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Abstract

The research work presented herein addresses time representation and temporal reasoning in 

the domain of artificial intelligence. A general temporal theory, as an extension of Alien and 

Hayes', Gallon's and Vilain's theories, is proposed which treats both time intervals and time 

points on an equal footing; that is, both intervals and points are taken as primitive time 

elements in the theory. This means that neither do intervals have to be constructed out of 

points, nor do points have to be created as some limiting construction of intervals. This 

approach is different from that of Ladkin, of Van Beek, of Dechter, Meiri and Pearl, and of 

Maiocchi, which is either to construct intervals out of points, or to treat points and intervals 

separately.

The theory is presented in terms of a series of axioms which characterise a single temporal 

relation, "meets", over time elements. The axiomatisation allows non-linear time structures 

such as branching time and parallel time, and additional axioms specifying the linearity and 

density of time are specially presented. A formal characterisation for the open and closed 

nature of primitive intervals, which has been a problematic question of time representation 

in artificial intelligence, is provided in terms of the "meets" relation. It is shown to be 

consistent with the conventional definitions of open/closed intervals which are constructed out 

of points.

It is also shown that this general theory is powerful enough to subsume some representative 

temporal theories, such as Alien and Hayes's interval based theory, Bruce's and McDermott's 

point based theories, and the interval and point based theory of Vilain, and of Gallon.
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A finite time network based on the theory is specially addressed, where a consistency checker 

in two different forms is provided for cases with, and without, duration reasoning, 

respectively.

Utilising the time axiomatisation, the syntax and semantics of a temporal logic for reasoning 

about propositions whose truth values are associated with particular intervals/points are 

explicitly defined. It is shown that the logic is more expressive than that of some existing 

systems, such as Alien's interval-based logic, the revised theory proposed by Gallon, 

Shoham's point-based interval logic, and Haugh's MTA based logic; and the corresponding 

problems with these systems are satisfactorily solved.

Finally, as an application of the temporal theory, a new architecture for a temporal database 

system which allows the expression of relative temporal knowledge of data transaction and 

data validity times is proposed. A general retrieval mechanism is presented for a database 

with a purely qualitative temporal component which allows queries with temporal constraints 

in terms of any logical combination of Alien's temporal relations. To reduce the 

computational complexity of the consistency checking algorithm when quantitative time 

duration knowledge is added, a class of databases, termed time-limited databases, is 

introduced. This class allows absolute-time-stamped and relative time information in a form 

which is suitable for many practical applications, where qualitative temporal information is 

only occasionally needed, and the efficient retrieval mechanisms for absolute-time-stamped 

databases may be adopted.

in



Table of Contents

Title page

Acknowledgements (i) 

Abstract (ii) 

Table of Contents (iv)

Chapter 1 INTRODUCTION 1

1.1 The Roles of Temporal Reasoning 1

1.2 The Problems 2

1.3 Contributions of the Thesis 5

1.4 Outline of the Thesis 7

Chapter 2 MAJOR ISSUES ABOUT THE NATURE OF TIME 9

2.1 The Primitive Nature of Time 9

2.2 Order Relations 11

2.2.1 Linearity of time 11

2.2.2 Density of time 12

2.3 Open and Closed Nature of Intervals 14

2.4 Duration Reasoning 14

iv



Chapter 3 LITERATURE REVIEW 16

3.1 Bruce's Temporal Model 17

3.2 The Time Specialist of Kahn and Gorry 19

3.3 The Temporal Theory of McDermott 21

3.4 The Interval Logic of Alien 24

3.5 Vilain's Temporal System 31

3.6 Kowalski and Sergot's Event Calculus 33

3.7 Dechter, Meiri and Pearl's TCSP 35

3.8 Bacchus, Tenenberg and Koomen's BTK 36

3.9 Beck's Temporal Framework 38

3.10 Maiocchi's TSOS 39

Chapter 4 A GENERAL TIME THEORY 42

4.1 An Axiomatisation of Time based on Intervals and Points 43

4.2 Some Further Issues 45

4.2.1 Open and closed nature of intervals 45

4.2.2 Linearity of time 47

4.2.3 Density of time 50

4.3 Derived Temporal Relations over Time Elements 53

Chapter 5 MODELS OF THE THEORY 58

5.1 A Dense Linear Model 58

5.2 A Discrete Linear Model 60

5.3 Temporal System as Subsumed Models 61



5.3.1 Bruce's point-based system 61

5.3.2 Alien and Hayes' interval-based logic 62

5.3.3 McDermott's temporal logic 62

5.3.4 Vilain's interval & point-based system 63

5.4 A Time Network for Computer-based Systems 63

5.4.1 Definitions of a finite time network 64

5.4.2 Formal characterisations of the graph of a time network 66

5.4.3 A necessary and sufficient condition for consistency 69

5.4.4 A limited case of the time network 76

5.5 A Point-based Specialisation of the Time Theory 93

Chapter 6 A TEMPORAL LOGIC BASED ON THE AXIOMATISATION 99

6.1 Syntax 100

6.2 Semantics 103

6.3 A Categorisation of Temporal Propositions 106

6.4 Toward Alien's and Galton's Properties 117

6.5 Toward Alien's and Gallon's Events 131

6.6 The Expressive Power of the New Logic 134

Chapter 7 A NEW ARCHITECTURE OF TEMPORAL DATABASES 139

7.1 The Need for the New Architecture 140

7.2 The Architecture of the Temporal Database 147

7.3 The Inference Mechanism 151

7.4 Examples of Retrieval 156

vi



7.5 Integrating Quantitative and Qualitative Temporal Information 159

Chapter 8 CONCLUSIONS 166

REFERENCES 169

APPENDIX PUBLISHED RESULTS Al

Appendix A Al

Appendix B A18

Appendix C A36

Appendix D A56

vn



Introduction

CHAPTER 1

INTRODUCTION

"What, then is time?

If no one asks me, I know;

but if I want to explain it to a questioner, I don't know."

Augustine of Hippo 

(Confessions XI, XIV)

1.1 The Roles of Temporal Reasoning

The above quotation reflects the fact that humans have a natural perception of the effects of 

this cosmic reality but are unable to answer the philosophical question of "what there is". 

From a computing perspective this question could be transformed to a more tractable formal 

question of naming and quantification, that is, to the assertion "there is something such that 

... " [ThL91].

Since the early 70s, the study of time has increasingly become an important part of research 

efforts in a variety of strands within computer science. Notably, researchers have seen that
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reasoning about and with time is a task with wide application in many problems in the 

domain of both artificial intelligence and software engineering. As Galton points out in 

[Gal87], this has come about because computer science as a whole is both highly formal and 

deeply rooted in the practice of everyday life, so that a formalism designed to handle the 

pervasive feature of time has an important natural role in many fields. In the review paper 

of temporal logics [Lon89], D. Long categorises areas requiring temporal reasoning as:

(1) temporal database management

(2) predication

(3) planning

(4) explanation

(5) learning new physics

(6) natural language understanding

(7) historical reconstruction

1.2 The Problems

Within the last two decades, many systems have been proposed for capturing the temporal 

aspects of events and processes in computer based systems. Generally speaking, all 

temporal systems must rely on an assumed theory which satisfies some intuitive notions of 

time. For some systems this underlying theoretical basis is formally described, and for others 

it remains assumed as intuitively agreed. In analyzing the theoretical basis of temporal 

systems, there are three items which must be related: the theory, the model, and the real
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world. According to Funk's definition [Fun83], a theory is a collection of statements about 

a subject domain, and a model of a theory is a structure in which the statements of the theory 

are interpreted as true. In addition, if the model is to be of use in some practical domain, then 

the real world must also be taken as a model of the theory.

Hence, when designing a system for temporal reasoning, we are firstly faced with a choice 

of the underling time structure. The most common theoretical basis is the standard time point 

system assumed by classical physics. In this theory, the time domain consists of a continuum 

of time points, isomorphic to the real line. Point-based intervals are constructed from points, 

and the duration of an interval is the real number difference of its left and right end-points. 

There is a weight of historical evidence to convince us that most everyday phenomena are 

models of this theory. However, recent research has shown that, for many applications, 

particularly those in artificial intelligence and natural language understanding, the time-point 

system is not ideal for either the expression of temporal facts, or for the storage and 

organisation of incomplete temporal knowledge, which is strictly relative (e.g., A is before 

B) and has little relation to absolute time points. For these applications, other theories have 

been proposed; for example, based on time intervals as primitive rather than time points.

In his series of papers [A1181,83,84], Alien has given a compelling argument which leads to 

the approach that takes time intervals as primitive rather than constructing them out of points. 

Alien argues that, if intervals are constructed out of points, such as those in the systems of 

Bruce [Bru72], of Beek [Bee89,92], and of Ladkin [Lad86,92], one must address the annoying 

question of whether the end-points are in the intervals or not, seemingly without any 

satisfactory solution: If intervals are all closed then adjacent intervals have end-points in
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common, which when adjacent intervals correspond to states of truth and falsehood of some 

property, can lead to situations in which a property is both true and false at an instant. 

Similarly, if intervals are all open, there will be points at which the truth or falsity of a 

property will be undefined. The solution in which intervals are all taken as semi-open (e.g., 

see the definition of intervals in Maiocchi's TSOS [Mai92]), so that they sit conveniently next 

to one another, seems arbitrary in choice of "left-closed/right-open" and "left-open/right- 

closed", and this arbitrariness is intuitively unsatisfactory.

There are some problems with Alien's theory which explicitly excludes time points, or, later, 

addresses them at a subsidiary status. As argued by Galton, the major problem with a purely 

interval-based theory, excluding time points, is that it is inadequate for reasoning correctly 

about continuous change [Gal90]. Vilain and Kautz [Vil82,ViK86], as well as Galton [Gal90], 

have proposed revised systems to address both time intervals and time points. However, some 

problems still exist. For Vilain's system, the inadequacy of Alien's theory for reasoning about 

continuous change still remain, since the case that a time point standing between two time 

intervals, that is, immediately after one and immediately before another one, is not 

satisfactorily addressed. Gallon's argument that time points should be treated on the same 

footing as time intervals is indeed very suggestive. However, in his revised system [Gal90], 

although Galton attempts to reject as meaningless the question whether or not a given point 

is part of a given interval, he retains the idea of there being a point at the place where two 

intervals meet. This may lead back to the original problem that Alien, and Galton himself, 

try to avoid: viz do properties ascribed to the intervals apply to the point or not? For example, 

how do we express the situation that a light is turned on, if one must address the point p at 

which interval i meets interval j, where i refers to LightjOff, and j refers to Light_Onl
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Additionally, for computer based temporal systems, the question of consistency is a major 

issue that must be concerned. Generally speaking, a database may be taken as a finite set of 

temporal knowledge, and hence the temporal reasoner needs only deal with a finite number 

of time elements. However, the inferencing mechanisms which may be used to derive facts 

from the database must rely on an underlying theoretical basis, insofar that the complete 

axiomatisation is needed to prove some corresponding consistency algorithms.

Finally, the characterisation for the open and closed nature of primitive intervals is another 

problematic question of time representation and temporal reasoning. If such a characterisation 

is formally given, intuitively, it should be consistent with the conventional definitions of 

open/closed intervals which are constructed out of points.

1.3 Contributions of the Thesis

The main contribution of this thesis is the development of a general temporal theory which 

may be seen as an extension of Alien and Haves' and Vilain's corresponding theories. This 

new theory axiomatises both intervals and points as primitive time elements on an abstractly 

equal footing, and hence is more expressive than some existing representative temporal 

theories, such as Bruce's [Bru72] and McDermott's [Mcd82] point-based theories, Alien and 

Hayes's interval-based theory [A1183,Alh85,89], Gallon's revised temporal theory [Gal90], and 

the interval & point-based theory of Vilain and Kautz [Vil82,ViK85], while their appealing 

characteristics are retained.
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An advantage of the new theory is that it optionally allows time structures such as linear/non 

linear, and dense/discrete, etc. Formal characterisations for these issues are given by means 

of some correspondingly additional axioms. On the other hand, the axiomatisation provides 

a satisfactory characterisation for the open and closed nature of primitive intervals, which has 

been a problematic question of time representation in many incomplete knowledge systems.

For computer based systems, the concept of a finite time network based on the general theory 

is introduced. A formal graphical representation of a finite time network is given. In term of 

this graphical representation, the necessary and sufficient condition for the consistency of a 

time network are provided in two forms for cases with, and without duration reasoning, 

respectively.

For temporal reasoning about propositions whose truth values are associated with particular 

intervals/points, a temporal logic is presented based on the new time axiomatisation. The 

syntax and semantics for the logic are explicitly defined. It is shown that the logic is more 

expressive than that of some existing systems, such as Alien's interval-based logic [A1184], 

Gallon's revised theory [Gal90], Shoham's point-based interval logic [Sho87a,b], and Haugh's 

MTA based logic [Hau87]; and the corresponding problems with these temporal systems are 

satisfactorily solved.

Finally, as an application of the temporal theory, a new architecture for a temporal database 

system which allows the expression of relative temporal knowledge of data transaction and 

data validity times is proposed. A general retrieval mechanism is presented for a database 

with a purely qualitative temporal component which allows queries with temporal constraints
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in terms of any logical combination of Alien's temporal relations. To reduce the 

computational complexity of the consistency checking algorithm when quantitative time 

duration knowledge is added, a class of databases, termed time-limited databases, is 

introduced. This class allows absolute-time-stamped and relative time information in a form 

which is suitable for many practical applications, where qualitative temporal information is 

only occasionally needed, and the efficient retrieval mechanisms for absolute-time-stamped 

databases may be adopted.

1.4 Outline of the Thesis

An outline of the rest of the thesis is as follows. In chapter 2, we address some major issues 

about the nature of time. A review of some representative temporal systems is given in 

chapter 3. In chapter 4, a general time theory is proposed. Chapter 5 examines different 

models of the theory, and shows that some representative temporal systems may be derived 

from the general theory. As applied to computer based systems, a finite time network based 

on the theory is specially addressed. In chapter 6, the syntax and semantics for a temporal 

logic utilising the time axiomatisation are presented; and a categorization of temporal 

propositions is provided. Chapter 7 introduces a new architecture for a temporal database 

system, which allows the expression of both qualitative and quantitative temporal knowledge 

of data transaction and data validity times. Finally, chapter 8 provides a summary and some 

concluding remarks.

In this thesis, we will be using the first-order predicate calculus with equality throughout, with
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the following conventions:

A and,

v or,

v exclusive-or

=» implication,

<=> equivalence,

3 existential quantifier,

31 uniquely existential quantifier,

V universal quantifier,

-i negation.



Major issues about the nature of time

CHAPTER 2

MAJOR ISSUES ABOUT THE NATURE OF TIME

When designing a system for temporal reasoning, we are faced with a choice of the underling 

time structure. The theoretical nature of time is a question with a long philosophical tradition 

and the literature is full of disputes and contradictory theories. This contrasts sharply with the 

commonly held view of time, which allows people to cope easily with time in their everyday 

life - for different objectives or motivations, different people may have different approaches. 

In the past two decades, many temporal systems have been proposed to address the problem 

of modelling human temporal concepts in a natural way. These models are similar in many 

respects, but there are subtle differences in terminology and basic theory which derive from 

the differences in approach. Generally speaking, there are several major issues which should 

be addressed in terms of the theoretical basis of proposed systems.

2.1 The Primitive Nature of Time

This is the issue of what should be taken as the primitive elements of time. Abstractly, there 

are three known choices: points, intervals, or both. The prevalent mathematical picture of time 

is that of a set of points without duration. This point view of time is an extremely abstract 

conception, not to be encountered in ordinary situations. For instance, even expressions such
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as "the exact time of birth" refer to some small intervals with positive length, rather than to 

zero-length points. As another tradition, interval structure has been proposed repeatedly in 

many temporal systems. There are two fundamentally different treatments of interval based 

systems. In the first, intervals are assumed to be constructed out of points, and hence, the 

corresponding systems may be considered as models of point-based time theories. An example 

of this is the time segments of Bruce's model for temporal references [Bru72]. However, as 

mentioned in the introduction (section 1.2), modelling intervals by taking their end-points can 

lead to the end-points problem. The second treatment takes intervals as primitive objects 

without any definitions of the "end-point" and "internal-point" structures. In Alien's interval 

based temporal theory (see [A1183,84] and [A1H89]), time intervals are taken as primitive, 

while points are relegated to a subsidiary status as "meeting places" of intervals. Other 

theories, e.g. that of Vilain [Vil82], and that addressed in this thesis, treat both intervals and 

points as primitive on an equal footing.

Although there is something counter-intuitive about treating time as a point-based system, 

Boyer [Boy59] advances the view that such a departure from primary intuitions is fruitful for 

many applications and necessary for the advance of science. Hence, by and large, scientists 

and philosophers of various persuasions have managed to live with this point view of time. 

However, there are advocates of the use of intervals instead of points as primitive. The 

justification provided by them is that the interval representation is more suitable because:

It allows imprecision and uncertainty of temporal information;

It allows the grain of reasoning to be varied;
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It can be understood more easily by humans.

For instance, linguists are finding that the semantics of temporal discourse is more easily 

explained in terms of intervals than of points. We may say that:

1) It took him about 15 minutes to cross the river.

2) He read a book for two hours before going to bed yesterday.

Additionally, since neither the starting-time nor the finishing-time of the process of "crossing- 

river", "reading-book", or "going-to-bed" is explicitly expressed, it is easier to characterise 

these processes with primitive intervals than points or point-based intervals.

2.2 Order Relations

Whatever primitive time elements are taken, all time systems must adopt axioms defining 

some sort of order relation. Two fundamental issues are associated with time ordering: the 

linearity of the time axis and the density of time elements. We address these issues as 

follows:

2.2.1 Linearity of time

This issue refers to whether the time axis can be always considered as linear or non-linear.
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Linear structure corresponds to the classical physical model of time, where there is total order 

over time elements. An example of this structure is that of the real line. The majority of time 

modelling approaches consider the time axis as being linear. However, non-linear time 

structures have also been proposed, where the fundamental order relation allows topologies 

such as branching time, parallel time and circular time, etc. Branching time has been 

proposed as a useful model to handle possible worlds [Mcd82], uncertainty about the past or 

the future and the effects of alternative actions when planning. Unfortunately, as reviewed by 

D. Long in [Lon89], branching time does not succeed very well in capturing the fact that of 

all possible futures or pasts there is precisely one actual future and past, while all the others 

will always remain hypothetical (further discussion will be given in section 3.3). As for the 

parallel time lines, they are proposed as a way of modelling separate parallel and 

asynchronous processes, and hence, parallel model can be used in developing logics for 

reasoning about parallel computation and concurrent processes. Circular time is another 

interesting possibility in which past, present and future coalesce. It can be used in modelling 

the behaviour of repetitive, cyclical processes, for example the repetition of cycles in the 

traffic signals at a road junction [Lon89],

2.2.2 Density of time

The density question is associated with the discreteness versus denseness of time. It depends 

on the type of primitives assumed for the system. For interval based systems, a dense system 

is taken to be one where every interval is (infinitely) decomposable. For point based systems, 

a dense system is one in which between any two points on the same time line, there is a third. 

As an alternative assumption, some approaches assume that time is discrete, in which each
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time element (possibly except the first and last) is "sandwiched" between unique previous and 

next time elements [Gal90a]. There are many applications in which time can be naturally and 

conveniently considered to be discrete - in reasoning about computation, for example, time 

can be modelled as CPU clock-ticks. The reason has been summarised by Theodoulidis and 

Loucopoulos [ThL91] as follow:

  references concerning time in database systems are usually made in discrete terms, 

e.g. hiring occur daily;

  when references to locations in time are made, their representation must be finite, 

e.g. in a computer system or on a piece of paper;

  from a modelling point of view time intervals may be considered to be point like 

in discrete terms. (E.g., in the form of a discrete time-sampling system with variable 

sampling times [Km'92])

The main argument in favour of density for time is that it corresponds to both the usual 

intuitive structure for time and also the conventional model of time adopted in classical 

physics. Dense model of time seems necessary in modelling continuous change since the 

concept of continuously itself presupposes a dense time system. However, in the case of 

finite computation, it will only be needed to identify and reason about a finite set of temporal 

data. The fact that taking a database as a finite set of temporal knowledge has no bearing on 

the density question at all, which is a question of the assumed theory only. This theoretical 

issue impinges upon the inferencing mechanisms which may be used to derive facts from the
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database, insofar that the density assumption is needed to establish certain consistency proofs.

2.3 Open and Closed Nature of Intervals

There is a conventional way to characterise the open and closed nature of point-based 

intervals. If an interval includes its left end-point (right end-point), it will be then considered 

as left (right) closed. Otherwise, it is left (right) open. However, when intervals are taken as 

primitive, there are no definitions about their end-points. Hence, to allow successful modelling 

of the open and closed nature of these primitive intervals, points must taken as primitive as 

well, on an equal footing to intervals; and, axioms axiomatising the order relation between 

intervals and points should be properly introduced in the corresponding theory. Additionally, 

the interpretation of the open and closed nature of primitive intervals should intuitively be in 

line with the conventional meaning of the open and closed nature for point-based intervals.

2.4 Duration Reasoning

In most applications, it is expected that a temporal system can support duration reasoning. For 

example, if it is known that interval Ia and interval Ib start together and that the duration of 

la is greater than duration of Ib, we may infer that Ib finishes before I.. This inference can be 

made by use of duration knowledge.

The duration assignment to time elements may be characterised by a function from the set of
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time elements to R/, the set of non-negative real numbers. Intuitively, of course, the duration 

of time points should be zero, while the durations of time intervals are positive. For point- 

based intervals, such as Bruce's time-segment [Bru72], their durations may be derived from 

the distance between their left end-point and right end-point. Given a duration assignment 

over time elements, some corresponding operators, such as addition, may be required to be 

defined, providing consistency of the whole system.



Literature survey 16

CHAPTER 3

LITERATURE SURVEY

Since the early 70s, many temporal systems have been proposed to address the problem of 

modelling human temporal concepts in a natural way. These systems are similar in many 

respects, but there are subtle differences in terminology and basic theory which derive from 

the differences in approach. In this chapter, we review some representative temporal systems, 

according to three fundamental considerations:

  The assumed axiomatic theory: For all of the systems which we shall consider, there 

exists an underlying theoretical basis. For some systems this basis is formally 

described, and for others it remains assumed as intuitively agreed.

  The expressiveness of the modelling language: From the point of view of computer 

databases, it would be impossible/unnecessary to address all times. Hence, the 

computer based system may be viewed as another model of the theory, in the form of 

a finite database of temporal facts. Given that the model is incomplete (in terms of a 

partial knowledge) by reason of storage limitations, there is a drive for efficient 

storage and retrieval of incomplete temporal knowledge. Expressive modelling 

languages allow the storage of temporal information which is incomplete in various 

fashions.
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  The reasoning mechanisms which are provided: Deductive inference may be 

performed on the stored data, with reference to the underlying theory, so that any fact 

which can be proved from the axioms of the theory and the stored temporal database 

may be assumed true by inference. In this way, the axioms plus database may be 

viewed as a deductive database from which facts may be retrieved by inference.

3.1 Bruce's Temporal Model

An early attempt at mechanizing part of the understanding of time within an artificial 

intelligence context was Bruce's model for temporal references [Bru72]. In this system a 

formal framework, based upon first-order logic, is established for the analysis of tenses, time 

relations, and other references to time in natural language. The axioms of the framework are 

based on the following definitions: A time-system is a pair, (time, <), where time is a set 

whose elements are called time-points, and < is a partial order over time. Because there is 

nothing that has been defined about time other than that it is partially ordered by <, the theory 

allows linear time or branching time, discrete time or dense time. The theory is thus more 

general than that for the standard point-based system, and inferencing mechanisms must be 

built on weaker axioms.

Bruce then defines point-based intervals, termed time-segments, as chains which are convex 

in the sense that there are no points missing within the chains, where a chain is a totally 

ordered subset of time-points. The related issues about time-segments, such as: density, 

linearity, boundedness, may hence be derived from the corresponding issues of the time-points
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which make up the time-segments. The ordering relations between segments are also inherited 

from the partial order over the time points. Bruce gives seven binary relations between time- 

segments, which can be derived from the ordering relations over their greatest lower bounds 

and the least upper bounds: Before, During, Same-time, Overlaps, After, Contains and 

Overlapped. In terms of these binary relations, a tense is defined as a special n-ary relation 

on time-segments with the following form:

R1_R2_..._Rn. 1 (S 1 ,S2,...,Sn) = R1

where each Sj is a time-segment and Ri is a binary relation between St and Si+1 . S x is called 

the time of speech, S2, ..., S^ are called the times of reference, and Sn is called the time of 

event. For example, the following sentence

He will have been going to be going to go

has the tense

Before_After_Before_Before(Sl ,S2,S3 ,S4,S5) =

where S t is the time of speech, S2, S 3 , S4 are reference times, and S5 is the time of event.

Bruce provides a natural language system, termed CHRONOS, which consists of a simple 

English sentence parser, a theorem prover, and a database of facts and events. The system
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accepts facts about events from the user and the information which is given by tense and time 

relations can be combined with other facts to allow inferences about the temporal ordering 

of events.

However, as argued by Gallon, there are some limitations with Bruce's CHRONOS, deriving 

in part from the over-simple nature of its translation procedure [Gal87]. Additionally, no 

consistency checker for the system has been explicitly provided and there are some difficulties 

in dealing with the treatment of open or closed intervals, that is, the end-points problem (see 

section 1.2). Mechanisms for duration reasoning are not specified, although these may be 

defined by introducing a mapping from the time-points to the reals.

3.2 The Time Specialist of Kahn and Gorrv

In order to store, retrieve, and reason about temporal information, Kahn and Gorry [KaG77] 

have designed and implemented a module, called time specialist, to maintain separate 

mechanisms for dealing with dated and undated information. The time specialist is endowed 

with the capacity to order temporal facts in three major ways:

(1) relating events to dates,

(2) relating events to special reference events,

(3) relating events together into before-after chains.
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The time specialist can answer different types of questions such as:

  Did event X happen at time expression T?

  When did event X happen?

  What happened at time expression T?

The time specialist can check the consistency of the latest fact with facts previously accepted, 

and try to resolve inconsistencies through interaction with the user. In such an interaction, the 

user may withdraw either the new fact, or some old facts whose removal would lead to 

consistency. However, removing old facts may involve undoing some prior deductions. In 

order to be able to do this, a deduced fact is marked by those facts used to deduce it.

However, even if the time specialist is able to make deductions and check whether they are 

consistent with the facts known in the data base, it is weak if the time indications are fuzzy: 

fuzziness needs to be represented by means of plus/minus error intervals for the dates of 

events, and for the lengths of times between two events. Additionally, since each of the three 

methods to organize temporal statements has its own special data structures and routines to 

work with those structures, for a given set of temporal facts, it is the user, unfortunately, not 

the time specialist, who has to choose the most appropriate methods.

No formal theory is stated as a basis for the time specialist. The basis for temporal reasoning 

is contained in the algorithms which make up the system.
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3.3 The Temporal Theory of McDermott

McDermott [Mcd82] has developed a first-order temporal logic to provide a versatile 

"common-sense" theory for time: reasoning about causality, reasoning about continuous 

change, and planning actions. In accordance with the "naive physics" advocated by Hayes 

[Hay? 8], McDermott adopts an infinite collection of states as the primitive temporal elements 

and added several crucial axioms: Every state has a time of occurrence, J(s), a real number 

called its date. Time is assumed to be a continuum, with an infinite numbers of states 

between any two distinct states, where states are partially ordered by the "no later than' order 

relation "<"; and the future (not the past) is branching, that is, there are many possible futures 

branching forward in time from the present. Each single branch, called a "Chronicle", consists 

of a connected series of states and is isomorphic to the real line. Developing his theory, 

Mcdermott examines three major problems that a temporal reasoning system must face: 

reasoning about causality, reasoning about continuous change, and planning actions.

McDermott's system has formal axioms with time-points (states) and reals as primitives. The 

theory assumes a partial ordering relation, which gives rise to branching time. Reasoning is 

via the assumed theory of the real numbers, and no special mechanisms are needed. We can 

represent a time state, s, as the pair (Cs, t), where t = d(s) and Cs is the set of chronicles that 

s belongs to. Possible events may be associated with time states.

For illustration, we shall consider the example of a man called John, planning a trip to the 

theatre. He may go by train or by bus. We may assume that a decision will be made to go 

by train or bus. If the decision is made to go by train at time state s^.^, where d(strainl ) = tp
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then John will arrive at the theatre at state s^,^, and the play will start at state strain3 , where 

d(strain3) = tg. All of these time states lie on a chronicle c^. Alternatively, if the decision is 

made to go by bus at state s^, where dCs^) = tlt then he will arrive at the theatre at state 

s^, and the play will start at state s^, where dCs^) = t3 . All of these time states lie on 

chronicle cbus. These events and states may be represented by the following data:

(decides-to-take-train, 

(arrives-at-theatre-by-train, 

(play-starts, c^, t3)

(decides-to-take-bus, cbus,

(arrives-at-theatre-by-bus, cbus,

(play-starts, cbus, t3)

Here, s^ has been represented by the pair (c^, tj, s^ by (c^, t^) etc

In this example, illustrated in Figure 3.3(1), we see that time states divide into two separate 

chronicles c^ and c^, from the state s0 which may corresponds to finishing supper, as a 

result of the John's decision. Although it is obviously possible for us to compare times on 

different chronicles by means of the t component, McDermott uses the "no later than" relation 

over time states which is restricted to states on the same chronicle. This is to prevent us from 

making "no later than" comparisons for events which cannot both occur in reality. For 

example, we are not allowed to ask whether he arrives at the theatre by bus before he arrives 

by train, since he cannot do both. These two events are said to be in different possible worlds
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(i.e. chronicles).

S train 1

Straln2 Strains
Ctraln

Cbus

Figure 3.3(1)

McDermott also provides axioms which ensure that chronicles branch only into the future, and 

this limits the expressiveness of the logic. For, in the example, we have the event "play starts" 

on two different chronicles which cannot be compared. Using McDermott's logic we must 

view these as two separate events: "play starts after John's arrival by train", and "play starts 

after John's arrival by bus". Intuitively, we may judge that the play is independent of John. 

However, it is not obvious how this independence may be shown in McDermott's system, 

since we are not allowed to join two chronicles at the state where the play starts.

It is in fact arguable whether we need to consider time as branching in order to model 

possible worlds. In fact, it is possible to conceptualise the world number, or chronicle, as 

related to the event data, and not to the time. For example, we can regard the predicate:

(decides-to-take-train, 'train'

as relating:
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(event, possible_world, time) 

rather than:

(event, time_state)

In this case, time elements are standard linear dense time points, and the axioms for 

chronicles can be specified independently of those for time.

3.4 The Interval Logic of Alien

Alien introduced his temporal logic in order to provide a framework for the naive treatment 

of two major subareas of artificial intelligence: natural language processing and problem 

solving. Instead of adopting time points (or states which are associated with time points), he 

takes intervals as the primitive temporal quantity, as being the natural means of human 

reference to time. As an example, in [A1183], Alien gives the following story:

Ernie entered the room and picked up a cup in each hand from the table. He drank 

from the one in the right hand, put the cups back on the table, and left the room.

In this account we can identify several time intervals, e.g.: the time Ernie was in the room, 

the time between entering the room and picking up each cup, the time between putting down 

the cups and leaving the room, and many others. However, the claim is that intervals are 

sufficient for modelling all the temporal references in human accounts such as this. Even 

references to apparent point events, such as the time Ernie entered the room, or the time that
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he put down a cup, are best modelled as small time intervals. The argument is put forward 

that all apparently instantaneous events can be decomposed further if we examine them more 

closely. For example, "entering the room" may be decomposed into: opening the door, moving 

through the doorway, and closing the door. And again, "opening the door" can be decomposed 

into turning the handle and pushing the door open. As Alien puts it [A1183]:

There seems to be a strong intuition that, given an event, we can always "turn up the 

magnification" and look at its structure.

In order to express temporal ordering of time intervals, Alien takes as primitive a set of nine 

(mutually exclusive) basic binary relations between any two intervals [A1181], extended later 

to thirteen [A1183]: Equal, Before, Meets, Overlaps, Starts, Started-by, During, Contains, 

Finishes, Finished-by, Overlapped-by, Met-by, After. These are based on Bruce's seven 

relationships, but whereas Bruce's relations were derived from the order within a point-based 

theory, Alien's are taken as primitive.

These relationships were later formally defined in terms of the single primitive relation 

"meets" by Alien and Hayes [A1H85,89]. This is done by positing the existence of related 

intervals. For example:

BeforeQ^i?) <=> 3i(meets(i lti) A meets(i,i2^

The set of axioms that axiomatise the primitive "meets" relation over time intervals is 

proposed first in [A1H85], and then revised in [A1H89], as follows:
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i,j,k,le I(meets(ij) A meets(i,k) A meets(\,])

<M2> Vi,j,k,l l(wm,s(i,j) A meets(k,i)

A

(N.B. "v" means exclusive disjunction.)

<M3>

<M4> Vj,k l(3i,lel(me^^(i,j) A meets(j,l) A me^f5(i,k) A meets(k,l))

j=k)

(N.B. "j = k" means j and k represent the same time element.)

<M5> Vije I(meets(i,j) =>

3ke IVm,ne I(m^e^(m,i) A meets(j,ri)

Axiom <M1> states that the "place" where two intervals meet is unique and closely associated 

with the intervals. The role of <M2> is to ensure that meeting places are totally ordered. 

<M3> makes every interval have at least one neighbouring interval preceding it, and another 

succeeding. <M4> simply says that there is only one time interval between any two meeting 

places. Finally, <M5> states that if two meeting places are separated by a sequence of
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intervals, then there is an interval which connects these two meeting places. Hence, with 

axiom <M4> and the definition of equality, for any two adjacent intervals, i and j, the ordered 

union of i and j, written i © j, is designed.

A limitation of Alien and Haves' theory, noted by Tsang [Tsa87], is that the axioms are not 

primitive enough for extensions. For example, it might be hoped that linearity can be removed 

from the axiomatisation in order to address the issues such as branching time and parallel 

time, etc. In fact, Tsang points out that it is difficult to see which of Alien and Haves' axioms 

entails linearity. Alien and Hayes conclude that the linearity assumption is characterised by 

means of axiom <M4> in the revised version of the set of their axioms [A1H89]. However, 

it is indeed axiom <M2>, rather than <M4>, that entails the linearity of time. In fact, if we 

remove <M2> from the set of axioms, then the time may be circular, parallel, branching, as 

shown in Figure 3.4(1). In this graphical representation, the arcs of the graph represent time 

intervals, and the relation meets(ij) is represented by i being in-arc and j being out-arc to a 

common node:

o —— so ———— >o

>O
circular time parallel time

branching time

Figure 3.4(1)
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Another limitation of Alien and Hayes' time theory is that it takes only intervals, rather than 

points, as primitive time elements, although points are later introduced as the "meeting places" 

of intervals, or as a maximal set, termed "nest", of intervals that share a common intersection, 

at a subsidiary status within the theory. Alien's original contention is that nothing can be true 

at a point, for a point is not an entity at which things happen or are true [A1183]. However, 

as Galton shows in his critical examination of Alien's interval logic [Gal90b], Alien's theory 

of time based on only time intervals is not adequate, as it stands, for reasoning correctly about 

continuous change.

To characterise the times that some "instant-like" events occupy, in [A1H89], Alien and Hayes 

introduce the idea of very short intervals, called "moments". A moment is simply a non- 

decomposable time interval. The important distinction between moments and points is: 

although being non-decomposable, moments are defined by having extent and by means of 

having distinct beginning and ending points (just as for other intervals) [A1H89], while points 

are defined by having no extent.

However, Alien and Hayes' revised time theory that addresses moments as well is still not 

adequate for reasoning correctly about continuous change. We may illuminate the problem 

involved with reference to time points by means of the following example of a ball thrown 

vertically into the air: The motion may be described qualitatively by the use of two intervals, 

interval i where the ball is going up, and interval j where the ball is coming down. According 

to classical physics, there is a point where the ball is stationary. As Alien suggested, in the 

interval calculus, we may assume that there is a very small interval, that is, a moment, where 

the ball is stationary. But this does not seem tenable, being inconsistent with the laws of
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classical physics, no matter how small the interval.

Relating to the "meets" relation, another obvious difference between points and moments is 

that moments can meet other intervals, and hence stand between them, while points are not 

treated as primitive objects and cannot meet anything. However, as Alien and Hayes 

themselves point out, a theory incorporating granularity involves introducing a "tolerance 

relation" that defines when two times are indistinguishable. For example, two intervals, i and 

j, might be indistinguishable if their beginning points are at most a moment apart, and 

likewise for their end points. To ensure that the tolerance relation is an equivalence relation, 

Alien and Hayes propose axiom <M6>, which insists that moments never meet:

<M6> Vm,ne l(moment(m) A moment(n) =» ->meets(m,n))

where moment(m) is defined by:

Vme I(moment(m) <=> -clije I(m = i © j))

Alien and Hayes declare that their formulation permits either discrete or continuous time 

models, as well as more exotic models that may alternate between continuous and discrete 

stretches of time. Unfortunately, axiom <M6> leads to another limitation to the primitive time 

elements: for any interval, either it is non-decomposable, that is, a moment, or it must be 

infinitely decomposable. For, if it is only finitely decomposable, then it must be the sum of 

a finite number of moments which would meet one another, contrary to <M6>. This precludes 

discrete models from the theory containing axiom <M6>. In addition, dense models of the
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theory, i.e where all intervals are infinitely decomposable, permit no moments at all, so that 

<M6> is only vacuously true. Hence models of the theory including <M6> which contain 

moments can be neither solely dense nor solely discrete!

In Alien's system [A1181,83], consistency checking is performed by formation of the transitive 

closure, according to a transitivity table with 144 entries which describes the composition of 

the thirteen (mutually exclusive) relations. If no conflict is found according to the exclusivity, 

then the system is consistent. For example, for the system:

Before(&,b\ Before(b,c)

we may use the transitivity entry:

Before(ilti2)

to deduce that Before(a,c), and no inconsistency arises. However, from:

Beforefab), Before(b,c), Before(c,a)

we can deduce Afterfab). Hence we have two distinct relations between a and b, Before(&,b) 

and 4/ter(a,b), which are not allowed due to the exclusivity of these temporal relations. In this 

way, reasoning in Alien's system relies on the propagation of temporal relations using the 

transitivity table, in a search for inconsistency.
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Alien and Hayes show that the transitivity table in [A1183] is a result of the their axioms in 

[A1H89], following the intuitive reasoning by possible cases which was used to construct the 

table originally. Additionally, Alien [A1183] has suggested that duration reasoning may also 

be incorporated into the interval-based system by giving examples of rules for duration 

reasoning. For example:

During(z,b) v Startsfab) v Finishesfab) =>

duration(SL) < duration^)

However no comprehensive mechanism has been proposed, and hence the duration reasoning 

is rather weak.

3.5 Vilain's Temporal System

Noting that intervals are not the only mechanism by which human beings understand time, 

another common construct being that of time points, Vilain and Kautz [Vil82,ViK86]] propose 

a system which handles time points in much the same way that it handles intervals. The logic 

of points is arrived at by expanding Alien's logic of intervals: adding new primitive relations 

and composition rules over them to Alien's interval logic. The new primitive relations may 

be classified into three groups:

Point-Point: {Equal, Before, After}

which relate points to other points;
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Interval-Point: (Before, Started-by, Contains, Finished-by, After]

which relate intervals to points;

Point-Interval: (Before, Starts, During, Finishes, After]

which relate points to intervals.

The mechanism by which Vilain's system makes deductions about points is an extension of 

that which it uses to make deductions about intervals. In an approach similar to that of Alien, 

the system maintains a "complete picture" of all relations over intervals and points by means 

of a transitive closure operation. The operation is performed over the expanded set of 

composition rules in the newer logic.

However there is a critical omission from the primitive relations between points and intervals 

in Vilain's system; for the "Meets" relation is defined only between intervals and is not 

allowed between points and intervals. Hence, the problems in modelling continuous change 

by Alien's system mentioned by Gallon in [Gal90b] still exist in Vilain's system. For 

example, the system is still not capable of modelling the processes of a ball thrown vertically 

into the air: Let interval ij refer to ball-going-up, point p refer to ball-stationary, and interval 

i2 refer to ball-coming-down. On the one hand, it is easy to see that p is neither in ix nor i2. 

On the other hand, according to Vilain's classifications of relations over points and interval, 

point p is not allowed to meet or be met-by any interval. Hence, we deduce that p is after ij 

and before i2, that is, there is another time element between ij and p, and another time 

element between p and i2. This is obviously contrary to our intuition of the processes.
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3.6 Kowalski and Sergot's Event Calculus

The event calculus of Kowalski and Sergot [KoS86] is an approach for representing and 

reasoning about time and events within a logic programming framework. It is based in part 

on the situation calculus [McC63,McH69], but focuses on the concept of events as highlighted 

in semantic network representations of case semantics (see [Kow92]). Its main intended 

application is the representation of events in updating databases and discourse representation.

Primitives of the theory are events, which are considered to be structureless "points" in time, 

where "point" is used here only to convey the lack of internal structure. Events start and 

finish periods of time, during which states are maintained. Events are considered to be after 

the time periods that they finish and before the time periods that they start, not fully 

contained within either of these periods.

Using an example about project assignments, Sadri [Sad87] illustrates a number of the general 

characteristics of the event calculus:

(1) Event descriptions can be assimilated in any order, independent of the order in 

which events actually take place;

(2) Events can be used for temporal references and need not be associated with 

absolute times;

(3) Events can be simultaneous;

(4) Events can be partially ordered;

(5) All updates are additive. The effect of deletion is obtained by adding information
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about the end of periods;

(6) The event calculus rules are in Horn clause logic augmented with negation by 

failure; 

and

(7) The event calculus allows events to be input with incomplete descriptions.

In [Kow92], Kowalski specially investigates the case of the event calculus connected with 

database updates. The way in which relational databases, historical databases, modal logic, 

and the situation calculus deal with database updates is discussed in detail. It is claimed that 

the event calculus may overcome the computational aspects of the frame problem in the 

situation calculus, and it is hoped to achieve the efficiency obtainable with "destructive 

assignment" in relational databases (see [Kow92]). Bernard et. al. [BBG91] have recently 

presented an adaptation of the event calculus to the problem of determining the temporal 

structure of operations that must be performed during the realization of some complex 

objectives. An extension to Kowalski's event calculus model is proposed by Borillo and 

Gaume [BoG90], by means of the additional spatial component, and the introduction of 

uncertainty and a general abstract relation among propositions.

The formal theory of Kowalski and Sergot's event calculus may be taken as the Horn clause 

logic plus negation by failure. The event calculus rules can be run as a logic program in 

Prolog. However, the use of negation by failure introduces a procedural element into the 

axioms. In this respect, the system is thus akin to the time specialist, in that the theory is 

presented in terms of algorithms.
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3.7 Dechter. Meiri and Pearl's TCSP

Dechter, Meiri and Pearl [DMP91] have presented a unified approach to temporal reasoning 

based on constraint-network formalism. In this framework of temporal constraint satisfaction 

problems (TCSP}, variables represent time points, and temporal information is represented by 

a set of unary and binary constraints, each specifying a set of permitted intervals. The unique 

feature of this framework lies in permitting the processing of metric information, namely, 

assessments of time differences between events. Algorithms are presented for performing 

some reasoning tasks, such as finding all feasible times that a given event can occur, finding 

all possible relationships between two given events, and generating one or more scenarios 

consistent with the information provided. A TCSP involves a set of variables, Xlt ..., Xn, 

having continuous domains; each variable represents a time point. Each constraint is 

represented by a set of intervals: {1^ ...,! }, where these intervals are similar to Bruce's time- 

segments, that is, they are point-based, may be closed, open, or semi-open. A simple temporal 

problem (STP) is a TCSP in which all constraints specify a single interval. The duration of 

an interval may be defined by the distance between its greatest lower bound and least upper 

bound. Relations between intervals, such as the thirteen relations defined by Alien, may be 

derived from the known total order relation among their greatest lower bound and least upper 

bound. The consistency checking for a TCSP is transformed to a corresponding examination 

of its graphic representation.

The theory is formally stated, with points and real numbers as primitives, and intervals being 

constructed out of points. It assumes a dense set of time-elements, but time may be branching. 

Duration reasoning is encompassed by the system, by means of a consistency checking
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algorithm. The limitation of the TCSP model is it's assumption that all the addressed point- 

based intervals have the same open/closed nature, that is, either interval are all assumed to 

be closed, or they are all assumed to be open, or all assumed to be semi-open. This 

assumption can lead to problems: if intervals are all closed then adjacent intervals have 

ending-points in common, which, when adjacent intervals correspond to states of truth and 

falsehood of some property, can lead to situations in which a property is both true and false 

at an instant. Similarly, if intervals are all open, there will be points at which the truth or 

falsity of a property will be undefined. The solution in which intervals are all taken as semi- 

open, so that they sit conveniently next to one another, seems arbitrary and unsatisfactory (see 

[A1183,Gal90]).

3,8. Bacchus, Tenenberg and Koomen's BTK

Bacchus, Tenenberg and Koomen present a many-sorted temporal logic, termed BTK 

[BTK91], for reasoning about propositions whose truth values might change as a function of 

time. In order to provide a clear semantics and a well-studied proof theory, they partition both 

the universe of discourse and the symbols of their language into two sorts, temporal and non- 

temporal, by which time is given a special syntactic and semantic status without having to 

resort to reification. In BTK, propositions are associated with time objects by including 

temporal arguments to the functions and predicates, where terms and wffs are defined in the 

standard fashion, with the only restriction being that arguments of the correct sort must be 

given for each function and predicate.
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Actually, BTK is sorted in much the same way as Shoham's reified logic [Sho87a,b]. Unlike 

Shoham's first-order logic in which propositions are expressed just with respect to a pair of 

time points (denoting a time interval), propositions in BTK can be expressed and interpreted 

with respect to any number of temporal arguments: there is neither a syntactic commitment 

to the number of temporal objects that any function or predicate may depend upon, nor is 

there any commitment to interpreting the temporal objects as either intervals or points.

It is interesting to noted that, in their paper [BTK91], Bacchus et. al. have shown that 

Shoham's logic can in fact be subsumed by BTK by defining two transformations, a syntactic 

transformation, rcsyn, and a semantic transformation, rcsem. 7csyn maps sentences of Shoham's 

logic to sentences of BTK, while 7tsem maps models of Shoham's logic to models of BTK. 

Additionally, they argue that Shoham's categorization of propositions over point-based time 

intervals may also be translated to BTK, and the ontology of BTK is richer since it allows 

time intervals to be the primitive temporal objects rather than being defined as pairs of time 

points.

The major difficulty involved in reasoning in a BTK system lies in reasoning with the 

temporal terms, when the complexity of reasoning is highly dependent on the nature of the 

temporal domain. However, in BTK, there is no axiomatisation characterising the time 

structure. This question is left open, so that the temporal domain of BTK may be defined to 

be any temporal structure which can be characterised by a set of axioms, for example that of 

Bruce [Bru72], of Alien and Hayes [A1H89], or of McDermott [Mcd82]. A complete proof 

theory may then be generated by adding the axioms for the temporal domain to the 

fundamental axiomatisation of the logic.
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3.9 Beck's Temporal Framework

In [Bee89,90,92], Beek has separately proposed an interval-based framework, /A, and point- 

based framework, PA, for representing and reasoning about incomplete and indefinite 

qualitative temporal information. Two fundamental reasoning tasks that arise in applications 

of these frameworks are addressed: Given possible indefinite and incomplete knowledge of 

the relations between some intervals or between some points,

(i) find a scenario that is consistent with the information provided;

(ii) find the feasible relations between all pairs of the intervals or points.

Following from the approach of Dechter et al. [DMP91], and Ladkin and Maddux [Lad87,92], 

the reasoning tasks are formalized as binary constraint satisfaction problems. An /A network 

is a network of binary constraints where the variables represent time intervals, the domains 

of the variables are the set of ordered pairs of rational numbers {(s,e) | s < e}, with s and 

e representing the starting and ending points of the intervals, respectively, and the binary 

constraints between variables are represented implicitly by sets of temporal relations over 

intervals introduced by Alien [A1183]. However, these interval relations are induced from the 

order relation between the starting and ending points of the corresponding intervals. Hence, 

the interval-based framework I A is similar to that of Dechter et al., with intervals being 

defined in terms of points. Since the rationals are adopted in /A network as the underlying 

representation of time, the time is hence dense, linear, and unbounded. A PA network is a
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network of binary constraints where the variables represent time points, the domains of the 

variables are the set of rational numbers, and the binary constraints between variables are 

represented implicitly by sets of the basic point relations proposed in Vilain and Kautz's point 

algebra [ViK86].

For the point-base framework and the restricted but useful "pointable" version of the interval- 

based framework, computationally efficient procedures for finding a consistent scenario and 

for finding the feasible relations are given, which are marked improvements over the 

previously known algorithms.

It is interesting to note that the frameworks, IA and PA, deal with temporal relations between 

intervals, and relations between points separately, that is, the interval-based framework IA 

deals with the thirteen temporal relations (defined by Alien [A1183]) between intervals only, 

while the point-based framework PA deals with temporal relations between points only, which 

are addressed in Vilain and Kautz's point algebra [ViK86]. Relations between intervals and 

points, such as that proposed in [Vil82], are not addressed at all. Again, like Dechter et al.'s 

framework, time intervals are not defined as primitive. Indeed, time intervals, and temporal 

relations between intervals are defined in terms of points (rationals) and the corresponding 

order relations between points.

3.10 Maiocchi's TSOS

TSOS (Temporal Semantic Office Systems) is a system for reasoning about time, presented
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recently by Maiocchi [Mai92]. In TSOS, the temporal domains on which temporal data may 

be specified in the model are: time points, time intervals, and time extensions. However, only 

discrete points are taken as primitive time elements, from which other temporal concepts, such 

as, time intervals and durations are derived. This treatment is quite similar to that of Bruce 

[Bru72], although in [Bru72] some issues such as durations are not explicitly addressed. In 

particular, in TSOS, time intervals are defined as point-pairs, which are all closed in their 

lower end and open in their upper end, and each time interval is connected. However, as 

mentioned in [A1183] and [Lon89], this approach seems arbitrary and unsatisfactory. A time 

extension denotes a set of consecutive time points at the minimum level of abstraction (quanta 

of time which is dependent on the application domain). Time concepts such as the distance 

of a time point from another time point, the duration of a time interval, and dates are then 

specified in terms of time extensions. For example, "one week" and two days" are time 

extensions.

In TSOS, the concepts of instantaneous event and of proposition are introduced as the basic 

elements to which temporal information is associated. Instantaneous events are used to model 

data to which a single time point is associated, and therefore they are considered 

instantaneous in the temporal framework of reference for the systems. Propositions model data 

valid over a time span.

TSOS can be integrated as a time expert in environments designed for broader problem- 

solving domains. It allows users to infer further information on the temporal data stored in 

the database through a set of deduction rules handing various aspects of time. To handle 

imprecise time, TSOS supports the concepts of relative time, time granularity, and modalities
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for propositions, where temporal modalities characterise the possibility of specifying whether 

a piece of information is always true within a time interval or whether it is only sometimes 

true, and the capability of answering about the possibility and the necessity of the validity of 

some information at a given time. The main mechanism for temporal data maintenance 

supported by TSOS is the managements of valid time and transaction time (see [SnA86] and 

[Sri88]).
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CHAPTER 4

A GENERAL TIME THEORY

As discussed in section 3.4, Alien and Hayes' time theory is not primitive enough for 

extensions [Tsa87], and is not adequate for reasoning correctly about continuous change 

[Gal90]. Although Vilain's system [Vil82] takes both points and intervals as primitive, it is 

still not possible to characterise the open and closed nature of intervals, and hence, it is still 

not adequate for reasoning correctly about continuous change. In this chapter, we propose a 

general axiomatic framework to serve as an unifying basis for most of representative temporal 

models in artificial intelligence. The axioms may be seen as an extension of Alien and Hayes' 

theory [A1H89], to take both intervals and points as primitive objects on an equal footing. 

This approach is different from that of Vilain and Kautz [ViK86], of Dechter et al. [DMP91], 

of Ladkin [Lad92], and of Beek [Bee92], which either construct intervals out of points, or 

treat points and intervals separately.

We present the main body of the axiomatisation in section 4.1. These axioms are independent 

of the specification of density and linearity. Additional axioms are provided in section 4.2 to 

specify the linearity and density of time, and, formal definitions are also given for the open 

and closed nature of primitive intervals. A classification of all possible temporal relations over 

intervals and points is presented in section 4.3.
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4.1 An Axiomatisation of Time based on Intervals and Points

The new general time theory may be seen as an extension of Alien and Hayes' axiomatisation 

[A1H89], by means of some additional axioms relating to the inclusion of time points as 

primitive elements, and generalisation of Alien and Hayes' axiomatisation by removing the 

linearity of time in order to allow non-linear time structures such as branching time, parallel 

time, etc.

We start the formal theory by posing a nonempty set, T, of objects that we shall call time- 

elements, and a function, "dur", from T to R/, the set of non-negative real numbers. A time- 

element, t, is called a (time) interval if dur(t) > 0, otherwise, t is called a (time) point. 

According to this classification, the set of time-elements, T, may be expressed as T = I u P, 

where I is the set of intervals, and P is the set of points. As in Alien and Hayes' approach, 

at this early stage we do not make any commitment as to whether all time intervals are 

decomposable or not. The density question will be addressed by further axioms.

In order to define the primitive order over time elements, we adopt Alien and Hayes' 

axiomatisation for the single relation "meets" between intervals while the axiom characterising 

the linearity will not be included in the first place. Since the time elements may now be not 

only intervals but also points, some critical axioms are necessary relating to the treatment of 

points. The whole set of axioms for the "meets" relation over T are listed below, where 

axioms <A1>, <A2>, <A3> and <A4> correspond to Alien and Hayes' <M1>, <M3>, <M4> 

and <M5> in the above section, respectively:
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Vtl ,t2,t3 ,t4  T(meets(tlttJ A

<A2> VteT3t',t"<=T(meett(t',t) A

<A3>

A meets(C ̂  A weetoCt^t")) => t =

<A4>

3teTVt',t"eT( meets(l\\J A 

=> meets(l\i) A

N.B. For any two time elements, tj and t^ such that meets(tlfi^ f axioms <A4> and 

<A3> ensure that there is a unique time element corresponding to the ordered union 

of tt and tz, which is indicated as i © j, and which always implies that meets(ij).

<A5> VtteTmeetett => t l v

<A6>

Axiom <A5> is based on the intuition that points will not meet other points, that is, between 

any two time points, there is a time interval. This is indeed very similar to Alien and Hayes' 

<M6> which states that moments never meet other moments. However, although <M6> 

appears to bring little benefit in the form that is presented in [A1H89], dealing with moments, 

it can be seen that <A5> plays a critical role in the general theory proposed in this chapter,
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as it is applied to "time points". In this case the axiom does not limit the interval structure 

at all: unlike <M6>, <A5> does not imply the limitation that any decomposable interval must 

be infinitely decomposable. Additionally, axiom <A5> does not affect whether the set of 

points is dense or not. This issue will be depend on a further assumption ensuring that 

"within" any time interval, there is a time point (see section 6). Axiom <A6> ensures that the 

addition operation, "©", over time elements is consistent with the function dur, which we 

shall call the duration assignment over T.

This is the complete fundamental set of axioms concerning the meets relation. We denote this 

set as A, and use a pair, (T,meef), to represent the temporal frame defined by the 

axiomatisation.

4.2 Some Further Issues

The axiomatisation proposed in the above section defines a general temporal frame based on 

both intervals and points as primitive objects. In this section, we address some further issues 

relating to the structure of the frame.

4.2.1 Open and closed nature of intervals

Although intervals are taken in the theory as primitive, that is there are no definitions about 

the end-points for intervals, the axiomatisation allows the expression of the "open" and
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"closed" nature of intervals. For example, to represent the process of the ball thrown into the 

air (see section 3.4), we may relate ball_goingjup, balljstationary, and ball_coming_down 

to interval ilf point p, and interval i2, respectively, where miitt(ii»p)» meets(p,i2)- Intuitively, 

t = p © \2 relates to ball_stationary-or-ball_coming_down. In Figure 4.2.1(1), since lj has 

point p as its immediate successor, we may view it as "right-open" at p, and similarly, i2 as 

"left-open" at p. (For clarity, we denote points with bold arcs.) Since interval t (= p © i2) and 

point p have the same immediate predecessor (ij) we may view t as "left-closed" at p.

c

Figure 4.2.1(1)

Formally, the open and closed nature of primitive intervals may be defined as follows:

interval i is left-open at point p iff 

meets(p, i);

interval i is right-open at point p iff
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interval i is left-closed at point p iff 

3i'el(meets(i',i) A

interval i is right-closed at point p iff

It is easy to see that "left-open" and "left-closed" (symmetrically, "right-open" and "right- 

closed") are exclusive to each other under the axiomatisation. In fact, if interval i is left-open 

at point PJ, and left-closed at point p2, then by the above definition, we get:

meetsfaj) A meets(i',i) A raeete(i',p2), where i'el

Hence, by axiom <A1> we can infer that meetsfy^fa), which contradicts axiom <A5>

The above interpretation of the "open" and "closed" nature of primitive intervals is in fact in 

line with the conventional meaning of the open and closed nature for point-based intervals. 

For instance, point-based interval (pt , p2] is "left-open" at point p 1 , since intuitively p x is an 

immediate predecessor of interval (pj, p2]; similarly, (p^ p2] is "right-closed" at p2, since both 

point p2 and interval (p^ p2] have the same immediate successor, (p2, _}.

4.2.2 Linearity of time

Time is usually considered as having a linear structure. This corresponds to the classical 

physical model of time, where the structure is that of the real line, extending indefinitely in
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both directions.

The (full) linearity of a temporal frame (T,meets) can be characterised by adding an axiom, 

» to A, the set of axioms proposed in section 4.1:

Vt1 ,t2,t3,t4eT(m^W(t1 ,t2) A

v3t' eTfaeetstt^t') A meets(V ,14

,t") A meets(l" ,

N.B. The axiom <ALineai> is in fact the axiom <M2> (see section 2) for Alien and 

Hayes' interval-based theory. The "exclusive ors" in this axiom have some quite 

powerful consequences. In particular, they ensure that there can be no circular, 

parallel, and branching times. For instance, the following lemmas are straightforward 

(see [A1H89]):

Vte T(-vneets(t,i)) 

<Lemma2> 

<Lemma3> VtG T-.3t'e

which ensure that there is no possibility of circular time.

However, without <ALineai>, a temporal frame usually allows branching into both the past and
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the future. Branching temporal frames offer a way to handle possible worlds, uncertainty 

about the past or the future and the effects of alternative actions when planning. A temporal 

frame which allows branching into the future but not into the past is called left-linear (see 

Figure 4.2.2(1)). This may be characterised by adding to A, the axiom <AL.Linear>, rather than 

the stronger axiom <ALineai>:

A meets(t2,t) A meets(t$,l4) A meets(t4,i)

tt') A meets(t' ,t4)) 

,t") A meets(l"

left-linear time

Figure 4.2.2(1)

Analogously, right-linearity is defined by means axiom <AR.Lineai>:
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Vt,t1 ,t2,t3,t4  T(miitt(t,ti) A meets(tltt^ A meets(\J^ A

v3t'  T(m^tt(tlft') A meets(t' , 

v3t"eT(weete(t3,t") A

As Galton puts it in [Gal90a], it is interesting to note that left-linearity and right-linearity 

together just fail to imply (full) linearity, the exception being the case of parallel time lines 

as shown in Figure 4.2.2(2).

--- O

tim

Figure 4.2.2(2)

Parallel temporal frames provide a way of modelling separate and asynchronous processes, 

and might prove useful in developing logics for reasoning about parallel computation and 

concurrent processes.

4.2.3 Dense and discrete time

According to Axiom <A2>, for each time-element t, there is a time-element which "meets"
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it, and another one which it "meets". Therefore, in particular, axiom <A4> and <A5> 

additionally ensure that, between any two distinct time points on the same time line, there is 

always a time interval. However, for time intervals, can we always assume that any interval 

can be decomposed into two distinct contiguous intervals? If so, we say that the set of time 

elements forms a dense system.

We may use the following axiom to characterise the density of a temporal frame (T,meets):

<A>Dense

We can show that axiom <ADense> implies that each time interval can be decomposed into two 

distinct contiguous intervals. In fact, assume interval i = ^ © t£ if tj is a point, then by axiom 

<A5>, tj must be an interval; hence, by <ADense>, tj = t' © t". By <A4> and <A3>, we get 

i = tx © t' © t". Since ^ is a point, axiom <A5> implies that t' must be an interval; hence 

t! © t' is an interval. If t" is an interval then we have proved that i can be decomposed into 

two intervals, i t and t", where it = tx © t'; in the case that t" is a point, <ADense> implies that 

t' = t1 * © V, and again, since ^ and t" are points, from <A5> we can infer that both tt ' and 

V must be intervals; hence i = Ji © J2 > where Ji = t' © t/, and j2 = t>' © t" are two intervals. 

Similar discussion applies to the case that t^ is a point which implies that tt must be an 

interval.

In fact, it will turn out that we may need a slightly stronger axiom to characterise a temporal 

frame in which there is always a time point during any time interval. We introduce it as
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below:

= ^ © p

N.B. By consideration of axioms <A2> and <A5>, we can infer that axiom <AP.Dense> 

ensures that between any two distinct time points on the same time line, there is a 

third. It is easy to show that axiom <AP.Dense> is stronger than axiom <ADense>, that is, 

<Ap.DenSe> implies <ADense>, but not vice versa. (E.g., if we let

P = 0 and I = { [a,b) | a,beR,a < b }, 

then we get a time frame which satisfies <ADense> but not <AP.Dense>.)

The discreteness of a temporal frame (Tweets) can be characterised by means of adding two 

axioms, <AL.Discrete> and <AR.Discrete> to A:

= t> © t3))

j = \^ © t3))

Axiom <AL.Discrete> entails the left-discreteness of a temporal frame by means of asserting that 

for each time element, there is a non-decomposable time element which is immediately before 

it; similarly, Axiom <AR.Discrete> entails the right-discreteness by means of asserting that for
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each time element, there is a non-decomposable time element which is immediately after it. 

Consider the case in which the set of time points is empty: by taking t to be a non- 

decomposable interval (or moment, termed by Alien and Hayes) in the above axioms, since 

tx is by definition a moment we see that <AL.Discrete> or <AR.Discrete> implies that each moment 

has a predecessor moment or successor moment respectively. Hence, Alien and Hayes' <M6> 

is inconsistent with the discreteness axioms.

It is interesting to note that there may exist temporal frames in which some intervals are finite 

sums of moments (see next chapter). This case is axiomatically consistent with our axiom 

<A5>, but not consistent with Alien and Hayes' <M6>, which implies that each decomposable 

interval must be infinitely decomposable.

4.3 Derived Temporal Relations over Time Elements

In terms of the primitive relation "meets", we may induce the complete set of possible 

relationships over time elements by means of the following definitions, including the "meets" 

relation itself:

<=> t, = t^

overlaps(llttj <=> 3t,t',t"eT(t, = t' 8 t A t> = t 0 t"),
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= tt © t),

<=> 3t',t"eT(t> = t' © tj 8 t"),

= t 0 t^,

<=>

finished-by(ilt\^)

It is interesting to note that, since points are allowed now, the above 13 relations have 

somewhat different "feel" to Alien's 13 temporal relations between intervals. For instance, if 

i, and i2 are open intervals separated by a point p, then we have before(ilfi2), although this 

situation looks very like ij "meets" i2 in Alien's system. Again, if i t is right-closed, and i2 is 

left-closed at point p, respectively, according to the above definitions, we have overlaps(\ lyi^, 

but again it "looks" like the two intervals meeting. Additionally, from the above definitions,
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any open interval is "during" its closure. What all this means is that, taking both intervals and 

points as primitive time-elements, we have more than 13 significantly different relationships 

to considered, because, for example, from almost any point of view, the first case mentioned 

above (i.e., miito(ilyp) A meets(v,i2)) is no more similar to the case of two intervals separated 

by a third interval (a necessary condition of before in Alien's system) than it is to the case 

of two intervals strictly meeting.

On the other hand, as Alien and Hayes show in [A1H89], all the thirteen relations may hold 

in the case that only intervals are taken as time elements. However, when we examine the 

general case where elements may also be points, some of these relationships hold and some 

do not hold.

For example, let pe P:

,\?) may hold for time elements ^e T according to the axiomatisation.

However, consider the following case:

overlaps(p,tj <=> Bt,t',t"(=T(p = t' 0 t A tj = t 0 t"),

On the one hand, by axiom <A6>, dwr(p) = Jwr(t') + dur(i)\ and the assumption that p is a 

point gives:

dur(t') + dur(i) = dwr(p) = 0 (1)
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On the other hand, axiom <A5> ensures that at least one of t' and t is an interval, hence:

') + dur(t) > 0 (2)

(1) and (2) show that overlaps^,*?) can not hold.

It is straightforward to prove in a similar fashion that all the possible relations over intervals 

and points may be classified into the following four groups:

Point - Point:

{equal, before, after}

which relate points to other points;

Interval • Interval:

(equal, before, meets, overlaps, starts, during, finishes, finished-by, contains, started- 

by, overlapped-by, met-by, after} 

which relate intervals to intervals;

Point • Interval:

(before, meets, starts, during, finishes, met-by, after} 

which relate points to intervals;
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Interval - Point:

[before, meets, finished-by, contains, started-by, met-by, after} 

which relate intervals to points.

N.B. According to the above classification, there are totally 30 possible temporal 

relations over time-elements which may be both intervals and points. However, in 

[Vil82,ViK86], Vilain and Kautz have just proposed 26 of these 30 temporal relations. 

There is a critical omission from the primitive relations between points and intervals 

in Vilain's system, for the "meets" relation is defined only between intervals and is 

not allowed between points and intervals. This omission leads to some difficulties in 

modelling the "open" and "closed" nature of intervals, and in reasoning correctly about 

continuous change. For example, how to express the motion of a ball thrown into the 

air (see section 3.4)?
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CHAPTER 5

MODELS OF THE THEORY

Since the time theory proposed in chapter 4 characterises a very general temporal structure, 

we may interpret the axiomatisation in various temporal models: dense or discrete, linear or 

branching, interval-based, point-based, or interval and point-based, etc.

5.1 A Dense Linear Model

As an example of dense and linear models of the axiomatisation, consider an "obvious" 

interpretation in which the set of time points, P, is the set of all real numbers; and the set of 

time intervals, I, is the set of periods which are constructions over all possible point-pairs, 

p!,p2eP such that p! < p2, with the following structures:

(p1 ,p2,open,open) =def { reR | ft < r < p2 },

(p,,p2,open,closed) =def { reR | pj < r < p2 },

(p,,p2,closed,open) =def { reR | P! < r < p2 ),
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(p1 ,p2,closed,closed) =def { reR | pl < r < p2 },

where "<" and "<" are the ordinary ordering relations over the set, R, of real numbers.

N.B. Here, we represent the interval structure by means of the extra primitives: left- 

type, 1, and right-type, r, which take values from a set Type =def {open, closed}. There 

are thus four types of intervals based on points. For convenience of expression, we 

may identify a point p with (p,p,closect,closed), that is, a special segment whose left 

end-point and right end-point are identical, with "closed" type for both left-type and 

right-type.

The duration assignment function, dur, can be simply defined by:

= p2 -

We may define the meets relation over time elements as following:

hjj, (p21 ,p22 ,!2 ,r2))

Pi2 = p2i A ri = °Pen A ^2 = closed 

v pn = p21 A TJ = closed A 12 = open

It is easy to see that this model satisfies axioms <A1> - <A6>. Additionally, the (full) 

linearity axiom, <ALineai>, and the dense axiom, <ADense>, are also satisfied. Hence, the above 

structure forms a dense and linear temporal model of the theory.
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5.2 A Discrete Linear Model

A discrete model satisfying axioms <A1> - <A6>, <ALineai>, <AL.Discrete> and <AR.Discrete> can 

be constructed by simply limiting all elements of P to be integers in the model presented in 

the above section, although the internal points of intervals are still reals. It is interesting to 

note that in such a discrete model, although points never meet each other, intervals are not 

necessarily infinitely decomposable. For instance, according to our axiomatisation, interval 

(6,8,open,closed) can be only decomposed into at most four (atomic) time elements:

(6,8,open,closed) =

(6,7,open,open) 

0 (7,7,closed,closed) 

© (7,8,open,open) 

© (8,8,closed,closed)

However, this model will not be valid for Alien and Haves' axiomatisation including <M6> 

(see section 3.4), which implies that if an interval is decomposable then it must be infinitely 

decomposable. (Otherwise, if it is only finitely decomposable, then it must be the sum of a 

finite number of moments which would meet one another, contrary to <M6>.)

N.B. As mentioned in section 3.4, in order to interpret Alien and Haves' axioms in 

discrete models, their axiom <M6> must be excluded. In another word, axiom <M6> 

is inconsistent with discrete times. However, the above example shows that the axiom 

<A5> in our axiomatisation can be satisfied by discrete models.
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5.3 Temporal System as Subsumed Models

In what follows, we shall show that our axiomatisation is powerful enough to subsume many 

representative temporal systems, such as: the point based systems of Bruce, of McDermott, 

Alien's logic of intervals and Gallon's revised theory, and the point and interval based 

theories of Vilain, of Knight and Ma.

5.3.1 Bruce's point-based system

Bruce's time-system is simply a set of time points with a partial order (see section 3.1). In our 

theory, we may define a partial order, "<", over the set of points, P, as:

p2 <=» ^Mflp1 ,p2 v

where Equal and Before are introduced as in section 4.3. Hence, the sub-frame, (P,<), of the 

temporal frame (T,meets) defined by the axiomatisation, forms a temporal system of Bruce.

In a similar way, we may define Bruce's 7 binary relations over time-segments (see [Bru72]), 

in terms of the temporal relations over intervals introduced in section 4.3.

N.B. As discussed in the introduction, the temporal theories of Ladkin [Lad86,87,92], 

of Dechter et al. [DMP91], and of Maiocchi [Mai92] are similar to that of Bruce in 

the sense that intervals are defined to be constructed out of points. Hence, in a similar 

way, we may induce the corresponding time model for each of these temporal
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frameworks.

5.3.2 McDermott's temporal logic

McDermott's theory assumes a "no later than" ordering relation over a dense collection of 

states (points), which is axiomatised to give rise to a left linear (branching into future) time 

structure (see section 3.3). Consider the temporal frame axiomatised by axioms <A1>-<A6>, 

<AL.iinear>' ^d the stronger dense axiom <AP.Dcnse>. As for Bruce's partial order, we may also 

define the "no later than" relation over time points in terms of relations Equal and Before. In 

this way, we may take McDermott's time structure as a model of the above theory by 

addressing only time points and the "no later than" relation, while the left-linearity axiom 

<AL.linear> axiomatises the characteristic that time branches only in future for McDermott's 

logic.

5.3.3 Alien's interval based model

Since the axiomatisation proposed in this paper may be seen as an extension of Alien and 

Hayes' interval based temporal theory [A1H89], it is straightforward to subsume Alien and 

Hayes' theory by taking the set of time points to be empty, and including the linearity axiom 

<ALinear> in the fundamental axiomatisation. Of course, in this case, axiom <A5> will become 

vacuous.

N.B. Further examination of Alien's interval based temporal logic and Gallon's 

corresponding revisions will be given later in next chapter (6.3.2).
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5.3.4 Vilain's interval & point-based system

Vilain's system based on both intervals and points is arrived at by expanding Alien's 13 

temporal relations over intervals to 26, which are primitively defined to relate points to points, 

intervals to intervals, intervals to points, and points to intervals (see section 4.3). It is 

interesting to note that Vilain's 26 temporal relations form a subset of the set of 30 relations 

we introduced in section 4.3. The four relations missing from Vilain's system are: meets, 

metjby that relate points to intervals, and meets, metjby that relate intervals to points (see 

N.B. in section 4.3). Hence, if we employ the following more strict axiom instead of <A5>:

then we get Vilain's temporal system. The above axiom ensures that if two time elements 

meet each other, then both of them must be intervals.

5.4 A Time Network for Computer-based Systems

In this section, we concentrate on a special finite model of the theory. The choice of 

finiteness of time elements in this model is forced by the practicality of the computer based 

modelling approach. Ordinarily, in computer systems, we have to store information as a 

discrete (finite) set, and so the semantics of any database of time elements will naturally 

assume a well-order at some fundamental level. Hence, the computer-based temporal system 

may be viewed as another model of the theory, in the form of a finite (discrete) set of
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temporal facts.

5.4.1 Definitions of a finite time network

Assume (T,meets) is a temporal frame satisfying axioms <A1> - <A6>, ALinear, <AL.Discrete> and 

<AR.Discrete>. The discreteness property of the temporal frame allows us to form a nonempty 

finite set E c T = I u P, such that:

i) E = (t,, tz, ..., tj;

ii) meets(ti,ti+l), i = 1, 2, ..., m-1;

iii) meets(^tl+l ) => tjG I v ti+1e I.

These theorems precisely characterise a finite series, E, of time elements, which is similar to 

an initial segment of the set of natural numbers with the natural order (see [Lip64]), with an 

immediate successor relation. Additionally, it is easy to see that the limitation of axioms 

<A4>, <A5> and <A6> onto E well define the closure CE of E, under the binary operations 

of combining adjacent time elements and corresponding addition of duration. For convenience, 

we call (E, AfE, DE) a. fundamental time network, and (CE, Mc, Z)E), the complete time network 

corresponding to (E, ME, £>E), where ME, Mc are the meets relations, DE, Dc are the duration 

assignments over E and CE, respectively. It is clear that the limitation of Mc to E is ME, and 

the limitation of Dc to E is £>E.

The set CE includes E and all the intervals and points which can be formed from it by means 

of © and +. However, in an application neither the fundamental set E nor the complete set
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CE may be known. A database of "facts" about CE will express knowledge that is incomplete 

in several ways. For example, the database may contain knowledge of duration assignments 

for only some of its elements, and may have incomplete knowledge about the meets relation. 

In addition, the database will often contain redundancy, as when facts are known about two 

elements without the knowledge that they are actually identical. For example, we may know 

that meets(3i,b) and dur(c) = 1, without knowing that a and c are the same element. To allow 

for possible duplicate elements, the basic structure of the database is that of a bag, rather than 

a set.

Accordingly, we use a triad (K, MK, DKO) to denote an (incomplete) time network, where:

i) K = K! Id K2 U...U Kp, where K, c K,+1 c CE, i = 1,..., p-1; and "U" represents 

the bag union (For bag notation adopted here, see [Dil90]);

ii) MK = M| K1 UM| K2 U...UM|Kp;

iii) DKO c Ac = ^|KI W ^1x2 W   W ^|KP '» nere» "c" represents the sub-bag relation.

Nb. i) expresses our knowledge of what time elements are there;

ii) expresses our knowledge as to how the time elements in K meet each other;

iii) expresses our knowledge of duration over a sub-bag KO of K.
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5.4.2 Formal characterisations of the graph of a time network

In this section, we introduce a formal graphical representation of the time network 

characterised above. The graph is one in which time elements are represented by directed 

arcs. The meets relations are represented by the nodes of the graph: if meetsOa^) then kt is 

the in-arc to a node, and k2 is the out-arc from the node. All time elements which are known 

to meet k2 will be in-arcs to the node, and all time elements which kj meets will be out-arcs 

from the node. Although this representation is intuitively straightforward, the following formal 

definition of nodes is more involved.

Some difficulty is encountered for nodes with only in or out arcs (since in a finite model, 

there are some time elements in the network that seems to be the "earliest" or the "latest" 

ones, although in the theory, axiom <A2> assumes that time does not start or stop), but this 

can be resolved by extending the equivalence relation defined below to include these, by 

means of the final clause in Eq_in and Eq_out.

In order to give a proper definition of the nodes of the graph, at first, we define two kinds 

of equivalence relations over time elements, Eq_in and Eq_out, in the following meaning:

j Eq_in k2 <=> 3ke K(meets(ki,k) A weete(k2,k)) v kt = k2)

Vkj,k2e K(kj Eq_out k2 <=> Bke KOneittCk.^) A we£te(k,k2)) v kj = k2)

Intuitively, Eq_in designs a class of time elements known to meet a common element, and
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Eq_put designs a class of time elements known to be met by a common element.

According to these two kinds of equivalence relations, we get the equivalence classes of time 

elements:

and

1C K**>Eq_out,l> **Eq_out,2> ••••••»

We can now define nodes as pairs of equivalence classes:

Node(Kx,KY) <=> in_Node(Kx,KY) v mid_Node(Kx,KY) v out_Node(Kx,KY), 

where

in_Node(0,KEq OUM) <=» Vk^ KEq ouM 

mid_Node(KEqJn4,KEq outj) 

out_Node(KEqlnJ,0)

As an example, consider knowledge represented by (K, MK, DKO), where:

K = IL k12, K23, k24, K34, K35 , K45 , K56, K57 J|,

= I meets(kl2 , k23), meets(kl2, k24),

> k35), m^e/5(k24 , k45), meets^, k45), 

, k56), me^r5(k35 , k57), meets(k45 , k56) 

Z)KO=
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According to the equivalence relations, Eq_in and Eq_out, defined above, we get the 

equivalence classes of the time elements in (K, MK, DKO) as below:

**-EqJn,l = I ^12 I»

~ \ *23 /» 

= \ ^24,1^34 

^Eq_in,4 ~ \ ^35»^45 /

**Eq_in,5 = I ^56 /'

*^EqJn,6 = \ ^57 /»

and

\ ^12 /'

**Eq_out,2 = \ ^23^24

\ ^34»^35

I ^45

\ ^56

Hence, we can form seven nodes, n^ n2, ..., and n7 , in terms of seven pairs of equivalence

ClaSSeS, (0,KEq outl ), (KEq ,n>1 ,KEq out^), (K.EqJn;!,KEq out>3), (KEq|n^,KEq Out4), (Kgq jn^jKj-q out>5),

(KEqJn,5,0) and (KEqin>5,0), respectively.
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Here, rij is a in_Nodey n2, n3 , n4 and n5 are mid_Nodes, and n6 and n7 are out_Nodes. Hence, 

the network may be represented by a graph as in Figure 5.4.2(1).

n4

O 
n1

k12

k45, d(k45)-1

k23 k57, d(k57)-0 

k35, d(k35)=1
n3

Figure 5.4.2(1)

5.4.3 A necessary and sufficient condition for consistency

To draw inferences from an incomplete time network (K, MK, £>KO)» we must rety on me 

assumed properties characterised by the definitions given in section 5.4.1. A consistency 

checker is needed which will establish whether a triad (K, MK, £>KO) is consistent with our 

basic assumptions about the time network.

In general, a triad (K, MK, DKO) is consistent if we can add to K and make any necessary 

equality assignments, and add to MK and to £>KO, so that the resulting triad (C, Mc, £>c) is the 

closure for some (E, ME, £>E), under the binary operations of combining adjacent time

elements and corresponding addition of duration. A necessary and sufficient condition for
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consistency may be given in terms of the graphical representation introduced in the above 

section. For convenience, we adopt the notation that k^ represents an arc from node n4 to node 

, and dtj represents the duration of this arc. We let G be the graph of (K, MK, £>KO).

Let Node = { nt , n2,...... , ns } be the nodes in GK. The network (K, MK, DKO) is consistent

if and only if:

(I) There is a solution (x^,, ... , xiqjq) for unknown durations (Xnjl , ... , Xiqdq) which 

forms a DK 3 DKO, where xy > 0, such that:

(1.1) for each simple circuit in GK, the directed sum of weights is zero.

(1.2) dMr(kij) + dwr(kjh) > 0, for all i, j, h.

Otherwise, the network is inconsistent.

Proof of sufficiency:

a) We first show that if (I) holds, then a function f of Node into R exists:

n (e Node) -----> f(n) (e R), such that:

(II. 1) If kjjG K, then:
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(IL2) If ky^e K, then:

f(nh) - f(ni) > 0.

Nb. condition (n.2) implies that: k^e I v kjhe I, which is indeed the constraint iii) in 

section 5.4.1, stating that no two points meet each other.

To show this, we assume GK to be connected by means of meets (the extension to a graph 

with several connected components is straightforward ).

Let yy denote the duration assignment for k^e K, where

yM = dij? if dye^Ko; otherwise, yy = Xy.

Now take a directed spanning tree of GK (i.e. a tree joining all the nodes of GK, formed by 

removing some arcs from GK, where the directed arcs of the spanning tree are as same as 

those appearing in GK). Selecting any node n0 as origin, a unique semi-path is determined by 

the spanning tree between n0 and any other node n (Figure 5.4.3(1)). We may take f(n) as the 

directed sum of the weighted arcs from n0 to n along this path.

With this assignment, condition (II. 1) follows immediately for all arcs on the spanning tree. 

For any arc ky not on the spanning tree, we consider the circuit formed by k^ together with
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arc not on spanning tree

Figure 5.4.3(1)

the spanning tree. Applying condition (I.I), we have:

f(n,) = 0,

i.e. (II. 1) again holds.

Additionally, it is clear that condition (1.2) « (II.2).

b) We now show that f(n) may be used to construct (E, AfE, DE). In effect, the function 

assigns a time measure to the nodes. However, care must be taken to deal with points: if a 

number of nodes are assigned the same f(n), then we must be sure that we can construct an 

E without two consecutive points. In the procedure that follows, we show how this may be

done.
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(1) Define equivalent classes N,, N2, ... , Nsl , sl < s among Node so that: 

nt, nj belong to the same class Nr <=> f^) = f(nj);

(2) The nodes within any class N, are of three types:

(i) those that are in-nodes to zero duration arcs in K;

(ii) those that are out-nodes to zero duration arcs in K;

(iii) those that are not in- or out- nodes to zero duration arcs in K.

Condition 1.2 ensures that there are no nodes that are both in-node and out-node to two zero 

duration arcs. The in-node and out-node to a zero duration arc will be in the same equivalence 

class, and the in-node must be ordered before the out-node. Accordingly we subdivide each 

class N, into two subsets: N,1 containing nodes of type (i) and N,2 containing nodes of type 

(ii) and (iii).

(3) The graph of E is now formed over the set of subclasses as nodes. The successor relation 

is defined by the natural ordering of equivalence classes according to f, and by the rule that 

N,2 is the "successor" to N, 1 . Duration assignment to E is defined by dur((N^ NJ+1)) = f(Nj+1 ) - 

f(Nj), where Nj+1 is the successor to Nj in GK .

c) Finally we show that (K, AfK, DKO) is in the closure of (E, AfE, DE). We let etare be the arc 

in the closure of E between node N,r and Nms. We make the following equality assignments 

over K:
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With this assignment, k^ is in the closure of E, and

= f(Nms) - f(N,r) =

Proof of necessity:

If (E, AfE, £>E) exist, and (K, MK, £>KO) is in the closure of (E, ME, £>E), then condition (I.I) 

holds straightforwardly, while constraint iii) implies condition (1.2).

we may use the example given in above section again to illustrate the procedure of 

establishing the fundamental triad (E, ME, DE):

There are two elementary circuits in GK to consider. Setting the directed sum of weights in 

each of these equal to zero, we get 2 independent constraints:

= 0, 

= 0.

By inspection, one consistent solution is:

34) = 0, dwr(k23) = 1, dur(k24) = 1, dwr(k12) = 0, dur(k56) - 0.

(N.B. There may be other consistent solutions, for instance:
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= 0, dwr(k23) = 1.8, flfwKk^) = 1.8, dwr(k12) = 3, dur(k56) = 10.)

Correspondingly, let Node = {nx , n2, n3, n4, n5, n6, n7 } be the nodes in graph (K, MK, £>KO), 

as shown in Figure 5.4.3(2):

n4

k24, d(k24)=1
k45, d(k45)=1

k56, d(k56)=0 0 
^^^ no

n1Q
k12, d(k12)-0

k23, d(k23)=1

k57, d(k57)' 

k35, d(k35)-1

n7

n3

Figure 5.4.3(2)

the function f of Node into R may be defined as:

f(nt ) = 0, f(n2) = 0, f(n3) = 1, f(n4) = 1, 

f(n5) = 2, f(n6) = 2, f(n7) = 2.

which satisfies conditions I.I and 1.2.

(1) equivalent classes:

N, = [ n lf n2 1,
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N2 = n3 , n4 I, 

N3 = I n5, n^, n7 1;

(2) Nj

N22 =[n4 ], N31 =[n5 ], N32 = [ n6, n7

(3) E = {k12, k23 , k^, k45 , k57 },

AfE = {meets(ki2, k23), meets(k2^, k^), meetsfr^, ^45), meets(k45 , k57)}; 

DE = {dwr(k12)=0, dwr(k23)=l, ^wrCk^^O, dwr(k45)=l, dwr(k57)=0}.

It is easy to see (E, ME, £>E) satisfies the conditions given in section 5.4.1.

5.4.4 A limited case of the time network

In Alien's interval-based system, no comprehensive mechanism for duration reasoning has 

been proposed. In the case of modelling a finite set of temporal events, we may take Alien's 

system as a limited case of a time network defined above, which satisfies axiom <ALineai>, but 

without any actual duration constraints on time intervals. The differentiating property between 

intervals and points (and also "moments" as termed by Alien and Hayes [A1H89]) is that 

intervals are allowed to be decomposable, but points are not. We denote this limited model 

to be a triad (K, AfK, 0), or simply as a pair (K, MK), where K and MK are defined as in 

section 5.4.1, excluding anything related to duration reasoning.

A consistency checker for a limited time network (K, MK) may be given in terms of its 

graphical representation: let GK be the graph of (K, MK), then (K, AfK) is consistent if and 

only if:
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(1.1) GKr is acyclic, where GKr is the associated reduced graph formed from GK by 

merging two nodes connected by a point in GK and removing the corresponding arc.

(1.2) there are no nodes that are both in-node and out-node to two point-arcs in GK .

Otherwise, the network is inconsistent.

Proof of sufficiency:

Since GKr is not cyclic, by a standard result in graph theory (see Car[79]), we can show that 

the nodes in GK can be numbered with integers so that the natural order of the integers is 

consistent with the relations of "meets" over the corresponding time elements. A procedure 

for this numbering for any acyclic graph GKr is:

i) Set variable n = 1

ii) Select any node in the reduced graph GKr without in-arc. Such a node exists since 

GKr is acyclic (See [Car79], or any standard text on graph theory).

iii) Number this node n.

iv) Remove this node and associated arcs from GKr to form graph GKr'. GKr' is also 

acyclic. Set GKr to GKn , increment n by 2 if the deleted node is formed from a pair 

of nodes in G, otherwise, increment n by 1.
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v) Repeat from ii) until GKr is empty.

vi) Form arcs between consecutive integer nodes. In the case that integer n+1 is 

missed between n and n+2 in the reduced graph GKr, then the consecutive integers n 

and n+1 are associated with the corresponding pair of nodes in GK, the (K, MK)-graph.

Then the arcs between consecutive integer nodes form the set E, and ME is formed by the 

natural order over these integers. Additionally, any element of K is an ordered union of some 

time elements in E. Finally, the closure (CE, Afc) can be formed under the binary operations 

of combining adjacent time elements. Hence, the network is consistent.

Proof of necessity:

The necessity of the consistency condition is straightforward from axioms <A5> and <ALineai>.

Hence the proof of consistency is a test of the graph for the existence of a cycle.

As an example of the consistency checking, we take a case where a network (K, MK) is 

consistent if an element ta is not known to be a time point, but inconsistent if it is, where

K = {t<), ta , tb, tc, tn),

MK = {meett(to,ta), meets(l^, meets(^,tb\ meets^JJ, meets(lc , tj}

If t is not known to be a point then the corresponding graph shown in Figure 5.4.4(1) is
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acyclic, and the network is consistent.

tb to

O to tn

Figure 5.4.4(1)

However, if ̂ e P, then we have the reduced graph in Figure 5.4.4(2), which is cyclic, and we 

deduce that the network is inconsistent.

to

reduced to
tn

Figure 5.4.4(2)

We can see why this is so intuitively by noticing that in Figure 5.4.4(1):
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ta =

This is consistent until we add the fact that ta is non-decomposable. Since equation ta = tb © 

tc states that ta is decomposable, we reach an inconsistency when tae P.

In Alien's system [A1183], consistency checking is performed by formation of the transitive 

closure, according to a transitivity table with 144 entries which describes the composition of 

the thirteen (mutually exclusive) relations [A1183]. If no conflict is found according to the 

exclusivity, then the system is consistent. Alien and Hayes show that the transitivity table is 

a result of their axioms in [A1H89], following the intuitivereasoning by possible cases which 

was used to construct the table originally. Using the consistency checker given above, we can 

provide a formal and intuitive proof of the correctness of Alien's transitivity table.

For example, consider the transitivity:

before^, tb), during^, tc).

Using the necessary and sufficient condition of consistency in terms of acyclicity of "meets", 

we can prove that the possible relation between ta and tc is before(ta, tc), or overlaps^ tc), or 

meets(l» tc), or during^, tc), or starts(tA, tc), as follows:

tb) A during(^, tc)

meets(iv t') A meets(t\ O A tc = tx © tb
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(1) when t' = to © tlt where t"eT, we have: 

meets(lv t") A meets(M\ tc), 

i.e: before^, g.

From Figure 5.4.4(3), we know this case is consistent since there is no cycle of "meets" 

Hence, we have shown that before^, tc) is one possible case under the condition 

and during(\M.

In the similar way, we can show that overlaps^, \v), meets(\^, tc), during^, t,.), starts^, tc) 

are also possible cases, as follows:

(2) when ta = t" © l>, tc = t3 © t4 , t t = 13 © t', where t",t,,t4eT, we have: 

t, = t" © ts, t, = ts © t4 

i.e: overlaps(iv tj (see Figure 5.4.4(4)).

(3) when meets(^ tc), we directly get the result (see Figure 5.4.4(5)).

(4) when tj = 13 © ta © t', where t3e T, we have: 

tc = tj © t,, © t4 , where t4 = t' © tb © t2 e T, 

i.e: during^, t,.) (see Figure 5.4.4(6)).

(5) when tc = t., © t4 , tt = ta © t', we have: 

tc = t, © t4 , where t4 = t' © tb © ^ e T, 

i.e: starts(l» 0 (see Figure 5.4.4(7)).
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Additionally, we can prove that there is no other possible relation between t^ and 1^ as 

follows:

(6) If fl/Mt., O. then:

areTCm^ted,., t") A meets(t", t,)).

However,

meets(^, t'), meets(V, tb), meetsfa, t>), meetsfa, t"), meets(t", tj

form a cycle: t,, f, I,,, t>, t", ta,

which shows inconsistency (see Figure 5.4.4(8)).

Similarly, for other cases:

(7) If met-by(\v tc), then meets(tc , t),

so that there is a cycle: t,, t', tb, tj, ta, (see Figure 5.4.4(9)), which shows 

inconsistency.

(8) If overlapped-by(^ tc), then 3t3,t4,t5e T such that: 

ta = ts © tj, t, = t4 e tj, 

so there is a cycle: tj, t', tb, (2, t5, (see Figure 5.4.4(10)), which shows inconsistency.

(9) If started-bydv tc), then 3t3eT such that: 

ta = t, © t3 , 

so there is a cycle: tj, t', tb, tj, t3 , (see Figure 5.4.4(11)), which shows inconsistency.
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(10) If contains^, g, then 3t3,t4€ T such that:

I,, = tj © tc © t-4,

so there is a cycle: t4, t', tb, t^ t4, (see Figure 5.4.4(12)), which shows inconsistency.

(11) If finishes^, tc), then B^eT such that: 

tc = ta © ta, 

so there is a cycle: t', tb, tz, t', (see Figure 5.4.4(13)), which shows inconsistency.

(12) If finished-by(i^ Q, then St^eT such that:

t. = t» © tc,

so there is a cycle: t', ^ tj, t', (see Figure 5.4.4(14)), which shows inconsistency.
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o-
ta

t
tb

t1

tc

t2

Figure 5.4.4(3)

Figure 5.4.4(4)
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Figure 5.4.4(5)

Figure 5.4.4(6)
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12

Figure 5.4.4(7)

Figure 5.4.4(8)
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Figure 5.4.4(9)

t1

Figure 5.4.4(10)
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ti

Figure 5.4.4(11)

f

Figure 5.4.4(12)
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13
Figure 5.4.4(13)

t1

Figure 5.4.4(14)
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There is an alternative formal proof of the same result. In fact:

From the definitions about a limited time network given in section 5.4.1, every time element 

in a consistent network is in the closure of a corresponding fundamental time network, that 

is, for any time element, it can be written in the form of an ordered union of fundamental 

time elements. Hence, if t^ \^ and tc are elements in a consistent time network (K, AfK), we 

can express them as:

t —— O (& O £& £& «iTI ~" "0 ^ «*1 ^'••- ^ ajjjj,, 

i- V« ^T^ i_ /T\ /T\ L.tj, = b0 ty DJ <±>... ty bmb,

tc = C0 © G! ©... © C,mc,

where, a^ bj, ckeE, i=0,l,...,ma; j=0,l,...,mb ; k=0,l,...,mc ;

According to the definitions about the fundamental network (E, ME) corresponding to (K, 

AfK), there is a similar function between E a id an initial segment of N, the set of natural 

numbers. Assume that under the similar function:

<-> n., b0 <-> nb, C0 <-> nc , where na, nb, nce N.

Hence, as o na -f i, bj <-» nb + j, ck <-» n,, + k, where i=0,l,...,ma; j=0,l,...,mb; k=0,l,...,mc;

From Before(\.v \J A During^ tc), we get:
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Constraint 5.4.4:

na + ma + 1 < nb

nc < nb,

nb + mb < nc + mc.

It is clear that each of the following additional constraints is consistent with Constraint 5.4.4:

1) I^ < na,

2) nc = na,

3) na < nc < na + ma,

4) n, = na + ma + 1,

5) na + ma + n < nc, ne N,

and these imply during^, tc), starts^, tc), overlaps^, tc), meets(ta, tc), before(tA , tc), 

respectively.

However, from Constraint 5.4.4, we can infer that,

na < na + ma < na + ma + 1 < n,, + mc

which is contradictory to each one of the following:

o/ter(ta, tc), 

met-by(ta, tc),
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overlapped-by(lv 

started-by(\^, g, 

contains^, g, 

finishes^ tc),

For instance, after(^, tc) implies that

nc + mc + 1 < n,,

which is obviously contradictory with na < na + ma < na + ma + 1 < nc + mc .

Hence, we have proved that, under the condition before^, g A during^, tc), the possible 

relation between t, and tc is one ofbefore(tA, g, overlaps(tv g, meets^, tc), during^, t,.), and

All the entries of Alien's transitivity table can be established in either the above two ways. 

From our assumption we know that a point does not meet or be met-by another point, and 

from our axioms we have proved that only 3 of the 13 temporal relations between two 

intervals may hold between two points, and orly 7 of them may be hold between a point and 

an interval, or between an interval and a point. Hence, we can extend Alien's transitivity table 

to include time points to form the correspond ng transitivity mechanisms.
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5.5 A Point-based Specialisation of the Time Theory

Generally, in the time theory presented in chapter 4, time intervals and points are both taken 

as primitive on an equal footing. However, as a specialisation, we may specify time intervals 

of I, to be constructed out of time points which are real numbers, with the following 

structures, employed in section 5.1:

(p^open^pen) =def { peP | p, < p <: p2 },

(p1 ,p2,open,closed) =def { peP | p, < p < p2 },

(p^closed^pen) =def { peP | p, < p < p2 },

(p^closed^losed) =def { peP | p, < p < p2 },

where

plf p2e P, P! < p2.

N.B. As mentioned in section 5.1, we may identify P with {(p,p,closed,closed)|p€P}, 

a subset of I.

There are three constraints imposed on point based interval system which can be formally 

expressed as:
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Cl): VPl ,p2e P( (Pl < p2 => Vl,re Type((Pl ,p2,l,r)e I))

A(Pi = ?2 => (pi,p2>closed,closed)e I) )

C2): Vie I3Pl ,p26 P31,re Type((Pl ,P2,l,r) = i)

C3): V(Pl ,p2,l,r)eIVP3,p4eP(Pl < p3 < p2 A pl < p4 < p2 => p3 < p4 v p4 < p3)

In the above, constraint Cl) states that I consists of all the possible intervals constructed from 

P and Type = {open,closed}; C2) preserves that all the intervals in I are constructed from P 

and Type in the fixed way; finally, the role of C3) is to ensure the linear internal-structure 

of intervals.

The duration assignment function for time elements can be defined by:

V(p1 ,p2,l,r)eI(^Mr(p1 ,p2,l,r) = p2 -

Since we employ a specialisation of the structure of time intervals which are constructed out 

of a set of time elements over which some known temporal order relation have been 

classically defined, the temporal relations over the whole set of time elements should be given 

with very careful considerations to ensure that they are consistent with both the time theory 

itself and the conventional assumptions about time points. The critical primitive relation, 

meets, may be formally defined by:
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Pi2 = p2i A Tj = open A 12 = closed 

v p12 = p21 A TJ = closed A 12 = open

It is easy to see that the above definitions are consistent with <A1> - <A6>, and <ALinear>. 

However, there are no constraints about the deisity of the time. It may be discrete, e.g., when 

P is the set of integers; or dense, e.g., P is tho set of rationals.

Correspondingly, we may specialise the other derived temporal relations over time elements 

(see section 4.3) as below:

Pn = P2i A Pi2 = P22 A li = !2 A ri =

ujpuAiyTj, (p21 ,p22,!2,r2))

p12 < p21 A r{ = open A 12 = open 

v p12 < p21 A rl = open A 12 = closed 

v p12 < p21 A r, = closed A 12 = open 

v 3pe P(p12 < p < p21 A T! = closed A 12 = closed)

11 ,p12,l1 ,r1 ), (p2i,p22 ,!2,r2))

Pll < P2 1 < Pl2 < P22

v Pn < Pi2 = P2i < P22 A r, = closed A 12 = closed
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,l,,r1 ), (p21 ,p22,!2,r2))

Pll = P21 A Pl2 < P22 A ll = 12

v Pii = ?2i A Pi2 = P22 A lj = 12 A T! = open A r2 = closed

^pu^rj, (p21 ,p22,l2,r2))

P21 < Pll A Pl2 < P22

v Pn = P2i A Pi2 < P22 A li = open A 1, = closed 

v p2i < Pn A Pi2 = P22 A ri = °Pen A r, = closed 

v Pn = p2i A Pi2 = P22 A li = open A 1, = closed A ^ = open A r2 = closed

Pll < P21 A Pl2 = P22 A ri = f2

v Pii = p2i A Pi2 = P22 A TJ = r2 A lj = open A 12 = closed

n,Pi2»li,ri)» (p21 ,p22,!2 ,r2))

hjj, (p21 ,p22,!2,r2))

n.p^Jpr,), (P2i,p22,l2 ,r2))
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,l1 ,r1 ), (p21 ,p22,l2,r2))

It is easy to see that for any pair of interval:; belong to I, one and only one of the above 

relations will hold. The only case which is not immediately obvious is for the relation 

between (pn ,p12,li,closed) and (p21 ,p22,closed,r2 ), where p 12 < p21 and -dpe P(p12 < p < p21 ); i.e. 

there are no time elements between (pn ,p12fli,c]osed) and (p21 ,p22,closed,r2). Hence, the relation 

between them should be semantically defined as:

(p21 ,p22,closed; r2))

However, according to the above definitions,

,]:,), (p21 ,p22,!2 ,r2))

u {12 } = {open, closed}

That is, to ensure meiftCCpntpuJpClosed), (p21 ,p22,closed,r2)), we must prove that either 

(Pn»Pi2»li»cl°sed) can t>e shown to be equal to an interval with an open right-type, or 

(p21 ,p22,closed,r2) can be shown to be equal to an interval with an open left-type. In fact, the 

constraint:

Pi2

enables us to express (pn ,p 12,lj,closed) as (pn,p..i,li,open). Similarly, we have (p21 ,p22,closed,r2) 

= (pi2»P22»°Pen »r2)- Hence, the relation between (p^p^l^closed) and (p21 ,p22,closed,r2) is
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definitely "meets".

If the time point system is assumed as dense, then we have:

Pi2 < P2i => 3peP(p12 < p < p21 )

Hence, the relation between (pn,pi2,li,ri) and J)2 i»p22»l2»r2) *s definitely "before".
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CHAPTER 6

A TEMPORAL LOGIC BASED ON THE TIME

AXIOMATISATION

The theory of temporal logic concerns reasoning with statements which have some temporal 

aspects. One way to represent temporal information in artificial intelligence is through what 

have been termed as reified temporal logics, in which nontemporal components of assertions 

(such as "Light-Is-On"), referring to proposition types [Sho87b], are addressed as arguments 

to some global "predicates" whose truth values are associated with particular times, which 

also appear to be arguments to the "predicates". The most influential work in this area is that 

of McDermott [Med82,DeM87], and of Alien [A1183,84]. However, as Shoham points out in 

[Sho87a,b], both McDermott's and Alien's logics suffer in two respects. Semantically, neither 

give their sentences a clear meaning, although McDermott does give the semantics of what 

may be regarded as the propositional theory; and conceptually, Alien's trichotomy of 

properties/events/processes, and McDermott's dichotomy of facts/events, are unnecessary at 

some times and insufficient at others. Additionally, Alien's exclusion of time points from the 

ontology leads to some awkward formulation, and some inadequacy in reasoning correctly 

about continuous change (see section 3.4, or [Gal90b]).

Utilising the time axiomatisation, proposed in chapter 4, as the temporal basis, this chapter
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presents a new structure of temporal logic, termed TLIP (Temporal Logic based-on Intervals 

and Points). We shall give the precise syntax and semantics for the logic, trying to retain the 

appealing characteristics of other representative logics, such as Alien's interval logic, 

Shoham's and Haugh's point-based interval logic, etc., but without bearing their 

corresponding deficiencies discussed in the introduction: unlike those in Shoham's [Sho87a,b] 

and Reichgelt's [Rei87] reified temporal logic, Halpern and Shoham's prepositional modal 

temporal logic [HaS91], or in Haugh's MTA logic [Hau87], time intervals are taken here as 

primitive, not necessarily to be constructed out of points; and unlike that of Alien and Hayes's 

interval-based logic [A1H89], or of Gallon's corresponding revised system [Gal90b], time 

points are also treated as primitive elements, not being relegated to a subsidiary status within 

the theory by means of defining them as the "meeting places" or "nests" of time intervals. To 

allow expressions such as "valid time", "transaction time", and "user-defined time", for 

instance, in database applications (see [SnA86]), or any other further taxonomy of times, 

assertions of the logic will in general address an arbitrary number of temporal arguments, 

associating to the corresponding nontemporal components. We shall show that the proposed 

logic is more expressive than some representatively existing systems, without bearing their 

corresponding deficiencies.

6.1 Syntax

The primitive symbols of TLIP consist of the elements of the following sets:

a set of time element symbols,
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TV - a set of time element variables,

C - a set of individual symbols which is disjoint from T,

V - a set of individual variables which is disjoint from TV,

TF - a singleton set containing a binary temporal function symbol,

TR - a singleton set containing a binary temporal relation symbol,

F - a set of nontemporal function symbols which is disjoint from TF,

R - a set of nontemporal relation symbols which is disjoint from TR.

Definition 6.1.1 (Temporal terms):

is defined as the minimal set of temporal terms in TLIP, closed under the 

following rules:

(1) If te T u TV then te Termtemporal,

(2) If f7 ,r2€ Temifcnponi, and f,e TF is the binary temporal function symbol, then

Definition 6.1.2 (Nontemporal terms):
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is defined as the minimal set of nontemporal terms in TUP, closed 

under the following rules:

(1) If se C u V then 5<=

(2) If s1 ,...,sn^TQrmaoniemponA, and/eF is an n-ary nontemporal function symbol, 

then Mv..,^)e Termnonteniporal .

Definition 6.1.3 (Well-formed formulas):

Wff is defined as the minimal set of well-formed formulas in TUP, closed under the 

following rules:

(1) If t} ,t2(= Termtemporal , and r,eTR is the binary temporal relation symbol, then

(2) If tj,...,tme Term^p^,, s2 ,...,sne Termnontemporal , and re R is an n-ary nontemporal 

relation symbol, then

(3) If a, pe Wff, then a A p,-.ae Wff,

(4) If a(u)e Wff, and there is no free occurrence of x in ot(u), then Vx(ot(x))e Wff.
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N.B. In TUP, we assume the conventional definitions of "v", "=>", "<=»" and "3", 

etc., in terms of "A" and "-<".

6.2 Semantics

An interpretation of TUP is a tuple O = <TD, D, 0, meets, FN, RL, I>, where

TD - a nonempty universe of time elements which may be both intervals and points,

D - a nonempty universe of individuals which is disjoint from TD,

a binary function on TD,

meets - a binary temporal relation over the elements of TD,

FN - a set of total functions from 2D to D,

RL - a set of relations over D,

I - a meaning function such that:

I assigns a member of TD for each temporal element symbol in T;
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I assigns a member of D for each individual symbol in C;

I assigns "©" to the binary temporal function symbol of TF;

I assigns "meets" to the binary temporal relation symbol of TR;

for each/eF, and for all tp...,^ TD, I assigns a member of FN to

for each reR, and for all tp.-.^eTD, I assigns a member of RL to

where "©" and "meets" are characterised by the time axiomatisation presented in chapter 4. 

For convenience of expression, in what follows, we shall identify ©(t^) with tj © t^

A variable assignment, A, is a function assigning each of temporal variables in TV some 

member of TD, and each of the individual variables in V some member of D.

From functions I and A, we can induce an extended meaning, IA, on TuTV, 

(TD,...,TD,CuV) as below:

If te T, then

If fveTV, thenIA(O =
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If ceC, then for all tp.-.^eTD, lA^,...,^, c) = I(c);

If ve V, then for all t^...,^ TD, lA^,...,^, v) = A(v);

and on arbitrary terms in the following way:

If tj,t2e. Term^p^,, and/,eTF is the binary temporal function symbol, then

If 57 ,...,5ne Termnontemporal , and /eF is an n-ary nontemporal function, then for all

...,!„,, J\Sj,...,Sn)) = l(ti,...,tm,/)(lA(t1 ,...,tm, Sj), ...jlA^tj,...,!,„, Sn)).

The values of wffs under the interpretation, O, and the variable assignment, A, are inductively 

defined as below:

If tj,t2e Termtemporal , and r,e TR is the binary temporal relation symbol, then

rt(tj,t2f = 1 if 

otherwise r,(fj,f2)* =

If r/ ,... f rM€TemitonponiI, 57 ,...,^€Termnonteniponil , and reR is an n-ary nontemporal
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relation symbol, then

if

otherwise (f; ,...,fm; r(,s; ,...,sn))<1> = 0;

If a,pe Wff, then

(aAp)* = 1 if a$ = 1 and (3* = 1, 

otherwise, (a A P)* = 0;

(-a)* = 1 if a* = 0, otherwise (-«)* = 0;

If a(u)e Wff, and there is no free occurrence of x in a(u), then

Vx(a(x))<1> = 1 if a(x)* = 1 for all valuation assignments to x, 

otherwise Vx(a(x))* - 0.

6.3 A New Categorisation of Temporal Propositions

In [Sho87a,b], Shoham has proposed a categorisation of temporal propositions, which 

associate a proposition type with a point-based time interval. His intention is to replace both
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Alien's trichotomy of properties!'events/processes and McDermott's dichotomy offacts/'events 

by a more flexible scheme. In order to do this, Shoham provides the means for distinguishing 

between fact-like (or property-like) proposition types, event-like proposition types, and so on, 

in terms of the following series of definitions:

(Sho.l) A proposition type x is downward-hereditary if whenever it holds over an interval it 

holds over all of its subintervals, possibly excluding the two end-points. This can be formally 

captured by the axiom:

3>p4 Pi < p3 ^ P4 ^ P2 

A Pi * P4 A p3 * p2 

A TRUEtoifc, x)) 

TRUE(p3,p4 , x)

(Sho.2) A proposition type x is upward-hereditary if whenever it holds for all proper 

subintervals of some non-point interval (except possibly at its end-points), it also holds over 

the non-point interval itself, upward-hereditary is captured by:
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P! < p2

A (Vp3,p4( P! < p3 ^ P4 ^ P2 

A (P! * p3 A p2 * p4)

A Pi * P4

A Ps * P2 

=» TRUE(p3,p4,

(Sho.3) A proposition type jc is point-downward-hereditary if whenever it holds over an 

interval it holds at all of its internal points.

(Sho.4) A proposition type x is point-upward-hereditary if whenever it holds at all internal 

points of some non-point interval it holds also over the non-point interval itself.

(Sho.5) A proposition type jc is interval-downward-hereditary if whenever it holds over an 

interval it holds over all of its non-point subintervals.

(Sho.6) A proposition type x is interval-upward-hereditary if whenever it holds over all non- 

point subintervals of some non-point interval it holds also over the non-point interval itself.

(Sho.7) A proposition type x is liquid if it is both upward-hereditary and downward- 

hereditary.

(Sho.8) A proposition type x is concatenable if whenever it holds over two consecutive
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intervals it holds also over their union.

(Sho.9) A proposition type x is gestalt if it never holds over two intervals one of which 

properly contains the other.

(Sho.10) A proposition type x is solid if it never holds over two properly overlapping 

intervals.

It is interesting to note that Shoham makes some observations in the two versions of his 

paper, respectively. In the earlier version ([Sho87a],p.l89), he points out that:

(1) Alien's properties are exactly the liquid propositions;

(2) Alien's events are exactly the solid propositions;

and in the later version ([Sho87b],p.l01), he revised his "observations" to:

(!') Point-point-liquid proposition types coincide with Alien's properties and 

McDermott's facts, where a point-point-liquid proposition type is both point- 

downward-hereditary and point-upward-hereditary. Liquid proposition types coincide 

with philosophers' homogeneous propositions: a homogeneous proposition is true of 

an interval iff it is true over all its proper subintervals;

(2') Alien's and McDermott's events corresponding either to gestalt propositions, or
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to solid ones, or both.

However, through a careful examination, it is found that the above "observations" are in fact 

not exactly correct. For example, by Alien's axiom (H.I) [A1184]:

HOLDS(pro,i)

N.B. For convenience of expression, Alien introduces the derived temporal relation, 

"In", which summarises the relationships in which one interval, i t , is a proper 

subinterval of another interval, i2, by means of:

In(il9 i2) <=> During(ilti2) v StartsQ^ij) v

a property holds over an interval if and only it holds over all its proper subintervals, that is, 

it coincides with philosophers' homogeneous proposition. However, in Alien's interval-based 

logic, time points are definitely excluded [A1184], or later, introduced as the "meeting places" 

or "nests" of intervals at a subsidiary status within the theory [A1H89]. The contention is that 

nothing can be true at a point, for a point is not an entity at which things happen or are true. 

Hence, it is obvious that Alien's properties do not, as stated by (i'), coincide with Shoham's 

point-point-liquid proposition types. It seems that the earlier conclusion, (1), is more 

acceptable, and also, the earlier version for the axiom capturing downward-hereditary 

propositions [Sho87a] is more suitable for characterising Alien's properties, since the two end- 

points of an interval in fact satisfy the condition which is constrained in terms of Alien's 

relation, "In" (see N.B. above).
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On the other hand, in contrast to Shoham's observation, (2) or (2'), it seems that Alien's 

events, which are characterised by

(O.I) OCCUR(e,i) A M(i',i) =» -OCCUR(*,i')

are in fact simply Shoham's gestalt propositions, that is, an event e happens over an interval 

i iff there is no proper subinterval of i over which e happens (In fact, we may also easily infer 

that there is no proper superintend of i over which the event e happens).

The above questions are perhaps not serious, or maybe just need some trivial technical 

revisions. However, it is the following issue that really make it necessary to revise the 

fundamental axioms about time itself so as to extend the abstract concept of time elements 

to include both intervals and points, and the temporal relations between intervals to address 

points as well.

As we mentioned above, in Shoham's reified temporal logic, time intervals are defined in 

terms of pairs of time points, and the way to distinguish between different kinds of 

propositions is by specifying how the truth of the proposition over one interval is related to 

its truth over the other intervals. For example, in Shoham's definition (D.8), the word 

"consecutive" is used to characterise the temporal relation that a time interval is "immediately 

before" (or "meets", in Alien's terminology) another time interval. It seems that, if time 

intervals are defined to be constructed out of time points, the temporal relations between time 

intervals, such as those 13 relations introduced by Alien [A1183], may be induced from the 

order relation between the end-points of these time intervals. However, in Shoham's reified
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temporal logic, there is no formal axiomatisation of time itself, although in the earlier version 

of his paper, he does simply view time as a total order on time points (see [Sho87a]). In fact, 

modelling time intervals by means of constructing them out of points may lead to some 

problematical questions involved with the "open" and "closed" nature of intervals. Consider 

the "immediately before" relation between two intervals, <a,b> and <c,d>:

Intuitively, allowing point-like intervals, we have a < b and c < d. The question is how to 

decide the order relation between point b and point c. If we assume that interval <a,b> is 

immediately before <c,d>, that is:

then the possible relation between b and c is either b = c, or b < c.

Case 1. b < c:

In this case, if we assume that the set of time points is discrete, that is, there may be no other 

time point between b and c, then we may get meets(<a,b>, <c,d>). However, it is interesting 

to note that, for the representation of facts concerned with continuous change, it must be 

necessary to take the set of time points to be dense, i.e., between any two distinct time points, 

there is a third. Hence, in this case, there must be some other time points between point b and 

point c, and therefore there is at least another time interval between interval <a,b> and 

interval <c,d>, which contradicts our assumption.
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Case 2. b = c.

In this case, as commented by Alien [A1183], Haugh [Hau87], and Galton [Gal90b], if we let 

<a,b> to be a maximal interval throughout which a proposition, pos, is true, and <c,d>, a 

maximal interval throughout which pos is false, then one of the following cases must occur:

Case 2.1 b (= c) is part of both <a, b> and <c, d>;

Case 2.2 b (= c) is part of <a, b> but not <c, d>;

Case 2.3 b (= c) is part of <c, d> but not <a, b>;

Case 2.4 b (= c) is part of neither <a, b> nor <c, d>.

In case 2.1, pos would have to be both true and false at point b (= c), which is absurd; in case 

2.4 pos would be neither true nor false at b (= c), which is again absurd; while as for the 

remaining cases, since there is nothing to chose between them, any decision either way must 

be arbitrary and unsatisfactory.

The above discussion shows that modelling time intervals by means of constructing them out 

of points may lead to problems: the annoying question of whether the end-points are in the 

interval or not must be addressed, seeming without any satisfactory solution.

In what follows, we shall simply revise Shoham's categorization of propositions by means of
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the time axiomatisation employed in this thesis which addresses both time intervals and time 

points. However, since time elements may be now intervals or points, we must make sure the 

corresponding definitions are well-defined for general treatment. First, for convenience of 

representation, we extend Alien's relation "In" (see above) to address both intervals and 

points. We define:

w(t, i) <=> during(t,i) v starts(t,i) v finishes(l,i)

for teT and iel, where "during", "starts" and "finishes" belong to the groups of temporal 

relations classified in chapter 4.

Also, we define a another derived relation, sub, as an extension of in to include the "equal" 

relation:

sub(tlt 13) <=> equal(\.^ v during^t^ v starts(tltl^ v

where tt and t^ are general time elements which may be intervals or points.

The difference between "in" and "sub" is that, while m(ilt i2) summarises the relationship that 

interval i, is a proper subinterval of interval i2, the notation sub(tlf 12) allows time element t, 

to be t> itself.

For the sake of simple expression, in what follows, we shall only consider a simple case of 

wffs in which the number of temporal arguments is limited to 1, that is, we only address the
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time over which the nontemporal component, or the proposition type in Shoham's terminology 

(see [Sho87a,b]), jc, is believed to be true; and also, following Shoham's notation, we shall 

represent it as: TRUE(t; x).

<Def.l> A proposition type x is downward-hereditary if whenever it holds over a time 

element it holds over all of its sub-elements, that is:

TRUE(t; x} A sub(i\ t) => TRUE(t'; jc)

<Def.2> A proposition type x is upward-hereditary if whenever it holds for all proper sub- 

elements of some decomposable time interval, it also holds over the time element itself, that 

is:

Vte r(m(t; i) =» TRUE(t; x)} =» TRUE(i; x)

where ie I.

N.B. By the above definitions, our downward-hereditary proposition types may deal with both 

decomposable/nondecomposable time intervals, and time points which are definitely 

nondecomposable (see axioms <A5> and <A6> chapter 4), while the upward-hereditary 

proposition types are still defined only for decomposable time intervals.

<Def.3> A proposition type x is liquid if it is both upward-hereditary and downward- 

hereditary.
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<Def.4> A proposition type x is concatenable if whenever it holds over two consecutive time 

elements it holds also over their ordered union, that is:

TRUE(t'; x) A TRUE(t"; jc) A meets(t9 ; t") 

=*TRUE(t' 0t";jc)

<Def.5> A proposition type x is gestalt if it never holds over two intervals one of which 

properly contains the other, that is:

TRUE(t; jc) A m(t', t) =» -«TRUE(t'; jc)

<Def.6> A proposition type x is solid if it never holds over two properly overlapping 

intervals, that is:

TRUE(t; x) A (overlaps(i\ t) v overlapped-by(C, t)) => -<TRUE(t'; x)

Of course, we can also give definitions which address time intervals and time points 

separately, such as point-down-hereditary, point-upward-hereditary, interval-down-hereditary 

and interval-upward-hereditary, and so on. However, all these may be taken as the special 

cases of the corresponding ones which address time elements in the general form. In fact, as 

Shoham puts in his paper [Sho87b], the categories of proposition type may be further devised. 

We prefer to stop our revised categorisation here.

It is interesting to note that, since the above categorisation addresses both time intervals and
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time points as primitive, Alien's trichotomy of properties/'events/processes and McDermott's 

dichotomy of facts/'events may be subsumed satisfactorily, e.g., Alien's properties may be 

characterised as the liquid propositions, while his events may be characterised as the gestalt 

propositions, defined above.

6.4 Toward Alien's and Gallon's Properties

As Alien points out [A1184], one of the most important predicates in his typed first order logic 

is HOLDS, which asserts that a property holds (i.e., is true) throughout a time interval. 

However, there are some problems with Alien's definition of properties. One limitation to the 

definition of properties by means of axioms (H.I) (see above section) is that it does not treat 

time moments satisfactorily, because any property pro, can be shown to hold over any time 

moment unconditionally from axiom (H.I), since there is not any proper subinterval within 

any given time moment. On the other hand, if all time elements are taken as infinitely 

decomposable intervals, Gallon has shown in [Gal90b] that this will lead to inadequacies for 

reasoning about continuous change.

Another limitation of Alien's predicate, HOLDS, is that it characterises only one way of 

ascribing properties to times, namely to assert that a property holds throughout an interval, 

which seems too restrictive, representing only one category in the three types of statement 

introduced by Galton (see below). Additionally, it is interesting to note that, as shown by 

Gallon in terms of his two different formulations, there are some problems with Alien's 

property-negation which is characterised by the following axiom (H.4):
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HOLDS(not(pr0),i)

In order to overcome the inadequacy of Alien's theory of action and time, Galton proposes 

a series of revisions which address time points in the theory as well as time intervals, and 

diversify the range of predicates assigning temporal locations to properties.

Gallon's theory of points and intervals is built up by means of adding two extra relationships 

between points and intervals, as the extension to Alien's temporal relations between intervals. 

Rejecting the question whether or not a given point is part of, or a member of a given 

interval, while retaining the idea of there being a point at the meeting place of two intervals, 

Galton introduces two additional temporal relations to Alien's time theory: First, the point 

where two intervals meet each other is said to fall "within" the ordered union of these two 

intervals, and second, the same point is said to "limit" both of these two intervals, the former 

at its end, the latter at its beginning. Galton uses notions, Within(p,i) and Limite(p,i), to 

represent that a point p falls within, and limits an interval i, respectively.

Whereas Alien recognises only one way of ascribing properties to times, namely to assert that 

a property holds throughout an interval, Galton introduces the following three forms:

, i),

HOLDS-IN(/?r0, i),

HOLDS-AT(/?r0, p),
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where i€ I and pe P, for three types of statement: a property pro holds throughout an interval 

i, holds during i (i.e., at some time during an interval, not necessary throughout all of it), 

holds at a point p, respectively.

Commenting that the problems with Alien' system can all be traced to the assumption that 

all properties should receive a uniform treatment with respect to the logic of their temporal 

incidence, Gallon proposes one of his revisions by distinguishing between two kinds of 

properties, namely states of position and states of motion, which have different temporal 

logics: States of position can hold at isolated points; and if a state of position holds 

throughout an interval, then it must hold at the limits of that interval, e.g., a body's being in 

particular position, or moving at a particular speed or in a particular direction. States of 

motion cannot hold at isolated points; if a state of motion holds at a point then it must hold 

throughout some interval within which that point falls, e.g., a body's being at rest or in 

motion (see [Gal90b], p. 169). In terms of the above classes of properties, Gallon characterises 

the formal constraints imposed on states of position (SP) and states of motion (SM) by the 

following axioms:

(SP) Vie I(Within(p,i) => HOLDS-IN(pr0,i)) => HOLDS-AT(pro,p),

(SM) HOLDS-AT(pr0,p) => 3ie I(Wi^m(p4) A HOLDS-ON(pw,i)),

respectively.

Additionally, Gallon lists a series of iheorems which can be derived from ihe above
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axiomatisation. Some of them, i.e., (Tl)-(T.lO) ([Gal90b],pp. 171-172) hold for general 

properties, regardless of whether they are states of position or states of motion; others, i.e., 

(T.11P)-(T.15P) ([Gal90b],pp.l73-174), and (T.11M)-(T.15.M) ([Gal90b],pp.l74-175) hold 

so long as pro is a state of position, and a state of motion, respectively.

Since the general temporal theory utilised in TUP allows both intervals and points, it is 

straightforward to subsume Gallon's corresponding terminologies. In fact,

a) Within(p, i) can be subsumed by during(p, i), and

b) Limits(p, i) can be subsumed by meets(p, i) v met-by(p, i) v starts(p, i) v 

finishes(p, i),

where pe P and ie I, and during, meets, met-by, starts and finishes belong to the classification 

of temporal relations presented in section 4.3.

In Addition, the axiom <AP.Dense> proposed in chapter 4 is indeed equivalent to the following 

required rule for Gallon's temporal logic:

(I.I) VieI3pe P(Within(p, i))

while other required rules for Gallon's revised system, i.e.
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(1.2) Within(p, i) A 7n(i, j) => Withinfa j),

(1.3) Within(p, i) A Within(p, j) => Bkel(7«(k, i) A 7n(k, j)),

(1.4) Within(p, i) A Limits(p, j) => 3ke I(/«(k, i) A 7«(k, j))

can be straightforwardly proved as lemmas from the time axiomatisation.

N.B. 1) In Gallon's notation, borrowing from [A1184], "7«(i, j)" means that the 

interval i is a proper subinterval of j.

2) Interpreting Within and Limits as in a) and b), it is easy to see that these 

two relations are mutually exclusive to each other.

It is significant to note that, in the interval&point based logic presented in this chapter, the 

global predicate TRUE does not assume homogeneity or any other connection between a 

property holding for a time element and its holding for any substructure of the time element. 

In terms of "TRUE", for Alien's system, if we limit the set of time elements, T, to the set 

of time intervals I, we may simply define Alien's HOLDS by means of:

HOLDS(pr0, i) <=> Vi'<=IC™fc(i',i) => TRUE(i';

Similarly, let p be a point, and i an interval. Then we may characterise Gallon's form 

HOLDS-AT(pro, p) as:
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HOLDS-AT(pr0, p) <=> TRUE(p; pro),

and replace his HOLDS-IN and HOLDS-ON by means of:

HOLDS-IN(pr0, i) <=> 3pe P(during(p,i) A TRUE(p;

HOLDS-ON(pro, i) <=» Vpe P(during(v,i) => TRUE(p; pro)),

respectively.

In fact, we may also give definitions characterising that a property holds in a time element, 

and holds throughout a time element. However, since time elements may now be intervals or 

points, we must make sure these definitions are well-defined for general treatment.

The following axiom defines what it is for a property to hold in a time element, namely that 

there is at least one "sub-element" of the time element for which the property holds.

<d.l> hold-in(t; pro) & 3t'eT(sw£(t', t) A TRUE(t'; pro)),

Similarly, for a property to hold throughout a time element, the property must hold for any 

sub-element of the time element, including the whole element itself.

<d.2> hold-on(t; pro) «=> Vt'€T(«*fc(t', t) => TRUE(t'; pro)).
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N.B. The above definitions overcome the problem with Alien's axiom (H.I) for the case in 

which the addressed time element is non-decomposable, i.e. a moment (see section 3.4), and 

therefore is well-defined for both intervals/moments and points. Additionally, time intervals 

and points are addressed here on the same footing: there is no necessary connection between 

a property holding for intervals and its holding for points, while this connection is definitely 

axiomatised in Gallon's theory.

Given the above definitions of hold-in and hold-on, by making use of our classification of 

temporal relations over intervals and points, we can readily prove the following theorems, 

which are in fact very similar to those (T.I - T.5) given by Gallon in [Gal90b]:

<t.l> hold-in(t; pro) A sub(l, t') => hold-in(r'; pro)

which says that if a property holds in some time element t, then it holds in any time element 

of which t is a sub-element.

<t.2> hold-on(t; pro) A sub(t', t)=» hold-on(f'; pro)

which says that if a property holds throughout t, then it holds throughout every sub-element 

oft.

<t.3> hold-on(f; pro) => hold-in(t; pro)

which says that if a property holds throughout t, then it holds in t.
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<t.4> hold-on(t; pro) => Vt'eT(sub(l\ t) => hold-in(t ; pro))

which says that if a property holds throughout t, then it holds in every sub-element of t.

<t.5> 3teT(swfc(t, t') A hold-on(t; pro)) => hold-in(t ; pro)

which says that if a property holds throughout some sub-element of t, then it holds in t.

N.B. Whereas Gallon gives more theorems relating to his HOLDS-AT for points, that is (T.6) 

and (T.7), in our revised system, they are the same as <t.5> and <t.2>, respectively, since 

points are treated now on the same footing as intervals. Examples relating to these theorems 

may be found in Gallon's paper ([Gal90b], pp. 171-172).

Similarly, for general treatment of properties, we can introduce their negation by means of:

<d.3> TRUE(t; not(pro)) & ->TRUE(*; pro),

and easily prove the following theorems:

<t.6> hold-on(t; not(pro)) <=* -<hold-in(t; pro),

<t.7> hold-in(t; not(pro)) <=> ->hold-on(t; pro),

<t.8> TRUE(t; not(not(pro))) <=> TRUE(t; pro)
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N.B. We omit the proofs of the above theorems here since they are very straightforward and 

indeed will be very similar to the corresponding proofs given in the appendix in Gallon's 

paper [Gal90b].

Also, we may formally axiomatise the characteristic of a state of position sp by:

Vie IVpe P( hold-on(i; sp) 

A (met-by(\$) v 

meets(i,p) v 

started-by(i,p) v 

finished-by(i,p)) 

=> hold-in(p; Sp) )

and a state of motion sm by:

Vpe P(hold-at(p; sm) => 3ie I(dwrwg(p,i) A hold-on (i;

It is interesting to note that, the definitions relating to the open and closed nature of intervals 

given in section 4.2.1 provide another formal and intuitive characterisation for the distinction 

between states of position and states of motion: States of position can hold at isolated points; 

and if a states of position holds on an interval, then it must hold on the closure of that 

interval. States of motion hold only on open intervals. For instance, in the example of a ball 

thrown vertically into the air described in section 3.4, the property ball_stationary may be 

taken as a state of position, while ball_going_up and ball_coming_down may be taken as
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states of motion.

However, by some further examination, it is found that there are still some problems with 

Gallon's revised treatments of general properties. Gallon's argument that addressing both time 

points and time intervals on the same footing is necessary for accommodating the 

representation of facts concerning continuous change is indeed very suggestive. However, as 

in Alien and Hayes's approach [A1H85,89], Gallon defines time points as the meeting places 

of time intervals. Hence, from ihe view of ihe abslracl axiomatisation aboul lime ilself, time 

poinls are still relegated lo a subsidiary slalus, nol really irealed on ihe same fooling as time 

intervals. Additionally, lo develop his revised logic, Gallon imposes a very slricl rule, lhal is, 

(I.I), which slates lhal for any time interval, Ihere exisls a poinl which falls wilhin Ihis 

interval. Il is easy lo see from Gallon's definition of lime poinls, rule (1.1) implies lhal, any 

lime interval i can be decomposed lo iwo proper subinlervals ix and i2, such lhal meets(i l9i^. 

Further, il is slraighlforward lo infer lhal any time interval is required lo be infinitely 

decomposable. Hence, Gallon's revised axiomatisation definitely excludes ihe special lime 

intervals lhal are non-decomposable, namely momenls, in Alien and Hayes' iheory. This 

limilalion is perhaps nol loo serious, since Alien and Hayes' conception of time momenls are 

in facl inlroduced lo characterised ihe limes lhal some "inslanl-like" evenls occupy (allhough 

lime momenls still have positive duration). We may simply utilise time poinls lo play ihe role 

of momenls.

However, Ihere are some problems wilh Gallon's revisions which we shall show require 

revisions lo ihe fundamenlal axioms aboul time ilself in order lo extend ihe abslracl concepl 

of time elemenls lo include bolh intervals and poinls, and ihe temporal relations belween
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intervals in order to address points as well.

Let at-rest and in-motion refer to the properties of a body being at rest, and being in motion; 

and ^ and i2 represent two time intervals throughout which at-rest and in-motion hold, 

respectively. Intuitively, we may assume that meets(iltij, and if we use p to denote the point 

at which it "meets" i2, from the definition of "Limits" we get:

,ii) A Limits(p,i2).

According to the distinction between the two kinds of properties, Gallon claims both at-rest 

and in-motion are states of motion (see [Gal90b], p. 169).

Assuming that the state of motion at-rest holds at point p: by Gallon's definition, it must hold 

throughout some interval i' such that Within(p,i J ). Hence, together with meets(ilti^ t 

Ljmit?(p,ii) and L/m/te(p,i2), we can infer that overlaps^ ,i2). Hence, both properties at-rest 

and in-motion will hold throughout an interval which is a common subinterval of both i' and 

i2. This is unsatisfactory.

Similarly, if the state of motion, in-motion, holds at point p, then it must hold throughout 

some interval i" such that W/r/zm(p,i"). Hence, together with meets(ilti2), Limito(p,ii) and 

L/mitt(p,i2), we can infer that overlaps(ilti"). Hence, both at-rest and in-motion will hold 

throughout the common subinterval of i t and i".

Hence, the above proof shows that at the point p, the body is neither at rest nor in motion.
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Generally, if statel and state2 are two opposite states (i.e., statej <^> nol(state2)), that hold 

throughout intervals it and i2, respectively, where meets(ilti2\ we can prove in the same way 

as above that the following case:

(a) both statej and state2 are states of motion

is not allowable in Gallon's revised logic.

Similarly, consider case

(b) both statej and state2 are states of position:

If we again use p to denote the point at which ij meets i2 , then by Gallon's definition of a 

state of position, state2 must hold at point p, which is one of i/s limits, since state; holds 

throughout interval it ; similarly, since state2 holds throughout interval i2 , it must holds at p 

as well, which is also one of i2 's limits. Hence both state j and state 2 hold at point p. Again, 

this is absurd.

Hence, according to Gallon's classification of slales, ihere are only iwo possible cases:

(c) statej is a slate of position and state2 is a slale of motion,

(d) statej is a slale of motion and state2 is a slale of position.
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However, both (c) and (d) seem arbitrary and unsatisfactory since there may be nothing to 

choose between them. For example, how do we decide which of the following two states

stateyes: the car is John's

stateM. the car is no longer John's

should be considered as a state of position, and which must be addressed as a state of motion?

In fact, it is interesting to note that, in Galton's paper, it is not explicitly expressed whether 

states of position and states of motion are all the possible kinds of properties or not. However, 

it is not obvious what other kinds of property will be needed to avoid the problem outlined 

above.

A further problem arises in connection with assignment of properties to time intervals. 

Noticing that it is necessary to extend Alien's single way of ascribing properties to times, 

namely to assert that a property holds throughout an interval, Gallon introduces three different 

ways. For the initial, general treatment, he takes the locution HOLDS-AT (relating to time 

points) as primitive, and defines the other two, HOLDS-IN and HOLDS-ON, in terms of 

HOLDS-AT as below:

(D.I) HOLDS-IN(pro, i) <=> BpeP(WiMm(p,i) A HOLDS-AT(/7w, p)),

(D.2) HOLDS-ON(/?r0, i) <=* Vpe P(WfeWfi(p4) => HOLDS-AT(pro, p)).
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Later, Galton shows that ([Gal90b],pp. 174-175), for states of position, HOLDS-EM may be 

taken as primitive instead of HOLDS-AT by means of the following theorems for states of 

position:

(T.14P) HOLDS-\T(pro, p) <=> Vie I(Mffcm(p,i) => HOLDS-IN(pro, i))

(T.15P) HOLDS-ON(pro, i) <=» Vi'el(/n(i',i) => HOLDS-IN(pr0, i'))

and, for states of motion, HOLDS-ON may be taken as primitive instead of HOLDS-AT, or 

HOLD-IN, by means of:

(T.14M) HOLDS-AT(pro, p) o 3ie I(Wid«n(p,i) A HOLDS-ON(pro, i))

(T.15M) HOLDS-IN(/?r0, i) o 3i'el(/n(i'4) A HOLDS-ON(pro, i'))

However, consider the following example: let pro0 represent the property of having zero 

duration, and pro+ represent the property of having positive duration, then

Vpe P(HOLDS-AT(pr00, p))

hence, by (D.2), we get that for any time interval,
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That is, the property, having zero duration, will hold throughout any time interval which is 

assumed to have a positive duration. This seems contrary to both human intuition and the 

corresponding axiomatisation. On the other hand, since each interval i, as well as any 

subinterval of i, has a positive duration, we intuitively have that the property of having 

positive duration holds during interval i, that is:

HOLD-IN(pro+, i

However, by (D.I) we will get that there exists a point p within the interval i, such that

HOLDS-AT(pro+ , p)

that is, this point has a positive duration, which is again contrary to our assumptions.

The source of the above problems is indeed in the determination to define time points in 

terms of the meeting places of time intervals, and define the corresponding types of predicates 

ascribing properties to times, either according points conceptual priority over intervals, or 

regarding intervals as conceptually prior to points.

6.5 Toward Alien's and Gal ton's Events

In addition to properties, in Alien's interval based system, processes and events, generally 

termed as occurrences, are addressed as well. However, as Gallon argues in his corresponding



A temporal logic based on the time axiomatisation 132

examination [Gal90b], by locating the distinction between broad sense and narrow sense 

[Gal84] in processes rather than the time, Alien's processes may be in fact subsumed from 

properties and events. That is, it is unnecessary to introduce a category of processes separate 

from properties and events. Hence, in this section we shall only consider some special issues 

about events.

As mentioned in section 6.3, Alien's events which are characterised by his axiom (O.I):

OCCUR(e,i) A

are in fact coincident with gestalt propositions. On the one hand, of course, in Alien's system, 

instantaneous events are definitely excluded, although they do occur in reality (Examples are 

given in [Gal90b], p. 178). On the other hand, it is interesting to note that, in addition to his 

three different predicates HOLDS-AT, HOLDS-IN and HOLDS-ON for properties, Gallon 

has gone on to replace Alien's OCCUR by means of three predicates OCCURS-AT, 

OCCURS-IN and OCCURS-ON. The first of these is for locating an instantaneous (termed 

punctual) event at the point at which it occurs, the second for locating an event (punctual or 

durative) in an interval within which it occurs, and the third is for locating a durative event 

which takes time on an interval over which it occurs (i.e., OCCURS-ON corresponds to 

Alien's OCCUR).

In TUP, we may also specially define a primitive predicate, occur, which locates an event, 

that is, gestalt proposition, over a time element on which it happens. The definition for occur 

is as below:
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<d.4> occur(t; e) <& TRUE(t; e) A -at^TCwCtj.t) A TRUE^; e})

which, although it addresses time points as well, is very similar to Alien's (O.I) and Gallon's 

(O.2) (see [Gal90b], p. 179). In fact, Alien's (O.I) may be replaced by means of simply 

limiting the set of time elements, T, to the set of time intervals I.

Similarly, we can also define another predicate occur-in, for locating an event over a time 

element in which it occurs:

<d.5> occur-in(t; e} <=> 3tj<= 1(sub(\.lJi) A occur(lj; e)}

N.B. In the extreme case where t is a point, p, since the "sub" relation includes "equal" 

relation, we get that: occur-in(p; e) <=> occur(p; e).

Note that our predicates occur and occur-in address both instantaneous and durative events: 

for an instantaneous event e, if we let te P, Gallon's OCCURS-AT(e, p) can be simply taken 

as our occur(p; e}; for a durative event e, if we let ie/, again, Gallon's OCCURS-ON(e, i) 

can be simply taken as our occur(p; e)\ and, for a general evenl e (instantaneous or durative), 

if we let ie/, Gallon's OCCURS-IN(e, i) can be simply laken as our occur-in(i; e).

From Ihe definitions of occur and occur-in, we can straightforwardly prove ihe following 

Iheorems:

<l.9> occur(i; e) A sub(\,\^ => occur-in^; e)
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<t.lO> occur-in(i; e) A sub(i,ii) => occur-in^; e)

It is interesting to note that, from <t.9>, <t.lO> along with our <d.4> and <d.5>, we can 

subsume Gallon's (O.1)-(O.4), (O.5D), (O.5P), (T.16D) and (t.!6P) (see [Gal90b], p.179).

6.6 The Expressive Power of the New Logic

One important intuition which leads to Alien's interval-based logic is that most of human 

temporal knowledge, especially in the field of AI, is expressed without explicit reference to 

time points. As Alien repeatedly argues [A1181,83,84], if one insists on addressing the ending- 

points of time intervals, one must consider what knowledge one has at them about properties 

which are naturally associated only with the intervals. Alien's idea is therefore to take 

intervals as primitive, excluding the concept of points explicitly from the fundamental theory, 

and to maintain that only knowledge about properties associated with intervals is necessary. 

For instance, again consider the example of switching on a light: this case may be expressed 

by using an interval i to denote the time over which the light is off, and another interval j to 

denote the time over which the light is on, where interval j is immediately after interval i. In 

a pure interval-based system, that is where intervals are treated as primitive time elements, 

not constructed out of points, this may be conveniently expressed, for example in Alien's 

notation [A1184], as:
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HOLDS(Light_Off, i), 

KOLVS(Light_On, j), 

meets(i, j).

Knowledge about whether the light is on or off at the "switching point" is not to be 

represented in this system. But this is to be considered an advantage in this example, since 

we do not have any firm knowledge about the state of the system at this point.

However, as Gallon [Gal90b] has shown, excluding time points may lead to inadequacy in 

reasoning about continuous change. For instance, in section 3.4, we have illuminated the 

problem involved with reference to time points by means of the example of a ball thrown 

vertically into the air, and show that this situation cannot be satisfactorily expressed in terms 

of Alien's interval-based logic.

In order to overcome this inadequacy, Galton proposes his series of revisions to Alien' system 

to accommodate the representation of facts concerning continuous change. In terms of 

Gallon's terminology, one can now express the siluation of a ball ihrown vertically inlo Ihe 

air as:
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HOLDS-ON(Ball_Going_Up, i), 

HOU>S-\T(BalLStationary, p), 

HQLDS-ON(Ball_Going_Down, j ), 

meets(i, j), 

Limits($, i), 

Limits(p, j),

where both BalljGoingJUp and Ball_Going_Down are states of motion, while Ball_Stationary 

is a state of position (Gallon's revised terminology, see [Gal90b]).

However, Gallon's revisions are in facl achieved by insisting on ihe existence of a poinl 

belween any two intervals lhal meel, which leads back lo ihe very problem lhal Alien iries 

lo avoid and Gallon tries to rejecl as meaningless: viz do properties ascribed lo intervals apply 

lo poinls or nol? For example, how will ihe siluation lhal a lighl is lurned on be expressed 

in Gallon's revised system?

An advanlage of ihe interval- and poinl- based logic proposed in ihis paper is lhal il does nol 

suffer from Ihese problems. In facl, on ihe one hand, since intervals and poinls are now 

Irealed as primitive lime elemenls of equal slanding, il is nol necessary lo insisl on ihe 

existence of a poinl belween any iwo lime intervals which meel each oiher. Hence, our logic 

still relains Alien's solution which allows ihe expression of knowledge of properties over lime 

intervals only. On Ihe olher hand, since poinls are now addressed as time elemenls on ihe 

same footing as intervals, Ihe logic also allows for correcl reasoning aboul continuous change.
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For instance, in the new logic, the situation that a light is turned on may be simply expressed 

as:

hold-on(i; Light_Off), 

hold-on(j; Light_Ori), 

meets(\, j).

Here we have expressed exactly the knowledge about the light being on or off, without being 

forced into expressing disputable knowledge about the property at any "switching point". 

However, if such knowledge happened to be available then we could include it. For instance 

if on some grounds we were to have the knowledge that the light was on and not off at the 

switching point p between i and j, we would have:

hold-on(i; Light_Off), 

hold-on(p; UghtjOri), 

hold-on(j; LightjOri),

meets(\, p), 

meets(p, j).

Similarly, the situation that a ball thrown vertically into the air may be conveniently expressed 

as:
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hold-on(i; Ball_Going_Up), 

hold-on(p; Ball_Stationary), 

hold-on(j; Ball_Going_Down), 

meets(i, p), 

meets(p, j).

N.B. In the above, for the time point p, hold-on(p; x) may be replaced by hold-in(p; x).
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CHAPTER 7

A NEW ARCHITECTURE 

FOR TEMPORAL DATABASES

In this chapter, we shall present an architecture for a temporal database system which allows 

the expression of relative temporal knowledge of data transaction and data validity times. The 

system is founded on the time axiomatisation given in Chapter 4, which allows both time 

intervals and time points. A general retrieval mechanism is presented for a database with a 

purely relative temporal knowledge which allows queries with temporal constraints in terms 

of any logical combination of possible temporal relations classified in section 4.3. However, 

when absolute time duration knowledge is added, the consistency checking algorithm upon 

which the inference mechanism is based becomes a linear programming question. Much work 

has gone into algorithms for linear programming. As Cormen et al examine in [CLR89], 

linear programs can in practice be solved very quickly by means of the simplex algorithm (see 

p.539, [CLR89]). However, with some carefully contrived inputs, the simplex method can lead 

to exponential complexity. General linear programs can be solved in polynomial time by 

either Karmarkar's algorithm, which in practice is often competitive with the simplex method, 

or the ellipsoid algorithm which, however, runs slowly in practice [CLR89]. For the sake of 

reducing the computational complexity, a class of databases, termed time-limited databases, 

is introduced as a practical solution for the inference mechanism. This class allows absolute-
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time-stamped and relative time information in a form which is suitable for many practical 

applications, where relative temporal information is only occasionally needed. The architecture 

of such a system is given, and it is shown that efficient retrieval mechanisms for absolute- 

time-stamped databases may be adapted to time-limited databases.

7.1 The Need for the New Architecture

Designing an information system means modelling some portion of the real world in a 

suitable way, such that the model can be represented on a computer (data definition), 

providing mechanisms for maintenance and evaluation of that representation (data 

manipulation). For many applications in database systems (Dbs), it is necessary to retain 

complete information about objects. The current value of their attributes, as well as their 

histories, should be stored and managed by the DB. In this case, it is not appropriate to 

discard old information. Time values are necessary to be associated with data to indicate their 

periods of validity. However, a conventional database is updated from time to time; old data 

is deleted and new data inserted. Thus only current information resides in the database so that 

conventional database management systems (DBMSs) lack the capability to record and 

process time-varying aspects of the real world. With increasing sophistication of DB 

applications, the lack of temporal support raises serious problems in many cases. For example, 

conventional DBMSs cannot support historical queries about past status, nor trend analysis 

on a series of versions (essential for applications like decision support systems). There is no 

way to represent retroactive or proactive changes, while support for error correction or audit 

trail necessitates costly maintenance of backups, checkpoints, or transaction logs to preserve
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past states. There is a growing interest in applying database methods for version control and 

design management in computer-aided design, requiring capabilities to store and process time- 

dependent data. "Without temporal support from the system, many applications have been 

forced to manage temporal information in an ad-hoc manner" [SnA86].

The incorporation of time into conceptual database models has been an active area for 

research over the past decade. In [Ari86,91], Ariav has examined the nature of temporally 

oriented data definition, delineating the problems involved and established a platform for their 

discussion. Several approaches to the problem have used a relational model which includes 

temporal attributes. For example, Jones and Mason [JoMSO], and Sarda [Sar90], address 

starting and finishing times as attributes for each whole tuple which define its validity, Gadia 

[Gad88] proposes a system in which each attribute value is stamped with a temporal element 

which is a finite union of point-based intervals; and Clifford [Cli85,87] includes functions 

from valid times to attribute values for time-varying attributes. Additionally, it has been 

recognised that there may be more temporal attributes required for temporal database 

management systems. In fact, in Ben-Zvi's time relational model [Ben82], five implicit time 

attributes have been addressed: effective-time-start and effective-lime-stop are respectively the 

left and right end points of the time interval for the existence of the real-world phenomenon 

being modelled; registration-time-start is the time at which the effective-time-start was stored; 

registration-time-stop is the time at which the effective-time-stop was stored; and deletion- 

time records the time when erroneously entered tuples are logically deleted. Subsequently, 

Snodgrass and Ahn [SnA86,Sno87], McKenzie [Mck88,McS91], and Clifford [Cli93] have 

proposed systems with temporal attributes, which are semantically similar to Ben-Zvi's. E.g., 

in [Sno87], four implicit times, valid-from, valid-to, transaction-start and transaction-stop are
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addressed. Common to these later approaches is that the attributes encode both valid time 

and transaction time for each tuple. In the glossary of temporal database concepts [JCG92], 

Jensen et al. have given definitions of valid time and transaction time, as below:

• Valid Time: The valid time of a fact is the time when the fact is true in the 

modelled reality.

• Transaction Time: A database fact is stored in a database at some point in time, and 

after it is stored, it may be retrieved. The transaction time of a database fact is the 

time when the fact is stored in the database. Transaction times are consistent with the 

serialisation order of the transactions. Transaction time values cannot be after the 

current time.

Hence, here, we take the transaction time of a database fact as the time over which the fact 

is (was) taken as part of the current state of the database. It is interesting to note that the 

time, or the "point in time", at which a database fact is stored in the database is sometimes 

termed its recording time: in fact, recording time can be taken as the transaction-start for the 

transaction time attribute in Snodgrass' system [Sno87].

Some systems, such as those of Jones and Mason [JoMSO] and of McKenzie and Snodgrass 

[McS91,Sno87] take the tuple as the fundamental transaction unit, so that whenever anything 

changes within the tuple, the whole tuple is regarded as being renewed. Other systems, such 

as that of Gadia [Gad88], take individual attribute values as the fundamental transaction unit. 

Ahn [Ahn86] has shown that these two views are entirely equivalent, and Ling and Bell
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[L1B92] have pointed out that the appropriate transaction units for any application are to do 

with practical questions of storage and retrieval efficiency. We shall adopt the tuple view 

here, since it makes for clearer presentation.

Most temporal database systems require absolute time values for the temporal attributes. 

However, there may be temporal knowledge about a valid/transaction interval even though 

precise starting and finishing times are unknown. For example, we may know that event A 

happened before event B, without knowing the absolute times when they actually 

started/finished. Relative temporal knowledge such as this is typically derived from humans, 

where absolute times are rarely remembered, but relative temporal relationships are often 

remembered.

In order to be capable of representing not only absolute, but also relative and imprecise 

temporal information, some new temporal database systems have been introduced, examples 

are those of Chaudhuri [Cha88], and of Koubarakis [Kou93]. Chaudhuri's graph model is 

proposed as a tool in identifying generic temporal queries, and in describing the process of 

deduction of temporal relationships. The model represents time elements as nodes, and 

temporal relationships between time elements as arcs of the graph. Queries to the graph are 

processed by propagation of temporal relationships along arcs of the graph, according to 

Alien's transitivity table [A1183]. The complexity of this process is a major problem of the 

deductive method, and Chaudhuri discusses how heuristics may be used in some cases to 

solve this problem. However, the model is restricted to a subset of binary temporal 

relationships only; it cannot represent mixed relative time and absolute time duration 

information. Additionally, it cannot represent disjunctive constraints, and doesn't address
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issues such as transaction time/valid time explicitly. Consistency checking, which has been 

a problematic question in most temporal systems, is not addressed in Chaudhuri's model.

Koubarakis's system is based on relation-like representations which can contain variables 

constrained by the formulas of his temporal theory [Kou93]. The underlying time theory for 

the system is point-based: points are identified with the rationals while intervals are 

considered as pairs of points. Hence, the time basis for this system is similar to the point- 

based constraint network of Dechter et al. [DMP91], where temporal predicates over intervals 

must be expressed in terms of the temporal order over the interval end-points. However, 

Vilain [Vil82,ViK86] and Van Beek [Bee89,92] have examined the complexity issues relating 

to interval/point algebra, showing that the computational complexity of the constraint 

evaluation algorithm may be prohibitive for practical systems. Additionally, temporal 

relationships between intervals must be expressible in terms of the order relation over the 

interval end-points, and the annoying question of end-points must be artificially addressed.

The need for temporal databases of the kind discussed here occurs in applications where one 

might possess some temporal knowledge in relative form. We give an illustrative example of 

such a system, from the medical field, to assist the presentation of the ideas.

Consider a patient, who we shall call Lee, attending a clinic: On his first attendance, Lee 

described that several weeks before, he felt some stomach pain and took a pain-killer (drug 

a) for some days. However this did no good, and he visited the doctor. A doctor (Dr. Major) 

cancelled drug a, and prescribed drug b and drug c for three days, asking Lee to come to the 

clinic after finishing the drugs. Unfortunately, Dr. Major forgot to write down the prescription
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of drug c on Lee's medical record. The next time that Lee attended the clinic, he was 

examined by another doctor (Dr. Long). Since Lee's condition had changed for the better, and 

his medical record wrongly indicated that the treatment had been just drug b, Dr. Long simply 

prescribed drug b for another three days. Thereupon Lee's condition deteriorated. Lee came 

back to the clinic just after finishing drug b. This time, Dr. Major discovered the mistake, and 

corrected Lee's medical record. In addition, Dr. Major prescribed drug b and drug c for 

another seven days.

This example involves very little data in the traditional sense, but involves many different 

temporal references. The data essentially describes a treatment (the list of drugs prescribed). 

The valid time of the treatment may be characterised as an interval with a positive length. The 

exact left-end-point and right-end-point of each of these periods are not always specified. 

However, some temporal facts are known relating to the periods. For example, the period of 

treatment with drug a comes immediately before treatment with b and c, although we do not 

know its start time, or duration.

Another interesting aspect of temporal databases illustrated by this example is the importance 

of the transaction time to the inference mechanism. According to the view of the database at 

the time when Lee was examined by Dr. Long, the database wrongly indicated that Lee's 

condition changed for the better because of the effect of just drug b, although actually drug 

b and c together were taken. However, it is not appropriate to delete this wrong information 

from the database, since if we do so we cannot at a later date tell why doctor Long didn't 

prescribe drug c at that time. Instead of over-writing the wrong information, the corrected 

version must be added to the database, but with its own transaction time.
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The main problem involved with relative temporal databases is that of temporal inference 

since for relative temporal data one often needs deeper reasoning to infer facts. For example, 

if we have a database with the following facts:

Interval it : starting time = 8.00 finishing time = 9.00, 

Interval i4 : starting time = 11.15 finishing time = 11.30,

then we only need to retrieve ix and i4 to find directly that i t is before i4. However, if we have 

the following relative information:

Interval ij before Interval i2, Interval i2 before Interval i3 , Interval i3 before Interval i4 ,

then we need to retrieve facts from the database other than those relating to it and i4 ( viz i2 

and i3), and then we must deduce that it is before i4. This problem is dealt with in section 7.3 

below, where a general mechanism for query evaluation is presented. The mechanism is based 

on the refutation principle, with a general consistency checker for interval and point based 

system given previously in section 5.4.4 (or see Appendix A).

The time theory used in the architecture allows both time points and time intervals as 

primitive, so as to handle human temporal information in a natural way, consistent with 

Alien's approach. This is different from the approach of Koubarakis, which in fact reduces 

to a point-based constraint network problem. It is also more comprehensive than the approach 

of Chaudhuri since it allows mixed relative and absolute time. Also a general retrieval 

mechanism is given based on refutation by means of a consistency checker, supporting any
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conventional data conditions, and both conjunctive and disjunctive temporal constraints.

7.2 The Architecture of the Temporal Database

In this section, we present the architecture of the system in terms of the relational model. 

Following the conventional concepts, a nontemporal relation R with nontemporal attributes 

Aj, ..., A,, defines a nontemporal relation scheme, denoted as R(A15 ..., A2), where each 

attribute Aj takes values from its domain, Dj, a set of data. A nontemporal relation is a subset 

of the Cartesian product of one or more domains. Conventionally, a relation is envisioned as 

a table of data values, where the rows of such a table are termed tuples, and values of an 

attribute associated with column i of the relation are taken from domain Dt. In the architecture 

presented here, temporal reference of the system is made by assigning two time-elements to 

each nontemporal tuple, which denote the valid time and transaction time respectively. 

Knowledge about the temporal order over time elements is represented by a table of meets 

relationships over the corresponding time elements. Hence, corresponding to the nontemporal 

relation scheme R(Aj, ..., AJ, we can define the temporal relation scheme as:

*'**• I * transaction' Ap ..., AJJ, 1 valid/,

together with a meets table:

meetS\ 1 flrst-argument' second-argument-''
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where instances of T Tvalid, TSat.ueaDKat and

elements, which can be intervals or points.

are all taken from the set of time

In what follows, we shall illustrate the ideas in terms of the simple medical record example 

outlined in the introduction.

For the example, if we take nontemporal attributes:

Patient, Prescriber, Drug, and Status,

then the database may be represented by the following schema:

Patient, Prescriber, Drug, Status, Tvalid),

meetS\ 1 fust-argument' second-argument/'

Correspondingly, we may illustrate the medical-record relation representing Lee's history as 

the following table, MEDICAL-RECORD (Table 7.2(1)):
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MEDICAL-RECORD

^TRANSACTION

iti
iti
in

t2

t^

it2
ia

its
its
its
its
its

PATIENT

Lee
Lee
Lee

Lee
Lee
Lee
Lee

Lee
Lee
Lee
Lee
Lee

PRESCRIBER

NULL
Lee
Major

NULL
Lee
Major
Long

NULL
Lee
Major
Long
Major

DRUG

NULL
a
b

NULL
a
b
b

NULL
a
b&c
b
b&c

STATUS

pain
worse
NULL

pain
worse
better
NULL

pain
worse
better
worse
NULL

TVALID

V 1

v2

iv3

vl

iv2
ivs
iv4

ivi
iV2
ivs
iv4
iv5

Table 7.2(1).

In this example there are 5 validity intervals shown:

1V4

iv5

the time when Lee first felt pain,

the time when Lee was treated by means of drug a, administered by himself,

the time when Lee was treated by drug b and drug c, prescribed by Dr. Major,

the time when Lee was treated by drug b, prescribed by Dr. Long,

the time when Lee was again treated by drug b and drug c, prescribed by Dr.

Major.

There are also 3 transaction times shown:

itl — transaction interval following data entry after first appointment with Dr. Major, 

i^ — transaction interval following data entry after first appointment with Dr. Long,
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it3 — transaction interval following data entry after second appointment with Dr. Major.

The graphical representation of the corresponding time network may be given as that in 

Figure 7.2(1).

Figure 7.2(1)

The record shows three transaction intervals for the validity interval i^. The third (interval 

it3) corrects the second (interval i^) which incorrectly records that Lee was taking drug b 

alone. However, the reason for Dr. Long's prescription of drug b alone for interval i^ (i.e. 

that he thought drug b alone had led to improvement over i^) may still be inferred from the 

database. This is because the transaction time allows us to retrieve the state of the database 

at any time in the past. Also, these transaction intervals are consistent with the serialisation 

order of the transactions (see Jensen et al.'s definition given in section 7.1). Temporal queries 

depending on both validity time and transaction time will be discussed in section 7.3 below.

The temporal part of the database is represented by the 8 time elements: ivl , iv2 , iv3 , iv4 , i^, itl , 

1,2, and it3, along with the meets predicate imposed over them. As a table, it may be
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represented as:

WW^f CM 1 I Wl/^f CM t I Wl00t Ci 1 1 I Wl/?^f C^t" 1 ^ ittr\s c-toyiyi 9 ~H^2^' "frC'C- f-i>yry29 M /> '/i-cc to \^v2' ^l/' *'*'CC »&> \»i > *w3/'

meetsQa, \^), meets(\lt ^2), meeto(t2, AV4), meets^, t$), meets(iv4 , i^), meets^, 

meets^, it3), m^^^Ctg, i^

where tt , tj and 13 are "relative delay" times for the system. E.g., meets(\2,\.^ and 

express the fact that the valid time interval i^ is "after" i^, by means of the delay time, 

standing between them.

7.3 The Inference Mechanism

In this section, we consider the inference mechanism for the system. For queries to the 

database, we wish to support all the possible temporal relations over time elements. For 

example, "show me all facts before time tj or after time l^\ or "Is it true that fact A holds 

during time i and before time t?". All these temporal queries can be characterised in a general 

query form. The general method for query evaluation depends upon a general consistency 

checker for the database in terms of the necessary and sufficient conditions for the 

consistency of the corresponding time network (section 5.4.4 and Appendix A).

For temporal queries, temporal constraints will be added as additional querying conditions. 

Although the relationships between time elements are characterised in terms of the single 

predicate, "meets", we should allow a more general form of query. This should allow temporal
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constraints in terms of all the possible temporal predicates presented in section 4.3, over both 

transaction times and valid times, and any other given reference time elements.

For the general operation, SELECT, data and temporal selection conditions can be defined 

as follows:

1. Any conventional data selection condition of SQL is a data selection condition.

2. A temporal constraint, Vr,(t, tp, is a temporal selection condition, where "V" denotes 

the disjunction "or" of r/s, while each r, represents one of the binary temporal 

predicates governing time elements (see section 2).

3. If Cj and C2 are selection conditions (data or temporal) then the conjunction

is a selection condition. E.g.:

t,) v o/MT^^, t>)) A during^, Tvalid),

t ) v during(TV3tM > li) v finishes(TV3iM,

etc.
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The key problem is to test whether for a given pair of time elements, tx and tj, a constraint 

Kt^tj) is satisfied. In principle we can do this by showing that, -irftptj, the converse 

constraint to Kt,,^), is inconsistent with the time network, by means of the consistency 

checker (see section 5.4.4 and Appendix A). It has been shown that the temporal predicates 

given in section 4.3 are mutually exclusive. So that, for example, if p is a point and i an 

interval, we know that precisely one of the temporal predicates in the set:

R = (before, meets, starts, during, finishes, metjby, after}

must apply for p and i. Hence for r0e R:

/p,i) v r2(p,i) v ... v r5(p,i)

where {rv , r2 , ...,r6 } u {r0 } = R. Hence, to show r0(p,i) we simply show that r'(p,i) is 

inconsistent for r' = ry , r2 ,..., r6, i.e., r' can be any one of the temporal relationships between 

point p and interval i, other than r0. For instance, we may show before(p,i) by means of 

showing that meets(p,i), starts(p,i), during($,\),finishes(v, i), met-by(p,i) and after(p,i) are all 

inconsistent with the database.

The general treatment of the temporal constraints can then be handled by conventional logical 

operations over the results of individual constraint evaluations.

It is interesting to note that improvement may be made to the evaluation of the individual 

converse constraint -»r(k,,k2). The method given above equates ->r(kltk2) with the disjunction
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of r'Oq,!^) for r'e/?\{r}. This leads to several different consistency checks. However, for each 

temporal predicate the number of tests may be reduced considerably (to a maximum of 2) by 

expressing -ir directly in terms of meets. For instance:

A meets(kQ,k) A

Hence, for example, the six tests for the constraint -<r0(p, i) illuminated above may be reduced 

to two.

Other operations over temporal relations, such as (CARTESIAN) PRODUCT, UNION, 

PROJECT and JOIN, etc., may be also formally defined. For example, we can define the 

(CARTESIAN) PRODUCT operation as below:

Let

*MV A transaction' ^M» •••» Ail' * valid J

and

**!' •••» ^n2'

be the temporal schemes of two temporal relations, Rj and R2 .

For convenience of expression, we define the "common part" of two time elements tj and 

denoted by, common^ y, as below:
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equal(tlt t^ v starts(ilt tj v during^, \^ v finishes^, 

==> common^

v during^, tx ) v finishes^, t^,

overlaps^ t^ => common^, \^) = t, where tj = t'© t A t^ = t © t",

overlaps^, ti) => common^, t,) = t, where ^ = t'© t A tj = t © t",

Otherwise, common^, t^ = NULL.

N.B. From the above definition, we know that common^, t^) = common^, tj).

The (Cartesian) product of Rj and R2 can now be defined as a temporal relation, Rj x R2, with 

the temporal scheme:

..., A,,!, Bj, ..., B,^, Tvalid)

where the tuples of Rj x R2, together with their transaction time and valid time, are made up 

in the following way:

For each temporal tuple (Vi^nnacuon*2!.!*-*3!*!*^).^ in Ri» 

and each temporal tuple (tb^^ction.^'---^^^^ in R2»
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if

common(l^Maction> ^^mtaJ * NULL 

and

commo/i(ta(i)iValid , I^M) * NULL,

then there will be a temporal tuple in the cartesian product relation Rj x R2 :

ttransactionOj) = COmtn°n(t*(i),tiwsaction> Vi).transaction/» 

tvalid(ij) = COfnmOn(t*(i),vaM> tb(j),valid)'

N.B. In a similar fashion to the CARTESIAN PRODUCT operation, JOIN operations can 

be defined, by adding some corresponding join conditions, where a join condition can be any 

conventional data condition, or a temporal constraint.

7.4 Examples of Retrieval

In this section we give some examples of temporal predicates used as temporal constraints.

Query 1: Retrieve Lee's medical history, as known before the second appointment with 

Dr. Major.
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SELECT TTRANSACTION, PRESCRIBER, DRUG, STATUS, TVALID

FROM MEDICAL-RECORD

WHERE PATIENT = "Lee" AND

( before( rTRANSACTION*

Result:

^TRANSACTION PRESCRIBER

itl NULL 
AH i_«ee
iti Major

ia NULL 
i(2 i_/ee
it2 Major 
it2 Long

DRUG

NULL 
a
b

NULL
a
b 
b

STATUS

pain 
worse
NULL

pain 
worse
better 
NULL

T1 VALID

vl 

v2
v*^

b
v3

iv4

Query 2: Is it true that Lee took drug a after itl ?

SELECT

FROM MEDICAL-RECORD

WHERE PATIENT = "Lee" AND

DRUG = a AND

L TRANSACTION = L, AND
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Result: Null.

Query 3: Was it known over i^ that Lee got better using drug b alone?

SELECT STATUS, TVAIJD 

FROM MEDICAL-RECORD 

WHERE PATIENT = "Lee" AND 

DRUG = b AND

^TRANSACTION

Result:

STATUS TVALID

better iv3 
null iv4

This query shows exactly the state of Dr. Long's knowledge according to the transaction time 

it2. It shows his belief concerning the past interval, iv3 , and his prescription for the coming 

interval, iv4.

Of course, the tables given in the examples cannot present all of the information required by 

a user of the system, since the temporal relationship of the terms, ivl , iv2 , ..., i^ it2, ..., t,, tj, 

..., needs the graph of Figure 7.2(1) as part of the user interface. As a matter of presentation, 

it may be convenient to display more than just the given time elements in order to allow the
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user to relate them to other special reference time elements which exist in the network. 

Particularly, if absolute-time-stamped elements are added to the network, as in the next 

section, these may be displayed as reference elements.

7.5 Integrating absolute and relative temporal information

Section 7.3 outlines an inference mechanism for retrieval subject to temporal constraints, from 

the purely relative temporal database. This inference mechanism is based on the consistency 

checking algorithm given in section 5.4.4 (Appendix A): The necessary and sufficient 

condition for a purely relative time network without any duration constraints to be consistent 

are two-fold. The first is the requirement that points do not meet points. The second condition 

states that the modified graph of the corresponding network must be acyclic.

The inclusion of absolute temporal information into the representation may be handled by the 

addition of known durations to weight the arcs of the graph. In this case, the alternative 

consistency checker given in section 5.4.3 (see also Appendix B) may be employed. This 

general consistency checking algorithm, addressing mixed absolute and relative time, involves 

a search for cycles, and the construction of a numerical constraint for each cycle. The 

existence of a solution to this set of constraints implies the consistency of the system. Hence, 

the consistency checker for a random set of known durations is in fact a linear programming 

problem.

However, the retrieval situation for a absolute-time-stamped system is computationally
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efficient, since all start- and end-times are known, and hashing or tree-search schemes may 

be based on known time points. In order to reduce the computational overhead of consistency 

checking for the case supporting absolute duration information, in what follows, we introduce 

a class of databases, termed time-limited databases. Databases of this type allow both absolute 

time value and relative time information in a form suitable for many practical applications. 

The main idea is that, in many applications, the relative temporal knowledge may be very 

limited, while most data is stamped with absolute time values. The graphical structure of such 

a system is that of a single absolute-time-stamped chain, C, with occasional attached groups 

of purely relative time knowledge, Q,, i = 1, 2, ..., g, which we shall term "relative sub 

networks". An assumption is made that each relative sub-network is time-limited: i.e. two 

definite times with absolute values may be determined that are earlier and later respectively 

than the sub-network. In this case, each relative sub-network may be spanned by an absolute- 

time-stamped interval which starts and finishes simultaneously with it. We shall show that 

retrievals may be made first from the absolute-time-stamped chain including spanning 

intervals, and then, if necessary, by relative inference over the union of two relative sub 

networks.

In an absolute-time-stamped temporal system the time elements consist of a sequence of time 

points with absolute time values (reals or rationals), separated by time intervals. We shall 

term this set of elements an absolute-time-stamped chain, and any ordered union of elements 

in an absolute-time-stamped chain as an absolute-time-stamped element (In particular, any 

element in an absolute-time-stamped chain is an absolute-time-stamped element).

Definition: Let C be a special time network consisting of a sequence of time elements of
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which all points are stamped with absolute time values. C is called an absolute-time-stamped 

chain if:

Vce C( ce I =» 3p!,p2e CcP(meets(p l ,c) A meets(c,p2)) 

A ce P => 3ie Cnl(meets(i,c) v meets(c,i)) )

where I is the set of intervals, and P, the set of points.

N.B. According to the above definition, the first and last elements of an absolute-time- 

stamped chain must be both time points.

We now consider a time network graph G containing a single absolute-time-stamped chain 

C. If we let Q be the subgraph of G consisting of non-absolute-time-stamped elements in G, 

we may present G as G = C U Q, where C U Q represents the graph union of C and Q. 

Additionally, let Q be decomposed into subgraphs Q1? Q2,..., Qe, such that:

Q, is a connected sub-graph of G,

Q, and Qj are only connected through nodes in C,

For each element t in Q, there exists a directed path from a node in C to t, and a 

directed path from t to another node in C,

where i,j = 1,2,..., g.
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The first two of these properties define what is meant by a relative sub-network, QL. Such a 

sub-network is a connected set of non-absolute-time-stamped arcs, which is isolated from 

other such sets in the sense that they are only connected in G by means of their connection 

to the absolute-time-stamped chain itself. Practically it is often the case that the temporal 

relationships between several linked events are known but that these events are unconnected 

with other sets of events. For example, in the illustration of section 7.4, the events are 

connected through a single patient. Any connection with other patient events is made through 

absolute time values, i.e. through the absolute-time-stamped chain)

It should be noted that all graphs G = C U Q may be decomposed into Q, satisfying the first 

two properties, the only question being the size of the relative subgraphs. In the extreme case, 

there is the trivial decomposition with just Q itself satisfying the properties.

The third property is the reasonable practical assumption that each relative sub-network may 

be time-limited in some way. That is, for any set of linked temporal events, some absolute 

time bounds, however wide, may be established. For example, in the medical illustration it 

may not be known exactly when the events took place, but the month or year, will surely be 

known.

We shall term a relative sub-graph Q, which satisfies all of the above three properties time 

limited. Figure 7.5(1) shows a time network containing an absolute-time-stamped chain C:

C = p,, i,, p2, i2 , P3 » is. P4> 14. Ps
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with the following two time-limited sets:

Qi = Us. ti> t>, i6 },

Qi = U7» ^» U» t5, i6, tj, tg, tg, t10,

15

t6

Figure 7.5(1) A time-stamped chain with two time-limited sets

N.B. In the above graphical representation, while points are still denoted as single 

barred arcs, and intervals as double barred arcs, time elements which are not known 

to be points or intervals are represented as shadowed double barred arcs.

We term the decomposition:
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G = C U Ch U Q2 U ... U Qg

a time-limited decomposition of G, where Qlt Q2,..., Q are time-limited relative subgraphs.

We now need to define a spanning element S(t) for each time element t in G. First, for each 

relative subgraph Q,, we define Pre(Q,) as the latest point on C from which there is a directed 

path to each% element of Q,, that is, Pre(Q,) is the latest absolute-time point which is earlier 

than all elements in Q,. Similarly, we define Suc(Q,) as the earliest absolute-time point on C 

to which there is a directed path from each element of Q,.

For example, in figure 4, Pre(Qj) = plf SucCQ^ = p4 ; Pre(Q2) = p2, Suc(Q2) = p5.

Now we can define the spanning element S(t) for t in the following way: If t is a time 

element on the absolute-time-stamped chain C, then we define S(t) as t itself. If t belongs to 

a relative subgraph Q,, then we define S(t) as the absolute-time-stamped interval which 

"meets" Suc(Q,), and is "met-by" Pre(Q,).

We are interested in the evaluation of constraints such as: before^,^), during^l^, ..., etc. 

from a network A. For clarity, we introduce the network name as a third argument to these 

temporal predicates, so that before(\.lt t& A) means that ^ is before t^ in network A.

It is now straightforward to demonstrate the following three theorems, which may form the 

basis of retrieval mechanisms for a time-limited database. Theorems (Tl) and (T2) show that 

we can evaluate r(t,,tj, G) by first testing ^/<?re(S(t1 ),S(t2), C) and a/ter(S(tj),S(t>), C) over
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the absolute-time-stamped network C, using the absolute-time-stamping retrieval algorithms 

(since S^) and S^) are both stamped with absolute time values). If these relations are not 

satisfied, then we need the full refutation mechanism to evaluate the other predicates. 

However, theorem (T3) shows that we only need to do this over the union of C with the two 

time-limited sets QC^) and Q^), where Q(t) denotes the relative sub-network containing t

(Tl). fee/br^(S(t1 ),S(t2), C) => before^, G),

(T2). o/teKSCg.SCt,), C) => aftertt^, G),

(T3). -1(^/(9rg(S(t1 ),S(t2), C) v a/ter(S(t1 ) fS(t?) f C)) A r^t,, C U Q(t,) U Qft)) => Kt^, G),

where r is any one of the possible temporal relations between time elements tt and t^.

The "relative" retrieval algorithm is thus reduced to a search for cycles over the graph C U 

QC^) U QCy. The complexity of this algorithm is dependent on the size of Q(tj), and QCy 

only, since there can be no cycles involving the part of C that is "before" the earlier one of 

!)) and Pre(Q(t,)), or "after" the later one of Suc(Q(tj)) and
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CHAPTER 8

CONCLUSIONS

Reasoning about and with time has been rec Dgnized to be of relevance to several distinct 

areas in computer science since the early 70s. In particular, researchers have found that the 

understanding and treatment of time plays an increasingly important role in the domain of 

artificial intelligence. This has come about because computer science as a whole is both 

highly formal and deeply rooted in the practice of everyday life, so that a formalism designed 

to handle the pervasive feature of time has an important natural role in many fields. However, 

the theoretical nature of time is a question with a long philosophical tradition and the 

literature is full of disputes and contradictory heories [Gal87]. When designing a system for 

temporal reasoning, we are faced with a choice of the underlying time structure - for different 

objectives or motivations, different people nuy have different approaches.

In the past two decades, many temporal systems have been proposed in order to address the 

problem of modelling human temporal concepts in a natural way. These various models are 

similar in many respects, but there are subtle differences in terminology and basic theory 

which derive from the differences in approach.

In this study, the examination of some existing representative temporal systems and the 

development of a new general temporal theory have been undertaken. This general theory may
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be seen as an extension of Alien and Hayes' uid Vilain's theories.

One major advantage of the new theory is iu approach which addresses both intervals and 

points as primitive time elements on an equ.il footing, and allows time structures such as 

linear/non-linear, and dense/discrete, etc. The;;e issues may be separately specified by means 

of additional axioms. On the other hand, the axiomatisation provides a satisfactory 

characterisation for the open and closed nature of primitive intervals, which has been a 

problematic question of time representation ir many incomplete knowledge systems.

It is shown that this general theory is powerful enough to subsume the examined 

representative theories, such as Alien and Hayes's interval-based theory, Bruce's and 

McDermott's point-based theories, and the interval and point-based theory of Vilain. It retains 

the appealing characteristics of these existing temporal theories, but without bearing their 

corresponding deficiencies discussed in the literature survey.

As applied to computer based systems, a finite time network based on the theory is specially 

addressed, where a consistency checker in two different forms is provided for cases with, and 

without, duration reasoning, respectively. Based on the new time axiomatisation, a temporal 

logic for temporal reasoning about propositions whose truth values are associated with 

particular intervals/points is presented with an explicit definition of its syntax and semantics. 

It is shown that the logic is more expressive than that of existing systems, such as Alien's 

interval-based logic, Gallon's revised temporal theory, Shoham's point-based interval logic, 

and Haugh's MTA based logic; and that problems with these systems are satisfactorily solved.
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As an application of the temporal theory, a new architecture for a temporal database system 

is proposed. The system allows the expression of relative temporal knowledge of data 

transaction and data validity times. A general ictrieval mechanism is presented for a database 

with a purely qualitative temporal component which allows queries with temporal constraints 

in terms of any logical combination of Alien's temporal relations. To reduce the 

computational complexity of the consistency checking algorithm when quantitative time 

duration knowledge is added, a class of databases, termed time-limited databases, is 

introduced. This class allows absolute-time-st; imped and relative time information in a form 

which is suitable for many practical applications, where qualitative temporal information is 

only occasionally needed, and the efficient retrieval mechanisms for absolute-time-stamped 

databases may be adapted. The implementation of such a time-limited database remains as 

future work in the application area of the stuc y.
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An Extended Temporal System Based on Points and Intervals

(Information System, Vol. 18, No. 2, pp.111-120, 1993)

Abstract

This paper proposes axioms for temporal systems based on a discrete set of intervals and 
points which are treated equally as primitive elements. Temporal ordering is specified by 
means of the primitive relation 'meets'. The axioms, and a graphical representation of 
temporal knowledge, are specified formally by using the Z language. A consistency condition 
for a temporal database is given in terms of the cyclic properties of the graphical 
representation, and an algorithm for consistency checking is provided. Formal proofs of 
Alien's transitivity table for interval relations are given.

The paper addresses some hitherto unresolved issues in the use of interval based systems for 
temporal databases and proposes a solution. These issues are the problems involved in 
modelling 'open' and 'closed' intervals.

Key words: Z, intervals, points, temporal database, incomplete knowledge, consistency 
checking.

1. In trod action

Our intention in this paper is to propose a model for a discrete system of primitive elements 
which may be points or intervals, by providing axioms for a single relation, 'meets', over the 
elements. This gives a basis for discrete temporal reasoning. The axioms allow modelling of 
both open and closed intervals, and also allow intervals to be unspecified as to inclusion or 
exclusion of end points. A necessary and sufficient condition for the consistency of an 
incomplete temporal system is formulated in terms of graph cycles. This model may be 
viewed as an extension of Alien's interval based logic (see [A1183,84] and [A1H89]). The
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extension allows the inclusion of points as primitives, and is provided with a consistency 
checking algorithm which may form the basis of an inference system.

Alien introduced his temporal logic in order to provide a framework for the treatment of two 
major subareas of artificial intelligence: natural language processing and problem solving. 
Instead of adopting time points (or states which are associated with time points), he took 
intervals as the primitive temporal quantity and introduced thirteen (mutually exclusive) 
relations between any two intervals. The axioms of Alien's system are formulated in terms 
of a 144 element transitivity table which is derived from a study of intervals on the real line. 
However, no formalism is adopted for the concept of open and closed intervals - a weakness 
which causes some problems for modelling. Inference in this system is performed by 
calculation of the transitive closure under this table.

Alien specifically excludes time points in claiming that any quantity of time must be 
subdivisible. This ruling eliminates the possibility of instantaneous events from Alien's 
treatment. The contention is that instantaneous moments are not necessary for the qualitative 
modelling of temporal data, and that instantaneous events may be considered as small 
intervals at some appropriate grain-size for the interval. Alien gives the example of a light 
which is switched on. To model such a system, we may need two intervals: one where the 
light is off 'meeting' one where it is switched on. This may be enough for our modelling 
purposes and, if so, we do not need to state whether the intervals are open or closed. By this 
means, we avoid awkward questions about the end-points: if the intervals are closed then 
there is a point at which the light is on and off, similarly if they are both open, then at this 
point the light is neither on nor off. Alien's argument is that if we really want to model the 
switching process itself, then we need to examine in more detail the physics, and smaller 
intervals at this event will again be sufficient.

However, there are some difficulties with this approach in the qualitative modelling of 
everyday occurrences. In qualitative modelling of physical processes, we often wish to impose 
'landmark' points which bv definition separate two intervals. For instance, consider the action 
of throwing a ball up into the air. The motion of the ball can be modelled by a quantity space 
of three elements: going-up, stationary, and going-down. Intuitively, there are intervals for 
going up, and going down. However, there is no interval, however small over which the ball 
is neither going up nor going down. Hence the third element in the quantity space is best 
modelled as a point - a 'landmark' point which separates two other intervals. We may deduce 
from this example that qualitative modelling appears naturally to require a discrete quantity 
space of both points and intervals.

Vilain ([Vil82]) has proposed an extension of Alien's system which includes points. In this, 
Alien's 13 interval relations are extended to 26 relations between points and intervals. 
However, this leads to an increase in computation for closure, and a corresponding overhead 
for consistency maintenance. Vilain and Kautz ([ViK86]) have demonstrated that such a 
calculation is NP-hard, as opposed to an alternative point-based system which is O(n3). 
Unfortunately, the problems involved in modelling 'open' and 'closed' intervals still exist in 
Vilain's system.

In Alien's system, consistency checking is performed by formation of the transitive closure 
according to a transitivity table which describes the composition of the thirteen (mutually
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exclusive) relations. If no conflict is found according to the exclusivity, then the system is 
consistent. However, he has not provided a formal consistency checker. We give here a 
formal proof that the transitivity table follows from our axioms, by using the necessary and 
sufficient condition of consistency in terms of the acyclicity of the "meets" relation.

Intuitively, the starting point for the axiomatisation proposed in this paper is a view of time 
as a totally ordered discrete set, E, of fundamental elements, which may either be points or 
intervals. We postulate that this fundamental set exists, sufficient for our modelling purposes, 
although we do not necessarily have full knowledge of E. That is, although we know that 
there exists a total ordering of E, we do not necessarily know what it is in any situation. 
Modelling our knowledge of a situation means expressing a (partial) knowledge of the 
temporal ordering of E. For example, such knowledge may be expressed in terms of Alien's 
interval relationships, but as we show later, these may all be expressed in terms of a single 
relation: "meets". The relation "meets" is defined as the successor relation under the total 
ordering, so that each element "meets" a next element (except possibly for the last element). 
We may also define compound elements from two elements which meet. When elements el 
and e2 meet in E, we may construct a compound element k = el + e2, and this in turn may 
be used to construct other compound elements.

This view of time is one which to some extent is forced upon us by the practicality of the 
computer based modelling approach. We have to store elements as a discrete finite set, and 
the semantics of any database of time elements will naturally assume a total ordering at some 
fundamental level. However, the database represents our state of knowledge about temporal 
events, and this may well be incomplete. The knowledge incorporated in the database will in 
general not be the fundamental elements in E, but rather of the compound elements k. The 
existence of E is simply a belief which may be used to test the consistency of a database. 
This is the approach we take to consistency here : if we can show that E exists, then the 
database is consistent, if we can show it does not exist, then it is not.

So far, no distinction has been made between points and intervals made in the above 
description. Intuitively, the distinction usually is connected with the decomposability: intervals 
are assumed to be decomposable if required, and points are not. However, in this treatment, 
we do not make further commitment as to decomposability of time elements. Here, we are 
more interested in the order relation between elements. The differentiating property which is 
proposed here is that although intervals may succeed intervals, points are not successors to 
points. This characteristic, which is later built into the axioms, is in line both with modelling 
requirements where points are defined as separators or end-points of intervals, and with the 
denseness of points on the real line. But this is the only extra requirement which is made of 
elements if they are to be points. The system overcomes many of the problems involved with 
open and closed intervals. We show by example in section 4 how open and closed intervals 
may be modelled as and when required using this system.

We give below a formal description of the axioms for the system outlined here, and present 
a representation of a database of elements in terms of a graph. We also show how a simple 
necessary and sufficient condition for consistency in terms of cycles of the graph may be 
derived from the supposition that an underlying totally ordered fundamental set E must exist 
for any database. This condition may be used to prove many results. In particular, the system 
of Alien and that of Vilain may be derived from the axioms. The consistency condition is
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shown to be of order O(n) for a graph with n arcs.

In section 2, we give a formal definition of the system using Z. A Z schema consists of 
variable type definitions and first order logic conditions on variables (see, e.g. [Dil90]). 
Schemas are named, and the inclusion of a schema name in another schema implies that it 
is to be inherited. All of the type definitions in the schemas given below are in terms of a 
fundamental primitive type: TimeElement. In section 3.1 we give a schema for incomplete 
temporal knowledge and define what is meant by consistency for incomplete temporal 
knowledge. In order to give an algorithm for consistency checking, it is necessary to provide 
a graphical representation for temporal systems. Schemas for such a representation are given 
in section 3.2. In section 3.3, we provide a necessary and sufficient condition for consistency 
and it is illustrated by means of a simple example. Section 4 formally defines Alien's 13 
primitive relations in terms of schemas in Z and addresses the problem of modelling 'open' 
and 'closed' intervals. Alien's transitivity closure is formally and intuitively proved in section 
5. Finally, section 6 provides a summary and concluding remarks.

2. Definition of Temporal System

The definition of a temporal system consists first of a definition of an underlying well-ordered 
discrete set E. The elements of E may be points or intervals. The temporal system is then 
defined as the closure of E under the binary operations of combining adjacent elements.

Let Point be the type of all time points which are not decomposable and Interval, the type 
of all time intervals which are decomposable if required (that is, Alien's primitive intervals). 
We use TimeElement to denote the type of all time elements each of which is either a point 
or an interval.

We define the elementary temporal set E as:

Elenientary_E
E : sqTimeElement

-dneN • (En, En+1 e Point)

Nb. The above definition implies that E is a set similar to an initial segment ([Lip64]) of the 
natural numbers, and no two points are next to each other. We use a ordered pair (t1? t^ to 
represent that ^ is the successor of tt under the immediate successor relation over E.

The definition of ME , the set of successor relations over E, is captured in the following 
schema:
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I————— ME ———————————————
| Elementary_E\
I MF : TimeElement <-> TimeElement

| (e1? e2)eME «=> 3n€N • (QI - En A e2 = En+1))
I____________________________

The following schema lies at the heart of the proposed time representation. In effect the set 
T is defined as the closure of the elementary set E under the composition operator "+", which 
allows composition of successive TimeElements. Thus we may regard any element of T as 
a unique combination of fundamental elements of E :

e2 +...+ er

The sets M is similarly defined as extensions of the fundamental sets M

I ————— (T,M)
| Elementary _E\ ME\
I + : TimeElement x TimeElement -^ TimeElement
| = : TimeElement <-» TimeElement
I T : PTimeElement

M : P(TimeElement x TimeElement)
rlf r2, r : N

(t1 ,t2)G M <=» tj + tje T • (Vta, tbe T • ( (ta, tx )e M <=> (ta, t)e M
(t,, tb)e M ^ (t, tb)G M))

tl,sl' ^,52^ E

tu +...+ t!,rl = tz,! +.-+ 1^ ** rx = r2 A 3neN • (En = tu A En = t^ 
teT => 3e!, ..., ereE • (t = Q I +...+ er)

Nb. l.The operator "+" is associative but not commutative and (T, M) is the closure of E 
under +

2.1n the case that t = tx + ^ we say that t is decomposable into tx and t^ Without 
confusion, tx = t^ is simply written as t: = t2-

3. Incomplete Temporal System

The set T includes E and all the intervals and points which can be formed from it by means 
of +. However, in an application neither the fundamental set E nor the complete set T may 
be known. A database of "facts" about T will express knowledge that is incomplete in several 
ways. For example, the system may have incomplete knowledge about the successor relation
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(in order to describe the context conveniently, we name the successor relation as "meets" and 
use m^, t2> to denote "tj meets t>"), and the database will often contain redundancy, as when 
facts are known about two elements without the knowledge that they are actually identical. 
To allow for possible duplicate elements, the basic structure of the database is that of a bag, 
rather than a set.

3.1 Definition of (K, MK)

Accordingly, we use (K, MK) to express incomplete (and possibly inconsistent) temporal 
knowledge, where:

(K,MK)
K : hagTimeElement
MK : bag(TimeElement x TimeElement)

| (kl5 k2)eMK =>k1 , k2eK
I_______________

Nb. i) K expresses our knowledge of what intervals and points are there;

ii) MK expresses our knowledge as to how the intervals or points in K meets each 
other;

There is no restriction in the schema (K, MK) to ensure that the knowledge is consistent. For 
example, the sets:

K = {klf k2) , MK ={ (k1? k2), ( k2, kj) }

conform to the schema although (K, MK) represents knowledge of two TimeElements which 
are successors to each other. Such knowledge should be regarded as inconsistent according 
to the schema which follows. In this, consistent partial temporal knowledge is defined by 
insisting that the elements of the pair (K, MK) are elements of (T, M) which is derived from 
an underlying (E, ME).

I————— Consistent K, MK) 
| (K, MK); (T, M)

keK=>ke T
(klf k2)eMK =» (kj, k2)eM

3.2 A Graphical Representation

The schema of section 3.1 specify what is meant by consistent partial temporal knowledge,
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but do not provide an algorithm for checking the consistency of any (K, MK). In order to 
prove consistency, we need to find an elementary pair (E, ME), and from it a closure (T, M) 
so that the Consistent(K, MK) schema is satisfied. In 3.3, we will give such an algorithm in 
terms of a graphical representation of (K, MK). However, we must first define the graphical 
representation itself.

The graph is one in which TimeElements are represented by directed arcs. The meets relation 
MK is represented by the nodes of the graph: if (kx , k2)e MK then lq is the in-arc to a node, 
and k2 is the out-arc from the node. All TimeElements which are known to meet k2 will be 
in-arcs to the node, and all TimeElements which kx meets will be out-arcs from the node. 
Although this representation is intuitively straightforward, the definition of nodes in Z is more 
involved.

The following schemas define nodes of the graphical representation in terms of two 
equivalence classes of TimeElements: Eq_in and Eq_out. Effectively, Eq_in is a class of 
TimeElements known to meet a common element, and Eq_out is a class of TimeElements 
known to be met by a common element. Nodes are then defined as pairs of equivalence 
classes.

Some difficulty is encountered for nodes not meeting any other node, but this is resolved by 
extending the equivalence relation to include these ( by means of the final clause in Eq_in 
and Eq_out). In order to deal with this problem, we give the definitions of two equivalence 
relations over K, Eq_in_K and Eq_out_K, in terms of the following schemas:

I ————— Eq_in_K ———————————————————————————————————————
I (K, MK);
\ Eq_in : TimeElement <-» TimeElement

t^e K • (tx Eq_in t> <=> (3te TimeElement • ((tl5 t), (t>, t) € MK)) v tj = t>)
l

and

I————— Eq_out_K 
I (K,MK)\ 

Eq_out: TimeElement <-> TimeElement

1^ K • (^ Eq_out t2 <=> (3te TimeElement • ((t, tj), (t, t^) e MK)) v tt = t,)

According to these two equivalence relations, we get two sets of equivalent classes of K, 
K_Eq_in and K_Eq_out, respectively:
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TJ : N
i : I..F!
KEqjn,i : bagTimeElement

LJ LJ -rr
! ° ••• ° ^E.

Vi, j : 1..^ • (i 96 j => KEqJni n KEq ^ = 0)
k2eK • (kj Eq_in k2 <» 31 : 1..^ • (kx , k2eKEq^

K_Eq_out
Eq_out_K\
r, : N

: bagTimeElement

Vi, j : I..r2 • (i * j => KEq ouU n KEq oug = 0)
Vklf k2eK • (kj Eq_out k2 ^ 31 : L.r2 • (kl5 k2eKE ouu)

Now, we can characterise the nodes of graph-(K, MK) in terms of the following schemas:

I——————— mid_Node_of_K 
K_Eq_in\ K_Eq_out\

: bagTimeElement <-> bagTimeElement

KEq outj • ((ki, kj)€ MK)

I——————— in_Node_of_K ———— 
| K_Eq_in\ K_Eq_out\ 

n(0, KEq_outtj ) ibagTimeElement

i3k'eTimeElement • (k', k)eMK

and
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—————— out_Node_of_K ———
K-Eq_in; K_Eq_out\
n(KEqjn,i> 0) : bagTimeElement

I keKEq tai =» ^3k'eTimeElement • (k, k')eMK
I___________________________

3.3 Consistency Condition

To draw inferences from (K, MK), we must rely on the assumed properties of T and M. A 
consistency checker is needed which will establish whether a pair (K, MK) is consistent with 
our basic assumptions about T and M.

In general, a pair (K, MK) is consistent if we can add to K and make any necessary equality 
assignments, and add to MK, so that the resulting pair (T, M) is a closure for some (E, ME) 
satisfying the conditions in section 2. A necessary and sufficient condition for consistency 
may be given in terms of the graphical representation introduced in 3.2.

Let G be the graph of (K, MK), then (K, MK) is consistent if and only if:

(1.1) Gr is acyclic, where Gr is the associated reduced graph formed from G by 
merging two nodes connected by a point in G and removing the corresponding arc.

(1.2) there are no nodes that are both in-node and out-node to two point-arcs in G.

In fact, by a standard result in graph theory (e.g. see Carre[79]), we can show that the nodes 
in G, the (K, MK)-graph, can be ordered in such a way that in- and out- nodes of any intervals 
in E are successors, as follows:

i) Set variable n = 1

ii) Select any node in the reduced graph Gr without in-arc. Such a node exists 
since Gr is acyclic ( See Carre[79], or any standard graph theory book ).

iii) Number this node n.

iv) Remove this node and associated arcs from Gr to form graph Gr'. Gr' is 
also acyclic. Set Gr to Gr', increment n by 2 if the deleted node is formed from 
a pair of notes in G, otherwise, increment n by L

v) Repeat from ii) until Gr is empty.

vi) Form arcs between consecutive integer nodes. In the case that integer n+1 
is missed between n and n+2 in the reduced graph Gr, then the consecutive 
integers n and n+1 are associated with the corresponding pair of notes in G, 
the (K, MK)-graph.
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Then the arcs between consecutive integer nodes form the set E, and MK is formed by the 
natural order over these integers. Finally, the closure (T, M) can be formed under @.

Hence the proof of consistency is a test of the graph for the existence of a cycle. Using a 
breadth first search scheme, the complexity of this test is O(N), where N is the number of 
arcs in G.

As an example of the consistency condition, we take a case where a database is consistent if 
an element ta is not known to be a time point, but inconsistent if it is.

E.G:

meets(to, ta), 
meets(ta, tj, 
meets(to, tb), 
meets', tc), 
meets(tc, tj.

If ta is not known to be a point then the (K, MK)-graph shown in Fig3.3(a) is non-cyclic, and 
the system is consistent.

tb ^-^^^tc
*. ^^O-

to a tn
Fig3.3(a)

However, if ta is a point, then we have the reduced graph in Fig3.3(b), which shows cyclicity, 
and we deduce that the system is inconsistent.
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tn
reduced to

Fig3.3(b)

We can see why this is so intuitively by noticing that in Fig3.3(a):

t = tc (3.3.1)

This is consistent until we add the fact that ta is non-subdivisible. Since equation 3.3.1 states 
that ta is subdivisible, we reach an inconsistency when ta is a point.

4. Alien's Primitive Relations • 'Open' and 'Closed' Intervals

In [A1183] and [A1184], Alien introduced thirteen relations between his primitive intervals that 
are formulated later in terms of the single relation "meets" in [A1H89]. Here, we have 
extended the primitive element to include points. We can also characterise these thirteen 
primitive relations between our TimeElements in terms of the following schemas:

————— Equal
Equal(ta, tb), Equal(tb, ta) : TimeElement <-» TimeElement

Before, Ajter
(T,
Before(ta, tb), After(tb, ta) : TimeElement <-> TimeElement

3te TimeElement • ((ta, t), (t, tb) e M)

All



——— Meets, Met-by ————————————————————————— 
(T, MJ;
Meets(ta, tb), Met-by(tb, ta) : TimeElement <-» TimeElement

(ta, tb) e M

I———— Overlaps, Overlapped-by
(T, M);
Overlaps(ta, tb), Overlapped-by(X, ta) : TimeElement <-> TimeElement

| 3tp t2, t3e TimeElement •(tJ,-t1 + t2 Atb =tz + t3)
I________________________________________

I———— Starts, Started-by ———————————————————————— 
(T, M); 
Starts(ta, tb), Started-by(tb, ta) : TimeElement <-> TimeElement

3t€ TimeElement • k = t + t

I———— During, Contains ———————————————————————
I (T, M)',
| During(ta, tb), Contains^, ta) : TimeElement <-> TimeElement

| 3tj, t2e TimeElement
i

I———— Finishes, Finished-by 
I (T,

Finishes(ta , tb), Finished-by(ta, tb) : TimeElement <-» TimeElement

3te TimeElement • tb = t + ta

In [A1H89], Alien and Hayes formulated the thirteen primitive relations between intervals in 
terms of the single relation "meets". However, here we have extended the primitive element 
to include points. In this case, some of Alien's relationships are consistent and some are 
inconsistent when they involve points.

For example, let p e Point, then:
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Before(p, tb) (see Fig4.1) is consistent.

reduced to

Fig4.1 Before(p, tb )

Meets(p,tb) (see Fig4.2) is also consistent and implies that tb is open at p.

reduced to

tb

Fig4.2 Meets(p, t b )

However, consider the following case:
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Overlaps(p, g (see Fig4.3).

t1 tb

reduced to

t1 tb

Fig4.3 Overlaps(p, tb )

In this case the reduced graph is cyclic, so that the system is inconsistent. This is what we 
would expect intuitively: tt and t^ are closed at p and t3 is open at p; m^, 12) and m(t>, t3) 
assert tt = [p, X}, \^ = {X, p], t3 = (p, Y} are consecutive intervals, where "{" represents 
either open or closed. This is obviously impossible.

We may also show in a similar fashion that other relations such as Starts(p,tb), During(p, 
Finishes(p, tb) are consistent, but overlappedJ^yCp,^) is inconsistent.

5. Composition of Alien's Primitive Relations

Alien and Hayes show that the transitivity table in [A1183,84] is a result of the axiomatization 
in [HaH89], following the intuitive reasoning by possible cases which was used to construct 
the table originally. However, a full proof is not possible without a formal consistency 
checker since they are not able to show why other cases are not possible. We give here two 
formal proofs that the transitivity table follows from the axioms, by using the necessary and 
sufficient condition of consistency in terms of acyclicity of "meets", and the similar function 
between E and an initial segment of N, respectively.

For example, consider the transitivity: 

Before(ta , tb), During(tb, tc).
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Using the necessary and sufficient condition of consistency in terms of acyclicity of "meets", 
we can prove that the possible relation between ta and tc is Before(ta, tc), or Overlaps(ta, tc), 
or Meets(ta, tc), or During(ta, tc), or Starts(ta, tc), as follows:

., t) A m(t, tb)Before(ta, tb) A During(tb, tc) <=» 3t, tt , 

It is possible for us to take:

(1) t = t' + t! which gives m(ta , t') and m(t', tc), i.e. Before(ta, tc). From FigS.l, we know this 
case is consistent. Hence we have shown that Before(ta, tc) is one possible case under the 
conditions Before(ta, tb) and DuringfX, tc).

t2

FigS.l

In the similar way, we can show that Overlaps(ta, tc), M(ta, tc), During(ta, tc) and Starts(ta , tc) 
are also possible cases, as follows:

(2) ta = t, + t4 A tc = t4 + 15 =» Overlaps(ta, tc).

(3) t, = t => m(ta , tc), i.e. M(ta, tc).

(4) ^ = 13 + ta + t => tc = 13 + ta + (t + tb + t>), i.e. During(ta, tc).

(5) tj = ta + t => tc = ta + (t + tb + t,), i.e. Starts(ta, tc).

Additionally, we can prove that there is no other possible relation between ta and tb as 
follows:

(6) After (ta , tc) => 3t'eTimeElement(m(tc, t') A m(t', ta)).

A15



However, m(ta, t), m(t, tb), m^, g, mfe t'), m(t', ta) form a cycle: 
which shows inconsistency (see Fig5.2).

ta , t, tt,, t,, t', t•a'

t1

tc

Fig5.2

Similarly, for other cases:

(7) Met-by(ta , tc) => m(tc , ta), so that there is a cycle: ta, t, tb , t^, ta , which shows inconsistency.

(8) Overlapped-by(ta, tc) => Bt3 , t4 , t^e TimeElement(tc = t3 + t4 , ta = t4 + t5), which forms a 
cycle: t5 , t, tb, t2, t5 , and shows inconsistency.

(9) Started-by(ta, tc) => Ell^e TimeElement(ta = tc + t3), which forms a cycle: t3 , t, tb , t,, t3 , and 
shows inconsistency.

(10) Contains(ta, tc) => 3t3 , t4e TimeElement(ta = t$ + tc + t4), which forms a cycle: 
t4 , t, tb, t2, t4 , and shows inconsistency.

(11) Finishes(ta , tc) => 3t3e TimeElement(tc = t3 + ta), which forms a cycle: t, 1^, t^, t, and shows 
inconsistency.

(12) Finished-by(ta , tc) => 3t3e TimeElement(ta = t3 + tc , which forms a cycle: t, tb , t>, t, and 
shows inconsistency.

All the entries of Alien's transitivity table have been checked in the above way. From our 
assumption we know that a point does not meet or be met-by another point, and from our 
axioms we have proved that a point will not overlap or be overlapped-by other interval. 
Hence, we can extend Alien's system to include time points (this will overcomes the problems 
involved in the need to model 'open' and 'closed' intervals, by allowing knowledge of 
interval end-points to be expressed explicitly) and prove (in terms of the condition of 
acyclicity of "meets") that the corresponding transitivity of the extended model is just as same 
as that one of Alien.
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6. Conclusions

In this paper, a formal specification in Z for a temporal system based on both intervals and 
points has been provided. A significant feature of this approach is that, in common with 
Alien's system, intervals do not need to be defined as point pairs. It has been shown here that 
specialisation of the system to intervals leads to Alien's system. The model allows reasoning 
on the primitive elements, and provides an extension of Alien's system that includes both 
intervals and points as primitive elements. The formulation of axioms by means of a single 
relation allows a graphical representation of the temporal database entities, and this in turn 
allows an efficient consistency checker in terms of a search for graphical cycles. It has been 
proved that Alien's and Vilain's truth-propagation inference may be derived.
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Appendix B

A General Temporal Model Supporting Duration Reasoning

(AI Communications, Vol.5 No.2, pp.75-84, 1992)

Abstract

This paper proposes axioms for a temporal system based on a discrete set of primitive 
elements, which may be intervals or points, supporting duration reasoning. It is shown that 
this system can be interpreted in various possible models. The proposed system overcomes 
problems involved in the need to model 'open' and 'closed' intervals, by allowing knowledge 
of interval end-points to be expressed explicitly.

The axioms are formulated in terms of a single relation 'meets', and formalise an intuitive 
consistency condition for a temporal database: that a well-ordered sequence of fundamental 
elements exists which underlies the database. A graphical representation of the database is 
given, in terms of which a necessary and sufficient consistency condition for the existence 
of a well-order is proved.

Key words: time, temporal logic, incomplete knowledge, intervals, points, duration reasoning, 
consistency.

1. Introduction

There are many approaches to temporal systems, led initially by Russell [14] who took the 
first order logic approach. Of these, some describe computer systems whose primitive 
representation of time is in terms of points and inherit axioms accordingly. This is the case 
with the "time specialist" of Kahn and Gorry [11], the naive physics of Hayes [10], and the 
time map of McDermott and Dean [6,13]. However, there are problems with such systems in 
attempting to model many of the qualitative concepts needed in a temporal database where 
attributes are assigned to time intervals. For these systems, interval-based logic has been 
introduced according to two different views of intervals. One view takes intervals as primitive 
objects, such as the models of Alien [1-3] and of Vilain [15,16]. Another view, such as the 
CHRONOS system of Bruce [4], the prepositional modal logic of Halpern and Shoham [9], 
and the TCSP of Dechter, Meiri and Pearl [7], takes the problems involving constraints on 
pairs of time points, which can be considered as weaker.

Alien introduced his temporal logic in order to provide a framework for the treatment of two 
major subareas of artificial intelligence: natural language processing and problem solving. 
Instead of adopting time points (or states which are associated with time points), he took 
intervals as the primitive temporal quantity and introduced (Allen[l,2]) thirteen (mutually 
exclusive) relations between any two intervals, which are formally defined in terms of the 
single relation 'meets' (Allen[3]). In the former papers (e.g., Allen[l,2]), Alien specifically
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excludes time points in claiming that any quantity of time must be subdivisible. However, in 
the recent paper (Allen[3]), he defines point as the "meeting place" of intervals and uses the 
concept of a "moment" , i.e. a very short interval which is indivisible, in order to model 
instantaneous events. The contention is that nothing can be true at a point, for a point is not 
an entity at which things happen or are true. The most obvious structural difference between 
points and moments is that moments can meet other intervals (especially, other moments), and 
hence stand between them, while points are not treated as primitive objects and cannot meet 
anything. Alien gives the example of a light which is switched on. To model such a system, 
we may need two intervals: one where the light is off 'meeting' one where it is switched on. 
This may be enough for our modelling purposes and, if so, we do not need to state whether 
the intervals are open or closed. By this means, we avoid awkward questions about the end- 
points: if the intervals are closed then there is a point at which the light is on and off, 
similarly if they are both open, then at this point the light is neither on nor off. Alien's 
argument is that if we really want to model the switching process itself, then we need to 
examine in more detail the physics, and smaller intervals at this event will again be sufficient.

However, the problem to model open or closed intervals still exists, and there are some 
difficulties with this approach in the qualitative modelling of everyday occurrences. In 
qualitative modelling of physical processes, we often wish to impose 'landmark' points which 
by definition separate two intervals. For instance, consider the example mentioned by Alien: 
throwing a ball up into the air. The motion of the ball can be modelled by a quantity space 
of three elements: going-up, stationary, and going-down. Intuitively, there are intervals for 
going up, and going down. However, there is no interval, however small, over which the ball 
is neither going up nor going down. The property of being stationary is naturally associated 
with a point, rather than a moment, a 'landmark' point which separates two other intervals. 
We may deduce from this example that qualitative modelling appears naturally to require a 
discrete quantity space of both points and intervals.
Vilain [15] has described an extension of Alien's system which includes points. In this, 
Alien's 13 interval relations are extended to 26 relations between points and intervals. 
However, this leads to an increase in computation for closure, and a corresponding overhead 
for consistency maintenance. Vilain and Kautz [16] have demonstrated that such a calculation 
is NP-hard, as opposed to an alternative point-based system which is O(n3). Unfortunately, 
the problems involved in modelling 'open' and 'closed' intervals still exist.

Our intention is to propose a model by providing axioms for a discrete system of primitive 
elements which may be points or intervals, and a single relation over the elements. This gives 
a basis for discrete temporal reasoning. These axioms allow modelling of both open and 
closed intervals, or allow intervals to be unspecified. Further, they support duration reasoning, 
which has been a problematic aspect in many temporal systems. A necessary and sufficient 
condition for the consistency of an incomplete temporal system can be formulated in terms 
of LP problem. In the case that there is no duration constraints, the corresponding condition 
is formulated in terms of graph cycle, and the consistency checking is O(n), where n is the 
number of graphical arcs. In Alien's system, consistency checking is performed by formation 
of the transitive closure according to a transitivity table with 144 entries which describes the 
composition of the thirteen (mutually exclusive) relations. If no conflict is found according 
to the exclusivity, then the system is consistent. However, they have not provided a formal 
consistency checker. We give here a formal proof that the transitivity table follows from the
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axioms, by using the necessary and sufficient condition of consistency in terms of acyclicity 
of 'meets'.

Intuitively, the starting point for this axiomatisation is a view of time as a well-ordered 
discrete set, E, of fundamental elements which may either be points or intervals with a 
duration assignment, and E has no limit element (see e.g. Lipschutz[12]). We postulate that 
this fundamental set exists, sufficient for our modelling purposes, although we do not 
necessarily have full knowledge of E. That is, although we know that there exists a well- 
ordered E, we do not necessarily know what it is in any situation. Modelling our knowledge 
of a situation means expressing a (partial) knowledge of the temporal ordering of E. For 
example, such knowledge may be expressed in terms of Alien's interval relationships which 
may all be expressed in terms of a single relation: 'meets'. The relation 'meets' is defined as 
the immediate successor relation under the well-order, so that each element 'meets' a next 
element (except possibly for the last element). We may also define compound elements from 
two elements which meet. When elements el and e2 meet in E, we may construct a 
compound element k = el © e2, and this in turn may be used to construct other compound 
elements.

This view of time is one which to some extent is forced upon us by the practicality of the 
computer based modelling approach. We have to store elements as a discrete finite set, and 
the semantics of any database of time elements will naturally assume a well-order at some 
fundamental level. However, the database represents our state of knowledge about temporal 
events, and this may well be incomplete. The knowledge incorporated in the database will in 
general not be the fundamental elements in E, but rather of the compound elements k. The 
existence of E is simply a belief which may be used to test the consistency of a database. 
This is the approach we take to consistency here : if we can show that E exists, then the 
database is consistent, if we can show it does not exist, then it is inconsistent.

Excepting the axiom that the duration of a interval is positive while the duration of a point 
is zero, the differentiating property between interval and point which is proposed here is that 
although intervals may succeed points or intervals, points are not successors to points, 
although they can meet (or met-by) other intervals. This characteristic, which is later built into 
the axioms, is in line both with modelling requirements where points are defined as separators 
or end-points of intervals, and with the denseness of points on the real line. But this is the 
only extra requirement which is made of elements if they are to be points. According to their 
definitions, points, as our primitive elements, are different from either Alien's points or 
moments. It seems that Alien's moments may be taken as the elementary intervals in E. We 
show by example in section 3.1 and section 4.2 how open and closed intervals may be 
modelled as and when required using this system.

In section 2, we give a formal definition of the system. In section 3 it is shown how 
incomplete knowledge may be represented, and how inference may be performed on it. A 
necessary and sufficient condition for consistency is provided, and is illustrated by means of 
an example. In section 4 a limited case without duration is examined; a formal discussion of 
the treatment of open and closed intervals is given in section 4.2. Further, section 4.3 proves 
Alien's transitivity closure formally by using the consistency checker. Section 5 provides a 
summary and concluding remarks.
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2. Definition of Temporal System

The definition of a temporal system supporting duration reasoning consists first of a definition 
of an underlying well-ordered discrete set E without limit elements. The elements of E may 
be points or intervals with a duration assignment. The temporal system is then defined as the 
closure of E under the binary operations of combining adjacent elements and corresponding 
duration addition.

Let I be a set whose elements are intervals with a positive duration and P be a set whose 
elements are points with a zero-length duration.

Let E = I u P, which is similar to an initial segment of the set of natural numbers with the 
natural order (see Lipschutz[12]), with an immediate successor relation 'meets', such that:

Vi el ( 3eeE ( meets(i, e) v meets(e, i) ) A ( 0 < duration(i) e R ) ) (2.1.1) 
A Vp eP ( 3iel ( meets(p, i) v meets(i, p) ) A ( 0 = duration(p) e R ) ) (2.1.2)

We shall notate the "duration" assignment to the elements of E as DE and the unique 
successor relation 'meets' over E as ME.

The above definitions imply the existence of a well-order over a discrete system E without 
limit elements, and no two points are next to each other.

A temporal system supporting duration reasoning is a triad (T, M, D), where T => E, M is a 
successor relation 'meets' over T and D is a duration assignment to the elements of T with 
the following properties:

1) M coincides with ME over E, that is, MIE = ME;
2) D coincides with DE over E, that is, DIE = DE ;
3) t1?t2 e T, and meets^,^) => t e T, where

for all t^ e T: 
meets(ta,t1) <=> meets(ta,t), 
meets(t2,tb) <=> meets(t,tb).

Define:

t = ^ © t2,
duration(t) = duration^) + duration^).

Nb. The operator "©" is associative but not commutative and "+" is just the normal addition 
operator of real numbers.

4) (T, M, D) is the closure of (E, ME, DE) under © and +.

In the case that t = tt (B t^ we say that t is decomposable into t: and 1^, and ^ is equal to t± 
means they are the same elements, denoted by tt = t^.

A21



Nb. If we take D = 0, we get the limited system defined in section 4.

3. Incomplete Temporal System

The set T includes E and all the intervals and points which can be formed from it by means 
of (B and +. However, in an application neither the fundamental set E nor the complete set T 
may be known. A database of "facts" about T will express knowledge that is incomplete in 
several ways. For example, the database may contain knowledge of duration for only some 
of its elements, and may have incomplete knowledge about the 'meets' relation. In addition, 
the database will often contain redundancy, as when facts are known about two elements 
without the knowledge that they are actually identical. For example, we may know that 
meets(a,b) and duration(c) =1, without knowing that a and c are the same element. To allow 
for possible duplicate elements, the basic structure of the database is that of a bag, rather than 
a set.

Accordingly, we take the following representation to express incomplete temporal knowledge

i) K = K! y K2 U...W Kp, where IQ c K^ c T, i = 1, ..., p-1; and "W" represents the
bag union. K is called a bag (see Diller[8]). We use Ke to denote the ordinary set
union of ^ that is, Ke = Uj 1^, hence Ke c T;
ii) MK = MIK1 W MK W ... W MIKp ;
iii) DKO c DK = DIK1 W Dl^ W ... 9 DIKp ; here, "c" represents the sub-bag relation.

Nb. i) expresses our knowledge of what intervals and points are there;
ii) expresses our knowledge as to how the intervals or points in K meet each other; 
iii) expresses our knowledge of duration over a sub-bag KQ of K.

3.1 An Example

Before giving a formal development of the axioms, we illustrate the main ideas by means of 
the simple example, which we shall later relate to the modelling of open and closed intervals. 
Consider knowledge represented by (K, MK, DKO), where:

K = IL k0, kj, k2, k3 , k4, K5, K6, K7 II,
MK= I meets(ko, kj), meets(ko, k2), meetsOq, k3), 

meetsCki, k4), meets(k2, k5), meets(k3 , k5), 
meets(k4, k6), meets(k5, kg), meets(k5 , k7) 1

DKO= [ duration(k4)=l, duration(k5)=l, duration(k7)=0
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The system may be represented by a graph as in FigS.l.

k7, d(K7)-O

k& d(k4)-1

Fig3.

Here, the arcs of the graph represent the elements, and meets(kj,kj) is represented by k{ being 
in-arc and kj being out-arc to a common node n. For elements in K where there is a duration 
assignment, the arcs are weighted by the duration.

In order to demonstrate the consistency of (K, MK, DKO), consider the triad (E,ME,DE):

ME = {meets(ko, kt), meets^, k3), 
meets(k3 , k5), meets(k5, k7)}; 

DE = {duration(ko)=0, duration(k1)=l, duration(k3)=0, duration(k5)=l, duration(k7)=0}.

If we let I = {k1? k5 } be the set of intervals, and P = { ko, k3 , k7 } be the set of points, then 
E = I u P, and E satisfies conditions (2.1.1) and (2.1.2). There is a unique successor 'meets' 
over E, and no two points are next to each other.

Finally, we can show that k2, k4 and k^ are in the closure T of E:

^ © k3 = k2 , k3 © k5 = k4, kg = k7 ; and:
meets(ko, k2), meets(k2, k5), meets(ki, k4), meets(k4, k6),
meets(k4, k7), meets(k5, k7);
duration(k2) = 1 = duration(k1) + duration(k3);
duration(k4) = 1 = duration(k3) + duration(k5).
duration^) = 0 = duration(k7)

The example illustrates how "open and closed" intervals may be expressed. For example, 
consider again the quantity space for the motion of the ball described in section 1, and let kt , 
k3 , k5 be: going-up, stationary, and going-down respectively. In this case, k4 represents 
"stationary © going-down". In terms of a point based system, the element k4 represents the 
interval [1,2), whereas kj represents (1,2). The other elements are given in the table:
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Element point based element
ko 0 start
ki (0,1) going-up
k2 (0,1] going-up ® stationary
k3 1 stationary3
k4 [1,2) stationary 0 going-down 
k5 (1,2) going-down 
k<5(=k7) 2 end

The effect of restriction 2.1.2 is to prohibit two points with no interval in between ; i.e an 
equivalent of a denseness postulate for point based systems. This would rule out as infeasible 
an assignment of 0 to either of the arcs Iq or k5 ; so that qualitative knowledge that an interval 
with positive duration is expressed in (K,MK,DKO). In a point-based system, it is implicit that 
(x, x), (x, x] and [x, x) are impossible, while [x, x] may be used to represent time point x.

3.2 A Necessary and Sufficient Condition for Consistency

To draw inferences from (K, MK, DKO), we must rely on the assumed properties of T, M and 
D. A consistency checker is needed which will establish whether a triad (K, MK, DKO) is 
consistent with our basic assumptions about T, M and D.

In general, a triad (K, MK, DKO) is consistent if we can add to K and make any necessary 
equality assignments, and add to MK and to DKO, so that the resulting triad (T, M, D) is a 
closure for some (E, ME , DE) satisfying the conditions in section 2. A necessary and sufficient 
condition for consistency may be given in terms of the graphical representation introduced 
in 3.1. For convenience, we adopt the notation that k^ represents an arc from node n{ to node 
nj5 and dy represents the duration of this arc. We let G be the graph of (K, MK, DKO).

Let N = { nt , n2 , ...... , ns } be the nodes in G. The system (K, MK, DKO) is consistent if and
only if:

(I) There is a solution fa^, ... , xiqjq) for unknown durations (X^^, ... , Xiqjq) which 
forms a DK 3 DKO, where x^ > 0, such that:

(1.1) for each simple circuit in GK, the directed sum of weights is zero.
(1.2) duration(kij) + duration(kjh) > 0.

Otherwise, the system is inconsistent.

Proof of sufficiency:

i) We first show that if (I) holds, then a function f of N into R exists:

Nan ——— > f(n) e R, such that: 

(II. 1) If kyE K, then:
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j) - f(ni) = durationCkij) e DK ; 

(II.2) If kij, kjh € K, then: 

f(nh) - f(ni) > 0. 

Nb. condition (II.2) preserves that no two points "meet" each other.

To show this, we assume G to be connected by means of 'meets' (the extension to a graph 
with several connected components is straightforward ).

Let yy denote the duration assignment for ky e K, where

yy = dijf if djj G DKO; 
y^ = Xy, otherwise.

Now take a spanning tree of G (i.e. a tree joining all the nodes of G, formed by removing 
some arcs from G ). Selecting any node n0 as origin, a unique path is determined by the 
spanning tree between i^ and any other node n (Fig3.2). We may take f(n) as the directed 
sum of the weighted arcs from ^ to n along this path.

With this assignment, condition (II. 1) follows immediately for all arcs on the spanning tree. 
For any arc k^ not on the spanning tree, we consider the circuit formed by ky together with 
the spanning tree. Applying condition (I.I), we have:

yfj - f(np + f(nf) = 0,
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i.e. (H.1) again holds.

ni

arc not on spanning tree

Fig3 .2

Additionally, it is clear that condition (1.2) <==> (H2).

ii) We now show that f(n) may be used to construct (E, ME, DE). In effect, the function 
assigns a time measure to the nodes. However, care must be taken to deal with points: if a 
number of nodes are assigned the same f(n), then we must be sure that we can construct an 
E without two consecutive points. In the procedure that follows, we show how this may be 
done.

(1) Define equivalent classes Nt , N2, ... , Nsl , s : < s among N as:
ni5 nj belong to the same class Nr <==> f^) = f(np;

(2) The nodes within any class Nt are of three types:
(i) those that are in-nodes to zero duration arcs in K,
(ii) those that are out-nodes to zero duration arcs in K, and
(iii) those that are not in- or out- nodes to zero duration arcs in K

Condition 1.2 ensures that there are no nodes that are both in-node and out-node to 
two zero duration arcs. The in-node and out-node to a zero duration arc will be in the 
same equivalence class, and the in-node must be ordered before the out-node. 
Accordingly we subdivide each class Ni into two subsets: N/ containing nodes of type 
(i) and N42 containing nodes of type (ii) and (iii).

(3) The graph of E is now formed over the set of subclasses as nodes. The successor
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relation is defined by the natural ordering of equivalence classes according to f, and 
by the rule that N42 is the 'successor' to N/. Duration assignment to E is defined by 
duration (Nj? Nj+1 ) = f(Nj+1 ) - f(Np, where Nj+1 is the successor to Nj in G.

iii) Finally we show that (K, MK, DKO) is in the closure of (E, ME, DE). We let e^18 be the arc 
in the closure of E between node N,r and Nms . We make the following equality assignments 
over K:

= e,,,,11 if Dj e NLr and nj e Nms , 

With this assignment, k^ is in the closure of E, and

duration^) = f(Nms) - f(Ntr) = d4j . 

Proof of necessity:

If (E, ME, DE) exist, satisfying condition 1) - 4) in section 2, then condition 3) shows directly 
that condition (I.I) holds, and since no two points meet each other in E, (1.2) holds.

3.3 An Illustration

Now we use the example given in section 3.1 again to illustrate the procedure of establishing 
the elementary triad (E, ME, DE):

There are two elementary circuits in G to consider. Setting the directed sum of weights in 
each of these equal to zero, we get 2 independent constraints:

duration(k3) + duration(k5) - duration(k4) = 0, 
duration(k1) + duration(k3) - duration(k2) = 0.

By inspection, one consistent solution is:

duration(k3) = 0, duration^) = 1, duration(k2) = 1, duration(ko) = 0, duration(k6) = 0. 

(Nb. There may be other consistent solutions, for instance:

duration(k3) = 0, duration(k1 ) = 1.8, duration(k2) = 1.8, 
duration(ko) = 3, duration^) = 10.)
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Correspondingly, let N = {nl5 n2, n3 , n4, n5 , i^, n7 } be the nodes in graph (K, MK, DK), see 
Fig3.3:

Fig3.3

the function f of N into R may be defined as:

f(ni) = 0, f(n2) = 0, f(n3) = 1, f(n4) = 1, 
f(n5) = 2, f(n6) = 2, f(n7) = 2.

which satisfies conditions LI and 1.2.

(1) equivalent classes:
N! = [ n1? n2 I, 
N2 = [ n3 , n4 I, 
N3 = [ n5, n6, n7 1;

(2) N! J = [ nt 1 N^ = [ n2 1, N,1 = I n3 1 
N22 = [ n4 1 N, 1 = [ n5 1 N32 = [ n* n7 1

\j) t/ = \KQ, Kj, K3 , K5, K7 |,
ME = {meets(ko, k^, meets(kl5 k3), meets(k3 , k5), meets(k5 , k7)};
DE = {duration(ko)=0, duration(k1)=l, duration(k3)=0, duration(k5)=l,
duration(k7)=0}.

It is easy to see (E, ME, DE) satisfies the conditions given in the schemas of section 2. 

4. A Limited Case

Now, we limit the temporal system (T, M, D) in a simple case: D = 0, that is, there is no 
constraints about the length of the intervals or points. We denote this limited model to be a 
pair (T, M), where T and M are defined as in section 2 but excludes anything related to 
"duration". The distinction between intervals and points is definitely that: intervals are 
decomposable while points are not. Our intention here is to show that the pair (T, M) may 
be seen as an extended model to those of Bruce and Alien.

4.1 Limited Temporal Knowledge.

The set T includes E and all the intervals and points which can be formed from it by means 
of 0. As we mentioned in section 3, in an application neither the fundamental set E nor the 
complete set T may be known. Our basic assumption is that only a finite set of time intervals 
and points will be needed for modelling purposes, so that we may assume that E exists. The
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state of temporal knowledge as represented in a database will be represented as (K, MK), K 
and MK are defined as in section 3.

A consistency condition may be derived from the basic assumptions. An incomplete limited- 
system (K, MK) will be consistent if we can add to K and make any necessary equality 
assignments, and add to MK , so that the resulting pair (T, M) is a closure for some (E, ME) 
satisfying:

1') M coincides with ME over E, that is, MIE = ME ;
2') (T, M) is the closure of (E, ME) under ©, where 0 is defined as in section 2.

The necessary and sufficient condition for consistency which has been derived in section 3.2 
can be reformulated in a more convenient form for this limited case in terms of graphs. Let 
G be the graph of (K, MK), then (K, MK) is consistent if and only if:

(1.1)' Gr is acyclic, where Gr is the associated reduced graph formed from G by 
merging two nodes connected by a point in G and removing the corresponding arc.
(1.2)' there are no nodes that are both in-node and out-node to two point-arcs in G.

The above conclusion can be directly derived from the result given in section 3.2. In fact, 
(I.I)'and (1.2)' ensure that we can always make the duration assignment satisfy condition (I.I) 
of section3.2; inversely, if there is a cycle in Gr, then the directed sum of weights for the 
simple circuit derived from this cycle must be bigger than zero, which is contrary to (1.1). On 
the other hand, it is clear that (1.2)' <==> (1.2).

As an example of the consistency condition, we take a case where a database is consistent if 
an element ta is not known to be a time point, but inconsistent if it is.

E.G:
meets(to, ta), 
meets(ta, tj, 
meets(to, tb), 
meets(tb, tc), 
meets(tc,
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If t, is not known to be a point then the corresponding graph shown in Fig4.1(a) is non-cyclic, 
and the system is consistent.

to

Fig4.1(a)

However, if ta e P, then we have the reduced graph in Fig4.1(b), which shows cyclicity, and 
we deduce that the system is inconsistent.

Fig4.1(b)

We can see why this is so intuitively by noticing that in Fig4.1(a):

ta = (4.1)

This is consistent until we add the fact that ta is non-decomposable. Since equation 4.1 states 
that ta is decomposable, we reach an inconsistency when ta = p e P.

4.2 'Open' and 'Closed' Intervals

In [3], Alien and Hayes formulated the thirteen primitive relations between intervals in terms 
of the single relation 'meet'. However, here we have extended the primitive element to 
include points. In this case, some of Alien's relationships are consistent and some are 
inconsistent when they involve points.

For example, let p e P :
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Before(p, g :- 3te T:
meets(p,t),

reduced

P t tbo——-—jo
Fig4.2.1 Before(p, t b ) 

i.e. This is consistent.

0=50

reduced to

op
Fig4.2.2 Meets (p, tb )

i.e. This is also consistent, and implies that t,, is open at p. 

However, consider the following case:
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Overlaps(p, t,):- B^t^,^ e T:
meets(to, p), 
meets(p, t*), 
meetsCt,, tj, 
meets(to, tj, 
meetsOi, tb), 
meets(tb, O.

, t3).

r^uotd to

tn

Fig4.2.3 Overlaps (p, tb )

In this case the reduced graph is cyclic, so that the system is inconsistent. This is what we 
would expect intuitively: to is open at p, therefore tt and ^ are closed at p and t3 is open at 
p. Therefore the last two predicates, meetsC^, t^) and meets^, tg), assert tj = [p, X}, t^ = {X, 
p], t3 = (p, Y} are consecutive intervals, where *{' represents either open or closed. This is 
obviously impossible.

We may also show in a similar fashion that other relations such as Starts(p,tt,), During(p, tb), 
Finishes(p, tb) are consistent, but overlapped_by(p,tb) is inconsistent.

4.3 Composition of Alien's Primitive Relations

Alien and Hayes show that the transitivity table in [1,2] is a result of the axiomatization in 
[3], following the intuitive reasoning by possible cases which was used to construct the table 
originally. However, a full proof is not possible without a formal consistency checker since 
they are not able to show why other cases are not possible. We give here a formal proof that 
the transitivity table follows from the axioms, by using the necessary and sufficient condition 
of consistency in terms of acyclicity of 'meets' .

For example, consider the transitivity: 

Before(ta, tb), During(tb, tc).

We can prove that the possible relation between ta and tc is Before(ta, tc), or Overlaps(ta , tc), 
or Meets(ta, tc), or During(ta, tc), or Starts(ta, tc), as follows:

Before(ta, tb) and During^, tc) :- 3t', to, tp t^ ^ eT:
meets(ta, t'), meets(t', tb),
meets(to, tj), meets^, t,,), meets(tb, 12), meets(t2 , t,,),

A32



meets(t0, tc), meets(tc , g.

(1) when t' = to © tl5 then meets(ta, g, meets(t0, tc), 
i.e: Before(ta , tc) (see Fig4.3.1).

Fig4.3.1

(2) when ta = ^ © t,, tc = 13 © t4, tx = t3 © t', where t,eT, then:
t4 = t' 0 tb © t>eT,
meetsCV, ta), meets(ta, t4), meets(t4, g,
meets(to', g, meets(t0, tc), meets(tc , g,
meets(to, t3), meets(t3 , t4), 

i.e: Overlaps(ta, tc).

(3) when ta = t^ tt = t', then meets(ta, tc), 
i.e: Meets(ta, tc).

(4) when tt = tg © ta © t', where t3 eT, t4 = t' © tb © ^ eT, then:
meets(to, t3), meets(t3 , ta), meets(ta, g, meets(t4, g, meets(to, tc), meets(tc 

i.e: During(ta, tc).

(5) when tc = t3 © t4, ta = tg, t x = 13 © t', where T3 eT, t4 = t' © tb © \^ €T, then:
meets(to, ta), meets(ta, g, meets(t4, g, meets(to, tc), meets(tc, g, 

i.e: Starts(ta , tc).

On the other hand, we can prove that there is no other possible relation between ta and ^ as 
follows:

(6) If After (ta, tc), then:
3t" eT: meets(tc, t"), meets(t", ta). 

However,
meets(ta, t'), meets(t', tb), meets(tb, g, meets^, t"), meets(t", ta)
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form a cycle: ta, t', tb, t>, t", ta, which shows inconsistency (see Fig4.3.2).

Fig4.3.2

Similarly, for other cases:

(7) If Met-by(ta, tc), then meets(tc, ta), so that there is a cycle: ta, t', t^ t>, ta, which shows 
inconsistency.

(8) If Overlapped-by(ta, tc), then 3V, t3 , t4, t5, tn' eT such that:
meets(V, tc), meets(tc , t;), meets^, tj» meets(V> t3), meets(t3 , ta), meets(ta , tj,
meets(t3, t4), meets(t4, t5), 

which forms a cycle: tg, t', tb , tj, t5, and shows inconsistency.

(9) If Started-by(ta, tc), then 3V, t3 , V eT such that:
meets(V, tc), meets(tc, t3), meets(t3 , tn'),
meets(V, ta), meets(ta, V), 

which forms a cycle: t^ t', tb, t>, t3 , and shows inconsistency.

(10) If Contains(ta, tc), then 3V, t3 , t4, t,,' eT such that:
meets(to', t3), meets(t3 , tc), meets(tc , t4), meets(t4, tj,
meets(to', ta), meets(ta, V), 

which forms a cycle: t4, t', tb, t>, t4, and shows inconsistency.

(11) If Finishes(ta, tc), then 3V, t3 , V eT such that:
meets(to', t3), meets(t3 , ta), meets(ta , V),
meets(V, tc), meets(tc, V)» 

which forms a cycle: t', tb, t^, t', and shows inconsistency.

(12) If Finished-by(ta, tc), then 3V, t3 , t,,' eT such that:
meets(V, t3), meets(t3 , tc), meets(tc , V),
meets(V, ta), meets(ta, V)» 

which forms a cycle: t', tb, t>, t', and shows inconsistency.

All the entries of Alien's transitivity table have been checked in the above way. From our 
assumption we know that a point does not meet or be met-by another point, and from our 
axioms we have proved that a point will not overlap or be overlapped-by other interval or 
point. Hence, we can extend Alien's system to include time points (this will overcomes the 
problems involved in the need to model 'open' and 'closed' intervals, by allowing knowledge 
of interval end-points to be expressed explicitly) and prove (in terms of the condition of
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acyclicity of 'meets') that the corresponding transitivity of the extended model is just as same 
as that one of Alien.

5. Conclusions

In this paper, a temporal system has been outlined which uses intervals and points as 
primitives. A significant feature of this approach is that, in common with Alien's system, 
intervals do not need to be defined as point pairs. It has been shown here that specialisation 
of the system to intervals leads to Alien's system. The model allows reasoning on the 
primitive elements, and provides an extension of Alien's system that includes duration. If the 
system is limited to points, then Bruce's system, and Dechter, Meiri and Pearl's STP, are also 
shown to be special cases.

The axioms given in section 2 imply a linear time ordering, but it is intended to extend them 
to include branching time, and to include TCSP of Dechter, Meiri and Pearl. The formulation 
of axioms by means of a single relation allows a graphical representation of the temporal 
database entities, and this in turn allows an efficient consistency checker in terms of a solver 
for an LP corresponding to the duration assignment. As a limited case, when no duration is 
assigned to time elements, the consistency checker is just a search for graphical cycles. It has 
been proved that Alien's and Vilain's truth-propagation inference may be derived.
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Appendix C

A General Temporal Theory

(the Coputer Journal 37(2), pp.114-123, 1994)

Abstract

In this paper, a first-order theory of time is proposed as an underlying framework for most 
of the representative temporal models in artificial intelligence. The theory treats both points 
and intervals as primitive on an equal footing, and is shown to be powerful enough to
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subsume the interval based theories of Alien and Hayes, the point based theories of Bruce, 
of McDermott, and the interval & point based theories of Vilain and of Knight and Ma. The 
approach is different from that of Ladkin, of Van Beek, of Dechter, Meiri and Pearl, and of 
Maiocchi, which is either to construct intervals out of points, or to treat points and intervals 
separately. Formal definitions are presented to characterise the open and closed nature of 
primitive intervals. The axiomatisation allows non-linear time structures such as branching 
time and parallel time. Additional axioms specifying the linearity and density of time are 
separately presented.

Key words: time, theory, temporal systems, intervals, points.

1. Introduction

The essential role of time in the modelling of natural processes has given rise in recent years 
to a body of artificial intelligence research into temporal theory. This research has led to a 
variety of temporal systems, attempting to capture the primary elements of time, for 
application to the modelling of human activities, such as problem solving, natural language 
understanding, planning and the qualitative modelling of physical processes. Amongst the 
temporal systems which have been proposed, many have been based on axioms stated in first 
order predicate logic. Although these systems show considerable commonality in structure, 
they also show considerable differences in formalisation.

Probably the most important structural variation between first order theories is in their 
treatment of time intervals. Many theories, such as those of Bruce [3], of Ladkin [13,14], of 
Dechter et al. [17], and of Maiocchi [18], are based on points as the basic primitive element. 
In these theories, intervals are defined in terms of points, usually by means of beginning and 
ending points. However, as Alien has commented [7], modelling intervals by taking their 
bounding-points can lead to problems: the annoying question of whether bounding-points are 
in the interval or not must be addressed, seemingly without any satisfactory solution. If 
intervals are all closed then adjacent intervals have bounding-points in common, which when 
adjacent intervals correspond to states of truth and falsehood of some property, can lead to 
situations in which a property is both true and false at an instant. Similarly, if intervals are 
all open, there will be points at which the truth or falsity of a property will be undefined. The 
solution in which intervals are all taken as semi-open (e.g., see the definition of intervals in 
Maiocchi's TSOS [18]), so that they sit conveniently next to one another, seems arbitrary and 
unsatisfactory. Other theories, predominantly that of James Alien [7,8], treat intervals as 
primitive, and points are relegated to a subsidiary status as "meeting places" of intervals. 
Other theories again, e.g. that of Vilain [11], and that of Knight and Ma [4], treat both 
intervals and points as primitive on an equal footing.

In van Beck's temporal framework [15,16], both time intervals and time points are addressed 
by means of the interval algebra, /A, and point algebra, PA, respectively. However, it is 
interesting to note that, in this framework, I A and PA, deal with temporal relations between 
intervals, and relations between points separately, that is, the interval-based framework /A 
deals with the thirteen temporal relations (defined by Alien [7]) between intervals only, while 
the point-based framework PA deals with temporal relations between points only, which are
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addressed in Vilain and Kautz's point algebra [12]. Relations between intervals and points, 
such as that proposed by Vilain in [11], are not addressed at all. Again, as in Dechter et al.'s 
framework, time intervals are not defined as primitive. Indeed, time intervals, and temporal 
relations between intervals are defined in terms of points (rationals), and the corresponding 
order relations between points, respectively.

Theories also differ in their treatment of the two important issues of linearity and density of 
time elements. Most systems assume that time is linear, i.e., that all time elements are ordered 
along a single time line. However, non-linear temporal structures are also proposed in some 
systems. For instance, McDermott's temporal logic allows time to branch into the future. In 
Bruce's system, branching or linear time may also be specified by the user, although the 
axioms required for such a specification are not given.

The question of the density of time elements depends on the type of primitives assumed for 
the system. For interval based systems, a dense system is taken to be one where every interval 
is (infinitely) decomposable. For point based systems, a dense system is one in which between 
any two points on the same time line, there is a third. Bruce's proposed system leaves the 
density question open, whereas McDermott's system is decidedly dense. Knight and Ma's 
system is decidedly not dense, being a discrete system: i.e., one where every time element has 
a unique predecessor and successor fundamental time element. Other systems, such as that 
of Alien and Hayes, permit a mixture of dense and discrete time elements.

Finally, there is a difference between systems in their ability to model the "open" and 
"closed" nature of intervals. Alien's system allows only intervals of indeterminate type: since 
points are not allowed, there is no definition of open\closed intervals. In Vilain's system, 
although both points and intervals are taken as primitive, it is still not possible to characterise 
the open and closed nature of intervals. However, Knight and Ma's temporal model allows 
modelling of open and closed intervals, and it can be shown that the characterisation is in 
agreement with the conventional concepts of open, semi-open, and closed intervals which are 
constructed out of points.

The importance of treating points and intervals as primitives on an equal footing lies in the 
need for the temporal theory to model the way things happen in time. Both Alien [7,8] and 
McDermott [5] give examples of properties defined over time, and many AI applications 
involve continuous change of variables in time. Gallon [1] has shown that time-points are 
needed in order to accommodate the representation of facts concerned with continuous 
change, and has proposed a revision of Alien's system to this effect.

It is the objective of this paper to provide a general axiomatic framework to serve as a 
unifying basis for these temporal systems. The axiomatisation may be seen as an extension 
of Alien and Hayes' theory [10], to include points as primitive objects. A discussion of the 
implications of including points as primitive, and of distinguishing points from moments is 
given in section 2. Here, a problem with Alien's interval based logic concerning reasoning 
about continuous change is examined. The discussion indicates that points are necessary as 
primitive objects for the correct modelling of continuous change. There follows a discussion 
of some limitations of Alien and Hayes' axiom, <M6>, which states that moments never meet 
moments. It is shown that this axiom leads to the conclusion that we can have neither a 
completely discrete nor a completely dense system which contains moments. However, if we
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revise Alien's and Haves' system to include points and limit <M6> to points, rather than 
moments, this objection does not apply.

We present the main body of the general axiomatisation for a temporal frame based on both 
interval and points in section 3. These axioms are independent of the specification of density 
and linearity. Additional axioms are provided in section 4 to specify the linearity and density 
of time. Definitions are also given for the open and closed nature of an interval. A 
classification of all possible temporal relations over intervals and points is presented in section 
5. In section 6 we give various models to illustrate the theory. We present a completely dense 
model and a completely discrete model of the theory. We further show how other temporal 
systems may be subsumed by the theory, with the appropriate denseness and linearity axioms. 
It is also shown that, assertions about the instantiation in time of properties and occurrences 
may be naturally hanged on the temporal frame.

2. Alien and Hayes' Axiomatisation of Time based on Intervals

Alien and Hayes' theory of time is based on a nonempty class, I, of time intervals, and is 
axiomatised in terms of the single temporal relation "meets" between intervals. The set of 
axioms is proposed first in [9], and then revised in [10], as follows:

i,j) A meets(i,k) A meets(lj) =

<M2> Vi,j,k,lel(weete(i,j) A meets(k,l) =>
meets(i,Y)

v 3me I(meets(i,m) A meets(m,Y)) 
v 3ne I(meets(k,ri) A

N.B. In this paper, " v" means exclusive disjunction. 

<M3> VieI3j,keI(weete(j,i) A meets(i,k)) 

<M4> Vj,kel(3i,lel(weete(i,j) A meets(j,i) A meets(i,k) A meets(k,i)) => j = k)

N.B. In this paper, we follow Alien and Hayes' notation that "j = k" means j and k 
represent the same time element.

<M5> Vi,je I(meets(ij) =>
3ke IVm,ne l(meets(m,i) A meets(j,ri) => meets(m,k) A meets(k,n))

Axiom <M1> states that the "place" where two intervals meet is unique and closely associated 
with the intervals. The role of <M2> is to ensure that meeting places are totally ordered. 
<M3> makes every interval have at least one neighbouring interval preceding it, and another 
succeeding. <M4> simply says that there is only one time interval between any two meeting 
places. Finally, <M5> states that if two meeting places are separated by a sequence of 
intervals, then there is an interval which connects these two meeting places. Hence, with 
axiom <M4> and the definition of equality, for any two adjacent intervals, i and j, the ordered
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union of i and j may be written as i + j.

A limitation of Alien and Hayes' theory, expressed by Tsang [6], is that the axioms are not 
primitive enough for extensions. For example, linearity might be hoped to be removed from 
the axiomatisation in order to address the issues such as branching time and parallel time. 
However, Tsang points out that it is difficult to see which axiom in Alien and Hayes' axiom 
set entails linearity. Alien and Hayes conclude that the linearity assumption is characterised 
by means of axiom <M4> in the revised version of the set of their axioms [10]. However, 
it is indeed axiom <M2>, rather than <M4>, that entails the linearity of time. In fact, if we 
remove <M2> from the set of axioms, then the time may be circular, parallel, branching, 
as shown in Figure 1. In this graphical representation, the arcs of the graph represent time 
intervals, and the relation meets(i,]) is represented by i being in-arc and j being out-arc to a 
common node:

>o
circular time parallel time

branching time

Figure 1

Another limitation of Alien and Hayes' time theory is that it takes only intervals, rather than 
points, as primitive time elements, although points are later introduced as the "meeting places" 
of intervals at a subsidiary status within the theory. Their contention is that nothing can be 
true at a point, for a point is not an entity at which things happen or are true. However, as 
Gallon shows in his critical examination of Alien's interval logic [1], the theory of time based 
on intervals is not adequate, as it stands, for reasoning correclly about continuous change. We 
may illuminate the problem involved with reference to time points by means of the following 
example of a ball thrown vertically into the air: The motion may be described qualiiatively 
by the use of Iwo intervals, interval i where the ball is going up, and interval j where the ball 
is coming down. According to classical physics, Ihere is a poinl p al which Ihe ball is 
slationary. As Alien suggested, in the interval calculus, we have two alternatives: we may 
assume thai Ihere is a very small interval where Ihe ball is slationary, or we may assume lhal 
interval i "meets" interval j. The firsl alternative does nol seem tenable, being inconsistenl 
wilh Ihe laws of physics, no mailer how small Ihe interval. The second alternative also gives 
problems, since Ihe interval calculus allows us lo combine Iwo intervals which meet, lhal is, 
i + j = k (see [8] and [10]): in Alien's logic, Ihe formula HOLDS(pro, I) is used lo say lhal 
Ihe properly pro holds during Ihe interval I. More precisely, whal il says is lhal pro holds 
ihroughoul lhal interval [1]. However, allhough Ihe properly "balljnjnotion" holds
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throughout both of intervals i and j, that is:

HOLDS (ball_in_motion ,i) , 
HOLDS (ball_in_motionj )

we cannot assert that

HOLDS(ball_in_motion,i+i),

since the property "ball_in_motion" does not hold throughout the whole combined interval 
k, within which there is a point p at which the ball is stationary.

To characterise the times that some "instant-like" events occupy, Alien and Hayes introduce 
the idea of very short intervals, called moments. A moment is simply a non-decomposable 
time interval. The important distinction between moments and points is: although being non- 
decomposable, moments are defined by having extent and by means of having distinct 
beginning and end points (just as for other intervals [10]), while points are defined by having 
no extent.

Relating to the meets relation, another obvious difference between points and moments is that 
moments can meet other intervals, and hence stand between them, while points are not treated 
as primitive objects and cannot meet anything. However, as Alien and Hayes themselves point 
out, a theory incorporating granularity involves introducing a "tolerance relation" that defines 
when two times are indistinguishable. For example, two intervals, i and j, might be 
indistinguishable if their beginning points are at most a moment apart, and likewise for their 
end points. To ensure that the tolerance relation is an equivalence relation, Alien and Hayes 
propose axiom <M6>, which insists that moments never meet:

<M6> Vm,ne I(moment(m) A moment(ri) => -<meets(m,ri)) 

where moment(m) is defined by:

Vme l(moment(m) <=> ->3i,je I(m = i + j))

Alien and Hayes declare that their formulation permits either discrete or continuous time 
models, as well as more exotic models that may alternate between continuous and discrete 
stretches of time. Unfortunately, axiom <M6> leads to another limitation to the primitive time 
elements: for any interval, either it is non-decomposable, that is, a moment, or it must be 
infinitely decomposable. For, if it is only finitely decomposable, then it must be the sum of 
a finite number of moments which would meet one another, contrary to <M6>. This precludes 
discrete models from the theory containing axiom <M6>. In addition, dense models of the 
theory, i.e where all intervals are infinitely decomposable, permit no moments at all, so that 
<M6> is only vacuously true. Hence models of the theory including <M6> which contain 
moments can be neither dense nor discrete.

However, although <M6> appears to bring little benefit in the form that is presented here, 
dealing with moments, it is shown in the next section to play a critical role in a general
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theory if it is applied to "time points". In this case the axiom does not limit the interval 
structure at all.

3. An Axiomatisation of Time based on Intervals and Points

As discussed in the above section, Alien and Hayes' time theory is not primitive enough for 
extensions, and is not adequate for reasoning correctly about continuous change. Our objective 
is to develop and explore a first-order theory of time which should be more general as an 
underlying framework for most of representative temporal models in artificial intelligence. 
The new time theory may be seen as an extension of Alien and Hayes' axiomatisation by 
means of some additional axioms relating to the inclusion of time points as primitive 
elements, and generalisation of Alien and Hayes' axiomatisation by removing the linearity of 
time in order to allow non-linear time structures such as branching time, parallel time, etc.

We start the formal theory by posing a nonempty set, T, of objects that we shall call time- 
elements, and a function d from T to R/, the set of non-negative real numbers. A time- 
element, t, is called a (time) interval if d(i) > 0, otherwise, t is called a (time) point. 
According to this classification, the set of time-elements, T, may be expressed as T = I u P, 
where I is the set of intervals, and P is the set of points. As in Alien and Hayes' approach, 
at this early stage we do not make any commitment as to whether all time intervals are 
decomposable or not. The density question will be addressed by some further axioms.

In order to define the primitive order over time elements, we adopt Alien and Hayes' 
axiomatisation for the single relation "meets" between intervals while axiom <M2> will not 
be included in the first place. Since the time elements may now be not only intervals but also 
points, some critical axioms are necessary relating to the treatment of points. The whole set 
of axioms for the "meets" relation over T are listed below, where axioms <A1>, <A2>, 
<A3> and <A4> correspond to Alien and Hayes' <M1>, <M3>, <M4> and <M5> in the 
above section, respectively:

<A1> Vt^t^t^e TXw^teO^t,) A 

<A2> VteT3t',t"eT(meett(t',t) A

<A3> Vt^s T(3t' ,t' ' e ##T##( meets(t' ,O A
A meets(l\\T) A meets^t"))

<A4>
3te T Vt' ,t" e T( meets(t' ,t: ) A meets^ ' ) 

=> meets(t\i) A meets(l,l"}}

N.B. For any two time elements, t: and t>, such that meets^t^, axioms <A4> and 
<A3> ensure that there is a unique time element corresponding to the ordered union 
of ^ and ta- Following Alien and Hayes' notation, we shall still indicate it as i + j, 
which will always imply that meets(ij).

A42



<A5> Vt1 ,t2€T(me^(t1 ,t2) =» tjel v t>e I) 

<A6>

Axiom <A5> is based on the intuition that points will not meet other points, that is, between 
any two time points, there is a time interval. This is indeed very similar to Alien and Hayes' 
<M6> which states that moments never meet other moments. However, unlike <M6>, <A5> 
does not imply the limitation that any decomposable interval must be infinitely decomposable. 
Additionally, axiom <A5> does not affect whether the set of points is dense or not. This issue 
will be depend on a further assumption ensuring that "within" any time interval, there is a 
time point (see section 6). Axiom <A6> ensures that the addition operation, "+", over time 
elements is consistent with the function d, which we shall call the duration assignment over 
T.

This is the complete fundamental set of axioms concerning the meet relation. We denote this 
set as A, and use a pair, (T.meef), to represent the temporal frame defined by the 
axiomatisation.

4. Some Further Issues

The axiomatisation proposed in the above section defines a general temporal frame based on 
both intervals and points as primitive objects. In this section, we address some further issues 
relating to the structure of the frame.

Open and Closed Nature of Intervals: Although intervals are taken in the theory as primitive, 
that is there are no definitions about the ending-points for intervals, the axiomatisation allows 
the expression of the "open" and "closed" nature of intervals. For example, to represent the 
quantity space for the motion of the ball described in section 2, we may relate ball_going_up, 
ball_stationary, and ball_comingjdo\vn to interval ils point p, and interval i2, respectively, 
where meets(ii,ip), meets(p,i2). Intuitively, t = p + i2 relates to hallostationary- 
ball_coming_down. In Figure 2 (for clarity, we denote points with bold arcs), since ij has 
point p as its immediate successor, we may view it as "right-open" at p, and similarly, i2 as 
"left-open" at p. Since interval t (= p + i2) and point p have the same immediate predecessor, 
it , we may view t as "left-closed" at p.
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Figure 2

Formally, the open and closed nature of primitive intervals may be defined as follows:

interval i is left-open at point p iff 
meets(p, i);

interval i is right-open at point p iff

interval i is left-closed at point p iff 
3i' el(meets(i' ,i) A meets(\' ,

interval i is right-closed at point p iff
i' A

It is easy to see that "left-open" and "left-closed" (symmetrically, "right-open" and "right- 
closed") are exclusive to each other under the axiomatisation. In fact, if interval i is left-open 
at point p!, and left-closed at point p2, then by the above definition, we get:

meets(p1 ,i) A meets(i\i) A meets(i\p2), where i'el 

Hence, by axiom <A1> we can infer that meets(pl ,p2\ which is contradictory to axiom <A5>.

The above interpretation of the "open" and "closed" nature of primitive intervals is in fact in 
line with the conventional meaning of the open and closed nature for point-based intervals. 
For instance, point-based interval (p1? p2] is "left-open" at point pl , since intuitively pl is an 
immediate predecessor of interval (pl9 p2] ; similarly, (pl5 p2] is "right-closed" at p2, since both 
point p2 and interval (p1? p2] have the same immediate successor, (p2, _}.

Linearity of Time: Time is usually considered as having a linear structure. This corresponds 
to the classical physical model of time, where the structure is that of the real line, extending 
infinitely in both directions.
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The (full) linearity of a temporal frame (T, meets) can be characterised by adding an axiom, 
' to A, the set of axioms proposed in section 3:

Vt1 ,t2,t3 ,t4eT(meer5(t1 ,t2) A meets(t3,t4)

v3t' eTmeetsl 9l9 ) A
" A

N.B. The axiom <ALinear> is in fact the axiom <M2> (see section 2) for Alien and 
Hayes' interval-based theory. The "exclusive ors" in this axiom have some quite 
powerful consequences. In particular, they ensure that there can be no circular, 
parallel, and branching times. The following lemma is straightforward (see [10]):

<Lemma1> Vte T(

This lemma ensures that there is no possibility of circular time.

However, without <ALinear>, a temporal frame usually allows branching into both the past and 
the future. Branching temporal frames offer an attractive way to handle possible worlds, 
uncertainty about the past or the future and the effects of alternative actions when planning. 
A temporal frame which allows branching into the future but not into the past is called left- 
linear (see Figure 3). This may be characterised by adding to A, the axiom <AL.Linear>, rather 
than the stronger axiom <ALinear>:

Vt1 ,t2,t3 ,t4,te ̂ (meets^t^ A meets^t) A meets(t3,i4) A meets(t4,i)

v3t' eTtmmsO^t') A meets(l' £ 
v3t"eT(wms(t3,t") A meets(t" ,

O

left-linear time

Figure 3
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Analogously, right-linearity is defined by means axiom <AR.Lineai>:

A meetsl A meetst,t A

v3t' eTX/neeteO^t') A
t") A meetstf \

As Gallon puts it in [2], it is interesting to note that left-linearity and right-linearity together 
just fail to imply (full) linearity, the exception being the case of parallel time lines as shown 
in Figure 4.

--- o

-•- o

tim

Figure 4

Parallel temporal frames provide a way of modelling separate and asynchronous processes, 
and might prove useful in developing logics for reasoning about parallel computation and 
concurrent processes.

Dense and Discrete Time: According to Axiom <A2>, for each time-element t, there is a 
time-element which "meets" it, and another one which it "meets". Therefore, in particular, 
axiom <A4> and <A5> additionally ensure that, between any two distinct time points on the 
same time line, there is always a time interval. However, for time intervals, can we always 
assume that any interval can be decomposed into two distinct contiguous intervals? If so, we 
say that the set of time elements forms a dense system.

We may use the following axiom to characterise the density of a temporal frame (T, meets):

We can show that axiom <ADense> implies that each time interval can be decomposed into two 
distinct contiguous intervals. In fact, assume interval i = tj + t^ if ^ is a point, then by axiom 
<A5>, t> must be an interval; hence, by <ADense>, t> = t' + t", where t', t"e T. By <A4> and 
<A3>, we get i = tt + t' + t". Since ^ is a point, axiom <A5> implies that t' must be an 
interval; hence ix = tt + t' is an interval, and i = i : + ^ Similar discussion applies to the case 
that tj is a point which implies that tt must be an interval.
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The discreteness of a temporal frame (T,meets) can be characterised by means of adding two 
axioms, <AL.Discrete> and <AR.Discrete> to A:

<A>L-Discrete>

= t2 + t3))

= t, + t3))

Axiom <AL.Discrete> entails the left-discreteness, and Axiom <AR.Discrete> entails the right- 
discreteness of a temporal frame. By taking t to be a non-decomposable interval (or moment, 
termed by Alien and Hayes) in the above axioms, since t: is by definition a moment, we see 
that <AL.Discrete> or <AR.Discrete> implies that each moment has a predecessor moment or 
successor moment respectively. Hence, Alien and Hayes' <M6> is inconsistent with the 
discreteness axioms.

It is interesting to note that there may exist temporal frames which are neither dense, nor 
discrete. In such a frame, there may be some intervals which are finite sums of moments. 
However, this case is axiomatically consistent with our axiom <A5>, but not consistent with 
Alien and Hayes' <M6>, which implies that each decomposable interval must be infinitely 
decomposable.

5. Derived Temporal Relations over Time Elements

In terms of the primitive relation "meets", we may induce the complete set of possible 
relationships over time elements by means of the following definitions:

BteTfaeets^i) A 

OVERLAPS^) & au'.reTCt! = t' + t A t, = t + t"), 

3teT(t> = tt + t),

Bt',t"eT(t, = t' + tt + t"), 

FINISHES^) <=> 3teT(t2 = t + tx),

OVERLAPPED-BY^M <=> OVERLAPS^), 

STARTED-BY^t,) <=> STARTSfaJ,
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CONTAINS^) <= 

FINISHED-BY^t,) <=>

N.B. Since points are now allowed, the above 13 relations have somewhat different 
"feel" to Alien's 13 temporal relations between intervals. For instance, if ix and i2 are 
open intervals separated by a point p, then we have BEFORE^i^, although this 
situation looks very like ^ "meets" i2 in Alien's system. Again, if ij is right-closed, 
and i2 is left-closed at point p, respectively, according to the above definitions, we 
have OVERLAP ̂5(i1 ,i2), but again it "looks" like the two intervals meeting. 
Additionally, from the above definitions, any open interval is "DURING" its closure. 
What all this means is that, taking both intervals and points as primitive time- 
elements, we have more than 13 significantly different relationships to considered, 
because, for example, from almost any point of view, the first case mentioned above 
(i.e., MEETS(iltp) A MEErS(p,i2)) is no more similar to the case of two intervals 
separated by a third interval (a necessary condition of BEFORE in Alien's system) 
than it is to the case of two intervals strictly meeting.

As Alien and Hayes show in [10], all the thirteen relations may hold in the case that only 
intervals are taken as time elements. However, when we examine the general case where 
elements may also be points, some of these relationships hold and some do not hold.

For example, let pe P:

MEETS(p,t2) may hold for time elements t^e T according to the axiomatisation.

However, consider the following case:

OVERLAP 'S(p,tj) & 3t,t',t"eT(p = t' + t A t, = t + t"),

On the one hand, by axiom <A6>, d(p) = d(t') + d(t); and the assumption that p is a point 
gives:

') + d(t) = J(p) = 0 (1) 

On the other hand, axiom <A5> ensures that at least one of t' and t is an interval, hence:

d(C) + d(i) > 0 (2) 

(1) and (2) show that OVERLAP 'SfalJ can not hold.

It is straightforward to prove in a similar fashion that all the possible relations over intervals 
and points may be classified into the following four groups:
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Point - Point:
(EQUAL, BEFORE, AFTER] 
which relate points to other points;

Interval • Interval:
(EQUAL, BEFORE, MEETS, OVERLAPS, STARTS, DURING, FINISHES, FINISHED- 
BY, CONTAINS, STARTED-BY, OVERLAPPED-BY, MET-BY, AFTER} 
which relate intervals to intervals;

Point - Interval:
{BEFORE, MEETS, STARTS, DURING, FINISHES, MET-BY, AFTER} 
which relate points to intervals;

Interval - Point:
{BEFORE, MEETS, FINISHED-BY, CONTAINS, STARTED-BY, MET-BY, AFTER} 
which relate intervals to points.

According to the above classification, there are in total 30 possible temporal relations over 
time-elements which may be both intervals and points. It is interesting to note that, however, 
in Vilain's interval & point based system [11], only 26 of these 30 temporal relations are 
addressed. There is a critical omission from the primitive relations between points and 
intervals in Vilain's system, for the "MEETS" relation is defined only between intervals and 
is not allowed between points and intervals. This omission leads to some difficulties in 
modelling the "open" and "closed" nature of intervals (see section 4).

6. Models of the Theory

Since the time theory itself characterises a very general temporal structure, we may interpret 
the axiomatisation in various temporal models: dense or discrete, linear or branching, etc.

As an example of dense and linear models of the axiomatisation, consider the interpretation 
in which the set of time points, P, is the set of all real numbers; and the set of time intervals, 
I, is the set of periods which are constructions over all possible point-pairs, p!,p2e P such that 
Pi < p2» with the following structures:

(p1 ,p2,open,open) =def { reR | px < r < p2 }, 

(p1 ,p2,open,closed) =def { reR | ^ < r < p2 }, 

(p1 ,p2,closed,open) =def { reR | ^ < r < p2 }, 

(p1 ,p2,closed,closed) =def { reR | pl < r < p2 }, 

where "<" and "<" are the ordinary ordering relations over the set, R, of real numbers.

N.B. Here, we represent the interval structure by means of the extra primitives: left- 
type, 1, and right-type, r, which take values from a set Type =def {open, closed}. There
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are thus four types of intervals based on points. For convenience of expression, we 
may denote a point, p, as (p,p,closed,closed), that is, a special period whose left 
ending point and right ending point are identical, with "closed" type for both left-type 
and right-type.

The duration assignment function d is simply defined by:

<K(pi,p2,_,J) = P2 - Pi- 

We may define the meets relation over T = P u I as following:

^ <=>
Pi2 = ?2i A ri = °Pen A 12 = closed 

v p12 = p21 A rl = closed A 12 = open

It is easy to see that this model satisfies axioms <A1> - <A6>. Additionally, the (full) 
linearity axiom, <ALineaj>, and the dense axiom, <ADense>, are also satisfied. Hence, the above 
structure forms a dense and linear temporal model of the theory.

A discrete model satisfy axioms <A1> - <A6>, <ALineaf>, <AL.Discrete> and <AR.Discrete> can be 
constructed by simply limiting all elements of P to be integers in the above model, although 
the internal points of intervals are still reals. It is interesting to note that in such a discrete 
model, although points never meet each other, intervals are not necessarily infinitely 
decomposable. For instance, according to our axiomatisation, interval (6,8,open,closed) can 
be only decomposed into at most four (non-decomposable) time elements:

(6,8,open,closed) =
(6,7,open,open) 

+ (7,7,closed,closed) 
+ (7,8,open,open) 
+ (8,8,closed,closed)

However, this model will not be valid for Alien and Hayes' axiomatisation including <M6> 
(see section 2), which implies that if an interval is decomposable then it must be infinitely 
decomposable. (Otherwise, if it is only finitely decomposable, then it must be the sum of a 
finite number of moments which would meet one another, contrary to <M6>.)

N.B. As mentioned in section 2, in order to interpret Alien and Hayes' axioms in 
discrete models, their axiom <M6> must be excluded. In another word, axiom <M6> 
is inconsistent with discrete times. However, the above example shows that the axiom 
<A5> in our axiomatisation can be satisfied by discrete models.

In what follows, we shall show that our axiomatisation is powerful enough to subsume many 
representative temporal systems, such as: the point based systems of Bruce, of McDermott, 
Alien's logic of intervals and Gallon's revised theory, and the point & interval based theories 
of Vilain, of Knight and Ma.

Bruce's point based system:
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Bruce's time-system is simply a set of time points with a partial order (see [3]). In our theory, 
we may define a partial order, "<", over the set of points, P, as:

Pi < p2 ^> EQUAL(pl ,p2) v

where EQUAL and BEFORE are introduced as in section 5. Hence, the sub-frame, (P,<), of 
the temporal frame (T,meets) defined by the axiomatisation, forms a temporal system of 
Bruce.

In a similar way, we may define Bruce's 7 binary relations over time-segments (see [3]), in 
terms of the temporal relations over intervals introduced in section 5.

N.B. As discussed in the introduction, the temporal theories of Ladkin [13,14], of 
Dechter et al. [17], and of Maiocchi [18] are similar to that of Bruce in the sense that 
intervals are defined to be constructed out of points. Hence, in a similar way, we may 
induce the corresponding time model for each of these temporal frameworks.

McDermott's temporal logic:

McDermott develops a first-order temporal logic to provide a versatile "common-sense" model 
for temporal reasoning. The theory assumes a "no later than" ordering relation over a dense 
collection of states (points), which is axiomatised to give rise to a left linear (branching into 
future) time structure. That is, there are many possible futures branching forward in time from 
the present. Each single branch, called a "Chronicle", consists of a dense set of states and is 
isomorphic to the real line (see [5]). Consider the temporal frame axiomatised by axioms 
<A1>-<A6>, <AL.linear>, and the following additional axioms <AP.Dense> which states that there 
is always a time point during any time interval.

VieI3peP3i1 ,i2eI(i = ix + p + i2)

By consideration of axioms <A2> and <A5>, we can infer that axiom <AP.Dense> ensures that 
between any two distinct time points on the same time line, there is a third. In fact, axiom 
<AP.Dense> is stronger than axiom <ADense> (see section 4), since it is clear that <AP.Deuse> 
implies <ADense>.

In the same way as for Bruce's partial order, we may also define the "no later than" relation 
over time points in terms of relations EQUAL and BEFORE. In this way, we may take 
McDermott's time structure as a model of the above theory by addressing only time points 
and the "no later than" relation.

Alien and Hayes' interval based theory:

Since the axiomatisation proposed in this paper may be seen as an extension of Alien and 
Hayes' interval based temporal theory [10], it is straightforward to subsume Alien and Hayes' 
theory by taking the set of time points to be empty, and including the linearity axiom <ALineai>
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in the fundamental axiomatisation. Of course, in this case, axiom <A5> will become vacuous.

N.B. Alien and Hayes' temporal theory presented in [10] only handles time as a pure 
abstraction, although Alien's interval based temporal logic is originally supposed to 
be set up as a framework on which to hang assertions about the instantiation in time 
of properties and occurrence [8], In Alien's interval based logic, there are a small 
number of predicates among which HOLDS is one of the most important. To secure 
the interpretation of HOLDS (see section 2), Alien introduces the following axiom:

HOLDS(pro, i) <=> Vi'6l(/AT(i', i) => HOLDS(pr0, i') 

where IN is defined in terms of the temporal relations over intervals, as below:

IN(i\ i) <?> DURING(i\ i) A STARTS(i\ i) v FINISHES(i\ i) 

The negation of a property is then characterised by the axiom

HOLDS^pro, i) <=> Vi'eI(/AT(i', i) => --HOLDS(pra, i'))

However, in [1], Galton has shown that there are some problems with reasoning 
correctly about continuous change in Alien's logic, (in particular, with Alien's 
property-negation), and suggested the way out: instantaneous property-ascriptions.

As Galton puts it, the problems with Alien's system can be traced to the assumption 
that all properties should receive a uniform treatment with respect to the logic of their 
temporal incidence. Gallon's starting point is then to distinguish sharply between two 
kinds of properties, i.e., states of position and states of motion, which have different 
temporal logics: States of position can hold at isolated points; and if a state of position 
holds throughout an interval, then it must hold at the limits of that interval. States of 
motion cannot hold at isolated points, that is, if a state of motion holds at a point then 
it must hold throughout some interval within which that point falls. Additionally, 
Galton defines three types of statement by the forms

HOLDS-ON(pro,i), HOLDS-IN(pro,i), and HOLDS-AT(pro,p),

which assert that a property, pro, holds throughout an interval, during an interval (i.e. 
at some time DURING an interval, not necessarily through all of it), and at a point, 
respectively, while in Alien's logic, there is only one way, HOLDS, of ascribing 
properties to times, that is, HOLDS-ON.

Since our general temporal theory allows both intervals and points, it is 
straightforward to form Gallon's revised temporal theory. For example, we may 
formally characterise a state of position sp by:
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VieIVpeP( HOLDS-ON(5p,i) 
A (MET-BY(i,p) v 

ME£TS(i,p) v 
STARTED-BY(i,p) v 
FINISHED-BY(i,p» 

=> HOLDS- AT(sp,p) )

and a state of motion sm by:

Vpe P(HOLDS-AT(^,p) => Bie l(DURING(^l) A HOLDS-ONC^,!)))

It is interesting to note that, the definitions relating to the open and closed nature of 
intervals given in section 4 provide another formal and intuitive characterisation for 
the distinction between states of position and states of motion: States of position can 
hold at isolated points; and if a states of position holds on an interval, then it must 
hold on the closure of that interval. States of motion hold only on open intervals. For 
instance, in the example of a ball thrown vertically into the air described in section 
2, the property ball stationary is a state of position, while ball_going_up and 
ball_coming_down are states of motion.

In a similar way, we may axiomatise other results for general properties (see [8] and [1]), as 
well as other issues such as processes and events, etc. However, since the main objective of 
this paper is to present a general time theory at some abstract level, here, we will not go 
further on addressing these broader issues.

Vilain 's interval & point based system:

Noting that intervals are not the only mechanism by which human beings understand time, 
another common construct being that of time points, Vilain proposes a system which handles 
time points in much the same way that it handles intervals [11,12]. This system is arrived at 
by expanding Alien's 13 temporal relations over intervals to 26, which are primitively defined 
to relate points to points, intervals to intervals, intervals to points, and points to intervals. It 
is interesting to note that all Vilain' s 26 temporal relations form a subset of the set of those 
30 relations we introduced in section 5. The excluded four relations in Vilain' s system are: 
MEETS, MET_BY that relate points to intervals, and MEETS, MET_BY that relate intervals 
to points (see section 5). Hence, if we employ the following more strict axiom instead of 
<A5>:

Vt^e Tfaeets^tz) => t^I A t,el)

then we get Vilain' s temporal system. The above axiom ensures that if two time elements 
meet each other, then both of them must be intervals.

Knight and Ma's temporal model:

Knight and Ma [4] have proposed a temporal model akin to that presented here, taking both
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points and intervals with duration assignments as primitive time elements. However, this 
model addresses only finite linear sets of time elements. Hence, it is possible to consider it 
as a specialisation of the time theory to a finite set of time elements. In fact:

Assume (Tweets) is the temporal frame defined by axioms <A1> - <A6>, ALinear, <AL.Discrete> 
and <AR.Discrete>. The discreteness property of the temporal frame allows us to form a 
nonempty finite set Tf c T = I u P, such that:

*f =

1\ i = 1, 2, ..., n-1 
=» te I v te I.

These theorems are precisely the axioms for Knight & Ma's set E, of "fundamental time 
elements" (which may be thought as Alien and Hayes's "moments", see [10]). Additionally, 
it is easy to see that the limitation of axioms <A4>, <A5> and <A6> onto Tf precisely gives 
the definition of the closure of E, under the binary operations of combining adjacent time 
elements and corresponding addition of duration, that is, the so-called temporal system.

It is interesting to note that, in computer-based modelling approach, a database consists of 
only a finite (discrete) set of elements, that is, the database models only a finite subset of the 
fundamental (dense or discrete) set of primitive elements. The existence of complete set of 
primitive elements is a belief which may be used to test the consistency of the database. 
Hence, with this meaning, the consistency checker provided in [4] may be used for any finite 
temporal sub-frame defined by the axiomatisation.

7. Conclusions

In this paper, we have proposed a general time theory which may be seen as an extension of 
Alien and Hayes' axiomatisation by the addition of axioms relating to the inclusion of time 
points as primitive elements. This theory allows other first order temporal systems as models. 
It unifies a variety of temporal concepts into a single framework. We have attempted to define 
key concepts and terms with respect to the axiomatic system. And in addition, we have 
separated axioms for linearity and for density from the main body of axioms, since these 
appear to be most "user dependent". The resulting theory presents a unified view of what is 
currently a disparate field.
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Appendix D

Time Representation: A Taxonomy Of Temporal Models

(AI Review, Vol.7, pp.401-419, 1994)

Abstract

The objective of the paper is to provide a taxonomy of temporal systems according to three 
fundamental considerations: the assumed axiomatic theory, the expressiveness, and the 
mechanisms for inference which are provided. There is an discussion of the significance of 
the key features of the taxonomy for computer modelling of temporal events. A review 
considers the most significant representative systems with respect to these issues, including 
those due to Bruce, Alien and Hayes, Vilain, McDermott, Dechter et. al., Kahn and Gorry, 
Kowalski and Sergot, Bacchus et. al., and Knight and Ma. A tabular comparison of systems 
is given according to their main structural features. In conclusion, the characteristics of a 
general axiomatic system capable of representing all the features of these models is discussed.

Key Words: time representation, temporal system, axioms, semantic analysis.

1. Introduction
In this article we consider the characteristics of modelling systems which have been proposed 
for capturing the temporal properties of events and processes in computer based systems. The 
objective is to give a taxonomy of systems, according to some fundamental features. We start 
with a brief discussion of what the fundamental features are, and why they are important for 
use in computer modelling.

Basic to all computer systems dealing with temporal events is an assumed theory of time. 
We require that this theory satisfies our intuitive notions of time, so that we can say that the 
real world is a model of the theory. By this, following the ideas of Suppes [26], and of Funk 
[10], we mean that the statements of the theory may be interpreted as true in the real world. 
The most common theoretical basis is the standard time-point system assumed by classical 
physics. In this theory, the time domain consists of a continuum of time points, isomorphic 
to the real line. Time intervals are taken as intervals on the real line, and duration of intervals 
is the real number difference of their start and end points. However, for many applications, 
particularly those in artificial intelligence and natural language understanding, the time-point 
system is not ideal for either the expression of temporal facts, or for the storage and 
organisation of incomplete temporal knowledge. For these applications, other theories have
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been proposed, for example, based on time intervals as primitive rather than time points.

The importance of the theory to a database system is as a basis for reasoning over the 
database. Inference may be performed over the stored data, by logical deduction from the 
axioms of the assumed theory. In some systems, no formal mechanism for inference is 
proposed, it being left to the user to draw inference from the database. In other systems a 
deduction system is proposed, in which rules are provided that allow deduction of true facts 
by forward chaining from the database. It is a characteristic of these systems that they are 
undirected, and do not allow the specific determination of a given query. Finally, some 
systems provide a consistency checker, and allow deduction by refutation. In these systems 
the user may enter a specific query, and the system checks whether it, or its negation, is 
inconsistent with the database. In this way the system may deduce whether a fact is: known 
true, known false, or unknown.

This view of temporal systems leads us to attempt a characterisation of temporal systems 
according to three basic elements, as follows:

• The assumed axiomatic theory: For all of the systems which we shall consider, there 
exists an underlying theoretical basis. For some systems this basis is formally 
described, and for others it remains assumed as intuitively agreed.

• The expressiveness of the modelling language: A computer based system may be 
viewed as a model of the fundamental theory, in the form of a finite data base of 
temporal facts. Given that the model is incomplete by reason of storage limitations, 
there is a drive for efficient storage and ##retrieval of incomplete temporal knowledge. 
Expressive modelling languages allow the storage of temporal information which is 
incomplete in various fashions.

• The reasoning mechanisms which are provided: Deductive inference may be 
performed on the stored data, with reference to the underlying theory, so that any fact 
which can be proved from the axioms of the theory and the stored temporal database 
may be assumed true by inference. In this way, the axioms plus database may be 
viewed as a deductive system from which facts may be retrieved by inference.

In summary, we can capture some fundamental characteristics of existing temporal systems 
with respect to the following set of questions:

• What are the assumed primitives?
• Is there a formal theory?
• What are its good/bad features of expression?
• What is its application domain?
• What reasoning mechanisms are there?
• Is there a consistency checker?

In section 2, we address the major issues of theory which characterise systems at a 
fundamental level. The questions of expressiveness and inference are particular to proposed 
systems, and these are discussed in a review of some representative temporal models in 
section 3. Section 3.10 provides a summary table characterising these models. In section 4,
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the characteristics of a general axiomatic system capable of representing the features of these 
models is discussed.

2. Maior Theoretical Issues
The theoretical nature of time is a question with a long philosophical tradition and the 
literature seems full of disputes and contradictory theories. This contrasts sharply with the 
commonly held view of time, which allows people to cope easily with time in their everyday 
life. However, there are several major issues which should be addressed in terms of the 
theoretical basis of proposed systems. These issues are as follows:

2.1 The Primitive Nature Of Time
This is the issue of what should be taken as the primitive elements of time. There are three 
known choices: points, intervals, or both ##. Additionally, there are two fundamentally 
different treatments of interval based systems. In the first, intervals are assumed to consist of 
points, and hence, the corresponding systems may be considered as models of point-based 
time theories. An example of this kind of interval is the time-segment of Bruce's model for 
temporal references [8]. However, as Alien has commented [1,2], modelling intervals by 
taking their ending-points can lead to problems: the annoying question of whether ending- 
points are in the interval or not must be addressed, seemingly without any satisfactory 
solution. The second treatment takes intervals as primitive objects without any definitions of 
the "ending-point" and "internal-point" structures. Alien's interval logic [1,2,3], Vilain's 
temporal system [27,28], Knight and Ma's extended temporal model [15,16], are examples 
that treat intervals as primitive.

2.2 Ordering Relations
Whatever primitive time elements are taken, all time systems must adopt axioms defining 
some sort of ordering relations. Two fundamental issues are associated with time ordering: 
the density of time elements, and the linearity of the time axis. We discuss these issues in the 
following sections.

2.2.1 Density of time
The density question is associated with the choice of whether the set of time-elements should 
be modeled as a continuum (such as rationals or reals) or as a discrete set (such as integers). 
For time-points, can we always assume that between any two distinct time-points there is at 
least another time-point? For time-intervals, can we always assume that any interval can be 
decomposed into two distinct contiguous intervals? If so, then the primitive elements form 
a dense system. The alternative assumption is that of discrete time, "whereby each time 
(except the first and last if there is a beginning or end to time) is sandwiched between unique 
previous and next times" [12].

The fact that the database must consist of a finite set of time-elements has no bearing on the 
density question at all, which is a question of the assumed theory only. This theoretical issue 
impinges upon the inferencing mechanisms which may be used to derive facts from the 
database, insofar that the denseness assumption is needed to prove the consistency algorithms.

2.2.2 Linearity of Time
This issue refers to whether the time axis can be always considered as linear or non-linear. 
Linear time corresponds to the classical physical model of time, where the structure is that
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of the real line, extending indefinitely in both directions. The majority of time modelling 
approaches consider the time axis as being linear, that is, there is a total order over the whole 
set of time elements. However, non-linear time structures have been proposed, where the 
fundamental order relation allows topologies such as branching time, parallel time and 
circular time, etc.

It is questionable whether computer based systems really require non-linearity to be built into 
the temporal axioms, since its raison d'etre appears to be involved with a lack of knowledge 
of temporal events, rather than with our intuition about time itself. For example, parallel time 
lines have been proposed as a way of modelling separate parallel processes. However, it is 
a limitation in our knowledge which gives rise to the parallelism. We believe that the two 
processes are actually operating in the same linear time - it is just that we have no knowledge 
of synchronisation. We do not need a theory of parallel time lines for this application; what 
we need is a model which allows us incomplete knowledge of synchronisation over a single 
linear time line. Similarly, branching time is proposed as a useful model to handle possible 
worlds, uncertainty about the past or the future and the effects of alternative actions when 
planning. However, it is arguable whether we need a theory which assumes that time itself 
branches in order to model possible worlds, rather than a model which expresses our limited 
knowledge of causality in possible worlds over a single linear time. For most applications, 
linearity is sufficient at the theoretical level. This corresponds with the usual assumption of 
classical physics where all events may be universally synchronised with a single time 
measure. Only if we wish to model relativity would we be unable to assume synchronisation 
of distant events at a theoretical level.

2.3 Duration Assignment
In most applications, it is expected that a temporal system can support duration reasoning. For 
example, if it is known that interval Ia and interval Ib start together and that the duration of 
Ia is greater than duration of Ib, we may infer that Ib finishes before Ia. This inference can be 
made by use of duration knowledge.

The duration assignment to time elements may be characterised by a function from the set of 
time elements to R/, the set of non-negative real numbers. Intuitively, of course, the duration 
of the points should be zero, while the durations of intervals are positive. For point-based 
intervals, their durations may be derived from the distance between their greatest lower bound 
and least upper bound. However, for systems which treat intervals as primitive, their durations 
may be directly defined by an abstract function from intervals to positive reals. Given a 
duration assignment over time elements, some corresponding operators, such as addition, may 
be required to be defined, providing consistency of the whole system.

3. Some Representative Models
In this section, we review some representative temporal models, with respect to the 
fundamental issues addressed in the introduction.

3.1 Bruce's Temporal Model
An early attempt at mechanizing part of the understanding of time within an artificial 
intelligence is Bruce's model for temporal references [8]. In this system a formal framework, 
based upon first-order logic, is established for the analysis of tenses, time relations, and other 
references to time in natural language. The axioms of the framework are based on the
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following definitions: A time-system is a pair, (time, <), where time is a set whose elements 
are called time-points, and < is a partial order over time. Because there is nothing that has 
been defined about time other than that it is partially ordered by <, the theory allows linear 
time or branching time, discrete time or dense time. The theory is thus more general than that 
for the standard point-based system, and inferencing mechanisms must be built on weaker 
axioms.

Bruce then defines point-based intervals, termed time-segments, as chains which are convex 
in the sense that there are no points missing within the chains, where a chain is a totally 
ordered subset of time-points. The related issues about time- segments, such as: density and 
linearity, may hence be derived from the corresponding issues of the time-points which make 
up the time-segments. The ordering relations between segments are also inherited from the 
partial order over the time points. Bruce gives seven binary relations between time-segments, 
which can be derived from the ordering relations over their greatest lower bounds and the 
least upper bounds: Before, During, Same-time, Overlaps, After, Contains and Overlapped. 
In terms of these binary relations, a tense is defined as a special n-ary relation on time- 
segments with the following form:

where each St is a time-segment and Rj is a binary relation between Sj and Si+1 . Sj is called 
the time of speech, S2, ..., S^ are called the times of reference, and Sn is called the time of 
event. For example, the following sentence

• He will have been going to be going to go 
has the tense

where S x is the time of speech, S2 , S 3 , S4 are reference times, and S5 is the time of event.

Bruce provides a natural language system, termed CHRONOS, which consists of a simple 
English sentence parser, a theorem prover, and a database of facts and events. The system 
accepts facts about events from the user and the information which is given by tense and time 
relations can be combined with other facts to allow inferences about the temporal ordering 
of events. However, a consistency checker for the database has not been provided explicitly. 
No heuristics are used in searching the network of temporal ordering links. Additionally, as 
argued by Alien (see next section), there are some problems in dealing with the treatment of 
open or closed intervals. Mechanisms for duration reasoning are not specified, although these 
may be defined by introducing a mapping from the time-points to the reals.

3.2 The Interval Logic Of Alien
Alien introduces his temporal logic in order to provide a framework for the naive treatment 
of two major subareas of artificial intelligence: natural language processing and problem 
solving. Instead of adopting time points (or states which are associated with time points), he 
takes intervals as the primitive temporal quantity, as being the natural means of human 
reference to time. As an example, in [2], Alien gives the following story:

Ernie entered the room and picked up a cup in each hand from the table. He drank 
from the one in the right hand, put the cups back on the table, and left the room. 

In this account we can identify several time intervals, e.g.: the time Ernie was in the room, 
the time between entering the room and picking up each cup, the time between putting down
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the cups and leaving the room, and many others. However, the claim is that intervals are 
sufficient for modelling all the temporal references in human accounts such as this. Even 
references to apparent point events, such as the time Ernie entered the room, or the time that 
he put down a cup, are best modelled as small time intervals. The argument is put forward 
that all apparently instantaneous events can be decomposed further if we examine them more 
closely. For example, "entering the room" may be decomposed into: opening the door, moving 
through the doorway, and closing the door. And again, "opening the door" can be decomposed 
into turning the handle and pushing the door open. As Alien puts it [2]:

There seems to be a strong intuition that, given an event, we can always "turn up the
magnification" and look at its structure.

In order to express temporal relationships over time intervals, Alien took originally as 
primitive a set of nine (mutually exclusive) basic binary relations between any two intervals 
[1], extended later to 13 [2]: Equal, Before, Meets, Overlaps, Starts, Started-by, During, 
Contains, Finishes, Finished-by, Overlapped-by, Met-by, After. These are based on Bruce's 
seven relationships, but whereas Bruce's relations are derived from the partial order within 
a point-based theory, Alien's are taken as primitive.

These relationships are later formally defined in terms of the single primitive relation "Meets" 
by Alien and Hayes [3]. This is done by positing the existence of related intervals for some 
relations. For example:

Before^i^ ^> ^(Meets^i) A Meets(i,i2))
In Alien's system, consistency checking is performed by formation of the transitive closure, 
according to a transitivity table with 144 entries which describes the composition of the 
thirteen (mutually exclusive) relations. If no conflict is found according to the exclusivity, 
then the system is consistent. For example, for the system:

Before(&,b), Before(b,c) 
we may use the transitivity entry:

Before^j.?) A Before(i2,i^) =» Before^,!^
to deduce that Beforefac). Hence facts may be derived by forward chaining from the 
database, using the transitivity rules (termed truth propagation by Alien). Possible 
inconsistencies in a database can also be established by truth propagation. For example, from:

Before(a,ty, Before(b,c), Before(c,2i)
we can deduce Before(a,c) from the first two predicates, and A/3ter(a,c) from the third. Hence 
we have two distinct relations between a and c, which are not allowed due to the exclusivity 
of temporal relations.

Alien and Hayes show that the transitivity table in [2] is a result of the their axioms in [3], 
following the intuitive reasoning by possible cases which has been used to construct the table 
originally. Additionally, in [2], Alien has suggested that duration reasoning may also be 
incorporated into the interval-based system by giving examples of rules for duration 
reasoning. For example:

Dwrmg(a,b) v Startsfab) v Finishesfab) =>
duration^ < duration^)

However no comprehensive mechanism has been proposed, and hence the duration reasoning 
is rather weak.

The most disputed aspect of Alien's system is its exclusion of time points as primitive,
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although in the later paper [3], Alien and Hayes define a point as the "meeting place" of 
intervals or as a maximal set, termed "nest", of intervals that share a common intersection, 
at a subsidiary status within the theory; and use the concept of a "moment", i.e., a very short 
interval which is non-decomposable, to model some instantaneous events. Their contention 
is that nothing can be true at a point, for a point is not an entity at which things happen or 
are true [2]. Except for the assumption that moments have positive length, while points have 
zero length, another obvious structural difference between points and moments is that 
moments are treated as primitive objects, and hence can meet other intervals (although they 
are not allowed to meet other moments), while points are not treated as primitive objects and 
cannot meet anything [3].

However, as Galton shows in his critical examination of Alien's interval logic, Alien's theory 
of time is not adequate, as it stands, for reasoning correctly about continuous change [11]. 
This problem stems from Alien's determination to base his theory on time intervals rather 
than on time points, either banishing points entirely, or, latterly, relegating them to a 
subsidiary status within the theory. The following example of a ball thrown vertically into the 
air intuitively shows the problem involved with references to time points: The motion may 
be described qualitatively by the use of two intervals, interval ix where the ball is going up, 
and interval i2 where the ball is coming down. According to classical physics, there is a point 
where the ball is stationary. In the interval calculus, we have two alternatives: we may assume 
that there is a small interval where the ball is stationary, or we may assume that interval i: 
"Meets" interval i2. The first alternative does not seem tenable, not being consistent with the 
laws of physics. On the other hand, the second alternative also gives problems, since the 
interval calculus allows us to combine two intervals which meet; that is, i x © i2 = i3 . However, 
although both of the intervals it and i2 have the property "ball-in-motion", the combined 
interval i3 doesn't have this property.

3.3 Vilain's Temporal System
Noting that intervals are not the only mechanism by which human beings understand time, 
another common construct being that of time points, Vilain [27,28] proposes a system which 
handles time points in much the same way that it handles intervals. The logic of points is 
arrived at by expanding Alien's logic of intervals: adding new primitive relations and 
composition rules over them to Alien's interval logic. The new primitive relations may be 
classified into three groups:

(Point-Point) Equal, Before, After, which relate points to other points; 
(Interval-Point) Before, Started-by, Contains, Finished-by, After, which relate intervals

to points; 
(Point-Interval) Before, Starts, During, Finishes, After, which relate points to intervals.

The mechanism by which Vilain's system makes deductions about points is an extension of 
that which it uses to make deductions about intervals. In an approach similar to that of Alien, 
the system maintains a "complete picture" of all relations over intervals and points by means 
of a transitive closure operation. The operation is performed over the expanded set of 
composition rules in the newer logic.

However there is a critical omission from the primitive relations between points and intervals 
in Vilain's system; for the "Meets" relation is defined only between intervals and is not
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allowed between points and intervals. Hence, the problems in modelling continuous change 
by Alien's system mentioned by Gallon in [11] still exist in Vilain's system. For example, 
the system is still not capable of modelling the processes of a ball thrown vertically into the 
air: Let interval ^ refer to ball-going-up, point p refer to ball-stationary, and interval i2 refer 
to ball-coming-down. On the one hand, it is easy to see that p is neither in ^ nor i2. On the 
other hand, according to Vilain's classifications of relations over points and interval, point p 
is not allowed to meet or be met-by any interval. Hence, we deduce that p is after ix and 
before i2, that is, there is another time element between i t and p, and another time element 
between p and i2. This is obviously contrary to our intuition of the processes.

N.B. In [5], Beek has proposed an interval-based framework, IA, and point-based framework, 
PA, for representation of and reasoning about incomplete and indefinite qualitative temporal 
information. However, it is interesting to note that the frameworks, IA and PA, deal with 
temporal relations between intervals, and relations between points separately, that is, the 
interval-based framework IA deals with the thirteen temporal relations (defined by Alien [2]) 
between intervals only, while the point-based framework PA deals with temporal relations 
between points only, which are addressed in Vilain and Kautz's point algebra [28]. Relations 
between intervals and points, such as that proposed in [27], are not addressed at all. 
Additionally, like Dechter et. al.'s framework (see next section), time intervals are not defined 
as primitive. Indeed, time intervals, and temporal relations between intervals are defined in 
terms of points (rationals) and the corresponding order relations between points, respectively.

3.4 Dechter , Meiri and Pearl's TCSP
Dechter, Meiri and Pearl [9] have presented a unified approach to temporal reasoning based 
on constraint-network formalism. In this framework of temporal constraint satisfaction 
problems (TCSP), variables represent time points, and temporal information is represented by 
a set of unary and binary constraints, each specifying a set of permitted intervals. The unique 
feature of this framework lies in the inclusion of duration information, namely, time 
differences between events. Algorithms are presented for performing some reasoning tasks, 
such as finding all feasible times at which a given event can occur, finding all possible 
relationships between two given events, and generating one or more scenarios consistent with 
the information provided. A TCSP involves a set of variables, X15 ..., Xn, having continuous 
domains; each variable represents a time point. Each constraint is represented by a set of 
intervals: {I19 ...,1^, where these intervals are similar to Bruce's time-segments, that is, they 
are point-based, may be closed, open, or semi-open. A simple temporal problem (STP) is a 
TCSP in which all constraints specify a single interval. The duration of an interval may be 
defined by the distance between its greatest lower bound and least upper bound. Relations 
between intervals, such as the thirteen relations defined by Alien, may be derived from the 
known total order relation among their greatest lower bound and least upper bound. 
Consistency checking for a TCSP is transformed to a corresponding examination of its graphic 
representation.

The theory is formally stated, with points and real numbers as primitives, and intervals being 
constructed out of points. It assumes a dense set of time-elements, but time may be branching. 
Duration reasoning is encompassed by the system by means of a consistency checking 
algorithm. The limitation of the TCSP model is it's assumption that point based intervals have 
the same open\closed nature, that is, either intervals are all assumed to be closed, or they are
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all assumed to be open (semi-open). This assumption can lead to problems: if intervals are 
all closed then adjacent intervals have ending-points in common, which when adjacent 
intervals correspond to states of truth and falsehood of some property, can lead to situations 
in which a property is both true and false at an instant. Similarly, if intervals are all open, 
there will be points at which the truth or falsity of a property will be undefined (The solution 
in which intervals are all taken as semi-open, so that they sit conveniently next to one 
another, seems arbitrary and unsatisfactory).

3.5 The Time Specialist Of Kahn And Gorry
In order to store, retrieve, and reason about temporal information, Kahn and Gorry [14] have 
designed and implemented a module, called the time specialist, to maintain separate 
mechanisms for dealing with dated and undated information. The time specialist is endowed 
with the capacity to order temporal facts in three major ways:

(1) relating events to dates,
(2) relating events to special "reference events",
(3) relating events together into before-after chains.

The time specialist can answer different types of questions such as:

• Did event X happen at time expression T?
• When did event X happen?
• What happened at time expression T?##

The time specialist is able to make deductions and check whether## they are consistent with 
the facts known in the database. However, it is weak if the time indications are not definite. 
Also, each of the three methods to organize temporal statements has its own special data 
structures and routines to work with those structures. For a given set of temporal facts, it is 
up to the user, not the time specialist, to choose the most appropriate methods.

The time specialist can check the consistency of the latest fact with facts previously accepted, 
and try to resolve inconsistencies through interaction with the user. In such an interaction, the 
user may withdraw either the new fact, or some old facts whose removal would lead to 
consistency. However, removing old facts may involve undoing some prior deductions. In 
order to be able to do this, a deduced fact is marked by those facts used to deduce it.

No formal theory is stated as a basis for the time specialist. The basis for temporal reasoning 
is contained in the algorithms which make up the system.

3.6 The Temporal Logic of McDermott
McDermott [22] has developed a first-order temporal logic to provide a versatile "common- 
sense" model for temporal reasoning. In accordance with the "naive physics" advocated by 
Hayes [13], McDermott adopts an infinite collection of states (points) as the primitive 
temporal elements and adds several crucial axioms. Every state has a time of occurrence, d(s), 
a real number called its date. Time is assumed to be a continuum, with an infinite numbers 
of states between any two distinct states, where states are partially ordered by the "no later 
than" order relation "<". The future (not the past) is branching, that is, there are many 
possible futures branching forward in time from the present. Each single branch, called a
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"Chronicle", consists of a connected series of states and is isomorphic to the real line. 
Developing his theory, McDermott examines three major problems that a temporal reasoning 
system must face: reasoning about causality, reasoning about continuous change, and planning 
actions.

McDermott's system has formal axioms with time-points (states) and reals as primitives. The 
theory assumes a partial ordering relation, which gives rise to branching time. Reasoning is 
via the assumed theory of the real numbers, and no special mechanisms are needed. We can 
represent a time state, s, as the pair (Cs , t), where t = d(s) and Cs is the set of chronicles that 
s belongs to. Possible events may be associated with time states.

For illustration, we shall consider the example of a man, called John, planning a trip to the 
theatre. We assume that a decision will be made to go by train or bus. If the decision is made 
to go by train at time s,,^, where dCs^) = tp then John will arrive at the theatre at time 
Strait m& the play will start at time s^^3 , where d^^) = t^. All of these time states lie on 
a chronicle c^. Alternatively, if the decision is made to go by bus at time sbusl , where d(sbusl ) 
= tl5 then he will arrive at the theatre at time sbus2, and the play will start at time sbus3 , where 
dCSbuss) = t3 . All of these time states lie on chronicle cbus . These events and states may be 
represented by the following data:

(decides-to-take-train, c^, t:)
(arrives-at-theatre-by-train, c^, 12)
(play-starts, c^, t3)

(decides-to-take-bus, cbus,
(arrives-at-theatre-by-bus, cbus,
(play-starts, cbus, t3)

Here, s^ has been represented by the pair (c^, t^, s^ by (c^, t^) etc.

In this example, illustrated in Figure 1, we see that time states divide into two separate 
chronicles c^ and c^, from the state s0 as a result of the John's decision. Although it is 
obviously possible for us to compare times on different chronicles by means of the t 
component, McDermott uses the "no later than" relation over time states which is restricted 
to states on the same chronicle. This is to prevent us from making "no later than" 
comparisons for events which cannot both occur in reality. For example, we are not allowed 
to ask whether he arrives at the theatre by bus before he arrives by train, since he cannot do 
both. These two events are said to be in different possible worlds (i.e. chronicles).

McDermott also provides axioms which ensure that chronicles branch only into the future, and 
this limits the expressiveness of the logic. For, in the example, we have the event "play starts" 
on two different chronicles which cannot be compared. Using McDermott's logic we must 
view these as two separate events: "play starts after John's arrival by train", and "play starts 
after John's arrival by bus". Since we may judge that the play is independent of John, we may 
wish to join the two chronicles at the state that play starts.

It is in fact arguable whether we need to consider time as branching in order to model 
possible worlds. In fact, it is possible to conceptualise the world number, or chronicle, as
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related to the event data, and not to the time. For example, we can regard the predicate:
(decides-to-take-train, ctiaia, tt) 

as relating:
(event, possible_world, time) 

rather than:
(event, time_state)

In this case, time elements are standard linear dense time points, and the axioms for 
chronicles can be specified independently of those for time.

3.7 Kowalski And Sergot's Event Calculus
The event calculus of Kowalski and Sergot [17] is an approach for representing and reasoning 
about time and events within a logic programming framework. It is based in part on the 
situation calculus [20,21], but focuses on the concept of events as highlighted in semantic 
network representations of case semantics. Its main intended application is the representation 
of events in updating databases [18] and discourse representation.

Primitives of the theory are events, which are considered to be structureless "points" in time, 
where "point" is used here only to convey the lack of internal structure. Events start and 
finish periods of time, during which states are maintained. Events are considered to be after 
the time periods that they finish and before the time periods that they start, not fully 
contained within either of these periods.

Sadri [23] has illustrated a number of the general characteristics of the event calculus:

(1) Event descriptions can be assimilated in any order, independent of the order in 
which events actually take place.
(2) Events can be used for temporal references and need not be associated with 
absolute times.
(3) Events can be simultaneous.
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(4) Events can be partially ordered.
(5) All updates are additive. The effect of deletion is obtained by adding information 
about the end of periods.
(6) The event calculus rules are in Horn clause logic augmented with negation by 
failure.
(7) The event calculus allows events to be input with incomplete descriptions.

In [18], Kowalski specially investigates the case of the event calculus connected with database 
updates. The way in which relational databases, historical databases, modal logic, and the 
situation calculus deal with database updates is discussed in detail. It is claimed that the event 
calculus may overcome the computational aspects of the frame problem in the situation 
calculus, and it can be implemented with an efficiency approaching that of destructive 
assignment in relational databases. Bernard et. al. [6] have recently presented an adaptation 
of the event calculus to the problem of determining the temporal structure of operations that 
must be performed during the realization of some complex objectives. In [7], an extension to 
Kowalski's event calculus model is proposed by Borillo and Gaume, by means of the 
additional spatial component, and the introduction of uncertainty and a general abstract 
relation among propositions.

The formal theory of Kowalski and Sergot's event calculus may be taken as the Horn clause 
system plus negation by failure. However, the use of negation by failure introduces a 
procedural element into the axioms. In this respect, the system is thus akin to the time 
specialist, in that the theory is presented in terms of algorithms.

3.8. Bacchus, Tenenberg and Koomen's BTK
Bacchus, Tenenberg and Koomen present a many-sorted temporal logic, termed BTK [4], for 
reasoning about propositions whose truth values might change as a function of time. In order 
to provide a clear semantics and a well-studied proof theory, Bacchus et. al. partition both the 
universe of discourse and the symbols of their language into two sorts, temporal and non- 
temporal, by which time is given a special syntactic and semantic status without having to 
resort to reification. In BTK, propositions are associated with time objects by including 
temporal arguments to the functions and predicates, where terms and wffs are defined in the 
standard fashion, with the only restriction being that arguments of the correct sort must be 
given for each function and predicate.

Actually, BTK is sorted in much the same way as Shoham's reified logic [24,25]. Unlike 
Shoham's first-order logic in which propositions are expressed just with respect to a pair of 
time points (denoting a time interval), propositions in BTK can be expressed and interpreted 
with respect to any number of temporal arguments: there is neither a syntactic commitment 
to the number of temporal objects that any function or predicate may depend upon, nor is 
there any commitment to interpreting the temporal objects as either intervals or points.

It is interesting to noted that, in their paper [4], Bacchus et. al. have shown that Shoham's 
logic can in fact be subsumed by BTK by defining two transformations, a syntactic 
transformation, rcsyn, and a semantic transformation, 7Tsem. 7rsyn maps sentences of Shoham's 
logic to sentences of BTK, while rcsem maps models of Shoham's logic to models of BTK. 
Additionally, Bacchus et. al. argue that Shoham's categorization of propositions over point-
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based time intervals may also be translated to BTK, and the ontology of BTK is richer since 
it allows time intervals to be the primitive temporal objects rather than being defined as pairs 
of time points.

The major difficulty involved in reasoning in a BTK system lies in reasoning with the 
temporal terms, while the complexity of reasoning is highly dependent on the nature of the 
temporal domain. However, in BTK, there is no axiomatisation characterising the time 
structure. This question is left open, so that the temporal domain of BTK may be defined to 
be any temporal structure which can be characterised by a set of axioms, for example that of 
Bruce [8], of Alien and Hayes [3], or of McDermott [22]. A complete proof theory may then 
be generated by adding the axioms for the temporal domain to the fundamental axiomatisation 
of the logic.

3.9. Knight and Ma's ETM
As mentioned in section 3.2 and 3.3, there are some difficulties with Alien's and Vilain's 
approaches in the qualitative modelling of everyday occurrences. The authors have proposed 
an extended temporal model, ETM [15], which treats both intervals and points as primitive 
time elements on the same footing, and supports duration reasoning and consistency checking.

The definition of a temporal system supporting duration reasoning consists first of a definition 
of an underlying well-ordered set E. The elements of the elementary set E may be both points 
and intervals with a duration assignment which is defined by a mapping from the primitives 
to the non-negative reals. The temporal system is then defined as the closure, T, of E under 
the binary operations ©, representing the combination of adjacent elements, and the 
conventional addition of the corresponding durations. This model provides axioms for a single 
successor relation, termed "Meets", over time intervals and points, and supports duration 
reasoning, which has been a problematic aspect in many temporal systems. Excepting the 
axiom that the duration of an interval is positive while the duration of a point is zero, the 
differentiating property between intervals and points which is proposed is that while intervals 
may meet points or intervals, points are not allowed to meet points, although they can meet 
(or be met-by) intervals. This characteristic is in line both with modelling requirements where 
points are defined as separators or end-points of intervals, and with the denseness of points 
on the real line. But this is the only extra requirement which is made of elements if they are 
to be points. According to their definitions, points, as primitive elements of ETM, are different 
from either Alien's points or moments. It seems that Alien's moments may be taken as the 
elementary intervals in E.

An intuitive graphical representation of an incomplete temporal system, (K, MK, DK), is 
introduced in terms of a directed, partially weighted graph, where K is a set of time elements, 
and MK, DK are the "Meets" knowledge and duration knowledge over K, respectively. And 
necessary and sufficient condition for the consistency of an incomplete system (K,MK,DK) 
[15], and the corresponding limited system (K,MK) [16], is formally presented.

If we let intervals ix and i2 refer to ball-going-up, ball-coming-down respectively, and point 
p refer to ball-stationary, we can now satisfactorily model the processes of a ball thrown into 
the air (see section 3.2 and 3.3) as: Meets^p) and Meets(p,i2).
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Additionally, although intervals are taken as primitive, as in Alien's system, the ETM allows 
formal expression of open and closed nature of intervals with the following meaning:

interval i is left-open at point p iff Meets(p, i);
interval i is right-open at point p iff Meets(i, p);
interval i is left-closed at point p iff 3\\Meets(\\ i) A Meets(\\ p));
interval i is right-closed at point p iff 3i'(Meets(i, i') A Meets(p, i')). 

which is in fact consistent with the conventional meaning of the "open" and "closed" nature 
for point-based intervals.

In terms of "Meet", 30 relations over intervals and points may be formally defined. This is 
indeed an extension of Vilain's primitive relations (see section 3.3), by means of adding four 
critical relations: Meets, Met-by that relate intervals to points, and symmetrically, Meet, Met- 
by that relate points to intervals.

The consistency condition given in ETM implies an inferencing mechanism including duration 
reasoning. It is straightforward to prove that all Alien's duration reasoning rules are explicit 
results of the inferencing mechanism, by using the consistency condition.

A limitation of this system is the assumption of discreteness. The theory on which the system 
is based assumes a discrete set as time domain. However, since any computer based system 
must be in a finite form, this requirement does not in fact place any restriction on the 
application field. In section 4, it is proposed that the system may also be based on a dense 
time domain.

3.10 Overview of Models
Based on the above discussions, we present an overview of these representative temporal 
models in terms of Table 1:
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Issue -» 

ModeU
Bruce's 
CHRONOS

Alien & Hayes' 
interval logic

Vilain's 
temporal system

Dechter, Meiri 
& Pearl's 
TCSP

Kahn 
& Gorry's 
time specialist

Mcdermott's 
temporal logic

Kowalski
& Sergot's 
event calculus

Bacchus, 
Tenenberg 
& Koomen's 
BTK

Knight & Ma's 
ETM

Primitive

point-based 
intervals

primitive 
intervals

primitive 
intervals and 
points

point-based 
intervals

points (event 
dates)

points (states)

points 
(events)

not specified

primitive 
intervals and 
points

Ordering 
Relation

7 binary 
relations

13 binary 
relations 
formed by 
"Meets"

26 intuitive 
binary 
relations

total order

"before-after" 
chains

"no later 
than" binary 
order

partial order

not specified

successor 
relation

Theory

formal

formal

no formal 
axioms

formal

no formal 
axioms

formal

no formal 
axioms

not presented

formal

Duration 
Reasoning

no

weak

no

yes

no

no

no

no

yes

Inference 
Mechanism

refutation 
(no consistency 
checker provided)

deductive rules 
(transitivity table)

deductive rules 
(transitivity table)

refutation 
(consistency 
checker provided)

not formal

assumed theory of 
the real numbers

resolution 
(negation by 
failure)

none

refutation 
(consistency 
checker provided)

Table 1

4. Conclusion
In this paper, we have examined the bases of various temporal systems, concentrating on the 

differences of approaches taken. However, apart from differences of terminology, the models 

show a commonality of structure at a fundamental level. All the systems rely on theories 

based on a primitive set of time elements, which may be points, intervals, or both of them. 

The systems are axiomatised by primitive order relations over the time elements. This

A70



suggests the question as to whether a general axiomatic system is possible, which will express 
this common structure at a theoretical level. We first discuss the properties that we might 
wish for a general axiomatic system, and then how it might be possible to achieve it.

To start we ask the question as to what we might ideally require of a general axiomatic 

system. Firstly, we might require that it should take both intervals and points as primitive 
time elements, and thus allow point-based, interval-based, or point- and interval- based 
models. Secondly, primitive order relations should be defined over the primitive time 
elements, from which the order relations for the main temporal systems, outlined in section 
2, may be derived. For point based systems such as those of Bruce, of Dechter, Pearl and 
Meier, and of McDermott, the primitive order is "no later than". For interval based systems, 
it is "Meets", in terms of which thirteen possible temporal relations can be defined. Thirdly, 
a primitive duration function is needed, assigning a real number to each time element.

To ensure the generality of the axiomatisation, it should allow discreteness or denseness of 
time, which could be specified by additional axioms if required. It should also provide a 
special axiom for linearity of time, without which the time structure is branching. Finally, we 
would like a consistency checking algorithm for any finite database of temporal facts to be 
proved from the axioms, so that inference by refutation is possible.

In [3], Alien and Hayes have provided formal axioms for their interval based system, 
including a special axiom, <M2>, for the linearity of time. The primitive order assumed in 
Alien's theory is the "Meets" relation between time intervals, which may be used to define 
all the thirteen possible temporal relations between intervals. In ETM, it is also used to define 
the three relations between two points: Before, Equal and After. Hence, the fundamental order 
relation for time point systems, "no later than", may be defined in terms of "Meets".

The problem is that neither Alien's system, nor ETM are a sufficient basis for this purpose: 
Alien's system does not include points, while ETM deals with finite sets of time elements 

only.

However, Alien and Hayes' interval based axiomatisation of time [3] is in fact very
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appropriate for extending to a general time theory. What is needed is an extension of Alien's 

axiomatisation to include points. In ETM there is a critical axiom that a point cannot meet 

another point, and it seems that this is likely also to be necessary for the general 

axiomatisation. In fact, in [19], the authors have proposed a general temporal theory which 

addresses both intervals and points as primitive time elements of equal footing. The 

fundamental axiomatisation is independent of the specification of density and linearity, while 

additional axioms specifying the linearity and density of time are separately presented. It is 

shown that Alien and Hayes' interval based theory may be subsumed, and the authors's ETM 

may be taken as a special finite model of the general theory.
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