
1359498

FOR USE IN THE
LIBRARY ONLY

AN EVALUATION OF LOAD SHARING

ALGORITHMS FOR HETEROGENEOUS

DISTRIBUTED SYSTEMS

ROBERT LESLIE

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the Degree of Doctor of Philosophy

September 1997

V
I

Abstract

Distributed systems offer the ability to execute a job at other nodes than the

originating one. Load sharing algorithms use this ability to distribute work around the

system in order to achieve greater efficiency. This is reflected in substantially reduced

response times. In the majority of studies the systems on which load sharing has been

evaluated have been homogeneous in nature. This thesis considers load sharing in

heterogeneous systems, in which the heterogeneity is exhibited in the processing power

of the constituent nodes.

Existing algorithms areevaluated and improved ones proposed most of the

performance analysis is done through simulation. A model of diskless workstations

communicating and transferring jobs by Remote Procedure Call is used. All assumptions

about the overheads of inter-node communication are based upon measurements made

on the university networks.

The comparison of algorithms identifies those characteristics that offer improved

performance in heterogeneous systems. The level of system information required for

transfer is investigated and an optimum found. Judicious use of the collected information

via algorithm design is shown to account for much of the improvement. However

detailed examination of algorithm behaviour compared with that of a 'optimum' load

sharing scenario reveals that there are occasions when full use of all the information

available is not beneficial. Investigations are carried out on the most promising

algorithms to assess their adaptability, scalability and stability under a variety of differing

conditions. The standard definitions of load balancing and load sharing are shown not to

apply when considering heterogeneous systems.

To validate the assumptions in the simulation model a load sharing scenario was

implemented on a network of Sun workstations at the University. While the scope of the

implementation was somewhat limited by lack of resources, it does demonstrate the

relative ease with which the algorithms can be implemented without alteration of the

operating system code or modification at the kernel level.

Acknowledgements

During the years of my PhD programme I have had assistance and

encouragement from many quarters and in a multitude of different forms. However it is

without doubt that I single out my supervisor Dr Sati McKenzie as the individual to

whom I am in the greatest debt. For her guidance, suggestions and powers of motivation

I offer my warmest gratitude.

I would also like to thank my long suffering fiancee Fiona Newman for her

understanding throughout the last few years. Combined with her material help in

allowing me to use her car and laptop, both invaluable aids in the latter stages of my

work. Peter Logie is another to whom I owe thanks, as he sacrificed his surfing so that I

could use his modem.

At the University of Greenwich I have received technical help, advice and

support from many sources. In particular Dr Chris Woollard my second supervisor who

allowed me to access his knowledge of Distributed Systems. For technical help

concerning the Universities computing resources I thank lan Lee. Former research

students who gave me the benefit of their knowledge and experience were Wasim Naqvi,

Garrett Kearney and Peter Smith.

This work was conducted with the aid of a research studentship from the

Engineering and Physical Sciences Research Council and help from the University of

Greenwich. I would also like to mention my current employers Tertio Ltd, who have

been very understanding in my first few months of employment.

Finally I'd like to thank the members of my family who have done so much to

help me while I've been conducting my research. My parents for their constant support

and encouragement. Plus my brother and sister who gave me the final impetus to finish.

II

Table Of Contents

ABSTRACT...!

ACKNOWLEDGEMENTS...II

TABLE OF CONTENTS ... Ill

1. INTRODUCTION...1

1.1 DISTRIBUTED SYSTEMS ..1

1.1.1 What is a Distributed System ? ..1

1.1.2 Performance Improvements Via Load Sharing..2

1.2 THE EVOLUTION OF LOAD SHARING ALGORITHMS - A SUMMARY.4

1.3 THE PROBLEM. ...5

1.3.1 Unanswered Questions...5

1.3.2 Aims...?

1.4 CONTRIBUTION OF THE THESIS ...8

1.5 LAYOUT OF THE THESIS ...9

2. SURVEY OF RELATED RESEARCH...11

2.1 QUALITATIVE ANALYSIS - THE TAXONOMICAL APPROACH................................11

2.1.1 Initiation... 13

2.1.2 Transfer Policy ... 14

2.1.3 Information Policy.. 16

2.1.4 Location Policy ..18

2.2 SYSTEM MODEL..21

2.2.1 Network Topology...21

2.2.2 Heterogeneity of nodes...22

2.2.3 System Load...23

2.2.4 Overheads..24

2.3 ALGORITHM EVALUATION ...24

III

2.3.1 Evaluation Techniques..25

2.3.2 Performance Metrics...26

3. SCOPE OF THE PRESENT WORK ..27

3.1 INTRODUCTION..^?

3.2 SYSTEM MODEL..28

3.2.1 Aspects of Heterogeneity..28

3.2.2 System Loading Conditions ..31

3.2.3 Overheads Due to Remote Procedure Calls...32

3.3 ALGORITHMS EVALUATED ...36

3.2.1 Transfer Policy ...36

3.3.2 Information Policy..37

3.3.3 Location Policy ..37

3.3.4 Description of the Algorithms...38

3.5 SIMULATION ...41

3.6 MEASUREMENT ..42

4. DISCRETE EVENT SIMULATION..43

4.1 SYSTEM MODEL..43

4.1.1 Processes at a Node..43

4.1.2 Inter Process Communication ...44

4.1.3 Additional Functions Required..44

4.2MODSIM...45

4.2.1 Object Oriented Features..46

4.2.2 Simulation Utilities...47

4.2.3 Standard Libraries ..49

4.3 SIMULATION MODEL..50

4.3.1 The MAIN Module : loadshare...53

4.3.2 The GenesisObj Object...54

4.3.3 The NodeObj Object...56

4.3.4 NodeObj Method : GenerateJobs..58

4.3.5 NodeObj Methods : Process* ..59

4.3.6 NodeObj Methods To Achieve Inter-node Communication.............................61

IV

4.3.7 NodeObj Methods : ExecuteJob* ...61

4.3.8 StopAllObj...63

4.4 VALIDATION AND VERIFICATION OF THE SIMULATION MODEL..........................63

4.4.1 Verification ..63

4.4.2 Validation...64

4.4.3 Calibration..66

5. IMPLEMENTING THE LOAD SHARING SCENARIO68

5.1 INTRODUCTION ...68

5.2 OVERVIEW OF IMPLEMENTATION CODE..69

5.2.1 Generatejobs.c..71

5.2.2 Processjobs.c..72

5.2.3 ExecuteJob.c ..75

5.2.4 ServeProbe.c..75

5.2.5 Remxclient.c...76

5.2.6 Remxserver.c..77

5.3 CRUCIAL ELEMENTS OF THE IMPLEMENTATION CODE78

5.3.1 Random Number Generation ..78

5.3.2 Inter Process Communication ...79

5.3.3 The Process Lifecycle...80

5.3.4 Implementation Specific RPC Features ...82

6. EXPERIMENTAL RESULTS..86

6.1 INTRODUCTION ...86

6.2 COMPARISON OF ALGORITHMS..87

6.2.1 Simulation Parameters..87

6.2.2 Bounds on Performance..87

6.2.3 Algorithms Proposed Primarily for use in Homogeneous Systems90

6.2.3 Algorithms Designed Specifically for Heterogeneous Systems.........................94

6.2.4 Comparison..99

6.3 FURTHER INVESTIGATIONS INTO THE BEHAVIOUR OF ALGORITHMS104

6.3.1 Adaptability, Scalability and Stability .. 104

6.3.2 18:2 Split Systems.. 105

V

6.3.3 Varying the Offered Load... 107

6.3.4 Larger 12:8 systems - Scalability... 109

6.3.5 The Effect of System Parameters on Load Sharing Performance 113

6.4 IMPLEMENTATION RESULTS... 114

6.4.1 Practical Limitations and Parameters Used.. 114

6.4.2 Measurement Results For a Heterogeneous System 115

6.4.3 Implementation Results From a Homogeneous System 119

7. CLOSING REMARKS ... 123

7.1 SUMMARY OF ALGORITHMS INVESTIGATED .. 123

7.2CONCLUSIONS...124

7.3 FURTHER WORK... 128

BIBLIOGRAPHY...130

APPENDIX 1. SIMULATION CODE...A

Al.l DEFINITION MODULE ...A

A1.2. IMPLEMENTATION MODULE.. B

A1.3. MAIN MODULE ..N

APPENDIX 2. IMPLEMENTATION CODE ... P

A2.1 GENERATEJOBS.C ... P

A2.2PROCESSJOBS.C...R

A2.3. EXECUTEJOB.C ..V

A2.4. SERVEPROBE.C ... W

A2.5. REMXCLIENT.C..X

A2.6. REMXSERVER.C ...X

APPENDIX 3. CONFERENCE PAPERS BASED ON THIS WORK.....................Z

VI

List of Figures
Figure 1.1 The Potential For Performance Enhancement Via Load Sharing ______________3

Figure 2.1 A Taxonomy of Load Sharing Algorithms __________________________ 12

Figure 2.2 The SHORTEST algorithm in three policies _________________________ 19

Figure 3.1 Squared Coefficient of Variance of System Processing Power _______________29

Figure 3.2 Skewness of System Processing Power ____________________________29

Figure 3.3 The Operations involved in a Remote Procedure Call____________________33

Figure 3.4 Average Probe Response Times ________________________________34

Figure 3.5 The Effect of Changing Load on RPC Response Time ____________________36

Figure 4.1 MODS1M Pending List Structure _______________________________49

Figure 4.2 A Distributed System as an Aggregated Object ________________________57

Figure 4.3 Component Analysis of an Aggregated Node _________________________52

Figure 4.5 Full Structure ofGenesisObj Object______________________________55

Figure 4.6 Full Structure of the NodeObj__________________________________57

Figure 4.7 Schematic of Method Interaction ________________________________55

Figure 5.1 Implementation Process Relationships _____________________________70

Figure 5.2 GenerateJobs.c (Psuedo Code) _________________________________ 72

Figure 5.3 Processjobs.c (Pseudo Code) __________________________________ 73

Figure 5.4 Executejob.c (Pseudo Code) ___________________________________ 75

Figure 5.5 Serveprobe.c (Pseudo Code) ___________________________________ 76

Figure 5.6 Remxclient.c (Pseudo Code) ___________________________________ 77

Figure 5.7 Remxserver.c (Pseudo Code) ___________________________________ 77

Figure 5.8 Inverse Transformation Method ________________________________78

Figure 5.9 The Process Lifecycle and it's use in Collecting Job Response Time____________81

Figure S.lOa An Iterative Server Dealing With Multiple Requests ____________________83

Figure 5.1 Ob A Concurrent Server Dealing With Multiple Requests __________________83

Figure 6.2 Average Response Time With No Load Sharing _______________________88

Figure 6.2a IDEAL Workload Allocation, Low System Utilisation____________________88

Figure 6.2b IDEAL Workload Allocation, Medium System Utilisation _________________89

Figure 6.2c IDEAL Workload Allocation, High System Utilisation ___________________89

Figure 6.3a RANDOM Algorithm Performance - Low System Utilisation _______________91

Figure 6.3a RANDOM Algorithm Performance - Medium System Utilisation ____________91

Figure 6.4a SHORTEST Probe Limit Comparison - Low System Utilisation _____________92

Figure 6.4b SHORTEST Probe Limit Comparison - Medium System Utilisation ___________ 93

Figure 6.4c SHORTEST Probe Limit Comparison - High System Utilisation _____________ 93

Figure 6.5 SHORTEST Algorithm Performance ______________________________94

Figure 6.6a HETRO Probe Limit Comparison - Low System Utilisation ________________95

Figure 6.6b HETRO Probe Limit Comparison- Medium System Utilisation ______________95

VII

Figure 6.6c METRO Probe Limit Comparison - High System Utilisation _______________95

Figure 6.7, HETRO v SHORTEST Algorithm Performance_______________________96

Figure 6.8 HETQL Probe Limit Comparison - High System Utilisation ________________97

Figure 6.9 HETQL Algorithm Performance _______________________________97

Figure 6.10 HQNIT Probe Limit Comparison - High System Utilisation________________98

Figure 6.11 HQNIT Algorithm Performance _______________________________99

Figure 6.12a Algorithm Comparison - Low System Utilisation_____________________99

Figure 6.12b Algorithm Comparison - Medium System Utilisation __________________100

Figure 6.12c Algorithm Comparison - High System Utilisation ____________________ 100

Figure 6.13 HETQL and HQNIT Performance in a 18: 2 Split System _______________ 106

Figure 6.14a Half Low Power Nodes With No Offered Load ______________________ 108

Figure 6.14b All Low Power Nodes With No Offered Load_______________________ 108

Figure 15a 40 Node System [24:16], Algorithm Performance Comparison ______________ 110

Figure 15b. 80 Node System [48:32], Algorithm Performance Comparison ______________110

Figure 16a. HETQL 40 Node Probe Limit Comparison, High System Utilisation __________ 111

Figure 16b. HQNIT40 Node Probe Limit Comparison, High System Utilisation __________ 111

Figure 16c. HETQL 80 Node Probe Limit Comparison, High System Utilisation__________ 111

Figure 16d. HQNIT 80 Node Probe Limit Comparison, High System Utilisation __________ 112

VIII

List of Tables
Table LI Configurational Heterogeneity in a Distributed System ____________________7

Table 3.1 System Composition With nodes divided 12 : 8 ________________________30

Table 4.1 Summary of Object Functions _________________________________53

Table 4.2 Run to Completion and Pre-emptive Scheduling Response Times _____________62

Table 6.1 System Composition With Nodes Divided 12 : 8 _______________________86

Table 6.1 Simulation Parameters in Algorithm Comparison_______________________87

Table 6.3 Transfer and Processing Statistics ______________________________ 707

Table 6.4 System composition With Nodes Split 18 : 2 _________________________106

Table 6.5c Implementation System Composition ____________________________777

Table 6.5b Simulation Results __777

Table 6.5c Implementation Results _____________________________________777

Table 6.6 Load Sharing ___775

Table 6.7Homogeneous System Simulation /Implementation Comparison _____________779

IX

1. Introduction

1.1 Distributed Systems

1.1.1 What is a Distributed System ?

The history of distributed systems (in this work the terms distributed system and

distributed computing system are assumed to be analogous) began in the 1970's and was

enabled by two parallel developments. The arrival of VLSI technology saw a move from

the mainframe computer through mini and micro computing to the workstation/PC

environment so common today. This change could not have occurred in isolation but was

coupled with the improvement in communication technology that enabled the

establishment of local and wide area networks (LANs & WANs). This combination

proved an economic means of providing users with an independent computing resource

at geographically distinct locations but still giving access to a wide range of facilities.

Whilst not ending the reign of the mainframe, distributed systems have evolved to meet

the changing demands of the user.

All distributed systems should display the same core characteristics of

transparency, modularity, scalability, reliability and availability to varying degrees. This

will be determined by the individual state of the system and design decisions taken to

handle the tasks presented to it. Unfortunately these are about the only points on which a

general definition is applicable. Such a definition under which all distributed systems

could be clustered is given in [Cou94], "A distributed system consists of a collection of

autonomous computers linked by a computer network and equipped with distributed

system software". The distinction between different types of distributed system is made

by Tanenbaum [Tan85] with the use of the terms, distributed operating system and

network operating system. A distributed operating system is defined as one that performs

1. Introduction

like a conventional one but runs over multiple computers. Conversely a network

operating system is constructed of computers all running their own independent

operating system and co-operating together to utilise the resources available in the

system.

A distributed operating system would need to employ extensive system software

in order to function whereas a network operating system may only employ it in some

areas of resource allocation. In this study the emphasis will be on network operating

systems, although load sharing in distributed operating systems will also be discussed, as

many of the ideas developed for use with the latter are still applicable to the more loosely

coupled environment. The focus on network operating systems is because they are more

readily available for research purposes, have established communication protocols and

are becoming ever more popular. The term distributed system will be used to refer to all

systems unless a distinction is deemed necessary. However a modified version of the

quoted definition is proposed, "A distributed system consists of a collection of

autonomous computing resources linked by a communications network and equipped

with some distributed system software at least part of which operates transparently". The

proviso of some element of transparency is needed as the benefits of load sharing can

easily be negated if system users are involved with its operation.

1.1.2 Performance Improvements Via Load Sharing.

In a distributed system there is a high probability that at any point in time some of

its constituent computing resources (nodes) will be highly utilised whilst others will be

idle or lightly loaded, [Liv82, The89, Muk91]. By using the ability of distributed systems

to execute jobs at other than their originating node, work can be transferred from one

node to another in order to achieve an improvement in overall system performance. This

approach can be referred to as load sharing or load balancing[Eag86a, Kru87, Zho87].

Load balancing has been used to refer to algorithms that attempt to equalise workload

amongst the nodes, whilst load sharing algorithms attempt to ensure no node is idle. In

this work the term load sharing has been adopted but it will be used in a broader sense,

namely attempts to improve system performance by re-distributing some of the

workload.

The granularity of the workload will influence its possible re-distribution from

one node to another and any possibility for parallelism in the system [Kle85]. At the

1. Introduction

coarsest level of granularity is a job arriving at a node, incrementally finer is the division

of a job to its component processes. Initially the job will be in the form of one process,

but during its lifetime more processes may be created by the original to carry out various

tasks associated with the job. Load sharing at process level after a job has begun

execution will create obstacles to subsequent inter-process communication (IPC),

especially in the workstation environment where the operating system has not been

specifically designed with this in mind. For this reason only job scheduling will be

considered. The possibilities for overall system performance improvement can be

investigated and demonstrated to a satisfactory standard at this level of granularity. The

problem of parallel processing in a distributed system is best suited to one running a

distributed operating system, especially where the whole of the system resources can be

dedicated to one problem if need be. The relatively cheap distributed system is used to

emulate the working of a more powerful but expensive single machine.

The generally accepted measure for performance improvement, but not the only

one, is the reduction in average response time for jobs in the system. The response time

of a job is the period from which it arrives in the system for processing until it has been

processed and the result communicated back to the originator. The scope for

improvement in a system can be demonstrated with the use of two measures. These are

the no load-sharing case (M/M/1), used as a minimum and the multiserver case

(M/M/K), often used as an indication of the limit to possible achievable performance.

Consider a system of 20 identical nodes, all experiencing the same degree of utilisation.

0.1

•M/M/1
•M/M/K

0.2 0.3 0.4 0.5 0.6

System Load

Figure 1.1 The Potential For Performance Enhancement Via Load Sharing.

1. Introduction

The service times of jobs are exponentially distributed about an average of 1. Job

interarrival times are also exponentially distributed, but are varied to give different

system loads. Possible improvement is shown in Figure 1, as the area between the curves.

1.2 The Evolution of Load Sharing Algorithms - A Summary.

Load sharing has its origins in the task allocation algorithms of early distributed

systems. These systems bore little resemblance to the workstation based ones of today.

One example [Cho79] has all jobs arriving at one central dispatcher for allocation to the

various nodes comprising the rest of the system. However a basic differentiation between

the two classes of load sharing is made. The first class uses the simplest algorithms to

implement, whose operation is based solely on past system performance. The second

group is more sophisticated being based on the current state of the system These classes

are respectively referred to by the terms static and dynamic. Occasionally dynamic

algorithms are referred to as adaptive. With the increasing flexibility of distributed

systems in the 1980's it became acknowledged that static algorithms would be of limited

use [Tan85a, Wan85,Eag86a] as they could not react to changes in system state.

The task of load sharing became accepted as the re-distribution of work in a

system, where work could arrive at any node. The initial placement of tasks from a

central point has become a separate art, although the fields of interest will occasionally

overlap. The division of dynamic algorithms into separate policies [Eag86a] can be seen

as a milestone in their development, enabling the concentration of effort into

investigating particular characteristics and more concise descriptions of results. Initially

only a transfer and location policy were thought necessary. With time the use of three

policies became commonly accepted, the transfer, location and information policies.

Question addressed by these policies are shown below:

 Transfer policy - when should a job be considered eligible for transfer.

 Location policy - where should an eligible job be transferred.

 Information policy - when and how is information on the system state gathered.

Over the last decade a multitude of possible algorithms have been suggested and

evaluated. Some of the relevant questions are:

1. Introduction

• Source or server initiation : Whether an overloaded node should seek an under

utilised one to which the job could be transferred or vice versa [Mir89a, Kru94].

 Load indices : Which is the best means for measuring the load at a node [Fer87,

Kun91].

 Decision making : Should decisions be made in a distributed or centralised manner

[Zho88,The89].

In general most of the algorithms suggested have been evaluated on

homogeneous systems. Where heterogeneity is considered, it is often only in the

workload offered to each node rather than the system composition. Until the 1990's

systems combining heterogeneous but co-operative nodes were quite rare. This is

reflected in the lack of work tackling this aspect of the load sharing. More recently

heterogeneity has become of far greater concern with the rapid development in

workstation technology leading to a proliferation of different types on the same

communications network. Obviously load sharing, by simple job transfer, is not possible

in cases of architectural or operating system heterogeneity. However by far the most

common type is configurational where the technique is applicable. In some studies all

aspects of diversity, CPU speed, I/O capabilities, memory are taken into account [Bak92,

Ald93]. Others use just server rate or processing power and uses this solely to

differentiate between nodes [Mah93, Wan94].

There may still be much debate about the details of implementing load sharing

schemes, but there is general consensus about the properties required. An algorithm

should be adaptable, scaleable, stable, fault tolerant and transparent to the system

[Kre92], whilst still enhancing system performance. These are of course a set of ideal

requirements and have yet to be met.

1.3 The Problem.

1.3.1 Unanswered Questions.

The history of load sharing algorithms, is almost as long as that of the distributed

systems on which they are implemented. As the design, capabilities and expectations of

the systems have evolved so have the techniques for optimal load sharing. The vast

majority of algorithms are aimed at and adapted to systems of homogeneous nodes.

1. Introduction

These algorithms when applied to heterogeneous systems exhibit several weaknesses

leading to sub-optimal performance improvement. The algorithms specifically designed

for a heterogeneous environment are still heavily influenced by the ideas pervasive in

early work. An investigation is needed to establish if the assumption made in these

established algorithms are all still applicable.

Heterogeneity in a system may be exhibited in a number of ways, configurational,

architectural and operating system [Zho93]. With architectural and operating system

heterogeneity the possibilities for load sharing are extremely limited if available at all.

Differences in machine architecture will make the execution of the same code impossible

and differences in operating systems may mean the same services, i.e. systems calls, are

not available on all machines. Configurational heterogeneity offers more scope for load

sharing as the machines involved will be fundamentally similar. They will differ in CPU

speed, memory availability and other factors contributing to total processing power.

The introduction of standards in the 1980's has seen the interoperability of

different machines increase. Of particular importance have been the attempts at

establishing a portable operating system through the POSIX standards [IEEE90], which

have been used by the X/OPEN organisation in the construction of their Common

Application Environment (CAE). As a CAE becomes more globally accepted the

portability it offers will increase the scope of configurational heterogeneity [Gra92].

Hence the increasing importance of heterogeneity while sharing computational resources

with the use of load sharing algorithms. Table 1.1 shows the different UNIX based

machines on one of the LAN's at the University of Greenwich. All the machines on this

network originate from the same manufactuer, Sun Microsystems. Their processing

power is indicated by results from the set of benchmarks used by the System

Performance Evaluation Co-operative [SPE96] that measure multi-tasking throughput

for integer code (SPECint) and floating point code (SPEC/p). Ratings in each category

are relative to the performance of a VAX 11/780 , given a nominal rating of 24. The

results shown are those achieved with the SPEC92 benchmark set. A new set of

benchmarks SPEC95 is now in use by the organisation but results for all the machines on

the LAN are not available for this newer group of tests. An anonymous quote sums up

the usefulness of these figures, "While no benchmark can fully characterise overall

1. Introduction

system performance, the results of a variety of realistic benchmarks can give valuable

insight into expected real performance".

MODEL

SS/IPC
SS/ELC

SS2
SS/IPX

SS10/41
SS 10/402

Classic, LX
SS10/51

SS20/514
SS5/70
SS4/70

SS20/71
SS20/HS14

SS4/110
Ultra1/140

Processor
Elements

1
1
1
1
1
2
1
1
4
1
1
1
4
1
1

Occurances
on LAN

3
1
1
7
1
2
10
3
1

10
5
5
1
2
2

Clock Speed
MHz
25
33
40
40
40
40
50
50
50
70
70
75
100
110
140

SPEC int

327
432
517
517
1264
2112
626

1546
7072
1352
1414
2984
8124
1864
5107

SPEC fp

263
425
541
510
1607
2378
498
1969
7341
1122
1110
2875
8906
1549
7175

Table 1.1 Configurational Heterogeneity in a Distributed System.

Previous studies have used many different means of assessing proposed

algorithms, examples of which are: queuing network analysis, simulation and

implementation. Of these simulation is the most flexible but may still leave doubts about

the practicality and validity of any assumptions. Some factors are impractical to simulate

on a large scale, one in particular being the underlying effect of any traffic generated by

the implementing of the load sharing algorithm itself. Implementation can provide the

answer to such questions but can be hampered through a lack of resources available for

the project. Not many researchers are fortunate enough to have a network to themselves.

1.3.2 Aims

The aim of this work is to find answers to some of the questions raised in the

previous section. This is accomplished as follows:

 Existing load sharing algorithms are investigated by simulation modelling. The

simulation model is made as realistic as possible. Model assumptions such as

communication overheads are based on experimental measurements.

7

1. Introduction

• Based on the above studies, new algorithms are proposed which are effective in a

heterogeneous environment. These are evaluated by simulation.

 An implementation of the simulated system is carried out. This will aid in validating

the model and facilitate examination of factors which cannot be readily simulated,

such as algorithm overhead and the effect of the extra communication traffic

generated. The building of a working implementation will also ensure that any

algorithms proposed are inherently practical.

1.4 Contribution of the Thesis

 An investigation of current load sharing algorithms when applied to heterogeneous

systems. Heterogeneity is exhibited in the relative processing power of the nodes. This

has led to the identification of characteristics that were responsible for the sub-optimal

performance of the algorithms. The investigation was carried out with the use of a

simulation model, which was constructed using communication overheads based upon

measurements made over the university's local area networks.

 New algorithms are proposed which are better suited to a heterogeneous

environment. The performance of the algorithms is evaluated using the simulation

model. All algorithms take into account the restrictions imposed by the normal

operating conditions of an existing distributed system.

 Validation of the simulation is accomplished through building an implementation of

the simulation model on the university networks. The implementation is also used to

test the underlying behaviour of the communication network and overheads of the

algorithms that it is not feasible to simulate.

8

1. Introduction

1.5 Layout of the Thesis

Chapter 1, Introduction:

Presents a background to the work covered in the thesis, indicating the

problem that is to be tackled and possible solutions A general statement of

the contribution of this thesis is given.

Chapter 2. Survey of related research:

The current research in the load sharing field can be divided into three

principal sections. First the algorithms that control the manner in which load

sharing is performed. Secondly the type of system on which the algorithms

are implemented and investigated. Finally, the means by which the algorithms

are evaluated.

Chapter 3. Scope of the present work:

Describes the approach to load sharing adopted in this work. The main

emphasis is on heterogeneous systems and the way in which heterogeneity

will influence algorithm design. The algorithms investigated are described in

full as are the various system models used. Both simulation and measurement

are presented as means of evaluating the algorithms.

Chapter 4. Discrete event simulation:

The chief method of investigating the load sharing algorithms presented is

through a simulation model. The translation of a real system into a practical

simulation model is described, with particular emphasis on the design

decisions taken. Full implementation details are also presented, based on the

object oriented simulation facilities offered by the MODSIM language used.

Chapter 5 Implementing the load sharing scenario:

The load sharing scenario was constructed as a means of validating both the

assumptions made in developing the simulation model and the results it

provided. The system was implemented on a network of workstations. Both

1. Introduction

network and system programming had to be used and the routines used are

described in full. Particular attention is given to problems raised by the

physical environment as opposed to the simulation model.

Chapter 6. Experimental Results:

The performance of the load sharing algorithms described in Chapter 3 over

a variety of heterogeneous systems is evaluated using the simulation model.

The charcteristics of each are described and analyzed. Those algorithms that

are most suited to the heterogeneous environment are subjected to further

investigation to discover their properties in the areas of adaptability,

scalability and stability. Validation of the simulation assumptions and its

subsequent results is performed via the implementation scenario.

Chapter 7. Final Remarks:

This chapter presents a summary of the experimental results and the

conclusions that can be drawn from them. The conclusions cover both a

comparison of algorithms for heterogeneous distributed systems and the

validation of these algorithms. Ideas for furthering the work reported

conclude the chapter. They have been suggested during the course of the

research or prompted by recent technlogical devlopments.

10

2. Survey of Related Research

2.1 Qualitative Analysis - The Taxonomical Approach

The system of classification proposed in Casavant's taxonomy [Cas88], is, as the

title suggests aimed at a broad range of distributed systems. Of the scheduling tasks

considered load sharing is only one of many. The taxonomy must therefore be refined in

order to describe succinctly the area in question. Most of the classification groups are

still applicable and are used in the scheme shown in Figure 2.

Load sharing algorithms can be static or dynamic in operation. The static variety

employs historical system performance data whereas dynamic algorithms can use

information on the current system state in decision making. A distributed algorithm is

implemented at every node in the system. A centralised one is only fully implemented on

one node. The centralisation can encompass the full decision making process or just the

gathering of information on system state. Co-operation implies that system state

information is exchanged between the nodes. An optimal algorithm attempts to use all

available information in its decision making. However as this is often impossible or

computationally difficult the sub-optimal class covers those algorithms using only enough

information to give an acceptable degree of performance improvement.

Static algorithms, as their name implies do not change whilst the system is

running. All load sharing decisions are made using a priori information based upon

relevant system data, examples of which are: average loading statistics, node processing

power and network communication speed. Therefore they cannot be centralised as this

would imply that nodes were exchanging information with a central node which would

make decisions based on the information gathered there. The most rudimentary static

algorithm is the allocation of machines to staff in any organisation. The most powerful

machines would be allocated to those persons with greatest computing demands

indicated by previous workload statistics. Unfortunately powerful machines can still lie

11

2. Survey of Related Research

under-utilised all summer on professorial tables and so a more sophisticated solution is

called for. Random splitting algorithms [Ni81] distribute jobs according to a given

probability distribution. A variation on this is the cyclic splitting [YumSl] algorithm that

distributes jobs on a cyclic schedule in an attempt to avoid temporary congestion. An

alternative example, "the optimal static load balancing algorithm" was proposed by

Tantawi & Towsley [Tan85] and simplified by Kirn & Kameda [Kim92a]. OR techniques

are used to calculate an optimum load for each node dependent upon processing power

and communication rates in the system.

load sharing

dynamic static

distributed centralised distributed

non co-operative co-operative non co-operative

sub-optimal optimal optimal sub-optimal

Figure 2.1 A Taxonomy of Load Sharing Algorithms.

Although these algorithms have achieved improvements over the no load sharing

case, they are limited in their effectiveness as they cannot react to changes in the system

state, in particular short term fluctuations in system load. Nor do they exhibit any

scalability in respect of system size or constitution. For these reasons work over the last

decade has been concentrated in the field of dynamic algorithms.

12

2. Survey of Related Research

The first branch in the taxonomy of dynamic algorithms separates them into

distributed and centralised classes. Two centralised algorithms were proposed and

evaluated by Zhou [Zho87]. CENTRAL had both centralised information gathering and

decision making. GLOBAL centralised the information and periodically broadcast it to

all nodes allowing them to make a decision as to any transfer of jobs. Of the two

centralised algorithms, CENTRAL was considered the best, although its performance

was not dramatically better than that of comparable distributed algorithms. A comparison

of CENTRAL and an equivalent distributed algorithm [The89] indicated that the

simplicity of implementation of the latter can be an advantage. Other work has

highlighted further potential weaknesses of centralised algorithms, notably bottlenecks

forming at the central node and the vulnerability of the systems load sharing capabilities

if this node fails [Ald92, Ber93]. These factors have lead to the conclusion that

centralised solutions are better suited to multi-processor configurations, rather than

distributed systems.

The suitability of distributed dynamic algorithms to the load sharing problem is

reflected in the large body of work in this field. These algorithms and the techniques

used for their evaluation will be described in the rest of this chapter. The three policies

and question of initiation raised in section 1.3 will provide a discussion framework

2.1.1 Initiation

The concept of load sharing can be viewed from two opposite directions. The

first is from the perspective of an over-loaded node, which will seek to send some of its

work for processing elsewhere. The second is that of an under-loaded or idle node,

which can advertise its services or actively seek more work. Therefore an algorithm can

be initiated at the sender, receiver or both. The terms source and server initiated are

sometimes used to represent the same concepts. Initiation will occur on change of state,

i.e. a job arrives or finishes.

The assumption here is that all the nodes involved operate in a multiprogrammed

mode, which is de rigueur in modern workstations. What will limit the initiation options

are the job migration facilities available. Job migration is the ability to stop an executing

job and move its whole context to enable continuing execution at another site. This is by

no means a trivial task [Art89], but is an essential requirement for receiver initiated

schemes. These are invoked when the completion of a job puts a node in a state that it is

13

2. Survey of Related Research

ready to receive more work from a heavily loaded one. It is highly unlikely this event will

correspond with the arrival of a job at another node, hence only jobs that have already

begun execution will be candidates for transfer.

In several distributed operating systems the ability to migrate processes is

available [Bis95]. For the network operating system environment with which we are

concerned, the Condor system [Epe95, Tan95] does offer migration facilities outside the

kernel. Unfortunately this system has limitations and cannot deal with all types of

process, in particular communicating processes. The lack of ability to deal with a job that

spawns new processes places severe restrictions on any form of receiver initiated load

sharing algorithm. Sender initiation, prompted by the arrival of a new job, relies on initial

job placement occurring before the start of execution. This type of operation can be

supported by any distributed system worthy of the name.

Studies have been performed to compare sender and receiver initiated policies.

Simulation and network analysis techniques are used, where the effect of job migration

can conveniently be represented by a time delay. The results are inconclusive with some

[Eag88, Dan95] preferring sender initiated algorithms. Others [Kru88, Mir89a] conclude

that receiver initiated algorithms perform best at high system loads, with the reservation

that their performance is highly dependent upon the costs of migration. The

RESERVATION algorithm [Eag86b] is receiver initiated but does not involve job

migration as lightly loaded nodes reserve the next job arriving at a heavily loaded one.

This approach was not successful with the algorithm being out performed by simple

sender initiated ones. Intuitively one would expect receiver initiated algorithms to

perform best at high loads as the chance of finding a heavily loaded node is high. A

combination of initiation policies is used in the "Symmetrically Initiated" algorithm

[Kru94], where lightly loaded nodes use receiver initiation and heavily loaded ones

sender initiation.

With the difficulty in implementing full process migration and lack of evidence

that receiver initiated algorithms offer a significant performance improvement, analysis

will focus on sender initiated solutions.

2.1.2 Transfer Policy

In order to describe and facilitate the comparison of load sharing algorithms, they

are separated into component parts or policies. The use of policies was introduced by

14

2. Survey of Related Research

Eager et al [Eag86a], who used two: transfer and location. The trend now is to use

three: transfer, information and location [Zho88, Gha90, Bak92, Ber93, Mah93, Kru94,

Ben95].

In many ways transfer policy can be thought of as the first stage of an algorithm.

It is the transfer policy which decides whether a job should be executed locally or made

available to be transferred to another node for execution. The type of transfer policy

varies in the literature, but the most widely used is the Threshold, based upon local

queue length. As a new job arrives at a node, the CPU queue length at that node is

examined. If accepting the new job for processing would cause the set threshold to be

exceeded then the job is eligible for transfer. Eligibility for transfer does not imply that

the job must be transferred only that the other policies of the algorithm will be invoked.

The problem with use of a fixed threshold is that the optimum value changes with system

load [Eag86a]. As the system load increases, chances of finding a lightly loaded machine

decrease and therefore a higher threshold would be more appropriate. However this is

not necessarily the case in heterogeneous systems which Eager did not investigate.

As an alternative to a fixed threshold a dynamic one was suggested in [Gha90].

The load at neighbouring nodes is used in calculating the transfer threshold when load

sharing is initiated. Another alternative is a form of global threshold [Sta84], where each

node asseses the loading across the system by exchanging information with its

neighbours. If system loading is below or above predefined levels then no attempt is

made to transfer any jobs. In both cases the communications network envisaged was

based upon point to point links. This type of fixed structure allowed neighbours to be

clearly defined and limited broadcasts to a small subset of the network involved. In the

fully connected LAN's prevalent today broadcasting load statistics can be performed

simply but each node in the system will incur overhead on receipt of the data. Even in

systems where multicasting is considered [WIL95]the thresholds used in transfer policy

have been fixed. Therefore in this work the use of a dynamic threshold is considered to

be impractical. It would require each node to possess the ability to estimate overall

system load in the short term at an economic cost.

The performance of a good transfer policy is dependent on a reliable measure of

workload at a node. An accurate estimate would be obtained if the service time of each

job at a node were known. Unless the work on a system was of a repetitive batch variety

15

2. Survey of Related Research

this is not possible. The load index should be simple, instantaneously available and enable

comparison between nodes. Several possible indices have been investigated [Fer87,

Kun91] that are generally available on UNIX based machines:

 Ready to run queue length

 60 second load average

 CPU utilisation, 10 seconds and 60 seconds average

 5 seconds system call rate

 CPU context switch rate

 Available memory

Of these, the ready to run queue length consistently outperformed the rest. No

improvement was achieved by using an index that combined any two of these indices

[Kun91] even when the best two were used. Although these results are for homogeneous

systems they can be extrapolated to heterogeneous systems, when attention is paid to

relative processing powers.

Stability is an important property of any load sharing algorithm [Sta85], and it

can be adversely effected if processor thrashing is allowed. This phenomenon occurs at

high system utilisation, when jobs are continually transferred and never executed. A

simple cure is to put a limit on the number of transfers a job can experience. This has

become known as the transfer limit [Eag86a].

One further procedure can be included in the transfer policy of an algorithm,

that is to filter out jobs ineligible for transfer. This is normally done on the grounds that

jobs of short duration should not be transferred. A simple enough task when using a

simulation model [Zhou88]. Without the ability to assess the service time of a job this is

impossible to accomplish in a transparent manner and so in the majority of studies it has

been ignored.

2.1.3 Information Policy

Eager's definition of location policy, the policy which decides where a job eligible

for transfer should be transferred to, included the means of acquiring the information on

which to base the decision. Now the norm is to divide this into location and information

policies, the latter concerning the acquisition of information upon which to base

decisions.

16

2. Survey of Related Research

Two strategies are possible, broadcast and probing. Broadcast can be

periodic [Sta84, Ald92], with each node broadcasting its load to all the other nodes in the

system at regular intervals,. Alternatively it can be event driven, by a node state change.

The state change could be the arrival of a job eligible for transfer, upon which the source

node will broadcast a request for state information from other nodes in the

system.[Cas87]. Or any change in loading at any node may be broadcast [Sta84].

The most obvious problem with any broadcast based policy is the large amount of

communication traffic that will be generated. A periodic broadcast will create extra

traffic with no guarantee that the information is needed, but increasing the time interval

between broadcasts may lead to inaccurate placement decisions based upon out of date

information. Source initiated broadcasting although furnishing more accurate state

information will lead to periods of intense activity on the communication network as all

nodes try to respond concurrently. The advantage of using broadcast techniques are that

an image of the whole system can be formed and idle nodes located, assuming that the

state information used is still accurate. How great an advantage this is depends on the

demands of stability. If distinct nodes make decisions based on the same information

they will all come to the same conclusion. Underloaded nodes can become swamped with

jobs transferred from many different overloaded ones, leading to performance

degeneration.

Probing or polling, is event driven and so all information gathered will be as

current as possible. A communication delay will be unavoidable but will be tiny in

comparison to job service time and so it is unlikely that state information will be

obsolete. It is normal for only a small subset of the available nodes to be probed, referred

to as the probe limit. These are picked at random by the instigating node. Whether all the

nodes up to the probe limit are probed is at the discretion of the location policy.

Research into systems of homogeneous nodes has shown that probing 10% - 15% of the

total system provides optimum results [Phi90, Ben94], even if communication costs are

assumed to be negligible [Eag86a]. In reality these costs cannot be ignored, and the

relatively small number of probes has the advantage of much lower communication

overhead than broadcast.

17

2. Survey of Related Research

General comparisons of these two means of information dissemination have been

made. Probing has been shown to be the most efficient at low to moderate system loads

and broadcast at high loads [Mah93].

2.1.4 Location Policy

The final task for a load sharing algorithm is to use available state information in

deciding the destination of an eligible job The possibility of a node rejecting a transferred

job is not discussed as the mechanism to allow this type of negotiation would add

considerable overhead, which is better invested in making the best possible initial

placement.

The simplest location policy is one which uses no state information at all,

randomly selecting another node to accept the job, such as RANDOM [Eag86a, Zho88].

Although very simple, this form of "blind" [Ber93] location policy can exhibit substantial

performance improvement over the no load sharing case at all levels of system load when

implemented on homogeneous systems. Performance on heterogeneous systems is

discussed in later chapters of this thesis.

A strategy common in early work is to identify the lowest loaded node and move

jobs there from an overloaded one. [Sta84]. In a homogeneous system this can easily be

identified as the node with shortest queue length. This is simple enough to determine if a

global picture of the system is available, as with a broadcast information policy. However

if probing is used a measure is needed to determine if a particular node is suitable. As

selecting the lightest loaded is impossible unless all nodes are probed. Two methods are

available, incorporated as the location policies of the THRESHOLD and SHORTEST

algorithms [Eag86a, Phi90].

The first as its name implies is based upon a threshold, often of the same value as

that used in the transfer policy. For example a threshold of 2 may be used, so that a node

will only consider a job eligible for transfer if its own load is greater than 2 and will

consider another node a possible recipient if it has a load of less than 2, in the knowledge

that transfer will not degrade the response time of the job in question. The number of

nodes probed is limited by a set probing limit. On detecting a suitable node transfer will

occur immediately. If the probe limit is reached before a suitable candidate is discovered

then the job in question is executed locally.

18

2. Survey of Related Research

The second strategy also uses a threshold but rather than transferring to the first

suitable node discovered attempts to find the node with the shortest run queue. So even

if a suitable node is discovered, probing continues up to the probe limit in search of a

more lightly loaded destination.

In either of the two location policies if an idle node is probed then the job can be

immediately transferred, as no more suitable node could possibly be found. Of the two

policies SHORTEST has been shown to have a slight edge in performance. Figure 2.2

shows how this algorithm works.

Transfer policy Location policy

Job
arrives

Information policy

Figure 2.2 The SHORTEST algorithm in three policies.

As an alternative to a fixed threshold a bias can be employed. A suitable node will

be one whose load is less than the overloaded one by the set bias [Sta84, Cas87]. The

size of the bias may reflect the cost of job transfer, a large bias reflecting a high transfer

cost [Rom91].

19

2. Survey of Related Research

In a heterogeneous environment the use of queue length alone can still be

effective [Bau89] but the majority of current work has attempted to show sensitivity to

the differing service rates at nodes. To accomplish this some form of rating must be

assigned to each node. If a mixture of CPU queue length, memory capabilities and I/O

speed is used [Ald92, Zho93, Shi94] then prior knowledge of job requirements is needed

in order to assess the relative merits of each factor. To avoid this requirement an overall

measure of server rate or processing speed can be used [Mir89b, Bak92, Wan94] with

which a number of different location policies have been proposed. All of these will in

some way attempt to account for the inequality in processing speed by making job

transfer easier from slow nodes to more powerful ones.

Mirchandey [Mir89b] uses a set of pre-determined thresholds. A node will only

respond positively to a probe from an overloaded machine if its local load is currently

less than its own threshold. Fast nodes will have high thresholds and slow nodes low

ones. These are the same thresholds used in the transfer policy. A similar scheme is used

by Baker [Bak92] although there is more differentiation between nodes. Set thresholds

are used but the load value returned by a probed node is its local queue length divided by

its threshold. If the product is less than unity transfer can take place. The advantage is

that comparison of prospective destinations is allowed. While exhibiting some sensitivity

to system heterogeneity, there can be problems due to a lack of load sharing between

group of fast nodes all of the same power as they all have high transfer thresholds. Also

there is little adaptability in these policies. If new nodes are introduced to the system, the

ratio of thresholds may need altering which cannot be done dynamically.

A more flexible method is to use the ratio of relative processing powers. Wang

[Wan94] suggests that a powerful node will accept work if its local load is less than a

threshold based on proportional processing power of the two communicating nodes. No

mechanism is provided to compare two nodes both capable of accepting a job.

Wang's algorithm does not allow the transfer of jobs from fast to slow nodes.

While this avoids the problem of selecting idle but slow nodes it may lead to missed

opportunities for load sharing. Zhou [Zho93] uses various load indices in the location

decision one of which is ready to run queue length. The load at a remote node is scaled

according to its relative CPU speed (cycles per second) rather than processing power

(MIPs). But before scaling the remote load is incremented to account for the effect of the

20

2. Survey of Related Research

job if it was transferred. This has the effect of stopping inefficient transfers to idle but

slow nodes. Fixed thresholds are still used for comparison purposes once the remote load

has been scaled, combined with use of the other indices.

2.2 System Model

Once a load sharing algorithm has been developed, it can be evaluated by

studying its performance on a given system model. The system model used will naturally

have a great influence on perceived performance. In cases where algorithms have been

studied through implementation, this is normally used in conjunction with, and as an aid

to constructing a valid model. Unfortunately no standard model is available and those

used in previous studies have varied enormously. The differences fall into the following

categories:

 Network topology

 Heterogeneity of nodes

 System load

 Overheads

2.2.1 Network Topology

All distributed systems will use a communications network through which to

function. The size of the network can vary from a localised environment to national or

international proportions. This study will concentrate on the former and the related Local

Area Networks (LAN's). Load sharing is possible over a much larger scale [Epe95] but

only in a limited form, as the lengthy communications delay inherent in WAN's will add

a significant overhead.

Algorithms have been evaluated on networks that were not fully connected

[Sta84, Cas87], and this was reflected in their design. The LAN's in general use today

have bus and ring topologies. These can all be considered as fully connected in that the

average communication time between any pair of nodes will be the same. Due to this fact

the design and evaluation of load sharing algorithms is not normally effected by the lower

level (MAC) operation of the LAN in use. A rare exception [Kim92b] was developed

specifically for a network using the CSMA/CD protocol. With this is mind any system

21

2. Survey of Related Research

model used will only need to consider differences in communication speeds. As

mentioned in 1.2.2, the effect of the extra traffic due to load sharing algorithms, on data

transfer rates, can only be investigated through implementation and measurement..

The issue of inter-net load sharing between LAN's was addressed in [Ban89],

assuming that inter-net communications has a considerably higher cost than intra-net

communications. It concludes that no advantage is to be gained by inter-net load sharing.

Another factor against inter-net sharing is the use of common data stored on file-servers

within individual LAN's Transferring the job to another LAN would incur considerable

extra cost.

2.2.2 Heterogeneity of nodes

As noted in 2.1.4 configurational heterogeneity can be exhibited in many ways. If

all of these factors are implemented in the model it becomes very complex and limits

soon arise to its scalability. A more practical method of expressing heterogeneity in a

node is to use just one parameter, processing speed. Although jobs may have a variety of

requirements in terms of CPU usage, memory and disk I/O, these cannot easily be

estimated at run-time. It is a reasonable assumption that in general relative CPU speeds

and memory capability of workstations will be comparable. It is unlikely that a

manufacturer will supply a fast CPU with slow or insufficient memory. With regard to

disk I/O, the diskless workstation is becoming more popular in networked systems due

to ease of management of a central file server.

The model should be flexible enough to allow the evaluation of any algorithm

over systems with differing configurational heterogeneity. If systems can exhibit different

levels of heterogeneity the question arises as to what metric to use in characterising it.

This question is not often tackled, but a simple ratio of processing power has been

suggested [Mah93]. This approach cannot cover all cases, for instance when relative

processing power is unchanged, but proportions of nodes with different speeds is, or

when more than two types of nodes are concerned. A more sophisticated measure using

skewness and variance of distribution of processing power can be devised. This is based

on recent work by Sarraf [Sar95] in which a means of describing offered workload on a

LAN is presented.

22

2. Survey of Related Research

2.2.3 System Load

In order to assess the scalability of any algorithm it must be evaluated on a

system with variable system load (overall utilisation). The question of interest is how the

system load should be spread amongst the individual nodes and how it will be

represented in service and interarrival time distributions.

When examining performance on a homogeneous system the load at each node

can be the same. This is a reasonable assumption and is the scheme used in many system

models proposed in the literature [Eag86a, Zho88]. Early work tended to consider only

homogeneous loading as it was felt adequate to test the basic characteristics of an

algorithm. However in order to meet rudimentary adaptability requirements an algorithm

should be able to cope with some degree of heterogeneity in loading at the nodes

[Kru94, Kar95].

When considering heterogeneous systems there are three possible loading

representations. The homogeneous case, where each node experiences the same offered

load, holds less water, although it is still used [Mah93]. Another possibility is that of

proportional loading [Mir89b]. The offered load at a node is proportional to the

processing power of that node. This is the natural extension of the loading patterns used

in most studies of homogeneous systems. Lastly the heterogeneous situation where the

offered load at a node bears no relation to its processing power is a possible scenario but

as yet has not been explored in any depth.

Another characteristic of the load originating at each node is the distribution of

interarrival times and job service times. In the majority of cases, where a workload must

be created the use of an exponential distribution has sufficed for the interarrival time. A

trace driven workload is used by Zhou [Zho88] in an attempt to reproduce true system

conditions. This idea has not been followed in any later work as it is considered too

restrictive, being based on the characteristics of just one machine. Use of a hyper-

exponential interarrival time distributions has been investigated by Dandamudi [Dan95].

The algorithms investigated showed little relative sensitivity to the increase in job arrival

clustering although response times did increase, not an unexpected result.

With regard to the distribution of job service times, there has been a little

variation in the literature. Kruger and Livny [Kru87, Kru88] expound the virtues of a

hyper-exponential distribution in accurately representing true service rates. But in a later

23

2. Survey of Related Research

paper [Kru94] returned to use of the exponential distribution. The hyper exponential case

has also been explored more recently [Ben93, Dan95] in both instances it was reported

that the relative performance of the algorithms studied was unaffected in comparison to

the situation when using an exponential service time distribution. The bulk of system

models use an exponential distribution.

2.2.4 Overheads

No dynamic algorithm can operate without imposing an extra overhead on the

system, as state information must be collected and used in the chosen algorithm. There is

also the cost of transferring a job, in whatever context, to consider. The only algorithms

that are assessed with no regard for overhead are those aiming to give a lower bound on

performance, with which to correlate other results. Examples of these are LB2 [Sta84]

andNoCost [Zhou88].

Job transfer cost will depend upon the file service implemented. In a networked

UNIX based workstation (often diskless) environment it is common for files to be stored

remotely on a dedicated file server. Therefore on transferring a job only a command line

need be passed between nodes, which can be represented by a fixed cost[Bak92, Kru94,

Dan95]. If files are stored locally then the cost of transferring a job will be increased as

these files will consequently be accessed remotely rather than locally. This extra cost is

normally represented as a percentage of job service time [Eag86a, Mir89b, Phi90]. When

this is the case and transfer costs can be very high the cost of information dissemination

is considered negligible and ignored. Otherwise a fixed cost will be allocated to each

probe or broadcast, depending on the information policy used.

All the costs associated with extra communication due to algorithm operation are

modelled as delay at the CPU. In more sophisticated system models the costs to both

sending and receiving nodes are taken into account, whereas earlier ones assumed all the

overhead was borne at the sender. As dynamic load sharing algorithms are very simple in

operation, the CPU cycles used by the algorithm for non-communication related

activities are ignored in all but a very few cases.

2.3 Algorithm Evaluation

The first two sections of this chapter have described different types of load

sharing algorithm and the system models on which they can be evaluated. There remains

24

2. Survey of Related Research

the question of which techniques can be used to perform the evaluation and what metric

should be used to judge performance.

2.3.1 Evaluation Techniques

The three standard techniques [Kan92] for studying system performance have all

been applied in the evaluation of load sharing algorithms: analytical modelling, simulation

and measurement. Analytical modelling in the form of queuing network analysis has been

used in the past but always in conjunction with simulation, in that results have been

checked against those achieved by simulation. The advantages offered are simplicity and

speed. These were particularly useful when the processing power available for simulation

purposes was at a premium. Generally the mathematical approach has been used in

evaluating general algorithm performance on simple system models [Eag86a, Mir89a], or

where the load sharing algorithm is based upon the underlying network protocol and so

is too complicated to simulate [Kim92b]. Approximations will always be made in an

analytical model to ensure it remains tractable and this can lead to unreliable results in

some situations. One common assumption made is that each node is independent of

others, a method of decompostion that is asympotically exact as the number of nodes

tends to infinity. In general a system of less than fifteen nodes is considered too small.

A comparison [Eag86b] of simulation and analytical results showed discrepancies at high

system loads.

With the understanding gained of the general behaviour of algorithms over

homogeneous systems, more complex models were introduced to represent the

distributed systems involved more accurately. Factors previously considered negligible

were now included, in particular the overhead associated with inter node communication.

These considerations along with the introduction of heterogeneity, in both offered load

and processing power, made analytical models ever more intractable.

It is arguable that the growth in system model complexity was prompted by the

rapid increase in computing power available to researchers. This in turn led to the

increased use of simulation as an evaluation method. Whatever the motivation simulation

has become the most popular technique for the evaluation of load sharing algorithms.

Unfortunately there are still practical limits to system size and complexity. The

simulation of systems of over 20 nodes is rare. Zhou had a system of a maximum 49

nodes but only conducted short runs using systems of this size [Zho88]. Ghafor studied a

25

2. Survey of Related Re search

35 node system but it was not frilly connected [Gha90]. Aldy [Ald92] considers many

different parameters in algorithm operation and system model but restricts his studies to

a network of 3 nodes.

Measurement is thought of as the most fundamental technique in performance

evaluation. It is needed to some extent for both analytical modelling and simulation, as a

means of establishing initial parameters such as communication overheads. For this

purpose a full scale implementation is not needed as the required details may be obtained

from an existing system. Measurement of algorithm performance will need a full

implementation. The greatest problem here is the availability of resources and so

implementation is often on a small scale, 3 and 11 nodes [Bau89], 6 nodes [Zho87].

2.3.2 Performance Metrics

To arrive at the best metric of performance, the purpose of the system must be

examined. Should it deal with a large number of real time jobs then meeting deadlines

will be of utmost importance. The primary goal of a load sharing algorithm in such an

environment would be to minimise the rate of job loss due to deadline expiry [Sri92,

Hou94].

A typical network operating system with different workstations will normally

handle a wide variety of jobs but their completion time is not ultimately crucial. For

systems without such restrictions Kleinrock [Kle76] suggests, "The average response

time for a job requiring X seconds of processing is the single most important

performance measure". The response time of a job is the time from when it enters the

system for processing to when it leaves the system with all its associated tasks

completed.This is the metric adopted in all previous load sharing studies not involving

real time jobs.

Other metrics have been suggested, Kruger and Livny [Kru87] proposed a

measure of fairness, Wait-Ratio. Which is the waiting time of a job relative to its service

demands. The aim in a "fair" system was that all jobs should experience the same wait

ratio. While this metric may be of some value in sequential FCFS systems it is less

applicable in the multiprogramming systems that have become the norm [Tan87] and has

not been adopted in later work.

26

3. Scope of the Present Work

3.1 Introduction

For the purpose of algorithm evaluation a system model is required. The

structure of the model and rationale behind its construction are described in this chapter.

Particular attention is paid to establishing differing levels of heterogeneity in the model in

order to provide a wide variety of operating conditions. A number of loading conditions

are possible with the model, varying both in overall system utilisation and loading

patterns across the system. Construction of any accurate model of a distributed system is

not possible without knowledge of the overhead involved in the operation of the system.

An investigation into the costs of Remote Procedure Calls (RPC's) is presented. These

costs are used as the basis of system overhead as RPC's are used for performing many of

the functions underlying load sharing activities.

One of the aims of this work is to investigate the effects of heterogeneity on the

performance of load sharing algorithms. But as the survey in Chapter 2 has shown there

is a large choice of algorithms. Even if the area of study is restricted to dynamic

distributed algorithms, it is not practical or desirable to evaluate them all. So criteria have

to be established, to select suitable algorithms or individual policies. The primary rule

that will be used is that implementation of the algorithms should be possible on a

standard network of workstations. This will exclude the use of pre-emptive strategies

that involve process migration. A process in this sense is a job which has begun

execution. Concentrating on just non pre-emptive sender initiated algorithms is not felt

to be unduly restructive. They are the same type used by Eager [Eag86a] and Zhou

[Zho88] in their work on homogeneous systems, and their contribution to the field is still

held in high regard.

27

3. Scope of the Present Work

3.2 System Model

The system model adopted for this study is based upon a network of

workstations on a LAN. The use of LAN's implies that the nodes are on a fully

connected network. All the workstations on the LAN are assumed to be diskless, with all

files stored on a central file server. The file server is used solely as a central repository

for data. None of the system's workload originates or executes on the file server.

Therefore the transfer of a job that has not begun execution will entail no overhead due

to the movement of job related data.

The bulk of algorithm evaluation is carried out on a system of 20 nodes. Systems

of this size have been used in many previous studies [Eag86a, Mir89b, Ben93, Kru94]

and are assumed to be an adequate testbed for load sharing algorithms. A larger system

of 40 nodes will be considered in order to assess the scalability of algorithms. Due to

limited resources validation and verification through implementation was not possible for

systems any larger than 20 nodes.

The client-server model is often used to describe a distributed system and is

adopted here. A busy node can be thought of as a prospective client and an idle or lightly

loaded node as a prospective server. The objective of a load sharing algorithm to identify

the latter to the former and facilitate any subsequent job transfer.

In the UNIX workstation environment considered in this study the client and

server will both be processes running on distinct machines. In order to communicate with

each other some form of inter-process communication (IPC) must be used. IPC across a

network is by no means a trivial matter but it can be greatly simplified with the use of the

remote procedure call (RFC). RFC facilities are now widely available on distributed

systems and easily accommodate the needs of a load sharing algorithm, by offering a

machine independent communication mechanism [Blo92].

3.2.1 Aspects of Heterogeneity

The main direction of this work is in investigating the effects of system heterogeneity on

load sharing algorithms. In order to evaluate several systems there must be a means of

ordering them. A possible means is to use the squared Coefficient of Variance (CV) of

28

3. Scope of the Present Work

processing powers of the nodes. The larger the CV the greater the degree of system

heterogeneity. A homogeneous system will have a CV of zero.

n = number of classes in system, / = number of nodes in class i, */ = power of nodes in

class i

cv =
(M 2 -\i*)

n n

where
i "

n and

Figure 3.1 Squared Coefficient of Variance of System Processing Power

However its is possible for two different systems to have the same CV. Consider

2 systems of 20 nodes with the same total processing power, A3/B3 and A7/B7 in Table

3.1. The nodes in these systems are split into two groups, with 12 in one group and 8 in

the other. In one system the larger group of nodes has 30% less than the processing

power it would possess in a homogeneous system, whilst in the other system the same

group has 30% more. The CV will be the same for two different systems.

To differentiate the between the two examples and give a better measure of

degree of heterogeneity the skewness of processing power can be used in combination

with CV. A positive skew will indicate that the less powerful nodes (less powerful than

the average for the system) are in the majority. Conversely a negative skew will indicate

that the powerful nodes form the majority in the system.

n
SKEW =

i =.
n

Figure 3.2 Skewness of System Processing Power

In this study both the CV and skewness will be used to characterise the degree of

heterogeneity of a system. All of the systems investigated will have the same total

processing power but this will be distributed in a variety of ways. If overall processing

29

3. Scope of the Present Work

power in not maintained at the same level, comparison of results from different system is

not valid. The systems nodes will be split into two groups of 12 and 8 nodes, as

illustrated in the previous example. For ease of reference the majority group will be

known as group A and the minority group B. Total power of the system is set at 20. In

total 10 systems will be used. The composition of each is shown in Table 3.1. The

division of processing power in this manner gives a broad spectrum of systems on which

evaluation is made. Relative processing power of the nodes is varied between 1 : 1.5 and

1 :66.

Systems in which the group sizes are very different give less variation. Consider

a system in which the groups of nodes are split 18:2. Negative skew values are possible

but not to any great degree. Even if the majority group has 99% of total processing

power the skew is slight. When the minority group has the lions share the degree of

heterogeneity rises rapidly. This configuration is used but only to assess algorithm

adaptability.

While the present study was restricted to the systems with two types of node

predominantly those defined in Table 3.1, the measure of heterogeneity adopted here can

be used in the more general situation where there is more variety in node power. The

present study was limited to the 12:8 and 18:2 split only due to restrictions of time and

resources.

Al
A2
A3
A4
A5
A6
A7
A8
A9

A10

Power

0.350
0.417
0.500
0.667
0.830
1.167
1.330
1.500
1.583
1.650

Fraction
of total
power
0.21
0.25
0.30
0.40
0.50
0.70
0.80
0.90
0.95
0.99

Bl
B2
B3
B4
B5
B6
B7
B8
B9

BIO

Power

1.975
1.875
1.750
1.500
1.250
0.750
0.500
0.250
0.125
0.025

Fraction
of total
power
0.79
0.75
0.7
0.6
0.5
0.3
0.2
0.1

0.05
0.01

skew

0.206
0.149
0.094
0.028
0.004
-0.004
-0.028
-0.094
-0.149
-0.206

cv

0.634
0.510
0.375
0.167
0.042
0.042
0.167
0.375
0.510
0.634

Table 3.1 System Composition With nodes divided 12 : 8

30

3. Scope of the Present Work

3.2.2 System Loading Conditions

The commonest method of load distribution in previous work has been a

homogeneous distribution across the system. In a heterogeneous system this is not a safe

assumption. It is highly unlikely that a powerful workstation will experience the same

offered workload as a much slower counterpart. Even if workstations are office based

and so accessible by only specified users the ability to logon remotely and execute work

on other machines on the same system is widely available. In fact any system in which

these activities were not allowed would not lend itself to load sharing anyway. Another

possibility is that of remote users, gaining access via modem connections, i.e.

researchers working from home. They are most likely to concentrate their efforts on the

powerful machines in the system. These ideas do not contradict the principle of

transparency, for it is not possible to hide the relative capabilities of machines from any

user group.

Assuming that more powerful nodes do experience a heavier workload then the

further assumption that load may be in proportion to processing power seems fair and

has been adopted in other studies [Mir89b]. This is really just an extension of the

principle used in homogeneous studies. Proportional loading will be used in the main in

this study with job interarrival time being inversely proportional to processing power.

Other cases are included for the purpose of judging algorithm adaptability in coping with

more random loading patterns. In some cases a proportion of the nodes will experience

no offered load at all.

The average service time of all jobs is 10 seconds on a node of processing power

equal to 1. The actual service time will of course vary depending upon the executing

node. In other work the trend has been to use anonymous "time units" rather than

seconds, but the overheads in this study are based upon measurements of RFC timings

where the relevant units are seconds. Some attempts at measurement of service times

have been made [Zhou87, Zhou88, Kara95] and these range from 1.5 to 7.5 seconds.

Three levels of overall system utilisation are used in the evaluation. These are

50%, 70% and 90%. Corresponding to light, medium and high loading conditions

[Kar95]. Load sharing at system loads of less than 50% gives little performance

improvement over the no load sharing case except in cases of extreme loading patterns.

31

3. Scope of the Present Work

The system loading level is modified by changing the job interarrival time. Job service

time is the same for all levels of system load and across all types of node.

3.2.3 Overheads Due to Remote Procedure Calls

The overhead incurred due to load sharing activity can be divided into three

parts:

 The cost of information dissemination.

 The cost of transferring a job from one node to another.

 The CPU cost of algorithm decisions.

A primary requirement of any evaluation study that does not use measurement on

a real implementation is that these overheads are accurately estimated. All

communication between nodes will take place with the use of RPC's and so the cost of

executing these is the basis for the estimates used in this study. Job transfer is also

achieved by the use of an RFC, with no other costs, as the use of diskless workstations is

assumed. As the algorithms proposed are simple in operation requiring very few

instructions to be performed outside of those connected with the RFC mechanism the

CPU cost of implementing them will be ignored.

Figure 3.3 shows the sequence of operations connected with a RFC. The diagram

is not to scale but it does illustrate the delays that are inherent in any RFC. There is an

initial delay on the client side as the client stub marshals the arguments of the local

procedure call into a network message, followed by a network delay in transmitting the

message. On the server side a server stub converts the arguments from the network

message and makes a local procedure call to execute the server function. After the server

function has been completed the return values are converted into another network

message and sent back to the client stub which converts them back. Again network and

processing delays are incurred in the course of these actions. There is the possibility that

the client and server can both be on the same node in which case no network delay

would be experienced, but as this will not occur in the load sharing environment it will

not be discussed any further.

32

3. Scope of the Present Work

A

Client
Program

^

Client
Machine

B
w

•'
Program
continue;

<E

IFF

A^C«-TTV*n.

:|

jl
; ;;.."

RFC request^
"^^^-^

illI1ĵ•*>: i^^^^
Return reply j

ll

Sii»«itt««^«««

Server
Service Machine
Daemo

n

^ Invoke

 , 1 Service

1 fc
Call Service

. Return _
(^ Answer

D 1
^ Request

Service
Executes

r

Completed

Figure 3.3 The Operations involved in a Remote Procedure Call

For the purpose of estimating overhead it is not necessary to determine the cost

of each operation in a RFC. All that is needed is the response time of the RFC which will

be fully added to the eventual response time of the job eligible for transfer, plus the total

delay incurred by both client and server. The total delay of a probe to an eligible job is

the time delay from A - F as shown on Figure 3.3. This is the total time needed to

execute the RFC. An assumption made here is that probes are not executed in parallel

and so the delay experienced is directly proportional to the number of probes used. The

client (probing node) does not have to lie idle for the whole of this period and can

process jobs for the period indicated by the broken line. Therefore the total delay to the

client is equal to (A - F) - (B - E). The server (node probed) will experience a delay

33

3. Scope of the Present Work

equivalent to the time period from C - D. Therefore any jobs executing on the server

machine will all experience a delay equivalent to the time taken to respond to the RPC.

The overhead in transferring a job is estimated in the same manner as the transfer

is accomplished using a RPC. However the delay in executing the server procedure, in

this case the job itself, will be much more significant.

The overhead estimates used in this study are based upon measurements made on

a LAN at the university. The action of probing was simulated by running a client process

that would at one minute intervals send a RPC that would read a value from memory on

the server machine. This operation was carried out 20 consecutive times to minimise the

timing overhead. Measurements were taken over a period of 3 days. Five machines were

used, a SS5 70 (Mars) sending RPC's to itself another SS5 70 (Saturn), SS10 40

(Westar), Classic (Barry) and IPX (Terry). The average response times for each machine

are shown in Figure 3.4.

0.035 T

Barry Classic Mars SS5 70 Saturn SS5 70 Terry IPX WestarSS1040

Figure 3.4 Average Probe Response Times

Mars has a significantly lower response time because the RPC in its case is

between two processes on the same machine. By comparing the response times of Mars

and Saturn it is possible to get an idea of the delay due to transportation across the

network, approximately 10 ms. The delay experienced will depend upon both the

communicating machines. The network delay can be assumed to be constant across all

nodes, although it will of course change with network utilisation. Attempting to account

34

3. Scope of the Present Work

for the different delays according to machine pair would entail extra processing for each

probe made and so hamper simulation studies. As the probes are random a balanced

combination can be expected so one set of values for RFC overhead are used. The

overhead estimates used are:

Probing: 10 ms to client node

10 ms to server node

30 ms per job

Job Transfer 10 ms to client node

10 ms to server node

30 ms per job

An assumption inherent in the above timings is that the operations involved in a

RPC are evenly divided between the client and server as they perform symmetrical

operations. The delay due to the server procedure when probing is performed is

negligible, measurable in microseconds rather than milliseconds. The server procedure

delay in job transfer is separately accounted for when job processing starts.

The effects of varying load are shown in Figure 3.5. RPC's are sent from Westar

(SS10) to Terry (IPX) in the same manner as for the 5 machine test reported earlier.

Results were gathered over a week but during this time the load on both machines was

varied from an idle state to a utilisation as reported by the UNIX system call uptime of

over 6, i.e. 6 jobs were in the ready to run queue. The changes in loading were not

observed to have any effect on the RPC response time. The peaks shown are caused by

the heavy network traffic during system backup which is conducted during the small

hours every night.

The independence of RPC response time from loading conditions can be

explained by the scheduling policy implemented on the workstations. Any new process or

in the case of the server stub one that has only used the CPU lightly will obtain a higher

scheduling priority and so rapid access to processing facilities [Sun90]. Therefore the

timings proposed will be used at all levels of system utilisation.

35

3. Scope of the Present Work

 Response Time Load at Terry Load at Westar

6.00

o

0.00

Hour ending

Figure 3.5 The Effect of Changing Load on RFC Response Time.

3.3 Algorithms Evaluated

The load sharing algorithms evaluated in this study are listed in section 3.2.4.

Before this is a description of the transfer, location and information policies used in them

and the rationale behind their selection.

3.2.1 Transfer Policy

The selection of which jobs to consider for transfer begins with the arrival of a

job at a node. This job is not necessarily new to the system but may have been

transferred from another node. In order to prevent the possibility of instability due to

thrashing a transfer limit will be put on each job. All the algorithms evaluated will have a

transfer limit of one, ensuring that any transferred job is executed on its the first

destination node.

All locally originating jobs will initially be considered eligible for transfer. It may

well be better to process very short jobs locally, as the mere cost of transfer may make

36

3. Scope of the Present Work

load sharing inefficient. Unfortunately there is no way of knowing service time in

advance. The relative performance of the algorithms will not be effected by this decision,

except for the IDEAL algorithm which is used as an upper bound on performance.

A Threshold is used to determine if a new job should be considered eligible for

transfer. The threshold will be based solely on local load at the time of job arrival. The

metric by which local load is judged will be the number of jobs currently executing

locally or in the ready to run queue. A simple but effective measure for workstations

such as, Sun 2 [Fer87], and Sun 3/50 [Kun91]. The optimum threshold length is

investigated in the course of the study.

3.3.2 Information Policy

Apart from a version of the RANDOM algorithm [Eag86a] which operates

without any system state information except local loading, the dissemination of system

state information will be accomplished with the use of probes (polling individual nodes).

The alternative broadcast has been discussed in section 2.1.3. Use of broadcast has been

limited and it is not a popular choice when considering fully connected networks, due to

the associated high overhead with little perceived benefit. All recent load sharing

algorithms use probing of some form.

Selection of the nodes to be probed will be made on a random basis as jobs

eligible for transfer are identified. This will ensure that the information collected will be

as current as possible. The use of prior information in the selection of nodes to be probed

has been investigated [Shi92]. Increased performance was noted at system loads of

greater than 85%, due to a greater efficiency of probing. However the transfer policy

used was somewhat questionable with the threshold not varying with load. Whilst noting

the potential of intelligent probes a random policy is considered adequate for this study.

3.3.3 Location Policy

A variety of location policies will be investigated in the algorithms evaluated.

This is the area in which they display the greatest diversity. The simplest policy is that of

blind location, where a suitable node is selected at random. This strategy has been used

as a benchmark in many studies of homogeneous systems [Eag86a, Zhou88, Kre92].

Thresholds based on remote loading have been widely used in previous work

such as the SHORTEST and THRESHOLD algorithms [Eag86a]. Proposed for use on

37

3. Scope of the Present Work

homogeneous systems they are tested on the heterogeneous systems used in this work.

Of more relevance are the location policies primarily designed for use where the

processing speeds of nodes differ.

All the algorithms proposed in this study use a load index which is the ready to

run queue length weighted by the relative processing power of the remote node. The use

of fixed thresholds is investigated as well as that of flexible thresholds, where the remote

load is compared with the local load in deciding whether to select the node probed. The

mechanics behind these variations in location policy, which are kept simple to avoid the

imposition of excessive overhead, are detailed in the next section, where all the

algorithms evaluated are described.

3.3.4 Description of the Algorithms

The five algorithms on which this study concentrates are described below. Their

descriptions are divided into Transfer, Information and Location policies (TP, IP, LP).

With the exception of threshold levels, the values of parameters such as probe and

transfer limits are postponed until later chapters.

The measures used to give upper and lower bounds on response times are the

M/M1 and IDEAL scenarios respectively. The M/M/1 or no load sharing case was

illustrated in Figure 1.1. The only complication for heterogeneous systems is that a

response time must be calculated for each type of server and the weighted average

computed. The IDEAL case used to reach a lower bound is based on the simulation of an

idealised load sharing scheme, in which complete knowledge of queue length and job

sizes at all nodes is assumed available and each job is sent to the node where it will be

completed in the least possible time. Once a job has been sent to a node it cannot be

migrated. Transfer and information costs are assumed to be zero. This is the same

principle as the M/M/K scheme shown in Figure 1, but by utilising knowledge of job

service times a truly optimal solution can be reached. The results of simulation of the

IDEAL algorithm provide interesting information on the optimum distribution of

workload.

38

3. Scope of the Present Work

RANDOM:

TP - A fixed threshold is used. If the arrival of a job causes the local load to reach or

exceed the set threshold and the job has not been transferred more times than its

transfer limit, then that job is considered eligible for transfer.

IP - No information policy is needed as no system state information is used in the

location policy.

LP - A node is picked at random and the current eligible job is transferred to it.

SHORTEST:

TP - A fixed threshold is used, set at 1 for system utilisations up to 70% and 2 for

higher. If the arrival of a job causes the local load to reach or exceed the set

threshold and the job has not been transferred more times than its transfer limit,

then that job is considered eligible for transfer.

IP - Nodes are selected at random and probed, in response to which they return their

load, the total number of jobs in the ready to run queue. Probing continues until the

number of nodes probed reaches the probe limit, unless an idle node is located.

LP - If an idle node is located, the current eligible job is transferred to it immediately.

Otherwise when the probe limit is reached, the job is sent to the node with the

lowest load, provided that load is less than the threshold used in the transfer policy.

HETRO: (Attempts to account for system heterogeneity)

TP - A fixed threshold is used, set at 1 for system utilisations up to 70% and 2 for

higher. If the arrival of a job causes the local load to reach or exceed the set

threshold and the job has not been transferred more times than its transfer limit,

then that job is considered eligible for transfer.

IP - Uses a weighted load in its Location policy, this entails the Information policy

gathering details of a remote node's load and processing power. Probing continues

up to the probe limit unless an idle node is located. The weighted load is calculated

as:

local_ powerweighted_ load = ——————————— * remote_ load
remote_ power

39

3. Scope of the Present Work

LP - If an idle node is located the current eligible job is transferred to it immediately.

Otherwise when the probe limit is reached the job is sent to the node with the

lowest weighted load provided that load is less than the threshold used in the

transfer policy.

HETQL: (Accounts for heterogeneity and uses local queue length in location policy)

TP - All jobs that have not exceeded their transfer limit are considered eligible for

transfer if the local node is busy, i.e. has a load of one, no matter what the system

utilisation.

IP - Uses a weighted load in its Location policy, this entails the Information policy

gathering details of a remote nodes load and processing power. Probing continues

up to the probe limit unless an idle node is located. The weighted load is calculated

as:

local_ power
weighted_ load = ——————————— * remote_ load

remote_ power

LP - If an idle node is located the current eligible job is transferred to it immediately.

Otherwise when the probe limit is reached the job is sent to the node with the

lowest weighted load provided that load is less than the local load as measured by

ready to run queue length

HQNIT: (Accounts for heterogeneity, uses queue length and no immediate idle transfer)

TP - All jobs that have not exceeded their transfer limit are considered eligible for

transfer if the local node is busy, i.e. has a load of one, no matter what the system

utilisation.

IP - Uses a weighted load that takes into account the effect of possible job transferral in

its location policy, this entails the information policy gathering details of a remote

nodes load and processing power. Probing continues up to the probe limit. The

weighted load is calculated as:

local_ powerweighted_ load = ———————————— * (remote_ load +
remote oower

1)
remote_ power

40

3. Scope of the Present Work

LP - The newly arrived job is used in calculation of the local load. Transfer will not

occur until the probe limit is reached, as no node will have a weighted load of zero.

The eligible job will be transferred to the node with the lowest weighted load if:

local_ load + 1 > weighted_ load

This ensures that jobs will only be transfered to less powerful nodes if they will

complete more quickly.

3.5 Simulation

The simulation of systems can be divided into two categories, continuous

simulation and discrete event simulation. The approach taken is normally determined by

the nature of the system to be evaluated. Continuous simulation is normally applied to

systems in which state variables are continuously changing with respect to time. This is

not the case in a distributed computer system where the state of the system will only

change at discrete points in time on the occurrence of an event. Hence the type of

simulation used in the evaluation of load sharing algorithms will be of the discrete event

variety.

The simulation model used in this study is constructed using the MODSIM II

programming language released by the CACI Products Company. This is an object

oriented programming language that provides direct support for discrete event

simulation. There are two approaches to discrete event simulation, the event oriented

approach requires each event to be a separately coded activity. However MODSIM

adopts the process approach with groups of related activities grouped together and the

possibility of the process suspending execution when needed. The uses of processes

eases the construction of larger models by simplifying the logical flow of the program.

Most simulations will attempt to discover the steady state behaviour of the

systems investigated. Initial conditions will correspond to that of an idle system and so an

initialisation 'warming up' phase is included and only after this has expired are results

collected. Total run length is at least 10 times that of the initialisation phase, depending

upon the level of system utilisation. A higher utilisation will give an effectively longer run

as more jobs will be processed. Although the results collected are in the form of discrete

time data, i.e. average job response time, the simulation runs are stopped at specified

clock times as determining total system job output during simulation is easily

41

3. Scope of the Present Work

accomplished. However the length of the simulations is such that any discrepancy

between the total number of jobs offered in different replications is considered negligible.

Standard error for all results is less than 5% at the 95% confidence level.

3.6 Measurement

Measurement is carried out on a working implementation of the same system as

that modelled by simulation. This provides a means of verifying the model by ensuring

that the features used in the simulation can actually be implemented on a real system. The

results of the measurement are used in validating the simulation assumptions and results.

In particular the assumptions about network behaviour and the effect of the added traffic

due to load sharing activity.

The machines used were a mixture of Sun workstations all running the Solaris 2

operating system. All the machines were located on the same LAN. RPC's were used as

the only means of communication between the machines. Two server procedures were

needed for each machine one to handle probes, the other to handle transferred jobs. The

code implemented operated outside the kernel, as any other approach would have

necessitated full super-user control of each machine. This was not possible as the

machines used were part of the general computing resource of the university.

The workload offered was all of the same type varying only in execution time.

Although entirely CPU based this was not seen to be a handicap as the object was merely

to affect the processing speed of other jobs currently executing. No discernible overhead

was experienced due to collecting results, as they were only written to file at the end of

each measurement period.

42

4. Discrete Event Simulation

4.1 System Model

The same system model is used as the basis for all the simulations performed. It

consists of a collection of nodes communicating across a network. Any degree of

heterogeneity in the system is exhibited solely in the processing power of the nodes The

relative processing power of each node is known and does not vary during operation. All

inter-node communication is performed through the use of RPC's, the durations of which

are known and are independent of individual node processing power.

The functionality of each node is identical and based around a set of core

operations. A stream of jobs is generated locally to represent the offered workload. As

each job is generated a decision is made as to whether it should be executed locally

(added to the local quue) or made available for possible transfer to another node for

execution. Information on processing power and current load is passed between nodes

on request. Transfer decisions can then be made based upon the information gathered.

Each node has the facility to send jobs to and receive jobs from others in the system. On

reception of a job a node adds it to the local queue for subsequent execution. Jobs in the

local queue are executed on a First Come First Served (FCFS) basis.

4.1.1 Processes at a Node

The functionality of the nodes can be divided into more specific processes than

the general description above. These are detailed below:

 Generation of offered load - The jobs generated at each node have an exponentially

distributed interarrival and service time. All nodes generate jobs with the same

average servicetime. However, in order to ensure each node has the same initial

utilisation the average interarrival time is inversely proportional to its processing

power.

43

4.Discrete Event Simulation

 Transfer policy - As jobs are generated at a node they must be assigned for local

execution or allocated for possible transfer. This decision will be based upon the

current load at the node concerned.

 Information policy - Once a job has been allocated for possible transfer, information

on the system state is gathered to use in the location decision. Only partial knowledge

of the system state is needed and this is gathered through the use of probes to

randomly selected nodes.

 Probe response - Complementary to the information policy is a mechanism to answer

incoming probes.

 Location policy - Using the information gathered via probes around the system a load

sharing decision is made as to the execution location of the job.

 Job transfer - When selected due to the operation of a load sharing algorithm a job

will be transferred to another node.

 Job reception - On reception of an incoming job the destination node adds it to the

local queuefor execution locally.

 Job execution - Jobs in the local queue are executed immediately on arrival in the

queue. When the local queue is empty the execution process will wait for a signal

indicating a new arrival.

4.1.2 Inter Process Communication

Communication between processes takes place on both an intra and inter node

basis. Inter node communication is based on message passing, implemented entirely with

the use of RPC's. Although it is possible to use RPC's as a means of intra-node

communication they are too expensive, in terms of overhead to be of practical in this

model. Two methods of intra-node communication are employed. Shared memory allows

two or more processes to access the same information. Software interrupts in the form of

signals allow processes to co-ordinate activities between each other.

4.1.3 Additional Functions Required

In addition to the core processes described in section 4.1.1 some extra functions

are needed for a model from which useful results can be derived.

 Input parameters - A means of inputting variable parameters is needed. This allows

the model to be flexible enough to handle a wide variety of possible scenarios.

44

4.Discrete Event Simulation

 Initialise and start - All of the pre-built constructs used in the model must be initialised

to the correct value before the commencement of any system activity. In the case of

the model used in this study where the activities of several separate entities are

interwoven, it is essential that all entities are also fully initialised before system activity

starts.

 Statistics - Routines are provided for the collection of a number of different statistics.

The most important is the average response time at each node. That is the time from a

job's arrival in the system until the end of execution. Other statistics must also be

collected not only to allow a greater understanding of the effect of differing input

parameters and load sharing algorithms, but to aid in verifying that the simulation

model is operating in the manner intended.

 Termination - at the end of the a pre-determined period the model must be halted.

This has to be an orderly operation not just to ensure that the simulation period is

strictly observed, but also to prevent any data being lost by the uncoordinated

termination of any objects.

4.2 MODSIM

MODSIM is a high level special purpose simulation language. Although it can be

used as a general purpose computing language, it is aimed at the construction of

simulation models. There are many similarities between MODSIM and Modula-2, in

syntax, data types and control structures. The differences are most apparent when

considering the object oriented features and simulation utilities that are provided by

MODSIM. All the standard object oriented properties are supported, such as inheritance,

encapsulation and polymorphism. These are combined with extensive library modules

which provide a large number of constructed objects to help in the writing of discrete

event oriented simulations. Using object oriented techniques to develop these types of

simulations has a history of over 30 years. One of the first object oriented programming

languages to be developed for discrete event simulations was SIMULA, which became

available in the 1960's.

As befits a modular language modules can be separately compiled. Compilation in

all forms is handled by MSCOMP, MODSIM's compilation manager [CAC93a].

MSCOMP first uses the MODSIM compiler to produce a 'C' code version of the

45

4.Discrete Event Simulation

original MODSIM source code. This is then compiled using the standard 'C compiler

available. In this case it was the Sun UNIX compiler. Should more than one module be

used MSCOMP automatically performs any linking that is needed to give the final

executable code.

4.2.1 Object Oriented Features

The objects around which object oriented programming is based are the

combination of data structures, and operations which can manipulate that data. Different

categories of object are referred to as classes or types and individual examples as

instances or objects. A definition of these concepts is offered by Booch, "An object has

state, behaviour and identity: the structure and behaviour of similar objects are defined in

their common class: the terms instance and object are interchangeable" [Boo91].

MODSIM uses the terms fields and methods for the two properties that define an

object's type. These terms are synonymous with attribute and operation [Gra94, Rum91]

The fields are used to represent the state an object is in and the methods are a means of

describing the behaviour of an object. The packaging together of state and behaviour in

this manner is known as encapsulation. The object becomes self-contained and immune

from corruption from outside sources as only its own methods are permitted to alter its

fields. MODSIM does allow an object to access the fields of another. A field may be any

permissible variable including an object.

MODSIM supports the idea of polymorphism, where operations of the same

name may perform different actions when performed by different objects. The term

method ties an operation to a particular object. The ability for an object to be based on a

another previously defined object and then inherit all of the earlier objects properties is

available. This sharing of fields and methods is known as inheritance. Although the

properties of polymorphism and inheritance are not utilised in the model developed they

are noted here as they do enhance the language.

Communication between objects is possible through the use of message passing.

This is a means by which one object can request to invoke the methods of another.

Invoking an object's methods can only be performed in MODSIM by message passing.

The message passed is a request for an object to perform a method. If parameters are

expected by the requested method then these are passed in the message as well.

46

4.Discrete Event Simulation

The modular design of MODSIM allows the construction of models using

constructs from various different sources. However it is possible to have all the code in

one MAIN module although this is only advisable for relatively simple programs. The

MAIN module can import various constructs from the supplied library modules or these

constructs can be used in creation of user defined constructs, as is the case in non-trivial

programming. These new constructs can be defined in the MAIN program but the norm

is to create new library modules.

A library module is comprised of two separate parts, the DEFINITION and

IMPLEMENTATION modules. The DEFINITION module contains a declaration of all

the constants, types, procedures and variables that are importable by any other module,

but no executable code. This is the public section of the module providing adequate

information for any future user. The actual implementation details of all procedures and

objects are included in the IMPLEMENTATION module. These details are considered

private as knowledge of them is not necessary for users of the modules facilities. Each

part of the same library module will have the same identifier but a different prefix, D or I,

for DEFINITION or IMPLEMENTATION module respectively. A MAIN module is

prefixed by M and all modules have the extension '.mod'.

4.2.2 Simulation Utilities

MODSIM takes a process oriented approach to discrete event simulation as

opposed to an event oriented approach. In an event oriented system each event is

considered as a single activity during which no time can pass This can lead to problems

with larger models as the flow of logic becomes more complex. Whereas in a process

oriented model the process is a sequence of events or activities all pertaining to a

particular entity. The processes are implemented as routines in which time can elapse.

This simplifies matters by allowing the behaviour of an object to be described via the

routines. In MODSIM these routines are known as the methods, introduced in the

previous chapter.

Three different types are available to describe an objects behaviour : ASK, TELL

and WAITFOR. The ASK method is used to perform a synchronous operation such as

obtain the value of a state variable contained in an objects fields. No simulation time can

be associated with an ASK method, i.e. performing an ASK method occurs

instantaneously in terms of the overall simulation. To pass time a TELL method must be

47

4.Discrete Event Simulation

used, during the execution of which the simulation clock can be advanced. Because there

is no guarantee that a TELL method will ever return it must be used asychronously and

so no TELL method can return a value. The third method WAITFOR does provide for

both passing simulation time and returning variables, but as it is not implemented in the

model used for this study it will not be discussed further.

The processes around which a MODSIM simulation is based must have the

ability to interact with each other. This is provided in two ways. First a method can wait

for an event to occur as signalled by a trigger object (TriggerObj). Alternatively an

executing method can be explicitly interrupted by another causing the "ON

INTERRUPT" clause of the method to be executed.

Interrupts of the form provided by a TriggerObj are essential in a system

involving queues. Without them any method waiting for an empty queue to receive a new

member would have to be constantly checking the queue's contents. This would lead to a

tremendous waste of CPU time and extend considerably the time to complete any

simulation. The Fire method of a TriggerObj is constructed so that it only has effect if

the object it is directed at is actually waiting for it. So there is no danger of queued

signals negating method synchronisation.

In order to keep track of all the existing objects and ensure their activities are

scheduled correctly MODSIM keeps a "pending list" of object instances. This list

contains all objects with scheduled activities and is ordered by the imminency of those

activities. Should an object have more than one scheduled activity this is shown in its

own activity list. This leads to the formation of a two-dimensional list an example of

which is shown in Figure 4.1.

As activities in the list are executed the list is resorted so that the most imminent

activity is at the head. Only TELL activities are put in the pending list. ASK methods are

executed immediately. After the completion of an activity simulation time is advanced to

the time of the next scheduled activity. The timing procedure finishes when either the

pending list is empty or on the execution of the "StopSimulation" command.

Another simulation oriented problem dealt with by MODSIM is the collection of

statistics. A set of monitor objects are specifically provided for this task. Depending on

how they are declared monitor objects either invoke specified methods on being

referenced (right monitored) or when modified (left monitored). All the statistical

48

4.Discrete Event Simulation

monitors are left monitored, recalculating a set of standard statistical values (count,

mean, standard deviation , ..etc.) every time the monitored variable is modified. The set

of statistical monitors allows real or integer variables to be weighted against time, or not,

as the situation demands.

Pending List

ActOl

13.3

Activity
List

ActlO

15.6

Figure 4.1 MODSIM Pending List Structure

Random number generation is also catered for by MODSIM. The RandObj object

can be imported from library and will provide a series of randomly generated numbers.

There are a number of possible probability distributions available, including the uniform

and exponential distributions used in the model for this work. A means of varying the

initial seed provided to the random number generators is available. This allows any

number of objects to access independent and discrete sets of random variables.

4.2.3 Standard Libraries

MODSIM provides a number of built in procedures to cover many of the

requirements of a simulation model. But these represent only a small portion of the

available set. The others along with extra constants, types and all the pre-defined objects

49

4.Discrete Event Simulation

are available via the standard libraries, fully catalogued in the reference manual

[CACc93].

There are ten standard libraries available with MODSIM II. Four were utilised in

the construction of the model described in this chapter. A brief summary of these is

presented below:

 ListMod : This library contains the objects and composite objects that can be used to

group records and objects. The data structures that can be imported include lists,

stacks and queues. Ample means to manipulate these data structures are provided by

the methods of the relevant object.

 RandMod : As its name suggests this library's facilities are concerned with random

number generation. It only contains one object, RandomObj. With many methods to

allow different distributions of random numbers to be sampled. There are also some

procedures available i.e. FetchSeed, which provides pre-defined seeds.

 SimMod : Time dependent features are the area for which this library's contents are

intended. Without the SimTime procedure which returns the current simulation time it

would be impossible to gather any meaningful statistics from a model. Procedures to

start, stop and change the flow of simulations are also available, as is the TriggerObj

vital in co-ordinating activities.

 StatMod : All the objects that can be used as monitored variables for the collection of

statistics are defined in this library.

4.3 Simulation Model

Techniques such as object oriented analysis have been widely used in developing

discrete event simulation models, as they provide a natural way to map the real world

system onto a simulation model. This fact may appear obvious when the model is to be

constructed in an object oriented language like MODSIM. However the outcome of any

analysis should be tempered by the goals of the simulation. A detailed analysis may

provide an exact mapping but implementation may not be possible or desirable.

Any system can be viewed at various levels of abstraction, the degree of

granularity increasing until every process occurring in the real system is modelled. This

should be avoided if possible. Only the features that are relevant to the simulation

50

4.Discrete Event Simulation

objectives need be incorporated. Once identified they should be implemented at as high a

level as possible without losing any of their functionality. In addition the simulation

model will need to include a number of extra features intrinsic to the task of simulation.

These will provide for initialisation, reporting and termination.

To describe the design stages and implementation of the simulation model

adopted in this study the object oriented notation associated with the Object Modelling

Technique (OMT) [Rum91] is used.

Viewing the system to be simulated at the highest level of abstraction it can be

seen as an aggregation of its constituent sub-systems or objects, shown in Figure 4.2.

Each object is represented as having a multiplicity of association of one, except for the

node object of which there must be at least 2 to form a distributed system. The offered

load in this view represents the total workload experienced by the system in question.

Distributed
System

2+

Offered Load Node Network Server

Figure 4.2 A Distributed System as an Aggregated Object.

Although all of the objects in Figure 4.2 are present in the system model it is not

necessary to include them all in the simulation model. The server is needed as it has been

assumed that all the nodes are diskless workstations and job transfer is simply a matter of

sending an command line instruction. Modelling it would be pointless and any delay in

retrieving data can be assumed to be part of the total job service time. Similarly explicit

modelling of the underlying communication network can be avoided by representing its

effect with fixed communication delays. The impact of the extra traffic due to load

sharing activities is of interest but modelling the network at the required level to examine

it is too complex to incorporate into any useful simulation. The offered load is made up

of jobs originating at individual nodes. It is therefore more appropriate to consider it at a

lower level of abstraction as a component of the node object.

51

4.Discrete Event Simulation

The system's nodes can therefore become the basis of the model, they in turn can

be visualised as aggregated objects. The significant components are shown in Figure 4.3

Distributed
System

0
2+

Node

Load Sharing
Facility

Offered Load CPU Comms Handler

Figure 4.3 Component Analysis of an Aggregated Node.

Each component could be modelled as a separate object. However since the

functions they will perform are not going to be simulated in detail it was felt they could

be more simply implemented as methods of the node object.

Whilst the node object is the most important element of the simulation model,

some additional objects had to be defined to provide the added functionality required to

administer the simulation environment. The added features allow initialisation, data

collection and orderly shutdown of a simulation. A brief summary of the object types

used is given in Table 4.1.

The simulation program itself consists of a MAIN module, loadshare and a library

module, Hetrodelaylib. The latter is in two parts. Dhetrodelaylib is the DEFINITION

module of the library which contains all the type, variable and object definitions, with the

IMPLEMENTATION module, Ihetrodelaylib containing all the object implementation

details. All global variables are declared in the DEFINITION module as this makes them

available to the other two modules.

52

4.Discrete Event Simulation

Object Type

NodeObj

GenesisObj

StopAllObj

Functions performed

Generate local load, invoke load sharing algorithms, transfer jobs,
execute jobs, compile local statistics, remove local data structures.
Initialise system and individual nodes, activate individual nodes,
collate batch statistics, collate overall statistics at simulation end,
remove global data stuctures
Perform orderly shutdown of activities on individual nodes, stop
simulation.

Table 4.1 Summary of Object Functions

4.3.1 The MAIN Module : loadshare

Jain states that a discrete event simulation needs a component that co-ordinates

the routines constituting it [Jai91]. He even refers to it as the main program. This is the

role of the loadshare program. Figure 4.4 portrays the operation of the program via

pseudo code.

The initial purpose of the loadshare module is to allow all necessary variables,

types and objects to be imported, followed by the input of variable parameters, normally

via a batch file. Each set of parameter values is iterated over a number of repetitions.

Every repetition uses a different seed. The iterations are typically of duration 60,000

seconds, split into batches of 5,000seconds. Statistics are gathered after each batch and

at the end of each run.

At the end of each batch, the average response time for all jobs completed in that

batch is calculated. For this study average response time is the duration between the

point at which a job arrives in the system to it being executed and the result being

communicated to the original node. Batch statistics are used primarily in the verification

and validation of the simulation. A more comprehensive set of statistics is gathered at the

end of each full run. These include:

 Overall system average response time.

 Individual node average response time.

 Number of jobs originating at each node.

 Number and average length of jobs not eligible for transfer executed at origin.

 Number and average length of eligible jobs refused transfer and executed at origin.

 Number and average length of jobs transferred.

53

4.Discrete Event Simulation

START
Import global variables from Hetrodelaylib
Import modsim utilities from standard libraries
Set global constants
Input variable parameters (runtime, batchtime, probelimits, threshold, algorithm)

LOOP (system utilisation varies according to input parameter)
LOOP (Probelimit min to max)

LOOP (desired repetitions each with a different seed)
Calculate E(ta)
Create new instances of GenesisObj & StopAIIObj
Invoke initialisation and activation of nodes, passing necessary parameters to

instance of GenesisObj
Invoke instance of StopAIIObj to cease simulation after runtime
Invoke instance of GenesisObj to collect and output simulation statistics
Remove instances of GenesisObj & StopAIIObj

END LOOP
END LOOP

END LOOP
END

Figure 4.4 Mloadshare.mod (Pseudo code)

The three objects that comprise the simulation model are: GenesisObj, NodeObj

and StopAIIObj. These are the objects that loadshare co-ordinates. They will be

described in the following sections.

4.3.2 The GenesisObj Object

The GenesisObj object as its name suggests, creates the simulation system and

initialises activities at all the constituent nodes. To accomplish this it is passed details of

the system constitution and an initial seed by loadshare. As GenesisObj creates all the

nodes it makes an ideal candidate for collating performance statistics when the simulation

finishes. The system nodes form an array that is resident in its own address space. The

full structure of the GenesisObj, with methods and fields is shown in Figure 4.5.

InitialiseNodes handles the creation of all the nodes, performing a separate FOR

loop for each type of node to be implemented. Once a new node instance is created, the

node is assigned a processing power and ID. By using global array element numbers the

individual nodes can easily identify each other with the minimum simulation overhead.

After creating a random seed the method then initialises the various NodeObj methods

that will run continuously for the length of the simulation. The loop at the end of this

method and the Batchresults method were used in compiling the ensemble averages

needed for simulation output analysis. They have no effect upon the results gathered or

54

4.Discrete Event Simulation

operation of the simulation model. Neither passes any simulation time or affects any of

the statistical counters used in the compilation of run end results.

GenesisObj

OverallRT : SREAL
OverallBAT : SREAL
ASK MEHOD InitialiseNodes (IN defarray : HetroArray ;
IN seed : INTEGER)
ASK METHOD PerfStats () : REAL
ASK MEHOD ObjTerminate
ASK METHOD BatchresultsQ : REAL

2
RandomObi

ASK METHOD SetSeed (IN newseed : INTEGER)
ASK MEHOD InitialiseNodes (IN mean : REAL)

Figure 4.5 Full Structure of GenesisObj Object

The Perfstats method operates only after simulation activity has ceased, but it is

of considerable importance as it compiles the final simulation statistics. The overall

average response time for the system simulated is returned to the MAIN module. In its

calculation several other useful metrics, pertaining to each individual node, are arrived at.

These metrics are printed to stdout, which is then redirected to a file. All the metrics

calculated by this method were listed in the previous section.

Last of GenesisObj's methods is ObjTerminate. This method is a special feature

of MODSIM. If it exists it is called before an object instance is deallocated. Thus

allowing any 'cleanup' operations to be performed. In the case of GenesisObj this

method disposes of all components that will consume memory. This action is essential if

batches of simulation are performed, otherwise there is a danger of available memory

running short if it is not de-allocated as simulation runs finish.

55

4.Discrete Event Simulation

4.3.3 The NodeObj Object

Four areas of activity are needed in each node. These were identified in Figure

4.3. Three can be fully contained in single methods. However the constraints of object

oriented programming forced the communications facilities to be spread across several

methods. The association between the analysis results and methods used in the actual

model is as follows :

 Offered Load - GenerateJobs

 Load Sharing Facility - Process*

 CPU - Execute*

 Communications Handler Transmit

Receive

ReceiveJob

Process* and Execute* are starred to indicate that there is more than one version

of the relevant method available. Only one of which is used in any single simulation run.

The full structure of the NodeObj as illustrated in Figure 4.6, shows other

methods apart than those used to accomplish the four core tasks. These are used in

initialisation, and housekeeping. They have no effect upon the simulation whilst it is in

normal operation. A quick scan of the definition of a NodeObj seems to reveal a myriad

of fields, but in fact only three of them are truly fields/attributes in the object oriented

sense. Two of these, nodepower and JobQ.numberln, are the metrics communicated

between nodes in implementing the information policy of various load sharing

algorithms. The other, responseT, is the main performance metric returned to GenesisObj

to be used in compilation of overall system performance. Nodepower (REAL) and

JobQ.numberln (INTEGER), represent the processing power and current load of a node

respectively. Whereas responseT is a statistical monitor object (SREAL) which stores the

overall statistics on all jobs executed at the node.

56

4.Discrete Event Simulation

NodeObi
nodepower : REAL
responseT : SREAL
JobQ.numberln : INTEGER

ASK METHOD Objlnit;
TELL METHOD Generate Jobs(IN a : INTEGER);
TELL METHOD ProcessRandom;
TELL METHOD ProcessShortest;
TELL METHOD ProcessHETRO;
TELL METHOD ProcessHETQL;
TELL METHOD ProcessHQNIT;
ASK METHOD UpdateRT;
ASK METHOD ReceiveJob(IN job : JobType);
TELL METHOD Transmit(IN job : JobType);
TELL METHOD Receive;
TELL METHOD Executejob;
ASK METHOD AssignID(IN i : INTEGER; IN power : REAL);
ASK METHOD Removejobs;
ASK METHOD Obj Terminate;

1 1
RandomObj

ASK METHOD SetSeed(IN seed: INTEGER);
ASK METHOD Exponential(IN mean : REAL) : REAL;

QueueList

4
TriggerOb.i

ASK METHOD Receive;
ASK METHOD Fire;

4

numberln : INTEGER
ASK METHOD Add(IN job : JobType);
ASK METHOD First : JobType;
ASK METHOD Remove : JobType;

Figure 4.6 Full Structure of the NodeObj

Each NodeObj instance has four queue structures and associated TriggerObj's.

The queues are used to store jobs as they pass from one state to another between

generation and final execution. Their specific use is as follows:

 IpQ - used to queue jobs that are eligible for possible transfer.

 rxQ - used as a buffer for jobs that have been transferred from another node.

 jobQ - used to queue jobs that have been allocated for execution at a node.

 txQ - only used by ProcessRandom, as a buffer for jobs that are to be transferred.

The associated TriggerObj of the same name and suffix sig has its Release

method activated when a job is added to a queue.

57

4.Discrete Event Simulation

To aid the understanding of the main methods used in the NodeObj and to

complement the forthcoming description Figure 4.7 shows a schematic of their

interaction.

Transferred from
another node

I
rxQ

Generatejobs

Receive TransferPolicy

I

JobQ

Process*
Information &
Location Policy

Execute* LOCAL NODE

REMOTE NODE

To IpQ 4-

Transmit

Transfer to another

rxQ

Receive

T
TojobQ

Figure 4.7 Schematic of Method Interaction

4.3.4 NodeObj Method : Generatejobs

The main function of Generatejobs is to provide a stream of JobTypes,

representing the locally generated load. This method will continue for the length of the

simulation. The mean interarrival time is calculated from the required utilisation and the

power of the node. Actual interarrival times are assumed to be exponentially distributed.

Job service times are also assumed to be exponentially distributed. The initial mean

service time is the same for all nodes regardless of power. However actual service time

for a job may change if it transferred to another node for execution.

58

4.Discrete Event Simulation

As stated in chapter 3 this study will not investigate the possibility of using a

transfer limit of greater than one. Thus any jobs transferred must be executed at their

first destination node. With this in mind the transfer policy of the load sharing algorithm

is only applied as jobs are generated in the system. This saves simulation overhead in two

way, firstly transfer policy is performed in a minimum of instructions and secondly after

any transfer no overhead is incurred in checking whether transfer policy should be

applied again.

The load at a node is effectively the size of the ready to run queue (JobQ). This

queue also contains any currently executing job, which will not be removed until it's

execution has completed. A newly arrived job is considered eligible for transfer if

accepting it for execution would cause the current load to exceed a threshold level. The

value of the threshold will vary according to the algorithm in question. To curtail

unnecessary overhead the number in the JobQ is compared directly with the set threshold

and so the new job can be considered eligible for transfer if the threshold is merely

equalled. If this is the case the new job is added to the queue of jobs for which the

information and location policies of the load sharing algorithm will be performed. A

software interrupt in the form of a TriggerObj (Ipsig) Release method is used to signal

this fact to the relevant Process* method.

Should the job be accepted for processing at its initial point of entry to the system

it is added to the JobQ discussed earlier, but only after its true service time with relation

to the power of the node has been calculated and substituted for the original servicetime.

The Release method of another TriggerObj (sig) is used in alerting the Execute method

of the node that a new job has arrived in the JobQ.

4.3.5 NodeObj Methods : Process*

Originally the process methods were designed to fulfil the full load sharing

component of the model. But as was explained in the previous section the transfer policy

has been moved for the sake of economy. However the remainder of load sharing

activities are accomplished through these methods. There are five process methods as

each is the equivalent of a different algorithm. Algorithm and process method are linked

by the suffix to the process keyword, e.g., ProcessRandom implements the Random

algorithm. The actual method used is selected at the outset of the simulation. Only one

method is used for the whole of any run.

59

4.Discrete Event Simulation

All the different process methods have the same basic structure. An endless loop,

that is either executing load sharing policies or waiting for a TriggerObj (Ipsig) to

'Release', indicating that a new job eligible for possible transfer has arrived at the node.

Jobs eligible for transfer are taken from the IpQ on a FIFO basis and are processed

sequentially. If the queue was dispensed with and the Process methods called directly

from the GenerateJobs methods then concurrent execution of process methods could

arise. The result of which would be that the full delay due to load sharing would not be

accounted for.

The simplest of these methods is ProcessRandom. As no information policy is

used in a Random algorithm the only property required is the ability to select a node at

random. This is accomplished via a RandomObj (globalrandom) and provided the

randomly picked destination node is not the same as the sender the job is sent to it. The

transfer of the job starts with the transmit method described in the next section. The time

taken in randomly selecting a destination node is considered negligible. For this reason

no simulation time is passed in this method.

ProcessShortest involves many of the activities at the core of all the other

Process methods. Firstly a sequence of randomly generated possible destinations is

needed, the total number is dependent upon probe limit. To generate these a procedure

called UniqueRandom is used. All possible destinations are unique and stored in an array.

One is used in each repetition of a loop that carries out location policy. The maximum

number of repetitions is defined by the probe limit. The gathering of system information

imposes overhead on both nodes involved as well as the delay to the eligible job of RPC

activity. The effect of these overheads is to delay the execution of any jobs currently

executing on the respective systems. These delays are effected by interrupting the

ExecuteJobs method and causing the 'ON INTERRUPT' statements to be executed. If a

job is currently executing it is delayed by extending its servicetime.

Only the best results in the form of current lightest discovered load are stored

(minload), together with the node involved (mindest). Where lightest load is a

combination of load and nodepower as it is in all the heterogeneous algorithms this is

calculated as the information is gathered and stored in 'minload'. The Shortest algorithm

allows immediate transfer to any node that is discovered to be idle. So its Process

method checks at the end of each information policy loop to see if an idle node has been

60

4.Discrete Event Simulation

probed and transfers the job if this is the case. Should idle transfer not be allowed as with

HQNIT, all probing loops must be executed before a job could be transferred.

After probing has completed and assuming the job has not been transferred the

minload value is compared to a metric level. This may take the form of a fixed threshold

(Shortest, HETRO) or the length of local jobQ (HETQ, HQNIT). If minload is the lesser

of the two values the job is transferred to the destination stored in mindest. This will

involve the use of the communications methods. Otherwise it is added to the local jobQ

for local execution, a TriggerObj (sig) is used to signal the event.

4.3.6 NodeObj Methods To Achieve Inter-node Communication

Three methods are used in the process of transferring jobs between nodes :

Transmit, Receive and ReceiveJob. Transmit is only essential when simulating the

Random algorithm.

The ProcessRandom passes no simulation time and so if no mechanism were used

to queue jobs, they could be transmitted concurrently and the full cost of transmission

would not be effected. The Transmit method takes jobs from the transmit queue and

forwards them to the node specified in the jobs destination field. Delay to the nodes

involved is achieved in the same manner as when probing, by interrupting the ExecuteJob

method of the communicating nodes. Finally some time is passed in the method itself, the

delay to the queue of jobs waiting for transmission. For other Process methods there is

no possibility of jobs competing for transmission facilities as they are spaced far enough

apart by the execution of their Location policies. This means it is safe to place the code

contained in Transmit inside the Process method after dispensing with the procedures to

manipulate txQ.

ReceiveJob is used as a form of buffer to process incoming jobs, as they could

arrive from many different sources at the same time. ReceiveJobs puts them all in a

queue for Receive to actually execute the delay to the transmitted job. This mechanism

ensures that each job experiences the correct transmission delay.

4.3.7 NodeObj Methods : ExecuteJob*

The only function of the CPU in the simulation model is to execute the jobs

found in the jobQ. This is handled by the ExecuteJob* methods. Two ExecuteJob

methods were implemented to cover both of the general job scheduling strategies, run to

61

4.Discrete Event Simulation

completion and pre-emptive scheduling [Tan87]. Run to completion will be referred to as

sequential execution and is implemented by ExecuteJob. Pre-emptive scheduling is more

commonly known as multi-programmed operation and is implemented by

ExecuteJobMulti. The one prevalent in the workstation environment is

multiprogramming, in which various schemes for scheduling the workload have been

proposed [Bac86]. Even the most simple, round robin, involves a very high overhead

when attempting to simulate it. Round robin scheduling is used in ExecuteJobMulti. The

more sophisticated scheduling algorithms suggested by Bach and actually inplemented on

Sun workstations are based upon priority schemes. These are not viable to implement via

simulation due to their complexity.

The structure of the ExecuteJob method is a familiar one, an infinite loop

processing the contents of a queue or waiting for a signal that another job has arrived in

the queue. Processing a job merely involves executing a WAIT DURATION loop for the

time specified by a job's servicetime. Should the method be interrupted whilst in the

WAIT loop then the jobs unexpired servicetime is calculated and the loop started again.

Once a job's servicetime has expired statistics are updated and any memory allocated to

the job record is de-allocated. Contrasting with the operations involved in

ExecuteMultiJob shows why the latter has such high associated overhead. Using a

quantum of 100ms [Bac86] would involve a job of average servicetime looping through

one hundred times, before any consideration of possible interrupts.

This high overhead begs the question of whether the simulation of

multiprogrammed scheduling is necessary for the purposes of this investigation.

Kleinrock [Kle76] shows that although multiprogrammed scheduling gives fairer

treatment to individual jobs no advantage is gained in overall average response time.

Table 4.2 shows a comparison of results from simulations using both ExecuteJob and

ExecuteJobMulti methods. The systems investigated are homogeneous in nature, and the

SHORTEST algorithm is used.

Average Response Time

Utilisation & Threshold
70%, TH1
90%, TH2

ExecuteJob
14.55
23.81

ExecuteJobMulti
13.96
23.45

Table 4.2 Run to Completion and Pre-emptive Scheduling Response Times.

62

4.Discrete Event Simulation

The question of whether average queue size is affected by the scheduling method

is addressed by Little's result, in which it is seen that queue size is related solely to

average arrival rate and response time.

All simulations using the ExecuteJobMulti method took at least ten times as long

as their sequentially scheduled counterparts. As no significant difference was observed

between the two, the quicker version (ExecuteJob) was used in the simulations, for

which results are presented in Chapter 6.

4.3.8 StopAllObj

The third and last object constructed and used in the simulation model is the

StopAllObj. Not unsurprisingly this object is called to stop the active part of the model

when simulation time has expired. This is achieved through the use of StopAllObj's only

method, Finish. To allow the orderly disposal of the memory allocated for each NodeObj

some administration must be performed before the StopSimulation command is issued.

This involves forcing some of the methods in continuous loops to exit them, thereby

guaranteeing that all the TriggerObj's used can be disposed of.

4.4 Validation and Verification of the Simulation Model

One of the most vital processes involved in the development of any model is to

ensure that it is a significantly accurate representation of the system it represents. For

only when this has been shown can the results provided by the model be held considered

credible. Verification and validation are the means by which a satisfactory level of

credibility can be established.

4.4.1 Verification

The verification of a model is the process of checking that the model has been

built right [Ban96]. From the design stage a conceptual model of the system will have

been developed. The design of this conceptual model and any assumption made must be

reflected in the final implementation. The validity of any assumptions made is not

questioned in the verification process, but left to validation.

Verification can also be thought of as debugging [Jai91]. This idea is particularly

relevant to the simulation model described in this chapter as various software engineering

debugging techniques were used in the verification process. The methods used and the

63

4.Discrete Event Simulation

subsequent results are detailed below. The combination of the results gained led to the

conclusion that the model was suitably verified.

 A flow diagram was drawn, Figure 4.7. This showed each logical stage in the

operation of the system model after initialisation. The methods of the NodeObj object

were then constructed to fulfil the operations outlined in the diagram

 The code was at all times well commented enabling others who were not involved in

its construction to be able to check its logical flow and ability to perform the functions

desired. This method of verification was enhanced by the assistance of experts in the

area of computer simulation and distributed systems who read through the code

during model development. Their questions would often reveal any discrepancies

between the conceptual model and that implemented.

 Simplified runs of the model were performed, allowing implementation details to be

checked on a step by step basis. Print statements made it possible to see the changes

that occurred to model variables with each occurrence of an event.

 A wide variety of input parameters were used to test the reasonableness of the model.

These included, runtime, interarrival time, job servicetime, power of nodes and

number of nodes. Small changes in input parameters had little effect on the end result,

whereas large changes did have a noticeable effect.

 During and at the conclusion of each simulation run a number of statistics were

gathered in addition to those of primary interest. These ancillary results were used to

assert the reasonableness of the model by checking for consistency across a set of

values, i.e. nodes of the same power.

 Each simulation run was executed a number of times with different seeds for any

random number generators, to ensure that the results were independent of the seed

used.

4.4.2 Validation

The validation of a model consists of comparing its behaviour to that of a real

system. The aim of which is to ensure that the model if structured correctly and based

upon valid assumptions should accurately represent the system it is modelling.

64

4.Discrete Event Simulation

A three step approach to validation was developed by Naylor and Finger

[Nay67]. This has been widely accepted as a suitable general technique, [Jai91, Ban96]

and is used in validating the load sharing model. The three steps involved are:

1. Build a model with high face validity.

2. Ensure all assumptions made are reasonable.

3. Validate input output transformations.

The first step can also be referred to as utilising expert intuition. For the model

should appear at face value to be reasonable to experts in the field in which it is to be

used. The same experts should also look at the model output and check for

reasonableness. During the development of the load sharing it was periodically examined

by people knowledgeable in both the fields of distributed systems and communications.

With the conclusion that the model appeared to be a accurate representation of the

subject system. A further check on face validity is to use sensitivity analysis. Where the

model should behave in the expected way if input values change. The impact of differing

input parameters was judged to follow the accepted norm in the cases where previous

experience could be called upon.

The assumptions made in the construction of a simulation model fall into two

general categories. Structural assumptions are those concerning simplifications or

abstractions of how the real system actually operates. An example in this study would be

the assumption that the time to execute an RFC could be fixed for all nodes. The

validation for these assumptions was contained in the arguments of Chapter 3 and design

analysis earlier in this chapter. The second category of model assumptions are those

about the data used, in both the constitution of the model and input parameters, i.e.,

number of nodes, initial loading, system utilisation and job servicetime. Validation of

data assumptions is difficult in the load sharing case as working implementations are rare.

So where possible earlier research in the field has been used in formulating parameters.

This is combined with using a wide set of input values and model scenarios to negate the

effect of any bias due to a lack of hard data.

The validation of input output transformations can be regarded as the truest test

of a model. For on completion it would prove that the model could provide accurate

predictions of the operation of the system it simulates. Ideally the conditions simulated

65

4.Discrete Event Simulation

will be readily encountered in the real world to provide results for comparison. If this is

not to be the case historical data sets can be used in the validation process. Unfortunately

these forms of direct validation are limited by a lack of load sharing implementations.

However some alternatives are available and these have been used in the validation

process.

Queuing theory can be used in determining response times for M/M/1 systems. A

close correlation was observed between these results and those derived from the model

with no load sharing implemented. As this was constant with a variety of input

parameters it could be used to validate some of the core model functions, such as load

generation and execution. Also available for comparison were the results in the literature.

In many homogeneous systems the results derived by other researchers had been

generally accepted as true. The model with a change of input parameters could duplicate

this earlier work. By reaching the same conclusions as in the reported work the load

sharing capabilities of the model were proved. To validate the heterogeneous aspects of

the model was more difficult, prompting the implementation described in the next

chapter. While the implementation itself is still a type of model the consistency of results,

provides validation of both approaches.

4.4.3 Calibration

When dealing with the verification and validation of a simulation model, the

subject would be incomplete if some attention were not paid to the process of arriving at

the general simulation parameters. Calibration as this process is known [Ban96] will run

in tandem with validation. Calibration involves refining a model's general simulation

parameters, with the aim that the model's results will reflect the steady state performance

of the system simulated. The parameters investigated in the calibration period were:

 Run length

 Initialisation period

 Number of repetitions

The first task in deciding upon the run length of a simulation is to determine the

form of the output data. There are two possible types, discrete and continuous time data

[Ban96]. The former occurs when output data comes in the form (Yl, Y2Yn,} an

66

4.Discrete Event Simulation

example of which would be the response time of jobs. Whereas the latter's output data

comes in the form {Y(t), 0 < t < TE } an example of which is average queue length for or

at a resource. The period of a simulation run in which discrete time data is collected

would normally be determined by a set number of intervals i.e., total number of jobs

processed in a system. Continuous time data is best collected over a set period of time.

Although the primary objective of the simulation model is to determine the

average job response time in systems the run lengths are determined by a fixed time

period. This is because is not practical to limit simulations to a set number of jobs.

Calculating when the finishing point occurred with many job generating sources would

involve considerable extra overhead. Instead the run length is determined by a set time

period. The time period is sufficiently long enough to ensure that the number of discrete

events between simulations varies by only a very small proportion.

For the purposes of determining a sufficient run length sample runs were analysed

using their ensemble averages. Ensemble averages are obtained by splitting each run into

a set of equal periods known as batches, after a number of replications the mean of each

batch is calculated, the result is the ensemble average for that batch. Each replication

uses a different seed so that each batch and associate ensemble average will be

independent. This negates the correlation between batches in the same run.

The ensemble averages were plotted against the upper and lower 95% confidence

levels. This enabled various factors to be investigated. Firstly no substantial initialisation

bias was observed. At batch intervals of 5000 seconds, even at low levels of system

utilisation steady state performance was soon reached. Therefore an initialisation period

of 5,000 seconds was considered adequate to bring the system to a steady state.

The number of repetitions used was five and this felt appropriate for all

subsequent runs. The total length of the run was guided by the recommendation that a

suitable number of batches was between 10 and 30 [Ban96]. The number selected was

12, giving a total simulation time of 60,000 seconds of which the first 5,000 were

disregarded. At low levels of system utilisation this run length would allow tens of

thousands of jobs to be processed in the standard system of 20 nodes.

67

5. Implementing the Load Sharing Scenario

5.1 Introduction

The implementation of a load sharing scenario was undertaken as a means of

validating and verifying the simulation studies performed. This is needed both for the

assumptions made in model construction and the results obtained. The design of the

implementation follows the general structure of the model described in Chapter 4.

However some deviation was unavoidable as a UNIX workstation is not as flexible as a

simulation language. Where this has taken place will be highlighted in the forthcoming

chapter.

The code used on all the workstations comprising the implemented system is

identical. The only aspect where a case for variation exists is in the power rating of each

machine, which varies according to individual processing power. However the

duplication of code could lead to the introduction of errors and so machine type is

determined at start-up and a hard coded value for power rating used according to the

result. Originally processing power is determined by executing the same simple loop on

each class of machine. After many thousands of iterations time is measured and the

power rating set accordingly. This value is used in the information policy of the load

sharing algorithms investigated as well as the generation of the offered load at each node.

The mean interarrival rate is inversely proportional to the power rating. As in the

simulation model this ensures that all machines have an equal original utilisation.

The system for which the implementation code is designed is a network of Sun

workstations. All of the workstations use the SunOS 5.x operating system [Sun92],

based on the System V Release 4 (SVR4) UNIX operating system. All the code used is

written in the 'C programming language [Ker84]. The code is non-obtrusive in

operation and as such requires no rebuilding of the kernel or other operations requiring

68

5. Implementing the Load Sharing Scenario

super-user permissions. A fully commented listing of all the code used is available in

Appendix 2.

This chapter will give an overview of the operation of, and interaction between,

the processes constituting the implementation. In particular attention will be focused on

areas that forced deviation from the simulation design or are integral to the operation of

the system.

5.2 Overview of Implementation Code

The implementation code is organised into seven distinct files. These take the

form of header file (hetro.h) and six separate programs. The header file contains all

constant declarations relating to the implementation, thereby allowing changes to be

made quickly and in a consistent manner. There are also a number of function definitions

contained in the header file.

All six of the programs listed below are used to generate a different process.

 generate] obs.c -^ generatejobs

• processjobs.c -^ processjobs

• execute] ob.c -^ execute job

• serveprobe.c -^ serveprobe

• remxclient.c -^ remxclient

• remxserver.c " remxserver

Where possible the process generated has the same name as its equivalent method

in the simulation model object, NodeObj. All inter-node communication is carried out

with the use of the Remote Procedure Call (RFC). This is the primary function of the

latter three programs.

The load sharing scenario is started by one process generatejobs, an instance of

which must be invoked on each of the workstations involved. This process will spawn

serveprobe and remxserver immediately and processjobs after a brief initialisation

sequence. The only purpose of generatejobs after its initial stages is to provide a stream

of "jobs", representing the offered workload to a node, for processjobs to deal with..

The processes serveprobe and remxserver are RFC servers, used to handle

incoming RPC's from prospective clients and will run continuously. Also running

continuously are the processes generatejobs and processjobs.

69

5. Implementing the Load Sharing Scenario

Client side

;generatejob I

sigusrl&2

job
details I Si8usrl

stats

;Disk

processjobs

exit
status

executejobs I

Probes

remote dot i
4————
sigalrm

job ts
_E!

remxclient
job, ts

exi 1

sta us

Server side

serveprobe

remxserver

exit statu
job ts

executejobs

Figure 5.1 Implementation Process Relationships

70

5. Implementing the Load Sharing Scenario

The hub of all activity is the processjobs process and the only process it does not

directly communicate with is remxserver. An illustration of the scope of its activities and

the relationship between all six process types is provided in Figure 5.1. This diagram also

shows the flow of information between processes situated both locally and remotely.

Each node will possess a server and client side. Processes that can exist in concurrent

instances are indicated by a multiple entity symbol.

As a fully commented listing of the implementation code is contained in Appendix

2 a line by line analysis of its composition will not be undertaken. Instead the operation

and functionality of each program will be outlined. This is achieved by a textual summary

followed by pseudo code version of the program concerned.

5.2.1 Generatejobs.c

The initial actions of this program, concerning the spawning of other processes,

were covered in the previous section. However they are not the only tasks performed

before the endless loop that deals solely with the generation of new work is entered.

Between the creation of the two RFC servers and the processjobs process, two essential

features are configured. A suitable seed must be derived and supplied to the random

number generating function, followed by the creation and attaching of a shared memory

segment. Shared memory segments need only be created once but must be individually

attached by any process wishing to use them. After processjobs has been spawned, the

program waits for a signal (SIGUSR2) that the new process is fully operating before

proceeding to the actual generation of workload. This level of co-ordination is necessary

to prevent the possibility of a signal being sent to a non-existent process and the

subsequent termination of the sending process. When dealing with multiple processes the

scheduling of execution is determined by the operating system and not the programmer.

The endless loop that generates workload, uses the same random number

generator for both interarrival times and service times of jobs. Job interarrival times are

based on the power of the node. Node power is determined from the node's machine

name as supplied by the uname system call. The details of jobs are stored in records

placed in the shared memory segment, where they can be retrieved by processjobs. Every

time a new record is stored a signal is sent to processjobs, which is identified by its

process identification number (pid), supplied to the parent (generatejobs] on creation of

its child (processjobs).

71

5. Implementing the Load Sharing Scenario

Two signal handlers are used in this process, to catch SIGUSR1 and SIGUSR2.
Without signal handlers to catch signals and perform their dedicated action the default

UNIX action will be carried out. In the case of most signals this is to terminate the
receiving process. The first handler catches a signal (SIGUSR1) from processjobs to

indicate that the load sharing scenario has reached the end of its run time. The actions

taken on reception are to write job generation statistics to a file before terminating the
generate jobs process. The second signal handler does not actually perform any new
tasks. It's sole purpose is to catch the signal (SIGUSR2) from processjobs. This
indicates that the process is successfully functioning and so it is safe for generatejobs to
continue.

START
Spawn and execute serveprobe - RPC server to answer incoming probes
Spawn and execute remxserver - RPC server to execute incoming jobs
Determine node type and assign node power
Initialise random number generators, ts and ta parameters
Generate unique seed
Initialise random number generator
Create, if not already in existence, and attach shared memory segment
Spawn and execute processjobs - The process that initially handles all
generated jobs
LOOP

generate interarrival time
sleep for interarrival time
assign job length and creation time
place job record in shared memory segment
send signal (SIGUSR1) to processjobs

END LOOP
END

Signal (sigusrl) - catch SIGUSR1 from processjobs, write stats and exit
Signal (sigusr2) - catch SIGUSR2 from processjobs

Figure 5.2 Generatejobs.c (Psuedo Code)

5.2.2 Processjobs.c

As with generatejobs the bulk of the activity carried out by processjobs takes
place in an endless loop. However some initialisation procedures must be carried before
the process reaches this stage. The majority are concerned with setting up a shared
memory segment through which job details are obtained from generatejobs. Others
include enabling an alarm to provide a means of periodic reporting and sending a signal
(SIGUSR2) to the parent process.

72

5. Implementing the Load Sharing Scenario

START
Initialise linked lists for job details
Initialise and attach shared memory segment with same id as that used by
generatejobs
Determine node type and assign node power
Set first report period
Send signal to wake-up generatejobs
LOOP

IF shared memory segment is empty
pause waiting for signal from generatejobs

ELSE
IF local load > threshold value

initiaite HQNIT load sharing policies via IsalgQ
END IF
IF suitable destination node is discovered

spawn and execute remxclient
ELSE

spawn and execute executejob
increment local load

END IF
store job details in link list

ENFIF
END LOOP

END
bignai (sigusri) eaten signal trom generatejobs indicating a new job nas oeen

generated.
Signal (sigcld) Catch death of child signal indicating a child process has

terminated. The process will be from executejob (locally executed
job) or remxclient (remotely executed job). Determine exit status of
child process, current time and ID. Store these details in a link list

Signal (sigalrm) Timer alarm, write report period stats to file and reset alarm for
another period. If run time has expired send signal to generatejobs
and write contents of link lists to permenant storage.

IsalgQ Randomly pick nodes for probing. Probe via RPC mechanism and
implement HQNIT location policy on results returned. Repeat until
probe limit is reached. Return result to main program indicating
whether a suitable node has been discovered.

Figure 5.3 Processjobs.c (Pseudo Code)

The main while loop functions in the same manner as the loops in the simulation

model object, NodeObj. If no jobs are present in the shared memory block the loop

pauses, waiting for a signal to indicate a new arrival. Continuous checking of a memory

location would incur substantial overhead and so is not practical. A form of software

interrupt must be used. Unlike the simulation model all three load sharing policies are

73

5. Implementing the Load Sharing Scenario

performed in processjobs. Although transfer policy could be integrated into generatejobs

no advantage is gained in terms of efficiency. In fact circumventing processjobs in any

way leads to problems in calculating final response times.

On the identification of an eligible job a function is called that performs both the

information and location policy. In the case of the code presented the HQNIT algorithm

is implemented. The load sharing function randomly picks nodes to which RPC's are

made. The results returned are used to select a destination node in the same manner as in

the simulation model. Control then returns to the main body of the program.

If a suitable node is selected a remxclient process is spawned. This process is

used to start execution of the job on the destination node selected. Should no suitable

node have been found or the job not have been deemed eligible for transfer, it is executed

locally. This requires the spawning of an executejob process. In this case the local load

must be incremented. Wherever the job is to be executed a record of its current state is

added to a link list. This list will contain records of all jobs originating at the respective

node in their pre-execution state.

Three signals are caught by this process. The first (SIGUSR1) used as an

interrupt to signal a newly generated job. The second (SIGCLD) is sent by any

terminating child process, in this case an instance of executejobs or remxclient, to its

parent. Upon receiving this signal the exit status, which indicates the execution history of

the terminating process, is determined. There are four possible exit modes:

• Successful local execution.

• Successful remote execution.

• Unsuccessful remote execution due to time-out.

• Unsuccessful remote execution as destination server unreachable

The exit status, completion time and id of the terminating process are stored in a

link list of job state records post-execution.

The final signal handler declared deals with incoming signals (SIGALRM)

indicating that a report period has expired. A brief summary of node status and history is

printed to a file. Information of this type is essential for program development and

validation. When the total running time has expired, a signal (SIGUSR1) is sent to

generatejobs and the contents of both link lists written to file.

74

5. Implementing the Load Sharing Scenario

5.2.3 Executejob.c

The only purpose of executejob is to provide a workload to the CPU of the

machine on which it executes. This is accomplished by executing a simple loop of

arithmetic operations. The number of repetitions of this loop is proportional to the

original length of the job to be executed. A new instance of executejobs is created for

each job allocated to the node for execution.

START
Attach and initialise shared memory segment with same id as generatejobs
Calculate number of loops in proportion to job size
REPEAT

perform simple arithmetic tasks
UNTIL repetitions completed
Decrement local load
Exit

END

Figure 5.4 Executejob.c (Pseudo Code)

The shared memory segment used for communicating job details between

generatejobs and processjobs is also used by executejob, but for a different purpose.

The record of local load is stored in this segment and must be accessed by executejob on

completion of the loop sequence. At this point the local load is decremented by one and

then the process terminates. Where the job originated is of no consequence and the exit

status is always the same. The possibility of a job failing to execute fully is not

considered as it is not considered a possibility in the simulation model.

Multiple instances of executejob may exist on the same node. Their sequence of

execution is controlled by the scheduling policies of the Solaris 2 operating system

[Sun90a]. These are multiprogrammed in nature.

5.2.4 ServeProbe.c

The philosophy of the RFC mechanism is based upon hiding the details of all

network code from the programmer with the use of stub procedures [Ste90, Blo92]. This

allows the actual server procedures to be written in the same manner as a local procedure

call.
The RFC code that services an incoming probe must connect to the same shared

memory segment used by the other procedures on the local node. In order to return the

75

5. Implementing the Load Sharing Scenario

correct load value. As server procedures should never exit unless explicitly killed, the

shared memory segment only need be attached on the first call. The power rating is

determined by the nodes machine name and this too need only be performed on the initial
call

A data structure is required to return the parameters as only a single pointer can

be passed back from the routine. No arguments are required by the remote procedure for

its operation but a dummy one is passed to satisfy the demands of the Sun RFC
implementation.

START
IF called for the first time

Attach and initialise shared memory segment with same id as generatejobs
Determine machine name and assign node power

END IF
Put nodepower and load into the data structure specified in RFC definition
Return data structure to calling RPC

END

Figure 5.5 Serveprobe.c (Pseudo Code)

5.2.5 Remxclientc

All of the actions performed by remxclient are concerned with starting an RPC to

execute a job remotely. If processjobs itself tried to directly start the remote procedure it

would pause to wait for the reply. Hardly ideal in a multiprogrammed environment

especially when it is the hub of so much activity. By spawning a remxclient process to

handle the remote execution it is free to continue and attend to other tasks. Multiple

occurrences of remxclient must be possible as at a busy node many jobs could be

executing remotely.

Another advantage of processjobs spawning a remxclient process is that the

SIGCLD signal can be used to interrupt processjobs on the completion of a job. This

allows the same signal handler to deal with all types of terminating jobs no matter where

they were executed. The exit status returned by remxclient has three possible values as

there are more possible outcomes with the complication of network communication.The

three possibilities are successful execution of the job, unsuccessful execution and

timeout. Although this feature may appear redundant with the comments presented in

section 5.3.4, it has been retained to make the implementation scenario more flexible.

76

5. Implementing the Load Sharing Scenario

START
Call remxserver procedure on remote machine
Pass servicetime of job to remote server
Exit with exitsatatus set according to result

END

Figure 5.6 Remxclient.c (Pseudo Code)

5.2.6 Remxserver.c

The second RFC server procedure remxserver, deals with calls from remxclient.

The only parameter passed is the servicetime of the job to be executed. Which is then

passed to the execute job process that is spawned. As the remote execution of a job will

add to the load of the remote node selected its load count must be incremented. This is

incorporated into the remxserver code. The actual incrementation takes place as soon as

possible so that any load sharing decisions made in the near future are as accurate as

possible. This can be before the job has started to be processed as no node is allowed to

reject a job and in all the algorithms evaluated the transfer limit is one.

START
IF called for first time

Attach and initialise shared memoty segment with same id as generatejobs
END IF
Increment local load
Spawn executejobs
Wait for executejobs to finish
Return control back to calling remxclient process

END

Figure 5.7 Remxserver.c (Pseudo Code)

Unlike the serveprobe process which is iterative in nature the remxserver must

behave as a concurrent server. This is due to the far greater time remxserver takes to

service requests. Without concurrency requests from calling procedures may be queued

and so full multiprogrammed operation not achieved and more crucially the true load of a

node will not be reflected in its load count. Enabling the server to execute in a

concurrent fashion involved manipulation of the server stub code. The details are

described in the later section on implementation specific RFC features.

77

5. Implementing the Load Sharing Scenario

5.3 Crucial Elements of the Implementation Code

5.3.1 Random Number Generation

In order for the results of the load sharing implementation to be of use in

validating simulation results the offered load to each node must have exponentially

distributed interarrival and service time distributions. An added complication in the code

concerned is that it will run on many separate entities that will all need different streams

of random numbers. In the simulation model this was not a problem as MODSIM offered

a wide variety of statistical distributions for random number generation and as all nodes

could be easily manipulated different generation patterns could be set at each.

The C language offers a selection of functions that return random numbers but

none which can supply an exponentially distributed stream. The function used is

drand48(), which returns a random double precision number between 0 and 1. A seed

must be supplied to srand48(), which is used to provide an initialisation point for

drand48().If a seed is not supplied all the random number generation will start from the

default seed. As the numbers supplied are uniformly distributed between 0 and 1 the

Inverse Transformation Method [Leu87] is used to produce an exponentially distributed

stream for interarrival time and servicetime. The same random number generator is used

for both.

x = -A, * In [R]

Figure 5.8 Inverse Transformation Method (x is a random variable of exponential

distribution with mean X and R is a random number between 0 and 1)

The problem of unique streams of numbers can only be solved by supplying

unique seeds to srandQ. Initially the current time in seconds was used but this proved

unsatisfactory as it could give the same value for some nodes. One solution is to stagger

the starting time for each node but this would lead to a longer initialisation period. So the

time in seconds was combined with the ASCII value of the nodes network name,

ensuring a unique seed on every occasion.

78

5. Implementing the Load Sharing Scenario

5.3.2 Inter Process Communication

In any system where two or more processes interact with each other some form

of Inter Process Communication (IPC) must be established. This topic is the subject of

lengthy chapters in any volume on UNIX based operating systems [Bac86, Tan87,

Ste92]. Therefore only a brief note of the alternatives to the method used in the

implementation will be made.

Three forms of IPC are commonly used between processes on the same host,

collectively known as System V IPC [Bac86, Ste92].

1. Message queues - formatted message lists stored in the kernel.

2. Semaphores - used to share single resources between multiple processes.

3. Shared memory - a region of memory which multiple processes can access.

The method used in the implementation is shared memory as it is the fastest of

the three and minimising overhead is of prime importance. A process creates a shared

memory segment by using the shmgetQ system call, this will return a unique identifier. If

the segment already exists the identifier can still be retrieved by supplying different

permissions. Once this identifier is known the shared memory segment can be attached to

the processes address space. Once a shared memory segment is attached it is always

referenced by its starting address. Shared memory segments are inherited by children i.e.

after forkQ, but are not shared after an execQ. So although most of the processes used in

the implementation are initially created by a forkQ call from a process already attached to

the shared memory segment this connection is lost as they are the direct result of an

execQ system call. The forkQ call merely creates an identical copy of a process, while the

execQ replaces the copy with a new program from disk. Hence the initialisation and

attachment of the shared memory segment forms the start of many of the processes used

in the implementation, as they have lost any connection originally held.

The greatest use of the shared memory segment is made by generatejobs and

processjobs, in communicating the details of the offered load. Problems in synchronising

access to the shared memory segment are avoided by only allowing one process the

ability to update the contents. A signal is sent on completion of this task and only then

will details be read.

79

5. Implementing the Load Sharing Scenario

The other use of the shared memory segment is to store the local load state, for

which the first two bytes are used. This data is accessed by four of the six process types,

processsjobs, serveprobe, remxserver and executejob. Here it is impossible to

synchronise access without the use of a control mechanism. The simplest method of

control is record locking [Ste92]. A file is created, the first byte of which can be locked.

The byte can then act as a quasi semaphore by restricting access to the shared memory

segment to the process that locked it. An exclusive or shared lock can be used. The

choice depends upon whether the intended operation was a read or write. The lock must
be blocking in case the resource is in use.

This form of resource control was found to be very susceptible to the problem of

deadlock [Tan87]. Further observation showed that the slight inaccuracy in load which

resulted from uncontrolled access to the load value would only exist for a limited time

and the effect on the full scenario would be negligible. The added complication of

implementing a true semaphore scheme could not be justified and so access to the local
load was not constrained in any way.

5.3.3 The Process Lifecycle

The operation of the load sharing scenario calls for various processes to be

created, perform a function and then exit. For executejob, remxclient and remxserver

this process will happen thousands of times. To enable the performance of each node to

be calculated a reliable check must be kept on each job from its time of arrival in the

system to eventual execution and the notification of the result to the originating node.

This operation is performed by taking advantage of the manner a processes lifecycle is

handled in the UNIX operating system.

The only way to create a new process is through the use of the forkQ function.

Which creates an identical copy of the calling process. The only difference is that the call

returns 0 to the child and the pid of the child to the parent. This information is essential

in keeping track of the progress of the job. After a forkQ the parent process can wait for

the child to terminate or continue its own execution. Whichever course of action is

chosen the child will send a signal (SIGCLD) on its death. This must be caught by the

parent otherwise the child will become a zombie process.

To invoke another program once a child has been spawned the execQ function is

used. There are 6 different varieties of execQ [Ste92]. In the implementation execlpQ is

80

5. Implementing the Load Sharing Scenario

used, this expects a list of arguments. They will all be filenames the first being the

program to be invoked and other parameters passed to it. Using execlpO forces the

existing environment to be used. Calling an execQ function causes the calling process to

be replaced by the new program starting at its mainQ function.

write to file write to file

fork() &
execlpO

Executejob

Processjobs ,

Signal handler

exit status &
SIGCLD

return
control

exit status &
SIGCLD

fork() &
execlpO

Remxclient

exit status &
SIGCLD

send
RFC

Remxserver

execlpO

fork()

Remxserver

Executejob

J
Figure 5.9 The Process Lifecycle and it's use in Collecting Job Response Time

There are several ways in which a process may terminate. All in the

implementation code use the exitQ function, as it allows a termination status to be

returned. On termination a signal (SIGCLD) is sent to the parent and this is caught by

the signal handlers described in the earlier sections of this chapter.

81

5. Implementing the Load Sharing Scenario

Figure 5.9 shows the concepts mentioned above in the context of the load sharing

scenario and in particular the collating of job response time. All processes created after

initialisation of the implementation are a result of the action of processjobs. If a job is to

be executed locally a new process is forked and the executejob program started. When

the pid of the new process is returned to processjobs it is stored with all the job details in

memory. On completion executejobs will terminate and the SIGCLD signal will be

caught by processjobs. The signal handler that catches it will execute the waitQ function

to retrieve the pid of the completed job, which is stored with current time and exit status

in another construct in memory. After the run has finished, the starting and finishing

records for each job can be identified using the stored pid numbers and the response time

calculated. Calculating response time dynamically was found to produce an unacceptable

level of overhead, along with disasterous linked list problems if job execution time was

short.

Should a job be selected for transfer then remxclient is executed after the forking

of a new process. Several other processes are created but control will eventually return

to remxclient and it will then terminate, causing a signal (SIGCLD) to be sent back to

processjobs which is handled in the same way as if it had originated from executejob as

in the case of a locally executed job.

One minor problem can occur with this scheme, due to the fact that the operating

system used cannot support a signal queue of more than one. Should signals arrive from

several terminating processes within a short duration of each other some could be lost

and the relevant record not written to memory. Without both starting and finishing time

it is impossible to calculate response time and the job is effectively lost. Tests showed

that while this did occasionally happen less than 0.02% of signals were lost in this way, a

small enough fraction of the total load to be considered negligible.

5.3.4 Implementation Specific RFC Features

During the development of the RPC's used in the implementation three areas of

particular interest came to the fore. One concerning the actual construction of the RPC's

used and the other two their susequent use.

The idea of a concurrent server was first mentioned in section 5.2.7 on the

remxserver process. A normal RFC call will be iterative in nature, dealing with a request

from one client in full before processing the next request. This situation is illustrated by

82

5. Implementing the Load Sharing Scenario

Figure 5.10a. Client A is having its request serviced but Clients B & C must wait for the
server routine to finish Client A's request before one of them can have its request dealt
with.

Client C "*' Server"'"'""''

ICHentStub - , - , , I |ServerSttit)> - - -

Client B

ClientStub

Client A

- ClientStub

Figure 5.10a An Iterative Server Dealing with Multiple Requests

Client C

ClientStub ServerSJtub

Server Server
_Server

I
ServerStub

ierverStubr
JerverStub

Client B

ClientStub

Client A

ClientStub

Figure 5.10b A Concurrent Server Dealing With Multiple Requests

83

5. Implementing the Load Sharing Scenario

As remxserver may have to deal with requests taking some time to service, and

occurring simultaneously from many clients, it must act in a concurrent / multi tasking

manner. Otherwise not only will it not be acting in a multiprogrammed fashion but more

importantly the true load at a node can not be ascertained, as many jobs may be queuing

for service at a remote server. These jobs cannot be taken into account in any load

sharing policy and so will lead to the sub optimal operation of any algorithm used.

Simple forking of the remxserver process when it is called is not a possible

solution due to the nature of RPC's [Blo92]. RPC's have all networking details hidden

from the user in blocks of code known as stubs [Ste90] The stub receives the client

request as a network message, decodes the arguments from the network message and

invokes the server function. Without considering the relevant network communication

factors involved in an RFC no solution can be found. In the case of SUN RPC's this

code is generated from a simple interface declaration using the rpcgen compiler [Sun90].

The use of rpcgen considerably simplifies the task of RFC programming over writing all

the code by hand. However it is the server stub code that must be altered to achieve

concurrency.

The server stub code is altered after the point at which the RFC environment has

been established. Of particular note is that the parameters required for returning a reply

to the client must have been collected. Then just as the service routine is about to be

invoked an identical process is spawned which will invoke and execute the required

service. When finished the child will exitQ and return control to the calling client.

Meanwhile after a successful forkQ the parent will return to wait for more incoming

calls, never executing any services itself and so never reaching the exit statement. This

operation is illustrated in Figure 5.10b. The original serverstub has spawned three

children each of which has invoked the server routine with the parameters passed by the

respective client. These routines can now execute concurrently and the server is still

available for anymore incoming requests.

The second area of interest is in the transport protocol to be used. Sun RFC

allows UDP or TCP to be used, providing connectionless or connect oriented

communication [Hal92]. In early versions of the implementation RPC's used UDP as the

transport protocol. UDP is packet based and has a relatively short time-out which cannot

be changed, hence if the operation involved is time consuming i.e. remote execution then

84

5. Implementing the Load Sharing Scenario

the request will be resent. Once only execution is essential for load sharing activities to

be effective and could not be guaranteed. Therefore the TCP protocol was used as only

this protocol could ensure that the remote procedure was executed at most once.

Although TCP is slightly more expensive in terms of overhead than UDP, it is used for
probing as well for the sake of consistency.

The last concern also relates to the use of the TCP transport protocol. All

communications protocols have a time-out facility to prevent communication channels

hanging open on remote failure. The subject of interest in this context is the length of the

time-out. The default is 25 seconds and this could easily be reached when the system was

under heavy load. Various attempts were made to set the time-out based on a

combination of average service time and loading. These were thwarted by the large

degree of heterogeneity present in some of the systems investigated. Which led to some

huge differences in expected execution times. The only solution is to tailor time-outs to

individual RPC's. As this would mean setting constantly changing time-out levels it is not

a practical proposition.

However as the system appeared very robust and no jobs were failing either due

to network error or process failure at the executing node, it was decided to set the time

out to the length of the scenario run time, thereby ensuring that no jobs would be lost

due to the working of the transport protocol.

85

6. Experimental Results

6.1 Introduction

The results presented in this chapter are from two different sources, simulation

and implementation. All conclusions regarding the performance of the algorithms are

derived from the simulation results. The implementation studies were performed to

validate the simulation results and the assumptions made in constructing the simulation

model.

After the main aim of reducing system wide response times, the three most

important properties desirable in any load sharing algorithm are adaptability, scalability

and stability. All these properties are investigated, but to differing degrees depending on

the algorithm concerned. Investigations into an algorithm were halted once it proved to

have serious flaws or to be surpassed by another.

Al
A2
A3
A4
A5
A6
A7
A8
A9

A10

Power

0.350
0.417
0.500
0.667
0.830
1.167
1.330
1.500
1.583
1.650

Fraction
of total
power
0.21
0.25
0.30
0.40
0.50
0.70
0.80
0.90
0.95
0.99

Bl
B2
B3
B4
B5
B6
B7
B8
B9

BIO

Power

1.975
1.875
1.750
1.500
1.250
0.750
0.500
0.250
0.125
0.025

Fraction
of total
power
0.79
0.75
0.7
0.6
0.5
0.3
0.2
0.1

0.05
0.01

skew

0.206
0.149
0.094
0.028
0.004
-0.004
-0.028
-0.094
-0.149
-0.206

cv

0.634
0.510
0.375
0.167
0.042
0.042
0.167
0.375
0.510
0.634

Table 6.1 System Composition With Nodes Divided 12:8

86

6. Experimental Results

Initially all algorithms were evaluated under the same operating conditions across

the systems described in Table 6.1. After the elimination of unsuitable algorithms, the

remaining ones were subjected to further and more rigorous testing. In order to establish

the most practical algorithm over a wide range of conditions, through investigation of the

ability of each to be adaptable, scalable and stable was undertaken.

6.2 Comparison of Algorithms

6.2.1 Simulation Parameters

The full set of algorithms described in Chapter 3 were applied to all of the

heterogeneous systems outlined in Table 6.1. The simulation parameters used are shown

in Table 6.2. Any deviation from these parameters is due to the nature of the algorithm

concerned and attention is drawn to the fact in discussion of the results.

Parameter

Run Length

Initialisation Period

Repetitions

Threshold

Probe Limit

System Size

System Heterogeneity

System Utilisation

Average Job Size

Average Interarrival Time

Setting

60,000 seconds

5,000 seconds

5

Variable 1 : 3

Variable 1 : 10

20 nodes

Coefficient of Variance 0.042 : 0.634

Skewness -0.206 : 0.206

low (50%), medium (70%), High (90%)

10 seconds duration

Inversely proportional to power of node

Table 6.2 Simulation Parameters in Algorithm Comparison

6.2.2 Bounds on Performance

The no load sharing or M/M/1 scenario is considered as it provides a useful upper

bound on performance. The M/M/1 performance at any degree of system heterogeneity

will always be the same if the offered load at a node is proportional to the power of that

node. For example when considering system A1/B1 from Table 6.1 and assuming

87

6. Experimental Results

utilisation (p) is low (50%), average response time can be calculated as shown in Figure
6.1.

cT DT! — L\RT\ (XfisK
1-P 0.99 +

"(%.025)* 10 "
1-P 0.01

Figure 6.1 Average Response Time With No Load Sharing

The result, E[RT] = 12 + 8 = 20 is the same as that in a homogeneous system with the
same total processing power. Providing that interarrival time is proportional to power
and total system utilisation is the same.

g[= 20
1 - p

In order to give an lower bound to performance the IDEAL scenario is used.
This is based on simulation of an idealised load sharing scheme where complete
knowledge of queue length and job sizes at all nodes is assumed available. On arrival in
the system each job is sent to the node where it will be completed in the least possible
time. Once a job has been sent to a node it cannot be migrated. Transfer and information
costs are assumed to be zero. This is the same principle as M/M/K [Eag86a] and
NoCOST [Zho88] or LB2 [Mir89b], used as lower bounds in homogeneous and
heterogeneous systems respectively.

Load balancing line

0.2 0.4 0.6
Fraction of power

Figure 6.2a IDEAL Workload Allocation, Low System Utilisation

6. Experimental Results

Load balancing line

0.2 0.4 0.6

Fraction of power
0.8

Figure 6.2b IDEAL Workload Allocation, Medium System Utilisation

Load balancing line

0.2 0.4 0.6
Fraction of power

0.8

Figure 6.2c IDEAL Workload Allocation, High System Utilisation

The performance of the IDEAL algorithm in terms of response time is considered

in unison with the performance of other algorithms later in this chapter. However it is

useful to view the workload allocation of the IDEAL algorithm, shown in Figures 6.2a -

6.2c. For clarity, only a selection of results are illustrated. The "Load balancing line"

indicates where the points should lie if system load were allocated proportionally to

power.
At low utilisations, the vast majority of work is carried out on the high power

nodes. Analysis of results shows weaker nodes are only used to execute jobs with short

service times. As system utilisation increases results begin to group closer to the load

89

6. Experimental Results

balancing line. This is because the powerful nodes are starting to work at almost full

capacity and so the less powerful ones must take a greater overall share of workload.

6.2.3 Algorithms Proposed Primarily for use in Homogeneous Systems

The RANDOM algorithm was introduced in Chapter 2. Earlier work described in

the literature and discussed there has shown it to be a simple but effective means of load

sharing in the homogeneous environment. In a heterogeneous system its inherent

simplicity could prove to be an advantage in terms of adaptability and scalability. For

example the problem of how much system information to gather as specified by size of
probe limit, can be dispensed with.

The RANDOM algorithm does have one variable parameter, which is the transfer

threshold. Results are presented for the three different values used, 1,2 and 3. As a high

transfer threshold effectively restricts load sharing 3 was considered a suitable maximum.

Figures 6.3a - 6.3c show the algorithms performance over the range of heterogeneous

systems described in Table 6.1. Predicted performance in a system with no load sharing

capability is indicated by the broken line. The heterogeneity of the systems is primarily

rated by degree of skewness.

When applied to a homogeneous system this algorithm shows consistent
improvement over the no load sharing situation. Whereas in the heterogeneous

environment improvement is limited to a small subset of the systems considered. As the

rate of system utilisation increases the sphere of effectiveness rapidly decreases, to the
point at which only when the underlying system is almost homogeneous can any benefit

be derived. For all the other systems considered the algorithm introduces a high level of

instability.
The algorithm is most effective when a high threshold is used, limiting the scope

for performance improvement to nodes that are heavily loaded. This indicates the lack of

sensitivity inherent in a random location policy. In negatively skewed systems the more

powerful nodes are in the majority and the opposite is true in positively skewed systems.

Performance in positively skewed systems is markedly better than their negatively

skewed counterparts. This is due to the smaller difference in processing power of the

nodes making up the positively skewed systems, which lessens the effect of flawed

location decisions, a consequence of the random location decisions made.

90

6. Experimental Results

CO

co

1
H

COa o
CO

&

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

Degree of System Heterogeneity (skewness)

0.2 0.25

Figure 6.3a RANDOM Algorithm Performance - Low System Utilisation

CO

GO

t/3Ho

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of System Heterogeneity (skewness)

Figure 6.3b RANDOM Algorithm Performance - Medium System Utilisation

^
co

6
C_<

P
O
PH

£

-0

••>/-*» 1 1

ism-
/

1 mJ mmmmmmmmmm

1]
50T

—————— I ——————— 1 ——————— 1 ——————— 1 ———— 9-n , , , .

*S

— •— TH1
mm TTTO— • — Iri/

-A-TH3

25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of System Heterogeneity (skewness)

Figure 6.3c RANDOM Algorithm Performance - High System Utilisation

91

6. Experimental Results

In conclusion the RANDOM algorithm is effectively redundant for application in
the heterogeneous environment. Any improvement gained is marginal and limited to a
small range of possible systems. A more sophisticated location policy is required to
provide a practical algorithm.

By implementing a probe based location policy the SHORTEST algorithm
introduces a new parameter, probe limit. The probe limit is the number of different nodes
in the system to be queried for information, that will be used by the location policy in
making a placement decision. To enable the performance at different probe limits to be
usefully portrayed only a sample of the results are shown. Results from both ends of the
heterogeneous spectrum (negative and positive skewness) are plotted together with an
almost homogeneous system. As varying the thresholds also effects performance the two
showing the best performance are plotted for each system. Three different levels of
system utilisation are considered, Figure 6.4a - 6.4c. The legend key shows the system
heterogeneity (skew) and threshold used for the respective plot.

20.00

•0.15 TH1

•-0.15 TH2

0.01 TH1

• 0.01 TH2

• 0.15 TH1

• 0.15 TH2

10.00 4
1 5 6

Probe Limit

Figure 6.4a SHORTEST Probe Limit Comparison - Low System Utilisation

92

6. Experimental Results

-0.15 TH1

-0.15 TH2

0.01 TH1

0.01 TH2

0.15 TH1

0.15 TH2

Figure 6.4b SHORTEST Probe Limit Comparison - Medium System Utilisation

55.00

15.00

•-0.15 TH2

•-0.15 TH3

0.01 TH2

0.01 TH3

0.15 TH2

0.15 TH3

Figure 6.4c SHORTEST Probe Limit Comparison - High System Utilisation

The optimum threshold varies with the level of system utilisation. A higher and

more restrictive threshold gives superior performance when a system is busier. Only at

very low probe limits is this behaviour not observed. As using such low levels of

information in location decisions is not practical, due to the poor response times, this fact

can be safely disregarded.
For all system utilisations response times continually decrease across the range of

heterogeneity up to a probe limit of 5, at which point further improvement is negligible.

Unnecessarily high probe limits could expose a vulnerability to upwards fluctuations in

communications cost. A probe limit of 5 is used in all further analysis of the algorithm.

93

6. Experimental Results

•Low Util Medium Util •High_Util

<B

H
£
II

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Degree of System Heterogeneity (skewness)

0.25

Figure 6.5 SHORTEST Algorithm Performance

Upper bound figures are not plotted on Figure 6.5 as the scale needed would be
impractical, but they are the same as shown by the broken line in figures 6.3a - 6.3c The

optimum performance is plotted at all three utilisations. So while the probe limit is
constant at 5, the threshold used varies from 1 (low, medium) to 2 (high) depending

upon the system utilisation. Performance across the full range of heterogeneity shows

that the algorithm can be applied with considerable success in comparison to the M/M/1

case.
Performance does degrade with greater degrees of heterogeneity. Although this

never reaches unacceptable levels, it does show the weakness of using only loading in
location policy when the power of the nodes involved is variable. The level of system

utilisation has no effect upon the relative performance at any degree of heterogeneity.

6.2.3 Algorithms Designed Specifically for Heterogeneous Systems

Three algorithms were suggested in Chapter 3, specifically designed for use with
heterogeneous systems. They are, HETRO, HETQL and HQNIT. Again the problem of

selecting the probe limit and threshold to be used arose. For this reason a selection of

results at different degrees of heterogeneity are used to show their effect on

performance.
The first results shown (Figure 6.6a - 6.6c) are of the HETRO algorithm. This

algorithm shows a sensitivity to threshold level and probe limit in the same fashion as the
SHORTEST algorithm from which it is derived. As is the case with the SHORTEST

94

6. Experimental Results

algorithm a probe limit of 5 seems most suitable across all evaluated situation. The ideal
thresholds are also of the same value.

18.00

10.00

•-0.15 TH1

•-0.15 TH2

0.01 TH1

• 0.01 TH2

• 0.15 TH1

• 0.15 TH2

Figure 6.6a HETRO Probe Limit Comparison - Low System Utilisation

22.00

18.00

i

8. 14.00 -

10.00
6 7 8 9 10

-0.15 TH1

-0.15 TH2

0.01 TH1

0.01 TH2

0.15 TH1

- 0.15 TH2

Figure 6.6b HETRO Probe Limit Comparison- Medium System Utilisation

•-0.15 TH1

•-0.15 TH2

• 0.01 TH1

• 0.01 TH2

• 0.15 TH1

• 0.15 TH2

18.00

Figure 6.6c HETRO Probe Limit Comparison - High System Utilisation

95

6. Experimental Results

HETRO gives a performance improvement when compared with the SHORTEST

algorithm over all degrees of heterogeneity and at all levels of system utilisation, (see
Figure 6.7) although the improvement offered is limited for systems with a low degree of
heterogeneity. The difference can be explained by the use of processor power in the
location policy, allowing the most suitable of equally loaded nodes to be selected when
they have unequal processing. Suitability in this case is determined as the one on which
the job would complete first, in all cases the most powerful. Not only is the job Likely to
be executed more quickly at the more powerful node, but as the results from the IDEAL
scenario show it appears better to load the powerful nodes. Stability is improved with
HETRO, variations in system performance are limited to within a narrow band at all
levels of heterogeneity sampled.

The superiority of the HETRO algorithm is intuitive as it collects and uses more
information in its operation. Simulation has shown that it can out-perform the
SHORTEST algorithm under a wide variety of conditions. For this reason the
SHORTEST algorithm will no longer figure in this study of load sharing algorithms.

•SHORTESTJow

-HETROJow

•SHORTEST_med

•HETRO_med

SHORT EST.high

•HETRO_high

CD

I

a
o

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of System Heterogeneity (skewness)

Figure 6.7, HETRO v SHORTEST Algorithm Performance

The problem of varying threshold does not occur with the HETQL algorithm. In
all circumstances a threshold of one gives the best results. Rather than show performance

96

6. Experimental Results

examples at all three levels of system utilisation considered, only the results at the highest
are illustrated, see Figure 6.8. For at this level of utilisation more than any other a high
threshold has proved most effective. The concept of location threshold is now defunct
having been replaced by the job queue length of the busy node. Transfer policy is now
the only threshold based concept. An ideal value of one equates with the idea that
allowing any jobs arriving at a busy node to be eligible for transfer is the best policy.

Although the ideal probe limit appears to vary slightly with system heterogeneity
the difference is not dramatic. A limit of five is used as a compromise candidate to cover
all situations.

16.00
456

Probe Limit

10

•0.15 TH1

•-0.15 TH2

0.01 TH1

• 0.01 TH2

• 0.15 TH1

• 0.15 TH2

Figure 6.8 HETQL Probe Limit Comparison - High System Utilisation

3
0)

<D
6
H

I
I

-0.25

•Low_Util Medium_Util High_Util

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

Degree of System Heterogeneity (skewness)

0.25

Figure 6.9 HETQL Algorithm Performance

97

6. Experimental Results

The HQNIT algorithm is identical to HETQL in all respects bar one. The
difference is that HQNIT does not allow immediate idle transfer, continuing to probe up
to the set limit before making the location decision. As this is the single difference
between the two it is no surprise that the ideal transfer threshold to use is always 1.
Choice of probe limit is more clearly defined than in any of the other algorithms. Too
high a probe limit soon has a detrimental effect upon algorithm performance at high
system utilisation, as shown in Figure 6.10. This is due to the extra information cost
incurred by jobs that would in other algorithms be transferred to an idle node once
found. In a system not employing load sharing there would be few nodes if any which
were idle at such a high average utilisation as 90%. However the success of the load
sharing process ensures that there are. Once again a probe limit of five was selected as
the optimum. Figure 6.11 shows HQNIT performance at this probe limit over all three
levels of utilisation.

A small degree of instability is still evident at low and medium utilisations,
illustrated in Figure 6.9. This can be explained by considering the effect of immediate idle
transfer, the strategy that if an idle node is discovered whilst probing the eligible job is
immediately transferred to it. This action may prevent the discovery of a more suitable
destination for execution because the processing power of the idle destination node has
not been accounted for in the location decision.

<o

p

30.0

26.0

22.0

18.0

•-0.15 TH1

•-0.15 TH2

• 0.01 TH1

• 0.01 TH2

• 0.15 TH1

• 0.15 TH2

Figure 6.10 HQNIT Probe Limit Comparison - High System Utilisation

98

6. Experimental Results

Low_Util •Med Util High.Util

0>

H
8I

15.0 -

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

Degree of System Heterogeneity (skewness)

0.15 0.2 0.25

Figure 6.11 HQNIT Algorithm Performance

6.2.4 Comparison

The three algorithms specifically designed for heterogeneous systems are

compared in Figures 6.12a - 6.12c. The upper bound of M/M/1 performance is not

shown as it would disrupt the scale of the graphs. The lower bound is the performance of

the IDEAL algorithm. All of the results lie comfortably within the achievable range.

Results using the optimum threshold value are plotted, which in all circumstances is 1

with the exception of HETRO which uses a threshold of 2 at high system utilisation. A

probe limit of 5 has been used in all cases.

HETRO HETQL HQNIT IDEAL

o>

P
%
aa

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of System Heterogeneity (skewness)

Figure 6.12a Algorithm Comparison - Low System Utilisation

99

6. Experimental Results

HETRO •HETQL HQNIT IDEAL

0)

H
Sia

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Degree of System Heterogeneity (skewness)

0.25

Figure 6.12b Algorithm Comparison - Medium System Utilisation

HETRO •HETQL HQNIT •IDEAL

<u

P

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

Degree of System Heterogeneity (skewness)

0.15 0.25

Figure 6.12c Algorithm Comparison - High System Utilisation

When comparing the performance of HETRO and HETQL it is intuitive to

expect HETQL to achieve the lowest response times, for it has a more sophisticated

location policy which allows a node to account for its current load in the location

decision. This practice gives a two-fold benefit. Firstly the location decision will be based

upon an improved comparison as the state of the local node is more accurately

represented. Secondly the restrictive use of a set location threshold is made redundant.

At low and medium levels of utilisation there is little difference in the

performance of both these algorithms, but where there is it is in the favour of HETQL,

see Figures 6.12a & 6.12b.. Table 6.3 shows that each algorithm considers the same

proportion of jobs for transfer. However HETQL has a slightly better success rate in

100

6. Experimental Results

finding suitable destinations. The relative rate of success increases from low to medium

utilisation and this is echoed in a relative improvement in the performance of HETQL.

50%

70%

90%

Skew
-0.149

0.004

0.149

-0.149

0,004

0.149

-0,149

0.004

0.149

A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B

Executed
at origin

H J O

1 I 1
45 49 48

3 1 1
28 24 24
23 26 26
17 9 9
34 41 41
27 29 29

3 0 0
18 15 15
13 16 15
13 5 5
15 25 25

6 10 27
30 3
7 6 19
3 5 16
7 2 12
2. 7 20

Refused
Transfer

H J O

C/ uj uj
X PC "PC
10 5 7
000
000
222
000

10 2 2
21 18 25
00 0
1^ 2^ 2
6 5 8
5 0 1

18 8 11
37 32 34
00 0
6 7 2

1211 9
0 1 32

21 17 2

T ransferred

%

« & °
Z. : P Ha E S
X PC PC
40 41 40
244

22 26 26
25 22 22

8 16 16
31 32 32
47 48 41

2 5 5
31 33 33
31 29 27

7 20 19
42 42 39
52 53 34
252

37 37 29
35 34 25
18 22 12
52 51 23

Processed
at

H J O

CX LU UJ
PC 3C PC
97 91 93

3 9 7
45 48 48
55 52 52
17 32 32
83 68 68
96 94 94

4 6 6
47 51 50
53 49 50
16 29 28
84 71 72
97 94 94
366

48 50 49
52 50 51
20 25 25
80 75 75

Table 6.3 Transfer and Processing Statistics

At high utilisation the inflexibility of the HETRO algorithm is most apparent.

Using a threshold of 1 results in a large proportion of the workload going through the

full load sharing process, but to an unsuccessful conclusion, as the location threshold is

too low. A threshold of 2 (shown in Table 6.3) gives better performance but a

significantly large proportion, approximately three times the level when a threshold of 1

is used, of the total load is not considered suitable for load sharing as the transfer

threshold is too low. There is the possibility of refining the HETRO algorithm and letting

the two thresholds assume different values. While this may see an improvement in

performance there is no reason to believe it will better that of HETQL

One pitfall that the HETQL algorithm does suffer from is that some of its

location decisions are not made using all the knowledge available. When an idle node is

found transfer is immediate, with no regard given to whether the job will actually execute

101

6. Experimental Results

faster on the idle node. To address this problem the HQNIT algorithm was devised. All

location decisions made by this algorithm account for the relative power of the nodes

involved, even those involving an idle node. To accomplish this a notional extra job is

added to all probed loads to represent the transferred job. An extra job is also added to

the current load at the source node for purposes of the location decision. This has the

added advantage of making the comparison even more realistic as response time at each

node is calculated including the cost of the extra job.

In systems where utilisation is low the advantages of using the HQNIT algorithm

are clear. Even at very low degrees of heterogeneity an improvement over the other

algorithms can be seen. The difference in response times increases rapidly as the systems

considered become more heterogeneous. The simplest explanation for these performance

traits is that lowly utilised systems will have many idle nodes at any one time. Of these

many will be low powered nodes which could be probed by high powered ones with

excess load. Therefore the probability of a poor transfer decision due to immediate

transfer to an idle node is high. HQNIT by not allowing this operation will have a

performance advantage. An advantage that will increase with system heterogeneity as the

penalty for poor transfer decisions also rises.

At a medium level of utilisation the HQNIT algorithm still produces the best

performance but the margin of improvement over HETQL has reduced. This change can

be attributed to fewer nodes entering an idle state as utilisation has increased and so the

number of bad location decisions with idle transfer will fall. HETQL shows longer

response times at negative heterogeneity as the difference in power of nodes is greater,

hence the penalties for bad location decisions are greater. The opposite applies for

HQNIT and so its response times improve.

The performance comparison at high utilisation indicates that there may be other

factors attributing to algorithm performance other than accuracy of location decision and

transfer threshold. If these were the only factors the difference between HQNIT and

HETQL could reasonably be expected to decrease but not to change in the dramatic

fashion illustrated. The problem of idle node transfer will have decreased with the

increased utilisation of the system, reducing the differences in performance

characteristics of both algorithms. The relative performance of HQNIT deteriorates in all

circumstances except those of extreme negative skew.

102

6. Experimental Results

An extra cost is incurred when using the HQNIT algorithm as it must always

probe up to its probe limit, in the results presented in Figures 6.12a - 6.12c this was 5. At

high utilisation the total number of job transfers for both HQNIT and HETQL is the

same at approximately 50 %. If all of these were transfers to idle nodes, discovered in the

case of the HETQL algorithm with the first investigative probe, the extra overhead to the

HQNIT algorithm would be 4 probes per transferred job (120 ms to each probing node

and 40 ms to each probed node). This is a highly improbable scenario at such a high level

of utilisation but even so the total extra overhead would only be an average of 80

milliseconds per job. Less than 1% of average execution time. Therefore it seems

unlikely that this could be the sole cause of the observed changes in performance

An answer may lie in examining the final loading statistics when using the IDEAL

algorithm, Figures 6.2a - 6.2c. As this algorithm has no overhead and assumes each node

has perfect knowledge of the system state, it should distribute load in the optimum

fashion. At low utilisation the higher power nodes in each system are assigned a far

higher proportion of the overall load than their collective power and vice versa for the

low power nodes.

Increasing the system utilisation to a medium level sees the proportion of work

done by each group draw closer to the load balancing line. This is the notional point

where system load is balanced proportionally across all nodes. In a highly utilised system

the node groups draw still closer to the load balancing scenario. Whilst the IDEAL case

is unobtainable in current distributed systems the trend of approaching load balancing as

system utilisation increases may be applicable.

The final columns in Table 6.3 show the proportion of load executed at each

node group for a sample set of systems. At low utilisation HQNIT distributes the

majority of load to the high power nodes. A similar if slightly less prevalent pattern can

be observed at medium utilisation. In contrast the HETRO and HETQL algorithms

distribute load far more proportionally and in more heterogeneous systems even favour

the lower powered nodes. As discussed previously the HQNIT algorithm performs best

in both cases reinforcing the conclusions drawn from the IDEAL scenario. However at

higher system loading HETQL with its more 'balanced' loading patterns shows an

improvement in comparison to HQNIT. Even HETRO with its higher transfer threshold

vastly improves its relative performance.

103

6. Experimental Results

As the explanation for the improvement cannot lie in superior location decisions

another factor must exist. The implication of these results is that although the HQNIT

algorithm has in theory the best job distribution mechanism, as it uses all the information

available to establish the optimum site for execution, there is still a place for some semi-

random distribution of jobs, as accomplished by the idea of immediate idle transfer.

Semi-random in the sense that idle nodes must still be identified, but then can be

assigned jobs even if they do not appear to be the optimum execution site.

For an example of this concept consider the system with heterogeneity of -0.094

operating at high utilisation. Analysis of simulation results for HQNIT showed that no

jobs were ever transferred to the low power nodes. In addition almost half of their

original workload was transferred to the more powerful nodes. As a consequence of

which led to these nodes being severely under-utilised even though all transfers were

made on the basis of finding the shortest time to finish execution. At no individual point

did it seem sensible to transfer a job to a low powered node although the overall

response time would have benefited from it. however when the HETQL algorithm was

applied with its ability to transfer to idle regardless of other factors the low power nodes

were utilised at a higher rate and overall response time reduced.

6.3 Further Investigations Into The Behaviour of Algorithms

6.3.1 Adaptability, Scalability and Stability

For any load sharing algorithm to be judged acceptable for use in the distributed

systems environment it must be flexible enough to cope with the many varieties of system

possible. Three of the most important properties in which this flexibility should be

apparent are adaptability, scalability and stability. To establish whether these properties

were supported further investigations were carried out into the performance of both

HETQL and HQNIT algorithms.

Adaptability is the property of an algorithm to cope with the changes in the

structure and operational conditions of the system on which it is to operate. With regard

to heterogeneous environments the foremost of these is the degree of heterogeneity of

the system. A wide selection were investigated in the previous section but they were all

constructed from the same ratio of different nodes, i.e. 12 : 8. The effect of changing the

ratio to 18 : 2 was investigated in order to further extend the investigation into algorithm

104

6. Experimental Results

adaptability. Loading patterns can also vary from system to system, or even on the same

system with time, an algorithm's adaptability should be able to encompass these changes.

The 12:8 split system was used in this investigation but instead of using a proportional

loading scenario two new loading schemes were implemented. Algorithm's performance
under each was evaluated.

Scalability implies that an algorithms performance is independent of system size.

Larger systems based on the 12:8 split system were simulated to assess scalability. Of

concern was not only overall algorithm performance but also the affect of varying probe
limit with system size.

Stability is a general property of an algorithm that should be exhibited at all

times. In effect it is tested with any change in the system parameters. All of the

investigations in this section were performed at all three levels of utilisation (low,

medium and high).

6.3.2 18:2 Split Systems

Primarily for the assessment of algorithm adaptability another ratio of system

node groups was investigated. The main idea behind the change was to discover whether

the ratio of low to high power nodes affected relative algorithm performance, in addition

to the changes in heterogeneity that would be associated with the changing system

composition. The split selected was 18 : 2. A choice made to provide a sharp contrast to

the constitution of the 12:8 system, while not increasing overall system size. Changing

two variables would make any results difficult to relate to those previously collected All

the parameters described in Table 6.2 are still valid. The systems used are described in

Table 6.4.

Unfortunately a system make-up of this nature limits the scope of investigation

into negatively skewed systems. However the results that have been gathered show

enough to recognise important trends. All of the runs reported when using this system

split are from algorithms using a probe limit of 5. Simulations were run using a probe

limit that varied from 1 to 10 and as with 12:8 split systems the optimum was around 5.

In some cases a higher probe limit did achieve lower response times but never more than

5% less than when using 5 probes. Where the improvement did occur it was not across

the whole range of heterogeneity studied. The performance of each algorithm is

contrasted in Figure 6.13.

105

6. Experimental Results

Al
A2
A3
A4
A5
A6

Power

0.667
0.778

0.9
0.944
1.056

1.1

Fraction
of total
power
0.60
0.70
0.81
0.85
0.95
0.99

Bl
B2
B3
B4
B5
B6

Power

4.000
3.000
1.900
1.500
0.500
0.100

Fraction
of total
power
0.40
0.30
0.19
0.15
0.05
0.01

Skew

2.663
0.783
0.072
0.012
-0.072
-0.012

cv

0.999
0.442
0.09

0.028
0.028
0.09

Table 6.4 System composition With Nodes Split 18 : 2

• HETQLJow —»— HETQL.med —m— HETQL.high —•— HQNITJow —•— HQNIT.med —•— HQNlT_high

o>

a o o«
Cfl

16.0

-0.5 0.5 1 1.5 2

Degree of System Heterogeneity (skewness)

Figure 6.13 HETQL and HQNIT Performance in a 18 : 2 Split System

Examination of the workload allocation between slow and fast nodes revealed the
same trends indicated in Table 6.3.. At low utilisation HETQL assigned a greater
proportion of jobs, relative to total processing power, to the low power nodes, whilst
the opposite was true with HQNIT. This changed as utilisation rose until at high
utilisation HETQL assigned work in almost direct proportion to power, but HQNIT still
heavily favoured high power nodes. When performance is considered in the form of
response time it indicates that as in the investigation of 12:8 split systems these patterns
of load distribution make HQNIT the optimum algorithm at low to medium loading,
whereas HETQL would be preferred at high system utilisation.

106

6. Experimental Results

The consistency of results, reflected in performance trends and actual response
time figures extending over the full range of system heterogeneity indicate that both

algorithms can adapt to the changing structures observed. This fact shows the

adaptability of both algorithms evaluated. Comparison to the earlier performance on 12:8

systems extends the sphere of adaptability. Correlation of results over both system splits,

enforces the usefulness of system skew as a metric of heterogeneity. Finally algorithm

stability has again been demonstrated over different operating conditions as at no point
does behaviour become erratic or worse than the no load sharing case..

6.3.3 Varying the Offered Load

In the main study all of the nodes experienced the same original utilisation. This
was ensured by making the interarrival time of jobs inversely proportional to the power

of the nodes. However there is a possibility that load will not be so fairly distributed. A
user given the choice of two machines on which to execute a given workload could

reasonably be expected to choose the most powerful assuming everything else is equal.
To examine the algorithms performance under different loading conditions two scenarios
were developed. Both of these assume low power nodes are more likely to be lightly
utilised in comparison to overall system utilisation and high power nodes proportionally

more highly utilised.

In the first set of simulations 50% of the low powered nodes receive no load at
all and the remaining 50% a load proportional to their power. The shortfall in total

system load is divided between the high power nodes. A similar principle is used in the
second evaluation but in this case no load at all is offered to the low power nodes. A full

set of results for each loading pattern are presented in Figures 6.14a and 6.14b. In all

cases the probe limit used was 5.

When using either of the new loading strategies the relative performance of both

algorithms differs in comparison with that from earlier simulations when proportional

loading was used. At low and medium levels of utilisation any change is limited to

systems of a low degree of heterogeneity. In these systems the relative inequality of

loading between high and low power nodes is the greatest, and the difference in

processing power the smallest. Therefore any algorithm that transfers immediately on
finding an idle node will have a slight advantage. This reduction is due to the reduction in
location policy cost, obtained through the saving in number of probes that need be made,

107

6. Experimental Results

for in these circumstances an idle node will always be eventually selected even by an

algorithm that uses its full probe limit.

HETQLJow —«_ HETQL_med —•— HETQLJiigh —•— HQNITJow —•— HQNIT_med —•— HQNITJiigh

C/5

H

c

06

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of System Heterogeneity (skewness)

Figure 6.14a Half Low Power Nodes With No Offered Load

• HETQLJow — 11— HETQL_med — 1•— HETQLJiigi — <»— HQNITJow — 4>— HQNIT_med — «>— HQNITJiigfr

6
H

C/3

§

cd

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of SystemHeterogeneity (skewness)

Figure 6.14b All Low Power Nodes With No Offered Load

Detailed analysis of the simulation results reveals that the proportion of jobs for

which transfer is attempted has increased in the case of HQNIT and remained the same

108

6. Experimental Results

for HETQL. The percentage of attempts that are successful has increased for HETQL

and decreased for HQNIT, even so the HQNIT algorithm still maintains its performance

advantage in the majority of systems. This is due in part to the relative harshness of the

cost of a bad location decision affecting HETQL response times. The other advantage

gained by not transferring to idle nodes is that the number of jobs executed on high

power nodes increases. In the most negatively skewed systems all work is carried out on

these nodes, if no load is offered to the low power ones.

The increased loading of high power nodes does have significant effect upon

HQNIT performance at high utilisation, for at this point it is advantageous to share the

load proportionally. In some systems the load at any individual high power node never

reaches the size at which it seems practical to transfer a job to a slow node. As opposed

to HETQL which manages to share the load in all systems. In the scenario where low

power nodes receive no offered load, they will contribute nothing to the processing

performed in the system. Performance only improves at the point where the high power

nodes constitute a large enough proportion of total power to render the rest insignificant,

as is the case at extreme negative heterogeneity. This provides another example of how

the introduction of semi-random job location can provide the best form of load sharing.

With regard to stability, the performance of both algorithms holds up well at

lower utilisation. The cost of extra probes only having a marginal effect on HQNIT

performance. At higher levels HQNIT comes a distant second in respect to HETQL,

which maintains steady performance characteristics under all the loading patterns tested.

6.3.4 Larger 12:8 systems - Scalability

Two new sizes of system are used in evaluating the scalability of the algorithms,

40 and 80 nodes. Both systems have the same ratio of nodes groups as used in the

original simulations, 12:8. Evaluating the algorithms on systems larger than 80 nodes

imposes a heavy computational burden to no obvious advantage. Quadrupling the

original size should provide an adequate test for scalability. The results shown in Figures

6.15a and 6.15b are those obtained when using a probe limit of five. To allow direct

comparison with the performance of a 20 node system.

The performance of both algorithms in larger systems matches almost exactly

that over 20 nodes. Only one difference is noticeable, that at high utilisation there is a

universal improvement in performance, from 20 to 40 nodes, and between 40 and 80

109

6. Experimental Results

node systems. This may be attributable to the chance of an ideal location destination
increasing with the number of possible nodes.

-*— PL= -m— HETQL_med -•—HETQL.high -•— PL=5 -•— HQNIT.med -•— PL=5

H

c

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of SystemHeterogeneity (skewness)

Figure 15a 40 Node System [24:16], Algorithm Performance Comparison

• HETQLJow —•— HETQL_med —•— HETQL.high —•— HQNITJow —•— HQNIT_med —•— HQNITJiigh

C/3o

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of SystemHeterogeneity (skewness)

Figure 15b. 80 Node System [48:32], Algorithm Performance Comparison

Whether a larger probe limit would provide any benefit was another question raised by

the increase in system size. To answer it algorithm performance when using probe limits

110

6. Experimental Results

of 10, 15 and 20 were also investigated. At low and medium utilisation the variations in
information gathered made no significant difference to the performance of either
algorithm. However at high utilisation this was not true. Figures 6.16a - 6.16d illustrate
this fact and show the variation in behaviour between HETQL and HQNIT.

<uI<u

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of System Heterogeneity (skewness)

Figure 16a. HETQL 40 Node Probe Limit Comparison, High System Utilisation

.PL = .PL10 —A—PL15 —X—PL20

0.05 0.1 0.15 0.2 0.25-0.25 -0.2 -0.15 -0.1 -0.05 0

Degree of System Heterogeneity (skewness)

Figure 16b. HQNIT 40 Node Probe Limit Comparison, High System Utilisation

.PL = PL = 10 — * — PL = 15 — X — PL=20

I

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Degree of System Heterogeneity (skewness)

Figure 16c. HETQL 80 Node Probe Limit Comparison, High System Utilisation

111

6. Experimental Results

• P L = 5 • PL10 •PL15 • PL20

•0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

Degree of System Heterogeneity (skewness)

0.15 0.2 0.25

Figure 16d. HQNIT 80 Node Probe Limit Comparison, High System Utilisation

With its strategy of always employing the maximum number of probes available

the HQNIT algorithm finds the cost of a high probe limit uneconomical for example the

20 probe limit curves in Figures 16b and 16d. Whilst improvements are seen at some

degrees of heterogeneity by increasing the probe limit to 10 or 15, an optimum value

over the full range is still five.

The effect of increasing probe limit on the performance of HETQL is rather

different due to its capacity for immediate idle transfer. In both of the larger systems a

distinct improvement is made by doubling the probe limit from five. This improvement is

not seen in smaller 20 node systems where any improvement was negligible. An

inspection of the job transfer patterns show that between 5 and 10 probes the number of

successful load sharing transfers increases by approximately 15% in all systems. Using

better system information, as when 15 or 20 probes were used only improved this rate by

2% increments. Improvement is limited as location cost increases and low power nodes

are loaded beyond their optimum.
The difference between performance on the 40 and 80 node systems at high

probe limits shows the need for any idle transfer to be limited. In a 40 node system a

probe limit of 20 will mean there is a higher chance of locating and transferring to an

idle node than there is in the larger 80 node system. This will increase the load on the

low power nodes as they are more likely to be idle due to the load sharing process.

Although the difference between the load processed on low powered nodes on the two

systems is slight it is the low power nodes in the 40 node system that always experience

the greatest proportion. These results lead to the conclusion that too much system

information can be a disadvantage to the HETQL algorithm, as it will cause any idle

112

6. Experimental Results

node to always being selected. The result of this is an inefficient allocation of the system

load, again pointing to the value of semi-random allocation of load to idle nodes.

However the main conclusion that can be drawn from the evaluation of both

algorithms over larger systems is that they are indeed scalable. The quality of scalability

extends to the probe limit used by each. In that a probe limit of 5 can be used with all the

system sizes investigated and provide efficient load sharing.

6.3.5 The Effect of System Parameters on Load Sharing Performance

The comparison of the simulation results presented in this chapter has shown

that system parameters, as well as the type of load sharing algorithm used, influence the

final response times achieved. Therefore consideration of the relative effects of these

parameters is needed in order to complete discussion of the simulation results. Four

system parameters have the greatest potential effect on the observed performance:

probing, transfer cost, queue length and execution time.

In all circumstances probing is assumed to have a fixed delay as little information

is required to be retrieved by each probe However the number of probes as defined by

the probe limit used can have a significant effect. Given an average service time of 10

seconds a high probe limit has limited effect on performance for all algorithms. However

if average service time is reduced the relative cost of each probe will increase. This will

lead to a reduction in the comparative superiority of the performance of the HQNIT

algorithm, as this uses a more expensive location policy. Should the relative cost of

probing become comparable to the average service times of the jobs executed in the

system then load sharing itself would be redundant, as the RANDOM has been shown to

be ineffective in heterogeneous systems.

In the systems considered in this study, transfer cost is equivalent to that of one

probe. Therefore while the relative cost of probing is still acceptable transfer cost will

not hinder system performance. Should data used in the execution of a job be cached

locally transfer cost will have greater effect on performance. The higher the cost of

moving this data the less effective load sharing will be. This should not effect the relative

performance of HETQL or HQNIT as they both move the same proportion of jobs,

HETRO at high system utilisation moves less and so may become relatively more

effective.

113

6. Experimental Results

The size of job queues at nodes is an influential factor in observed performance.

Algorithms that can balance queue lengths in terms of execution time are the most

efficient, hence the superiority of HETQL and HQNIT. If load sharing is to be thought

of in any terms a balancing operation it is in the balancing of weighted queue lengths.

Lastly and in terms of this study the most important system parameter is relative

execution time of the jobs in the system. When the degree of heterogeneity is high and

there is a large difference between the execution times at each node an algorithm that

avoids transferring from high to low power nodes has a great advantage, i.e. HQNIT.

However as has been noted in the previous section HQNIT can suffer from not utilising

low power nodes to their full extent. This is shown in the response time peaks at

approximately -0.1 skewness. After this point the low power nodes constitute such a

small proportion of system load that their redundancy has a negligible effect.

6.4 Implementation Results

6.4.1 Practical Limitations and Parameters Used

Implementing a load sharing algorithm on a scale equivalent to the simulation

model was restricted by several practical limitations. The main one was that only facilities

already available at the University could be used and these would have to be solely

employed in the evaluation process to give any interpretable results. Fortunately there

was a group of machines all residing on one network and intended for undergraduate

use. They satisfied the dual requirements of being unused for long periods (at night) and

resident on a network with little other traffic. Two types of Sun workstation were

present on this network, 10 IPXs and 20 SparcSs. This set-up made available a 12:8

heterogeneous system on which to run the load sharing implementation. The

implementation design and all intended validation was based around this arrangement.

The processing power of each node type was determined by running a set

workload, the forerunner of the executejob.c script, on both nodes. The ratio of IPX

processing power to Sparc5 was found to be 1:3.45. To keep the relative node powers in

the same format as those used in the simulation model the actual values used were

adjusted to account for a notional machine of power 1, on which the loop in executejob.c

would run 60 times in 10 seconds. The adjusted powers were 0.405 for an IPX and

114

6. Experimental Results

1.395 for a SparcS giving a total processing power of 20. Skewness and coefficient of

variance for the implementation system are -0.047 and 0.236 respectively.

The periods during which the load sharing implementation could be run were

restricted to the time that the computing labs were closed. For six days of the week this

meant an upper limit of 12 hours. The exception, Sundays, allowed longer runs to be

carried out, but to be consistent and to perform the necessary analysis in a reasonable

time the run length was restricted to 40,000 seconds. Although this period is shorter than

the simulation runs and therefore not ideal the compromise is unavoidable.

System utilisation is varied across the same range as in the simulation model, low

medium and high. The probe limit is set at 5 for all experiments on the implementation

system.

6.4.2 Measurement Results For a Heterogeneous System

One of the intended aims of the load sharing implementation was to establish

whether the extra network traffic resulting from load sharing activities had any effect on

the performance of the underlying communications network. Should this be the case the

subsequent increase in communication latency would have a detrimental effect on

response time. This factor is not catered for in the simulation studies as it was considered

too complex a problem to model.

The network of Sun workstations identified in the previous section was an ideal

testbed for such a study. Unfortunately just as the load sharing implementation code had

been finished and tested the layout of the network in question was altered. This was the

result of a decision by the University authorities and not reversible. The changes involved

the IPX machines being replaced by more Sparc5s. After which the lower powered

workstations were sited on another nearby network from which access to the original

was possible via a single router.

The delay imposed by the router was measured using the ICMP protocol (ping)

and found to average 2 ms. While it could not be considered negligible the extra cost was

relatively small in comparison to the total cost of an RFC. Therefore the new

arrangement was still considered adequate for most investigations into the properties of

the load sharing implementation. Although the IPXs were only separated by one router

any effect due to traffic congestion would be considerably reduced, as the total traffic

115

6. Experimental Results

volume was diluted by spreading it across two networks. The problem of underlying

network performance is addressed later with the use of a homogeneous system.

With the implementation spread across the two adjacent networks it is still

possible to perform the other validation tasks intended, which are:

• Validate model design by demonstrating that load sharing process is a feasible

objective.

• Validate that all jobs are successfully executed.

• Validate that the delays used to represent RPCs are reasonable.

• Validate that the overhead in performing load sharing processing is negligible.

Rather than attempt to reach conclusions using the simulation results already

presented in this chapter, further results were obtained from the model using the exact

values for node power that occur in the implementation system. The make-up of the

implementation system is described in Table 6.5a. Simulation and implementation results

are presented in Tables 6.5b and 6.5c. The 95% confidence intervals are shown

alongside the respective response times.

The first conclusion that can be made from the results of the measurement study

is that it confirms load sharing is a viable prospect. All the response times gained are

significantly lower than their equivalent when load sharing was not enabled. In addition

the load sharing mechanism implemented was shown to be robust. No transferred job

failed to execute or return to the originating node. A count was made of all finishing jobs

with an exit status of 3 indicating a failure to terminate successfully. In all the

measurement runs undertaken it was zero. The successful completion of all jobs validates

the simulation assumption than none will be lost.

Tables 6.5b and 6.5c provide two distinct areas in which to compare both sets of

results and so to validate the simulation. These are workload distribution and overall

response time. The workload statistics indicate the behaviour of nodes whilst load

sharing. On the basis of the results presented it would seem fair to say that the simulation

is a fair representation of the real behaviour of the HQNIT algorithm. As the proportion

of total workload executed at origin, refused transfer therefore executed at origin and

transferred is almost the same at all utilisations. The final allocation of workload is

identical except at high utilisation where the difference is only 1%.

116

6. Experimental Results

A
Power
1.395

Fraction of total
power
0.84 B

Power
0.405

Fraction of total
power
0.16

Skew
-0.047

cv
0.236

Table 6.5a Implementation System Composition

Simulation
Utilisation

Low

Medium

High

Response Time

10.15 +/-0.06

12.18 +/-0.10

20.84 4/-0.58

A
B
A
B
A
B

Executed
at origin %

39
11
20
9
4
5

Refused
Transfer %

9
0

21
0
30
0

Transferred
%
36
5

43
7
50
11

Processed
at %

89
11
90
10
88
12

Table 6.5b Simulation Results

Implementation
Utilisation

Low

Medium

High

Response Time

10.28 47-0.14

12.79 47-0.21

22.05 47-0.61

A
B
A
B
A
B

Executed
at origin %

38
11
19
9
3
5

Refused
Transfer %

11
0

21
0
29
0

Transferred
%
35
5

44
7
52
11

Processed
at %

89
11
90
10
87
13

Table 6.5c Implementation Results

The second stage in the validation process involves comparing the response times

of the two experimental methods. At a low level of utilisation the results from both

simulation and measurement agree with 95% confidence. At higher levels of utilisation

this is not the case although agreement is close. The trend is for the implementation

results to be higher and this may be due to overhead not considered in the simulation

rather than any more serious flaw. The cost of negotiating the router would a add few

milliseconds to RFC cost in communication between low and high power nodes.

However a more weighty factor could be operational overhead at each node. This is the

system time used by each process during the implementation period.

Of the six processes three are solely used for RFC communication, remxclient,

remxserver and serverprobe. Their overhead is accounted for in the simulation as part of

the communication delays. Of the remaining three executejob overhead is accounted for

117

6. Experimental Results

m the total job execution time, leaving generatejobs and processjobs. Generatejobs

would not be necessary in a true system and so its overhead can be deducted from the

implementation results. Processjobs is of particular interest as any overhead due to load

sharing activity would be incurred by this process, as would the overhead of collecting
statistics and sending probes.

The system time used by processes of interest on a SparcS workstation during a

simulation run at high utilisation are shown in Table 6.6. The simulation run was

performed on a homogeneous system so that the number of probes sent and received at

each node were the same. The overheads calculated can be applied to any system.

Serveprobe is included to give a guide to the amount of time spent answering probes, as

this should be approximately the same as the time spent sending them, the proportion of

time spent by processjobs on this activity can be assessed. Once deducted from the total

time used by processjobs an estimate of the unaccounted overhead can be made.

Generatejobs also incurs an overhead but it is small enough to be ignored. The final

figure for unaccounted overhead is 13 ms per job.

These overheads will only apply to SparcS workstations. The IPX overheads

were found to be larger at approximately 31ms per job. This overhead unaccounted for

in the simulation model accounts for the discrepancy in the results between simulation

and implementation.

Process

generatejobs

processjobs (load sharing)

serveprobe

processjobs (no load sharing)

Total Time (sec)

1

117

70

18

Time per job (ms)

0.2

32

19

5

Table 6.6 Load Sharing Overheads

Of the total overhead figure some will be implementation oriented and not due to

load sharing activity. Running the implementation without allowing load sharing allowed

a figure for these activities to be derived. A final estimate of the overhead due to load

sharing activities on a SparcS is approximately 8 ms per job. The overhead due to load

sharing is too large to be considered negligible but does not represent a significant cost

118

6. Experimental Results

when compared to the average job used in the simulation studies. Even on an IPX the

overhead due to load sharing activities will be below 0.25% of total job time.

The implementation overhead helps to explain the difference between both sets of

results. With this in mind the assumptions on RFC costs are assumed to be valid, with

the provision that the underlying network is unaffected by the increased traffic.

6.4.3 Implementation Results From a Homogeneous System

While the intended aim of the implementation scheme was to validate the

simulation results of load sharing over heterogeneous systems, load sharing over a

homogeneous system was also examined. Although the results were used in the

assessment of overhead, the primary use was to determine the effect of the extra traffic

generated due to load sharing activity on the underlying communications network.

Performance when load sharing with a probe limit of 3 was compared to that when using

a probe limit of 10. The HQNIT algorithm was used as it generates the greatest volume

of traffic and was already implemented in the processjobs.c code.

The network of Sparc5 workstations were used for this study. Although only 20

out of a possible 30 were used the other 10 were idle overnight so it is unlikely that

significant other traffic would of been present on the segment. The execute'job. c code

adjusted so that a job of 10 seconds would actually run for that long, i.e. the work

performed was increased by a factor of 1.395. Using the IPX machines was not

considered as there were less than 20 available. Table 6.7 shows the response times using

different probe limits with 95% confidence intervals.

Model & Algorithm

Simulation model PL=3

Implementation, PL=3

Simulation Model, PL=10

Implementation, PL=10

LowJJtil

10.84 +/-0.05

10.67 +/- 0.03

10.41 +/-0.04

10.60 +/- 0.19

Medium_Util

12.94 +/- 0.06

12.81 +/-0.08

11.51 +/-0.06

12.36 +/-0.39

HighJUtil

20.53 +/-0.47

20.70 +/- 0.23

18.04 +/-0.52

20. 1 8 +/- 0.76

Table 6.7 Homogeneous System Simulation / Implementation Comparison

When using a probe limit of 3 the results both sets of results agree. The load

sharing overhead incurred in the implementation scenario is partially compensated for by

119

6. Experimental Results

the reduced RFC delay. All communicating nodes are Sparc5s and so the delay of 30ms

is rather generous. There is certainly no reason to suspect that any extra delay has been

imposed due to traffic congestion. This is not the case when a higher probe limit is used.

At high utilisation the overall response time for the implementation study is significantly

higher than it simulated counterpart. The difference between the two sets of results

decreases with system utilisation when there is a corresponding reduction in

communication rate. At low system utilisation both simulation and implementation

results agree again.

When system utilisation is high and a probe limit of 10 is used an average of 64

separate inter-node communications will occur every second. With the exponential

nature of job arrival this rate will be exceeded at times. Therefore it is not unfeasible to

surmise that the extra cost observed could be due to congestion on the underlying

network.

The idea of network congestion resulting in greater probe costs can be

considered with the use of a simple queued server model of the network. The network

costs of each probe depend upon the volume of data to be transmitted, communications

protocol used and speed of network. The RFC that forms the core of each probe consists

of four separate parts, the registration with the server and subsequent confirmation to

client followed by actual service call with reply. None of these operations requires the

transfer of significant quantities of data but the TCP protocol used is expensive, as it

provides a reliable method of communication, requiring the exchange of many packets of

data.

Assuming the following:
Average length of data packet = 100B (800 bits) Packets per TCP connection = 8

Packets per RPC = 8 x 4 = 32 Network Speed = 10 Mbits/s

RPC's per second = N * ta * Tr * P

(N = nodes, ta = job arrival rate, Tr = Fraction of jobs transferred, P= probelimit + 1)

120

6. Experimental Results

At high system utilisation and probe limit of 3

N/W utilisation(p)= T°tal- Traff^ = 800 - 32 - 20 - 0.09 * 4 6
Bandwidth 1Q 7

If Mean service Time = 1

Total delay = E(ts} =1016
1 - p

Queuing delay = 1.6% of servicetime

At high system utilisation and probe limit of 10

N/W utilisation^ T°tal- Traffic = 800*32*20*0.09*11
Bandwidth 107

If Mean service Time =: 1
jji/ ^ — \

Total delay = —5——- = 1.048
1 - p

Queuing delay = 4.8% of servicetime

Although the level of network utilisation is far higher when using 10 probes than

3 it will only account for an extra delay of 5% in comparison to the simulation

assumptions. The effect of collisions on the network medium will also add an extra cost,

but this cannot be reflected in a simple queuing model. With a small average packet size

the detrimental effect on CSMA/CD network performance due to collisions can be

considerable [Sta91]. Another factor, not related to network congestion, as to why the

implementation results when using 10 probes are higher than those reported by the

simulation, is the overhead in generating the random numbers used to decide probe

destination. Random number generation forms the bulk of all processing overhead due

to load sharing in the implementation and the effect upon average response time will

increase with probe limit.

The bulk of simulations used to investigate the algorithms use a probe limit of

five which even at high utilisation produce less traffic than the low utilisation 10 probe

121

6. Experimental Results

implementation. There was no evidence of traffic congestion affecting results in this

particular run. It is therefore reasonable to suppose all the 5 probe runs simulated would

be unaffected. With the spectre of traffic congestion removed the timings for RPC's can

be considered validated.

122

7. Closing Remarks

7.1 Summary of Algorithms Investigated

During the course of Chapter 6 a total of five algorithms were investigated:

RANDOM, SHORTEST, METRO, HETQL and HQNIT. The first two had been

suggested in earlier work on load sharing in homogeneous systems, with the remaining

three original to this study. Once it was apparent that the performance of any of the five

algorithms was easily surpassed by the others, the algorithm concerned was dropped and

further investigation concentrated on the remainder.

A brief summary of each, including if applicable, why it was considered

inappropriate for heterogeneous systems is given below as a prelude to the conclusions

drawn from this study.

The RANDOM algorithm uses the most basic of load sharing policies and as such

is the simplest in operation. When the load at any node breaches a pre-set threshold the

newly arrived job is transferred to a node selected at random. The performance of

RANDOM suffered greatly as system heterogeneity increased. Alternatively SHORTEST

with the use of an information policy, based location decisions on the load at potential

destinations in the system. The value of this facility was reflected in a vast improvement

over RANDOM at all levels of heterogeneity, combined with a satisfactory degree of

stability.
HETRO the first algorithm designed for heterogeneous systems operated in a

similar fashion to SHORTEST but used the processing power of potential destinations to

achieve a weighted load, used in the location policy. With the benefit of better system

knowledge HETRO gave lower response times especially at higher degrees of

heterogeneity. The reliance on simple fixed thresholds was removed with the

introduction of HETQL, which based location decisions on a comparison of destination

123

and local queue length, this gave a performance advantage in all the systems evaluated.

The last algorithm suggested was HQNIT, designed to stop the possibility of inefficient

transfer to idle nodes by basing all location decisions on a full comparison between

source and destination circumstances. HQNIT was the most successful in the majority of

conditions but not all, in some its performance was surpassed by HETQL.

7.2 Conclusions

The earlier chapters of this thesis have introduced the topic of load sharing in

heterogeneous systems. This mechanism for reducing system response time is controlled

through the use of an algorithm. Several, specifically designed for heterogeneous

environments have been suggested and their performance compared to a selection of

algorithms for homogeneous systems. Two methods have been used in the evaluation of

these algorithms, simulation and measurement via implementation. The majority of

conclusions on algorithm performance are drawn from the simulation model. Whilst the

implementation study was intended primarily for validation purposes it too has provided

ideas of interest.

In the first chapter three general aims were set as the goals for the work

described in later pages. This conclusion draws together the findings of both evaluation

models and shows how they satisfy the intended aims.

• Load sharing algorithms for homogeneous systems:

Two algorithms commonly used as benchmarks in studies on homogeneous

systems were investigated., RANDOM and SHORTEST. Evaluation showed that

random location policies have no place in load sharing algorithms for heterogeneous

systems. The advantages of simplicity and minimised overhead inherent in such

policies are far outweighed by the catastrophic results of transferring work to nodes

where execution will take far longer than at the original site. Only in systems

bordering on homogeneity is any advantage over the no load sharing case (upper

bound) observed.

124

7. Final Remarks

More success was achieved when the SHORTEST algorithm was employed.

Average response times well below the upper bound were achievable at all levels of

system utilisation in all the differing systems used. However at high utilisation

performance does degrade rapidly with degree of heterogeneity, prompting the design

of algorithms which could explcitly take into account the heterogeneity in system

nodes.

Evaluation of load sharing algorithms specifically designed for heterogeneous
systems:

Three algorithms were suggested in Chapter 3, HETRO, HETQL and HQNIT.

HETRO is based on the design of SHORTEST but uses the power of the nodes

probed in its location decisions. Simulation proved HETRO to be an improvement

upon SHORTEST in all the circumstances tested. It copes with differing degrees of

heterogeneity through a strategy of weighting the load at each node by relative

processing power. However the need for some form of adaptive threshold was still a

pitfall. Without that, prior knowledge of system utilisation was required for the

algorithm to operate at its optimum.

The HETQL algorithm solved the changing threshold problem by basing location

decisions upon local load and weighted remote load. The increase in accuracy of

location decisions when using a local load based policy enabled an optimum transfer

threshold of 1 to be used at all times. Whilst little difference was observed between

the performance of HETRO and HETQL at low and medium utilisation at high levels

the latter showed significant improvement across all degrees of heterogeneity.

HETQL allows immediate transfer to any idle node discovered whilst probing, a

potential weakness in heterogeneous systems. For this reason a refined version was

investigated. The HQNIT algorithm does not allow transfer without considering the

processing power of any potential destination node.

HQNIT uses a location policy that accounts for all the system information

available, in terms of load and power. The eligible job is sent for execution to the

node on which it will complete first. While HQNIT outperforms HETQL at low and

medium system utilisation it does not at higher levels. The exception occurs at

extreme negative degrees of heterogeneity. Discounting the cost of the more

125

7. Final Remarks

extensive HQNIT information policy another reason is needed to explain why an

algorithm that makes less informed decisions provides better performance.

The answer lay in examining the load distribution in the IDEAL scenario, the

lower bound for algorithm performance. In all circumstances the high power nodes

took were allocated proportionally greater percentage of the total workload, but as

utilisation increased this proportion decreased. Examination of the workload

allocation for each of the heterogeneous algorithms revealed that HQNIT favoured

the high power nodes at all times. Whereas HETQL and HETRO favoured low power

nodes at low and medium utilisation with a more balanced approach at high

utilisations. HETRO with its unsophisticated location policy cannot outperform

HQNIT but HETQL does, as its loading at high utilisation is closer to the optimum.

HQNIT does not take advantage of the latent processing power available in the low

power nodes and performance suffers accordingly. As HQNIT makes the best

location decisions possible with the data available there appears to be an advantage in

certain circumstances to invoking a form of random allocation.

The definitions of load balancing and load sharing common in homogeneous

systems are not applicable in heterogeneous systems. Investigation of an IDEAL

scenario over a range of systems, shows that the optimum solution is not achieved by

equalising load amongst the nodes. The workload of the more powerful nodes should

be far in excess of their proportion of processing power. When considering

heterogeneous systems it is not enough to base a load sharing strategy around

ensuring that no node is idle. However at high utilisation the use of immediate idle

transfer can offer advantages at some degrees of heterogeneity.

The optimum amount of system information required for all the algorithms

studied is approximately the same at 5 probes. Although the HETQL algorithm can

benefit slightly by using a higher probe limit the improvement is not universal. HQNIT

performance starts to degrade almost immediately at higher probe limits. System size

appears to have little bearing on the optimum probe limit. While HETQL can reduce

response times with higher probe limits the increase in information required is not

relative to the size of the system. The benefits that are gained must be weighed against

the difficulty of implementing an adaptive probe limit.

126

7. Final Remarks

Both the HETQL and HQNIT algorithms have been shown to be adaptable,

scalable and stable under a wide variety of changing conditions. Not all possible

circumstances have been considered but varying load distribution, system size and

degree of heterogeneity give a reasonable basis for this statement.

The main factors for differentiation between the two algorithms are system

utilisation and degree of heterogeneity. HQNIT is superior at low to medium levels of

system utilisation in the vast majority of systems investigated, especially those with a

high degree of heterogeneity. At high levels of utilisation HETQL enables lower

response times the exception being systems with a high negative skew.

Implement a load sharing scheme on a distributed system in order to validate

the simulation model and examine questions impractical to simulate:

A load sharing implementation was constructed and its performance measured

over a distributed system of 20 nodes. The HQNIT algorithm was found to operate

satisfactorily over the system available. There is no reason to suspect that the other

algorithms simulated would not also be viable.

Each node in the implementation used a multi-threaded operation to generate,

process and finally execute offered workload. The mechanism used was robust

enough to guarantee no jobs failed to execute or were lost due to inter-node

communication. Remote Procedure Calls were used to perform said communication.

The delays used in the simulation model were shown to be reasonably accurate.

The measurement results were in agreement with those derived from study using

the simulation model. Overhead incurred by the implementation in generation of

workload and processing performance statistics was found to be negligible in terms of

overall response time. The overhead of the load sharing process was assumed to be

negligible in the simulation model and measurement found it to constitute less than

0.1% of total response time in the cases observed.

Implementing a load sharing scenario enabled the result of the extra traffic

generated on the performance of the underlying communication network to be

observed. The results indicate that network performance is unaffected in all cases

when using a probe limit of 5 on a system of 20 nodes. However network

performance can be detrimentally effected if probe limit is much higher. The same

127

7. Final Remarks

result can be expected if system size increases and all the nodes are based on the same

LAN. Therefore in these circumstances it would be prudent to consider load sharing

performance as indicated by the simulation model as an optimum value.

7.3 Further Work

During the course of this work several avenues for further investigation have

suggested themselves, but have been left unexplored due to the limits of time and

available resources. Possible new areas have arisen in both the simulation and

implementation of load sharing algorithms.

The large number of variable parameters that have been noted when applying the

simulation model could all warrant further study. However the two that would appear to

be of most interest are system composition and average job size. All the systems

investigated to date have been comprised of two different types of node. Using a far

greater mix of node types would provide a further test of the algorithms proposed for

heterogeneous systems. This would be possible without changing the simulation model in

any way, with the exception of some variable parameters.

The implementation study indicated that the volume of load sharing traffic could

become a problem in a larger, single segment based system. Therefore it may be

beneficial to investigate the performance of an algorithm that transfers immediately on

finding a node that is more lightly loaded. This is the same principle as that used in

THRESHOLD [Eag86a, Zho87]. The idea was not pursued in this study as versions of

HQNIT or HETQL using this technique could produce a performance improvement over

the originals.However if the problem of network congestion does cause a significant

problem this would not be the case. Implicit in this idea is that a means of monitoring

network congestion could be built into the simulation model, which may prove to be a

challenge.
Having validated the delays used in the simulation model to represent the

overhead involved in the load sharing process, the model can now be used to determine

the effect of reducing average job size, in order to find the minimum job size at which

load sharing is still cost effective.
The increase in commercially available performance measurement software [

HP96a, BGS97] prompts possible changes in the programs written to control load

128

7. Final Remarks

sharing in the workstation environment. The means of calculating load, at present

somewhat artificial, could be replaced with the true CPU queue length. Other metrics

available via performance software would provide a clear picture of the state of each

node involved in any load sharing activity. Operating system metrics and network

performance data could be compared to investigate fully the effects of load sharing traffic

on network performance. Measurement of response times is also now available with the

Application Response Measurement initiative [HP96b].

Enterprise management products [CA96] have begun to consider the load sharing
problem. They claim success in distributing workload to the systems with most resource
available. If possible (guarded technology may be a problem) it would be interesting to
contrast the commercial approach and the one taken in this study.

129

Bibliography

[Ald92] Aldy.N, Nagi.M, Selim.S, "Performance Evaluation of Job Scheduling in

Heterogeneous Distributed Systems", Proc. European 1992.

[ARM96] Application Response Measurement API Guide, Hewlett-Packard

Company, 1996.

[Art89] Y.Artsy, R.Finkel, "Designing a Process Migration Facility - The

Charlotte Experience", Computer, Sept. 1989, pp 47-56.

[Bac86] Bach.M.J, "The Design of the UNIX Operating System", Prentice Hall,

1986.

[Bak92] Baker.D, Haddledon.R, Wika.K, "A Distributed Scheduling Simulation"

\Proc. 1st International Symposium on High Performance Distributed

Computing, 1992.

[Ban89] S.Banawan, J.Zahorjan, "Load sharing in Hierarchical Distributed

Systems", Proc. of the 1989 Winter Simulation Conference, pp 963-970.

[Bau89] K.Baumgartner, B.Wah, "GAMMON: A Load balancing Strategy for

Local Computer Systems with Multi-access Networks", IEEE

Transactions on Computers, Vol 38, No 8, 1989, pp 1088-1109.

[Ben94] K.Benmohammed-Mahieddine, P.Dew, "A Periodic Symmetrically-

Initiated Load Balancing Algorithm for Distributed Systems", Operating

Systems Review, 28(1), 1994, pp 66-77

[Ben95] K.Benmohammed-Mahieddine, P.Dew, "A Testbed for the study of Load

balancing Algorithms on Distributed Systems", Advances in Modelling &

Analysis, Vol. 24, No 1, 1995, pp 19-30.

[Ber93] G.Bernard, D.Steve, M.Simatic, "A Survey of Load Sharing in Networks

of Workstations", Distributed. System. Engineering, Vol. 1, 1993 , pp

75-86.

[BGS97] BEST/1 Performance Assurance for UNIX, BGS Systems, 1997.

130

[Bis95]

[Boo91]

[Blo92]

[CA96]

[CACa93]

[CACb93]

[CACc93]

[Cas87]

[Cas88]

[Cho79]

[Cou94]

[Dan95]

[Eag86a]

M.Bishop, M.Valence, L.Wisniewski, "Process Migration for

Heterogeneous Distributed Systems", Dartmouth College Technical

Report Series, PCS-TR95-264, 1995.

Booch.G, "Object Oriented design with Applications", The Benjamin

Cummings Publishing Corp, 1991.

Bloomer.J, Power Programming With RFC, O'Reilly & Associates Inc,

1992.

CA-UNICENTER TNG Product Description, Computer Associates, 1996.

MODSIM II User's Manual, CACI Products Company, 1993.

MODSIM II Tutorial, CACI Products Company, 1993.

MODSIM II Reference Manual, CACI Products Company, 1993

T.Casavant, J.Kuhl, "Analysis of Three Dynamic Distributed Load-

Balancing Strategies With Varying Global Information Requirements",

Proc. 7th International Conference on Distributed Computing Systems,

1987, pp 185-191.

T.Casavant, J.Kuhl, "A Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems", IEEE Transactions on Software

Engineering, Vol. 14, No 2, 1988, pp 141-154.

Y.Chow, W.Kohler, "Model for Dynamic Load balancing in a

Heterogeneous Multiple Processor System", IEEE Transactions on

Computing, Vol. C-28, No 5, 1979, pp 354-361.

G.Coulouris, J.Dollimore, T.Kindberg, Distributed Systems - Concepts

and Design, Addison Wesley 1994.

S.Dandamudi, "The Effect of Scheduling Discipline on Sender-Initiated

and Receiver-Initiated Adaptive Load Sharing in Homogeneous

Distributed Systems", Ottawa University Technical Report Series, No.

95-25 1995.
D.L.Eager, E.D.Lazowska, J.Zahorajan, "Adaptive Load Sharing in

Homogeneous Distributed Systems", IEEE Transactions on Software

Engineering, Vol. SE-12, No 5, 1986, pp 662-675.

131

Bibliography

[Eag86b]

[Eag88]

[Fer87]

[Gra92]

[Gra94]

[Hou94]

[HP96a]

[HP96b]

[IEEE90]

[Ker84]

[Kan92]

[Kim92a]

[Kim92b]

[Kle76]

D.L.Eager, E.D.Lazowska, J.Zahorajan, "A Comparison of Receiver-

Initiated and Sender-Initiated Adaptive Load Sharing", Performance
Evaluation, Vol. 6, 1986, pp 662-675.

D.L.Eager, E.D.Lazowska, J.Zahorajan, "The Limited Performance

Benefits of Migrating Active Processes for Load Sharing", Proc. ACM
Sigmetrics, 1988, pp 63-72.

D.Ferrari, S.Zhou, "An Empirical Investigation of Load Indices for Load

Balancing Applications", Proc. Performance 87 12th IFIP International
Conference on Computer performance, 1987, pp 515-528.

P.Gray, "Distributed Systems - A Business Strategy for the 1990s",
McGRAW-HILL Book Company Europe, 1992.

I.Graham, "Migrating to Object Technology", Addison-Wesley, 1994.

C.Hou, K.Shin, "Load Sharing with Consideration of Future task arrivals
in Heterogeneous Distributed Real-Time Systems", IEEE Transactions on
Computers, Vol. 43, No 9, 1994, pp 1076-1090.

MeasureWare Agent: Users Manual, Hewlett-Packard Company, 1996.

Application Response Measurement API Guide, Hewlett-Packard
Company, 1996.

"Information Technology-Portable Operating System Interface
(POSIX)", IEEE 1003, 1990.

B.Kernighan, D.Ritchie,"77ze C Programming Language", Prentice-Hall,

1984.

K.Kant, "An Introduction to Computer System Performance Evaluation",

McGRAW HILL International Editions, 1992.
C.Kim, H.Kameda, "An Algorithm for Optimal Static Load Balancing in

Distributed Computer Systems", IEEE Transactions on Computing, Vol.

41, No 3, 1992,381-388.
J.Kim, J.Liu, Y.Hao, "An All Sharing Load Balancing Protocol in

Distributed Systems on the CSMA/CD Local Area Network", Proc.

Distributed Computing Symposium, 1992, pp 82-89.
L.Kleinrock, "Queuing Systems: Volume 2, Computer Applications",

John Wiley & Sons, 1976.

132

Bibliography

[Kle85]

[Kre92]

[Kru87]

[Kru88]

[Kru94]

[Kun91]

[Leu87]

[Liv82]

[Mah93]

[Mir89a]

[Mir89b]

L.Kleinrock, "Distributed Systems", Communications of the ACM, Vol.

28, No 11, 1985, pp 1200-1213.

O.Kremien and J.Kramer, "Methodical Analysis of Adaptive Load Sharing

Algorithms", IEEE Transactions on Parallel and Distributed Systems,

Vol. 3, no 6, 1993, pp 747-760.

P.Krueger, M.Livny, "The Diverse Objectives of Distributed Scheduling

Policies", Proc. 7th International Conference on Distributed Computing

Systems, 1987, pp 242-249.

P.Krueger, M.Livny, "A Comparison of Pre-emptive and Non-preemptive

Load Distributing", Proc. of the 8th International Conference on

distributed Computing Systems, 1988, pp 123-130.

P.Krueger, N.Shivaratri, "Adaptive Location Policies for Global

Scheduling", IEEE Transactions on Software Engineering, Vol 20, No 6,

1994, pp 432-444.

T.Kunz, "The Influence of Different Workload Descriptions on a

Heuristic Load Balancing Scheme", IEEE Transactions on Software

Engineering, Vol. 17, No 7, 1991, pp 725-730.

C.Leung, "Quantitive Analysis of Computer Systems", Prentice Hall,

1987.

M.Livny, M.Melman, "Load Balancing in Homogeneous Broadcast

Systems", Proc. ACM Computer Network Performance Symposium, April

1982, pp 47-55.

A.Mahamuni, T.Gonsalves. B.Ramamurthi, "Efficient Load Information

Management for Load Sharing in Distributed Systems', Computer

Networks Architecture and Applications, C-13, 1993, pp 43-54.

R.Mirchandaney, D.Towsley and J.Stankovic, "Analysis of the Effects of

Delays on Load Sharing ", IEEE Transactions on Computers, Vol. 38,

No 11, 1989, pp 1513-1525.

R.Mirchandaney, D.Towsley and J.Stankovic, "Adaptive Load Sharing in

Heterogeneous Systems", IEEE Transactions on Computers, Vol. 38, No

11, 1989, pp 1513-1525.

133

Bibliography

[Muk91]

[Nay67]

[Phi90]

[Rom91]

[Rum91]

[Sar95]

[Shi92]

[Shi94]

[SPE96]

[Sri92]

[Sta91]

M.Mukta, M.Livny, "The Available Capacity of a Privately Owned
Workstation Environment", Performance Evaluation, Vol. 12, 7997, pp
269-284.

T.Naylor, J.Finger, "Verification of Computer Simulation Models",
Management Science, Vol. 2, pp B92-B101.

L.Ni, K.Abani, "Non-preemptive load balancing in a Class of Local area

Networks", Proc. IEEE Computer Networking Symposium, 1981, pp
113-118.

LPhip, "Dynamic Load balancing in Distributed Systems", Proc.
Southeastcon 1990, pp 304-307.

C.Rommel, "The Probability of Load balancing success in a

Homogeneous Network", IEEE Transactions on Soft\vare Engineering,
Vol. 17(9), 1991, pp 922-933.

J.Rumbaugh, M.Blatha, W.Premerlani, F.Eddy, W.Lorensen, "Object-

Oriented Modeling and Design", Prentice Hall International, 1991.

A.Sarraf, J.Senior, A.Wiseman, 'New Technique to Assess the

Asymmetry of the Traffic Load Offered to LAN's", Proc. Second
Communication Networks Symposium, 1995, pp 77-80.

N.Shivaratri, P.Krueger, M.Singhal, "Load Distributing for Locally

Distributed Systems", Computer, Dec. 1992, pp 33-44.

S.Shi, D.Lin, C.Wang, "Dynamic Load Sharing Services with OSF DCE",

First International Workshop on Services in Distributed and Networked

Environments, 1994, pp 178-186.

System Performance Evaluation Co-operative, http://www.specbench.org,

1996.
P.Srimani and R.Reddy, "Load Sharing in Soft Real-time Distributed

Systems", International Journal of Systems Science, Vol. 23(7), 1992,

1115-1130.
W.Stallings, "Data and Computer Communications", Maxwell Macmillan

International Editions, 1991.

134

Bibliography

[Sta84]

[Sta85]

[Sun90]

[Tan85]

[Tan85a]

[Tan87]

[Tan95]

[The89]

[Wan85]

[Wan94]

[W1195]

[YumSl]

J.Stankovic, "Simulations of Three Adaptive, Decentralised Controlled,

Job scheduling Algorithms", Computer Networks, Vol. 8, 1984, pp 199-

217.

J.Stankovic, " Stability and Distributed Scheduling Algorithms", IEEE

Transactions on Software Engineering, Vol. SE-11, No 10, 1985, pp

1141-1152.

Sun Education, "Priorities and Scheduling", Revision D.2, 1990, pp 536 -

553.

A.Tanenbaum, R.Van Renesse, "Distributed Operating Systems", ACM

Computing Surveys, Vol. 17, No 4, 1985, pp 421-470.

A.Tantawi, D.Towsley, "Optimal Static Load Balancing in Distributed

Computer System", Journal of the ACM, Vol. 32, No. 2, 1985, pp 445-

465.

A.Tanenbaum, "Operating Systems - Design and Implementation",

Prentice Hall International, 1987.

T.Tanenbaum, M.Litzkow, "The Condor Distributed Processing System",

Dr. Dobb's Journal, Feb. 1995, pp 40-48.

M.Theimer, K.Lantz, "Finding Idle Machines in a Workstation-Based

Distributed System", IEEE Transactions on Software Engineering, Vol.

SE-15, No 11, 1989, pp 1444-1457.

Y.Wang, R.Morris, "Load Sharing in Distributed Systems", IEEE

Transactions on Computers, Vol. 34(3), 1985, pp 204-217.

J.Wang, L.Tee, Y.Huang, "Load Balancing Policies in Heterogeneous

Distributed Systems", Proc. 26th Symposium on System Theory, 1994, pp

473-477.

C.Wills, D.Finkel, 'Scalable Approaches to Load Sharing in the Presence

of Multicasting', Computer Communications, Vol. 18 No. 9, 1995, pp

619-630.
T.Yum, "The Design and Analysis of a Semidynamic Deterministic

Routing Rule", IEEE Transactions on Communications, COM-29, No 4,

198 l,pp 498-504.

135

Bibliography

[Zho87] S.Zhou, D.Ferrari, "A Measurement Study of Load balancing

Performance", Proc. 7th International Conference on Distributed

Computing Systems, 1987, pp 490-497.

[Zho88] S.Zhou, "A Trace Driven Simulation Study of Dynamic Load Balancing",

IEEE Transactions on Software Engineering, Vol. 14(9), 1988, pp 1327-
1341.

[Zho93] S.Zhou, X.Zheng, J.Wang, P.Delisle, 'Utopia : a Load Sharing Facility for

Large, Heterogeneous Distributed Computer Systems', Software Practice

and Experience, 1993, Vol. 23(12), pp 1305-1336.

136

A1. Simulation Code

Appendix 1. Simulation Code

Al.l Definition Module
DEFINITION MODULE Hetrodelaylib; {Module in which all model definitions are made}

FROM RandMod IMPORT RandomObj, FetchSeed-
FROM ListMod IMPORT QueueList;
FROM SimMod IMPORT SimTime, StartSimulation, StopSimulation TriqqerObi-
FROM StatMod IMPORT RStatObj, IStatObj, SREAL;

CONST

{-...................„....„....„....„...„..„..„.„...„....„

TYPE
JobType = R ECO R D (structure used to represent a job}
origin : INTEGER;
arrivaltime : REAL;
servicetime : REAL;
transfertag : INTEGER;
destination : INTEGER;
END RECORD;

Hetrorecord = RECORD
numberofnodes : INTEGER;
powerofnodes: REAL;
END RECORD;

HetroArray = ARRAY INTEGER OF Hetrorecord;

ArrayType = ARRAY INTEGER OF INTEGER;

{...__.._.........-...----..-..----.--.-.-^
{genesis object used to initialise, start and collect final statistics from the simulation model}

GenesisObj = OBJECT

overalIRT, overallBAT: SREAL;
TELL METHOD lnitialiseNodes(IN defarray : HetroArray; IN seed : INTEGER; IN batchtime : REAL);
ASK METHOD ObjTerminate;
ASK METHOD PerfStatsQ : REAL;
ASK METHOD BatchresultsQ : REAL;

END OBJECT;
{.-.....„......-......-..---------------.---.
{node object used to perform all the actions required from a node}

NodeObj = OBJECT;

jobQ, txQ, rxQ.lpQ : QueueList; {queue of job types}
nodelD, probecount, successcount: INTEGER;
sig, tXsig, rXsig, Ipsig, batchsig : TriggerObj;
randomnodel : RandomObj;
nodeRT, responseT, jobLength, taTime, jobLengthRec, jobLengthRef, nodeBRT, batchRT : SREAL;
nodepower, lastTa: REAL;
currentjob: JobType;

ASK METHOD Objlnit;
TELL METHOD GenerateJobs(IN a : INTEGER);
TELL METHOD ProcessRandom;
TELL METHOD ProcessSHORTEST;
TELL METHOD ProcessHETRO;
TELL METHOD ProcessHETQL;
TELL METHOD ProcessHQNIT;
ASK METHOD UpdateRT(IN job : JobType);

A

A1. Simulation Code

ASK METHOD ReceiveJob(IN job : JobType);
TELL METHOD ExecuteJob;
TELL METHOD Transmit;
TELL METHOD Receive;
ASK METHOD AssignlD(IN i : INTEGER; IN power: REAL);
ASK METHOD RemoveJobs;
ASK METHOD ObjTerminate;

END OBJECT;
{................„.......„„..„...
{object to cease simulation}
StopAIIObj = OBJECT

TELL METHOD Finish;

END OBJECT;
{.................„....„.„..„....

{procedure used by load sharing algorithm methods to select nodes for probing}

PROCEDURE UniqueRandom(IN Probelimit: INTEGER; IN nodelD : INTEGER;INOUT numarr: ArrayType);

{procedure used during initialisation to select load sharing algorithm to use}

PROCEDURE PickAlgorithm(IN ID : INTEGER);

{.-----....----...„--_„......_..._.„._„„__
{Global variables }
VAR

AvInterArrivalTime, AvServiceTime, TDelay, probingDelay,
probedDelay, minSize, batchtime : REAL;
test: BOOLEAN;
global random, random 1 : RandomObj;
nodearray : ARRAY INTEGER OF NodeObj;
ProbeLimit, NofN, NofDN, Threshold, TransferLimit,
Algorithm : INTEGER;

END MODULE.

A 1.2. Implementation Module

IMPLEMENTATION MODULE Hetrodelaylib;

FROM RandMod IMPORT RandomObj, FetchSeed;
FROM ListMod IMPORT QueueList;
FROM SimMod IMPORT SimTime, StartSimulation, StopSimulation, TriggerObj, Interrupt;

FROM StatMod IMPORT RStatObj, SREAL, SINTEGER;

{Creates new random number generator with seed passed down. Creates array of nodes the size of the desired system

and then creates the actual nodes themselves. A node needs an ID and to be given a power rating. The random number

generator is used to derive a seed for each node which is used in its Generatejob method. Other methods to run constantly

are started as well The Process procedure selects and starts the desired algorithm type. The loop at the end of this

method is used for collecting the batch results needed in determining initialisation period and run length.}

OBJECT GenesisObj;

{method that performas initialisation of all nodes in the system}
TELL METHOD lnitialiseNodes(IN defarray : HetroArray; IN seed : INTEGER; IN batchtime : REAL);

VAR
node : NodeObj;
i, genSeed, j, offset, ID, loopct : INTEGER;
power, BRT : REAL;

BEGIN
NEW (random!);
NEW (globalrandom);
ASK random 1 TO SetSeed(seed);
offset := 0;
loopct := 1 ;
NEW(nodearray, L.NofN);

B

Al. Simulation Code

FOR i:_i TO NofDN {for each group of different powered nodes}
FOR j:=i TO defarray[i].numberofnodes {for each node in a group}

power := defarray[i].powerofnodes; {initialise node values}
ID :=j+offset;
NEW(node);
nodearray[ID] := node;
ASK nodearray[ID] TO AssignlD(ID.power);
genSeed := ASK random"! Uniformlnt(1,10000);
TELL nodearray[ID] TO GenerateJobs(genSeed); {start methods to run for duration}
TELL nodearray[ID] TO Transmit;
TELL nodearray[ID] TO Receive;
TELL nodearray[ID] TO ExecuteJob;
PickAlgorithm(ID);
INC(j);

END FOR;
offset := defarray[i].numberofnodes + offset-
INC(i);

END FOR;

LOOP
WAIT DU RATION batchtime {loop used in compiling batch times}
BRT := ASK SELF TO Batch results;
OUTPUT("Batch "Joopct," RT ", BRT);
INC(loopct);
END WAIT;

END LOOP;
END METHOD; {end of initialisation method}

{This Method is needed to collect batch statistics}
ASK METHOD BatchresultsQ : REAL;

VAR
I : INTEGER;
totalCount: INTEGER;

BEGIN
ASK(GETMONITOR(overallBAT,RStatObj))Reset();
totalCount := 0;

{The number of jobs executed in the system during this batch are are totalled up}
FOR I := 1 TO NofN

totalCount := ASK(GETMONITOR(nodearray[l].batchRT,RStatObj))Count + totalCount;
END FOR;

{ Each nodes contribution to the average response time is calculated and added to the total, after which the statistical object
is reset for the next batch}

FOR I := 1 TO NofN
overallBAT :=

FLOAT(ASK(GETMONITOR(nodearray[l].batchRT,RStatObj))Count)/FLOAT(totalCount)*
ASK(GETMONITOR(nodearray[l].batchRT,RStatObj))Mean();
ASK(GETMONITOR(nodearray[l].batchRT, RStatObj))Reset();

END FOR;
{The average response time for the batch is returned to the calling object}
RETURN(ASK(GETMONITOR(overallBAT,RStatObj))Sum);

END METHOD; {end of method}
{............„„............„...........-.-------------}

(The method which collates statistics on the total simulation run time}
ASK METHOD PerfStatsQ : REAL;
CONST format="V* ***.** ***** ***.** ****** ****** ****** ****** ****** ****** ******"=

VAR
I : INTEGER;
overallPR: SREAL;
TotalCount: INTEGER;
ProbeRes: REAL;

BEGIN
TotalCount := 0;

{The number of jobs executed in the system during the total run time are are totalled up}
FOR I := 1 TO NofN _ ._ .

TotalCount := ASK(GETMONITOR(nodearray[l].responseT,RStatObj))Count + TotalCount;
END FOR;

c

Al. Simulation Code

{The contribution of each node to the metrics collected is calculated and printed out)
FOR I := 1 TO NofN

overall RT :=
FLOAT(ASK(GETMONITOR(nodearray[l].responseT,RStatObi))Count)/FLOAT(TotalCount)*
ASK(GETMONITOR(nodearray[l].responseT,RStatObj))Mean();
{Lists average response times and total number of jobs executed at node}

PRINT(nodearray[l].nodepower,ASK(GETMONITOR(nodearray[l].responseT,RStatObj))Mean()
,ASK(GETMONITOR(nodearray[l].responseT,RStatObj))Count,
{Lists average response times and total number of jobs originating at node}

ASK(GETMONITOR(nodearray[l].nodeRT,RStatObj))Mean() ,ASK(GETMONITOR(nodearray[l].nodeRT,RStatObj))Count,
{ Lists number of and average lengths of jobs executed at origin)

ASK(GETMONITOR(nodearray[l].jobLength,RStatObj))Mean()
,ASK(GETMONITOR(nodearray[l].jobLength,RStatObj))Count,
{Lists number of and average lengths of jobs executed at origin but refused transfer}

ASK(GETMONITOR(nodearray[l].jobLengthRef,RStatObj))Mean()
,ASK(GETMONITOR(nodearray[l].jobLengthRef,RStatObj))Count,
{Lists number of and average lengths of jobs that have been transferred to other nodes}

ASK(GETMONITOR(nodearray[l].jobLengthRec,RStatObj))Mean()
,ASK(GETMONITOR(nodearray[l].jobLengthRec,RStatObj))Count
{Lists number of and average lengths of jobs that have been received from other nodes}

) WITH format;
END FOR;

{return overall average response time to calling object genesisObj}
RETURN ASK(GETMONITOR(overallRT,RStatObj)) Sum;
ASK(GETMONITOR(overallRT,RStatObj))Reset();

END METHOD;

{.„.....„..„..-.........................--------------------}
{method to free all memory associated with the genesisObj after run-time has expired)
ASK METHOD ObjTerminate;
VAR

i : INTEGER;
BEGIN

DISPOSE(randoml);
DISPOSE(globalrandom);
FOR i:= 1 TO NofN

DISPOSE(nodearray[i]);
END FOR;
DISPOSE(nodearray);

END METHOD;

END OBJECT; {end of genesisObj}

{„....„.„...----------

{Before nodeObj starts objects it uses as triggers and queues are initialised}

OBJECT NodeObj;

ASK METHOD Objlnit;
BEGIN

NEW(sig); {triggers}
NEW(rXsig);
NEW(tXsig);
NEW(lpsig);
NEWflobQ); {queues}
NEW(rxQ);
NEW(txQ);
NEW(lpQ);
NEW(randomnodel);

END METHOD;
/________________——————————————————

D

Al. Simulation Code

{Jobs are generated at each node and then the threshold at each node is checked if the threshold is not exceeded by the
arrival of a new job the job is added to the local queue for execution, otherwise it is placed in the queue of the Process
method selected in Initialisenodes. In effect the transfer policy is carried out here}

TELL METHOD GenerateJobs(IN a : INTEGER);

VAR
newjob: JobType;
ta, ts, hetrolnterarrivalTime, tempTS : REAL;

BEGIN

ASK randomnodel TO SetSeed(a);
hetrolnterarrivalTime := AvInterArrivalTime / nodepower;

{Interrarrival time is in direct proportion to nodepower, this ensures that the original utilisation at each node is the same.}
LOOP

{Exponentially distributed interarhval times are equivalent to a poission arrival rate}
ta := ASK randomnodel Exponential(hetrolnterarrivalTime);
WAIT DURATION ta END WAIT;

{A newjob is created and its arrival time and service time are stored in the record structure}
NEW(newjob);
newjob.origin := nodelD;
newjob.arrivaltime := SimTimeQ;
newjob.servicetime := ASK randomnodel Exponential(AvServiceTime);

{The transfer policy, based around a simple pre- determined threshold. If the job is considered eligble for transfer it is added
to the Process queue and a signal released to indicate this fact}

IF(jobQ.numberln >= Threshold)
ASK IpQ TO Add(newjob);
ASK Ipsig TO Release;

ELSE
{ get original job length for statistical purposes and then calculate actual servicetime on executing machine. The job is then
added to the queue for execution and a signal sent to indicate this fact}

jobLength := newjob.servicetime;
newjob.servicetime := newjob.servicetime/nodepower;
ASK jobQ TO Add(newjob);
ASK sig TO Release;

END IF;
END LOOP;

END METHOD;
(...___________________________

{Random algorithm or blind location, without the use of any system state information the eligble job is sent to a randomly
picked node for execution.}

TELL METHOD ProcessRandom;
VAR

job : JobType;

BEGIN

{If there are jobs waiting to be processed, pick any node at random and send the job to that node for processing. Otherwise
wait for the signal that jobs are waiting to be processed. A queue (txQ) is used to buffer jobs and prevent the possibility of
concurrent transmission The means of picking a ranom node is unsophisticated in design as normally it will be successful
on the first attempt}

IF IpQ.numberln > 0
job := ASK IpQ TO RemoveQ;
REPEAT

job.destination := ASK globalrandom Uniformlnt(1, NotN);
UNTIL job.destination <> nodelD;
INCGob.transfertag);
ASK txQ TO Add(job);
ASK tXsig TO Release;

ELSE
WAIT FOR Ipsig TO Fire;
END WAIT;

END IF;
END LOOP;
END METHOD; „„„„„..„„..„—.————-————.}

{ A location and information policy developed for homogeneous systems}

TELL METHOD ProcessSHORTEST;

Al. Simulation Code

VAR
numarr: ArrayType;
pi, destination, minload, mindest: INTEGER;
job: JobType;

BEGIN
NEW(numarr, O..Probel_imit); {create array for random numbers}
LOOP
IF IpQ.numberln > 0

job := ASK IpQ TO RemoveQ;
pi := ProbeLimit;
UniqueRandom(Probel_imit,nodelD,numarr); {get random numbers}
minload := Threshold;
WHILE pi > 0 {until the probe limit has expired}

destination := numarr[pl];
{probing effects both local and remote node as well as the current job}

lnterrupt(nodearray[destination], "ExecuteJob");
lnterrupt(nodearray[nodelD],"ExecuteJob");
WAIT DURATION probingDelay END WAIT;

{if the remote nodes load is less than the threshold it becomes a possible destination for the current job}
IF minload > ASK nodearray[destination] jobQ.numberln;

minload := ASK nodearray[destination] jobQ.numberln;
mindest := destination;

END IF;
{if the remote node is idle the current job is immediately transferred to it}

IF minload = 0
INC(job.transfertag);
job.destination := destination;
lnterrupt(nodearray[destination], "ExecuteJob");
lnterrupt(nodearray[nodelD],"ExecuteJob");
{transmit job to selected node}
ASK nodearrayOob.destination] TO ReceiveJob(job);
WAIT DURATION (TDelay + 0.001) END WAIT;
EXIT; (exit construct as job processing finished}

END IF;
DEC(pl);

END WHILE;
{after probe limit has expired if no suitable node has been found add job to local processing queue}

IF minload >= Threshold
jobLengthRef := job.servicetime;
job.servicetime := job.servicetime/nodepower;
ASK jobQ TO AddGob);
ASK sig TO Release;

{otherwise send to least busy node found}
ELSIF minload >0

INC(job.transfertag);
job.destination := mindest;
lnterrupt(nodearray[destination], "ExecuteJob");
lnterrupt(nodearray[nodelD],"ExecuteJob");
ASK nodearrayOob.destination] TO ReceiveJob(job);

{Transmit job to selected node}
WAIT DURATION (TDelay + 0.001) END WAIT;

END IF;
ELSE

WAIT FOR Ipsig TO Fire;
END WAIT;

END IF;
END LOOP;

END METHOD;

{„_.„„„„..„......--------- .__._..__________...}

TELL METHOD ProcessHETRO;{hetro ALGORITHM 4}
{This version works the same way as Shortest but instead of raw ready to run queue length a value weighted by the

respective powers of the nodes concerned is used}

VAR
numarr: ArrayType;
pi, destination, mindest, sent: INTEGER;
minload, load : REAL;
job : JobType;

BEGIN
NEW(numarr, 0..ProbeLimit);
LOOP
IF IpQ.numberln > 0

Al. Simulation Code

job := ASK IpQ TO RemoveQ;
sent := 0;
pi := ProbeLimit;
UniqueRandom(ProbeLimit,nodelD,numarr);
minload := FLOAT(Threshold);
WHILE pi >0

destination := numarr[pl];
lnteraipt(nodearray[destination], "ExecuteJob");
lnterrupt(nodearray[nodelD], "ExecuteJob");
WAIT DURATION probingDelay END WAIT;
load := FLOAT(ASK nodearray[destination] jobQ.numberln

)*(nodepower/nodearray[destination].nodepower);
IF minload > load;

minload := load;
mindest := destination;

END IF;
IF minload = 0.0

INC(job.transfertag);
job.destination := mindest;
Intermpt(nodearray0ob.destination], "ExecuteJob");
lnterrupt(nodearray[nodelD], "ExecuteJob");
ASK nodearrayQob.destination] TO ReceiveJob(job);
WAIT DURATION (TDelay + 0.001) END WAIT;
EXIT;

END IF;
DEC(pl);

END WHILE;
IF minload >= FLOAT(Threshold)

jobLengthRef := job.servicetime;
job.servicetime := job.servicetime/nodepower;
ASK jobQ TO Add(job);
ASK sig TO Release;

ELSIF minload > 0.0
job.destination := mindest;
lnterrupt(nodearray[mindest], "ExecuteJob");
lnterrupt(nodearray[nodelD], "ExecuteJob");
(INCOob.transfertag);}
ASK nodearrayQob.destination] TO ReceiveJob(job);
WAIT DURATION (TDelay + 0.001) END WAIT;

END IF;
ELSE

WAIT FOR Ipsig TO Fire;
END WAIT;
END IF;

END LOOP;
END METHOD;

TELL METHOD ProcessHETQL;
{ Similar in operation to the METRO method the difference lying in the the use of local load queue length instead of a
threshold value in the location policy. }

VAR
numarr : ArrayType;
pi, destination, mindest, sent : INTEGER;
minload , load : REAL;
job : JobType;

BEGIN
NEW(numarr, 0.. ProbeLimit);
LOOP
IFIpQ.numberln>0

job := ASK IpQ TO RemoveQ;
sent := 0;
pi := ProbeLimit;
UniqueRandom(ProbeLimit,nodelD,numarr);
minload := FLOAT(jobQ.numberln);
WHILE pi >0

destination := numarr[pl];
lnterrupt(nodearray[destination], "ExecuteJob");
lnterrupt(nodearray[nodelD], "ExecuteJob");
WAIT DURATION probingDelay END WAIT;
load := FLOAT(ASK nodearray[destination]

jobQ.numberln)*(nodepower/nodearray[destination].nodepower);

G

Al. Simulation Code

IF load = 0.0
sent := 1;
INC(job.transfertag);
job.destination := destination;
lnterrupt(nodearray[destination], "ExecuteJob");
lnterrupt(nodearray[nodelD], "ExecuteJob");
ASK nodearrayOob.destination] TO ReceiveJob(job);
WAIT DURATION (TDelay + 0.001) END WAIT;
EXIT;

ELSIF minload > load
minload := load;
mindest := destination;
sent:=2;

END IF;
DEC(pl);

END WHILE;
IF sent = 2

INC(job.transfertag);
job.destination := mindest;
lnterrupt(nodearray[mindest], "ExecuteJob");
lnterrupt(nodearray[nodelD], "ExecuteJob");

ASK nodearrayOob.destination] TO ReceiveJob(job);
WAIT DURATION (TDelay + 0.001) END WAIT;
ELSIF sent = 0

jobLengthRef := job.servicetime;
job.servicetime := job.servicetime/nodepower;
ASK jobQ TO Add(job);
ASK sig TO Release;

END IF;
ELSE

WAIT FOR Ipsig TO Fire;
END WAIT;
END IF;

END LOOP;
END METHOD;
{..„....-...„...................„...................„............„......„„.......„„.......„„......„.........„....}
{The queue length at the local node is used rather than a fixed threshold in the location decision.a form of bias is
implemented but only in the sense that the execution times at each node are compared transfer occuring if a remote node
has a shorter predicted execution time. Immediate transfer to an idle node is not possible, the full probe limit is used and only
then is the location decision made }

TELL METHOD ProcessHQNIT;
VAR

numarr: ArrayType;
pi, destination, mindest, sent: INTEGER;
minload , load : REAL;
job.tempjob: JobType;

BEGIN
LOOP

IF IpQ.numberln > 0
job := ASK IpQ TO RemoveQ;
sent := 0;
NEW(numarr, O.ProbeLimit);
pi := ProbeLimit;
UniqueRandom(ProbeLimit,nodelD,numarr);
{local load incremented by 1 to account for eligible job}
minload := FLOAT(jobQ.numberln + 1);
WHILE pi > 0

destination := numarr[plj;
lnterrupt(nodearray[destination], "ExecuteJob");
lnterrupt(nodearray[nodelD], "ExecuteJob");
WAIT DURATION probingDelay END WAIT;
{remote load calculated with the eligible job accounted for}
load := FLOAT(ASK nodearray[destination] JobQ.numberln + 1

Wnodepower/nodearray[destination].nodepower);
/v (Update best possible destination if suitable node found}

IF minload > load
minload :- load;
mindest := destination;
sent:=1;

END IF;
DEC(pl);

END WHILE;
{if a suitable node has been discovered (sent=1) the the eligible job is dispatched to it}

H

Al. Simulation Code

IF sent = 1
INC(job.transfertag);
job.destination := mindest;
lnterrupt(nodearray[mindest], "ExecuteJob");
lnterrupt(nodearray[nodelD], "ExecuteJob");
ASK nodearrayyob.destination] TO ReceiveJob(job);
WAIT DURATION 0.031 END WAIT; {Transmit Delay}

ELSIF sent = 0
jobLengthRef := job.servicetime;
job.servicetime := job.servicetime/nodepower;
ASK jobQ TO Add(job);
ASK sig TO Release;

END IF;
DISPOSE(numarr);

ELSE
WAIT FOR Ipsig TO Fire
END WAIT;
END IF;

END LOOP;
END METHOD;

{...„....„...................................„„...„....„„„„„.„.„„....„....„„.„„........„..„„.......„„„}

{This method called by transmit, adds a job to a nodes recieve queue and releases a trigger to tell the node to examine its
recieve queue if it is not currently doing so. This method is needed to buffer jobs they are put in an orderly queue by
receive. }

ASK METHOD ReceiveJob (IN job : JobType);

BEGIN
{This is where the original length is collected and new servicetime calculated, for all transferred jobs}

jobLengthRec := job.servicetime;
job.servicetime := job.servicetime/nodepower;
ASK rxQ TO Add(job);
ASK rXsig TO Release;

END METHOD;

(....„„.._....._„_..__.............„
{ This method is constantly running and processes the contents of a nodes transmit queue, or waits for a trigger to signal
that a job has entered the transmit queue. On interrupt the WAIT is exited enabling the tXsig trigger to be DISPOSED of}

TELL METHOD Transmit;

VAR
job : JobType;

BEGIN
LOOP

IF txQ.numberln > 0
job := ASK txQ TO RemoveQ;
ASK nodearrayQob.destination] TO ReceiveJob(job);
WAIT DURATION TDelay
ON INTERRUPT

EXIT;
END WAIT;

ELSE
WAIT FOR tXsig TO Fire
job := ASK txQ TO Remove();
ASK nodearrayOob.destination] TO ReceiveJob(job);
WAIT DURATION TDelay END WAIT;
ON INTERRUPT

EXIT;
END WAIT;

END IF;
END LOOP;

END METHOD;

,„.„„..-----_.„....._.............--.-.----------------}

(This method is constantly running and processes the contents of a nodes recieve queue, or waits for a trigger to signal
that a job has entered the recieve queue. When a job is recieved it is passed to the ExecuteJob method of that node to be
executed or transferred if threshold is exceeded and transfertag limit is not. On interrupt the WAIT is exited enabling the
Xsia triq'qer to be DISPOSED of. In this version the idea of a transfer tag is not implemented, jobs must be implemented on

the node they are transferred to.}

TELL METHOD Receive;
VAR

Al. Simulation Code

job : JobType;
BEGIN

LOOP
IF rxQ.numberln > 0

job := ASK rxQ FirstQ;
WAIT DURATION TDelay END WAIT;
ASK jobQ TO AddOob);
ASK sig TO Release;
job := ASK rxQ TO RemoveQ;

ELSE
WAIT FOR rXsig TO Fire
job := ASK rxQ First();
WAIT DURATION TDelay END WAIT;
ASKjobQTOAdd(job);
ASK sig TO Release;
job := ASK rxQ TO RemoveQ;
ON INTERRUPT

EXIT;
END WAIT;

END IF;
END LOOP;

END METHOD;

{...}
TELL METHOD ExecuteJob;
{ This method runs continuously simulating the execution of jobs as they reach the node. This is the FCFS version where
jobs are executed sequentially. Theeffect of having to deal with RPC activity is implemented by adding the delayto the
unexpiredjob servicetime}

VAR
job: JobType;
intChk: INTEGER;
stopTime, startTime : REAL;

BEGIN
LOOP
IF jobQ.numberln > 0

job := ASK jobQ First;
{continue until job service time is fully expired)

REPEAT
startTime := SimTime();
WAIT DURATION job.servicetime

intChk := 0;
{continue until job service time is fully expired}

ON INTERRUPT
stopTime := SimTimeQ;

{recalculate unexpired servicetime}
job.servicetime := job.servicetime-stopTime+startTime+probedDelay;
intChk :=1;
END WAIT;

UNTIL intChk = 0; {if chk = 0 job has completed}
{update statistical counters}

responseT := SimTime() - job.arrivaltime;
batchRT := SimTime() - job.arrivaltime;
ASK nodearrayOob.origin] TO UpdateRT(job);
job := ASK jobQ TO RemoveQ;

DISPOSEQob);
ELSE

WAIT FOR sig TO Fire

ON INTERRUPT

END WAIT;
END IF;
END LOOP;

END METHOD;
/..„...--.--•---———————————————————-—}

{ COMMENTED OUT TELL METHOD ExecuteJob; {ProcessMultiJob}
MULTIPROGRAMMING VERSION This method runs continuously simulating the execution of jobs as they reach the

node, multiprogramming version

VAR
job : JobType;
intChk : INTEGER;
stopTime startTime, quantum, origQuantum : REAL;

__________ _____________ __ AL Simulation Code

BEGIN
LOOP
IF jobQ.numberln >0

currentjob := ASK jobQ First;
REPEAT

quantum := 0.10;
origQuantum := quantum;

IF currentjob. servicetime < quantum

quantum :=currentjob.servicetime;
origQuantum := quantum;
END IF;

REPEAT
startTime := SimTime();

WAIT DURATION quantum
intChk := 0;

ON INTERRUPT
stopTime := SimTimeQ;
quantum := quantum-stopTime+startTime+probedDelay;
intChk:=1;

END WAIT;
UNTIL intChk = 0;
currentjob.servicetime := currentjob.servicetime - origQuantum;
IF currentjob.servicetime = 0.0

responseT := SimTimeQ - currentjob.arrivaltime;
job := currentjob;
IF (ASK jobQ Last) <> currentjob;

currentjob := ASK jobQ Next(currentjob);
ASK jobQ TO RemoveThis(job);
DISPOSE(job);

ELSIF jobQ.numberln > 1
currentjob := ASK jobQ First;
ASK jobQ TO RemoveThis(job);
DISPOSE(job);

ELSE
ASK jobQ TO RemoveThisGob);
DISPOSE(job);

END IF;
ELSE

IF (ASK jobQ Last) <> currentjob;
currentjob := ASK jobQ Next(currentjob);

ELSIF jobQ.numberln > 1
currentjob := ASK jobQ First;

END IF;
END IF;

UNTIL jobQ.numberln = 0;
ELSE

WAIT FOR sig TO Fire
ON INTERRUPT
END WAIT;

END IF;
END LOOP;

END METHOD;

{...........................--.-.------------— —-———-—---- -----}
{stats on jobs executed at a node are collected as well as those originating at a node)
ASK METHOD UpdateRT(IN job : JobType);

BEGIN
nodeRT := SimTimeQ - job.arrivaltime;
nodeBRT := SimTimeQ - job.arrivaltime;

END METHOD;

ASK METHOD AssignlD(IN i : INTEGER; IN power : REAL);
{ This method is used to initialise a node with its ID number and power)
BEGIN

nodelD := i;
nodepower := power;

END METHOD;

K

Al. Simulation Code

{ At the end of each simulation the first job in the transmit queue must be removed, but as it will be in another nodes recieve
queue must not be DISPOSED of, all other jobs in the queue can be DISPOSED of)

ASK METHOD RemoveJobs;

VAR temp: JobType;
BEGIN

IF txQ.numberln > 0
temp := ASK txQ TO RemoveQ;

END IF;
WHILE txQ.numberln > 0

temp := ASK txQ TO RemoveQ;
DISPOSE(temp);

END WHILE;
END METHOD;

{............„..........................„.„.„.„„„„.„„................„„„„............„„..........„.......}
{ This method DISPOSES of any items using up memory at the end of each simulation run.}
ASK METHOD ObjTerminate;

VAR
i: INTEGER;
temp: JobType;

BEGIN
{Jobs assigned for local processing are removed from thejob.Q}

DISPOSE(randomnode1);
WHILE jobQ.numberln > 0

temp := ASK jobQ TO RemoveQ;
DISPOSE(temp);

END WHILE;
DISPOSE(jobQ);

{The first node in the system prompts a system wide removal of jobs from tx.Q's)
IF nodelD = 1

FOR i:=1 TO NofN
ASK nodearrayfi] TO RemoveJobs;
END FOR;

END IF;
DISPOSE(txQ);

{With the transmit queues empty any jobs in the rx.Q's can be removed}
WHILE rxQ.numberln > 0

temp := ASK rxQ TO RemoveQ;
{OUTPUT("rxQ",nodelD);}
DISPOSE(temp);

END WHILE;
DISPOSE(rxQ);

(DISPOSE(sig);}
DISPOSE(rXsig);
DISPOSE(tXsig);

END METHOD;

END OBJECT;
(----- _____..________}

{ This object has one method that stops the simulation although first it must interrupt certain methods in each node object to

allow the DISPOSAL of the various triggers used}

OBJECT StopAIIObj;

TELL METHOD Finish;
VAR

i : INTEGER;
BEGIN

FOR i := 1 TO NofN
lnterrupt(nodearray[i],"ExecuteJob");
lnterrupt(nodearray[i], "Receive");
lnterrupt(nodearray[i], "Transmit");

END FOR;
StopSimulation;

END METHOD;
END OBJECT;

{A procedure to generate a set of unique nodes to probe}

L

Al. Simulation Code

{PROCEDURE UniqueRandom(IN Probelimit : INTEGER; IN nodelD : INTEGER;
INOUT numarr : ArrayType);

VAR
pi, i, temp, j : INTEGER;
test : BOOLEAN;

BEGIN
pi := Probelimit;
numarr[0] := nodelD;
i:=1;
WHILE i <= Probelimit

test := TRUE;
REPEAT
temp := ASK globalrandom Uniformlnt(1 , NofN);

UNTIL temp <> nodelD;
FOR j := 1 TO i

IF temp = numarrO-1]
test := FALSE;
EXIT;

END IF;
END FOR;
IF test = TRUE;

numarr[i] := temp;
INC(i);

END IF;
END WHILE;

END PROCEDURE;}
{——————————————— —————^^

{ A procedure to generate a set of unique nodes to probe}

PROCEDURE UniqueRandom(IN Probelimit : INTEGER; IN nodelD : INTEGER;
INOUT numarr : ArrayType);

VAR
pi, i, temp, j : INTEGER;
test : BOOLEAN;
choiceArray : ArrayType;

BEGIN
NEW(choiceArray, L.NofN);
FOR i:=1 TO NofN {initialise array to contain a set of integers}

choiceArray[i] := i;
END FOR;

{ensure it is impossible to pick the source node as a destination}
choiceArray[nodelD] :- 1;

FOR i:=1 TO ProbeLimit
temp := ASK globalrandom Uniforming i+1 , NofN); {pick random number}
numarrp] := choiceArray[temp]; (put selected nodelD into array}
choiceArray[temp] := choiceArray[i+1]; {remove selected nodelD from choice}

END FOR;
DISPOSE(choiceArray);

END PROCEDURE;

{select algorithm to use for length of run}
PROCEDURE PickAlgorithm(IN ID : INTEGER);
BEGIN

CASE Algorithm
WHEN 1:

TELL nodearray[ID] TO ProcessRandom;
WHEN 2:

TELL nodearray[ID] TO ProcessSHORTEST;
WHEN 3:

TELL nodearray[ID] TO ProcessHETRO;
WHEN 4:

TELL nodearray[ID] TO ProcessHETQL;
WHEN 5:

TELL nodearray[ID] TO ProcessHQNIT;

M

Al. Simulation Code

OTHERWISE
OUTPUT("illegal algorithm");
StopSimulation;

END CASE;
END PROCEDURE;

END MODULE.

A1.3. Main Module
MAIN MODULE loadshare;

FROM Hetrodelaylib IMPORT AvServiceTime,NofN,NofDN,batchtime,
Threshold.TransferLimit.TDelay,
probedDelay.probingDelay, minSize,
Algorithm,ProbeLimit.AvlnterArrivalTime,
JobType, Hetrorecord.ArrayType, HetroArray,
GenesisObj.NodeObj.StopAIIObj;

FROM RandMod IMPORT RandomObj, FetchSeed;
FROM ListMod IMPORT StatQueueList;
FROM SimMod IMPORT SimTime, StartSimulation, StopSimulation, TriggerObj;
FROM StatMod IMPORT RStatObj, IStatObj, SREAL;

CONST

TYPE

VAR

BEGIN

i,U,PLmin,PLmax,Umin, Umax, Ustep, totalnodes,seed,reps : INTEGER;
AvResponseTime, runtime: REAL;
genesis: GenesisObj;
stopit: StopAIIObj;
rec: Hetrorecord;
diffnodes: HetroArray;

TransferLimit := 1;
TDelay := 0.030;
probingDelay := 0.030;
probedDelay := 0.010;

{user input of run parameters }
INPUT(runtime); {runtime}
INPUT(batchtime);
INPUT(AvServiceTime);
INPUT(Threshold);
INPUT(Algorithm);
INPUT(NofN);
INPUT(NofDN);

{30 ms delay due to rpc}
{30 ms delay due to rpc }
{10 ms delay in answering rpc }

NEW(diffnodes, L.NofDN); {initialise node array}
FOR i:=1 TO NofDN {for each different group of nodes}

NEW(rec);
diffnodes[i] := rec;
INPUT(diffnodes[i].numberofnodes); (user input expected number of nodes in group)
totalnodes := totalnodes + diffnodes[i].numberofnodes;
IF (totalnodes > NofN);

OUTPUT("TOO MANY NODES < START AGAIN");
HALT;

END IF;
INPUT(diffnodes[i].powerofnodes); {user input expected power of nodes in group}

INC(i);
END FOR;
{user input more run time parameters
INPUT(PLmin);)
INPUT(PLmax);

N

Al. Simulation Code

INPUT(reps);
INPUT(Umin);
INPUT(Umax);
INPUT(Ustep);

FOR U := Umin TO Umax BY Ustep;
FOR ProbeLimit := PLmin TO PLmax;
FOR seed := 1 TO reps;

AvInterArrivalTime := 1000.0/FLOAT(U);
NEW(genesis);
NEW(stopit);
TELL genesis TO lnitialiseNodes(diffnodes, seed, batchtime);
TELL stopit TO Finish IN runtime;
StartSimulation;
AvResponseTime := ASK genesis TO PerfStats();
OUTPUT("Overall RT at PL",ProbeLimit," Utilisation ",U,"% = ".AvResponseTime);
DISPOSE(genesis);
DISPOSE(stopit);

END FOR;
END FOR;
END FOR;

OUTPUT();OUTPUT();
END MODULE.

o

Appendix 2. Implementation Code

A2.1 Generatejobs.c
tfinclude <sys/types.h>
tfinclude <stdio.h>
^include <stdlib.h>
^include <string.h>
^include <unistd.h>
^include <math.h>
^include <sys/ipc.h>
^include <sys/shm.h>
^include <stddef.h>
^include <signal.h>
^include "hetro.h"
^include <sys/utsname.h>

double drand48();
void srand48();
double log();
int shmid, jobsgen = 0;
char *shmaddr;
pid_t pid, pid_sp, pid_rs;
struct utsname name;

static void sigusr1(); /'signal functions 7
static void sig_usr2();

void mainQ

{
record *data_ptr, *st_seg, *end_seg;
double ta, seed;
long SRseed;
int node_id,temp;
float mean_ta,time,node_power;
struct timespec tv;
FILE *fptr;

if((pid_sp = vfork())<0) /" create RPC server that services probes 7
exit(1);

if(pid_sp == 0)
execlp("./serveprobe","serveprobe",(char *) 0);

if((pid_rs = vfork())<0) /* create RPC server that services remote execution 7
exit(1);

if(pid_rs == 0)
execlp("./remxserver","remxserver",(char *) 0);

uname(&name); /* retreive node description 7

signal(SIGUSR1, sigusM); /* catch death of processjobs 7
signal(SIGUSR2, sig_usr2); /* catch synchronisation signal 7

get_time(&seed); /* use seed based upon clocktime 7
SRseed = (long)seed / *(name.nodename);
SRseed = SRseed / *((name.nodename)+1); /* ensure seed is unique 7
SRseed = SRseed * *((name.nodename)+2);

r
fptr = fopen("seedNo","a");
fprintf(tptr,"%s seed = %d\n",name.nodename,SRseed);

A2. Implementation Code

fclose(fptr);
V

if(strcmp(name.machine,"sun4c")==0) /* /tes/gn node_power '/
node_power=0.395;

if(strcmp(name.machine,"sun4m")==0)
node_power=1.405;

/*sef mean interarrival time to be proportional to node power 7
meanja = (MEAN_TS / UTIL) / node_power;

srand48((int)SRseed); /* initialisation entry point for random number generator 7

/"attach shm segment using default values for shmaddr and shmfig to allow compiler to decide Iocation7
if ((shmid = shmget (SEG_KEY, SEG_SIZE, SEG_EXCL)) == -1)

shmid = shmget(SEG_KEY,SEG_SIZE,SEG_PERM);
shmaddr = shmat(shmid,0,0);

/* struture pointer assigned to start of shm segment 7
data_ptr =(record *) shmaddr;

data_ptr = data_ptr + 1;
data_ptr->ts = 0; /* make sure location empty 7
st_seg = data_ptr; /* fix start of segment 7
end_seg = st_seg +300; /* fix end of segment 7

if((pid = vfork())<0) /* create processjobs process 7
exit(1);

if(pid == 0)
execlp("./processjobs","processjobs",(char *) 0);

pauseQ; /* wait for signal that processjobs has been sucessfully created 7

while(1) /* endless loop to generate jobs 7
{

if (data_ptr >= end_seg) /* // end of segment 7
data_ptr = st_seg; /* go back to start 7

ta = -meanja * Iog(drand48()); /* calculate exponentially distributed ta 7
tv.tv_sec = (long) ta;

tv.tv_nsec = (long) ((ta - tv.tv_sec) * 1000000000); /* convert to nanoseconds*/

nanosleep(&tv, NULL); /*sleep for ta*/

/* calculate exponentially distributed ts and store in shm 7
data_ptr->ts = -MEAN_TS * Iog(drand48());

getjime(&(data_ptr->starttime)); /* store job starttime7

data_ptr++; /* increment pointer to next location 7
datalptr->ts = 0.0; /'make sure location empty 7

kill(pid,SIGUSR1); /* send signal to proccessjobs 7

jobsgen++;

static void sigusrl (signo) /* signal handler to catch end of run signal from processjobs 7

int signo;
{
FILE *fptr;
int statloc;

if(signo == SIGUSR1) /* check signal type 7

fPtr=fopen("genjobsresults","a"); /* prints jobs generated stats to file 7

fprintf(fptr,"Hostname = %s\n",name.nodename);
fprintf(fptr,"Jobs generated = %d\n",jobsgen);
fclose(fptr);

Q

A2. Implementation Code

_exit(0); /'stops process 7
}

P signal handler to catch synchronisation signal from processjobs 7
static void sig_usr2(int signo)

if(signo == SIGUSR2)
return;

A2.2 Processjobs.c
#include <sys/types.h> /* PROCESSJOBS. C7
^include <stdio.h>
#include <stdlib.h>
^include <string.h>
tfinclude <unistd.h>
tfinclude <math.h>
#include <sys/ipc.h>
tfinclude <sys/shm.h>
^include <signal.h>
^include <sys/wait.h>
#include "hetro.h"
^include <rpc/rpc.h>
^include "Probe.h"
^include <sys/utsname.h>

int shmid, remex, localex, transct, Isgct;
char 'shmaddr;
record *data_ptr;
int *local_load, jobfinished, jobcount, NumSUnreachable, NumTimeout.fd, *remjob_rec;
member **list_ptr, 'list;
float overallrt, overallts, minload.SUnreachts, Timeoutts,node_power;
struct utsname name;
comp_memb *fin_list_ptr;

static void sig_usr1 (); /* signal handlers 7
static void sigchldQ;
static void sigalrmQ;

void mainQ

{
record *st_seg, *end_seg, job_details;
pid_t pid;
char str_ptr[20],*destination_node,**d_node_ptr, pathname[30];
int transfer.tempjocaljoad;
FILE *fptr;
long lock_size = 0;
pid_t ppid;

d_node_ptr = &destination_node;
list = NULL; /* pointer to start of list 7
list_ptr = &list; /* list_ptr points to address of list, to allow manipulation of address' 7

fin_list_ptr=NULL;

signal(SIGCHLD, sigchld); /* catch death of child signals 7
signal(SIGUSR1, sig_usr1); /* catch signals to the process 7
signal(SIGALRM, sigalrm); /* catch alarm signals 7

/* try to create shm segment, if it is already in existence get shmid 7
if ((shmid = shmget (SEG_KEY, SEG_SIZE, SEG^EXCL)) == -1)

shmid = shmget(SEG_KEY,SEG_SIZE,SEG_PERM);

/• attach shm using default values for shmaddr and shmfig to allow compiler to decide Iocation7
shmaddr = shmat(shmid,0,0);

data_ptr = (record *) shmaddr; /* make sure location empty 7
localjoad = (int *) shmaddr; /* get area for storage of local Ioad7

R

A2. Implementation Code

*local_load = 0;

remjob_rec = localjoad +1;
*remjob_rec = 0;

data_ptr = data_ptr + 1;
st_seg = data_ptr;
end_seg = st_seg +300;

alarm(REPORT_TIME);

/* fix start of segment, use first location for local load 7
/* fix end of sement 7

/" set alarm for next report period 7

uname(&name);
if(strcmp(name. machine, "sun4c")==0)

node_power=0.395;
if(strcmp(name. machine, "sun4m")==0)

node_power=1.405;

/* get host details7
/" assign relevant node_power 7

ppid = getppidQ;
kill(ppid,SIGUSR2);

while(1)
{

/* endless loop getting job details from shm 7

if(data_ptr >= end_seg) /* // end of segment 7
data_ptr = st_seg; /* go back to start 7

if(data_ptr->ts == 0.0) /* // record null no new jobs have been created7

else

pauseQ; /* pause until signal 7

sprintf(str_ptr,"%f", data_ptr->ts);
minload = 1 +(float) "localjoad;

transfer = 0;

if(*local_load > 0)

lsgct++;
transfer = lsalg(d_node_ptr);

if(transfer == 1)

transct++;
data_ptr->exjoc = 1;
if((pid = vfork())< 0)

/* get job duration 7
r update minload 7

/* Invoke load sharing 7

/* execute job remotely 7

/'if fork fails7

fptr=fopen("errorfile","a");
fprintf(fptr,"%s exit1\n",name.nodename);
fclose(fptr);

if(pid == 0)

execlp("./remxclient","remxclient", *d_node_ptr,str_ptr,(char *) 0);
/* initiate remote execution for job 7

else /* execute job locally 7
{
(*local_load)++; /"increment local load 7
data_ptr->ex_loc = 0;
if((pid = vfork())< 0) /* if fork fails7

{
fptr=fopen("errorfile","a");
fprintf(fptr,"%sexit2\n",name.nodename);
fclose(fptr);

if(pid == 0)
{
/* spawn process to execute for job length 7
execlp("./executejob","executejob",str_ptr,(char *) 0);

A2. Implementation Code

jobcount++;
/* add job details to linked list for later processing 7

add_to_list(list_ptr,pid,data_ptr);
data_ptr->ts = 0.0;
data_ptr++;

/* set record to null 7
/* go to next record 7

/' signal handler to catch SIGUSR1 from generatejobs, does not perform any other function 7
static void sig_usr1 (signo)
int signo;

if(signo==SIGUSR1)

printf(");

/* signal handler to catch death of child signals from terminating executejob processes 7
static void sigchld(signo)
int signo;

comp_rec c_rec,*c_rec_ptr;
int statloc;
double time;
FILE Mptr;

c_rec_ptr = &c_rec;

if(signo == SIGCLD)

{
/* get pid of terminated process and store in termination record*/
c_rec_ptr->pid = wait(&statloc);

/* determine exit status of terminated process and store in termination record 7
c_rec_ptr->estatus = (int)(WEXITSTATUS(statloc));

jobfinished++; /* increment job finished count 7

ifflocaljoad < 0) /* should load fall below 0 record fact in error file 7

(
fptr=fopen("errorfile","a");
fprintf(fptr,"%s load corrupted %d\n",name.nodename,*local Joad);
fclose(fptr);
}

/* get current time and store in termination record 7
get_time(&time);
c_rec_ptr->stoptime = time;
/* put termination record in linked list 7
add_tojin_list(&finjist_ptr,c_rec_ptr);

/* signal handler to run set routines at alarm periods 7
static void sigalrm(signo)
int signo;

double tempRT=0 , tempTS=0, totalRT=0, totalTS=0, repRT=0, repTS=0;
double endtime;
charpathname[30],pathnamein[30],pathnameout[30];
unsigned int repJF, totalJF=0, repjobs;
static int totaltime = 0, rp =0;
FILE *fptr,*resptrin, *resptrout;
record *rec, r;
comp_rec *c_rec, cr;
member *lp;
comp_memb *flp;
pidj ppid;

A2. Implementation Code

c_rec = &cr;
rec = &r;

if(signo == SIGALRM)

r initialise pathnames for results 7
strcpy(pathname, "results/");
strcpy(pathnamein, "results/");
strcpy (pathnameout, " results/") ;
strcat(pathname,name.nodename);
strcat(pathnamein,name.nodename);
strcat(pathnameout,name.nodename);
strcat(pathnamein,"in");
strcat(pathnameout,"out");

fptr=fopen(pathname,"a"); /* open results file for node 7
fprintf(fptr, "%s",name.nodename); /* nodename 7
f pri ntf (f ptr, " Rep%d " , rp) ; /* repetition number 7
fprintf(fptr,"Jrec = %d "jobcount); /'jobs received 7
fprintf(fptr,"Jfin = %d "jobfinished); /'jobs finished 7
fprintf(fptr,"curr load = %d",*localjoad); /* current load 7
fprintf(fptr, " rem jobs rec =%d",*remjob_rec); /'jobs transferred from other nodes 7
fprintf(fptr, "Isg = %d tct = %d\n",lsgct, transct); /* times load sharing invoked 7
fclose(fptr);
totaltime+= REPORT_TI M E; /* increment time passed 7
rp++ ; /* incremen t report period 7
if(totaltime == RUN_TIME) /* if run time expired 7

{

get_time(&endtime);
ppid = getppidQ; /" get id of generatejobs 7
kill(ppid,SIGUSR1); /* send signal to generatejobs 7

flp = fin_list_ptr; /* initialise pointer to start of finished jobs linked list 7
Ip = *list_ptr; /* initialise pointer to start of created jobs linked list 7
resptrin=fopen(pathnamein, lla"); /* open file to write input jobs records to 7
while(lp != NULL) /* while linked list not empty 7

{
delete_from_list2(&lp,rec); /* copy record from linked list 7

/" write record to file 7
fprintf(resptrin," %lf\n %d\n %lf\n ", rec->ts, rec->pid, rec->starttime);
}

fclose(resptrin);

resptrout=fopen(pathnameout,"a"); /* open file to write finished job records to */
while(flp != NULL) /* while linked list not empty 7

{
deletejrom Jin_list(&flp,c_rec); /* copy record from linked list 7

/' write record to file 7
fprintf(resptrout," %lf\n %d\n %d\n ", c_rec->stoptime, c_rec->pid, c_rec->estatus);
}

fclose(resptrout);
}

else /* if run time not reached 7
alarm(REPORT_TIME); /* reset alarm to end of next report period 7

/' Isalg is the function that actually carries out load sharing. If an appropriate node is discovered then destination _node is
changed to point to it Otherwise the value will remain as NULL. This function sends out probes in the form of RPC's to
randomly selected nodes. The results of these probes, load and power are used to generate a weighted load, which IS then
compared to the local load or lowest weighted load so far discovered. Should an RFC fail for any reason it is ignored and

the next one is started. 7

int lsalg(node_ptr)
char **node_ptr;

float weightedjoad;
char *hostnames[PROBE_LIMIT];

u

A2. Implementation Code

int ct.dummy .transfer;
CLIENT 'ClientHandle;
Data "results;
struct timeval tv;
char *ptc;

ptc = (char*) &tv; /• pointer to time structure 7

transfer = 0;
random_nodes(hostnames); /* get randomly picked nodes'/
for(ct=0;ct<PROBEJ_IMIT;ct++) /' for set number of probes 7

(
/* create client handle, contacts remote portmapper and gets tcp port for server 7
ClientHandle = clnt_create(hostnames[ct], PROBEPROG, PROBEVERS, "tcp");

if(ClientHandle != NULL) /* if remote portmapper contacted successfully*/
{
tv.tv_sec = PROBE_TIMEOUT;
tv.tv_usec = 0;
clnt_control(ClientHandle, CLSET_TIMEOUT, ptc); /* set probe timeout 7
results = getinfo_1 (&dummy,ClientHandle); /* initiate remote procedure caH7
if (results != NULL) /* if remote procedure seccessfully completed 7

{
if(results->load < 0) /'just in case load is negative 7

results->load = 0;
/* calculate weighted load 7

weightedjoad = (node_power/results->power)*(results->load + 1);
if (minload > weightedjoad) /* if currently probed node is least loaded 7

{
minload = weightedjoad; r new minimum */
node_ptr = hostnames[ct]; I new destination */
transfer = 1 ; /* transfer on */
}

}
clnt_destroy(ClientHandle); /* remove client handle */
}

}
return(transfer); /* return transfer decision */

A2.3. Executejob.c
#include <stdio.h>
Include <stdlib.h>
^include "hetro.h"
tfinclude <unistd.h>
#include <sys/ipc.h>
^include <sys/shm.h>
tfinclude <sys/utsname.h>

double atofQ;

main(argc, argv)
int argc;
char *argv[];

record *data_ptr;
double ts;
int shmid,*localjoad,loopno,fd;
long lock_size = 0;
char *shmaddr;
int a,b,c,ct,count;
struct utsname name;

r attempt to create shared memory segment if it is already in existance get the segment id 7
if((shmid = shmget (SEG_KEY, SEG_SIZE, SEG_EXCL)) == -1)

shmid = shmget(SEG_KEY,SEG_SIZE,SEG_PERM);

/* attach the shared memory segment 7
shmaddr = shmat(shmid,0,0);
/* initialise local load 7

V

A2. Implementation Code

localjoad = (int*) shmaddr;

/* get service time of job from arguement passed to process 7
ts = atof(argv[1]);
/* convert service time to correct length, 60 loops = 1 second on machine of rating 17
ts = ts * 60;
/* loopno must be an integer 7
loopno = (int) ts;

/* work loops to use system time */
for(count=0;count<loopno;count++)

for(ct=0;ct<10000;ct++)

C++;

C++;

C++;

C++;

C++;

C++;

/* decrement local load */
(*localjoad)--;

/* exit with status 0 V
_exit(0);

printf("exit failed");

A2.4. Serveprobe.c
^include <stdio.h>
#include <rpc/rpc.h>
tfinclude <sys/ipc.h>
tfinclude <sys/shm.h>
Include "Probe.h"
^include "hetro.h"
#include <sys/utsname.h>

Data *getinfo_1 (dummy)
int 'dummy;

static int test = 0;
static Data results;
static int "load_ptr,fd;
int shmid;
char *shmaddr;
struct utsname name;
static float node_power;

if(test!=1) /* on the first call to the procedure 7

/' try to create shm segment, if it is already in existance get shmid 7
if ((shmid = shmget (SEG^KEY, SEG_SIZE, SEG_EXCL)) == -1)

shmid = shmget(SEG_KEY, SEG_SIZE, SEG_PERM);
shmaddr = shmat(shmid,0,0); /* attach the shared memory segment 1

w

A2. Implementation Code

load_ptr = (int *)shmaddr; /* initialise local load 7

test = 1 ;
uname(&name); /. get host defajls ,/

it(strcmp(name.machine,"sun4c")==0) /* assign relevant node power 7

node_power=0.395;
if(strcmp(name. machine, "sun4m")==0)

node_power=1 .405;
}

results.load = *load_ptr; /. put ,oad in resu,ts structure

results.power = node_power; /* put power in results structure y

return &results; /. return results structure ./

A2.5. Remxclient.c
tfinclude <rpc/rpc.h>
#include <stdio.h>
^include <stdlib.h>
#include "remexec.h"
include "hetro.h"

main(argc,argv)

int argc;
char *argvQ;

CLIENT 'ClientHandle;
char "nodename = argv[1], *shmaddr, *ptc;
float ts;
int 'result, shmid, timeout, load;
struct timeval tv;
static int test, *local_load;

ptc = (char*) &tv;

/* convert servicetime string to float 7
ts = (float)atof(argv[2]);

/* create client handle, contacts remote portmapper and gets tcp port for server 7

ClientHandle = clnt_create(nodename, REMEXECPROG, REMEXECVERS, "tcp");
/* if remote portmapper contacted successfully7

if(ClientHandle != NULL)
{
tv.tv_sec = RUN_TIME; /* timeout set to run time 7

tv.tv_usec = 0;
clnt_control(ClientHandle, CLSET_TIMEOUT, ptc); /* set execution timeout 7

result = remproc_1 (&ts,ClientHandle); /* initiate remote procedure call'/

if(result!=NULL) /* if RPC successful 7

{
r remove client handle 7
clnt_destroy(ClientHandle);
_exit(1); /* exit with status for successful remote job execution 7

_exit(2); /"exit with status indicating timeout 7

_exit(3); r exit with status indicating server unreachable 7

A2.6. Remxserver.c
^include <rpc/rpc.h>
^include <stdio.h>
include "remexec.h"

X

A2. Implementation Code

tfinclude <sys/ipc.h>
#include <sys/shm.h>
tfinclude <signal.h>
^include <sys/wait.h>
#include "hetro.h"
#include <sys/utsname.h>

int*remproc_1(ts)
float *ts;

int *statloc;
int result = 1 ;
static int *localjoad, *remjob_rec, fd;
char str_ptr[20];
static int test;
int shmid;
char "shmaddr, pathname[30];
pid __t pid;
struct utsname name;

if(test!=1) /* on first call of procedure 7
(
/' try to create shm segment, if it is already in existance get shmid 7
if((shmid = shmget (SEG_KEY, SEG_SIZE, SEG_EXCL)) == -1)

shmid = shmget(SEG _KEY, SEG_SIZE, SEG_PERM);
/* attach the shared memory segment 7
shmaddr = shmat(shmid,0,0);
/* initialise local load 7
localjoad = (int *)shmaddr;
/* initialise remote jobs received count 7
remjob_rec = (int *)shmaddr;
remjob_rec = remjob_rec +1 ;

test = 1 ;
uname(&name); /* get host details 7

sprintf(str_ptr,"%f", *ts); /* convert servicetime to string format 7

(*local_load)++; /* increment local load 7
(*remjob_rec)++; /* increment remote jobs received count 7

if((pid = vfork())< 0) /* fork new process 7
(printf("fork error, pid = %d\n", pid);

if(pid == 0)

execlp("executejob","executejob",str_ptr,(char *) 0);
/* spawn process to execute for ts 7

pid = wait(statloc); /* wait for child process to terminate 7

return(&result); /* return to calling process 7

Y

Appendix 3. Conference Papers Based on This Work
Gold Coast, Australia, 1996
IASTAD International Conference on Modelling, Simulation and Optimization
242-031 .pdf

6-9 May 1996.

Manchester, England, 1995
Second Communication Networks Symposium,

Pages 265-9,

10-11 July 1995.

Performance Evaluation of Load Sharing Algorithms
in Heterogeneous Systems

R.Leslie & S.Mckenzie
University of Greenwich

Wellington St, London SE18 6PF
Fax: 0181-331-8665
Tel: 0181-331-8669

email: r.leslie@gre.ac.uk, s.mckenzie@gre.ac.uk

Abstract.
This paper considers load sharing in heterogeneous systems where

the heterogeneity is exhibited in the processing power of the

constituent nodes. An algorithm is proposed that considers both

the relative processing power of the nodes and their current load

in its location policy. Versions of this algorithm using both

threshold and local load based location policies are assessed. The

information policy used is based on probing and the use of

different probe limits is investigated. The algorithms are

evaluated by simulation, on a model of 20 diskless workstations

with differing processing powers. Various systems were modelled,

all of 20 nodes and identical overall capacity but varying in

their degree of heterogeneity. The performance of all versions of

the algorithm are compared against an existing algorithm as well

as theoretical upper and lower bounds. Results show the importance

of considering relative processing power in algorithms for

heterogeneous systems. Unlike homogeneous systems threshold based

location policies are not as efficient as those using a variable

comparison factor.

Keywords:
Load Sharing, Distributed Systems, Simulation, Performance.

1. Introduction.
In a distributed system there is a high probability that at any

point in time some of its nodes will be highly utilised whilst

others will be idle or lightly loaded. By using the ability of

distributed systems to execute jobs at other than their

originating node, work can be transferred from one node to another

in order to achieve an improvement in overall system performance.

This approach to system performance enhancement is referred to as

load sharing or load balancing [1-5].

Load balancing has been used to refer to algorithms that attempt

to equalise workload amongst the nodes, whilst load sharing

algorithms attempt to ensure no node is idle. In this paper the

term load sharing will be used in a broader sense, namely attempts

to improve system performance by redistributing some of the

workload. It will be shown that when considering heterogeneous

systems, transferring to an idle node is not always the optimum

solution nor is attempting to equalise the load at each node.
Earlier work [6] has shown that considering the relative power of

the nodes in a heterogeneous system results in performance

improvement, in this paper a number of different systems, varying
in degree of heterogeneity, are investigated with the use of a
simulation model. Performance is measured by the average response
time of the system which is accepted as the most important, but
not the only, measure of performance [4] . In real time systems the
best measure of performance is percentage of jobs lost [7] .

The use of thresholds is a common feature in many load sharing
algorithms. A new metric based upon local load is introduced. This
is shown to offer advantages both in performance and scalability.

The algorithms proposed are based upon the use of the Remote
Procedure Call (RPC) as a means of communication and resource
sharing between nodes. The cost of the RPC's i.e. in delay
experienced at both nodes involved, is included in the
simulations. The delay experienced in gaining perfect knowledge of
the system is prohibitive. So the optimum number of RPC's or
probes that should be used is investigated, at various
utilisations. It is shown that load sharing decisions can be based
on limited system state information over a range of degrees of
heterogeneity.

2. Load Sharing Algorithms.
Load sharing algorithms can be static or dynamic [1,8]. The
algorithms investigated in this paper are dynamic and distributed.

It is assumed that the nodes comprising the systems investigated
are multiprogrammed machines. The cost of process migration once a
job has started execution can be excessive and is an operation
that is difficult to implement on many current systems. So the
algorithms studied are sender-initiated [9], where any load-
sharing is implemented on the initial arrival of a job to the
system.

By convention load sharing algorithms are described by dividing
them into separate policies, as first introduced in [2] . Three
policies are normally used: Transfer, Information and Location.

The Transfer policy controls which jobs should be made eligible
for transfer. The most widely used means of establishing when a
job should be eligible for transfer is to use a threshold based
upon queue length. Should the arrival of a new job cause the queue
for processing at the node to exceed the set threshold then that
job is eligible for transfer. A limit to the number of times a job
can be transferred is needed to prevent the problem of thrashing
[10] . In this study a transfer limit of one is used. The
Information policy describes the means by which system state
information is disseminated amongst the nodes. In this study the
Information policy is based on probing. Each node will send up to
a set number(probe limit) of probes to other randomly picked nodes
asking for their current loading. Probing is only carried out _ on
the arrival of an eligible job, ensuring that the information
retrieved is as current as possible. The information gathered is
used in the Location policy, where the destination node, if any,
is picked. Homogeneous systems can base all decisions upon loading
information. Heterogeneous systems must take into account the
processing power of the nodes. Thus information on a nodes

processing power must be collected along with its loading. Many
algorithms popular in the literature use a threshold based
Location policy. A job is transferred if the remote node has a
load less_ than a set threshold, normally the same threshold level
as used in the Transfer policy, in this work we investigate a
policy based on actual queue lengths.

Four algorithms are evaluated: SHORTEST, HETRO, HETQL, HETQLNIT.
They are compared to theoretical upper and lower bounds of load
sharing performance.

The SHORTEST algorithm first suggested in [2], uses a threshold
based Transfer and Location policy. The threshold is set at 1 for
system utilisations up to 70% and 2 for higher. The Information
policy gathers the queue length at randomly picked remote nodes,
considered a satisfactory measure of loading[12] . Should an idle
node be discovered whilst probing, the eligible job is immediately
transferred to that node. Otherwise nodes are probed up to the
probe limit and the job transferred to the node with lowest
loading if less than the threshold. If no suitable node is
identified the job is processed locally.

HETRO uses a weighted load in its Location policy, this entails
the Information policy gathering details of a remote nodes load
and processing power. The weighted load is calculated as:

weigh ted_ load -
local_ power

remote_ power
* remote_ load

The transfer and location policies are both threshold based and
transfer to any node found idle is immediate. As with SHORTEST the
threshold varies with system utilisation.

HETQL differs from HETRO in that it does not use a threshold in
either Transfer or Location policy. All jobs are considered
eligible for transfer if the local node is busy, i.e. has a load
of one, no matter what the system utilisation. The transfer
decision in the Location policy is based on a comparison of
weighted remote load and the current loading of the local node
(queue of jobs at local CPU) . Transfer occurs if the lowest
weighted remote load is less than the local load or if an idle
node is found.

HETQLNIT uses the same Transfer policy and queue length based
Location policy as HETQL. The difference is that the newly arrived
job is included in calculating both local and remote loads. Thus
transfer to an idle node is not immediate or automatic. The power
of the idle node will also be a determining factor. It may be
better to bypass a slow idle node and send the job to a faster one
even if it is not idle. The weighted load is calculated as:

local power n
weighted_ load = ————=———— * (remote_ load + 1)

remote_ power

Transfer occurs if:
local_ load + 1 > weighted__ load

n v, sharing scheme where

In order to give an lower bound to performance an IDEAL case

1S baSed °n si<™lation of an idealised load

complete knowledge of queue length and job

sizes at all node is assumed available and each job is sent to the

node where it will be completed in the least possible
 time. Once a

3 ob has been sent to a node it cannot be migrated. Transfer and

information costs are assumed to be zero. This is the same

principle as M/M/K [2] and NoCOST[13] or LB2[14], used as lower

bounds in homogeneous and heterogeneous systems respectively The

upper bound is the M/M/1 case, with no load sharing.

3. System Model
The systems modelled
processing power. The
inversely proportional to
same original utilisation,
times^ are exponentially distributed. Job sizes are exponentially

distributed with a mean of 10 seconds for nodes of power 1.

are comprised of nodes that differ in

mean interarrival rate at each node is

power, ensuring that each node has the

as suggested in [14]. Interarrival

The 10
shown
partitioned

systems studied all have 20 nodes and total power of 20 as

in TABLE 1. They differ in the way the total power is

between the majority nodes(A) and the minority

nodes(B). Nodes in each category have the same processing power

this is expressed in arbitrary units as only relative power is

important. As the systems exhibit different levels of

heterogeneity the question arises as to what metric to use in

characterising it. Earlier work[15] used the ratio of processing

power of the two classes of node. However, this metric is too

restrictive as it can only be used for systems of 2 classes of

node. In this work the skewness of distribution of power is used.

This (together with the variance) proves a better measure of

heterogeneity[16].
TYPE - A TYPE -B

System
Skew
-0.206
-0.149
-0.094
-0.028
-0.009
0.009
0.028
0.094
0.149
0.206

Al
A2
A3
A4
A5
A6
A7
A8
A9
A10

Power

1.650
1.583
1.500
1.333
1.167
0.833
0.667
0.500
0.410
0.350

Fraction of

total power
0.99
0.95
0.90
0.80
0.70
0.50
0.40
0.30
0.25
0.21

Bl
B2
B3
B4
B5
B6
B7
B8
B9

BIO

Power

0.025
0.125
0.250
0.500
0.750
1.250
1.500
1.750
1.875
1.975

Fraction of

total power
0.01
0.05
0.10
0.20
0.30
0.50
0.60
0.70
0.75
0.79 Table 1

A probe limit of 3 is used for all algorithms [2,15] in the

algorithm comparisons. System utilisation's of 50%, 70% and^90%

were considered. Lower utilisation's offer little possible

performance improvement to load sharing algorithms.

Communication delays are based upon
at the University of Greenwich[17]
job is calculated assuming the
used by all nodes but on which
of transferring a job is just
destination node.

measurements taken over LAN's
The delay in transferring a

existence of a common file server
execute. Thus the cost

a. simple RFC to theno job can
the cost of

Experiments described in [17] have shown that the response times

of RPC's do not vary significantly with the power or loading of

the communicating nodes. Therefore the same delays are used in the

simulations for all nodes. The cost of invoking a load sharing

algorithm is considered negligible compared to the communication

costs. The probing cost is 30ms to the probing node and 10ms to

the probed node. The transfer cost is 30ms per job.

All simulations were implemented using MODSIM II (CACI). This is

an object-oriented language designed for discrete-event
simulation.

4. Results
Workload allocation for the ideal algorithm is shown in Figs 1-3.

For clarity only a selection of results are illustrated. The "load

balancing line" indicates where the points should lie if work were

allocated proportionally to power.

At low utilisations, the vast majority of work is carried out on

the high power nodes. Analysis of results shows weaker nodes are

only used to execute jobs with short service times. As system

utilisation increases results begin to group closer to the load

balancing line. The powerful nodes are starting to work at almost

full capacity and so the less powerful ones must take a greater

overall share of workload.

Figs 4-6 contrast the relative performance of all the algorithms

described in section 3 . The upper bound or M/M/1 case is not

shown on the graphs as the difference in scale would make the

other curves unintelligible. All results shown are well below the

upper bound.

At all levels of system loading and system heterogeneity the

SHORTEST algorithm is outperformed by HETRO. At 50% utilisation

the difference in response time is minimal at low heterogeneity.

As heterogeneity increases it can be seen that HETQLNIT performs

substantially better than the rest. This pattern is echoed in the

results for 70% utilisation, with a smaller margin in improvement

for the HETQLNIT. With a high utilisation of 90% the HETQLNIT

algorithm ceases to be the optimum except for systems with a high

negative skew. In other cases it is outperformed by the HETQL

algorithm.

HETQL and HETQLNIT can be considered more scaleable than SHORTEST

or HETRO as no change to algorithm parameters had to be

implemented with changes in system utilisation. HETRO and SHORTEST

use different threshold values at higher loads. An interesting

point to note is that the general behaviour of HETQLNIT follows

the same pattern as the IDEAL case.

Lastly in Figs 7-9 the effect of varying the probe limit, using

HETQLNIT is presented. Performance increases with rising probe

limit until 15-20% of nodes are probed. The benefits from using

higher probe limits are marginal and are not obtained at all

system utilisations. Only at 90% loading does the degree of

heterogeneity have an effect. This is possibly due to swamping[2],

where any lightly loaded node can become overloaded.

CO
O

o
c
o'-^
o
TO

Load balancing line

0.2 0.4 0.6

Fraction of power

Fig 1.
50%

IDEAL scenario, Util. =

Load balancing line

0.2 0.4 0.6 0.8

Fraction of power

Fig 3
90%.

IDEAL scenario, Util. =

25 T
• SHORTEST!
HETRO
HETQL
HETQLNFT
IDEAL

-0.2 -0.1 0 0.1

Degreee of Heterogeneity

Fig 5. Algorithm performance,
Util. 70%.

1.
0
o

S°
o-J 0•^
o
c 0,
o
'So.
2"- 0

0

0

0

00 T

90

80

70

60

50 -

40 --

30 --

20 --

10 --

00
0

A6

Load balancing line

0.2 0.4 0.6 0.8
Fraction of power

Fig
70%

2. IDEAL scenario, Util. =

SHORTEST]

HETQL
-X— HETQLNfT

IDEAL

-0.2 -0.1 0 0.1

Degreee of Heterogeneity

0.2

Fig 4. Algorithm performance,
Util. = 50%.

• SHORTEST
HETRO
HETQL
HETQLNFT
IDEAL

-0.2 -0.1 0 0.1

Degreee of Heterogeneity

0.2

Fig 6. Algorithm performance,
Util. 90%.

Probe Limit

(0

0)

p

ioa
(A
0)cc

-0.200 -0.100 0.000 0.100

Degreee of Heterogeneity
0.200

Fig 7 . Varying
Util. 50%.

Probe limits,

32.00 T Probe Limit

CO

0)
E

0>
(0

o
Q.
(A
0)

CC

-0.200 -0.100 0.000 0.100

Degreee of Heterogeneity

0.200

Fig 9. Varying
Util. 90%.

Probe Limits,

18.00 Probe Limit

CO

(0

0
E
P
0)
(A
C
Oa
(A
0DC

-0.200 -0.100 0.000 0.100

Degreee of Heterogeneity

0.200

Fig 8. Varying
Util. 70%.

Probe Limits,

5. Conclusions
In this paper, various adaptations of a load sharing algorithm for

heterogeneous systems have been evaluated using simulation

techniques. The use of local load based metrics rather than fixed

thresholds in location decisions, has been shown to be

advantageous in terms of performance and scalability.

Definitions of load balancing and load sharing in homogeneous

systems are not applicable in heterogeneous systems. Investigation

of an IDEAL scenario over a range of systems, shows that the

optimum solution is not achieved by equalising load amongst the

nodes. The workload of the more powerful nodes should be far in

excess of their proportion of processing power. When considering

heterogeneous systems it is not enough to base a load strategy

around ensuring that no node is idle. Although at high system

utilisation's this can still be effective.

Only partial information on system state is needed in the

algorithms considered. The amount of information required has been

shown not to vary over a range of systems varying in degree of

heterogeneity.

References.
[I] G.Bernard, D.Steve, M.Simatic, "A Survey of Load Sharing in

Networks of Workstations", Distrib. Syst. Engineering, no 1,
1993 , pp 75-86.

[2] D.L.Eager, E.D.Lazowska, J.Zahorajan, "Adaptive Load Sharing
in Homogeneous Distributed Systems", IEEE Trans on Software
Engineering, Vol SE-12, No 5, 1986, pp 662-675.

[3] O.Kremien and J.Kramer, "Methodical Analysis of Adaptive Load
Sharing Algorithms", IEEE Transactions on Parallel and
Distributed Systems, Vol 3, no 6, 1993, pp 747-760.

[4] P.Kruger and M.Livny, "The diverse Objectives of Distributed
Scheduling Policies", Proc. 7th Int. Conf. on Distrib.
Computing Syst, 1987, pp 242-249.

[5] S.Zhou and D.Ferrari, "A Measurement Study of Load balancing
Performance", Proc. 7th Int. Conf. on Distrib. Computing Syst,
1987, pp 490-497.

[6] R.Leslie and S.McKenzie, "Load Sharing in Distributed
Systems", Proc. 2nd Communication Networks Symposium, 1995, pp
265-268

[7] P.Srimani and R.Reddy, "Load Sharing in Soft Real-time
Distributed Systems", Int. J. Systems Sci. , Vol 23(7), 1992,
1115-1130.

[8] Y.Wang and R.Morris, "Load Sharing in Distributed Systems",
IEEE Transactions on Computers, Vol 34(3), 1985, pp 285-217.

[9] P.Kruger and M.Livny, "A Comparison of Preemptive and Non-
Preemptive Load Distributing", Proc. 8th Int. Conf. on
Distrib. Computing Syst, 1988, pp 123-130.

[10] C.Rommel, "The Probability of Load balancing success in a
Homogeneous Network", IEEE Trans. on Software Eng, Vol 17(9),
1991, pp 922-933.

[II] S.Zhou, X.Zheng, J.Wang and P.Delisle, 'Utopia : a Load
Sharing Facility for Large, Heterogeneous Distributed Computer
Systems', Software Practice and Experience, 1993, Vol 23(12),
pp 1305-1336.

[12] D.Ferrari and S.Zhou, "An Empirical Investigation of Load
Indices for Load Balancing Applications", Proc. Performance 87
12th IF IP Int. Proc. on Computer performance, 1987, pp 515-
528.

[13] S.Zhou, "A Trace Driven Simulation Study of Dynamic Load
Balancing", IEEE Trans on Software Engineering, Vol 14(9),
1988, pp 1327-1341.

[14] R.Mirchandaney, D.Towsley and J.Stankovic, "Adaptive Load
Sharing in Heterogeneous Systems", Proc. 9th Int. Conf.

Distrib. Computing Syst., 1989, pp 298-306.
[15] A.Mahamuni, T.Gonsalves. B.Ramamurthi, "Efficient Load

Information Management for Load Sharing in Distributed
Systems', Computer Networks Architecture and Applications, C-
13, 1993, pp 43-54.

[16] A.Sarraf, J.Senior, A.Wiseman, x New Technique to Assess the
Asymmetry of the Traffic Load Offered to LAN's", Proc. Second

Communication Networks Symposium, 1995, pp 77-80.
[17] Leslie.R, "An Investigation Into The Costs Involved In Probing

Heterogeneous Nodes Using Remote Procedure Calls":
Technical Report Ir02, University of Greenwich, January 95.

Load Sharing In Distributed Systems

R.Leslie, S.McKenzie
Department of Computing and Information Systems

University of Greenwich

Abstract - This paper examines the performance of
load-sharing algorithms when used on both
homogeneous and heterogeneous systems.
Algorithms described in the literature have been
investigated and new algorithms are suggested that
are tailored towards heterogeneous systems. It is
shown with the use of simulation results that the
suggested algorithms can provide better
performance when used with heterogeneous systems
and comparative results when used with
homogeneous systems. The viability is shown of an
algorithm that ignores idle nodes in preference to
more heavily loaded nodes of a more powerful
nature.

1. Introduction

When considering a system of computers, at any time
there is a high probability that some will have a heavy
load whilst others are idle or lightly loaded. Distributing
jobs from the heavily to lightly loaded nodes can
decrease the average response time of jobs in the
system.

The distribution of jobs is achieved with the
use of an algorithm. Static algorithms are based upon
pre-determined load figures and so are limited in their
use. Centralised algorithms are vulnerable to bottle
necks and failure of the machine on which the algorithm
is running. Both static and centralised algorithms are
discussed in [1,6]. The algorithms considered in this
paper are dynamic and distributed.

The performance of load-sharing algorithms
can be gauged against two measures. The worst case
scenario is that where no load-sharing takes place at all.
This is referred to as the M/M/1 case, each node has a
single queue served by a single server. The second
measure is the other end of the spectrum, where perfect
load-sharing occurs, M/M/k. The system is represented
by a single queue with multiple servers, no overhead is
associated with the load-sharing process.

The potential gains achievable by load-sharing
algorithms have been shown in previous papers[2,3,7].
However the system on which the suggested algorithms
have been tested is invariably constructed of
homogeneous machines. With the widespread use of
heterogeneous systems, it was considered prudent to test
the algorithms previously suggested on a variety of these
systems. Heterogeneity in the systems considered was
limited to differences in computational power.

The testing and development of load-sharing
algorithms has been carried out through the use of the

Modsim simulation language. The simulation model
used has been validated against results published in
previous papers and those gained through queuing
theory analysis.

2. Dynamic Distributed Algorithms

Dynamic distributed algorithms can be sub-divided into
three constituent parts known as policies. The terms
transfer policy and location policy were first introduced
in [2], transfer policy has been generally accepted as the
policy determining whether a job should be executed
locally or made available to be transferred to another
node for execution. The most widely used transfer
policy is the threshold policy based upon queue length,
as a new job arrives at a node, the queue of jobs at that
node is examined, if it is above a set threshold value the
job is eligible for transfer. Eligibility for transfer does
not imply that the job must be transferred.

Early definitions of location policy, the policy
which decides where a job eligible for transfer should be
transferred to, included the means of acquiring the
information on which to base the decision. Later work
[3,7] splits this definition into location and information
policy, the latter concerning the acquisition of
information upon which to base decisions. Using the
three terms allows a clearer description of any
algorithm and they are all used in this paper.

The simplest dynamic distributed algorithm is
one which uses a random location policy, known as the
RANDOM algorithm. First suggested in [2] and referred
to in [3,7]. This algorithm uses a transfer policy based
upon queue length thresholds. Once it has been decided
that a job is suitable for transfer no information is
gathered on which to base the transfer decision the job is
randomly transferred to any node in the system. A limit
(normally 1) must be put on the number of possible
transfers or the problem of thrashing may arise. Where
jobs are constantly transferred and never executed.
When used in homogeneous systems the performance
offered by this algorithm is always an improvement on
the no load-sharing case. This is shown not to be the
case in heterogeneous systems.

The SHORTEST algorithm [2] is more
sophisticated as it bases the location decision on the
information gathered upon the system state. When a job
becomes eligible for transfer other nodes are probed as
to their current load level. The nodes to be probed arc
picked at random, a limit is put on the number to be
probed. The first idle node probed (load of zero) is the
one to which the job is transferred. If an idle node is not

found the one with the lowest load is selected, provided
this load is less than the threshold. Should a suitable
node not be found the job is processed locally. As this
algorithm was developed for use with systems of
homogeneous nodes, no allowance is made for the
differing powers of machines that occur in
heterogeneous systems.

Two algorithms that consider the heterogeneity
of nodes are suggested in this paper. Firstly the HETRO
algorithm, which has a similar transfer policy to
SHORTEST. However the information policy gathers
the power of the node (RP) as well as its load (LP). The
power is scaled against the time to complete a simple
instruction. The location policy uses both the load and
power of the remote nodes as well as the power of the
local node (LP). The real load at each remote node is
calculated as

real load = remote load *
local _ power

remote _ power

Should an idle node be found the job is transferred to it.
Otherwise the node with the lowest reaMoad, lower
than the threshold will receive the job. If no suitable
node is found the job is processed locally.

The second algorithm proposed is
HETRO_LIMIT. This operates in a similar manner to
HETRO but only considers nodes as eligible to receive
jobs if the power of the remote node is greater or equal
to the power of the node at which the job originates.
This rule is used to avoid idle low powered nodes being
picked ahead of idle high powered ones.

3. System Model

The model decided upon for simulation is comprised of
20 nodes. These are arranged in four configurations:

• 20 nodes of power 1
• 19 nodes @ power 1, 1 node @ power 20
• 1 node @ power 1,19 nodes @ power 20
• 10 nodes @ power 1, 10 nodes @ power 10

All nodes experience the same degree of
utilisation. The average interarrival time is inversely
proportional to the power of the node. Interarrrival times
are exponentially distributed. All job sizes are
exponentially distributed about a fixed average. This
equates to 10 seconds for nodes of power 1.

Communication delays in the system are based
upon measurements taken over LAN's at the University
of Greenwich[4]. The delay in transferring a job is
calculated assuming the existence of servers used by all
the nodes but on which no jobs can execute. Thus the
cost of transferring a job is just the cost of transmitting a
command line to the destination node.

Communication between nodes is enabled with
the use of Remote Procedure Calls (RPC).

Experimentation detailed in [4] has shown that the
response times of RPC have show little correlation to
the power or loading of the nodes communicating.
Therefore the same delays are used in the simulations
for all nodes.

The cost of invoking the load sharing algorithm
is considered negligible in comparison to the
communication costs.

Communication costs:

• Probe. 30ms to probed node
10ms to probed node

• Transfer job 30ms to job

The transfer limit is set at one in all cases
except the use of RANDOM in the heterogeneous
configurations. The number of nodes to randomly probe
(probe limit) is set at 3. This is the optimum value when
using homogeneous systems [5]. Intuitively a higher
value would be applicable for heterogeneous systems
but for the purpose of comparing algorithms 3 is
considered to be suitable. The value of the threshold is
set at 1 for all configurations and load levels, this is the
optimum for the majority but certainly not all load
levels.

4. Results

The results for the homogeneous system confirm that all
four algorithms give an improvement in response time
over the no load-sharing case (M/M/1). The
performance of the SHORTEST, HETRO and
HETRO_LIMIT algorithms are exactly the same.
Without any degree of heterogeneity in the system they
are effectively the same.

Homogeneous System

100.00 T

-M/M/1

-RANDOM

SHORTEST

HETRO

-HETRO L

System Load

The results for the first heterogeneous system
show the shortcomings of the RANDOM algorithm. At
all levels of system load its performance is worse than
the no load-sharing case, making it effectively useless.

The other three algorithms all give improved
response times. The best being the HETRO_LIMIT.

Heterogeneous Systeml

30.00 T

25.00 -

>5 20.00 -

e
§• 15.00D

10.00

5.00

—•——M/M/l

—8——RANDOM

SHORTEST
—K—HETRO

—JK—HETRO L

System Load

When considering system 2 and 3 it can be
observed that the RANDOM algorithm quickly becomes
useless. This is due to the instability introduced by the
relative swamping of low power nodes with jobs from
the higher powered ones. Increasing the transfer limit
was found to give no improvement.

Heterogeneous System2

5.00 T

——•——M/M/l

—m—— RANDOM

SHORTEST
—^——HETRO

HETRO_L

0.00

System Load

There is little difference in the performance of
the other three algorithms in System2, this is attributed
to the fact that this is almost an homogeneous system.

The results for System3 again show the
improvements in performance achieved over the
SHORTEST algorithm when using the HETRO and
HETROJJMIT algorithms. However at low system
loads the SHORTEST and HETRO algorithms are out
performed by the M/M/l scenario. This is due to the
relative swamping of less powerful nodes.

Heterogeneous System3

10.00 T

M/M/l

RANDOM

SHORTEST

—K" HETRO

HETRO_L

System Load

5. Conclusions

The performance of established algorithms has been
investigated when used in a variety of system
configurations. Two other algorithms that take into
account system heterogeneity have been suggested and
investigated.

The RANDOM algorithm which operates
successfully in a homogeneous system has been shown
to have no future when used with heterogeneous
systems. This is because the location policy used in such
systems is crucial. The danger to be avoided is the
swamping of low power nodes with jobs that would
execute far more rapidly on the high power machines
they originate from.

The SHORTEST algorithm has been shown to
operate successfully on heterogeneous systems, but is
outperformed by the suggested algorithms HETRO,
HETRO_LIMIT which take into account the
heterogeneity of nodes in their respective location
policies. The HETROJLIMIT algorithm prevents the
transferral of jobs from nodes to less powerful nodes
even if the latter are idle. Resulting in a considerable
increase in performance over a similar algorithm
allowing such transfers. This could indicate that load
thresholds of zero are feasible. With jobs at nodes
becoming eligible for transfer even if that node is idle.

Further work will involve adapting the
simulation model to deal with multiprogrammed nodes
rather than just serial execution ones. Algorithms can
then be tested in the workstation environment. The
derivation of a measure of heterogeneity, with which to
compare networks is also a target.

REFERENCES

1. Bernard.G, Steve.D, Simatic.M, "A Survey of
Load sharing in networks of Workstations"
Distributed Systems engineering No 1, 1993

2. Eager.D.L, Lazowska.E.D, Zahorajan.J,
"Adaptive Load Sharing in Homogeneous
Distributed Systems" : IEEE Trans on Software
engineering, Vol SE-12, No 5, May 86

3. Kremien.O, Kramer.J, "Methodical Analysis of
Adaptive Load-Sharing Algorithms" : Trans on
Parallel and Distributed Systems, Vol 3, No 6,
Nov92

4. Leslie.R, "An Investigation of Simple Load-
Sharing Algorithms Using Simulation": Technical
Report, University of Greenwich, October 94

5. Leslie.R, "An Investigation Into The Costs
Involved In Probing Heterogeneous Nodes Using
Remote Procedure Calls": Technical Report,
University of Greenwich, January 95

6. Wang.Y & Morris.R.J.T, "Load Sharing in
Distributed Systems" :IEEE Trans on Computers,
Vol C-34, No 3, March 85

7. Zhou.S, "A Trace Driven Simulation Study of
Dynamic Load Balancing" : IEEE Trans on
Software Engineering, Vol 14, No 9, Sep 88

