposition technique can play a crucial part in the

performance of the parallel implementation. The perfect domain decomposition strategy is when

the load balance is maximised and the communication overhead is minimised. The parallelisation

strategy must be formulated in such a way that the amount of data that needs to exchanged is kept

as small as possible while ensuring that all processors are busy at all times. However, this

compromise is rarely achieved, and there are always a trade-off between the load balancing and

the communication costs [117, 118, 120, 121].

2.7.1 Domain Decomposition techniques

There are various methods that can be used to partition a physical domain. There are dedicated

partitioning software such as METIS [122, 123] and JOSTLE [124] which use similar methods

and algorithms to partition graphs. However, not all parallelised problems use these dedicated

partitioning software and they have devised their own partitioning strategy to suit their problems.

Common techniques used for domain decomposition are detailed below:

B.Y.Y.MOHEDEEN Chapter 2

34

 The Recursive bisection technique [81, 117, 118] initially splits the domain into two sub-

regions with the same load. This procedure is recursively applied until the number of sub-

regions is equal to the number of processors available.

 Standard Graph partitioning approach is a technique that partitions the vertices of a graph

based on some criteria which is most beneficial for the problem type. For example if the

domain is made up of nodes interconnected by arcs / links, a possible criteria is to divide

the number of nodes into the number of available processors and assign each sub-group of

nodes to each processor [120].

2.7.1.1 Approaches used to improve load balance and minimise communication costs

Different approaches were applied by Quinn et al. [89] and the Transportation Research and

Analysis Computing Center [82] to try to preserve either the load balance or minimise the

communication costs associated with parallelisation. However, this compromise is hard to attain

and ongoing research is still being done to optimise either of these two factors or both [82, 89].

2.7.1.1.1 Techniques used to optimise load balance

Recursive bisection or even the standard graph partitioning can obtain a good load balance if only

a single quantity (physical domain only) needs balancing. However, many types of problems

include a physical domain which in turn contains particles / elements residing on them [81, 89,

117, 125, 126], such as the type of problem that is being researched for this thesis. These

problems require that multiple quantities be load balanced simultaneously. For parallel efficiency,

all processors must hold roughly an equal number of grid cells / nodes and approximately the

same the number of particles / elements [117, 127]. These partitioning methods provide a good

load balance if only a single factor, such as the physical region needs balancing. However, they

do not consider multiple factors that make up the domain.

A particle decomposition approach was investigated by Hatsky [119]. The whole spatial grid is

assigned to each processor which simulates only a subset of the population. This strategy was

found to promote the load balance and reduce communication costs. However, higher memory

B.Y.Y.MOHEDEEN Chapter 2

35

consumption was needed per processor. This technique can only be advantageous for small sized

problems and where no interactions are required between the particles.

2.7.1.1.2 Techniques used to minimise communication overhead

It was found that while partitioning a region, by making the sub-regions as square as possible [89,

117, 118] reduces the communication costs. Another technique is applying a bounded neighbour

method [118], which is a domain decomposition technique whose main goal is to reduce the

overhead introduced by partitioning the domain. This method also allows the user to bound the

number of neighbours of each sub-domain, consequently this also bounds the number of

communications of each process and thus reducing the overall communication overhead.

2.7.1.1.3 Possible compromise between load balance and communication overhead

By applying weights to nodes / cells and to links / arcs, a possible optimised decomposition

technique can be achieved [120]. Some partitioning software, such as METIS, use this technique

[124, 128, 129]. The weights associated to the nodes / cells can be used to represent the load and

the weights associated to the links / arcs can correspond to the communication costs. The

following principle used by ParMETIS [123] shows good potential for partitioning an evacuation

model.

B.Y.Y.MOHEDEEN Chapter 2

36

Consider this region containing particles in Figure 2.6:

Figure 2.6 – Graph containing sub-domains containing elements and how weights can be

associated to the vertices to represent the elements [123]

Each vertex has two weights associated to it; the first weight represents the work associated with

the mesh-based computation incurred for each element (assume they are all ones) and the second

weight represents the work associated for the element-based computation (the number of

elements that are in that sub-domain). For example at sub-region 11 in the first graph, there are

four elements in it and the weights associated for vertex 11 is (1, 4). A sum of the different

weight categories can be calculated and then divided among the number of processors so that

each processor gets roughly the same load in terms of weighted nodes.

A similar association that can be made to an evacuation model is that the vertices in the above

graph can represent nodes and the elements representing the population. In the evacuation model,

each node‘s weight can consist of two values; the first value being its relative distance to an exit

and the second value can be a Boolean value to determine if it is occupied by a person. Since the

nodes are connected by arcs, weights can also be allocated to each arc to represent their usage by

the occupants. For example, arcs linking nodes near an exit can have a higher value than the arcs

where few people are likely traverse. A cut can be made at the arcs which have the lowest value,

indicating that less people will use those arcs and hence less communication will occur.

B.Y.Y.MOHEDEEN Chapter 2

37

2.7.1.2 Dynamic repartitioning

Even if a good initial partitioning can be achieved, dynamical applications which involve data

migration can cause the system to become imbalanced during the simulation [118, 130, 131]. For

example during a pedestrian evacuation, the occupants will move towards the exits and the

processors which cater for these exits will continuously be kept busy while the processors which

do not serve an exit will become idle sooner. A possible solution is to perform a dynamic

repartitioning of the domain. Both ParMETIS [123] and JOSTLE [121] can dynamically

repartition a domain efficiently. However, it was found that the dynamic repartitioning technique

can be hard to program and can be computationally expensive to repartition the whole domain

again [117, 132]. For each problem case, an investigation must be made as to whether the

computational expense associated with dynamic repartitioning is worse than letting the system

developing load imbalance, with some processors becoming idle (and hence deflecting the goal of

the parallelisation).

In the parallel computing world, it is widely known that an efficient use of parallel computing is

maintaining a load balanced problem whilst minimising communication costs [121, 129, 133 -

137]. It is critical to balance those two constraints in order to maintain the efficiency of the

parallel system. Computational processes that vary over time in an unpredictible way are the ideal

candidates for dynamic repartitioning. A means must be devised in order to measure whether it is

worthwhile to repartition a problem. A decision must be reached to ascertain which criteria is the

prominent factor affecting the parallel system; is it worthwhile to allow some load imbalance if it

reduces communication costs? Or is it more beneficial to having an increased communication

costs whilst promoting load balance? These decisions are highly specific to the current problem

and the parallel architecture. A method to determine when it is worthwhile to repartition must be

devised in order to verify that the cost of load rebalancing is not outweighing the cost of running

the system in an imbalanced state. Most methods either use the workload associated with the

problems [130] or the run-time measurements to determine this criterion [98]. Cheng [126] uses a

load function of the particles and of the mesh as a means to decide whether to warrant a

repartitioning.

Once the decision to repartition has been reached, an efficient method to rebalance the load must

be employed. Many algorithms use a version of the Kernighan and Lin (KL) algorithm to select

B.Y.Y.MOHEDEEN Chapter 2

38

objects to transfer [132]. Depending on the applications, several variations of the KL based

selection strategies are possible in measuring the gain achievable. For some applications, keeping

the original partition is better than completely reshaping the domain as this involves less data

migration and for others, it might be more profitable in completely repartition the whole

computational domain if data transfer is not a crippling cost.

2.7.1.2.1 Review of ―Parallel load balancing for dynamic execution environments‖.

Minyard and Kallinderis [138] developed a parallel load balancing technique by using an octree-

based method to calculate the amount of imbalance and to determine a new partitioning for a

hybrid mesh. Similarly to what is being considered for this current research, the computational

domain is divided into the number of processors which independently perform computations on

their respective domains. To achieve optimal efficiency, the partitioning algorithm must be able

to work effectively on a variety of geometries to partition the computational domains equally so

that they have roughly the same loads. The initial grid partitioning generates sub-domains with

approximately the same number of cells within them. However, imbalances in the load of a

parallel environment can arise from local mesh adaptation as well as from load changes on the

parallel machine itself. The use of hybrid grids (such as prisms and tetrahedra) in a computational

domain involves different levels of computations and memory requirements for the different

types. The computation time in a parallel solver differs between a tetrahedra and a prism. These

are achieved by enabling the load balancer to take these factors into account by applying

weighing values on the different types of cells. This strategy can be similarly employed in our

case since nodes in the model hold different potential values based on their locations in respect to

the exits. Nodes closest to the exits hold lower potential values and these nodes usually involve

more congestion and hence more computations needed on them. Hence, a dynamic load balancer

must be capable of adapting to changes in the mesh adaptation and the parallel architecture.

The authors state that there are two ways for the load balancer to determine load imbalance:

1. Count the number of grid cells and redistributes them evenly whilst taking account of any

weight factors.

B.Y.Y.MOHEDEEN Chapter 2

39

2. If there are any variation in the speeds of the processors, then the load balancer can use run-

time measurements of the parallel solver to balance out the load.

If a load imbalance was observed, the dynamic repartitioning strategy follows. Most algorithms

for dynamic load balancing uses two main approaches:

1. Complete repartition of the computational domain; according to the authors, this method

may be fast but does not yield high quality partitions for complex geometries.

2. Local migration techniques; this technique does not have direct control over the shape and

form of the partitions and large amount of data can be transferred thus incurring increased

communication costs.

The same initial partitioning strategy is used for the parallel load balancer, the partition

boundaries might change only slightly, hence reducing the amount of data to transfer between the

processors.

The same algorithm is used on every processor, thus enabling them to know on which processor

reside the new repartitioned domains and thus which cells need to be transferred. When the cells

are designated to which processor they belong to, a global communication pattern for migration is

generated. A global gather step is performed so that each processor knows to send data to which

processors. A pack data structure is used, where all the atttributes are packed in one array so that

only one communication is performed. The MPI communication protocol is used to allow this

global communication step. These strategies are very appealing as the method to adopt for this

current work.

The performance of this load balancer is assessed by measuring the computational time needed to

rebalance the load together with the comparison of the time required for one time step prior to the

rebalancing. The methods used by the authors are good candidates to be used in order to build a

criterion to decide whether to repartition at the next steps.

B.Y.Y.MOHEDEEN Chapter 2

40

2.8 Concluding remarks

An overview of the potential methods and techniques researched in this chapter is collated. The

evacuation software buildingEXODUS is a behavioural model that represents its enclosure and

population microscopically. Parallel processing techniques can be applied to this software to

improve run-times and its ability to load large-scale problems. The domain decomposition

technique with the possibility of employing a dynamic repartitioning method is a promising

avenue to consider for this research. The reason is that an evacuation model contains a spatial

domain which is fitting for domain decomposition. Hence, a dynamic repartitioning technique

will monitor any load imbalance that can occur due to the unpredicted evacuation routes as well

as any unforeseen scenarios. A distributed computer cluster with the master-slave approach is

favoured as the parallel architecture to adopt due to the developers‘ requirement 5 from Section

1.2. The widely used MPI interface will be the chosen communication package to employ as

discussed in Section 2.6.1.5. Figure 2.7 illustrates an overview of the possible strategy for this

research.

B.Y.Y.MOHEDEEN Chapter 2

41

buildingEXODUS

Modelling method:

Behaviour model

Enclosure representation:

Fine node

Population representation:

Individual

Parallel architecture:

Distributed computer cluster

Communication package:

MPI

LAN

L
A

N

L
A

NLA
N

LAN

Parallelisation

process

Domain decomposition technique

Master Slave

SlaveSlave

 Figure 2.7 – Overview of the possible options to consider for this research

B.Y.Y.MOHEDEEN Chapter 3

42

3 buildingEXODUS EVACUATION MODEL

3.1 EXODUS overview

EXODUS is a suite of software tools, designed to simulate the evacuation of people from various

enclosures [30]. A family of derived softwares, namely buildingEXODUS [30],

maritimeEXODUS [139, 140], airEXODUS [141, 142] and railEXODUS [143] are part of the

same software family. EXODUS is written in C++ and uses object oriented techniques [30]

together with rule-based technology to control the simulation [16]. Thus, the behaviour and

movement of people are determined by a set of rules or heuristics. For additional flexibility these

rules have been categorised into five interacting sub-models, the OCCUPANT, MOVEMENT,

BEHAVIOUR, TOXICITY and HAZARD sub-models. These sub-models operate on a region of

space defined by the GEOMETRY of the enclosure. The interaction of these sub-models is

illustrated in Figure 3.1.

Figure 3.1 – Interaction of the EXODUS sub-models

B.Y.Y.MOHEDEEN Chapter 3

43

Since this research is based on the derived software buildingEXODUS, a detailed review will be

done on this aspect of EXODUS.

3.2 buildingEXODUS overview

3.2.1 Sub-models

buildingEXODUS simulates the evacuation of people from the built environment and large open

areas and the geometric representation is achieved via a 2-D spatial grid. The building layout can

either be imported as a DXF file created from a CAD package or constructed by using the

geometry creation feature in buildingEXODUS. The spatial grid maps out the layout of the area,

defining exits, internal compartments, staircases, obstacles and any other physical aspects of the

geometry. This grid consists of nodes that can only hold one person on it. The nodes are

connected by arcs and the movement of people occurs along the arcs.

The temporal discretisation is ruled by a simulation clock, which occurs at every twelfth of a

simulation second and this is termed as a tick. At each simulation clock, the movement of the

population is calculated and performed. At every odd tick, the movement of the population is

determined and at each even tick movement actually occurs [30].

The occupant sub-model caters for the nature of the population which consists of a range of

people with different abilities and capabilities. Each person has various attributes, such as age,

gender, weight etc, associated to them. Their movement are determined by their physical

attributes as well as their knowledge about their surrounding.

The Behaviour submodel determines an occupant‘s responses to the current situation from their

personal attributes and passes its decision on to the movement sub-model. The Behaviour

submodel functions on two levels, Global and Local. Global behaviour involves implementing an

escape strategy that may lead an occupant to exit via their nearest serviceable exit or most

familiar exit. The desired global behaviour is set by the user, but may be modified or overridden

through the dictates of local behaviour, which includes such considerations as determining the

occupant‘s initial response, conflict resolution, overtaking, etc. In addition a number of localised

B.Y.Y.MOHEDEEN Chapter 3

44

decision-making processes are available to each individual according to the conditions in which

they find themselves and the information available to them. This includes the ability to customise

their egress route according to the levels of congestion around them, the environmental conditions

and the social relationships within the population. As certain behaviour rules, such as conflict

resolution, are probabilistic in nature, the model will not produce identical results if a simulation

is repeated.

3.3 Limitations of buildingEXODUS

buildingEXODUS provides faster than real time results if the case involved is relatively small (<

10,000 population) . However, as the size of the geometry and the population size increase, the

simulation will take longer to run. But as the problem size (geometry or/and population or/and

behaviours represented) increases, the run time increases accordingly and can surpass the

simulation time. A good example to illustrate this statement is given in Benchmark Test case 1 in

Section 3.3.1.1 and in Benchmark Test case 2 in Section 3.3.1.2. Benchmark Test case 2 is a

bigger version of Benchmark Test case 1 and shows how the run time can exceed the simulation

time. In the case of using the software in a live incident, running the simulation in

buildingEXODUS to obtain live advice and planning, will be of no use to an incident commander

should run-time exceeds the simulation time. The run time should be much faster than the

simulation time to enable different scenarios to be analysed and to find the best possible outcome

to an evacuation.

Depending on the specifications of the CPU used to run the simulation, there will be a point

where the problem size will be too large for the case to be loaded up. In that case,

buildingEXODUS will fail due to memory limitations on the computer whilst attempting to load

up the large case.

To get an idea of the performance and limitations of buildingEXODUS when simulating various

sized problems, some benchmark values must be acquired.

B.Y.Y.MOHEDEEN Chapter 3

45

3.3.1 Benchmark Values

The benchmarks values to assess the performance of buildingEXODUS in terms of timings and

its limitations were obtained by running five test cases with various problem sizes. All the tests

were run on two processors of different specifications to illustrate how the results obtained are

highly dependent on the specification of the processor used.

Another factor responsible for elevated run-times is the use of graphical visualisation whilst the

software is running. When the graphics are switched off, buildingEXODUS performs faster than

when the visualisation is switched on. Hence, the benchmark values include the results obtained

from running with and without visualisation modes.

The processors used for the tests are shown below:

Operating System: Windows XP Professional (5.1, Build 2600) Service Pack 2

 Processor: Intel(R) Pentium(R) D CPU 3.40GHz (2 CPUs)

 Memory: 3,326MB RAM

 Operating System: Windows XP Professional x64 Edition (5.2, Build 3790) Service

 Processor: Intel(R) Pentium(R) III Xeon processor (2 CPUs), ~3.2GHz

 Memory: 8,110MB RAM

3.3.1.1 Benchmark test case 1 - 150m x 150m enclosure populated by 10,000 occupants

The first case is designed to accommodate a population of 10,000 people occupying a simple

square enclosure. Since the size of the population is quite large the geometry will be assumed to

be of an open ground assembly type (e.g. pop and rock concert area). This was approximated to

150m x 150m. The exits were placed uniformly around the perimeter of the square. Figure 3.2

shows a crude diagram of the geometry, with some additional details, of the enclosure used.

B.Y.Y.MOHEDEEN Chapter 3

46

Figure 3.2 – Square geometry measuring 150m by 150m.

An average of the simulation and wall-clock times obtained from running the simulations of

evacuating 10,000 occupants are displayed in Table 3.1.

Table 3.1 – Times in seconds for Benchmark test case 1

 Graphics ON Graphics OFF

 PC 1 PC 2 PC 1 PC 2

Simulation Time (s) 277.00 273.00 284.33 274.67

Wall-clock Time (s) 175.67 72.67 127.00 38.08

Benchmark test case 1 is a sufficiently small problem size to attain faster run-times than

simulation times. For both the scenarios of having different specifications for the processors as

well as running the problem with the graphics switched on and then off, all the wall-clock times

obtained are less than their associated simulation time advised by the software. Running

Benchmark test case 1 on PC 1 returns a wall-clock time improvement over its associated

simulation time of 36.6% with the graphics switched on and of 55.3% when the graphics were

10,000 Occupants

150m X 150m

3 Exits on both left and right

sides, 2m wide, 37.5m apart

2 Exits on both top and bottom

sides, 2m wide,

50m apart

B.Y.Y.MOHEDEEN Chapter 3

47

turned off. When PC 2 was used, a wall-clock time improvement of 73.4% can be observed when

the graphics were switched on and an increase of 86.1% with no visualisation features. Running

the case without visualisation returns an improvement of 13.8% for PC 1 and of 19.1% for PC 2

compared to using the visualisation features. Please note that the difference in the Simulation

times obtained from using the two processors are different due to the fact that evacuation models

which do not use a formula to predict the movements of its population, will give out different

simulation times at every run. This is due to the unpredictibility of the population‘s movement

that the model promote.

3.3.1.2 Benchmark test case 2 - 245m x 245m enclosure populated by 30,000 occupants

The second case is based on the same principles as the first case but designed to accommodate a

population of 30,000 people. Seven exits were uniformly placed across the perimeter of the

geometry as shown in Figure 3.3.

Figure 3.3 – Square geometry measuring 245m by 245m

The results obtained from running ‗Benchmark test case 2 - 245m x 245m enclosure populated by

30,000 occupants‘ is displayed in Table 3.2. All 30,000 occupants evacuated the geometry in the

averaged simulation times displayed in Table 3.2.

30,000 Occupants

245m X 245m

7 Exits each side,

2m wide,

30.6m apart

B.Y.Y.MOHEDEEN Chapter 3

48

Table 3.2 – Times in seconds for Benchmark test case 2

 Graphics ON Graphics OFF

 PC 1 PC 2 PC 1 PC 2

Simulation Time (s) 378.33 375.50 377.00 374.50

Wall-clock Time (s) 758.33 307.50 608.67 234.00

Benchmark test case 2 is a larger version of Benchmark test case 1 both in terms of geometry and

population. In this instance, running the tests on PC 1 produced higher wall-clock times than their

associated simulation times, whether the graphics were switched on or off. A possible reason for

incurring higher wall-clock times than their corresponding simulation times is the extra

calculations involved in moving a larger population within a larger geometry. With respect to

their associated simulation times, the wall-clock times were more than 100% slower with the

visualisation features and 61.4% slower with no graphics. However, running the same test case on

PC 2 incurred a reduced wall-clock times compared to their associated simulation times, which

are improvements of 18.1% and 37.5% with and without graphics respectively. Expectedly,

switching the graphics off incurred less time than when the visualisation features were used,

specifically 19.7% and 23.9% less time for PC 1 and PC 2 respectively.

3.3.1.3 Benchmark test case 3 - Multi-storey building populated by 8,120 occupants

Case 3 involves a multi-storey building with 8 main exits. The building consists of 50 floors

including the ground floor. The population size was 8,120 occupants. The results obtained from

testing Case 3 in simulating the evacuation of all 8,120 occupants are displayed in Table 3.3.

B.Y.Y.MOHEDEEN Chapter 3

49

Table 3.3 – Times in seconds for Benchmark test case 3

 Graphics ON Graphics OFF

 PC 1 PC 2 PC 1 PC 2

Simulation Time (s) 2516.00 2524.00 2491.50 2513.50

Wall-clock Time (s) 1472.50 782.50 1254.50 719.50

This case comprises of a big geometry but with a smaller population than previously tested. All

the scenarios tested produced better wall-clock times than their simulation times counterparts. PC

1 permitted a progress over the simulation time of 41.5% with the graphics switched on and of

49.7% with the graphics switched off. Similarly, running the test case on PC 2 provided an

improvement over the simulation times by 69% and 71.4% with the graphics switched on and off

respectively. Unsurprisingly, running the test cases without any visualisation reduces the times

from running them with the graphics switched on. Namely, a 14.8% decrease for PC 1 and an 8%

decrease when PC 2 was used.

3.3.1.4 Benchmark test case 4 - Creation of a 750m x 1,000m enclosure

Benchmark test case 4 is the attempted creation of a rectangular geometry measuring 750m by

1,000m on PC 2. After about 18 hours of building the nodes and arcs to create that geometry, the

processor ran out of memory and the building process failed.

3.3.1.5 Benchmark test case 5 – Real geometry: World Trade Centre’s north tower

A good example of the application of buildingEXODUS on a real geometry is the simulation the

evacuation of the World Trade centre (WTC) [144, 145]. The simulations attempted to reproduce

the evacuation of the North Tower of the World Trade Centre. This involved a building of 110

storeys and two different target populations, one involving approximately 8,200 occupants and

the other involving 21,000 occupants. With a population of 8,200, the actual evacuation may

require around 100 minutes in real time while with a population of 21,000 the evacuation may

require approximately 150 minutes. Using a 3.6 GHz Pentium 4 PC with 3.25 GB RAM these

B.Y.Y.MOHEDEEN Chapter 3

50

simulations required approximately 25 minutes and 120 minutes respectively. Even at four times

faster than real time, the 25 minute simulation of the WTC evacuation is not sufficiently fast to be

of use to incident commanders [16].

3.3.1.6 Overview

The benchmark test cases examined produced diverse results: from having faster run-times than

simulation times, slower run-times or even the inability to load up a large-scale problem. Even

when the run-times were faster than the simulation times, the gain achieved was not significantly

large enough to be of any use to incident commanders.

A possible remedy to improving the run-times as well as allowing the loading up of large-scale

cases is the expensive purchase of more powerful processors. However, due to the software‘s

developpers‘ requirement 5 from Section 1.2, this option is not viable. The other possible solution

to the problems posed above is the use of parallel processing.

3.4 Parallel computing as a solution to the limitations of
buildingEXODUS

Given the issues of speed as stated in this chapter, parallel processing is a method that can be

used to reduce run-times of very large cases that would have been impossible on a single

processor. This method typically distributes the workload amongst a number of CPUs. A parallel

implementation of the buildingEXODUS software will distribute an evacuation scenario across a

number of computers making use of the available memory and processing capabilities of the

computers in the cluster or network.

There are two main benefits associated with this approach. Firstly larger scenarios can be

modelled than would be possible with a standard evacuation model. As each CPU will now hold

only part of the problem size, this allows the simulation of very large building complexes or

potentially even large urban spaces to be modelled in far greater detail than was previously

possible. Secondly large scenarios can run more quickly than was previously possible and

potentially much faster than real time. Instead of one CPU catering for the simulation of the

B.Y.Y.MOHEDEEN Chapter 3

51

whole problem size, parallel processing will enable each CPU to now simulate a fraction of the

original load, which technically should reduce the run times.

B.Y.Y.MOHEDEEN Chapter 4

52

4 PARALLEL IMPLEMENTATION OF buildingEXODUS

The buildingEXODUS code is complex with over half a million lines of codes, so a simplified

prototype version miniEXODUS was written to function similarly to buildingEXODUS to test

the feasibility of the parallel approach. This miniEXODUS was used to test a number of strategies

that then fed into the developement of parallel buildingEXODUS as carried out by Grandison et

al. [16]. miniEXODUS was used by both the software developers and in this current research to

extensively test the parallel approaches needed for the final parallel implementation of

buildingEXODUS. However, the source code necessary for the partitioning strategies (Chapters 5

and 6) devised in this research were accessible for the software modifications. Consequently in

this chapter, there are some collaborated materials from the software developers (Sections

4.2.4.1.1, 4.2.5, 4.2.5.1, 4.2.5.2, 4.2.5.3, 4.2.5.4, 4.2.5.5, 4.2.6.1, and 4.3.1) which are briefly

explained to aid the understanding with respect to the research undertaken by the author. These

collaborated materials can be found in more detail in the Appendix.

4.1 Prototype: miniEXODUS

The miniEXODUS prototype performs the very basic functions of buildingEXODUS, namely

simulating the evacuation of people from a geometry. Similar to how buildingEXODUS allows a

person to move, the movement of the individuals are performed by having the node attracting a

person onto it rather than a person choosing which node to move to. miniEXODUS calculates the

movement of people by the Potential Route Map, which makes people traverse to nodes which

are closest to an exit. buildingEXODUS has many methods to simulate the evacuation of people

and the Potential Route Map technique is one of them. In the first instance, to parallelise

buildingEXODUS directly would have been too demanding in terms of sifting through all the

code and the interacting sub-models. Hence, miniEXODUS was used to assess a number of

parallelisation strategies and techniques so as to select the best method to parallelise

buildingEXODUS.

B.Y.Y.MOHEDEEN Chapter 4

53

4.1.1 Parallelisation strategies used to parallelise miniEXODUS

From the initial research into which parallel strategy seems most beneficial for an evacuation

model (Section 2.6.1.4), the domain decomposition technique was adopted in the parallelisation

of miniEXODUS. The physical domain of the problem was decomposed by using one of the

different partitioning strategies investigated; See Section 4.1.1.1. Using this decomposition

technique resulted in the creation of halo nodes to allow the communications of the individuals at

the boundaries as well as the synchronisation amongst the processors during the simulation. The

investigation into the creation of halo nodes gave an important insight on the size of the halo

regions. The halo regions on each processor need to be at least 2 nodes wide to permit the

movement of the people. This is due to the fact the movement of an individual is determined by

the neighbouring nodes surrounding the current node which the occupant is on. An exploration

into how the synchronisations amongst the processors were executed during each clock-tick was

performed so that each processor is on the same simulation time. The communications processes

had to be carefully co-ordinated to allow the smooth transmission of the data. It is not the case

that a processor can simply send and receive messages to each other. Hence, the communication

strategies were devised and explored so that the occupants were properly communicated across,

such as a copy of an occupant on a halo node needs to be created on its corresponding halo node

on the neighbouring processor and then deleted as soon as that occupant moves out of the

boundary region.

Significant insights into how the parallel evacuation model will perform were gained with the

parallelisation of miniEXODUS. A positive observation was that the data communications were

very fast and did not appear to be a limiting factor in the time taken to perform this operation.

Initially the parallelised version was tested on two processors and the strategy was working.

When the number of processors was increased, another crucial discovery was that the parallel

model cannot cater for multi-connected partitions. A partition having more than two neighbouring

partitions creates a copy of the same nodes in each halo region created at the boundaries. For

example, a node (e.g. node X) can have several neighbouring processors. Please refer to Figure

4.1 for the illustration of node X denoted by a star. In those cases, different sub-domains are

associated to that particular node X; this leads to the problem of having multiple copies of a

single node and furthermore determining which region is responsible to move an occupant of that

B.Y.Y.MOHEDEEN Chapter 4

54

node, as in buildingEXODUS occupants get moved by a neighbouring node rather than the node

it‘s currently occupying. These types of nodes create overlapping halos.

Figure 4.1 - Node X virtually exists on three other domains on different processors as a multi-

halo node

The problem is that node X resides on four different processors and hence can attract a person

onto it so that the same person is now being simulated by four processors. This created the

problems of having multiple copies of a same person being simulated by more than one

processor. This problem was not researched further in the parallel version of miniEXODUS as by

then the parallel strategies were already implemented in buildingEXODUS and the software

developer had already found a quick solution to that problem by creating Multi-Halo nodes as

explained in Section 4.2.4.1.1.

B.Y.Y.MOHEDEEN Chapter 4

55

4.1.1.1 Partitioning strategies attempted

In an attempt to investigate the impact of having different partitioning strategies with different

population loads on the parallel performance, several test cases were run. Test Case 1 is one of

the test cases attempted.

Test Case 1 - Geometry modelled on the Beijing High Street.

This geometry is roughly rectangular in shape, containing 132,878 nodes and 9 exits located

around the geometry.

This particular geometry was chosen as one of the main uses of the parallelised version of

buildingEXODUS is to be used on large open-spaced and non-built geometries. Different

population loads, namely 5,000, and 15,000 people were simulated in an attempt to test the

robustness and communication costs of the system as well as how they impact on the speedups

obtainable. Two identical processors
1
 available at that time were used to run those tests.

Three main partitioning strategies were tested for Test Case 1, the Equal Partitioning method

(where the geometry was equally divided into 2, 4 and 9 dub-domains), the Potential Route Map

(PRM) Method (automatically generating 9 sub-domains from having 9 exits, please see Section

5.1.4.1 for more information about this method) and the partitioning software METIS (used to

partition the domain into 2 and 9 sub-domains so as to get a direct comparison to the Equal

Partitioning and the PRM methods).

The result from using these partitioning strategies on Test Case 1 populated by 5,000 people is

displayed in Figure 4.2.

1 Processor: Intel(R) Pentium(4) 1.5GHz

 Memory: 60GB RAM

B.Y.Y.MOHEDEEN Chapter 4

56

1

Figure 4.2- Speedup values obtained for using Parallel miniEXODUS with different partitioning

strategies on Test Case 1 populated by 5,000 people

 From these results, the parallelisation of the miniEXODUS prototype can be considered a

success, as speedup values greater than one were obtained. The best and worst speedup values

were when the partitioning software METIS was used to partition the geometry into two and nine

sub-domains respectively. The chief deduction is that the parallelisation techniques applied is a

success and can be ported on buildingEXODUS. Also, it is found that the choice of a particular

partitioning method is crucial in obtaining good speedup values.

Increasing the population load to 15,000 people in the same geometry whilst using the same

partitioning methods used in the previous test run with 5,000 people, produced the results

displayed in Figure 4.3.

1 * PRM: Potential Route Map

(9 parts) (9 parts)

B.Y.Y.MOHEDEEN Chapter 4

57

Figure 4.3 - Speedup values obtained for using Parallel miniEXODUS with different partitioning

strategies on Test Case 1 populated by 15,000 people

Some interesting observations can be made from the results displayed in Figure 4.3. Here again,

all the speedup values obtained are greater than one, suggesting that the parallelisation of the

prototype is a success and can achieve faster times than using only one processor to run the test

case. However, increasing the population load seems to have a negative impact of using METIS

(9 sub-domains) and the Equal Partitioning (9 sub-domains) methods. The most likely cause

degrading the results of these two methods is the extra communication costs of the increased

population load. The PRM method also has nine sub-domains, but because the partition

boundaries are strategically placed so that fewer people would be crossing these boundaries, this

method produced the best result with a speedup of more than 1.8. The importance of choosing

the right partitioning strategy seems to be the dominating factor in achieving good speedups.

(9 parts)

B.Y.Y.MOHEDEEN Chapter 4

58

4.1.2 Remarks

Various important insights such as how to communicate the people at boundaries,

synchronisation issues and the problems encountered with having multi-connected halo regions

were gained so as to prepare for the actual parallelisation of the buildingEXODUS software. This

prototype also acted as a feasibility test to decide whether to continue with the parallelisation of

buildingEXODUS. From the results obtained from running the test cases, the feasibility tests

showed there is a strong potential to provide good speedup values in having a parallelised version

of buildingEXODUS. However, a good choice of the partitioning strategy is necessary in order to

get good results, hence more research in finding this optimal partitioning strategy is necessary.

4.2 Parallelisation Strategies employed for buildingEXODUS

Having carried out initial investigations from miniEXODUS, the successful parallelisation

strategies were ported to the parallelised buildingEXODUS and were further developed. However

due to the complexity of buildingEXODUS, a more detailed investigations into the parallelisation

methods must be conducted since all avenues (such as Multi-connected regions, output files and

any other aspects of the software that miniEXODUS did not model) could not be explored by the

parallelised miniEXODUS.

4.2.1 At what point does parallelisation become a benefit over the serial algorithm

A parallel system of processors is generally considered a benefit over a single processor as the

combined power of a parallel configuration is capable of solving problems faster than a single

processor. However, configuring a parallel system incurs parallelisation costs such as

communication and synchronisation costs that a single processor does not incur. Generally if the

parallelisation costs is minimal compared to the algorithmic costs of a problem, a parallel system

will fare better than running that problem on a single processor. However, if the parallel costs are

higher than the computation costs, then no advantages can be gained from using the parallel

system. A bigger problem size generally incurs more computations relative to the parallel costs

B.Y.Y.MOHEDEEN Chapter 4

59

than a smaller case. Hence, the benefit of employing a parallel system is dependent on the

problem size.

Two tests were run on two processors with specifications
1
 shown below to determine at what

point a parallel system becomes advantageous over a single processor. A scenario was applied to

gradually increasing the population size to determine the point when a single processor is no

longer beneficial to use, that is when the speedup is greater than one.

Test 1: Geometry measuring 700 x 500 nodes, with 24 exits located at regular intervals along the

perimeter of the geometry.

Test 2: Geometry measuring 50 x 250 nodes, with one exit along one end of the geometry.

The results are shown in Table 4.1:

Table 4.1 - Speedup values obtained to test when parallelisation becomes beneficial

Population size 1000 2000 3000 4000 5000 6000

Speedup (Test 1) 0.76 0.98 1.12 1.25 1.31 1.39

Speedup (Test 2) 0.38 0.89 1.47 1.69 N/A N/A

A starting population size of 1,000 was used and the resulting speedups were 0.76 and 0.38 for

case 1 and case 2 respectively, which shows a low speedup. This population size was gradually

increased and when the speedup reaches more than one, it was considered that the parallel system

1
 Specifications of processors used

 Operating System: Windows XP Professional x64 Edition (5.2, Build 3790) Service

 Processor: Intel(R) Pentium(R) III Xeon processor (2 CPUs), ~3.2GHz

 Memory: 8,110MB RAM

B.Y.Y.MOHEDEEN Chapter 4

60

was better than the single processor. It was found that on average, using 3,000 or more occupants

is the point when the parallel system starts yielding positive results. According to this finding, it

is not considered advantageous to repartition a geometry if there are less than 3,000 occupants,

leaving this population in a single processor theoretically is better than trying to repartition the

load to other processors. There is a possibility that this value of 3,000 will differ if the

specifications of the processors used are different from those that were used to run the test. Due to

the inaccessibility of another set of processors with different specifications to further test this

finding, this value was jointly used with the LPT algorithm to determine when to repartition the

geometry.

4.2.2 Parallel Architecture adopted

A network of processors will be used to accommodate this parallel architecture as demonstrated

in Figure 4.4. Due to requirement 5 imposed by the software developers, a master-slave approach

was chosen where there is a master processor which controls all the slave processors. The master

processor can work as a slave as well and do extra work. All the processors will need to

communicate amongst them and the message passing interface (MPI) will be used to enable the

communications.

B.Y.Y.MOHEDEEN Chapter 4

61

Figure 4.4 - Parallel Architecture adopted

4.2.3 Problem decomposition

For the decomposition of an evacuation model, the two most attractive methods are either the

population decomposition or the geometric decomposition.

4.2.3.1 Population decomposition

Similarly to how Hatsky [119] used a particle decomposition strategy, a population

decomposition entails dividing the whole population into sub-groups. Each sub-group resides on

a processor and will remain in the care of that processor until every person from that subgroup

has evacuated.

Figure 4.5 illustrates this decomposition technique. Consider a geometry with a population load

(represented by the dots). At the start of the simulation, the population load is divided amongst

the number of processors available and each sub-load is allocated to them (illustrated by the

different coloured dots) and the whole geometry is stored on each processor. During the

simulation, each processor simulates its local population load wherever they are on that domain.

Master

processor

Slave

processors

B.Y.Y.MOHEDEEN Chapter 4

62

Depending on the parallel architecture used, this method can be useful as explained in Section

2.5. For example, on a Single Shared memory (SM) machine, the interactions amongst the

individuals is not a problem as there is no need to communicate the data required to calculate the

interactions. Whereas, on a distributed memory system (DM), each sub-group residing on each

processor will be stored locally. In computer terminology, this is a network/cluster of processors

linked together over a Local Area Network (LAN). Hence, as large amounts of interactions

amongst the occupants simulated on different processors occur, an increase in communication

costs is expected.

Another shortcoming to using this method is the fact that each processor must hold the entire

geometry, which will be a limiting factor as to the size of a test case, no matter how many

processors are utilised. In summary, population decomposition aims at subdividing the population

and assigning a fraction of that population on each processor which must hold the entire

geometry.

Figure 4.5 – Population decomposition on a DM system connected via a LAN network

Ti

T0

B.Y.Y.MOHEDEEN Chapter 4

63

4.2.3.2 Domain decomposition

Domain decomposition (Section 2.7) is the systematic partitioning of the main geometry into a

number of sub-domains. Each processor is responsible for one or more of those sub-domains as

well as the occupants who happen to reside on them. Each processor will run its own copy of the

evacuation modelling code on its allocated sub-domain(s) and at the boundaries of each sub-

domain; communications of the occupants residing on those boundaries must be communicated to

the processor responsible for the neighbouring sub-domain. So using this strategy, a particular

occupant may potentially be handled by several processors.

Figure 4.6 shows a domain being partitioned into two sub-domains, each residing and being

simulated on a different processor.

B.Y.Y.MOHEDEEN Chapter 4

64

Figure 4.6 – Domain decomposition on a DM system connected via a LAN network

4.2.3.3 Selected decomposition strategy

With the drawbacks of a population decomposition technique of each processor having to hold

the entire geometry and having a high communication overhead, the domain decomposition

technique seems to potentially resolve those issues. Using a domain decomposition strategy, the

B.Y.Y.MOHEDEEN Chapter 4

65

problem of holding the entire geometry is solved as the geometry is divided into sub-domains.

Additionally each processor will be responsible for only a fraction of the population size, as only

the occupants of the allocated sub-domain will be simulated on each processor. This method

consequently generates a population decomposition as well since the population is being

partitioned together with the domain. From the software developers‘ requirement 5 in Section 1.2:

―Ideally the parallel architecture could be office PCs connected by a LAN network.‖, together

with the advantages that this strategy provides, the chosen partitioning technique is the domain

decomposition strategy as it favours the Distributed Memory (DM) model of parallel processing.

Also from requirement 6: ―There should only be one EXODUS source code i.e. separate parallel

and serial source codes would not be developed.‖ The program was written to function on both a

SM machine as well as the DM system, removing the need to have two different set of codes. To

achieve this, the serial code was modified to include the parallel capabilities. The code was

written using the Single Program Multiple Data (SPMD) paradigm. With this methodology only

one executable is used and a copy of the executable is launched on each processor which operates

on its own part of the problem domain.

This selected decomposition strategy necessitates the communication of the individuals when

they are crossing over the boundaries of the partitioned domains. Section 4.2.4 portrays the

methods necessary to allow the communications of the people.

4.2.4 Communication Strategy

4.2.4.1 Halo regions

Halo regions are created at the partition cuts to represent the boundary nodes on the neighbouring

processors. The halo nodes are there to enable the communication amongst the neighbouring sub-

domains about the occupants residing on those boundary nodes. On each sub-domain‘s

boundaries, a set of Inner Halo nodes are identified and they will be the corresponding Outer

Halo nodes on the respective neighbouring processor. An occupant residing on an Inner Halo

node will be mirrored on that same corresponding Outer Halo node on the neighbouring

B.Y.Y.MOHEDEEN Chapter 4

66

processor. This technique is necessary to allow the movement of the people on those boundaries

as a transition between processors‘ sub-domains. Figure 4.7 illustrates this concept.

Figure 4.7 – Halo regions representing boundary nodes

4.2.4.1.1 Multi-halo regions

The previous example demonstrated in Figure 4.7 had a one dimensional partitioning strategy,

meaning that boundary nodes have only one neighbouring processor. However it is possible to

have other types of partitions where a certain node X can have several neighbouring processors.

Please refer to Figure 4.8 for the illustration of node X denoted by a star. In those cases, different

B.Y.Y.MOHEDEEN Chapter 4

67

sub-domains are associated to that particular node X; this leads to the problem of having multiple

copies of a single node and furthermore determining which region is responsible to move an

occupant of that node as in EXODUS, occupants gets moved by a neighbouring node rather than

the node its currently occupying. These types of nodes create overlapping halos.

Figure 4.8 - Node X virtually exists on three other sub-domains on different processors as a

multi-halo node

To alleviate this problem, halo nodes that share sub-domains are converted into a new sub-

domain called a multi-halo region. Figure 4.9 illustrates this conversion. This multi-halo region is

catered for by the master processor, similar to how Quinn et al [89] performed their

communication strategy. This is a simplification of what actually occurs in the implementation.

These multi-halo regions also have a required minimum width of five nodes to avoid any

communication issues that may arise if the halo regions are too thin.

B.Y.Y.MOHEDEEN Chapter 4

68

Figure 4.9 - Conversion of multiple connected nodes into new sub-domain

4.2.5 Movement of People

The movement of people briefly presented here is included for completeness, see Appendix 11.1

and Grandison et al. [16]. These are included in this thesis to aid the understanding of the

research done for this dissertation.

4.2.5.1 Person transfer and movement across sub-domains boundaries

Figure 4.10 demonstrates the movement of the occupants on boundary areas. Consider two sub-

domains, each handled by a processor. Each processor is responsible for calculating the

computations for the evacuation simulation for the people located on their respective sub-domain.

In the example shown in Figure 4.10, the person is moving from left to right and must be

transferred from one sub-domain to the other. The movement across sub-domains can be briefly

explained:

B.Y.Y.MOHEDEEN Chapter 4

69

1. In Figure 4.10(a), the person is approaching the sub-domain boundary but is currently

controlled by the left hand sub-domain (LHSD).

2. As the person enters the Inner Halo region of the LHSD (see Figure 4.10(b)), the LHSD

now sends a message concerning the person located on the Inner Halo node to the right

hand sub-domain (RHSD) and the RHSD now creates a copy of the person on its Outer

halo node. At this point the person is now controlled by the RHSD as the person wishes

to move onto the RHSD.

3. As the person moves onto the RHSD (see Figure 4.10(c)) this information is sent back to

the LHSD which updates the person on its side to move to its Outer Halo region.

4. In Figure 4.10(d), the person now continues its journey on the RHSD and as it moves

away from the boundary the LHSD is instructed to recycle its copy of the person as that

copy is no longer needed.

 Figure 4.10 – The movement of an individual across sub-domains in the parallel

version of EXODUS [16]

B.Y.Y.MOHEDEEN Chapter 4

70

4.2.5.2 Movement Algorithm

The overall simulation is governed by the global Simulation Clock which is a timeline division of

1/12s. On these ticks occupants decide what their future actions will be; this is generally a

movement towards the nearest exit. The population is looped over until all the PETs (Personal

Elapsed Time) of each of the individuals have incremented beyond the Simulation Clock which

may be due to a movement to the next node or due to congestion. If congested, a decision to wait

in its current position is put in force until the next tick of the global Simulation Clock. The global

Simulation Clock keeps ticking until all the occupants have exited the evacuation scenario.

4.2.5.3 Serial code enhancement

The list of individuals used for the movement algorithm was optimised. In the revised algorithm

the list used for movement would be modified to only include occupants that still needed to be

moved. The increase in performance was case dependent but was found to be on average 47%

faster than the original algorithm with the improvement most marked when higher congestion

levels existed.

Please refer to Appendix 9.2 for a detailed explanation of those changes. These improved codes

were then fed into the parallel implementation to reduce the computational time of running the

software.

4.2.5.3.1 New Benchmark values after the serial enhancements

The same cases used to benchmark the values in 3.3.1 Benchmark Values are now demonstrated

in Table 4.2 by using the improved serial codes. The numbers in italics are the values

demonstrated in 3.3.1 Benchmark Values; they are included here to make the comparisons easier.

The processors used for the tests are shown below:

B.Y.Y.MOHEDEEN Chapter 4

71

Operating System: Windows XP Professional (5.1, Build 2600) Service Pack 2

 Processor: Intel(R) Pentium(R) D CPU 3.40GHz (2 CPUs)

 Memory: 3,326MB RAM

 Operating System: Windows XP Professional x64 Edition (5.2, Build 3790) Service

 Processor: Intel(R) Pentium(R) III Xeon processor (2 CPUs), ~3.2GHz

 Memory: 8,110MB RAM

Table 4.2 - Comparison between the original serial code and the improved serial code for

Benchmark test case 1

 Graphics ON Graphics OFF

 PC 1 PC 2 PC 1 PC 2

 Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Wall-

clock

Time

(s)

175.67 83.00 72.67 48.17 127.00 48.07 38.08 19.46

%

change
- 52.75 % - 33.71 % - 62.15 % - 48.9 %

As can be seen from Table 4.2, the improved serial code significantly reduces the wall-clock

times of running Benchmark test case 1. Improvements of 52.75% on PC 1

and 33.71% on PC 2

were achieved when the visualisation features were applied. When the graphics were turned off,

the improved serial code was better than the original serial code by 62.15% when PC 1

was used

and by 48.9% on PC 2.

Similarly, Table 4.3 illustrates the Comparison between the original serial code and the improved

serial code for Benchmark test case 2.

B.Y.Y.MOHEDEEN Chapter 4

72

Table 4.3 - Comparison between the original serial code and the improved serial code for

Benchmark test case 2

 Graphics ON Graphics OFF

 PC 1 PC 2 PC 1 PC

 Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Wall-

clock

Time

(s)

758.33 338.33 307.50 166.50 608.67 192.00 234.00 97.50

%

change
- 55.38 % - 45.85 % - 68.46 % - 58.33 %

Running the improved serial code on Benchmark test case 2 still shows a marked improvement

from running the same test case on the original serial code. Table 4.3 shows the timings from

using the improved serial code are on average half of what were obtained from using the original

serial code, whichever the processor used and whether the test cases were run with or without the

visualisation features.

Table 4.4 illustrates the Comparison between the original serial code and the improved serial

code for Benchmark test case 3.

Table 4.4 - Comparison between the original serial code and the improved serial code for

Benchmark test case 3

 Graphics ON Graphics OFF

 PC 1 PC 2 PC 1 PC

 Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Original
Serial
code

Improved
Serial
code

Wall-

clock

Time

(s)

1472.5 1102.50 782.50 444.50 1254.50 989.50 719.50 389.00

%

change
- 25.13 % - 43.19 % - 21.12 % - 45.93 %

B.Y.Y.MOHEDEEN Chapter 4

73

The results obtained from using the improved serial code on Benchmark test case 3 still show

improvements from using the original serial code. PC 1

produced an improvement of 25.13% and

of 21.12% when the graphics were on and off respectively. However, the same test case shows

even better improvements when run on PC 2, namely 43.19% with the graphics switched on and

45.93% without the visualisation features.

Applying the serial enhancements, these results show a big improvement in the wall-clock time

obtained from using the software in serial. Hence, the wall-clock time of the simulation was

significantly reduced just by optimising the serial codes even before the parallelisation of the

software.

4.2.5.4 Parallel movement algorithm

The algorithm for the parallel implementation is essentially the same as the enhanced serial one

apart from that the population is looped over in sub-groups related to their proximity to sub-

domain boundaries. These are the high-boundary group, the low-boundary group, and the non-

boundary group. The simulation clock is incremented 1/12s and the ticker is incremented by one

tick. A more detailed explanation is available in Appendix 9.2.1.3. A brief description of the

algorithm is illustrated in Figure 4.11:

B.Y.Y.MOHEDEEN Chapter 4

74

Figure 4.11 – Parallel movement algorithm

B.Y.Y.MOHEDEEN Chapter 4

75

4.2.5.5 Synchronisation

The communications processes mentioned in the previous sections had to be carefully

orchestrated to allow the smooth transmission of the data. It is not the case that a processor can

simply send and receive messages to each other. The communication needs to be arranged to

ensure that the appropriate processor is ready to receive a message when the corresponding

neighbouring processor is sending that message. Failure to correctly orchestrate this

communication can lead to a deadlock. This occurs when both processors are waiting to receive a

message from each other but they will wait indefinitely as the message will not be sent until a

message is received from the other processor. More explanation about this topic is available in

Appendix 9.2.1.4.

4.2.6 Output files

4.2.6.1 Graphical output

As the simulation has been distributed over a number of processors, the visualisation needs to be

adapted to display the simulation on the ‗Master‘ processor from the computations that are being

calculated on the remote ‗slave‘ processors. This is achieved by maintaining the entire nodal

geometry on the ‗Master‘ computer and updating these nodes with information from the slave

processors. It is further expected that it will not be necessary to maintain the entire nodal

geometry on the master computer in the future. The implementation of high end graphics is

considered to be beyond the present scope of this work. All the testing has therefore been

performed with the graphical output switched off. More information can be obtained from

Appendix 9.2.1.5.

B.Y.Y.MOHEDEEN Chapter 4

76

4.2.6.2 Results output

Typically, it is the ‗Master‘ processor which handles the I/O and problem distribution. The other

processors (Slave) are exactly the same as one another and only differ slightly from the master.

Both the master processor and the slave processors run its portion of the simulation and it is the

master process which is responsible for the collection of the results to a single output file.

4.2.7 Handling of the domain

4.2.7.1 Whole geometry on each processor

Whenever the whole domain can be held on each processor, it is easier to load the whole

geometry on each computer and then partition it. When the different partitions are found and

assigned, instead of deleting the remaining nodes that are not in each processor‘s allocated

domain(s), the algorithm keeps them for ease of the simulation. All the nodes are linked and by

deleting some of the nodes, some properties might be lost and more communications and

calculations are necessary. An example is the potential values that each node holds. Each node

gets its potential value by its neighbouring node and this chain reaction means that deleting a

section of the geometry and hence the nodes in that region, those potential values are lost unless

some communication and calculations are performed to obtain those potential values. The nodes‘

potential values may need to be changed during the course of the simulation if ever an evacuation

scenario occurs which makes an exit or several exits become closed. Whenever this situation

happens, all the nodes‘ potential values are bound to change and need to be updated. By keeping

the whole region on each processor, these extra calculations and communications can be averted

and hence avoiding the complications that the absence of some nodes can incur.

It should be noted that the nodes residing outside each processor‘s domain are only kept as static

nodes whereby they are only represented and do not handle any evacuation dynamics during the

simulation unlike the dynamic residing nodes, which permit the movement of the population as

well as any calculations needed related to the hazard environment. These static nodes only hold

the relevant attributes that are useful to the local nodes (such as their potential values, positions

B.Y.Y.MOHEDEEN Chapter 4

77

etc). Hence, they only exist as lower cost objects that passively contributes to the running of the

simulation without taking as much memory requirements as a normal dynamic node requires.

All the large-scale test cases investigated so far are able to be loaded on a processor, hence not

requiring the need to only load parts of the geometry on each processor. However, there is no

upper limit on the area of a geometry and there might come a point when a geometry will not fit

on one processor.

4.2.7.2 Parts of the geometry on each processor

For the scalability of the problem size, an alternative to holding the whole geometry on each

processor was devised. The choice to only hold parts of the domain on each processor is

achievable. However as mentioned above, this alternative is not to be recommended for the

various reasons provided.

4.2.7.2.1 Creation of mini cloned nodes

Mini cloned nodes are objects created to represent the nodes that are present in the

buildingEXODUS software. When the geometric file is loaded, the software reads the relevant

data file and then creates the nodes with all the necessary attributes. By selecting only the

attributes required to just create a geometric layout without the other attributes that a normal node

possess (e.g toxicity values, node‘s colour), a set of matching cloned nodes are instead created in

the software. These cloned nodes only hold the attributes necessary to partition the geometry and

for that domain to function independently. The creation of a normal node in buildingEXODUS

requires 152 bytes compared to 88 bytes for the creation of a minified cloned node which only

holds the attributes necessary to build the geometry (such as (x, y) coordinates, arcs, etc). Once

the partitioned sections are found by using the minified cloned nodes‘ spatial information, their

matching normal nodes are loaded from the data file. Hence, the software is able to load only

parts of a geometry on each processor thus allowing vast cases previously impossible, to be

represented. For these simulations, whenever there is the need to get data from the nodes residing

on other processors, there is no choice but to communicate the relevant information across.

B.Y.Y.MOHEDEEN Chapter 4

78

However, due to time constraints more research needs to be done in this area as it has not been

fully explored for any eventual problems that may arise when using this strategy. Hence,

currently the whole geometry is loaded on each processor.

4.3 Other Parallelisation issues

4.3.1 Size of data transfer of each individual

In EXODUS, each occupant has a large amount of data associated with it. Each occupant has

various attributes that make up a person and one major problem in the parallelisation process was

the transfer of those data when the occupants needed to be communicated across whenever they

crossed boundaries. Each individual has both static attributes (age, gender, etc) associated with

them and dynamic attributes (waiting time, toxic gases doses, etc). In total there are 19 static and

up to 50 dynamic attributes associated with each occupant. This means that communicating each

individual represents a potentially significant cost as individuals cross over boundaries. In order

to alleviate this communication problem, the following strategy was adopted:

 Static data is sent once when an individual initially meets a boundary.

 Dynamic data is only sent if it has changed since the last communication between the sub-

domains.

Using this strategy it was also necessary to communicate whether or not a particular data item had

been communicated. This was achieved by maintaining a transfer status for each data item and

recording whether it had been communicated since its last change. The transfer status would then

need to be part of the sent communication. This transfer status was stored as a single bit (0 or 1)

which potentially reduces a transfer of 32 bits (the size of an integer or floating point number to

represent an attribute) to a single bit.

B.Y.Y.MOHEDEEN Chapter 4

79

4.3.2 Processors sharing the same exit

In EXODUS, exits are special types of nodes and due to the nature of the evacuation movement

algorithm where it is the node that initiates the movement of people, an exit can only exist on one

processor and cannot be halo exits. So, when partitioning the problem, exits must not lie on the

boundaries or too near to one so that they will become halo nodes or too many synchronisations

and communications will occur at that location. This will inevitably be a negative impact on the

goals that the parallelisation of the software are trying to achieve.

4.3.3 Thin partitions

At each boundary of the partitions, there are halo nodes to enable the communications of the

occupants residing on these areas. Two sets of nodes make up each halo boundary. A problem

arises when the partition created has a thin region (consisting of four nodes or less) and a conflict

arises with the allocation of the halo nodes. As can be seen from Figure 4.12, P1 has the same set

of InnerHalo2 nodes to both P0 and P2 and this creates complications in the codes as the halo

nodes have to be distinct to a particular processor. An algorithm was devised to check the width

of each partition and if there are any regions which are considered thin, they are merged with the

neighbouring region.

B.Y.Y.MOHEDEEN Chapter 4

80

Figure 4.12 - Diagram showing a thin partition unable to create distinct halo cells to a particular

processor

4.3.1 Process of Loading up of the problem in parallel

The final process for Parallel buildingEXODUS in loading up a problem in parallel is depicted in

Figure 4.13.

InnerHalo1

to P0

InnerHalo2

to both P0

and P2

InnerHalo1

to P2

B.Y.Y.MOHEDEEN Chapter 4

81

Read Node File ()

Partition Nodes ()

Partition geometry

based on

partitioning strategy

Check each

exit is

connected to

only 1 partition

Find Multi-

Halos

Remove

thin Parts

FindHalos ()

Figure 4.13 - Loading up of the problem in parallel

4.4 Approaches to assess the parallel performance of a simulation

Quinn et al. [89] and Karavakis [90] assessed the parallel performance of their parallel system by

investigating a time-step out of the whole simulation and as explained in Sections 2.6.1.1 and

2.6.1.2, these methods do not reflect an accurate parallel performance of the entire simulation.

A determining factor affecting the movement calculations of a population is the physical

conditions the individuals are exposed to. Performing the movement updates of a population in a

packed condition is significantly greater since there is congestion involved.

A test was devised to show the impact on the workload required to run a congested evacuation

compared to a free flowing evacuation. The idea is to run two test cases to assess the impact of

having congestion compared to free-flow motion on a parallel system. Similar tests were

performed to how Quinn et al. [89] and Karavakis [90] measured their parallel performance.

B.Y.Y.MOHEDEEN Chapter 4

82

i. The number of movement updates of the whole population is measured in a second time

frame, which is how Quinn et al. [89] used as their testing criteria.

ii. Another measurement criterion was carried out to match the approach of timing a simulation

second similar to what Karavakis [90] employed.

All the tests were run on a cluster of processors
1
 ranging from one to five processors.

Test Case 2 illustrated in Figure 4.14 is randomly populated by 100,000 individuals to allow a

3.8 nodes per person density. This scenario can be considered as a sparse people density situation.

Each person was randomly assigned a response time between 0s and 30s.

Test Case 2 – 1,000m x 100m geometry sparsely populated by 100,000 randomly placed

individuals.

Figure 4.14: 1,000m x 100m geometry randomly populated by 100,000 individuals

Test Case 3 involves the same geometry involved above but compactly populated by the same

population size so that there is one node per person density. This scenario can be considered a

packed people density situation, as shown in Figure 4.15.

1
 Operating System: Windows XP Professional x64 Edition (5.2, Build 3790) Service

 Processor: Intel(R) Pentium(R) III Xeon processor (2 CPUs), ~3.2GHz

 Memory: 8,110MB RAM

B.Y.Y.MOHEDEEN Chapter 4

83

Test Case 3 – 1,000m x 100m geometry, populated by 100,000 individuals compactly placed in a

region with a 1 node per person density

Figure 4.15: 1,000m x 100m geometry compactly populated by 100,000 individuals

The results were taken at a simulation time of 30s to ascertain that all the 100,000 individuals

have started moving since the population has different response times ranging from 0s to 30s.

Figure 4.16 demonstrates the number of movement updates needed to move the 100,000

individuals in one second when in sparse and packed conditions. Those values were taken 30s in

the simulation to ensure all the occupants have started evacuating.

Figure 4.16 – Comparison of the number of movement updates of 100,000 individuals per second

when in sparse and packed conditions when Simulation time equals to 30s.

Figure 4.16 clearly shows a marked difference in the number of movement updates achievable

from different level of population densities. A sparse scenario generates an approximate

B.Y.Y.MOHEDEEN Chapter 4

84

improvement of 5.5 times the number of processors used (5 processors generating 27.5 times

more updates than a processor can) suggesting a high scalability for the parallel system. However,

under packed conditions, the improvement in the number of movement of updates achievable

increases roughly linearly with the number of processors used in the parallel system. These

improvements still shows a trend for scalability, but not as much as the sparse scenario provides.

Hence, the speedups achievable are highly dependent on the conditions of the evacuation. In this

instance, a sparsely populated problem produced roughly 5 times more movement updates than a

highly congested problem.

The second parallel performance criterion of timing a simulation second was also employed to the

same test cases used above and the results are displayed in Figure 4.17.

Figure 4.17 - Comparison of the clock-time it takes to reproduce one simulation second when in

sparse and packed conditions when Simulation time equals to 30s.

For both level of congestions, a scope for scalability can be observed from Figure 4.17. As

predicted, a simulation second takes longer (about 3.5 times more) to reproduce under a packed

condition than when the problem was sparsely populated.

Using both the testing criteria demonstrates the variation in the results obtained when different

scenarios are used. Hence, the results obtained are highly dependent on the scenario used and the

B.Y.Y.MOHEDEEN Chapter 4

85

same problem size can lead to different parallel performance results depending on the constraints

the problems are faced with.

Another influential factor affecting the movement calculations is the simulation of a population‘s

movement at various stages of a simulation. At the start of a simulation, it is unlikely that the

whole population starts evacuating at the same time and hence the movement calculations are less

than when the whole population‘s movement is being calculated. Consequently, there are fewer

interactions amongst the individuals at the start of a simulation than when the whole population is

moving. Therefore, analysing only a stage of a simulation does not offer a true depiction of the

entire simulation.

Test Case 3 was also used to determine whether there is a difference in the parallel performance

at different stages in a simulation. The values were collected at 1 simulation-second and at 30

simulation-second in the simulation. The parallel performance criteria employed by Karavakis

[90] of timing a simulation-second is now being tested with the sparsely packed problem and is

displayed in Figure 4.18.

B.Y.Y.MOHEDEEN Chapter 4

86

Figure 4.18 – Comparison in the time it takes to reproduce a simulation second at different

stages of a simulation (1s and 30s) in a sparse scenario

Figure 4.18 proves there is a disparity in the time it takes to analyse a simulation second at

different levels in the simulation. At the start of the simulation (1s), it takes about 40 times less

time to simulate a simulation-second than when 30s in the simulation. Hence, judging a parallel

performance is also dependent on when the results were taken as proven above.

B.Y.Y.MOHEDEEN Chapter 4

87

Attempting Quinn et al.‘s method of counting the number movement updates capable in one

second, the test was run with a packed scenario and is displayed in Figure 4.19.

Figure 4.19 - Comparison in the number of movement updates of 100,000 individuals at different

stages of a simulation (1s and 30s) in a packed scenario.

Here again it can be demonstrated that at different stages of a simulation, the parallel performance

obtained is different. It can generate as much as 5 times more updates in a second at the start of a

simulation compared to 30 simulation-second in. Hence, judging a parallel performance at a set

instance of a simulation can be unreliable as the results are too varied.

A fairer and more accurate interpretation of the parallel performance is to calculate it by the total

time it took to run the whole simulation rather than judging it from a time-step of the whole

simulation.

B.Y.Y.MOHEDEEN Chapter 4

88

4.5 Concluding remarks

The development and testing of miniEXODUS demonstrated that it was feasible to gain improved

computational performance by creating a parallel implementation of buildingEXODUS.

miniEXODUS demonstrated parallel efficiency of greater than 90% for a representative Beijing

High Street geometry with 5,000 agents.

buildingEXODUS was successfully parallelised by employing the master-slave approach as

parallel architecture. The processors in the cluster are connected via a LAN network and the MPI

communication package enables the communications of data amongst the processors. The domain

decomposition technique was chosen to partition the problem which subsequently causes a

population decomposition as only the entities residing on the sub-domain belonging to a

processor are computed. Halo nodes are created at the boundaries of the sub-domains to allow the

communication of the individuals as they cross over those partitions. Currently, the whole

geometry is loaded on each processor but a method to load up only parts of a geometry has been

devised. However, due to time constraints, this technique is not fully operational as more research

needs to be done into how to transmit the nodes‘ connectivity and interactions. The best method

to assess the parallel performance is to calculate the speedup achieved by comparing the total run-

time of the simulation on the parallel system to that of a processor.

B.Y.Y.MOHEDEEN Chapter 5

89

5 DOMAIN PARTITIONING OF buildingEXODUS

The foremost element of research in this thesis is the domain partitioning of the problems loaded

onto the parallelised buildingEXODUS. Various partitioning strategies need to be investigated

and tested in order to come up with an optimal partitioning strategy which will maximise the

speedups obtainable by minimising parallelisation costs whilst promoting load balance.

5.1 Partitioning Strategies

The geometries used for the evacuation simulations in buildingEXODUS can range from regular

shapes (like a rectangular domain) to irregular shapes (such as sections of a town). Another

critical factor that the technique must consider is the locations of exit points. In an evacuation

simulation, exit points become very busy as the simulation progresses and the partitioning

strategy must take this factor into consideration when devising the partition cuts. An optimal

partitioning strategy must be devised in order to cater for all possible shapes, so as to minimise

the communication costs and maximise the load balance on the processors. Several partitioning

strategies were devised to test those criteria.

Please note that a cluster of processors with the following specifications were used for the

parallel tests.

 Operating System: Windows XP Professional x64 Edition (5.2, Build 3790) Service

 Processor: Intel(R) Pentium(R) III Xeon processor (2 CPUs), ~3.2GHz

 Memory: 8,110MB RAM

B.Y.Y.MOHEDEEN Chapter 5

90

5.1.1 Idealised 20 exit test case

Test Case 4 is intended to represent an ideal case for the parallel implementation. It has been

designed so that there is no boundary interaction and that the problem is well load balanced

throughout the entire simulation. This test was devised to explore the upper limits of speedup

potentially possible with parallel buildingEXODUS and is illustrated in Figure 5.1. A population

of 100,000 individuals is uniformly distributed throughout the domain and head towards their

nearest exit. Due to the geometry and exit configurations chosen there is no crossing of

boundaries to reach an exit. In order to ensure the most optimal decomposition, the domain is

split into 20 equal sub-domains and these are allocated to each processor. In order to ensure that

the load balance is well maintained throughout the simulation, only a number of processors (1, 2,

4, 5, 10, and 20) that exactly divides into the number of domains (20) were used. The total

simulated evacuation time for this scenario was 14 minutes and 26 seconds and was consistent

across all the parallel simulations.

Test Case 4 - Idealised 20 exit case

Figure 5.1 – Geometry of Test Case 4

B.Y.Y.MOHEDEEN Chapter 5

91

5.1.1.1 Use of single core processors:

The results obtained for simulating the evacuation of the 100,000 occupants, when using only

single core processors are displayed in Table 5.1 .

Table 5.1 - Single core timings with speedup and efficiency values for Test Case 4

No. Computers Time Taken (m:s) Speedup Efficiency

1 58:20

2 21:40 2.69 134.50%

4 10:00 5.83 145.75%

5 07:55 7.37 147.40%

10 03:49 15.28 152.80%

These results given in Table 5.1 are impressive and are faster than expected; for example using 10

processors gives a speedup of over 15 compared to a single processor, which is known as super-

linear speedup as explained in 2.3.1.

5.1.1.2 Use of dual core processors:

The use of a multi-core processor by Karavakis [90] produced better results than when only a

single core was used. As proposed in 2.6.1.2.1, the idea of employing a cluster of dual-core

processors as a parallel system was tested using Test Case 4. The above results from Table 5.1

were obtained by using only a core from the processors available whereas the results in Table 5.2

were obtained from using both cores of the same processors used above.

B.Y.Y.MOHEDEEN Chapter 5

92

Table 5.2 – Dual core timings with speedup and efficiency values for Test Case 4

No. Computers (dual) Time Taken (m:s) Speedup Efficiency

1 Single Core (SC) 58:20

1 26:03 2.24 224.00%

2 12:25 4.70 235.00%

5 04:57 11.78 235.60%

10 02:37 22.29 230.00%

It can be seen from Table 5.2 that an original serial time of over 58 minutes has been reduced to

below 3 minutes using 10 dual-core processors. These times are exceptionally good and are

unlikely to be achieved for most practical scenarios; however, they do demonstrate a peak

performance that could be attainable.

A promising finding was that using dual-core processors produced better results than using only

serial core processors, which is promising as currently all the new computers include multi-core

processors [90].

5.1.2 Equal Partitioning

One of the partitioning strategies tested was a basic horizontal or vertical partitioning of the

domain into equal sub-domains. The method involved using the geometrical 2D coordinates of

the end boundaries and dividing them into the number of processors available. This method can

be useful if the geometry involved is quite uniform in nature. The number of processors working

on the problem can also influence a partitioning strategy.

To illustrate, consider the example in Figure 5.2:

B.Y.Y.MOHEDEEN Chapter 5

93

Figure 5.2 - Geometry with four exits on one side

For this case, the ideal partitioning strategy would be to divide it in the following manner as

shown in Figure 5.3, provided there are four processors available. This case is a smaller version

of Test Case 4, which confirmed this partitioning strategy was the appropriate one to

use.

Figure 5.3 - Geometry partitioned into four sub-domains

B.Y.Y.MOHEDEEN Chapter 5

94

This Equal Partitioning strategy works well for the above case. But a real life geometry is rarely

this uniform. Most structures are complicated and the exits can be located anywhere on the

domain.

Consider the following example in Figure 5.4 of an irregular domain being partitioned by the

Equal Partitioning method and being simulated by four processors.

Figure 5.4 - Irregular domain partitioned into four equal sub-domains

Assuming the population load is evenly distributed, the above partitioning strategy will have a

population load imbalance due to the different partition sizes. The sub-domain being simulated by

P1 is significantly smaller than that of P2 and as the simulation progresses leading to an

inefficient use of the resources available. It is expected that P1 will become inactive sooner than

the other processors. So, there might not only be a load imbalance but also some processors might

become idle whilst others are still working.

B.Y.Y.MOHEDEEN Chapter 5

95

5.1.2.1 Equal Partitioning tested on an irregular domain

This partitioning technique was tested on different domains to test its efficacy.

5.1.2.1.1 Test 1 – Equal Partitioning method

Test Case 5 - Replica of the Trafalgar square in London populated by 60,000 occupants with 14

exits in total

Test Case 5 was tested by using two to seven processors. Figure 5.5 illustrate how the domain

was partitioned into the said number of processors. The left picture is partitioned into two sub-

domains, each allocated to a processor. The right hand-side picture is partitioned into seven sub-

domains to be simulated by seven processors. Each processor was responsible for simulating the

evacuation of individuals present in its allocated sub-domain.

Figure 5.5 - Equal Partitioning into two and seven sub-domains on the Trafalgar square replica

B.Y.Y.MOHEDEEN Chapter 5

96

This partitioning method does not guarantee a population load balance at the start of the

simulation as this decomposition technique does not consider the layouts of the geometries. When

the problem was partitioned into 2 sub-domains, it was only by chance that the resulting partitions

were quite similar in sizes. However, partitioning the problem into 7 sub-domains definitely

resulted in a population load imbalanced problem. The population load is illustrated in Table 5.3.

Table 5.3 - Initial population distribution in Test Case 5

 Initial population distribution

Processor
Equal Partitioning

(2 sub-domains)

% Equal Partitioning

(7 sub-domains)
%

0 28261 47.10 % 5790 9.65 %

1 31739 52.90 % 7787 12.98 %

2 N/A 8808 14.68 %

3 N/A 12834 21.39 %

4 N/A 16308 27.18 %

5 N/A 4708 7.85 %

6 N/A 3765 6.28 %

Total 60000 100% 60000 100%

From Figure 5.5 and Table 5.3, the right hand-side geometry can clearly be seen to be load

imbalanced and the regions are of different sizes. For example, when 7 processors were used to

partition the problem, Processor 6 only had 6.28 % of the population compared to Processor 4

which contained a population load of 27.18 %. Furthermore, some regions are not linked to an

exit, meaning all its occupants will have to cross the boundaries to regions where an exit exists.

This will increase the communication costs of the system as well as resulting in the processor

B.Y.Y.MOHEDEEN Chapter 5

97

handling the ―inside‖ region (coloured cyan (P5)) to become idle before its neighbouring

processor handling the domain (dark green (P6)) with the exits.

The average simulation time to simulate the evacuation of all 60,000 occupants is 610s. The

results are listed in Table 5.4.

Table 5.4 - Performance values obtained by using the Equal Partitioning method on the

Trafalgar square Test Case 5

Number of processors Speedup Efficiency Parallel SimTime
1
 Performance Ratio

2
1.69 84.50% 2.37

3
1.99 66.33% 2.85

4
2.24 56.00% 3.13

5
3.67 73.40% 5.23

6
2.69 44.83% 3.83

7
3.86 55.14% 5.47

The efficiency values obtained show that the use of the cluster is not that efficient. Excepting the

cases when two and five processors were used, yielding values of 84.5% and 73.4% respectively,

the other efficiency values suggest that computer resources are not used efficiently incurring

excessive communication and / or synchronisation costs. When six processors were used to run

the simulation, an efficiency value of 44.83% was achieved. This suggests that less than half of

the total processor power was being used, implying major processor idleness or high

communication and synchronisation costs were involved. A possible explanation for obtaining an

unscalable parallel performance can be any or a combination of the following factors; such as

locations of exits on the geometry and whether each processor has roughly the same number of

exits, the randomness in the population‘s movement that the software supports, the partitions

created, the evacuation scenario being modelled (e.g, sudden closure of exits), are some of the

1
 SimTime: Simulation time (See Section 2.3.4)

B.Y.Y.MOHEDEEN Chapter 5

98

criterion that can affect the results. On the other hand, solving numerical calculations (e.g. CFD

problems) by employing parallel processing capabilities tends to give better parallel performance,

since the calculations are very deterministic and uniformly distributed.

From Table 5.4, the maximum performance ratio with respect to the simulation time is 5.47,

which implies that the software managed to simulate this particular evacuation 5.47 times faster

that it would actually take the occupants to physically evacuate the geometry. While not

sufficiently fast to provide advice to incident commanders, the performance enhancements

achieved make it viable to investigate these type of evacuation scenarios for planning and

possibly interactive training purposes.

The computational speedup values are illustrated on the graph shown in Figure 5.6:

Figure 5.6 - Speedup values from using a replica of the Trafalgar Square

From these values, though there is a gradual increase in trend in the speedup values, there does

not seem to be a simple positive relationship between the speedup and the number of processors.

In this case, using six processors gave worse results than using five, which is not implying an

increasing trend in the speedup values. This does not guarantee that increasing the number of

processors will incur an increase in speedup and therefore produce a shorter run time. A perfect

speedup value would be equal to the number of processors used. But due to communication and

B.Y.Y.MOHEDEEN Chapter 5

99

latency costs, they are expected to be just below the number of processors used. However, these

values are too low compared to the number of processors used, i.e. seven processors were used

and only a speedup of around 4 was obtained. The most likely cause for these average speedup

values is the load imbalance factor. It can be seen from Figure 5.5 that this partitioning strategy

does not favour the load balancing of the domain. In some cases the surface area of the sub-

domains are dissimilar in size as well as some sub-domains not owning any exits, hence making

them empty quicker than those which have exits.

5.1.2.2 Equal Partitioning tested on a domain with only one exit

The location of exits plays an important role in the formulation of the partitioning strategy. At

exit points, it can be assumed that this area will remain active until the end of the simulation.

Hence, the ideal strategy is to make each processor handle at least an exit point. However, there

may be cases where the number of exits is less than the number of processors available and since

an exit can only be on one processor as explained in Section 4.3.2, there is no choice but to make

only one processor handle this exit. To illustrate, consider Test Case 6:

5.1.2.2.1 Test 2 – Equal Partitioning method

Test Case 6 illustrates one processor handling the only exit which can negatively affect the

speedups achievable if the Equal Partitioning method is used.

Test Case 6 - 500m x 25m with one exit at one end and populated by 25,000 identical occupants

with a response time of zero.

A rectangular geometry measuring 500m by 25m was considered with a free flow exit along the

whole width of the geometry. This geometry was randomly populated with 25,000 identical

occupants, i.e. they all have the same attributes.

This problem is expected to be load imbalanced as well as sustaining processor(s) idleness as the

simulation progresses. As the occupants move towards the exit catered for by Processor 0, the

areas belonging to the other processor(s) are being evacuated. Gradually, the other processor(s)

B.Y.Y.MOHEDEEN Chapter 5

100

will have fewer people than Processor 0, hence creating a load imbalance and as all the occupants

have vacated the local domains, these processors will become idle as Processor 0 keeps working.

This test was conducted by using two, three and four processors as illustrated by Figure 5.7 -

Figure 5.9.

Figure 5.7 - Equal Partitioning with using 2 processors

Figure 5.8 - Equal Partitioning with using 3 processors

Figure 5.9 - Equal Partitioning from using 4 processors

B.Y.Y.MOHEDEEN Chapter 5

101

The average simulation time to evacuate the population of 25,000 occupants is 833.5s. The

speedup and efficiency values achieved by running those tests are shown in Table 5.5:

Table 5.5 - Equal Partitioning method - speedup and efficiency values

Number of

processors

Partitioning ratio Theoretical Speedup

from Eq (4)

Speedup Efficiency

1 1 1 1 100%

2 0.5 : 0.5 1.33 1.352 67.60%

3 0.33 : 0.33: 0.33 1.80 1.760 58.67%

4 0.25 : 0.25: 0.25: 0.25 2.29 2.10 52.50%

From these results, the speedups obtained are not close enough to the ideal value of the number of

processors used. The reason here is mostly due to processor idleness. For the case with four

processors being used Processor 3 becomes idle shortly after the simulation starts and then

Processor 2 follows soon after, and so on. So, the optimum usage of the available processors is

not being exploited.

5.1.2.3 Equation to find the partition cut

Using the Equal Partitioning technique (Section 5.1.2) for cases where there is only one exit

eventually results in a load imbalance and hence a mediocre speedup. A possible solution to that

problem is to assign bigger parts to the processors the farther their domain is from the exit. This

tactic should prolong the time it will take the end processors to become idle and hence the load

imbalance will happen at a later stage than it would normally have been if the Equal Partitioning

method had been used. An illustration of this approach is presented in Figure 5.10. This illustrates

when N processors are used to partition the geometry into N parts with different sizes with ratios

F1 to FN.

B.Y.Y.MOHEDEEN Chapter 5

102

Figure 5.10 - Partition cut ratio

5.1.2.3.1 Derivation of a formula to work out the partition cut ratios

Using the same principles derived by Dr. Grandison (Section 9.3) used to work out the estimation

of the workload and thus the speedup, a formula was derived to estimate the workload of the

system when different sized domains are used.

5.1.2.3.1.1 Partition cut formula excluding costs

The following formula was derived by ignoring any costs involved in the parallel system. A

rectangular geometry was considered with a free flow exit along the whole width of the geometry,

as shown in Figure 5.11. The people‘s movement was assumed to resemble fluid flow.

Figure 5.11 - Geometry used to derive the partition cut equation

The full derivation for Eq (4) can be found in Section 9.3 from the Appendix.

B.Y.Y.MOHEDEEN Chapter 5

103

 Eq (4):

Partition cut excluding costs

Minimising Eq (4) provides the optimal partition sizes that should maximise the speedup as

shown in Section 9.3. Hence in order to optimise the problem, the ratios of the parts should be in

this decomposition: [1 : 1 : 1...... : 2]

This optimal decomposition implies that all the partitions should be of the same sizes except for

the end partition being twice their sizes. Hence the assumption that each part will increase in size

the farther they are from the exit is not true according to Eq (4).

This formulation was tested from ‗Test Case 6 - 500m x 25m with one exit at one end and

populated by 25,000 identical occupants‘ used to test the Equal Partitioning method. The average

simulation time to evacuate the population of 25,000 occupants is 833.5s. The speedup achieved

is shown in Table 5.6:

Table 5.6 - Partition cut (without communication costs) partitioning method - speedup and

efficiency values

Number of

processors

Partitioning ratio Theoretical Speedup from

Eq (4)

Speedup Efficiency

1 1 1 1 100.00%

2 0.33 : 0.67 1.50 1.527 76.35%

3 0.25 : 0.25 : 0.5 2.00 1.935 64.50%

4 0.2 : 0.2 : 0.2 : 0.4 2.50 2.28 57.00%

A slight improvement can be observed in comparison with those obtained when using the Equal

Partitioning method. The comparison is given in Figure 5.12:

B.Y.Y.MOHEDEEN Chapter 5

104

Figure 5.12 - Comparison in the speedup values obtained from using different partitioning

technique

This slight improvement in the speedup values obtained from using the optimal decomposition

ratio obtained from minimising Eq (4) suggests that the equation is usable. The actual speedup

values are just below those predicted by the equation. This is expected as Eq (4) does not take

into consideration the parallelisation costs.

B.Y.Y.MOHEDEEN Chapter 5

105

5.1.2.3.1.2 Partition cut equation including costs

Consequently, an attempt at improving Eq (4) so that it incorporates the parallelisation costs is

devised. The same methodology used to find Eq (4) is used to incorporate the costs. The equation

now becomes:

 Eq (5):

Partition cut including costs

A detailed derivation to Eq (5) is given in Section 9.4 in the Appendix. This equation can be

minimised to find out the ratios of the sub-domains, hence maximising the speedup. The ratios

obtained now suggest that the partition nearest the exit is slightly larger than the adjacent

partitions, with the end partition being nearly twice the size of the first partition. The same ‗Test

Case 6 - 500m x 25m with one exit at one end and populated by 25,000 identical occupants‘ that

were used in the previous section were used to test this new equation. The average simulation

time to evacuate the population of 25,000 occupants is 833.5s. The speedup values obtained

shown in Table 5.7:

Table 5.7 - Optimal partition cut (with communication costs) partitioning method –- speedup

and efficiency values

Number of

processors

Partitioning ratio Theoretical Speedup

from Eq (5)

Speedup Efficiency

1 1 1 1 100.00%

2 0.35: 0.65 1.380 1.513 75.65%

3 0.26 : 0.24 : 0.5 1.814 1.899 63.30%

4 0.22 : 0.19 : 0.19 : 0.4 2.234 2.181 54.53%

B.Y.Y.MOHEDEEN Chapter 5

106

Figure 5.13 gives a comparison of the speedup values obtained from using the different

partitioning methods attempted so far. It also shows the ideal speedup that the system should be

producing.

Figure 5.13 - Comparison in the speedup values obtained from using different partitioning

techniques

The new proposed partitioning ratio did not yield any drastic improvements and the speedup

values obtained are quite similar to the ones obtained from using Eq (4). Hence, Eq (5) was

abandoned in the search for having an equation to predict an optimal partitioning ratio to

partitioning a geometry. Comparing with the previous two methods examined, Eq (4) seems not

to have been significantly bettered. Hence the ‗Equal Partitioning technique‘ can be potentially

modified to improve the results and is explained in 5.1.3.

B.Y.Y.MOHEDEEN Chapter 5

107

5.1.3 Cyclic Equal Partitioning

From the previous assumptions and tests, the problem is believed to be related more to load

imbalance rather than communications costs. The previous attempts to find the optimal number of

partitions to minimise the communication costs was by having the number of partitions equal to

the number of processors. The load imbalance and processor idleness suffered, because as soon as

the population evacuated the domain of one of the slaves, this processor gradually became load

unbalanced and eventually became idle whilst the other processors continued working. A possible

solution to solve the load imbalance and processor idleness problem is to create more regular

regions and intelligently allocating them to processors, hence tackling the load imbalance

problem as well as delaying processor idleness.

5.1.3.1 Equation to estimate the speedup achievable

This Section (5.1.3.1) outlines the equation which was developed by Dr Grandison, and this work

is used in the later stages of this thesis, hence the reason of it being included here.

Consider a simple example involving a rectangular geometry in which there is an exit at each end

of the geometry and the population is uniformly distributed throughout the environment (see

Figure 5.14). The population is further assumed to be smoothly flowing with no congestion. In

this case if each individual heads towards their nearest exit the population will split in half, with

half going to the exit on the left and half going to the exit on the right. In this case the best

partition for two computers would be achieved by simply splitting the domain in half. (Note:

This simple problem could in fact be separated into two completely separate problems without the

need for a parallel implementation.)

B.Y.Y.MOHEDEEN Chapter 5

108

 Figure 5.14 – Evacuation domain consisting of rectangular geometry, two exits and uniform

population distribution split into two sub-domains

However, if one of the exits were removed, perhaps due to some emergency event, the simple

partitioning would be inappropriate as one of the computers would have progressively less work

to do as the population progressively moves toward the only exit (see Figure 5.15). A point

would be reached when the processor handling the right sub-domain would be idle while the

processor handling the left sub-domain would still be working hard.

Figure 5.15 – Evacuation domain consisting of rectangular geometry, one exit and uniform

population distribution split into two sub-domains

Another problem with this simple partition is that it only applies to two processors and cannot be

generalised for an arbitrary number of processors. If the population was not initially uniformly

distributed throughout the domain this would also lead to a computational load imbalance.

These problems can be mitigated by using multiple sub-domains per computer as illustrated in

Figure 5.16. In this decomposition the shaded areas are computed on one processor and the non-

shaded areas are computed on another. Using this scheme the workload is more evenly balanced.

B.Y.Y.MOHEDEEN Chapter 5

109

As the population moves toward the exit both processors are generally kept busy, it is only when

the geometry has emptied to the last sub-domain that the second processor becomes idle.

Figure 5.16 shows the domain being split into 6 sub-domains.

Figure 5.16 - Evacuation domain consisting of rectangular geometry, one exit and uniform

population distribution split into multiple sub-domains

This methodology can be extended to using any number of processors and on any arbitrary

geometry using any decomposition strategy as illustrated in Figure 5.17. For the above partition

for two processors the partition can be represented as 121212, if three processors were being used

then the partition would be represented as 123123. With this technique the computational load on

each computer is kept well balanced and the load is more evenly balanced with more partitions

per processor. Eq (6) was derived to consider any arbitrary number of processors and sub-

domains, the full derivation is given in Appendix 9.5.

B.Y.Y.MOHEDEEN Chapter 5

110

Figure 5.17 - Generalised domain decomposition for N sub-domains and P processors

The estimated speedup Eq (6) derived from Dr. Grandison does not include any costs (such as

communication costs) associated with a parallel system. Consequently, this equation was used as

a basis in an attempt to derive a more accurate equation to estimate the speedup as demonstrated

in the following Section 5.1.3.2.

Eq (6): Estimated Speedup

5.1.3.2 Equation including costs to estimate the speedup achievable

An attempt to account for communication costs was devised using equation Eq (6). The

formulation of that attempt can be seen in Appendix 9.6.

Let k be the communication costs associated with one person. An estimate of the speedup

achievable can be approximated by Eq (7):

B.Y.Y.MOHEDEEN Chapter 5

111

Legend:

S: Speedup

l: Length of the domain

N: Number of sub-domains

P: Number of processors

k: communication costs associated with one person.

 Eq (7):

Estimated speedup including costs

Differentiating the speedup with respect to N will give us the optimal number of sub-domains (N)

to yield the maximum speedup:

B.Y.Y.MOHEDEEN Chapter 5

112

At maximum S,

Using Eq (7), several tests were run in an attempt to estimate k. These tests were done by the

following Test Case 7.

5.1.3.3 Results from testing the Cyclic Equal Partitioning method

5.1.3.3.1 Test 1 – Cyclic Equal Partitioning method

Test Case 7 - Open rectangular geometry measuring 100m x 1,000m populated by 100,000

people

This scenario consists of 100,000 people in an open rectangular geometry measuring 100 m by

1,000 m producing an area of 100,000 m
2
 resulting in a crowd density of 1 person/m

2
. The crowd

B.Y.Y.MOHEDEEN Chapter 5

113

moves to the left to exit the geometry. The left side of the geometry is completely open, creating

a 100 m wide exit (see Figure 5.18). This case can be considered as the realisation of the

theoretical studies from Eq (6) and Eq (7).

The simulation time to evacuate 100,000 occupants from this geometry is 14m20s. This scenario

was tested with three different types of partitioning cuts: 20, 50 and 100 equally sized sub-

domains and the results are displayed in Table 5.8.

Figure 5.18 – Large open geometry

The speedup values obtained were used to work out an approximation of the communication costs

k.

B.Y.Y.MOHEDEEN Chapter 5

114

Table 5.8 - Estimation of the communication costs from speedup values obtained

 Speedup
Theoretical Speedup

From Eq (6)

k calculated from

From Eq (7)

No. sub-domains

20 50 100 20 50 100 20 50 100

No. Computers

2 2.04 2.00 1.83 1.90 1.96 1.98 -0.92 -0.10 0.21

3 2.97 2.94 2.74 2.73 2.88 2.94 -1.18 -0.10 0.19

4 3.86 3.96 3.71 3.48 3.77 3.88 -1.50 -0.25 0.12

5 4.67 4.82 4.60 4.17 4.63 4.81 -1.70 -0.22 0.12

6 5.18 5.74 5.45 4.80 5.45 5.71 -1.21 -0.28 0.13

7 5.85 6.66 6.20 5.38 6.25 6.60 -1.36 -0.35 0.17

8 6.37 7.52 7.33 5.93 7.02 7.48 -1.24 -0.39 0.05

9 7.15 8.29 8.16 6.43 7.76 8.33 -1.86 -0.38 0.06

10 7.44 8.74 9.34 6.90 8.47 9.17 -1.39 -0.18 -0.05

The attempt to come up with an estimate of the communication costs associated with one person

did not yield a definite value for k. In most cases, k was found to be negative and hence cannot be

considered a cost. Furthermore, k was found to vary as the number of sub-domains or/and the

number of processors used were varied. If k was positive and quite distinctive irrespective of the

number of sub-domains or number of processors used, Eq (7) would have been adopted to

estimate the speedup achievable as well as finding the optimal number of sub-domains to

partition the geometry.

Figure 5.19 illustrates the results obtained from the above test case.

B.Y.Y.MOHEDEEN Chapter 5

115

 Figure 5.19 - Comparison in the speedup values obtained from using different partitioning

technique

Theoretically 100 sub-domains should give the best speedup performance due to the best load

balance being maintained throughout the simulation. In addition to maintaining the load balance,

there are other factors that influence the performance including the cost of communication, which

increases with additional sub-domains, and hardware effects such as increased cache size.

Consequently the increased cache size made available by increasing the number of computers

improves the performance beyond the theoretical prediction. The actual speedup performance is

therefore a combination of the load balance and these other factors. As can be seen from Table

5.8, most the best speedup values were obtained when the geometry was partitioned into 50 sub-

domains, which is in between the 20 sub-domains (with less communications and less load

balanced) and the 100 sub-domains (with increased communications as well as increased load

balance). It can be seen from Table 5.8 that when 2 processors are used, the best partition is 20

sub-domains. A possible explanation to this scenario is that the communication cost is far lower

with 20 sub-domains compared to the partitions with a higher number of sub-domains. When 10

computers are used, the increased communication costs brought upon by the 100 sub-domains

case still did not outweigh the advantages of an improved load balance, giving a speedup value of

9.34 compared to 7.44 obtained with a 20 sub-domains problem.

B.Y.Y.MOHEDEEN Chapter 5

116

5.1.3.3.2 Test 2 – Cyclic Equal Partitioning method

Since no optimal number of sub-domains could be found from equation Eq (7), Similar to what

was tested in 5.1.3.3.1, ‗Test Case 6 - 500m x 25m with one exit at one end and populated by

25,000 identical occupants‘ was partitioned into different number of equal sub-domains to test the

Cyclic Equal Partitioning method. The simulation time to predict the evacuation of the 25,000

occupants is 833.5s. The results are shown in Table 5.9:

Table 5.9 - Results from using the Equal Cyclic Partitioning method on Test Case 6

 Speedup Theoretical Speedup from Eq (6)

No. Processors 2 3 4 2 3 4

No. sub-domains

5 1.91 2.48 2.95 1.67 2.14 2.50

10 2.10 2.90 3.61 1.82 2.50 3.08

15 2.14 3.06 3.9 1.88 2.65 3.33

25 2.16 3.14 4.10 1.92 2.78 3.57

50 2.11 3.07 4.10 1.96 2.88 3.77

100 1.92 2.87 3.85 1.98 2.94 3.88

From the results obtained, irrespective of the number of processors used, super-linear speedup

values were achieved, meaning they are greater than the number of processors used. Clearly this

method is the most promising of all the previous methods tried. It would seem to suggest that

increasing the number of sub-domains, and hence making the system more load balanced and also

delaying processor idleness at the expense of increasing the communication costs, resulted in very

good speedups. The conclusion that was found was that load imbalance and processor idleness

are the crucial factors which influence this problem, rather than communication costs. This is

demonstrated by the fact that using 100 sub-domains, hence incurring high communication costs

B.Y.Y.MOHEDEEN Chapter 5

117

whilst making the system load balanced, produced better speedup values than when only five sub-

domains were used. The geometry partitioned into only five sub-domains minimises the

communication costs but does not guarantee a load balanced problem. This can arise if there are

sub-domains where the population exits quicker, thus making the processors handling those areas

become idle.

Most of the actual speedup values obtained surpassed those predicted by the theoretical speedup

Eq (6). A possible explanation is that the reduced data in each processor‘s cache did speed up the

results. This advantage is even more appreciated, considering better speedup values achieved by

having increased cache sizes were obtained, even though parallelisation costs were not included

to calculate the theoretical speedup values.

Another performance analysis is the ratio of processor usage defined by the Efficiency factor. The

efficiency values are displayed in Table 5.10:

Table 5.10 - Efficiency values for Test Case 6 using the Equal Cyclic Partitioning method

Number of sub-domains Efficiency

 2 processors 3 processors 4 processors

5 95.50% 82.67% 73.75%

10 105.00% 96.67% 90.25%

15 107.00% 102.00% 97.50%

25 108.00% 104.67% 102.50%

50 105.50% 102.33% 102.50%

100 96.00% 95.67% 96.25%

By having efficiency values above a 100% shows that the parallel system is functioning above

capacity. By merging the processor power, the results obtained are beyond what was originally

expected and this shows that the parallelisation and partitioning technique of this test case is

successful. These values suggest that all the processors were constantly being used and

communication and synchronisation costs were minimal compared to the total gain obtained.

B.Y.Y.MOHEDEEN Chapter 5

118

A comparison to the previous tests done is illustrated in Figure 5.20.

Figure 5.20 - Comparison between the different partitioning methods used

Using the Cyclic method has considerably improved the speedup values obtained and this is a

promising approach to consider when devising the optimal partitioning method to adopt. When

using the Equal Cyclic Partitioning method, better results were obtained than when the previous

methods were used. The key result is that the factors that most influence the speedup values are

load imbalance and processor idleness rather than communication costs.

5.1.4 Potential Route Map partitioning

The Equal Cyclic Partitioning method is appropriate for cases where there is only one exit. In

reality this is rarely the case; most geometries are intricate in nature and will have more than one

exit.

B.Y.Y.MOHEDEEN Chapter 5

119

5.1.4.1 Potential Route Map

In EXODUS, each geometry creates a potential route map. The Potential Route Map shows the

most probable route the occupants within a region will take. When the exits have the same

potential values, an illustration of how the Potential Route Map is represented is shown in Figure

5.21:

Figure 5.21 - Potential Route Map

Figure 5.21 represents a rectangular geometry with three exits as shown above. The arrows

represent the most likely path an individual will take when in the area.

5.1.4.2 Partitioning technique using the Potential Route Map

The Potential Route Map automatically creates sub-regions out of the main region. The number

of sub-regions created is equal to the number of available exits. The exits automatically map out

their ―allocated‖ regions, whereby an occupant in one of those regions will evacuate via their

allocated exit. From Figure 5.21, where the arrows diverge, a domain can be defined and in total

there are three such domains. If a partitioning boundary can be set along those diverging arrows, a

natural partitioning occurs and the resulting sub-domains can be allocated to different processors.

Figure 5.22 illustrates the above idea.

B.Y.Y.MOHEDEEN Chapter 5

120

Figure 5.22 - Example of Potential Route Map partitioning

On both sides of these natural boundaries, it is expected that the people will diverge and hence

will typically not be crossing them. Creating a partition along those boundaries seems to be the

best way to minimise the communication costs since most occupants will not be crossing those

boundaries.

5.1.4.3 Results from testing the Potential Route Map partitioning method

5.1.4.3.1 Test 1 – Potential Route Map partitioning method: Real life geometry – Trafalgar

Square

As mentioned in 5.1.3, most real life geometries are irregular in design; e.g the Trafalgar Square

geometry. Applying the Potential Route Map partitioning to that region demonstrates the

following partitioned Trafalgar Square (when 2 and 7 processors were used) in Figure 5.23:

B.Y.Y.MOHEDEEN Chapter 5

121

Figure 5.23 - Trafalgar Square partitioned using the Potential Route Map partitioning method

This geometry has 14 exit points and thus 14 sub-regions were created by the Potential Route

Map partitioning method. Each sub-region (represented by a different colour) is associated to an

exit point and an occupant in a sub-region will most likely evacuate via its associated exit point.

The disadvantage of this method is that the sub-regions are very different in sizes which could

make the system load imbalanced and some processors may become idle whilst other processors

are still working.

‗Test Case 5 - Replica of the Trafalgar square in London populated by 60,000 occupants with 14

exits in total‘ was used to test the Potential Route Map partitioning. The predicted simulation time

required to evacuate all 60,000 occupants from that geometry is 610s. Two to seven processors

were used to run the case in parallel. The allocation of the sub-regions was achieved by assigning

each exit point, and hence it‘s associated sub-region, to a different processor. When the last

processor has been assigned, the next exit point was linked to the first processor again and the

cycle restarted again.

B.Y.Y.MOHEDEEN Chapter 5

122

For example, in the case of having two processors working on the domain (as shown in Figure

5.23 (a)), exit 1 was assigned to Processor 1, exit 2 to Processor 2 and then exit 3 back to

Processor 1 and so on. The speedup and efficiency values obtained are shown in Table 5.11:

Table 5.11 - Performance ratios over actual simulation times when the Potential Route Map

partitioning was applied to the Trafalgar Square

Number of processors Speedup Efficiency Parallel SimTime1 Performance Ratio

2 1.61 80.55% 2.27

3 2.59 86.44% 3.61

4 2.25 56.16% 3.29

5 2.45 49.03% 3.40

6 3.18 52.96% 4.65

7 3.94 56.27% 5.57

The speedup values in Table 5.11 do not indicate a definite improvement from the previous

method used. The values obtained for up to three processors are encouraging as they are

marginally less than the ideal speedup achievable. However, as the number of processors was

increased, the speedup values do not increase accordingly, hence not suggesting a good scope for

scalability.

From Table 5.11, the maximum performance ratio with respect to the simulation time is 5.57, not

sufficiently fast to provide advice to incident commanders for live evacuations but can be an

option to consider to investigate evacuation scenarios for planning and possibly interactive

training purposes.

1
 SimTime: Simulation time (See Section 2.3.4)

B.Y.Y.MOHEDEEN Chapter 5

123

The efficiency values are represented in Figure 5.24.

Figure 5.24 - Efficiency graph when the Potential Route Map was applied to the Trafalgar

Square

The trend in this graph shows a decrease in efficiency as the number of processors increases. This

implies that as the problem is being subdivided into more parts with more processors allocated to

each part, the efficiency of the parallel system diminishes. Possible reasons for this are the

increased communication and synchronisation costs or some processors being idle as their

domains are people free. According to this result, adding more processing power may not

necessarily produce improvements.

 Figure 5.25 shows a comparison of the speedup values obtained to those from using the Equal

Partitioning method.

B.Y.Y.MOHEDEEN Chapter 5

124

 Figure 5.25 - Comparison of speedup values obtained from using the different partitioning

methods on the Trafalgar Square

Surprisingly, the speedup values from using the Potential Route Map partitioning did not produce

a marked improvement from using the Equal Partitioning method. However, the speedup values

obtained shows there is some scope for scalability, i.e. as the number of processors used

increases, the speedup values increase accordingly. Even with this minor increase, it is not

enough to confirm that this method is useful to adopt. A method that produces speedup values

close enough to the ―Ideal Speedup‖ line would be the better method to implement.

5.1.4.4 Problems associated with the Potential Route Map partitioning method

Though the Potential Route Map partitioning method minimises the communication costs, it does

not guarantee a good load balance. As can be seen in Figure 5.23, the parts created are of

different sizes which could imply a possible load imbalance. As shown in 5.1.3.3, load balancing

is a more influential factor than communication costs; the Cyclic Equal Partitioning Method

favours the load balance over communication costs and produced the best results achievable by

producing super-linear speedup values.

B.Y.Y.MOHEDEEN Chapter 5

125

Another crucial problem associated with this method is when the number of exits is less than the

number of processors used. The Potential Route Map method can only create parts equal to the

available exits and this is a problem when there are more processors than exits. This would

suggest that the extra processor will never be used and hence the full potential of the parallel

system will not be utilised. An example of this is ‗Test Case 7 - Open rectangular geometry

measuring 100m x 1,000m populated by 100,000 people‘, using the Potential Route Map

partitioning on that domain will only create one sub-domain and hence no scope from using the

parallel system at all. As seen in 5.1.3.3, this test case is capable of producing very encouraging

results if the right partitioning method was applied to it.

5.1.5 Cyclic Potential Route Map partitioning

From the previous partitioning methods attempted, some valuable findings were discovered.

From the Equal Cyclic Partitioning method, it was seen that breaking a domain into smaller sub-

domains tended to improve the load imbalance. The Potential Route Map partitioning

automatically creates sub-domains that minimise the communication costs. Each technique had its

own advantages as well as disadvantages, and merging the advantageous factors will definitely be

an improvement from the previous methods attempted.

 A hybrid method, merging the cyclic properties from the Equal Cyclic Partitioning method with

the Potential Route Map partitioning technique, was devised. This new technique is called the

Cyclic Potential Route Map (CPRM) partitioning method and can potentially solve the problems

created from the Potential Route Map partitioning method. Similar to how Quinn et al [89] and

the Transportation Research analysis computing centre [82] had to develop ways to minimise

communication costs whilst preserving load balance, a possible solution can be obtained by the

CPRM. This hybrid method should now create a load balanced problem as well as solving the

problem when the number of exits is less than the number of available processors.

In theory, each exit will create its original sub-domain (where all the inhabitants of that sub-

domain should be attracted to it) and then further sub-divides that sub-domain into equal parts

(called sub-parts).

B.Y.Y.MOHEDEEN Chapter 5

126

‗Test Case 7 - Open rectangular geometry measuring 100m x 1,000m populated by 100,000

people‘ could not be partitioned from using the Potential Route Map partitioning method. But

now using this improved technique, the resulting partitioned domain is the same as that the one

obtained from using the Equal Cyclic Partitioning method which produced the best results

obtained for that case.

5.1.5.1 Results from testing the Cyclic Potential Route Map partitioning method

5.1.5.1.1 Test 1 – Cyclic Potential Route Map partitioning method

Applying the Cyclic Potential Route Map partitioning to ‗Test Case 5 - Replica of the Trafalgar

square in London populated by 60,000 occupants with 14 exits in total‘, a similar test criterion

was attempted. This method, as explained in Section 5.1.5, sub-partitions the partitions created by

the PRM method into smaller sub-parts to promote load balance. For 60,000 occupants to

physically evacuate this geometry requires a simulation time of 610s. Up to seven processors

were used but different number of cyclic sub-parts at each exit. Figure 5.26 shows the geometry

being partitioned by the PRM method.

B.Y.Y.MOHEDEEN Chapter 5

127

Figure 5.26 - Trafalgar Square partitioned using the Potential Route Map partitioning showing

the sub-domain created by D6

Figure 5.26 illustrates the CPRM method being applied to the Trafalgar Square replica geometry.

The highlighted section represents the partition created by the PRM method at Exit 6. This

section is further sub-partitioned into 3 sub-parts as illustrated in Figure 5.27. With the CPRM

method, all the original partitions created by the PRM method are being further sub-partitioned

into smaller sub-parts.

B.Y.Y.MOHEDEEN Chapter 5

128

Figure 5.27 - Trafalgar Square partitioned using the CPRM partitioning showing the cyclic sub-

parts created by D6. Here three sub-parts were used to partition each sub-domain.

The optimal number of sub-parts to create at each exit is still an unknown, so a range of number

of parts were devised and tested. The same Test Case 5 was used with up to seven processors and

also with dividing each exit‘s sub-domain into two to seven sub-parts. The results obtained are

shown in Table 5.12:

B.Y.Y.MOHEDEEN Chapter 5

129

Table 5.12 - Speedup values from using the CPRM technique

Number of

processors
Speedup values from using the CPRM partitioning

Number of sub-parts

2 sub-

parts

3 sub-

parts

4 sub-

parts

5 sub-

parts

6 sub-

parts

7 sub-

parts

2 1.77 1.85 1.70 1.72 1.73 1.67

3 2.29 2.30 2.13 2.31 2.32 2.38

4 2.42 2.98 3.03 2.84 3.16 3.12

5 2.38 2.60 2.26 2.72 2.81 3.00

6 3.04 2.89 2.50 2.83 2.93 3.28

7 3.91 3.63 3.38 3.43 3.25 3.49

The results obtained do not give an indication of any improvement from using this method. As

can be seen from Table 5.12, only a maximum speedup of 3.91 can be obtained from using seven

processors. Using seven processors, a reasonable speedup value close to six is desired.

Comparing the maximum speedup value (3.16) obtained from using four processors; an

additional three processors could only improve the speedup marginally to 3.91, which indicates a

diminishing returns as well as a waste of processor resources. Another problem might be that the

regions simulated by some processors might become empty much earlier than the other regions,

hence making the processors responsible for them to become idle.

Table 5.13 gives an indication on how efficiently the processors were utilised:

B.Y.Y.MOHEDEEN Chapter 5

130

Table 5.13 - Efficiency values obtained when the CPRM was used to partition Test Case 5

Number of

processors

Efficiency values from using the CPRM partitioning

Number of sub-parts

2

sub-parts

3

sub-parts

4

sub-parts

5

sub-parts

6

sub-parts

7

sub-parts

2 88.50% 92.50% 85.00% 86.00% 86.50% 83.50%

3 76.33% 76.67% 71.00% 77.00% 77.33% 79.33%

4 60.50% 74.50% 75.75% 71.00% 79.00% 78.00%

5 47.60% 52.00% 45.20% 54.40% 56.20% 60.00%

6 50.67% 48.17% 41.67% 47.17% 48.83% 54.67%

7 55.86% 51.86% 48.29% 49.00% 46.43% 49.86%

When two processors were used, a maximum efficiency value of 92.5% was obtained, implying a

near optimal usage of both processors. However, as the number of processors was increased, the

efficiency of the parallel system became consistently lower, with three processors achieving a

maximum efficiency factor of 79.33% whilst the remaining 20.67% being lost by various costs

and latency. This decline got worse as extra processors were added with seven processors only

achieving a maximum efficiency value of 55.86%. This implies that the seven processors are only

achieving just above half of their capacity and the rest being wasted in costs and latency. Figure

5.28 is showing the maximum efficiency achieved when the Cyclic Potential Route Map

technique was applied to Test Case 5.

B.Y.Y.MOHEDEEN Chapter 5

131

Figure 5.28 - Maximum efficiency when the CPRM partitioning technique was used on Test

Case 5

Here again, the trend that the Efficiency graph takes suggests that adding more processors is

resulting in an increasing loss of processor power. As can be seen from Figure 5.28, as the

number of processors is increasing, the efficiency is declining, implying the extra processing

power is not being optimally utilised.

A comparison of the Cyclic Potential Route Map partitioning method (CPRM) to that on the

Potential Route Map (PRM) partitioning method is illustrated in Figure 5.29:

B.Y.Y.MOHEDEEN Chapter 5

132

Figure 5.29 - Comparison from using the CPRM partitioning method to that of the PRM

method.

Comparing the CPRM partitioning method to that of the PRM partitioning, whereby only one

sub-part is created at each exit, no marked improvements was noticed. All the speedup values

obtained do not seem to scale well as the number of processors are increased. The values should

be close to the Ideal speedup line for it to show any scalability.

From the comparisons done, the optimal number of sub-parts to create at each exit is still not

found. The choice of the number of sub-parts used does not have a significant impact on the

speedup values obtained. Hence, no indication of how many sub-parts to create at each exit to

optimise the speedup could be gained from those tests.

The only advantage from using this CPRM partitioning method compared to using the previous

PRM method is that it can accommodate any type of geometry, unlike the latter method. This new

method, can partition any type of domain, irrespective of the number of exits present, which the

Potential Route Map cannot cope with. Furthermore, since load balance is a much more

influential factor than the communication costs, the CPRM method favours this formulation due

to the reduced sizes of the sub-parts.

B.Y.Y.MOHEDEEN Chapter 5

133

Table 5.14 illustrates the parallel performance ratio over the simulation times.

Table 5.14 – Performance ratios over actual simulation times when the CPRM was used to

partition Test Case 5

Number of

processors
Parallel SimTime

1
 Performance Ratio from using the CPRM

partitioning

Number of sub-parts

2

sub-parts

3

sub-parts

4

sub-parts

5

sub-parts

6

sub-parts

7

sub-parts

2 2.45 2.55 2.34 2.38 2.38 2.30

3 3.16 3.17 2.94 3.18 3.20 3.29

4 3.33 4.11 4.18 3.92 4.36 4.31

5 3.28 3.59 3.12 3.75 3.88 4.14

6 4.19 3.98 3.45 3.90 4.04 4.52

7 5.40 5.01 4.66 4.73 4.48 4.81

From Table 5.14, the maximum performance ratio with respect to the simulation time is 5.40 and

yet again is not sufficiently fast enough to be used for live evacuations. However, these results

can be used to investigate evacuation scenarios for planning and training purposes.

5.1.5.2 Strategies considered and rejected

Throughout this research, several ideas and strategies were considered and then were discarded as

they would not have been beneficial to the outcome of this thesis. Some of the main strategies

considered are explained in the following sections.

1
 SimTime: Simulation time (See Section 2.3.4)

B.Y.Y.MOHEDEEN Chapter 5

134

5.1.5.2.1 Exits balancing strategy

In an evacuation simulation, the geometry involved usually contains several exits which can be of

different sizes. It can be assumed that at any point of the simulation, a larger exit is capable of

servicing more occupants than a smaller one does and if both exits are attracting roughly the same

population load, the smaller one will take longer to empty.

Using the Cyclic Potential Route Map (CPRM) method to partition a geometry, the algorithm

loops round the list of the exits, then loops round the list of processors and allocates each one to a

processor without taking into consideration their sizes. This method does not guarantee a fair

distribution of the total exits sizes.

Consider the following example in Figure 5.30 to illustrate this problem: four processors are used

to simulate the evacuation of the following geometry containing eight exits, four large (D1, D2,

D5 and D6) and four smaller ones (D3, D4, D7 and D8).

Figure 5.30 - Geometry containing unequal sized exits

Using the CPRM partitioning technique, the algorithm would allocate the exits in the following

manner as shown in Table 5.15:

B.Y.Y.MOHEDEEN Chapter 5

135

Table 5.15 - Exits' allocation to processors by the CPRM algorithm

Exit D1 D2 D3 D4 D5 D6 D7 D8

Size Large Large Small Small Large Large Small Small

Processor P1 P2 P3 P4 P1 P2 P3 P4

Table 5.15 demonstrates how the CPRM partitioning algorithm does not guarantee a fair

distribution of the exits according to their sizes. Ideally each processor should get two exits, a

large and a small one.

The CPRM algorithm was modified to include an exit width balancing criteria. The exits are

sorted according to their widths and the algorithm then allocates them in such a way that each

processor gets roughly an equal portion of the total size of all the exits. This algorithm was tested

on Test Case 5 - Replica of the Trafalgar square in London populated by 60,000 occupants with

14 exits in total‘ and demonstrates the changes made.

The processors are colour coded to ease the representation of the exits on the different processors.

An illustration is shown below:

Legends:

Colour representation of processors

P0 P1 P2 P3 P4 P5 P6

Table 5.16 illustrates the distribution of the exits before the exit width balancing algorithm was

applied.

B.Y.Y.MOHEDEEN Chapter 5

136

Table 5.17 - Distribution of the exits before the exit width balancing algorithm was applied

2

processors
3

processors
4

processors
5

processors
6

processors
7

processors

Exits Size(nodes) Size(nodes) Size(nodes) Size(nodes) Size(nodes) Size(nodes)

1 22 22 22 22 22 22

2 78 78 78 78 78 78

3 56 56 56 56 56 56

4 18 18 18 18 18 18

5 8 8 8 8 8 8

6 18 18 18 18 18 18

7 29 29 29 29 29 29

8 70 70 70 70 70 70

9 85 85 85 85 85 85

10 56 56 56 56 56 56

11 43 43 43 43 43 43

12 37 37 37 37 37 37

13 36 36 36 36 36 36

14 5 5 5 5 5 5

Total exit
width

561 561 561 561 561 561

As can be seen from Table 5.17, the old algorithm balanced the number of exits rather than the

total exits widths.

Table 5.18 shows the percentage of the total exits widths allocated to each processor:

B.Y.Y.MOHEDEEN Chapter 5

137

Table 5.18 - Percentage of the total exits widths allocated to each processor

 2 processors 3 processors 4 processors 5 processors 6 processors 7 processors

P0 49.73% 34.94% 22.28% 11.41% 9.80% 6.06%

P1 50.27% 28.70% 26.92% 14.80% 15.51% 16.40%

P2 36.36% 27.99% 25.67% 27.27% 29.06%

P3 22.82% 28.88% 25.13% 19.96%

P4 19.25% 13.19% 10.87%

P5 9.09% 8.02%

P6 9.63%

Table 5.18 again demonstrates the unequal distribution in exit widths when the old algorithm was

applied. The modified exit width balancing algorithm was then applied to the same test case and

the following exits distribution (shown in Table 5.19) is produced:

B.Y.Y.MOHEDEEN Chapter 5

138

Table 5.19 - Distribution of the exits after the exit width balancing algorithm was applied

2

processors
3

processors
4

processors
5

processors
6

processors
7

processors

Exits Size(nodes) Size(nodes) Size(nodes) Size(nodes) Size(nodes) Size(nodes)

1 22 22 22 22 22 22

2 78 78 78 78 78 78

3 56 56 56 56 56 56

4 18 18 18 18 18 18

5 8 8 8 8 8 8

6 18 18 18 18 18 18

7 29 29 29 29 29 29

8 70 70 70 70 70 70

9 85 85 85 85 85 85

10 56 56 56 56 56 56

11 43 43 43 43 43 43

12 37 37 37 37 37 37

13 36 36 36 36 36 36

14 5 5 5 5 5 5

Total exit
width

561 561 561 561 561 561

From Table 5.19, it can now be seen that the algorithm is no longer allocating an equal number of

exits to each processor but is now allocating the exits based on their widths.

Table 5.20 demonstrates the percentage of the exits widths allocated to each processor.

B.Y.Y.MOHEDEEN Chapter 5

139

Table 5.20 - Percentage of the total exits widths allocated to each processor

 2 processors 3 processors 4 processors 5 processors 6 processors 7 processors

P0 50.09% 33.33% 24.78% 19.07% 16.04% 15.15%

P1 49.91% 33.69% 25.13% 19.96% 17.11% 13.90%

P2 32.98% 24.96% 20.32% 16.40% 15.69%

P3 25.13% 19.79% 16.58% 13.19%

P4 20.86% 16.40% 13.90%

P5 17.47% 14.26%

P6 13.90%

This new allocation of the total exits‘ width is much fairer than the old algorithm was

formulating. Each processor now has roughly the same total exit widths instead of the same

number of exits which does not guarantee a balance in the total exit widths.

Before adopting this new algorithm, it was tested by running the simulations to see if there were

any significant improvements. The CPRM method sub-partitioned each sub-domain at each exit

into a number of sub-parts (1-6). The predicted simulation time to evacuate a population of

60,000 for this geometry is 610s. The results are illustrated in Table 5.21:

B.Y.Y.MOHEDEEN Chapter 5

140

Table 5.21 - Speedup values obtained when both the old and new exit widths balancing

algorithm was applied to Test Case 5

2 processors 3 processors 4 processors

Speedup Speedup Speedup

No. of sub-parts Before After Before After Before After

1 1.61 1.62 2.59 2.26 2.25 2.37

2 1.77 1.60 2.29 2.24 2.42 2.80

3 1.85 1.64 2.30 2.18 2.98 2.57

4 1.70 1.70 2.13 2.35 3.03 2.68

5 1.72 1.75 2.31 2.33 2.84 3.03

6 1.73 1.70 2.32 2.33 3.16 2.90

The tests run were abandoned in the early stages of testing as no definite improvements were

gained from the exit widths balancing algorithm. The speedup values obtained were similar when

both algorithms were used, indicating that the new algorithm does not produce an obvious

advantage. This new algorithm contains a sorting algorithm which is an extra cost to incur, and

since it was not a deterministic success, the idea of balancing exit widths amongst the processors

was rejected.

5.1.5.2.2 Partitioning software refining original partitions

The partitions created by the Cyclic Potential Route Map (CPRM) method can be of unbalanced

shapes and sizes. These partitions sometimes are too thin in sizes or too small compared to the

other partitions, which reduces the efficiency of a parallel performance due to added

communications and load imbalance. An example of such a problem is highlighted by the oval

outlines around the thin and small partitions as shown in Figure 5.31.

B.Y.Y.MOHEDEEN Chapter 5

141

Figure 5.31- Thin and small partitions created by the CPRM method on Test Case 5

The partitioning software JOSTLE [124] has the capability to refine the partitions created by a

partitioning method. Hence, JOSTLE was used on Test Case 5 to refine the original partitions

created by the CPRM method and the refined partitions are shown in Figure 5.32.

B.Y.Y.MOHEDEEN Chapter 5

142

Figure 5.32 - JOSTLE refining the original partitions of Test Case 5 set by the CPRM method

Figure 5.32 shows a significant reduction in the number of thin and small partitions that was

created by the CPRM method. Hence, JOSTLE has achieved the intention to refine the original

partitions. This refined problem was tested to assess whether this approach significantly improves

the results obtained from using the partitions created by the CPRM method. The predicted

B.Y.Y.MOHEDEEN Chapter 5

143

simulation time to evacuate a population of 60,000 from this geometry is 610s. The results

obtained are displayed in Table 5.22.

Table 5.22 - Comparisons in the speedup values obtained with and without JOSTLE’s

refinement

Number

of

processors

 Speedup values

Number of sub-parts 2 3 4 5 6 7

2

processors

CPRM (with JOSTLE refinement) 1.65 1.73 1.86 1.84 1.61 1.74

CPRM (without JOSTLE refinement) 1.77 1.85 1.70 1.72 1.73 1.67

3

processors

CPRM (with JOSTLE refinement) 2.65 2.26 2.07 2.02 2.04 2.12

CPRM (without JOSTLE refinement) 2.29 2.30 2.13 2.31 2.32 2.39

5

processors

CPRM (with JOSTLE refinement) 4.02 3.54 2.16 2.47 2.59 2.44

CPRM (without JOSTLE refinement) 2.38 2.60 2.26 2.72 2.81 3.00

From the results in Table 5.22, there was not a significant difference in the speedup values

obtained whenever JOSTLE was used to refine the partitions. In the majority of cases, better

speedup values were obtained whenever the CPRM method was used without any refinement

from JOSTLE. Hence, an alternative scheme is needed to boost up the speedup values as this

method did not improve the results considerably.

Furthermore, JOSTLE [146] is freely available for academic and research purposes and a licence

agreement is needed for commercial software. buildingEXODUS, being a commercial software,

needs to obtain a licence for JOSTLE before employing it. If there was a significant

B.Y.Y.MOHEDEEN Chapter 5

144

improvement on the results obtained, then JOSTLE would have been a strong option to consider.

On the other hand, METIS [122, 147, 148] is freely available to use by any users and

consequently provides an easier access to it as there no requirements to obtain a licence

agreement. However, METIS still needs to demonstrate that it can provide satisfactory partitions

and hence provide good speedup values to qualify as a probable partitioning software to use.

5.1.5.2.3 Results from using JOSTLE and METIS

Both partitioning software, JOSTLE and METIS were used on Test Case 5 as a basis for a direct

comparison. The main goal of this test is to assess how METIS measures up to JOSTLE, since

they both use similar partitioning techniques; see Section 2.7.1. The results obtained are shown in

Table 5.23.

Table 5.23 - Comparison of results from using JOSTLE and METIS on Test Case 5

 Speedup

 2 Processors 3 Processors 5 Processors

JOSTLE 1.71 2.50 3.60

METIS 1.85 2.90 3.80

From the results obtained, the speedup values obtained from using METIS were consistently

better than the speedups obtained from using JOSTLE. Hence, METIS is a possible option to

consider as a partitioning strategy and the use of JOSTLE was abandoned.

B.Y.Y.MOHEDEEN Chapter 5

145

5.1.5.2.4 Alternative Partitioning Strategies

Some speculated partitioning strategies were thought of but could not be adopted for various

reasons. The two main strategies are explained in the following sections.

5.1.5.2.4.1 Partitions based on population density

A straightforward partitioning strategy is to divide the domain based on its population density.

Partitions will be created wherever the population density is high in a region. This strategy was

not even attempted as these highly populated areas do not stay in these conditions for long. As

soon as the simulation starts, the population starts dispersing and hence leaving their allocated

partitions, thus rendering them with a lesser load as the simulation progresses.

5.1.5.2.4.2 Initial serial run to assess movement trends to then partition accordingly

Another possible partitioning strategy is to perform a simulation in serial and then observe the

paths and evacuation dynamics of the simulation. These observations can then be used to

formulate a partitioning strategy based on the routes taken by the population. However, this

option will not be of any benefit in an emergency scenario where time is the essence, as a serial

run needs to be done in advance which deflects the whole purpose of this research.

5.1.5.2.5 Test 2 – Cyclic Potential Route Map partitioning method

Before discarding the CPRM method which seemed the most reasonable technique to adopt,

another set of tests was devised and tested in the next section.

Test Case 8 - Replica of Beijing High Street randomly populated by 50,000 occupants with nine

exits in total

Up to 10 processors were used and each exit having up to six sub-parts. There are nine exits in

total. The average predicted simulation time to evacuate a population of 50,000 from this

geometry is 1571.83s.

B.Y.Y.MOHEDEEN Chapter 5

146

The tests run was for the Potential Route Map partitioning technique (1 sub-part at each exit) as

shown in Figure 5.33(a) and by using the Cyclic Potential Route Map technique with each exit

sub-partitioning the Potential Route Map partition into two to six sub-parts. Figure 5.33(b)

illustrates the Cyclic Potential Route Map by using 4 sub-parts per exit.

Figure 5.33 – Replica of the Beijing High Street, partitioned using (a) the Potential Route Map

method (1 sub-part at each exit) and (b) the CPRM method with 4 sub-parts at each exit

B.Y.Y.MOHEDEEN Chapter 5

147

The results obtained from running those tests are shown in Table 5.24:

Table 5.24- Speedup values obtained from running Test Case 8

Number of

processors
Speedup values from using the CPRM partitioning

No. of sub-parts

Potential Route Map (1 sub-part) 2 sub-parts 4 sub-parts 6 sub-parts

2 1.622 1.797 1.514 1.441

4 2.064 2.719 2.307 2.331

6 2.755 3.570 3.118 3.378

8 3.468 3.968 3.530 3.378

10 3.379 4.011 3.578 3.785

A similar conclusion can be deduced from testing the Cyclic Potential Route Map on the Beijing

High street model to that from testing on the Trafalgar Square replica; using two processors

produced a maximum speedup value of 1.797 which can be deemed acceptable from the ideal

value of 2 by considering the costs associated from using a parallel system. However, as the

number of processors was increased, the speedup values did not increase linearly enough to be

close to the ideal speedup line. A maximum speedup value of 4.011 was obtained from using ten

processors which is a poor parallel performance. The difference between the maximum speedup

(3.570) obtained from using six processors does not differ much from the maximum value of

4.011 obtained from using ten processors. This suggests that using the capabilities of four extra

processors only produced a meagre increase in the final results obtained, hence not fully utilising

all these computing power that these four processors could bring. Again, the reason for this lack

of improvement in the speedup values might be the fact that some processors are becoming idle if

their sub-domains are emptying much earlier than the other sub-domains.

Table 5.25 shows the performance of the processors used:

B.Y.Y.MOHEDEEN Chapter 5

148

Table 5.25 - Efficiency values when the CPRM technique was applied to Test Case 8

Number of processors

Efficiency values from using the CPRM partitioning

No. of sub-parts

PRM (1 sub-part) 2 sub-parts 4 sub-parts 6 sub-parts

2 81.10% 89.85% 75.70% 72.05%

4 51.60% 67.98% 57.68% 58.28%

6 45.92% 59.50% 51.97% 56.30%

8 43.35% 49.60% 44.13% 42.23%

10 33.79% 40.11% 35.78% 37.85%

Using two processors achieved a maximum efficiency factor of 89.85% implying that both

processors were utilised efficiently. Adding more processors unfortunately decreases the

efficiency of the parallel system, with ten processors only achieving a maximum efficiency of

40.11%. Less than half the processor resources were efficiently used with the rest being either

spent in communication and/or synchronisation and/or being idle.

Figure 5.34 illustrates this decline in efficiency as the number of processors is increased:

B.Y.Y.MOHEDEEN Chapter 5

149

Figure 5.34 - Maximum efficiency obtained when the CPRM technique was applied to Test Case

8

The parallel simulation time performance ratios from using the CPRM partitioning technique are

displayed in Error! Reference source not found..

Table 5.26 - Performance ratios over actual simulation times when the CPRM technique was

applied to Test Case 8

Number of

processors

Parallel SimTime
1
 Performance ratio from using the CPRM

partitioning

No. of sub-parts

PRM (1 sub-part) 2 sub-parts 4 sub-parts 6 sub-parts

2 3.753 4.158 3.505 3.334

4 4.776 6.293 5.339 5.393

6 6.377 8.262 7.215 7.784

8 8.025 9.207 8.170 7.817

10 7.820 9.281 8.281 8.759

1
 SimTime: Simulation time (See Section 2.3.4)

B.Y.Y.MOHEDEEN Chapter 5

150

From Table 5.26, the maximum performance ratio with respect to the simulation time is an

encouraging 9.281. Whilst an improvement over the previous values is obtained, it is still not

sufficiently fast to provide advice to incident commanders for live evacuations. Nonetheless, this

performance can still be usefully applied to investigate evacuation scenarios for planning

purposes.

To view the differences in the values obtained from using the different number of sub-parts at

each exit, the comparisons are illustrated in Figure 5.35.

Figure 5.35 - Speedup values obtained from using different number of sub-parts at each exit

Test Case 8 did not produce any improvement from the results obtained from using the previous

partitioning techniques. The speedup values are still too low compared to the ideal speedup

achievable. The lines suggest a gradual increasing trend in speedup values until eight processors

were used, then it plateaus from then on, which is a sign of poor scalability.

B.Y.Y.MOHEDEEN Chapter 5

151

The only consistent trend in these results is the fact that using two sub-parts at each exit produced

better results with any number of processors used. The previous tests did not give a definite

number of sub-parts which consistently produced better speedup values.

5.1.6 Partitioning software: METIS

Since none of the partitioning methods attempted so far did not give satisfactory parallel results,

the partitioning software METIS was used to see if there are any improvements in the speedup

values obtained so far. The partitioning software METIS was chosen to partition the problems.

METIS is a set of serial programs for partitioning graphs and produces partitions that are

consistently better than those produced by other widely used algorithms [149]. This software tries

to optimise the partitions in such a way that both load balancing and the minimisation of

communication costs are preserved. As explained in Section 5.1.5.2.2, METIS is a freely

available software to all users provided the papers referenced at [122, 147] are provided.

5.1.6.1 Results from testing METIS partitioning

For a consistent comparison to the previous partitioning methods attempted so far, the same test

cases were used to test the partitioning technique provided by METIS.

5.1.6.1.1 Test 1 – METIS partitioning

‗Test Case 5 - Replica of the Trafalgar square in London populated by 60,000 occupants with 14

exits in total‘ was used to test the partitioning that METIS can provide. The average predicted

simulation time to evacuate a population of 60,000 from this geometry is 610s The number of

sub-domains was set to vary from equalling the number of available processors used to up to 100

sub-domains. The results obtained are tabulated in Table 5.27.

B.Y.Y.MOHEDEEN Chapter 5

152

Table 5.27 - Speedup values obtained from using METIS on Test Case 5

Number of

processors

Speedup values from using the METIS partitioning

No. of sub-domains P
1

sub-domains

15

sub-domains

25

sub-domains

60

sub-domains

100

sub-domains

2 1.85 1.82 1.78 1.59 1.41

3 2.90 2.47 2.38 2.40 1.99

4 3.66 2.77 2.83 2.59 2.28

5 3.80 3.72 3.25 2.94 2.75

6 3.91 3.97 3.89 3.82 2.83

7 3.42 4.35 3.89 3.84 3.49

Using different number of sub-domains in METIS produced varying speedup values. From these

values it is noticed that the choice of the number of partitions is a dependent factor to consider in

obtaining the best speedup values. From Table 5.27, the trend is to divide the geometry into the

number of processors available when only a small number of processors were used. When up to

five processors were used, the best speedup values are from partitioning the geometry into the

number of processors available. However, as the number of processors were increased (i.e 6 and 7

processors used), the best speedup values are from partitioning the geometry into 15 sub-

domains. From the values obtained when 100 sub-domains were used, the impact of selecting a

sub-optimal number of sub-domains can drastically deteriorate the speedup values obtainable. A

poor choice of partitioning technique can lead to load imbalance; consider the speedup values

obtained when seven processors were used, dividing the domain into NumProcs (Number of

processors) sub-domains actually gave a worst speedup value then when the geometry was

partitioned into 100 sub-domains. Again this emphasises that load imbalance and idleness are

more detrimental to the results than increased communication costs. Hence, the number of sub-

domains to partition the geometry needs to be carefully devised so as to prevent these

1
 p: number of processors used (e.g 2, 3, …, 7)

B.Y.Y.MOHEDEEN Chapter 5

153

unfavourable occurrences. METIS produced favourable speedup values when the number of

processors used are four and below; with two processors giving a speedup value of 1.85, three

processors producing a 2.9 speedup and four processors giving a 3.66 speedup value. As the

number of processors were increased, the resulting speedup values did not increase accordingly;

with five processors producing a maximum speedup value of 3.80, six processors only producing

a 3.97 speedup and seven processors only achieving 4.35.

The efficiency of the parallel system is shown in Table 5.28:

Table 5.28 - Efficiency values from using METIS on Test Case 5

Number of

processors

Efficiency values from using the METIS partitioning

No. of sub-domains p
1

sub-domains

15

sub-domains

25

sub-domains

60

sub-domains

100

sub-domains

2 92.32% 91.08% 88.97% 79.69% 70.37%

3 96.73% 82.17% 79.36% 79.93% 66.45%

4 91.58% 69.20% 70.69% 64.81% 56.99%

5 76.07% 74.32% 65.08% 58.71% 54.94%

6 65.20% 66.14% 64.86% 63.73% 47.18%

7 48.82% 62.14% 55.55% 54.79% 49.86%

From the speedup values obtained, the trend suggested a good performance when up to four

processors were used, with more than 90% of efficiency was achieved. This suggests that only

about 10% of the processor usage was spent in parallelisation costs and the rest was usefully

employed in running the simulation. However, the efficiency of the parallel system deteriorated

after more processors were added, which implies that communication, synchronisation costs and

idleness became a more important factor affecting the system whereby the processors spent more

1
 p: number of processors used (e.g 2, 3, …, 7)

B.Y.Y.MOHEDEEN Chapter 5

154

time in dealing with those costs than when less than four processors were used. Figure 5.36

displays the maximum efficiency obtained from Table 5.28.

Figure 5.36 - Maximum Efficiency when METIS was used on Test Case 5

This decreasing trend in the efficiency values will eventually become too low for any advantage

to be gained from the usage of the parallel system. Adding more processors only seem to increase

the costs of running the simulations in parallel compared to the gain obtainable and METIS does

not overcome the diminishing returns problems. This result suggests that this technique does not

favour scalability.

The parallel simulation time performance ratios from using METIS are displayed in Table 5.29.

B.Y.Y.MOHEDEEN Chapter 5

155

Table 5.29 - Performance ratios over actual simulation times from using METIS on Test Case 5

Number of processors

Parallel SimTime1 Performance ratio from using the METIS partitioning

No. of sub-domains P2

 sub-domains

15

 sub-domains

25

sub-domains

60

sub-domains

100

sub-domains

2 2.55 2.51 2.46 2.20 1.94

3 4.00 3.40 3.29 3.31 2.75

4 5.05 3.82 3.90 3.58 3.15

5 5.25 5.13 4.49 4.05 3.79

6 5.40 5.48 5.37 5.28 3.91

7 4.72 6.00 5.37 5.29 4.82

A maximum performance ratio with respect to the simulation time of 6.00 is not sufficiently fast

to provide advice to incident commanders for live evacuations, yet is still a useful tool to employ

in the investigations of evacuation scenarios for planning and possibly interactive training

purposes.

Figure 5.37 demonstrates the maximum and minimum values of the speedups obtained when both

METIS and the Cyclic Potential Route Map method (CPRM) were used. The graph also includes

the ideal speedup achievable.

1
 SimTime: Simulation time (See Section 2.3.4)

2
 p: number of processors used (e.g 2, 3, …, 7)

B.Y.Y.MOHEDEEN Chapter 5

156

Figure 5.37 - Comparisons of the CPRM method and METIS on Test Case 5

When both methods were used, the results obtained are very good when up to four processors

were used. Both curves tend to follow the linear trend that the ideal speedup suggests. Usually if

the speedup is nearly linear, that is if it is nearly equal to the number of processors used, then

according to Graham [149], the parallel system is said to be worthwhile. As the number of

processors was increased, the speedup values obtained tend to decline which would indicate that

the system is not scalable enough. This prompts concern as there is no guarantee that increasing

the number of processors would produce better results.

Comparing METIS with the Cyclic Potential Route Map (CPRM) partitioning method, both

methods seem to produce the same level of speedup values, with those from METIS being

slightly better. Both methods seem to produce linear speedup up to the use of four processors and

then their speedup values start to plateau after that point.

B.Y.Y.MOHEDEEN Chapter 5

157

5.1.6.1.2 Test 2 – METIS partitioning

‗Test Case 6 - 500m x 25m with one exit at one end and populated by 25,000 identical occupants‘

was partitioned by METIS. The average predicted simulation time to evacuate a population of

25,000 from this geometry is 833.5s The domain was partitioned into varying number of sub-

domains, ranging from the number of available processors used to up to a hundred sub-domains.

The speedup values obtained are tabulated in Table 5.30.

Table 5.30 - Results from using METIS partitioning on Test Case 6

Number of sub-domains Speedup

Number of processors 2 processors 3 processors 4 processors

p1 1.62 2.26 2.83

5 1.93 2.48 3.04

10 2.12 2.80 3.62

15 2.15 3.06 3.95

25 2.15 3.24 3.95

50 2.12 3.06 3.90

100 1.76 2.17 2.67

The speedup values obtained are very promising. When both two and three processors were used,

super-linear speedup values were achieved and when four processors were used, a speedup value

of 3.95 was obtained which is very close to the ideal speedup of 4. Since Test Case 6 produced

very good results for the Cyclic method (i.e producing super-linear speedup no matter the number

of processors used), the results obtained when METIS was used can only match those obtained

previously and was not expected to be better than the results obtained previously.

1
 p: number of processors used (e.g 2, 3, …, 7)

B.Y.Y.MOHEDEEN Chapter 5

158

Efficiency values are displayed in Table 5.31:

Table 5.31 - Efficiency values when METIS was used on Test Case 6

Number of sub-domains Efficiency

Number of processors 2 processors 3 processors 4 processors

p1 81.07% 75.18% 70.69%

5 96.50% 82.54% 75.98%

10 105.93% 93.50% 90.40%

15 107.33% 102.06% 98.75%

25 107.54% 108.01% 98.68%

50 105.79% 101.92% 97.44%

100 87.81% 72.47% 66.74%

From the efficiency values obtained, an efficiency of more than 100% implies that the processors

were optimally used and the results are better than expected. Adding to the advantages of

increased processor power and memory to run the algorithm, each processor‘s cache can now

hold the data associated to its sub-domain without requiring the usage of more memory which

would have been the case when only one processor was used.

To facilitate a direct comparisons to the previous methods used, Figure 5.38 illustrates the

different speedup values obtained from using the different partitioning techniques attempted so

far.

1
 p: number of processors used (e.g 2, 3, …, 7)

B.Y.Y.MOHEDEEN Chapter 5

159

Figure 5.38 - Comparisons of the different partitioning methods (including METIS) used on Test

Case 6

From Figure 5.38, METIS produces satisfactory results and implies that METIS is as productive

as the cyclic method attempted before. The minimum speedup values obtained from using METIS

are quite far from the ideal speedup values which suggest that choosing the right number of sub-

domains is crucial in obtaining good speedup values. Looking at the minimum speedup values

obtained from using the Cyclic Equal Partitioning method, they are closer to the ideal speedup

values than those minimum values obtained from using METIS.

5.1.6.1.3 Test 3 – METIS partitioning

‗Test Case 8 - Replica of Beijing High Street randomly populated by 50,000 occupants with nine

exits in total‘ was partitioned by METIS and different numbers of sub-domains were tested to

find the best results. Up to eight processors were used for this test. The speedup values obtained

are shown in Table 5.32:

B.Y.Y.MOHEDEEN Chapter 5

160

Table 5.32 - Speedup values from using different number of sub-domains in METIS on Test

Case 8

Number of

processors

Speedup values from using the METIS partitioning

Number of

processors

p
1

sub-domains

15

sub-domains

25

sub-domains

60

sub-domains

100

 sub-domains

2 1.647 1.834 1.785 1.608 1.515

3 2.837 2.222 1.798 2.148 1.952

4 2.837 2.510 2.053 2.401 2.105

5 4.353 3.152 3.928 2.583 2.384

6 5.092 4.162 2.863 2.932 2.520

7 4.800 4.295 3.832 2.887 2.314

8 5.223 4.083 3.777 3.658 2.647

METIS seems to produce better results when the geometry is being partitioned into NumProcs

(number of processors) sub-domains. Here again as expected, when the domain is being divided

into 100 sub-domains, the worst speedup values occur. The obvious reason is because the

communication costs increase accordingly with the number of sub-domains. The choice in the

optimum number of sub-domains to partition the problem is crucial to the success of the

partitioning technique. From the difference in speedup values when different number of sub-

domains was used, it can be seen that a sub-optimal number of sub-domains can be detrimental to

the end results. Also, a set number of sub-domains cannot be found to implement for any number

of processors used. For example partitioning the problem into p (Number of processors) sub-

domains seems to give good results in most cases, but when two processors were used, this

partitioning formulation did not produce the best results.

However, an interesting occurrence is that using six processors was more advantageous than

when seven processors were used. Another interesting observation is the identical speedup values

1
 p: number of processors used (e.g 2, 3, …, 7)

B.Y.Y.MOHEDEEN Chapter 5

161

of 2.837 when both three and four processors were used. This represents a waste of processor

power as an extra processor should have increased the speedup accordingly and not be ineffective

or indeed a hindrance to the parallel system. Using eight processors barely improved the speedup

to 5.223 from the 5.092 obtained when six processors were used.

Table 5.33 gives a good indication on the performance of the parallel system by the efficiency

values obtained.

Table 5.33 - Efficiency values when METIS was applied to Test Case 8

Number of

processors

Speedup values from using the METIS partitioning

Number of

processors
p

sub-domains

15

sub-domains

25

sub-domains

60

sub-domains

100

sub-domains

2 82.33% 91.70% 89.23% 80.41% 75.74%

3 94.57% 74.07% 59.95% 71.60% 65.07%

4 70.93% 62.76% 51.34% 60.02% 52.62%

5 87.05% 63.04% 78.55% 51.66% 47.68%

6 84.87% 69.36% 47.71% 48.87% 41.99%

7 68.57% 61.35% 54.74% 41.25% 33.05%

8 65.29% 51.03% 47.21% 45.72% 33.09%

When three processors were used, efficiency values ranging from 94.57% to 59.95% was

achieved depending on the partitioning formulation. Again here, it can be seen that the choice of

the right partitioning strategy can drastically affect the outcome of the parallelisation benefits.

The maximum efficiency values obtained for the varying number of processors ranged from

94.57% to 65.29%, the former implying only about 5% of the processor usage was lost in parallel

costs and idleness and the latter suggesting a performance decline with about 65% of each

processor‘s capability being usefully applied in the running of the simulation and the rest being

spent on costs and idleness.

B.Y.Y.MOHEDEEN Chapter 5

162

The parallel simulation time performance ratios from using METIS with different number of sub-

domains are displayed in Table 5.34.

Table 5.34 - Performance ratios over actual simulation times from using different number of

sub-domains in METIS on Test Case 8

Number of

processors

Parallel SimTime
1 Performance ratio from using the METIS partitioning

Number of

processors
p

2

sub-domains

15

sub-domains

25

sub-domains

60

sub-domains

100

 sub-domains

2 3.81 4.24 4.13 3.72 3.51

3 6.57 5.14 4.16 4.97 4.52

4 6.57 5.81 4.75 5.56 4.87

5 10.07 7.29 9.09 5.98 5.52

6 11.78 9.63 6.62 6.79 5.83

7 12.09 9.45 8.74 8.46 6.13

8 3.81 4.24 4.13 3.72 3.51

From Table 5.34, an encouraging maximum parallel performance ratio of 12.09 was achieved

over the simulation time. This suggests that the use of a PC cluster consisting of 10 to 20

processors may provide sufficient computational performance to enable the use of advanced

evacuation simulation for: live incident advice systems, reactive emergency signage systems, as

well as investigations into types of evacuation scenarios for planning and training purposes.

Figure 5.39 demonstrates the speedup trend when both METIS and the Cyclic Potential Route

Map method were used on Test Case 8.

1
 SimTime: Simulation time (See Section 2.3.4)

2
 p: number of processors used (e.g 2, 3, …, 7)

B.Y.Y.MOHEDEEN Chapter 5

163

Figure 5.39 - Comparison in speedup values from using the CPRM method and METIS on Test

Case 8

From the graph, it can be seen that METIS was more successful in partitioning Test Case 8

whenever the correct number of sub-domains were used (shown by the red line ‗METIS (Max)‘).

The minimum speedup values from METIS are the lowest out of the two methods. The trend

from the ‗METIS (Max)‘ graph suggests a positive inclination, but it is also showing some

oscillation and does not imply a smooth increasing trend like the ones obtained when the Cyclic

Potential Route Map was used. This may imply an uncertainty on the reliability of the method.

5.2 Concluding remarks

Failing to obtain a scalable system is concerning as none of the methods attempted so far are

proving to be the best one to adopt. The reason is the variations in the geometries tested lead to

different partitioning methods being favoured. This suggests that it will be difficult to establish

one approach that consistently improves results across different geometries. Another factor that

makes the simulations so varied is the unique scenario of each case. The evacuation of people can

B.Y.Y.MOHEDEEN Chapter 5

164

be unpredictable and can change during the course of the simulations due to other factors

affecting the scenario (like sudden closure of exits, fire etc). These factors are enough to make a

partitioning method redundant at certain times. For this type of model, a dynamic partitioning

technique could resolve all these issues. By making the system dynamic in nature, the load

imbalance and idleness problems would be resolved as the simulations will redistribute the sub-

domains to idle processors as and when sudden changes occur.

B.Y.Y.MOHEDEEN Chapter 6

165

6 DYNAMIC REPARTITIONING

From the previous attempts to find the optimal partitioning technique, no definite method was

found to cater for the varied layouts and scenarios of each evacuation case. The different layouts

can range from stadiums, whole cities or high rise buildings which consequently have different

evacuation dynamics.

Another aspect of the simulation that a static partitioning struggles with is the unexpected

phenomenon that can affect a simulation, like sudden closures of exits and the spread of fire

amongst numerous incidents that can occur during an evacuation.

The main problem that the initial studies have shown is that a load imbalance affects the speed of

the parallel system more than increased communication costs.

Dynamic repartitioning can potentially resolve all those issues brought on by varying layouts,

scenarios, or the evacuation dynamics. By having dynamic repartitioning capabilities whereby

load imbalance and processor activity are monitored, the problems associated with the static

partitioning should be resolved. The geometry will be repartitioned to ensure each processor will

be allocated the same amount of work to prevent load imbalance.

As demonstrated, the static partitioning technique cannot efficiently handle the general nature of

an evacuation let alone the potential unexpected nature of an evacuation with possible evolving

scenarios. Once the initial allocated regions are created, they can only stay on that processor.

Hence, if a region becomes empty quicker or becomes unusable due to a sudden closure of that

region, then the processors handling those domains will become load imbalanced. A dynamic

repartitioning technique can check those scenarios and re-assign those idle processors to regions

with population activities.

A possible disadvantage that can be associated with the dynamic repartitioning technique is

increased data migration. In addition to having the usual communications occurring with the

movement of the population; whenever there is a repartitioning the geometry and population data

must be communicated between the processors. Consequently there will be an increase in

B.Y.Y.MOHEDEEN Chapter 6

166

communication costs. However, from the static tests performed in the previous chapter, it was

found that having a load imbalance and idleness is more detrimental than having an increase in

communication costs. Hence, the dynamic repartitioning may be a more viable option.

6.1 Dynamic repartitioning Strategy

With the dynamic repartitioning strategy; at certain points in the simulation, the algorithm

assesses the current situation to decide whether there is a need to repartition the domain. There

are two main methods considered for this repartitioning technique:

1. Completely formulate a new set of partitions every time dynamic repartitioning is

required (see Figure 6.1)

Figure 6.1 – Illustration of dynamic repartition

2. Keep the original partitions and swaps them around to promote load balancing, similarly

to what Minyard et al. [138] considered (see Figure 6.2).

B.Y.Y.MOHEDEEN Chapter 6

167

Figure 6.2 – Illustration of dynamic reallocation

The first method seems attractive in the respect that a completely new set of partitions is created

every time there is a change in conditions and this can imply fewer partitions to be created and

hence reducing the communication costs. However, this method will require significant

data migration and to determine the new partitions, as well as find and assign halo nodes. Data

migration consists of moving both the nodes and the population. Though the nodes exist on all the

processors, they have dynamic properties associated to them and these properties get updated

only on the processor they reside in. A new partitioning strategy may mean that the set of nodes

which resided on one processor may now be residing on different processors, making the tracking

and communication of these nodes more complicated. The same problems will arise in the

communication of the population. Population residing on one processor will now be

communicated to various processors (one to many) instead of just being transferred to one other

(one to one) processor. In short, this method favours the one to many communicating strategy

which involves more data tracking as well as the computations required to work out the new halo

nodes and assigning them to the relevant processors.

The second method consists of keeping the original partitions created at the start of the simulation

and only swaps them around based on the idleness and load of each processor. By keeping the

original partitions, the cost of calculating new halos at each re-allocation is avoided as well as the

complication of communicating data across a variety of processors. By having a ―one to on‖

communication system, each processor has to communicate a set of data to only one other

B.Y.Y.MOHEDEEN Chapter 6

168

processor rather than having to break this set and communicate parts of it to different processors.

In short, a dynamic reallocation occurs rather than a dynamic repartitioning.

6.1.1 Suggested dynamic reallocation algorithm

At regular intervals in the simulation, each processor checks for any load imbalance in

accordance with a set criterion such as population load, workload or cost function. If a load

imbalance to a set tolerance is found to occur, then the decision to reallocate the problem is made.

Each processor communicates its local load across and runs a suitable algorithm to redistribute

the load as equally as possible. At this point each processor will have different sub-domains

allocated to it. The process of exchanging their local loads (both local nodes and population) is

performed which results in each processor having a new set of partitions, thus enabling the

processors to have roughly the same load.

6.1.1.1 Creation of Subparts

Some modifications to the source codes had to be implemented so as to facilitate the dynamic

reallocation strategy. One of the main additions is the creation of an object class called Subparts.

This object has various attributes necessary for the ease of reallocating the problem. Each Subpart

contains the local nodes and people in a partitioned sub-domain. So the geometry is partitioned

into Subparts each of which is linked to a unique processor which can have several Subparts.

Each processor is aware of the load it is currently servicing by requesting the information from its

local Subparts.

6.1.1.2 Added multi-halo regions to permit dynamic reallocation

Multi-halo nodes get created so that each processor does not have more than two processors to a

particular part of a region as explained in 4.2.4.1.1. The highlighted section of the domain in

Figure 6.3 demonstrates where a set of multi-halo have to be created. The nodes in the

highlighted section on the region catered for by processor Red would have been in the halo

regions of processors Blue and Cyan. Since in EXODUS it is the node that determines the

B.Y.Y.MOHEDEEN Chapter 6

169

movement of the individuals, this particular node exists on three processors and is a problem for

the movement algorithm. Hence, a set of multi-halo nodes (depicted by the thin light green strips)

(Section 4.2.4.1.1) was created along the regions shared by several processors to remediate this

problem.

Figure 6.3 - An example of Multi-halo nodes on the Trafalgar Square replica

Multi-halo nodes are calculated before the simulation starts and in static mode they remain

unchanged. These multi-halo nodes were calculated in the assumption that all Subparts are

allocated to predetermined processors and will not be reallocated to different ones throughout the

simulation. In the above example, there are some neighbouring Subparts which are serviced by

the same processor and hence there is no need to have either halo nodes or multi-halo ones.

However, in the dynamic reallocation strategy, these Subparts may be allocated to different

processors and then there will arise the need to have halo nodes. It is computationally expensive

to employ the halo finding algorithm every time a reallocation is required.

B.Y.Y.MOHEDEEN Chapter 6

170

Due to the lack of time to fully explore and solve this problem, a simple solution was devised to

counter this problem. At the start of the simulation, each Subpart was treated as belonging to a

unique processor and hence all the possible halos and multi-halo nodes were calculated at the

start of the simulation. This strategy eliminates the need to recalculate halo and multi-halo nodes

each time a reallocation occurs, but also creates more halo and multi-halo nodes than is necessary

at times (when two neighbouring processors are serviced by the same processors); see Figure 6.4.

The highlighted oval selection in Figure 6.4(a) shows multi-halo nodes being created, separating

two Subparts which appear as one when in static mode Figure 6.4(b). These two Subparts might

need to be reallocated to different processors in the dynamic mode and hence multi-halo nodes

would have been necessary.

Figure 6.4 - Addition of multi-halo nodes at some boundaries

Ideally, a complete set of new partitions based on the current simulation would have been

desirable. However, this cannot be explored at present due to the time constraints. Hence the

adopted strategy is the simple solution explained above; which eliminates the high computation

costs associated in recalculating the halo nodes at every reallocation thus offsetting the

advantages gained by dynamically repartitioning a problem. However, increased communication

(a) (b)

B.Y.Y.MOHEDEEN Chapter 6

171

cost is expected due to the higher number of multi-halo nodes created. From the previous tests

performed, it was found that the communication cost is negligible compared to having a load

imbalance, so this method is adopted for the moment until another partitioning strategy can be

explored.

6.1.2 Method to redistribute the load

The prominent method to schedule and redistribute a load is the LPT (Longest processing time)

algorithm and uses the concept of sorting the load in descending order [151, 152]. The LPT

algorithm sorts a collection of jobs according to the processing time to run those jobs then assign

them to the different processors.

6.1.2.1 LPT (Longest processing time) algorithm used for this research

For this problem, the main factor affecting the parallel system is the load imbalance. Hence the

load of each processor, instead of the actual processing time that the common LPT algorithm

employs, is used in the current formulation. The collection of Subparts is sorted in descending

order according to their current workload. Each processor gets allocated the Subparts at the top of

the list in such a fashion that the processor with the minimum load gets assigned the Subpart with

the largest load. This process is done until all the Subparts have been allocated.

A prototype program was written to test this algorithm. An example of the functionality of this

program is now presented.

A set of random numbers is generated and the numbers have to be ideally allocated to six

processors so that they all have roughly the same total. These numbers were partitioned by both

the LPT algorithm [151, 152] and JOSTLE [146] in order to compare the final partitioned results.

92 numbers were randomly generated and they were:

B.Y.Y.MOHEDEEN Chapter 6

172

90 50 87 80 20 81 7 96 51 39 81 98 2 73 56 44 3 97 34
55 99 17 85 69 39 46 95 20 52 31 14 74 20 3 97 97 89 40
91 91 33 96 61 64 93 34 40 32 66 54 65 89 23 23 65 81

85 13 31 80 14 81 91 2 48 81 5 99 16 18 50 4 3 63

60 61 41 90 35 78 80 4 33 8 98 94 82 14 79 7 21 83

The LPT algorithm scheduled and assigned this load to six processors as displayed in Table 6.1:

Table 6.1 - Scheduling based on the LPT algorithm

 Total load
Load ratio

Ideal ratio = 16.67%
Number of items Numbers

P1 831 16.6734% 15
99 94 91 85 81 78 65 55 52

40 33 31 16 7 4

P2 831 16.6734% 15
99 93 91 89 80 73 69 54 51

40 35 23 17 14 3

P3 831 16.6734% 16
98 96 90 83 81 80 64 60 50

39 33 21 20 8 5 3

P4 830 16.6533% 15
98 95 91 82 81 80 65 56 50

44 32 20 20 14 2

P5 831 16.6734% 16
97 97 89 87 81 74 66 61 48

39 34 31 14 7 4 2

P6 830 16.6533% 15
97 96 90 85 81 79 63 61 46

41 34 23 18 13 3

JOSTLE was used to allocate the same list of numbers to six processors and the results are

illustrated in Table 6.2:

B.Y.Y.MOHEDEEN Chapter 6

173

Table 6.2 - Scheduling performed by JOSTLE

 Total load

Load ratio

Ideal ratio = 16.67%
Number of items Numbers

P1 854 17.1348% 15
80 80 80 79 73 63 61 50 50

44 41 40 40 39 34

P2 829 16.6332% 9 99 99 96 95 93 91 91 83 82

P3 852 17.0947% 28

87 78 74 65 61 56 55 52 51

48 39 33 23 20 17 16 14 14

13 7 7 5 4 3 3 3 2 2

P4 853 17.1148% 22

89 85 66 65 64 60 54 46 35

34 33 32 31 31 23 21 20 20

18 14 8 4

P5 816 16.3724% 9 98 97 97 97 91 89 85 81 81

P6 780 15.6501% 9 98 96 94 90 90 81 81 81 69

As can be seen from the final schedule, both methods enabled the processors to have roughly the

required 16.6667% of the total load. However, comparing the two algorithms, the LPT algorithm

provides a better load balance in terms of both the ratio of the total load as well as in the number

of items on each processor. JOSTLE‘s distribution of the total load was balanced enough but its

distribution of the number of items was not as balanced as was possible and shown by the LPT

algorithm. Thus the LPT algorithm was used to schedule the loads of the Subparts to ensure that

each processor ends up with roughly the same load as well as a similar number of Subparts as

possible.

B.Y.Y.MOHEDEEN Chapter 6

174

6.1.3 Data migration

Since the LPT is run on all the processors, each processor is aware of which parts of the domains

belong to which processors; so no communications of this data is necessary at this stage.

Consequently when reallocation happens, the population in the local domains of each processor

needs to be communicated to the processor which now runs this domain (one to one

communication).

 Data migration is efficiently performed by the pack routine that MPI [37] provides. The same

‗pack and send‘ ‗and ‗unpack and receive‘ routines used in the communication of people at

boundaries during the simulation are used when reallocation occurs. For each processor, the main

components of the data migration routine are explained below:

 Pack, send and delete the people who were in myOldDomain.

 Release myOldDomain and associate myNewDomain to belonging in my local

domain.

 Update the halo nodes with respect to myNewDomain.

 Receive, unpack and create the people who are now in myNewDomain.

6.1.4 Load reallocation at the start of the simulation with no dynamic reallocation

At the start of the simulation when the partitioning algorithm is called, there is no guarantee that

this first partition creates a load balanced system. Inevitably, applying a dynamic reallocation

technique generates extra costs (added communications and reshuffling costs). An approach to

avoid a dynamic reallocation is to perform a population load balancing at the start and then letting

the system run in static mode.

This strategy was tested by the following test cases:

Test Case 9 - The Trafalgar Square replica was used, with seven of the fourteen exits closed and

with a population of 60,000.

This scenario of having half the number of exits closed is presented to show how the static

partitioning technique is compelled to stay with the original partitions that were created before the

simulation. The average predicted simulation time to evacuate a population of 60,000 from this

B.Y.Y.MOHEDEEN Chapter 6

175

geometry is 5,015s. Hence, some processors which are simulating regions with closed exits may

eventually make the system load imbalanced. A reallocation based on population load should

make the system load balanced at the start of the simulation, but does not guarantee that same

factor throughout the simulation.

Eight processors were used to test this idea and the Cyclic Potential Route Map (CPRM)

technique was used with varying number of sub-parts at each exit. The speedup values obtained

are displayed in Table 6.3:

Table 6.3 - Speedup and efficiency values obtained on Test Case 9; when an initial reallocation is

done at the start of the simulation and the system remains static

Number of sub-

parts at each

exit

Total number

of sub-domains

Static Parallel

system

Initial load balancing,

followed by static system

Speedup Efficiency Speedup Efficiency

1 14 1.839 23.00% 2.026 25.33%

2 28 2.194 27.43% 2.315 28.94%

4 55 2.779 34.74% 2.921 36.51%

6 78 3.376 42.20% 3.199 39.99%

There is only a marginal increase in the speedup values obtained when using this strategy. The

results obtained are expected, since the initial reallocation is only based on population load rather

than the current situation of the scenario (half of the exits are closed), the algorithm may allocate

some processors to the regions containing the closed exits. Since the system is statically

partitioned, these processors are forced to simulating the same domains and hence load imbalance

eventually occurs. A maximum speedup value of 3.376 was achieved when no initial population

load balance was performed and a value of 3.199 when there was a population load balancing at

the start of the simulation. Both values do not suggest a good performance from the parallel

system of eight processors.

B.Y.Y.MOHEDEEN Chapter 6

176

This test was performed with a scenario of having seven of the fourteen exits closed. Before

discarding this idea, another set of tests with a different scenario was applied. The following Test

Case 10 uses the same geometry used in Test Case 9, but applying a scenario of having all its

exits open, but the population is now centred in the domain.

Test Case 10 - Trafalgar Square replica populated with 60,000 people located towards the centre

of the geometry

The average predicted simulation time to evacuate a population of 60,000 from this geometry is

986.67s. Both the CPRM technique and METIS (with a varying number of sub-domains) were

used as partitioning techniques, on various number of processors (2, 4, 6 and 8). The runs were

performed in static mode (Full Static) then with initial load balance reallocation at the start of a

static mode (Part Static). The results obtained are given in Table 6.4 for speedup values and in

Table 6.5 for the efficiency values:

B.Y.Y.MOHEDEEN Chapter 6

177

Table 6.4 - Speedup values obtained on Test Case 10; when an initial reallocation is done at the

start of the simulation and the system remains static

 CPRM METIS

No. of

procs

Num. of

sub-parts

per exit

Total Num. of

sub-domains

Speedup

Full

Static

Speedup

Part

Static

Num. of

sub-

domains

Speedup

Full

Static

Speedup

Part

Static

2

1 14 1.405 1.492 15 1.722 1.580

2 28 1.695 1.736 30 1.683 1.564

4 55 1.740 1.780 60 1.814 1.770

6 78 1.819 1.603 90 1.644 1.607

4

1 14 2.096 2.317 15 2.567 2.929

2 28 2.280 2.563 30 2.977 2.648

4 55 2.511 2.688 60 2.632 2.830

6 78 2.448 2.734 90 2.724 2.753

6

1 14 2.566 3.102 15 3.145 3.318

2 28 2.942 3.506 30 3.817 3.449

4 55 3.127 2.999 60 3.801 3.361

6 78 3.310 3.457 90 3.282 3.563

8

1 14 2.570 3.345 15 3.856 3.933

2 28 2.812 3.424 30 3.144 3.745

4 55 2.618 3.416 60 3.990 4.152

6 78 2.970 3.389 90 3.503 3.148

B.Y.Y.MOHEDEEN Chapter 6

178

Table 6.5 - Efficiency values obtained on Test Case 10; when an initial repartitioning is done at

the start of the simulation and the system remains static

 CPRM METIS

No. of

procs

No.

subparts

per exit

Total No.

subparts

Efficiency

Full

Static

Efficiency

Part

Static

No. of

subparts

Efficiency

Full

Static

Efficiency

Part

Static

2

1 14 70.25% 74.60% 15 86.10% 79.00%

2 28 84.75% 86.80% 30 84.15% 78.20%

4 55 87.00% 89.00% 60 90.70% 88.50%

6 78 90.95% 80.15% 90 82.20% 80.35%

4

1 14 52.40% 57.93% 15 64.18% 73.23%

2 28 57.00% 64.08% 30 74.43% 66.20%

4 55 62.78% 67.20% 60 65.80% 70.75%

6 78 61.20% 68.35% 90 68.10% 68.83%

6

1 14 42.77% 51.70% 15 52.42% 55.30%

2 28 49.03% 58.43% 30 63.62% 57.48%

4 55 52.12% 49.98% 60 63.35% 56.02%

6 78 55.17% 57.62% 90 54.70% 59.38%

8

1 14 32.13% 41.81% 15 48.20% 49.16%

2 28 35.15% 42.80% 30 39.30% 46.81%

4 55 32.73% 42.70% 60 49.88% 51.90%

6 78 37.13% 42.36% 90 43.79% 39.35%

B.Y.Y.MOHEDEEN Chapter 6

179

The results obtained after doing a reallocation of the original partitions do not show any

improvements. In certain cases, this modification worsened the results and at other cases only

minimally improved the static runs. This suggests that all the processors are working optimally at

the start of the simulation on the original partitions created. The problem seems to be at a later

stage of the simulation, when there is a possibility of load imbalance and processor idleness.

Hence, a dynamic reallocation strategy is desired to monitor the load imbalance whenever it

arises.

6.1.5 When to reallocate

Each second in EXODUS is broken down by 1/12 of a second and this is termed as a tick; please

refer to Section 3.2.1. At every odd tick, the movement of the population is determined and at

each even tick movement actually occurs [30].

Ideally, reallocation should occur sufficiently often such that the gain from reallocation is always

greater than letting the system run in load imbalance. This was an unknown area in the early stage

of testing the dynamic reallocation techniques. Hence, some tests were required to get an idea of

how expensive a reallocation is compared to the gain achieved from having an improved load

balance.

To start testing the dynamic reallocation codes, a starting criterion of a 75% population load

imbalance was used to warrant a reallocation. If the processors were found to be 75% less than

the most overloaded processors, a load balancing is performed. The next question was at which

time interval the requirement is tested.

Some tests were run by varying the time interval when the dynamic reallocation algorithm is

called.

6.1.5.1 Time interval of 1s (12 ticks) and 10s (120 ticks)

‗Test Case 9 - The Trafalgar Square replica was used, with seven of the fourteen exits closed and

with a population of 60,000.‘ was used to test at which time intervals the dynamic reallocation

algorithm should be called. Eight processors were used and the Cyclic Potential Route Map

(CPRM) method was used with each exit generating from two to six sub-partitions. The speedup

B.Y.Y.MOHEDEEN Chapter 6

180

obtained, as well as the number of times the reallocation of the geometry happened was recorded

for two different time scenarios; at each second interval and at each 10 second intervals. Since the

reallocation costs is still an unknown quantity, those two values were chosen to see how

influential the number of times the reallocation algorithm is called.

The results obtained are tabulated in Table 6.6.

Table 6.6 - Speedup and number of times reallocation happened when dynamic reallocation

algorithm called at 1s and then at 10s intervals

 Speedup

 1s (12 ticks) 10s (120 ticks)

1 sub-part/exit = 14 sub-domains in total 1.713 1.747

No. of times reallocation happened 2 2

2 sub-parts/exit = 28 sub-domains in total 1.789 1.811

No. of times reallocation happened 8 4

4 sub-parts/exit = 55 sub-domains in total 2.593 2.671

No. of times reallocation happened 34 9

6 sub-parts/exit = 78 sub-domains in total 3.803 3.962

No. of times reallocation happened 40 11

Using eight processors, the maximum speedup achieved is a disappointing 3.962. Running this

test case without the dynamic reallocation capabilities produced a maximum speedup of 3.376

displayed in Table 6.3. However, these tests were run in order to get a measure of the

reallocation costs from the frequency the algorithm is called. The interesting fact is that the

speedup values are very similar in both cases. This similarity in the speedup values suggests that

the calls to the algorithm are not computationally expensive. With 10 times more calls to the

reallocation algorithm when the 1s interval was made, similar speedup values were achieved.

Another interesting discovery is the number of times the geometry was repartitioned when both

cases were run. As expected, calling the algorithm to determine a load imbalance at every second

compared to calling it at every 10s induced more reallocations. When the geometry was

B.Y.Y.MOHEDEEN Chapter 6

181

partitioned into six sub-parts at each exit, calling the dynamic algorithm every second found that

on 40 occasions the system was less than 75% population load balanced and was load imbalanced

on 11 occasions when called every 10s. By having similar speedup values suggest that the

reallocation costs are not drastically expensive and the number of times reallocation can happen is

no longer a factor to be minimised or avoided.

6.1.5.2 Reallocation algorithm called every 30 ticks together with a 75% population load

imbalance criteria

From the previous test, calling the reallocation algorithm at either every second or every 10

seconds produced similar results. The purpose of the dynamic reallocation algorithm is to

improve the results obtained from using a static partitioning strategy. Some more tests were

devised to verify that there is an improvement in using the dynamic reallocation capabilities. The

time interval at which to call the dynamic reallocation algorithm to verify that the system is load

balanced is still an unknown quantity. So this time, the dynamic reallocation algorithm is being

called at every 30 ticks which is equivalent to 2.5s. Every 2.5s the software assesses the load

balancing of the problem and if there is a load imbalance of less than 75%, then the problem is

being reallocated to resolve this problem. Test Case 10 (Section 6.1.4) was used for testing the

dynamic reallocation algorithm. The average predicted simulation time to evacuate a population

of 60,000 from this geometry is 986.67s.

The uneven distribution of the population is to show how the dynamic algorithm can adapt to

having those scenarios and the static partitioning strategy is forced to handle the same domains

assigned at the start of the simulation. The number of processors used ranged from two to eight.

The Cyclic Potential Route Map (CPRM) method was used as the partitioning strategy with

varying number of sub-parts.

Legends for the terms used in the table:

P: Number of processors used

N: Number of sub-parts

The results are displayed in Table 6.7:

B.Y.Y.MOHEDEEN Chapter 6

182

Table 6.7 - Comparison in the speedup values from using both the static and dynamic

reallocation techniques on Test Case 10

P CPRM

 N/exit

Total No.

sub-

domains

Speedup %

change

Efficiency
No.

reallocations
Static Dynamic Static Dynamic

2

1 14 1.405 1.797 27.90% 70.25% 89.85% 28

2 28 1.695 1.871 10.38% 84.75% 93.55% 28

4 56 1.740 1.802 3.56% 87.00% 90.10% 29

6 83 1.819 1.779 -2.20% 90.95% 88.95% 17

4

1 15 2.096 3.085 47.19% 52.40% 77.13% 27

2 29 2.280 3.244 42.28% 57.00% 81.10% 29

4 57 2.511 2.942 17.16% 62.78% 73.55% 47

6 84 2.448 2.940 20.10% 61.20% 73.50% 38

6

1 14 2.566 2.866 11.69% 42.77% 47.77% 34

2 28 2.942 3.483 18.39% 49.03% 58.05% 28

4 57 3.127 3.434 9.82% 52.12% 57.23% 47

6 84 3.310 3.341 0.94% 55.17% 55.68% 42

8

1 15 2.570 2.945 14.59% 32.13% 36.81% 13

2 29 2.812 3.284 16.79% 35.15% 41.05% 21

4 57 2.618 3.409 30.21% 32.73% 42.61% 33

6 84 2.970 3.286 10.64% 37.13% 41.08% 20

The goal to improve the results from using a static partitioning strategy to a dynamic one has

been achieved. In most cases, the speedup values obtained from using the dynamic method are

better than the ones achieved by the static method. However, the speedup values are still too low

when the number of processors increases. When two processors were used, a maximum speedup

value of 1.871 was obtained with the dynamic reallocation strategy, which is very efficient. Even

B.Y.Y.MOHEDEEN Chapter 6

183

the maximum speedup value of 3.244 is considered efficient when four processors were used.

However, speedup values of 3.483 and 3.284 when six and eight processors were used are not

promising at all. The only positive note is that all the values obtained from the dynamic

reallocation method improved its corresponding static strategy values.

Even the number of reallocations was not expensive enough to degrade the results achieved by

the dynamic algorithm. Again, this proves that a load imbalanced problem is worse than a load

balanced one together with the added costs necessary to reallocate the partitions. Consider the

results obtained when four processors were used with two sub-parts at each exit; a speedup value

of 2.280 was obtained when the problem did not have any dynamic reallocation capabilities and a

value of 3.244 when it did. This problem was found to be less than 75% load imbalanced on 29

occasions and a full reallocation happened every time. Even with this added costs of reallocating

the whole problem 29 times, a significant improvement to the speedup value was achieved.

Hence, the dynamic reallocation code has improved the software‘s running time compared to the

static partitioning strategy.

The total number of sub-domains represented in the table shows different values depending on the

number of processors and of sub-domains used. As can be seen in the cases of when two and

eight processors being used, the total numbers of sub-domains created are different because the

‗thin part removal‘ algorithm (Section 4.3.3) has removed some sub-domains due to their sizes.

6.1.5.3 Pop-load vs Work-load

The time to run the software may be significantly different depending on the level of congestion,

even if there is a low population load. The dynamics of the movement algorithm changes

considerably when there is congestion involved. A simulation containing a population load with

no congestion will run quicker than a scenario dealing with the same population size but with

congestion involved. Thus the simulation is more dependent on the work load the program is

going through, rather than the population size it is trying to move. Since the dynamic reallocation

algorithm tested in the previous section uses the population load (pop-load) criteria to decide a

reallocation, it may have been using the wrong criteria to determine the load imbalance. It is

assumed that it will involve more operations to simulate the evacuation of a population when

there is a packed situation and lesser operations to simulate that same population in a sparsely

B.Y.Y.MOHEDEEN Chapter 6

184

populated area. To confirm these assumptions, some tests were run to determine how much work-

load is associated to a same population but in two different scenarios. The first scenario (Sparse

scenario) comprises of putting a population of 20,000 occupants in a geometry measuring 50m by

500m with a free-flowing exit along the length of the enclosure so that it is sparsely populated

and no major congestion occurred during the evacuation. The second scenario (Packed scenario)

involves using the same population and enclosure but with only a 10m exit so that there is

congestion whilst the evacuation is simulated.

Figure 6.5 illustrates the results tested.

B.Y.Y.MOHEDEEN Chapter 6

185

Figure 6.5 - Difference between Population Load and Work-load

Legend:

The ―Load‖ from the y-axis in Figure 6.5 represents two different metrics based on whether the

PopLoad or the WorkLoad was used, as explained below:

PopLoad (Blue and Green graphs): Number of people

WorkLoad (Red and Purple graphs): Number of CPU operations

The graph in Figure 6.5 shows that the population load has gradual linear decrease as the

simulation progresses and does not reflect any other aspects (like congestions) that may be

affecting the simulation. However, by considering the number of operations (work-load) involved

in moving the population, in the case of the packed scenario the distribution obtained does not

follow a decreasing linear distribution but rather peaked at the point of expected congestion.

However, in the sparse scenario the work-load curve follows the decreasing trend observed from

the pop-load case as it does not involve extra operations needed to simulate congestion. Both

B.Y.Y.MOHEDEEN Chapter 6

186

workload distributions from the two different scenarios reflect the condition of the current

situation in a simulation rather that the population load distributions which only reflect the

remaining population at that point. These work-load lines show that the work associated to move

a population is not linearly dependent of that population and has other operations involved at

certain times of the simulation. Comparing the two work-load lines, which represent the

operations involved to move the same population, shows different behaviours based on the

current situation of the simulation. When there was a packed geometry, the work-load is much

more elevated than the workload incurred when the geometry was sparsely populated.

Hence the work-load criterion, rather than using the population load, is preferred in estimating the

current load balance of the parallel system and has been implemented in the dynamic reallocation

algorithm.

6.1.5.4 Cost function to determine when to reallocate

No definite tests can ascertain at which regular intervals or at which ratio of load imbalance

warrant a reallocation. These factors do not consider the current situation of the parallel system,

such as network latency or memory usage of the processors. So dynamically reallocating a

simulation at a busy network period might not bring the same advantages that reallocating at a

low load network time will provide. Without a dynamic factor to assess the current parallel

system, basing the decision to reallocate the problem on a random value of 75% load imbalance

at a certain time interval might be reallocating the problem at the wrong time.

Hence a dynamic factor has to be taken into account to decide whether to reallocate at any time in

the simulation. A mathematical gain formula was considered to assess the performance of the

parallel system for any repartitioning. Minyard et al. [138] also came up with a similar scheme to

take into consideration the current situation of the parallel system. The idea is to use the latest

data obtained when the last reallocation occurred as well as the time it took to shift a population

load. This formula is called the gain formula and it comprises of the costs of reallocating a

problem at the previous reallocation. These costs comprise of receiving and sending a certain

population, the costs of updating the halos and the movement of the population. The gain formula

is shown in Eq (8):

B.Y.Y.MOHEDEEN Chapter 6

187

Eq (8): Gain formula

Legends:

: Costs of running new workload

: Costs of running old workload

: Reallocation costs

If Gain > 0, then reallocate the problem.

The cost of running the new workload is found as follows:

 Each processor gets its projected new load after applying the LPT to its current workload.

 The costs of running this new workload is calculated by taking the slowest workload costs

obtained at the previous movement operations.

 The minimum cost by the busiest processor is adopted.

The cost of running the old workload is found as follows:

 The cost of running the old workload is calculated in the same fashion as the method used

to get the new workload cost.

The reallocation cost is made up as follows:

 Costs of updating the halos.

 Costs of sending the old population.

B.Y.Y.MOHEDEEN Chapter 6

188

 Costs of receiving the new population.

 The maximum cost obtained by the most overloaded processor is adopted.

A detailed description of the dynamic reallocation algorithm can be found in Appendix 9.7.

B.Y.Y.MOHEDEEN Chapter 6

189

6.1.5.5 Dynamic re-allocation algorithm

The breakthrough in finding the Gain formula to dynamically determine when there is a load

imbalance in the parallel system eventually led to the adopted Dynamic re-allocation algorithm

displayed in Figure 6.6.

Simulation Tick

LoadBalance

Algorithm

(Based on LPT

algo.)

 = 0
Re-allocate nodes to

partitions determined

by LoadBalance Algo.

oddeven

Check for load imbalance by

using the Gain formula Eq.(8)

(in 6.1.5.4)

Yes

Simulation Tick++

LoadBalance

Algorithm

(Based on LPT

algo.)

Simulation Tick

No

Calculate

Movement options

of population

Movement

algorithm on

population

Get costs

associated to

move population

(to be used in Eq.

(8))

Re-allocate nodes to

partitions determined

by LoadBalance Algo.

Get Re-allocation costs

(to be used in Eq. (8))

Figure 6.6 - Dynamic re-allocation algorithm

B.Y.Y.MOHEDEEN Chapter 6

190

6.1.5.5.1 Testing the dynamic reallocation algorithm using the CPRM partitioning strategy

This new algorithm was tested on ‗Test Case 10 - Trafalgar Square replica populated with 60,000

people located towards the centre of the geometry‘ as a direct comparison to the results in Table

6.7 which were obtained from the previous dynamic reallocation algorithm being called at every

30 ticks and reallocate the problem if there was a 75% or below load imbalance). As before, the

Cyclic Potential Route Map partitioning strategy is applied with different number of sub-parts

tested. Two to eight processors were used in the parallel system.

Legends for the terms used in the table:

CPRM: Cyclic Potential Route Map method

P: Number of processors used

N: Number of sub-domains

S: Number of sub-parts at each exit

NR: Number of times reallocation occurred

GF: Gain formula

The average predicted simulation time to evacuate a population of 60,000 from this geometry is

986.67s. The speedup values are displayed in Table 6.8 and the efficiency values in Table 6.9:

B.Y.Y.MOHEDEEN Chapter 6

191

Table 6.8 - Speedup values obtained when the latest formulation of the dynamic reallocation

algorithm (including the gain function) was applied to Test Case 10.

P CPRM

S per

exit

Total

N

Speedup Speedup

Static
Dynamic (30

ticks)
NR

Dynamic

(GF)
NR

% change Dynamic

(GF) v/s Static

2

1 14 1.405 1.797 28 1.839 79 30.89%

2 28 1.695 1.871 28 1.800 79 6.19%

4 56 1.740 1.802 29 1.822 24 4.71%

6 83 1.819 1.779 17 1.788 24 -1.70%

4

1 15 2.096 3.085 27 3.031 14 44.61%

2 29 2.280 3.244 29 2.953 50 29.52%

4 57 2.511 2.942 47 3.021 51 20.31%

6 84 2.448 2.940 38 2.972 63 21.41%

6

1 14 2.566 2.866 34 3.251 2 26.70%

2 28 2.942 3.483 28 3.546 3 20.53%

4 57 3.127 3.434 47 3.748 66 19.86%

6 84 3.310 3.341 42 3.715 100 12.24%

8

1 15 2.570 2.945 13 3.320 2 29.18%

2 29 2.812 3.284 21 3.167 3 12.62%

4 57 2.618 3.409 33 3.337 9 27.46%

6 84 2.970 3.286 20 3.638 70 22.49%

B.Y.Y.MOHEDEEN Chapter 6

192

Table 6.9 - Efficiency values obtained when the latest formulation of the dynamic reallocation

algorithm (including the gain function) was applied to Test Case 10.

P CPRM

 S per exit Total N

Speedup Speedup

Static Dynamic (30 ticks) NR Dynamic (GF) NR

2

1 14 70.25% 89.85% 28 91.95% 79

2 28 84.75% 93.55% 28 90.00% 79

4 56 87.00% 90.10% 29 91.10% 24

6 83 90.95% 88.95% 17 89.40% 24

4

1 15 52.40% 77.13% 27 75.78% 14

2 29 57.00% 81.10% 29 73.83% 50

4 57 62.78% 73.55% 47 75.53% 51

6 84 61.20% 73.50% 38 74.30% 63

6

1 14 42.77% 47.77% 34 54.18% 2

2 28 49.03% 58.05% 28 59.10% 3

4 57 52.12% 57.23% 47 62.47% 66

6 84 55.17% 55.68% 42 61.92% 100

8

1 15 32.13% 36.81% 13 41.50% 2

2 29 35.15% 41.05% 21 39.59% 3

4 57 32.73% 42.61% 33 41.71% 9

6 84 37.13% 41.08% 20 45.48% 70

B.Y.Y.MOHEDEEN Chapter 6

193

The goal of the dynamic reallocation was to improve the speedups obtained when a static

partitioning strategy was used, especially as the number of processors is increasing. One of the

main problems with the static partitioning method was that the system was not showing signs of

scalability. From the results displayed in Table 6.8 and Table 6.9, most of the speedup values

from the dynamic strategy were better than those obtained previously when the static method was

used. So, there is definitely a success in improving the speedup values. Even with the high

number of reallocation, which reached up to a 100, an improvement from 3.341 to 3.715 was

achieved when 6 processors partitioned the problem into 84 sub-domains. But when the number

of reallocations was low, no marked improvements were incurred. For example when eight

processors were used to partition the problem into 29 sub-domains, the dynamic reallocation only

happened three times and no improvements in the speedup values were achieved (3.284 and

3.167) and only slightly improved the results. These latest values again confirm that increased

communication costs incurred by the dynamic reallocation are not a major parallelisation cost

compared to letting the system become imbalanced.

The best speedup values obtained for each P are shown in Figure 6.7, which illustrates the

comparison between the two partitioning strategies.

Figure 6.7 - Comparison between the static and dynamic partitioning strategies when the CPRM

was used

B.Y.Y.MOHEDEEN Chapter 6

194

Figure 6.7 clearly shows a definite improvement in the speedup values obtained when the

dynamic reallocation strategy was applied. The only worrying factor is the scalability of the

parallel system. The dynamic reallocation graph seems to decline when eight processors were

used, suggesting no scope for scalability. However, due to the lack of processors in the cluster

used in this research, this theory could not be tested further.

6.1.5.5.2 Test on the dynamic reallocation algorithm using METIS partitioning strategy

Since the results from using the CPRM partitioning method did not indicate a scope for the

scalability of the system, METIS was used in an attempt to surmount this problem. The number

of sub-domains used by METIS to partition the problem was chosen so that they would be

roughly equal to the ones used by the CPRM method.

Legends for the terms used in the table:

CPRM: Cyclic Potential Route Map method

N: Number of sub-domains

NR: Number of times reallocation occurred

GF: Gain formula

P: Number of processors used

The average predicted simulation time to evacuate a population of 60,000 from this geometry is

986.67s. The speedup values obtained are displayed in Table 6.10 and the efficiency values in

Table 6.11.

B.Y.Y.MOHEDEEN Chapter 6

195

Table 6.10 - Speedup values obtained when METIS was applied to Test Case 10 using the

finalised Dynamic reallocation algorithm (using the gain formula).

P METIS CPRM

 Total N

Speedup

% Change Total N

Speedup

Static Dynamic (GF) NR Dynamic (GF) NR

2

15 1.722 1.840 37 6.85% 14 1.839 79

30 1.683 1.846 37 9.69% 28 1.800 79

60 1.814 1.790 22 -1.32% 56 1.822 24

89 1.644 1.696 19 3.16% 83 1.788 24

4

15 2.929 3.038 83 3.72% 15 3.031 14

30 2.648 3.255 73 22.92% 29 2.953 50

60 2.830 2.961 65 4.63% 57 3.021 51

89 2.753 2.722 65 -1.13% 84 2.972 63

6

15 3.145 3.931 60 24.99% 14 3.251 2

30 3.817 3.783 92 -0.89% 28 3.546 3

60 3.801 3.732 105 -1.82% 57 3.748 66

89 3.282 3.201 128 -2.47% 84 3.715 100

8

15 3.856 4.157 5 7.81% 15 3.320 2

30 3.144 4.081 64 29.80% 29 3.167 3

59 3.990 3.541 114 -11.25% 57 3.337 9

89 3.503 3.097 133 -11.59% 84 3.638 70

B.Y.Y.MOHEDEEN Chapter 6

196

Table 6.11 - Efficiency values obtained when METIS was applied to Test Case 10 using the

finalised Dynamic reallocation algorithm (using the gain formula).

P METIS CPRM

 Total N

Efficiency

Total N

Efficiency

Static Dynamic (GF) NR Dynamic (GF) NR

2

15 86.10% 92.00% 37 14 91.95% 79

30 84.15% 92.30% 37 28 90.00% 79

60 90.70% 89.50% 22 56 91.10% 24

89 82.20% 84.80% 19 83 89.40% 24

4

15 73.23% 75.95% 83 15 75.78% 14

30 66.20% 81.38% 73 29 73.83% 50

60 70.75% 74.03% 65 57 75.53% 51

89 68.83% 68.05% 65 84 74.30% 63

6

15 52.42% 65.52% 60 14 54.18% 2

30 63.62% 63.05% 92 28 59.10% 3

60 63.35% 62.20% 105 57 62.47% 66

89 54.70% 53.35% 128 84 61.92% 100

8

15 48.20% 51.96% 5 15 41.50% 2

30 39.30% 51.01% 64 29 39.59% 3

59 49.88% 44.26% 114 57 41.71% 9

89 43.79% 38.71% 133 84 45.48% 70

From the values obtained when METIS‘ partitioning strategy was used, a slight improvement was

seen when the dynamic reallocation algorithm was applied over those obtained by the static

partitioning method. Again, the dynamic reallocation algorithm is found to be equally good or

better than its static counterpart; the implementation of the dynamic reallocation routine will

B.Y.Y.MOHEDEEN Chapter 6

197

adapt to any geometry or scenario that each simulation can offer. As long as the speedup values

obtained by the dynamic reallocation technique are not much worse than the static method was

achieving, this new algorithm is the appropriate to implement.

The number of times the problem was reallocated does not seem to be a major cost which could

deteriorate the speedup values. As can be seen from Table 6.10, any improvement in the speedup

values does not seem to be dependent on the number of times the problem was reallocated (NR).

When eight processors were used to partition the problem into 15 sub-domains, a speedup value

of 4.157 was improved from 3.856 and only five reallocations were necessary. However, 73

reallocations were needed to improve the speedup from 2.648 to 3.255 when four processors were

used on the geometry partitioned into 30 sub-domains.

The parallel simulation time performance ratios from using both the CPRM and METIS

partitioning technique are displayed in Table 6.12.

B.Y.Y.MOHEDEEN Chapter 6

198

Table 6.12 - Performance ratios over actual simulation times when METIS and CPRM were

applied to Test Case 10 using the finalised Dynamic reallocation algorithm (using the gain

formula).

P METIS CPRM

 Total N Parallel SimTime1 Performance ratio Parallel SimTime Performance ratio

2

15 2.73 2.73

30 2.74 2.67

60 2.65 2.70

89 2.51 2.65

4

15 4.50 4.49

30 4.83 4.38

60 4.39 4.48

89 4.03 4.40

6

15 5.83 4.82

30 5.61 5.26

60 5.53 5.55

89 4.74 5.51

8

15 6.16 4.94

30 6.05 4.69

59 5.25 4.95

89 4.59 5.39

From Table 6.12, neither method could provide a high enough parallel performance ratio over the

simulation time to warrant the parallel implementation to be used in a live evacuation. However,

1
 SimTime: Simulation time (See Section 2.3.4)

B.Y.Y.MOHEDEEN Chapter 6

199

the performance enhancements achieved contributes in investigating types of evacuation

scenarios for planning and training purposes.

Figure 6.8 shows the difference in the speedup values obtained from using both the static

partitioning and dynamic reallocation strategies partitioned by both the CPRM method and the

METIS software.

Figure 6.8 - Comparison between the static and dynamic partitioning strategies from using both

CPRM and METIS

From the graph above, METIS is providing the better speedup values than the CPRM method.

The dynamic reallocation strategy is consistently better than using the static method. The

drawback from using the CPRM method is that the scalability factor is not looking promising,

which is a considerable disadvantage to the expansion of the problem size and/or the addition of

more processor resources. However, using METIS with a dynamic reallocation strategy is

showing a better sign of scalability compared to using the CPRM method. As the number of

processors increases so does the speedup which suggests that the system is scalable.

Another unknown quantity is the optimum number of sub-domains to partition the geometry into.

As can be seen from the results obtained so far, partitioning the geometry into the ―wrong‖

number of sub-domains can lead to poor speedups from either too much communication costs or

from poor load balance. From the tests performed in this chapter, an analysis can be performed to

B.Y.Y.MOHEDEEN Chapter 6

200

determine the number of required sub-domains. Figure 6.9 illustrates which number of sub-

domains gave the best speedup values as the number of processors was increased.

Figure 6.9 - Number of sub-domains which gave the best speedup values

An interesting pattern in the required number of sub-domains to use was discovered when the

dynamic reallocation strategy was applied. When METIS is being used, as the number of

processors was increased, decreasing the number of sub-domains used provided the best speedup

values. Alternately, in the case when the CPRM method was used in the dynamic reallocation

algorithm, the opposite phenomenon was observed. The lower the number of processors used, the

lower the number of sub-domains to be used. Increasing the number of processors suggests

increasing the number of sub-domains accordingly should provide the best results. However,

these findings do not apply if the static partitioning method is being used.

6.1.5.5.3 Test to show how both the dynamic reallocation algorithm and static partitioning

method cope with a particular scenario

Due to the dynamic nature of an evacuation scenario where the simulation can incorporate any

new developments as the evacuation is proceeding, having a static partitioning strategy will

struggle to cope with any changes to the original configurations. On the other hand, a dynamic

B.Y.Y.MOHEDEEN Chapter 6

201

reallocation method can assess any changes in the dynamics of the simulation and reallocate the

problem accordingly to promote load balance.

An example was used so that the evacuation scenario does not favour the static partitioning

method and how the dynamic reallocation algorithm can surmount those problems.

Test Case 11 - Rectangular geometry measuring 500 x 700 nodes with 24 exits, 8 operational and

16 closed.

This geometry is randomly populated by 80,000 occupants. Eight processors were used in the

parallel system for all cases shown in this section.

Figure 6.10 illustrates the geometric configuration of Test Case 11.

Legends:

 : Exit is not operational

 : Serviceable exit

Figure 6.10 - Illustration of Test Case 11

B.Y.Y.MOHEDEEN Chapter 6

202

With this configuration set up, Figures Figure 6.11 Figure 6.13 show the initial population

distribution at 0s then at 30s and at 70s.

Figure 6.11 - Population distribution at 0s

At 30s in the simulation, a pattern can be seen in the route the population is heading; which is to

the serviceable exits.

B.Y.Y.MOHEDEEN Chapter 6

203

Figure 6.12 - Population distribution at 30s

After 70s, the population distribution is clearly displayed as being clustered round the serviceable

exits and there is a distinct separation into eight regions which can be the ideal partitions to the

problem, as the communication costs will be virtually non existent.

B.Y.Y.MOHEDEEN Chapter 6

204

Figure 6.13 - Population distribution at 70s

6.1.5.5.3.1 Static partitioning technique using the CPRM method on Test Case 11

The usual static partitioning algorithm employing the CPRM method was used. The CPRM

method makes each exit create a sub-partition which can then be partitioned into a number of sub-

parts. Hence, this strategy creates sub-domains linked to each exit and then allocates them to

processors. From Figure 6.13, each of the eight processors‘ usage will be optimised if each one is

handling one of the eight functional exits where the population distribution was concentrated.

However, this method allocates the processors in exit ascending order and does not consider

whether an exit is operational or not. Hence in this test case‘s scenario, though each processor has

roughly the same number of sub-domains, they don‘t necessarily have an operational exit each.

So this scenario involves some processors having more than one operational exit whilst others do

not have any.

Figure 6.14 demonstrates the partitioned geometry when the above partitioning technique was

employed on Test Case 11. Hence 24 sub-domains (for the 24 exits) were initially created when

each exit does not incur sub-partitioning.

B.Y.Y.MOHEDEEN Chapter 6

205

Figure 6.14 - Initial Partition of Test Case 11

Each colour in Figure 6.14 represents the regions serviced by a particular processor. Table 6.13

explains the colour associations to the processors and the number of serviceable exits each

processor is responsible for.

B.Y.Y.MOHEDEEN Chapter 6

206

Table 6.13- Physical explanation of the partitioned Test Case 11

Processor Number Colour representation No. of exits No. of usable exits

P0 Light green 3 0

P1 Red 3 3

P2 Blue 3 0

P3 Yellow 3 1

P4 Grey 3 0

P5 Cyan 3 3

P6 Dark green 3 0

P7 White 3 1

Having this partitioned configuration, the static method was forced to keep the partitions and run

the simulation in that state. From Figure 6.13, it can be seen that the ideal partition would be to

only create eight partitions round the serviceable exits and not make the closed exits creating sub-

domains. This static method attempted to balance out the number of exits so that each processor

gets roughly the same number of exits, which would have been a wise strategy had all the exits

been in use. But the scenario with some exits closed does not favour this distribution. A balancing

of the serviceable exits is more beneficial to this problem, rather than balancing the total number

of exits. A simple solution to this problem is to make the partitioning technique only consider

useable exits when partitioning the geometry. However, this strategy will not be able to revert

back to reallocating those regions if their exits become serviceable again since the static

partitioning strategy does not contain this intelligent dynamic factor.

The tests were run when each exit created no extra sub-parts (24 sub-domains), two sub-parts

each (48 sub-domains) and finally four sub-parts each (96 sub-domains). Figure 6.15 depicts

when each exit further created four sub-parts each. Notice the highlighted partition which is sub-

partitioned into four sub-parts and the corresponding partition when it was not sub-partitioned in

Figure 6.14.

B.Y.Y.MOHEDEEN Chapter 6

207

Figure 6.15 - Test Case 11 partitioned using the CPRM method with 4 sub-parts at each exit.

The average predicted simulation time to evacuate a population of 80,000 from this geometry is

1055.5s.The results obtained are shown in Table 6.14 .

Table 6.14 - Speedup and efficiency values when the static partitioning strategy was used for

Test Case 11

No. of sub-parts at each exit Total No. of sub-domains Speedup Efficiency

1 24 3.357 41.96%

2 48 3.324 41.55%

4 96 3.149 39.36%

A maximum speedup value of only 3.357, giving a 41.96% efficiency, could be achieved when

eight processors were used. This is less than half the possible speedup value of 8 achievable.

However, this result is not totally unexpected as only half the processors used (i.e 4) have sub-

B.Y.Y.MOHEDEEN Chapter 6

208

domains containing usable exits, which would make them busy till the end of the simulation. The

other remaining four processors would be idle as soon as their local population loads move on to

the sub-domains serviced by the working processors.

An interesting result is when each sub-domain was sub-partitioned into two and then four sub-

parts. By having this sub-partitioning of the sub-domains, the chance of belonging to a region

containing the serviceable exit is increased, giving the otherwise idle processors a chance to work

for longer than was previously achieved. However, the speedup values obtained in those instances

were lower than when these processors were idle. This is very surprising as the expected results

were supposed to be better than when each sub-domain was not sub-partitioned further. The only

possible explanation for these worse results is the increase in communication costs when more

domains are created.

However, these problems can be resolved by using a dynamic reallocation algorithm. By

constantly monitoring the load balancing situation of the parallel system, the dynamic

reallocation strategy will try to balance out the total load amongst the processors from the parallel

system.

6.1.5.5.3.2 Dynamic reallocation technique using the CPRM method on Test Case 11

To verify the assumptions that having a dynamic reallocation algorithm will resolve the

drawbacks that an evacuation simulation can pose (as explained in Section 6.1.5.5.3), Test Case

11 was used to demonstrate the cababilities of this algorithm . The original partitions calculated

by the initial static strategy are created. As soon as the dynamic algorithm detects a load

imbalance and forecasts a better reallocation of the problem, the whole geometry is reallocated

and the simulation continues. Figure 6.16 shows the reallocated geometry when the dynamic

reallocation algorithm detected a better partitioned problem.

B.Y.Y.MOHEDEEN Chapter 6

209

Figure 6.16 - Test Case 11 being reallocated by the dynamic algorithm

As can be seen by Figure 6.16, each processor (represented by their own unique colour) before

repartitioning may have three usable exits (red and cyan), one exit (white and yellow) or no exits

(blue, grey, light green and dark green). After repartitioning, each processor now has a single

serviceable exit in its domain. Table 6.15 summarises the geometric partitioning of the new

problem.

Table 6.15 - Physical explanation of the partitioned Test Case 11 after being dynamically

reallocated

Processor Number Colour representation No. of exits No. of usable exits

P0 Light green 3 1

P1 Red 1 1

P2 Blue 1 1

P3 Yellow 5 1

P4 Grey 2 1

P5 Cyan 4 1

P6 Dark green 4 1

P7 White 4 1

B.Y.Y.MOHEDEEN Chapter 6

210

Now each processor has one serviceable exit and a random number of closed ones. The dynamic

reallocation algorithm favours load balancing more than equally distributing the number of exits

to the processors. This new reallocated configuration should make the system load balanced near

to the end of the simulation. This should provide better results than when previously tested with

the static technique.

The average predicted simulation time to evacuate a population of 80,000 from this geometry is

1055.5s. Table 6.16 summarises the results obtained and compares it to the results obtained

previously.

Table 6.16 - Results obtained from using the dynamic reallocation algorithm on Test Case 11

No. of

sub-parts

at each

exit

Total No. of

sub-domains

Speedup

%

change

Efficiency
Average No.

of

reallocations Static Dynamic Static Dynamic

1 24 3.357 6.596 96.48% 41.96% 82.45% 10.667

2 48 3.324 6.457 94.25% 41.55% 80.71% 30

4 96 3.149 4.566 45.00% 39.36% 57.08% 132

A maximum speedup value of 6.596, with an efficiency of 82.45%, is very encouraging for a

parallel system of eight processors. The dynamic repartition strategy nearly doubles the results

obtained from the static method. The disappointing result of 4.566 is when each exit sub-

partitioned its area into four subparts, resulting in creating 96 subparts in total. The possible

explanations can be associated to the communication costs incurred with a large number of

domain or to the high number of repartitions (132) which were incurred. However, when each

area at each exit was not sub-partitioned, the problem was reallocated on an average of 10.667.

And when each sub-domain was further sub-partitioned into two sub-parts, the dynamic

reallocation algorithm found on average 30 times a necessity to reallocate the problem. This

scenario produced a speedup value of 6.457, which is very favourable showing an optimised use

of the parallel system.

Figure 6.17 shows the comparison in the speedup values obtained from the static and dynamic

methods.

B.Y.Y.MOHEDEEN Chapter 6

211

Figure 6.17 - Comparison between static and dynamic reallocation methods using the CPRM

method on Test Case 11

As can be seen from Figure 6.17, the dynamic reallocation is a much better strategy than the static

method. A vast improvement can be seen in using the dynamic reallocation algorithm from using

the static version. The application of a dynamic algorithm constantly monitoring the situation of

the parallel system ensures that any unpredictable evacuation scenario will be efficiently

reallocated to provide a better configuration.

6.1.5.5.4 METIS partitioning software on Test Case 11

The CPRM partitioning method on Test Case 11 was applied to contrive a situation which would

make the static algorithm fare badly and the dynamic reallocation algorithm adapt to the

contrived scenario and produced a better result. On the other hand, using the METIS partitioning

software together with the static algorithm on that same Test Case should not particularly

deteriorate its static run. The contrived case only worked when the CPRM method was applied.

In an attempt to make a fair comparison between the two partitioning methods, Test Case 11 was

partitioned by METIS into 25, 50 and 90 parts to roughly match the number of parts created by

the CPRM method (24, 48 and 96 respectively). Having an initial partition, the tests were then

run in both static mode, where all the parts stay allocated to their original processors throughout

B.Y.Y.MOHEDEEN Chapter 6

212

the simulation and a dynamic mode when the original partitions stay the same, but can be

reallocated to a different processor.

6.1.5.5.4.1 Static partitioning strategy using METIS on Test Case 11

METIS partitioned Test Case 11 into 25, 50 and 90 parts and each allocated to a processor. Eight

processors were used in the parallel system to run the simulations. Each colour represents a

processor and please refer to Table 6.13 for a detailed explanation of the colour coded

representation. The partitioned geometries are illustrated in Figure 6.18:

Figure 6.18 - METIS partitioning Test Case 11 into 25, 50 and 90 parts

The average predicted simulation time to evacuate a population of 80,000 from this geometry is

1055.5s. With the static method, the above partitions remained to their original processors

throughout the simulation and the results are tabulated in Table 6.17.

Table 6.17 - Speedup and efficiency values obtained when METIS partitioned Test Case 11 using

a static method on eight processors

Number of sub-domains Speedup Efficiency

25 4.665 58.31%

50 4.302 53.78%

90 3.289 41.11%

B.Y.Y.MOHEDEEN Chapter 6

213

A maximum speedup value of 4.665, with a 58.31% efficiency, was obtained, not surprisingly

better than what was achieved when the CPRM method was used (3.357) as this was a contrived

example to show a worst case scenario involving the static method. However, Test Case 11

should not be a worst case scenario when METIS was involved and thus the results obtained are

not biased. So, having a maximum speedup value of 4.665 when eight processors were used is not

a good indication of the performance of the parallel system.

METIS tries to minimise the number of edges created in an attempt to reduce communication

costs and also tries to make the sub-domains similar in size so that the load balance is optimised.

This initial partitioned geometry starts off having a balanced load and since an evacuation

scenario is unpredictable in nature, the load might not stay in their original sub-domains and thus

making some sub-domains redundant. So, using this static method does not guarantee a load

balanced problem throughout the entire simulation.

6.1.5.5.4.2 Dynamic reallocation strategy using METIS on Test Case 11

Since METIS cannot guarantee a load balanced problem it started with throughout the simulation,

applying the dynamic reallocation algorithm which constantly monitors this factor should be the

ideal method to use. To test this theory, the dynamic reallocation algorithm was applied to Test

Case 11 and Figure 6.19 depicts the transformation from the initial partitions created by METIS

to the reallocate problem.

B.Y.Y.MOHEDEEN Chapter 6

214

Figure 6.19 - Test Case 11 partitioned by METIS showing the initial partitions and then the first

reallocations by the dynamic reallocation algorithm

The average predicted simulation time to evacuate a population of 80,000 from this geometry is

1055.5s. Running these cases using the dynamic reallocation algorithm gives the following

results. The Speedup values obtained previously for the static case are also shown in Table 6.18

(in italics) for ease of comparisons.

Table 6.18 - Speedup and efficiency values obtained when METIS partitioned Test Case 11 using

the dynamic reallocation algorithm.

Number of

sub-domains

Speedup
%

change

Efficiency
Average Number of

reallocations
Static Dynamic Static Dynamic

25 4.665 5.833 25.04% 58.31% 72.91% 93.667

50 4.302 5.078 18.04% 53.78% 63.48% 158.667

90 3.289 3.748 13.96% 41.11% 46.85% 215.5

A maximum speedup value of 5.833, with 72.91% efficiency, was obtained with the use of eight

processors. This case is not a contrived one like the one in 6.1.5.5.3.2 used to expose the inability

B.Y.Y.MOHEDEEN Chapter 6

215

of the static method to resolve an unusual scenario in comparison to the dynamic method‘s ability

to resolve the situation; an increase in the speedup value from 4.665 to 5.833 shows that the

dynamic reallocation algorithm is also better than the static one for a normal non-contrived

scenario. Even with an average number of repartitions of 93.667, which is quite high, was not a

crippling factor to the speedup obtained as there was an increase from using the static version.

This further emphasises how having a load imbalance (here in the static case) is worse than

incurring a high reallocation cost by the dynamic reallocation technique. When the problem was

partitioned into 90 parts, the dynamic reallocation algorithm found on average 215.5 occasions

where there was a load imbalance with a possibility to reallocate to promote the efficiency of the

parallel system. Even with this huge value of reallocations, the speedup obtained (3.748) was

better than letting the system remain load imbalanced which resulted in a speedup of 3.289.

As a means of comparisons, Figure 6.20 illustrates the speedup values obtained from using both

the static method and the dynamic reallocation algorithm when both the CPRM method and

METIS partitions were adapted to Test Case 11.

Figure 6.20 - Comparison between static partitioning and dynamic reallocation methods using

both the CPRM method and METIS on Test Case 11

B.Y.Y.MOHEDEEN Chapter 6

216

Figure 6.20 clearly demonstrates that using the dynamic reallocation algorithm is consistently

better than using the static strategy. When the CPRM method was implemented, Test Case 11

was contrived to show how badly a static method would adapt to such a problem and how the

dynamic reallocation strategy could adapt to the scenario and improve the reallocation of the

problem. Expectedly, the resulting speedup values obtained from the dynamic strategy are much

higher than its static counterpart, but also higher than those obtained when METIS was used.

6.1.5.5.4.3 Idealised static partitioning algorithm on Test Case 11

An idealised partitioning can be constructed from ‗Test Case 11 - Rectangular geometry

measuring 500 x 700 nodes with 24 exits, 8 operational and 16 closed.

This geometry is randomly populated by 80,000 occupants. Eight processors were used in the

parallel system for all cases shown in this section. Looking at Figure 6.21, it can easily be seen

that partitioning this geometry along the lines that were formed as the population‘s paths are

diverging (illustrated by the dotted lines) gives out an ideal partitioning scenario, with eight

roughly similar parts being formed to be allocated to eight processors.

B.Y.Y.MOHEDEEN Chapter 6

217

Figure 6.21 - Ideal partition for Test Case 11

The CPRM method can create this ideal partition if it treats the closed exits as being non-existent.

It is not a good practice to ignore the closed exits as they may become active throughout the

simulation. Hence, the CPRM algorithm was modified to ignore the closed exits for this Test case

only. The purpose of this experiment is to test how expensive the dynamic reallocation algorithm

is when applied to an idealised partitioned problem suited for a static method. Running this

idealised scenario should not require any reallocation as there are eight similar sized partitions

allocated to eight processors, each servicing an exit, and with this strategy the best speedup

achievable is forecasted. Even though the dynamic reallocation is not expected to happen, the

costs of calculating the load imbalance and the communication costs incurred at each odd

simulation tick are still happening, thus adding to the total algorithmic costs. This extra cost can

now be estimated by comparing the results obtained from using both the static and the dynamic

algorithms.

The following tests were performed by using both the static and the dynamic algorithms; eight

processors were used in the parallel system:

B.Y.Y.MOHEDEEN Chapter 6

218

1. The geometry is partitioned into eight similar sub-domains containing a functional exit

each. This scenario is forecasted to be the idealised case for a statically partitioned

problem.

2. Using the CPRM method, each sub-domain created from the above is sub-partitioned into

two sub-parts each and a total of 16 sub-domains were formed.

3. And finally, each sub-domain mentioned in 1 above is sub-partitioned into four subparts

resulting in a total of 32 subparts.

The reason to create more subparts is to ascertain whether the dynamic reallocation algorithm can

improve the forecasted maximum speedup expected, when the idealised case is run by using the

static partitioning algorithm. Having more subparts tends to improve the load balance of a

problem and merging this strategy with the dynamic algorithm which monitors this factor may

give the expected improvements. Figure 6.22 illustrates the tests mentioned above.

Figure 6.22 - Partitions used on the idealised statically partitioned problem

The average predicted simulation time to evacuate a population of 80,000 from this geometry is

1055.5s. The results obtained are shown in Table 6.19:

B.Y.Y.MOHEDEEN Chapter 6

219

Table 6.19 - Results comparing the speedup values obtained from the above tests

No. of

sub-parts

at each

exit

Total

No. of

sub-

domains

Speedup

%

change

Efficiency
Average No.

of

reallocations Static Dynamic Static Dynamic

1 8 6.937 6.847 -1.30% 86.71% 85.59% 1

2 16 6.903 7.137 3.39% 86.29% 89.21% 62.667

4 32 4.574 4.171 -8.81% 57.18% 52.14% 26

As expected, the idealised statically partitioned geometry (1 sub-domain at each functional exit)

produced a slightly better speedup value of 6.937 in static mode compared to the 6.847 obtained

in dynamic mode. The encouraging discovery is, that the total costs incurred to monitor the load

balance of the problem together with the associated communication costs at every odd simulation

tick, is small as only this minor decrease in the speedup value was incurred. The number of

reallocation in this case happened only once, which is the expected forced reallocation at the start

of the simulation to work out the communication costs.

As stated above, the idealised static scenario was forecasted to produce the best speedup

achievable for that geometrical layout. So, sub-partitioning the original sub-domains was to

experiment whether this value can be further improved from the better load balancing than the

increased number of sub-domains brings. By using two sub-parts at each functional exit, a

speedup value of 6.903 was achieved in static mode, which is a marginal decrease from the 6.937

value obtained in the ideal case. This decrease can be associated with increased communication

costs in creating more sub-domains. Though the load balance was better at the start of the

simulation, with no dynamic reallocation algorithm to reallocate the processors‘ loads, they were

stuck to having to simulate the same regions through to the end of the simulation. This expected

maximum speedup value of 6.937 was improved to 7.137, when the dynamic reallocation

algorithm was used on the 16 sub-domains case, confirming the assumptions that more sub-

domains together with the dynamic reallocation monitoring is a good combination to adopt. When

the geometry was partitioned into 16 sub-domains, an average of 62.667 reallocations still

provided an improvement from 6.903 in static mode to 7.137 in dynamic mode. Again this shows

B.Y.Y.MOHEDEEN Chapter 6

220

that the reallocation costs together with the algorithmic costs to determine load imbalance are

negligible.

6.2 Concluding remarks and recommended partitioning strategy

With the capabilities to dynamically monitor the load balancing of the problem as well as taking

into considerations the network latency of the system, the dynamic reallocation strategy is clearly

the method to adopt over using static partitions. The question is which partitioning method to

adopt: the Cyclic Potential Route Map (CPRM) method or METIS partitioning software. Due to

time constraints, more tests could not be performed to compare these two methods whilst using

the dynamic reallocation strategy. However, several tests were performed to compare these two

methods in static mode and the conclusion was that the CPRM does not seem to favour scalability

as the number of processors were increased, unlike METIS which showed a scope for scalability.

From the one test performed in dynamic mode to ascertain scalability, the same conclusions were

reached as when the static strategy was applied. METIS optimises the load balance at the start of

a simulation, hence creating similar sub-domains whilst minimising the number of edges in an

attempt to minimise the communication costs. The CPRM method favours the load balancing of

the problem, but the communication costs tends to be high. Though it was seen that the

communication cost is not a determining factor compared to the load imbalance cost, a method

that tries to minimise both criterion is obviously preferred. Hence, METIS is the recommended

partitioning method to adopt in the partitioning of the problems.

The next question is into how many parts to partition the geometry? From Figure 6.9 in Section

6.1.5.5.2, when the problem was using a static partitioning strategy, no definite patterns could be

found as to the number of sub-domains to adopt. However, when the dynamic reallocation

algorithm was used, a pattern could be observed of depending on which partitioning strategy was

implemented. When the CPRM method was used to partition the problem, the optimal number of

sub-domains to adopt tends to increase as the number of processors was increased. METIS

favoured lesser sub-domains as the number of processors was increased; the lesser processors

used, the less sub-domains to adopt and as processors were being added, it was found that using

lesser sub-domains provided better results. Due to time constraints and lack of more tests, no

B.Y.Y.MOHEDEEN Chapter 6

221

definite value could be ascertained as to be the optimal number of sub-domains to partition a

geometry. A range of 15 - 30 sub-domains provided the best results.

Whilst encouraging computational speedups were obtained to assess the performance of the

parallel system, the parallel performance ratio with respect to simulation times were not fast

enough to provide advice to incident commanders. The performance enhancements achieved

make it viable to investigate different evacuation scenarios for planning and possibly interactive

training purposes.

B.Y.Y.MOHEDEEN Chapter 7

222

7 CONCLUSION

Large-scale events are becoming a common occurrence nowadays, making organisers ensure that

adequate evacuation plans for these places are devised. Actual physical evacuations of very large

areas are neither feasible nor cheap to attempt. Hence, using evacuation software to predict

evacuation scenarios is a much cheaper and accommodating alternative. To gain any insight on

the evacuation solutions, multiple runs and attempts need to take place so as to gain a realistic

picture of the evacuation and how to go about solving the problems. An evacuation software can

permit multiple runs to be done in order to gain valuable information on how to develop

evacuation procedures. Another potentially important use of such a software is during live

evacuation incidents. As an incident is unfolding, evacuation software could be used to evaluate

the current situation to find an optimal evacuation route to successfully perform a safe and quick

evacuation.

7.1 Evacuation modelling

Evacuation modelling is well established as part of building designs to ensure performance based

safety. When used on small geometries, evacuation models provide very fast results and can take

hours to simulate larger areas. During live emergencies incident commanders cannot wait hours

to get the evacuation results from the models. An evacuation model must be fast enough in order

to permit the commanders to plan an appropriate evacuation route.

There are several evacuation models that can simulate large-scale regions and several which can

only simulate smaller geometries. However, many of the models capable of simulating very large

areas either provide basic evacuation times without any behavioural considerations of the

evacuations. Models which can provide extra evacuation information tend to take much longer to

render the results and so they are more computationally expensive. buildingEXODUS is such a

model which can incorporate behavioural attributes in its evacuation simulations. Parallel

B.Y.Y.MOHEDEEN Chapter 7

223

processing is a possible solution to reduce the run times of the software when large-scale

evacuations are simulated.

In creating a parallel implementation of the buildingEXODUS evacuation software, some

requirements were imposed by the software developers. The requirements need to satisfy the

following criteria:

 There should be no change in the input or output files when using the parallel version.

 The parallel implementation is intended to function on a Microsoft Windows

environment.

 Minimal additional investment is necessary by the users.

 The parallel version must work for any number of processors available, ideally connected

via a local area network (LAN).

 Finally, one source code of the software including the parallel implementation is desired.

7.1.1 Research Objectives

Two main research objectives were set at the start of this work and are listed below:

1. Can parallel computing techniques be usefully applied to buildingEXODUS to enable

faster wall-clock times and also to load vast cases, which cannot be loaded on a single

processor?

The development and testing of the parallel implementations of miniEXODUS and the

subsequent parallelisation of buildingEXODUS demonstrated that it was feasible to gain

improved computational performance.

 How much speed-up, i.e how much faster a parallel version is to its serial version, can be

obtained from using the parallel techniques.

B.Y.Y.MOHEDEEN Chapter 7

224

From the different partitioning methods tried on varying geometries, the majority of

cases resulted in a speedup values greater than one; suggesting that the parallel

version is faster than the serial one. As seen throughout this work, the speedup values

obtained are highly dependent on the geometry layout used together as well as the

scenario involved in the simulation. An example to relate to this finding is the fact

that 10 processors provided a speedup of 15.28 when Test Case 4 (Section 5.1.1) was

used and a speedup value of 3.379 when Test Case 8 (Section 5.1.5.2.5) was used to

run the simulation. Hence, this objective of attaining faster wall-clock times with the

parallel version is realised.

 By using all the combined memory of the different computers on the network, how big a

scenario can be loaded and run?

The initial scheme of loading different parts of a geometry on each processor was

researched and tested. It is possible to load up parts of a geometry on each processor

by using mini cloned nodes (Section 4.2.7.2.1) to work out which parts are on which

processor. However, this method can potentially create extra data communications as

the simulation is running, due to the connectivity with all the nodes within a geometry

(Section 4.2.7.1).

A solution to this setback is to use normal nodes for the partitions inherent to the

processors and mini static nodes (nodes holding less attributes than a normal node as

explained in 4.2.7.1) to represent the rest of the geometry. Hence, vast geometries are

capable of being loaded on a processor due to the reduced attributes of the mini static

nodes that make up most of the domain. In the eventuality of having such a vast

problem that this strategy cannot be applied to represent the geometry on one

processor, the software is able to load only parts of a geometry on each processor.

However, due to time constraints more research needs to be done in this area as it has

not been fully explored for any eventual problems that may arise when using this

strategy.

 Is the parallel system scalable? Will increasing the number of processors on the network

increase the speedup?

B.Y.Y.MOHEDEEN Chapter 7

225

From the tests done on the available processors (See Chapters 5 and 6), the parallel

system is definitely scalable. Due to the limited number of processors available for

this research, the tests were conducted on up to 10 processors. In general whichever

partitioning method is being used, as the number of processors was increased, an

increasing trend was observed in the speedup achieved.

2. Which partitioning techniques will yield the optimal partitioning strategies?

 How to partition the problem, so that the communication costs is minimised and the load

balancing is preserved?

Whilst investigating the different partitioning methods to promote these criteria, it

was found that maintaining a load balanced problem is more deterministic in getting

good speedup values, rather than trying to minimise communication costs. No specific

partitioning technique could be found to apply to all simulations as the nature of an

evacuation model varies too much in both the geometries used as well as the different

scenarios possible. Hence, a dynamic reallocation partitioning technique was

eventually adopted to monitor the parallel systems for any load imbalance. This

strategy inevitably incurs more communication costs but preserves the significant

determining factor, which is the load balance of the problem.

 Is a generic partitioning software better suited for partitioning the problem, or must a

specialised partitioning algorithm be created.

Having devised numerous partitioning algorithms, it was found that no specific

algorithm could be adopted due to the varying nature of the evacuation simulations.

The two best strategies were a specially devised technique called the Cyclic Potential

Route Map partitioning (CPRM) method and the partitioning software METIS. The

main difference between these two techniques is that the CPRM method does not

guarantee equal sized partitions compared to METIS, which promotes this feature as

well as minimising communication costs. However, both methods did not guarantee

good results if a static partition strategy is applied. The load balance of the problem is

critically important in obtaining good speedup values and neither method can

guarantee a load balanced problem throughout the simulation. After much tests in

B.Y.Y.MOHEDEEN Chapter 7

226

using these two strategies, it was decided to apply METIS to devise an initial partition

of the geometry and then use the specially devised dynamic reallocation algorithm as

presented in Section 6.1.5.4 to monitor any load imbalance that may arise from using

those partitions.

 Is dynamic repartitioning an option to consider? Will extra communication and algorithmic

costs be a limiting factors on the advantages gained from a dynamic repartition?

At the beginning of this research, it was thought that performing a dynamic

repartitioning requires a huge amount of data communications and migration, which

can cancel out the advantages gained by the parallel techniques. However, when

running the problems with a static partitioning technique, it was found that

communication cost is not a limiting factor for the parallel system. The determining

factor for a good parallel performance is the load balance of the problem. Since the

dynamic repartitioning technique is mostly to monitor the load balance of the

problem, so it was decided to implement this strategy. A dynamic repartitioning

technique could not be fully integrated due to time constraints; however, a dynamic

reallocation technique was adopted. From the tests performed in Chapter 6, clearly the

dynamic reallocation technique exceeded the results obtained from using the static

partitioning strategy.

7.2 buildingEXODUS evacuation model

EXODUS is a suite of software designed to simulate the evacuation of people from various

enclosures with buildingEXODUS part of this suite of software. buildingEXODUS simulates the

evacuation of people from the built environment as well as open spaces. The enclosure is

represented by a set of nodes interconnected by arcs, which permit the movement of the

occupants. It uses object orientated techniques together with rule based technology to permit the

movement of occupants by a set of rules and heuristics. buildingEXODUS‘ run-times are quick if

the problem is relatively small. On the other hand, depending on the specification of the CPU

used, the software may take hours to simulate larger problems and even crashes if the problem

B.Y.Y.MOHEDEEN Chapter 7

227

size keeps increasing. Parallel processing can be used to reduce run times of the simulations as

well as permit the evacuation from very large domains impossible to run on a single CPU.

7.3 Parallel implementation of the buildingEXODUS evacuation
model

A parallel implementation of the buildingEXODUS model was achieved by using the master-

slave parallel architecture. The domain partitioning technique was selected as it was more suited

for an evacuation model as explained in Section 4.2.3.3. Each processor holds parts of a domain

and consequently the occupants of those regions. The domains are static in nature and they stay

on their original processor whilst the population are dynamic and can belong to several processors

in the course of the simulation depending on where they are. Agents crossing over boundaries are

enabled by the use of halo nodes and the message passing interface to permit the communication

amongst the processors. A successful parallelisation of the buildingEXODUS software was

achieved, hence honouring the first research objective.

7.4 Optimal partitioning strategy

The next research objective was to find an optimal partitioning strategy to divide up the problem.

Since each geometry is different in layout as well as having a variety of evacuation scenarios

suited to particular enclosures, an attempt to find the ideal partitioning technique which must

minimise communication costs whilst preserving load balance was researched. This involved

looking at both static and dynamic partitioning technique.

7.4.1 Static partitioning technique

A static partitioning strategy is the decomposition of a problem at the start of the problem and

each part is allocated to a unique processor till the end of the simulation. Several partitioning

methods were devised and tested as well as using the partitioning software METIS. Different

types of geometries were used to test these partitioning methods and the two successful methods

B.Y.Y.MOHEDEEN Chapter 7

228

were the Cyclic Potential Route Map (CPRM) method and METIS, depending on the geometries

as well as the size of the parallel architecture. However, both methods did not indicate a scope for

the scalability of the system. Since the evacuation dynamics can be unpredictable, most problems

become load imbalanced as the simulation progresses, which is a crucial factor to reduce the

speedup achievable. The formulation of a static partitioning strategy cannot cope with this load

imbalance and thus is compelled to run with an unbalanced load. Another important aspect of an

evacuation is the sudden changes to either the layouts; e.g closure of exits, or some other factors;

e.g fire spread, a static partitioning formulation cannot modify its partitions to accommodate

these phenomena.

7.4.1 Dynamic reallocation technique

An alternative to using a static partitioning strategy was devised and a dynamic reallocation

algorithm was formulated. This dynamic reallocation strategy is able to solve the load imbalance

problem mentioned in the previous section as well as adapt to any sudden changes in the

evacuation dynamics. This algorithm continuously monitors the load balance of the processors

and reallocates the load by using the longest processing time (LPT) algorithm when load

imbalance occurs. After much research was done to decide when to reallocate a problem, a gain

formula was used to decide the outcome of the reallocation decisions as explained in Section

6.1.5.4. This gain formula calculates whether there is an advantage to reallocate the problem with

a new balanced load compared to letting it run on its current load. Since it uses the costs of

running the system at the previous time step, the gain formula is also dynamic in nature and uses

only the latest costs, which can change depending on the network latency or some other

synchronisation issues.

A successful dynamic reallocation strategy was devised and from the tests performed, was found

to be an improvement over using its static version. From the tests done, the dynamic algorithm

solved both the load imbalance issues as well as adapted to accommodate a geometry which had

closed exits being serviced by some processors, which became idle when the static version was

used. The dynamic reallocation algorithm reallocated the idle processors to regions having

serviceable exits and thus prevented these processors from becoming idle. Hence, A novel

intelligent dynamic re-allocation technique was devised so that the performance of the parallel

B.Y.Y.MOHEDEEN Chapter 7

229

system is optimised. The algorithm continuously monitors the current performance of the parallel

system, by using the previous time-step‘s parallel performance and uses a gain formula to decide

whether to re-allocate the problem for a more load-balanced one.

7.5 Final recommendation

Having managed an improvement over using the static partitioning technique, the dynamic

reallocation strategy was the final chosen method and METIS partitioning the problem into 15-30

sub-domains was found to uniformly produce scalable results. Due to time constraints, further

research into a specific value for the number of sub-domains for METIS to partition the problem

was not achievable. In addition, the other dynamic repartitioning strategies, like completely

repartitioning the problem instead of only re-allocating the same parts to different processors,

remains for further work.

Whilst encouraging computational speedups were obtained to assess the performance of the

parallel system, the parallel performance ratio with respect to simulation times were not fast

enough to provide advice to incident commanders. The performance enhancements achieved

make it viable to investigate different evacuation scenarios for planning and possibly interactive

training purposes.

7.6 Thesis Contribution

Several contributions were made upon the completion of the research in the domain partitioning

and software modifications towards the parallelisation of the buildingEXODUS evacuation

software. These contributions are listed below:

 An extensive literature review was carried out on the subjects of evacuation models, parallel

computing and partitioning methods.

 This work also contributed to the parallelisation of the buildingEXODUS evacuation model

via the development of miniEXODUS.

B.Y.Y.MOHEDEEN Chapter 7

230

 A thorough investigation was carried out which identified the optimal partitioning strategy to

adopt in the parallel version of buildingEXODUS, so that communication costs are

minimised and load balance is preserved.

 A novel intelligent dynamic re-allocation technique was devised so that the performance of

the parallel system is optimised. The algorithm continuously monitors the current

performance of the parallel system, by using the previous time-step‘s parallel performance

and uses a gain formula to decide whether to re-allocate the problem for a more load-

balanced one.

Due to time constraints, all the avenues related to this research could not be explored. However, a

comprehensive identification of which research areas to investigate was identified as future work.

B.Y.Y.MOHEDEEN

231

8 FURTHER WORK

Most of the goals set at the start of this research have been achieved. This included the

investigation of static partitioning strategies and the implementation of a novel dynamic load

balancing system. As an outcome of this research a number of avenues could be investigated

further.

8.1 Different parts of the geometry instead of the whole geometry
on each processor

Currently, the geometry is being partitioned to identify which sub-domains belong to which

processor. However, instead of deleting the nodes which do not belong to a processor‘s sub-

domain, all the nodes are kept but with the ones not on the sub-domain kept as static ones as

explained in Section 4.2.7.2. The reason for that is because all the nodes‘ connectivity and

interactions are linked and having the whole geometry on each processor reduces the amount of

communication amongst the processors.

However, a technique was devised to only load each processor‘s sub-domain instead of the whole

geometry as explained in Section 4.2.7.2.1. Due to a lack of time to fully explore this technique,

it is not being implemented at the moment. Consequently, it is recommended to investigate this

technique furtherso as to allow the simulations of very large-scale geometries to be considered.

8.2 Extra multi-halo regions associated with the dynamic
reallocation strategy

As explained in 6.1.1.2, extra multi-halo regions were created at the start of the simulation in

order to accommodate any partitions that the dynamic reallocation algorithm renders. These

multi-halo regions are not always necessary, especially if they are between two neighbouring

regions serviced by the same processor, and they pose a high communication cost with respect to

B.Y.Y.MOHEDEEN

232

the master node which is responsible to simulate those regions. This method, though not an ideal

one, is still preferable than when the static partitioning strategy was used. However, a scope to

improve this technique is yet to be explored.

8.3 Complete repartitioning of the geometry

At present, when dynamic reallocation occurs, the different sub-partitions stay the same but only

migrate to different processors. Each sub-partition is an entity having different attributes in the

program. They basically contain the nodes residing in that region and in consequence the

occupants of these nodes. They are basically static in nature and nothing changes within them

except to which processor they belong to. This method is easier to manage as the dynamic

reallocation algorithm uses the information gained from each region to decide when to repartition.

Hence, only the population within each region needs migrating and not the nodes, which greatly

reduce the load of the data migration. Figure 8.1 illustrates the current dynamic reallocation

strategy based on having static sub-domains.

Figure 8.1 – Illustration of static partition reallocation

An alternative technique is the use of dynamic partitions if an imbalance occurs. The problem

space is repartitioned to create a new balanced partition; see Figure 8.2.

B.Y.Y.MOHEDEEN

233

Figure 8.2 – Illustration of dynamic repartition

These dynamic partitions cannot be applied from the methodologies already in place for the

above technique, as the sub-partitions are static in nature and do not permit the migration of the

nodes as well.

Due to the time constraints, this approach could not be explored. However, it is felt that this is

worthy of further examination. Upon a successful implementation of this technique, the problem

of having extra multi-halo regions; see Section 6.1.1.2, might even be averted.

8.4 Optimal number of sub-domains to partition a geometry

From the research performed, a definite value has not been established for the number of sub-

domains required to partition a geometry and so optimise the use of a parallel system. Again, due

to time constraints, an extensive investigation into that matter could not be performed. Based on

the few tests performed, it was recommended that METIS partitions a domain into 15 - 30 sub-

domains. However, this range of values proposed is certain to be case dependent and hence more

tests are recommended to be performed to identify either a ratio or equation of the optimal

number of sub-domains to partition a problem.

B.Y.Y.MOHEDEEN

234

8.5 Further Research Questions.

As a result of this research a number of further questions have been identified.

8.5.1 What happens if one of the processors becomes inactive due to some

hardware failure?

 The current implementation does not cater for this situation and the whole

simulation will stall if ever this scenario occurs.

 A fault tolerant parallel system must be devised in order to cater for this scenario,

where the problem is repartitioned amongst the remaining working processors

during run-time.

 Since the dynamic reallocation algorithm is already capable to reallocate the

problem during run-time, this algorithm could be re-used to solve this problem

whenever it arises.

8.5.2 Will the current parallel implementation of buildingEXODUS be portable for

the Continuous or hybrid model of the software [36]?

 Currently, the parallel version researched in this thesis is not portable on the

continuous version of buildingEXODUS. The reasons being that:

i. The partitioning of the geometry for the parallel runs is performed by

using nodes, which the continuous version lacks. METIS uses the nodes‘

spatial attributes as well as their inter-connectivity in order to perform the

partitioning of the problem.

ii. The movement algorithm that was parallelised uses a nodal approach to

move the population, where the nodes attract people onto it compared to

B.Y.Y.MOHEDEEN

235

the people deciding where to move. Hence, the parallelised movement

algorithm itself cannot cater for the continuous version.

 There are potentials to modify the parallel implementation to include the

continuous / hybrid model as well.

i. The method of partitioning the geometry can be performed by either using

the coordinates of the geometry or using a distance / potential map that the

continuous version supports. Further research needs to be done to

ascertain whether METIS can still use those suggestions to partition the

problem.

ii. A key aspect of the continuous /hybrid version of buildingEXODUS is its

ability to discretise a space by using a combination of macroscopic (coarse

nodes) and microscopic (fine and continuous) modelling methodologies

[36]. Hence, the different compartments created to represent each set of

the discretised space can be used as a partition.

iii. The current movement algorithm was successfully modified for the

parallel implementation of the software, hence a similar methodology can

be applied to the movement algorithm that the continuous / hybrid version

in order to support any parallel implementation.

8.5.3 In a scenario comprising of an unrestricted number of available processors,

what is the optimal number of processors to use in order to benefit from the

parallel implementation?

Unfortunately, this situation was not possible to investigate in this research, due to the limited

number of processors that were available. However, as Ierotheou et al. [153] corroborated, a

domain decomposition of a fixed problem size does not scale well with an increasing number

of processors, hence there will come a point where adding too many processors will make the

parallel system unprofitable. A possible resolution for this scenario is to allocate as many

processors as the number of sub-domains created. The problem with this proposal is that a

B.Y.Y.MOHEDEEN

236

processor managing only one sub-domain might become idle sooner than if a processor was

handling several sub-domains. However, this needs to be further investigated as it is unclear

what effects extra idle processors have on the parallel system.

237

REFERENCES

1. Lämmel, G., Rieser, M., and Nagel, K. (2008). Bottlenecks and congestion in evacuation

scenarios: A microscopic evacuation simulation for large-scale disasters. Proc. of 7th Int.

Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal.

2. The Cabinet Office (2006). Evacuation and Shelter Guidance. Non-statutory guidance to

complement Emergency Preparedness and Emergency Response & Recovery. HM

Government. Available at

http://interim.cabinetoffice.gov.uk/media/132739/evac_shelter_guidance.pdf . Accessed

on 28
th

 June 2011.

3. Wolshon, B., Urbina, E., Wilmot C., and Levitan, M. (2005). Review of policies and

practices for hurricane evacuation. I: Transportation planning, preparedness, and response.

Natural hazards review, 6 (2005), p.129.

4. Batty, M., Desyllas, J., and Duxbury, E. (2003). The discrete dynamics of small-scale

spatial events: agent-based models of mobility in carnivals and street parades, International

Journal of Geographical Information Science, 17(7), pp. 673 - 697.

5. Johnson, C.W. (2006). The Application of Computational Models for the Simulation of

Large-Scale Evacuations following Infrastructure Failures and Terrorist Incidents. in Proc.

NATO Research Workshop on Computational Models of Risk to Infrastructure, pp. 9 - 13.

6. Gwynne, S., Galea, E., and Owen, M. (1997). Escape as a social response. In Paper No.

97/IM/26, CMS Press.

7. Shields, T. and Proulx, G. (2000), The Science of human behaviour: past research

endeavours, current developments and fashioning a research agenda. Proceedings of the

sixth international symposium on fire safety science, IAFSS, pp. 95 - 114.

http://interim.cabinetoffice.gov.uk/media/132739/evac_shelter_guidance.pdf

B. Y. Y. MOHEDEEN

238

8. Kuligowski, E.D. (2003). The Evaluation of a Performance-Based Design Process for a

Hotel Building: The Comparison of Two Egress Models., Ph.D. Dissertation, Department of

Fire Protection Engineering, University of Maryland, College Park.

9. Yuan, W. and Tan, K. (2007). An evacuation model using cellular automata. Physica A:

Statistical Mechanics and its Applications, 384 (2), pp. 549 - 566.

10. Rogsch, C., Klingsch, W., Seyfried, A., and Weigel, H. (2007), How reliable are

commercial software-tools for evacuation calculation?. Interflam 2007 - Conference

Proceedings, pp. 235 - 245.

11. Kuligowski, E.D. and Gwynne, S.M.V. (2005). What a User Should Know When Selecting

an Evacuation Model. Fire Protection Engineering Magazine, Human Behaviour in Fire

Issue, Fall: pp. 30 – 40.

12. Kuligowski, E.D. and R.D. Peacock. (2005). A Review of Building Evacuation Models.

Report NIST TN 1471, MD: National Institute of Standards and Technology, Gaithersburg.

13. Castle, C.J.E. (2007) Guidelines for Assessing Pedestrian Evacuation Software

Applications. Centre for Advanced Spatial Analysis (University College London): Working

Paper. p. 115. London, UK.

14. Santos, G. and Aguirre, B.E. (2004). A Critical Review Of Emergency Evacuation

Simulation Models. In: Proceedings of building occupant movement during fire

emergencies, Gaithersburg, Maryland.

15. Fang, Z., Yuan, J., Wang, Y., and Lo, S. (2008), Survey of pedestrian movement and

development of a crowd dynamics model, Fire Safety Journal, 43 (6), pp. 459 - 465.

16. Grandison, A., Muthu, Y., Lawrence, P., and Galea, E.R. (2007). Simulating the evacuation

of very large populations in large domains using a parallel implementation of the

buildingEXODUS evacuation model. Proceedings of the 11th International Fire Science

and Engineering Conference, Interflam 2007, 3-5th September 2007, Royal Holloway

College, University of London, UK, Volume 1, pp. 259 - 270. ISBN 978 0 9541216-8-6,

2007.

B. Y. Y. MOHEDEEN

239

17. Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., and Seyfried, A..

(2008). Evacuation Dynamics: Empirical Results, Modeling and Applications. Encyclopedia

of Complexity and System Science. arXiv:0802.1620v1.

18. Ko, S., Spearpoint, M., and Teo, A. (2007). Trial evacuation of an industrial premises and

evacuation model comparison, Fire Safety Journal, 42 (2), pp. 91 - 105.

19. Shih, N., Lin, C., and Yang, C. (2000). A virtual-reality-based feasibility study of

evacuation time compared to the traditional calculation method, Fire Safety Journal, 34 (4),

pp. 377 - 391.

20. Lo, S., Fang, Z., Lin, P., and Zhi, G. (2004). An evacuation model: the SGEM package, Fire

Safety Journal, 39 (3), pp. 169 - 190.

21. Johnson, C. (2005). Applying the lessons of the attack on the world trade center, 11th

September 2001, to the design and use of interactive evacuation simulations, Proceedings of

the SIGCHI conference on Human factors in computing systems, pp. 651 - 660.

22. Pelechano, N. and Malkawi, A. (2008). Evacuation simulation models: Challenges in

modeling high rise building evacuation with cellular automata approaches, Automation in

Construction, 17 (4), pp. 377 - 385.

23. Zarboutis, N. and Marmaras, N. (2007). Design of formative evacuation plans using agent-

based simulation, Safety Science, 45 (9), pp. 920 - 940.

24. Gwynne, S., Galea, E.R., Owen, M., Lawrence, P.J., and Filippidis, L. (1999). A review of

the methodologies used in evacuation modelling. Fire and Materials (John Wiley and

Sons), 23 (6), pp. 383 - 388.

25. Zheng, X., Zhong, T., and Liu, M. (2009). Modeling crowd evacuation of a building based

on seven methodological approaches. Building and Environment, 44 (3), pp. 437- 445.

26. Glinsky, E. and Wainer, G. (2002), Definition of Real-Time simulation in the CD++ toolkit.

In Proceedings of SCS Summer Computer Simulation Conference, San Diego, CA.

B. Y. Y. MOHEDEEN

240

27. Galea, E., Lawrence, P., Blake, S., Gwynne, S., and Westeng, H. (2004). A preliminary

investigation of the evacuation of the WTC North Tower using computer simulation.

Proceedings of the 3rd International Symposium on Human Behavior in Fire. Interscience

Communications Ltd. (2004), pp. 167 – 180.

28. Galea, E. R., Lawrence, P., Blake, S. J., Dixon, A. J., and Westeng, H. (2007). The 2001

World Trade Centre evacuation. In: Pedestrian and Evacuation Dynamics 2005. Springer

Berlin. Heidelberg, Berlin, Germany, pp. 225 - 238. ISBN 9783540470625

29. Galea, E.R., Sharp, G., Lawrence, P.J., and Holden, R. (2008). Approximating the

Evacuation of the WTC North Tower Using Computer Simulation. Journal of Fire

Protection Engineering, 18 (2), pp. 85 - 115.

30. Galea, E.R., Gwynne, S., Lawrence, P.J., Filippidis, L., and Blackshields, D. (2000).

buildingEXODUS V3.0 User Guide and Technical Manual, Fire Safety Engineering Group,

University of Greenwich, UK.

31. Klupfel, H. and Meyer-Konig, T. (2003). Characteristics of the PedGo Software for Crowd

Movement and Egress Simulation. 2nd International Conference in Pedestrian and

Evacuation Dynamics (PED), University of Greenwich, London, U.K. pp. 331 - 340.

32. Hoskin K. (2004). Fire protection and evacuation procedures of stadia venues in New

Zealand. Department of Civil Engineering, University of Canterbury, Private Bag 4800,

Christchurch, New Zealand, pp. 3–7.

33. Wall, J.M. and Waterson, N.P. (2002). Predicting Evacuation Times – A Comparison of the

STEPS Simulation Approach with NFPA 130. Fire Command Studies, 1 (1).

34. Ronald, N., Sterling, L., and Kirley, M. (2007). An agent-based approach to modelling

pedestrian behaviour. International Journal of Simulation. Systems, Science and

Technology, special issue on IT-Modelling in Logistics and Transport, 8 (1), pp. 25 - 38.

35. Legion Pedestrian Simulation. [On-line]. http://legion.com/ . Accessed on 18
th

 July

2011.

http://legion.com/

B. Y. Y. MOHEDEEN

241

36. Chooramun, N., Lawrence, P.J., and Galea, E.R. (2010). Implementing a Hybrid Space

Discretisation Within An Agent Based Evacuation Model. Pedestrian and Evacuation

Dynamics 2010, NIST, Maryland USA, March 8-10 2010, pp. 449 – 458, ISBN-10:

1441997245, ISBN-13: 9781441997241.

37. Kumar, V. (2002). Introduction to parallel computing. Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA

38. Almasi, G.S. and A. Gottlieb. (1988). Highly parallel computing. Menlo Park, CA (USA);

Benjamin-Cummings Pub. Co.

39. Grandison, AJ. (2003). Improving the regulatory acceptance and numerical performance of

CFD based fire-modelling software. Ph.D. Thesis, University of Greenwich, London, UK.

40. Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach, G.,

Garcia, M., Boussuge, J., and Poinsot, T. (2009). High performance parallel computing of

flows in complex geometries: I. Methods, Computational Science and Discovery 2, 015003.

41. Kaludercic, B. (2004). Parallelisation of the Lagrangian model in a mixed Eulerian–

Lagrangian CFD algorithm. Journal of Parallel and Distributed Computing, 64 (2), pp. 277

- 284.

42. Galea, E. and Ierotheou, C. (1992). Fire-field modelling on parallel computers. Fire Safety

Journal, 19 (4), pp. 251 - 266.

43. He, F. and Wu, J. (2002). An efficient parallel implementation of the Everglades Landscape

Fire model using checkpointing. Parallel Computing, 28 (1), pp.65 - 82, [doi:

10.1016/S0167-8191(01)00126-0].

44. Radi, B. and Estrade, J. (1998). Adaptive parallelization techniques in global weather

models. Parallel Computing, 24 (9), pp.1167 - 1175, [doi: 10.1016/S0167-8191(98)00051-

9].

45. Marrocu, M., Scardovelli, R., and Malguzzi, P. (1998). Parallelization and performance of a

meteorological limited area model. Parallel Computing, 24 (5-6), pp. 911 - 922.

B. Y. Y. MOHEDEEN

242

46. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., and Werthimer, D. (2002). SETI@

home: an experiment in public-resource computing. Communications of the ACM (ACM),

45 (11), pp.56 - 61, [doi: 10.1145/581571.581573].

47. Fire Safety Engineering Group. [On-line]. http://fseg.gre.ac.uk/exodus/index.html.

Accessed on 18
th

 July 2011.

48. Galea, E. and Gwynne, S. (2000). Principles and practice of evacuation modelling. A

collection of lecture notes for a short course prepared by the Fire Safety Engineering Group,

London, CMS Press .

49. Johnson, C.W. and Nilsen-Nygaard, L. (2008). Extending the use of evacuation simulators

to support counter-terrorism: Using models of human behaviour to coordinate emergency

responses to improvised explosive devices. Proceedings of the 26th International

Conference on Systems Safety, Vancouver, Canada, International Systems Safety Society,

Unionville, VA, USA.

50. Johnson, C. (2008). Using evacuation simulations for contingency planning to enhance the

security and safety of the 2012 Olympic venues. Safety Science, 46 (2), pp. 302 – 322, [doi:

10.1016/j.ssci.2007.05.008].

51. Oven, V. and Cakici, N. (2009). Modelling the evacuation of a high-rise office building in

Istanbul. Fire Safety Journal, 44 (1), pp. 1 - 15.

52. Batty, M. (2003). Agent-Based Pedestrian Modelling. Advanced Spatial Analysis: The

CASA Book of GIS, ESRI Press, Redlands, CA, pp. 81 – 105.

53. Kretz, T. (2007). Pedestrian Traffic Simulation and Experiments." PhD thesis, Universität

Duisburg-Essen. urn:nbn:de:hbz: 464-20070302-120944- 7.

54. Ekman, M., Warg, F., and Nilsson, J. (2005). An in-depth look at computer performance

growth. ACM SIGARCH Computer Architecture News, 33 (1), pp. 144 – 147, [doi:

10.1145/1055626.1055646].

http://fseg.gre.ac.uk/exodus/index.html

B. Y. Y. MOHEDEEN

243

55. Kareem, P.A., Noorbasha, F., and Singh, R.A. (2010). Study the Task completion Time of

the Benchmarks @1GHz, 2GHz and 3GHz Processors, e-Journal of Science and

Technology, 5 (2), pp. 15 - 22.

56. Thomas Jr, S. (2004). State Regulation of Cruise Ship Pollution: Alaska's Commercial

Passenger Vessel Compliance Program as a Model for Florida. Journal of Transnational

Law & Policy, 13 (2), pp. 533-573.

57. Sweetman, B. (2003). 600 tons of technology. Air Transport World, 40 (4), pp. 32-36.

58. Fruin, J. (1993). The causes and prevention of crowd disasters. Engineering for crowd

safety, Elsevier, New York, pp. 99 – 108.

59. Algadhi, S.A.H. and Mahmassani, H. (1990). Modelling crowd behavior and movement:

Application to Makkah pilgrimage. Transportation and traffic theory, Proceedings of the

11th International Symposium on Transportation and Traffic Theory, Yokohama, Japan,

Elsevier, New York, pp. 59 – 78.

60. Schäfer, R.P., Thiessenhusen, K.U., and Wagner, P. (2002). A traffic information system by

means of real-time floating-car data. Proceedings of ITS World Congress, pp. 11 - 14.

61. Sharma, S. and Gifford, S. (2005). Using RFID to evaluate evacuation behavior models.

Fuzzy Information Processing Society, NAFIPS, pp. 804 - 808.

62. Gupta, A. and Yadav, P. (2004). SAFE-R: a new model to study the evacuation profile of a

building, Fire Safety Journal, 39 (7), pp. 539 - 556.

63. MacDonald, M. (2006). STEPS—Simulation of Transient Evacuation and Pedestrian

Movements—User Manual. Unpublished work.

64. Hoffmann, N.A. and Henson, D.A. (1997a). Simulating emergency evacuations in stations.

Paper presented in American Public Transit Association (APTA) Rapid Transit Conference,

Washington DC, USA.

B. Y. Y. MOHEDEEN

244

65. Hoffmann, N.A. and Henson, D.A. (1997b). Simulating transient evacuation and pedestrian

movements in stations. Paper presented at the International Conference on Mass Transit

Management, Kuala Lumpur, Malaysia.

66. STEPS software. [On-line].

http://www.mottmac.com/skillsandservices/software/stepssoftware/. Accessed on 18
th

July 2011.

67. Fire safety engineering group. [On-line].

http://fseg.gre.ac.uk/leaflets/exodusleaflets.html#bEXODUS_leaflet. Accessed on 18th

July 2011.

68. Gwynne, S., and Galea, E. (1997). A review of the methodologies and critical appraisal of

computer models used in the simulation of evacuation from the built environment. Society

of Fire Protection Engineers, pp. 1 – 93.

69. UK Atomic Energy Authority. (2002). A Technical Summary of the AEA Egress Code.

Technical Report AET/NOIL/27812001/002(R), Issue 1, Warrington, UK.

70. Thompson, P., Wu, J., and Marchant, E. (1996). Modelling evacuation in multi-storey

buildings with simulex. Fire Engineers Journal, 56, pp. 6 - 11.

71. Thompson, P.A. and Marchant, E.W. (1995). Testing and application of the computer

model ‗SIMULEX‘. Fire Safety Journal, 24 (2), pp. 149 - 166. [doi:10.1016/0379-

7112(95)00020-T].

72. Thompson, P. and Marchant, E. (1995). A Computer Model for the Evacuation of Large

Building Populations. Fire Safety Journal, 24 (2), pp. 131 - 148.

73. Pathfinder (2009). Technical Reference. Thunderhead Engineering.

http://www.thunderheadeng.com/downloads/pathfinder/Pathfinder_tech_ref.pdf. Accessed

25th July 2011.

74. Xiaoping Zhen, Tingkuan Zhong, and Mengting Liu (2009). Modeling crowd evacuation of

a building based on seven methodological approaches. Building and Environment, 44 (3),

pp. 437 - 445

http://www.mottmac.com/skillsandservices/software/stepssoftware/
http://fseg.gre.ac.uk/leaflets/exodusleaflets.html#bEXODUS_leaflet
http://www.thunderheadeng.com/downloads/pathfinder/Pathfinder_tech_ref.pdf.%20Accessed%2025th%20July%202011
http://www.thunderheadeng.com/downloads/pathfinder/Pathfinder_tech_ref.pdf.%20Accessed%2025th%20July%202011

B. Y. Y. MOHEDEEN

245

75. Klupfel, H. (2003). A Cellular Automaton Model for Crowd Movement and Egress

Simulation. PhD thesis, University Duisburg–Essen.

76. Wei-Guo, S., Yan-Fei, Y., Bing-Hong, W., and Wei-Cheng, F. (2006). Evacuation

behaviors at exit in CA model with force essentials: A comparison with social force model.

Physica A: Statistical Mechanics and its Applications, 371 (2), pp. 658 - 666.

77. Burger, T.W. [on-line]. Intel Multi-Core Processors: Quick Reference Guide.

http://www.devx.com/assets/intel/13623.pdf. Accessed on 20th July 2011.

78. Castaldo, A. and Whaley, R. (2009). Minimizing startup costs for performance-critical

threading. Proceedings of the 2009 IEEE International Symposium on Parallel &

Distributed Processing, pp.1 – 8. [Doi: 10.1109/IPDPS.2009.5161010].

79. Chai, L., Gao, Q., and Panda, D.K. (2007). Understanding the impact of multi-core

architecture in cluster computing: A case study with intel dual-core system. Proceedings of

the Seventh IEEE International Symposium on Cluster Computing and the Grid, pp. 471 -

478. [Doi:10.1109/CCGRID.2007.119].

80. Hill, M. D., and Marty, M. R. (2008). Amdahl‘s law in the multicore era. IEEE Computer,

41 (7), pp. 33 – 38.

81. Nagel, K. and Rickert, M. (2001). Parallel implementation of the TRANSIMS micro-

simulation. Parallel Computing, 27(12) (2001), pp. 1611 – 1639

82. Transportation Research and Analysis Computing Center . Argonne National laboratory.

[On-line]. http://www.anl.gov/TRACC/Research/transims_parallelization.html. Accessed

20th July 2011.

83. Cao, J., Li, M., Huang, L., Qinsheng, R., and Li, Y. (2006). Towards Building an Intelligent

Traffic Simulation Platform. Proceedings of the Sixth IEEE International Symposium on

Cluster Computing and the Grid (IEEE Computer Society Washington, DC, USA), 2006.

84. Kiesling, T. and Luthi, J. (2005). Towards time-parallel road traffic simulation. Proceedings

of the 19th Workshop on Principles of Advanced and Distributed Simulation, pp.7 - 15, June

01-03, 2005. [doi:10.1109/PADS.2005.33].

http://www.devx.com/assets/intel/13623.pdf
http://www.anl.gov/TRACC/Research/transims_parallelization.html
http://dx.doi.org/10.1109/PADS.2005.33

B. Y. Y. MOHEDEEN

246

85. Cameron, G., Wylie, B., and McArthur, D. (1994). Paramics: moving vehicles on the

connection machine'. Proceedings of the 1994 ACM/IEEE Conference on Supercomputing,

ACM New York, NY, USA, pp. 291 - 300.

86. Perumalla, K.S. (2006). Parallel Execution of Region-Scale Evacuation Traffic Models.

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation,

p.134, May 24-26, 2006. [doi: 10.1109/PADS.2006.28].

87. Perumalla, K.S. (2006). A systems approach to scalable transportation network modelling.

Proceedings of the 38th conference on Winter simulation, pp. 1500 - 1507, December 03-

06, Monterey, California

88. Perumalla, K. and Beckerman, M. (2007). An analysis approach to large-scale vehicular

network simulations. Proceedings of the 2007 summer computer simulation conference, pp.

1223 - 1229.

89. Quinn, M. J., Metoyer, R. A., and Hunter-Zaworski, K. (2003). Parallel Implementation of

the Social Forces Model. In Proceedings of the Second International Conference in

Pedestrian and Evacuation Dynamics (August 2003), pp. 63 - 74.

90. Karavakis, E. (2010). A distributed analysis and monitoring framework for the compact

Muon solenoid experiment and a pedestrian simulation. PhD Theses, Brunel University

School of Engineering and Design.

91. Kerridge, J., Hine, J., and Wigan, M. (2001). Agent-based modelling of pedestrian

movements: the questions that need to be asked and answered. Environment and Planning

B, 28 (3), pp. 327 - 342.

92. MassMotion. [On-line]. http://www.oasys-

software.com/products/engineering/massmotion.html. Accessed on 20th July 2011.

93. Morrow, E. (2010). MassMotion: simulating human behaviour to inform design for

optimal performance. The Arup Journal (2010), pp. 38-40.

94. Helbing, D. and P. Molnar. (1995). Social force model for pedestrian dynamics. Math.

Comput. Simul Physical Review E (APS), 51, pp. 4282 - 4286.

B. Y. Y. MOHEDEEN

247

95. Dagum, L. and Menon, R. (1998). OpenMP: an industry-standard api for shared-memory

programming, IEEE Comput. Sci. Eng., 5 (1), pp. 46 – 55. [10.1109/99.660313].

96. Guide to parallel computing. [On-line] http://ctbp.ucsd.edu/pc/html/intro1.html. Accessed

on 20th July 2011.

97. Scalable computing laboratory. Types of Parallel Computers. [On-line]

http://www.scl.ameslab.gov/Projects/parallel_computing/para_types.html. Accessed on 20th

July 2011.

98. Light, J., Shaw, R., and Madani, M. (2002). Parallel Computing Performance Monitoring

Tool for a Cluster of Computers. In M. Driscoll and T. Reeves (Eds.), Proceedings of World

Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education

2002 (pp. 2661-2662). Chesapeake, VA: AACE.

99. Banicescu, I., Cariсo, R., Pabico, J., and Balasubramaniam, M. (2005). Design and

implementation of a novel dynamic load balancing library for cluster computing. Parallel

Computing, 31 (7), pp. 736 - 756.

100. Goscinski, A. and Wong, A. (2008). A study of the concurrent execution of parallel and

sequential applications on a non-dedicated cluster. Parallel Computing, 34 (2), pp. 69 - 91.

101. Silva, L. and Buyya, R. (1999). Parallel programming models and paradigms. High

Performance Cluster Computing: Architectures and Systems 2, pp. 4 - 27.

102. Baker, M. and Buyyaz, R. (1999), Cluster Computing at a Glance, chapter 1. High

Performance Cluster Computing, vol. 1, Buyya R (ed.). Prentice-Hall: Upper Saddle River,

NJ, 1999; pp. 3–47.

103. What is GPU Computing? [on-line]

http://www.nvidia.com/object/GPU_Computing.html. Accessed on 20th July 2011.

104. Perumalla, K. and Aaby, B. (2008). Data parallel execution challenges and runtime

performance of agent simulations on GPUs. Proceedings of the 2008 Spring simulation

multiconference, pp. 116 - 123.

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=doi&_issn=00219991&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fdx.doi.org%252F10.1109%252F99.660313
http://ctbp.ucsd.edu/pc/html/intro1.html
http://www.scl.ameslab.gov/Projects/parallel_computing/para_types.html
http://www.nvidia.com/object/GPU_Computing.html

B. Y. Y. MOHEDEEN

248

105. Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S. (2004). GPU cluster for high

performance computing. Proceedings of the 2004 ACM/IEEE conference on

Supercomputing, Pittsburgh, Pennsylvania.

106. Xiao, S. and Feng, W. (2010). Inter-block GPU communication via fast barrier

synchronization. In Proceedings of the 24
th

 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pp. 1 - 12, Atlanta, Georgia, USA, April 2010.

107. Randall, M. and Lewis, A. (2002). A parallel implementation of ant colony optimization.

Journal of Parallel and Distributed Computing, 62, pp. 1421 - 1432.

108. Hillis, W.D. and Steele, Jr. G.L. (1986). Data parallel algorithms. Communications of the

ACM - Special issue on parallelism CACM, 29(12), pp. 1170 – 1183.

109. Silberman, A. and Marlowe, T.J. (1996). A task graph model for design and

implementation of real-time systems. Second IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS'96), p.432.

110. Peng, H., Wang, M., and Lai, C.-H. (2007). Design of parallel algorithms for fractal video

compression. International Journal of Computer Mathematics - Distributed Algorithms in

Science and Engineering, 84 (2), pp. 193 - 202.

111. Knopp, J. and Reich M.A. (1996). Workpool Model for Parallel Computing. In Workshop

on High-Level Programming Models and Supportive Environments held in conjunction wit

the IEEE International Parallel Processing Symposium, Honolulu.

112. Downton, A.C. (1995). Speed-up trend analysis for H.261 and model-based image coding

algorithms using a parallel-pipeline model. Signal Processing: Image Communication, 7 (4-

6), pp. 489 – 502.

113. Gropp, W. and E. Lusk. (2002). Goals Guiding Design: PVM and MPI. In Proc. of the

IEEE Int'l Conference on Cluster Computing (Cluster 2002), pp. 257 - 265.

114. Elts, E. (2004). Comparative analysis of PVM and MPI for the development of physical

applications on parallel clusters. Saint-Petersburg State University. [On-line].

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.3181&rep=rep1&type=pdf.

B. Y. Y. MOHEDEEN

249

115. PVM and MPI: a Comparison of Features – CSM. [On-line].

www.csm.ornl.gov/pvm/PVMvsMPI.ps. Accessed on 20th July 2011.

116. Chan, T.F., and Tarek P. M. (1994). Domain decomposition algorithms. Acta

Numerica, 3 , pp 61-143. doi:10.1017/S0962492900002427

117. Plimpton, S.J., Seidel, D.B., Pasik, M.F., Coats, R.S., and Montry G.R. (2003). A load-

balancing algorithm for a parallel electromagnetic particle-in-cell code. Computer Physics

Communications (Elsevier), 152 (3), pp. 227 - 241.

118. Baiardi, F., Bonotti, A., Ferrucci, L., Ricci, L., and Mori, P. (2003). Load Balancing by

Domain Decomposition: the Bounded Neighbours Approach. Proc. of the 17th European

Simulation Multi Conference. Nottingham, UK.

119. Hatzky, R. (2006). Domain cloning for a particle-in-cell (PIC) code on a cluster of

symmetric-multiprocessor (SMP) computers. Parallel Computing (Elsevier), 32 (4), pp.

325 - 330.

120. Hendrickson, B. and Kolda, T.G. (2000). Graph partitioning models for parallel

computing. Parallel Computing (Elsevier), 26 (12), pp. 1519 - 1534.

121. Walshaw, C., Cross, M., and Everett, M.G. (1997). Parallel dynamic graph partitioning

for adaptive unstructured meshes. Journal of Parallel and Distributed Computing

(Citeseer), 47 (2), pp. 102 - 108.

122. Karypis, G. and Kumar, V. (1998). METIS a software package for partitioning

unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse

matrices version 4.0. University of Minnesota, Department of Comp.

123. Karypis, G., Schloegel, K., and Kumar, V. (1997). ParMETIS: Parallel graph partitioning

and sparse matrix ordering library. Version 1.0, Dept. of Computer Science, University of

Minnesota.

124. Walshaw, C. and Cross, M. (2007). JOSTLE: Parallel Multilevel Graph-Partitioning

Software - An Overview. In Mesh Partitioning Techniques and Domain Decomposition

Techniques, edited by F. Magoules, pp. 27-58. Civil-Comp Ltd., 2007.

http://www.csm.ornl.gov/pvm/PVMvsMPI.ps

B. Y. Y. MOHEDEEN

250

125. Schloegel, K., Karypis, G., and Kumar, V. (2002). Parallel static and dynamic

multiconstraint graph partitioning. Concurrency Comput. Practice Experience, 14 (3), pp.

219 – 240.

126. Cheng, J. and Plassmann, P. (2004). A Parallel Particle Tracking Framework for

Applications in Scientific Computing. The Journal of Supercomputing, 28 (2), pp. 149 -

164.

127. Stijnman, M., Bisseling, R., and Barkema, G. (2001). Partitioning 3D space for parallel

many-particle simulations. Computer Physics Communications, 149 (3), pp. 121 - 134.

[doi:10.1016/S0010-4655(02)00628-8].

128. Walshaw, C. and Cross, M. (1999). Mesh partitioning: a multilevel balancing and

refinement algorithm. Society for Industrial and Applied Mathematics, 22 (1), pp. 63 - 80.

129. Karypis, G. and Kumar, V. (1998). Multilevel algorithms for multi-constraint graph

partitioning. Proceedings of the 1998 ACM/IEEE conference on Supercomputing , IEEE

Computer Society Washington, DC, USA, pp. 1 - 13.

130. Peschlow, P., Honecker, T., and Martini, P. (2007). A flexible dynamic partitioning

algorithm for optimistic distributed simulation. Proceedings of the 21st International

Workshop on Principles of Advanced and Distributed Simulation, IEEE Computer Society,

pp. 219 - 228.

131. Biswas, R., Das, S.K., Harvey, D., and Oliker, L. (1999). Portable parallel programming

for dynamic load balancing of unstructured grid applications. in: Proceedings of 13th

International Parallel Processing Symposium and 10th Symposium on Parallel and

Distributed Processing, pp. 338 – 342.

132. Hendrickson, B. and Devine, K. (2000). Dynamic load balancing in computational

mechanics. Computer Methods in Applied Mechanics and Engineering (Elsevier), 184, (2-

4), pp. 485 - 500.

B. Y. Y. MOHEDEEN

251

133. Bernard, P., Gautier, T., Trystram, D., Lorraine, I., and les Nancy, V. (1999). Large scale

simulation of parallel molecular dynamics. International and 10th Symposium on Parallel

and Distributed Processing, pp. 638 - 644.

134. Thomaszewski, B. and Blochinger, W. (2007). Physically based simulation of cloth on

distributed memory architectures, Parallel Computing, 33 (6), pp. 377 - 390.

135. Sadayappan, P., Ercal, F., and Ramanujam, J. (1998). Partitioning graphs on message-

passing machines by pairwise mincut. Information Sciences—Informatics and Computer

Science: An International Journal, 111 (1-4), pp. 223 - 237.

136. Cornwell, C., Wille, L., Wu, Y., and Sklar, F. (2001). Parallelization of an ecological

landscape model by functional decomposition. Ecological Modelling, 144 (1), pp. 13 - 20.

137. Koradi, R., Billeter, M., and Guntert, P. (2000). Point-centered domain decomposition for

parallel molecular dynamics simulation. Computer Physics Communications, 124 (2-3), pp.

139 - 147.

138. Minyard, T. and Y. Kallinderis. (2000). Parallel load balancing for dynamic execution

environments. Computer Methods in Applied Mechanics and Engineering (Elsevier), 189

(4), pp. 1295 - 1309.

139. Gwynne, S., Galea, E.R., Lyster, C., and Glen, I. (2003). Analysing the Evacuation

Procedures Employed on a Thames Passenger Boat Using the maritimeEXODUS

Evacuation Model. Fire Technology, 39 (3), pp. 225-246. [DOI:

10.1023/A:1024189414319].

140. Galea, E.R., Lawrence, P., Gwynne, S., Filippidis, L., Blackshields, D., Sharp, G., Hurst,

N., Wang, Z., and Ewer, J. (2003). Simulating ship evacuation under fire conditions. In:

E.R. Galea, Editor, Proc Second Int Pedestrian and Evacuation Dynamics Conference,

CMS Press, Greenwich (2003), pp. 159 – 172. [ISBN 1904521088].

141. Galea, E.R., Blake, S.J., Lawrence, P.J., and Gwynne, S. (2002). The airEXODUS

Evacuation Model and its Application to Aircraft Safety. Proc Fire Safety and Survivability,

Applied Vehicle Technology (AVT) Panel Symp, NATO Research and Technology

Organisation, Aalborg Denmark 23-26 Sept 2002.

B. Y. Y. MOHEDEEN

252

142. Blake, S.J., Galea, E.R, Gwynne, S., and Lawrence, P.J.(2002). Adapting the airEXODUS

Prototype Cabin Crewmember Redirection Procedure for use in Real Emergency

Evacuations. Report in preparation for CMS Press publication by The University of

Greenwich, 2002

143. railEXODUS. [On-line]. http://fseg.gre.ac.uk/exodus/air.html#rail . Accessed on 26
th

 July

2011.

144. Galea, E.R., Sharp, G., Lawrence, P.J., and Holden, R. (2008). Approximating the

evacuation of the World Trade Center North Tower using computer simulation. Journal

of Fire Protection Engineering, 18 (2), pp. 85 – 115. [DOI:

http://dx.doi.org/10.1177/1042391507079343].

145. Galea, E.R., Sharp, G., Lawrence, P.J., and Dixon, A. (2007). Investigating the impact of

occupant response time on computer simulations of the WTC North tower evacuation. in:

Interflam 2007, Conference Proceedings, vol. 2, 11th International Fire Science and

Engineering Conference, Interscience, London, 2007, pp. 1435 – 1442.

146. JOSTLE — graph partitioning software. [On-line].

http://staffweb.cms.gre.ac.uk/~wc06/JOSTLE/ . Accessed on 25th July 2011.

147. Karypis, G. and Kumar, V. (1999). A Fast and Highly Quality Multilevel Scheme for

Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20 (1), pp. 359—392.

148. METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering. [On-line].

http://glaros.dtc.umn.edu/gkhome/METIS/METIS/faq . Accessed on 25th July 2011.

149. METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering. [on-line].

http://glaros.dtc.umn.edu/gkhome/METIS/METIS/overview. Accesses on 20th July 2011.

150. Wood, D.A. and Hill, M.D. (2002). Cost-effective parallel computing. IEEE Computer,

28 (2), pp. 69 - 72.

151. Graham, R. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics, 17 (2), pp. 416 - 429.

http://fseg.gre.ac.uk/exodus/air.html#rail
http://dx.doi.org/10.1177/1042391507079343%5d.
http://staffweb.cms.gre.ac.uk/~wc06/jostle/
http://glaros.dtc.umn.edu/gkhome/metis/metis/faq
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

B. Y. Y. MOHEDEEN

253

152. Wu, B. (2005). An analysis of the LPT algorithm for the max–min and the min–ratio

partition problems. Theoretical Computer Science, 349 (3), pp. 407 - 419.

153. Ierotheou, C.S., Lai, C.-H., Palansuriya, C.J., and Pericleous, K.A. (1998). Simulation of

2-d metal cutting by means of a distributed algorithm. Comp. Journal, 41, pp. 57 – 63

154. Parallel Computing at a Glance. [On-line]. www.gridbus.org/~raj/microkernel/chap1.pdf .

Accessed on 20th July 2011.

http://www.gridbus.org/~raj/microkernel/chap1.pdf

B. Y. Y. MOHEDEEN

254

9 APPENDIX

9.1 Publication:

Grandison, A., Muthu, Y., Lawrence, P. and Galea, E.R. (2007). Simulating the evacuation of

very large populations in large domains using a parallel implementation of the buildingEXODUS

evacuation model. Proceedings of the 11th International Fire Science & Engineering Conference,

Interflam 2007, 3-5th September 2007, Royal Holloway College, University of London, UK,

Volume 1, pp. 259 - 270. ISBN 978 0 9541216-8-6, 2007.

Simulating the evacuation of very large populations in

large domains using a parallel implementation of the

buildingEXODUS evacuation model.

Angus Grandison, Yasmina Muthu (now Mohedeen), Peter Lawrence and Ed Galea

Fire Safety Engineering Group

University of Greenwich

London SE10 9LS

UK

ABSTRACT

Computer egress simulation has potential to be used in large scale incidents to provide live advice to

incident commanders. While there are many considerations which must be taken into account when

applying such models to live incidents, one of the first concerns the computational speed of simulations.

No matter how important the insight provided by the simulation, numerical hindsight will not prove useful

to an incident commander. Thus for this type of application to be useful, it is essential that the simulation

can be run many times faster than real time. Parallel processing is a method of reducing run times for

very large computational simulations by distributing the workload amongst a number of CPUs. In this

paper we examine the development of a parallel version of the buildingEXODUS software. The parallel

strategy implemented is based on a systematic partitioning of the problem domain onto an arbitrary

number of sub-domains. Each sub-domain is computed on a separate processor and runs its own copy of

the EXODUS code. The software has been designed to work on typical office based networked PCs but

B. Y. Y. MOHEDEEN

255

will also function on a Windows based cluster. Two evacuation scenarios using the parallel

implementation of EXODUS are described; a large open area and a 50 storey high-rise building scenario.

Speed-ups of up to 3.7 are achieved using up to six computers, with the high-rise building evacuation

simulation achieving run times of 6.4 times faster than real time.

INTRODUCTION

The use of evacuation / pedestrian modelling is well established as part of building design to

ensure that buildings meet performance based safety and comfort criteria
1,2

. Another possible use for

these models is to provide live operational advice to incident commanders while disasters are actually

unfolding. While there are many considerations which must be taken into account when applying such

models to live incidents, one of the first concerns the computational speed of simulations. No matter how

important the insight provided by the simulation, numerical hindsight will not prove useful to an incident

commander. Thus for this type of application to be useful, it is essential that the simulation can be run

many times faster than real time. Another potential application for evacuation models is the planning of

very large scale evacuation scenarios. These may involve a large part of a town or city, such as a street

festival, or may involve city sized applications such as recent example of the evacuation of New Orleans.

In these applications the shear size of the geometry and the number of people involved may make the

running of evacuation scenarios impractical even for planning purposes.

Evacuation models that discretise space and model individual people and their interactions
1,2

 are

computationally expensive. Computational overheads involved in such simulations may mean that run

times for simulations involving very large populations or very large geometries (or both) may require

several hours. Indeed simulations, involving extremely large geometries, such as those for urban scale

applications, if at all possible, may require days.

B. Y. Y. MOHEDEEN

256

9.2 Parallelisation of the EXODUS core codes by the software
development team

9.2.1.1 Serial movement algorithm

Simulation Clock is incremented by 1/12s and the ticker is incremented by one tick.

1. If the number of simulation ticks is even then the movement options for the individuals

are calculated goto 1. Else if the number of simulation ticks is odd then perform the

movement (continue).

2. All the individuals whose PET are less than the Simulation Clock are looped over. Their

PET will be incremented when they move, i.e. the travel time to a neighbouring node or

set to the Simulation Clock if they have no options to move and will wait for the next

Simulation Clock tick. (some individuals may not be processed as they cannot move until

other individuals have moved from a node that they may wish to move to)

3. Goto 3 until all the remaining individuals‘ PETs have been incremented

4. Goto 1 until all the individuals have exited the evacuation scenario.

9.2.1.2 Serial enhancements

The most important of these enhancements was a modification to the original file loading

algorithm. Internally the file loading algorithm was found to be O(N
2
), the loading time was

proportional to the square of the number of nodes (N) in the geometry; this caused excessive

loading times for large geometries, and these would typically be used with the parallel

implementation. The file loading was modified and the algorithm became O(N) to O(N
2
). In

practice the algorithm operates with O(N), meaning that the loading time was now proportional to

the number of nodes in the geometry. This relatively minor modification vastly reduced the

amount of time needed to load a problem file. For example one case consisting of 200,000 cells

originally took over 2 hours to load and this time was reduced to less than 30 seconds with the

B. Y. Y. MOHEDEEN

257

new loading algorithm. This change does not reduce the runtime of EXODUS but substantially

reduces the initial wait time for the user to load up the geometry.

Another improvement involved optimising the list of individuals used for the movement

algorithm (see Figure 9.1 for pseudo-code). In the original algorithm each individual in a list is

checked for movement and if some of the occupants still needed to be moved the whole list

would be revisited again and again until all the occupants had moved.

While (Need_moving)

 Need_moving = false

 For all individuals in simulation list

 Move person

 If person still needs moving

 Need_moving = true

 Endif

 Endfor

Endwhile

PeopleToMove = simulation list

While (PeopleToMove list not empty)

 For all individuals in PeopleToMove list

 Move person

 If person still needs moving

 Add person to NewPeopleToMove list

 Else

 Add person to PeopleAlreadyMoved list

 Endif

 Endfor

 Clear PeopleToMove

 PeopleToMove = NewPeopleToMove

 Clear NewPeopleToMove

Endwhile

Original Code Revised Code

Figure 9.1 – Comparison of Pseudo code for Movement Loop

9.2.1.3 Parallel movement algorithm

The algorithm for the parallel implementation is essentially the same as the enhanced serial one

apart from the population is looped over in sub-groups related to their proximity to sub-domain

boundaries. These are the high-boundary, low-boundary group, and the non-boundary groups.

The simulation clock is incremented by 1/12s and the ticker is incremented by one tick. A brief

description of the algorithm is described:

B. Y. Y. MOHEDEEN

258

1. If the number of simulation ticks is even then movement options for individuals are

calculated then goto 1. Else if the number of simulation ticks is odd continue.

2. The individuals on high boundaries are sent to neighbouring sub-domains whilst at the

same time other individuals are received from low boundaries. Whilst the computers wait

to receive / send data from one another, members of the non-boundary group are

computed for potential movement until this communication is complete.

3. The individuals located around the low boundaries of a sub-domain are computed for

potential movement.

4. The individuals on low boundaries are sent to neighbouring sub-domains whilst at the

same time the individuals are received from high boundaries. Whilst the computers wait

to receive / send data from one another, further members of the non-boundary group are

computed for potential movement until this communication is complete.

5. The individuals located around the high boundaries of a sub-domain are computed for

potential movement.

6. Any remaining members of the non-boundary group that were not processed during step 3

or step 5 are computed for potential movement.

7. Goto 3 until all the remaining individuals‘ PETs have been incremented

8. Goto 1 until all the individuals have exited the evacuation scenario.

One of the important developments in the parallel implementation of EXODUS was the ability to

overlap communication with calculation. A brief fragment of pseudo-code is given in Figure 9.2

to illustrate how the code overlaps communication with computation.

B. Y. Y. MOHEDEEN

259

 SendMessage (data of individuals crossing/approaching boundaries)

 while (NOT (All Messages Sent) OR no more non-boundary people)

 Process the next 16 people from non-boundary group

 endwhile

 if (NOT (All Messages Sent)) wait until All Messages Sent

 …

Figure 9.2 – Pseudo-code for overlapping communication with computation

This overlapping was critical to obtaining good speedups as without this development the parallel

and thus runtime performance would have been significantly poorer. By overlapping the

communication and computation, the order in which individuals are processed can be changed.

Also, due to the use of pseudo-random numbers in the software for some decision making meant

that no two runs were the same due to the additional randomisation now created by the network.

This change in ordering is just as valid as any other particular order; but unlike the serial version

of EXODUS, a run cannot be repeated to give exactly the same result. An exact repeat run could

be obtained by removing the overlapping of communication and computation at the expense of

run time performance; though not generally useful, it was helpful to make the software run in this

mode for the purposes of development and debugging.

9.2.1.4 Synchronisation

The communications processes mentioned in the previous sections had to be carefully co-

ordinated to allow the smooth transmission of the data. It is not the case that a processor can

simply send and receive messages to each other.

The communication needs to be arranged to ensure that the appropriate processor is ready to

receive a message when the corresponding neighbouring processor is sending that message.

Failure to correctly co-ordinate this communication can lead to a deadlock. This occurs when

both processors are waiting to receive a message from each other, but they will wait indefinitely

as the message will not be sent until a message is received from the other processor. This critical

issue was solved by using a convention based on the sub-domain numbering, and using partial

non-blocking communication. All sub-domains are uniquely labelled 0 to n-1, where n is the

total number of sub-domains. This leads to the general case that each sub-domain will have

B. Y. Y. MOHEDEEN

260

boundaries with both lower and higher numbered sub-geometries; see Figure 9.3. Although only

a simple 1-dimensional partition is illustrated, this applies to any arbitrary partition. These

boundaries can be classified as low (neighbouring sub-domain has a lower number) and high

boundaries (neighbouring sub-domain has a higher number). In order to remain synchronised,

every sub-domain initiates a ‗receive‘ from its low boundaries and simultaneously ‗sends‘ update

messages to its high boundaries (see Figure 9.3a). All boundaries wait until they have

successfully received a message from their low boundaries. Once this has been achieved, the

computers initiate a ‗receive‘ from the high boundaries while simultaneously sending update

messages to the low boundaries; see Figure 9.3b.

Figure 9.3 – Communications procedure ((a) send and (b) receive) between sub-domains

9.2.1.5 Graphical output

As the simulation has been distributed over a number of processors, the visualisation needs to be

adapted to display the simulation on the ‗Master‘ processor from the computations that are being

calculated on the remote ‗slave‘ processors. This is achieved by maintaining the entire nodal

geometry on the ‗Master‘ computer and updating these nodes with information from the slave

processors. In order to reduce communication and memory overheads, the only information

transmitted is the set of occupied nodes for each processor. This is a very fast process and does

not affect the wall-clock time required to run the simulation. The graphical output is slowed

B. Y. Y. MOHEDEEN

261

down due to the use of native Window‘s drawing routines and can have a substantial effect on the

overall wall-clock time needed to run the simulation particularly when large population scales are

involved. This problem is inherent in the serial version of EXODUS and is not specific to the

parallel implementation. It is hoped that with the introduction of OpenGL/DirectX graphics (the

type of graphics generally used for computer gaming and high end graphical applications) into the

serial version of the software, that this issue would be mitigated in the near future. It is further

expected that it will not be necessary to maintain the entire nodal geometry on the master

computer in the future. The implementation of high end graphics is considered to be beyond the

present scope of this work. All the testing has therefore been performed with the graphical output

switched off.

B. Y. Y. MOHEDEEN

262

9.3 Derivation of an estimation of the workload and the ratios for the
partition cuts when N processors are used, without costs included

A rectangular geometry was considered with a free flow exit along the whole width of the

geometry. The peoples‘ movement was assumed to resemble fluid flow. Figure 9.4 illustrates this

concept.

Figure 9.4 - Geometry used to derive the partition cut formula

Serial workload

T0-T3:

B. Y. Y. MOHEDEEN

263

2 processors

Figure 9.5 illustrates the geometry being partitioned into two unequal parts in the ratio F1:F2

Figure 9.5 - Geometry partitioned into two unequal parts in the ratio F1:F2

Let Z be the initial population of the whole domain and being the length of the domain, then:

T0 – T1: (average distance)

 =

 =

T1-T2: =

B. Y. Y. MOHEDEEN

264

T2-T3: =

Total workload =

 =

Optimal cut: (Calculated from excel by using the in-built solver)

F1 F2 Work Max Speedup

0.333333 0.666667 0.666667 1.5

3 processors

Figure 9.6 shows the geometry being partitioned into three unequal parts in the ratio F1:F2:F3

Figure 9.6 - Geometry partitioned into three unequal parts in the ratio F1:F2:F3

Let Z be the initial population of the whole domain and being the length of the domain, then:

B. Y. Y. MOHEDEEN

265

T0 – T1:

 =

 =

T1-T2: =

T2-T3: =

T3-T4: =

T4-T5:

Optimal cut: (Calculated from excel by using the in-built solver)

F1 F2 F3 Work
Max
Speedup

0.25 0.25 0.5 0.5

2

4 processors

B. Y. Y. MOHEDEEN

266

Figure 9.7 illustrates the geometry being partitioned into four unequal parts in the ratio

F1:F2:F3:F4.

Figure 9.7 - Geometry partitioned into four unequal parts in the ratio F1:F2:F3:F4

Let Z be the initial population of the whole domain and being the length of the domain, then:

T0 – T1:

 =

 =

T1-T2: =

B. Y. Y. MOHEDEEN

267

T2-T3: =

T3-T4: =

T4-T5: =

T5-T6: =

T6-T7:

Total workload =

Optimal cut: (Calculated from excel by using the in-built solver)

4 processors

F1 F2 F3 F4 Max Speedup

0.2 0.2 0.2 0.4 2.5

N processors

Figure 9.8 shows the geometry being partitioned into N unequal parts in the ratio F1:F2:…:FN

B. Y. Y. MOHEDEEN

268

Figure 9.8 - Geometry partitioned into N unequal parts in the ratio F1:F2:…:FN

Let Z be the initial population of the whole domain.

By using the same principles, it can be induced that for N processors:

Total workload =

Optimal partitioning cut will be in the following ratios:

Partitioning Ratio = 1:1:1:….:2

B. Y. Y. MOHEDEEN

269

9.4 Derivation of an estimation of the workload and the ratios for the
partition cuts when N processors are used, with costs included

A rectangular geometry was considered with a free flow exit along the whole width of the

geometry. The peoples‘ movement was assumed to resemble fluid flow. Figure 9.9 illustrates this

concept.

Figure 9.9 - Geometry used to derive the partition cut formula

Serial workload

T0-T3:

B. Y. Y. MOHEDEEN

270

2 processors

Figure 9.10 shows the geometry being partitioned into two unequal parts in the ratio F1:F2.

Figure 9.10 - Geometry partitioned into two unequal parts in the ratio F1:F2

Let Z be the initial population of the whole domain and being the length of the domain, then:

Let k be the communication costs associated with 1 person.

T0 – T1 : P2 busier, (Comms to P1):

 =

 =

T1-T2 : P1 busier, (comms from P2): =

B. Y. Y. MOHEDEEN

271

T2-T3 : P1 busier, (No comms): =

Total workload =

 =

Optimal cut (excluding comms): (Calculated from excel by using the built –in solver)

F1 F2 Max Speedup

0.35 0.65 1.38

3 processors

Figure 9.11 illustrates the geometry being partitioned into three unequal parts in the ratio

F1:F2:F3.

Figure 9.11 - Geometry partitioned into three unequal parts in the ratio F1:F2:F3

Let Z be the initial population of the whole domain and being the length of the domain, then:

B. Y. Y. MOHEDEEN

272

T0 – T1: P3 busier, comms to P2:

 =

 =

T1-T2: P2 busier, comms from P3 and comms to P0: =

T2-T3: P2 busier, comms from P2 to P1: =

T3-T4: P1 busier, comms from P2: =

T4-T5: P1 busier, no comms:

Total workload =

Optimal cut: (Calculated from excel by using the in-built solver)

F1 F2 F3 Max Speedup

0.26 0.24 0.5 1.82

B. Y. Y. MOHEDEEN

273

4 processors

Figure 9.12 shows the geometry being partitioned into four unequal parts in the ratio

F1:F2:F3:F4.

Figure 9.12 - Geometry partitioned into four unequal parts in the ratio F1:F2:F3:F4

Let Z be the initial population of the whole domain and being the length of the domain, then:

T0 – T1: P4 busier, comms to P3:

 =

 =

B. Y. Y. MOHEDEEN

274

T1-T2: P3 busier, P3 receiving from P4 and sending to P2: =

T2-T3: P3 busier, comms to P2: =

T3-T4: P2 busier, P2 receiving from P3 and sending to P1: =

T4-T5: P2 busier, sending to P1: =

T5-T6: P1 busier, receiving comms from P2: =

T6-T7: P1 busier, NO comms:

Total workload =

B. Y. Y. MOHEDEEN

275

Optimal cut: (Calculated from excel by using the in-built solver)

F1 F2 F3 F4 Max Speedup

0.21 0.19 0.19 0.41 2.20

By induction, For N Processors:

Total workload =

B. Y. Y. MOHEDEEN

276

9.5 Dr Angus Grandison’s derivation of Speedup performance for a
specific test case with N sub-domain and P processors

By considering the master process, which controls the black sub-domains, which will always be

running at 100% and by neglecting the communication overhead; it is possible to calculate the

runtime. If l is the length of the domain and z is the total initial population size. If there are N

sub-domains and P processors then there are N/P regions consisting of sub-domains labelled 1 to

P, as displayed in Figure 9.13.

Figure 9.13 – A generalised domain decomposition for N sub-domains and P processors

The work done to empty (a) is distance travelled * number of people, this is represented by:

N

l

P

z
worka

2

Work to empty region i = 1 is:

N

l

N

z

P

z

P

z
P

N

l

P

z
work

22

1
1

2
1

First part of the expression is emptying from P to 2 in region i = 1 (or N to N-P+2), second part

represents emptying sub-domain 1 (or N-P+1) in region i = 1.

B. Y. Y. MOHEDEEN

277

NPP
P

PN

zl
work

111

2

1
1

1

2
1

Which becomes:-

1
2

1
1

2 21
P

N

P

N
P

P

N

N

zl
work

For i = 2 region do the same analysis but the population size being worked on has reduced to:

N

z

P

z
=

N

z

P

P

P

N
=

N

z

P

N
1

To empty the i-th region the amount of work required is:

i
P

N
i

P

N
Pi

P

N

N

zl
worki 1

2

1
11

2 2

Therefore the total work required is:

PN

i

total i
P

N
i

P

N
Pi

P

N

N

zl
work

/

1
2

1
2

1
11

2

The work needed to empty domain with a single processor is:

4

zl
work

So the speedup over a single processor using P processors over N sub-domains is:

PN

i

i
P

N
i

P

N
Pi

P

N

N

speedup

1
2

1
2

1
11

2

1

B. Y. Y. MOHEDEEN

278

By utilising the fact that
PN

i P

N

P

N
i

/

1

1
2

1
 and simplifying the above equation it can be shown

that:

1PN

NP
speedup

B. Y. Y. MOHEDEEN

279

9.6 Derivation of Speedup performance for a specific test case with N
sub-domain and P processors including communication costs

By considering the master process, which controls the black sub-domains, which will always be

running at 100% and by neglecting the communication overhead; it is possible to calculate the

runtime. If l is the length of the domain and z is the total initial population size. If there are N

sub-domains and P processors then there are N/P regions consisting of sub-domains labelled 1 to

P, as displayed in Figure 9.14.

Let k be the communication costs associated with 1 person.

Figure 9.14: A generalised domain decomposition for N sub-domains and P processors

The work done to empty (a) is the average distance travelled * number of people. This is

represented by:

 (work the master is doing across the whole geometry on same sized regions as

a)

 (for all N/P regions)

B. Y. Y. MOHEDEEN

280

Because sending and receiving across the whole geometry from master‘s perspective as master is

always busiest in this equal sized partitions case, the subtraction at the end is to cater for the end

of the geometry where the master is not sending anymore.

(Communication costs is based on master‘s communication costs as the master is always busy in

this equal sized partition case)

Work to empty i = 1 is:

First part of the expression is emptying from P to 2 in region i = 1 (or N to N-P+2), second part

represents emptying subdomain 1 (or N-P+1) in region i = 1.

Including communication costs:

For i = 2 region, do the same analysis but the population size being worked on has reduced to:

N

z

P

z
=

N

z

P

P

P

N
=

N

z

P

N
1

B. Y. Y. MOHEDEEN

281

=

At i = 3:

Population left per subdomain =

B. Y. Y. MOHEDEEN

282

To empty the i
th

region the amount of work required is:

Therefore the total work required is:

B. Y. Y. MOHEDEEN

283

Simplifying the summation:

Using the formula:

B. Y. Y. MOHEDEEN

284

B. Y. Y. MOHEDEEN

285

The work needed to empty domain with a single processor is:

So, the speedup over a single processor using P processors over N sub-domains is:

Let S represent the Speedup.

B. Y. Y. MOHEDEEN

286

Differentiating the speedup with respect to N will give the optimal N to yield the maximum

speedup:

At maximum S,

B. Y. Y. MOHEDEEN

287

B. Y. Y. MOHEDEEN

288

9.7 Final Algorithm for dynamic reallocation

At Even clicks

{

if SimTime = 0

{

1. LoadBalanceAlgo(Population

 Perform LPT algo based on the population load

2. RepartitionDynamically()

 Get the cost of updating the halos (HaloCosts)

 Get the cost of sending 1 person (Total sendCost/NumPplSent)

(SetCostSendPerPerson()), Note that this includes the deleting of the people as

well

 Get the cost of Receiving 1 person (Total sendCost/NumPplRecv)

(SetCostRecvPerPerson()), Note that this include the cost of creating the

people as well

}

If(SimTime > 0 and SimTime = multiple of 12)

{

1. Bool Repartition = DetermineLoadImbalance()

DetermineLoadImbalance()

{

 LoadBalanceAlgo(WorkLoad)

{

(1) AllReduce is called to get the populationLoad and the WorkLoad in

each subpartition and then the subpartitions are updated accordingly

 Get the Maximum current workload (GlobalCurrentMaxLoad), i.e

compare the Workload of each processor and the maximum is

selected

 Broadcast the GetWorkLoadCost() of proc having the max

workload to MaxWorkLoadCost

(2) Perform LPT algo based on the WorkLoads in each processor

B. Y. Y. MOHEDEEN

289

 Get the Maximum New workload (GlobalNewMaxLoad), i.e

compare the new Workload of each processor and the maximum is

selected

 NumPplSent and NumPplRecv are updated.

 }

 CostCurrentLoad = MaxWorkLoadCost* GlobalCurrentMaxLoad

 CostNewLoad = MaxWorkLoadCost* GlobalNewMaxLoad

 ReshufflingCost = HaloCosts + NumPplSent *GetCostSendPerPerson() +

NumPplRecv *GetCostRecvPerPerson()

 AllReduce the ReshufflingCost to MaxReshufflingCost

 Gain = CostCurrentLoad – (CostNewLoad + MaxReshufflingCost)

 If (Gain > 0)

Repartition = true

}

}

2. If (Repartition)

RepartitionDynamically()

RepartitionDynamically()

{

Pack and send old population

SetCostSendPerPerson()

Disassociate local nodes and claim new domain, update halos

HaloCosts

Receive, unpack and create new population

SetCostRecvPerPerson()

}

}

At Odd clicks

{

1. Movement(), Get the workload (TotalLoad)

2. Time Movement()

 SetWorkLoadCost(), (Time / TotalLoad)

}

