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Summary

A large body of data is analysed of the flow of concentrated sewage sludge through straight 
pipes. Mathematical models are obtained of the laminar and turbulent flow of each main 
category of sewage sludge. The sludges are modelled as time-independent, non-Newtonian 
relations between shear stress, rate of shearing strain, and solids concentration. Due to the 
inhomogeneity of sewage sludge, error analysis becomes pivotal to the data analysis, and 
options are examined for reducing the error of each model with one or more user-fitted 
parameters.

Parameter estimation is discussed for viscous, time-independent, non-Newtonian, laminar and 
turbulent flow models. Due to extensive requirements of the data analysis, the parameter 
estimation methods are robust, and generally suitable for any shear flow relation. The 
difficulties of estimating parameters of shear flow models from pipe flow data are addressed.

Numerical algorithms are presented for modelling the flow of time-independent, non- 
Newtonian, viscous fluids through a straight pipe. Laminar, critical and turbulent flow 
algorithms are developed to offer predictions such as pressure gradient, mean cross-sectional 
velocity, and the velocity distribution. To handle the requirements of the data analysis, the 
algorithms impose few restrictions on the type of shear flow relation, the flow velocity, and 
the pipe diameter. Suitable pipe flow equations are chosen, and are manipulated 
mathematically into forms that would yield robust and efficient schemes. The appropriate 
use of numerical methods for the algorithms is investigated.

Mathematical models of sludge are for use by the sewage industry to give an idea of the flow 
behaviour of sludges for any relevant application. The parameter estimation techniques and 
pipe flow algorithms are not constrained to any particular pipe, fluid or flow conditions, so 
they would be useful for any relevant application.



Acknowledgements

I would like to thank my academic supervisors Dr. D. Edwards and Prof. K. Pericleous for 
their considerable help and guidance throughout the research. Gratitude also extends to my 
industrial supervisor Dr. J. Dudley for his support with the industrial requirements of the 
research.

I would like to thank my original academic supervisors Dr. C. Richards and Dr. S. Salvini 
for launching the project; my original industrial supervisor Dr. G. Hoyland has also been of 
great help. Appreciation extends to the Science and Engineering Research Council and the 
Water Research Centre for financially supporting the project.



Contents

1 Introduction 1
1.1 Sewage Sludge 1
1.2 Background 5
1.3 Objectives and Assumptions 9
1.4 Presentation of Thesis 10

2 Rheological Considerations 11
2.1 General Classification 11
2.2 Reynolds Stress 16
2.3 Solids Concentration Relations 17

3 The Data 19
3.1 Data Sample 19
3.2 Sludge Categories 20
3.3 Data Entry 21
3.4 Time Dependency 22
3.5 Evidence of Wall Slippage 25
3.6 Solids Concentration 26

4 Pipe Flow Equations 28
4.1 Governing Equations 28

4.1.1 Dimensionless Forms 29
4.2 Laminar Flow Equations 30

4.2.1 Velocity Distribution 33
4.3 Critical Flow Equations 36
4.4 Turbulent Flow Equations 39

4.4.1 Pipe Roughness 45
4.4.2 Solids Concentration Relations 46

4.5 Wall Slippage Equations 46

5 Pipe Flow Modelling 48
5.1 Laminar Flow Modelling 48

5.1.1 Mean Cross-Sectional Velocity 49
5.1.2 Pressure Gradient 53
5.1.3 Velocity Distribution 58

5.1.4 Scope of Use 63



VI

5.2 Critical Flow Modelling
5.2.1 Critical Rate of Shear
5.2.2 Critical Mean Cross-Sectional Velocity
5.2.3 Scope of Use

5.3 Turbulent Flow Modelling
5.3.1 Mean Cross-Sectional Velocity
5.3.2 Pressure Gradient
5.3.3 Velocity Distribution
5.3.4 Scope of Use

5.4 Wall Slippage Modelling
5.5 Conclusions

64

65
71
71
72

74

77

79

81

82

83

6 Parameter Estimation
6.1 Laminar Flow Case

6.1.1 General Bingham Case
6.1.2 Log General Bingham Case

6.2 Turbulent Flow Case
6.3 General Case
6.4 Confidence Intervals
6.5 Conclusions

84
84
89
90
91
92
93
94

7 Data Analysis
7.1 Laminar Flow Analysis
7.2 Critical Flow Assessment
7.3 Turbulent Flow Analysis
7.4 Friction Plots
7.5 Conclusions

95
95
110
115
122

136

8 Effect of Solids Concentration
8.1 Laminar Flow

8.1.1 Effect of Sludge Type
8.1.2 Effect of Volume Fraction of Solids
8.1.3 Generalised Model
8.1.4 Error Analysis

8.2 Turbulent Flow
8.2.1 Effect of Volume Fraction of Solids
8.2.2 Generalised Model
8.2.3 Error Analysis

137
137
138
138
145
149
151
152
154
156



Vll

9 Conclusions 157
9.1 The Algorithms 157

9.1.1 Scope of Use 157
9.1.2 Efficiency 158

9.2 Data Analysis 158
9.2.1 Laminar Flow Analysis 159
9.2.2 Critical Flow Assessment 160
9.2.3 Turbulent Flow Analysis 161

9.3 Epilogue 162

10 References 163

11 Nomenclature 169

Appendix A The Methods 174
A.I Integration Methods Adaptive 174
A.2 Levenberg-Marquardt's Method 175 
A. 3 Minimisation using Quadratic Interpolation 176
A.4 Muller's Method 176 
A.5 Newton's Method for Two-Variable Functions 177
A.6 Runge-Kutta Fehlberg's Method 177

Appendix B The Software 179
B.I Introduction 179
B.2 Pipe Flow Routines 180
B.3 Data Reduction Routines 186
B.4 Volume Fraction Routines 192
B.5 General Method Routines 194



1 Introduction

1.1 Sewage Sludge

Sewage originates from domestic waste, industrial waste and storm water (see Figure 1-1). 
Domestic waste is produced by every household where each person per day typically discards 
several hundred litres of dirty water, several hundred grams of human effluent, and some 
fibrous material. Human effluent, which has an insignificant regional variation, typically 
accounts for about half of the solids content of a sludge; the rest is mostly accounted for by 
industrial waste, which varies considerably with region and time. Examples of industrial 
waste include coal dust, wood or paper fibre, clay, grease and oil. Storm water, which 
varies greatly with both time and season, may or may not have its own disposal system. A 
trait of storm water is the considerable amount of dirt, grit and pebbles that it washes into 
the system. Finally, climate and climatic history affect the biochemical makeup and flow 
rate of sewage flowing through a sewer.
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Sewage enters a sewage plant (or sewerage) as a very dilute mixture of human, industrial and 

natural waste. A preliminary treatment involves removing most of the water content to yield 

a much thicker, more concentrated sludge. There is an important distinction between raw 

sewage that flows through the sewers, and the concentrated sewage that is handled and 

treated at a sewage plant. Raw sewage is essentially dirty water that flows through a sewer 

with considerable volumetric throughput, though not usually at full capacity; this is a major 

industry that has received extensive research (1) . Concentrated sewage, on the other hand, 

is the largely dewatered product of raw sewage, and is transported within the plant through 

pipelines running at full capacity with a considerable reduction in volumetric throughput. 

Since concentrated sewage is a far less major part of the industry than raw sewage, 

considerably less research has gone into it. This research focuses only on concentrated 

sewage sludge so only the full pipe situation applies.

Once raw sewage reaches a plant, treatment can vary considerably from one region to 

another. There are, of course, common principles such as the dewatering and disposal of 

the effluent, but there is much variation in the way these things are achieved. One factor is 

the expense and availability of land. Where land is expensive such as London much of 

the treatment is done underground; where land is cheap normally in rural country  

treatment can be carried out in large pools. Any further reference to sewage in this report 

will mean the concentrated sewage that is handled and transported at a sewerage.

The preliminary treatment of sewage sludge involves the removal of large objects, grit, and 

fibrous materials using bar screens and grit settling tanks. This safeguards against pump 

damage and pipe blockage, thus prolonging the operating life of the equipment. The 

remaining process involves removing the solids from the water, and includes handling sewage 

sludges of about five percent solids by mass. Broadly speaking, these sludges fall into three 

categories:

(i) Primary sludge,
(ii) Activated sludge,
(iii) Digested sludge.

Primary sludge is created from the first stage of sedimentation and is comprised of organic 

matter of a large distribution of particle sizes. Activated sludge, which contains much living 

and dead bacteria, comes from the second stage of treatment, and has a small distribution of 

particle sizes. Digested sludge—also having a small particle size distribution is a sludge 

that has been stabilised by bacteria metabolising the organic material under aerobic or 

anaerobic conditions. This classification of concentrated sludges is a broad generalisation 

as plant design and treatment procedure can vary so much from one region to another. All 

three of these categories are relevant to this research.



Sewage sludge consists of solid particles suspended in a liquid medium which is mostly 

water. Babbitt and Caldwell (2) identified many factors that affect the flow of sludge, such 

as solids concentration, particle size distribution, nature of liquid medium, temperature, 

degree of agitation and gas content. The one factor that considerably affects sludge flow is 

the concentration of solids present (3> 4) which can vary between about three to fifteen percent 

by mass. The particles have a size distribution that reduces with each stage of treatment. 

Primary sludge contains particles up to a centimetre in diameter, and for activated and 

digested sludges, the particles having been reduced to less than a millimetre (the difference 

between a relish and a ketchup provides a suitable analogy).

Sewage plants operate using positive displacement pumps where a sludge throughput is 

specified; smaller plants might run on peristaltic pumps like those used in kidney machines, 

and larger plants might run on piston pumps. These positive displacement pumps cause 

pulsating flow that is necessarily damped to reduce equipment wear. Due to the amount of 

grit and fibrous material in the system, impeller-style pumps are never installed. Sewage can 

be pumped at distances of anything from a metre or less to a kilometre or more in a pipe that 

can vary from one to several centimetres in diameter. The shorter distances might occur 

within a plant building and the longer distances occur between buildings sometimes separated 

by some distance even roads. Pipelines are kept straight wherever possible, though pipe 

bends and other fittings are certainly used. Choosing the size of pump to fit an application 

can be a tortuous task. There have been occasions when a particular pump size was 

estimated to be easily powerful enough to transport a particular sludge, yet when installed, 

was not even able to overcome the yield resistance of the fluid. In such cases, the expense 

of dismantling the pump and installing a different one has been incurred; on occasion, even 

a second attempt has failed. On the other hand, if an oversized pump had been fitted, then 

unnecessary expense would have been wasted on outlay and running costs.

The reason for the difficulties of modelling sewage sludge lie in the extreme complexity of 

its flow behaviour and the extreme variation of its constituents. There is an informal edict 

in the industry that every sample of sewage examined is different, even from the same batch. 

Some sludges with a low moisture content can be quite liquid while others with an even 

higher content may essentially act as a solid mass (5). If a sludge is left undisturbed for 

several days it often has an initial resistance to flow, and gauging this resistance becomes an 

important criterion when installing a pump. Once this initial resistance is overcome, the 

sludge will flow more readily (much like the behaviour of a ketchup) until at high shear, the 

viscosity of water is approached. Sewage will recover this initial viscosity in a time- 

dependent process that varies from being almost instantaneous to several days. From the 

discussion given so far, it is clear that the flow behaviour of concentrated sewage sludge is 

extremely complex.



A fluid with a constant viscosity over the applicable range is known as a Newtonian fluid. 
But a fluid (such as concentrated sewage sludge) whose laminar flow viscosity is related to 
shear or time is known as a non-Newtonian fluid. Like a Newtonian fluid, a non-Newtonian 
fluid can exhibit laminar (or streamline) flow at low shear, and turbulent (or chaotic) flow 
at higher shear. There is a transitional region for which the flow is neither laminar nor fully- 
developed turbulent. The concept of critical flow is useful where the fluid flows at the upper 
bound of laminar flow. The ideal rate at which to pump sewage is often at its critical rate 
since its apparent laminar flow viscosity is at its minimum, and since energy loss due to 
turbulent flow is non-existent. However, it is unlikely that the critical conditions of the 
sewage would just happen to occur within the operating limits of the pump.

Sewage sludge is usually characterised by the two parameter Bingham model or the three 
parameter general Bingham model (6) . Both of these models have one parameter to describe 
an initial resistance to shear, and the latter model has a further parameter to describe the 
decrease (or increase) of viscosity under increasing shear. In 1939, Babbitt and Caldwell*2) 
showed that sewage sludge could be described by the Bingham model, and other 
researchers (3$ 4) have since followed suit. In 1970, Cheng (7) reported that the Warren Spring 
Laboratories had been using the general Bingham model to characterise sludge, and Frost (8) 
followed suit. For a general Bingham fluid, Hey wood (9) offers an extensive summary of 
pipeline design procedures.

There are many practical problems with measuring the viscometric properties of a 
concentrated sewage sludge. Due to the lumpiness and handling difficulties of sludge 
(particularly primary), conventional viscometers such as capillary, concentric cylinder, or 
cone-and-plate are impractical to use. Therefore tubes and pipes are often used where the 
diameter is appreciably bigger than the particle sizes of the sludge. (Note that there is no 
formal distinction between capillaries, tubes and pipes, so the terms are used here to give an 
idea of their scale.)

Many engineering tasks in a sewage plant require on-the-job predictions such as those used 
for pump installation. Design procedures are often conducted with a limited amount of 
information. The sludge type is always known and the mass solids concentration is easy to 
obtain, but the viscometric properties of a sludge are often guesswork. Sometimes a simple 
on-site test is possible such as pumping the sludge through an installed pipeline at a given 
flow rate to obtain one or perhaps two measurements but any detailed analysis is usually 
impractical.

One of the reasons for the failure of a design procedure such as pump installation results 
from rough predictions without knowledge of their accuracy. For an on-site design 
procedure, any guide for making a prediction could be valuable however rough that guide



may be. For instance, if only the sludge type and the solids concentration are known about 
a sludge, then a very rough prediction with a large associated error could be invaluable. 
With each successive piece of information such as a pressure drop reading at a given flow 
rate it should possible to reduce the error of a prediction. Rheological modelling of sewage 
sludge with its corresponding error analysis shall be a topic of this research.

1.2 Background

This research has been conducted in collaboration with the Water Research Centre (WRC) 
at Swindon, UK. The formal objectives arose from informal discussions with a senior 
engineer at WRC. Before these formal objectives are presented, some of the informal 
background will be discussed to clarify their purpose. The literature reveals a surprising lack 
of basic Theological data on sewage sludge, and in England alone has been largely restricted 
to investigations by Johnson et a/ (10) , Binnie and partners (11) , and to some extent Hayes et 
al (l2\ The data of Johnson involves the laminar, transitional and turbulent flow of sewage 
sludge through straight pipes. Frost analysed some of the data, and as a result, produced a 
widely used report (8) on the flow of sewage sludge through straight pipes. The report is 
based on an engineering approach for pipeline predictions using graphical methods and 
tables. Some of the data used in this research are the same as those used by Frost.

In the longer term, WRC were interested in modelling the flow of sewage sludge in 
geometries more complex than straight pipes, such as pipe bends, pipe fittings, and sewage 
stirring tanks. Such modelling requires two- or three-dimensional flow fields with laminar 
or turbulent flow regimes (or often a mixture of the two). At that time, there was (and still 
is) a growing interest and accessibility of computational fluid dynamics (CFD) codes such 
as Phoenics (13) (based on the Simplest algorithm of Patankar and Spalding (14' 15) ). Simplest 
numerically solves the Navier-Stokes equations (16) over a domain that has been divided up 
into control volumes (a la finite volumes from which the Navier-Stokes equations are 
derived). All variables are treated on a local basis where scalar quantities (such as density 
and viscosity) reside within the control volume, and the velocity vectors reside on the 
boundaries of the control volume. The Phoenics code allows for the Theological model and 
any of the property variables of the fluid to be defined on a volume-by-volume basis within 
program subroutines of the code. The time-independent, viscous flow of sewage sludge in 
complex geometries using CFD codes requires Theological models of sewage sludge, and this 
is one of the main objectives of this research. WRC have since commissioned the sewage 
stirring tank to be modelled (17) using the Phoenics code. Further examples of CFD used for 
industrial and environmental modelling of non-Newtonian fluid flows are given by Pericleous 
and Patel (18) . The latest advances in finite element and finite volume methods of non- 
Newtonian flows has been the subject of a recent workshop (19) .



Shear flow relations were required for modelling the laminar and turbulent flow of sewage 

sludge for many suitable geometrical configurations. The widely used Metzner-Reed (20) 

friction plot would have been inappropriate in this case as it is only relevant for pipe flow 

geometries. Similarly, the Dodge-Metzner relation (21) between friction factor and Reynolds 

number for turbulent flow would have been equally restrictive. Nevertheless, it was noted 

that since the data were of pipe flow, friction plots could be created and compared with 

frictional versions of the Theological models. Furthermore, it was stressed that generality 

took priority over accuracy, so a few all-encompassing, powerful models with realistic (albeit 

large) standard errors were required. It was then decided that each model would have an 

associated standard error which would decrease as more information about the sludge became 

available. Such models are not only useful for larger modelling applications, but also on-the- 

job calculations discussed in the previous section.

It was decided that the flow behaviour of sewage sludge could be modelled using the 

extensive tube and pipe flow data. However, it was clear that before any serious analysis 

could proceed, the laminar, transitional and turbulent flow of a non-Newtonian fluid through 

straight tubes and pipes had to be modelled. This objective was to be considered a by­ 

product of the data analysis, though one to be taken seriously so that it could, for instance, 

be easily extended to include fixtures and fittings. Furthermore, the data discussed at the 

beginning of this section are all based on pipes with smooth walls, so pipe roughness was to 

be of cursory interest.

It was decided that the modelling should focus on the relationship between pressure per unit 

length of pipe and mean cross-sectional velocity of the fluid, as this was essentially how the 

WRC data were measured. (Sewage is transported using peristaltic pumps, which means that 

pressure gradient is the unknown quantity. However mean cross-sectional velocity 

predictions are often needed too.) With this simple model, a prediction can be made for any 

angle of pipe by introducing a simple extra term to account for the effect of gravity (22) . 

Furthermore, it is assumed that the flow is axially symmetric an assumption that is 

particularly questionable with horizontal flow. This is unfortunate as horizontal flow is far 

more common than vertical flow in the slurry industry as a whole. Vertical flows occur in 

well drilling (particularly for oil) where the gravitational effect often dominates the pressure 

gradient, especially when the solids density is significantly different from that of the liquid 

medium (23) .

Even though the body of data is large, it is restricted in many respects. Modelling 

assumptions had to be made particularly about the nature of the fluid and the way it flowed 

through the pipes. The assumptions were that sewage sludge is pseudo-homogeneous (ie 

smooth a crude assumption, particularly for primary sludge) and time-independent ie its 

apparent viscosity does not change with time. The question arose as to whether any serious



models could be formulated from such crude assumptions. However, it was made clear that, 

for process design purposes, conservative estimates of a sludge were required; for instance, 

the predictions had to be of a sludge at its least agitated where its apparent viscosity would 

be at its greatest.

In question of the pseudohomogeneous assumption, it is known that the average concentration 

of solids decrease close to the pipe wall, partly because of the finite sizes of the particles and 

partly because the solid particles tend to migrate radially inwards when the fluid flows. 

These effects are often misleadingly termed as 'wall slippage' as they can be realistically 

modelled as a discontinuity of the rate of shear at the pipe wall. During a WRC meeting, 

it was pointed out that the data were inadequate to model wall slippage, but a no-slip 

assumption would anyhow be less significant than the time-independent assumption. 

However, if significant wall slippage was to be ignored, then tubes with narrower diameters 

would show a reduced apparent viscosity of the sludge, and low predictions of the pressure 

gradient would generally result.

For straight pipe flow modelling to commence, it became clear that models of the viscous 

flow of time-independent pseudohomogeneous suspensions were required. For the laminar 

flow model, a relation between shear stress and rate of shearing strain, either of the explicit 

form T = g(y) or of the implicit form G(y, r) = 0 was considered appropriate (24) . There is 

a choice between many such relations ranging from well-established empirical models to 

more recent models with a theoretical basis to them. There has never been a clear-cut choice 

between them, and even if there ever was, something better could always come along.

To resolve the problem of the bewildering choice of Theological models, a novel suggestion 

was put forward: to allow the end-user of the algorithm to define the shear flow relation, 

such as through a program subroutine. Some shear flow relations have already been resolved 

for pipe flow geometry (see, for instance, Chapter 5 of Grovier and Aziz (24) ), and these 

formulae can usually be evaluated directly or using a simple iterative procedure. With a 

user-definable relation, it became clear that more elaborate numerical methods would be 

required, though not nearly as complex as those normally used for computational fluid 

dynamics.

Nothing concrete was decided about the critical and turbulent flow models to use. These 

models are often based on the laminar shear flow relation (to be defined by the end-user), 

so a similar approach with the numerical methods was deemed necessary. It was suggested 

that well-established models based on the fewest possible assumptions should be considered. 

For turbulent flow, Prandtl-style shear flow models (25) were noted as being of particular 

interest since they contained a quadratic shear rate term (ie T - TL + p Py1 where TL is the 

laminar shear stress), and could be treated like an extended version of a laminar flow model.
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An obvious contender was the non-Newtonian turbulent flow model proposed by Hanks (26) 

as it was based on few underlying assumptions. In fact, turbulent flow models such as this 
are often much purer in form than friction factor relations, such as the well known non- 
Newtonian turbulence model proposed by Torrance (27) . This is based on the same mixing 
length model as Hanks but makes several simplifying assumptions when integrating the 
velocity profile.

Current literature tends to suggest that numerical procedures are used for complex pipe flow 
situations rather than the relatively simple ones of this research. For instance, lagrangian 
numerical simulation (28) has been used to model the conveying of dry solids through a pipe 
where the flow is necessarily pulsating. Transient flow of liquid through a pipe has been 
modelled using the method of characteristics (29) where the continuity and momentum partial 
differential equations reduce to ordinary differential equations along characteristic lines. 
Direct numerical simulation (30' 31) has been used to examine fully-developed turbulent flow 
of a fluid through a pipe using finite volume techniques.

In terms of unsettled solids, there is much in the literature about hindered settling; an 
excellent review of the subject is given by Khan and Richardson (32) . In comparison, there 
is little about hindered settling in a non-Newtonian medium, but recent work includes that 
of Chhabra et al (33\ In turbulent flow, the solids do not always settle because they are held 
in suspension by eddy diffusivity (34) . This effect has recently been modelled using lagrangian 
statistics (35) to describe the concentration profile of the suspension. There is precious little 
in the literature about the effects of solid suspensions on the rheology of a fluid, and these 
effects are of fundamental importance to this work. A brief summary of slurry pipe flow for 
both coarse and fine particles was recently offered by Bouzaiene and Hassani (36) . Einstein (37) 
derived a theoretical relation between solids concentration and Newtonian viscosity of a non- 
interacting particle suspension. Thomas treated the interaction of particles (38) and the 
extension to non-Newtonian fluids (39) in an empirical way. A plot of particular Theological 
parameters against solids concentration can be useful. For several different sewage sludge 
types, such plots are offered by Dick and Ewing (40) , Mulbarger et 0/ (3) and Carthew et 0/ (4) . 
Frost (8) presented his relations in tabular form.

For this research, it was clear that the Theological models would need to be a function of 
solids concentration $, so that the laminar flow relation would take a form such as 
r = g(<y; $), and the turbulent flow relation would take a form such as r = TL + p/2($)72 . 
These relations, to be derived from the pipe flow data, were to be ultimately used to model 
more complicated flow fields of sewage sludge. These fields are of no explicit interest to 
this work, needless to say that any of the pipe flow assumptions would need to hold on a 
local basis of these more complex geometries (for instance, they would have to hold within 
a control volume). These assumptions would require the flow to be steady, viscous, and



pseudohomogeneous on a local basis. The assumption that body forces (such as gravity) have 
a negligible effect on the pseudohomogeneity of the fluid would have to be adhered to. 
Furthermore, the rate of shear for any part of a geometry would have to lie within the range 
determined from the pipe flow data, and separate ranges would apply to the laminar and 
turbulent flow regimes.

1.3 Objectives and Assumptions

The background to the formal objectives was discussed in the previous subsection. The three 
main objectives are now given as follows:

(a) To design and implement numerical algorithms for modelling the flow of a non- 
Newtonian fluid through a straight pipe. The assumptions are:

  The pipe is straight, smooth and running at full capacity.
  The fluid is viscous, pseudohomogeneous and time-independent.
  The flow fields may be laminar, transitional or turbulent.
  There may be slippage of fluid at the pipe wall.

The algorithms must depend on a relation between shear stress and rate of shearing strain to 
characterise the fluid, but must not be limited to an actual choice of function. Therefore, the 
shear flow function may either be of the explicit form r = #(7), or of the implicit form 
G(7, r) = 0, and would be specified by the end-user. The algorithms are to solve for any 
pipe diameter and appropriate choice of shear flow function, offering predictions such as 
mean cross-sectional velocity, pressure gradient and radial velocity distribution (as a set of 
points). The algorithms must also extend to critical flow predictions such as the critical 
velocity and critical pressure gradient. The limitations of each algorithm must be specified.

The algorithms will not allow for time-dependent, inhomogeneous fluids (although wall 
slippage is strictly an inhomogeneous effect), and pipe roughness (usually affecting turbulent 
flow).

(b) To analyse a large body of concentrated sewage sludge data from several different 
regions in the south of England. The data are of the flow at full capacity of primary, 
activated and digested sludges through straight, smooth pipes (sometimes of varying 
diameter), where the flow regimes include laminar, transitional and turbulent. Analysis is 
required to:

  use the algorithms and assumptions of part (a) to analyse the data;
  identify and implement the necessary statistical tools to perform the data analysis;
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  statistically determine the most suitable models (such as Theological models) of the 

data, and examine their suitability and limitations both analytically and graphically;

  compare the results with those of other researchers in the field, exploiting in 

particular the widely used friction plots for straight pipe flow.

(c) To derive generalised Theological models that account for factors such as sludge type 

and solids concentration. The laminar flow model is to take a form such as T = #(7; $) 

where $ is solids concentration, and a turbulent flow relation is to take a form such as 

T = TL + p /2( >)72 . The objectives of this task are to

  use graphical and statistical methods to derive each generalised model;

  estimate the standard error on each of the models derived;

  identify user-fitting parameters that would reduce the standard error of the 

generalised models;
  define the applicable range of each model.

1.4 Presentation of Thesis

The body of the thesis is conceptually divided into three main parts: review, mathematical 

modelling and data analysis. The review is covered by the first four chapters, placing the 

problem in context with other work, introducing the data to be analysed, and discussing some 

pipe flow models. The development of the numerical algorithms is discussed in Chapters 5 

and 6, and is original work. Relevant mathematical equations are rearranged and numerical 

methods are tested for their suitability. These algorithms are not presented in a computer- 

oriented way, so any software discussion or computer terminology will be dealt with in the 

appendices. The analysis of data is presented in Chapters 1 and 8, and is also original work; 

this is the statistical part of the thesis that ties in with the work of the preceding Chapters. 

Chapter 9 concludes the thesis.
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2 Rheological Considerations

2.1 General Classification

Rheology is the study of the deformation of fluids, where a fluid may be viewed as a 

substance that exhibits continuous deformation for some range of shearing stresses. Fluid 

deformation is best perceived by its behaviour between two parallel plates separated by a 

distance Ay (see Figure 2-1). The lower plate is stationary, and the upper plate moves at a 

uniform speed AM through the action of a force F. Under steady conditions where the flow 

is laminar (or streamline), the force F per unit area A of the plate is related to the velocity 

gradient by
F /Aw\ /o i\1 = *rr-)' (2<1) 
A v Ay'

where g is some function. For the expression to be valid for any geometry, the velocity 

gradient is defined on a local basis. Shear stress is defined to be the force per unit area,

T = F/A, <2 - 2)

and the velocity gradient is the rate of shearing strain,

dw _ d 
dy " df

dx 
dy

(2.3)

Figure 2-1 The deformation of 
a fluid between parallel plates 
separated by distance Ay. The 
top plate area A moves at speed 
Aw under an applied force F.

Since shear strain is often denoted by 7, and the rate of shearing strain by 7, this equation 

can be equivalently expressed as
(2.4)d7 = —7.

r d/ r

For a time-independent, non-Newtonian, viscous fluid, Equation (2.1) is therefore generalised 

as
r = g(y), <2 - 5>

and shall be referred to as the laminar shear flow function. Sometimes, this function is 

modelled as a two-variable function of the form

G(7, T) = 0. (2 - 6>
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For a Newtonian fluid, shear stress is a linear relation of rate of shearing strain (or shear 
rate),

T =

where the constant of proportionality \L is known as the viscosity of the fluid. This model  
which was first proposed by Newton   is shown in Figure 2-2. Whereas this relation is 
defined by the single parameter ju, a time-independent non-Newtonian viscous fluid requires 
at least two parameters.

It is possible to sub-divide time-independent non-Newtonian viscous fluids into those that 
exhibit a yield resistance to shearing, and those that do not. For the former category, a yield 
stress is to be overcome if the fluid is to flow. The Bingham plastic fluid has the simplest 
relationship of this category; it is a linear relation between shear stress and rate of shear 
defined as

T = Ty + ^7, (2.8)

where Ty is the yield stress and 17 is the known as the coefficient of rigidity. For a zero yield 
stress, it is clear that the Bingham plastic model becomes Newtonian and rj becomes the 
Newtonian viscosity.

A fluid that has no yield stress, but whose gradient of the shear flow function decreases with 
increasing shear rate until a limiting slope is reached, is known as a pseudoplastic fluid. The 
power law model is widely used to describe the flow behaviour of these fluids, and has the 
relation

T = Kyn , n < 1, <2 - 9)

where K and n are known as the consistency coefficient and consistency index respectively. 
The popularity of this model has been sustained by the convenience with which K and n can 
be estimated from a log-log plot of shear flow data. In practice, the power law model fits 
soundly to the curved part of a pseudoplastic relationship, and although it does not model the 
limiting viscosity (the limiting viscosity of a sludge is roughly that of the liquid medium), 
these conditions are not often attained in reality. For n = 1, the power law model becomes 
Newtonian where K corresponds to the Newtonian viscosity. The departure of n from unity 
is therefore an indication of the departure of the fluid from being Newtonian. The power law 
model is widely renowned for describing pseudoplastic fluids with remarkable accuracy. 
However, the model is empirical, and as such fails to model pseudoplastics under very low 
or very high shear. The viscosity can be defined as the gradient of the shear flow function. 
For low shear or high shear, the viscosity of a pseudoplastic is constant and can therefore 
be regarded as Newtonian. At low shear, this viscosity is generally very high though finite, 
but the power law models this as infinite. For suspensions under high shear, the viscosity 
roughly tends to that of the liquid medium, and for sewage this is mostly water. It is
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intuitively clear that the viscosity of a suspension could never be less than that of the liquid 

medium, but the power law model describes a vanishingly small viscosity. Nevertheless, the 

accuracy of the model is guaranteed for all but the most extreme of applications.

A fluid that has no yield stress, but whose gradient of the shear flow function increases with 

increasing shear rate, is known as dilatant fluid. A dilatant fluid can be represented with a 

power law model where n > 1. These fluids are rarely encountered in practice.

A yield pseudoplastic fluid has both a yield stress and a decreasing gradient of the shear flow 

function for increasing shear rate; it is a hybrid of the Bingham and pseudoplastic fluids. 

This is often represented by the general Bingham model (6) , which is given as

T = Kyn .

The general Bingham model is, in fact, much less frequently used than both the power law 

and Bingham models since two parameters are often enough to model a fluid. Nevertheless, 

some complex mixtures require a three parameter model. The general Bingham model 

describes yield pseudoplastic fluids with good accuracy, but fails for very high shear. 

Defining the viscosity as the gradient of the shear flow function, the viscosity of a yield 

pseudoplastic is constant for high shear, and can therefore be regarded as Newtonian. But 

much like the power law model, the general Bingham model erroneously describes a 

vanishingly small viscosity under high shear.

Figure 2-2 portrays the shear flow curves for time-independent, non-Newtonian, viscous 

fluids. Regarding these Theological models, whereas viscosity /*, coefficient of rigidity 17, 

and yield stress ry can be regarded as properties of their respective fluids, consistency 

coefficient K, and consistency index n are truly empirical parameters. There are some shear 

flow models of pseudoplastic fluids that have a theoretical basis to them that can be regarded 

as semi-empirical. One such model is the Eyring-Prandtl equation (41 ' 42) based on the kinetic

Yield pseudoplastic

Bingham
Dilatant
Pseudoplastic
Newtonian

K
wa" 

*M

•a

rate of shearing strain, 7 

Figure 2-2 Shear flow diagrams of some time-independent non-Newtonian fluids.
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theory of liquids, which is given as

r = A sinlT 1
B

(2.11)

where A and B are coefficients characteristic of the fluid. Another well-known model 
founded on theory is the Carreau model (43) given by

This equation has a viscosity /*0 for low shear rates, which is a measured quantity rather than 
a fitted quantity. X is a characteristic time and m is a measure of the rate of change of 
viscosity with shear rate in the shear thinning region. It is interesting to note that Equations 
(2.11) and (2. 12) are completely different in form  Equation (2. 1 1) is an inverse hyperbolic 
sine model and Equation (2.12) is a power law model  yet both equations are based on 
theory to model pseudoplastic fluids. Both equations were derived from the macroscopic 
considerations of molecules, but each using different underlying assumptions.

The Meter model (44) is an example of an implicit shear flow function for modelling 
pseudoplastics. It is a versatile four-parameter equation given by

~ M oo

rm

Unlike the power law model, it describes constant viscosities for both very low and very high 
shear fj.0 and ^ respectively. These are measured quantities rather than fitted quantities. 
rm is the shear stress for which the viscosity is l/2 (/x0 + /*«).

So far, only time-independent fluids have been discussed where the fluid response is rapid 
enough to be considered as instantaneous. However, a fluid that exhibits changes in its 
rheology over time is a time-dependent fluid. For a thixotropic fluid, the 'viscosity' 
decreases under shear stress followed by a gradual recovery when the stress is removed. 
None-the-less, the time-dependency of a fluid is a matter of subjectivity as a pseudoplastic 
fluid could be considered as thixotropic with a very rapid recovery time. Taking the other 
extreme, recovery may be slow enough to consider the changes in the fluid as irreversible. 
For a rheopectic fluid, the 'viscosity' increases under shear stress followed by a gradual 

decline when the stress is removed. These fluids are relatively rare. Figure 2-3 offers a 
general classification of the fluids discussed so far.

A crude explanation of the flow behaviour of pseudohomogeneous fluids is obtained by 
considering the interaction of the solid particles in suspension (45) . The solid particles form 
a three-dimensional, solid elastic network (see Figure 2-4) that can withstand shearing



15

Newtonian
Non- 

Newtonian

Time- 

independent

Bingham 
plastic

Time- 

dependent

Pseudoplastic
Yield 

pseudoplastic
Dilatant Thixotropic Rheopectic

Figure 2-3 Classification of pseudohomogeneous viscous fluids

stresses below the yield stress. Once the yield resistance to shearing is overcome, the 
particle network breaks up into particle agglomerates, which continue to break up at higher 
shear rates. The solid particles reassemble into a network, which can happen very rapidly 
(milliseconds) for a 'time-independent' fluid, or very slowly (days) in the case of a 
thixotropic fluid.

Figure 2-4 The breakdown of 
a complex fluid under shear. 
The solid particles form a 
structure within the liquid 
medium that decays under 
shear stress.

Although viscosity is strictly the concept of a Newtonian fluid, there have been many 
definitions of a generalised viscosity for non-Newtonian fluids. An intuitive definition of 
viscosity is the gradient of the shear function given as

dr
(JL = ——. 

Qj
(2.14)

Since this is difficult to work with mathematically, an apparent viscosity is a widely used 
alternative,

M, =  £  (2-15)
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The viscosity of a pseudoplastic fluid is constant for very low and very high shear, sc 
Equations (2.14) and (2.15) are identical at these limits. It is much easier to picture a 
viscometric relationship than a shear flow relationship, but viscosity has no meaning for a 
Bingham plastic where the fluid is solid below a certain yield stress. For these fluids, shear 
stress is related to the rate of shearing strain for the fluid regions, and to shear strain for the 
solid regions. The former can be modelled by Equation (2.5), and the latter can be modelled 
by a function of the form

T =

where 7 without the dot is strain rather than strain rate. Although the concept of viscosity 
is difficult to apply to Bingham fluids, this is not the case with pseudoplastic fluids. For 
instance, the Carreau equation (2.12) is often expressed as the apparent viscosity

m - 1

2.2 Reynolds Stress

For steady turbulent flow, the instantaneous velocity at a point is not constant as for laminar 
flow, but fluctuates randomly about a mean value. For ^-directional flow, but conveniently 
considering the fluctuations in two-dimensions, the instantaneous velocities in the x- and y-

r

directions are respectively given by

" = ~U + "'' (2.17)

V = V7 ,

where u is the mean velocity, and u 1 and v/ are the fluctuating components. Placing 
Equations (2.17) into the time-averaged momentum equation yields the turbulent stress term

known as the Reynolds stress.

Prandtl's mixing length theory (25) is one of the simplest for estimating the Reynolds stress. 
The theory is based on the assumption that a fluid element, displaced in the transverse 
direction due to turbulent motion, transfers its Jt-momentum to the new location. The 
transverse displacement is known as the mixing length. Prandtl assumed that the standard 
deviations of the x- and ^-direction velocity fluctuations are equal to the product of a mixing 
length and a velocity gradient, ie

(2-19) 
dv
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From Equation (2.18), this then gives the Reynolds stress as

(2-20) 
dy

Since the mixing length varies with distance from the wall, a simple assumption is a linear 
variation, ie

where K is a universal constant taken to be 0.36. Van Driest (46) extended the model to 
include a wall damping factor, giving

I = Ky(l - &~y/A\ (2.22)

where A is constant. Experimentally, damping has been found to be a function of the 
Reynolds number, so Gill and Scher (47) refined the mixing length model to give

/ n -*ik (2.23) / = Ky(l - e r),

where
Re* - a

and

Re* -

Y is the maximum value of >>, and U* is a friction velocity given as \f(rw lp). The constant 
a—the critical value of Re* was taken to be 60, and constant b was determined 
experimentally to be 22.

Now total stress is just the sum of the laminar (or viscous) stress and the Reynolds stress, 
and is given by

T = TL + T T . (2.24)

If Re* is little larger than its critical value c, then the viscous stress term dominates 
Equation (2.24), whereas if Re* is much larger than a, then the Reynolds stress dominates 
Equation (2.24). The mixing length model defined by Equation (2.23) is therefore valid for 
laminar-turbulent transitional flow and fully-developed turbulent flow. In Chapter 4, the 
discussion will be extended to time-independent, non-Newtonian, viscous flow through a 
pipe, which will be especially relevant to our application.

2.3 Solids Concentration Relations

In general, shear stress is related to rate of shear and other properties of a liquid suspension 
such as solids concentration, particle size distribution, and particle shape etc. Although



18

considerable effort has been spent in looking for an exact relationship between these 
variables (24) , due to the inherent complexities of the system, there has been very little 
progress in establishing one. The differences between Equations (2.11) and (2.12) are 
therefore due to the particular assumptions on which each model is based.

The laminar flow viscosity of a suspension of rigid spheres was the subject of a theoretical 
analysis of Einstein (37) , who derived the equation

+ 2.5$), (2.25)

where nm is the viscosity of the mixture, ju, is the viscosity of the liquid, and $ is the volume 
fraction of solids. The equation which was derived on the assumption that there were no 
particle interactions is accurate for suspensions of less than about two percent by volume. 
A more complex empirical relation derived by Thomas (38) is

H m = (JL { (1 + 2.5* + 10.05 $2 + 0.00273 e16 ' 6 *), (2.26)

and agrees with data for suspensions of up to twenty percent by volume. The main drawback 
of the two models is that they do not account for particle agglomeration and are therefore 
only relevant for Newtonian fluids.

For a Bingham fluid, Thomas (39) obtained relations that may be applied to a broad range of 
materials. These are given as

T = k^\ (2.27)

and
*2* (2 28^ rj = fj.fi 2 . \4.6o)

These relations are valid for suspensions of up to twenty three percent by volume. 
Relationships between volume fraction of solids and Theological parameters are often 
expressed graphically rather than functionally. For an activated sewage sludge, Dick and 
Ewing (40) offer a plot of yield stress against solids concentration from three different sewage 
plants, each crudely exhibiting a different linear relation on a log-linear scale, thus suggesting 
an exponential relationship between yield stress and solids concentration. For primary, 
secondary and digested sludges, Mulbarger et 0/ (3) offer plots of yield stress and coefficient 
of rigidity against solids concentration on a log-linear scale. There is an immense amount 
of scatter, particularly for yield stress, making it difficult to establish any specific relation 
between each parameter and solids concentration. Carthew et a/ (4) extended the plots of 
Mulbarger with there own data. On these log-linear plots of yield stress and coefficient of 
rigidity, the correlations that are almost linear, suggesting exponential relations between these 
parameters with solids concentration. A main objective of this research is to examine the 
behaviour of Theological parameters with solids concentration. Firstly, however, an 
introduction of the data to be analysed is the subject of the next chapter.
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3 The Data

This chapter briefly introduces an extensive body of sewage sludge flow data on which this 

research is primarily centred. The objectives are not to present all of the data, but a 
selection of it that includes a sample of typical data, an illustration of time-dependency, a 

sample of unusual data, evidence of wall slippage, and the effect of solids concentration. 
The data (10) were compiled from viscometric measurements of concentrated sewage sludge 
originating from several different regions of England (mainly the south), and with varying 
solids concentration. The data were recorded at the Warren Spring Laboratories for the 
Water Research Centre during October 1978 to May 1980. The measurements are of two 
types: full-scale pipeline that includes the entire laminar, transitional and turbulent flow 
regimes, and tube viscometry, that generally includes the laminar flow regime only. For a 
pipe flow test, the sewage was pumped from a tank, through a straight smooth pipe, into a 
sump, and sometimes recirculated back to the tank. The tube viscometric measurements 
were generally recorded before, during and after each pump-pipe trial. The pipe was of 
length 21m and diameter 104.3 mm from which pressure gradient readings of known flow 
rate were taken along a 9 m section. The tube was usually of 26.65 mm diameter.

3.1 Data Sample

A fairly typical set of data is illustrated by Figures 3-1 and 3-2 and is of a digested sludge 
from Perry Oaks. The second figure is of four pipe flow tests where the sludge is 
recirculated from the sump back to the tank in each case. The first of the figures shows the 
three tube flow tests recorded before, during, and after the pump-pipe trial respectively. As 
noted in the introduction to this chapter, whereas the tube flow measurements only generally 
include the laminar flow regime, the pipe flow measurements include the laminar, transitional 

and turbulent flow regimes.

Sewage sludge can be lumpy and difficult to manage, so this is why tubes and pipes have 

been effectively used as viscometers. Consequently, the tube flow data are given as pseudo- 
shear flow data namely wall stress TR versus pseudo-shear rate SU/D. For a Newtonian 
fluid, the pseudo-shear flow relationship is, in fact, the same as the true shear flow 
relationship (this will be further discussed in Chapter 4). For a non-Newtonian fluid, 

although the pseudo-shear flow relationship is not the same as the true shear flow 
relationship, it can, none-the-less, be regarded as comparable. For instance, Figure 3-1 
shows that the viscosity of the sludge decreases with increasing shear (pseudoplasticity), and 

that there is a yield stress to the sludge which is given at the intersection of the curve with 

the wall stress axis.

Pipe flow data are given as hydraulic gradient / versus mean cross-sectional velocity U 
measurements. The more familiar friction plots are used in this report where the coefficient
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of friction is given by

8Di

where g is the acceleration due to gravity. For pipe flow data such as Figure 3-2, the critical 
point is sometimes conspicuous as it is the point where the gradient changes discontinuously. 
However, looking at the first pipe flow result in isolation, there is a smooth transition from 
laminar to turbulent flow making a qualitative assessment of the critical point difficult. Most 

other sludge tests from this data body admit this smooth transitional region.

3.2 Sludge Categories

Figures 3-1 and 3-2 showed the data of just one set out of a total of nearly one hundred sets. 

This gives some idea of the enormity of the data body, and may give the impression that it
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is very extensive. However, the possible sources of sewage sludge variation are themselves 

numerous. The three main variants of a sewage sludge that were included in the 

measurements are: region (town and county of origin), sludge type (primary, activated or 

digested), and solids concentration by mass. These three variants are all likely to affect the 

flow behaviour of a sludge. Summaries of these are as follows:

1. Region Regional variation arises from industrial content and sewage plant design. 

Industrial content, hence regional variation, can vary considerably with time.

2. Sludge type Primary sludge is raw untreated sludge; activated sludge is sludge that 

has been broken down by bacteria in large open pools; digested sludge is sludge that has 

undergone decomposition in large tanks.

3. Solids concentration by mass This varies with a maximum of twelve percent. 

Solids concentration was artificially varied by successively diluting the sludge with water in 

the test laboratory.

Table 3-1 lists the three variants region, sludge type and solids concentration for each 

batch of sludge tested. Also included is the total pseudo-shear rate WID range over which 

the measurements were made. Note that, although there is a total of 96 data sets, there is 

only one batch of activated sludge and the other batches came from a limited number of 

regions. Although Figures 3-1 and 3-2 portray a typical data set, it would be misleading to 

suggest that all of the data sets contain the same type and number of tests. Some of the other 

data include variations such as sludge density, pipe diameter, and time dependency.

Table 3-1 Short summary of the Water Research Centre data

Region

Bedlow
Rye Meads
Mansfield
Southern!
Southend
Ipswich
Maple Lodge
Letchworth
Perry Oaks
Perry Oaks
Perry Oaks

Sludge type

Primary
Primary
Primary
Primary
Primary
Primary
Activated
Digested
Digested
Digested
Digested

Total

No of Sets

1
1
1
1
7
7

10
8
2
7

51

96

Solids range

3.0%
4.1%
7.6%
6.9%

3.5 - 8.9%
2.6 - 6.4%
1.3-6.4%
1.8-5.8%
5.2 - 6.5%
4.5 - 6.5%
3.7-12.0%

(WID)ls- 1

71.3- 382
17.3- 587
80.9- 959

163.5-1523
20.5 - 1476
5.9- 959
2.3-1339
4.4 - 2278
1.0-1943
2.0- 859
1.3-2474

3.3 Data Entry

The data were supplied from the Water Research Centre in text form rather than in computer 

compatible media. There was no access to a text scanner, though even if there had been, the
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text was so small and illegible that a scanner was unlikely to have been helpful. All the text 

therefore had to be entered manually on to a PC. The data were structured into a format that 

enabled it to be accessed directly from computer files. This was to enable the data to be 

graphically displayed or plotted, and subsequently analysed. A file structure was constructed 

to cater for each and every type of test, and considering the diversity of the data, this was 

not a simple problem.

3.4 Time Dependency

The data of the laboratory report contain much evidence that sewage sludge is thixotropic. 

Figure 3-3 shows the 'gelling' effect of a digested sludge from Perry Oaks that has been 

tested over a several day period. Notice that the apparent viscosity of the sludge increases 

as time progresses. The effect is not very pronounced, but the viscosity increase is more 

notable at first, reaching a limiting viscosity with time.
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Figure 3-4 is another such plot tested over a similar time span, though measured in hours. 

In this case the effect is less pronounced but still observable. The reason for the difference 

between the figures is not clear as both sludge samples are from the same batch. However, 

the first sample has a concentration of 12 percent solids by weight and the second sample has 

been diluted to 8.6 percent. It would be reasonable to suggest that the thicker sludge is more 

thixotropic than the thinner sludge, but the sample history would have to be considered also.

Figures 3-5 and 3-6 are tube flow measurements of a Perry Oaks digested sludge with a mass 

solids content of 6.5 percent. Both figures are measurements of the same batch of sludge 

but recorded on different days. The first figure shows that there is a radical difference in
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Figures 3-5 and 3-6 Tube flow data of a digested sludge from Perry Oaks recorded 
on different days. The first figure shows that there is a radical difference of viscosity 
as a result of pumping; the second figure shows the difference to be negligible.
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the apparent viscosity of the sludge before and after the pump-pipe trial, but the second 

figure shows that there is virtually no change in viscosity as a result of pumping. Again, 

there is no way of quantifying these effects for the data; there is no way of knowing the 

exact shear history of any particular sludge batch, or for that matter, any particular volume 

of sludge. It would be consistent with the laboratory record to suggest that, whereas the first 

test was conducted on undisturbed sludge, the second test was conducted on agitated sludge. 

There is one effect that is invariably consistent with all data: a sludge before pumping is 

never more viscous during pumping, and similarly, a sludge during pumping is never more 

viscous after pumping.

Now referring to Figures 3-7 and 3-8. These are plots of some tube flow data from a 

Southend primary sludge, and are rather unusual. Considering the first of the figures, there 

is a gradient change consistent with a regime change from laminar to turbulent flow. 

Although this change was questioned on the merit of a single outlying point of datum, the
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outlying point does however mark the beginning of a gradient increase in the plot. To accept 
the gradient increase as part of the laminar flow regime would be to accept that the sludge 
had shear thickening properties (thicker at higher shear rates). Since none of the data of the 
laboratory report support this conjecture, the gradient increase must be due to a change of 
flow regime.

Figure 3-8 the second of the figures is a particularly interesting example. The tube flow 
measurements were taken, as usual, before, during and after pumping and, as usual, on the 
same day. Whereas the test taken before pumping shows an expected decrease in gradient, 
the tests taken during and after pumping show a marked increase in the gradient. As with 
the previous figure, a gradient increase can only be due to a laminar to turbulent change of 
flow regime. This explanation is validated by noting that tube flow data includes the laminar 
flow range; if this had been the case before pumping, then the same range used during and 
after pumping would result in a laminar-turbulent change of flow regime. Figure 3-8 clearly 
shows that the sludge experienced shear thinning, generally becoming much thinner during 
and after pumping, which resulted in an early onset of the laminar-turbulent change of 
regime. The only alternative explanation is that the fluid transformed from a shear thinning 
fluid before pumping to a shear thickening fluid during and after pumping; a scenario that 
is totally implausible.

Although it may seem like trivial observations are being made about the data, a main 
objective is to obtain laminar flow models from laminar flow data only. Not to recognise 
any turbulent flow data would result in erroneous laminar flow functions being modelled on 
it. Since there are vast amounts of data, another main objective is to automatically produce 
shear flow function parameters from the raw data with the aid of a computer program. This 
is regarded as a potential blind procedure that requires careful overseeing.

3.5 Evidence of Wall Slippage

Wall slippage occurs when there is a finite velocity of fluid at a wall. A formal treatment 
of this effect will be given in the next chapter, but for the moment, it is adequate to say that 
pipe wall slip is a function of both wall stress and pipe diameter. Such an effect can be 
identified by plotting the pseudo-shear flow data at each diameter; if the curves coincide then 
there would be no wall slippage, but if the curves are different, wall slippage would be 
present. Very few tests were conducted on pipe diameter variation and all of them used 
digested sludge only. The one result of any real significance is shown by Figure 3-9 of a 
digested sludge from Perry Oaks at 8.8 percent concentration by mass. The tests are plotted 
in the order they were conducted but notice that the same pipe diameter is used in two of the 
tests. A close examination of these limited data shows that there is a consistent correlation 
between pipe diameter and apparent viscosity the larger the diameter the greater the
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viscosity. The figure also shows that there is a difference, though lesser in extent, between 
the two tests of the same diameter. From this plot it can be concluded that wall slippage 
occurs. Unfortunately, it is not possible to gauge the effect of different sludge types at 
different solids concentrations, all of which are likely to have an effect. Wall slippage can 
also be examined by comparing the tube flow data with the pipe flow data since the diameters 
of these tests are considerably different. Unfortunately, besides there being only two 
diameters to compare, much of the pipe flow data are non-laminar. Nevertheless, wall 
slippage should affect the accuracy of a scale-up prediction, and such an appraisal will be 
given in Chapter 7.

3.6 Solids Concentration

Overleaf, Figures 3-10, 3-11 and 3-12 show the variation of solids concentration by mass for 
tube flow measurements of primary, activated and digested sludges respectively. For 
consistency, all the tube flow measurements have been chosen before pumping, and for each 
sludge type, the data are from the same batch, but successively diluted over a period of 
several days. It can clearly be seen that solids concentration has a dramatic effect on the 
viscosity of a sludge; an increase in sludge concentration radically increases the overall 
sludge viscosity. It can also be observed that the effect is non-linear; the rate of increase of 
viscosity increases with solids concentration. Other effects such as shear thinning would also 
be present, though even in the most extreme case (see Figure 3-5) it can be seen that shear 
thinning is still a relatively minor effect. It must therefore be concluded that a sewage sludge 
model should account for the effects of solids concentration the subject of Chapter 8. 
Firstly though, the necessary algorithms for modelling pipe flow are addressed in the next 

chapter.
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4 Pipe Flow Equations

In the previous chapter, it was remarked that sewage sludge is lumpy and difficult to manage, 
so the viscometry was conducted by the sewage industry using pipes and tubes. As a result, 
the flow behaviour of sewage sludge has to be deduced from pipe flow data. This chapter 
reviews mathematical models of the flow of time-independent, non-Newtonian, viscous fluids 
through a straight pipe where laminar, critical and turbulent flow regimes are considered in 
turn. The fluid will primarily be regarded as pseudohomogeneous, but in the final section, 
wall slippage will be considered. The equations of particular relevance are given in borders, 
and the other equations either highlight the development of the material, or provide useful 
analytical solutions to which numerical approximations can be compared later.

4.1 Governing Equations

Consider the flow of fluid through a straight pipe as illustrated by Figure 4-1.

u- D
Figure 4-1 Pipe and flow 
parameters.

For fully-developed flow, it may be assumed that the radial and angular velocity components 
are zero, and that the only stress component acts in the axial direction on a surface normal 
to the radial direction. With these assumptions in mind, the equations of motion (48) are given
by

dP / -equation:     = 0,
or

^-equation: =0, (4.1) r 36

dP Id,, z-equation:   =     (rr).dz r dr

Without loss of generality, P may include a gravity term where, for instance, the pipe flow 
is non-horizontal. The first two expressions show that P = P(z) only, and therefore

(4.2) 
z

Using the initial condition T = 0 at r = 0, the third expression integrates to give

T = r AP (43) __. w
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At r = R, this gives the following relationship between wall stress and pressure gradient:

RAP
TR = ^

2 L
(4.4)

The above equation pair can be combined to give a linear relationship between shear stress

and radial distance, which is
T r

TR R
(4.5)

Since Equations (4. 1) are in terms of shear stress, the equations so far make no assumptions 

about the rheology of the fluid being used. These equations are valid for any fluid, and will 

often be referred to in the following discussion of laminar, critical and turbulent flow.

4.1.1 Dimensionless Forms

Flow equations can be expressed as relationships between dimensionless groups (49) that are 

especially useful for defining graphical or empirical relationships of a flow situation. Since 

the objectives of this research are to use well-heeled numerical methods to model the flow 

equations, these dimensionless groups are less useful. In other words, rather than depend 

on graphical relations between dimensionless groups, the emphasis will be on providing PC 

based computer algorithms to perform the calculations. However, dimensionless groups are 

more than just a convenient way of expressing flow relations as they can, for instance, be 

used to identify the critical point that divides the laminar flow regime from the transitional/ 

turbulent flow regime. In this subsection, three widely used dimensionless groups will be 

introduced: the Fanning friction factor, the Reynolds number and the Hedstrom number. The 

latter two groups were originally derived for specific fluid types, but extension to other fluids 

will be discussed later on in this chapter.

The Fanning friction factor is a dimensionless group defined as the following ratio between 

frictional forces to inertial forces:

f= W' (4 ' 6) 

2

Notice that this ratio is indicative of the relative importance of the wall stress with respect 

to the kinetic energy per unit volume of fluid.

The Reynolds number for a Newtonian fluid is defined as the dimensionless group

Re = £^, (4.7)

and is a measure of the ratio of inertial forces, pU2/D, to viscous forces, pUID1 . In 1883, 

Reynolds conducted some classical experiments of Newtonian fluid flow through pipes, and
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showed that fluid flow may either exhibit laminar or turbulent motion. For low Reynolds 
numbers of less than about 2 100, the viscous forces dominate the inertial forces, and laminar 
(or streamlined) flow prevails. However, for high Reynolds numbers greater than about 
4000, the inertial forces dominate the viscous forces and, as reviewed in Section 2.2, 
turbulent flow prevails. For intermediate Reynolds numbers, fluid flows in a transitional 
state between laminar and turbulent flow.

The Hedstrom number (50) is a group that accounts for the yield stress of a fluid. For 
Bingham fluids, r = r + 777, Hedstrom used dimensional analysis (49) to show that the 
friction factor has the functional form

lf = </>( pVD\
/» (4.8)

where the first of these groups is known as the Hedstrom number, He. The second of these 
groups has the form of a Reynolds number, and can be considered as a Reynolds number for 
Bingham fluids.

4.2 Laminar Flow Equations

For steady flow through a pipe, the volumetric flow rate is

R 
irR2 U = 2ir( ru(r)dr + 7rr (4.9)

where U is the mean cross-sectional velocity, r is the radial distance, u(r) is the velocity at 
r, and r is the radius of the plug core. The two parts of the right-hand side of the equation 
define the fluid and solid regions of the flow respectively. In practice, a relation between 
pressure per unit length of pipe, AP/L, and mean cross-sectional velocity, U, is required. 
However, the relation between the pipe wall stress, TR , and a pseudo-shear rate defined as

8f7 (4.10)

is equivalent, but much more convenient to work with.

Integrating Equation (4.9), combining it with Equations (4.5) and (4.10), and using 
-dw/dr = 7, yields

r =
  K

— [
T

(4.11)
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The rate of shear term, 7, can be eliminated from this equation with a relevant Theological 
equation, such as one of the equations (2.7) to (2.13). This gives a relation known as the 
pseudo-shear flow function—between the pipe wall stress and the pseudo-shear rate. The 
pseudo-shear flow function is a pipe flow equivalent of the true shear flow function; the 
former models the viscosity within a pipe and the latter models the viscosity between parallel 
plates.

For the Newtonian case, using Equation (2.7) to eliminating 7 from Equation (4.11) gives 
the Hagen-Poiseuille equation,

(4.12)TR =

Via Equations (4.4) and (4.10), this establishes a relation between pressure gradient and 
mean cross-sectional velocity. It is no coincidence that this equation has the same form as 
the corresponding shear flow function T = ^7 as it is from this equation that F is normally 
defined. It therefore follows that F = 7^ for Newtonian fluids, though this is not generally 
true for other fluids.

Using Equations (4.6) and (4.7), a well-known relationship between/and Re is revealed by 
Equation (4.12), and is given by

/=il (4.13) 
Re

This is significant as it defines a theoretical relation between/and Re for the laminar flow 
of a Newtonian fluid through a straight pipe. This has been the impetus for obtaining semi- 
empirical relations between/and Re for turbulent flow, and some of these relations will be 
discussed in Section 4.4.

For the Bingham case, using Equation (2.8) to eliminate 7 from Equation (4.11) gives the 
Buckingham (51) equation,

r = _ 1
R

(4.14)

It is apparent that, via Equations (4.10) and (4.4), this equation can be used to directly 
evaluate the mean cross-sectional velocity for a given pressure gradient. For the inverse 
problem where U is known and AP/L is required, an iterative scheme is needed. However, 
if the ratio r ITR is small, the quartic term can be neglected to give the explicit 
approximation

rR - try + ,r. (4-15)

The yield stress of this equation is (4/3)^ which is a contradiction in terms since it should 
be TV . None-the-less, Equation (4.15) is a good approximation of Equation (4.14) for higher
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values of F. Equation (4.15) is also often expressed as the following dynamic head loss per 

unit length of pipe,
* ti n

= 32 
L pgD

(4.16)

For the power law case, combining Equations (2.9) and (4.11) yields

3n + 1 nT". (4.17)

The functional form of this equation is similar to Equation (2.9), which is convenient as the 
consistency coefficient K and consistency index n can be estimated from this equation using 
a log-log plot of the pipe flow data.

For the general Bingham case, combining Equations (2.10) and (4.11) gives

K
M'-yV*

1 2n+1 TR n + 1 T,
.18)

For n = 1, this equation reduces to the Buckingham equation and, like the Buckingham 
equation, the mean cross-sectional velocity can be estimated directly for a given pressure 
gradient, but the inverse procedure would require an iterative scheme. There is also an 
approximation to Equation (4.18) analogous to Equation (4.15) for the Buckingham equation. 
This is given as

TR = 3n + 1
——————
2n + 1

„
T.. + A.y

3« + 1 n
I", (4.19)

and can be evaluated directly for A.P/L. Likewise, although the yield stress is incorrectly 

given as ry (3/z + \)l(2n +1), this equation is suitable for higher values of pseudo-shear rate.

For the Meter model, Equations (2.13) and (4.11) give

Mo

Mo

a + 3

a-

a + 3 a + 1

a - I
(4.20)

The O term is usually very small, and neglected to yield a good first order approximation.
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For any pseudoplastic fluid, Equation (4.11) can be differentiated with respect to TR and 
rearranged to give the Mooney-Rabinowitsch (52' 53) equation,

*v_  iR
In' + 1

4«7 r, (4.21)

where
/ dlnr,,n1 =   -

dlnF

This equation gives a relation between the wall shear rate and the pseudo-shear rate where 
n 1 is the slope of the log-log pseudo-shear flow function. Thus from a practical viewpoint, 
values of n 7 can be estimated from a log-log plot of the pipe flow data, and used to estimate 
corresponding values of jR . Metzner and Reed (20) carried the approach further by writing

r - TR ~ (4.22)

Taking n 1 = n and K1 = K[(3n + l)/4n]", this equation reduces to Equation (4.17).

4.2.1 Velocity Distribution

In this subsection, the velocity distribution u(f)—the distribution of axial direction velocity 

against radial distance is considered. The rate of shearing strain, defined to be positive, 

is 7 = -dw/dr. Assuming the no-slip condition u(R) = 0, this integrates to give

u(r) = 7 dr (4.23)

Considering the linear relation between r and r defined by Equation (4.5), 7 can be 

eliminated from this equation using a Theological equation such as one of the equations (2.7) 

to (2.13).

For the Newtonian case, substituting Equations (2.7) and (4.5) into (4.23) gives the velocity 

distribution

(4.24)u(r) = 2U 1 - r 
J

where U is the mean cross-sectional velocity, u clearly has a parabolic profile as illustrated 

by Figure 4-2.
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For the Bingham case, an unsheared solid plug core is retained at the centre of the pipe 
surrounded by a region of sheared fluid. Now the radius of the plug core is given from 
Equation (4.5) as

ry = R^ (4.25)

where r is the yield stress. For the sheared part of the velocity distribution where r > r  , 
combining Equation (4.23) with (2.8) and (4.5) gives

1 - r ~R Rr -R (4.26)

Substituting Equation (4.25) into this equation gives the velocity of the plug core,

RrR 1 -i 
R

(4.27)

The velocity profile is shown on Figure 4-2 where the flat part of the profile represents the 
solid plug core and the curved part of the profile represents the sheared fluid. Equation 
(4.25) implies that the plug core diminishes in size at higher shear without ever completely 
disappearing.

Figure 4-2 Some laminar 
flow velocity profiles of 
non-Newtonian fluids. The 
dashed lines mark the solid 
core boundaries of Bing­ 
ham and general Bingham 
fluids.

radial position, rlR

For the power law case, placing Equations (2.9) and (4.5) into (4.23) gives the velocity 

distribution

u(r) = U ' 3n + T
n + 1

1 - r
R

n + 1" 

n (4.28)

where U is the mean cross-sectional velocity.
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Figure 4-3 illustrates the effect of n on the profile. For n = 1, the profile is the parabola 

defined by a Newtonian fluid. For n < 1, the profile becomes flatter than a parabola, until 

n approaches zero where plug flow results. For n > 1, the profile becomes sharper than a 

parabola, until n approaches infinity where a triangular profile results.

Figure 4-3 Some laminar 
flow velocity profiles of 
power law fluids.

radial position, rlR

For the general Bingham case, substituting Equations (2.10) and (4.5) into (4.23) gives the 

velocity distribution

«(r) = R n TR\n

n + 1 \ K

n + 1

R

n
r _ y 

~R ~R
(4.29)

where ry is the radius of the plug core. The velocity of the plug core is obtained from this 

equation at r = r whereupon the second term disappears. The velocity profile (see Figure 

4-2) has the combined features of the Bingham and power law profiles: a flat region that 

represents the plug core, and a curved region that represents the sheared fluid surrounding 

the plug core.

For the Meter model, Equations (2.13), (4.5) and (4.23) combine to give

a - 1u(r) - -S2
a

i-(~r' 
\«'

ia -

1. "0 J 1 "»

1
+ _

a

' T/?^

. T>».

a - 1

a
_ JJ-Jfl .1 (4.30)

1 2'

The O term is usually very small, and neglected to yield a good first order approximation.
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4.3 Critical flow Equations

Ryan and Johnson (54) proposed a stability parameter based on small fluctuations about a mean 
velocity. The stability parameter is the ratio of the rate of energy supplied by the 
fluctuations to the rate the energy is dissipated, and is given as

TR (4.31)

where p is density, «(r) is the velocity distribution, R is the pipe radius, y(r) = -dw/dr, and 
TR is the pipe wall stress, f is zero at the pipe wall and at the pipe centre line, but reaches 
a unique maximum value Z at some radial point. Unlike the Reynolds number, the stability 
parameter is applicable to non-Newtonian fluids, though it can be interpreted as proportional 
to the Reynolds number (4.7) for point values of r/R. The parameter has been successful 
when tested on much data of Bingham plastic fluids (55) , and pseudoplastic fluids (56) . Further 
confidence in its applicability comes from Hanks (57) who took a completely different 
approach to derive a generalised stability parameter applicable to any geometry which 
becomes equivalent to Ryan and Johnson's for pipe flow geometry.

For a Newtonian fluid, applying the Hagen-Poiseuille equation (4.12) and the Newtonian 
velocity distribution (4.24) to Equation (4.31), the maximum value of £ occurs at the point 
r/R = 1A/3, and is given by

(4.32)Z = Re
27

where Re is the Reynolds number. Critical flow is the upper bound of laminar flow the 
point at which laminar flow becomes unstable. If the critical Reynolds number is taken to 
be Rec = 2100, then the critical value of Z is

Zc = 808. (4.33)

For Z < Zc , the flow can be regarded as laminar, and for Z > Zc , the flow becomes 
unstable and can be regarded as non-laminar.

The stability parameter could be used in its naked form, but is often instead used to derive 
more meaningful non-Newtonian Reynolds numbers and critical quantities. For a Bingham 
plastic fluid, Hanks and Pratt (55) defined a modified Reynolds number as

(4.34)

where the coefficient of rigidity r? replaces the Newtonian viscosity p. Although this
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Reynolds number clearly resembles the Newtonian Reynolds number (4.7), it does not, 
incidentally, satisfy the generalised Reynolds number proposed by Metzner and Reed (20) . 
Using analysis based on the Ryan and Johnson stability parameter, Hanks showed that the 
critical Reynolds number is no longer the constant value 2100, but an expression in terms 
of a dimensionless group called the Hedstrom number (50) . This expression is given as

He L 4, 1 <4 - 35) 

where the Hedstrom number is

He - -2. (4.36)

c = rl(rR )c is the ratio of yield stress to critical wall stress defined by the relation

He = 16800    if    . (4.37)
(1 -

£c may be obtained from this equation using an iterative scheme, and used to estimate (Re5 )c 
from Equation (4.35). Alternatively, £c could be used to estimate a critical pressure gradient 
from Equation (4.4), or a critical velocity using the Buckingham (51) equation (4.14).

For the power law case, Hanks and Christiansen (56) defined a Reynolds number from the 
generalised Reynolds number of Metzner and Reed (20) :

= 8 * YpU2-nD n (4.38)
6n + 2 K

This expression can also, incidentally, be obtained from Newtonian Re by substituting the 
Newtonian viscosity /* with the effective viscosity (58) fie = rR IY. Using the Ryan and 
Johnson stability criterion of Equations (4.31) and (4.33), critical Rep becomes

(Rep ) c = 6464n (n + 2)^, (4-39) 
(3/i + I)2

and reduces to the Newtonian critical Re, 2100, for n = 1. A critical velocity can be 
obtained from these equations, but a critical pressure gradient also requires Equation (4.17).

For the general Bingham case, Hanks and Ricks (59) combined the definition of a Reynolds 
numbers for the Bingham plastic fluid and the power law fluid to give

n
6n + 2

(4.40)
K

This expression has the same form as Equation (4.38), but whereas K for a general Bingham
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fluid reduces to Bingham TJ for n = 1, AT for a power law fluid reduces to Newtonian /* for 

n = 1. Using the Ryan and Johnson stability criterion, Hanks and Ricks obtained an 

expression for the critical Reynolds number, which is

n + 2 ,2-n
(4.41)

where £c = ry /(rR \ is the ratio of yield stress to critical wall stress defined by the relation

He GB
3232 

n

n + 2 2 - n n + 2
(4.42)

and HeGB is the following Hedstrom number modified for a general Bingham fluid:

He GB
(4.43)

K2/n

Analogous to the Bingham case, £c may be obtained from these equations using an iterative 

scheme and used to estimate (ReGB )c from Equation (4.41). Alternatively, £c could be used 

to estimate a critical pressure gradient from Equation (4.4), or a critical velocity using 

Equation (4.18).

Slatter and Lazarus (60) reverted to the original Newtonian interpretation of the Reynolds 

number as the ratio of inertial to viscous forces to derive the following general Bingham 

Reynolds number:
Re _ __8_P U2K65L ~ —————

General Bingham pipe flow has a plug core an indisputable fact for upper bound laminar 

flow. Slatter (61) later modified this Reynolds number to account for the plug core as follows:

Re5 =
2 
ann

+ K ann
D-D.

n (4.45)

where Uann is the mean cross-sectional velocity of the annular flow, and Dy is the diameter 

of plug flow. Both these Reynolds numbers are assumed to have a critical value the same 

as a Newtonian Reynolds number, ie 2100.

For critical flow specifically of a general Bingham liquid, there seems to be little else in the 

literature. Slatter correctly points out that some general Bingham Reynolds numbers do not
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have a yield stress, and therefore do not account for the plug core. For Equation (4.40) this 

is true, but does not matter since the corresponding critical relation, Equation (4.41), is not 

constant and accounts for the yield stress via the Hedstrom number. The key point is that 

defining a Reynolds number can, to some degree, be an arbitrary process because it is the 

critical flow relation that determines the stability criterion.

For any pseudoplastic fluid in general, Metzner and Reed combined Equations (4.13), (4.6) 

and (4.22) to derive a generalised Reynolds number, which is given as

(4-46)

and as with Equation (4.21) n 1 =

4.4 Turbulent Flow Equations

Consider the turbulent flow of a fluid through a straight pipe. Equation (4.13) gives the 

relationship between the friction factor and the Reynolds number for laminar pipe flow. This 

relation is / = 16/Re, and has been the impetus for obtaining semi-empirical relationships 

between /and Re for turbulent flow. For a Newtonian fluid, notice that these turbulent flow 

relations would be a function of viscosity (via the Reynolds number), which is a laminar flow 

parameter. For non-Newtonian fluids in general, turbulent flow modelling is often based on 

the parameters of the laminar flow model.

For a Newtonian fluid, Blasius (62) obtained a simple, but widely used equation from a 

friction plot  a plot of /against Re. This is given as

/= 0.079 Re'0 ' 25 , (4-47) 

and is suitable for Re = 3000 to 100000.

Von Karman (63) obtained a relationship between/ and Re based on the turbulent flow velocity 

distribution proposed by Prandtl (25) . This equation  which includes two constants determined 

by Nikuradse (64)  is given as

L = 4.01og 10(Re^) - 0.40, (4.48)

and is suitable for Re = 3000 to 3000000. Clapp (65) followed a similar approach to obtain 

the relation

_L = 4.531og 10 (Rey/O - 2.3. (4.49)
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For a general Bingham fluid Torrance (27) extended Clapp's equation to give

4 - 53 
n

-12]
TR .

2.75 
n 0.45, (4.50)

where Rer is a modified Reynolds number defined as

_ r/2-nr) nRe7 = pU D 
- (4.51)

This equation reduces to Equation (4.49) for r = 0 and for n = 1.

Slatter (66) argued that a particle suspension has a similar effect on the velocity profile of a 
slurry as wall roughness has on the velocity profile of a Newtonian fluid. With this assump­ 
tion, plug flow does not occur, and this is borne out by experimental evidence (67 ' 68) . The 
advantage of the method is that wall roughness has been well researched, so derivation of a 
model was made less daunting. Slatter defined a particle roughness Reynolds number as

Re =xvv/

Ty + K

(4.52)

where dx is the representative particle diameter and U* is the friction velocity -J(rw lp).
IfRer < 3.32 then

- = 2.5 In . 2.51n(Rer ) + 1.75, (4 . 53)

and if Rer > 3.32 then
 , = 2.5 In [/*

K. I i i-wf-— I + 4.75. 
a. (4.54)

Although the slurry data that Slatter used are of a fairly broad spread, these equations give 
a good representation of the data.

Conventional wisdom has it that a plug core always survives for the turbulent flow of a fluid 
with a yield stress; this must be the case if the turbulent fluctuations are assumed to be 
infinitesimal. Although the experimental evidence seems to contradict the idea of a plug 
core, this evidence could hardly be extrapolated to all flow rates for all complex mixtures. 
For this research, there are no available data of the velocity distributions of a flow situation. 
Nevertheless, this is unimportant for our modelling requirements. For instance, the 
magnitude of a mean cross-sectional velocity prediction would come largely from the region 
of high shear; the remaining 'core' region of a low shear or zero shear would have relatively 
little significance on the prediction. In fact, there is nothing in the objectives that requires 
an explicit knowledge of the velocity profile.
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The turbulent flow models discussed so far are only relevant for a pipe geometry. Many of 
these models are based on integration of the velocity distribution with several simplifying 
assumptions to obtain simple relations. A more direct, though less simple procedure for 
modelling turbulent flow is obtained by integrating the velocity distribution given by Equation 
(4.23). The velocity distribution was given as

R
u(r) = Udr, (4.55)

which integrates to give a relationship between the pseudo-shear rate and wall stress. This 
has already been defined by Equation (4.11) as

— I 'Pydr.
TR rv

(4.56)

The mixing length model (2.23) is a shear flow relation, where the mixing length parameter 
was defined for Newtonian fluids only. Using y = R - r with Equation (4.5), Hanks (69) 
proposed a pipe version of this equation, which is given as

/ = KR [l - T 1TR.
N -*('--)!

1 - e v V
.. j

»
(4.57)

where 0 has been redefined for the appropriate fluid type (see proceeding sections). This 
model has had success when tested on much data of Newtonian fluids (69) , Bingham plastic 
fluids (70) , and pseudoplastic fluids (71) .

For the Newtonian case, Hanks (69) defined <j> of the mixing length model (4.57) to be
n n 
£j "" D

where
fib 

B = Revf,

which is a slight modification to Equation (2.23) such that Bc is the critical value of B, and 
is given by 2100 xV(16/2100) = 183. For pipe flow, dw/dy becomes-dw/dr, which is the 
rate of shearing strain. Therefore, Equations (2.7) and (2.24) give a total stress as

r = M7 + P/2 72 - (4 '58)

This equation is a quadratic shear flow function, and can be rearranged in terms of 7(7) and 
substituted into Equation (4.56). Since Equation (4.56) cannot be integrated analytically, an
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integration method would be required to estimate F and hence the mean cross-sectional 
velocity U. To obtain a pressure gradient prediction via wall stress TR , an inverse procedure 
would have to be employed. Unlike a laminar shear flow function, the shear flow relation 
now becomes a function of 7, r and TR meaning that the Mooney-Rabinowitsch equation 
(4.21) is irrelevant for this case. Equation (4.58) can be rearranged as the two-variable 
function 7(7, TR ), and substituted into Equation (4.56). A search method and an integration 
method would be required to solve the equation for TR ; the solution procedure would not be 
simple.

To obtain a turbulent flow velocity distribution of a Newtonian fluid, 7(7) can be substituted 
into Equation (4.55) and, via the linear relation (4.5), can used to calculate point values of 
«(r) via an iterative scheme. Figure 4-4 compares the laminar and turbulent flow velocity 
profiles of a Newtonian fluid. The turbulent flow profile is expectedly flatter than the 
laminar flow profile as energy is dissipated as random velocity fluctuations.

Figure 4-4 Velocity 
profiles of a Newtonian 
fluid. Turbulent flow has a 
much flatter profile than 
the laminar flow 
equivalent.

radial position, rlR

For the Bingham case, the shear flow function becomes

= ry + 777 + p (4.59)

Hanks and Dadia (70) redefined <f> of the mixing length model (4.57) to be

, BB ~ V*B )c

where

(4.60)

BB = Re.vf,

and RCj is a Reynolds number based on Bingham flow defined by Equation (4.34). Critical
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Refi , required to calculate (BB \ , is given by Equation (4.35), and critical/can be calculated 
from Equation (4.6) using the critical flow equations of Section 4.3. Hanks (26) found b to 
no longer be constant as in the Newtonian case, but the following function of the Hedstrom 
number:

£(He) = 22 1 + 0.00352 He
(1 + 0.000504 He)2 _

(4.61)

where He is defined by Equation (4.36). For He = 0, Equation (4.61) clearly reduces to 
b = 22 for a Newtonian fluid. Like the Newtonian case, Equation (4.59) is quadratic in 7, 
and pipe flow estimates can be obtained in much the same way.

For the power law case, the shear flow function becomes

T = /22.p7 (4.62)

Hanks and Ricks (71) redefined 0 of the mixing length model (4.57) to be

0P = (4.63)

where
"3/1 + 11

1 n \
Rep r /]

16

2 - n- 1 
n

and Rep is a Reynolds number based on a power law fluid defined by Equation (4.38). BP 
reduces to Newtonian B for n = 1. Critical Rep , required to calculate (Bp )c , is given by 
Equation (4.39), and critical/is given as/c = Vt 16/(ReP )c ]. For a power law fluid version 
of b, Hanks and Ricks obtained the following function of consistency index:

b(n) = 22 
n

(4.64)

where for n = 1 this reduces to b = 22, the Newtonian value of b. Unlike the Bingham case, 
Equation (4.62) cannot be directly expressed in terms of 7, but is a three-valued function of 
the form #(7, r, TR ). A numerical scheme to solve for pressure gradient would therefore 
be very complicated. However, Hanks and Ricks presented methods for obtaining dimen- 
sionless plots such as friction plots for a particular fluid type.

For the general Bingham case, the shear flow function becomes

r = T + Kyn +

Hanks (26) redefined <j> of the mixing length model (4.57) to be

'GB

(4.65)

(4.66)
n, He GB )
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where

BGB = 3n + 1 — —'GB
16

2 - m

and RecB is a Reynolds number based on a general Bingham fluid as defined by Equation 
(4.40). Critical ReG5 , required to calculate (BGB )c , is given by Equation (4.41), and critical 
/can be calculated from Equation (4.6) using the critical flow equations of Section 4.3. For 
a general Bingham version of b, Hanks suggested using the product of b for the Bingham and 
power law cases, which is

b(n, He G ) = 22 
n

1
0.00352 He GB

(1 + 0.000504 He GB Y _
(4.67)

though this conjecture was not verified for any data. Solution methods and design procedures 
for a general Bingham fluid are essentially the same as for a power law fluid. The laminar 
and turbulent flow velocity profiles for the general Bingham case are compared on Figure 
4-5. Notice that the size of the unsheared core is reduced for the higher shear required of 
turbulent flow.

Figure 4-5 Velocity prof­ 
iles of a general Bingham 
fluid. Notice that the solid 
core reduces in size at 
higher shear.

radial position, r/R

For any pseudoplastic fluid in general, Dodge and Metzner (21) obtained the following 
turbulent equation based on the Metzner and Reed generalized Reynolds number (4.46):

1 -n ~~2
/

0.40 (4.68)

where
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Equation (4.68) is suitable for values of n 1 from 0.36 to 1.0, and Rem from 2900 to 

36000, and reduces to Nikuradse's equation (4.48) for n' = 1.

Tarn and Tiu (72) derived a simpler expression by considering the relation between two other 

dimensionless groups, namely a loss coefficient (73)

(4.69)

and the modified Reynolds number

Re **
4n

(4.70)

The wall viscosity is defined as pR = TR /JR , and from Equations (4.21) and (4.22) is

(4.71)

The relationship between <p and Re ** is

= 3.96 X 10'2 Re (4.72)

where «' = 0.4 to 1.35, and reduces to the Blasius equation (4.47) for n 1 = 1. Tarn and 

Tiu's work also extends to ducts of arbitrary cross-section.

Dziubinski (74) took a similar approach but converted the final expression back into the usual 

frictional form:

/ = 0.01382
3/i' Hh r

4/z'

-3.5

exp 1.745
3>n' + 1 (4.73)

where ReM/f is the Metzner-Reed Reynolds number given by Equation (4.46).

4.4.1 Pipe Roughness

For this research, the impetus for pipe flow modelling is primarily to analyse the data. All 

of the data of this research are of smooth pipe flow, so pipe roughness is of no direct 

concern to us. Pipe roughness can significantly affect the turbulent flow of a fluid, and a 

straightforward way of dealing with this is to use the Moody chart (75) . This chart is only 

applicable to Newtonian fluids, but can be extended to non-Newtonian fluids (24) . The method 

involves calculating the pressure gradient prediction for a smooth pipe, and multiplying the 

result with an adjustment factor. This factor is calculated from the Moody chart as the ratio 

of the friction factor for a rough pipe to the friction factor for a smooth pipe at the non- 

Newtonian Reynolds number instead of the Newtonian Reynolds number.
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4.4.2 Solids Concentration Relations

For the turbulent flow of sewage sludge through straight pipes, Frost (8) has developed 

empirical relations between the sludge-to-water head loss ratio, HLR, and the concentration 
of solids in percent by mass, Cw . For a primary sludge,

HLR = 1.0,

where the solids concentration which is independent of the head loss ratio has a range of 

about 2 to 6 percent by mass. For an activated sludge

HLR = 0.88 + 0.24CW , 

where the range of Cw is about 0.5 to 4 percent. For digested sludge

HLR = 0.80 + 0.160^, 

where the range of Cw is about 1.5 to 6 percent.

These models are markedly different to those of the previous sections in that they are 
empirical models of the effect of solids concentration. The main objectives of this research 
are to derive models that are based on the analysis of the previous sections but include the 
effect of solids concentration.

4.5 Wall Slippage Equations

So far in this chapter, the assumption has been of the flow of a smooth, pseudohomogeneous 
fluid through a straight pipe. Wall slippage is a misleading term used to describe the 
separation of solids from the liquid medium close to the pipe wall, and is therefore a basic 
inhomogeneous model (76) . Separation occurs during flow, firstly because the particles tend 
to migrate radially inwards towards the region of higher shear, and secondly because the 
finite sizes of particles cause a decreasing solids concentration of fluid close to the wall. 

These effects can be realistically modelled as a discontinuity of the rate of shear at the pipe 

wall. The assumption is that wall slippage is suppressed for rough pipes (77) , and being more 

significant at low shear (78) , the effect is less important for turbulent flow. The assumption 

of this chapter has so far been of a zero fluid velocity at the pipe wall, ie u(R) = 0, but now 

a slip velocity can be introduced such that u(R) = Us . This slip velocity has been found to 

be a function of both wall stress TR and pipe diameter D (78) , and is typically modelled as

U = *, (4.74) 
1 Da

where a and 0 are constants established from data, a frequently lies between one and two.
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Equation (4.11) gave a relationship between pseudo-shear rate F and wall stress TR relevant 

for both laminar and turbulent flow. Adding a slip pseudo-shear rate, Ts = WS ID, to this 

equation yields

r =
D«*'

R T.,

(4.75)

For laminar flow, this equation reduces to a version of the Mooney-Rabinowitsch equation 

(4.21) adapted for wall slip, and is given by

In" + 1 - r,), (4.76)

where
.. n" = o *

dln(T -

Extending a quantity to allow for wall slippage can often be trivial. For instance, the 

velocity distribution given by Equation (4.23) can be redefined as

u(f)

Similarly, a critical velocity can be redefined as

Us .

ve + u..
Wall slip modelling will be a topic of the next chapter.
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5 Pipe Flow Modelling

In this chapter, a discussion is given of the mathematical modelling of time-independent non- 
Newtonian viscous fluids through a straight pipe. Algorithms are presented of laminar, 
critical and turbulent flow, and velocity distributions. The fluid will primarily be regarded 
as pseudohomogeneous, but in the final section, wall slip will be introduced into the model. 
The work takes the first step away from graphical methods or simple iterative methods, and 
towards more complex numerical solutions. The numerics are still relatively simple 
compared to those of computational fluid dynamics discussed in Chapter 1 where complex 
three-dimensional geometries with complex flow fields are solved. Judging by the literature, 
the work is original as numerical methods have only been derived for the complex pipe flow 
situations discussed in Chapter 1, such as the transient flow of a liquid in a pipe (29) , or the 
numerical simulation of turbulent flow through a pipe (30> 31) .

In the previous chapter, models were reviewed of straight pipe flow for yield pseudoplastic 
fluids with a particular shear flow function. In this chapter, algorithms are derived for such 
a system that permits the end-user to define any shear flow function (though how this 
function would be specified ie as a program subroutine is of no particular concern to this 
research). The flexibility of the methods are still comparable to friction plots since on-the- 
job predictions can now be made using notebook computers which have become widely 
available. The Water Research Centre also wishes to extend the algorithms to include pipe 
bends and other fittings enabling pipe networks to be defined. This chapter does not use any 
computer terminology. However, the algorithms have been implemented in Fortran 77 and 
Appendix B gives the subroutine declaration (name and argument list) of each associated 

algorithm of this chapter.

5 . 1 Laminar Flow Modelling

The shear flow function (the relationship between shear stress and rate of shearing strain) was 

discussed in Section 2.1, and is either of the explicit form

G(7, T) = 0. (5 '2)
or the implicit form

Every numerical algorithm discussed in this chapter will require a shear flow relation of one 
of the above two forms, so before discussing any algorithm in detail, brief consideration will 
be given to the difference between the explicit and implicit cases. In particular, a numerical 
algorithm that requires an evaluation of an explicit function would receive a value of r for 
a given 7, but for an implicit function, both values of 7 and T would be required for an
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evaluation. It could be possible to adapt any numerical algorithm that uses Equation (5.1) 

to be compatible with Equation (5.2); this would be achieved by numerically solving 

Equation (5.2) for r at each given value of 7. An algorithm for the implicit case could thus 

be extended to the explicit case by employing an extra numerical method; although such an 

adaption would be easy to effect, it could seriously jeopardise the efficiency of an algorithm. 

Therefore, the explicit and implicit cases of an algorithm will be given separate treatment.

Consider the laminar flow of a time-independent non-Newtonian viscous fluid through a 

straight pipe. The relationship between pressure gradient and mean cross-sectional velocity 

is more conveniently expressed as a pseudo-shear flow function— a relationship between wall 

shear stress and a pseudo-shear rate. Such relationships were discussed in Section 4.2 for 

specific time-independent non-Newtonian viscous fluids, but all have been derived from the 

general relation, Equation (4.11), which was given as

(5 ' 3)

where TR is the shear stress at the pipe wall,

T P = — 
R 4 L

and F is a pseudo-shear rate,

(5.4)

T = 2±L. (5.5) 
D

It should be appreciated that any successful numerical algorithm of this equation would also 

be applicable to the Hagen-Poiseuille equation (4.12) for Newtonian fluids, and the 

Buckingham (51) equation (4.14) for Bingham fluids etc. Such equations, which are special 

cases of Equation (5.3), will be useful for checking the validity and accuracy of any 

numerical algorithm.

5.1.1 Mean Cross-Sectional Velocity

For predictions of mean cross-sectional velocity, an algorithm is required for numerical 

estimates of Equation (5.3). Since the body of the equation is an integral, a suitable 

integration method would presumably be a useful starting point. The integrand, however, 

suggests that things are not so straightforward; for an explicit function of type (5.1), the 

function inverse, 7 = g~ V), becomes part of the integrand. If the inversion is considered 

independently, then a function inversion method would be employed; the method would be 

invoked for each and every integrand evaluation. The numerical algorithm of Equation (5.3) 

would thus require method nesting: a function inversion method nested within an integration
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method. Such method nesting would be computationally expensive and not simple to 
implement, so serious consideration needs to be given to simplify the approach. An obvious 
solution is to consider rearrangements of Equation (5.3) that would yield a simpler algorithm.

Since the integrand is a multiple of two parts, an arrangement using integration by parts can 
be attempted. From Equation (5.3) this is given as

r =
-YR 

4 r d

ri I d^

V"

3

which integrates by parts to give

A 1 *
(5.6)

This arrangement of Equation (5.3) is advantageous; it has effectively transferred the inverse 
function outside of the integrand so that the shear flow function needs inverting only once 
for the wall value 7^. This would be performed independent of, and before the integration. 
The algorithm is therefore a favourable one-tiered system of two distinct methods as opposed 
to the two-tiered system of nested methods considered earlier.

Having defined the basic structure of the algorithm itself, the next task is to embody some 
suitable methods. For the inversion, Muller's bracketing method (A.4: Appendix A, 
Section 4) is used, and for the integration, three methods are compared: adaptive versions 
of Trapezium, Simpson and Boole (methods that are two-, three-, and five-point respectively. 
See (A.I)). The accuracy of a scheme is user-defined with a relative tolerance check e. For 
instance, the convergence criterion |*f - *,- _ 11/|*,-| < e applied to a converging sequence 
jc,-, i = 1,2,... will result in an estimate of AC with a relative accuracy of at least e.

The required accuracy of a scheme would undoubtedly affect its efficiency, although a way 
of defining the efficiency of a scheme is needed. Timings are not a good idea as they are 
machine dependent. The number of iterations is problem dependent as it hinges on what is 
being iterated (this could be anything from a simple function to another scheme). These 
problems can be avoided by choosing the number of evaluations of the shear flow function 
as the measure of efficiency, and this is the measure that shall be adopted.

Although one might intuitively expect Boole's five-point method to outperform the others, 
this is not actually the case. Consider the example of the flow of a general Bingham fluid 
through a straight pipe. Arbitrarily take the shear flow function to be r = 10 + Vr with a 
wall stress of TR = 25 Pa and a relative tolerance check of e = 5 x 10'5 . The following table 
gives estimates of the pseudo-shear rate (the star signifies an estimate) with the number of 

evaluations of the shear flow function used to obtain it.
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Method r*/s-1 No. of evaluations

Trapezium 132.4800 55

Simpson 132.4804 45

Boole 132.4805 65

It is worth first checking the estimates against the true value given by Equation (4.18) for 

a general Bingham fluid. Setting r^ = 25 Pa, ry = 10 Pa, K = 1 Pa s, n = 0.5 and evaluating 

Equation (4.18) using a pocket calculator, a pseudo-shear rate of exactly T = 132.48 s' 1 is 

obtained. All of the estimates are correct to the required four significant figures, and for this 

particular case, it can be seen that Simpson's method is the most efficient. In fact, tested on 

some other examples, Simpson's method is generally the most efficient typically requiring 

three dozen evaluations of the shear flow function. The Trapezium method is less efficient 

because it is of a lower order, and conversely Boole's method is less efficient because it 

requires more points for an area estimate. It is fair to say that all three methods work 

perfectly well and efficiently, so there is not that much to choose between them. The 

efficiency tests have helped to put the problem into perspective, but for the rest of the 

chapter, less emphasis will be given to efficiency.

For many engineering applications, a four significant figure accuracy is unlikely to be 

required. However, the accuracy of a scheme is, for instance, determined by the number 

of iterations or steps taken, and not by the complexity of the scheme (this scheme is 

relatively simple). When testing a scheme, it is often much easier to detect a fault with the 

logistics when a result is accurate. Furthermore, a scheme such as this needs to be accurate 

when it is used as part of something bigger, such as parameter estimation scheme, as it is 

important to avoid error accumulation within the bigger scheme. Finally, if a scheme is used 

for data analysis, the final result may be sensitive to a particular predicted value. For 

instance, if a critical flow prediction is too large, a turbulent flow point may be detrimentally 

included in the laminar flow analysis. Therefore, all of the schemes of this chapter will be 

tested for accuracy. Figure 5-1 illustrates the final version of the algorithm in the form of 

a structured chart (79) .

For implicit shear flow functions of type (5.2), things become a little less straightforward. 

In this case, both Equations (5.3) and (5.6) have integrands with implicit variables: for the 

first equation, the integrand is a function of T, whereas for the second, the integrand is a 

function of 7. An algorithm based on either equation would require a method to solve 

Equation (5.2) for 7 or r to be nested within an integration method. Since this is 

undesirable, a rearrangement is again needed that would alleviate the problem; this time, 

none can be found. Since algorithms based on Equations (5.3) and (5.6) would both have
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Laminar Mean 
Cross-Sect. Velocity

AP/L U

Invert (5.1)

Muller's method

Calculate 
integral of (5.6)

Simpson's method

Evaluate (5.1)
Evaluate 

integrand of (5.6)

I t
Evaluate (5.1)

Figure 5-1 The algorithm to predict the mean cross-sectional velocity for the laminar 
flow of a tune-independent, non-Newtonian, viscous fluid through a straight pipe.

similar structures, both are implemented to compare their efficiencies. In devising an 
algorithm for Equation (5.6), the obvious thing is done in extending the explicit case to deal 
with implicit shear flow functions. This is accomplished by nesting a method to solve 
Equation (5.2) for values of T within the integration method. The algorithm for Equation 
(5.3), although similar, is derived from scratch, though this time a method to solve Equation 
(5.2) for values of 7 is nested within the integration method. Adaptive Simpson's method 
is used in both algorithms for the integration, and Muller's method is used as the nested 
method in both cases. Relative tolerance checks are used, though since Muller's method is 
nested, its tolerance is further reduced by a factor of ten. Tested on some data, Equation 
(5.6) proves to yield a more efficient algorithm than Equation (5.3) sometimes by orders 
of magnitude. Equation (5.6) is therefore endorsed for the purpose.

As an example of the implicit case, the Meter model (2.13) can be used with the following 
arbitrarily chosen values: ^ = 1 Pas, ^ = .001 Pas, rm = 10Pa, a = 1.5. Using the 
algorithm with a wall stress of TR = 25 Pa and a relative tolerance check of e = 5 x 10'5 , a
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pseudo-shear rate estimate of T* = 60.0514 s' 1 is obtained in 119 function evaluations. This 

estimate needs some verification, so it can be compared to the first order approximation 

given by Equation (4.20). Placing TR = 25 Pa into Equation (4.20) yields T » 60.0513 s' 1 , 

which agrees with the estimate to at least four significant figures. One might have expected 

the first order approximation to fare worse than this, but this approximation is accurate for 

small /ioo/^o- For this example, the algorithm requires 119 evaluations of the shear flow 

function, which compares to 45 evaluations for the general Bingham example. In general, 

the algorithm for the implicit case loses ground on method nesting, typically requiring three 

times as many shear flow function evaluations as the explicit case.

5.1.2 Pressure Gradient

A pressure gradient prediction is essentially the inverse of a velocity prediction. Evaluating 

Equation (5.6) for F to obtain a velocity prediction is straightforward enough, but in order 

to obtain a pressure gradient prediction, the equation would have to be solved for 7^. 

Viewed as 1X7^), Equation (5.6) is an integral, but viewed as 7^(F), the equation becomes 

an integral equation with a variable upper limit of integration. This equation could still be 

solved with a root-finding method, but every iteration of this method would require a re- 

evaluation of the integral. In essence, the integration method would be nested within the 

root-finding method, and since this would be a computationally expensive option, a better 

alternative shall be sought.

As discussed in Section 4.2, the Mooney-Rabinowitsch (52> 53) equation (4.21) is an alternative 

arrangement of Equation (5.3), and when arranged as a linear differential equation, becomes

TR , r^CO) = TV . (5.7) 
- 3F R y

This is therefore Equation (5.3) or (5.6) set up as an initial value problem (IVP) of the form 

y' =/(*, y), y(d) = b. However, as a function of T and TR , this equation is not entirely 

satisfactory as it contains the inverse of the shear flow function 7^ = g~ l (rR ). So, after 

giving the problem some consideration, Equation (5.7) is transformed to be a function of T 

and yR by dividing both sides of the equation by the derivative of the shear flow function at 

the pipe wall, dTR /djR :

(5.8)
dr

Although this equation has a derivative term, it is easier to deal with in terms of numerical 

methods than Equation (5.7) which contains the inverse of the shear flow function. The 

derivative term, dr^/d^, on the right hand side of Equation (5.8) is the derivative of the 

shear flow function at the pipe wall. If the derivative is not specified by the end-user, a
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fresh estimate of this derivative is required for every evaluation of the right-hand side of the 

equation, so the following forward difference formula is used

  (5.9)

Runge-Kutta Fehlberg's fifth-order method (A.6), which has automatic step-size control, is 

used to solve Equation (5.8). However, the functional part of the equation (the right-hand 

side) cannot be evaluated at the initial value (F = 0, 7^ = 0) as the denominator would 

always be zero and the numerator would be zero for functions without a yield stress. This 

is no real problem as a standard approach to this situation is to choose an arbitrarily small 

starting value that is smaller than the required tolerance. In our case, for instance, consider 

a relative tolerance check of e. If an arbitrary starting value for (F, 7^) is chosen to be 

(el1 , eF), from Equation (4.21) it is clear that 7* < F for all pseudoplastic fluids, and that 

e F contributes relatively less than e to the final error.

For example, consider again the general Bingham fluid r = 10 + ^7, a pseudo-shear rate of 

F = 100 s" 1 , and Fehlberg's method with a relative tolerance check of e = 5 X 10"5 . Using 

the above criterion, the starting value is (F0 = 5 x 10"3 s" 1 , (7^)0 = 5 x 10"3 s" 1 ). The 

method takes 35 steps to reach the solution where the first and last five steps are shown in 

the following table:

m

0
1
2
3
4

31
32
33
34
35

r/s- 1

5.0000 x 10-3
5.0010 x 1C'3
5.0037 x IO-3
5.0078 x 10-3
5.0147 x 10-3

14.0829
24.1760
42.1578
75.3325
100.0000

Vs- 1

5.0000 x
5.2614 x
5.8227 x
6.4957 x
7.4134 x

34.4542
53.2627
84.2983
137.8183
175.9859

io-3
io-3
io-3
io-3
io-3

Although a solution is reached, this is still slow for a fifth-order method. The objectives of 

this research require data analysis and parameter estimation of an extensive set of pipe flow 

data, so it is worth trying to improve the scheme. Fehlberg's method has an automatic step- 

size control, so there is no way of improving the efficiency in that respect. The idea of 

using a starting value closer to the solution can be examined. Since Eq's (5.6) and (5.8) are
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completely different arrangements of the same equation, this advantage can be exploited in 

a major way. Values of F and 7^ that satisfy Equation (5.6) will also, of course, satisfy 

Equation (5.8). If, for Fehlberg's scheme, a starting value of 7^ is known to be relatively 

close to the solution, then the corresponding value of T can be calculated (to within the 

required relative tolerance) from Equation (5.6) using numerical integration (such as the 

scheme presented in the previous subsection). Since F will make a far better starting value 

for yR than the original eF, it shall be chosen in preference.

In terms of the example, the initial rate of shear is now set to (7^)0 = 100 s" 1 , and Equation 

(5.6) is used to find the corresponding value of F0 to within the required tolerance. 

Fehlberg's method is then employed and, as shown in the following table, takes just one step 

to reach the solution.

m

0
1

F/s' 1

51.6669
100.0000

7*/s- !

100.0000
175.9856

Many other test cases were tried using this method and, by virtue of the excellent starting 

value, a solution was usually reached in just one step. As the step size was often big for the 

method, Fehlberg is therefore not too powerful for the job. The number of steps of a 

method is not a good measure of efficiency as the computation of a step is bound to vary 

considerably between methods. Using the measure adopted by this research, the number of 

shear flow function evaluations (with the difference formula (5.9) implemented) is 52. In 

fact, for any test problem, the algorithm typically requires about 50 evaluations of the shear 

flow function.

For completeness, it is worth checking the solution of the above table against the pipe flow 

Equation (4.18) for a general Bingham fluid. However, rR cannot be obtained from Equation 

(4.18) directly, so it is instead preferable to substitute in our estimate of rR into the equation 

to yield an estimate of F, which can be compared to the original value of F = 100.0000 s' 1 . 

Firstly, TR* = (10 + ^175.986) Pa = 23.2660 Pa. Furthermore, ry = 10 Pa, K = 1 Pa s and 

n = 0.5, so evaluating Equation (4.18) using a pocket calculator yields an estimate of F* = 

100.0000 s" 1 , which is wholly valid. A more systematic validation of the algorithm will be 

discussed in Subsection 5.1.4.

For an implicit shear flow function, both Equations (5.7) and (5.8) become implicit. 

However, the extra derivative term of Equation (5.8) now makes it less appealing to use as 

an algorithm than Equation (5.7). To solve Equation (5.7), Runge-Kutta Fehlberg's method
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is used (as with Equation (5.8)). For the nested method required to solve Equation (5.2) for 
values of 7^ and TR (see Figure 5-2), Muller's bracketing method (A.4) is used. Being 
nested, the tolerance of Muller is naturally reduced, using the factor ten. The starting value 
needs consideration as the solution variable is now wall shear stress rather than wall shear 
rate as in the explicit case. F made a good starting value for 7^ , but it may not be so close 
to a solution for TR . However, the problem is overcome by numerically solving the shear 
flow function at 7^ = F to obtain an initial value for rR that is reasonably close to the 
solution. As with the explicit case, Equation (5.6) can then be numerically integrated at 
7rt = F to yield the corresponding value of F0 . Analogous to the explicit case, the resulting 
initial value (r0 , (r^)0 ) would satisfy Equation (5.7) to within the required tolerance.

As an example of the implicit case, the Meter model (2.13) can again be used with the 
following arbitrarily chosen values: /x0 = IPas, ^ = .001 Pas, rm = 10 Pa, a = 1.5. Using 
the algorithm with a pseudo-shear rate of F = 100 s" 1 , and a relative tolerance check of 
e = 5 x 10~5 , Fehlberg's method takes just one step to reach the solution (see table below).

m

0
1

r/s~ l

92.7802
100.0000

VPa

34.9232
36.9745

This solution needs some verification. A first order approximation of F for the Meter fluid 
is given by Equation (4.20). Placing our estimate of TR which is 36.9745 Pa into Equation 
(4.20) yields F* « 99.9996 s" 1 (an approximation based on an estimate) which agrees with 
F to four significant figures. One might have expected the first order approximation to fare 
worse than this, but as mentioned in the previous subsection, this approximation is accurate 
for small (*„ //x0 . For this example, the algorithm required 116 evaluations of the shear flow 
function, which compares to 52 evaluations for the general Bingham example.

For any test problem in general, the implicit case typically makes eighty to one hundred and 
fifty evaluations of the shear flow function about three times as many as the explicit case. 
Suspicions arose as one would not expect the implicit case to fare three times as badly: both 
algorithms use Fehlberg's method and both algorithms require method nesting (forward 
differencing for the explicit case and root-finding for the implicit case). However, it should 
be noticed that Equation (5.8) is dimensionless doubtlessly making the equation well-behaved 

in terms of convergence.

As a point of interest, if the derivative term of Equation (5.8) is known by the end user, it 
would show more promise for an algorithm than Equation (5.7). Is it possible to obtain the
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derivative term of Equation (5.8) from Equation (5.2)? Applying the chain rule to the 

derivative with the observation that the total differential of the implicit shear flow function 

is zero, dG = 0, we have

So the answer is yes, the user would need to only specify the partial derivatives of the shear 

flow function with respect to rate of shear and shear stress.

5.1.3 Velocity Distribution

Subsection 4.2.1 gave a general discussion of fully-developed velocity profiles: for 

Newtonian fluids, the velocity profile is parabolic; for pseudoplastic fluids, the velocity 

profile is flatter than a parabola, whereas for dilatant fluids, the velocity profile is sharper. 

It was also asserted that a fluid with a yield stress always (at least theoretically) flows with 

an unsheared solid plug core. The radius of the solid core is surprisingly simple to 

formulate. From Equation (4.5), the linear relationship between r and T is

R TR
(5-10)

therefore the radius of the plug core is given by

r = R!L. (5.11)
y TR

A\

For the sheared region of fluid where r > ry , the velocity distribution is calculated from the 

definition of the rate of shear, 7 = -dw/dr. Assuming u(K) = 0 (no slippage against the pipe

wall), this integrates to give
R

u(f) = [-ydr. (5.12)

r

For the core region of the fluid where r < ry , the velocity profile is flat and the velocity has 

constant maximum value the value of Equation (5.12) evaluated at ry .

If the shear flow function is of the explicit type, then the required relationship between 7 

and r of Equation (5.12) is given via Equations (5.1) and (5.10). However, the integrand 

of Equation (5.12) contains the inverse of the shear flow function 7 = g~ l (r). Since a 

similar problem arose with the mean cross-sectional velocity case, this problem can be dealt 

with in much the same way. Equation (5.12) can be rearranged as

dr .u(r) = f-^ 
J d7
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which integrates by parts to give

JR

u(r) = RyR - ry - frd-y.
T

This velocity distribution would be of practical use (for velocity profile plots etc) at a set of 
W equally spaced radial points. Since the initial condition u(R) = 0 is at the pipe wall, the 
following 'discretisation' of r from the wall to the centre line can be chosen:

r = R W ~ s 5 = 12 W (5-14)'5 TIT T' 1,Z,,..., IT. > /
Vr - 1

Let us assume that the first T points of the distribution define the sheared region of fluid, 
whereas the subsequent T + 1 to W points of the distribution define the plug core. Point 
values of Equation (5.13) are given by

y,

From this equation, it can clearly been seen that the range of integration for the s - 1th point 
(is - \ to 7j? ) covers much of the range of integration for the 5th point (7, to 7^). From, a 
computational viewpoint, it would be much more economical to calculate an 5th integral for 
the range 7, to 7, _ { (noting that ys is less than 7, _ { ) and augment this value to a running 
total. Effecting these changes to the equation above yields

- rs y s - /  5 = 2,..,r, (5.15)

where
T, - i

7 = 0-

Equation (5. 15) requires an inversion of the shear flow function for the pipe wall value 7 
and (considering the relationship between r and r defined by (5. 10)) for each 7^ . For these 
inversions, Muller's bracketing method (A. 4) is used.

Consider Equation (5. 16). For any value of 5, the region of integration is likely to be small. 
On this premise, it would be logical to suggest that the discrete points of the integration 
method should match those of the velocity distribution. However, since the integration 
method would become inextricably embedded within the velocity distribution scheme, this 
would not be a good idea from a design viewpoint. For the algorithm to be modular, 
flexible, and easy to understand, the integration should be performed independently on each 
and every interval of the velocity distribution. Using the test data, adaptive versions of the 
Trapezium, Simpson and Boole methods (A.I)  two-, three-, and five-point methods 
respectively  are compared. For a distribution of many points  hence small intervals  a
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powerful integration method is found to be unnecessary, whereas for a distribution of few 

points hence large intervals a powerful method is found to be desirable. As it transpires, 

this is no problem as the integration methods (as discussed in (A.I)) initially check using 

lower-point methods. Our implementation of adaptive Simpson's method, for instance, does 

an initial check of two Trapezium estimates against a Simpson estimate. For Boole's 

method, a further initial check of Simpson against Boole is conducted. Such initial checks 

provide the necessary computational economy for integration over relatively small intervals. 

It has thus been found that our implementation of Boole's method is well suited to any given 

number of velocity distribution points. For distributions of few points, the algorithm 

typically requires about fifty to eighty shear flow function evaluations, whereas for 

distributions of many points, the number of shear flow function evaluations is about seven 

to ten times the number of distribution points, and there is no considerable difference in the 

efficiency of the algorithm for any particular test problem. The final version of the 

algorithm is illustrated by Figure 5-3.

The velocity profiles of Figure 4-2 were all created using this algorithm by defining each 

curve as a series of straight lines joining a set of closely spaced points. As an example, 

consider the general Bingham fluid r = 10 + Vr with a mean cross-sectional velocity of 

U = 1ms' 1 and a pipe of diameter of D = 0.04m. The numerical estimates can be 

compared with the analytical values of Equation (4.29). Taking a relative tolerance check 

of e = 5 x 10~5 and W = 11 profile points, the following table gives the estimates in the 

starred column and the actual values in the far right column.

£

1

2
3
4
5
6
7
8
9
10
11

r5 /mm

20.
18.
16.
14.
12.
10.
8.
6.
4.
2.
0.

u*(rs )lms~ l

0.000000
0.552613
0.934939
1.178344
1.314194
1.373857
1.388716
1.389164
1.389164
1.389164
1.389164

M(r,)/ms-

0.000000
0.552613
0.934939
1.178344
1.314194
1.373856
1.388696
1.389109
1.389109
1.389109
1.389109

There is a plug core of about 7 mm which explains why the last values are the same. The 

numerical estimates are all accurate to the required four significant figures, but notice that 

the estimates become less accurate further from the wall where error from the numerical 

integration accumulates.
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For implicit shear flow functions of type (5.2), either Equation (5.12) or (5.13) can be used 

for an algorithm. However, via Equation (5.10), they are both handicapped with implicit 

integrands so, from this perspective, there is nothing to choose between them. Analogous 

to the implicit case of mean cross-sectional velocity, algorithms can be developed for both 

equations to compare their efficiencies. The algorithm for Equation (5.13) is an extension 

of the explicit case. Boole's method is used for the integration, and Muller's method is used 

to solve Equation (5.2) for values of 7 or r. Since Muller's method is nested, the tolerance 

is, as usual, reduced by a factor of ten. Tested on some data, the algorithm based on (5.12) 

proves to be about twice as efficient as the algorithm based on (5.13) and, much as expected, 

two and a half times less efficient than the explicit case.

As an example, the Meter model (2.13) can again be used with the following values: 

Mo = IPas, /*« = .001 Pas, rm = 10Pa, a = 1.5, and compared to the first order 

approximation given by Equation (4.30). Taking a pipe diameter of D = 0.04 m, a mean 

cross-sectional velocity of U = 1 m s' 1 , and a relative tolerance check of e = 5 x 10'5 , the 

following table compares the numerical estimates (marked with a star) with the first order 

approximations.

s

1
2
3
4
5
6
7

8
9
10
11

rs /mm

20.
18.
16.
14.
12.
10.
8.
6.
4.
2.
0.

u*(r,)/ms' 1

0.000000
0.405299
0.754099
1.048914
1.292422
1 .487504
1.637295
1.745267
1.815375
1.852335

1.862499

M^/m s~

0.000000
0.405297
0.754095
1.048908
1.292416
1.487496
1.637286
1.745258
1.815364
1.852325
1.862479

The values all compare to four significant figures, which is more than one might expect when 

comparing an estimate with a first order approximation. As mentioned earlier in the chapter 

however, such first order approximations are good for small /*

For completeness, Figure 5-4 compares the general Bingham profile with the Meter profile 

generated from the above two tables. However, the smooth curve appearance has been 

achieved using twice as many points. Note that these profiles are based on two completely 

different hypothetical shear flow models, but they could both conceivably represent thick
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sludges. The profiles are of comparable size, as one would expect, since the mean cross- 
sectional velocity is 1 m s" 1 in both cases.

V)

oo
13

Figure 5-4 Laminar 
flow velocity profiles 
of a general Bingham 
fluid and a Meter fluid.

10.0 

radial position, r/mm

20.0

5.1.4 Scope of Use

The limitations of an algorithm are difficult to define since many of the variables and 
parameters are interdependent. The general Bingham model (2.10) is a particular example 
of an explicit shear flow function, and given as

r = Kyn .

This is an empirical relation, and being a good model of any time-independent, non- 
Newtonian, viscous fluid makes it an excellent choice for validation. Section 4.2 discussed 
the equations for laminar flow of a general Bingham fluid (and its special cases) through a 
straight pipe; they are straightforward, and can be evaluated directly, or using a simple 
iterative method.

The second validation procedure requires inverting a prediction to see if it reverts back to 
its original value. For instance, a mean cross-sectional velocity value can be used to make 
a pressure gradient prediction which, in turn, can be used to make a mean cross-sectional 
prediction which is then compared to its original value.

After some exploratory tests using the two validation methods, the scope of the algorithms 
are presented in Table 5-1, but there may be some absurd combinations of these values that 
may not actually meet the required tolerance. Since the usable parameter ranges are so 
extensive, they would easily encompass any real life problem. The algorithms may seem
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excessively robust for their application, but this is not the case. An objective of this research 
is to perform extensive parameter estimation on the data discussed in Chapter 3, and the 
corresponding method may require the parameters to wildly fluctuate before an optimum 
solution is reached.

Table 5-1 Usable ranges of the parameters for the laminar flow algorithms

Parameter Range

- 1 10-3 -103

(AP/L)/Pa m- 1 1(T3 - 109
Dim 10~3 - 103

Ty fPa 0-106
K IQ-6 - 106

n 0.1-2.0

The efficiency of an algorithm is defined as the total number of shear flow function 
evaluations made by the algorithm. Table 5-2 gives the order of magnitude of efficiency for 
each algorithm.

Table 5-2 The number of the shear flow function evaluations in orders of magnitude 
made by each algorithm.

Estimate

Mean velocity /m s" 1
Pressure grad/Pa m' 1
Velocity dist'n/m s' 1

Explicit

10 - 102
10 - 102

102

Implicit

102
102
102

5.2 Critical Flow Modelling

Critical flow is the upper bound of laminar flow; the point at which laminar flow becomes 
unstable. As discussed in Chapter 1, the end-user must be allowed to specify their own 
choice of shear flow relation for an algorithm, so a suitable choice of critical flow model 
needs to be selected. From Section 4.3, this rules out any model derived for a specific fluid 
type, such as the Reynolds number of Slatter derived for a general Bingham fluid (see 
Equation (4.45)). The clear favourite is the Ryan and Johnson stability parameter (54) as not 
only is it completely general, but as discussed at the beginning of Section 4.3, has been 
widely tested on many fluid types.
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Unlike laminar flow, critical flow is a two-variable problem; for a given pipe diameter and 
fluid type, the critical flow conditions occur at a particular mean cross-sectional velocity and 
pressure drop. As with the laminar flow case, the shear flow function is either of the explicit 
form

r = g(y), <5 ' 17)

or the implicit form
G(-y, r) = 0, <5 - 18)

and will be treated as separate cases.

Critical flow predictions of non-Newtonian fluids can be made using the Ryan and 
Johnson (54) general stability parameter, which was discussed in Section 4.3. For straight 
pipe flow, this is

r(r) = (5 
TR

where «(r) is the velocity distribution, f is zero at the pipe wall and at the pipe centre line, 
but reaches a unique maximum value Z at some radial point. Z may be used like a 
generalised Reynolds number whose critical value is 808: if Z < 808, the flow is laminar, 
whereas if Z > 808, the flow is non-laminar. By basic turning point techniques, the radial 
point at which {" has a maximum is the solution of the equation

= 0, (5.20) 
dr

which can be substituted into Equation (5.19) to obtain Z.

The stability parameter should give results consistent with the Reynolds number (4.7) for 
Newtonian fluids, and should also be consistent with, for instance, the Reynolds number for 
power law fluids (4.38) at critical flow (4.39). Such equations are discussed in Section 4.3 
and are special cases of Equation (5. 19); they will be useful for checking the validity of any 
algorithm based on Equation (5.19).

5.2.1 Critical Rate of Shear

A generally more useful prediction to the one discussed so far is the critical wall stress', the 
wall stress that has a Z value of 808. This is the inverse problem where instead of obtaining 
Z for a given TR , TR is obtained for a given Z. In the former case, Z would be calculated for 
a particular TR , then compared to its critical value 808, but in the latter case, Z would be set 
to its critical value in order to obtain the critical TR . There is an important distinction here 
since the first sort of prediction depends on a particular flow and is compared with a critical 
flow criterion, whereas the second sort of prediction is derived at critical flow conditions 

only.
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Critical wall stress (TR )C could accordingly be found by numerically solving Equation (5.19) 
for TR whilst, for each iteration, solving Equation (5.20) for r. Since this approach would, 
however, yield a computationally expensive algorithm, the problem needs to be viewed from 
a different perspective. Equations (5.19) and (5.20) can be validly regarded as a pair of two 
equations with two unknowns; the unknowns being r and TR . Moreover, since Equation 
(4.5) relates r to shear stress r through the simple expression

j - f - (5 - 21)
K TR

the two independent variables can both be regarded as stress terms, namely shear stress at 
the pipe wall and shear stress at a radial point. This observation enables the two equations 
to be perceive as functions of shear flow variables only. Worthwhile though this observation 
is, for explicit shear flow functions of type (5.17), there is the unnecessary complexity of the 
equation pair expressed in terms of stresses. The problem is that the rate of shear variables, 
7 and 7^, of the equation pair are shear flow function inversions. After giving the problem 
some thought, the equation pair can be transformed to functions of the rate of shear 
variables, 7 and 7^, themselves. Setting up Equations (5.19) and (5.20) as a homogeneous 
pair of the form

f(7) = 0, (5 - 22>

we have
.,. . . P"(7, 7/?)*7 Rns /i(7, 7*) =         - 808,

TR (5.23) 

, 7*) = «(7, 7*) - T2-.

The velocity distribution, w, is given by Equation (5.13), and arranged in terms of the shear 
rate variables, is

(5.24)

The above equations are thus rid of the shear flow function inversions that afflicted the 
original equations. Equation (5.24) is particularly fascinating as the lower and upper limits 
of integration are the two independent variables; the integral varies at both limits! To see 
if these equations could be simplified further, all conceivable transformations were applied 
with the result that no transformation could be found where, for instance, one of the 
variables could be directly eliminated. It must therefore be assumed that the equations cannot 
be further simplified.

To solve Equation (5.22), general Newton's method (A.5) is used. Pertinent to our problem, 
this method becomes

[m + 1] = [m] _ y-1 (^fftW), (5.25)
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where / is the Jacobian matrix df/dy whose elements are

_ P*

df, P Ry(RyR - 2u) drR
J12 ~ ~— ~       

T 
R (5.26)

a/2 . 2 d2r ~. dr
721 = -r = -7   -r - 37    ,d-y2

There is an assortment of derivatives of the shear flow function to estimate. Finite 

differences are chosen whose relative accuracy converges with the solution. These are

__, 
A-y[m]

A ;n
(5 -27)

, [m] ^
A7[m] A7[/" " 1] (A7[m]

where A7[m] = 7[m] - y[m ~ 1] , and similarly for 7^ and T.

For the mth iteration of Newton's method, Equation (5.24) requires integration of r from y[m* 
to 7fl[m] . Hindsight shows that there is actually no a need to integrate over the entire range, 
but only the difference from the m - 1th interval (see Figures 5-5 and 5-6). The mth integral 

value is thus calculated as

f T(J,y + f rd^ (5.28)

. [m - 1]

Boole's method (A.I) is used for the integration with a relative tolerance check, and since 

the method is nested within Newton's method, its tolerance is fittingly reduced by a factor 

of ten. It has already been pointed out that the two limits of integration are the solution 

variables. This means that, in general, the region of integration of Equation (5.28) becomes 

relatively smaller as convergence of Newton's method is met. To make the computation 

equivalently less intensive, a two-pronged attack is made on the problem: firstly, the 

convergence criterion of the integration is set to be relative to the current running total /m] , 

and secondly, our implementation of adaptive Boole's five-point method makes initial 

estimates using the Trapezium two-point method and Simpson's three-point method; simply 

stated, low powered methods are used for the relatively small intervals of integration.
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i
Evaluate (5.28)

Calculate left 
integral of (5.28)
Boole's method

Calculate right 
integral of (5.28)
Boole's method

Evaluate (5.17) Evaluate (5.17)

Figure 5-5 A schema 
representing the converging 
limits of integration of 
Equation (5.24) to the 
critical flow solution 
(7c,<T*)c)ofEq's(5.23).

Figure 5-6 The algorithm 
of Equation (5.28) where 
the total integral / is updat­ 
ed by the new integrals I{ 
and 72

The final version of the algorithm is illustrated by Figure 5-7 overleaf.

As an example, consider again the flow of the general Bingham fluid T = 10 + Vr of density 

p = 1000 kg/m3 through a pipe of diameter D = 0.1 m. Using a relative tolerance check of 

e = 5 X 10"5 , the scheme takes 9 iterations to reach convergence (see table below). The 

final wall rate estimate gives a wall stress estimate of (TR )c* = 29.0584 Pa and a mean cross- 

sectional velocity estimate of U* = 2.83919 m s" 1 .

m
7/s' 1

0
201.431 
201.834

1
201.500 
333.981

2
195.812 
358.125

3
197.715 
363.078

4
196.959 
363.147

m
7/s- 1

5
197.225 
363.152

6
197.123 
363.153

7
197.160 
363.153

8
197.146 
363.153

9
197.151 
363.153
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The estimates can be checked against the critical flow equations for a general Bingham 
fluid Equations (4.40) to (4.43). Normally an iterative scheme would be used to solve 
Equations (4.42) and (4.43) for fc = ry /(TR )c , and this value would then be substituted into 
Equation (4.41) to derive a critical Reynolds number. However, by substituting our 
estimates for Uc and £c into the four equations, each dimensionless pair should have 
comparable values. These comparisons are presented in the table below where the estimates 
are given stars. The Second Hedstrom number is therefore a true value.

Equation Estimate

(4.40) Re* = 3825.97
(4.41) Rec* = 3825.95
(4.42) He* = 10000.00
(4.43) He = 10000.00

It can be seen that the values compare comfortably to the required four significant figures, 
which is wholly acceptable. For this particular example, the algorithm made 128 evaluations 
of the shear flow function and is the type of efficiency achieved for other test cases as well. 
A more systematic validation of the algorithm will be discussed in Subsection 5.2.3.

For implicit shear flow functions of type (5.18), no simpler way of dealing with the problem 
can be found than by extending the explicit case. Whereas values of T and TR can be 
evaluated directly from Equation (5.17), they must be solved for when using Equation (5.18). 
For this, Muller's bracketing method (A.4) is used. This involves method nesting of up to 
three levels, so the relative tolerance of each successive level is reduced by a factor of ten.

As an example, consider again the Meter model (2.13) with the following values: 
HQ = IPas,^ = -001Pas,rm = 10Pa,0 = 1.5. Take a density of p = 1000 kg/m3 , a pipe 
of diameter D = 0.1 m, and a relative tolerance check of e = 5 x 10'5 . For the Meter 
model, there is no known Ryan and Johnson critical flow equation of a simplified form. 
Nevertheless, there are other clever ways of checking the algorithm. Although the algorithm 
solves for shear rate and wall rate, rather than examine the convergence of these two 
variables, the corresponding stability parameter ftr) and its derivative df/dr can be examined 
instead; by virtue of Equations (5.19) and (5.20), they should converge to 808 and zero 
respectively. Note that the stability parameter is not often used in this basic form.

The table overleaf shows that the variables do indeed converge as anticipated. The 
magnitude of the derivative decreases to a point where it is relatively much smaller than at 
first The radial point of instability is also given; its final estimate is about two-thirds of the
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m

0
1
2
3
4
5
6
7
8

r/mm

49.9275
42.1450
34.6571
33.1338
32.6367
32.7237
32.6933
32.7004
32.6984

M

6.082
629.132
685.811
805.206
807.358
807.976
807.998
808.000
808.000

dr/dr

-8.37267 x 104
-9.65606 x 103
-9.19683X103
-6.62480 x 102
4.42269 x 10 1
-3.17143X101
6.87284 x 10°
-2.00439 x 10°
4.90311 x 1Q- 1

way out from the pipe axis. In terms of efficiency, the algorithm makes 431 evaluations of 
the shear flow function which compares to the 128 evaluations made for the general Bingham 
model. In general, the implicit case requires about three times as many evaluations as the 
explicit case.

5.2.2 Critical Mean Cross-Sectional Velocity

So far, the critical rate of shear predictions have been discussed; values that are generally 
impractical as they stand. Of particular interest is the critical mean cross-sectional velocity 
Uc , and since critical flow is laminar flow at the upper bound, Uc can be calculated from 

Equation (5.6) at (T/?)C .

5.2.3 Scope of Use

An indication of the scope of the critical flow algorithms is, like the laminar flow case, 
accomplished using the general Bingham shear flow function (2.10),

T = ry

Section 4.3 discussed the equations for critical flow of a general Bingham fluid (and its 
special cases) through a straight pipe; they are fairly straightforward, and are suitable for 
validating the critical flow algorithms. After some exploratory analysis, the usable parameter 
ranges are extensive and are given by Table 5-3, but some absurd combinations of these 
values may not actually meet the required tolerance. Critical flow conditions are not always 
possible for a dilatant fluid (where n > 1) since shear thickening may develop faster than 

flow instability.
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Table 5-3 Usable ranges of the parameters for the laminar flow algorithms

Parameter Range

Dim 1Q-3 - 103

Ty /Pa 0 - 103
K 10-6 - 103

n 0.1-1.0

The efficiency of an algorithm is defined as the total number of shear flow function 
evaluations made by the algorithm. Table 5-4 gives the order of magnitude of efficiency for 
each algorithm.

Table 5-4 The number of the shear flow function evaluations in orders of magnitude 
made by each algorithm.

Estimate Explicit Implicit

Mean velocity/ms' 1 i 2 
Pressure grad/Pa m" 1 /

5.3 Turbulent Flow Modelling

Many models have been developed for the turbulent flow of non-Newtonian fluids through 
a straight pipe. As discussed in Chapter 1, there is a need for a turbulent shear flow 
function, so this rules out the friction relations discussed in Section 4.4 such as Dodge- 
Metzner (21) and Torrance (27) . The model proposed by Hanks (26) was suggested as a good 
choice since it is based on few underlying assumptions, and is suitable for both transitional 
and turbulent flow. In fact, the widely used Torrance relation is based on the same mixing 
length model as Hanks but without the Van Driest (46) wall damping factor, and several 
further simplifying assumptions were made when integrating the velocity profile. A factional 
relation can still be obtained from the model of Hanks, so a comparison with other fractional 

relations will be discussed in Chapter 7.

From the viewpoint of creating an algorithm, there is a continuity in basing both the laminar 
and turbulent flow models on a shear flow function, but there is a difference of form; the 
turbulent flow model includes a mixing length term given as a function of wall distance. 
Consequently, the laminar flow algorithms are not wholly applicable to the turbulent flow 
case a difficulty that is to be addressed. The main problem with the model of Hanks is that
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it is restricted to general Bingham fluids only. Yet our objectives are to allow for any time- 

independent non-Newtonian viscous fluid, so a way of generalising the model will be 

considered.

The turbulent shear flow function, Equation (2.24), is the sum of the laminar and turbulent 

stresses, given as
r = TL + T T . (5.29)

The laminar stress term is given from the laminar shear flow function which is, as usual,

either of the explicit form
(5.30)

or of the implicit form
G(7, TL ) = 0, (5.31)

though in this case, the subscript L has been used to signify a laminar stress. Since Equation 

(5.29) is a shear flow function, foe pseudo-shear flow function (4.11) which was used for the 

laminar flow modelling is still applicable. The equation, which relates the mean cross- 

sectional velocity to the pressure gradient, is given by

r = 4 fcy*7' (5 - 32)

where TR is the shear stress at the pipe wall,

TR ~ J-£-'D AP /c
P

and F is a pseudo-shear rate,

T . f. (5.34)

A full discussion of the model proposed by Hanks was given in Section 4.4. As noted 

already, the model is restricted to general Bingham fluids with the shear flow function (2.10),

namely
T = Ty + Ky". (5.35)

This defines the laminar stress term of Equation (5.29), though in our case, any equation of 

the form (5.30) or (5.31) would be permitted. Now, the turbulent stress term of Equation

(5.29) is given as
7 r

where / is a mixing length defined as

r = p, (5-36)

= K R 1 --! i - (5.37)
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and

, _ BGB ~ C ( . .ox <P GB - — —————— . p. 35)
fib(n, He G5 )

<j> GB is relevant to general Bingham fluids only as BGB contains parameters of Equation (5.35) 
as does its critical value (BGB \ . The parameter b is empirical, and Hanks defined b to be 
a relation of both the consistency index «, and a general Bingham Hedstrom number UeGB . 
Since b is empirical, it has the advantage in that specific relationships for b can be derived 
for specific fluid types. An objective of this research is to develop relationships for b based 
on the data of Chapter 3.

Since the turbulent stress component (5.36) contains the parameters ry , K and n of the 
general Bingham function, the parameters can be rewritten more generally as functions of 
Equations (5.30) and (5.31). If the shear flow function is of the explicit type (5.30), the 
parameters of Equation (5.35) can be expressed as the following functions of 7:

(5 ' 39)

where the derivative term dg/d7 is simply the derivative of the shear flow function. If the 
shear flow function is of the implicit type (5.31), the derivative term dg/d7 is no longer 
relevant, but since the total differential of the implicit shear flow function is zero, dG = 0, 
the chain rule can be applied to give an equivalent partial derivative term. The general 
Bingham parameters of Equation (5.35) can therefore be rearranged as the following 
functions of 7 and r:

G(0, T) = 0,

'V fl\T /n(y, r) = -_r_^/
T - ry dy/ dr ' (5.40)

where the derivatives are the partial derivatives of the shear flow function with respect to rate 

of shear and shear stress.

5.3.1 Mean Cross-Sectional Velocity

For turbulent flow predictions of mean cross-sectional velocity (7, Equation (5.32) can be 
used. For known wall stress TR , close examination of Equations (5.29) to (5.31) and (5.36)
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reveal that the turbulent shear flow function is implicit, and of the form

#(7, r) = 0. <5 - 41 )

This is true regardless of whether the laminar stress component is explicit or implicit. The 

equations are therefore of the same form as the laminar flow equations for the implicit case 

discussed in Subsection 5.1.1. Referring back to the laminar flow case, two algorithms were 

compared, one based on the flow equation given here as Equation (5.32), and the other based 

on a rearrangement of it, namely Equation (5.6). For the turbulent flow case, the same 
comparisons can be made.

For the integration required of these equations, Simpson's method (A. 1) is used. Since the 

integrands of these equations are functions of 7 and r, Muller's bracketing method (A.4) is 

used to solve Equation (5.41) for values of 7 or r as necessary. This method is a nested 

method as Equation (5.41) is solved for each and every integrand evaluation required of 

Simpson's method. The tolerance of Muller's method is therefore reduced over Simpson by 
a factor of ten.

The derivative terms of Equations (5.39) and (5.40) also need considering. The derivative 

term of Equation (5.39) is the derivative dg/d7 of the shear flow function (5.30). If this is 

undefined, then the following forward difference formula can be used

+ A-y) -
(5.42)

The derivative terms of Equation (5.40) are the partial derivatives dG/dy, dG/dr of the 
implicit shear flow function (5.31). If these are undefined, then the following forward 

difference formulae can be used:

dG ^ G(7 + A-y, r) - G(y, r)

^ A^ (5.43) 
dG _ G(7, r + Ar) - G(-y, r)
dr Ar

The computational efficiency of each algorithm is measured by the number of evaluations of 
the turbulent shear flow function (5.41). One would expect the efficiencies of the two 
turbulent flow algorithms to differ by a similar relative amount as their laminar flow 

counterparts. This is not borne out by observation. For the turbulent flow case, an 

algorithm based on Equation (5.32) proves significantly more efficient than an algorithm 

based on the rearranged version of it, whereas for the laminar flow case, the converse was 

true. This is most likely to be due to the nature of the shear flow functions used; for the 

laminar flow case, the function always decreases for an increasing rate of shear, whereas for 

the turbulent flow case, the function may become anything up to a quadratic in rate of shear



76

AP/L

Evaluate (5.33)

Turbulent Mean 
Cross-Sect. Velocity

U

Evaluate (5.32)

I t
Calculate 

integral of (5.32)
Simpspn's method

Evaluate 
integrand of (5.32)

t

Evaluate (5.34)

Evaluate (5.30)

Figure 5-8 The algorithm to 
predict the mean cross-sectional 
velocity for the turbulent flow of a 
time-independent, non-Newtonian, 
viscous fluid through a straight 
pipe.

Evaluate (4.66) Evaluate (5.37)
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(see Equation (5.36)). The final algorithm, as illustrated by Figure 5-8, typically requires 
about three hundred evaluations of the turbulent shear flow function, though this depends on 
the nature of flow; for near-critical flow, the algorithm requires about one hundred 
evaluations, whereas for fully-developed turbulent flow, the algorithm requires about eight 
hundred evaluations.

As an example, consider the flow of the usual general Bingham test case fluid, r = 10 
through a pipe. To make sure that turbulent conditions are met, take a large wall stress of 
TR = 100 Pa and a small pipe diameter of 0.04 m. These conditions give a critical wall stress 
of about 42 Pa indicating that the turbulent flow is fairly well developed. Using a relative 
tolerance check of e = 5 x 10~5 , the mean cross-sectional velocity estimate U* = 
8.22619 m s' 1 is given after 480 shear flow function evaluations. There is no direct way of 
validating this estimate, but bear in mind that this scheme is essentially the same as the 
laminar flow scheme for implicit functions that has already been validated. However, the 
scheme of the next subsection is the inverse of this scheme, so the estimate of U from this 
scheme can be used by the next scheme to calculate an estimate of TR , which can be 
compared to its original value of 100 Pa. This idea will be explored in the next subsection.

5.3.2 Pressure Gradient

A turbulent flow prediction of the pressure gradient is essentially the inverse of a velocity 
prediction. The velocity prediction algorithm, as discussed in the previous subsection, 
estimates F from Equation (5.32) given wall stress TR . The pressure gradient algorithm must 
now solve Eq. (5.32) for TR given T. In this case, the variable TR features in the turbulent 
shear flow function, Equation (5.41) now making it a function of three variables of the form

H(y, r, TR) = 0. (5.44)

An algorithm to solve Equation (5.32) for TR could be derived by attaching a front-end, root- 
finding method to the mean cross-sectional velocity algorithm. Since there are already two 
levels of method nesting for the velocity algorithm, a third level would produce an inefficient 
algorithm. For the laminar flow case, the Mooney-Rabinowitsch equation (a differential 
equation version of (5.32)) was used. However, since the turbulent shear flow function 
above is also a function of rR , there is no Mooney-Rabinowitsch equivalent to this problem. 
After much investigation, nothing better can be offered than the three-tiered scheme.

Muller's method (A. 4) is used as the front-end solver to the mean cross-sectional velocity 
algorithm. Incidentally, Muller's method is also used in the body of the algorithm, so it 
becomes nested within itself. The applications are different though since the method is used 
for root-finding in the mean cross-sectional velocity algorithm, and for inversion in the front- 
end solver. For an overall relative tolerance of 5 X 10"5 , the algorithm typically requires
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three thousand evaluations of the turbulent shear flow function. As with the mean cross- 

sectional velocity algorithm, efficiency is better for near-critical flow (making about one 

thousand function evaluations) than for fully-developed turbulent flow (making several 

thousand function evaluations). It should be noted that in terms of computer efficiency, the 

algorithm never took more than a second or two on an IBM compatible PC with a Pentium 

processor (several seconds on a 386/387 processor). For a single prediction, this caused no 

problem, but for multiple predictions or large-scale parameter estimation (such as of the data 

presented in Chapter 3) efficiency becomes a priority. The final version of the algorithm is 

illustrated by Figure 5-9.

The example of the previous subsection can be validated using this scheme by inverting the 

mean cross-sectional velocity estimate of the previous scheme to see if the original wall stress 

value is recovered. Just to recap, the previous example used the general Bingham model 

r = 10 + Vr with a pipe diameter of 0.04 m. A wall stress value of TR = 100 Pa yielded a 

mean cross-sectional velocity estimate of U* = 8.22619 m s-1 . Now using the same model 

and pipe diameter with this scheme, taking a relative tolerance check of e = 5 x 10"5 and 

a mean cross-sectional velocity of U* = 8.22619 m s' 1 yields a wall stress estimate of TR* = 

100.0005 Pa. This matches the original value to within the required four significant figures 

taking 4787 evaluations of the shear flow function to do so.

u

Evaluate (5.34)

Turbulent 
Pressure Gradient

Evaluate (5.32) 

(See Fig. 5-8)

APIL

Evaluate (5.33)

Figure 5-9 The algorithm to predict the pressure gradient for the turbulent flow of 
a time-independent, non-Newtonian, viscous fluid through a straight pipe.
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5.3.3 Velocity Distribution

Consider the velocity distribution of the turbulent flow of a fluid through a straight pipe. 

Using the turbulent shear flow function proposed by Hanks (26) , much of the laminar flow 

analysis of Subsection 5.1.3 remains applicable. A fluid with a yield stress theoretically 

flows with an unsheared solid plug core, the radius ry of which is given by Equation (5.11). 

For the sheared region of fluid, r > ry , the velocity distribution was given by Equation 
(5. 12) as

R
u(f) = Udr, (5.45)

r

where u(R) = 0. To tie this equation in with the shear variables 7 and T, there is a linear 
relationship between r and r, which was given by Equation (5.10) as

i   T«
Examination of Equations (5.29) to (5.31) and (5.36) show that, in this case, the turbulent 
shear flow function is of the implicit form defined by Equation (5.41). This, again, reduces 
the analysis to that of laminar flow for implicit shear flow functions. However, the laminar 
flow algorithm worked best for a rearrangement of Equation (5.45), but for the turbulent 
flow case, an algorithm based directly on Equation (5.45) shall also be considered.

Our objectives are to represent the velocity distribution at a set of W equally spaced radial 

points. These are given by

r = *J^, 5 = 1,2,_,W. (5.47)

Assume that the first T points of the distribution define the sheared region of the fluid, and 
the subsequent T + 1 to W points of the distribution define the solid plug core. Point values 

of Equation (5.45) are therefore given as

R 
u(rg ) = -ydr, s = l,2,...,r.

rs

It is clear that the regions of integration overlap for each successive s, so we instead use

rs

(5.48)
rs-l

For this equation, r is linearly related to shear stress T through Equation (5.46), whereas the 

integrand which is the rate of shear 7 is related to r through the turbulent shear flow 

function (5.41).
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over s

Evaluate (5.48)
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integral of (5.48)
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Evaluate 
integrand of (5.48)

Evaluate (5.46) Solve (5.41)

Muller's method

H

Evaluate (5.41) 
(See Fig. 5-8)

Figure 5-10 The algorithm to predict the velocity distribution for the turbulent flow 
of a time-independent, non-Newtonian, viscous fluid through a straight pipe.
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For the integration, Boole's five-point method (A. 1) is used the same implementation as for 

the laminar flow case. This has a computational safeguard for relatively small intervals by 

using initial tests of Trapezium two-point and Simpson three-point estimates. For the 

integrand, Muller's bracketing method (A.4) is used as a nested method to solve the turbulent 

shear flow function for values of 7. Using a relative tolerance check of 5 x 10"5 , the 

algorithm requires a few hundred evaluations of the turbulent shear flow function. For near- 

critical predictions, the algorithm proves more efficient, requiring a couple of hundred 

evaluations, whereas for fully-developed turbulence, the algorithm requires about one 

thousand evaluations. The final algorithm is illustrated by Figure 5-10 on the previous page.

There is no simple way of validating this scheme, but it is essentially the same as the laminar 

flow scheme for implicit functions which has already been validated. The turbulent flow 

velocity profiles of Figures 4-4 and 4-5 were both created using this scheme by defining each 

curve as a series of straight lines joining a set of closely spaced points.

5.3.4 Scope of Use

An indication of the scope of the turbulent flow algorithms is again accomplished by using 

the general Bingham shear flow function (2.10),

T = ry + Kyn .

Section 4.4 discussed the equations for the turbulent flow of a general Bingham fluid (and 

its special cases) through a straight pipe. On the whole, the solution procedure to these 

equations would be no different from the general case under consideration so they would be 

of limited use for validation. There are, however, useful exceptions such as the Bingham 

turbulent flow function (4.59) which is quadratic in 7. The second validation procedure (as 

discussed for laminar flow) requires inverting a prediction to see if it reverts back to its 

original value, and is particularly useful in this case.

Using the validation procedures, Table 5-5 gives a general idea of the usable ranges of 

parameters. Although the ranges are not as extensive as for the laminar and critical flow 

algorithms, they are generally suitable for any practical problem. It would be true to say that 

the required tolerance is generally met, and if not, a reasonably accurate answer is almost 

always given. Some inaccuracy does occur for a small percentage of predictions, probably 

because of the inherent complexity and generality of the algorithms. Anyhow, an end-user 

could easily validate their own prediction using the inversion method.

The efficiency of an algorithm is defined as the total number of shear flow function 

evaluations made by the algorithm. Table 5-6 gives the order of magnitude of efficiency for 

each algorithm.



Table 5-5 A general guide to 
the parameter ranges for the 
turbulent flow algorithms

Parameter

Ulm s' 1

(AP/L)/Pa
Dim

K 
n

Range

io-3 - io3 
io-3 - io9
ID'2 - 10 

0-100 
10'6 - IO6 

0.3 - 1.0

Table 5-6 The number of the shear 
flow function evaluations in orders of 
magnitude made by each algorithm.

Estimate

Mean velocity/m s~ l 
Pressure grad/Pa m~ l 
Velocity dist'n/m s' 1

Efficiency

102 - IO3
103 - IO4 
IO2 - IO3
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5.4 Wall Slippage Modelling

Wall slip of the flow of a suspension through a straight pipe was discussed in Section 4.5. 
This can be typically modelled using a slip velocity as a function of both shear stress TR and 
pipe diameter D such as Equation (4.74),

(5.49)
D"

where a and j8 are constants established from data. This was used in the derivation of a 
relation between pseudo-shear rate F and wall stress TR given by Equation (4.75) as

op To 4 f TF =     +   r'yd
n<* + 1 3 I '
D TR r.

(5.50)

The schemes for modelling laminar and turbulent flow using this equation remain unchanged 
as the extra term contains no new variables to solve for. Laminar flow was better modelled 
using the Mooney-Rabinowitsch equation; the wall slip version was defined by Equation

(4.76) as

7* = 3n" + 1 - rj, (5.51)

where
n" =

dln(F -

and F = 8C/ ID. With some straightforward manipulation, Equation (5.51) can be 
rearranged as the linear differential equation

4ft. (5.52)
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which is the same as Equation (5.8) with a slip term included. This equation can also be 
obtained by differentiating Equation (5.50) with respect to TR and rearranging. It should be 
appreciated that TR and I\ are themselves both function of 7^ via the shear flow function.

Consider the first example of the chapter: laminar flow of the general Bingham fluid 
T = 10 + Vr through a straight pipe. A wall stress value of TR = 25 Pa yielded a pseudo- 
shear rate value of T = 132.48 s' 1 . This is essentially an evaluation of the right-hand term 
of Equation (5.50). Taking a pipe diameter of D = 0. 1 m and slip parameters of a = 1 and 
0 = .001, the slip term of Equation (5.50) is, after a simple calculation, 20 s' 1 . The total 
pseudo-shear rate evaluation for Equation (5.50) is therefore T = 152.48 -1 . So far, this is 
not very exciting, but the problem can be inverted using Equation (5.52) to see if the wall 
stress estimate matches the original value of TR = 25 Pa. Of course, the slip term of 
Equation (5.52) is now unknown as it is a function of TR , which is effectively the solution 
variable. The scheme for numerically solving Equation (5.52) remains the same as the 
Runge-Kutta Fehlberg scheme of Subsect. 5. 1 .2. The starting value idea remains unchanged. 
From Equation (5.51) it is clear that (^)0 = (T - F5 ) would lie reasonably close to the 
solution; the corresponding value of F0 would then be estimated from Equation (5.50). 
Taking a relative tolerance check of e = 5 X 10~5 , and using the appropriate values and 
function above, the scheme gives a wall stress estimate of TR* = 25.0000 Pa, which lies well 
within the required four significant figure accuracy. Much as expected, the scheme is still 
efficient taking one step of Fehlberg 's method and 52 evaluations of the shear flow function.

5.5 Conclusions

In this chapter, a discussion has been given of the mathematical modelling of time- 
independent, non-Newtonian, viscous fluids through a straight pipe for any explicit or 
implicit shear flow function. Algorithms have been presented of laminar, critical and 
turbulent flow, and velocity distributions. The algorithms have been extensively tested on 
the three parameter general Bingham shear flow function as it is a good model of any time- 
independent, non-Newtonian, viscous fluid. Examples using the implicit Meter shear flow 
function have also been included. The laminar and critical flow algorithms have been valid­ 
ated way beyond any practical range (Tables 5-1 and 5-3) which is desirable for data analysis 
(Chapters 7 and 8) where robust pipe-to-shear transformations are required. Critical flow 
does not always occur for dilatant fluids as shear thickening may develop faster than flow 
instability. The turbulent flow algorithms were found to be less extensive (see Table 5-5) 
than those of the laminar and critical flow, though the required tolerance was generally met 
for any realistic test case. In the final section of this chapter, wall slippage was introduced 
into the models without affecting either the basic structure or the efficiency of any of the 
algorithms. The next chapter discusses the development and implementation of parameter 
estimation algorithms where the algorithms of this chapter will be extensively utilised.
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6 Parameter Estimation

This chapter discusses the parameter estimation for Theological models of time-independent, 
non-Newtonian, viscous fluids. The work is original as parameter estimation of pipe flow 

data for any Theological model is considered. There is precious little in the literature about 
estimating Theological parameters, which is hardly surprising since methods for obtaining 
least-squares (or other) estimates are well-established (80) . However, there is the added 
complication that, for practical reasons, the viscometry of sewage sludge is often conducted 

in tubes or pipes. Due to the pipe geometry, the parameters must be estimated through the 
Mooney-Rabinowitsch correlation (4.21). Frost (8) resolved this problem for general Bingham 
fluids by using a second order approximation on a log-log transformation of the data. For 
a specific model like the general Bingham model, such a simplification may be possible, but 
the objectives of this research are to consider any Theological model either laminar or 
turbulent. This has the advantage, for instance, that the analysis could be easily repeated at 
a later date using a different Theological model. In fact, the method could be used for the 
analysis of any pipe flow data for any choice of Theological model. This chapter does not 
use any computer terminology. However, the algorithms have been implemented in Fortran 
77 and Appendix B gives the subroutine declaration (name and argument list) of each 
associated algorithm of this chapter.

6.1 Laminar Flow Case

The shear flow function is a relationship between shear stress r and rate of shear 7. 
Including the fitting parameters a, an explicit shear flow function is of the form

i\ of), (6.1)

and an implicit shear flow functions is of the form

G(7, r, a) = 0. (6.2)

To illustrate the nature of the problem, consider the hypothetical situation where parameter 
estimation of either of the above two functions was carried out on a set of shear flow 
coordinates (7 , r ),y = 1,2,...,M. The problem would be geometrically independent, and 
therefore straightforward. To obtain estimates of the parameters, the relevant shear flow 
function would be fitted directly to the coordinates.

In practice, however, the problem is complicated by data which comes from pipes, and are 
therefore geometrically dependent; they are given as pseudo-shear flow coordinates, 
(r (r ) ),y = 1,2,...,M, or similar. The pseudo-shear flow function (discussed in Section 

4.2) could be fitted; this is a relationship of the form

, TR \ a) = 0, (6.3)
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where the shear stress at the pipe wall is

'«= s^. <6 -4>
and the pseudo-shear rate is

r = (6.5)D '

Primarily, this equation can be viewed as a relationship between the pressure gradient AP/L 
and mean cross-sectional velocity U of a pipe flow situation.

Fitting a pseudo-shear flow function to pseudo-shear flow data is suitable for some shear flow 

functions such as the power law function, r = Ky", as the related pseudo-shear flow function 

is of the similar simple form, TR = K^ri)!™. The parameters K1 and n can first be 

estimated, then K can be calculated from K1 and n. For the general Bingham model, 

r = Ty + Ky", things are less straightforward; the corresponding pseudo-shear flow function 

(see Equation 4.18) is elaborate and non-linear. Unlike the power law model, the pseudo- 

shear flow function of the general Bingham model bears no similarity to its corresponding 

shear flow function. For other explicit and implicit models, the problem becomes more 

difficult since the pseudo-shear flow function may not be expressible as a simple implicit 

function of type (6.3). Another drawback of parameter estimation from the pseudo-shear 

flow function is that, even if the function is known for a particular model, a transformation 

of the shear flow function itself may be required. For instance, a log transformation of the 

general Bingham model is log(r - ry ) = logK + nlog^, and pseudo-shear flow function 

corresponding to this model would bear no resemblance to that of the non-transformed 

general-Bingham model.

The first approach to the problem is perhaps the most obvious: the Mooney- 

Rabinowitsch (52> 53) differential equation (4.21) or any of its rearrangements can be 

regarded as a generalised pseudo-shear flow function. Therefore, the shear flow function 

parameters could be estimated from such an equation. In essence, the approach would mean 

fitting an equation such as the Mooney-Rabinowitsch equation to the data an approach that 

would be difficult, but still possible. The approach, however, suffers from a drawback: there 

is no obvious way of dealing with transformations, such as the log-log transformation, of the 

shear flow function.

For the second approach, the problem is partitioned as follows:

1) Attain geometrical independence by transforming the set of pseudo-shear flow 

data coordinates to a set of shear flow data coordinates.

2) Once geometrical independence has been attained, fit the shear flow function 

to the resulting shear flow data coordinates.
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The algorithm would be iterative and somewhat more elaborate than this, but it acts as a 
general outline. Step 1 can be achieved by making laminar flow predictions of the data; an 
algorithm for making such laminar flow predictions was presented in Section 5.1 and was 
essentially based on the Mooney-Rabinowitsch equation. Once geometrical independence has 

been achieved, Step 2 becomes the same as the hypothetical situation discussed earlier. To 
pose the algorithm in more formal terms: for each pseudo-shear rate data value r; , a 
prediction of the corresponding wall shear rate value (7^) can be made. However, to make 
laminar flow predictions, the parameters a of the shear flow function are needed. For the 
first iteration, guesses of the fitting parameters are used with each r. to make the initial 
laminar flow predictions of (7^-, j = 1,2,...,M. The shear flow function is then fitted to 
estimates of the shear flow coordinates ((JR )J, (rR )j}J = 1,2,...,M, to give a fresh estimate 
of a a process that is repeated to convergence. The algorithm is illustrated by Figure 6-1.

Laminar Function 
Parameter Est'n

I t
a

Estimate a of (6.3)

Simple iteration

a

over [m]

Estimate a of (6.6)

Transform 
coordinates

Iteration

Solve (6.8)

Lev-Marqu's method

*J x,y, a

overy

dElda

Laminar flow

prediction
See Fig. 5-2

Figure 6-1 The algorithm for 
estimating the parameters of a 
laminar shear flow function.

Evaluate (6.6)
Estimate 

derivative of (6.9)
Fwddiff(6.10)
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Notice that, for each iteration, the algorithm makes successive transformations (namely 

laminar flow predictions) of the independent variable yR . The dependent variable TR , 
however, remains unaffected, enabling the assumptions of an estimating method  such as the 

least squares method  to remain valid. The algorithm is nested, iterating a at the top-level 

and estimating a at the lower-level. Using a itself as the convergence criterion at either of 

the levels would be unwise for obvious reasons. For convergence of the top-level method, 

the standard error between the m - 1th and mm estimates of the shear rate points (jR ), , 
j = 1,2,...,M, are compared using a relative convergence criterion. For the lower-level 

method, the same convergence criterion is used, but on the dependent variable TR rather than 

the independent variable 7^ using a factor-of-ten reduction of tolerance. One of the great 

advantages of the algorithm is that it effectively separates the parameter estimation of the 

shear flow function from the transformation of the pseudo-shear flow function. If a 

transformation of the shear flow function is to be required (such as the log transformation), 

then this can be regarded as secondary to the pipe-to-shear transformation.

At the core of the algorithm is the method of estimating shear flow function parameters from 

a set of shear flow coordinates. For this, least squares estimates are chosen. For 

convenience, we denote

which are the wth estimates of the wall shear rate values, and

which are the wall stress values.

For the explicit case, Equation (6.1) can be written as

y = g(x\ a). <6 - 6>

The error sum of squares is the sum of squares of each data value minus the predicted value, 

and is given as

E = £ ty - g(Xj', a)]2 . (6-7)
J~ i

The least squares estimates of a are given at the minimum value of E with respect to a; they 

are given by the solution of the equations

3E = 0, k= l,2,...,fi, (6.8)

where

and the hat is used to signify estimates.



Equation (6.8) is a system of Q equations in Q unknowns. To solve this system, Levenberg- 
Marquardt's method (A.2: Appendix A, Section 2) is used. The derivatives of Equation 
(6.9) are the partial derivatives of the shear flow function with respect to each of its 
parameters. If these derivatives are undefined then the following forward difference 
formulae would be used:

1'""' £'"*' Q' lr — 1 f) (f\—————————————, K — 1...^. W-da k

For the implicit case, Equation (6.2) can be written as

G(x, v; a) = 0.

The value of y at jcy can no longer be evaluated directly from this equation, so a method to 
solve for y can be used. Letting y   to be the value of y at Xj , we have

G(Xj, ty «) = 0, j = 1,...,M, (6.12) 

and the error sum of squares becomes

ME = E ty - if- (6 - 13)
j = 1

Minimizing this equation with respect to a, the least squares estimates are given by the 
solution of

= 0, * = 1,2,...,0, (6.14)

where

-A - f "7 - •! Ada ^ J da k

and the hat is used to signify estimates. The derivatives are the partial derivatives of y with 
respect to each of the shear flow function parameters, but evaluated at Xj . As y is implicitly 
defined via (6.12), these derivatives are not available directly, so applying the chain rule to 
the partial derivatives of implicit functions (81) gives

dak (6.16) 

Since the function G is explicit in terms y and a, the partial derivatives are now definable.

Equation (6.14) is a system of Q equations in Q unknowns. To solve this system, 
Levenberg-Marquardt's method (A.2) is again used. The nested method used to solve 
Equation (6.12) for specific values of y is Muller's method (A.4) with a reduction of the 

a tolerance by a factor of ten. Computations of the derivative terms of Equation (6.16) 
also a nested part of the main method. If these derivatives are undefined, then the

man 
are
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following forward difference formulae can be used:

. K — 1...C/.

(6.17)

Gfr, y + Ay; «) - Gfo, y; «)
Ay

6.1.1 General Bingham Case

In this section, fitting the general Bingham model to shear flow data shall be discussed. This 

particular example of an explicit shear flow function has been singled out as the choice of 

model used for analysing the data (to be discussed in the next chapter). The general 

Bingham model is an interesting case as Levenberg-Marquardt's method is not needed, but 

the rest of the algorithm  the pipe-to-shear transformation  remains unchanged. Since the 

general Bingham function is really the only model under consideration, one might ask why 

algorithms have been developed to utilise any appropriate explicit or implicit shear flow 

function: why have these general cases been considered? Apart from the obvious  satisfying 

the objectives  there are many other reasons for working with the general case. Firstly, in 

Chapter 8, the general Bingham model will be extended as a function of solids concentration, 

effectively resulting in an entirely new function with a completely different pseudo-shear flow 

function. Secondly, when the general Bingham model is fitted to a data set, to satisfy the 

requirements of the residual analysis, a transformation may be required (82) (this will be a 

topic of the next chapter). Although the general Bingham model will conceptually be 

unaffected by the transformation, it will strictly be a different function, and its corresponding 

pseudo-shear flow function will be completely different. Thirdly, any further work may 

repeat the data analysis using functions other than the general Bingham model; working with 

the general case now would avoid much repetition of the developmental work. It should 

further be noted that an algorithm based exclusively on the general Bingham model is not 

likely to be trivial anyway, so the advantages of working with the general case are 

considerable.

The problem is to fit the general Bingham model

T = Ty + Kyn , (6.18)

to a set of shear flow coordinates (7,, T; ), j = 1,2,...,M. Notice that for constant n, the 

problem reduces to that of linear regression (83) . The error sum of squares is

(
M _ M ^2 
E fy" - *"> E <rj - r)

t. = 2, v, - •« - ' M —— —      -' (6 ' 19)
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where r is the average value of r, and similarly for 7". The solution of the equation pair

(6.20)

yield the least squares estimates
M _ ME <*; -  >--) E fr/ -

£ ,-n ——x2 (6-21)\ (*y . _ /y'lx^ v '
mL*4 ' J ' '

*y=T-

where the hat is used to distinguish the parameters as estimates. For fixed «, the problem 
becomes a linear regression one where the parameters are explicitly given. But when fitting 
the general Bingham model, n must be treated as variable, so a solution is also required of

= 0. (6.22) 
dfi

Since there is no obvious analytical solution for n, Newton's method is used to solve this 
equation. For this case, it is

n [m + i] = n [m] _ BE l&E (6 23)
to I dn2dn2 

where the derivatives are themselves functions of «, and are evaluated at each n [m\

6.1.2 Log General Bingham Case

A log version of the general Bingham model is given as

log(r - T} = logK + wlog7. (6.24)

This would be fitted to log values of the shear flow coordinates, ie (log 7,-, log(r,- - 
j = l,2,...,Af. In this case, if the parameter ry is considered constant, the equation is linear 
in terms of the log variables. Using linear regression, estimates for log£ and n can be 

obtained. However, ry is variable, so the equation

= 0, (6.25)

must also be solved. This bears much analogy to the non-transformed case, so Newton's 
method is likewise employed to solve the equation for ry .
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It should be appreciated that, although the log general Bingham model is conceptually the 

same as the ordinary version, they are strictly different functions. The equations that yield 

the least squares estimates would be different, and therefore some differences would be 

expected of the estimates of ry , K and n themselves, though the differences would probably 

be minimal. The better model to use ordinary or transformed depends on the spread of 

residuals. Both models are to be used to analyse the data discussed in Chapter 3, the results 

of which will be discussed in Section 7.1.

6.2 Turbulent Flow Case

The turbulent shear flow function proposed by Hanks (26) (discussed in Section 4.4) is an 

implicit function of shear stress and rate of shear. The turbulent flow model has a single 

fitting parameter b of its own, so it is of the form

#(7, T\ b) = 0. <6 - 26>

The turbulent flow case bares much analogy to the laminar flow case for implicit functions, 

but because turbulent predictions are so computationally intensive, and because the turbulent 

shear flow function has only one fitting parameter, it merits its own special consideration. 

The pseudo-shear flow function for turbulence would be of a similar form to the laminar 

Equation (6.3), but with the one parameter:

co(T, TR \ b} = 0. (6.27) 

For convenience, denote

xj = 

which are the wall shear rate values, and

which are the mth estimates of the wall stress values. Equation (6.26) now becomes

H(x, y\ b) = 0. 

Letting y • to be the value of y at Xj , the error sum of squares is

M£ = £ \yj - y'jf- (6 -29)

The objectives are to find the value of b that yields the minimum error, E. There are 

alternative ways of minimising the error, such as equating the derivative of (6.29) to zero, 

or just simply searching for the minimum. As there is only one parameter to estimate, the 

search option is considered to be better. Since turbulent flow predictions are computationally 

intensive, it is sensible to use an effective search method; this is chosen to be quadratic
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interpolation (A. 3) to successively reduce the interval containing the minimum to 
convergence. The final algorithm is shown by Figure 6-2.

Turbulent Function 
Parameter Est'n

1 t
Estimate b of (6.27)

Quadratic interpolation

Transform 
coordinates

Iteration

overy

Turbulent flow
prediction

See Fig. 5-9

over [m]

Estimate b of (6.28)

Evaluate (6.29)

Figure 6-2 The algorithm for 
estimating the parameter of a
turbulent shear flow function.

6.3 General Case

This chapter has so far only considered parameter estimation for a single sludge sample test. 
But there are three sludge types-primary, activated and digested-and many sludge samples 
to consider. For each sludge type, let there be i = !,...,# samples of sludge and; = 1,...,M,. 
viscometric measurements of each sample. First consider a model for the ith sludge sample 
of a particular sludge type. For dependent variable v, the error sum of squares is given as

',= £
J- 1

(6.30)

where yt is the ith predicted model.
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The standard error of this model is given as

Ei (6.31)r^e'

where Q is the number of parameters of the model.

Now consider a model for a particular sludge type. The total error sum of squares of the 

model can be partitioned into the error between the sludge samples, and the error within each 

sludge sample. In terms of error sum of squares this equates to

ET = EB + Ew . (6.32) 

Algebraically, each of these terms are given by

ET = £ £ Cfy - V2,
• «!./. 1

EB - £ AM - ?)2, <6 ' 33>
i = 1

N N Ml 
r> V^ r> V^ V^ / ^ \2Enr = >£.= > > (v.. - V-) , 

vv ^^ i Z-^ ^^ v iy Ji' '
i=l i = 1 j = 1

where y is the overall predicted model for the sludge type, and yt is the predicted model of 

the ith sludge sample. The total standard error for this model is given by

S = ET (6.34)
i- Q

6.4 Confidence Intervals

Individual predictions, such as obtaining a pressure gradient from a given mean cross- 

sectional velocity, were discussed in Chapter 5. Such predictions can be made using the 

estimated values of the parameters. A confidence interval is a statistical interval of 

confidence on a prediction. Confidence intervals can be very important for fluids such as 

sewage sludge since there may be large random errors when measuring the viscosity of 

sludge.

A 100(1 - a)% confidence interval for a prediction *0 of a regression curve (83) such as 

Equation (6.6) or (6.11) is given by

?0 ± 'a/2; ii-Q X 5» (6-35)
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where y is the predicted model, M is the number of measured values, Q is the number of 
parameters of the model, and t is the t statistic. 5, the standard error between the data and 
the fitted curve, is given as

S = (6.36)
M - Q

For statistical reasons, this is strictly a prediction interval, but the term confidence interval 
is used here for clarity. This model assumes that the confidence interval is constant for the 
whole x range, and ignores the variation associated with the predicted curve J itself. To 
have include this variation would have made the confidence interval a function of jc, narrower 
at the centre of the x range, and wider at the extremities. The analysis for this effect would 
have been difficult for the types of non-linear functions that we are dealing with. Since the 
variance of the data is expectedly greater than that of the predicted curve, the variance of the 
predicted curve has been excluded to greatly simplify the analysis. A further advantage of 
the confidence interval being independent of x is that transformations can be applied to the 
x variable without affecting the interval.

6.5 Conclusions

This chapter discussed the development of algorithms for the parameter estimation of laminar 
and turbulent flow models. Three models have been discussed in particular: the general 
Bingham model, the log general Bingham model and a turbulent flow model. The extensive 
use of these models to examine the data discussed in Chapter 3 will be the subject of the next 
chapter. Parameter estimation for the general case has also been discussed, and the extensive 
use of these algorithms to yield models as a function of volume fraction of solids will be the 
topic of Chapter 8.
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7 Data Analysis

This chapter discusses the analysis of concentrated sewage sludge flow data of the laboratory 
report (10) using the algorithms developed in Chapters 5 and 6. As mentioned in Chapter 3 
(where a discussion was given of the data), sludge is lumpy and inhomogeneous, so tubes and 
pipes were used to measure the viscosity of the sewage. The objectives of this part of the 
research are to obtain laminar, critical and turbulent flow models of each sludge type. For 
the analysis of the laminar flow data, the three parameter general Bingham shear flow 
function (2.10) is fitted to all of the sound laminar flow data, and statistical tests are 
conducted to see if all three parameters of the model are necessary; if they are not, then the 
modelling can be greatly simplified. For the critical flow analysis, the predictions of the 
Ryan and Johnson (54) stability parameter (4.31) are qualitatively assessed for pipe flow data 
and, to a lesser extent, tube flow data that extend into the transitional regime. For the 
turbulent flow analysis, the model proposed by Hanks (26) is fitted to all of the sound 
turbulent flow data, and is based on the three parameters of the general Bingham model and 
one further fitting parameter of its own. Error and residual analysis will be used extensively 
to gauge the accuracy and validity of a model, and admit any transformations required. 
Outlier analysis will also be conducted (to detect and remove irregular data) using both 
qualitative and statistical techniques. Since the body of data is not extensive enough (see 
Chapter 3), time dependent and wall slippage effects will be excluded from the analysis.

Statistical packages were considered for analysing the data, such as Glim, Genstat or SPSS, 
but since the data requires far more than standard statistical methods, these packages were 
deemed to be inadequate. For instance, the analysis of the laminar flow data requires 
schemes for predicting both laminar pipe flow and critical flow. Much of the analysis 
involves combining the schemes of Chapters 5 and 6 whilst including some basic statistical 
methods, such as analysis of variance. The task in hand therefore involves combining a wide 
selection of simple tools to perform a difficult task, and most of the tools used for the 
analysis are not offered by any statistical package.

7.1 Laminar Flow Analysis

For the laminar flow analysis, the tube flow data are of relevance as they mainly cover the 
laminar flow regime (the pipe flow data give more emphasis to the transitional and turbulent 
flow regimes). The tube flow data are given as pseudo-shear flow data (wall stress, TR 
versus pseudo-shear rate, WID), and as they stand, are of little practical value since they 
depend on the pipe diameter. However, the objective is to achieve geometrical independence 
by modelling the true shear flow function on the pseudo-shear flow data using the methods 
presented in Chapter 6.
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Observations made in Chapter 3 of the pseudo-shear flow data were that sewage sludge 
exhibits pseudoplastic behaviour (the viscosity of the sludge decreases with increasing shear) 
and that it has a yield stress (an initial yield resistance to shearing). With reference to 
Chapter 2, there are many possible shear flow functions that would model these effects. 
However, the three parameter General Bingham model will now be used for the data analysis 
as it is well-established and widely used. It has limitations for very low and very high shear 
which are not expected to be violated by the data. None-the-less, to be prudent, the model 
shall be graphically appraised for the lowest and highest shear rate values of the data. The 
general Bingham model shall be compared with its special cases; collectively these are

General Bingham: r = ry + Kyn , (7.1)

Power law: T = Kyn , (7-2)

Bingham: r = Ty + 177, (7.3)

Newtonian: r = py. (7.4)

The power law parameters K and n are purely empirical since they are conventionally 
obtained by fitting a straight line through a log-log plot of the data (the curved part of a shear 
flow relationship depends on so many factors that a completely theoretical function has never 
been derived). In contrast, yield stress ry , coefficient of rigidity TJ, and viscosity /* can be 
considered as actual properties of the fluid itself.

The first stage of the analysis involves fitting the general Bingham model to all of the sound 
tube flow data and examining the residuals. At this stage, the objectives are to establish the 
suitability of the general Bingham model for the tube flow data, so there would be no point 
in being selective about the type of tube flow data to analyse. It also follows that, if the 
general Bingham model fails the assumptions required of the least squares model, then there 
would be no point in using any of the special cases of the general Bingham model. This is 
because the residuals of any of the special cases would, at best, be as good as the general 
Bingham model. A full discussion of a least squares fit of the general Bingham model to a 
set of data points was given in Section 6.1.1. To ensure that the least squares method is 
employed correctly, residual analysis is carried out at each stage of the analysis. Now, the 
residuals are the difference between the observed and the fitted values, and for pseudo-shear 

flow data, are given as

where (TR )- is they'th observation of the wall stress and the hat quantity denotes theyth 
prediction. The assumptions for the residuals of a least squares fit are that they follow a 
normal distribution about the independent axis, and have a constant variance (83) .
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Figures 7-1 and 7-2 show tube flow data of a sludge from Letch worth and its corresponding 
residual plot. Since only the laminar flow regime is of concern, Figure 7-1 includes the 
critical velocity prediction (ideally, the horizonal scale of the two plots should have been 
matched to make comparison of the two graphs easier). The residual plot (Figure 7-2) shows 
that there is no systematic increase, decrease or interdependence of the residuals, hence the 
residual assumptions are valid. Since there were several hundred such sludge samples to 
check, a computer program was written to access, fit and display the residual plots for any 
selected sludge sample. It was found that the other residual plots were equally sound, so on 
this evidence, the general Bingham function (7.1) is considered to be a sound model.
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Figure 7-2 The residual 
plot of the general Bingham 
model fitted to the data of 
Figure 7-1.

For any particular sample, the residual analysis is therefore a success and can be regarded 
as the residual analysis within each sample. However, the second stage of the analysis (the 
subject of the next chapter) is to introduce solids concentration into the model in order to 
obtain a generalised shear flow function for each sludge type. For this to be feasible, the
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residual analysis must also be carried out between the sludge samples. For least squares 
estimates to be valid on a global scale, the standard errors between each general Bingham 
fit must be independent and have a constant spread. In fact, the constant value about the 
spread of standard errors can be regarded as a global standard error. A convenient way of 
examining this is to plot the standard error of each fit (defined by Equation (6.36)) against 
their respective wall stress means. Another computer program was written to perform this 
analysis where a particular sludge batch or sludge type could be selected. The standard 
errors of digested, activated and primary sludges for the tube flow data are shown on Figures 
7-3, 7-4 and 7-5 respectively.

Without loss of generality, Figure 7-3 includes only a batch of Perry Oaks digested sludge 
as there were so many points on the complete plot that they fused together into a black mass. 
The three figures show that the standard errors are clearly non-constant, particularly digested 
sludge. The results indicate that the greater the range of data for a particular sludge, the 
greater the variation within the data. It may be generally true that higher wall stress values 
have larger residuals.

The problem of having a set of non-constant standard deviations is solved by applying a 
variance stabilizing transformation (82) . Since the relationship between S and TR is roughly 
linear, a log-log transformation of the data would be appropriate (82) . For the general 
Bingham model (7.1), this transformation is given as

# + wlog 10 7. (7.6)

This is not quite a pure log transformation of the general Bingham model since the yield 
stress has been moved to the left-hand side; the advantages of this simplification are self- 
evident. Note that this is, of course, still the general Bingham model, but rearranged in a 
different form.

As with the ordinary general Bingham model, the analysis now involves fitting the log 
general Bingham model to all of the sound tube flow data, and examine the residuals. A full 
discussion of a least squares fit of the log general Bingham model to a set of data points was 
given in Section 6.1.2. It is convenient to use the notation q = Iog10(r - ry ) so that the error 
sum of squares for the ith sludge sample (Section 6.3) is given as

M,

*, - E % - tf* (7 - 7)

where the hat denotes a prediction. Least squares estimates of ry , K and n are obtained from 
minimizing Equation (7.7) with respect to each of these parameters. Estimates of the 
parameters for this log model are expected to be similar to those of the ordinary version, but 
the residuals of each fit and the standard errors between these fits are expected to be 

generally different.
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As with the ordinary general Bingham model, residual analysis has to be repeated for the log 

general Bingham model for all of the sound tube flow data. Analogous to Equation (7.5), 

the residuals of the log model are redefined as

(7.8)

The least-squares assumptions for the residuals must apply; they must follow a normal 

distribution about the independent axis and have a constant variance. The computer program 

that was used to perform residual analysis on the ordinary model was modified to also apply 

to the log model. Figure 7-6 now shows the residuals of the log fit to the data of Figure 7-1 , 

and since the plot shows that there is no systematic increase, decrease or interdependence of 

the residuals, on this evidence, the log general Bingham model (7.6) is sound.
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Residual analysis must also include the detection and removal of outliers; Figure 7-7 a tube 

flow test of a Perry Oaks digested sludge is such an example. Unless there was either a 

clear typing error in the laboratory report, or a mistake on our behalf entering the data, it 

is not possible to determine the reason for the outlier. Outliers may represent a genuine, if 

not haphazard property of the sludge. Since sewage sludge is lumpy and ill-behaved, some 

outliers in the data are to be expected. For Figure 7-7, the tube's inside diameter is only 

12.52 mm rather narrow for carrying out viscometric measurements. Anyway, such values 

are either erroneous or unquantifiable and have to be removed.

To identify outliers, the externally studentised residual tetf (84) is used. This involves 

studentising the residuals by dividing each residual with its respective standard error. This 

yields residuals that are expectedly from the t (or student) distribution. The residuals are, 

however, externally studentised by dividing each; th residual with the; th value missing from 

its respective standard error. A residual is thus assumed to be an outlier unless otherwise
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tested. For a set of (x,, y;.), j = 1 ,...,M data points, the t statistic of the; th point is therefore

where the hat denotes a prediction. Conveniently, S^ is the standard error of the model 
with they th value missing, and when multiplied with the right-hand term of the denominator, 
gives the standard error of the individual residual itself. The term

is known as the leverage of they th value.

The residual analysis program was extended to identify the outliers automatically, and give 
user-control over their fate. The program which uses a t distribution to give 95% 
confidence on any outlier detected several possible outliers. Figure 7-8 shows the residual 
plot for the data of Figure 7-7, and for the least squares assumptions to be valid, the 
residuals should be normally distributed and spread evenly about the shear rate axis. For this 
case, the absolute value of the t statistic is 7.11, and the critical value of the t distribution 
is 1.89; the outlier is so extreme that the other residuals arc over the horizontal axis. Having 
removed the outlier, the updated residual plot is shown in Figure 7-10 where the residuals 
are now evenly spread around the horizonal axis.
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Figure 7-9 shows the accuracy of the fit of the predicted shear flow model for the data of 
Figure 7-7, and with reference to Equation (7.6), the gradient of the curve is n and the 
intercept of the curve is Iog 10 £. However, it should be noted that the data of Figure 7-9 are 
not the raw data, but a prediction of the log shear flow data. In other words the independent 
variable has been given a log pipe-to-shear transformation to make the data linear. Whereas
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Figure 7-10 shows the actual distribution of the residuals, Figure 7-9 gives a clearer 
indication of the magnitude of the residuals and the accuracy of the fit; in this case, it is a 
good fit. All of the tube flow data have been checked and edited for residuals in this way, 
and the residuals within each sludge sample were found to be well-behaved for the log 
general Bingham model (7.6).

The residual analysis between each sludge sample must be repeated again for the log general 
Bingham model, so the computer program for the ordinary fit was extended to deal with the 
log fit. The standard error versus the logarithm of the mean wall stress for the tube flow 
data of a batch of digested, activated, and primary sludges are shown by Figures 7-11, 7-12 
and 7-13 respectively; these figures are the transformed versions of Figures 7-3, 7-4 and 7-5 
respectively. For the model to be valid, the standard errors must be evenly spread 
throughout the independent variable. There no evidence of a systematic dependence on the 
mean wall stress for both the digested and primary sludges (Figures 7-11 and 7-13) (though 
for the primary case, the conclusion is based on little data). For activated sludge (Figure 
7-12) there is a little negative correlation between the variables, but since the least-squares 
method is known to be robust against minor residual violations, the log general Bingham 
model is a good model for the data. Global standard errors can be estimated visually from 
Figures 7-11 to 7-13 to be about 0.01 for digested sludge, and about 0.02 for activated and 
primary sludges.

The next stage of the analysis involves fitting log versions of the general Bingham model and 
its special cases, the power law, the Bingham and the Newtonian models to the tube flow 
data. It becomes apparent that, if any of the special cases of the log general Bingham model 
fit the data well, then the log general Bingham model must also. This is equivalent to saying 
that, if a one or two parameter special case model fits the data well, then so must the full 
three parameter model. A special case model would be much preferable to the general 
Bingham model as there are less parameters for both fitting to the data and for simplifying 
a final application. To judge whether or not one model is more suitable than another, visual 
comparison is considered to be too subjective and tedious in light of all of the data, so the 
F test (or variance ratio test) can be employed. For the F test, an F statistic is calculated as 
the ratio between two variances and compared with the F distribution.

To systematically compare the log general Bingham model (7.6) and its special cases, a 
regression technique known as the backward elimination method®^ is used. For this 
method, all parameters are fitted, then each parameter is tested in turn, and if found to be 
insignificant, dropped from the model. This results in a selection of the model with the least 
number of parameters necessary. For our problem in full: the general Bingham model is 
compared with the power law and Bingham models; if either or both of these two-parameter 
models are tested as significant, then the general Bingham model is discarded, and the two- 
parameter model is tested against the Newtonian model.
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A computer program was written to automatically perform the backward elimination method 
on all of the tube flow data. Rather than present the results in full, Table 7-1 gives the 
number of times each model was selected for each sludge type.

Table 7-1 The results of the backward elimination method applied to the tube flow 
data. The table gives the number of times each model was selected for each sludge 
type.

Sludge type

Digest
Activated
Primary

Gen. Bingham

84
16
4

Power

58
2

17

Bingham

3
0
1

Newtonian

2
0
0

From Table 7-1, the most suitable model for digested sludge is either the general Bingham 
model or power law model; for activated sludge it is the general Bingham model, and for 
primary sludge it is almost certainly the power law model. There are only really two models 
to consider: the general Bingham model and the power law model. Table 7-1 gives the 
number of times each model is significantly different, but does nothing to quantify the 
differences. To do this, the general Bingham standard error plots of Figures 7-11 to 7-13 
have been extended to include the power law fit; Figures 7-14 to 7-16 show the updated 
versions. For the digested sludge case, the supremacy of the general Bingham model over 
the power law model can clearly be seen. For the activated sludge case, the improvement 
is not as clear cut; in general terms, however, the general Bingham model should be 
conservatively chosen in preference to the power law model. For the primary sludge, there 
is little difference between the two models, so there is no reason to choose the general 
Bingham model in preference to the power law model. Notice that for the primary sludge, 
the power law model often has smaller standard errors than the general Bingham model, 
which is counter-intuitive considering that it is a simplified version of the general Bingham 
model. However, the power law model has one less parameter and therefore one more 
degree of freedom than the general Bingham model (see Equation (6.36)), and this accounts 
for the difference. Table 7-2 summarises the choice of model for each sludge type.

Table 7-2 Choice of model for each sludge type

Sludge type Selected model

Digested General Bingham
Activated General Bingham
Primary Power law
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Establishing the rate of shear ranges for each of the three sludge models is not easy as the 
data are given in terms of a pseudo-shear rate rather than the actual shear rate. Therefore 
the models of Table 7-2 are used to estimate the ranges for each of the sludge types using 
all of the relevant laminar flow data, and the results are presented in Table 7-3. The ranges 
have been estimated from laminar flow data only, and will not therefore be applicable to non- 
laminar flow situations. Chapter 2 discussed the limitations of the general Bingham and 
power law models for both low and high and shears and, so far, the residual analysis for 
these models has proved wholly successful for the data. For completeness however, some 
of the fitted models at the lower and higher ends of the ranges shall be examined.

Table 7-3 Rate of shear ranges for the models.

Sludge Shear rate range, y^n /s" 1 - -ymax /s' 1

Digested 1.9-2400
Activated 6.3-1600
Primary 7.8 - 1 100

For digested sludge, Figure 7-17 shows the laminar flow model fitted to data of the low 
predicted shear rate range 3.6 s" 1 - 1102 s" 1 , and Figure 7-18 shows a similar thing for the 
high predicted shear rate range 141 s' 1 - 2418 s' 1 . For both cases, the fits are remarkably 
good, and the residuals are evenly spread throughout the pseudo-shear rate ranges. For 
activated sludge, Figure 7-19 covers the predicted shear rate range 6.34 s" 1 -1207 s" 1 which 
is much of the complete range given in Table 7-3. Again the fit is impressive, though notice 
that the residuals do not seem to be spread constantly throughout the range as they are 
positive at the ends and negative in the middle. The limitations of the general Bingham 
model were discussed in Section 2.1, and it appears that they have been breached in this 
case. However, the fit is still excellent as the standard error is only 8.2 x 10'3 , and clearly 
lower than the average shown in Figure 7-12. It appears that the sludge sample was 
particularly well-behaved or maybe the measurements were more accurate. A more elaborate 
model such as the Meter model (2.13) may have been slightly better in this case, but when 
considering the data collectively, the general Bingham model is perfectly suitable. For 
primary sludge, Figure 7-20 covers the predicted shear rate range 77.4 s' 1 - 1086 s' 1 , and 
shows an excellent fit to many points.
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Figure 7-17 Digested sludge flow data 
of a low shear rate range: (a) the data, 
(b) the fit, (c) the residuals.
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Figure 7-18 Digested sludge flow data 
of a high shear rate range: (a) the data, 
(b) the fit, (c) the residuals.
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Figures 7-19 Activated sludge flow 
data covering most of the shear rate: 
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7.2 Critical Flow Assessment

Critical flow is the upper bound of laminar flow; the point at which laminar flow becomes 
unstable. Sound critical flow predictions are clearly important for identifying the upper 
bound of the laminar flow regime. They are also necessary for estimating the laminar shear 
flow function parameters to ensure that only laminar flow data are used for parameter 
estimation. However, the converse is also true: laminar flow parameter estimates are 
required for making critical flow predictions. In other words, laminar and critical flow 
predictions are interdependent; the scheme for predicting laminar flow parameters iterates 
over the critical flow prediction (such a procedure was used for the critical flow prediction 
of Figure 7-1). In this section, laminar and critical flow scale-up predictions are assessed 
qualitatively for sludge flow data.

In Section 4.3, the Ryan and Johnson stability parameter (54) was cited as being suitable for 
critical flow modelling of any time-independent, viscous fluid. Since the general Bingham 
model has been chosen for the data analysis, a simple model such as the Reynolds number 
proposed by Slatter (61) could be used for critical flow. However, in Section 5.2, a numerical 
algorithm was presented to solve the stability equation for a straight pipe geometry with any 
arbitrary shear flow function. The tools are therefore at our disposal for a general Bingham 
version of Ryan and Johnson with analysis that could easily be repeated with another shear 
flow function. Another advantage of the Ryan and Johnson stability parameter is that it is 
well established, and has been tested on a wide variety of data (see introduction to Section 
4.3). In contrast, Slatter derived his model with some brave assumptions that has proved 
successful for his data (mainly Kaolin), but has not been widely tested on other data.

The main problem with critical flow analysis is that the critical flow point is hard to ascertain 
for high Hedstrom numbers (26) . In fact, Figure 3-2 showed that repeated measurements of 
the same sludge sample can produce both smooth and sharp transitions from laminar to 
turbulent flow. For most of the data, the transitions are smooth, so this makes identification 
of the critical point difficult. The best approach is to turn the problem on its head and 
examine each critical flow prediction for a sludge sample. This can be done graphically, and 
would be more difficult for a smoother transition, but at least a qualitative assessment of the 
prediction is possible. The approach has the disadvantage of being very tedious for the 
extensive data, so only Ryan and Johnson's method will be assessed in this way. However, 
if this method fails, then other methods must be considered. It should be appreciated that 
there are very few methods available for critical flow modelling of complex fluids, so the 
choice is limited anyway.

Figure 7-21 shows tube flow data of a digested sludge from Perry Oaks taken before the 
pump-pipe trials. Included on this figure is the critical flow prediction which looks sound
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as it marks a change in the trend of the data. A further qualitative assessment of critical flow 
predictions was carried out on much of the other tube flow data, and as a result of this initial 
investigation, were found to be good for activated and digested sludge, but poor for primary 
sludge. The main problem in assessing the validity of a critical flow prediction in this way 
is that much of the tube flow data—like that of Figure 7-21—are laminar and, in this respect, 
the pipe flow data are regarded to be more appropriate as they cover the laminar and fully- 
developed turbulent flow regimes.

32.S

a

1
1

26.0 +

l9 - 5

6.5

x raw data

critical prediction

°'1 (U£3 <ME3tKGE3oTeES I.OE3

-1pseudo-shear rate (8U/D)/s

Figure 7-21 Tube flow data of a digested sludge from Perry Oaks including the 
critical (upper bound laminar) flow prediction.
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Figure 7-22 Pipe flow data of the digested sludge sample of Figure 7-21 with 
laminar and critical flow scale-up predictions.
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Figure 7-22 shows the corresponding pipe flow data for the sludge of Figure 7-21. Assess­ 
ment of the critical flow prediction is much easier since the full laminar and turbulent flow 
ranges are included. However, the pipe diameter is larger than that of the tube, so the 
critical flow prediction has been recalculated using the pipe geometry, which is no problem 
except that now the critical flow prediction is scaled up rather than direct. The figure shows 
that there are barely enough laminar flow data for parameter estimation and, as this difficulty 
applies to much of the other pipe flow data, much of the assessment of laminar and critical 
flow predictions must be carried out using scale-up predictions rather than direct predictions.

Referring again to Figure 7-22, the true critical velocity lies at the intersection of the laminar 
and fully-developed turbulent flow curves; these curves are defined by the first three, and 
the last four points respectively. They intersect undiscernibly close to the predicted critical 
velocity, thus verifying a successful critical velocity prediction. Laminar flow scale-up 
predictions have been included on the figure showing that the first prediction is an under- 
prediction and, interestingly, the predictions also appear to be valid for the transitional flow 
values. Nothing conclusive was drawn from the latter observation since (as noted in Chapter 
3) the behaviour of the transitional region can vary from one sludge to another.

Figure 7-23 shows the pipe flow data of an activated sludge from Maple Lodge which 
includes a critical velocity prediction again made from corresponding tube flow data. A 
feature of these data is that the transition from laminar to turbulent flow is very clearly 
defined and, applying the same qualitative methods discussed above, shows the critical flow 
prediction to be valid. For the laminar flow predictions, it is interesting to note that much 
the same applies as for the previous figure: an under-prediction for the first value, and an 
agreement with the transitional flow values.

3.60E-2

2.88E-2--

2.I6E-2--

o

0.72E-2--

X 
O

O

0.39 1.98 2.97 3.36 4.35

x raw data

o laminar scale-up 
predictions

-— critical scale-up 
prediction
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Figure 7-23 Pipe flow data of an activated sludge from Maple Lodge with laminar 
and critical flow scale-up predictions.
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Why is it that the first laminar flow prediction of the pipe flow data consistently under- 
predicts? Wall slippage is likely to be the answer to this question because, according to 
Jastrzebski (78) who wrote an authoritative paper on wall effects, correction for wall slip is 
particularly important at low shear. In context of our problem, a pseudo-shear rate relation 
adjusted for wall slippage (see Section 4.5) is given as

- Uf ) ' —— D —— '

where
v - &TR

s ~D^'

Us is the slip velocity, D is pipe diameter, TR is the wall stress, and /? and a are a parameters 
for fitting to the data. Firstly notice that, since oc must be greater than one, wall slippage 
becomes less important for larger diameters. Also notice that by definition of a pseudoplastic 
fluid, when T increases, TR increases less rapidly. The slip term thus becomes less important 
for higher shear, and this is borne out by Figures 7-22 and 7-23.

Figure 7-24 shows the pipe flow data of a primary sludge from Ipswich. Unlike the previous 
figures, the critical velocity prediction is a gross under-prediction of the true critical velocity. 
An examination of other pipe flow data of primary sludges also showed the critical velocity 
predictions to be too small. Since these are scale-up predictions, it is not possible from the 
pipe flow data to establish whether the under-predictions are due to the differences in the 
pipe diameter, or due to the sludge itself. To rule out the differences in diameter, the tube 
flow predictions can be re-examined. One such example is Figure 7-25— tube flow data of 
a primary sludge from Southend— which gives a clear indication that the critical flow 
prediction is too small, therefore showing that the under-prediction must (at least in part) be 
due to the sludge itself. Critical flow predictions using other primary sludge tube flow data 
suggest the same thing: critical flow predictions of primary sludge underestimate the true 
critical values. Although simple solutions to the problem could be considered (such as a 
scaling factor), there are certain qualms about altering a credible model that proves 
inadequate for primary sludge. Needless to say, simple fixes to the problem were sought out 
of curiosity, but none could be found.

A close inspection of Figures 7-24, 7-25, and of other related primary sludge data suggests 
that there is more to primary sludge flow than just a late onset of turbulence. For instance, 
for Figure 7-24, the point immediately proceeding the critical velocity prediction is clearly 
non-laminar; for Figure 7-25, the gradient of the curve proceeding the critical flow prediction 
increases with increasing flow rate; an indication of non-laminar flow. Primary sludge 
therefore has some rather unusual flow behavioral effects that are not investigated here.
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The reason that the critical flow model does not work well for primary sludge undoubtedly 
lies in the pseudohomogeneous assumption. Primary sludge has a particularly large 
distribution of particles sizes (up to one centimetre) and fibrous material that has not been 
accounted for in the modelling. The fibres themselves could suppress the random 
fluctuations associated with turbulent flow, and induce a late onset of turbulence. However, 
any quantitative analysis of these effects is not possible in absence of data.
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Since laminar and critical flow predictions are interdependent, there must naturally be some 
concern about the validity of the laminar flow models of primary sludge. However, there 
is nothing in the data to suggest that laminar flow of primary sludge is peculiar, and since 
the critical flow predictions are clearly laminar (upper bound or otherwise), the laminar flow 
model remains valid. This argument is borne out by good laminar flow scale-up predictions, 
such as those of Figure 7-24.

It can be concluded that the critical flow predictions of activated and digested sludges are 
qualitatively sound, but those of primary sludge are erroneously small. For laminar flow 
modelling, this does not matter as only laminar flow data are utilised. However, based on 
the current assumptions, turbulent flow modelling of primary sludge is not possible since the 
pseudohomogeneous assumption that affected critical flow modelling would undoubtedly 
affect turbulent flow modelling too. Even if this were not the case, the turbulent flow model, 
Equation (4.65), possesses a wall damping term that is invoked from critical flow onwards. 
Since the critical flow conditions of primary sludge cannot be correctly predicted, turbulent 
flow modelling of primary sludge will not be included in this research.

7.3 Turbulent Flow Analysis

For the turbulent flow analysis, the pipe flow data (rather than the tube flow data) are of 
relevance as they cover the full laminar to fully-developed turbulent flow regimes (with less 
emphasis on laminar flow). In Section 4.4, a discussion was given of a turbulent flow model 
for non-Newtonian fluids proposed by Hanks (26) , which is

r = Ty + Kjn + p/2 -/2 , (7.9) 

where / is the mixing length defined as

-- (7.10)

and
. _ BGB ~ <t>GB = -= ———————— • (7.11)

<!>GB ' BGB and its critical value (^GB)C contain parameters of the general Bingham laminar 
shear flow function (2.10). The parameter b is empirical, and the objectives of this section 
are to fit the parameter b to all of the sound pipe flow data using the algorithm presented in 
Section 6.2.
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Figure 7-26 is an example of turbulent flow data that contains an outlier. As discussed in 
Section 7.1, such outlying points may be due to measurement or typing errors, or may 
represent the haphazard nature of sludge flow behaviour itself. Either way, such outliers 
may overtly affect the model and must therefore be removed from the data. For the laminar 
flow data discussed in Section 7.1, a statistical test was used to recognise potential outliers. 
However, for the turbulent flow data, such a statistical test becomes an unattractive 
proposition. In Section 6.2, it was recognised that estimating the turbulence parameter b was 
a computationally intensive process, so outlier analysis would be time consuming to both 
implement and execute. Furthermore, whereas there have been a considerable amount of 
laminar flow data in the form of tube flow tests, there are much fewer turbulent flow data 
to analyse. Outliers of the turbulent flow data can therefore be recognised and removed by 
visual inspection. A computer program was written in Fortran 77 to display the data and— 
with a user-controlled facility—remove any chosen point of datum. In this way, all of the 
suspected outliers were removed from the turbulent flow data.
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Figure 7-26 Pipe flow data 
of a digested sludge from 
Perry Oaks with a suspected 
outlier in the turbulent flow 
regime.

In Chapter 3, it was remarked that pipe flow tests were conducted in two modes of operation: 
once-through and recirculation. During any particular day's testing, the sludge had either 
been pumped to make one pass through the pipe (once-through), or the sludge had been 
recirculated back through the tank to make several passes through the pipe. Examples of 
recirculated flow are shown in Figures 7-27 and 7-28; they are respectively of a digested 
sludge from Perry Oaks and an activated sludge from Maple Lodge. The data are presented 
as pseudo-shear flow plots to give a general idea of the shape of the true shear flow function. 
The gradients of the curves thus give an idea of the viscosity of the sludge for any particular 
shear rate. One would expect the overall viscosity of sludge to decrease with each 
consecutive pipe flow test; such behaviour was identified for laminar flow where a sludge 
before pumping is never more viscous during pumping, and likewise for during and after.
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It comes as a surprise to find that there is no systematic reduction in turbulent flow viscosity 
for each consecutive pipe flow test. In fact, some arbitrary variation is evident between the 
turbulent flow tests; Test 2 of Figure 7-27 illustrates the point beautifully. For these cases 
there is no clear explanation for the difference of a particular test other than the variation of 
material content within the sludge.

The objectives are to fit the turbulent flow model (7.9) to the sound pipe flow data and 
examine the residuals. A full discussion of a least squares fit of the model to a set of data 
points was given in Section 6.2. At this stage, the objectives are to establish the suitability 
of the model for the pipe flow data, so there would be no reason for being selective about 
the type of pipe flow data to analyse. Since the log transformation proved successful for the 
laminar flow model, it seems reasonable to apply it to the turbulent flow model also. This 
gives continuity to the data analysis, but it should nevertheless be appreciated that, if the log 
transformation fails the residual analysis, alternatives will have to be sought.
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The log transformation of the turbulent shear flow function (7.9) is

The left-hand side of the equation remains the same as the log laminar shear flow function, 
but the right-hand side of the equation no longer conveniently reduces to the form of 
Equation (7.6). Analogous to the laminar flow case, it is convenient to use the notation 
# = l°gio(r ~ Ty ) to give an error sum of squares for the ith sludge sample (Section 6.3) as

£i - E
j = 1

where the hat denotes a prediction. Estimation of b was discussed in Section 6.2, and 
requires minimizing the error of the turbulent flow model with respect to b. It was shown 
that the minimum was difficult to obtain by the usual turning point techniques, so quadratic 
interpolation was used as a bracketing method (A. 3: Appendix A, Section 3) to obtain the 
minimum of Ei with respect to b. A Fortran 77 program was written to fit the turbulent flow 
model to all of the sound pipe flow data.

Figures 7-29 and 7-30 show the turbulent flow predictions of a digested sludge from Perry 
Oaks and an activated sludge from Maple Lodge respectively. As discussed in Section 6.2, 
estimating b is a computationally intensive process. Using an IBM compatible PC with a 
Pentium processor and setting a relative convergence value of 5 X 10~4 , each estimate took 
roughly twenty seconds. It should be acknowledged that, whereas the laminar flow 
predictions are scaled up from the tube flow data, the turbulent flow predictions are based 
on the actual turbulent pipe flow data. Examining Figures 7-29 and 7-30, the turbulent flow 
model is agreeable for most of the data, which is the least to be expected of a one parameter 
model. The curvature of the data is of more interest and the model gives a fair portrayal of 
this. Other data have been examined, and as with Figure 7-29, there is evidence that the data 
fluctuate about the predicted values, which implies that no more can realistically be expected 
of a one parameter model. Predictions are at their poorest for the transitional region between 
laminar and fully-developed turbulent flow. For Figure 7-30, the second non-laminar point 
was taken to be an outlier and excluded from the analysis. Instead, there is good argument 
for using the laminar flow predictions of the transitional region. However, as noted in 
Chapter 3, transitional flow can behave unpredictably, so it may be wiser to be conservative 
and use the turbulent flow over-predictions.

As discussed in Section 4.4, Hanks derived a turbulent flow model for general Bingham 
fluids where b is based on an empirical relationship of the consistency index n, and the non- 
Newtonian Hedstrom number HeG5 . For the data of Figure 7-29, the fitted value of b is 
37.24, whereas Hanks' prediction of b is 71.31. There is a large discrepancy between these 
two values, though how the discrepancy translates to turbulent flow predictions depends on 
the sensitivity of b. The predictions of Hanks are included on Figure 7-29; they are poor 
and show that b is indeed a sensitive parameter.
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As the turbulent flow model is based on only one parameter, there is little point in examining 
the residuals of individual data sets. A qualitative assessment of the fit such as that given 
above is more than sufficient. However, for the log transformation to be valid, the standard 
errors of each fit must be constantly spread over the mean value of the independent 
variable (82) . Figure 7-31 shows a plot of standard error against mean wall stress for 
activated and digested sludges. There is no evidence of any systematic variation of standard 
error with mean wall stress. The log transformation of the turbulent flow model is therefore 
valid.
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Global standard errors of the log turbulent flow model are estimated directly from Figure 
7-31 as being about 0.04 for activated sludge and 0.03 for digested sludge. (For the laminar 
flow model the standard errors were about 0.02 and 0.01 for activated and digested sludges 
respectively.) Considering that the turbulent flow model has only one parameter to estimate, 
this is a significant result; although reasons for this can only be surmised, it may be that the 
shear thinning effects are less significant for turbulent flow.

The turbulence model has been used to estimate the shear rate range for both sludge types 
using all of the relevant transitional and turbulent flow data, and the results are given in 
Table 7-4. These ranges do not include laminar flow as these have already been dealt with 
at the end of Section 7.1.

Table 7-4 Rate of shear ranges for the models.

Sludge Shear rate range, 7mm /s - 7mox /s

Digested 
Activated

190-33000 
44-57000

For completeness, some of the fitted models at the lower and higher ends of the ranges shall 
be examined. For digested sludge, Figure 7-32 shows the turbulent flow model fitted to data 
of the low predicted shear rate range 337 s' 1 - 13157 s' 1 and the high predicted shear rate 
range 824 s' 1 - 32 881 s' 1 . For the lower range, the fit is very good and this is borne out 
by the other data with ranges of up to about 13 000 s" 1 . However, for the higher range, the 
fit is not so impressive and, as verified using other data, the model is not so good for these 
higher shears. Much the same conclusion was drawn for activated sludge, and a good 
example of a fit to the lower range 140 s' 1 - 10174 s' 1 is offered by Figure 7-33.
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7.4 Friction Plots

Non-Newtonian systems have often relied on graphical methods for obtaining predictions, and 
since these methods are well-founded, many engineers still use them. In this section, some 
non-Newtonian friction plots and prediction curves of the sewage sludge data will be 
presented. The emphasis of the research has so far been placed on Theological models 
appropriate to any geometry, but since the data comes from pipe flow measurements, friction 
plots are a convenient way of representing it. These plots are based on the pipe flow data 
which cover the full laminar to turbulent flow regimes. Only the first pipe flow result of a 
trial will be used where the sludge is assumed to be at its least agitated (this is important 
where conservative estimates are required for design purposes). These plots are also useful 
for comparing different models of flow prediction. For instance, our turbulent flow model 
with one fitted parameter will be compared against the widely used Dodge-Metzner relation. 
A friction plot conventionally contains both the laminar and turbulent flow regime of the 
data, which will be the case for primary sludge. For the activated and digested sludges 
where good critical flow predictions are available, the laminar and transitional/turbulent flow 
regimes will be presented on separate plots.

For non-Newtonian fluids, the Metzner-Reed (20) friction plot is often used, and based on the 
usual definition of friction factor/and Metzner-Reed Reynolds number Re^ as defined by 
Equations (4.6) and (4.46) respectively. Figures 7-34 and 7-35 are two such plots of the 
digested and activated sludges respectively. It is important to note that the/-axis has been 
scaled up for turbulent flow to show the data more clearly, but the scale of the ReGB-axis 
remains the same (normally turbulent flow would be represented on the same plot as laminar 
flow, though with a significantly shallower gradient). The Reynolds number is based on two 
parameters K 1 and n 1 that are not required to be constant, but can be calculated from a 
logarithmic plot of the laminar flow data. In our case, it is advantageous that the 
corresponding tube flow data are virtually all laminar, and almost always of a greater T 
range than the pipe flow data. Since the first pipe flow data of each trail are being used, it 
makes sense to use the corresponding tube flow data taken before the pipe trials. This is 
because it was recognised in Section 3.4 that these measurements are of the sludge at its least 
agitated. A computer program was written to automatically estimate the tangent of the log- 
log transformation of the tube flow data, and hence estimate K1 and n 1 at each T.

From the definition of the Metzner-Reed Reynolds number, the laminar flow relation 
/ = 16/ReMK should hold true. This prediction line has been placed on all four plots, and has 
a slope of minus one when the scale is taken into account. The prediction holds true for the 
laminar flow data, but this is to be expected from the definition of the Reynolds number. 
This consequently supports the no-slip argument as this version of the Metzner-Reed 
Reynolds number includes no wall slippage term. The adjusted volume percentage of solids 
for each sludge sample is shown in the legend where they have been sorted into an ascending 
order.
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The two turbulent flow figures show a strong correlation between the gradient of the curves 
and the concentration of the sludge: the higher the concentration the steeper the gradient. 
As one would expect, there is much more scatter in the data for higher solids concen­ 
trations—an effect that shall be examined in the next chapter. The turbulent flow plots also 
reveal another interesting result: to some extent the data of the thicker sludges tend to remain 
laminar. This may be a failure to correctly predict the critical flow velocity, but this is 
unlikely considering the amount of scatter in the data. It may be that the sludge is 
unpredictable at these concentrations and does not easily settle into laminar or turbulent flow. 
It may also be that the transition between laminar and turbulent flow is inherently complex.

The Dodge-Metzner relation for turbulent flow was discussed in Section 4.4 and is based on 
the Metzner-Reed Reynolds number. It is a widely used relation for non-Newtonian fluids, 
but is ill-considered for all complex mixtures (85) . Figure 7-36 includes Dodge-Metzner 
prediction curves on the two turbulent flow friction plots. The predictions are poor, probably 
because the relation does not account for the yield stress of the fluid in an explicit way, and 
probably because sewage sludges are inherently complex mixtures. There is clearly no 
ordering of the curves with volume percentage of solids. So what is it that determines the 
order of the curves and why, for instance, do two of the curves from the first plot deviate 
markedly to the left? With foresight, it is known that the curves vary with the Hedstrom 
number which, as discussed in Section 4.3, is a measure of the yield stress of the fluid. The 
curves increase with the Hedstrom number from left to right with the two curves referred to 
on the first plot having a Hedstrom number of more than twice any of the others on the plot.

Recent work by Dziubinski (74) has been based on the Metzner-Reed Reynolds number (see 
section 4.4), and the prediction curves are shown on Figure 7-37. The predictions are higher 
and constrained to a narrower band than Dodge-Metzner, but equally poor. Considering that 
the two relations are completely different, it surprising to find that the trends of the curves 
are so similar (notice again the two curves of the first plot that branch away). As with 
Dodge-Metzner's method, however, the Hedstrom number has a similar implicit effect on 
the curves.

As the general Bingham model has been used far less in the industry as a whole than the 
power law and Bingham models, there has been far less research into the turbulent flow of 
general Bingham fluids. Torrance (27) (see Section 4.4) derived a non-Newtonian Reynolds 
number for general Bingham fluids and subsequently a turbulent flow relation. Figure 7-38 
shows the friction plots of digested and activated sludges respectively with Torrance 
prediction curves included. The curves look more promising than those of Dodge-Metzner's 
with a clear indication that the Hedstrom number increases from left to right, but the results 
are still poor. Although the model includes yield stress in an explicit way, no experimental 
work was included in the derivation of Torrance's model, which was probably intended for 
far less complex mixtures than those of sewage sludges.
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turbulence with varying Hedstrom number and consistency index.
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Since the turbulent flow analysis of Section 7.3 was based on a model by Hanks (26) , it is 
worth summarising the data on friction plots proposed by Hanks. Figures 7-39 and 7-40 
show the data of the digested and activated sludges respectively. Since the three parameters 
of the general Bingham model are considered to be constant (see Section 7.1), Hanks' plots 
are much easier to develop and interpret than Metzner-Reed plots. However, each plot is 
a function of both the non-Newtonian Hedstrom number and the consistency index so, for 
instance, the laminar flow curves are not simply given by/ = 16/ReG5 as with Metzner-Reed. 
The legends contain both of these groups, but are arranged in ascending order of He^g. The 
use of symbols are consistent with the Metzner-Reed plots, ie the sludge samples are 
represented by the same symbols for both types of plot.

The turbulent flow analysis of Section 7.3 was based on Hanks, so prediction curves of the 
turbulent flow data are given on Figure 7-41. The prediction curves are far better than any 
other model examined so far and make sense of data that contains so much scatter. 
However, the model has had the advantage of being a one-parameter model where the 
parameter was fitted to the shear flow relation of each sludge sample. Apart from the free 
parameter, the main reason for having high expectations of Hanks' method is that few 
assumptions were made in formulating it. In fact, the Torrance relation is based on the same 
mixing length model as Hanks but without the Van Driest wall damping factor of Equation 
(2.22). Furthermore, Torrance made several simplifying assumptions when integrating the 
velocity profile to obtain the relatively simple friction factor relation.

Referring to Figure 7-4 Ib, although these prediction curves are better than others that have 
been assessed, there is still some disagreement. A closer look shows that there is some good 
agreement as well, such as the o curve, and the o> curve (easily confused with the x curve); 
these curves represent the transitional regime well. The + curve is irrelevant as the + data 
are so erratic. The poorest predictions are the A curve and the x curve. There is no obvious 
reason why these particular predictions fare worse than the others; it may be due to a bad 
transitional prediction from poor lamina flow data. Note also that these models were derived 
from shear flow relations and transformed to a frictional relations, so something would have 
been lost in the transformation.

A major drawback of Hanks' shear flow relation is its complexity. Deriving the prediction 
curves for Figure 7-41 was a major task as it required the numerical scheme of Section 5.3. 
Each curve was constructed by discretising wall stress over the friction plot range and 
calculating the corresponding mean cross-sectional velocity values as described in Subsection 
5.3.1—a calculation that involves iteration under integration. Then from the resulting values 
of £/, a series of friction factors and Reynolds numbers was calculated. Hanks (26) also 
developed a set of friction plots in much the same way for varying He^ and n, though he 
chose to discretise a dimensionless form. Figure 7-41 looks curious as some of the curves
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inflect in an unusual manner, though this is not wrong as Hanks' original paper shows 
precisely the same thing. When resolved for pipe geometry, the complexity of Hanks' shear 
flow relation has undoubtedly weighed against it. Nevertheless such a relation is advan­ 
tageous for computational fluid dynamics codes as discussed in Chapter 1.

Although the turbulent flow of primary sludge has not yet been considered, Figure 7-42 
follows the usual convention by including both the laminar and turbulent flow data on one 
friction plot. In Section 7.1, primary sludge was statistically shown to be well-modelled by 
the two-parameter power law model. Therefore K1 and n 1 are constant for the whole of 
the measured T range, and Metzner-Reed and Hanks friction plots become the same. The 
legend includes both volume percentage of solids and «, but arranged in ascending order of 
the former. The laminar flow line,/ = 16/ReM/e , does not fare well probably because wall 
slippage is an important effect. This would hardly be surprising considering that primary 
sludge is known to contain a large distribution of particle sizes (up to 10 mm in diameter), 
and a significant amount of fibrous material that causes drag. As with the other plots, the 
solids concentration has a significant effect on the flow behaviour of the sludge.

Since primary sludge has no significant yield stress, one might tentatively hope the Dodge- 
Metzner relation to be applicable. This hypothesis is tested in Figure 7-43, and it comes as 
no surprise to obtain a poor result. There has been far more research into the turbulent flow 
of power law fluids than of general Bingham fluids, so many other relations have been tried 
on the primary sludge data. Unsurprisingly, none of the relations made satisfactory 
predictions, though the predictions were surprisingly different. It would be pointless to plot 
all of these relations, so to summarise, Thomas (86) performed slightly better than Dodge- 
Metzner, Clapp (65) about the same, Shaver et c/ (87) somewhat worse than Dodge-Metzner, 
and Tomita (88) and Kemblowski et a/ (89) performed rather poorly.

Similar comparisons of turbulent pipe flow methods were carried out by Heywood and 
Cheng (90) using the sewage flow data of Hayes et al (l2\ The sewage was modelled using 
the general Bingham relation, but Heywood and Cheng still examined power law relations 
for friction based on the assumption that ry was unimportant for turbulent flow (this was 
based on conjecture rather than experimental evidence). Heywood and Cheng also examined 
the method of Hanks straight from plots of the original paper (Hanks only presented two 
plots—one for n = 1.0 and the other for n = 0.7). The body of data that Heywood and 
Cheng used was—by their own admission—limited, so they were unable to draw any definite 
conclusions from it.
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7.5 Conclusions

In this chapter, a large body of concentrated sewage sludge flow data (10) was analysed with 
the objectives of obtaining laminar, critical and turbulent flow models for each of the 
primary, activated and digested sludge types. For laminar flow, the three parameter general 
Bingham model (7.1) was found to fit excellently to all of the sound tube flow data. For the 
activated and digested sludges, all of the three parameters were tested to be significant, but 
for primary sludge, the yield stress parameter ry was tested to be insignificant, so the power 
law model (7.2) was found to be appropriate. Residual analysis was conducted showing that 
log versions of the general Bingham (7.6) and power law models gave a much better spread 
of standard errors between each fit than ordinary versions. Critical flow analysis based on 
the Ryan and Johnson stability parameter (54) was conducted on the data. Critical flow 
predictions were very good for activated and digested sludges, but no good for primary 
sludges. No alternative critical flow model for primary sludge was considered, and since the 
turbulent flow model proposed by Hanks (26) depends on critical flow predictions, turbulent 
flow analysis of primary sludge was excluded. To concur with the laminar flow analysis, 
the log version of the turbulent flow model was used. With just one fitting parameter, the 
turbulent flow model gave a good fit to the turbulent flow data of the activated and digested 
sludges. In the final section, friction plots were presented to show that the laminar flow 
relation/ = 16/Re^ held true for activated and digested sludge, but not for primary sludge. 
The turbulent flow model with one fitting parameter represented the turbulent flow data far 
better than any of the other widely used methods in the literature.
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8 Effect of Solids Concentration
In Section 3.6, plots of sewage sludge flow data revealed the striking effect that solids 
concentration could have on sewage flow behaviour; a full investigation of this effect— both 
laminar and turbulence—is the subject of this chapter, where the associated error analysis is 
included. Shear flow models are derived with zero, one, or two user-fitting parameters with 
the respective reduction of error that each parameter is likely to yield. (The more parameters 
the user fits to a model, the smaller the associated error of the model is likely to be.) This 
chapter draws heavily on the data analysis of the previous chapter.

8.1 Laminar Flow

Section 7. 1 discussed some extensive data analysis of laminar sewage sludge flow through 
a straight pipe. Statistical analysis revealed that the shear flow behaviour of activated and 
digested sludges was well modelled using the log version of the three parameter general 
Bingham model,

(r - ry ) = log lQK + /*log 10 7, (8.1)

whereas primary sludge was well modelled using the log version of the two parameter power 
law model,

Iog 10 r = Iog 10^ + nlog 10 7. (8.2)10

Although these models have proved suitable for the sludges of this research, would they be 
suitable for any digested, activated or primary sludge? This is a key question without a 
definite answer, though it would be difficult to believe that Equation (8.1)— with all its three 
parameters— would not model any sludge; this conjecture has been sustained by a 
considerable amount of data. The objectives of Section 7. 1 were not merely to suggest 
models for the sludges, but to actually estimate the parameters ry , K, and n of these models. 
Because these estimates are sludge specific, they are worthless as they stand. However, the 
estimates of each parameter can be used to suggest an empirical relation with sludge solids 
concentration. These relations would then admit generalised versions of Equation (8. 1) and 
(8.2) each as a function of solids concentration.

Significant effects on the viscosity of sewage recognised in Section 3.4 are those of time- 
dependency. Since the data include no quantitative assessment of these effects, only the 
qualitative assessment is possible; it is effects such as these that dominate the overall error 
of a generalised model. One general observation made about time-dependency, however, 
was that agitated sludge is never more viscous than rested sludge. A model is, of course, 
intended for practical use. For equipment design purposes, for example, it would be wise
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to be conservative about the viscosity of the sludge. Unlike the previous chapter which 

appraised all of the sound data, the analysis of this chapter will only consider sludge samples 

at their least agitated. This means that the generalised models are only to be based on tube 

flow tests taken before their respective pipe trials, or more specifically, the first tube flow 
test of any trial.

8.1.1 Effect of Sludge Type

Three general sewage sludge types were identified in Section 3.2 as primary, activated and 

digested. This is a simplification of the true situation as there are hybrid types and other 

possible types. Since three distinct types are given, it seems appropriate to develop three 

generalised models relating to each corresponding type. The possibility must be examined 

that the types are related enough to unite them into a single generalised model. However, 

the analysis so far suggests that the three parameter general Bingham model is suitable for 
activated and digested sludges, whereas the two parameter power law model is suitable for 
primary sludge; this is not a good premise for uniting them.

Referring back to Section 3.6, the one quantifiable sludge variant of the data that was shown 

to have a dramatic effect on the viscosity of sewage was solids concentration by mass; this 

effect must therefore be included in any generalised model. Since it is possible to calculate 

the volumetric concentration from the data, this may be used in preference to the mass 

concentration—an idea that will be considered.

8.1.2 Effect of Volume Fraction of Solids

In Section 3.6, the solids concentration by mass of a selection of tube flow data was shown 

to have a marked effect on sewage sludge. There is the question as to whether the solids 

concentration by volume would not be more suitable for a generalised model. In Chapter 2, 

Einstein's equation (37) for a suspension of spheres was given as

+2.5*), (8.3)

where \Lm is the viscosity of the suspension, p, is the viscosity of the liquid, and $ is the 

volume fraction of solids to liquid. This model is limited to Newtonian sludges of solids 

concentration no greater than one percent by volume. Einstein's equation, which is based 

purely on theory, has been experimentally verified. This suggests that, since the theoretically 

derived Newtonian sludge model is based on a volumetric concentration rather than a mass 

concentration, then an empirically derived non-Newtonian model should also be. While there 

is some conjecture to the argument, it is our defense for using volumetric concentration 

rather than mass concentration. The relation (85) between volume fraction of solids $ and
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mass percentage of solids Cw in terms of the measured values of the test data is given by

100
- 1 (8.4)

Pi

where pm and p{ are the densities of the mixture (sludge) and liquid (water) respectively.

A short computer program was written to use Equation (8.4) to find the absolute volume 

fraction ranges of the laboratory data (10) . For each sludge type, the results are given in 

Table 8-1; these give the required volume fraction ranges for which the generalised models 

will be operable. There is an interesting admission about the lower values of ranges as they 

are actually the critical volume fractions (which have nothing to do with critical flow). A 

critical volume fraction defines the Newtonian/non-Newtonian boundary where the sludge is 

Newtonian for lower concentrations and non-Newtonian for higher concentrations. The 

critical volume fractions of Table 8-1 are quoted from the Water Research Centre (91) .

Table 8-1 Applicable ranges of volume fractions for the generalised models. The 

lower values signify Newtonian/non-Newtonian critical concentrations.

Sludge Volume fraction range, $0 - 'max

Digested 0.015-0.104
Activated 0.010 - 0.036
Primary 0.020 - 0.072

The analysis of the generalised models shall be performed using the corrected volume 

fraction $ - $0 , which is the measured volume fraction corrected by its corresponding 

critical value. The next stage of the analysis involves relating each of the shear flow function 

parameters to solids concentration. In the previous chapter, the chosen shear flow function 

for a digested or activated sludge was the general Bingham model, and for a primary sludge, 

the power law model. These collectively have the parameters ry , K and «, so noting that the 

volume fraction is corrected by its critical value, we seek relationships of the form

~ *), 
(8.5)

- *0 ). (8.7)

These relationships are to be empirical, so the obvious first step is to plot them from the 

results of Section 7.1. The volume fraction plots of ry , K and n are shown by Figures 8-1 , 

8-2 and 8-3 respectively; for comparison, all three sludge types (primary, activated and 

digested) are included on the plots.
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It is important to appreciate that these plots show the general trend of the parameters with 
volume fraction, but say nothing about the error of a general model. This is because there 
may be covariation between the parameters, and the extent of this covariation is unknown at 
this stage. It may, for instance, transpire that considerably different estimates of ry , K and 
n give similar predictions, or conversely that a prediction is very sensitive to parameter 
variation. These plots, however, provide a very convenient starting point—a means to an 
end—for generalised modelling.

In Section 7.1, it was concluded that there was no significant yield stress for primary sludge, 
thus Figure 8-1 excludes primary sludge from the plot. The figure suggests some increase 
of yield stress with volume fraction, and there appears to be some difference between the 
increases for activated and digested sludges. For Figure 8-2, there is a dramatic increase of 
consistency index with volume fraction. Apart from showing such dramatic increases, 
Figures 8-1 and 8-2 are not very informative since the values are clustered about the origin. 
This suggests that a transformation is appropriate.

Figure 8-3 shows the variation of consistency index with volume fraction. The trend of the 
curve shows a decrease of consistency index with volume fraction demonstrating—as one 
would expect—that the fluid becomes progressively more pseudoplastic for increasing volume 
fraction of solids. In theory, the sludge should be Newtonian taking a value of n = 1 on the 
vertical axis. From Figure 8-3 this is far from conclusive, but it would be convenient to 
define an empirical function this way. This would not be erroneous considering that much 
of the variation for this plot would be due to the covariation property discussed earlier.

The next stage of the analysis is to seek transformations that linearise the values (the term 
'linearise' is strictly improper, but its use here means 'form a straight line'). The trans­ 
formations of the yield stress and consistency coefficient values are log-log and log-linear in 
both cases, which are shown on Figures 8-4 to 8-8. It can be seen from the four figures 
that, for both yield stress and consistency coefficient, it is the log-log transformation that 
linearises the values. This observation is a little tenuous (its weakness is revealed by 
considering the activated sludge plots); nevertheless, these empirical relations are suitable 
enough considering their limitations. The consistency index values of Figure 8-3 appear to 
have a relationship with volume fraction of the form w($ - $0 ) = 1/(1 + a($ - $0 )0) where 
a and 0 are the parameters of the model. For this to be true, it would be expected that a 
plot of log(l/n - 1) against log($ - $0 ) would be linear- Such a Plot is shown by Figure 
8-6 where there is, questionably, a linear trend to the values. This is good enough for our 
requirements, considering the earlier discussion about the covariation between the 

parameters.
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Having linearised the parameter values, these now give the following three empirical 
relationships for each parameter with volume fraction:

- *.f> (8.8)Ty =

n =

= (*,(*- $0f4 ,
1

(8.9)

(8.10)

where ak , k = 1,...,6 are six new parameters of the generalised model. Initial estimates of 
these parameters are obtained by performing linear regression (83) on the values of Figures 
8-4, 8-5 and 8-6 respectively, and are shown in Table 8-2.
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Table 8-2 Parameter estimates for Equations (8.8) to (8.10)

Sludge
Type

Digested
Activated
Primary

Parameter estimate
«! 0£2

1.671 x 104 2.409 7
1.392 x 107 3.683 1

— — 1

«3

.454 x

.958 x

.048 x

103
105
102

2
3
1

Qf4

.617

.229

.452

2
6
2

«5

.407

.339

.032

0
0
0

«6

.3080

.5837

.2254

Earlier in this subsection, it was pointed out that, below some critical volume fraction of 
solids, ie for $ < $0 where $0 depends on the sludge type, the sludge is Newtonian. In this 
research, the volume fraction of solids has been adjusted by its critical value so that, for 
instance, the yield stress is zero at $ = $0 . Other researchers have not done this, probably 
because critical values were unavailable. For a broad range of materials, Thomas (39) 
proposed a relationship between yield stress and volume fraction of solids as

ry . a*3 . <8-H)

This relation is cubic and compares to our indices of about 2.4 and 3.7 for digested and 
activated sludges respectively (see ct2 of Table 8-2). The index of 3.0 proposed by Thomas 
lies between these two values, though a direct comparison is not possible in light of the 
critical volume fraction. The one thing that emerges from Figure 8-4 is that the two sludge 
types of this research have different gradients so, unlike the Thomas relation, cannot be 
represented by a unique index.

As discussed in Chapter 1, modelling of sewage sludge has often focused on the two 
parameter Bingham model rather than the three parameter general Bingham model used for 
this research. However, both models contain a yield stress term, so any yield stress 
relationship with volume fraction can be compared. This assumes that yield stress is 
independent of the type of model fitted, but if this were not the case, then the model would 
anyhow be unsuitable. Other parameters between the Bingham and general Bingham model 
cannot be compared.

For activated sludge taken from three different plants, Dick and Ewing (40) obtained linear 
relations between yield stress and volume fraction on log-linear plot. This suggests the 
following relationship:

ry = . (8.12)

Judging by Figure 8-7, the activated sludge data are more or less linear on a log-linear scale, 
implying that the model would have been suitable for this research as well, though this would 
not have been true of digested sludge. Dick and Ewing's figure reveals different slopes for 
each of the three plants; the parameter c in the above relation is therefore different in each
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case. For this research, all of the activated sludge samples have been grouped together, and 
the same goes for the primary and digested sludges as well. This has been necessary to 
achieve the final goal of generalised models.

Mulbarger et a/ (3) also offer a log-linear plot of ry against $ for primary, secondary and 
digested sludges. There is considerable scatter in their data, and the overall trend is not 
linear, but similar to that offered by Figure 8-7. However, there is a difference: primary 
sludge has been included on their plot, but there is no yield stress for the primary sludge of 
our data. Apart from the primary sludge and taking into account the extra scatter, their 
curve looks remarkably similar to Figure 8-7. Carthew et a/ (4) supplemented the log-linear 
plot of Mulbarger with there own data. The data are far less scattered, but only covers the 
first part of the curve which is almost linear. For the limited data, the exponential model 
of yield stress would be suitable.

Some of the data used for this research and some of the data used by Frost (8) are the same. 
Furthermore, the general Bingham model has been used in both cases. Frost estimated the 
general Bingham parameters through the Mooney-Rabinowitsch equation using a second order 
approximation on a log-log transformation of the data. In this research, the general Bingham 
parameters have been estimated through the Mooney-Rabinowitsch equation using a 
numerical approximation. The similarities and differences of the results are shown on Figure 
8-9 where the general Bingham parameters are plotted. The variation of each parameter with 
solids concentration is very similar in both cases, and it is consoling to find that many points 
actually or nearly coincide on the plots— these are clearly the points of common data. The 
second order approximation used by Frost is perfectly suitable for estimating general 
Bingham parameters. However, for this research, Chapter 6 discussed parameter estimation 
for any shear flow function so that the analysis could easily be repeated for the parameters 
of any such function.

8.1.3 Generalised Model

It is important to appreciate that the estimates of Table 8-2 are of limited use. These are 
'secondary' estimates as they themselves have been derived from other estimates— namely 
the general Bingham and power law parameters. These estimates are not direct so offer no 
corresponding error analysis; if these estimates were used for a prediction, there would be 
no way of obtaining the corresponding magnitude of error for the prediction.

Substituting Equations (8.8) to (8. 10) into the log general Bingham model (8. 1), the full form 
of the generalised model becomes

q = logio«3 + «4 ogio - o + ———— ——— -, (8.13)
6
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where q and p, the new dependent and independent variables respectively, are

q = Iog 10 [r -«,(*- S
(o.

P =

The analysis now involves estimating the parameters a using the least squares method (see 
Section 6.1) on all of the relevant tube flow data. For each individual sludge sample, the 
error sum of squares was given by Equation (6.7), but for all N laminar flow sludge samples, 
the error sum of squares (Section 6.3) is now given by

* = E E-
where the hat denotes a prediction. The objectives are therefore to minimise E with respect 
to the parameters a. It would be a nice idea to fit Equation (8.13) to the data of each sludge 
type, estimating each of the six parameters using the least squares method, and obtain an 
overall standard error for each of the models. However, the task would be too difficult and 
computationally intensive: firstly, there is an enormous amount of data to analyse; secondly, 
the algorithm includes an encumbering pipe-to-shear transformation; thirdly, there are six 
parameters to estimate.

It is clear that, since the data can be modelled on fewer than six parameters, this would 
considerably simplify the problem. A sensible way to proceed is to round off and fix three 
parameters; the index parameters a2 , a4 and a6 of the Equations (8.8) to (8.10). It can be 
observed from Table 8-2 that the parameters a2 are very similar to a4 for the activated and 
digested sludges (primary sludge has no a2 parameter). The implication behind this 
observation is that yield stress ry and consistency coefficient K are linearly related. To check 
this assumption, ry was plotted against K, but since many of the points were bunched up at 
the origin, it was difficult to tell. However, if the relationship between ry and K is linear, 
then it also follows that the log-log relationship of these two parameters has a gradient of 
one. This assumption is verified by Figure 8-10 where, for comparison, an arbitrarily placed 
line of gradient one has been included. From Table 8-2, ensuring that a2 = «4 for each 
sludge type and rounding to the nearest half, the parameters «2 , «4 and a6 are fixed to the 
values given in Table 8-3.

Table 8-3 Fixed, rounded estimates for index parameters of Equations (8.8) to (8. 10)

Parameter estimate 
Type «2 "4 ae

Digested 2.5 2.5 0.5
Activated 3.5 3.5 0.5
Primary — 1>5 °-5
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Figure 8-10 Variation 
of log yield stress with 
log consistency coeff­ 
icient for activated and 
digested sludges. The 
line has a gradient of 
one and the intercept 
was chosen arbitrarily.

The parameter a6 has been conveniently rounded off to 0.5 in each case. So far, there is 
only intuitive evidence that these parameters are suitable for a generalised model of each 
sludge type. A key requirement is that the user can define some parameters of the 
generalised model with a diminishing standard error for each parameter defined. The first 
task is to therefore provide a generalised model with all three remaining parameters fitted to 
the data, thus leaving no parameters for the user to fit. The first model is to include with 
it the corresponding (and perhaps large) standard error. The next model would have a total 
of five pre-defined parameters leaving one user-definable parameter and a reduced standard 
error. A third model would have two user-definable parameters and would perhaps possess 
the minimum possible standard error.

A full discussion of the algorithm for parameter estimation of laminar flow equations such 
as Equation (8.13) was given in Section 6.1. The partial derivatives are required of the 
equation with respect to each of its remaining three fitting parameters. These are given by

dq _
-(* -

dq = lQgioe 
dot* Qk

Bq

(8.16)

OL*

A computer program was written to estimate the three fitting parameters for each of the 
sludge types; the results are given in Table 8-4. Along with the fixed parameters of Table 
8-3, they define a generalised model for each of the three sludge types.
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Table 8-4 Least squared estimates for the fixed parameters of Equation (8.13)

Sludge
Type

Digested
Activated
Primary

Parameter estimate
«i

1.519 x 104 4.335 x 103
5.759 x 106 2.525 x 106

— 97.25

«5

3.842
11.345
4.061

8.1.4 Error Analysis

The total error of a generalised model comes from both within a sludge sample and between 

the sludge samples. This equates in terms of error sum of squares (Section 6.3) to be

ET = EB + Ew. (8.17)

An important point to note is that increasing the number of user-definable parameters only 
decreases the error between the sludge samples but does not affect the error within a sludge 

sample. The minimum of the total error will therefore come from within the sludge samples.

For a no-parameter model, the standard error came from estimating the parameters of Table 
8-3. For the one-parameter model, it has to be decided which parameter to leave as user- 

definable. The obvious choice is a3 from Equation (8.13) as it is clearly a constant 

parameter. a3 is fitted to each relevant sludge sample only for the purpose of finding the 
general standard error of the model. For the two-parameter model, it has to be decided 
which second parameter to leave as user-definable. The obvious choice is «5 from Equation 

(8.13) as it is clearly a general curvature parameter. a3 and a5 are fitted to the relevant 

sludge samples, again only for the purpose of finding the general standard error. Note that 

«! would not be a wise choice as a user-definable parameter as this parameter is from the 

yield stress Equation (8.8), and above all else, primary sludge has no significant yield stress. 

A computer program was written to fit the one- and two-parameter models to the viscometric 

data in order to calculate the standard errors. The results are given in Table 8-5.

Table 8-5 Standard errors for the generalised models

Sludge Number of user-definable parameters 

Type 0 1___________2

Digested 0.2940 5.901 x 10~2 1.932 x 10'2
Activated 0.5420 0.2012 8.106 x 10~2
Primary 0.2491 5.323 x 10~2 2.125 x 10'2
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Notice that there is a significant reduction of standard error as the number of user-definable 
parameters increases. However, these errors are global errors for the model and tell nothing 
of how the error is distributed between each sludge sample. This is shown in Figures 8-11 
to 8-14 where the standard errors for the individual sludge tests are plotted. For Figures 
8-11 and 8-12—the digested sludge—there is a clear reduction in the standard error for each 
user-definable parameter. (Figure 8-12 excludes four outliers that distort the spread; these 
data are, anyhow, of dubious origin as they came from some initial trials.) For the activated 
sludge, Figure 8-13 shows a similar trend to the digested sludge, but although the standard 
errors are larger, there are much less data to be certain. The errors of the primary sludge 
(Figure 8-14) are similar in spread and magnitude to the digested sludge, which is surprising 
considering the differences between the sludges.

8.2 Turbulent Flow

Section 7.3 discussed some extensive data analysis of turbulent sewage sludge flow through 
a straight pipe. Statistical analysis revealed that the shear flow behaviour of an activated or 
digested sludge was well modelled using the logarithmic version of a turbulent flow model 
proposed by Hanks (26) . This is given as

(8.18)

where the model was fully discussed in Section 4.4. The model contains the three general 
Bingham parameters T , K and «, and the mixing length / contains a turbulence parameter 
b. The model of Hanks is suitable for the laminar-turbulent transitional regime, and is 
therefore a function of the critical flow conditions. As discussed in Section 7.2, this research 
was unable to resolve critical flow predictions for primary sludge, so turbulent flow analysis 
of primary sludge is to be excluded.
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In Section 3.4, it was observed that agitated sludge is never more viscous than rested sludge. 
For practical purposes, it would be wise to be conservative about the viscosity of the sludge. 
In section 8.1, the laminar flow models were therefore based on tube flow tests taken before 
their respective pipe trials, or more specifically, the first tube flow test of any trial. 
Turbulent flow will be modelled on the first pipe flow test of each trial where the sludge is 
at its least agitated and closely resembles that of the first tube flow test. The latter point is 
particularly important for comparing 'scale-up' predictions of different pipe diameters. There 
is, arguably, some repetition of data since pipe flow tests of the same undiluted sludge had 
been conducted on different days. However, sludge is such an unpredictable medium that 
a day can make a significant difference to a result.

8.2.1 Effect of Volume Fraction of Solids

To develop a turbulent flow model as a function of volume fraction of solids, $, a start can 
be made by exploring the relationship of the turbulent flow parameter b with $. As with the 
laminar flow modelling of the previous section, the volume fraction of each sludge type, $, 
shall be corrected with its respective Newtonian/non-Newtonian critical volume fraction, $0 
(see Table 8-1).

A plot of b against volume fraction for all of the relevant turbulent pipe flow data is given 
in Figure 8-15. For both sludge types, the results look unusual: both curves gently increase 
with volume fraction, proceeded by a rapid increase at higher volume fraction. Several 
attempts have been made to linearise the relation by applying typical transformations —such 
as the log-log transformation—but without success. An inspection of the figure shows that 
the curves are very linear with little random variation for most of their range, but at higher 
values, the points rapidly increase with much more random variation.
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Figure 8-15 Variation 
of the turbulence 
parameter with volume 
fraction.



153

Examining Figure 8-15, most of the points on the curves could be well modelled with a 
linear relationship, and it may be that the model would be valid for the higher values of b 
on the plot as well. This may give the initial impression of being a ridiculous assumption, 
but this is not necessarily the case. In Section 7.4, friction plots showed that sludge data of 
high solids concentration exhibited a considerable amount of scatter. More specifically, the 
data showed that these sludges did not seem to settle into a laminar or turbulent flow 
regime—there appeared to be an extended transitional regime. Considering the extreme case 
where the data remain completely laminar, the mixing length term given by Equation (4.57) 
would disappear, and this would happen for large values of the turbulence parameter b. The 
most plausible explanation for the large values of b shown in Figure 8-15 is that the flow 
often becomes unpredictably laminar, and this was borne out by Figures 7-34b and 7-35b. 
However, for design purposes, an overestimate is preferable to an underestimate, so to be 
on the safe side, it is best to assume that the thicker sludges develop turbulence earlier rather 
than later. A conservative estimate of b offered by a linear relation would satisfy this 
criterion.

Note that the vertical axis of Figure 8-15 is at * = $0 where the sludge is Newtonian (albeit 
upper bound). The value of b for a turbulent Newtonian fluid was quoted immediately after 
Equation (2.23) as being 22; this defines the intercept of the line. Ignoring the values that 
define the steeper part of the curves, linear regression with a fixed intercept (83) is used to 
find the gradient of the line, which turns out to be 872. The values with this fitted line are 
shown on Figure 8-16.
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Figure 8-16 A straight 
line fit and Hanks' 
predictions of the 
turbulence parameters. 
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Also included on Figure 8-16 are predictions of b based on the model of Hanks. Most of 
the predictions are overestimates, so as remarked above, this would translate to under­ 
estimates of the final stress predictions (Figure 7-29 clearly supports this reasoning). In
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fairness, Hanks tentatively derived b for general Bingham fluids (4.67) by combining b for 
Bingham fluids (4.61) with b for power law fluids (4.64), but never tested the validity of this 
assumption on any general Bingham data. For our sludge data, the model of b proposed by 
Hanks is invalid.

The straight line fit of Figure 8-16 defines a relationship between the turbulence parameter 
b and the volume fraction of solids $ for activated and digested sludges. To assess the 
effectiveness of the relationship, the standard errors between the raw data and the turbulent 
predictions must be examined. In particular, the predicted values of b are substituted into 
the turbulence equations (5.36) to (5.38), and as discussed in Section 5.3, solved for the 
relevant pipe geometry. A Fortran 77 computer program was written for this purpose, and 
the results—which took about a minute on an IBM compatible PC with a Pentium processor- 
are shown on Figure 8-17.

Figure 8-17 admits an interesting result: turbulent flow predictions are sensitive for higher 
volume fractions of activated sludge, though not for higher volume fractions of digested 
sludge. Although the straight line fit of b with $ is poor for these values, it nonetheless 
transpires that this does not matter too much for digested sludge. This is not the case for the 
thicker activated sludges where much unexplained variation prevails.
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8.2.2 Generalised Model

So far, the turbulence parameter b has been estimated for various sludges at various solids 
concentrations, and an empirical relationship between b and the volume fraction of solids, 
$ has been obtained. There is clearly something crude in the way that a model-of-a-model 
approach has been taken. To obtain a generalised turbulent flow model as a function of $,
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it can realistically be assumed that the relationship between b and * is of the form

- $ + 22. (8.19)

For each individual sludge sample, the error sum of squares was given by Equation (6.29), 
but for all N turbulent flow sludge samples, the error sum of squares (Section 6.3) is now 
given by

E = E E (8.20)

where the hat denotes a prediction. The objectives are therefore to minimise E with respect 
to the parameter 0. The algorithm for estimating 0 for N sludge samples is little different 
than that for estimating b for one sludge sample: quadratic interpolation is used as a 
bracketing method to obtain the minimum of E with respect to j3. A Fortran 77 program was 
written to estimate the parameter 0 based on the turbulent pipe flow data, but for the model 
to be valid, the resulting standard errors have to be evenly distributed about the independent 
axis. On the evidence of Figure 8-17, this seems unlikely, so the four sludges with a 
standard error greater than 0.1 were therefore taken as outliers and excluded from the 
calculation. Using a relative convergence check of 5 x 10~4 , the calculation took about three 
minutes on an IBM compatible PC with a Pentium processor (about half an hour on a 386/ 
387).
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The value of (3 that minimises the error is 974, so the final relationship of b with volume

fraction is therefore
b = 974 (* - $0 ) + 22. (8.21)

Along with Equations (8.18), (4.57) and (4.66), this defines a generalised turbulent flow 
model. The standard errors of this model for each sludge sample are shown on Figure 8-18. 
They are, as anticipated, better than those of Figure 8-17, though not considerably so.
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8.2.3 Error Analysis

Analogous to the laminar flow case, it is convenient to partition the error into the error 
within each sludge sample and the error between samples. This is given as an error sum of 
squares (Section 6.3) relation

ET = EB + EW <8 - 22)

The distribution of standard errors within the sludge samples was shown by Figure 7-31, and 
from this figure, the global standard errors were estimated to be 0.04 for activated sludge 
and 0.03 for digested sludge. Now, Figure 8-18 shows the distribution of total standard 
errors for the sludge samples. It is remarkable to note that, outliers apart, the standard 
errors are scarcely greater those within the sludge samples, and shows that the generalised 
model accounts for much error between the sludge samples. The global standard error is 
estimated from Figure 8-18 to be around 0.04. Since the total standard errors and the 
standard errors within the sludge samples are similar, it is clear that the error between 
samples must be very small, though larger for the outliers. The outlying values come as no 
surprise as these are thicker sludges that exhibit some erratic turbulent flow behaviour (as 
discussed in Subsection 8.2.1). For these thicker sludges, fully-developed turbulent flow 
probably occurs at higher shear rates, so much of these data are therefore either extended 
laminar flow or simply irregular flow. However, it is true to say that a turbulent flow 
prediction consistently gives a conservative estimate of any transitional flow data, and in spite 
of the larger error associated with the thicker sludges, this seems to be the best solution to 
the problem.

In summary, for both the sludge specific model and the generalised model, the standard error 
is about 0.04. Considering the success of the generalised model, there is obviously no point 
in measuring b unless the volume fraction, $, is large. From Figure 8-15 (neglecting $ 
the volume fraction ranges are given in Table 8-6.

Table 8-6 Volume fraction ranges and standard errors

Sludge type Volume fraction range Standard error, E

Digested 
Activated

0.015 - 0.047 
0.010 - 0.025

0.04 
0.04

Beyond these volume fractions, the standard error of the generalised model may be several 
times higher than normal. For these sludges, either the generalised model can be used to 
give conservative estimates of turbulent flow, or the end-user must estimate b from their own 
data.
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9 Conclusions
9.1 The Algorithms

Algorithms were developed to model the viscous flow of time-independent, non-Newtonian 
fluids through a straight, smooth pipe. The algorithms are not limited to the choice of 
relation between shear stress and rate of shearing strain, so any appropriate function of the 
explicit form r = #(7), or of the implicit form Gfy, r) = 0 may be specified by the end-user. 
The algorithms can be used to make laminar, critical and turbulent flow predictions of 
pressure gradient, mean cross-sectional velocity, and the velocity distribution. The laminar 
flow algorithms are based on the Mooney-Rabinowitsch equation (52' 53) , the critical flow 
algorithms are based on the Ryan and Johnson stability parameter (54) , and the turbulent flow 
algorithms are based on an equation by Hanks (26) . Wall slippage modelling, as proposed by 
Jastrzebski (78) , has also been included. The algorithms have been implemented in Fortran 
77 on an IBM compatible PC.

9.1.1 Scope of Use

The limitations of an algorithm are difficult to define since many of the variables and 
parameters are interdependent. The algorithms were mainly tested using the general 
Bingham shear flow function (6) , given as

r = ry + Ky". (9.1)

This is an empirical relation, and since it is a good model of any time-independent, non- 
Newtonian, viscous fluid, the tests are equally valid for other shear flow relations of a 
different functional form.

A general guide to the valid ranges of parameters for the algorithms is given in Table 9-1. 
For laminar and critical flow, these ranges meet the required tolerance for all but the most 
unlikely combinations of these parameters. For turbulent flow, it would be fair to say that

Table 9-1 Applicable ranges of the parameters for the algorithms

Parameter Laminar flow

Mean velocity, Ufm s" 1
Pressure gradient, (AP/L)/Pa m" 1
Pipe diameter, Dim
Yield stress, ry /Pa
Consistency coeff, K
Consistency index, n

10
10
10

10
0

-3

-3

-3

0
-6

.1

-103
-109
-103
-106
- 106
-2.0

Critical flow '

-
-

io-3 - io3
0-103

io-6 - io3
0.1- 1.0

Turbulent

io-3 -
io-3 -
io-2 -

0-
ur6 -
0.3-

iflo^

IO3
IO9
10
100
IO6
1.0
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the required tolerance is generally met, though if not, a reasonably accurate answer is almost 

always given.

Although the laminar flow algorithms are valid well beyond any practical range, this was 

considered desirable for the extensive parameter estimation of the data where robust pipe-to- 

shear transformations were required. The valid range of parameters for the critical flow 

algorithms also proved extensive, though critical flow conditions are not always possible for 

a dilatant fluid (where n > 1) as shear thickening may develop faster than flow instability. 

For turbulent flow, the algorithms are more limited in their flexibility as Table 9-1 shows.

9.1.2 Efficiency

A measure of the efficiency of an algorithm was reasonably taken to be the total number of 

shear flow function evaluations made by the algorithm; other measures, such as timings 

would not have been suitable as they would have been machine and implementation 

dependent. For any of the algorithms, it was consoling to find that the number of evaluations 

did not vary considerably between any of the problems. Table 9-2 gives the order of 

magnitude of number of evaluations for each algorithm.

Table 9-2 The number of the shear flow function evaluations in orders of magnitude 
made by each algorithm. Efficiencies of explicit and implicit shear flow functions are 
treated separately, except for turbulent flow where there is no difference.

Estimate Laminar/ Laminar/ Critical/ Critical/ Turbulent
explicit implicit explicit implicit

Mean velocity/m
Pressure grad/Pa
Velocity dist'n/m

s- 1
m- 1
s- 1

10
10

-102
-102

102

102
102
102

102
102
——

10-
10-

——

102
102

102
103
102

-icy3
-104
-103

9.2 Data Analysis

A large body of data was analysed, which is comprised of the flow measurements of 

concentrated sewage sludge through straight pipes. Laminar and turbulent shear flow 

functions were developed for each sludge type as a function of volume fraction of solids. 

A qualitative assessment of the data revealed that sewage flow is time-dependent, but the data 

were not extensive enough to fully quantify these effects. The data also revealed evidence 

of wall-slip (a finite velocity of fluid at the pipe wall); the data were also inadequate to 

account for this effect. The final models were derived from the thicker, undisturbed sludges 

to give upper-bound estimates of the time-dependent effects.
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9.2.1 Laminar Flow Analysis

For laminar flow, the general Bingham function (9.1) was chosen to model the data since it 

is widely recognised as a good empirical model of any time-independent, non-Newtonian, 

viscous fluid. A straight fit of the function to the data was found to yield non-constant 

standard errors, so the following log version of the function was fitted:

(9.2)

For activated and digested sludges, all three parameters, ry , K and n of the model were 

tested to be significant, but for primary sludge, the yield stress parameter ry was tested to 

be superfluous, reducing the model to a power law model.

For each of the three sludge types, Table 9-3 gives the selected model, the applicable volume 

fraction range, and the applicable shear rate range. The ranges are only applicable to the 

laminar flow regime. For volume fraction, the lower value of each range is the critical 

value, $0 (which have nothing to do with critical flow). A critical volume fraction defines 

the Newtonian/non-Newtonian boundary where a thinner sludge is Newtonian and a thicker 

sludge is non-Newtonian. The critical volume fractions of Table 9-3 are quoted from the 

Water Research Centre (91) .

Table 9-3 For each sludge type, the choice of model, and the applicable ranges of 
volume fraction and shear rate.

_. , „ . , . , Volume fraction Shear rate range 
Sludge type Selected model

rSITHTP (D>* — CD *v /C~ — *v /C~ ̂i<uigc, *Q ^fmax inun 1 ** tmax'^

Digested
Activated
Primary

General Bingham
General Bingham
Power law

0.015
0.010
0.020

-0.104
- 0.036
- 0.072

1.9
6.3
7.8

-2400
- 1600
- 1100

Empirical relations were examined between each parameter and the volume fraction of solids 

$, and were found to be of the form

ry =

<9 '4>

n = ————————— -' (9.5)- «
where a , j = 1,...,6 are themselves parameters. It was considered excessive to collectively
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estimate all six parameters from the immense data, so the indices, <*2 , a, and «6 were first 
estimated and rounded individually for these functions, and the remaining three parameters 
were then fitted collectively to all of the relevant data. The results are given in Table 9-4 
and the standard errors are given in Table 9-5.

Table 9-4 Parameter estimates of Equations (9.3) to (9.5)

Sludge
Type

Digested
Activated
Primary

Parameter estimate
«i 02

1.519 x IO4 2.5 4.
5.759 x IO6 3.5 2.

— — 97.

"3

335 x IO3
525 x IO6
25

c

2.
3.
1.

*4

5
5
5

c

3.
11.
4.

*5

842
345
061

0
0
0

«6

.5

.5

.5

For an improved standard error to the model, the end-user may fit one or two parameters to 
their own data. a3 and o;5 were respectively regarded as the most suitable parameters to do 
this where the remaining parameters are left unchanged. These one- and two-parameter 
models were refitted to our data, and the reduced standard errors are given in Table 9-5.

Table 9-5 Standard errors of the generalised models

Sludge
Type

Digested
Activated
Primary

Number
0

0.2940
0.5420
0.2491

of user fitting parameters
1

5.901 x 10-2
0.2012
5.323 x 10'2

2

1.932 x
8.106 x
2.125 x

io-2
io-2
io-2

9.2.2 Critical Flow Assessment

Critical flow is the upper bound of laminar flow. The Ryan and Jonson stability 
parameter {54) was used on the data to predict the critical flow conditions, and the results were 
qualitatively assessed. It was found that the stability parameter succeeded in predicting 
critical flow for activated and digested sludges, but failed on primary sludge. Due to the 
dependence of critical flow on turbulence, it was decided to exclude the modelling of 
turbulent flow for primary sludge.
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9.2.3 Turbulent Flow Analysis

For turbulent flow, the function proposed by Hanks <26> was used, and is the following sum 

of laminar and turbulent flow stresses:

r = ry + Ky" + p?y\ (9.6)

/ is a mixing length that includes a fluid-dependent parameter b. To be consistent with the 

laminar flow method, a log version of the model was fitted to the data:

(9.7)

An empirical relation between b and the volume fraction of solids was examined, and found 

to be of the linear form

b = 0($ - *0 ) + 22, (9.8)

For each of the two sludge types, Table 9-6 gives the applicable volume fraction range, the 

standard error, and the applicable shear rate range. The ranges are only applicable to the 

transitional and turbulent flow regime.

Table 9-6 For each sludge type, the applicable range of volume fraction, the 

standard error, and the applicable range of shear rates.

0 , . Volume fraction Standard Shear rate range
Sludge type - , -i . / i

range, $0 - ^ error, E 7min /s l - 7max /s 1

Digested 
Activated

0.015 - 0.047 
0.010 - 0.025

0.04 
0.04

190-33000 
44-57000

Using all of the relevant turbulent flow data, /? was estimated to be 974 for both activated 

and digested sludges with an overall standard error of 0.04. However, for volume fractions 

higher than those of Table 9-6, this estimate of 0 gives conservative turbulent flow 

predictions with an associated standard error several times higher. In the latter case, either 

a poorer standard error is accepted, or the end-user must estimate b from their own data. 

The standard error of the turbulent flow model is very low compared to any of the one- 

parameter laminar flow models. This suggests that some of the unpredictable effects of 

sewage flow diminish under high shear. The problem with any of the volume fraction 

models is that they are based on sludge samples from a limited number of sewage works, so 

there may be a greater regional variation than the results suggest.
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9.3 Epilogue

All of the objectives of the research have been met. Methods have been presented in this 
thesis for predicting the laminar and turbulent flow of yield pseudoplastic fluids through 
straight pipes. These methods are of particular interest to the sewage industry and many 
other industries concerned with the flow of a complex fluid mixtures through straight pipes. 
These methods were then used to analyse a large body of data of the laminar and turbulent 
flow of sewage sludge through straight pipes. Laminar and turbulent shear flow relations 
have been constructed as a function of solids concentration to be ultimately used for 
modelling the viscous flow of sewage in complex geometries. The sewage industry has since 
commissioned the sewage stirring tank to be modelled (17) using this approach. It has also 
been recognised that modelling the flow of sewage through pipe fittings such as bends, valves 
and constrictions would be of great value, so this research would provide a good platform 
on which to start.
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1 1 Nomenclature
a Parameter of the Meter model (2. 13)
a Required area under the t distribution
a Turbulence parameter equal to 60.
A Area
A Constant
b Turbulence parameter
b Estimate of b
B Constant
B ReVJf
BB
(BB )C

BP
(BP \
Cw Percentage solids concentration by mass
dP/dz Axial direction pressure gradient
dw/dr Rate of shear at radial distance r
dw/dy Rate of shearing strain (strain rate)
dx/dy Shear strain
dx Representative particle diameter
D Pipe diameter
D Plug core diameter
e Constant = 2.71828
e Residual of a fitted shear flow function
E Error sum of squares
EB Error sum of squares between samples
ET Total error sum of squares
Ew Error sum of squares within a sample
/ Fanning friction factor
f Critical flow equation pair
fc Fanning friction factor at critical flow

F Force
F F statistic
g Acceleration due to gravity
g Laminar shear flow function— explicit
G Laminar shear flow function— implicit
h Elastic shear stress function
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H Turbulent shear flow function
He Hedstrom number
He* Numerical estimate of Hedstrom number
HeGB General Bingham Hedstrom number
HLR Sludge-to-water head loss ratio
i Hydraulic gradient
i /th sludge sample
7 An integral value
j yth measurement of a sludge sample
/ The Jacobian matrix
k fan parameter
k{ Constant
k2 Constant
K Consistency coefficient
K Consistency coefficient estimate
vi rl3n + 1 \nA Al ————— )

	 1 4n i 
I Mixing length
L Pipe length
m mth iteration
m Rate of change of viscosity with shear rate
M Number of viscometric measurements of a sludge sample
n Consistency index
« Consistency index estimate

/

n" dlnr^/dln(r - F,)
N Number of sludge samples
O To the order of
p Independent variable of log shear flow function
P Pressure
q Dependent variable of log shear flow function
Q Number of parameters
q Predicted value of q
r Radial distance from pipe axis
rc Radial point of unsteady flow at critical flow
r. Radial distance at point 5

s

ry Plug core radius
R Pipe radius
Re Reynolds number
Re* Numerical estimate of Reynolds number
Re* Frictional Reynolds number
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Re** Modified Reynolds number
ReB Bingham Reynolds number
(ReB )c Bingham Reynolds number at critical flow
Rec Reynolds number at critical flow 

	Numerical estimate of Rec 
	General Bingham Reynolds number 

	c General Bingham Reynolds number at critical flow
ReM/f Metzner-Reed Reynolds number 

	Power law Reynolds number 
	Power law Reynolds number at critical flow

Rer Particle roughness Reynolds number
Re5 Slatter Reynolds number
Re5L Slatter and Lazarus Reynolds number
Rer Torrance Reynolds number
5 5th discrete value
S Standard Error
/ t statistic
T Number of velocity distribution points of annular region
u Axial direction velocity distribution
u* Numerical estimate of u
H Mean ^-directional velocity
u 1 ^-directional velocity fluctuation
U Mean cross-sectional velocity
U* Numerical estimate of U
U* Friction velocity
U^n Mean cross-sectional velocity of annular flow
Uc Mean cross-sectional velocity at critical flow
Us Slip velocity
v 1 y-directional velocity fluctuation
W Number of discrete values of a distribution
x Cartesian coordinate in the direction of flow
x Dependent variable
y Cartesian coordinate perpendicular to the direction of flow
y Distance from wall
y Independent variable
y Overall estimate of the independent variable
Y Maximum value of y—the wall distance
z Axial distance of pipe
Z Maximum value of
Zc Z at critical flow
a Constant
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of Laminar shear flow function parameters
a Parameter estimates
j(3 Constant
/3 Parameter of the generalised turbulent shear flow function
7 Shear strain
7 Rate of shearing strain (strain rate)
7 [7, JR]T
7C Rate of shear at critical flow

7" Mean value of 7"
jR Wall rate of shear
7S Rate of shear at point s
(jR )0 Starting value of 7^ for numerical scheme
(T/? )c Wall rate of shear at critical flow
F A pseudo-shear rate, 8C//D
F* Numerical estimate of F
FO Starting value of F for numerical scheme
Fc A pseudo-shear rate at critical flow
Fj Wall slip pseudo-shear rate
AP Pressure drop
Aw jc-direction velocity difference
Ay y-direction displacement
A7 Rate of shear difference
A^ Wall rate of shear difference
AT Shear stress difference
A^ Wall shear stress difference
e Relative tolerance check
e Residual of a fitted log shear flow function
£ Stability parameter
TJ Coefficient of rigidity
6 Angle
K Universal turbulence constant, usually 0.36
X Characteristic time
X Leverage
H Absolute viscosity

Viscosity at initial shear
Viscosity at infinite shear
Apparent viscosity, T/J
Effective viscosity, TR /T
Viscosity of liquid
Viscosity of mixture
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w

p Density
p, Density of liquid medium
pm Density of sludge mixture
C Right-hand side of Eq. (5.8)
T Shear stress
T Mean shear stress
TL Laminar or viscous stress
rm Shear stress for which the viscosity is l/2 (pi0 + /*„ ).
TR Pipe wall shear stress
TR* Numerical estimate of TR
TR Wall stress estimate
(T/?)c ^^ snear stress at critical flow 
(rfl)c* Numerical estimate of (TR )C 
TT Turbulent or Reynolds stress 
r Wall shear stress
T Yield stress
T Yield stress estimate
v Right-hand side of Eq. (5.7)
</> Mixing length parameter
</>B Bingham mixing length parameter
<f> GB General Bingham mixing length parameter
0P Power law mixing length parameter
$ Volume fraction of solids
$0 Newtonian/non-Newtonian critical volume fraction of solids
<p Loss coefficient
\l/ Laminar pseudo-shear flow function
o> Turbulent pseudo-shear flow function
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Appendix A The Methods
A.I Integration Methods—Adaptive

Consider the area A of a function/(*) over the interval [a, b],

b

A = J7(r)dc.
a

Estimates of this area can be given by the following integration rules (92) : 

Trapezium rule

* - j\f(a) +/(*)], h = (b -a);

Simpson's rule

Boole's rule
OA r

+ 32/(fl

These are two-, three- and five-point Newton-Cotes estimates respectively.

Adaptive Quadrature

Let Aw denote an estimate of A over the whole interval [a, b], and let Al and Ar denote the 
left and right area estimates of the bisected intervals of [a, b] respectively (see Figure A-1). 
The area difference between the full and half interval approximates is

AA =Aw -(Al +Ar ). 

For a given tolerance e, this can be used to define the relative convergence criterion
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Each half interval is repeatedly bisected until convergence is met on a local basis. Since the 
number of half intervals for a particular level is between one and two times the number for 
the previous level, e must be reduced by a suitable factor. The factor V"2 is considered 
suitable (92>.

*• X

Figure A-l Graphical 
representation of the Trapezium 
rule applied to a function/(x) for 
the whole and bisected intervals

a

A safeguard is used against unnecessary computation for relatively small intervals. For 
adaptive Simpson, for instance, there is an initial comparison between a Simpson's estimate 
and two Trapezium estimates. If this fails the convergence test, Simpson's method is 
continued adaptively. For adaptive Boole, there is an initial comparison between estimates 
of Simpson and Trapezium; if this fails the convergence test, there is a further comparison 
between estimates of Boole and Simpson.

A.2 Levenberg-Marquardt's Method

Levenberg-Marquardt's method (93) can be used to fit a function of the form

y = f(x; a),

where ak , k = 1,2,...,0 are the fitting parameters, to a set of data coordinates fy, y; ), 
7 = 1,2,...,M. The error sum of squares between the data and the function is

M

j =

The gradient of E with respect to the parameters a is given by

dE

and the Hessian matrix is defined as

K — l,Z,...,j£,

32E

Levenberg Marquardt's method transforms continuously between the steepest descent 
method (80) and the inverse Hessian method (80) . The steepest descent method is used far from
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the minimum and depends on the gradient of £, and the inverse Hessian method is used as 
the minimum is approached on a relatively flat surface.

A. 3 Minimisation using Quadratic Interpolation

Consider the minimum of a unimodal function /(*) within the interval [a, c\. Quadratic 
interpolation (94) can be used to reduce the interval to convergence. Let b be some point 
within the interval [a, c]. A Lagrangian interpolation of the three points at a, b and c is 
given as

P2 (x) = <* -2V ' (a - b)(a -
- «)(* -

(b - a)(b -
(x-a)(x-b) 
(c - a)(c -

Let the minimum of the quadratic lie at d. By basic turning point techniques, 

d = (b + c)(b - c)f(a) + (c + a)(c - a)f(b) + (a + b)(a - b)f(c)
2{(b - (c - a)f(b) + (a - b)f(c)}

For d < b: iff(d) < f(b) the new interval becomes [a, b]\ iff(d) > f(b) the new interval 
becomes [d, c] (see Figure A-2). Similar reasoning follows for d > b.

Figure A-2 Quadratic interpolation 
through the points at a, b and c, 
with estimate of minimum at d.

A.4 Muller's Method

For a function f(x) that has a single root contained within an interval [a, c], Muller's 
method (95) is a bracketing method that successively reduces the interval to convergence. Let 
b be some point within the interval [a, c]. A lagrangian interpolation (94) of the three points 

at a, b and c is given as

= (* - fr)(* ~ c) /•(/?> + (* ~ gH* " c> f(fr) + Cx - a)(x - b) 
~ (a - b)(a - cy (b - d}(b - c) (c -

The convenient rearrangement (a -6)0- CMC " is a quadratic in x with the
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following coefficients:

x2 : -(b - c)f(a) - (c - a)f(b) - (a -
x: (b + c)(b - c)/(a) + (c + a)(c -
1: -bc(b - c)f(a) - ca(c - a)f(b) -

a)f(b) + (a + b)(a - b)f(c), 
ab(a - b)f(c).

Let d be the root of the quadratic. If f(b)f(c) < 0, then a is discarded to make the new 
triple b, d and c (See Figure A-3). Conversely, iff(d)f(b) < 0, then c is discarded to make 
a, d and ft the new triple.

/<*)

Figure A-3 Quadratic interpolation 
through the points at a, b and c, 
with an estimate of the root at d.

A.5 Newton's Method for Two-Variable Functions

Consider the equation pair

where f = [fl , f2 ]T and x = 
is given as

f(x) = 0, 

, jc2 ]r. Newton's method (96) for a function of two variables

where 7—the Jacobian of f—is given as

and J~ l (x[m]) is the inverse of / evaluated at x[m] .

A.6 Runge-Kutta Fehlberg's Method

Consider the initial value problem

/ = /(*, y), y(a) = b.
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Let yi be the numerical solution of y at xt . The general 7?-stage, R - 1th order Runge-Kutta 
method (97) is defined as

i = 1

/*,. = f(xn + hbt , yn
R

, i = 1,2,.

*« • £ OH-i £—j iy
7 = 1

The Butcher matrix (97)—a convenient way of presenting the constants—is

A

where A is comprised of atj , b = [^ ,...,^]r, and c = [q ,...,c^]r. Fehlberg's embedded 
method (98> 99) is variable step, and uses the following fourth and fifth order methods:
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For computational efficiency, the fourth order methods is embedded within the fifth order 
method. If yn + 1 is the fourth order estimate and y* +1 is the fifth order estimate, the 
repeated or next step of integration is given by

h1 = 0.8 h

where e is the required relative tolerance.
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Appendix B The Software
B.I Introduction

This appendix lists the key Fortran 77 (Ryan-McFarland, Version 2) routines developed and 
used for the research. Details are given of each routine's purpose, parameters, and auxiliary 
routines. Each routine is self-contained and general enough to be relevant for other 
applications. The routines are grouped into four main sections: the pipe flow routines of 
Chapter 5; the data reduction routines Chapters 6 and 7; the volume fraction routines of 
Chapter 8; and routines of the general methods discussed in Appendix A. For simplicity, 
the routine names of Chapters 5 to 8 have codes such that each letter of a name represents 
the function given in the following table:

Flow regime

C Critical 
L Laminar 
T Turbulent

Prediction

D Velocity distribution
L Log model
M Mixing length 
P Pressure gradient 
U Mean velocity 
S Standard model
V Volume fraction model
W Wall stress

Flow function

B Bingham
E Explicitt 
G General Bingham 
I Implicit! 
N Newtonian
P Power law

t user-defined

Chapter 5 routines are

CUE LDE LPE 
CUI LDI LPI

Chapters 6 and 7,

LUE TDE TPE TUE 
LUI TDI TPI TUI

CUB LLB LSB LWB
CUG LLG LSG LWG TLG TMG TWG
CUN LLN LSN LWN
CUP LLP LSP LWP

Chapter 8,

LVG TVG 
LVP
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The routines of the general methods discussed in Appendk A are summarised in the 
following table:

Routine Purpose

BOOLE Adaptive, non-recursive quadrature using Boole's method. 

INVERT Inversion estimate of a single valued function using Muller's method.

LEVEN Fit a non-linear function to a set of values using Levenberg- 
Marquardt's method (based on the Numerical Recipes (100) routine 
MRQMIN).

LINREG Simple linear regression.

MINIM Estimate the minimum of a single-valued function using quadratic 
interpolation.

RKFEHL Numerical approximation of a first order differential equation using 
Runge-Kutta Fehlberg's method.

ROOT Estimate the root of a single-valued function using Muller's method.

SIMP Adaptive, non-recursive quadrature using Simpson's method.

TRAP Adaptive, non-recursive quadrature using the Trapezium method.

B.2 Pipe Flow Routines
CUE

1. Purpose
The critical flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The predictions 
are of critical mean cross-sectional velocity and critical pressure gradient. The shear flow relation is a user- 
definable function of the explicit form

STRESS = FUNONE (RATE).

2. Specification
SUBROUTINE CUE (UCRIT, PGCRIT, DENS, D, TOL) 
DOUBLE PRECISION UCRIT, PGCRIT, DENS, D, TOL

UCRIT - On exit, a prediction of the critical mean cross-sectional velocity [m/s]. 
PGCRIT - On exit, a prediction of the critical pressure gradient IPa/m]. 

DENS - On entry, the density of the fluid Ikg/m3].
D - On entry, the diameter of the pipe (ml. 

TOL - On entry, a relative tolerance check.

3. User-defined function
DOUBLE PRECISION FUNCTION FUNONE (RATE) 
DOUBLE PRECISION RATE

RATE - On entry, the rate of shearing strain [1/s].

4. Auxiliary routines
Routines required: INVERT, SIMP.
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cm
1. Purpose

The critical flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The predictions 
are of critical mean cross-sectional velocity and critical pressure gradient. The shear flow relation is user- 
definable function of the implicit form

FUNTWO (RATE, STRESS) = 0.

2. Specification

SUBROUTINE GUI (UCRIT, PGCRIT, DENS, D, TOL) 
DOUBLE PRECISION UCRIT, PGCRIT, DENS, D, TOL

UCRIT - On exit, a prediction of the critical mean cross-sectional velocity [m/s]. 
PGCRIT - On exit, a prediction of the critical pressure gradient [Pa/m]. 

DENS - On entry, the density of the fluid lkg/m3J.
D - On entry, the diameter of the pipe [rn). 

TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNTWO (RATE, STRESS) 
DOUBLE PRECISION RATE, STRESS

RATE - On entry, the rate of shearing strain [1/sJ. 
STRESS - On entry, the shear stress [Pa].

4. Auxiliary routines

Routines required: INVERT, ROOT, SIMP.

LDE

1. Purpose

The laminar flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 
is the velocity distribution: the shear flow relation is a user-definable function of the explicit form

STRESS = FUNONE (RATE).

2. Specification

SUBROUTINE LDE (R, U, RPLUG, NPTS, PGRAD, D, TOL)
INTEGER NPTS
DOUBLE PRECISION R (NPTS), U (NPTS), RPLUG, PGRAD, D, TOL

R - On exit, a set of equally spaced, radial points of ascending order [ml. 
U - On exit, an axial-direction velocity prediction at each radial point [m/s]. 

RPLUG - On exit, a prediction of the radius of the plug core [ml.
NPTS - On entry, the number of velocity distribution points. 

PGRAD - On entry, pressure gradient—pressure drop per unit pipe length [Pa/mJ.
D - On entry, the diameter of the pipe [ml. 

TOL - On entry, a relative tolerance check.

3. User-defined function
DOUBLE PRECISION FUNCTION FUNONE (RATE) 
DOUBLE PRECISION RATE

RATE - On entry, the rate of shearing strain [1/s].

4. Auxiliary routines
Routines required: BOOLE, INVERT.

LDI

I
le laminar flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction
the velocitTdistribution; the shear flow relation is user-definable function of the implicit form

The
is _

FUNTWO (RATE, STRESS) = 0.

2. Specification
SUBROUTINE LDI (R. U, RPLUG, NPTS, PGRAD, D, TOL)

PRECISION R (NPTS), U (NPTS), RPLUG, PGRAD, D, TOL
R - On exit, a set of equally spaced, radial points of ascending order [ml. 
U On exit' an axial-direction velocity prediction at each radial point [m/s].



182
RPLUG - On exit, a prediction of the radius of the plug core [m].

NPTS - On entry, the number of velocity distribution points. 
PGRAD - On entry, pressure gradient—pressure drop per unit pipe length IPa/m].

D - On entry, the diameter of the pipe [ml. 
TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNTWO (RATE, STRESS) 
DOUBLE PRECISION RATE, STRESS

RATE - On entry, the rate of shearing strain 11/si. 
STRESS - On entry, the shear stress [PaJ.

4. Auxiliary routines

Routines required: BOOLE, ROOT.

LPE

1. Purpose

The laminar flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 
is of pressure gradient: the shear flow relation is a user-definable function of the explicit form

STRESS = FUNONE (RATE).

2. Specification

SUBROUTINE LPE (PGRAD, UMEAN, D, TOL) 
DOUBLE PRECISION PGRAD, UMEAN, D, TOL

PGRAD - On exit, a prediction of pressure drop per unit pipe length [Pa/ml. 
UMEAN - On entry, the mean cross-sectional velocity of the flow [mis].

D - On entry, the diameter of the pipe [m]. 
TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNONE (RATE) 
DOUBLE PRECISION RATE

RATE - On entry, the rate of shearing strain [1/sl.

4. Auxiliary routines

Routines required: RKFEHL, SIMP.

LPl

1. Purpose
The laminar flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 
is of pressure gradient; the shear flow relation is user-definable function of the implicit form

FUNTWO (RATE, STRESS) = 0.

2. Specification
SUBROUTINE LPI (PGRAD, UMEAN, D, TOL) 
DOUBLE PRECISION PGRAD, UMEAN, D, TOL

PGRAD - On exit, a prediction of pressure drop per unit pipe length [Pa/ml. 
UMEAN - On entry, the mean cross-sectional velocity of the flow [m/sj.

D - On entry, the diameter of the pipe [ml. 
TOL - On entry, a relative tolerance check.

3. User-defined function
DOUBLE PRECISION FUNCTION FUNTWO (RATE, STRESS) 
DOUBLE PRECISION RATE, STRESS

RATE - On entry, the rate of shearing strain [1/s]. 
STRESS - On entry, the shear stress [Pa].

4. Auxiliary routines
Routines required: RKFEHL, ROOT, SIMP.
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LUE

1. Purpose

The laminar flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 
is of mean cross-sectional velocity; the shear flow relation is a user-definable function of the explicit form

STRESS = FUNONE (RATE).

2. Specification

SUBROUTINE LUE (UMEAN, PGRAD, D, TOL) 
DOUBLE PRECISION UMEAN, PGRAD, D, TOL

UMEAN - On exit, a prediction of the mean cross-sectional velocity [mis]. 
PGRAD - On entry, pressure gradient—pressure drop per unit pipe length [Pa/m].

D - On entry, the diameter of the pipe [ml. 
TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNONE (RATE) 
DOUBLE PRECISION RATE

RATE - On entry, the rate of shearing strain [1/sJ.

4. Auxiliary routines

Routines required: INVERT, SIMP.

LUI

1. Purpose

The laminar flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 
is of mean cross-sectional velocity; the shear flow relation is user-definable function of the implicit form

FUNTWO (RATE, STRESS) = 0.

2. Specification

SUBROUTINE LUI {UMEAN, PGRAD, D, TOL) 
DOUBLE PRECISION UMEAN, PGRAD, D, TOL

UMEAN - On exit, a prediction of the mean cross-sectional velocity [m/s]. 
PGRAD - On entry, pressure gradient— pressure drop per unit pipe length [Pa/ml.

D - On entry, the diameter of the pipe [ml. 
TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNTWO (RATE, STRESS) 
DOUBLE PRECISION RATE, STRESS

RATE - On entry, the rate of shearing strain [1/s]. 
STRESS - On entry, the shear stress [Pal.

4. Auxiliary routines

Routines required: ROOT, SIMP.

IDE

1. Purpose
flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 

; the laminar shear flow relation is a user-definable function of the explicit form

STRESS = FUNONE (RATE).

2. Specification
SUBROUTINE TDE (R, U, RPLUG, NPTS, PGRAD, WCR.T, DENS, D, TOL)

DOUBLE PRECISION R (NPTS), U (NPTS)
RPLUG, PGRAD, WCRIT, DENS, D, TOL

R On exit a set of equally spaced, radial points of ascending order [ml.
U " On exit' an axial-direction velocity prediction at each radial point [m/s]. 

RPLUG - On exit', a prediction of the radius of the plug core [ml.
NPTS On entry the number of velocity d.str.bution po.nts. 

PGRAD - On entry! pressure gradient -pressure drop per unit pipe length [Pa/ml. 
WCRIT On entry the critical shear stress at the pipe wall [Pal. 
WDCENS " On Tn y the density of the fluid [kg/m3l.
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D - On entry, the diameter of the pipe [m]. 
TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNONE (RATE) 
DOUBLE PRECISION RATE

RATE - On entry, the rate of shearing strain [Ms].

4. Auxiliary routines

Routines required: BOOLE, ROOT, TMG.

TDI

1. Purpose

The turbulent flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 
is the velocity distribution: the laminar shear flow relation is user-definable function of the implicit form

FUNTWO (RATE, STRESS) = 0.

2. Specification

SUBROUTINE TDI (R, U, RPLUG, NPTS, 
+ PGRAD, WCRIT, DENS, D, TOL)

INTEGER NPTS
DOUBLE PRECISION R (NPTS), U (NPTS), RPLUG, 

+ PGRAD, WCRIT, DENS, D, TOL

R - On exit, a set of equally spaced, radial points of ascending order Iml. 
U - On exit, an axial-direction velocity prediction at each radial point [m/s]. 

RPLUG - On exit, a prediction of the radius of the plug core [ml.
NPTS - On entry, the number of velocity distribution points. 

PGRAD - On entry, pressure gradient—pressure drop per unit pipe length (Pa/ml. 
WCRIT - On entry, the critical shear stress at the pipe wall [Pa]. 

DENS - On entry, the density of the fluid [kg/m3].
D - On entry, the diameter of the pipe [mj. 

TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNTWO (RATE, STRESS) 
DOUBLE PRECISION RATE, STRESS

RATE - On entry, the rate of shearing strain [1/sl. 
STRESS - On entry, the shear stress [Pa].

4. Auxiliary routines

Routines required: BOOLE, ROOT, TMG.

TPE

1. Purpose
The turbulent flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 

is Of pressure gradient: the laminar shear flow relation is a user-definable function of the explicit form

STRESS = FUNONE (RATE).

2. Specification
SUBROUTINE TPE (PGRAD, UMEAN, WCRIT, DENS, D, TOL) 
DOUBLE PRECISION PGRAD, UMEAN, WCRIT, DENS, D, TOL

PGRAD - On exit, a prediction of pressure drop per unit pipe length [Palm]. 
UMEAN - On entry, the mean cross-sectional velocity of the flow [m/s]. 
WCRIT - On entry, the critical shear stress at the pipe wall [Pa]. 

DENS - On entry, the density of the fluid [kg/m3].
D - On entry, the diameter of the pipe [ml. 

TOL - On entry, a relative tolerance check.

3. User-defined function
DOUBLE PRECISION FUNCTION FUNONE (RATE) 
DOUBLE PRECISION RATE

RATE - On entry, the rate of shearing strain [1/sJ.
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4. Auxiliary routines

Routines required: BOOLE, INVERT, ROOT, TMG.

TPI

1. Purpose

The turbulent flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 

13 of pressure gradient; the laminar shear flow relation is user-definable function of the implicit form 

FUNTWO (RATE, STRESS) = 0.

2. Specification

SUBROUTINE TPI (PGRAD, UMEAN, WCRIT, DENS, D, TOL) 
DOUBLE PRECISION PGRAD, UMEAN, WCRIT, DENS, D, TOL

PGRAD - On exit, a prediction of pressure drop per unit pipe length [Pa/mJ. 
UMEAN - On entry, the mean cross-sectional velocity of the flow [m/sl. 
WCRIT - On entry, the critical shear stress at the pipe wall [Pa]. 

DENS - On entry, the density of the fluid [kg/m3J.
D - On entry, the diameter of the pipe [m], 

TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNTWO (RATE, STRESS) 
DOUBLE PRECISION RATE, STRESS

RATE - On entry, the rate of shearing strain [1/s]. 
STRESS - On entry, the shear stress [Pa],

4. Auxiliary routines
Routines required: BOOLE, INVERT, ROOT, TMG.

IUE

1. Purpose

The turbulent flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 

is of mean cross-sect velocity; the laminar shear flow relation is a user-definable function of the explicit form

STRESS = FUNONE (RATE).

2. Specification

SUBROUTINE TUE (UMEAN, PGRAD, WCRIT, DENS, D, TOL) 
DOUBLE PRECISION UMEAN, PGRAD, WCRIT, DENS, D, TOL

UMEAN - On exit, a prediction of the mean cross-sectional velocity [mis]. 
PGRAD - On entry, pressure gradient—pressure drop per unit pipe length [Pa/m]. 
WCRIT - On entry, the critical shear stress at the pipe wall [Pal. 

DENS - On entry, the density of the fluid [kg/m31.
D - On entry, the diameter of the pipe [m). 

TOL - On entry, a relative tolerance check.

3. User-defined function
DOUBLE PRECISION FUNCTION FUNONE (RATE) 
DOUBLE PRECISION RATE

RATE - On entry, the rate of shearing strain [1/s].

4. Auxiliary routines
Routines required: INVERT, ROOT, SIMP, TMG.

mi
1. Purpose

The turbulent flow of a time-independent non-Newtonian viscous fluid through a straight pipe. The prediction 

js Of mean cro^ect velocity; the laminar shear flow relation is user-definable function of the implicit form

FUNTWO (RATE, STRESS) = 0.

2. Specification
SUBROUTINE TUI (UMEAN, PGRAD, WCRIT, DENS D. TOL) 
DOUBLE PRECISION UMEAN, PGRAD, WCRIT, DENS, D, TOL

UMEAN - On exit, a prediction of the mean cross-sectional velocity [m/s].
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PGRAD - On entry, pressure gradient-pressure drop per unit pipe length [Pa/m]. 
WCRIT - On entry, the critical shear stress at the pipe wall [Pa]. 

DENS - On entry, the density of the fluid [kg/m3j.
D - On entry, the diameter of the pipe [m]. 

TOL - On entry, a relative tolerance check.

3. User-defined function

DOUBLE PRECISION FUNCTION FUNTWO (RATE STRESS) 
DOUBLE PRECISION RATE, STRESS

RATE - On entry, the rate of shearing strain [1/sJ. 
STRESS - On entry, the shear stress [Pa).

4. Auxiliary routines

Routines required: ROOT, SIMP, TMG.

B.3 Data Reduction Routines
CUB

1. Purpose

The critical flow of a Bingham fluid through a straight pipe. The predictions are of critical mean cross- 
sectional velocity and critical pipe wall stress. The shear flow relation is the Bingham function

STRESS = Y + ETA • RATE.

2. Specification

SUBROUTINE CUB (UCRIT, WCRIT, Y, ETA, DENS, D, TOL) 
DOUBLE PRECISION UCRIT, WCRIT, Y, ETA, DENS, D, TOL

UCRIT - On exit, a prediction of the critical mean cross-sectional velocity [m/s]. 
WCRIT - On exit, a prediction of the critical shear stress at the pipe wall [Pal.

Y - On entry, the yield stress of the fluid [Pa]. 
ETA - On entry, the coefficient of rigidity of the fluid [Pa s]. 

DENS - On entry, the density of the fluid [kg/m3].
D - On entry, the diameter of the pipe [m]. 

TOL - On entry, a relative tolerance check.

CUG

1. Purpose
The critical flow of a general Bingham fluid through a straight pipe. The predictions are of critical mean 
cross-sectional velocity and critical pipe wall stress. The shear flow relation is the general Bingham function

STRESS = Y + GK * RATE «• GN.

2. Specification
SUBROUTINE CUG (UCRIT, WCRIT, Y, GK, GN, DENS, D, TOL) 
DOUBLE PRECISION UCRIT, WCRIT, Y, GK, GN, DENS, D, TOL

UCRIT - On exit, a prediction of the critical mean cross-sectional velocity [m/s]. 
WCRIT - On exit, a prediction of the critical shear stress at the pipe wall [Pa].

Y - On entry, the yield stress of the fluid [Pa].
GK - On entry, the general Bingham consistency coefficient of the fluid. 
GN - On entry, the general Bingham consistency index of the fluid. 

DENS - On entry, the density of the fluid [kg/m3].
D - On entry, the diameter of the pipe [ml. 

TOL - On entry, a relative tolerance check.

3. Auxiliary routines

Routines required: INVERT.

CUN

1. Purpose
The critical flow of a Newtonian viscous fluid through a straight pipe. The predictions are of critical mean 
cross-sectional velocity and critical pipe wall stress. The shear flow relation is the Newtonian function

STRESS = VISC • RATE.
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2. Specification

SUBROUTINE CUN (UCRIT, WCRIT, VISC, DENS, D) 
DOUBLE PRECISION UCRIT, WCRIT, VISC, DENS, D

UCRIT - On exit, a prediction of the critical mean cross-sectional velocity Im/sJ. 
WCRIT - On exit, a prediction of the critical shear stress at the pipe wall [PaJ. 

VISC - On entry, the dynamic viscosity of the fluid IPa sj. 
DENS - On entry, the density of the fluid [kg/m3J. 

D - On entry, the diameter of the pipe Iml.

CUP

1. Purpose

The critical flow of a power law fluid through a straight pipe. The predictions are of critical mean cross- 
sectional velocity and critical pipe wall stress. The shear flow relation is the power law function

STRESS = PK « RATE •• PN.

2. Specification

SUBROUTINE CUP (UCRIT, WCRIT, PK, PN, DENS, D) 
DOUBLE PRECISION UCRIT, WCRIT, PK, PN, DENS, D

UCRIT - On exit, a prediction of the critical mean cross-sectional velocity Im/sJ. 
WCRIT - On exit, a prediction of the critical shear stress at the pipe wall [PaJ. 

PK - On entry, the power law consistency coefficient of the fluid. 
PN - On entry, the power law consistency index of the fluid. 

DENS - On entry, the density of the fluid lkg/rr»3J. 
D - On entry, the diameter of the pipe [ml.

LIB

1. Purpose

The laminar flow of a Bingham fluid through a straight pipe. For a given data set, estimate the parameters 
of the log Bingham model

LOG 10 (STRESS - Y) = LOG 10 (ETA) + LOGIC (RATE).

2. Specification

SUBROUTINE LLB (Y, ETA, RESID, SSERR, SERR, 
+ PSRATE, WALL, NVALS, TOL)

INTEGER NVALS
DOUBLE PRECISION Y, ETA, RESID (NVALS), SSERR, SERR, 

+ PSRATE (NVALS), WALL (NVALS), TOL

Y - On exit, an estimate of the yield stress of the fluid [Pa]. 
ETA - On exit, an estimate of the coefficient of rigidity of the fluid [Pa si. 

RESID - On exit, the residuals—observed minus predicted values—of the model. 
SSERR - On exit, the error sum of squares of the model.

SERR - On exit, the standard error of the model. 
PSRATE - On entry, the pseudo-shear rate values, 8»UMEAN/D 11/si. 

WALL - On entry, the wall shear stress values corresponding to PSRATE [PaJ. 
NVALS - On entry, the number of data values. 

TOL - On entry, a relative tolerance check.

3. Working storage parameters

PARAMETER (MAXV=20)
in the main routine LLB itself.

MAXV - The maximum possible number of data values.

4. Auxiliary routines

Routines required: LWB.

Purpose
The laminar flow of a general Bingham fluid through a straight pipe. For a given data set, estimate the 
parameters of the lop general Binoham model

LOG10 (STRESS - Y) - LOG10 (GK) + GN • LOG10 (RATE).
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2. Specification

SUBROUTINE LLG (Y, GK, GN, RESID, SSERR, SERR, 
+ PSRATE, WALL, NVALS, TOL)

INTEGER NVALS
DOUBLE PRECISION Y, GK, GN, RESID (NVALS), SSERR, SERR 

+ PSRATE (NVALS), WALL (NVALS), TOL

Y - On exit, an estimate of the yield stress of the fluid [Pa]. 
GK - On exit, an estimate of the consistency coefficient of the fluid. 
GN - On exit, an estimate of the consistency index of the fluid. 

RESID - On exit, the residuals—observed minus predicted values—of the model. 
SSERR - On exit, the error sum of squares of the model.

SERR - On exit, the standard error of the model. 
PSRATE - On entry, the pseudo-shear rate values, 8«UMEAN/D [1/s]. 

WALL - On entry, the wall shear stress values corresponding to PSRATE IPa]. 
NVALS - On entry, the number of data values. 

TOL - On entry, a relative tolerance check.

3. Working storage parameters

PARAMETER (MAXV=20)
in the main routine LLG itself.

MAXV - The maximum possible number of data values.

4. Auxiliary routines

Routines required: LWG.

LLN

1. Purpose

The laminar flow of a Newtonian viscous fluid through a straight pipe. For a given data set, estimate the 
parameter of the log Newtonian model

LOG 10 (STRESS) = LOG 10 (VISC) + LOG 10 (RATE).

2. Specification

SUBROUTINE LLN (VISC, RESID, SSERR, SERR, PSRATE, WALL, NVALS) 
INTEGER NVALS
DOUBLE PRECISION VISC, RESID (NVALS), SSERR, SERR, 

+ PSRATE (NVALS), WALL (NVALS)

VISC - On exit, an estimate of the dynamic viscosity of the fluid [Pa s]. 
RESID - On exit, the residuals—observed minus predicted values—of the model. 

SSERR - On exit, the error sum of squares of the model.
SERR - On exit, the standard error of the model. 

PSRATE - On entry, the pseudo-shear rate values, 8*UMEAN/D [1/s], 
WALL - On entry, the wall shear stress values corresponding to PSRATE [Pa]. 

NVALS - On entry, the number of data values.

LLP

1. Purpose
The laminar flow of a power law fluid through a straight pipe. For a given data set, estimate the parameters 
of the loo power law model

LOG 10 (STRESS) = LOG 10 (PK) + PN • LOG 10 (RATE).

2. Specification
SUBROUTINE LLP (PK, PN, RESID, SSERR, SERR, PSRATE, WALL, NVALS) 
INTEGER NVALS
DOUBLE PRECISION PK, PN, RESID (NVALS), SSERR, SERR, 

+ PSRATE (NVALS), WALL (NVALS)

PK - On exit, an estimate of the consistency coefficient of the fluid. 
PN - On exit, an estimate of the consistency index of the fluid. 

RESID - On exit, the residuals—observed minus predicted values—of the model. 
SSERR - On exit, the error sum of squares of the model.

SERR - On exit, the standard error of the model. 
PSRATE - On entry, the pseudo-shear rate values, 8»UMEAN/D [1/s]. 

WALL - On entry, the wall shear stress values corresponding to PSRATE [Pa]. 
NVALS - On entry, the number of data values.
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3. Working storage parameters

PARAMETER (MAXV=20)
in the main routine LLP itself.

MAXV - The maximum possible number of data values.

4. Auxiliary routines

Routines required: LINREG.

LSB

1. Purpose

The laminar flow of a Bingham fluid through a straight pipe. For a given data set, estimate the parameters 
of the standard Bingham model

STRESS = Y + ETA • RATE.

2. Specification

SUBROUTINE LSB (Y, ETA, RESID, SSERR, SERR, 
+ PSRATE, WALL, NVALS, TOL)

INTEGER NVALS
DOUBLE PRECISION Y, ETA, RESID (NVALS), SSERR, SERR, 

+ PSRATE (NVALS), WALL (NVALS), TOL

Y - On exit, an estimate of the yield stress of the fluid [Pa]. 
ETA - On exit, an estimate of the coefficient of rigidity of the fluid IPa s]. 

RESID - On exit, the residuals—observed minus predicted values—of model [Pa]. 
SSERR - On exit, the error sum of squares of the model [Pa2].

SERR - On exit, the standard error of the model [Pa]. 
PSRATE - On entry, the pseudo-shear rate values, 8»UMEAN/D [1/s]. 

WALL - On entry, the wall shear stress values corresponding to PSRATE [Pa], 
NVALS - On entry, the number of data values. 

TOL - On entry, a relative tolerance check.

3. Auxiliary routines

Routines required: LEVEN, LWB.

LSG

1. Purpose

The laminar flow of a general Bingham fluid through a straight pipe. For a given data set, estimate the 
parameters of the standard general Bingham model

STRESS = Y + GK • RATE •• GN.

2. Specification

SUBROUTINE LSG (Y, GK, GN, RESID, SSERR, SERR, 
+ PSRATE, WALL, NVALS, TOL)

INTEGER NVALS
DOUBLE PRECISION Y, GK, GN, RESID (NVALS), SSERR, SERR, 

+ PSRATE (NVALS), WALL (NVALS), TOL
Y - On exit, an estimate of the yield stress of the fluid [Pa]. 

GK - On exit, an estimate of the consistency coefficient of the fluid. 
GN - On exit, an estimate of the consistency index of the fluid. 

RESID - On exit, the residuals—observed minus predicted values—of model [Pa]. 
SSERR - On exit, the error sum of squares of the model [Pa2].

SERR - On exit, the standard error of the model [Pa]. 
PSRATE - On entry, the pseudo-shear rate values, 8*UMEAN/D [1/s]. 

WALL - On entry, the wall shear stress values corresponding to PSRATE [Pa]. 
NVALS - On entry, the number of data values. 

TOL - On entry, a relative tolerance check.

3. Auxiliary routines

Routines required: LEVEN, LWG.
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LSN

1. Purpose

The laminar flow of a Newtonian viscous fluid through a straight pipe. For a given data set, estimate the 
parameter of the standard Newtonian model

STRESS = VISC • RATE.

2. Specification

SUBROUTINE LSN (VISC, RESID, SSERR, SERR, PSRATE, WALL NVALS) 
INTEGER NVALS
DOUBLE PRECISION VISC, RESID (NVALS), SSERR, SERR, 

+ PSRATE (NVALS), WALL (NVALS)

VISC - On exit, an estimate of the dynamic viscosity of the fluid [Pa sj. 
RESID - On exit, the residuals—observed minus predicted values—of model [Pa]. 
SSERR - On exit, the error sum of squares of the model [Pa2J.

SERR - On exit, the standard error of the model [Pa). 
PSRATE - On entry, the pseudo-shear rate values, 8«UMEAN/D [1/s]. 

WALL - On entry, the wall shear stress values corresponding to PSRATE [Pa]. 
NVALS - On entry, the number of data values.

LSP

1. Purpose

The laminar flow of a power law fluid through a straight pipe. For a given data set, estimate the parameters 
of the standard power law model

STRESS = PK • RATE •« PN.

2. Specification

SUBROUTINE LSP (PK, PN, RESID, SSERR, SERR,
PSRATE, WALL, NVALS, TOL) 

INTEGER NVALS 
DOUBLE PRECISION PK, PN, RESID (NVALS), SSERR, SERR,

PSRATE (NVALS), WALL (NVALS), TOL

PK - On exit, an estimate of the consistency coefficient of the fluid. 
PN - On exit, an estimate of the consistency index of the fluid. 

RESID - On exit, the residuals—observed minus predicted values—of model [Pa]. 
SSERR - On exit, the error sum of squares of the model [Pa2].

SERR - On exit, the standard error of the model [Pa]. 
PSRATE - On entry, the pseudo-shear rate values, 8«UMEAN/D [1/s]. 

WALL - On entry, the wall shear stress values corresponding to PSRATE [Pa]. 
NVALS - On entry, the number of data values. 

TOL - On entry, a relative tolerance check.

LWB

1. Purpose
The laminar flow of a Bingham fluid through a straight pipe. The prediction is of wall shear stress: the shear 

flow relation is the Bingham function

STRESS = Y + ETA • RATE.

2. Specification
SUBROUTINE LWB (WALL, PSRATE, Y, ETA, TOL) 
DOUBLE PRECISION WALL, PSRATE, Y, ETA, TOL

WALL - On exit, a prediction of shear stress at the pipe wall [Pa]. 
PSRATE - On entry, the pseudo-shear rate, 8*UMEAN/D [1/s].

Y - On entry, the yield stress of the fluid [Pa]. 
ETA - On entry, the coefficient of rigidity of the fluid [Pa s]. 
TOL - On entry, a relative tolerance check.

LW

1. Purpose
The laminar flow of a general Bingham fluid through a straight pipe. The prediction is of wall shear stress; 

the shear flow relation is the peneral Binoham function

STRESS = Y + GK • RATE •• GN.
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2. Specification

SUBROUTINE LWG (WALL, PSRATE, Y, GK, GN, TOL) 
DOUBLE PRECISION WALL, PSRATE, Y, GK, GN, TOL

WALL - On exit, a prediction of shear stress at the pipe wall IPa). 
PSRATE - On entry, the pseudo-shear rate, 8«UMEAN/D (1/sJ.

Y - On entry, the yield stress of the fluid [Pa].
GK - On entry, the general Bingham consistency coefficient of the fluid. 
GN - On entry, the general Bingham consistency index of the fluid. 

TOL - On entry, a relative tolerance check.

LWN

1. Purpose

The laminar flow of a Newtonian viscous fluid through a straight pipe. The prediction is of wall shear stress: 

the shear flow relation is the Newtonian function —————————

STRESS = VISC * RATE.

2. Specification

SUBROUTINE LWN (WALL, PSRATE, VISC) 
DOUBLE PRECISION WALL, PSRATE, VISC

WALL - On exit, a prediction of shear stress at the pipe wall [Pa]. 
PSRATE - On entry, the pseudo-shear rate, 8«UMEAN/D [1/s], 

VISC - On entry, the dynamic viscosity of the fluid [Pa s].

LWP

1. Purpose

The laminar flow of a power law fluid through a straight pipe. The prediction is of wall shear stress: the 

shear flow relation is the power law function

STRESS = PK • RATE •* PN.

2. Specification

SUBROUTINE LWP (WALL, PSRATE, PK, PN) 
DOUBLE PRECISION WALL, PSRATE, PK, PN

WALL - On exit, a prediction of shear stress at the pipe wall [Pal. 
PSRATE - On entry, the pseudo-shear rate, 8«UMEAN/D [1/s].

PK - On entry, the power law consistency coefficient of the fluid. 
PN - On entry, the power law consistency index of the fluid.

ILG
1. Purpose

The turbulent flow of a general Bingham fluid through a straight pipe. For a given data set, estimate the 

parameter of the lop turbulent flow model

LOG 10 (STRESS - Y) + LOG 10 (GK • RATE ** GN + 
DENS*TMG (STRESS, GK, GN, B, WALL,...)"»2 • RATE»»2).

2. Specification

SUBROUTINE TLG (B, RESID, SSERR, SERR, 
+ PSRATE, WALL, NVALS, Y, GK, GN, WCRIT, DENS, D, TOL)

INTEGER NVALS
DOUBLE PRECISION B, RESID (NVALS), SSERR, SERR, 

+ PSRATE (NVALS), WALL (NVALS), Y, GK, GN, WCRIT, DENS, D, TOL

B - On exit, an estimate of the turbulence parameter of the fluid. 
RESID - On exit, the residuals—observed minus predicted values—of the model. 

SSERR - On exit, the error sum of squares of the model.
SERR - On exit, the standard error of the model. 

PSRATE - On entry, the pseudo-shear rate values, 8»UMEAN/D 11/si. 
WALL - On entry, the wall shear stress values corresponding to PSRATE IPaJ. 

NVALS - On entry, the number of data values.
Y - On entry, an estimate of the yield stress of the fluid [Pa]. 

GK - On entry, an estimate of the consistency coefficient of the fluid. 
GN - On entry, an estimate of the consistency index of the fluid. 

WCRIT - On entry, the critical shear stress at the pipe wall IPal. 
DENS - On entry, the density of the fluid [kg/m3].

D - On entry, the diameter of the pipe [mj. 
TOL - On entry, a relative tolerance check.
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3. Working storage parameters

PARAMETER (MAXV=20)
in both the main routine TLG and in the subroutine TLG1 of the same file.

MAXV - The maximum possible number of data values.

4. Auxiliary routines

Routines required: BOOLE, INVERT, MINIM, ROOT, TMG.

TMG

1. Purpose

The turbulent flow of a general Binaham fluid through a straight pipe. The prediction is of the mixing length.

2. Specification

DOUBLE PRECISION FUNCTION TMG 
+ (STRESS, GK, GN, B, WALL, WCRIT, DENS, D) 

DOUBLE PRECISION STRESS, GK, GN, B, WALL, WCRIT, DENS, D

STRESS - On entry, the shear stress [Pal.
GK - On entry, the general Bingham consistency coefficient of the fluid. 
GN - On entry, the general Bingham consistency index of the fluid.

B - On entry, the turbulence parameter of the fluid. 
WALL - On entry, the shear stress at the pipe wall [Pa). 

WCRIT - On entry, the critical shear stress at the pipe wall [Pa]. 
DENS - On entry, the density of the fluid [kg/m3]. 

D - On entry, the diameter of the pipe [m],

TWG

1. Purpose
The turbulent flow of a general Bingham fluid through a straight pipe. The prediction is of wall shear stress; 
the shear flow relation is the following sum of the laminar flow general Bingham function and the turbulent 

flow function.
STRESS = Y + GK • RATE •• GN +
DENS * TMG (STRESS, GK, GN, B, WALL,..)»«2 • RATE»»2.

2. Specification

SUBROUTINE TWG (WALL, PSRATE, Y, GK, GN, B, WCRIT, DENS, D, TOL) 
DOUBLE PRECISION WALL, PSRATE, Y, GK, GN, B, WCRIT, DENS, D, TOL

WALL - On exit, a prediction of shear stress at the pipe wall [Pa]. 
PSRATE - On entry, the pseudo-shear rate, 8»UMEAN/D [1/s].

Y - On entry, the yield stress of the fluid [Pa].
GK - On entry, the general Bingham consistency coefficient of the fluid. 
GN - On entry, the general Bingham consistency index of the fluid.

B - On entry, the turbulence parameter of the fluid. 
WCRIT - On entry, the critical shear stress at the pipe wall [Pa]. 

DENS - On entry, the density of the fluid [kg/m3].
D - On entry, the diameter of the pipe [m]. 

TOL - On entry, a relative tolerance check.

3. Auxiliary routines
Routines required: BOOLE, INVERT, ROOT, TMG.

B.4 Volume Fraction Routines

LVG

iroi _
The laminar flow of a general Binoham fluid through a straight pipe. For a specific sludge type and for 

I = 1 ,...,N sludge samples, estimate parameters of the volume fraction model

LOG 10 (STRESS - A1 • (VF (I) - VFC) •• A4) =
LOG 10 (A3) + A4 • (VF (I) - VFC) +
LOG 10 (RATE) / (1 + A5 • (VF (I) - VFC) •• A6).
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2. Specification

SUBROUTINE LVG (A4, A6, A1, A3, A5, RESID, SSERR, SERR,
+ PSRATE, WALL, VF, VFC, NVALS, MAXV, NSETS, TOL) 

INTEGER NVALS (NSETS), MAXV, NSETS 
DOUBLE PRECISION A4, A6, A1, A3, A5, RESID (MAXV, NSETS),

+ SSERR, SERR, PSRATE (MAXV, NSETS), WALL (MAXV, NSETS),
+ VF (NSETS), VFC, TOL

A4, A6 - On entry, the fixed parameters. 
A1, A3, A5 - On exit, estimates of the parameters.

RESID - On exit, the residuals—observed minus predicted values—of the model. 
SSERR - On exit, the total error sum of squares of the model.

SERR - On exit, the total standard error of the model. 
PSRATE - On entry, the pseudo-shear rate values, 8»UMEAN/D [1/s]. 

WALL - On entry, the wall shear stress values corresponding to PSRATE [Pa].
VF - On entry, the volume fraction of solids for each data set. 

VFC - On entry, the Newtonian/non-Newtonian critical volume fraction of solids. 
NVALS - On entry, the number of data values for each data set. 
MAXV - On entry, the maximum number of possible data values for any data set. 
NSETS - On entry, the number of data sets. 

TOL - On entry, a relative tolerance check.

3. Working storage parameters

PARAMETER (MAXDAT=600, MAXS=100)
in main routine LVG, and 

PARAMETER (MAXS=100)
in subroutine LVG1 of the same file.

MAXDAT - The total maximum number of data values possible. 
MAXS - The maximum number of data sets possible.

4. Auxiliary routines

Routines required: LEVEN, LWG.

The laminar flow of a power law fluid through a straight pipe. For a specific sludge type and for I = 1 ,...,N 
sludge samples, estimate parameters of the volume fraction model

LOG 10 (STRESS) = LOG 10 (A3) + A4 • (VF (I) - VFC) + 
LOG10 (RATE) / (1 + A5 • (VF (I) - VFC) •• A6).

2. Specification

SUBROUTINE LVP (A4, A6, A3, A5, RESID, SSERR, SERR, 
+ PSRATE, WALL, VF, VFC, NVALS, MAXV, NSETS, TOL)

INTEGER NVALS (NSETS), MAXV, NSETS
DOUBLE PRECISION A4, A6, A3, A5, RESID (MAXV, NSETS), 

+ SSERR, SERR, PSRATE (MAXV, NSETS), WALL (MAXV, NSETS), 

+ VF (NSETS), VFC, TOL

A4, A6 - On entry, the fixed parameters. 
A3, A5 - On exit, estimates of the parameters.

RESID - On exit, the residuals—observed minus predicted values—of the model. 
SSERR - On exit, the total error sum of squares of the model.

SERR - On exit, the total standard error of the model. 
PSRATE - On entry, the pseudo-shear rate values, 8«UMEAN/D [1/s]. 

WALL - On entry, the wall shear stress values corresponding to PSRATE [Pal.
VF - On entry, the volume fraction of solids for each data set. 

VFC - On entry, the Newtonian/non-Newtonian critical volume fraction of solids. 
NVALS - On entry, the number of data values for each data set. 
MAXV - On entry, the maximum number of possible data values for any data set. 
NSETS - On entry, the number of data sets. 

TOL - On entry, a relative tolerance check.

3. Working storage parameters

PARAMETER (MAXDAT=600, MAXS=100)
in main routine LVP, and 

PARAMETER (MAXS=100)
in subroutine LVP1 of the same file.

MAXDAT - The total maximum number of data values possible. 
MAXS - The maximum number of data sets possible.
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4. Auxiliary routines

Routines required: LEVEN, LWP.

TVG

1. Purpose

The turbulent flow of a general Binaham fluid through a straight pipe. For a specific sludge type and for 
I = 1 ,...,N sludge samples, estimate the parameter BETA of the volume fraction model with the turbulence 
parameter

B = BETA • (VF (I) - VFC) + 22.

2. Specification

SUBROUTINE TVG (BETA, RESID, SSERR, SERR,
+ PSRATE, WALL, Y, GK, GN, WCRIT, DENS, D, VF, VFC,
+ NVALS, MAXV, NSETS, TOL) 

INTEGER NVALS (NSETS), MAXV, NSETS 
DOUBLE PRECISION BETA, RESID (MAXV, NSETS), SSERR, SERR,

+ PSRATE (MAXV, NSETS), WALL (MAXV, NSETS),
+ Y (NSETS), GK (NSETS), GN (NSETS), WCRIT (NSETS),
+ DENS (NSETS), D (NSETS), VF (NSETS), VFC, TOL

BETA - On exit, an estimate of the parameter.
RESID - On exit, the residuals—observed minus predicted values—of the model. 

SSERR - On exit, the total error sum of squares of the model.
SERR - On exit, the total standard error of the model. 

PSRATE - On entry, the pseudo-shear rate values, 8«UMEAN/D [Ms]. 
WALL - On entry, the wall shear stress values corresponding to PSRATE [Pa].

Y - On entry, the yield stress for each data set [Pa].
GK - On entry, the general Bingham consistency coefficient for each data set. 
GN - On entry, the general Bingham consistency index for each data set. 

WCRIT - On entry, the critical shear stress at the pipe wall for each data set [Pa]. 
DENS - On entry, the density of the fluid for each data set [kg/m3].

D - On entry, the diameter of the pipe for each data set [m]. 
VF - On entry, the volume fraction of solids for each data set. 

VFC - On entry, the Newtonian/non-Newtonian critical volume fraction of solids. 
NVALS - On entry, the number of data values for each data set. 
MAXV - On entry, the maximum number of possible data values for any data set. 
NSETS - On entry, the number of data sets. 

TOL - On entry, a relative tolerance check.

3. Working storage parameters

PARAMETER (MAXDAT=600, MAXS=100)
in main routine TVG, and 

PARAMETER (MAXS=100)
in subroutine TVG1 of the same file.

MAXDAT - The total maximum number of data values possible. 
MAXS - The maximum number of data sets possible.

4. Auxiliary routines

Routines required: BOOLE, INVERT, MINIM, ROOT, TMG.

B.5 General Method Routines

BOOLE

1. Purpose
Estimate tha area under a curve for a single valued function. This uses Boole's five-point method adaptively, 
but non-recursively. A feature of this routine is that the area estimate on exit will be the sum of the value 
on entry with the new area estimate. To safeguard against a relatively small new area compared to the entry 
value there is an initial comparison between estimates of Simpson and Trapezium, and then if necessary, 
a further comparison between estimates of Boole and Simpson. The tolerance check will always apply to 

the total area.

2. Specification
SUBROUTINE BOOLE (AREA, A, B, TOL, FUN) 
DOUBLE PRECISION AREA, A, B, TOL, FUN

AREA - On exit, the sum of AREA on entry with the new area estimate.
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A - On entry, the lower limit of integration.
B - On entry, the upper limit of integration. 

TOL - On entry, a relative tolerance check for the total area. 
FUN - The integrand as an external function.

3. External function

DOUBLE PRECISION FUNCTION FUN (X) 
DOUBLE PRECISION X

X - On entry, the value at which the function is to be evaluated.

INVERT

1. Purpose

For an equation Y = FUN (X) where FUN is a smooth, well-behaved function, estimate positive X for a given 
Y using Muller's method.

2. Specification

SUBROUTINE INVERT (X, Y, XO, XN, TOL, FUN) 
DOUBLE PRECISION X, Y, XO, XN, TOL, FUN

X - On exit, an estimate of the inverted function at Y. 
Y - On entry, the value of Y for estimate X. 

XO - On entry, a low estimate of X. 
XN - On entry, a high estimate of X. 

TOL - On entry, a relative tolerance check. 
FUN - An externally defined function for which the inversion is required.

3. External function

DOUBLE PRECISION FUNCTION FUN (X) 
DOUBLE PRECISION X

X - On entry, the value at which the function is to be evaluated.

LEVEN

(This routine is based on the publicly available Numerical Recipes routine M ROM IN.)

1. Purpose

Fit a non-linear function to a data set using Levenberg-Marquardt's method.

2. Specification

SUBROUTINE LEVEN (A, COVAR, CURVE, CHISQ, MA, 
+ X, Y, NDATA, ALAMDA, TOL, FUN)

INTEGER NDATA, MA
DOUBLE PRECISION A (MA), COVAR (MA.MA), CURVE (MA,MA), CHISQ, 

+ X (NDATA), Y (NDATA), ALAMDA, TOL, FUN

A - On entry, initial guesses of the parameters.
On exit, the estimates of the parameters.

COVAR - On exit, the estimated covariance (inverse curvature) matrix. 
CURVE - On exit, the estimated curvature (one-half times the Hessian) matrix. 
CHISQ - On exit, the chi squared value of the fitted curve. 

MA - On entry, the number of parameters. 
X - On entry, the independent data values. 
Y - On entry, the dependent data values. 

NDATA - On entry, the number of data values. 
ALAMDA - On entry, usually set small, say 0.001.

(small—inverse Hessian, large—steepest descent.) 
TOL - On entry, a relative tolerance check. 
FUN - An externally defined (non-linear) function.

3. External function

DOUBLE PRECISION FUNCTION FUN (X, Y, A, DYDA, NDATA, MA)
INTEGER NDATA, MA
DIMENSION X(NDATA), Y(NDATA), A(MA), DYDA (NDATA, MA)

X - On entry, the independent data values. 
Y - On exit, the fitted values at X and A. 
A - On entry, the values of the parameters.

DYDA - On exit, the derivatives of Y (with respect to A) at X and A. 
NDATA - On entry, the number of data values. 

MA - On entry, the number of parameters.
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4. Working storage parameters

PARAMETER (MAXDAT=1000, MAXA=5)
in routines LEVEN and COEFF, and 

PARAMETER (MAXA=5)
in routine GAUSSJ all of the same file.

MAXDAT - The maximum number of data values possible. 
MAXA - The maximum number of parameters possible.

LINREG

1. Purpose

Simple linear regression of the model Y = A + B • X.

2. Specification

SUBROUTINE LINREG (A, B, SSE, X, Y, NVALS)
INTEGER NVALS
DOUBLE PRECISION A, B, SSE, X, Y

A - On exit, the intercept of the fitted line. 
B - On exit, the slope of the fitted line. 

SSE - On exit, the error sum of squares of the fitted line. 
X - On entry, the independent data values. 
Y - On entry, the dependent data values. 

NVALS - On entry, the number of data values.

MINIM

1. Purpose

For an equation Y = FUN (X) where FUN is a smooth, unimodal function, find the minimum using quadratic 
interpolation.

2. Specification

SUBROUTINE MINIM (X, Y, X0, XN, TOL, FUN) 
DOUBLE PRECISION X, Y, X0, XN, TOL, FUN

X - On exit, an estimate of the location of the minimum. 
Y - On exit, an estimate of the minimum value of the function. 

X0 - On entry, a low estimate of X. 
XN - On entry, a high estimate of X. 

TOL - On entry, a relative tolerance check. 
FUN - The externally defined function for which the minimum is required.

3. External function

DOUBLE PRECISION FUNCTION FUN (X) 
DOUBLE PRECISION X

X - On entry, the value at which the function is to be evaluated.

RKFEHL

1. Purpose

Estimate Y for a given X of a differential equation dY/dX = FUN (X, Y) using Runge-Kutta Fehlberg's 
embedded pair method.

2. Specification

SUBROUTINE RKFEHL (X0, Y0, XN, YN, H0, TOL, FUN) 
DOUBLE PRECISION X0, Y0, XN, YN, H0, TOL, FUN

X0 - On entry, the initial value of X.
Y0 - On entry, the initial value of Y.
XN - On entry, the value of X for estimate Y.
YN - On exit, an estimate of Y at XN.
H0 - On entry, the initial step length. 

TOL - On entry, a relative tolerance check. 
FUN - An externally defined function to be integrated.

3. External function
DOUBLE PRECISION FUNCTION FUN (X, Y) 
DOUBLE PRECISION X, Y

X, Y - On entry, the two values at which the function is to be evaluated.
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ROOT

1. Purpose

For an equation FUN (X, Y) = 0, where FUN is a smooth, well-behaved function, estimate positive X for a 
given Y using Muller's method.

2. Specification

SUBROUTINE ROOT (X, Y, XO, XN, TOL, FUN) 
DOUBLE PRECISION X, Y, XO, XN, TOL, FUN

X - On exit, an estimate of the location of the root at Y. 
Y - On entry, the value of Y for estimate X. 

X0 - On entry, a low estimate of X. 
XN - On entry, a high estimate of X. 

TOL - On entry, a relative tolerance check. 
FUN - The externally defined function for which the root is required.

3. External function

DOUBLE PRECISION FUNCTION FUN (X) 
DOUBLE PRECISION X, Y

X, Y - On entry, the two values at which the function is to be evaluated.

SIMP

1. Purpose

Estimate the area under a curve for a single valued function. This uses Simpson's three-point method 
adaptively, but non-recursively. A feature of this routine is that the area estimate on exit will be the sum 
of the value on entry with the new area estimate. To safeguard against a relatively small new area compared 
to the entry value, there is an initial comparison between estimates of Simpson and Trapezium. The 
tolerance check will always apply to the total area.

2. Specification

SUBROUTINE SIMP (AREA, A, B, TOL, FUN) 
DOUBLE PRECISION AREA, A, B, TOL, FUN

AREA - On exit, the sum of AREA on entry with the new area estimate. 
A - On entry, the lower limit of integration. 
B - On entry, the upper limit of integration. 

TOL - On entry, a relative tolerance check for the total area. 
FUN - The integrand as an external function.

3. External function

DOUBLE PRECISION FUNCTION FUN (X) 
DOUBLE PRECISION X

X - On entry, the value at which the function is to be evaluated.

TRAP

1. Purpose

Estimate the area under a curve for a single valued function. This uses the trapezium two-point method 
adaptively, but non-recursively. A feature of this routine is that the area estimate on exit will be the sum 
of the value on entry with the new area estimate. The tolerance check will always apply to the total area.

2. Specification

SUBROUTINE TRAP (AREA, A, B, TOL, FUN) 
DOUBLE PRECISION AREA, A, B, TOL, FUN

AREA - On exit, the sum of AREA on entry with the new area estimate. 
A - On entry, the lower limit of integration. 
B - On entry, the upper limit of integration. 

TOL - On entry, a relative tolerance check for the total area. 
FUN - The integrand as an external function.

3. External function
DOUBLE PRECISION FUNCTION FUN (X) 
DOUBLE PRECISION X

X - On entry, the value at which the function is to be evaluated.


