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____________________ ________Abstract

Abstract.

The research reported in this dissertation was undertaken to investigate efficient 

computational methods of automatically generating three dimensional unstructured 
tetrahedral meshes.

The work on two dimensional triangular unstructured grid generation by Lewis 

and Robinson [LeR76] is first examined, in which a recursive bisection technique of 

computational order nlog(n) was implemented. This technique is then extended to 

incorporate new methods of geometry input and the automatic handling of multi- 

connected regions. The method of two dimensional recursive mesh bisection is then 

further modified to incorporate an improved strategy for the selection of bisections. This 

enables an automatic nodal placement technique to be implemented in conjunction with 

the grid generator. The dissertation then investigates methods of generating triangular 

grids over parametric surfaces. This includes a new definition of surface Delaunay 

triangulation with the extension of grid improvement techniques to surfaces.

Based on the assumption that all surface grids of objects form polyhedral 
domains, a three dimensional mesh generation technique is derived. This technique is a 
hybrid of recursive domain bisection coupled with a min-max heuristic triangulation 

algorithm. This is done to achieve a computationlly efficient and reliable algorithm 
coupled with a fast nodal placement technique. The algorithm generates three dimensional 

unstructured tetrahedral grids over polyhedral domains with multi-connected regions in 

an average computational order of less than nlog(n).
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______ _____________________________Parti

Parti 
Introduction and Overview.

This dissertation is divided into three parts, in which this section will give an 

introduction to the aims and aspirations of the research. This section will also include an 

overview of current techniques with a discussion of related topics.
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__________________________________________Chapter 1

1.1 Introduction.

Advances in engineering software, fuelled by hardware improvements, have led 

to an increased desire to model more complex geometries. This has resulted in a bottle 

neck of generating good quality three dimensional unstructured meshes for the analysis 

of these domains using methods based upon Control-Volume and Finite Element 

procedures.

Current 2D mesh generation methods tend to rely on interaction between the user 

and the mesh generating software to produce well structured meshes; this is much more 

difficult, and sometimes impossible with 3D mesh generation since there are still large 

visualization problems to overcome. In Chapter 2 the problem of visualization of three 

dimensional grids is discussed, together with how to evaluate grid quality before it is 

utilized for any further computational purposes.

There have been several methods applied to the problem of generating three 

dimensional meshes for complex geometries, such as the Advancing front [BoP91][Lo85], 

Octree [ScS90] and Delaunay [CFF85] triangulation techniques. These methods tend to 

be CPU intensive and often require large amounts of user interaction. A brief overview 

of these techniques together with examples, are covered in Chapter 3.

The aim of the thesis is to present a computationally efficient, reliable and good 

quality three dimensional mesh generation program using techniques that have an average 

computational order of nlog(n). In Chapter 4 the method of "recursive domain bisection" 

mesh generation by Lewis and Robinson [LeR76] is outlined along with the modifications 

and extensions that have been applied.

Chapter 5 looks at the problem of generating grids over surfaces and outlines how 

2D techniques can be extended. This chapter includes a new definition of parametric 

surface Delaunay triangulation and various grid improvement techniques for surface 

meshes.
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____________ ________ ____________Chapter 1

Chapter 6, describes the initial attempt at recursive three dimensional mesh 

generation and how these ideas have been modified to form the current fully working 

technique. The following Chapter 7, describes the fundamental algorithms used in 

conjunction with the mesh generator, presented in Chapter 6. A new direct boundary 

constrained local min-max meshing algorithm, that is based on the Delaunay triangulation 

algorithm by Joe [Joe89], is also described.

In Chapter 8, the thesis then presents some example geometries and grids, with 

CPU times and various mesh quality measures. Overall conclusions and possible 

extensions to hexahedral element generation are presented in Chapter 9.

1.2 Problem reduction techniques.

The reduction of a model into simpler parts is fundamental to mesh generation. 

This is reflected in many methods, such as Octree [ScS90] and Medial axis [GUP91], 

which utilize a problem reduction technique to sub-divide the geometry into simpler 

regions, to enable the generation of the final mesh.

Problem reduction techniques, such as the Quicksort [Hoa61], which apply 

recursive methods to reduce the data space to sufficiently small segments so that a simple 

algorithm may be applied, have traditionally been more computationally efficient than 

alternative algorithms. The Quicksort is an order nlog(n) method [Hoa62], where the 

problem of sorting a vector is reduced to sorting shorter and shorter vectors, until vectors 

of length two are reached. These can then be sorted by one comparison and a conditional 

interchange. Lewis and Robinson [LeR76] extended this idea to two dimensional 

unstructured triangular grid generation, which resulted in a computationally efficient 

algorithm of order nlog(n). This method of mesh generation, using their technique, forms 

the fundamental idea behind this research and is briefly outlined here. A fuller description 

is given in Chapter 3.
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Chapter 1

The method of Lewis and Robinson is a two dimensional technique, see Chapter 

3 section 3.7. Since this thesis is primarily concerned with 3D geometry, the basic 

approach is depicted in Figure 1.2.1 with a three dimensional domain. The basic 

philosophy behind this technique for meshing a region R, see Figure 1.2. la, is as follows:

(a) Splitting R into two sub-regions^ and R2 , by choosing a plane of best split.

A new boundary is generated across the interface of the regions to create two new 

closed independent domains, Figure 1.2.1b.

(Note this initial cut has a zigzag appearance as the splitting routine follows a 

path through the surface mesh closest to the cutting plane.)

(b) Now solve the triangulation problem for Rt and R2

Step a and b are applied recursively until tetrahedral domains are formed, as in 

Figure 1.2.1c which contains no interior points, these being the elements of the mesh. 

Tetrahedral elements which contain internal points and sub-region for which no valid 

bisection exists, are dealt with by special algorithms. When all the sub-regions are 

resolved into tetrahedral elements the mesh is complete, Figure 1.2. Id.
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_________________________________________Chapter 1 
Figure 1.2.1: Example of mesh generation by recursive domain bi-section [Law91]

(a) Initial Domain

(b) Then apply first bi-section 

on domain.

(c) Then keep on applying 

bisections to domain.

(d) Until tetrahedra are formed. 

Hence the final tetrahedral 

unstructured mesh is 

generated.
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_____ _____Chapter 1

1.3 Why Order of Execution is Important

Most of the algorithms in this thesis have an order of execution that fall into the 

following classes:

constant : Order 1 
log log : O(lg Ig n)

linear : O(n) 
n log n : O(n Ig n) 

quadratic : O(n2) 
cubic : O(n3) 

exponential : O(2n)

The parameter n is a value that characterizes the size of the input to a given 

algorithm, and if we say the algorithm runs to completion in O(f(n)) steps, we mean that 

the actual number of steps executed is no more than a constant times f(n), for sufficiently 

large «. It is important to gain an intuitive feeling for these classes in order to have a 

comparative framework in which to understand performance properties of algorithms. 

Figure 1.3.1 shows the above functions plotted against CPU.

50 -i

40-

D 
0_ 
O

30-

20-

10-

4
Operations

Figure 1.3.1: functions of n operations against CPU time. Graphs are in ascending
order with O(lg Ig n) at front and O(n3 ) at back as in legend.
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__________________________________________Chapter 1
As can be deduced from the Figure 1.3.1, for small problems the order of the 

algorithm is not important, but as the size of a problem increases the time difference 

between routines can become significant. If we had a problem that required over a 

million operations, a function of even O(n2) would take over 7000 times longer than an 

O(n Ig n) process. Therefore, if the running time of an algorithm is characterized by an 

exponential function, we cannot expect to solve practical problems of very large size. In 

3D mesh generation even very modest problems are in the region of over a thousand 

nodes, so an algorithm that is anywhere near exponential is not practical.

A major problem is that most algorithms often do not fall precisely into anyone 

class. The order of most routines often depends to some degree on the form in which the 

data is presented to them or the complexity of the particular problem they are applied to. 

A common approach is to categorise an algorithm by its worst case and/or average 

situation.

If for example we compare two routines the Quicksort [Hoa62] and the Heapsort 

[Knu73], both these routines are reported to be of order n log(n) [ThoSO]. However, the 

Quicksort is in fact only on average O(n log n) and is O(n2) steps in the worst case 

where the initial distribution of the data is extremely random. The heapsort, on the other 

hand, is a routine that has the advantage of being an O(n log n) sorting algorithm, whose 

worst case performance is fairly close to its average performance [ThoSO]. Therefore, it 

is often not just sufficient to quote the order of an algorithm, but also a standard 

deviation to address the above issues to some extent.

Throughout this thesis, many CPU times will be presented in a graphical format, 

and also may be accompanied with statistical analysis to address the above issues, at 

least, to some extent.
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in

Mesh Generation
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__________________________________________Chapter 2

2.1 Geometry for mesh generation.

The initial stage of an analysis of any model is the generation of the geometry. 

In three dimensional geometry solid modelling, there are many different ways of 

representing objects. The geometry representation of a model has a great effect on the 

types and form of geometry operations that can be applied, and therefore has an effect 

on the mesh generator. The mesh generator cannot be designed independent of the object 

definition and the topic is, therefore, discussed in this section.

Many geometry representation techniques have emerged due to the difficulties of 

perceiving a real physical object within the constraints of the virtual world of the 

computer. However, recently two main approaches have dominated, namely, constructive 

and surface representations. 

2.1.1 Constructive models.

All constructive models consider solids as point sets of E3 . Their basic idea is to 

start from some sufficiently simple point sets that can be represented directly, and model 

other point sets in terms of very general combinations of the simple sets.

The main technique in this class is constructive solid geometry (CSG) where 

parameterized instances of solid primitives

and boolean 

implemented.

set operations are

Figure 2.1.1 illustrates an engine 

valve generated using boolean operations 

applied to a set of primitives.

CSG modelling packages are often 

a useful and fast way of generating many 

machined parts. However, the user has no 

direct access to individual half-spaces 

(graphical primitives) and this can restrict 

the designer. An example is in aircraft 

design where curved surfaces on wings 

can be difficult to model.

Union
 " /

Cylinder

o
Intersection ^ \\. Subtract

Cylinder Sphere
Torus

Figure 2.1.1 Binary tree of CSG model.
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________________________________________Chapter 2
2.1.2 Surface based models.

The surface based characterization of solids, looks at the boundary of a solid 

object. The boundary is considered to consist of a collection of faces that are glued 

together so that they form a complete, closing skin around an object. Figure 2.1.2A 

illustrates a box object represented by a collection of polygon faces, Figure 2.1.2B shows 

the same box with its faces separated.

B

Figure 2.1.2 Boundary model of a box.

Many boundary modelling packages also encompass curved surfaces. These 

curved surfaces are often parametric patches that are manifolded together. Parametric 

patches include bilinear surfaces [Dew88], coons patches [Gas83], cubic patches 

[Dew88], Bezier surfaces [BaB83] etc, which can be defined using a number of control 

points. Recently NURBS [Pie91] (Non-Uniform Rational B-Spline) surfaces have made 

an impact in this area and are used widely in the aircraft and car industry.

A large number of objects can be represented using a boundary model technique, 

but these models are often difficult to generate. To assist in the generation of these 

models, research has been invested in new curved surface representations and a number 

of CAD packages have been developed. Since many objects can be quickly represented 

using CSG techniques, many modern boundary modelling packages incorporate some 

CSG features and provide predefined surface primitives such as sphere, torus etc. This 

has resulted in many hybrid modelling tools.
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__________________________________________Chapter 2

The type of model representation used affects the type and efficiency of 

operations carried out on the domain. This in turn affects the reliability, speed and type 

of mesh generation technique that can be applied to the region. A surface mesh is a 

boundary model of a domain. Therefore, boundary surface representations of models 

make a natural choice as the starting point of grid generation and many CSG models can 

generate output in this format.

2.2 Visualization of 3D geometry and meshes.

Visualization of geometry on the two dimensional device of a cathode ray tube 

provides its own problems. Complex models that are highly re-entrant with many cavities 

and sub-domains, such as those found in the casting industry, are difficult to perceive on 

the computer screen, often requiring many different viewing angles of the model to be 

displayed simultaneously. Frequently a number of slices through the domain are required 

to show any hidden features and cavities. This problem is particularly acute in the 

generation of geometry, in which the model has to be manipulated into a particular angle 

and location before a new facet can be generated manually by the designer. Many other 

fields, such as contouring [Sab85], have suffered from the problem of visualization.

A three dimensional mesh, especially an unstructured mesh, is a complex 

geometry with many features hidden below the surface skin of the domain. A number of 

techniques have been applied to try and display the hidden detail of a mesh. Such 

techniques include domain slicing [Bur90] and element shrinking [Law91][TaA91], In 

domain slicing a number of planes are passed through the domain to try and expose some 

of the internal mesh features. However, this can present a false picture, depending on 

how individual elements are bisected by the cutting plane, giving an impression of 

regions of the mesh being of finer or coarser density than they really are. The method 

of element shrinking reduces all the elements' size by a given amount c, but keeping their 

centroids fixed. This results in small gaps being created between the elements. Both 

methods do little more than prove the existence of a grid, they provide no information 

on element quality and whether elements intersect.
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A number of highly complex CAD and visualization packages have to be used in 

the course of grid generation. Visualization of complex models has proven to be such a 

difficulty that a new generation of packages have been developed to try and address some 

of the above problems. The next two pages depict illustrations from apE [Bro92] and 

AVS [Bro92], which are advanced visualization packages used throughout this thesis for 

the generation of many of the illustrations. They are pipe line systems in which a user 

builds up a network of operations that are required for a particular visualization task.

Figure 2.2.1: apE (Animation Production Environment) visualization package.
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Figure 2.2.2: AVS (Advance Visualization System) package.
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2.3 Constructive Solid Geometry (CSG).

The geometry input format for the new bisection mesh generator is polyhedral 

domains; the reason for this is discussed in Chapter 6. CSG Modelling packages are often 

a useful and fast way of generating many machined parts, and they provide a convenient 

method of output in the form of polyhedral surfaces. The drawback of using these 

polyhedral domains generated in this fashion is that the polyhedral faces are often 

degenerate and elongated. Sometimes the polyhedral faces can be of a magnitude that is 

smaller than the element size required for the mesh. Even the order in which primitives 

are combined have an effect on the form of polyhedral domains generated. Below are 

three identical examples of a pipe like component generated by different combinations 

of CSG operations and the resulting polyhedral domains generated.

Figure 2.3.1 : Three identical pipes with different polyhedral definitions; this is 
especially prominent around top flange of pipes.

The figures generated in the above diagram were displayed without internal lines, 

these are extra edges added to the domain by the CSG model to ensure that all faces are 

valid planar polygon surfaces. In this particular modeller the polygon elements had to be 

convex, since this speeds up most ray tracing and hidden line removal algorithms. Since 

this simplification of the surfaces is for applications where the quality of the elements 

is not essential, this often results in very poor surface elements (Figure 2.3.2).

This problem has often been encountered during this research. As a consequence, 

several algorithms have been derived, which take a polyhedral domain and by joining 

faces and swapping vertices improve the initial surface elements. This has worked to
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some degree, but it is often almost impossible to remove all poorly defined elements.

The problem with most CSG modellers is that the 

polyhedral domain sub-division is done for speed, rather 

than for the quality of the bisected surfaces. The algorithm 

used within these CSG packages, from the experiences 

gained during this research, for polyhedral convex 

subdivision are very similar to the algorithms used within 

the mesh generation code. However, the grid generation 

code is more selective about which bisection edge is usec 

to divide the domain. Therefore, for most CSG packages
^Figure 2.3.2:Typicalonly a small modification is necessary to generate , , , . ' '.
polyhedral domain.

reasonable surface elements.

CSG software tools are often geared towards object visualization, therefore they 

often incorporate utilities to aid in this task, such as tools to guide the resolution of 

curved surfaces. The resolution parameter, for example, on a cylinder would increase/ 

decrease the number of polygons used to represent the outer perimeter, just as in the case 

of a circle, the more straight lines used to represent it, the better the definition. This 

resolution factor can, in effect, help to guide the meshing algorithm nodal placement. 

Hence, if the designer had requested a higher definition on a surface they would probably 

require a denser mesh over that region, and vice-versa for a coarser resolution factor.

The conclusion which can be drawn, from CSG geometry modellers is that they 

tend to provide the necessary information for generating a three dimensional grid, but the 

quality of the output often leaves a lot to be desired and generally requires some 

manipulation. However, these problems could be overcome by a small modification to 

the CAD package, to gear it more towards grid generation rather than just visualization.
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CSG modellers have intrigued Software Engineers to such an extent, that there 

is currently work being undertaken which integrates CSG directly with meshing routines 

[Cox93]. This method which is called Domain Composition builds the mesh 

simultaneously as the model is being created. Each primitive object has a predefined 3D 

grid. For example, Figure 2.3.3, if we have a region D, which was formed by a Boolean 

operation on the domain A and B. The mesh over the region D, is formed by taking the 

original grids of A and B, and then applying the same Boolean operation with the use of 

grid interpolations, where necessary. However, in Lee's thesis [LeeSl], he argues that this 

technique is not a practical method for the generation of three dimensional meshes.

©

Figure 2.3.3 : Domain Composition
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2.4 Tetrahedral shape measures.

One of the main problems in tetrahedral mesh generation is how to measure the 

quality of a mesh, since poorly shaped tetrahedra may cause numerical difficulties in the 

under lying numerical technique, e.g finite element analysis. Papers on tetrahedral mesh 

generation have used various quantities for measuring the shape or quality of tetrahedra. 

In this section two approaches will be described. 

2.4.1 Solid angle.

In 2D triangulation mesh generation, the minimum interior angle of a triangulation 

is a commonly used triangle shape measure. A natural extension of the minimum interior 

angle to three dimensions is the minimum solid angle 0min .

Unlike a triangle a tetrahedron has many different angle measurements : 

12 planar angles (three in each of the 4 faces), 

6 dihedral angles (one at each of the 6 edges), 

4 solid or dihedral angles at the vertices.

Figure 2.4.1 : tetrahedron

The solid angle fy at v, is the surface area formed by projecting each point on the 

face not containing the vertex v, onto the surface of the unit sphere with v, at its centre. 

However, for a tetrahedron the solid angle at D, Figure 2.4.1 can be computed as oc+p+y- 

71 [BeySl], where oc,p and y are the dihedral angles at edges AD, DB and CD 

respectively.
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It can be shown [Gad52] thatO< J^_ 0,. < 2n . Therefore a very large solid angle,

near 27C, for a tetrahedron implies that there also exists a small solid angle, and this is 

the reason why we only consider the minimum solid angle. Also if the tetrahedron is 

regular, all face angles are rc/3 and all solid angles are the same.

2.4.2 Tetrahedral goodness function.

An alternative way of measuring mesh quality is to use a tetrahedral goodness 

function or Gamma value [ShL91]:

Where :

\ is the element's normalized shape parameter for tetrahedron i. 

F is the volume of tetrahedron i.

is the surface area of tetrahedron i.

is a normalization factor[Sh!91] (374.123) which yields ^ =1 for an

equilateral tetrahedron.

The above equation returns a value of 1 if the tetrahedron is equilateral. As the 

tetrahedron deviates from the ideal shape so does the value of K-t , the larger the deviation 

of \ from 1 the poorer the element quality. A \ value above 0.8 is considered to 

represent an extremely good tetrahedral element [ShL91].

Both the tetrahedral "solid angle" and "goodness function" offer practical 

measurements for measuring mesh quality. These measures are only a guide, and the only 

true mesh quality test is to use the grid for analysis of the domain. However, they do 

offer a quick quality measure and a means of comparing different grids over the same 

geometry model. Throughout this thesis the results from the grid generator will be 

presented using both the above tetrahedral shape measures.
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2.5 Summary

The problem of representing complex three dimensional models has given rise to 

a number of alternative techniques for the representation of geometry. The technique of 

mesh generation must be considered in conjunction with various geometry 

representations. A number of software tools have been developed for the generation and 

representation of three dimensional geometries, however they are often not designed for 

providing suitable geometry models for computational analysis.

Many problems exist in measuring the quality of three dimensional unstructured 

grids, and visual techniques cannot practically be applied. Therefore, several 

computational methods of measuring mesh quality do exist, of which two are described 

in this Chapter. Opinion is still divided over which measure gives the best indication of 

mesh quality, and research is being undertaken [LiJ93] to establish which technique is 

best. However, these techniques can only provide an indication to the true mesh quality 

and a means of comparing different grids over identical geometry.
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Chapter 3

Current Major Mesh Generation

Techniques.

page 21



________ ___________________________Chapter 3

3.1 Introduction

Many techniques have already been applied to the problem of generating 

unstructured grids over three dimensional geometry. This chapter will give a brief 

overview of some of the major methods that have been examined during this research. 

This chapter is not intended to be a complete overview of all current mesh generation, 

but rather a subset of the techniques that have, with some degree of success, been applied 

to 3D mesh generation and to some extent influenced the research described here. This 

section will attempt to give the reader an idea of the philosophy behind these methods, 

how they have been applied, together with their advantages and disadvantages.

Two techniques are covered in more depth, Delaunay [ScS90][ScS88][Joe86] 

[CFF85][Law72] and Binary mesh operators [ShL91], since these methods have been 

implemented in conjunction with the new bisection method, see Chapter 6. Delaunay is 

of particular interest, as it is the technique that offers the best computational order of the 

current mesh generation algorithms and forms part of many hybrid mesh generation 

codes.

The chapter is completed with a description of mesh generation by Recursive 

domain bisection [LeR76]. It is then concluded with a discussion of the problems of the 

these techniques and discusses why mesh generation by recursive bisection offers a 

practical solution.

Key Words: Advancing Front [BoP91][PPF85][Lo85], Delaunay triangulation [ScS90] 

[ScS88][Joe86][CFF85][Law72], Binary mesh operators [SW91], Paving [BsC91], 

Medial Axis [TPA93][TaA91][GuP91], Recursive domain bisection [LeR76].
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3.2 Advancing front technique

The advancing front method has been extensively developed by workers such as 
Lo [Lo85] and Peraire [PPF88].

Figure 3.2.1 : Advancing front technique in 2D from initial domain A to final mesh F.

The basic underlying concept of the advancing front [Lo85][LPG88] method is 

illustrated in Figure 3.2.1 for the generation of a uniform size triangular mesh over a two 

dimensional domain. The boundary of the domain to be meshed is first discretized. Points 

are placed on the boundary, and contiguous points are joined by straight line segments 

and assembled to form the initial generation front. At this stage the triangulation loop 

begins. A side from the front is chosen and a triangle is generated that will have this 

selected side as one edge. In generating this new triangle an interior node may be created 

or an existing node in the front may be chosen. At this stage it is necessary to ensure that 

the element generated does not intersect with any existing side in the front. After 

generating the new element the front is conveniently updated in such a way that it always 

contains the sides that are available to form a new triangle. The generation is completed 

when no sides are left in the front.

This method has progressed over the years from a very high order method, above 

n2 , to around order nlogn, but still remains one of the most CPU expensive methods 

because of the large number of surface intersections that have to be tested for.
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3.3 Binary Mesh Operations.

Mesh generation by binary operations [ShL91][Wei88][Lo88][W6r83], is the 

implementation of a limited set of geometry operations that are sufficient to generate a 

complete grid in 2D or 3D. In 3D there are three basic operations that can be used to 

generate a coarse grid: face removal, edge removal and vertex removal. 

Face removal: Carves a tetrahedron from the object being triangulated by the 

introduction of a new vertex in the interior of the domain.

Figure 3.3.1: Face removal

Edge removal: Carves a tetrahedron from the domain by selecting two adjacent non- 

planar triangular faces and generates a new edge inside the domain.

Figure 3.3.2: Edge Removal.
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Vertex removal: Carves a tetrahedron from the domain by removing one complex vertex 

and all its associated edges. (Removes three adjacent faces from the domain)

Figure 3.3.3: Vertex Removal.

The method by Shephard and Lo [ShL91] applies these operations to generate 

coarse grids that can be refined later. The algorithm gives each operator a priority based 

on its ability to reduce the geometric complexity of the domain. The measure of the 

geometric complexity is the number of topological entities in the geometric model and 

their adjacencies. Therefore, the routine attempts to use vertex removal first on the 

current geometry. However, if this cannot be applied, it then tries edge removal. 

Subsequently if an edge removal fails, face removal is used, which is the only binary 

operation that can be applied to any geometry. These set of binary operations are coupled 

with an element shape control function in a bid to improve the quality of the final mesh.

Mesh generation by binary operations is strongly related to the advancing front 

technique with similar draw backs in computational order. It could be argued that these 

methods are identical except in the priority of applying the mesh operations, i.e 

advancing front applies face removal to a domain first and if this does not generate any 

acceptable elements the other binary operations are attempted.
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Below is a list of the types of procedures involved in each binary operation.

Face removal:

Choose a polyhedral face. 

Generate a point inside the domain.

Point is inward and normal to face. 

Test to see if the line from the centre of face to the point, does not intersect any

other faces in the domain (may adjust position of point). 

Test to see if lines from the nodes of face can be joined up to the new point. 

Check newly formed surfaces are not too close to other surfaces in domain. 

Check that the new domain does not contain any other domain points. 

Check Gamma value* to see if a good tetrahedon was formed. 

Check/correct direction of face normals, of the new face elements.

Edge removal:

Find two adjacent polyhedral faces.

Check that the edge joining non-common nodes is inside domains.

Check that the edge joining non-common nodes does not intersect

other polyhedral faces in domains.

Check that the new surfaces do not intersect any other surfaces. 

Check that the new surfaces are not too close to other surfaces. 

Correct the direction of polyhedral normal. 

Check on Gamma value of the tetrahedron formed.

Vertex removal:

Find three polyhedral faces that are adjacent to each other.

Check to see that the domain does not contain any other nodes.

Check that the tetrahedron formed is inside domains.

Test to see if the new face is not too close to other faces in the domain.

Correct direction of the new face.

*Gamma value : Tetrahedral shape measure, see section 2.4.2.
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3.4 Paving.

The paving method, which has been primarily developed by Blacker and Stephenson 

[BSC91] is depicted below.

B

11

Fixed nodes 
Floating nodes

Figure 3.4.1 Example of paving from geometry (A) to mesh (C) [BSC91].

Paving begins with the input of one or more ordered, closed loops of connected 

nodes, Figure 3.4.1 A. These loops form the boundary of the mesh and contain the fixed 

nodes. During the mesh generation process, the paving technique always operates on the 

boundaries of connected nodes referred to as paving boundaries. The paving boundaries 

are transient in nature and progress as the mesh is generated, Figure 3.4.IB. A point is 

selected on each paving boundary to start the element paving. The method then walks 

around the domain, keeping the boundary to its right, generating elements. In Figure 

3.4. IB the arrows on the elements' faces indicate the direction of element generation. 

Each complete loop of elements is called a row. Rows are generated from a number of 

portions. Once a row portion of elements is generated they are smoothed [BSC91], by 

adjusting nodal positions to improve elements' shapes. If any of the newly generated 

elements intersect with other rows of elements these are seamed or closed by connecting 

opposing cells. After the completion of each row, it is adjusted to correct for small or 

large elements, and again checked for intersection.

The paving method has a paving boundary that advances into the domain in a 

similar way to the advancing front. Therefore, it inherits some of the computational and
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intersection problems of the foresaid method. Unlike the previous techniques the paving 

algorithm has the benefit that it generates quadrilaterals and in 3D hexahedral elements. 

3.5 Delaunay Triangulation

The Delaunay triangulation in 2D is a well researched method [Wat81],[ScS88] 

and has been successful in that it has been shown to produce well structured meshes that 

satisfy the min-max angle criterion 

(optimal triangles).
Circumtircle of element i

The definition of Delaunay 

triangulation is that the circumcircle of 

any triangle i in the mesh, does not 

contain any exterior vertices of the 

element i.

Element i

Figure 3.5.1. Illustration of circumcircle of 
Delaunay triangle.

3D Delaunay triangulation consists of several tetrahedra in an array of points. The 

four vertices of each tetrahedron lie on the surface of a sphere and no other vertex of the 

array lies within that sphere. Delaunay triangulation in 3D does not in general satisfy the 

min-max solid angle criterion and does not seem to satisfy any optimal angle condition. 

In fact Cavendish [CFF85] reports the creation of slivers (tetrahedron with a small 

volume, which is almost flat).

Delauna 
Tetrahedron Circumsphere

Figure 3.5.2. Illustration of circumsphere of tetrahedral and a sliver element.
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3.5.1 Watson's Algorithm [SLH84].

The Delaunay triangulation has several degenerate cases and like all grid 

generation methods, is subject to computer accumulated rounding errors. In 2D these 

problems have been minimized by special ordering of nodes in the generation of the grid 

and the use of a combination of both Watson's [WatSl] and Lawson's [Law72] 

procedures to make the method more robust computationally. Watson's algorithm is 

illustrated below: New node (P)

Each node is taken in turn and inserted 

into the mesh. A search for all the 

elements whose circumcircle contains this 

node (Figure 3.5.3) is made.

The method then removes these elements, 

Figure 3.5.4, and the external boundaries 

of the set of elements form a polygon.

The vertices of this polygon are then 

joined to the newly inserted node. Which 

then forms a new Delaunay triangulation 

that includes the inserted node.

CIrcum-cIrctes

Figure 3.5.3. Insertion of Node.

Figure 3.5.4. shaded elements are removed.

Figure 3.5.5 Vertices of the polygon are 
joined up to the new node.
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In 3D Lawson's swapping algorithm cannot be used, but recent developments in 

3D Delaunay triangulation by Joe [Joe89] using local transformation of tetrahedra (see 

section 6.10 3D vertex swapping) have resulted in a very robust and fast method of 

generating Delaunay meshes. The 3D method has a worst case computational order of 

n2 , however, on most practical cases it is of order nlog(n). Despite its computational 

efficiency Delaunay triangulation in 3D does not generate well shaped elements [CFF85].

3.5.2 Topological incompatibility in Delaunay grids.

Delaunay triangulation is based solely on the location of the points of the domain 

and higher order topological information does not affect the resulting computational 

mesh. Therefore, the Delaunay triangulation of certain geometric models with particular 

distributions of points will produce a mesh that is incompatible with the model's 

topology.

To correct this problem, we have to search the geometry of the model for 

intersection with the elements formed by the triangulation. Where elements intersect the 

surface of the model, we introduce extra 'stitching points', to make the triangulation 

conform to the geometry. This is illustrated in Figures 3.5.6 to 3.5.8.

Meshing the geometric model below

Figure 3.5.6 : Initial geometry 

This results in a topologically incompatible mesh

Figure 3.5.7 : Initial Delaunay triangulation.
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Resolved by introducing a stitching point

tch Po i nt

Figure 3.5.8 : Insertion of a stitch point

An alternative method is to force the Delaunay algorithm to generate only 

geometry compatible meshes. This is achieved by ensuring that the nodes on the 

boundary of the model form Delaunay edges [Joe86]. A Delaunay edge is defined as two 

adjacent vertices on the boundary and the circum-circle through these two points does not 

contain any other boundary vertices. Figure 3.5.9 illustrates the definition Delaunay edge 

and shows how it can be used to spot areas of incompatibility.

Circum-circle of adjacent vertices

Delaunay edge Not a Delaunay edge 
Figure 3.5.9 Illustration of Delaunay and 
non-Delaunay edges.
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3.6 Mesh Generation by Medial axis Subdivision

The medial axis subdivision is a relatively new and novel technique for generating 

various types of grids using triangular and quadrilateral elements. Grids that have been 

generated this way tend to be well structured and of high quality {Tarn and Armstrong 

1991 [TaA91]}.

Figure 3.6.1 : Example of stages in mesh generation by medial axis subdivision.

The main concept behind this method, as the title suggests, is the generation of 

the medial axis or Voronoi diagram of the domain that is shown in Figure 3.6.1 A. The 

motivation behind the generation of this diagram is the belief that elements should flow 

round the object in the general direction specified by the medial axis. The Medial axes 

diagram is often generated by first triangulating the domain using Delaunay triangulation 

and from this triangulation the Voronoi diagram is derived. Once the medial axis is 

derived this is then processed first to remove concavities, Figure 3.6.IB and then chain 

splitting , Figure 3.6.1C, to generate the sub-domains that can then be meshed with any 

suitable mesh type and pattern to generate the final mesh Figure 3.6.4D.
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3.7 Recursive Domain Bisection.

Recursive domain bisection, is a method first implemented by Lewis and 

Robinson [LeR76], which applies a 'problem-reduction' technique to triangulate domains. 

This technique consists of dividing the original data space into disjointed segments, and 

then solving the problem for each of the smaller segments. This technique is applied 

recursively on each domain and its sub-domains until each data space is sufficiently small 

for a very simple algorithm to be applied. This method is similar to the Quicksort 

algorithm [ThoSO], where the problem of sorting vectors is reduced to sorting shorter and 

shorter vectors, until vectors of length two are generated. These can then be sorted by 

one comparison and a conditional interchange.

Therefore, the triangulation of region R (Figure 3.7.1 (a)) can be achieved by:

(a) Splitting R into two sub-regions, Rt and R2, by creating a new boundary 

across the region.

(b) Solving the triangulation problem for Rj and R2 separately 

(Figure 3.7.l(b)).

The new boundary has a zigzag appearance as it consists of the join of points lying near 

a line that passes through two 'opposite' boundary points (Figure 4.7.l(c)).

Sub-domains are divided until triangles with no interior points are formed, these 

being the elements of the triangulation; triangles containing interior points are split by 

two lines joining an interior point to two vertices.

(a) (b)

\\R; ~ Bisection Line

Figure 3.7.1 Splitting a region
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There are usually numerous possibilities for the selection of a bisection line to 

divide any arbitrary domain. Lewis and Robinson outline a method that attempts to divide 

the domain into two 'circular equally sized halves', this is described in more detail in 
Chapter 4.

3.7.1 Advantages and disadvantages.
The computation order of the above algorithm was shown by Lewis to be n log(n) 

and in the worst case n2 . The worst case scenario is based on the assumption that most 

proposed splits of the region are invalid, so finding valid splits is the dominant part of 

the algorithm. The worst case occurs on difficult geometries where the vertex removal 

routine has to be used in the majority of bisections. However, it was shown that the ratio 

between the main bisection routine and the simple vertex removal method is 1:10. 

Therefore, we have a routine whose performance has a good average computational order.

However, this routine does not include a nodal placement method, all nodes have 

to be provided prior to the grid generation. It was required that the user provided all 

nodal position prior, either generated by hand or using a rudimentary nodal placement 

algorithm [MLC83].

Multiply connected regions are 

dealt with the manual addition of a cut 

line (Figure 3.7.2), this decomposes the 

region into simple polygons. However, 

this could be overcome by the 

introduction of an automatic method of 

decomposing multiply connected regions 

into simple polygons, as described by Joe 

and Simpson [JoS86].

Cut Line

Figure 3.7.2 A multiply-connected region.
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3.8 Triquamesh.

Triquamesh [SBS79][S1H82] is a mesh generator, developed in the early 80's, 

which generates triangular and quadrilateral elements in 2D. The technique used in 

Triquamesh is a recursive bisection method, and is similar to the technique used by 

Lewis et al [LeR76], see Section 3.7. However, Schoofs et al [SBS79] used a different 

heuristic, in Triquamesh, to guide the selection of bisections. Schoofs et al's technique 

was to introduce a bisection which divides the largest "edge angle" in the domain. This 

is repeated recursively on the resulting sub-domains, until sub-domains form triangular 

regions, which are the elements of the mesh.

Triquamesh incorporates an automatic nodal placement technique, which generates 

nodes automatically along each newly generated bisection edge. It is similar to the 

method described in Chapter 4, section 4.5.2. It was not implemented in the new 2D 

bisection technique described in the thesis, as it tends to needlessly over refine certain 

regions within the domain, see Chapter 4 section 4.6.2.

Quadrilateral element generation, in Triquamesh, is achieved by converting each 

triangular element into three quadrilaterals, see Chapter 4 section 4.7.1. This technique 

was also dropped from the new bisection technique, described in this thesis, as it tends 

to produce quadrilateral elements with poor aspect ratios, See Chapter 4 section 4.7.1.

In the paper by Sluiter[SlH82] Triquamesh was extended to 3D tetrahedral mesh 

generation. However, the 3D domains it could handle were limited, since it could not 

handle multi-connected regions. The tetrahedral meshes it generated were of poor quality, 

since it had no tetrahedral optimization technique. 3D Triquamesh also generates 

hexahedral elements, in a similar way to the 2D technique, by converting each 

tetrahedron element to 4 hexahedral elements.

The 3D bisection mesh generator, described in this thesis, has overcome many of 

the problems which were associated with the 3D Triquamesh, see Chapter 6. The 3D 

mesh generation method, described in this thesis, can handle multi-connected regions and 

has element optimization routines which improve the quality of the final tetrahedral mesh 

(e.g local 3D min-max vertex transformations, see Chapter 7 section 7.5). The new mesh 

generator, presented in this thesis, has an advanced nodal placement technique (Chapter 

7 section 7.4) which avoids unnecessary over refinement of certain regions of the mesh, 

unlike the technique implemented in Triquamesh.
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3.9 Summary and conclusions.

The following methods, Advancing front, Binary mesh operations, Recursive 

bisection and Paving methods require a large number of face, plane and line intersection 

tests. Three dimensional plane and line intersection testing is notorious for problems with 

computer arithmetic errors [For87], and forms a major area of research 

[Sar83][Dew88][BoW83]. Therefore, we can conclude, just by probability, that the more 

intersection tests carried out, the greater the chances of an incorrect geometry 

interrogation. For example, if a comparison is made between an order nlogn method (2D 

Recursive mesh bisection) and an order n2 method (2D Advancing front) using similar 

algorithms for line, plane and surface intersections. The order n2 method would have a 

larger probability of generating an invalid mesh than the order nlogn technique, since the 

nlogn method requires fewer geometry tests for a similar sized problem.

Delaunay triangulation has the advantage of being a computationally efficient 

algorithm, however the technique does not generate well shaped tetrahedral elements. In 

fact, Delaunay triangulation in 3D is the method that is most likely to generate an invalid 

grid. Delaunay triangulation suffers not just from computational rounding errors for 

sphere point in-out tests, but also the algorithm does not consider any geometry 

information or satisfies any min-max angle criterion. Mesh generation by Medial axis 

often requires a Delaunay triangulation of the domain to enable the sub-division of the 

geometry. Therefore, the Medial axis technique inherits its major problems from the 

Delaunay algorithm.

Mesh generation by Recursive domain bisection is the only method that offers 

geometry compatibility, together with computational efficiency. The computational 

reliability of this algorithm is linked to its computational efficiency, requiring on average 

less complex geometry tests than its counter part methods, such as Advancing front and 

Paving algorithms.

The reader is referred to Chapter 8 section 8.2, for a further description of some 

additional three dimensional meshing techniques.
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Part II
Two dimensional 

and
surface 

mesh generation.

The next two chapters will cover the initial developments of the bisection 

algorithm in the 2D plane. This is then followed with a discussion of extending certain 

mesh generation techniques to surfaces.
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Chapter 4 

2D Mesh Generation.
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4.1 Introduction.

This chapter is not intended to be a detailed description of all the research carried 

out in two dimensions. It is intended to introduce to the reader some of the ideas that will 
be later extended to three dimensional grid generation.

The first section will outline the objectives initially set, and outline the basic 
requirements of a 2D geometry data structure. It will then go onto describe the 
fundamental algorithms of the recursive domain bisection technique, which were first 
outlined by Lewis et el [LeR76]. This will be followed by a description of some of the 
techniques used on 2D grids to improve their quality.

The second section will outline some of the fundamental extensions, which have 
focused upon 2D recursive mesh bisection. This includes the data input format and types 
of geometry that can be handled, together with some of the initial success and results. 
The chapter will then go on to explain some of the further extensions applied to improve 
the initial mesh quality, by improved nodal placement and bisection algorithms.

This chapter will then be concluded with further extensions, i.e. triangle to 
quadrilateral conversion routines, nodal refinement algorithms and polygon elements.
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4.2 Objectives.

The objectives of the meshing tool, are to provide a method of generating two 

dimensional grids over a planar region. The true objective of the 2D grid generator was 

to provide a platform to launch the 3D version. Therefore, it was necessary that the ideas 

used were readily extendible to 3D.

The grid generator's requirements were to generate meshes that could be used for 

initial computational purposes with limited user control over nodal placement. 

Optimization of the mesh was to be left to other adaptive methods such as P, R or H 

refinement techniques, see [Thm85], [EOD93], [LoS91], [Ran87] amongst others.

The Geometry input requirements are to model multi-connect domains, with holes, 

interfaces and sub-domains, as illustrated in Figure 4.2.1.

I nterface

Figure 4.2.1 Multi connected region. M1,M2,M3 and M4 are different materials.
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4.3 Recursive Domain Bisection.
This section will outline the fundamental algorithms behind the method of 

Recursive bisection, Lewis and Robinson [LeR76], which was initially described in 

Chapter 3.

4.3.1 Choosing the bisection line.
There are usually numerous possibilities for the selections of a bisection line to 

divide any arbitrary domain. Lewis and Robinson outline a method that attempts to divide 

the domain into two 'circular equally sized halves'.

Not all possible splits are examined in this algorithm, for computational speed, 

therefore the search is terminated when a number of solutions are found. The search is 

organized so that splits between 'opposite' boundary points are tested first. Each possible 

bisection line is given a weight depending on the function IlEb . II is the product of the 

distance of the boundary points to the split line, Figure 4.3.1, b is the number of 

boundary points and E is the minimum of:

(a) half of the average distance between the boundary points, and

(b) the distance from the split line of the nearest interior points contained within any 

rectangle having the split line as a side, see Figure 4.3.2.

Figure 4.3.1 illustrates a domain with a possible

bisecting line that divides the region into T, and T2 .

Si is the distance of boundary points in T2 from the

bisecting line.

dj is the distance of boundary points in T, from the

bisecting line.

Here HI = S { S2S3 and n2 = d^, hence IT = n in2 .

/ Spilt line

Figure 4.3.1 Calculating 
weighting function.
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4.3.2 The actual split used.

Once a particular bisection of a region is selected, points on the interior, that lie 

'close' to the proposed split line are included as part of the new boundaries. Selection 

of points is done in such a manner to avoid long thin elements. The method used to sort 

points into their respective halves tends to reveal, which points are close to the split line. 

Points are chosen to be a member of the interface edge if:

(a) they lie within a rectangle with the split line as a side and,

(b) their distance from the split line is less than E defined above.

Figure 4.3.2 demonstrates which points to include 

as part of the new boundary. Points P { and P3 would not 

become part of the new boundary whilst P2 would. L! 

and L2 form the outer edges of the rectangle.

SpHtLM

Figure 4.3.2 choosing new 
boundary points.

4.3.3 Domains of peculiarity.
If the current region has no possible bisection a cruder approach is adopted. The 

binary mesh operation of vertex removal is applied, see Chapter 3 section 3.3, and the 

split line is the join of a boundary point to its next but one neighbour. The actual split 

made is such that the triangle cut off has its smallest angle maximised. Once the split is 

chosen the code then proceeds as in section 4.3.2.

If the region to be split is simply a triangle containing interior points, then the 

split is performed by joining two vertices of the triangle to one of the interior points. The 

only extra boundary points are those that lie on the split.
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4.4 Grid quality improvements
There are numerous methods for taking a 2D grid and improving the quality of 

elements for computational proposes. These methods include Laplace smoothing [KaE70], 

Vertex swapping [Law77], local refinement and de-refinement to name but a few. 

Lawson [Law77] showed that planar grids could be transformed to another by a finite set 

of operations, this technique is used in most planar Delaunay triangulations. Lewis and 

Robinson used a technique of vertex swapping [Law77] to improve the quality of their 

grids. The following sections will outline two of the techniques used to improve the grids 

generated. The reader should note that the following methods are of order nlogn, and 

have been modified to optimize their execution rates.

4.4.1 Vertex Swapping
Vertex swapping [Law77] of elements' faces is a well known technique used in 

2D mesh generation to achieve local min-max or max-min angle criterion. This method 

is based on the observation that there are two possible triangulations of a convex 

quadrilateral. The better triangulation is the one that makes the resulting triangles most 

equi-angular, as measured by the size of the smallest angle. For example, Figure 4.4.1 

shows two adjacent triangles I and J that have been generated by some initial mesh 

generator.

page 43



Chapter 4

Figure 4.4.1 Two triangles with alternative vertex shown.

In Figure 4.4.1 the line P2P4 lies within the polygon formed by triangles I and J, 

a new split of the quadrilateral P1 P2P3P4 is possible, i.e. triangles P 1 P2^4 and P2P3P4 may 

be formed. The smallest angle A of the original triangles and B the smallest angle of the 

new triangles, may be calculated. No change is made if A > B, but if A < B the new 

triangles replace I and J.

In the above method it has to be established which two triangles form a convex 

quadrilateral. This section will describe a method that uses the fact that most meshes 

have their elements' nodes stored in a fix order (counter clock-wise). This has been found 

more reliable than other techniques that are based on testing which side of a line points 

lay, like ray testing [Rog85] algorithms or special methods base on the geometry 

uniqueness of a triangle [Sar83][Bow83]. For example, in Figure 4.4.2, the alternative 

vertex P3Pj lies outside the quadrilateral which forms the triangles shown in Figure 4.4.3 

i.e. triangle I is contained in J.
Alternative Vortex

Figure 4.4.2 Figure 4.4.3
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The areas of the triangles P!P2P4 and P2P3P4 , Figure 4.4.2 are both positive, since 

both triangles' nodes are in counter clockwise order. However, the areas of triangles 

P!P3P4 and P 1 P2P3 , Figure 4.4.3, have different signs. Triangle T, Figure 4.4.3 has a 

negative area because it is contained inside triangle T, therefore its nodes are in 

clockwise order, i.e. the quadrilateral P!P2P3P4 is not convex.

Therefore, from the above information we can derive a method of applying a 

vertex swapping algorithm to an initial mesh as follows:

i) Repeat

ii) For each triangle,!, in the mesh do

iii) For each edge, EDGE, do

iv) Find neighbouring triangle J, on the edge IEDGE.

v) If triangle I and J form a convert quadrilateral then

vi) Find minimal angle of triangles I and J (MINI)

vii) Find minimum angle of the alternative triangles

	that can be formed with I and J (MIN2).

viii) If MIN2>MIN1 then swap vertex of triangles

viiii) endif

x) end for each edge...

xi) end for each triangle...

xii) until (No more swaps performed or maximum number of passes reached)

The above algorithm is a simplification, the full method includes a stack that stops 

neighbouring pairs of triangles being tested more than once. It also stores which triangles 

were affected by transformations on each pass of the algorithm, therefore on each 

iteration it only examines elements that were swapped previously. Also it was found that 

the above algorithm can further be improved by taking each triangle in turn and looking 

at all its neighbouring elements first. If the triangle needs to have a vertex swapped we 

choose the neighbouring element that forms the set of triangles with the maximum 

minimum angle. Figure 4.4.4 shows a triangle with its neighbouring elements and 

possible vertices swaps. This dramatically reduces the number of iterations required.
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Because of finite precision of the 

machine, oscillation of edges between 

each pass can occur. Therefore, it was 

required to store the minimum angle of 

the grid on each pass. If there is only a 

small change in this value between 

consecutive iterations the routine 

terminates.

Figure 4.4.4 Alternative vertex searching.
4.4.2 Laplace's smoothing.

Laplace's smoothing [KaE70][Rec73][MeP77][Her77] is a simple but effective 

method used in 2D and 3D mesh generation to improve the general shape of elements. 

This is achived by removing some of the skewness of elements locally [W6r81]. In 

Laplace smoothing each node is taken in turn and moved to a new location that is the 

average of all the adjacent vertices positions. 

Hence node's i location becomes :-

Pj= Z R/n1 j=i J

'R' is the set of size 'n' of all nodes directly connected

to Node i

'Rj' is a positional vector of node j in 'R' 

'Pi' is a positional vector of node i

Laplace smoothing is a highly efficient algorithm that is applied iteratively until 

there is only a small change in the nodal positions. However, two passes were found to 

be sufficient for the majority of the meshes generated by the 2D mesh generator 

presented in this Chapter.

It was found that the above two algorithms 4.4.1 and 4.4.2 are often enough to 

convert most grids with badly shaped elements to reasonable quality. They have both 

been shown to be of order n [LeR76] and add a very small overhead to any meshing 

routine.
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4.5 Preliminary extensions.

The initial aspirations were as follows:

(a) Use a superior bisection algorithm.

(b) To remove the requirement of adding a cut line to multiply connected regions.

(c) To enable the automatic generation of grid points.

(d) To generate a code that is so robust that could operate in single precision. 

The above requirements were to enable the extension of the procedure to three 

dimensions, and if the code could work in single precision in 2D, then the 3D version 

would have a greater chance of working robustly on complex geometries.

4.5.1 Improved bisection algorithm.

The improved bisection algorithm is illustrated in Figure 4.5.1

< > < •

_ _ _ _ Cutt I ng I f ne ActuaI spI 11

Figure 4.5.1 Advance bisection routine.

The method of choosing the bisection line is the same as described in section 

4.3.2. Once a cut line is selected the boundary segments are sorted to their respective 

sides, Figure 4.5.2a, segments are the edges contained between two vertices. These edges 

form two sets of boundary points, any boundary point that is contained within both 

regions is a boundary interface node. The list of boundary interface nodes, are then sorted 

into sequence along the interface, see Figure 4.5.2b. If the number of boundary interface 

nodes is a multiple of two, the nodes can be joined in the following order to generate the 

new edges, 1 to 2, 3 to 4 etc. However, if the number of boundary interface nodes is 

odd, the interface is complex and this bisection line is rejected. The generation of a new 

boundary is illustrated in Figures 4.5.2b and 4.5.2c.
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1

1

Cut line 
(A)

f 3 4

(B) (C)

Figure 4.5.2 Bisection of a multiply connected region.

The above technique has removed the requirement for the addition of a cut line 

for multiply connected regions, described in section 4.4.3, see Figure 4.5.2. However, 

this method does not consider any internal nodes, because of the difficulty of sorting 

nodes into their respective regions. Nevertheless the algorithm is more reliable and fails 

less often than the original method.

The requirement for the binary mesh operation of edge removal was also found 

necessary. The region in Figure 4.5.3a was found to fail on both the mesh bisection and 

vertex removal [section 4.3.4] algorithms. Edge removal is the selection of one edge and 

a point, which may be internal to the domain or on an opposite boundary. 

Figure 4.5.3b shows an element (j) generated by edge removal.

B

Figure 4.5.3 Edge removal.
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The above two algorithms were implemented on a Sun Spare 4 using single 

precision arithmetic in addition to other minor changes to the code. A simplistic data 

format was used, which required the input of boundary nodes and connectivity.

4.5.2 Preliminary nodal insertion routine.

The new bisection algorithm could not handle internal nodes. Therefore the first 

solution was to generate the boundary constraint mesh, which is a grid generated from 

just the boundary nodes. Then each internal node is taken in turn and inserted into the 

mesh, using techniques derived from algorithms developed for planar Delaunay 

triangulation [ScS86][SlH84][CeS85]. This algorithm is very simple and described as 

follows:

(1) Take an internal node i.

(2) Search the mesh for triangle J which contains the node i.

(3) Join this node up to the three vertices of element / to form three new 

triangles.

The above steps are simplified. In step (2) a method of element walking [S1H84] 

is utilized to find the triangle J which contains the node i, which is an order nlog(n) 

technique. It is also possible for the node /, in step (2), to co-inside with an edge or node 

of an element, and this is also taken account of in the full algorithm.

A method of generating nodes simultaneously was then implemented, based on 

the technique described by Connor [Con89]. The user provides the boundary nodes and 

these guide the mesh generator's nodal placement algorithm. Therefore, if there is a fine 

concentration of nodes around an area of the boundary, the internal mesh would reflect 

this. Figure 4.5.4 illustrates the rudiments of the nodal placement algorithm. Figure 

4.5.4A shows a bisection line and Figure 4.5.4B shows newly generated nodes along the 

interface.
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B

V V

Figure 4.5.4 : Simple nodal insertion routine.

When an interface is generated the boundary interface nodes are given a nodal 

spacing. This spacing is calculated from the average distance of adjacent nodes. Nodes 

are then generated along an interface element, the spacing of these nodes are interpolated 

from the two nodal spacing values assigned to the end nodes. For example, if (j^ and fy 

are the nodal spacing at two adjacent interface nodes and let t be the parameter location 

between nodes i,j where t>0 and t<l. The nodal spacing at position t is then given by 

^j+t^j-c));). However, before a new node is inserted into a grid, an additional check is 

carried out to ensure that this point is not too close to other nodes in its subregion. This 

occurs when the region is highly re-entrant, see Figure 4.5.4.

To illustrate the robustness of the initial code and its ability to cope with multiply 

connected domains, the geometry in Figure 4.5.5 was used. The completed mesh is 

illustrated in Figure 4.5.6; note that no internal points have been added.
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Figure 4.5.5 : British Isles Geometry.

Figure 4.5.6 : British Isles with minimal mesh.
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Figure 4.5.7 shows the British Isles grid generated using the nodal placement 

algorithm, section 4.5.2, and Figure 4.5.8 shows the mesh after optimization.

Figure 4.5.7 : British Isle's mesh before optimization.

Figure 4.5.8: British Isle's mesh after optimization.
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4.6 Subsequent extensions.

From the initial work carried out, it was soon established that a far more 

sophisticated nodal placement algorithm was required, with improved geometry input 

specifications.

4.6.1 Data input requirements.
It was found, for bench mark application, that a specific number of elements was 

required rather than a nodal spacing. There is a need to cope with multi-materials, and 

the following geometry input requirements were identified.

(a) The number of elements the mesh generator should generate for this problem.

(b) A list of boundary nodes of the domain/domains.

(c) The number of polygon regions in the model.

(d) Number of boundary nodes in each polygon domain.

(e) List of boundary nodes which form these regions

Two simple examples of typical data input follow:- 

Example 1 square with hole, adjacent to another square

SQUARE WITH HOLE ADJACENT TO ANOTHER SQUARE
50 
103 
44-4 
0.00 0.00 
1.0 0.0 
1.0 1.0 
0.0 1.0 
2.0 0.0 
2.0 1.0 
0.25 0.25 
0.75 0.25 
0.75 0.75 
0.25 0.75 
1234 
2563 
7 89 10

  Number of elements required.
  Number of nodes, number of polygons.
  Number of nodes in each domain, negative if hole polygon.
  list of 10 nodes

-- Polygon outer Rl.
~ Polygon node list outer R2.
  Inner hole polygon of Rl.
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Example 2 : square with sub-domain inside, adjacent to another square.

SQUARE WITH SUB-DOMAIN ADJACENT TO ANOTHER SQUARE
50
103
444
0.00 0.00
1.0 0.0
1.0 1.0
0.0 1.0
2.0 0.0
2.0 1.0
0.25 0.25
0.75 0.25
0.75 0.75
0.25 0.75
1234
2563
789 10

  Number of elements required.
~ Number of nodes, number of polygons.
  Number of nodes in each domain.

  list of 10 nodes

  Polygon outer Rl.
~ Polygon node list outer R2.
  Inner polygon outer R3.

The above data format only handles linear elements, curved lines have to be 

broken down into several line segments. However, the above format handles most cases 

which have been provided by other co-workers [Cho93][Fry94] at the Centre for 

Numerical Modelling and Process Analysis, University of Greenwich.

The new mesh generator identifies which polygons are internal and their 

associated external counterparts. It also reorders the polygon list into anti-clockwise order 

so the domain is always to the left as you travel round the boundary. The identification 

of interface elements is also found so nodes generated on these elements' faces coincide 

with both domains. However the boundary for sub-region R3, in example 2, is stored as 

two lists one in anti-clockwise order and the other, clockwise with all nodes marked as 

interface points. 

4.6.2 Nodal density calculation.
The previous nodal placement algorithm tended to needlessly over refine certain 

regions, also a method of generating grids where a certain number of elements is 

specified was required. It was found that if a domain was broken down into several 

simpler convex regions, these could be used to calculate the total area [Mid87] of the 

domain. Once the total area is calculated a measure of the nodal spacing can be estimated 

as follows:

Area of element = area of domain divided by number of required elements
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Hence:

Nodal spacing = square root of four times area of element squared divided by root
three.

This equation calculates the length of an equilateral triangle's side. 

4.6.3 Decomposition of regions into convex polygons.
Before the generation of nodes the region is first divided up into convex polygons. 

The dividing of regions into convex parts is a well researched area with a large number 

of papers published. The method which was selected is by Chazelle [Cha84] whose 
algorithm has a linear computational order, see also [FeP75],[Sch78],[JoS86],[Lyu63] 
[GiA81],[BaD92j.

It is vital that the selection of separators does not generate small angles and 
narrow regions. It is also required that any newly generated nodes do not lie too close 
to adjacent points. Let R be a simply connected region with vertices in counterclockwise 
order. We then select a vertex v0 such that its interior angle is larger than 180 degrees. 
An inner cone is defined as in Figure 4.6.1 which defines a section 3R of R. From 3R 
it is found the subset VS visible section. In Figure 4.6.1 A VS =N0,N 1 ,V5,V6,N2 where 
NO,N! and N2 are used to define end points of visible polygons. Therefore, a point on VS 
connected to v0 is a separator which resolves the reflex angle at v0 .

V-

Visible section

Figure 4.6.1 : (A) Full inner cone,(B) Inner cone restricted by vertex V2
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From VS we generate a set of 
separators, these do not include Ns points 
as these generate inferior regions. 
However a set of additional 05 points are 
generated by dividing the inner cone

-— Inner cone. ------a subtended arcsangle, Figure 4.6.2. The subtended angle ~———A ,• ~ „——r-——————————— & & 5 Figure 4.6.2: G3 points.
a is between 20 to 30 degrees depending
on inner cone. Therefore the candidates for separators are selected from the set of Vif 
which lie in VS plus the G3j nodes. The selection criterion is dependent on the angles the 
separator make with the region's sides together with how close it is to adjacent vertices.

4.6.4 Decomposition of multiply connected regions.
Multiply connected regions have to be decomposed into simple polygons. The 

following method outlined is based on a paper by Joe and Simpson [JoS86]. Given 
polygon H, which is contained in outer polygon P, search H for V0 that is a vertex on H 
closest to P. Then proceed to find a separator that joins V0 to P, which forms the cut 
interface segment. The search for the separator is similar to the method outline in the 
above section, Figure 4.6.3A illustrates inner cone.

Inner cone

Figure 4.6.3 Cut edge generation for multiply connected region.

If no separator can be found for V0, the algorithm proceeds by selecting nodes in a 
counterclockwise fashion starting at V l until a valid cut can be made.
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4.6.5 Nodal placement

The nodal placement algorithm is based on the properties of shrinking convex 
polygon. Figure 4.6.4 illustrates the basic steps in this method. The first step is to 
generate concentric polygons, that are shrunk by a factor R, Figure 4.6.4A. We then 
generate nodes on the boundary of these polygons with a nodal spacing R, Figure 4.6.4B. 
The shrunken polygons are then discarded to leave Figure 4.6.4C.

/\
A

^

\ \ B
\

\

\f
Figure 4.6.4 Node generation on a convex region.

The nodal placement technique implemented, is based on a method by Johnston 
[Joh92], of generating nodal points using the method of normal offsetting. Johnston's 
technique operates on arbitrary regions and has a computational order of approximately 
O(n2). However, by restricting the technique to convex regions and using a order n 
method, by Joe [Joe86] of shrinking a convex polygon, has greatly improved the 
computational efficiency of this technique.
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\
(B)

Figure 4.6.5 : Shrinking convex polygons.

Let po,pi-»pm be vertices of the convex region P in counterclockwise order. Now 

let Lj be the direction vector parallel and of a distance R to the left of the line pj pi+1 . The 

half-plane to the left of and including L} is Ht . If the shrink factor R is sufficiently small 

then the intersections of the half-planes define a convex polygon. If the intersection of 

the vectors LM and Lj lie on the edge of this region these define a point q^ Figure 4.6.5 

shows two examples of shrinking convex polygons, Figure 4.6.5B show an example 

where an edge Lj is not include in the sub-polygon.

It should be noted that if R is too large 

the shrunken polygon can be degenerate, as in 

Figure 4.6.6, or a line segment or even a 

single point. The algorithm for the generation 

of a shrunken convex polygon is based on 

paper by Joe [Joe86] and runs in 

computational time of order n.

Figure 4.6.6 Degenerate polygon.
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Once the sub-polygon is generated it is then processed to ensure an even nodal 

spacing. This is achieved by searching for narrowness or short edges. Narrowness in the 
convex region is identified by sharp angles. Therefore, adjacent edges that have an angle 
<|>, less than a minimal value of 30 degrees [JoS92], are removed, Figure 4.6.7A. This is 
accomplished by generating a line Lc , Figure 4.6.7B, offset into the domain by a distance 
a from the node d,,, where dn is the common node of the adjacent edges. The value of 
a is set proportional to the angle <X> and the nodal spacing //, and is calculated by 
H/2tan(3>/2). The line Lc is then used to remove the sharp angle, Figure 4.6.7C. Short 
edges, vertices whose distance apart is less than 8, are then searched for, and any vertices 
found badly placed are merged as in Figure 4.6.8.

Figure 4.6.7 : Removing narrowness in the 
domain.

Figure 4.6.8 : Removing degenerate 
vertices.

The shrink factor R is the nodal spacing required for the region, however this can 
vary over the whole domain. In the mesh generator each vertex is assigned a nodal 
spacing parameter, so the mesh can be graded around areas of complexity. For example 
around a curve where the boundary nodes are closer together, possibly smaller than the 
global nodal spacing, then the local nodal spacing would reflect this.

For domains where no sub-regions can be generated, not even a point sub- 
polygon, the area of the region is found [Mid87]. If the area of the region is larger than 
1.5(n-2) times the required element area, where n is number of nodes on the boundary, 
a node is placed at the centroid to ensure an even nodal density.
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4.6.5 The grid generator.

Once the nodes are generated in a convex region, the method by Lewis and 

Robinson is applied to generate the grid. When all the sub-regions are meshed the 

domain is then smoothed using the methods in section 4.4. 

4.6.5 Example problem.

\

Figure 4.6.9 : Initial geometry.

Here is an example of a two material 

casting problem.

The division into sub-regions took 0.033 

CPU seconds on a Sun spare ELC with no 

compiler optimization. The region was 

subdivided into 28 convex polygons.

Figure 4.6.10 Sub-division into convex parts.

Ja8eoMoo885?7SAAf5fSAAAAA?5?

The complete mesh of 1099 vertices and

2068 elements took 0.1 CPU seconds after

sub-division.

Minimal element angle is 15 degrees.

Figure 4.6.11 : Final mesh.
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4.7 Higher polygon order.

The need to generate higher order elements (i.e. not just triangular) is a 
requirement of most applications. In this section, three different methods for the 
generation of other element types are outlined. 
4.7.1 Conversion of triangular element to quadrilaterals.

Various methods [JSK91][MLC83] have been used to convert triangular meshes 
to quadrilaterals. One method is where the subdivision of triangular elements into three 
quadrilaterals [JSK91] is used, Figure 4.7.1.

(A) (B)
Figure 4.7.1 : triangle to quadrilaterals conversion.

This is done by generating three nodes at the mid-point of each edge with an additional 
node at its centroid. The nodes are then connected as in Figure 4.7. Ib to form three new 
quadrilateral elements. The method has the advantage that all the elements are converted, 
however the initial mesh should be generated with less than half the required elements. 
This method tends to generate poorly shaped elements that are often not suitable for 

further computational proposes. 
4.7.2 Walking method of generating quadrilaterals.

A method that generates meshes of mixed elements is illustrate in Figure 4.7.2.

B
Figure 4.7.2 conversion of triangles to quadrilaterals.
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The algorithm is as follows.

(a) Find two adjacent elements that form a reasonable quadrilateral

(b) Push quadrilateral onto stack

(c) Pull quadrilateral 'Iquad' off stack

(d) Loop over sides 'Jsides' of Iquad

(e) if Jside has an adjacent triangles Itri

(f) see if we can form a new quad 'Jquad' with adjacent triangle of

Itri

(g) if new quadrilateral formed push 'Jquad' onto stack

(h) end if

(i) endloop

(j) If stack not empty goto (c)

(k) Search remaining triangle elements to see if we can form a quadrilateral

(1) if new quadrilateral formed goto (b)

(m) Terminate.

To speed up the search for adjacent elements the above routine stores a list of 

non-converted elements. The routine always selects the optimal adjacent element when 

forming quadrilaterals. However no quadrilateral is formed if any angle is less than 20 

degrees. After the generation of quadrilaterals the mesh is smoothed to optimize angles. 

Similar techniques have been implemented by Johston et al [JSK91] and Moscardini et 

al [MCL81].

4.7.3 Generation of high order polyhedral cells.

A region shown in Figure 4.7.3 can be decomposed into convex parts, Figure 4.7.4.

Figure 4.7.3 : Geometry Figure 4.7.4 : Decomposed domain.

Figure 4.7.4 could be classified as a "mesh" and from this initial decomposition 

we can proceed to generate grids over these sub-domains using several techniques.
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As an example, these convex sub-domain can be further subdivided to generate arbitrary 
polygon cells, Figure 4.7.5.

Figure 4.7.5 : High order cell domain.

The above domain was generated using a technique where each cell was divided 
until its area was within a special tolerance. This tolerance was calculated from taking 
the total area of the domain and dividing by the total number of required elements. If we 
increase the number of elements we end up with the mesh shown in Figure 4.7.6.

Figure 4.7.6 : refined mesh.
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Figures 4.7.5 to 4.7.6 have been smoothed. Before optimization these meshes 

would have resembled Figure 4.7.7.

Figure 4.7.7 : Crazy pavement mesh.

Figures 4.7.5 to 4.7.6 are similar to the types of grids generated by methods such 

as the Voronoi Diagram [CFM91].
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4.8 Conclusions.

All the algorithms presented in this chapter are of computational order of at worst
f\

n with the majority of order n. Therefore, the method of recursive domain bisection 
potentially offers a fast and efficient way of generating grids. The method can cope with 
complex geometries with relative ease and can generate grids of usable quality. 
Therefore, the method presented in this chapter compares favourably with other efficient 
algorithms such as Delaunay. However, the new bisection method does not suffer from 
the drawbacks of Delaunay triangulation. For example, Delaunay triangulation requires 
expensive algorithms after the generation of the grid, to ensure the mesh represents the 
model (See Chapter 3).

Since the new bisection technique is a practical and efficient method, with some 
algorithms already extended to 3D by other researches in the field of solid modelling, it 
seems realistic to extend this technique to three dimensions.

4.8.1 Further extensions.
The new recursive domain bisection method is a very flexible technique, because 

once the domain is divided up, there are many possibilities. Many CAD packages, 
PATRAN [Pat89], FEMGEM [Fem91] etc , offer simple mesh generating tools that 
require the sub-division of a complex region into a number of simpler parts. Since the 
initial stage in the code generates simple convex domains, many of these tools can be 
applied directly to the resulting geometry. One example is where we have taken the 
geometry of a 2D car in a wind tunnel. We then applied the domain bisection algorithm 
to subdivide the domain into simpler parts. These subregions were imported into 
FEMGEN that generated the final grid. Therefore, once a region is divided up, a method 
of generating quadrilaterals in these simpler domains could be applied, in a similar way 
to the medial axis method [TaA91], see Chapter 9.
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Chapter 5 
Generation of Grids Over Surfaces.
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5.1 Introduction.

The generation of grids over the surface of complex geometry is a major area of 

three dimensional mesh generation. The ability to generate surface grids is an integral 

part of the overall tetrahedral mesh generator.

The first section outlines a method of generating surface grids over planar 

polyhedral structures, with examples that show an almost linear computational order. 

Then grid generation over parametric surfaces will be presented, which will include a 

new definition of surface Delaunay triangulation. The chapter will then be concluded with 

how the methods used in 2D mesh optimization have been modified to cope with 

parametric forms of surfaces.

The Delaunay triangulation is presented in this chapter, as this work was the 

initial development of extending grid generation to surfaces. The recursive bisection 

technique is not included in this chapter, as at the time this work was undertaken, it was 

still under development. However, it is intended that the Recursive bisection method will 

later be extended to parametric surfaces.
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5.2 Surface mesh generation on polyhedral domains.
Generating grids over the surface of polyhedral domains is probably the simplest 

form of surface mesh generation. A polyhedral domain is a collection of closed 

nonintersecting planar polygon faces. Each polygon face can either be simple or multi- 
connected.

A polyhedral domain can be treated as a collection of planar regions with 
interface boundaries along all edges. The reason for this is to ensure that elements 

generated on adjacent polyhedra are consistent. Therefore, each face can be taken in turn, 

rotated onto the XY plane and meshed using any reasonable planar grid generation 

algorithm. As can be expected, see regression analysis below, the surface polyhedral 
mesh generator is equivalent in computational order to the 2D version.

Regression of cpu on elements

P. o
6 -

3 -

0 -

15 
(X 10000)

The above graph shows a linear regression analysis of the data given in table 5.2.1 

The regression analysis of the fitted line gave a value of R2 of 0.97 that means a linear 
representation of the data is good. Therefore, we can conclude that for the lug shape 
model in Figure 5.2.1 we have an order N algorithm.
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The table below shows CPU time in seconds to generate a surface mesh of 'n' elements 

using Delaunay triangulation on the Polyhedral domain in Figure 5.2.1. 

Table 5.2.1

No. Elements

272

308

436

922

1508

4136

6160

12374

37224

45960

65978

88462

103582

122968

148814

CPU Time

0.20

0.21

0.25

0.28

0.30

0.70

0.77

2.48

5.30

5.83

7.43

9.07

10.12

11.5

13.18

Figure 5.2.1: Polyhedral Domain.

Figure 5.2.2: Surface mesh with 1508 
elements.

The above times were calculated on a Sun 

SLC with compile options -g (debug).

Figure 5.2.3: Surface mesh with 6160 
elements.
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5.3 Meshing Surfaces using Delaunay Triangulation.
The triangulation of surfaces up to now has mainly been done by transforming the 

surface onto a 2D planar region and then applying some well established 2D mesh 
generator to this domain [CFM91b][HaA82][ZiP71]. Once the 2D planar region mesh is 
completed it is then converted back to the surface. Often this is done with no 
consideration of how well structured the mesh will be, once it is mapped onto the 
surface. So although you may have a well structured 2D planar region, the resulting 
surface mesh can be worthless for any further analysis purposes.

A method of generating well shaped elements on any surface that has an 
associated parametric definition, will now be considered, by means of Delaunay 
triangulation. An initial method will then be demonstrated, and how this can be expanded 
to arrive at a definition of surface Delaunay triangulation.

One way of generating well structured triangles over a surface is to use 3D 
Delaunay triangulation. 
This is done by:- 
(i) Taking a surface and generating a "Bounding base Box" (Figure 5.3.1)

Surface With Bounding Base Box, 
Figure 5.3.1.

(ii) Generate nodes over this surface (using some nodal placement algorithm)
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Note, that it is also beneficial to generate nodes on the base of the bounding
box, as this improves the mesh generator's robustness to rounding errors i.e. cuts down
the number of tetrahedral elements sharing the same node, which reduces the number of

near parallel lines.
(iii) Then use a 3D Delaunay triangulation program to generate the tetrahedral mesh.

(iv) Apply some stitching method on the triangulation to make the Delaunay mesh 
conform to the domain. (See Figure 5.3.2)

Figure 5.3.2

(v) The surface Delaunay mesh is then defined by the tetrahedral faces that are
adjacent to the surface.

Note that before removing the tetrahedra, it is possible to apply a nodal refinement 
algorithm.

The above method does produce satisfactory surface meshes, but the surface mesh 
produced is dependent on the distance between the base of the bounding box and the 
surface. So by moving the bounding box base in or out, it is possible to change the 
resulting solution; this situation is not ill-conditioned as the nodal position on the surface 
has a greater effect on the outcome. Actually, to have any effect on the solution, a 
significant increase/decrease in the distance between the base and the surface must occur.
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It is possible to take the above concept further and instead of imagining a surface 
with a half bounding box, we can think of two twin (identical) coinciding surfaces with 
a gap 8 between them, e.g two parallel planes or parametric cubic surfaces, as illustrated 
in Figure 5.3.3.

Figure 5.3.3: Parallel Planes

^Siftjr

Figure 5.3.4: Coinciding Surfaces
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Now generate nodes on both domains, such that the distribution and location of 

points are identical with respect to the surfaces' origins, and join the surfaces up to form 
a closed domain, see Figure 5.3.4. We can now generate a Delaunay mesh over the points 
in 3D space, stitch the domain and remove external tetrahedra.

If we now take a closer look at the surface of the parallel planes (Figure 5.3.3), 
it can establish not just the fact that both planes have identical meshes, but also the fact 
that this surface conforms to the definition of planar surface Delaunay triangulation. Take 
the parallel plane example, and let the distance between the planes tend to zero. As the 
distance between these surfaces decreases, the meshes on the planes do not change and 
the circum-spheres of the tetrahedra also decrease. The tetrahedra tend to triangles and 
the circum-spheres tend to minimal circum-spheres (Figure 5.3.5) of triangles as the 
points on the two planes start to coincide. Therefore, we are left with a valid Delaunay 
triangulation, but these triangles do not have circum-circles like the planar Delaunay 
triangulation but have minimal circum-spheres.

Uncompressed tetrahedron Compressed Tetrahedron

Figure 5.3.5:- Shows a cross section of circum-spheres of a tetrahedral as height 8 tends 
to zero.
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If we do the same for the twin surfaces (Figure 5.3.4) we have a surface 

triangulation in which no triangle's minimal circum-sphere contains any other triangle's 
vertices (Figure 5.3.6).

drcum«pher*

Cross section of top surface circum- 
spheres when 8 > 0

Cross section of circum-spheres when 8=0 
Figure 5.3.6

Therefore, the definition of surface Delaunay triangulation is : The minimal 
circum-sphere of each triangle and the intersection of this sphere and the surface defines 
a region, in which no vertices of any other triangle in that surface can be contained.

Two possible methods of producing a surface Delaunay triangulation, will now 
be presented.
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Method 1:

(i) First sort the points in parameter space, such that they are in lexicographically
increasing order.

(ii) Join the first three points to form the initial triangle, 
(iii) Then insert the points one at a time from outside the convex hull,

see Figures 5.3.7a and 5.3.7d.
(iv) Find all edge faces of convex hull visible from last inserted point, 
(v) Join this point up to the vertices of these faces to form new triangles,

see Figure 5.3.7b 

(vi) Then apply Lawson's swapping procedure to make newly generated triangles
which conforms to surface Delaunay triangulation, see Figure 5.3.7c.
i.e check each triangle minimal circum-sphere with neighbouring triangles'
vertices. If neighbour's edge is contained in this region swap its adjacent vertex
with current triangle, 

(vii) Repeat steps iv to vi until all points are inserted.

Next point
to be inserted 
into mesh.

(a) Convex hull (B) Mesh just after point is inserted, 
point has been joined up to 
visible triangle's faces
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(c) After Lawson's swapping 
procedure.

(D) After next point is added 
to domain.Figure 5.3.7

Note that a bounding or super triangle [S1H84], is not used in the above method 
as it is impossible to find. Also Lawson's swapping algorithm is used not just to 
overcome some of the problems associated with numerical rounding error, but also to 
address the situation when the circum-sphere of a triangle intersects the surface more than 
once (Figure 5.3.8). This is overcome by the fact that we are only checking neighbouring 
triangles' circum-spheres.

Circum-Sphere of Triangle

Surface
Figure 5.3.8
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The Figure 5.3.8 shows a minimal circum-sphere of a triangle intersecting the surface 

more than once. This situation presents no problem to the technique. 
Method 2j_

i) Use 2D planar Delaunay triangulation in parameter space, to give an initial

approximation to Surface Delaunay Triangulation.

ii) Once the initial approximate mesh is formed, apply Lawson's swapping 

algorithm to generate the Surface Delaunay Triangulation.

Of the two methods described above, it was found that the second technique was 

more robust. This method avoids the need to establish which edges of triangles are 

visible from a given point, which was found to be the part of the code most influenced 

by rounding errors in Method 1. Figures 5.3.9Aand 3.3.9B shows two examples of 

meshes generated over a parametric cubic patch. The first example shows 2D Delaunay 

triangulation of the surface meshed only in parameter space, the second is meshed by the 

second method described above and forms a valid surface Delaunay triangulation. The 

major difference between the two figures is most noticeable around the leading lower 

edge of the two surfaces.

Figure 5.3.9A, Parameter 2D Delaunay Triangulation
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Figure 5.3.9B, Surface Delaunay Triangulation 

5.3.1 Surface Delaunay results.

Figure 5.3.10: Parameter Delaunay 
triangulation.

Figure 5.3.11: Surface Delaunay 
triangulation.

The above two surfaces were used in the experimental results generated in 

table 5.3.1.
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The following table 5.3.1, lists a comparison between standard parametric Delaunay and 

surface Delaunay, giving the maximum and minimum angle of each mesh with average 

surface error at the mid node of each triangular element side.

Table 5.3.1

Tri

8

32

50

98

162

200

242

288

392

450

512

578

648

722

800

882

1058

1250

1458

1682

Parametric Delaunay

Max ang

1.5708

2.49978

2.62658

2.64741

2.65236

2.64807

2.65338

2.6543

2.65678

2.6543

2.65762

2.65608

2.65774

2.65673

2.65947

2.6568

2.65656

2.65739

2.65842

2.659000

Min ang

0.67474

0.25173

0.21078

0.20684

0.20632

0.20453

0.20661

0.20399

0.20413

0.20761

0.20452

0.2074

0.20499

0.20654

0.20547

0.20612

0.20596

0.20596

0.20604

0.20619

Sur Err

0.19267

0.04913

0.03085

0.01597

0.00972

0.00793

0.00653

0.00551

0.00405

0.00352

0.0031

0.00274

0.00245

0.0022

0.00199

0.0018

0.0015

0.00127

0.00109

0.00094

Surface Delaunay

Max Ang

1.5708

1.8677

1.89385

1.93021

1.95157

1.96856

1.96375

1.96527

1.96439

1.97563

1.9799

1.99139

1.99912

2.00387

2.00775

2.01541

2.02436

2.03116

2.03802

2.0423

Min ang

0.67474

0.54352

0.47648

0.41602

0.36733

0.35228

0.34101

0.33231

0.31984

0.31524

0.31139

0.30812

0.30533

0.3029

0.30078

0.29892

0.29578

0.29326

0.29118

0.28944

Sur Err

0.19267

0.04849

0.03066

0.01586

0.00964

0.00786

0.00647

0.00547

0.00402

0.00349

0.00308

0.00272

0.00243

0.00218

0.00197

0.00178

0.00149

0.00126

0.00108

0.00094
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Figure 5.3.12, plots the minimal and maximum angles of each of the two types 

of triangulations, here it can be clearly seen that the surface Delaunay gives for all cases 
an improved triangulation.

2.«0

240 -

2.00

1 00

1.20  

080

0.40 -

0.00
0.00 ZOOM 400 00 600.00 800.00 1000.00 1200.00 1400 00 1600 00 1800.00

Number of elerntnt* 
D Maundy max ADdounqy mln 6 Surface Detaunay max X Surface Dotaunoy mln

BBBS—DD D D D LB

Figure 5.3.12: Comparisons between angles in grids.

The Figure below, plots the difference between Parametric Delaunay error against 

surface Delaunay triangulation error, a negative value indicates Surface Delaunay returns 

a better approximation. Surface error is the average of the distance of mid point of each 

element's edge from the parametric surface.

oool

-0.005

-0.006-

-OJKJ7-
0.00 200.00 400.00 BOO.OO BOO.OO 1000.00 12OOOO 14OO 00 1000 00 100000 

Number of dement* 
D Error difference

Figure 5.3.13 : Difference in surface error between parametric and 
surface Delaunay.
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5.3.1 Surface Delaunay triangulation example.
The table below shows CPU time in seconds to generate a surface Delaunay triangulation 

of 'n' elements over a parametric surface shown in Figure 5.3.14. 

Table 5.3.2

No. Of triangles

8

32

50

98

162

200

242

288

392

512

648

722

882

1058

1250

1458

1682

CPU time seconds

0.067

0.267

0.450

0.600

0.850

0.867

1.267

1.483

2.050

2.650

3.397

3.95

4.7

5.55

8.733

6.767

7.950

Figure 5.3.14: Parametric surface 
with 1682 surface triangles.

The above CPU times were calculated on a Sun ELC; the code was compiled without 

optimization.
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Regression of cpu tine on triangles

8

o. 0 4

9 1Z 
triangles

15 18 
(X 100)

Figure 5.3.15 : CPU time correlation.

The above graph shows a linear regression analysis of the data given in Table 
5.3.2. The regression analysis of the fitted line gave a value of R2 of 0.99, which 
indicates that a linear representation of the data is an appropriate model. Therefore, we 

can conclude that for the above parametric model in Figure 5.3.15 we have an order N 

algorithm.
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5.4 Surface Laplace Smoothing
Laplace Smoothing [KaEVO] is a simple but effective method used in 2D and 3D 

mesh generation to improve the general shape of elements. In Laplace smoothing each 
point is taken in turn and moved to a new location, which is the average of the nodal 
positions of all the vertices that are directly connected, see Chapter 4 section 4.4.3.

The problem with Laplace smoothing is it cannot be directly applied to surfaces, 
therefore, there is a need to derive a method which weights points in parametric space. 
This should enable it to become possible to apply a smoothing algorithm in the parameter 
space that improves the shape quality of the elements on the 3D surface.

To achieve Laplace smoothing to a point in parametric space in such a way as to 
optimise the element in 3D space the following information is needed:

L - Length of line connecting the points i and j on the surface
(for simplicity this will be the absolute distance between the two points in E3)

PL - Length of the line connecting the points i and j in parametric space. 

SR - Sum of the ratios of L/PL of all points connected to point i in the mesh, 

n - Number of vertices connected to the point i

Hence the new position for point 'i' becomes:
n

P,= J_ * 
SR j=1
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A simple check for this is to see if it is consistent when we let PLj tend to Lj i.e no 

difference between the parametric definition and the true surface. The above equation 

tends to :-

n

PJ= ZPj/n
j=i

which is the definition of Laplace smoothing, see Chapter 4 section 4.4.2.

The above methods, in general need a few extra iterations to generate reasonable 

results than the standard Laplace smoothing. However, the standard method cannot be 

applied to these surfaces. This method tends to improve the shape of the elements with 

all the nodes remaining on the surface. However, it cannot guarantee to improve the 

surface approximation, which is approximated by the planar elements.

5.4.1 Surface Laplace Smoothing Results

Below two identical surfaces are depicted; Figure 5.4.1 and 5.4.2 show the initial 

surface and Figures 5.4.3 and 5.4.4 are the resultant mesh after smoothing was applied.

Figure 5.4.1: Surface before Smoothing. Figure 5.4.2: Parametric Surface before 
Smoothing.
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Figure 5.4.3: Surface after smoothing. Figure 5.4.4: Parametric surface after 
smoothing.

Figures 5.4.2 and 5.4.4 depict the surface in parameter space, where u and v are two 

parameters which sweep out the surface and take values in the range 0 to 1.

The graph below shows a comparison between surface minimal and maximum 

angles of elements before and after smoothing. The smoothed surface angles were taken 

for 5 passes of the Laplace smoother. It can be clearly seen that the Laplace angle 

smoother improves the quality of the meshed surface. However, the improvement is not 

that distinct, because of the limitations of the geometry e.g the minimal and/or maximal 

angle can be restricted by the geometry.
280

0.00
0.00 200.00 4OOOO 000.00 800.00 1000.0O I2OO.OO 140O.OO 1 500 OO 1DOO 00

Numbw of •kmtnU 
DMox ongta lwfo». AMln onglM before <>Mox ongl* •nwothid mMh XMln angta Mnootlwd mnh

Figure 5.4.5 : Plot of minimum and maximum angles of mesh before and after 
smoothing for various number of elements.
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The graph below shows how the angles of the mesh improve, for each pass of the 

Laplace smoothing routine.

Z.BO

200 •

1.60 •

c
o 1 20 •

O.BO •

0.40

000
100 200 3.00 4.00 5.00 600 700 8.00 0.00 10.00 11.00

Figure 5.4.6 : Angle quality after each pass of the smoothing algorithm.

The order of time complexity for Laplace smoothing is almost order n, which is 
depicted in the next graph that plots the number of elements against CPU time for 5 
passes of the algorithm.

9.00

800

7.00

6.00 -

n

1 500 -I
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a. u

4.00 -

3.00 -

200 -

1.00 -

0.00
ODD 200.00 400.00 600.00 800.001000.001200.001400.001600001800.00

Number of elements

Figure 5.4.7 : CPU time to smooth n elements.
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5.5 Vertex Swapping on parametric surfaces
A surface mesh only forms an approximation to the true surface. When a vertex 

swapping algorithm [Law77] is applied, it does not just effect the element's shape, but 

also the error between the true surface and the surface formed by the mesh.

Therefore a vertex swapping algorithm has two objectives:- 

(i) To minimize the maximum angle of the mesh 

(ii) To minimize the surface mesh error.

It is almost impossible to satisfy both these goals, but we can assign a weight to 

how important each one is for our purposes. For example, if ^1 and ^2 are the errors for 

the surface approximation for the two possible triangulations of a given convex 

quadrilateral. The values mini and min2 are the minimum angles of the two possible 

triangulations and Wl5W2 the weighting functions, the following relations can be defined:

(1) f1=

(2) f2=

For the special case when ^1-0, for relation 1, the second term is set to Wl5 since 

this occurs when ^2~0, hence it is assumed zero divided by zero is 1. Similarly for 

equation 2 when ^2-0, the second term is set to W2 .

From relation 1 it can be seen that the second term £2/^1 increases as the error 

of the initial triangulation decreases; consequently relation 1 decreases as £2 

increases. This also holds for equation 2, but vice-versa. Hence the vertices of the 

triangles are swapped if f2 > f,.

The main problem with the above relations how to choose the weighting 

functions. W, and W2 could both be constants, so if there is a large difference between 

the two errors £1 and £2, we choose the one with the smallest error, but if ^1~^2 the 

size of the angles has the greater effect on the choice, therefore we could then use
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W 1 =W2=1. Another choice is to let W^Minl and W2=Minl, which relates the error to 

the angles of the alternate triangulation.

It is also possible to use different functions like :-

(3) f,= min 1*

(4) f2=

This has the advantage that as ^1,^2 tend to zero, the method tends directly to 

the planar swapping algorithm. However, it is difficult to adjust the relationship between 

angle and surface error.

5.5.1 How To Calculate Surface Error (Local Surface Error).

To calculate the true surface error can be complex and CPU intensive. However, 

it was found that the true surface error is not really necessary, as a rough estimate is 

often sufficient, and the reasons for this are discussed below.

One method is to take two adjacent triangles and estimate the error over these 

elements by calculating the distance of their centroids from the surface. However, a 

quicker method is to calculate the distance of the centroid of the adjacent edge from the 

surface, since the algorithm is only based on swapping elements faces. It is then possible 

to apply the vertex swapping algorithm by calculating the minimum angles of the two 

sets of triangles plus the two distances of the centroids of the two possible adjacent 

edges.

5.5.2 What is the effect of the above method?
There is a complete contradiction between an element's optimal shape for meshing 

and for surface approximation. For example, when the above method is used on surfaces 

that have a constant gradient in one direction and variable in the other, this tends to 

produce elements that are compressed in the variable direction, i.e elongated in the 

direction of constant gradient. Since minimize the length of an element in the direction 

of the largest gradient of the surface, reduces the surface error.

Therefore, a better method is to swap elements' vertices based solely on their 

angles. We only then test for surface error when the two sets of angles are similar.
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5.5.3 Surface Vertex swapping Results
Below two identical surfaces are depicted; Figure 5.5.1 and 5.5.2 show the initial 

surface and Figures 5.5.3 and 5.5.4 are the resultant mesh after applying the surface 

vertex swapping method.

ZZZZZ/ZZZ7ZZZ
Figure 5.5.1 : Surface before Vertex 

swapping was applied.
Figure 5.5.2 : Parametric Surface before 

Vertex swapping is 
applied.

Figure 5.5.3 : Surface after angle 
optimization using vertex 
swapping.

Figure 5.5.4 : Parametric surface after 
optimization.

Figures 5.5.2 and 5.5.4 depicts the surface in parameter space, where u and v are the two 

parameters which sweep out the surface, and are in the range 0 to 1 to form a unit
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square.

The graph below shows a comparison between surface minimal and maximum 
angles of elements for the surface before and after angle optimization. It can clearly be 
seen that vertex swapping improves the quality of the meshed surface.
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Figure 5.5.5 : Plot of minimum and maximum angles of mesh before and 
after optimization for various number of elements.

The order of time complexity for vertex angle optimization is almost order n, 
which is depicted in the next graph, which plots number of elements against cpu time.
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Figure 5.5.6 : Plot of number of elements against CPU time in seconds.
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5.6 Summary and Conclusions.
This chapter has demonstrated that two dimensional mesh generating techniques 

can be extended successfully to surfaces without effecting their computational order. 
They can be applied in such a way that they generate grids of good quality, whilst 
effectively taking account of surface approximation error.
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Part III
Three dimensional 
mesh generation.

This is the last section of this dissertation, which includes an explanation of a new 

three dimensional mesh generator with a description of the major algorithms that the 

technique is contingent upon. This section then concludes with a summary of major 

achievements and possible further extensions.
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Chapter 6 
3D Mesh Generation.
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6.1 Introduction.

This chapter gives an overview of the research that has been carried out into three 

dimensional grid generation. An outline of the initial attempt at the recursive bisection 

mesh generation is given, together with geometry representation and bisection techniques.

Dealing with some key features of the geometry, such as cavity removal, is best 

carried out before the main task of grid generation. Therefore, the initial bisection planes 

are chosen to simplify the model by introducing interface elements that join the cavity 

regions to outer boundaries. The selection of bisection planes for mesh generation is then 

described, together with how this is implemented to generate rudimentary meshes. The 

problems associated with this basic technique are then covered, together with methods 

of improvement.

The simplification of a geometry into simpler parts, such as convex regions, and 

how this can aid nodal placement is described. Once the domain is sub-divided into 

simpler regions the nodal placement algorithm is then implemented, followed by the final 

stage of meshing. The final meshing of the domain was found more reliable and faster 

using a non-recursive method based on a boundary constrained local min-max algorithm. 

The min-max heuristic method was found to be best implemented using local tetrahedral 

transformations and operated in an average computational order of nlogn.
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6.2 The initial recursive bisection mesh generator.

Below are the steps used in the initial three dimensional recursive domain 
bisection mesh generator. This was the starting point from which the final three 
dimensional grid generator was developed.

(1) Remove all cavities from polyhedral domains using the technique in section 6.5.

(2) Generate a surface triangulation over the polyhedral domains.

(3) Place all initial polyhedral domains in stack S,

(4) Remove domain D from stack S,

(5) Generate an order list L of face elements' angles,

(6) Choose an edge E from list L with largest edge angle, since these offer 
the greatest possibility for domain complexity reduction.

(7) Generate characteristic plane p, a plane which bisects the inner wedge 
defined on this edge.

(8) Attempt to find a bisection plane through this edge that divides the region 
into two, using the techniques in sections 7.4.3 and 7.3.3.

(9) If a valid bisection plane is not found, choose the next edge from the 
list L which does not have the same characteristic plane as previous 
bisection attempts on this domain, go to step 8.

(10) If more than ten attempts are made at bisecting this domain, 
apply binary mesh operators, section 3.3.

(11) Once the domain is bisected into two regions 3> { and O2, they are added 
to the stack S, if they have more than four triangular elements. 
If a region has only four triangular faces they form a tetrahedral element 
of the mesh.

(12) Repeat steps 4 to 11 until the stack S is empty.

The internal nodal placement is achieved by generating a refined two dimensional 
triangular grid over each bisection interface polygon, using the length of the boundary 
edges of the cut interface as a guide to mesh density. It should also be noted that any 
new interfaces, generated by binary mesh operations, section 3.3, are meshed using the 
2D grid generator in Chapter 4. An example of a mesh generated in this fashion is 
illustrated in Figure 1.2.1 Chapter 1.
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6.3 Geometry representation.

The following section will give a brief overview of the basic methods and 

terminology used to describe three dimensional objects. The geometry representation of 

the model used, has a great effect on the types of geometry operations, which can be 

applied during the grid generation. Therefore, the geometry representation of the model 

effects not just the computational order of the grid generator, but also its reliability and 

robustness to computer arithmetic errors. This section is then concluded, with reasons, 

why a boundary model representation was selected as the primary input format for the 
mesh generator.

6.3.1 Surface based models.

It is easy to generate simple graphical models of real objects, but unfortunately, 

points and lines alone do not in general convey sufficient information for the application 

of complex algebra operations.Confusion can be avoided if we adopt a more rigorous 
view of modelling:

1) Physical objects :By means of models, our aim is to speak and argue about some 

real things of our three-dimensional real world. Unfortunately, assuming a 

Platonician view, we cannot even perceive a real-world object in its full 

complexity and sub-microscopic details, much less represent all aspects of it in 

a computer.

2) Mathematical objects : In order to have any hope of modelling objects in a 
computer, we must therefore adopt a suitable idealization of the real 

three-dimensional physical objects we are ultimately interested in. These 

idealized objects should have an intuitively clear connection with the real world, 

while being so simple that we can assign a computerized representation to them.
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Therefore a mathematical geometry representation should possess the following 

qualities (Requicha's analysis [Req83]).

(a) Expressive power : What objects / forms of objects covered.

(b) Validity : Are all admissible representations valid.

(c) Unambiguity and uniqueness : Do some models have more than one 

representation?

(d) Description Languages / Descriptive power

(e) Conciseness : How large are representation of practical models

(f) Closure of operations : Do manipulations of objects generate valid models

(g) Computational ease, applicability and Reliability : Speed of operations and 

complexity of coding (order of operations)

The main types of modelling methods that possess the above characteristics are:-

(a) Decomposition models, that represent complex objects as a collection of simple 

objects from a fixed collection of primitive object types, combined with a simple 'gluing' 

operation.

(b) Constructive models, as above but objects can be combined with a number of 

complex operations such as union, intersection, difference etc.CSG (Chapter 2 section 

2.1.1) are often built up of Binary trees of primitive objects [Dew88].

(c) Boundary models, which represent objects in terms of boundary data. The 

boundary of complex structures are represented as a collection of faces, which in turn, 

are often represented in terms of their boundary being a one-dimensional curve. 

Therefore, Boundary models may be viewed as a hierarchy of models.

The Expressive power of boundary models combined with the well defined family 

of geometry operators, Euler operations [Mar88], make this method the natural choice for 

three dimensional grid generation. Boundary models have all the required operations 

needed for grid generation by mesh bisection and are the natural way to represent surface 

meshes.
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6.3.2 Polyhedral domains.
The particular subset of boundary representation used by the mesh generator is 

polyhedral models. These models are constructed from two-dimensional non-intersecting 

primitives, polygonal faces. Each face is in turn constructed from a set of co-planar 

points with connecting lines and a surface normal. Each polyhedral face can have any 

number of nodes, edges and holes, see Figure 6.3.1.

Figure 6.3.2 shows the hierarchical 

structure, which can be used to describe 

polyhedral models. The illustration 

demonstrates that it is possible to have a 

model, which consists of more than one 

polyhedral domain. This is necessary for 

the accommodation of multi material 

regions, a simple example of which is two 

adjacent cubes. Figure 6.3.1 : Complex polyhedral domain.

Model

Polyhedron Polyhedron

Polygon Polygon

Vertices Edges
Figure 6.3.2 : Hierarchical structure of Polyhedral models.
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6.4 Bisection method.

This section will outline the techniques used for the selection of bisection planes. 
The reliability and quality of the techniques used for the bisection of a geometry into 
disjointed parts are fundamental to the automatic mesh generator. Sub-dividing geometry 
is a highly complex task, therefore in the literature there exist a number of techniques, 
see [Man88][Cha84][BaD92] amongst others. These techniques, rely on finding all the 
intersections of the cut plane and the faces of the polyhedral domain first. These 
approaches [Man88][Cha84][BaD92], were found to be inappropriate for the mesh 
generation algorithm, since they often introduced acute angles into the domain [BaD92]. 
Therefore, techniques based on the above methods were developed, namely the 
Polyhedral outface algorithm and Edge following bisection, and are described below.

These methods trace out the boundary of a cut face from an initial starting edge, 
lying on the bisection plane of the polyhedral domain. This edge tracing approach enables 
local bisection, Figures 6.4.2, where finding the intersection of all polyhedral faces of a 
polyhedral domain is inappropriate. Also, it enables the tracing out of non-planar 
bisections faces, Figures 6.4.3 and 6.4.4. The Polyhedral cut face algorithm (Figures 
6.4.1 and 6.4.2) introduces a planar interface element, where the Edge following bisection 
(Figures 6.4.3 and 6.4.4) tries to follow the outer contours of the domain and for any 
single bisection generates many interface polyhedra. These two methods are described 
in more detail in Chapter 7.3.

Bisection line 
A

Typical Bisection

Figure 6.4.1 Bisection of a domain. Figure 6.4.2 Internal bisection polygon.
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—— Bisection line 
A

Figure 6.4.3 Bisection walk which cuts a 
domain into two independent regions.

Surface mesh

Bisection walk
Figure 6.4.4: Internal bisection 
polygons generation

The polyhedral cut face algorithm is the preferred method, since it is the simplest 

and fastest, and only introduces one simple polyhedral interface into domain. However, 

this technique for various reasons, see Chapter 7.3.3, cannot always be applied, which 

provides the motivation for the second method Edge following bisection that can bisect 

all types of geometry without limitations.

6.4.1 Selection of cut face.

Algorithms for the selection of bisection planes for decomposing polyhedral 

regions are given in [Cha84] and [BaD92j. However, these algorithms are optimized for 

decomposing domains into convex regions and worst case time complexity, i.e speed of 

execution. However, we are concerned with the task of bisecting a domain into an 

arbitrary number of regions and the resulting quality of the bisection. This is achieved 

by avoiding the creation of small angles between polyhedral faces and bisection planes.

The selection of a bisection plane Pb given an initial edge e in a polyhedral region 

S is fundamental to the quality of the overall mesh. Edge e is the adjacent edge of the 

polygon faces P0 and P t and is defined by the vertices V0 to Vj. The initial stage is the 

identification of the inner wedge region. Figures 6.4.5 and 6.4.6 show an inner wedge 

region for convex and concave polygon pairs.
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Inner wedge

Figure 6.4.5 convex polygon's 
inner wedge.

Figure 6.4.6 Concave polygon's 
inner wedge

The inner wedge region is then bisected into, at most, seven possible bisection 

planes, (Figure 6.4.7) with angles of at least ten degrees between them. This provides a 

reasonable spread of bisection planes for subdividing the domain. These bisection planes 

are used one after another, in the order given in Figure 6.4.7, in an attempt to bisect the 

domain using the polyhedral cut face algorithm in section 7.3.1. If all the attempts fail 

the process is repeated using the "edge following bisection" method of section 7.3.3

Set of possible 
Bisection planes

Figure 6.4.7 Possible bisection planes to resolve domain bisect problem.
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6.5 The sub-region problem.

Other geometry bisection techniques, [Man88][Cha84][BaD92], handle multiply- 
connected regions without modifications. However, it was found by simplifying the 
geometry of the domain by introducing interface polyhedra, that join cavity regions up 
to the outer boundaries, this enables a simpler and more robust bisection algorithm to be 
applied during grid generation. This section will outline a technique that implements the 
two bisection techniques Polyhedral splitting algorithm (Chapter 7 section 7.3.2) and 
Edge following bisection method (Chapter 7 section 7.3.3).

Geometry simplification is achieved by finding a cutting plane, which bisects both 
the inner and outer polyhedral domains. The geometry is then separated into two parts 
and a set of interface polygons are generated between the two new independent domains. 
In Figure 6.5.1, a cube with a cavity is divided into two simpler polyhedral regions, using 
the Polyhedral splitting algorithm and Figure 6.5.2 illustrates this operation using the 
Edge following bisection method.

— line of bisection 
A

Figure 6.5.1 Decomposing a complex polyhedral region into two simple regions.

— Bisection line 
A

Figure 6.5.2 Bisection of a complex domain.
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The selection of the bisection plane is vital if we want to avoid the creation of 
degenerate angles, short edges or narrow regions. However, these problems cannot always 
be avoided in complex geometries with several sub-domain regions.

A simple approach is applied for finding the bisection planes, which takes each 
face of a sub-polyhedral domain in turn and uses its face normal to define a cutting 
plane. This bisection plane is then used in the polyhedral splitting algorithm described 
in section 7.3.2 to divide the domain. Figure 6.5.3 shows a region which has been 
resolved using this technique.

Interface polygons

Figure 6.5.3 Face polygon of subregion used to bisect domain into two polyhedra.

However, the above algorithm may fail to find an acceptable bisection. If the 
above method fails, a second technique is applied where each reflex edge of the inner 
domain is examined in turn to see if it can be used to resolve the sub-region. Let P0 and 
P, be two adjacent faces that form a reflex edge in the inner polyhedral with normal 
vectors N0 and N,, respectively. Let V0 and V\ represent the vertices which form the 
adjacent edge of the polygons P0 and Pj. An inner wedge is defined, Figure 6.5.4, which 
is the intersection of the half space defined by two planes with normals N0 and NJ that 
pass through the edge V0 to V^ A set of planes are then calculated, which subtend the 
inner wedge angle between 20 and 30 degrees, and these are then used to resolve the hole 
polygon.
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Figure 6.5.4 Inner wedge

Figure 6.5.5 Example Bisection using the above technique.

If the above method fails the whole procedure is repeated using the alternative 

method of edge following bisection, described in section 7.3.4.
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6.6 Problems with recursive domain bisections.

The initial recursive 3D mesh generator coupled with the 2D nodal placement 
algorithm (Chapter 4 section 4.6.5) was found sufficient to generate a three dimensional 
tetrahedral grid. However, it was found that this technique tended to generate grids of 
poor quality and offered little control over mesh density, often generating grids with over 
refined regions in a way similar to the British Isle's map depicted in Figure 4.5.6 Chapter 
4. On regions with complex boundaries and a large number of surface elements there is 
a substantial number of rejections of bisection planes and cut interfaces that resulted in 
a dramatic increase in CPU time. Also, on complex domains the edge following bisection 
method (Chapter 7 section 7.3.3), is used as the main domain cutting algorithm which 
often increases the complexity of the domain, measured by the number of polyhedral 
faces, and results in highly complex surfaces.

The grid quality generated by this method is very similar to the 2D example of 
the British Isle's map depicted in Figure 4.5.5. Even when a min-max solid angle 
optimization algorithm (Chapter 7 section 7.5) was implemented little improvement in 
the grid could be achieved. This was mainly due the limitations of 3D local 
transformations.

From the initial work carried out it became clear that a method of nodal 
placement similar to the one in Chapter 3 section 3.6.4, which first decomposed the 
domain into a number of convex regions is required.
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6.7 Decomposing polyhedral domains into convex regions.

For the nodal placement algorithm to work, the domain has to be decomposed into 
convex regions. Decomposing a region into convex parts is a well researched area, 
[Cha84][Bad92] and can be achieved by introducing bisection planes which subtend 
reflex edges of the model. The algorithm implemented in the mesh generator is outlined 
next, and is implemented using the bisection techniques described in Chapter 7 sections 
7.3.1 and 7.3.3:

(1) Generate an order list of reflex angles, descending order of angle size. Any angle 
between two polygon faces larger than 7t+e, where e is machine tolerance, is 
regarded as reflex.

(2) Remove next "reflex angle" edge E from head of list.

(3) If edge E on a double occurring face, add to the tail of list of reflex angles, 
go to (2). Double occurring faces are polygons which form an internal 
interface within a region, but do not cut the domain completely into two parts. 
Therefore, they are identified by the fact that both sides of the polygon are in 
the same domain. Double occurring faces with reflex angles are left to the end 
after all other angles have been dealt with.

(4) Try to remove reflex angle with either the polyhedral cut face algorithm,
section 7.3.1, or the edge following method section 7.3.3. If the edge following 
method is used, add any newly formed reflex edges to the tail of the relevant list. 
If this edge cannot be resolved add to the tail of the reflex edge list

(5) repeat from step (2) until all reflex angles are resolved.

In step 4 a reflex edge may not be resolved, the edge is then deferred until other 
reflex edges have been resolved; then the sub-polygon containing the difficult edge may 
be smaller or may be subdivided by other cut faces into two or more reflex sub-edges. 
The above algorithm is not guaranteed to resolve all reflex angles. Therefore, binary 
mesh operators [Chapter 3 section 3.3] are applied to any remaining unresolved edges.
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6.8 Generation of grids within sub-regions.

Once the internal nodes are generated and inserted, described in section 6.11, the 
generation of the mesh can begin. An initial attempt at meshing the domain is given by:

(1) Generate a surface grid over each polygon face. This is done to ensure that 
the interface of the grids generated in each convex sub-domain is consistent.

(2) Take each region in turn and using the edge following bisection technique, section 
7.3.3. attempts to generate a grid of tetrahedra.

Step (2) involved the inclusion of internal nodes that were less than 0.5BW, where Bw is 
the band width (see section 7.3.3) of the bisection from the bisection plane. Therefore, 
this involves the tracing out of the cut interface boundary along the edges of the domain 
being bisected, as in section 7.3.3. The band width of the bisection interface is calculated, 
and any internal nodes within half of this distance either side of the cut plane (Chapter 
7 section 7.3.3) is included in the set of nodes to be meshed. This set of nodes are then 
projected onto the cut plane and rotated onto the Z=0 axis. They are then meshed using 
a 2D mesh generator, the connectivity of this mesh is then used to stitch the points in 3D 
space. From this bisection the domain would be split into two or more halves and the 
associated data structures are updated. This process is applied recursively to each region 
until valid tetrahedra are formed.

The above method was found to be slow, since bisection planes were often 
rejected. There was also the problem of regions which could not be bisected or 
tetrahedralized, which required the introduction of extra edges and / or vertices on the 
polygon faces and within the body of the domain. The method would often produce 
invalid and intersecting tetrahedra because of the difficulties involved in bisecting regions 
using an edge following bisection technique coupled with internal node inclusion.

However, in the literature [Joe92b][Bak92][GHS88][Joe92c] there are several 
algorithms published for generating meshes in convex regions using Delaunay 
triangulation with a computational order of nlog(n). The method which was selected here 
is based on 3D vertex transformations and is described in section 7.5.
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The initial attempt at meshing the convex regions was implemented using 
boundary constrained Delaunay triangulation, however, this was rejected due to the 
generation of degenerate tetrahedra, that can result in the failure of the algorithm. An idea 
by Joe [Joe89] can be adapted to use a local min-max angle criterion, instead of 
circum-spheres of tetrahedra, as a grid generation heuristic. This method of generating 
grids in convex regions will be described in Chapter 7.6.

The algorithm implemented is a local min-max meshing technique, which requires 
at least one interior node, since there always exists a boundary constrained triangulation 
for a convex polyhedral with one mesh node within its interior [WorSl].

The final meshing technique is still a recursive bisection technique, where the 
domain is recursively divided until the resulting sub-domains are sufficiently small so 
that a simple algorithm, Boundary constrained min-max triangulation, may be applied. 
The final sub-domain meshing algorithm may be extended to a full recursive-bisection 
technique, once improvements have been made to the bisection part of the program. This 
will also have to be done with improvements to the 3D min-max transformation 
algorithm, see section 7.6.1.

The benefits of making the algorithm a fully recursive technique are not yet clear, 
as the Boundary constrained min-max algorithm is highly efficient. Also, there is no 
current thought on how to extend a full recursive bisection technique to automatically 
generate quadrilateral and hexahedral elements.
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6.9 Outline of final mesh generator and results.
The final mesh generator with example results, are presented in this section. 

6.9.1 Input requirements.

(1) Input of geometry is in the form of a polyhedral domain, an example input is 
given in section 6.13.

(2) The user specifies a required number of elements, which the mesh generator will 
try to accommodate.

6.9.2 The mesh generator.

(1) Read data file; simplify model by removing cavities, section 6.5, and remove hole 
polygons in polyhedral faces, section 4.6.3.

(2) Decompose polyhedral domain into a set of convex polyhedral regions, 
see section 6.10 below.

(3) Generate nodes in polyhedral regions, see below section 6.11.
(4) Generate boundary grids over all polyhedral faces, this ensures that the mesh 

conforms between sub-regions.
(5) Generate boundary constrained local min-max triangulation in sub-regions, 

section 7.6.

The user then has the following options to optimize the mesh:
(1) Local min-max swapping routine applied over the whole domain, section 7.5.
(2) Laplace's smoothing.

The optimization methods can be applied in different combinations, as the ordering of 
these mesh operators can affect the overall quality of the final mesh. For a complete 
overview of how modules in the mesh generator can be interlinked, see Appendix A6.
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6.10 Convex domain partitioning.

Figure 6.10.1 : Polyhedral region.

Chapter 6

Figure 6.10.2 : Polyhedral domain 
bisected into convex parts.

The above figures represent a polyhedral domain, Figure 6.10.1, which is then divided 
into number of convex regions Figure 6.10.2.

The polyhedral decomposition into convex regions is dependent on the complexity 
of surface definition. Figure 6.10.3 illustrates a surface mesh of the above polyhedral 
domain depicted in Figure 6.10.1. Since a surface mesh already has a large number of 
nodes associated with it, the program will try and avoid the introduction of unnecessary 
face vertices, therefore, the edge following algorithm in section 7.3.3 is used. The 
resulting decomposition is illustrated in Figure 6.10.4, where a large number of bisections 
are necessary to generate a set of convex regions.

Figure 6.10.3 : surface mesh. Figure 6.10.4 
convex parts.

Decomposition into
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6.10.1 Domain bisection.

To demonstrate the computation efficiency of the bisection method in section 6.4, 
a family of polyhedral domains were defined, which were derived from a common 
primitive. The family of polyhedral domains used were derived from taking a sphere, of 
any radius, and generating a given number of polyhedral faces over its exterior boundary, 
see Figure 6.10.5. Each polyhedral domain was then taken in turn, and the CPU time was 
recorded for the mesh generator to perform one bisection. The results obtained, were then 
plotted in the form of a graph, see Figure 6.10.6.

The graph below, shows a comparable 
linear computational growth for the number of 
polyhedral faces against the time taken to 
perform a domain bisection. However, since the 
primitive object is a sphere, we can only 
conclude that the graph below is representative of 
the bisection algorithm working on convex 
geometries.

Figure 6.10.5 : Set of convex 
polyhedral domains
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Figure 6.10.6 CPU time to bisect a polyhedral region with a given number of
boundary faces. CPU times are for non-optimized code running on a 
Sun Spare station 10.
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6.10.2 Complex domain bisection.

Since the previous section 6.10.1, was based purely on a convex domain a new 

model was developed, see Figure 6.10.7.

Figure 6.10.7 : Set of test domains.

The above domains are generated from a common object, which had a different 

number of polyhedral faces generated over it. The common primitive was generated from 

two intersecting spheres, of different radii, which has a cylindrical hole passing through 

both.

The graph below, is a plot of number of polyhedral faces, over the above object, 

against CPU time to preform one bisection of this domain. This graph shows a good 

computational comparison for time to preform a bisection of the domain against number 

of surface elements.
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Figure 6.10.8 : CPU time to preform a bisection on a polyhedral domain
with a given number of polyhedral faces.
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6.11 Convex domain shrinking and nodal placement.

The requirement of the nodal placement algorithm is that the user specifies the 
required number of elements R and the mesh generator attempts to generate a grid to that 
given density. Once the domain is divided up into convex regions, the total volume V of 
the domain can be calculated [Sto91] and used to find the ideal nodal spacing Np . To 
estimate the average tetrahedral volume Vt we divide the volume V by the required 
number of elements R. Therefore the nodal spacing Np is calculate by :

N =JSVt See appendix A2

After the nodal spacing is calculated a method of shrinking convex regions is 
applied, as in the method explained in Chapter 4.6.4, which generates nodes on the 
surface of concentric domains, Section 7.4.
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6.12 Geometry input requirements.
A 3D mesh generator must be able to cope with relatively complex boundary 

models, which consist of polyhedral domains. A typical polyhedral model can have face 
holes, interior holes, internal interfaces and / or hole interfaces, Figure 6.12.1.
Faces

Face holes

Interior holes

Internal interfaces

hole interfaces

are regions defined by a set of planar points in counter clockwise
order (when viewed from the outside)
regions defined by a set of planar points in an ordered list around
the boundary of the face.
independent polyhedral regions, which defines a hole inside
another polyhedral.
polygon faces, which define a boundary between two polyhedral
regions.

polyhedral region, which defines the interface of two regions,
of which one is completely contained inside the other.

DOMAIN 1 | DOMAIN fi

Incdrtaoe

B

Figure 6.12.1 Three forms of interface 
polygons.
(A) Interface between two domains,
(B) Sub-polyhedral interface,
(C) Hole interface polygon region.

All the above information about a model must be ascertained before the 
generation of the grid can begin. This information can either be provided by the user or 
a CAD package, however the grid generator should minimize its input requirements.
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Therefore the following information has to be obtained from the geometry description of 
the model:

(i) Which groups of polyhedra form interfaces and polyhedral regions,
(ii) The set of polyhedral regions that represent cavities,
(iii) The direction of surface elements' normals,
(iv) Sub-polyhedral domains and the polyhedral regions they are contained in.

The data input requirements of the new bisection method, is based on the 
following :

The automatic identification of which groups of polygons (i) form each polyhedral 
domain, can only be practically achieved when there are no interface polygons. 
Therefore, the user is required to specify which polygon faces belong to which polyhedral 
domains, however, interface polygons can be automatically identified by the program.

Whether or not a polyhedral region represents a cavity (ii) has to be either 
provided by the user or the CAD package that generated the model. However, the 
direction of face normals (Hi) can be established, by taking any face K on each 
polyhedral domain. A ray can then be projected from one of the nodes on the face K, in 
the direction of the face K's normal. The number of times this ray intersects with the 
current polyhedral indicates the direction of the face normal. If there are any polyhedra 
faces that intersect the ray with a small angle, which may produce computational errors, 
a different node can then be selected on the face K, for the starting point of the ray. Once 
the direction normal of one face on a polyhedral domain is established, all other 
polyhedra normals can be set relative to this face.

Satisfying point (iv) the identification of sub-polyhedral and to which outer 
polyhedral they belong, is relatively straight forward. We can simply take one node of 
the polyhedral region that is not a member of an interface polyhedra. A ray testing 
routine [Rog85] can then be applied to the model to find which domains are contained 
in other regions.
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6.13 Mesh generator's input format.

Taking the information in section 6.12 into account, resulted in a relatively simple 

data input requirement for the new bisection method. The algorithm just requires a list 

of points, polyhedral faces and a polyhedral domain face list. The polyhedra faces are 

defined as an ordered list of nodes, in either direction around the boundary. This data 

input format which is illustrated in the next two examples, can handle most forms of 

polyhedral domain with interface boundaries, cavities and sub-domains. 

Example 1

An example cube with a cavity adjacent to another cube.
cube with a cavity in, adjacent to another cube. 
17 20 3 26 -- No. faces, No. nodes,

No. of polyhedra regions, No. of required elements.

-- nodes X Y Z.0
1
1
0
0
0
1
1
2
2
2
2
0
0
0
0
0
0
0
0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.25

.75

.75

.25

.25

.25

.75

.75

0
0
1
1
0
1
1
0
1
1
0
0

B

^

B

•

.

m

t

f

t

t

.

B

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
.

.

.

.

,

.

.

•

1
1
1
1
0
0
0
0
1
0
0
1

25
25
75
75
25
75
75
25

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0
0
0
0
0
0
0
0
0

.75

.75

.75

.75

.25

.25

.25

.25

.»...... /:....-> 

Figure 6.13.2 Box with a cavity adjacent to 
another box.

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

6
6

-6

1234
7856
1465
4376
1582
2 12 9 3

10 11 8 7
12 11 10 9

3 9 10 7
2 8 11 12
2873
13 14 15 16
17 18 19 20
17 20 14 13
19 18 16 15
17 18 16 13
20 19 15 14

-- polyhedra faces.
-- number nodes in face, node list.

1
6

12

2
7

13

3
8

14

-- polyhedral domains. 
4 5 11 -- number of faces, list of faces. 
9 10 11

15 16 17 -- negative number of faces indicate a 
polyhedral region

cavity
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Example 2

Example of a Re-entry polyhedral with a complex top face.
Re-entry box 

12 16 1 26 -- No. of faces, No. of nodes 
No. of required elements

  Nodes X,Y,Z

No. of Polyhedral domains,

0
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0

.

.00000

.00000

.

.

,

.00000

.00000

.00000

.250000

.750000

.750000

.250000

.250000

.750000

.750000

.250000

0
0
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0

.
^

.00000

.00000

.

.00000

.00000

.00000
 

.250000

.250000

.750000

.750000

.250000

.250000

.750000

.750000

0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
1

.

.
f

t

.00000

.00000
 

.00000

.00000

.250000

.250000

.250000

.250000

.00000

.00000

.00000

.00000
Figure 6.13.3 Re-entry Polyhedral domain 

with complex top face.

4
4
4
4
4
4
4
4
4
4
4
4

1
1
3
2
1
5
9

11
10
12
13
16

4
5
4
3
2
6
10
12
11
16
14
13

3
6
6
7
8
7
11
16
15
13
10
14

2
4
7
8
5
8
12
15
14
9
9

15

-- polyhedra faces.
number nodes in face, node list.

12 123456789 10
-- Polyhedral domain face list 

11 12 -- number of faces, list of faces.

As can be seen from the above two examples, the data input is so simple that it 
can be learnt quickly. The only meshing information is the required number of nodes 
provided by the user. However, this input format is still difficult to generate for complex 
shapes.
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6.14 Summary and Conclusions
As described in this chapter, the initial idea of the recursive bisection mesh 

generator has been extensively modified and developed. This has resulted in a 

computational and reliable mesh generaton technique.

The method presented in this chapter is still a problem reduction technique, where 

an initial geometry is first simplified, by cavity removal and then concavity removal. 

Then once this geometry model is sufficiently simplified, a simpler algorithm can then 

be applied, based upon boundary constrained min-max tessellation.

The next chapter will now describe the fundamental algorithms on which the new 

bisection mesh generator, described in this section is contingent.
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Chapter 7
3D Mesh Generation 

Computational techniques.
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7.1 Introduction

This chapter gives a detail description of the low level algorithms, which the last chapter 
is contingent on. The Data structure and method of storage used within the mesh 
generator, which is crucial for speed and robustness of code, is initially described.

Nodal placement within a mesh generator and its tetrahedra tessellation methods 
form the fundamental key to mesh quality. Therefore, a detail description of the four 
types of bisection techniques used within the code, which form the heart of the mesh 
generator, are presented. These bisection methods are used for domain decomposition and 
cavity removal as discussed in Chapter 6.

The nodal placement technique based on convex domain shrinking is described, 
together with how this is combined with a direct local boundary constrained min-max 
tessellation algorithm. The min-max tessellation method is based on local-transformations 
by Joe [Joe89] and is also described.
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7.2 Data structures

The data structures within the code affect computational speed and ease of 
geometry manipulation [BaD92], However, speed and the amount of information stored 
must be weighed against memory costs and the types of algorithms implemented. These 
issues are examined in this section together with a description of the data structures used 
within the mesh generator.

7.2.1 Data requirements of polyhedral domains.

The main elements of a boundary model are :-

faces : are regions defined by a set of planar points and a surface normal, 
face holes : regions defined by a set of planar points, which defines a hole

inside a face polygon, 
interior holes : independent polyhedral regions, which defines a hole inside

another polyhedral 
internal interfaces : polygon faces that define a boundary between two polyhedral

regions

hole interfaces : a polyhedral region, which defines the interface of two regions, of
which one is completely contained inside the other.

A data structure is required to represent all the above characteristics, plus enough 
information to enable the efficient application of complex geometry operations. Three of 
the main operations that must be preformed on this data structure are :

(1) Insertion of a vertex in the interior of an edge.
(2) Insert an edge in the interior of a face.
(3) Insert a. face in the interior of a polyhedral domain.

Figure 7.2.1 is a graphical representation of the type of information which is deemed 
necessary for three dimensional mesh generation, this is based on a winged-edge data 
structure [Mar88][Bau75] [Bra79] [GuS85][Kar90].
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Po 1 yhedra 1 1 Polyhedra 1 2

Predecessor 
Vertex

Me Ighbour 

Edge 2

Globa
Node

Number

Successor 
Vertex

NeIghbour 
Edge 1

Edge 
Ang I e

Figure 7.2.1 data structure used for polyhedral domains

From Figure 7.2.1 a large amount of information is required to enable efficient 

operation of geometry searching. However, the reader should bear in mind that a typical 

software analysis package would store far more information about a model.

7.2.2 Detail description of stored data.
Below is listed the data structure required for the representation of polyhedral 

domains for three dimensional mesh generation. This data structure is based on the 

winged-edge and half-edge data structures described in "an introduction to solid 

modelling" [Mar88][Bau75][Bra79].
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The top part of a polyhedral data structure is a head list, which points to the 

relevant groups of polygon faces.

Head_Pointer_List: Pointer to first polygon face (Polygon_Face_List).

Pointer to next entry in Polygon_Head_List.

Polygon_Face_List: Face_Pointer, negative if face normal points into domain.

Pointer to next element in Polygon_Face_List.

Face Pointer Pointer to first node in Face_Vertex_list.

Face normal.

Sign Pointer of first domain, Domain_Ptrl.

Sign Pointer of second domain, Domain_Ptr2.

Domain pointers are negative, if face normal is pointing into

the domain,

hence Domain Ptrl*Domain Ptr2<0.

Face Vertex List Local node number

Global node number

Face_Pointer

Successor entry in Face_Vertex_List.

Predecessor entry in Face_Vertex_List.

Face_Vertex_List pointer of adjacent face clockwise.

Face_Vertex_List pointer of adjacent face anticlockwise.

Edge angle.

The majority of the above data, is stored to enable efficient traversal of polyhedral 

domains. Therefore, the above data structure enables the acquisition of any relationship 

between a geometry element with any associated item of the polyhedral domain, e.g 

given a node of face, just by traversing the data structure, it is possible to find all 

polygons in which it is contained.
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Figure 7.2.2 illustrates that for an interface polygon A, there can 

exist two adjacent faces C and B. Therefore, Face_Vertex_List 

has two adjacent pointers, which is sufficient to cover all valid 

boundary models such as Figures 7.2.3 and 7.2.4. Figure 7.2.5 

illustrates a non-manifold boundary model, which is also 

applicable for use in this data structure.

Figure 7.2.2

Region 1

Regions

Ragton2

Region 1

Regie
Region2

Regions

Reoton2
Region 1

Figure 7.2.3 Figure 7.2.4 Figure 7.2.5

Another feature of this data structure is that only one face angle has to be stored 

with each vertex entry. The angle between two adjacent faces is stored in the entry which 

satisfies the condition (J-I)oc>0, where J,I are the global vertex numbers of the common 

edge and a the sign to indicate the direction of the face normal, a is negative if the face 

normal points into the domain; otherwise it is positive. Therefore, given a Face_vertex 

entry, to find the angle on the edge of this node J and its successor 7, test the condition 

(J-I)a. If this is positive the face angle is stored in this Face_Vertex_List entry else it is 

stored in the adjacent polygon face entry. Therefore, the angle between each face is only 

stored once, which optimizes memory usage and allows for the use of a fast edge angle 

testing routines.
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7.3 Generation of cut planes.

The generation of a cut interface is a vital part of any bisection based method of 

triangulation. Sub-dividing geometry is a highly complex task, therefore in the literature 
there exist a number of techniques, see [Man88][Cha84][BaD89][BaD92][ChP92] 

amongst others. These techniques, rely on finding all the intersections of the cut plane 

with the faces of the polyhedral domain first. These approaches [Man88][Cha84][BaD92] 

[BaD89][ChP92], were found to be inappropriate for the applications in the mesh 

generator, due to the generation of acute angles. Therefore, techniques, based on the 
above methods were developed, namely the Polyhedral cut face algorithm and Edge 
following bisection.

However, the above two methods, Polyhedral cut face algorithm and Edge 
following bisection, were not readily extendable to multi-connected geometries. Therefore 
the methods, Polyhedral splitting and Contour polyhedral splitting algorithms, were 
derived from the previous two techniques to handle the special case of multi-connected 
regions. This section will outline these four bisection methods, which are used within the 
mesh generation code. The selection of the cut plane is described in the previous Chapter 
6 section 4.

7.3.1 Polyhedral cut face.

This section will outline the primary bisection technique which generates a cut 
face polygon Cf in a simply connected domain. The method traces out a cut polygon 
given an initial edge e0 and the plane of bisection Pb . This techniques differs from other 

methods, such as Chazelle [Cha84], in which all intersections between the bisection plane 
and the polyhedral domain are found first, which may be multi-connected.

The initial edge e0 with vertices v0 and \ l will form one side of the interface 
polygon. The algorithm then proceeds to walk around the polyhedral domain, in a 

anticlockwise direction keeping the region to the left, generating new edges one at a time. 
This approach allows the rejection of the cut polygon at any time, if it generates any 

small angles or is too near to existing vertices. Figure 7.3.1 illustrates a cut polygon that 
divides a domain into two separate parts. However, Figure 7.3.2 is the more common
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case where the cut polygon introduces an internal or double occurring face into the 

polyhedral.

Bisection line 
A

Typical Bisection

Figure 7.3.1 Bisection of a domain. Figure 7.3.2 Internal bisection polygon.

In this technique it is vital to have an efficient method of establishing which 

element should be visited next. If the current element is J and it is assumed that all the 

polygons' nodes are in a counterclockwise order, Figure 7.3.3A, when viewed from

Bisection line

Figure 7.3.3 Types of bisection adjacency.
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outside the domain. Then there exists an edge of polygon /, with vertices N0 and N I5 

such that N, is above and N0 is either below or on the bisection plane. Therefore, the 

next element to traverse is adjacent to the edge N0 to N t of polygon J. Figure 7.3.3 shows 

the three cases when the element J has a (A) touching edge, (B) bisecting edge and (C) 

vertex on the bisection plane. However, there are two degenerate cases in the walking 

algorithm. These are when N0 and Nj are both on the bisection plane, or N t is below. In 

this situation the cut polygon forms degenerate angles with the polyhedral and is rejected.

It is also possible for the bisection 

plane to cut a face polygon more than 

once, Figure 7.3.4. The nodes on the edge 

which touch or bisect the cut plane that is 

closest to the previous bisected edge is 

selected for N0 and N!. Polygons which 

bisect the cut plane in n places will be 
visited n/2 times during the algorithm's FiSure 7 ' 3 '4 : Multi intersection, 

walk through the polyhedral domain.

\———— Bisection Plane
Previous bisected odge.

The routine generates a list of nodes, which will form the cut polygon, by walking 

through the set of polygon faces that intersect the cut plane Figure 7.3.5. The algorithm 

walks through each polygon in turn, A to H, in the direction of the arrows generating 

new nodes on edges that intersects the cut plane. As the algorithm walks through each 

polygon, the angles generated between this element and the cut plane are calculated. If 

any of these angles are degenerate, the cut plane is rejected, or else the polygon face is 

added to a list of visited faces. In the case when a polygon edge is on the cut plane 

(Figure 7.3.3C) the angles between the cut plane and both these faces are calculated.
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Original 
mesh

Figure 7.3.5 Bisection walk through the mesh.

Once a complete loop of the polyhedral domain has been completed, the algorithm 

terminates, and the interior angles of the cut polygon are calculated. If the interior angles 

are equal to -2n the polygon is external and rejected, see Appendix A4. If the cut 

polygon is interior to the polyhedral domain, a further check is carried out to ensure that 

it does not intersect or pass too close to any face polygons.

If the cut polygon is accepted the faces which intersect the bisection plane are 

then bisected by the insertion of new edges. The cut polygon is then inserted into the 

polyhedral domain. The domain is then processed to establish whether it has been 

bisected into two complete halves and the relevant data structures are updated.
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7.3.2 Polyhedral splitting algorithm

The previous algorithm only works on polyhedral domains which have no sub- 

polyhedral regions. These occur when there is a hole or sub-domain contained in a 

polyhedral model Figure 7.3.6A. Figure 7.3.6B illustrates a typical bisection generated 

by this algorithm.

Bisection line 
A

Figure 7.3.6 Bisection of a polyhedral with sub-polyhedral domain.

The algorithm is based on a standard bisection method [Man88] that requires a 

bisection plane Pb and polyhedral domain S. The method can be described as follows:

(1) Label all nodes as either on, above or below split plane Pb . Reject the cut polygon 

if there are any nodes that are too near the bisection plane which do not lie on 

it.

(2) Sub-divide all polygons that bisect the cut plane and update polyhedral data 

structure. Relabel bisected segments of on polygons as above or below. 

For all polygons which lie on the bisection plane, label as below if their surface 

normal is in the same direction as the bisection plane, or else label as above. 

For any polygons that are not co-planar to the bisection plane, however 

touch it along an edge, Figure 7.3.7 . Test to see if the adjacent element on the 

touching edge is on the same side of the bisection plane, if it is reject bisection 

plane.
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Polyhedral faces

Bisection Plane

Figure 7.3.7 : Polyhedral faces which touch bisection plane.

(3) Generate list of edges which lie on the bisection plane. These edges are found by 
searching the adjacency list of the polygons that are label as down. An edge which 
lies on the bisection plane, is any polygon's side which has an adjacent element 
which is above the cut plane Pb .

(4) Find lists of vertices that form closed loops, these are polygon faces. 
Reject cut plane if any degenerate polygons found.

(5) Classify faces as outer or inner polygon regions, i.e find hole polygons. 
This process is simplify by the fact that there are no interface edges or 

sub-polygon regions except hole polygons.

(6) Introduce cut edges to remove inner polygon regions.

(7) Insert new interface polygons into polyhedral domain.

(8) Insert new polyhedral domains into polyhedral data structure.
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Bisection Plane\
/ *

B

Figure 7.3.8 Example bisection of a domain.

Figure 7.3.8A represents a domain which is bisected along the cut plane illustrated 

and Figure 7.3.8B shows the resulting bisection. Figure 7.3.8C shows the list of edges, 

which lie on the bisection that form a set of three polygons of which one is a hole 

region. The last Figure 7.3.8D, show the polygons used to generate the cut interface, the 

"hole polygon " has been removed by the introduction of two new cut edges (See Chapter 

4 section 4.6.4).

page 131



___ _______________Chapter 7

7.3.3 Edge following bisection method.
The previous bisection methods always introduce new nodes into the polyhedral 

model. However, when the surface is complex, as in the case of a surface mesh, this is 

often undesirable. Since introducing a large number of nodes in a complicated region can 

result in an over refined mesh. The basic idea is illustrated in Figure 7.3.9 where a 

domain (A) is cut in half along the edges of the polygons that results in the bisection (B).

Bisection line 
A

Surface mesh

Bisection walk

Figure 7.3.9 Bisection walk which cuts a 
domain into two independent regions.

Figure 7.3.10: Internal 
bisection polygons generation

The method traces out a cut interface given an initial edge e0 and a bisection 

plane Pb in a similar way to the method described in section 7.3.1. From the initial edge 

e0 the method proceeds to walk around the region in a anticlockwise direction jumping 

from node to node of each polygon face.

(Bl Above

\n

(D)

(C) Below
Figure 7.3.11 : Types of bisection elements.
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If the current polygon is / and we are at the node n, with local node number Li5 

the next node «, and polygon J have to be established. This is achieved by generation a 

plane Pp through the node «, and parallel to the plane Pb . If Pp bisects an edge of polygon 

/ (Figure 7.3.11 A), then «, is the node closest to the plane Pb on this edge and polygon 

J is the adjacent face on that side. However, if Pp is parallel to the edge with node «, of 

polygon /, rij is the next node from n, keeping the domain to the left. Figure 7.3.1 IB and 

C shows examples of polygons below and above the bisection plane Pb .

The third case is when the plane Pp does not intersect any edges of polygon 7. 
Node HJ is set to n, and the following test is carried out:

If polygon / above Pb then:
Polygon J is the element adjacent to the edge

Else if polygon I is below Pp then:
Polygon J is adjacent to the edge {LM , LJ.

(A) (B)

rii n,

nj
Line of element cut

Figure 7.3.12 Special cases.

There are two special cases illustrated in Figure 7.3.12. In case (A) the local 

bisection plane is parallel to several line segments of polygon /. Therefore, if the angle 

between the line segments, which are adjacent on the node nj, are 180 degrees, the 

current polygon J becomes /. Case (B) is when the line from n{ to node n^' bisects more 

than one edge of the polygon /. In this case, the edge that is first bisected by the line of 
element cut, Figure 7.3.12B, has the node which is closest to this line selected as nf
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This method walks around the domain using the above rules to generate 
a list of interface points / with elements adjacent to each interface line segment. The 
routine will reject a possible cut plane if any element adjacent to an interface line 
segment forms an acute angle with the bisection plane Pb . The bisection walk is 
terminated when a closed loop is found, this is when the node n, is a member of the set 
Ip and not equal to nt. The list Ip is then processed to remove any nodes, which are not 
a member of the closed loop, since the last «, entry is not necessarily equal to the first 
entry in the list 7p.

Local bisection plane 
Bisection plane 
Bisection cut

Figure 7.3.13 Typical walk through a surface mesh.

The above Figure 7.3.13 shows a typical walk through a surface grid, in which 
the algorithm follows the direction of the arrows. Figure 7.3.13B illustrates the bisection 
edge generated using this method.

The list of bisection nodes are non-planar, therefore a set of polygon interface 
elements are generated. The method used is to project the set of interface nodes onto the 
bisection plane as illustrated in Figures 7.3.14 and 7.3.15.
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...... Projection Lines
— Projected face

Cutting plane 
Projected face 
Projection lines

Figure 7.3.14 : Projection of cut face. Figure 7.3.15:Projection of cut surface.

Two planes Pu and P, are then generated that are parallel to the bisection plane 

Pb and enclose the set of interface nodes. Pu is of a distance max(d 1 ,d2....dn)+\|f from the 

bisection plane Pb . The parameters d t to dn are the signed distance of the interface nodes 

from the plane Pb, and *F is an additional spacing function. *F is defined as the minimum 

acceptable relative distance between cut plane and vertices multiplied by the average 

length of an edge on the surface of the domain. The relative acceptable distance is a 

constant with a value between 0.2 and 0.6 depending on quality of bisection required, in 

most cases a value of 0.4 is adequate. The plane P} is defined as the distance 

min(d 1 ,d2....dn)-\j/ from the bisection plane Pb .The term bandwidth of bisection is also 

defined as the distance between the planes Pu and Pt .

A polygon region is then generated with a thickness between the two planes Pu 

and Pl9 with an outer boundary defined by the set of projected interface points. A test is 

then carried out on all nodes within the polyhedral domain that are not directly connected 

to an interface node. If any of these nodes are found to be contained within this region 

the bisection plane is rejected.

The projection is then rotated onto the X-Y plane where it is meshed using a 

standard two dimensional mesh generator. The connectivity of this mesh is then used to 

stitch the nodes together in 3D space, which form interface elements. The angle between 

all interface elements and their outer boundary are calculated and if any are acute the 

bisection is rejected.
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Unfortunately the rule of adding no additional boundary 

nodes resulted in the generation of highly angled interface 

surfaces, which were often rejected by the mesh generator. 

Therefore, the option of generating a possible mid-node nj' was 

introduced. The node nj' is inserted into the mesh if the line 

{nj,nj} makes an unacceptable angle with the bisection plane Pb 

and the line {n'} is an improvement. Figure 7.3.16

The mid-node n^' is defined at the centre of the edge that is bisected by the local 

cutting plane Pp , Figure 7.3.16. Figure 7.3.17 shows a typical bisection walk using 

optional nodal placement to avoid highly uneven interface surfaces.

Cut plane Bisection Walk

Figure 7.3.17 Bisection walk with optional nodal placement.
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7.3.4 Contour polyhedral splitting algorithm

Once again the previous algorithm only works on non-multi connected regions. 

Therefore, the need for the following algorithm, which divides regions that have sub- 

polyhedra domains. Figure 7.3.18 shows a cube with a hollow section contained within.

-— Bisection line 
A

Figure 7.3.18 Bisection of a complex domain.

The first five steps in this algorithm are the same as the polyhedral splitting 

algorithm of section 7.3.2. Once the set of interface polygon loops have been established 

the method then proceeds to search each loop for a suitable starting edge. This is done 

by taking the set of polygon faces that lie on a loop, and then searching them to find the 

closest edge which is within an acceptable angle range. Once an edge is found for each 

loop a bisection walk is carried out using the method described in the previous section 

7.3.3. Each loop is checked with its own set of Pu and Pj planes as described in section 

7.3.3. However, the set of interface loops are projected and rotated as a group onto the 

XY plane, where they are meshed using a 2D mesh generator. The connectivity of the 

mesh is then used to stitch the points in 3D space which form interface polygons. The 

angle between all interface elements and their outer boundary are then calculated and if 

any angle is acute the bisection is rejected.
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7.4 Nodal placement using 3D convex domain shrinking.

The nodal placement technique implemented in the mesh generator is akin to the 

method of Normal offsetting by Johnston and Sullivan [JoS93]. The Johnston and 

Sullivan technique could be applied to domains of arbitrary shape. However, in this 

research, it was deemed necessary to restrict this technique to convex domains, for 

implementation ease and computational efficiency.

A convex region is shrunk by a nodal spacing factor Np which is described in 

Chapter 6 section 11. This is achieved by moving each polygon face Pj of the region in 

by a factor Np along its surface normal, Figure 7.4.1, to define a new face Sj. 

The set of faces S0,s 1 ..sk , form a set of half-spaces. The intersections of these half-spaces, 

if Np is sufficiently small, defines a region H which is the shrunken polyhedral domain.

Face polygon

Normal 
direction

\Face polygon 
moved in by 
a factor Np

Figure 7.4.1 : Face polygon moved inwards by a factor N
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In the mesh generator all the polyhedral faces of the model are divided initial into 

a set of convex faces, to simplify the algorithm. Therefore, the convex shrinking 

algorithm is as follows.

(1) Copy all faces of convex polyhedral domain into the shrunken polyhedral data 

structure S.

(2) For each face / in the data structure S do:

(3) Move the plane Pj of the face /, inwards along its normal by a factor Np .

(4) Find the intersection of the plane Pt with other polygons in the shrunken 

polyhedral data structure S. Generate new faces and update data 

structure S. 

The routine which finds the intersection of face 7 with polygons in the shrunken

polyhedral S, and updates S; is as follows:-

(1) Let Pj be the plane defined by the face 7.

(2) Determine if the intersection is empty or the entire polygon, 

(i) Label all vertices as above or below plane P{

(Any vertices which lay on the plane Pj are label as above) 

(Vertices are classified as on if their distance from the bisection 

plane is less than Npe, where e is machine tolerance) 

(ii) If all vertices are above the plane Pi5 the intersection is empty.

(3) If intersection is not empty then:
(i) Insert new nodes where edges bisection the plane Pj. 

(ii) Subdivide faces which have edges with newly inserted nodes, 

(iii) Remove all edges which are above plane Pj, 

(vi) Remove all polyhedra faces with deleted edges. 

(v) Insert new polyhedral face, made up of the edges formed by the 

newly generated nodes, into the data structure S.

Once the shrunken polyhedral domain is generated, sharp angles are then removed 

to ensure an even nodal spacing. This is achieved by selecting adjacent faces which have 

an angle O, less than a minimal value, 30 degrees [JoS92], Figure 7.4.2A. A plane P is
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then generated, at a distance a into the domain (Figure 7.4.2B) to remove this acute 

angle, see Figure 7.4.2C. The value of a is set proportional to the angle O and nodal 

spacing //, and is calculated by H/2tan(3>/2).

Figure 7.4.2 : Sharp angle removal

Each face of the shrunken polyhedral is then processed to remove narrowness or 

short edges, see Chapter 4 section 4.6.4. The two dimensional nodal placement algorithm 

is then applied to generate face and edge nodal points.

The whole process is then repeated, by shrinking this shrunken polyhedral again 

until a degenerate polyhedral is formed. In the case of a degenerate polyhedral domain 

a node will be placed at its centroid if the volume of the domain is larger then (2n+l)Vt 

where n is number of face nodes and Vt the average tetrahedral volume of the mesh. This 

is done to ensure an even nodal density throughout the domain.
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7.5 Three dimensional local transformations (Vertex Swapping).
Three dimensional vertex swapping [Joe89] is in effect a local transformation, 

since in reality it is the addition and removal of groups of vertices of tetrahedra. Local 

element transformation is based on the idea that groups of elements that form a convex 

region can have their internal edges transformed without effecting their external 
geometry.

The Four transformations which are used :- 

(1) 2 to 3 Mapping (Only if 5 points form a convex domain)

Two tetrahedra with vertices {A,B,C,D} and {A,B,C,E} are transformed

to three tetrahedra {A,B,D,E},{ A,C,D,E} and {B,C,D,E} by the insertion of the

edge {E,D}.

2-3 Mapping

C A

Inserted vertex
Figure 7.5.1 A: Two to three tetrahedra transformation.

Figure 7.5. IB: Two tetrahedra. Figure 7.5.1C: Three tetrahedra.
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(ii) 3 to 2 Mapping
Three tetrahedra {A,B,D,E},{A,C,D,E} and {B,C,D,E} are transformed

into the tetrahedra {A,B,C,D} and {A,B,C,E} by the removal of the edge {D,E}-
This is the reversal of the process shown in Figure 7.5.1.

(iii) 2 to 2 Mapping (only if the 4 nodes {A,B,C,D} lie on the boundary)

The tetrahedra {A,B,D,E} and {B,C,D,E} are transformed into tetrahedra 

{A,B,C,E} and {A,C,D,E} by swapping the edge {BD} to {AC}

2-2 Mapping

——- Swapped vertex

(iv)

Figure 7.5.2

4 to 4 Mapping :-

The tetrahedra {A,B,C,D} {A,B,C,E}, {A,B,F,D} and {A,B,F,E} can be 
transformed into {C,F,A,D}, {C,F,A,E}, {C,F,B,D} and {C,F,B,E} or 
{A,C,D,E}, {B,C,D,E}, |A,F,D,E} and {B,F,D,E}. This is achieved by moving 
the edge {A,B} to {C,F} then to {D,E}.

Transformed edge
Figure 7.5.3 : Four to four translations.
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Figure 7.5.4A Figure 7.5.4B

Figures 7.5.4A to 7.5.4C show various

4-4 Mapping 

( In the order given in Figure 7.5.3).

Figure 7.5.4C
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The algorithm first generates a linked list Q of all the internal faces within the 

current mesh. The algorithm then repeats the following set of operations until the list Q 
is exhausted. The procedure is as follows:

(1) remove face / from the head of list Q with vertices {a,b,c}.

(2) Let Itet and Jtet be the two tetrahedral sharing the face I.

Itet and Jtet have vertices {a,b,c,d} and {a,b,c,e} respectively.

(3) If no four of the five vertices {a,b,c,d,e} are coplanar and the edge {c,d} intersects 
the interior of the triangle fa,b,c}.

let P = min of the solid angles of the tetrahedra {a,b,c,d},{a,b,c,e} 
and 6= min of the solid angles of the tetrahedra {a,b,d,e},{a,c,d,e},{b,c,d,e} 
if 6>p then apply the 2-3 transformation and add the faces {a,d,e},{b,d,e} and 
{c,d,e} to the tail of Q,

(4) If no four of the five vertices {a,b,c,d,e} are coplanar and either :

(a) the edge {a,b} intersects the interior of the triangle {c,e,d},
(b) or the edge {a,c} intersects {b,e,d},
(c) or the edge {b,c} intersects {a,e,d}. 

Then relabel the common face as {a,d,ej so the that the two 

adjacent tetrahedra Itet and Jtet become {a,b,d,e} and {a,c,d,ef. 
let P= min of the solid angles of the tetrahedra {a,b,d,e},{a,c,d,e},{b,c,d,e} 
and 6 = min of the solid angles of the tetrahedra {a,b,c,d},{a,b,c,e} 
if 6>p then apply the 3-2 transformation and remove the faces {a,d,e},{b,d,e} 

from Q.
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(5) The four of the five vertices {a,b,c,d,e} are co-planar ,

relabel the planar face {a,d,b,e} such that the lines {a,b} and {d,e} intersect 

if {a,b,d} and {a,b,e} are boundary faces then 

let (3= min of the solid angles of the tetrahedra {a,b,c,d},{a,b,c,e} 

and 6 = min of the solid angles of the tetrahedra {a,c,d,e},{b,c,e,d} 

if 6>p then apply the 2-2 transformation and add the faces {a,d,e} and fb,d,e} 

to the tail of Q and remove the faces {a,b,d} and {a,b,e}. 

if there exists two tetrahedra {a,b,d,f} and {a,b,e,f}.

let p=min of the solid angles of the tetrahedra {a,b,c,d},{a,b,c,e},{a,b,d,f},{a,b,e,f} 

and 6=min of the solid angles of the tetiahedm{a,c,d,e},{b,c,e,d},{a,c,d,f},{b,c,e,f} 

if 6>P then apply the 4-4 transformation and add the faces {a,d,e} and {b,d,e} 

to the tail of Q and remove the faces fa,b,d} and {a,b,e}.

(6) If none of the previous mapping can be applied, the face is locally optimized.

(7) Repeat steps 1-6 until Q is empty.

The initial order of the faces in the list Q is often arbitrary, however this can be 

modified, so the routine start at a particular location within the mesh.
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7.6 Boundary constrained three dimensional triangulation.

The initial attempt at meshing the convex regions was using boundary constrained 

Delaunay triangulation, however this was dropped due to the generation of degenerate 

tetrahedra which resulted in the algorithm failing. An idea by Joe [Joe89][Bak92] 

[Bak89][BSB92] was taken and modified to use a min-max angle criterion instead of 

circum-spheres of tetrahedra as a grid generation heuristic. This method of generating 

grids in convex regions will be described below.

The algorithm requires at least one interior point, since there always exists a 

boundary constrained triangulation for a convex polyhedral with at least one mesh vertex 

within its interior [Wb'rSl]. Therefore, if a convex region has no interior points a vertex 

is generated at its centroid, which the algorithm will later on try to remove by using local 

transformations.

The vertex swapping algorithm is a min-max solid angle local transformation 

based method as described in the previous section. The algorithm is modified to check 

that before a possible transformation is carried out that no external edges are effected.

The initial stage in the generation of a boundary constrained mesh, is the 

connection of all the boundary triangular faces up to one internal point near the centre 

of the domain. This triangulation, after begin improved by applying local transformations 

based on a min-max angle criterion, forms the initial triangulation of the domain. Then 

the remaining internal points are then inserted into the region one at a time.

On the insertion of a vertex, its location within the previous triangulation is first 

determined. The vertex can be either on the interior of a tetrahedron, on an edge or a 

face. Initial tetrahedra are then formed in the grid that include this newly inserted vertex. 

The mesh is then improved using a local min-max angle criteria, which is initialised in 

the region where the newly formed tetrahedra were created.

In the case where an internal vertex v was generated for the above algorithm to 

work, a further set of transformations are applied. These transformations try to remove
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all faces/edges incident on v. Let Ntet be the number of tetrahedral with vertex v, this is 

equal to the number of boundary faces. A list Q is generated of all faces with the vertex 

v. The algorithm then repeats the following set of operations until Ntet=4:

(1) remove face / from head of Q with vertices {a,b,v}.

(2) Let Itet and Jtet be the two tetrahedra sharing the face I.

Itet and Jtet have vertices {a,b,c,v} and {a,b,d,vj respectively.

(3) If no four of the five vertices {a,b,c,d,v} are coplanar and the edge {c,d} intersects 

the interior of the triangle {a,b,v}. A 2-3 mapping is applied, the new face 

{d,c,v} is added to the tail of Q and Ntet is reduce by one.

(4)

to {A,B,C,D),{B.,C,D,V>,{A,D,C,V}

Figure 7.6.1 2-3 Mapping

If no four of the five vertices {a,b,c,d,v} are coplanar, and the line 

{a,v} intersects the interior of the triangle {b,c,d}, and the tetrahedron {a,c,d,v} is 

present. Then apply a 3-2 mapping and remove the faces fa,c,v} and fa,d,v} from 

Q, Add the faces {a,v,c} and {a,d,v} to the tail of Q and reduce Ntet by 2.

to {B,C,D>V},{A,B>C. >D}

Figure 7.6.2 3-2 Mapping
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(5) The vertices fb,c,d,v} are co-planar and the lines bv and ae are in the quadrilateral 

{c,b,d,v} and there exists two tetrahedra {b,c,e,v} and {b,d,e,v}. Apply the 4-4 

mapping which swaps the edge {v,b} to {a,e}. Remove the faces {b,c,v},{b,d,v} 

and {b,c,v} from Q and reduce Ntet by 2. The face {a,e,v} is added to the tail Q.

-------- Transformed edge

{AAC,V),1B,C,B,V),<B,D,E,V},{A,C,D,V) » IA,C,E,V},lA,B,C,B),lA,D,E,V),|A,B,D.E)

Figure 7.6.3 4-4 mapping

(6) If none of the previous mapping can be applied, add face I to Q.

(7) Repeat steps 1-4 until Ntet is equal to 4 or none of mappings can be applied to the 

faces in Q

(8) if Ntet equals 4 the tetrahedron {a,b,c,v},{a,b,d,v},{a,c,d,v} and {b,c,d,v} can be 

removed to form one tetrahedron {a,b,c,d} which ineffectually removes the vertex v.

The above algorithm will always terminate as each mapping removes a 

tetrahedron incident on v. The method is not always guaranteed to remove an internal 

vertex even though a boundary-constrained triangulation exist from the set of boundary 

points.
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7.6.1 Local minima

The min-max tetrahedral transformation algorithm implemented in the grid 

generator is a local min-max routine. This routine converges to one of the possible local 

optimal angle solutions for the transformations implemented, see section 7.5, which may 

be far from the global optimal solid angle tetrahedral mesh.

The graph below, Figure 7.6.1, is a plot of mean solid angles, before and after 

optimization. This graph is ordered from left to right, into increasing mean solid angles, 

before optimization. This graph is generated from a geometry with a fixed nodal 

distribution, with various tetrahedral meshes. The results were achieved by taking an 

initial mesh, and then applying sets of random transformations to the grid. The geometry 

was then optimized by the local-minmax optimization routine. Figure 7.6.2, presents 

minimal solid angles of the above meshes, which shows a general minimal angle 

improvement.
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j? 0.19 -
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AA

A / * A
iU A

A A AAA 
A ^

000 20.00 40.00 60.00 SO.OO 100.00 120.00 140.00 160DO 180.OO 200.00
M«»h number

D Mean angle before optimization
A Mean angle after optimization

Figure 7.6.1 Mean solid angles before and after optimization.
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Min Solid Angte
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0.001- 
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D Mbr* optimization 

A After optimization

JO,

Figure 7.6.2: Minimal angle of the mesh before and after optimization.

One possible reason for the large number of possible local optima achieved, is 
that the optimization routine is limited by the number of transformations implemented. 
However, the local optimization algorithm does improve the quality of the final mesh 
[Joe91b], and adding new possible transformation would enhance the algorithm.
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7.7 Conclusions.

The design and implementation of any algorithm for geometry operations must 
be done in conjunction with the model representation and data structure used within the 
program. The geometry representation and data structure of the code has a great effect 
on computational efficiency and robustness of the overall mesh generation tool.

The sub-division of geometry into simpler parts is a highly complex task, which 
is reflexed in this chapter by the number of different bisection methods presented. The 
correct mesh bisection technique has to be applied at the right time for the grid generator 
to work reliably and efficiently. The sub-division part of the mesh generator tool was 
found to be such a complex task that a rudimentary heuristic algorithm, Boundary 
constrained local min-max meshing algorithm, is used once the domain is sufficiently 
simple. Even the simple mesh generation technique of Boundary constrained local min- 
max meshing algorithm has to be implemented in conjunction with a robust and reliable 
technique of tetrahedral translations.

For a further discussion of finite precision problems and techniques to minimize 
their effects, see Appendix A5.
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8.1 Introduction

This chapter will present some example models, which have had three 
dimensional tetrahedral meshes generated over their geometry, using the techniques 
described in Chapter 6. The Chapter is divided into three sections, to try and give an 
indication of the power of the meshing technique, described in this thesis. The three 
sections are described next:

Basic Examples : Demonstrates the mesh generators ability to cope 
with varies geometry features, computational 
efficiency and mesh quality.

Comparison Examples This section is an attempt to compare the 
bisection mesh generator's computational 
efficiency and mesh quality, with other mesh 
generators described in various journals.

Further Examples : The final section illustrates some of the further 
examples to which the mesh generator has been 
applied to. This section also helps to re-enforce 
some of the conclusion drawn in the previous 
sections.

The results are presented with CPU time in seconds, for various size grids, 
with associate mesh quality measurements. The two mesh quality measures are 
element goodness measure, section 2.4.2, and tetrahedral solid angle, section 2.4.1. 
These are obtained on the completed mesh before optimization, as this gives an 
indication of the power of the basic meshing technique. The CPU times were obtained 
for un-optimized code running on a SPARC 10 with the Unix operating system 
SunOS release 4.1.3.
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8.2 Basic examples

The next four example geometries illustrate the mesh generator's ability to 

cope with various basic geometry features, which were discussed in Chapter 7, section 

7.1. Each example is presented with an illustration of the geometry with an indication 

to which feature it demonstrates. For each example the CPU time to generate various 

size meshes is presented, together with a table indicating how CPU time is spread 

between the various stages in mesh generation.

The overall CPU profile of the complete time to generate various size grids, 

over the example geometry presented in this section is comparable linear, see Figures 

8.2.3,8.2.8,8.2.13 and 8.2.18. From the tables 8.2.1,8.2.2,8.2.3 and 8.2.4, of CPU break 

down, the bisection part of the code is highly efficient, only taking a fraction of the 

overall CPU time of mesh generation. The tables also indicates that the majority of 

the meshing time is being taken up by the min-max boundary constrained 

triangulation routine, with the nodal placement technique second most CPU intensive.

Each example has the two mesh quality measures, which were presented in 

Chapter 3 section 3.3, mean values plotted against mesh size. Both the tetrahedral 
solid angle and element goodness measures average values improve with mesh size. 

This is a highly desirable feature of any mesh generator, since increasing the number 
of tetrahedra should reduce the individually dependency of each element on the 

geometry of the problem.
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8.2.1 Three dimensional box with a cavity (Example 1).

This example demonstrates the mesh generators ability to deal with domains 
with simple cavity regions (Multi-connected regions).

Figure 8.2.1 Geometry of a box with a cavity (Example 1).

Figure 8.2.2 Mesh of a box with a cavity (Example 1).
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Figure 8.2.3 Number of elements generated against CPU time (Example 1).

Below is a table showing how CPU time is divided between the various routines in 

the mesh generator. The first and second columns are the number of elements and 
nodes generated in the grid. The third column, is the setup time of the geometry, such 
as hole polyhedral and cavity identification. This is followed by time to sub-divide the 
geometry into sub-regions, which then has nodes generated in them, and the times for 

this is in column 5. The last two columns are CPU time to generate the final 
tetrahedral meshes in the sub-regions and the overall CPU time for mesh generation. 

Table 8.2.1: Break down of CPU time, in seconds, used in the code (Example 1).

Elements

173

994

4458

9062

Nodes

67

313

1138

2112

Init 
Geom

0.02

0.021

0.02

0.02

Bisect

0.02

0.021

0.022

0.21

Gen.
Nodes

0.1

0.17

0.54

0.76

Gen. 
Tets

0.35

4.92

12.63

37.03

Total 
Cpu

0.49

5.132

13.212

38.02
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Figure 8.2.4 Average element goodness measure plot (Example 1).
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Figure 8.2.5 Mean solid angle of tetrahedra as mesh size increase (Example 1).
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8.2.2 A box with a cavity adjacent to another box (Example 2)

This section presents a simple example of two adjacent independent domains 

which share a common boundary interface. One of the region also has a cavity 

(hollow) section.

Figure 8.2.6 Geometry of a box with a cavity adjacent to another domain (Example 2).

Figure 8.2.7 Mesh of a box with a cavity adjacent to another domain (Example 2).
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Figure 8.2.8 Number of elements generated against CPU time (Example 2).

Table 8.2.2 : CPU Break down for the cavity cube with interface (Example 2).

Elements

200

803

4624

9551

Nodes

72

253

1146

2172

Init 
Geom

0.025

0.024

0.027

0.025

Bisect

0.022

0.02

0.022

0.021

Gen.
Nodes

0.2

0.18

0.57

0.77

Gen. 
Tets

0.22

2.04

14.46

34.43

Total 
CPU

0.467

2.264

15.079

35.246

page 159



Chapter 8

0.55 - 

0.50 -

0.45 -

° 0.40 -

8

"8 0.35 - 
&

0.30 -

0.25 - 

0.20 -

° ° ° p
D 

n D

°^ a

n
n

=•

X) 2000.00 4000.00 6000.00 8000.00 1000000 
Number of elements

Figure 8.2.9 Number of elements against mean goodness factor (Example 2).
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Figure 8.2.10 Number of elements against mean solid angle (Example 2).
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8.2.3 Three dimensional lug geometry (Example 3).

This example illustrates the mesh generator's ability to cope with more 

complex domains with holes and concave regions.

Figure 8.2.11 Polyhedral domain of 3D lug (Example 3).

Figure 8.2.12: Mesh of lug, 5432 elements (Example 3)
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Figure 8.2.13 Number of elements generated against CPU time (Example 3).

Table 8.2.3 : CPU breakdown for the Lug mesh (Example 3).

Elements

410

1134

5432

10170

Nodes

204

412

1407

2387

Init 
Geom

0.025

0.025

0.026

0.025

Bisect

0.15

0.15

0.17

0.15

Gen.
Nodes

0.55

0.64

1.35

1.81

Gen. 
Tets

0.57

1.15

4.85

9.68

Total 
CPU

1.295

1.965

6.396

11.665
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Figure 8.2.14 Average element goodness measure plot (Example 3).
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Figure 8.2.15 Mean solid angle of tetrahedra as mesh size increases (Example 3)

page 163



__________________________________________Chapter 8

8.2.4 Cross section of a plane in a wind tunnel (Example 4).

Below, Figure 8.2.16, illustrates a simple plane geometry within a cube. This 

example shows the ability of the grid generator to cope with hole polygon regions, 

this is illustrated by the outer boundary of the aircraft forming a hole in one side of 

the surrounding cube.

Figure 8.2.16: Example of plane geometry (Example 4).

Figure 8.2.17 illustrates the completed three dimensional tetrahedral mesh of 

the above geometry.

Figure 8.2.17: Example of plane tetrahedral mesh (Example 4).
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Figure 8.2.18 : Number of elements generated against CPU time (Example 4).

Table 8.2.5 : CPU use, in the generation of plane in tunnel mesh (Example 4).

Elements

1439

4124

12599

21292

Nodes

415

1027

2812

4590

Init 
Geom.

0.03

0.031

0.034

0.031

Bisect

0.35

0.3

0.32

0.3

Gen.
Nodes

2.15

2.73

3.76

4.54

Gen.
Tets

1.4

8.71

37.3

72.61

Total 
CPU

3.93

11.771

41.414

77.481
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Figure 8.2.19: Number of elements against mean goodness factor (Example 4).
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Figure 8.2.20 Number of elements generated against Mean solid angle (Example 4).
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8.3 Comparison examples.

In literature there exist few, or possibly none, real test case examples for mesh 
generation. In the few papers, which present any meshes with grid quality measures or 
CPU timings, little information is provided about the geometry that their technique is 
applied to. Most papers have taken the approach - Here is my algorithm; look what a 
good job it has done on a few examples, Sabin M.A [Sab91]. However in this section, 
simple geometries from various papers have been reproduced as closely as possible.

8.3.1 Normal offsetting technique

In the paper by Johnston [Joh93] the Normal offsetting technique is described for 
three dimensional tetrahedral mesh generation. This paper contains three example meshes, 
together with numerical evaluation of the quality of the final solutions using the aspect 
ratio a, defined as the ratio of the radius of inscribed sphere to radius of circumscribed 
sphere. An ideal value for an equilateral tetrahedron is 0.333 [Bur90]. The first example, 
a cubic domain with a slender appendage, from the paper by Johnston [Joh92], being 
easy to reproduce, was selected as a test case for comparison with the mesh generator 
described in this thesis. Figure 8.3.1 depicts the geometry of the initial problem and 
Figure 8.3.2 is the surface mesh of the final solution.

Figure 8.3.1 : Geometry of a cubic 
domain with a slender appendage.

Figure 8.3.2 : Final tetrahedral mesh.
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Table 8.3.1 shows a break down of 

the elements by their a values for the two 

techniques, normal offsetting and the 

bisection technique described in this 

thesis. Column two of the table is taken 

from the paper by Johnston [Joh93], in 

which 762 nodes and 3610 elements with 

a mean a value of 0.2398, were generated 

over the domain in Figure 8.3.1. The 

bisection technique, in this thesis, 

generated 837 nodes and 3593 elements 

with a mean a value of 0.2183.

Table 8.3.1 : Comparison of results.

a ratio ranges

00.000 -> 0.010

0.010 -> 0.033

0.033 -> 0.067

0.067 -> 0.1 00

0. 100 -> 0.133

0. 133 -> 0.167

0.167 -> 0.200

0.200 -> 0.233

0.233 -> 0.267

0.267 -> 0.300

0.300 -> 0.333

Normal 
offsetting

0.20

1.00

1.60

2.00

2.80

3.30

7.00

12.30

33.60

26.30

9.90

Domain 
Bisection

0.12

3.86

3.34

4.51

5.12

6.96

7.40

10.05

24.02

25.77

8.85

The two techniques generate meshes, with about the same distribution of 
tetrahedral aspect ratios. It could be argued that the normal offsetting technique generates 
a better quality mesh. However, if you consider that normal offsetting technique is an 
order n166 method [Joh92] and the mesh generator in this thesis is at worst order nlog(n). 
Couple this with the fact that with a few passes of a Laplacian smoothing routine 
[Her76], a linear computational algorithm, the mesh generated by the bisection technique 
could become as good, if not better, than the normal offsetting technique. Then the 
bisection mesh generator becomes more attractive.
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8.3.2 Mesh generation by binary mesh operations

Shephard and Lo [Shl92] presented a technique of generating coarse meshes 

using binary mesh operators, see Chapter 3 section 3.3. In this paper there are four 

examples, of which one is provided with some numerical evaluation of the quality of 

the grid generated, using a tetrahedral goodness function \, see Chapter 2 section 

2.4.2. The domain they used in their analysis is depicted in Figure 8.3.4, and the 

resulting mesh generated by the mesh generator in this thesis, Figure 8.3.5.

Figure 8.3.3: Shephard and Lo 
[ShL92] test geometry.

Figure 8.3.4 Tetrahedral mesh of 
Figure 8.2.3.

Shaphard and Lo obtained a mesh with 21 elements, and a \ minimum and 
average values of 0.1493 and 0.4410, respectively. The bisection mesh generator, 

presented in this thesis, obtained a mesh with 47 elements, and a minimum value of \ 

0.0059 and average value of 0.3548.

The 47 elements, was the minimal amount of tetrahedra the bisection technique 

could generate for the above domain, Figure 8.3.3. This is largely down to the 

requirements of the Boundary constrained mmimax algorithm, which needs an internal 

node to be placed at the centre of each sub-domain. These results demonstrate that the 

Shaphard and Lo technique can generate a grid with fewer elements and of better 

quality than the Bisection technique in this thesis. However, it was found that if the 

number of elements was increased to 66, the A, minimal and mean values become 

0.1601 and 0.4725, respectively, which is an improvement on Shaphard and Lo 

technique.
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This result indicates that the bisection technique of mesh generation, presented in 

this thesis, is not a minimal grid generation method. However, Shephard and Lo method 

is of exponential computational growth, and the bisection mesh generator is a far more 

computational efficient technique.

8.3.3 Delaunay and Min-max triangulation.
In this section the two techniques, Min-max and Delaunay, of triangulating a set 

of points in E3 are compared. The Min-max triangulation technique forms an integral part 

of the bisection mesh generator presented in this thesis.

The method used to compare the two techniques, was to generate several sets of 

uniform randomly distribution nodes in E3 . The analysis was repeated several times to 

generate the information in Figure 8.3.5,and tables 8.3.2 and 8.3.3. The graph, in Figure 

8.3.5, is a plot of the averages of the mean solid angles of meshing the sets of random 

uniform nodes. From the graph it can be observed that the min-max technique generates 

grids with a better average solid angle value than Delaunay triangulation.

Tables 8.3.2 and 8.3.3 were also generated to demonstrate that the min-max 

triangulation routine generates a grid with an overall better distribution of solid angles 

than the Delaunay technique. These tables present a break down of solid angle 

measurements in the grids for Delaunay and Min-max triangulation, for different number 

of nodes. It can be clearly seen from these tables that Delaunay generates more solid 

angles in the lower ranges than the Min-max technique.
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Figure 8.3.5 : Plot of mean solid angles of meshes, for Delaunay and Local min-max 
triangulation routines for various size grids.

Table 8.3.2 : Break down of Solid angle ranges for Delaunay and Minmax 
triangulation.

No. Nodes

Range

0.00-0.31

0.31 -0.63

0.63 - 0.94

0.94 - 1.26

1.26 - 1.57

1.57 - 1.88

1.88 - 2.20

2.20 - 2.51

2.51 - 2.83

2.83 -3.14

10

Del.

0.45

0.27

0.09

0.00

0.00

0.00

0.10

0.00

0.00

0.00

Minmax

0.09

0.00

0.00

0.00

0.00

0.60

0.20

0.10

0.00

0.00

110

Del.

0.46

0.13

0.03

0.01

0.00

0.00

0.30

0.07

0.03

0.00

Minmax

0.29

0.06

0.02

0.00

0.00

0.44

0.12

0.03

0.01

0.00

510

Del.

0.47

0.14

0.02

0.01

0.00

0.00

0.31

0.06

0.02

0.00

Minmax

0.29

0.05

0.01

0.00

0.00

0.42

0.15

0.03

0.01

0.00
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Table 8.3.3 : Break down of solid angle ranges for Delaunay and Minmax 
triangulation.

No. Elements

Range

0.00 - 0.31

0.31 - 0.63

0.63 - 0.94

0.94 - 1.26

1.26 - 1.57

1.57 - 1.88

1.88 - 2.20

2.20 - 2.51

2.51 - 2.83

2.83 - 3.14

1010

Del.

0.45

0.13

0.02

0.01

0.00

0.00

0.28

0.06

0.02

0.00

Minmax

0.31

0.06

0.01

0.00

0.00

0.46

0.14

0.03

0.02

0.00

2020

Del.

0.46

0.14

0.03

0.01

0.00

0.00

0.26

0.06

0.02

0.00

Minmax

0.30

0.06

0.01

0.00

0.00

0.48

0.12

0.04

0.02

0.00

4010

Del.

0.45

0.14

0.03

0.01

0.00

0.00

0.30

0.07

0.02

0.00

Minmax

0.30

0.06

0.01

0.00

0.00

0.42

0.15

0.03

0.02

0.00

8.3.4 Finite Octree mesh generation.
In the paper [ShG91] on the technique of Finite Octree grid generation by 

Shephard and Georges, there are several meshes presented with minimum and maximum 
dihedral angle measurements. The technique which they presented was based on an 
Octree division of the domain, and the meshing of each octane region was achieved by 
binary mesh operators. The method is quoted to be of computational order nlog(n), 
however in practice the method exhibits a linear computational growth [ShG91].

The geometry in Figure 8.3.6, is an example taken from the paper by Shephard 
and Georges [ShG91], which they used to demonstrate the computational efficiency of 
their technique. This domain has been applied to the bisection mesh generator, Figure
8.3.7. and the graph of normalized CPU is presented in Figure 8.3.8. The graph, in Figure
8.3.8. also has the normalized CPU plotted for the Finite Octree technique, from the 
paper by Shephard and Georges [ShG91].
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Figure 8.3.6: Geometry from paper 
on Finite Octree technique [ShG91].

Figure 8.3.7: Mesh of Geometry.

1.10
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0.00
0.00 1000.00 2000.00 3000.00 4000.00 5000,00 6000,00 7000.00

Number of dements
A FinittOctr** M*thod D Hwction Mtthod

Figure 8.3.8: Plot of normalized CPU time for Finite Octree and Bisection mesh 
generators.

The above Figure 8.3.8, shows that the Finite Octree technique from the paper 

[ShG91] exhibits a far more linear characteristic for this problem. However, the profile 

of the computational efficiency of the bisection method is near linear for this problem. 

Other examples in this chapter show a more linear CPU speed up, see Figure 8.4.13,
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section 8.4.

A further example, presented for the Finite Octree technique, is depicted in Figure 

8.3.9, which generated a mesh of 71 elements. In the paper by Shephard and Georges 
[ShG91], they give the maximum and minimal dihedral angles for the mesh of the 

geometry of Figure 8.3.9, generated by the Finite Octree technique, of 26 and 124 
degrees, respectively. This geometry was applied to the bisection mesh generator, Figure 

8.3.10, and generated 73 elements with a minimal and maximal dihedral angles of 17 and 
130 degrees.

Figure 8.3.9 Example Geometry. Figure 8.3.10: Mesh of 73 Elements.

From these two examples, it seems that the Octree technique is slightly better in 
mesh quality and computational efficiency. However, the data on computational 
efficiency on the Finite Octree technique, from the paper [ShG91], is inadequate, since 
no real CPU data timings were provided, and just quoting a minimal and maximum 
dihedral angle provides little information about overall mesh quality.

The two examples demonstrated in this section, to compare the bisection mesh 
generator, presented in this thesis, with the Finite Octree technique, provide some 
interesting results. The two techniques are very closely related in computation order and 
mesh quality. The Finite octree method implements a highly computational efficient 
octree division algorithm, with an order n2 binary mesh operation technique in the sub- 
regions. Since the order n2 algorithm is confined to very small subregions, the more 
computational efficient Octree algorithm dominates the overall computational order of 
the mesh generator. The Bisection mesh generation technique, implements a
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computational efficient bisection algorithm with an order nlog(n) meshing technique in 

the sub-regions, however these sub-regions are larger than the ones used in the Octree 

technique. Hence, more detail data is required on the Finite Octree mesh generator to 

achieve a better comparison between the two meshing techniques.

8.3.5 Summary.

The bisection mesh generator has preformed well against other techniques, 

documented in literature. These results are especially encouraging, if you consider that 

these test geometries are taken from others papers. Therefore, the test geometries have 

not been adaptive to suit the 3D Bisection mesh generator. The reader should also note 

that the 3D Bisection mesh generator has not been manipulated to suit each test 

geometry.

As an example, of how a mesh generator can be manipulated, so that it generates 

a good quality grid for a particular geometry, we take the second example geometry in 

section 8.3.4, Figure 8.3.9. This geometry was used to compare the Bisection mesh 

generation technique with the Finite Octree method, by Shephard and Georges [ShG91]. 

Shephard and Georges method generated a grid with minimal and maximum dihedral 

angles of 26.0 and 124.6 degrees, respectively. The Bisection method generated a grid 

with minimal and maximal dihedral angles of 17 and 170.6 degrees. However, if the 

Bisection mesh generator is tweaked, by adjusting some constants within the mesh code, 

a comprehensive improvement in grid quality is achieved. This resulted in a mesh with 

minimal and maximum dihedral angles of 30 and 120 degrees, with 76 elements. 

Therefore, an improvement can be achieved, in grid quality, for a particular geometry, 

by adjusting parameters in the automatic mesh generator.

The problem of comparing mesh generation techniques is a highly complex area, 

and there is the need for some standard bench marks (geometries). These bench marks 

should be accompanied with some clearly defined criteria set out on how to compare the 

results from different grid generators, and what forms a quality mesh over these test 

geometries. Many of these problems have been discussed in the paper by M.Sabin 

[Sab91], Criteria for comparison of automatic mesh generation methods.
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8.4 Further examples.
This section presents some further examples to which the mesh generator has been 

applied to. These examples do not present any new features, which have not already been 

discussed in the previous section. However, they do demonstrate that the mesh generator 

has been applied successfully to a wide range of geometries. This section also provides 

further examples to re-enforce the ideas discussed in the previous sections.

8.4.1 Example 1, simple plane model.

This example demonstrates the mesh generators ability to cope with typical three 

dimensional geometries, such as a full three dimensional model of a plane.

Figure 8.4.1 Example 3D plane geometry (Example 1)

Figure 8.4.2 . Example of plane tetrahedral mesh (Example 1).
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Figure 8.4.3 : Number of elements generated against CPU time (Example 1). 

Table 8.4.1 : Break down of CPU use in the code for example 1 section 8.4.

Elements

959

3124

10194

18197

Nodes

306

843

2403

4018

Init 
Geom.

0.025

0.022

0.021

0.023

Bisect

0.4

0.42

0.4

0.45

Gen.
Nodes

1.3

1.9

2.46

3.03

Gen. 
lets

1.23

9.25

41.05

91.23

Total 
CPU

2.955

11.592

43.931

94.733
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Figure 8.6.4 : Number of elements against mean goodness factor (Example 1).
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Figure 8.4.5 Number of elements generated against mean solid angle (Example 1).
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8.4.2 Example 2, car model.

This car example shows the mesh generators ability to cope with sallow curves, 
such as on the sides of the car model.

Figure 8.4.6 Car model geometry (Example 2).

Figure 8.4.7 Car model tetrahedral mesh (Example 2).
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Figure 8.4.8 : Number of elements generated against CPU time (Example 2). 

Table 8.4.2 : Break down of CPU use, for the generation of car mesh.

Elements

1048

3878

5148

6538

Nodes

326

1024

1304

1616

Init. 
Geom.

0.02

0.02

0.02

0.02

Bisect

0.16

0.1

0.1

0.14

Gen. 
Nodes

1.48

2.78

3.34

3.86

Gen. 
Tets

1.92

9.58

13.16

17.6

Total 
CPU

3.612

12.51

16.646

21.652
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Figure 8.4.9 : Number of elements against mean goodness factor (Example 2).
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Figure 8.4.10 Number of elements generated against mean solid angle (Example 2).
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8.4.3 Example 3, Cross section of car in a wind tunnel.

This car in a tunnel geometry is similar to the plane in a wind tunnel, Example 

4 section 8.2.2, and shows a further example of a complex polyhedral face existing in 

one side of the model. The complex face is where the car body makes a hole in the outer 

hexahedral box.

Figure 8.8.1 Car in a tunnel geometry (Example 3).

Figure 8.8.1 Car in a tunnel tetrahedral mesh (Example 3).
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Figure 8.4.13 : Number of elements generated against CPU time (Example 3). 

Table 8.4.3 : Mesh generation CPU use for car in tunnel example.

Elements

1064

3375

4449

5888

Nodes

294

838

1086

1437

Init. 
Geom.

0.029

0.03

0.031

0.03

Bisect

0.2

0.13

0.18

0.17

Gen. 
Nodes

1.46

3.51

4.23

5.37

Gen. 
Tets

1.17

4.92

6.9

10.27

Total 
CPU

2.859

8.59

11.341

15.84
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Figure 8.4.14 : Number of elements against mean goodness factor (Example 3).
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8.9 Discussion of results.
The graphs of CPU time against mesh size demostrate a good comparable linear 

relationship. Therefore, any high order algorithms within the code are swamped by the 
linear components, which gives the overall computational profile. If the CPU time is 
broken down into parts, the majority of the time is accounted for in the triangulation 
routine. The nodal placement is the next most CPU intensive, with the bisection of the 
domain into disjointed parts being a minor component.

The element mean quality measurements indicate that the element aspect ratio 
is poor for coarse grids. However, there is a general steep increase initial in tetrahedral 
shape measurements, that then tails off sharply as the density of the grid increases. The 
rate at which the element shape indicators improve from the initial coarse triangulation 
are more sharply notable for simpler geometries. We can then conclude that the element's 
aspect ratio is govern by the geometry of the model for coarse grids and improves as the 
number of tetrahedra increase. This is a desirable feature, as increasing the number of 
elements should reduce the dependency of the elements quality on the geometry.

The bisection technique introduces new nodes on the surface of a model even 
when a surface mesh is provided. Therefore, the minimal triangulation achieved by this 
method is not necessarily the minimal possible triangulation, and is governed by the 
initial bisection of the geometry. However, when comparing the mesh generator with 
other comparable meshing techniques it performs well, and generates meshes of 

acceptable quality.

The results show that a computational efficient algorithm based on a bisection 
technique can generate grids of workable quality. However, this method cannot be 
described as an optimal minimal meshing technique, rather a method that can provide an 
initial mesh, for computational purposes, of a given density.
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Chapter 9 
Conclusions.
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9.0 Introduction.

This chapter will give a brief overview of some of the conclusions of the research 
carried out in an attempt to generate a reliable three dimensional tetrahedral mesh 
generator. The importance of bisections to simplify models for grid generation will be 
discussed, together with major achievements. This chapter will then be concluded by 
making comparisons with other major techniques and a discussion of possible 
improvements and extensions.

9.1 Conclusions.
9.1.1 Preparation of geometry.

Preparation of the geometry is extremely important, not only to improve the speed 
of execution, but also to avoid problems with rounding errors. For example, the storing 
of face normals for each polyhedra face, enables a fast in-out test to be carried out, 
without the need for slow and unreliable ray testing [Rog85]. Also, when a face is 
bisected the need to calculate new face normals is eliminated as the old face normal can 
be duplicated for each new polyhedral face. This ensures that any faces generated from 
an initial polyhedral region have identical face normals, which are not affected by 
machine rounding errors.

Since the mesh generator's code was not designed for any particular CAD 
package, and to allow for the manual preparation of geometries, the package requires the 
minimal amount of information. This is the reason why the preparation of geometry and 
identification of key features, such as cavities of the model, is carried out in the initial 
stages of mesh generation. If there are any problems with the geometry of the model, this 

can be spotted before the actual mesh generation begins.

Another important area is user interaction. The user should have complete control 
over mesh generation, with the ability to step in and modify the grid at any point. 
However, the mesh generation code should be completely automatic with reasonable 
defaults. Hence the mesh generator should be capable of being directly integrated with 
a CAD package, and be fast enough to allow for user interaction.
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9.1.2 Quality of algorithms and calculations
During this research the importance of quality and robustness of algorithms was 

found to be highly critical. Even for basic calculations, such as the intersection of lines 
and planes in 3D space, three or four different methods had to be evaluated. The main 
criteria for selecting a method for a routine, was based on its robustness to either 
accumulated rounding errors or points of singularity.

Most of the problems associated with any algorithm, within the code, were caused 
by the finite precision of the computer. For example in the bisection routine, it had to be 
ensured that any newly generated bisection plane did not introduce any ill-conditioned 
faces, near parallel lines or planes and surfaces with small angles between them. For a 
further discussion of finite precision problems, see Appendix A5, Numerical precision.

9.1.3 The importance of domain Bisection.
Bisection of a domain into simpler regions is the key to mesh generation. 

Many CAD packages require the user to divide the model up into simpler regions so that 
a grid can be generated. In many ways the key goal is the automation of the process of 
dividing a region up into simpler parts, so that it can be meshed using any standard 
meshing technique. For example, the bisection part of the technique, presented in this 
thesis, was used to sub-divide a region, so a code such as FEMGEN could be used to 
generate the final grid, see section 9.3 below.

The importance of domain decomposition is reflected in many major mesh 
generation projects that utilize techniques, which simplify geometry by sub-dividing 
domains, e.g Medial axis [TaA91], Octree Quadtree [ScS90].

9.2 Summary of achievements and major contributions.
The bisection of geometry for the generation of unstructured meshes has been 

demonstrated to be a practical and a valid technique. The technique of Recursive mesh 
bisection is an advantageous and computational efficient method of generating two 
dimensional unstructured triangular grids. This technique has been adapted to handle all 
2D geometries without limitations and can generate high-order polygon elements.
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It has also been established that many 2D element quality optimization techniques 

can be extended to surface mesh generation without affecting their computational order, 

and can produce acceptable results. The definition of surface Delaunay triangulation, 

described in Chapter 5, generates grids with good quality elements in order nlogn, whilst 
taking account of the surface approximation error.

The subdivision of 3D geometry is a highly complex task, and the order in which 
bisections are applied to a domain can have a dramatic effect on the final quality of the 

grid. This thesis has demonstrated, that with the careful selection of bisection planes, a 

Bisection Technique of generating three dimensional meshes of good quality is practical 

and computationally efficient. This research has also demonstrated that applying a direct 

local min-max routine can be as effective as the 3D Delaunay algorithm for 

computational order, and has the advantage of not producing any degenerate tetrahedra.

9.2.1 Comparison with other methods.

It is difficult to compare the grid quality of the new bisection mesh generation 

technique with other existing methods, since there seems to be no general bench marks 
available [Sab91]. The first three examples of 3D grids in Chapter 8, being simple and 
easy to reproduce, form ideal bench marks. There is the need for more complex bench 
marks, but these three basic geometries, cavity box, cavity box adjacent to another cube 
and lug with circler hole region, form a set of basic requirements of any meshing 
algorithm. Also these examples are presented with two different element shape measures, 

which should make it easy for others to compare their algorithms with the results 

presented in this dissertation.

However, from the literature available [CFF85][Joe91][ShL91][YTH91], the new 

bisection method's results compare favourably for element quality, see Chapter 8. 
Comparison of the algorithms, in this dissertation, with reported computational [CFF85] 

[L6h85][ScS89][Joe91] time order of alternative methods, indicate that the routines 
presented are amongst the best.
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9.3 Further work and enhancements.

This section outlines some possible enhancement and improvements to the grid 

generator. However, any enhancements to the code must be carried out in conjunction 

with continuing work on improving the reliability, optimization and updating of the 
algorithms.

9.3.1 Curved surface mesh generation.

The initial attempts at surface meshing suffered from the problem of poor curve 
distance estimating routines, which did not allow the use of the convex polygon shrinking 

nodal placement technique. Therefore, the preliminary nodal insertion method of section 
4.5.2 was implemented. Although this resulted in poor surface meshes, it did achieve 

reasonable angle quality. Hence a fast and reliable method of finding a point on a curve 

at a distance 8 from a point p in the direction of a given vector n is required.

The bisection of a parametric surface into two or more independent parametric 
surfaces is a vital requirement. This would enable the bisection part of the mesh 

generator to be extended from just polyhedral domains to full boundary structures with 
parametric surfaces. However, this is a complex area that involves surface fitting and 

slope continuity [BaM91].

9.3.2 Combining the two bisection methods.
The bisection part of the code implements two different bisection techniques. One 

method bisects the region with a planar cut, where the other technique follows the outer 
contours of the domain and generates a non-planar bisection. The first method is 

preferred since it does not add a complex interface, just one extra polyhedral face into 
the model. Therefore, this bisection will have less effect on any subsequent bisections of 

the domain. The edge following bisection introduces a complex surface into the model, 

with many polyhedral faces, which have to be considered by any proceeding task.

A relaxation parameter could be introduced into the edge following technique, that 
will restrict the extent to which the bisection cut deviates from the plane. This relaxation 
parameter could then be varied according to the complexity of the geometry. An interface

page 190



___________________________Chapter 9

mesh could then be generated, and groups of planar elements joined to form one planar 
polyhedral face. The identification of groups of planar interface elements would make the 
first bisection algorithm obsolete. It should also be possible to set the relaxation 
parameter to zero, in the second algorithm, which should result in an identical bisection 
to the first bisection algorithm.

9.3.3 Hexahedra mesh generation.
Once a domain is divided up into several elementary regions, hexahedra elements 

could then be generated in a similar way to Medial axis mesh generation. For instance, 
when generating a hexahedral mesh, this could be done by generating quadrilaterals on 
the surfaces of all convex polyhedral faces. Then using algebraic methods, hexahedral 
elements could then be generated within convex regions.

The following examples presents some methods of generating quadrilateral 
meshes, using a technique of reducing the domain complexity to simpler regions. The 
domain (Figure 9.3.1) is first simplified, using the algorithms used in the mesh generator, 
into simply connect regions, Figure 9.3.2. The domain can then be further divided into 
convex regions, Figure 9.3.3, and then meshed using parametric mesh generation tools, 
to generate the final quadrilateral mesh, Figure 9.3.4

Figure 9.3.1: Geometry of problem. Figure 9.3.2: Division into simply 
connected regions
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Figure 9.3.3 : Convex division. Figure 9.3.4: Quadrilateral mesh.

The bisection of the geometry does not have to be strictly convex, Figure 9.3.5. The 

subdivision in Figure 9.3.5 was obtained as follows:

(1) Place all simply connected polygons on the stack S.

(2) Take the next polygon off the top of the stack S.

(3) Choose an initial node i, at random, on the boundary of the polygon.

(4) Set the sum of angles oc=0

(5) Let a=a+MAX (0, Or 180°), where Oj is the angle at node i
(6) If oc> 44° Then

Subdivide polygon by introducing a bisection edge at node /. 
This bisection line should not introduce any reflex edges into the 
polygon.

(7) Move to the next node adjacent to the node i in an anti-clockwise 

direction, and let this become the new node i

(8) If all nodes are not processed in the current polygon, goto step 5.

(9) If the stack S not empty goto step 2.

A quadrilateral mesh generated using the subdivision of the geometry in Figure 9.3.5 is 

given in Figure 9.3.6.
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Figure 9.3.5: Parametric subdivision. Figure 9.3.6: Quadrilateral mesh.

If the value at which we generate a bisection edge is increased from 40 to 80 degrees, 

in step 6 in the above algorithm, a geometry subdivision is generated as in Figure 9.3.7. 

The resulting mesh of the geometry sub-division in Figure 9.3.7, is presented in Figure 

9.3.8.

Figure 9.3.7 : Geometry subdivision Figure 9.3.8: Quadrilateral mesh 3.

All the above geometries were bisected by algorithms implemented in the 

bisection mesh generator. The final meshes were achieved by importing the subdivided 

geometries into FEMGEN. The bisected geometries were meshed in full automatic mode 

in FEMGEN with line division 4, which accounts for the poor quality of nodal 

distribution in the final meshes.
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9.3.4 Integration of a user nodal spacing on each sub-region.
Special meshing points in 3D space could be given a grid density requirement. 

The bisection method could then ensure that all mesh density control points are divided 
into individual regions. Any region without a mesh density point, could have a mesh 
density interpolated, using various nodal distribution functions, from regions that have 
nodal spacing specified within them. The mesh density of faces in sub-regions could then 
also be interpolated from the two mesh density points on either side. Once the boundaries 
have been triangulated the internal mesh density of each sub-region could be graded 
internally from the region's boundary triangulation.

The difficulty here is placing the mesh density control points. One way in which 
to give more control over grid generation, to the engineer designing the model, is to 
integrate the mesh generator directly with the CAD package. This should be done in such 
a manner as to let the engineer manipulate the geometry, to allow for the easy positioning 
of grid mesh control points. The ability to view and modify initial sub-division of 
geometry and to mark sections of the mesh for refinement or de-refinement is also 
required. Once the domain is divided up satisfactory the user should then be given 
several options to which methods and types of elements to generate over each region.

9.4 Final remark
The bisection method of generating three dimensional unstructured meshes, has 

been proven to be a most valuable technique with many path ways for further 
development. It is hope that this project will continue and expand into a fully commercial 
mesh generation tool, incorporated within appropriate software products.

page 194



Chapter 9

9.4 REFERENCES

[BaB83] R.E. Barnhill and W. Boehm (1983), Surfaces in computer aided geometric 
design, North-Holland publishing.

[BaD89] C.L. Bajaj and T.K. Dey (1989), Robust decompositions of polyhedra, 
Foundations of Software Technology and Theoretical Computer Science, 
Ninth Conference Proceedings, Springer-Verlag, Pages 267-279.

[BaD90] C.L. Bajaj and T.K. Dey (1990), Polygon nesting and robustness, 
Information Processing Letters, Vol: 35, Iss. 1, Pages 23-32.

[BaD92] C.L. Bajaj and T.K. Dey (1992), Convex decomposition of polyhedra and 
robustness, SIAM Journal of Computing, Volume 21, Pages 339-364.

[Bak92] T.J. Baker (1992), Tetrahedral mesh generation by a constrained Delaunay 
triangulation, Proceedings IMACS '91, 13th World congress on 
computation and applied mathematics, July 22-26,1991 Trinity college 
Dublin Ireland, Vol. 1 , Pages 114-115.

[BaM91] C. Bajaj and K. Myung-Soo (1991), Convex hulls of objects bounded by 
algebraic curves, Algorithica, Vol. 6, Iss 4, Pages 533-553.

[Bay73] Bays, C. (1973), Some Techniques for structuring chained hash tables, 
Computer Journal 16:2 (May) Pages 126-131.

[Bau75] B. Baumgart (1975), A polyhedron representation for computer vision, In 
National Computer Conference, pages 589-596, AFIPS Conf. Proc.

[BeySl] W.H. Beyer (1981), CRC standard mathematical tables, 26th edition, 
CRC press Boca Raton Florida.

[BKK84] F.W. Burton, VJ. Kollias and J.G. Kollias (1984), Consistency in 
Point-in-Polygon tests, The computer journal, Vol 27, No. 4, 
Pages 375-376.

[BoP91] J. Bonet and J. Peraire (1991), An alternating digital tree (ADT) algorithm 
for 3D geometric searching and intersection problems, International Journal 
for Numerical Methods in Engineering, Vol. 31, Pages 1-17.

[BowSl] A. Bowyer (1981), Computing Dirichlet tessellations, The computer journal 
Vol. 24, No. 2, Pages 162-166.

[BoW83] A. Bowyer and J Woodwark (1983), A programmers geometry, 
Butterworths publications.

page 195



[Bra79]

[Bre87]

[BrC92]

[Bro92]

[BSC91]

[Bur90]

[Byk76]

[CaM91a]

[CEG92]

[CeS85]

[CFF85]

___________________________Chapter 9

I.C. Braid, (1979) Notes on a Geometric Modeller, CAD Group Document 
101, Computer Laboratory, University of Cambridge, June 1979, 
Revised 1980.

I.E. Bresenham (1987), Ambiguities in incremental line rastering, 
Theoretical foundations of computer graphics and CAD, 
Editor R.A. Earnshaw, NATO ASI Series, Pages 329-358.

H. Bronnimann and B. Chazelle (1992), How hard is halfspace range 
searching, Proceeding of the Eighth Annual Symposium on Computational 
Geometry, Publisher ACM, Pages 271-275.

K. Brodlie (1992), An assessment of general purpose visualization 
software, SERC CFD community club, Visualization in computational fluid 
dynamics, Professor P. Huctchinson (Chairman), Proceeding from the 
seminar at RAL on 9th March 1992.

T.D. Blacker, M.B. Stepshenson and S. Canann (1991), Analysis 
automation with paving: A new quadrilateral meshing technique, Advances 
in Engineering Software, Volume 13, numbers 5/6, Pages 332-337.

E.K. Buratynski (1990), A fully automatic three-dimensional mesh 
generator for complex geometries, International Journal for Numerical 
Methods in Engineering, Vol. 30, Pages 931-952.

A.Bykay (1976), Automatic generation of triangular grids: 1-subdivision 
of a general polygon into convex subregions; 2- triangulation of convex 
polygons. International Journal for numerical methods in Engineering, 
Vol 10, 1329.

J.H. Cavendish, and S.P. Marin (1991), Feature-based design and finite 
element analysis of functional surfaces, The mathematics of finite elements 
and applications VII, Academic Press Limited, Pages 129-140.

B. Chazelle, H. Edelsbrunner, L.J. Guibas, R. Pollack, R. Seidel, M. Sharir 
and J. Snoeyink (1992), Counting and cutting cycles of lines and rods in 
space, Computational Geometry: Theory and Applications, Vol. 1, Iss. 6, 
Pages 305-323.

Z.J. Cendes and D.N. Shenton (1985), Complementary error bounds for 
foolproof finite element mesh generation, Mathematics and computers in 
simulation 27, Pages 295-305, North-Holland.

J.H. Cavendish, D.A. Field and W.H. Frey (1985), An approach to 
automatic three-dimensional finite element mesh generation, International 
Journal for Numerical Methods in Engineering, Vol. 21, Pages 329-347.

page 196



[CFM91b]

[Cha92]

[Cha91]

[Cha91a]

[Cha89]

[Cha84]

[ChG92]

[ChG89]

[Cho93]

[ChP92]

[ChP90]

[CJL89]

__________________________________Chapter 9
J.H. Cavendish, W.H. Frey and S.P. Marin (1991), Feature-based design 
and finite element mesh generation for functional surfaces, Advances in 
Engineering Software, Volume 13, numbers 5/6, pages 226-237.

B. Chazelle (1992), An optimal algorithm for intersecting 
three-dimensional convex polyhedra, SIAM Journal on Computing, 
Vol 21, Iss. 4, Pages 671-696.

B. Chazelle (1991), Triangulating a simple polygon in linear time, Discrete 
and Computational Geometry , Vol 6, Iss, 5, Pages 485-524.

B. Chazelle (1991), An optimal convex hull algorithm and new results on 
cutting, Proceeding 32nd Annual Symposium on Foundations of Computer 
Science, IEEE Computing Soc. Press, Pages 29-38.

B. Chazelle (1989), An optimal algorithm for intersecting 
three-dimensional convex polyhedra, IEEE Computing Soc. Press, 
Pages 589-591.

B.Chazelle (1984), Convex partitions of polyhedra: a lower bound and 
worst-case optimal algorithm, SIAM Journal of Computing , 
Vol. 13, Pages 488-507.

B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting 
line segments in the plane (1992), Journal of the Association for 
Computing Machinery, Vol 29, Iss 1, Pages 1-54.

B. Chazelle and L.J. Guibas (1989), Visibility and intersection problems 
in plane geometry, Discrete and Computational Geometry, Vol. 4, Iss 6, 
Pages 551-581.

M-Y Chow (1993), Control Volume Unstructured Mesh Procedure for 
Convection-Diffusion Solidification Processes, PhD dissertation, 
University of Greenwich, London U.K.

B. Chazelle and L. Palios (1992), Decomposing the boundary of a 
non-convex polyhedron, Algorithm Theory - SWAT '92. Third 
Scandinavian Workshop Proceedings, Springer-Verlag, Pages 364-375.

B. Chazelle and L. Palios (1990), Triangulating a nonconvex polytope, 
Discrete and Computational Geometry, Vol.5, Iss. 5, Pages 505-526.

F. Cheng, J.W. Jaromczyk, J. Lin, S. Chang and J. Lu (1989), A parallel 
mesh generation algorithm based on the vertex label assignment scheme, 
International Journal for Numerical Methods in Engineering, Vol. 28, 
Pages 1429-1448.

page 197



Chapter 9

[CoJ87]

[Con89]

[Cox93]

[DBS92]

[Dew88]

[DSB92]

[ELJ91]

[EOD93]

[Fem91] 

[FaP79]

[FaR92]

[FeP75]

[FHL90]

M.A. Corthout and H. Jonkers (1987), A new point containment algorithm 
for B-Regions in discrete plane, Theoretical foundations of computer 
graphics and CAD, Editor R.A. Earnshaw, NATO ASI Series, 
Pages 279-306.

JJ. Connor (1989), A knowledge based approach for Boundary element 
mesh design, Supercomputing in Engineering Structures, Editors P.Melli 
and C.A. Brebbia, Computational Mechanics publishing Pages 255-267.

J.Cox, and M.E. Byu (1993), To appear in the Proceeding of the IMA 
workshop on Numerical grid generation, July 1993, Minosota.

T.K Dey, C.L. Bajaj and K. Sugihara (1992), On good triangulations in 
three dimensions, International Journal of Computational Geometry and 
Applications, Vol: 2, Iss: 1, Pages 75-95.

B.R. Dewey (1988), Computer Graphics for Engineers, 
Harper and Row publishers Inc.

T.K. Dey, K. Sugihara and C.L. Bajaj (1992), Delaunay triangulation in 
three dimensions with finite precision arithmetic, Computer-Aided 
Geometric Design, Vol. 9, Iss: 6, Pages 457-470

M.G. Everett, P.J. Lawrence, B. Jones and M.Cross (1991), Software tools 
for aspects of computational modelling codes for materials processing, 
Mathematical Modelling for Materials Processing, Sept 1991, 
Editors M.Cross, J.F.T. Pittmain and R.D. Wood, Pages 529-538.

M.G. Edwards, J.T. Oden and L. Demkowicz (1993), An h-r adaptive 
approximate Riemann solver for the Euler equation in two dimensions, 
SIAM Journal for scientific computing, Jan 93, Vol 14, No. 1, 
pages 185-217.

Femgem/Femview, User manual, Femview limited, July 1991

I.D. Faux and M.J. Pratt (1979), Computational geometry for design and 
manufacture, Ellis Horwood (pub), John Wiley & Sons, New York, 1979.

B. Falcidieno and O. Ratto (1992), Two-manifold cell-decomposition of 
r-sets, EUROGRAPHICS 1992, Vol. 11 number 3, Pages 393-404, 
Editors A. Kilgour and L. Kjelldahl, B. Blackwell publishers.

P. Finnigan, A Hathaway and W. Lorensen (1990), Merging CAT and 
FEM, Mechanical engineering 32 (July 1990) ,Pages 32-38.

page 198



[Flo87]

[For87]

[Fry87]

[Fry93]

[Gad52]

[Gas83] 

[GHS90]

[GHS88]

[G1A81]

[GrY86]

[Gui90]

[GuP91]

[GuS85]

_____________________________Chapter 9
Leila De Floriani (1987), Surface representations based on triangular grids, 
The Visual Computer Vol. 3, Pages 27-50

A.R. Forrest (1987), Geometric Computing Environments, Theoretical 
foundations of computer graphics and CAD, Editor R.A. Earnshaw, 
NATO ASI Series, Pages 185-197.

W.H. Frey (1987), Selective refinement: A new strategy for automatic node 
placement in graded triangular meshes, International Journal for Numerical 
Methods in Engineering, Vol. 24, pages 183-220.

Y.D. Fryer (1993), A Control Volume Unstructured Grid Approach to the 
Solution of the Elastic Stress-Strain Equation, PhD dissertation, 
University of Greenwich, London U.K.

J.W.Gaddum (1952), The sums of dihedral and trihedral angles in a 
tetrahedron, American mathematics monthly 59, Pages 370-371.

C.Gasson (1983), Geometry of Spatial forms, Ellis Horwood Ltd.

P.L. George, F. Hecht and E. Saltel (1990), Fully automatic mesh 
generator for 3D domains of any shape, Impact of Computing in Science 
and Engineering, Vol. 2, Iss 3, Pages 187-281.

P.L. George, F. Hecht, and E. Saltel (1988), Constraint of the Boundary 
and Automatic mesh generation, Proceeding Second international 
conference on numerical grid generation in computational fluid, Miami, 
Pages 589-597, December 1988.

H.E1 Gindy and D. Avis (1981), A linear algorithm for computing the 
visibility polygon from a point, Journal of Algorithms, Vol. 2, 
pages 186-197.

D. Greene and F.F. Yao (1986), Finite-Resolution Computational 
Geometry, Manuscript, Xerox PARC.

M. Guiggiani (1990), Error indicators for adaptive mesh refinement in the 
Boundary element method - a new approach, International Journal for 
Numerical Methods in Engineering, Vol. 29, Pages 1247-1269.

H.N. Giirsoy N.M. Patrikalakis (1991), Automated interrogation and 
adaptive subdivision of shape using medial axis transform, Advances in 
Engineering Software, Volume 13, numbers 5/6, Pages 287-302.

L. Guibas and J. Stolfi (1985), Primitives for the manipulation of general 
subdivisions and the computation of Voronoi diagrams, ACM Trans. 
Graphics 4, Pages 75-127

page 199



____________________________Chapter 9
[HaA82] R.Haber and J.F. Abel (1982), Discrete transfmite mapping for the

description and meshing of three-dimensional surfaces using interactive 
computer graphics, International journal for numerical methods in 
engineering , Volume 18, Pages 41-66.

[Her77] L.R. Herman (1977), Laplacian-isoparametric grid generation scheme, 
Journal for mechanical division ASCE, Vol 102 , pages 749-759.

[Hoa61] C.A.R. Hoare (1961), Quicksort. Algorithm 63: Partition, and Algorithm. 
CACM 4:7 (July).

[Hoa62] C.A.R Hoare (1962), Quicksort, Computer Journal 5:1, Pages 10-15.

[Hof89] C.H. Hoffmann (1989), The problem of accuracy and robustness in 
geometric computation, Computer , March 1989 Pages 31-41.

[HoJ93] C.M. Hoffmann and R. Juan (1993), Erep - An editable, high-level
representation for geometric design and Analysis, To appear in Geometric 
and production modelling, Editors P. Wilson , M. Wozney, M. Pratt , 
North-Holland.

[JiW90] H.Jin and N.E. Wiberg (1990), Two dimensional mesh generation, adaptive 
remeshing and refinement, International Journal for Numerical Methods 
in Engineering, Vol. 29, Pages 1501-1526.

[Joe86] B. Joe (1986), Delaunay triangular meshes in convex polygons, SIAM 
Journal of Sci. Stat. Comput., Vol. 7, Pages 514-539.

[Joe89] B. Joe (1989), Three-dimensional triangulations from local transformations, 
SIAM Journal of Sci. Stat. Comput., Vol. 10, Pages 718-741.

[Joe91a] B. Joe (1991), Construction of three-dimensional Delaunay triangulations 
using local transformations, Computer Aided Geometric Design, Vol. 8, 
Pages 123-142.

[Joe91b] B. Joe (1991), Delaunay versus max-min solid angle triangulations of 
three-dimensional mesh generation, International Journal for Numerical 
Methods in Engineering, Vol. 31, Pages 987-997.

[Joe92a] B. Joe (1992), GEOMPACK - a software package for generation of
meshes using geometric algorithms, International Journal for Numerical 
Methods in Engineering, Vol. 24, Pages 325-331.

[Joe92b] B. Joe (1992), Three-dimensional boundary-constrained triangulations, 
Artificial intelligence, Expert systems and Symbolic computing, 
Editors E.N. Houstis and J.R. Rice, Elservier science publishers B.V. 
(North-Holland), Pages 215-222

page 200



________ __________________Chapter 9

[Joe92c] B. Joe (1992), Three-dimensional boundary constrained triangulations, 
Proceedings IMACS '91, 13th world congress on computation and applied 
mathematics, July 22-26,1991 Trinity college Dublin Ireland, 
Vol. 1 , Pages 116-117.

[Joe93a] B. Joe (1993), Construction of k-dimensional Delaunay triangulations using 
local transformations, to appear in SIAM J. Sci. Comput., 
14th November issue.

[Joh92] B.P. Johnston (1992), Fully automatic two dimensional mesh generation 
using normal offsetting, International journal for numerical methods in 
engineering, Vol. 33, Pages 425-442.

[JoS86] B. Joe and R. B. Simpson (1986), Triangular meshes for regions of 
complicated shape, International Journal for Numerical Methods in 
Engineering, Vol. 23, Pages 751-778.

[JoS93] B.P. Johnston and J.M. Sullivan (1993), A normal offsetting technique for 
automatic mesh generation in three dimensions, International journal for 
numerical methods in engineering, Vol. 36, Pages 1717-1734.

[JSK91] B.P. Johnston, J.M. Sullivan and A. Kwasnik (1991), Automatic conversion 
of triangular finite element meshes to quadrilateral elements. 
International journal for numerical methods in engineering, 
Vol. 31 Pages 67-84.

[JuL93] Y.H. Jung and K. Lee (1993), Tetrahedron-based octree encoding for 
automatic mesh generation, Computer-aided design, Vol. 25 No. 3, 
Pages 141-153

[KaE70] H.A. Kamel and Eisenstein K.K. (1970) Automatic mesh generation in two 
and three dimensional interconnected domains, Symp. high speed 
computing, Elastic structures, Liege, Belgium, 1970, pages 455-475.

[Kar90] M. Karasick (1990), Constructing strongly convex hulls using exact or 
rounded arithmetic, Proceedings of the sixth ACM Symposium on 
Computational Geometry, Berkeley Canada, Pages 44-52.

[Knu73] D.E Knuth (1973), The art of computer programming; Vol 3: searching 
and sorting, Addison-Welsey, Reading Massachusetts.

[KSP87] A. Kela , M. Saxena and R. Perucchio (1987), A hierarchical structure for 
automatic meshing and adaptive FEM analysis, Engineering Computing 
Vol 4 June 1987, Pages 104-112.

[Law72] C.L. Lawson (1972), Transforming triangulations, 
Discrete mathematics 3,1972 Pages 365-371.

page 201



____^^ ___________________________Chapter 9
[Law77] C.L. Lawson (1977), Software for Q surface interpolation, Mathematical 

software HI, editor J.R. Rice, Academic press, New York, Pages 161-194.

[Law91] PJ. Lawrence and M. Cross (1991), Development of an automatic
three-dimensional mesh generator, CFD news, Vol 2, Number 2 Sep 1991, 
Pages 8-14.

[LeC78] B.A. Lewis and M. Cross (1978), IFECS-an interactive finite element 
computing system, Applied Mathematical modelling, Volume 2, 
September 1978 , Pages 165-175.

[Lee83] Y.T.Lee (1983) Automatic Finite Element mesh generation based on 
constructed solid geometry, PhD thesis, University of Leeds.

[LeR76] B.A. Lewis and J.S. Robinson (1976), Triangulation of planar regions with 
applications, The computer journal, Vol 21, No. 4, Pages 324-331.

[LiJ93] A. Liu and B. Joe (1993), Relationship between tetrahedron shape 
measures, submitted for publication.

[Loh88] R.Lohner (1988), Some useful data structures for the generation of
unstructured grids, Communications in applied numerical methods, Vol 4, 
Pages 123-135.

[Lo85]

[Lo88]

S.H.Lo (1985), A new mesh generation scheme for arbitrary planar 
domains, International Journal for numerical methods in Engineering, 
Vol. 21, Pages 1403-1426.

J.A. Lo (1988), An approach to automatic course three dimensional finite 
element mesh generation, Master's thesis 1988, Rensselaer Polytechnic 
Institute, U.S.A.

[LoS91] S.H. Lo (1991), Automatic mesh generation and adaptation by using 
contours, International Journal for Numerical Methods in Engineering, 
Vol. 31, Pages 689-707.

[LPG88] R.Lohner and P.Parikh, C. Gumbert (1988), Interactive generation of
unstructured grids for 3-D problems, Second Int. Conf. on Numerical grid 
generation in Computational Fluid Dynamics, Miami Beach, Florida U.S.A. 
5-9th December 1988, Pineridge Press.

[Lyu63] L.A. Lyusternik (1963), Convex figures and polyhedra, New York, 
Dover Publications.

[Man89] M.Mantyla (1989) Boolean operations of 2-manifolds through vertex 
neighbourhood classification, Transactions on Graphics, Volume 5, 
Number 1, Pages 1-29, Jan 86.

page 202



___________________________Chapter 9

[Mar88] Mantyla, Martti (1988), An introduction to solid modelling, Computer 
science press.

[Mas93] G. Masotti (1993), Floating-point numbers with error estimates, Computer 
aided design journal, Vol. 25, No. 9, Pages 524-538.

[MCL81] A.O. Moscardini, M. Cross and B.A. Lewis (1981), Assessment of three 
automatic triangular mesh generations for planar regions, Advances in 
engineering software, Vol 3, No. 3, Pages 108-114.

[MeP77] B. Mercier and O. Pironneau (1977), Some examples of implementation 
and application of finite elements method, Rapport de Recherche No. 248, 
IRIA, Le Chesnay, France 1977.

[Mid87] A.E. Middleditch (1987), The representation and manipulation of convex 
polygons, Theoretical foundations of computer graphics and CAD, 
Ed. R.A. Earnshaw, Nato ASI Series.

[Mil75] W Miller (1975), Software for round-off errors analysis, ACM transactions 
on Mathematical software, Vol. 1, No. 2, Pages 118-128

[MLC83] A.O. Moscardini, B.A. Lewis and M. Cross (1983), Agthom-automatic 
generation of triangular and higher order meshes, International Journal for 
Numerical Methods in Engineering, Vol. 19, Pages 1331-1353.

[MoB83] R. Mohr and R. Bajcsy (1983), Packing volumes by spheres, IEEE
transactions on pattern analysis and machine intelligence, Vol PAMI-5, 
No. 1, Jan 1983, Pages 111-116.

[MTC92] R.B. Morris, Y. Tsuji and P. Carnevali (1992), Adaptive solution strategy 
for solving large systems of p-type finite element equations, International 
Journal for Numerical Methods in Engineering, Vol. 33, Pages 2059-2071.

[NoP88] A.K. Noor and J.M. Peters (1988), Error indicators and accuracy
improvements of finite element solutions, Engineering Computing Vol 5 
March 1988, Pages 39-49.

[Pat89] PATRAN Plus 2.4 released, Infografik , No. 6, Page 30.

[Per89] A. Perronnet (1989), Proceeding of the fifth international sylupotrium on 
numerical methods in Engineering, R.Gruber, J.Periaux,R.P.Shaw editors, 
Springer Verlag.

[PPF88] J.Peraire, J. Periro, L. Formaggia, K. Morgan, O.C. Zienkiewicz (1988), 
Finite element EULAR computations in 3-D AIAA, 26th Aerospace 
Science Meeting January 11-14 1988 Reno Nevada U.S.A.

page 203



_ ____ _____________________________Chapter 9

[Pie91] L A Piegl (1991), On NURBS: A Survey, ffiEE Computer Graphics & 
Applications, 11(1):55-71, January 1991.

[PPM92] J. Peraire, J, Peiro and K. Morgan, Adaptive remeshing for three- 
dimensional compressible flow computations, Computational physics , 
Vol. 103, No. 2, December 1992, Pages 269-285.

[Ram82] L.H. Ramshaw (1982), The Braiding of Floating Point Lines, Xerox Palo 
Alto Research Centre, CSL Notebook entry.

[Ran91] E. Rank (1989), Adaptive h-,p- and hp- Versions for boundary integral 
element methods, International Journal for Numerical Methods in 
Engineering, Vol. 28, Pages 1335-1349.

[RaR93] H Ratschek and J Rokne (1993), Test for intersection between plane and 
box, Computer aided design journal, Vol. 25, No. 4, Pages 249-250.

[Rec73] Rechenberg I (1973), Evolutionsstrategie, Friedrich Froman Verlag, 
Stuttgart, 1973.

[ReqSO] A.A.G. Requicha (1980), Representations of solid objects-theory and, 
methods, and systems. ACM Computing Surveys, 12(4):437-464 
Dec. 1980.

[Rob87]

[Rog85]

[Sab85]

[Sab91]

[Sar83]

[SBS79]

[Sch78]

J. Robinson (1987), CRE method of element testing and the Jacobian shape 
parameters, Engineering Computing, Vol 4 June 1987 pages 113-127

D.F. Rogers (1985), Procedural elements for computer graphics, London, 
McGraw-Hill 1985.

M.A. Sabin (1985), The state of Art, Pages 411-482 in fundamental 
algorithms for computer graphics, ed R.A. Earnshaw, 
NATO ASI Series F17, Springer Verlag (1985)

M.A. Sabin (1991), Criteria for comparison of automatic mesh generation 
methods, Advances in engineering software, Volume 13 No. 5/6, 
Pages 220-225.

R.F. Sarrage (1983), Algebraic methods for intersections of Quadric 
surfaces in GMSOLID, Computer vision, graphics, and image 
processing 22, Pages 222-238.

A.J.G. Schoofs, L.H.T.M. Van Beukering and M.L.C. Sluiter (1979), A 
general purpose two-dimensional mesh generator. Advances in Engineering 
Software, Vol l,No.3,Pages 131-136.

B. Schachter, Decomposition of polygons into convex sets (1978), IEEE 
Transactions in computing, Vol. C-27, Pages 1078-1082

page 204



[ScS88]

[ScS89]

[ScS90]

[ShL91]

[ShG91]

[S1H82]

[S1H84]

[Sol85]

[Sto91]

[TaA91]

[ThaSO]

[Thm85]

___________________________Chapter 9

W.J. Schrodeder and M.S. Sherhard (1988), Geometry-based fully 
automatic mesh generation and the delaunay triangulation, International 
Journal for Numerical Methods in Engineering, Vol. 26, Pages 2503-2515.

W.J. Schrodeder and M.S. Sherhard (1989), An O(N) Algorithm to 
automatically generate geometric triangulations satisfying the Delaunay 
circumsphere criteria, Engineering with computers, Vol 5, Pages 177-189.

W.J. Schrodeder and M.S. Sherhard (1990), A combined Octree/Delaunay 
method for fully automatic 3-D mesh generation, International Journal for 
Numerical Methods in Engineering, Vol. 29, pages 37-55.

M.S. Shephard and J.A. Lo (1991), Automatic generation of coarse 
three-dimensional meshes using the functionality of a geometric modeller. 
Advances in Engineering Software,Volume 13,numbers 5/6, Pages 273-286.

M.S. Shephard and M.K. Georges (1991), Automatic three-dimensional 
mesh generation by the finite octree technique, International journal for 
numerical method in engineering, Vol. 32, Pages 709-749.

M.L.C. Sluiter and D.L.Hansen (1982), A General purpose automatic mesh 
generator for shell and solid finite elements, Computers in Engineering, 
Vol.3 (L.E Hulbert,Ed), Book Bo. G00217,ASME,1982, Pages 29-34.

S.W. Sloan, G.T. Houlsbyan (1984), Implementation of Watson's algorithm 
for computing 2-dimensional Delaunay triangulations, Advances in 
Engineering Software, volume 6, number 4, Pages 192-197.

B.J. Solomon (1985), Surface Intersections for Solid Modelling, University 
of Cambridge, PhD. Thesis 1985.

I. Stojmenovic (1991), Bisection and ham-sandwich cuts of convex 
polygons and polyhedra, Information processing letters, Vol 38, 
Iss. 1, Pages 15-12.

T.K.H. Tarn and C.G. Armstrong (1991), 2D Finite element mesh 
generation by medial axis subdivision, Advances in Engineering Software, 
Volume 13, numbers 5/6, Pages 313-323.

W.C. Thacker (1980), A brief review of techniques for generating irregular 
computational grids", International journal for numerical methods in 
engineering, Vol. 15, 1980, Pages 1335-1341.

J.F. Thompson (1985), A survey of dynamically-adaptive grids in the 
numerical solution of partial differential equations, Applied numerical 
Mathematics 1, Pages 3-27.

page 205



[ThoSO]

[Tou85] 

[TPA93]

[WatSl]

[Wei88]

[W6r81]

[YeS84]

[YTH91]

[Z1P71]

__________________________Chapter 9

Thamas A. Standish (1980), Data structure techniques, Addison-wesley 
publishing company.

T. Tossaint (1985), Computational Geometry, Elsevier science publishers,

T.K.H. Tarn, M.A. Price, C.G. Armstrong and R.M. McKeag, Computing 
the critical points on the medial axies of a planar object using Delaunay 
point triangulation algorithm, submitted to IEEE PAMI.

D.F. Watson (1981), Computing the n-dimensional Delaunay tessellation 
with application to Voronoi polytopes, The compute journal, Vol 24, No.2, 
Pages 167-172.

K.J. Weiler (1988), Boundary graph operators for non-manifold geometric 
modelling topology representations, Geometric Modelling for CAD 
Applications, Wozny, Mclaughlin and Encaracao (eds) 
North Holland 1988, Pages 37-66.

B. Wb'rdenweber (1980), Automatic mesh generation of 2 and 3 
dimensional curvilinear manifolds, PhD dissertation , St John's college , 
University of Cambridge.

M.A. Yerry and M.S. Shephard (1984), Automatic three-dimensional mesh 
generation by the modified-octree technique, International Journal for 
Numerical Methods in Engineering, Vol. 20, Pages 1965-1990.

M.M.F. Yuen, S.T. Tan and K.Y. Hung (1991), A Hierarchical approach 
to automatic finite element mesh generation, International Journal for 
Numerical Methods in Engineering, Vol. 32, Pages 501-525.

O.C. Zienkiewicz and D.V. Phillips (1971), An automatic mesh generation 
scheme for plane and curved surfaces by isoparametric co-ordinates, 
International journal for numerical methods in engineering, Vol. 3, 
Pages 519-528.

page 206



Appendix

APPENDIX

page 207



Appendix

Al Calculating length of a side of an equilateral triangle given its area.

One of the requirements of the mesh generator is to calculate the length of the 

side of an equilateral triangle given its area A.

X

Figure A 1.1 Equilateral triangle.

The area of a triangle is calculated by the cross product of the direction vectors a,b 
[Dew88] of two sides :

A=0.5 aXb where aT=[xrx0,yry0]
bT=[x2-Xo,y2-y0]

If we assume (Xo,y0) is at the origin, and the altitude of the triangle is along the axes 

X=0. Hence :-

2A=x 1y2-x2y 1 but x1=x2

2A=x 1 (y2-y 1 ) from the diagram y2=l/2 and y^-1/2
2A=lx! however 12= !2/4+X! therefore x^CSPM)05 where 1>0
A=3°'5l2/4

Therefore the length of a side of an equilateral triangle given its area is:

44,
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A2 Calculating length of an edge of an equilateral tetrahedral given its volume.

For an equilateral tetrahedron Figure A2.1 the length of an edge has to be 

calculated from its volume V.

Figure A2.1 Equilateral tetrahedra.

The volume of a tetrahedral is calculated from the equation V=(aXb.c_)/6 [Dew88] where 

a,b,£ are unit direction vectors:

aT=(xrx0,yry0,zrz0)

bT=(x2-x0,y2-y0,z2-z0)

cT=(x3-x0,y3-y0,z3-z0)

If we assume that the base of tetrahedron is on the z=0 axes, with the altitude of 

the base along the x=0 axis and (x0,y0,z0) is the origin, then:

aXb=305!2/2 from Appendix Al.

V=(0,0,3a5l2/2).(x3 ,y3,z3)/6
V=z3305l2/12 however 12= !2/4+z3 therefore z,=(312/4)a5 where 1>0

V=l3/8

Therefore, the length of an edge of an equilateral tetrahedron given its volume is:
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A3 Inner and Outer Boundary

Figure A3.1

In the above diagram two identical boundaries are represented, one is a closed 

domain as in Figure A3.1A and the other is an inner boundary, Figure A3.IB 

representing a hole. The mesh generator has to be able to distinguish between the two 

types, and this can be done by summing the angles of the vectors that form the boundary. 

Each angle has a value of between -n to 0 if it is a convex angle, or 0 to 71 if it is 

concave [Mar88]; Figure A3.2.

If we sum the otj angles in the above 

domain:

n

E ar±27C \Anale SSoncave

Figure A3.2

A value of -2n indicates an exterior boundary where 2n is an interior boundary.
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A4 Adjacent edge searching.
One common operation carried out in mesh generation is the initialization of 

adjacency tables. For example, in the generation of an adjacency table for polyhedral 

domains, in which faces sharing a common edge must be established.

A simplistic adjacency searching technique is: 

(i) for each face ft in the polyhedral domain 

(ii) loop over each edge Cj of the face ff 

(iii) for each face fj/ftft, of polyhedra domain 

(iv) loop over each edge Cj of the face fi 

(v) If the two edges e( and 6j match 

(vi) Update adjacency table and return to step (ii)

The above algorithm is slow and of order n2 ; a far superior method is to 

implement a hashing table technique which results in a procedure of computational order 
of nlog(n).

(i) for each face ft in the polyhedra domain 

(ii) loop over each edge Cj of the face ff

(iii) search the hashing table for an entry hi that matches et . 

(iv) If entry h{ exists, get Jj and e^ from the hashing table

Update adjacency table and remove the entry ^ from the 

hashing table. 

Otherwise add entry e{ to hashing table.

At the completion of the above algorithm the hashing table should be empty, if 

an adjacency table is successfully generated. The polyhedral faces are stored in a one 

dimensional array VL, section 7.2.2, with a face pointer structure FP pointing to the head 

of each face vertex list in this vector. Therefore the information store in the hashing 

function data structure is the two vertices a,b of edge ef, where a<b, a pointer c which 

points to the edge <?, in the array VL, together with the hash function chaining list h. The 

hashing table together with hashing table structure is illustrated in Figure A4.1. The 

hashing table ht is of a size Htsize, where Htsize should be a prime number greater than 

number of edges n in the mesh, this is to minimize collision of the hashing function. The 

hashing function used to find the hash key in the hashing table is (a*n+b) mod htsize.
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hashing table

Figure A4.1 : Hashing table with associated data structure.

When an associate entry in FV is required for the edge Cj. The two vertices a and 

b are used to generate a hashing key value k. The pointer ht[k] gives the starting location 

in the hashing function structure of a linked list of edges, which generate the same key 

k. The link list is then search for an entry that matches the edge et . If a matching edge 

is found, the value of c gives the location of the adjacent edge ^ in the array VL. This 

entry is then removed from the hashing structure and returned to the free storage. Column 

a is used as a free storage pointer link list when the entry is not used for storing edge 

data, a free storage pointer is indicated by a negative value in this column.

A fuller description of hashing tables and functions is given in Data structure 

techniques by Standish [ThoSO].
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AS Numerical Precision
Geometric algorithms are notorious in practice for numerical instability. Many 

algorithms are far from robust for numerical reasons. A common fiction is that 

computer's floating-point arithmetic is "accurate enough". Therefore, a common "cure" 
for numerical problems is an increase in floating point precision. Obviously, this is not 
a real cure, but the effect should be a reduction in the frequency of numerically unstable 
cases. In the case of intersecting line segments, increasing precision would permit 

accurate intersection of lines at shallower angles. However, the root of many problems 
lie in the elementary ill-conditioning of the equations.

The problem with many systems is that we are not dealing with random 
configurations, and lines that are nearly parallel are relatively frequent, e.g. computer- 
aided design applications. Therefore, shallow intersection angles are common, and merely 
increasing the precision is not a substitute for correct handling of special cases, using 
appropriate numerical tolerances. Forrest [For87] quotes Solomon [Sol85] in saying that 
it is best to carry out all geometric computations as near to the origin as possible. This 
is simply that we should not expect significance if we subtract two large floating point 
numbers.

Another well known phenomenon in floating point arithmetic, is obtaining 
different results from geometric computations depending on the order of evaluation. For 
example, if one evaluation order causes numerical overflow, the user often finds that a 
slightly different approach eliminates the problem. More dangerously, if numerical 
overflow does not occur, we can still obtain inconsistent results which can be difficult 

to reconcile.

Even restricting the geometry is not enough to guarantee correct results: Ramshaw 
[Ram82] reports difficulties which arose in computation with simple line segments 
defined by integer end points, even when using double precision floating point arithmetic. 
These problems have been considered by many works [GrY86][Bre87][CoJ87]. Corthout 
[CoJ87] technique is to map to an integer grid at the precision of the user's modelling 
space. This has the merit of regularising the finite grid we are forced by the computer
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to employ.

To try and deal with the above problems the new bisection mesh generator, has 

various techniques implemented. The simplest approach applied is a combination of 

Relative and absolute error [Hof89]. This is primary used for the comparison of two 

numbers [Mas93], e.g. test if x is equal to v:

|x->|<e(l-M) where M=MAX(|x|,|y|), e is machine tolerance.

Other examples are testing if the determinant of a matrix is zero:

eMAX[l,ara2 .....an]>det[A]

Where a... are the entries in the matrix A.

Algorithms such as line and plane intersection are based on robust standard 

techniques [RaR93][Man88][BKK84] using interval arithmetic, see [Hof89][Mas93]. The 

bisection algorithms, Chapter 7 section 3, uses techniques to try and avoid geometry 

features which may cause numerical problems in later geometry operations. This is 

achieved by rejecting cut planes which introduce any short edges or acute angles into the 

model. This of cause results in a cost in CPU time, however short or acute angles are not 

a desirable feature of a tetrahedral mesh. This is also coupled with geometric reasoning 

[BaD92J. Therefore, if there is a geometry operation which may result in an inconsistent 

decision, a choice is taken to which outcome is less detrimental to the program. For 

example, the bisection algorithm implemented in the convex shrinking technique, Chapter 

7.4, labels all nodes which are close to the bisection plane, as above. This many result 

in some polyhedral faces becoming non-planar, however slightly non-planar faces can be 

easily tolerated in the subsequent computation of nodal placement.
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The projection of points and faces onto planes, as in the Edge following cutting 

routine Chapter 7 section 7.3.3, utilizes methods of Perturbation [Hof89]. This technique 

is where the initial data is slightly altered, during computation, to ensure a well 

conditioned set of geometric entities. This is achieved by data normalization [Hof89] 

where vertices positions are slightly altered so that they are not too dose to other 

geometry entities.

However, many of the more complex error estimation techniques have not been 

implemented in the mesh generator, see [Mas93][Mil75]. Since these methods were 

considered unnecessary, and can in some cases result in a CPU time increase of 100% 

[Mil75]. Therefore, the main weapon used against rounding errors is avoiding 
degeneracies [Hof89].

The most dangerous area for ill-conditioned data, is the geometry provided by the 

user. This is where near degeneracies cannot always be avoided, and typical models will 
possess acute angles or narrowing. The only defence which can be provided against this 

problem is for the correct handling of special cases, using appropriate tolerances.

Numerical problems will hinder all attempts to provide a general purpose meshing 
tool. As long as we stick to generality, we must realise that there are many perfectly 
normal geometric constructions that cannot be represented correctly unless we use infinite 

precision arithmetic [For87].
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A6 Mesh generator's modules.
The mesh generator, presented in this thesis, is constructed from a number of 

different modules. These modules can be taken and interlinked in different ways, to build 

other mesh generators. Figure A6.1 (Page 219), depicts the various modules and how they 

interlink. The key below describes the various modules and types of links. 

Module/Link Description

Arrow

Dashed Arrow

Double Arrow

2D Geometry Prep.

3D Geometry Prep.

Polyhedral Splitting 
Algorithm

Contour Polyhedral 
Splitting Algorithm

2D Convex Routine

3D Convex Routine

Direction of data flow.

This module uses another module.
e.g 3D geometry preparation module uses the "Polyhedral
Splitting Algorithm" and the "Contour Polyhedral Splitting
Algorithm".

Modules which interact,
e.g the 2D Recursive bisection technique interacts with the
"Line Node Generator"

Routine which identifies holes/sub-domains and corrects 
direction of boundaries. This routine also removes 
sub-polygon domains by introducing separators which divide 
these domains into a number of simpler regions. 
See Chapter 4 sections 4.6.1 and 4.6.4.

Routine which identifies holes/sub-domains, calculates and 
corrects direction of face normals, and removes 
sub-polyhedral by introducting separator faces which divide 
these domains into simpler regions. 
See Chapter 6 sections 6.5 and 6.12.

See Chapter 7 section 7.3.2.

See Chapter 7 section 7.3.4

This routine sub-divides the 2D geometry into a number of 
convex regions. See Chapter 4 section 4.6.3.

This routine sub-divides 3D domains up into a number of 
convex regions. See Chapter 6 section 6.7.
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Module/Link Description

Polyhedral Cutface 
method

Edge Following 
bisection method

See Chapter 7 section 7.3.1.

See Chapter 7 section 7.3.3.

2D Convex nodal 
placement

2D Node insertion

Line Node Generator

3D Convex nodal 
placement

3D Node insertion

Planar node generator

2D Delaunay

Routine which automatically generates nodes by shrinking 
convex domains. See Chapter 4 section 4.6.5.

Once the initial mesh is generated from the boundary nodes, 
this routine inserts the internal nodes. 
See Chapter 4 section 4.5.2.

This routine works in conjunction with the recursive 
bisection mesh generator, to automatically generate internal 
nodes. This is achieved by generating nodes alone each 
bisection line. See Chapter 4 section 4.5.2.

This routine automatically generates nodes by shrinking 3D 
convex domains. See Chapter 7 section 7.4.

Once the initial mesh is generated from the boundary nodes, 
this routine inserts the internal nodes.

This routine automatically generates nodes over a cut face, 
which is generated by the 3D recursive bisection mesh 
generator. This routine is the 2D recursive mesh generator 
using the "Line node generation" routine. 
See Chapter 5 section 5.2.

2D Delaunay routine using Lawson's swapping algorithm, 
See Chapter 3 section 3.5.

2D Recursive Bisection 2D recursive mesh generator, see Chapter 4 section 4.3.

Surface Delaunay 

3D Delaunay

Surface Delaunay mesh generator, see Chapter 5 section 5.3.

3D Delaunay using vertex transformations, 
see Chapter 7 section 7.5.
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Module/Link 

3D Min-max

Description

3D Min-max solid angle meshing, using local 3D 
transformations, See Chapter 7 section 7.5.

3D Recursive bisection The initial 3D recursive mesh generator, described in
Chapter 6 section 6.2.

Binary mesh operations This routine is used if the 3D recursive mesh generator fails
to find a bisection. See Chapter 3 section 3.3.

2D Vertex Swapping 

2D Laplace smoothing

2D vertex swapping, see Chapter 4 section 4.4.1. 

2D Laplace smoothing, see Chapter 4 section 4.4.2.

Surface vertex swapping See Chapter 5 section 5.5. 

Surface Laplace Smoothing See Chapter 5 section 5.4.

3D Vertex swapping See Chapter 7 section 7.6.

3D Laplace Smoothing See Chapter 4 section 4.4.2.
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