
Mesh Generation By Domain Bisection

Peter James iLawrence

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the degree of Doctor of Philosophy.

March 1994

This research programme was funded by SERC

Centre for Numerical Modelling and Process Analysis

School of Mathematics Statistics and Computing

University of Greenwich

London U.K.

,
V:

151445H-

____________________ ________Abstract

Abstract.

The research reported in this dissertation was undertaken to investigate efficient

computational methods of automatically generating three dimensional unstructured
tetrahedral meshes.

The work on two dimensional triangular unstructured grid generation by Lewis

and Robinson [LeR76] is first examined, in which a recursive bisection technique of

computational order nlog(n) was implemented. This technique is then extended to

incorporate new methods of geometry input and the automatic handling of multi-

connected regions. The method of two dimensional recursive mesh bisection is then

further modified to incorporate an improved strategy for the selection of bisections. This

enables an automatic nodal placement technique to be implemented in conjunction with

the grid generator. The dissertation then investigates methods of generating triangular

grids over parametric surfaces. This includes a new definition of surface Delaunay

triangulation with the extension of grid improvement techniques to surfaces.

Based on the assumption that all surface grids of objects form polyhedral
domains, a three dimensional mesh generation technique is derived. This technique is a
hybrid of recursive domain bisection coupled with a min-max heuristic triangulation

algorithm. This is done to achieve a computationlly efficient and reliable algorithm
coupled with a fast nodal placement technique. The algorithm generates three dimensional

unstructured tetrahedral grids over polyhedral domains with multi-connected regions in

an average computational order of less than nlog(n).

Acknowledgements

Acknowledgements

The author would like to express his gratitude to his supervisors, Professor M.

Cross and Professor M.G. Everett, who provided him with guidance and the opportunity

to work in a friendly environment.

Thanks also go out to the staff at the School of Mathematics, Statistics and

Computing, and to the postgraduates at the Centre for Numerical Modelling and Process

Analysis of the University of Greenwich, for their assistance and encouragement, and for

providing a good working environment.

Finally, the financial support provided by the Science and Engineering Research

Council is gratefully acknowledged.

n

Contents

Table of Contents

PART I INTRODUCTION AND OVERVIEW

Chapter 1: Introduction 2

1.1 Introduction 3

1.2 Problem reduction techniques 4

1.3 Why order of execution is important 7

Chapter 2: 3D Geometry,Visualization and

Element Shape Measures in Mesh Generation. 9

2.1 Geometry for mesh generation. 10

2.1.1 Constructive models (CSG) 10

2.1.2 Surface based models 11

2.2 Visualization of 3D geometry and meshes 12

2.3 Constructive Solid Geometry 15

2.4 Tetrahedral shape measures. 18

2.4.1 Solid angle 18

2.4.2 Tetrahedral goodness function 19

2.5 Summary 20

Chapter 3: Current major mesh generation techniques. 21

3.1 Introduction 22

3.2 Advancing front technique 23

3.3 Binary mesh operations. 24

3.4 Paving. 27

3.5 Delaunay triangulation. 28

3.5.1 Watson's Algorithm. 29

111

Contents

3.5.2 Topologically incompatibility in Delaunay grids. .. 30

3.6 Mesh Generation by Medial axis Subdivision. 32

3.7 Recursive Domain Bisection 33

3.7.1 Advantages and disadvantages 34

3.8 Triquamesh 35

3.9 Summary and conclusions 36

PART II: TWO DIMENSIONAL AND SURFACE MESH GENERATION

Chapter 4: 2D Mesh generation. 38

4.1 Introduction 39

4.2 Objectives 40

4.3 Recursive Domain Bisection 41

4.3.1 Choosing the bisection line 41

4.3.2 The actual split used 42

4.3.3 Domains of peculiarity 42

4.4 Grid quality improvements 43

4.4.1 Vertex swapping 43

4.4.2 Laplace's Smoothing 46

4.5 Preliminary extensions 47

4.5.1 Improved bisection algorithm 47

4.5.2 Preliminary nodal insertion routine 49

4.6 Subsequent extensions 53

4.6.1 Data input requirements 53

4.6.2 Nodal density calculation 54

4.6.3 Decomposition of regions into convex polygons .. 55

4.6.4 Decomposition of multiply connected regions .. 56

4.6.5 Nodal placement 57

4.6.6 The grid generator 60

4.6.7 Example problem 60

4.7 Higher polyhedral order 61

IV

Contents

4.7.1 Conversion of triangular elements to quadrilaterals .. 61

4.7.2 Walking method of generating quadrilaterals 61

4.7.3 Generation of high order polyhedral cells 62

4.8 Conclusions 65

4.8.1 Further extensions 65

Chapter 5: Generation of grids over surfaces. 66

5.1 Introduction. 67

5.2 Surface mesh generation on polyhedral domains 68

5.3 Meshing surfaces using Delaunay triangulation 70

5.3.1 Surface Delaunay triangulation example 81

5.4 Surface Laplace smoothing 83

5.4.1 Surface Laplace smoothing results 84

5.5 Vertex swapping on parametric surfaces 87

5.5.1 How to calculate surface error

5.5.2 What is the effect of the above method?

5.5.3 Surface vertex swapping Results 89

5.6 Conclusions 91

Part III THREE DIMENSIONAL MESH GENERATION

Chapter 6: 3D Mesh generation. 93

6.1 Introduction 94

6.2 The initial recursive bisection mesh generator 95

6.3 Geometry representation 96

6.3.1 Surface based models 96

6.3.2 Polyhedral domains 98

6.4 Bisection method 99

6.4.1 Selection of cut face 100

6.5 The sub-region problem 102

6.6 Problems with domain bisection 105

________ __________Contents

6.7 Decomposing polyhedral domains into convex regions .. 106

6.8 Generation of grids within sub-regions 107

6.9 Outline of final mesh generator and results 109

6.9.1 Input requirements 109

6.9.2 The mesh generator 109

6.10 Convex domain partitioning 110

6.10.1 Domain bisection Ill

6.10.2 Complex domain bisection 112

6.11 Convex domain shrinking and nodal placement 113

6.12 Geometry input requirements 114

6.13 Mesh generator's input format 116

6.14 Summary and conclusions 118

Chapter 7: 3D Mesh Generation Computational techniques. 119

7.1 Introduction 120

7.2 Data structures. 121

7.2.1 Data requirements of polyhedral domains 121

7.2.2 Detail description of stored data 122

7.3 Generation of cut planes 125

7.3.1 Polyhedral cut face 125

7.3.2 Polyhedral splitting algorithm 126

7.3.3 Edge following bisection method 132

7.3.4 Contour polyhedral splitting algorithm 137

7.4 Nodal placement using 3D convex domain shrinking 138

7.5 Three dimensional local transformations 141

7.6 Boundary constrained three dimensional triangulation 146

7.6.1 Local minima 149

7.7 Conclusions 151

Chapter 8: 3D Mesh Generation Results and Conclusions. 152

8.1 Introduction 153

VI

____ ____ ___________Contents

8.2 Basic examples 154

8.2.1 Three dimensional box with a cavity 155

8.2.2 A box with a cavity adjacent to another box 158

8.2.3 Three dimensional lug geometry 161

8.2.4 Cross section of a plane in a wind tunnel 164

8.3 Comparison examples 167

8.3.1 Normal offsetting technique 167

8.3.2 Mesh generation by binary mesh operations 169

8.3.3 Delaunay and Min-max triangulation 170

8.3.4 Finite Octree mesh generation 172

8.3.5 Summary 175

8.4 Further examples 176

8.4.1 Example simple plane model 176

8.4.2 Car model 179

8.4.3 Cross section of a car in a wind tunnel 182

8.5 Discussion of results 185

Chapter 9 Conclusion 186

9.0 Introduction 187

9.1 Conclusions 187

9.1.1 Preparation of geometry 187

9.1.2 Quality of algorithms and calculations 188

9.1.3 The importance of domain bisection 188

9.2 Summary of achievements and major contributions 188

9.2.1 Comparison with other methods 189

9.3 Further work and enhancements 190

9.3.1 Curved surface meshing 190

9.3.2 Combining the two bisection methods 190

9.3.3 Hexahedra mesh generation 191

9.3.4 Integration of a user nodal spacing on each sub-region 194

9.4 References 195

Vll

____Contents

Appendix •• 207
Al Calculating length of a side of an equilateral triangle given its area 208

A2 Calculating length of an edge of an equilateral

tetrahedral given its volume 209

A3 Inner and outer boundary 210

A4 Adjacent edge searching 211

A5 Numerical Precision 213

A6 Mesh Generator's modules 216

• • •vni

______ _____________________________Parti

Parti
Introduction and Overview.

This dissertation is divided into three parts, in which this section will give an

introduction to the aims and aspirations of the research. This section will also include an

overview of current techniques with a discussion of related topics.

page 1

Chapter 1

Chapter 1

Introduction.

page 2

__Chapter 1

1.1 Introduction.

Advances in engineering software, fuelled by hardware improvements, have led

to an increased desire to model more complex geometries. This has resulted in a bottle

neck of generating good quality three dimensional unstructured meshes for the analysis

of these domains using methods based upon Control-Volume and Finite Element

procedures.

Current 2D mesh generation methods tend to rely on interaction between the user

and the mesh generating software to produce well structured meshes; this is much more

difficult, and sometimes impossible with 3D mesh generation since there are still large

visualization problems to overcome. In Chapter 2 the problem of visualization of three

dimensional grids is discussed, together with how to evaluate grid quality before it is

utilized for any further computational purposes.

There have been several methods applied to the problem of generating three

dimensional meshes for complex geometries, such as the Advancing front [BoP91][Lo85],

Octree [ScS90] and Delaunay [CFF85] triangulation techniques. These methods tend to

be CPU intensive and often require large amounts of user interaction. A brief overview

of these techniques together with examples, are covered in Chapter 3.

The aim of the thesis is to present a computationally efficient, reliable and good

quality three dimensional mesh generation program using techniques that have an average

computational order of nlog(n). In Chapter 4 the method of "recursive domain bisection"

mesh generation by Lewis and Robinson [LeR76] is outlined along with the modifications

and extensions that have been applied.

Chapter 5 looks at the problem of generating grids over surfaces and outlines how

2D techniques can be extended. This chapter includes a new definition of parametric

surface Delaunay triangulation and various grid improvement techniques for surface

meshes.

page 3

____________ ________ ____________Chapter 1

Chapter 6, describes the initial attempt at recursive three dimensional mesh

generation and how these ideas have been modified to form the current fully working

technique. The following Chapter 7, describes the fundamental algorithms used in

conjunction with the mesh generator, presented in Chapter 6. A new direct boundary

constrained local min-max meshing algorithm, that is based on the Delaunay triangulation

algorithm by Joe [Joe89], is also described.

In Chapter 8, the thesis then presents some example geometries and grids, with

CPU times and various mesh quality measures. Overall conclusions and possible

extensions to hexahedral element generation are presented in Chapter 9.

1.2 Problem reduction techniques.

The reduction of a model into simpler parts is fundamental to mesh generation.

This is reflected in many methods, such as Octree [ScS90] and Medial axis [GUP91],

which utilize a problem reduction technique to sub-divide the geometry into simpler

regions, to enable the generation of the final mesh.

Problem reduction techniques, such as the Quicksort [Hoa61], which apply

recursive methods to reduce the data space to sufficiently small segments so that a simple

algorithm may be applied, have traditionally been more computationally efficient than

alternative algorithms. The Quicksort is an order nlog(n) method [Hoa62], where the

problem of sorting a vector is reduced to sorting shorter and shorter vectors, until vectors

of length two are reached. These can then be sorted by one comparison and a conditional

interchange. Lewis and Robinson [LeR76] extended this idea to two dimensional

unstructured triangular grid generation, which resulted in a computationally efficient

algorithm of order nlog(n). This method of mesh generation, using their technique, forms

the fundamental idea behind this research and is briefly outlined here. A fuller description

is given in Chapter 3.

page 4

Chapter 1

The method of Lewis and Robinson is a two dimensional technique, see Chapter

3 section 3.7. Since this thesis is primarily concerned with 3D geometry, the basic

approach is depicted in Figure 1.2.1 with a three dimensional domain. The basic

philosophy behind this technique for meshing a region R, see Figure 1.2. la, is as follows:

(a) Splitting R into two sub-regions^ and R2 , by choosing a plane of best split.

A new boundary is generated across the interface of the regions to create two new

closed independent domains, Figure 1.2.1b.

(Note this initial cut has a zigzag appearance as the splitting routine follows a

path through the surface mesh closest to the cutting plane.)

(b) Now solve the triangulation problem for Rt and R2

Step a and b are applied recursively until tetrahedral domains are formed, as in

Figure 1.2.1c which contains no interior points, these being the elements of the mesh.

Tetrahedral elements which contain internal points and sub-region for which no valid

bisection exists, are dealt with by special algorithms. When all the sub-regions are

resolved into tetrahedral elements the mesh is complete, Figure 1.2. Id.

pageS

___Chapter 1
Figure 1.2.1: Example of mesh generation by recursive domain bi-section [Law91]

(a) Initial Domain

(b) Then apply first bi-section

on domain.

(c) Then keep on applying

bisections to domain.

(d) Until tetrahedra are formed.

Hence the final tetrahedral

unstructured mesh is

generated.

page 6

_____ _____Chapter 1

1.3 Why Order of Execution is Important

Most of the algorithms in this thesis have an order of execution that fall into the

following classes:

constant : Order 1
log log : O(lg Ig n)

linear : O(n)
n log n : O(n Ig n)

quadratic : O(n2)
cubic : O(n3)

exponential : O(2n)

The parameter n is a value that characterizes the size of the input to a given

algorithm, and if we say the algorithm runs to completion in O(f(n)) steps, we mean that

the actual number of steps executed is no more than a constant times f(n), for sufficiently

large «. It is important to gain an intuitive feeling for these classes in order to have a

comparative framework in which to understand performance properties of algorithms.

Figure 1.3.1 shows the above functions plotted against CPU.

50 -i

40-

D
0_
O

30-

20-

10-

4
Operations

Figure 1.3.1: functions of n operations against CPU time. Graphs are in ascending
order with O(lg Ig n) at front and O(n3) at back as in legend.

page 7

__Chapter 1
As can be deduced from the Figure 1.3.1, for small problems the order of the

algorithm is not important, but as the size of a problem increases the time difference

between routines can become significant. If we had a problem that required over a

million operations, a function of even O(n2) would take over 7000 times longer than an

O(n Ig n) process. Therefore, if the running time of an algorithm is characterized by an

exponential function, we cannot expect to solve practical problems of very large size. In

3D mesh generation even very modest problems are in the region of over a thousand

nodes, so an algorithm that is anywhere near exponential is not practical.

A major problem is that most algorithms often do not fall precisely into anyone

class. The order of most routines often depends to some degree on the form in which the

data is presented to them or the complexity of the particular problem they are applied to.

A common approach is to categorise an algorithm by its worst case and/or average

situation.

If for example we compare two routines the Quicksort [Hoa62] and the Heapsort

[Knu73], both these routines are reported to be of order n log(n) [ThoSO]. However, the

Quicksort is in fact only on average O(n log n) and is O(n2) steps in the worst case

where the initial distribution of the data is extremely random. The heapsort, on the other

hand, is a routine that has the advantage of being an O(n log n) sorting algorithm, whose

worst case performance is fairly close to its average performance [ThoSO]. Therefore, it

is often not just sufficient to quote the order of an algorithm, but also a standard

deviation to address the above issues to some extent.

Throughout this thesis, many CPU times will be presented in a graphical format,

and also may be accompanied with statistical analysis to address the above issues, at

least, to some extent.

page 8

Chapter 2

Chapter 2

3D Geometry, Visualization

and

Element Shape Measures

in

Mesh Generation

page 9

__Chapter 2

2.1 Geometry for mesh generation.

The initial stage of an analysis of any model is the generation of the geometry.

In three dimensional geometry solid modelling, there are many different ways of

representing objects. The geometry representation of a model has a great effect on the

types and form of geometry operations that can be applied, and therefore has an effect

on the mesh generator. The mesh generator cannot be designed independent of the object

definition and the topic is, therefore, discussed in this section.

Many geometry representation techniques have emerged due to the difficulties of

perceiving a real physical object within the constraints of the virtual world of the

computer. However, recently two main approaches have dominated, namely, constructive

and surface representations.

2.1.1 Constructive models.

All constructive models consider solids as point sets of E3 . Their basic idea is to

start from some sufficiently simple point sets that can be represented directly, and model

other point sets in terms of very general combinations of the simple sets.

The main technique in this class is constructive solid geometry (CSG) where

parameterized instances of solid primitives

and boolean

implemented.

set operations are

Figure 2.1.1 illustrates an engine

valve generated using boolean operations

applied to a set of primitives.

CSG modelling packages are often

a useful and fast way of generating many

machined parts. However, the user has no

direct access to individual half-spaces

(graphical primitives) and this can restrict

the designer. An example is in aircraft

design where curved surfaces on wings

can be difficult to model.

Union
 " /

Cylinder

o
Intersection ^ \\. Subtract

Cylinder Sphere
Torus

Figure 2.1.1 Binary tree of CSG model.

page 10

__Chapter 2
2.1.2 Surface based models.

The surface based characterization of solids, looks at the boundary of a solid

object. The boundary is considered to consist of a collection of faces that are glued

together so that they form a complete, closing skin around an object. Figure 2.1.2A

illustrates a box object represented by a collection of polygon faces, Figure 2.1.2B shows

the same box with its faces separated.

B

Figure 2.1.2 Boundary model of a box.

Many boundary modelling packages also encompass curved surfaces. These

curved surfaces are often parametric patches that are manifolded together. Parametric

patches include bilinear surfaces [Dew88], coons patches [Gas83], cubic patches

[Dew88], Bezier surfaces [BaB83] etc, which can be defined using a number of control

points. Recently NURBS [Pie91] (Non-Uniform Rational B-Spline) surfaces have made

an impact in this area and are used widely in the aircraft and car industry.

A large number of objects can be represented using a boundary model technique,

but these models are often difficult to generate. To assist in the generation of these

models, research has been invested in new curved surface representations and a number

of CAD packages have been developed. Since many objects can be quickly represented

using CSG techniques, many modern boundary modelling packages incorporate some

CSG features and provide predefined surface primitives such as sphere, torus etc. This

has resulted in many hybrid modelling tools.

page 11

__Chapter 2

The type of model representation used affects the type and efficiency of

operations carried out on the domain. This in turn affects the reliability, speed and type

of mesh generation technique that can be applied to the region. A surface mesh is a

boundary model of a domain. Therefore, boundary surface representations of models

make a natural choice as the starting point of grid generation and many CSG models can

generate output in this format.

2.2 Visualization of 3D geometry and meshes.

Visualization of geometry on the two dimensional device of a cathode ray tube

provides its own problems. Complex models that are highly re-entrant with many cavities

and sub-domains, such as those found in the casting industry, are difficult to perceive on

the computer screen, often requiring many different viewing angles of the model to be

displayed simultaneously. Frequently a number of slices through the domain are required

to show any hidden features and cavities. This problem is particularly acute in the

generation of geometry, in which the model has to be manipulated into a particular angle

and location before a new facet can be generated manually by the designer. Many other

fields, such as contouring [Sab85], have suffered from the problem of visualization.

A three dimensional mesh, especially an unstructured mesh, is a complex

geometry with many features hidden below the surface skin of the domain. A number of

techniques have been applied to try and display the hidden detail of a mesh. Such

techniques include domain slicing [Bur90] and element shrinking [Law91][TaA91], In

domain slicing a number of planes are passed through the domain to try and expose some

of the internal mesh features. However, this can present a false picture, depending on

how individual elements are bisected by the cutting plane, giving an impression of

regions of the mesh being of finer or coarser density than they really are. The method

of element shrinking reduces all the elements' size by a given amount c, but keeping their

centroids fixed. This results in small gaps being created between the elements. Both

methods do little more than prove the existence of a grid, they provide no information

on element quality and whether elements intersect.

page 12

__Chapter 2

A number of highly complex CAD and visualization packages have to be used in

the course of grid generation. Visualization of complex models has proven to be such a

difficulty that a new generation of packages have been developed to try and address some

of the above problems. The next two pages depict illustrations from apE [Bro92] and

AVS [Bro92], which are advanced visualization packages used throughout this thesis for

the generation of many of the illustrations. They are pipe line systems in which a user

builds up a network of operations that are required for a particular visualization task.

Figure 2.2.1: apE (Animation Production Environment) visualization package.

page 13

Chapter 2

Figure 2.2.2: AVS (Advance Visualization System) package.

page 14

__________ _______________Chapter 2

2.3 Constructive Solid Geometry (CSG).

The geometry input format for the new bisection mesh generator is polyhedral

domains; the reason for this is discussed in Chapter 6. CSG Modelling packages are often

a useful and fast way of generating many machined parts, and they provide a convenient

method of output in the form of polyhedral surfaces. The drawback of using these

polyhedral domains generated in this fashion is that the polyhedral faces are often

degenerate and elongated. Sometimes the polyhedral faces can be of a magnitude that is

smaller than the element size required for the mesh. Even the order in which primitives

are combined have an effect on the form of polyhedral domains generated. Below are

three identical examples of a pipe like component generated by different combinations

of CSG operations and the resulting polyhedral domains generated.

Figure 2.3.1 : Three identical pipes with different polyhedral definitions; this is
especially prominent around top flange of pipes.

The figures generated in the above diagram were displayed without internal lines,

these are extra edges added to the domain by the CSG model to ensure that all faces are

valid planar polygon surfaces. In this particular modeller the polygon elements had to be

convex, since this speeds up most ray tracing and hidden line removal algorithms. Since

this simplification of the surfaces is for applications where the quality of the elements

is not essential, this often results in very poor surface elements (Figure 2.3.2).

This problem has often been encountered during this research. As a consequence,

several algorithms have been derived, which take a polyhedral domain and by joining

faces and swapping vertices improve the initial surface elements. This has worked to

page 15

_____________________________________Chapter 2
some degree, but it is often almost impossible to remove all poorly defined elements.

The problem with most CSG modellers is that the

polyhedral domain sub-division is done for speed, rather

than for the quality of the bisected surfaces. The algorithm

used within these CSG packages, from the experiences

gained during this research, for polyhedral convex

subdivision are very similar to the algorithms used within

the mesh generation code. However, the grid generation

code is more selective about which bisection edge is usec

to divide the domain. Therefore, for most CSG packages
^Figure 2.3.2:Typicalonly a small modification is necessary to generate , , , . ' '.
polyhedral domain.

reasonable surface elements.

CSG software tools are often geared towards object visualization, therefore they

often incorporate utilities to aid in this task, such as tools to guide the resolution of

curved surfaces. The resolution parameter, for example, on a cylinder would increase/

decrease the number of polygons used to represent the outer perimeter, just as in the case

of a circle, the more straight lines used to represent it, the better the definition. This

resolution factor can, in effect, help to guide the meshing algorithm nodal placement.

Hence, if the designer had requested a higher definition on a surface they would probably

require a denser mesh over that region, and vice-versa for a coarser resolution factor.

The conclusion which can be drawn, from CSG geometry modellers is that they

tend to provide the necessary information for generating a three dimensional grid, but the

quality of the output often leaves a lot to be desired and generally requires some

manipulation. However, these problems could be overcome by a small modification to

the CAD package, to gear it more towards grid generation rather than just visualization.

page 16

___Chapter 2

CSG modellers have intrigued Software Engineers to such an extent, that there

is currently work being undertaken which integrates CSG directly with meshing routines

[Cox93]. This method which is called Domain Composition builds the mesh

simultaneously as the model is being created. Each primitive object has a predefined 3D

grid. For example, Figure 2.3.3, if we have a region D, which was formed by a Boolean

operation on the domain A and B. The mesh over the region D, is formed by taking the

original grids of A and B, and then applying the same Boolean operation with the use of

grid interpolations, where necessary. However, in Lee's thesis [LeeSl], he argues that this

technique is not a practical method for the generation of three dimensional meshes.

©

Figure 2.3.3 : Domain Composition

page 17

Chapter 2

2.4 Tetrahedral shape measures.

One of the main problems in tetrahedral mesh generation is how to measure the

quality of a mesh, since poorly shaped tetrahedra may cause numerical difficulties in the

under lying numerical technique, e.g finite element analysis. Papers on tetrahedral mesh

generation have used various quantities for measuring the shape or quality of tetrahedra.

In this section two approaches will be described.

2.4.1 Solid angle.

In 2D triangulation mesh generation, the minimum interior angle of a triangulation

is a commonly used triangle shape measure. A natural extension of the minimum interior

angle to three dimensions is the minimum solid angle 0min .

Unlike a triangle a tetrahedron has many different angle measurements :

12 planar angles (three in each of the 4 faces),

6 dihedral angles (one at each of the 6 edges),

4 solid or dihedral angles at the vertices.

Figure 2.4.1 : tetrahedron

The solid angle fy at v, is the surface area formed by projecting each point on the

face not containing the vertex v, onto the surface of the unit sphere with v, at its centre.

However, for a tetrahedron the solid angle at D, Figure 2.4.1 can be computed as oc+p+y-

71 [BeySl], where oc,p and y are the dihedral angles at edges AD, DB and CD

respectively.

page 18

Chapter 2

It can be shown [Gad52] thatO< J^_ 0,. < 2n . Therefore a very large solid angle,

near 27C, for a tetrahedron implies that there also exists a small solid angle, and this is

the reason why we only consider the minimum solid angle. Also if the tetrahedron is

regular, all face angles are rc/3 and all solid angles are the same.

2.4.2 Tetrahedral goodness function.

An alternative way of measuring mesh quality is to use a tetrahedral goodness

function or Gamma value [ShL91]:

Where :

\ is the element's normalized shape parameter for tetrahedron i.

F is the volume of tetrahedron i.

is the surface area of tetrahedron i.

is a normalization factor[Sh!91] (374.123) which yields ^ =1 for an

equilateral tetrahedron.

The above equation returns a value of 1 if the tetrahedron is equilateral. As the

tetrahedron deviates from the ideal shape so does the value of K-t , the larger the deviation

of \ from 1 the poorer the element quality. A \ value above 0.8 is considered to

represent an extremely good tetrahedral element [ShL91].

Both the tetrahedral "solid angle" and "goodness function" offer practical

measurements for measuring mesh quality. These measures are only a guide, and the only

true mesh quality test is to use the grid for analysis of the domain. However, they do

offer a quick quality measure and a means of comparing different grids over the same

geometry model. Throughout this thesis the results from the grid generator will be

presented using both the above tetrahedral shape measures.

page 19

_________ ________________Chapter 2

2.5 Summary

The problem of representing complex three dimensional models has given rise to

a number of alternative techniques for the representation of geometry. The technique of

mesh generation must be considered in conjunction with various geometry

representations. A number of software tools have been developed for the generation and

representation of three dimensional geometries, however they are often not designed for

providing suitable geometry models for computational analysis.

Many problems exist in measuring the quality of three dimensional unstructured

grids, and visual techniques cannot practically be applied. Therefore, several

computational methods of measuring mesh quality do exist, of which two are described

in this Chapter. Opinion is still divided over which measure gives the best indication of

mesh quality, and research is being undertaken [LiJ93] to establish which technique is

best. However, these techniques can only provide an indication to the true mesh quality

and a means of comparing different grids over identical geometry.

page 20

Chapter 3

Chapter 3

Current Major Mesh Generation

Techniques.

page 21

________ ___________________________Chapter 3

3.1 Introduction

Many techniques have already been applied to the problem of generating

unstructured grids over three dimensional geometry. This chapter will give a brief

overview of some of the major methods that have been examined during this research.

This chapter is not intended to be a complete overview of all current mesh generation,

but rather a subset of the techniques that have, with some degree of success, been applied

to 3D mesh generation and to some extent influenced the research described here. This

section will attempt to give the reader an idea of the philosophy behind these methods,

how they have been applied, together with their advantages and disadvantages.

Two techniques are covered in more depth, Delaunay [ScS90][ScS88][Joe86]

[CFF85][Law72] and Binary mesh operators [ShL91], since these methods have been

implemented in conjunction with the new bisection method, see Chapter 6. Delaunay is

of particular interest, as it is the technique that offers the best computational order of the

current mesh generation algorithms and forms part of many hybrid mesh generation

codes.

The chapter is completed with a description of mesh generation by Recursive

domain bisection [LeR76]. It is then concluded with a discussion of the problems of the

these techniques and discusses why mesh generation by recursive bisection offers a

practical solution.

Key Words: Advancing Front [BoP91][PPF85][Lo85], Delaunay triangulation [ScS90]

[ScS88][Joe86][CFF85][Law72], Binary mesh operators [SW91], Paving [BsC91],

Medial Axis [TPA93][TaA91][GuP91], Recursive domain bisection [LeR76].

page 22

_________ _______________________Chapter 3

3.2 Advancing front technique

The advancing front method has been extensively developed by workers such as
Lo [Lo85] and Peraire [PPF88].

Figure 3.2.1 : Advancing front technique in 2D from initial domain A to final mesh F.

The basic underlying concept of the advancing front [Lo85][LPG88] method is

illustrated in Figure 3.2.1 for the generation of a uniform size triangular mesh over a two

dimensional domain. The boundary of the domain to be meshed is first discretized. Points

are placed on the boundary, and contiguous points are joined by straight line segments

and assembled to form the initial generation front. At this stage the triangulation loop

begins. A side from the front is chosen and a triangle is generated that will have this

selected side as one edge. In generating this new triangle an interior node may be created

or an existing node in the front may be chosen. At this stage it is necessary to ensure that

the element generated does not intersect with any existing side in the front. After

generating the new element the front is conveniently updated in such a way that it always

contains the sides that are available to form a new triangle. The generation is completed

when no sides are left in the front.

This method has progressed over the years from a very high order method, above

n2 , to around order nlogn, but still remains one of the most CPU expensive methods

because of the large number of surface intersections that have to be tested for.

page 23

__Chapter 3
3.3 Binary Mesh Operations.

Mesh generation by binary operations [ShL91][Wei88][Lo88][W6r83], is the

implementation of a limited set of geometry operations that are sufficient to generate a

complete grid in 2D or 3D. In 3D there are three basic operations that can be used to

generate a coarse grid: face removal, edge removal and vertex removal.

Face removal: Carves a tetrahedron from the object being triangulated by the

introduction of a new vertex in the interior of the domain.

Figure 3.3.1: Face removal

Edge removal: Carves a tetrahedron from the domain by selecting two adjacent non-

planar triangular faces and generates a new edge inside the domain.

Figure 3.3.2: Edge Removal.

page 24

_ __Chapter 3

Vertex removal: Carves a tetrahedron from the domain by removing one complex vertex

and all its associated edges. (Removes three adjacent faces from the domain)

Figure 3.3.3: Vertex Removal.

The method by Shephard and Lo [ShL91] applies these operations to generate

coarse grids that can be refined later. The algorithm gives each operator a priority based

on its ability to reduce the geometric complexity of the domain. The measure of the

geometric complexity is the number of topological entities in the geometric model and

their adjacencies. Therefore, the routine attempts to use vertex removal first on the

current geometry. However, if this cannot be applied, it then tries edge removal.

Subsequently if an edge removal fails, face removal is used, which is the only binary

operation that can be applied to any geometry. These set of binary operations are coupled

with an element shape control function in a bid to improve the quality of the final mesh.

Mesh generation by binary operations is strongly related to the advancing front

technique with similar draw backs in computational order. It could be argued that these

methods are identical except in the priority of applying the mesh operations, i.e

advancing front applies face removal to a domain first and if this does not generate any

acceptable elements the other binary operations are attempted.

page 25

__Chapter 3
Below is a list of the types of procedures involved in each binary operation.

Face removal:

Choose a polyhedral face.

Generate a point inside the domain.

Point is inward and normal to face.

Test to see if the line from the centre of face to the point, does not intersect any

other faces in the domain (may adjust position of point).

Test to see if lines from the nodes of face can be joined up to the new point.

Check newly formed surfaces are not too close to other surfaces in domain.

Check that the new domain does not contain any other domain points.

Check Gamma value* to see if a good tetrahedon was formed.

Check/correct direction of face normals, of the new face elements.

Edge removal:

Find two adjacent polyhedral faces.

Check that the edge joining non-common nodes is inside domains.

Check that the edge joining non-common nodes does not intersect

other polyhedral faces in domains.

Check that the new surfaces do not intersect any other surfaces.

Check that the new surfaces are not too close to other surfaces.

Correct the direction of polyhedral normal.

Check on Gamma value of the tetrahedron formed.

Vertex removal:

Find three polyhedral faces that are adjacent to each other.

Check to see that the domain does not contain any other nodes.

Check that the tetrahedron formed is inside domains.

Test to see if the new face is not too close to other faces in the domain.

Correct direction of the new face.

*Gamma value : Tetrahedral shape measure, see section 2.4.2.

page 26

__Chapter 3
3.4 Paving.

The paving method, which has been primarily developed by Blacker and Stephenson

[BSC91] is depicted below.

B

11

Fixed nodes
Floating nodes

Figure 3.4.1 Example of paving from geometry (A) to mesh (C) [BSC91].

Paving begins with the input of one or more ordered, closed loops of connected

nodes, Figure 3.4.1 A. These loops form the boundary of the mesh and contain the fixed

nodes. During the mesh generation process, the paving technique always operates on the

boundaries of connected nodes referred to as paving boundaries. The paving boundaries

are transient in nature and progress as the mesh is generated, Figure 3.4.IB. A point is

selected on each paving boundary to start the element paving. The method then walks

around the domain, keeping the boundary to its right, generating elements. In Figure

3.4. IB the arrows on the elements' faces indicate the direction of element generation.

Each complete loop of elements is called a row. Rows are generated from a number of

portions. Once a row portion of elements is generated they are smoothed [BSC91], by

adjusting nodal positions to improve elements' shapes. If any of the newly generated

elements intersect with other rows of elements these are seamed or closed by connecting

opposing cells. After the completion of each row, it is adjusted to correct for small or

large elements, and again checked for intersection.

The paving method has a paving boundary that advances into the domain in a

similar way to the advancing front. Therefore, it inherits some of the computational and

page 27

Chapter 3

intersection problems of the foresaid method. Unlike the previous techniques the paving

algorithm has the benefit that it generates quadrilaterals and in 3D hexahedral elements.

3.5 Delaunay Triangulation

The Delaunay triangulation in 2D is a well researched method [Wat81],[ScS88]

and has been successful in that it has been shown to produce well structured meshes that

satisfy the min-max angle criterion

(optimal triangles).
Circumtircle of element i

The definition of Delaunay

triangulation is that the circumcircle of

any triangle i in the mesh, does not

contain any exterior vertices of the

element i.

Element i

Figure 3.5.1. Illustration of circumcircle of
Delaunay triangle.

3D Delaunay triangulation consists of several tetrahedra in an array of points. The

four vertices of each tetrahedron lie on the surface of a sphere and no other vertex of the

array lies within that sphere. Delaunay triangulation in 3D does not in general satisfy the

min-max solid angle criterion and does not seem to satisfy any optimal angle condition.

In fact Cavendish [CFF85] reports the creation of slivers (tetrahedron with a small

volume, which is almost flat).

Delauna
Tetrahedron Circumsphere

Figure 3.5.2. Illustration of circumsphere of tetrahedral and a sliver element.

page 28

__Chapter 3
3.5.1 Watson's Algorithm [SLH84].

The Delaunay triangulation has several degenerate cases and like all grid

generation methods, is subject to computer accumulated rounding errors. In 2D these

problems have been minimized by special ordering of nodes in the generation of the grid

and the use of a combination of both Watson's [WatSl] and Lawson's [Law72]

procedures to make the method more robust computationally. Watson's algorithm is

illustrated below: New node (P)

Each node is taken in turn and inserted

into the mesh. A search for all the

elements whose circumcircle contains this

node (Figure 3.5.3) is made.

The method then removes these elements,

Figure 3.5.4, and the external boundaries

of the set of elements form a polygon.

The vertices of this polygon are then

joined to the newly inserted node. Which

then forms a new Delaunay triangulation

that includes the inserted node.

CIrcum-cIrctes

Figure 3.5.3. Insertion of Node.

Figure 3.5.4. shaded elements are removed.

Figure 3.5.5 Vertices of the polygon are
joined up to the new node.

page 29

_________ __________________________Chapter 3

In 3D Lawson's swapping algorithm cannot be used, but recent developments in

3D Delaunay triangulation by Joe [Joe89] using local transformation of tetrahedra (see

section 6.10 3D vertex swapping) have resulted in a very robust and fast method of

generating Delaunay meshes. The 3D method has a worst case computational order of

n2 , however, on most practical cases it is of order nlog(n). Despite its computational

efficiency Delaunay triangulation in 3D does not generate well shaped elements [CFF85].

3.5.2 Topological incompatibility in Delaunay grids.

Delaunay triangulation is based solely on the location of the points of the domain

and higher order topological information does not affect the resulting computational

mesh. Therefore, the Delaunay triangulation of certain geometric models with particular

distributions of points will produce a mesh that is incompatible with the model's

topology.

To correct this problem, we have to search the geometry of the model for

intersection with the elements formed by the triangulation. Where elements intersect the

surface of the model, we introduce extra 'stitching points', to make the triangulation

conform to the geometry. This is illustrated in Figures 3.5.6 to 3.5.8.

Meshing the geometric model below

Figure 3.5.6 : Initial geometry

This results in a topologically incompatible mesh

Figure 3.5.7 : Initial Delaunay triangulation.

page 30

Chapter 3

Resolved by introducing a stitching point

tch Po i nt

Figure 3.5.8 : Insertion of a stitch point

An alternative method is to force the Delaunay algorithm to generate only

geometry compatible meshes. This is achieved by ensuring that the nodes on the

boundary of the model form Delaunay edges [Joe86]. A Delaunay edge is defined as two

adjacent vertices on the boundary and the circum-circle through these two points does not

contain any other boundary vertices. Figure 3.5.9 illustrates the definition Delaunay edge

and shows how it can be used to spot areas of incompatibility.

Circum-circle of adjacent vertices

Delaunay edge Not a Delaunay edge
Figure 3.5.9 Illustration of Delaunay and
non-Delaunay edges.

page 31

Chapter 3

3.6 Mesh Generation by Medial axis Subdivision

The medial axis subdivision is a relatively new and novel technique for generating

various types of grids using triangular and quadrilateral elements. Grids that have been

generated this way tend to be well structured and of high quality {Tarn and Armstrong

1991 [TaA91]}.

Figure 3.6.1 : Example of stages in mesh generation by medial axis subdivision.

The main concept behind this method, as the title suggests, is the generation of

the medial axis or Voronoi diagram of the domain that is shown in Figure 3.6.1 A. The

motivation behind the generation of this diagram is the belief that elements should flow

round the object in the general direction specified by the medial axis. The Medial axes

diagram is often generated by first triangulating the domain using Delaunay triangulation

and from this triangulation the Voronoi diagram is derived. Once the medial axis is

derived this is then processed first to remove concavities, Figure 3.6.IB and then chain

splitting , Figure 3.6.1C, to generate the sub-domains that can then be meshed with any

suitable mesh type and pattern to generate the final mesh Figure 3.6.4D.

page 32

______ _________________Chapter 3

3.7 Recursive Domain Bisection.

Recursive domain bisection, is a method first implemented by Lewis and

Robinson [LeR76], which applies a 'problem-reduction' technique to triangulate domains.

This technique consists of dividing the original data space into disjointed segments, and

then solving the problem for each of the smaller segments. This technique is applied

recursively on each domain and its sub-domains until each data space is sufficiently small

for a very simple algorithm to be applied. This method is similar to the Quicksort

algorithm [ThoSO], where the problem of sorting vectors is reduced to sorting shorter and

shorter vectors, until vectors of length two are generated. These can then be sorted by

one comparison and a conditional interchange.

Therefore, the triangulation of region R (Figure 3.7.1 (a)) can be achieved by:

(a) Splitting R into two sub-regions, Rt and R2, by creating a new boundary

across the region.

(b) Solving the triangulation problem for Rj and R2 separately

(Figure 3.7.l(b)).

The new boundary has a zigzag appearance as it consists of the join of points lying near

a line that passes through two 'opposite' boundary points (Figure 4.7.l(c)).

Sub-domains are divided until triangles with no interior points are formed, these

being the elements of the triangulation; triangles containing interior points are split by

two lines joining an interior point to two vertices.

(a) (b)

\\R; ~ Bisection Line

Figure 3.7.1 Splitting a region

page 33

___________________Chapter 3

There are usually numerous possibilities for the selection of a bisection line to

divide any arbitrary domain. Lewis and Robinson outline a method that attempts to divide

the domain into two 'circular equally sized halves', this is described in more detail in
Chapter 4.

3.7.1 Advantages and disadvantages.
The computation order of the above algorithm was shown by Lewis to be n log(n)

and in the worst case n2 . The worst case scenario is based on the assumption that most

proposed splits of the region are invalid, so finding valid splits is the dominant part of

the algorithm. The worst case occurs on difficult geometries where the vertex removal

routine has to be used in the majority of bisections. However, it was shown that the ratio

between the main bisection routine and the simple vertex removal method is 1:10.

Therefore, we have a routine whose performance has a good average computational order.

However, this routine does not include a nodal placement method, all nodes have

to be provided prior to the grid generation. It was required that the user provided all

nodal position prior, either generated by hand or using a rudimentary nodal placement

algorithm [MLC83].

Multiply connected regions are

dealt with the manual addition of a cut

line (Figure 3.7.2), this decomposes the

region into simple polygons. However,

this could be overcome by the

introduction of an automatic method of

decomposing multiply connected regions

into simple polygons, as described by Joe

and Simpson [JoS86].

Cut Line

Figure 3.7.2 A multiply-connected region.

page 34

______________ __________________________Chapter 3
3.8 Triquamesh.

Triquamesh [SBS79][S1H82] is a mesh generator, developed in the early 80's,

which generates triangular and quadrilateral elements in 2D. The technique used in

Triquamesh is a recursive bisection method, and is similar to the technique used by

Lewis et al [LeR76], see Section 3.7. However, Schoofs et al [SBS79] used a different

heuristic, in Triquamesh, to guide the selection of bisections. Schoofs et al's technique

was to introduce a bisection which divides the largest "edge angle" in the domain. This

is repeated recursively on the resulting sub-domains, until sub-domains form triangular

regions, which are the elements of the mesh.

Triquamesh incorporates an automatic nodal placement technique, which generates

nodes automatically along each newly generated bisection edge. It is similar to the

method described in Chapter 4, section 4.5.2. It was not implemented in the new 2D

bisection technique described in the thesis, as it tends to needlessly over refine certain

regions within the domain, see Chapter 4 section 4.6.2.

Quadrilateral element generation, in Triquamesh, is achieved by converting each

triangular element into three quadrilaterals, see Chapter 4 section 4.7.1. This technique

was also dropped from the new bisection technique, described in this thesis, as it tends

to produce quadrilateral elements with poor aspect ratios, See Chapter 4 section 4.7.1.

In the paper by Sluiter[SlH82] Triquamesh was extended to 3D tetrahedral mesh

generation. However, the 3D domains it could handle were limited, since it could not

handle multi-connected regions. The tetrahedral meshes it generated were of poor quality,

since it had no tetrahedral optimization technique. 3D Triquamesh also generates

hexahedral elements, in a similar way to the 2D technique, by converting each

tetrahedron element to 4 hexahedral elements.

The 3D bisection mesh generator, described in this thesis, has overcome many of

the problems which were associated with the 3D Triquamesh, see Chapter 6. The 3D

mesh generation method, described in this thesis, can handle multi-connected regions and

has element optimization routines which improve the quality of the final tetrahedral mesh

(e.g local 3D min-max vertex transformations, see Chapter 7 section 7.5). The new mesh

generator, presented in this thesis, has an advanced nodal placement technique (Chapter

7 section 7.4) which avoids unnecessary over refinement of certain regions of the mesh,

unlike the technique implemented in Triquamesh.

page 35

_______ ____________________Chapter 3

3.9 Summary and conclusions.

The following methods, Advancing front, Binary mesh operations, Recursive

bisection and Paving methods require a large number of face, plane and line intersection

tests. Three dimensional plane and line intersection testing is notorious for problems with

computer arithmetic errors [For87], and forms a major area of research

[Sar83][Dew88][BoW83]. Therefore, we can conclude, just by probability, that the more

intersection tests carried out, the greater the chances of an incorrect geometry

interrogation. For example, if a comparison is made between an order nlogn method (2D

Recursive mesh bisection) and an order n2 method (2D Advancing front) using similar

algorithms for line, plane and surface intersections. The order n2 method would have a

larger probability of generating an invalid mesh than the order nlogn technique, since the

nlogn method requires fewer geometry tests for a similar sized problem.

Delaunay triangulation has the advantage of being a computationally efficient

algorithm, however the technique does not generate well shaped tetrahedral elements. In

fact, Delaunay triangulation in 3D is the method that is most likely to generate an invalid

grid. Delaunay triangulation suffers not just from computational rounding errors for

sphere point in-out tests, but also the algorithm does not consider any geometry

information or satisfies any min-max angle criterion. Mesh generation by Medial axis

often requires a Delaunay triangulation of the domain to enable the sub-division of the

geometry. Therefore, the Medial axis technique inherits its major problems from the

Delaunay algorithm.

Mesh generation by Recursive domain bisection is the only method that offers

geometry compatibility, together with computational efficiency. The computational

reliability of this algorithm is linked to its computational efficiency, requiring on average

less complex geometry tests than its counter part methods, such as Advancing front and

Paving algorithms.

The reader is referred to Chapter 8 section 8.2, for a further description of some

additional three dimensional meshing techniques.

page 36

______________________________Part II

Part II
Two dimensional

and
surface

mesh generation.

The next two chapters will cover the initial developments of the bisection

algorithm in the 2D plane. This is then followed with a discussion of extending certain

mesh generation techniques to surfaces.

page 37

Chapter 4

Chapter 4

2D Mesh Generation.

page 38

____________ _____Chapter 4

4.1 Introduction.

This chapter is not intended to be a detailed description of all the research carried

out in two dimensions. It is intended to introduce to the reader some of the ideas that will
be later extended to three dimensional grid generation.

The first section will outline the objectives initially set, and outline the basic
requirements of a 2D geometry data structure. It will then go onto describe the
fundamental algorithms of the recursive domain bisection technique, which were first
outlined by Lewis et el [LeR76]. This will be followed by a description of some of the
techniques used on 2D grids to improve their quality.

The second section will outline some of the fundamental extensions, which have
focused upon 2D recursive mesh bisection. This includes the data input format and types
of geometry that can be handled, together with some of the initial success and results.
The chapter will then go on to explain some of the further extensions applied to improve
the initial mesh quality, by improved nodal placement and bisection algorithms.

This chapter will then be concluded with further extensions, i.e. triangle to
quadrilateral conversion routines, nodal refinement algorithms and polygon elements.

page 39

_____ ____________Chapter 4

4.2 Objectives.

The objectives of the meshing tool, are to provide a method of generating two

dimensional grids over a planar region. The true objective of the 2D grid generator was

to provide a platform to launch the 3D version. Therefore, it was necessary that the ideas

used were readily extendible to 3D.

The grid generator's requirements were to generate meshes that could be used for

initial computational purposes with limited user control over nodal placement.

Optimization of the mesh was to be left to other adaptive methods such as P, R or H

refinement techniques, see [Thm85], [EOD93], [LoS91], [Ran87] amongst others.

The Geometry input requirements are to model multi-connect domains, with holes,

interfaces and sub-domains, as illustrated in Figure 4.2.1.

I nterface

Figure 4.2.1 Multi connected region. M1,M2,M3 and M4 are different materials.

page 40

___________________Chapter 4

4.3 Recursive Domain Bisection.
This section will outline the fundamental algorithms behind the method of

Recursive bisection, Lewis and Robinson [LeR76], which was initially described in

Chapter 3.

4.3.1 Choosing the bisection line.
There are usually numerous possibilities for the selections of a bisection line to

divide any arbitrary domain. Lewis and Robinson outline a method that attempts to divide

the domain into two 'circular equally sized halves'.

Not all possible splits are examined in this algorithm, for computational speed,

therefore the search is terminated when a number of solutions are found. The search is

organized so that splits between 'opposite' boundary points are tested first. Each possible

bisection line is given a weight depending on the function IlEb . II is the product of the

distance of the boundary points to the split line, Figure 4.3.1, b is the number of

boundary points and E is the minimum of:

(a) half of the average distance between the boundary points, and

(b) the distance from the split line of the nearest interior points contained within any

rectangle having the split line as a side, see Figure 4.3.2.

Figure 4.3.1 illustrates a domain with a possible

bisecting line that divides the region into T, and T2 .

Si is the distance of boundary points in T2 from the

bisecting line.

dj is the distance of boundary points in T, from the

bisecting line.

Here HI = S { S2S3 and n2 = d^, hence IT = n in2 .

/ Spilt line

Figure 4.3.1 Calculating
weighting function.

page 41

_____ ________________Chapter 4

4.3.2 The actual split used.

Once a particular bisection of a region is selected, points on the interior, that lie

'close' to the proposed split line are included as part of the new boundaries. Selection

of points is done in such a manner to avoid long thin elements. The method used to sort

points into their respective halves tends to reveal, which points are close to the split line.

Points are chosen to be a member of the interface edge if:

(a) they lie within a rectangle with the split line as a side and,

(b) their distance from the split line is less than E defined above.

Figure 4.3.2 demonstrates which points to include

as part of the new boundary. Points P { and P3 would not

become part of the new boundary whilst P2 would. L!

and L2 form the outer edges of the rectangle.

SpHtLM

Figure 4.3.2 choosing new
boundary points.

4.3.3 Domains of peculiarity.
If the current region has no possible bisection a cruder approach is adopted. The

binary mesh operation of vertex removal is applied, see Chapter 3 section 3.3, and the

split line is the join of a boundary point to its next but one neighbour. The actual split

made is such that the triangle cut off has its smallest angle maximised. Once the split is

chosen the code then proceeds as in section 4.3.2.

If the region to be split is simply a triangle containing interior points, then the

split is performed by joining two vertices of the triangle to one of the interior points. The

only extra boundary points are those that lie on the split.

page 42

Chapter 4

4.4 Grid quality improvements
There are numerous methods for taking a 2D grid and improving the quality of

elements for computational proposes. These methods include Laplace smoothing [KaE70],

Vertex swapping [Law77], local refinement and de-refinement to name but a few.

Lawson [Law77] showed that planar grids could be transformed to another by a finite set

of operations, this technique is used in most planar Delaunay triangulations. Lewis and

Robinson used a technique of vertex swapping [Law77] to improve the quality of their

grids. The following sections will outline two of the techniques used to improve the grids

generated. The reader should note that the following methods are of order nlogn, and

have been modified to optimize their execution rates.

4.4.1 Vertex Swapping
Vertex swapping [Law77] of elements' faces is a well known technique used in

2D mesh generation to achieve local min-max or max-min angle criterion. This method

is based on the observation that there are two possible triangulations of a convex

quadrilateral. The better triangulation is the one that makes the resulting triangles most

equi-angular, as measured by the size of the smallest angle. For example, Figure 4.4.1

shows two adjacent triangles I and J that have been generated by some initial mesh

generator.

page 43

Chapter 4

Figure 4.4.1 Two triangles with alternative vertex shown.

In Figure 4.4.1 the line P2P4 lies within the polygon formed by triangles I and J,

a new split of the quadrilateral P1 P2P3P4 is possible, i.e. triangles P 1 P2^4 and P2P3P4 may

be formed. The smallest angle A of the original triangles and B the smallest angle of the

new triangles, may be calculated. No change is made if A > B, but if A < B the new

triangles replace I and J.

In the above method it has to be established which two triangles form a convex

quadrilateral. This section will describe a method that uses the fact that most meshes

have their elements' nodes stored in a fix order (counter clock-wise). This has been found

more reliable than other techniques that are based on testing which side of a line points

lay, like ray testing [Rog85] algorithms or special methods base on the geometry

uniqueness of a triangle [Sar83][Bow83]. For example, in Figure 4.4.2, the alternative

vertex P3Pj lies outside the quadrilateral which forms the triangles shown in Figure 4.4.3

i.e. triangle I is contained in J.
Alternative Vortex

Figure 4.4.2 Figure 4.4.3

page 44

_____________Chapter 4

The areas of the triangles P!P2P4 and P2P3P4 , Figure 4.4.2 are both positive, since

both triangles' nodes are in counter clockwise order. However, the areas of triangles

P!P3P4 and P 1 P2P3 , Figure 4.4.3, have different signs. Triangle T, Figure 4.4.3 has a

negative area because it is contained inside triangle T, therefore its nodes are in

clockwise order, i.e. the quadrilateral P!P2P3P4 is not convex.

Therefore, from the above information we can derive a method of applying a

vertex swapping algorithm to an initial mesh as follows:

i) Repeat

ii) For each triangle,!, in the mesh do

iii) For each edge, EDGE, do

iv) Find neighbouring triangle J, on the edge IEDGE.

v) If triangle I and J form a convert quadrilateral then

vi) Find minimal angle of triangles I and J (MINI)

vii) Find minimum angle of the alternative triangles

	that can be formed with I and J (MIN2).

viii) If MIN2>MIN1 then swap vertex of triangles

viiii) endif

x) end for each edge...

xi) end for each triangle...

xii) until (No more swaps performed or maximum number of passes reached)

The above algorithm is a simplification, the full method includes a stack that stops

neighbouring pairs of triangles being tested more than once. It also stores which triangles

were affected by transformations on each pass of the algorithm, therefore on each

iteration it only examines elements that were swapped previously. Also it was found that

the above algorithm can further be improved by taking each triangle in turn and looking

at all its neighbouring elements first. If the triangle needs to have a vertex swapped we

choose the neighbouring element that forms the set of triangles with the maximum

minimum angle. Figure 4.4.4 shows a triangle with its neighbouring elements and

possible vertices swaps. This dramatically reduces the number of iterations required.

page 45

Chapter 4

Because of finite precision of the

machine, oscillation of edges between

each pass can occur. Therefore, it was

required to store the minimum angle of

the grid on each pass. If there is only a

small change in this value between

consecutive iterations the routine

terminates.

Figure 4.4.4 Alternative vertex searching.
4.4.2 Laplace's smoothing.

Laplace's smoothing [KaE70][Rec73][MeP77][Her77] is a simple but effective

method used in 2D and 3D mesh generation to improve the general shape of elements.

This is achived by removing some of the skewness of elements locally [W6r81]. In

Laplace smoothing each node is taken in turn and moved to a new location that is the

average of all the adjacent vertices positions.

Hence node's i location becomes :-

Pj= Z R/n1 j=i J

'R' is the set of size 'n' of all nodes directly connected

to Node i

'Rj' is a positional vector of node j in 'R'

'Pi' is a positional vector of node i

Laplace smoothing is a highly efficient algorithm that is applied iteratively until

there is only a small change in the nodal positions. However, two passes were found to

be sufficient for the majority of the meshes generated by the 2D mesh generator

presented in this Chapter.

It was found that the above two algorithms 4.4.1 and 4.4.2 are often enough to

convert most grids with badly shaped elements to reasonable quality. They have both

been shown to be of order n [LeR76] and add a very small overhead to any meshing

routine.

page 46

_________ ________________________Chapter 4

4.5 Preliminary extensions.

The initial aspirations were as follows:

(a) Use a superior bisection algorithm.

(b) To remove the requirement of adding a cut line to multiply connected regions.

(c) To enable the automatic generation of grid points.

(d) To generate a code that is so robust that could operate in single precision.

The above requirements were to enable the extension of the procedure to three

dimensions, and if the code could work in single precision in 2D, then the 3D version

would have a greater chance of working robustly on complex geometries.

4.5.1 Improved bisection algorithm.

The improved bisection algorithm is illustrated in Figure 4.5.1

< > < •

_ _ _ _ Cutt I ng I f ne ActuaI spI 11

Figure 4.5.1 Advance bisection routine.

The method of choosing the bisection line is the same as described in section

4.3.2. Once a cut line is selected the boundary segments are sorted to their respective

sides, Figure 4.5.2a, segments are the edges contained between two vertices. These edges

form two sets of boundary points, any boundary point that is contained within both

regions is a boundary interface node. The list of boundary interface nodes, are then sorted

into sequence along the interface, see Figure 4.5.2b. If the number of boundary interface

nodes is a multiple of two, the nodes can be joined in the following order to generate the

new edges, 1 to 2, 3 to 4 etc. However, if the number of boundary interface nodes is

odd, the interface is complex and this bisection line is rejected. The generation of a new

boundary is illustrated in Figures 4.5.2b and 4.5.2c.

page 47

Chapter 4

1

1

Cut line
(A)

f 3 4

(B) (C)

Figure 4.5.2 Bisection of a multiply connected region.

The above technique has removed the requirement for the addition of a cut line

for multiply connected regions, described in section 4.4.3, see Figure 4.5.2. However,

this method does not consider any internal nodes, because of the difficulty of sorting

nodes into their respective regions. Nevertheless the algorithm is more reliable and fails

less often than the original method.

The requirement for the binary mesh operation of edge removal was also found

necessary. The region in Figure 4.5.3a was found to fail on both the mesh bisection and

vertex removal [section 4.3.4] algorithms. Edge removal is the selection of one edge and

a point, which may be internal to the domain or on an opposite boundary.

Figure 4.5.3b shows an element (j) generated by edge removal.

B

Figure 4.5.3 Edge removal.

page 48

______________ ____________________________Chapter 4

The above two algorithms were implemented on a Sun Spare 4 using single

precision arithmetic in addition to other minor changes to the code. A simplistic data

format was used, which required the input of boundary nodes and connectivity.

4.5.2 Preliminary nodal insertion routine.

The new bisection algorithm could not handle internal nodes. Therefore the first

solution was to generate the boundary constraint mesh, which is a grid generated from

just the boundary nodes. Then each internal node is taken in turn and inserted into the

mesh, using techniques derived from algorithms developed for planar Delaunay

triangulation [ScS86][SlH84][CeS85]. This algorithm is very simple and described as

follows:

(1) Take an internal node i.

(2) Search the mesh for triangle J which contains the node i.

(3) Join this node up to the three vertices of element / to form three new

triangles.

The above steps are simplified. In step (2) a method of element walking [S1H84]

is utilized to find the triangle J which contains the node i, which is an order nlog(n)

technique. It is also possible for the node /, in step (2), to co-inside with an edge or node

of an element, and this is also taken account of in the full algorithm.

A method of generating nodes simultaneously was then implemented, based on

the technique described by Connor [Con89]. The user provides the boundary nodes and

these guide the mesh generator's nodal placement algorithm. Therefore, if there is a fine

concentration of nodes around an area of the boundary, the internal mesh would reflect

this. Figure 4.5.4 illustrates the rudiments of the nodal placement algorithm. Figure

4.5.4A shows a bisection line and Figure 4.5.4B shows newly generated nodes along the

interface.

page 49

Bisection Line

Chapter 4

B

V V

Figure 4.5.4 : Simple nodal insertion routine.

When an interface is generated the boundary interface nodes are given a nodal

spacing. This spacing is calculated from the average distance of adjacent nodes. Nodes

are then generated along an interface element, the spacing of these nodes are interpolated

from the two nodal spacing values assigned to the end nodes. For example, if (j^ and fy

are the nodal spacing at two adjacent interface nodes and let t be the parameter location

between nodes i,j where t>0 and t<l. The nodal spacing at position t is then given by

^j+t^j-c));). However, before a new node is inserted into a grid, an additional check is

carried out to ensure that this point is not too close to other nodes in its subregion. This

occurs when the region is highly re-entrant, see Figure 4.5.4.

To illustrate the robustness of the initial code and its ability to cope with multiply

connected domains, the geometry in Figure 4.5.5 was used. The completed mesh is

illustrated in Figure 4.5.6; note that no internal points have been added.

page 50

Chapter 4

Figure 4.5.5 : British Isles Geometry.

Figure 4.5.6 : British Isles with minimal mesh.

page SI

_ ____________________________________Chapter 4

Figure 4.5.7 shows the British Isles grid generated using the nodal placement

algorithm, section 4.5.2, and Figure 4.5.8 shows the mesh after optimization.

Figure 4.5.7 : British Isle's mesh before optimization.

Figure 4.5.8: British Isle's mesh after optimization.

page 52

___ _____________Chapter 4

4.6 Subsequent extensions.

From the initial work carried out, it was soon established that a far more

sophisticated nodal placement algorithm was required, with improved geometry input

specifications.

4.6.1 Data input requirements.
It was found, for bench mark application, that a specific number of elements was

required rather than a nodal spacing. There is a need to cope with multi-materials, and

the following geometry input requirements were identified.

(a) The number of elements the mesh generator should generate for this problem.

(b) A list of boundary nodes of the domain/domains.

(c) The number of polygon regions in the model.

(d) Number of boundary nodes in each polygon domain.

(e) List of boundary nodes which form these regions

Two simple examples of typical data input follow:-

Example 1 square with hole, adjacent to another square

SQUARE WITH HOLE ADJACENT TO ANOTHER SQUARE
50
103
44-4
0.00 0.00
1.0 0.0
1.0 1.0
0.0 1.0
2.0 0.0
2.0 1.0
0.25 0.25
0.75 0.25
0.75 0.75
0.25 0.75
1234
2563
7 89 10

 Number of elements required.
 Number of nodes, number of polygons.
 Number of nodes in each domain, negative if hole polygon.
 list of 10 nodes

-- Polygon outer Rl.
~ Polygon node list outer R2.
 Inner hole polygon of Rl.

page 53

Chapter 4

Example 2 : square with sub-domain inside, adjacent to another square.

SQUARE WITH SUB-DOMAIN ADJACENT TO ANOTHER SQUARE
50
103
444
0.00 0.00
1.0 0.0
1.0 1.0
0.0 1.0
2.0 0.0
2.0 1.0
0.25 0.25
0.75 0.25
0.75 0.75
0.25 0.75
1234
2563
789 10

 Number of elements required.
~ Number of nodes, number of polygons.
 Number of nodes in each domain.

 list of 10 nodes

 Polygon outer Rl.
~ Polygon node list outer R2.
 Inner polygon outer R3.

The above data format only handles linear elements, curved lines have to be

broken down into several line segments. However, the above format handles most cases

which have been provided by other co-workers [Cho93][Fry94] at the Centre for

Numerical Modelling and Process Analysis, University of Greenwich.

The new mesh generator identifies which polygons are internal and their

associated external counterparts. It also reorders the polygon list into anti-clockwise order

so the domain is always to the left as you travel round the boundary. The identification

of interface elements is also found so nodes generated on these elements' faces coincide

with both domains. However the boundary for sub-region R3, in example 2, is stored as

two lists one in anti-clockwise order and the other, clockwise with all nodes marked as

interface points.

4.6.2 Nodal density calculation.
The previous nodal placement algorithm tended to needlessly over refine certain

regions, also a method of generating grids where a certain number of elements is

specified was required. It was found that if a domain was broken down into several

simpler convex regions, these could be used to calculate the total area [Mid87] of the

domain. Once the total area is calculated a measure of the nodal spacing can be estimated

as follows:

Area of element = area of domain divided by number of required elements

page 54

Chapter 4

Hence:

Nodal spacing = square root of four times area of element squared divided by root
three.

This equation calculates the length of an equilateral triangle's side.

4.6.3 Decomposition of regions into convex polygons.
Before the generation of nodes the region is first divided up into convex polygons.

The dividing of regions into convex parts is a well researched area with a large number

of papers published. The method which was selected is by Chazelle [Cha84] whose
algorithm has a linear computational order, see also [FeP75],[Sch78],[JoS86],[Lyu63]
[GiA81],[BaD92j.

It is vital that the selection of separators does not generate small angles and
narrow regions. It is also required that any newly generated nodes do not lie too close
to adjacent points. Let R be a simply connected region with vertices in counterclockwise
order. We then select a vertex v0 such that its interior angle is larger than 180 degrees.
An inner cone is defined as in Figure 4.6.1 which defines a section 3R of R. From 3R
it is found the subset VS visible section. In Figure 4.6.1 A VS =N0,N 1 ,V5,V6,N2 where
NO,N! and N2 are used to define end points of visible polygons. Therefore, a point on VS
connected to v0 is a separator which resolves the reflex angle at v0 .

V-

Visible section

Figure 4.6.1 : (A) Full inner cone,(B) Inner cone restricted by vertex V2

page 55

Chapter 4

From VS we generate a set of
separators, these do not include Ns points
as these generate inferior regions.
However a set of additional 05 points are
generated by dividing the inner cone

-— Inner cone. ------a subtended arcsangle, Figure 4.6.2. The subtended angle ~———A ,• ~ „——r-——————————— & & 5 Figure 4.6.2: G3 points.
a is between 20 to 30 degrees depending
on inner cone. Therefore the candidates for separators are selected from the set of Vif
which lie in VS plus the G3j nodes. The selection criterion is dependent on the angles the
separator make with the region's sides together with how close it is to adjacent vertices.

4.6.4 Decomposition of multiply connected regions.
Multiply connected regions have to be decomposed into simple polygons. The

following method outlined is based on a paper by Joe and Simpson [JoS86]. Given
polygon H, which is contained in outer polygon P, search H for V0 that is a vertex on H
closest to P. Then proceed to find a separator that joins V0 to P, which forms the cut
interface segment. The search for the separator is similar to the method outline in the
above section, Figure 4.6.3A illustrates inner cone.

Inner cone

Figure 4.6.3 Cut edge generation for multiply connected region.

If no separator can be found for V0, the algorithm proceeds by selecting nodes in a
counterclockwise fashion starting at V l until a valid cut can be made.

page 56

___Chapter 4
4.6.5 Nodal placement

The nodal placement algorithm is based on the properties of shrinking convex
polygon. Figure 4.6.4 illustrates the basic steps in this method. The first step is to
generate concentric polygons, that are shrunk by a factor R, Figure 4.6.4A. We then
generate nodes on the boundary of these polygons with a nodal spacing R, Figure 4.6.4B.
The shrunken polygons are then discarded to leave Figure 4.6.4C.

/\
A

^

\ \ B
\

\

\f
Figure 4.6.4 Node generation on a convex region.

The nodal placement technique implemented, is based on a method by Johnston
[Joh92], of generating nodal points using the method of normal offsetting. Johnston's
technique operates on arbitrary regions and has a computational order of approximately
O(n2). However, by restricting the technique to convex regions and using a order n
method, by Joe [Joe86] of shrinking a convex polygon, has greatly improved the
computational efficiency of this technique.

page 57

Chapter 4

\
(B)

Figure 4.6.5 : Shrinking convex polygons.

Let po,pi-»pm be vertices of the convex region P in counterclockwise order. Now

let Lj be the direction vector parallel and of a distance R to the left of the line pj pi+1 . The

half-plane to the left of and including L} is Ht . If the shrink factor R is sufficiently small

then the intersections of the half-planes define a convex polygon. If the intersection of

the vectors LM and Lj lie on the edge of this region these define a point q^ Figure 4.6.5

shows two examples of shrinking convex polygons, Figure 4.6.5B show an example

where an edge Lj is not include in the sub-polygon.

It should be noted that if R is too large

the shrunken polygon can be degenerate, as in

Figure 4.6.6, or a line segment or even a

single point. The algorithm for the generation

of a shrunken convex polygon is based on

paper by Joe [Joe86] and runs in

computational time of order n.

Figure 4.6.6 Degenerate polygon.

page 58

_____________________________________Chapter 4
Once the sub-polygon is generated it is then processed to ensure an even nodal

spacing. This is achieved by searching for narrowness or short edges. Narrowness in the
convex region is identified by sharp angles. Therefore, adjacent edges that have an angle
<|>, less than a minimal value of 30 degrees [JoS92], are removed, Figure 4.6.7A. This is
accomplished by generating a line Lc , Figure 4.6.7B, offset into the domain by a distance
a from the node d,,, where dn is the common node of the adjacent edges. The value of
a is set proportional to the angle <X> and the nodal spacing //, and is calculated by
H/2tan(3>/2). The line Lc is then used to remove the sharp angle, Figure 4.6.7C. Short
edges, vertices whose distance apart is less than 8, are then searched for, and any vertices
found badly placed are merged as in Figure 4.6.8.

Figure 4.6.7 : Removing narrowness in the
domain.

Figure 4.6.8 : Removing degenerate
vertices.

The shrink factor R is the nodal spacing required for the region, however this can
vary over the whole domain. In the mesh generator each vertex is assigned a nodal
spacing parameter, so the mesh can be graded around areas of complexity. For example
around a curve where the boundary nodes are closer together, possibly smaller than the
global nodal spacing, then the local nodal spacing would reflect this.

For domains where no sub-regions can be generated, not even a point sub-
polygon, the area of the region is found [Mid87]. If the area of the region is larger than
1.5(n-2) times the required element area, where n is number of nodes on the boundary,
a node is placed at the centroid to ensure an even nodal density.

page 59

______________________Chapter 4

4.6.5 The grid generator.

Once the nodes are generated in a convex region, the method by Lewis and

Robinson is applied to generate the grid. When all the sub-regions are meshed the

domain is then smoothed using the methods in section 4.4.

4.6.5 Example problem.

\

Figure 4.6.9 : Initial geometry.

Here is an example of a two material

casting problem.

The division into sub-regions took 0.033

CPU seconds on a Sun spare ELC with no

compiler optimization. The region was

subdivided into 28 convex polygons.

Figure 4.6.10 Sub-division into convex parts.

Ja8eoMoo885?7SAAf5fSAAAAA?5?

The complete mesh of 1099 vertices and

2068 elements took 0.1 CPU seconds after

sub-division.

Minimal element angle is 15 degrees.

Figure 4.6.11 : Final mesh.

page 60

_ ___ _____________________Chapter 4

4.7 Higher polygon order.

The need to generate higher order elements (i.e. not just triangular) is a
requirement of most applications. In this section, three different methods for the
generation of other element types are outlined.
4.7.1 Conversion of triangular element to quadrilaterals.

Various methods [JSK91][MLC83] have been used to convert triangular meshes
to quadrilaterals. One method is where the subdivision of triangular elements into three
quadrilaterals [JSK91] is used, Figure 4.7.1.

(A) (B)
Figure 4.7.1 : triangle to quadrilaterals conversion.

This is done by generating three nodes at the mid-point of each edge with an additional
node at its centroid. The nodes are then connected as in Figure 4.7. Ib to form three new
quadrilateral elements. The method has the advantage that all the elements are converted,
however the initial mesh should be generated with less than half the required elements.
This method tends to generate poorly shaped elements that are often not suitable for

further computational proposes.
4.7.2 Walking method of generating quadrilaterals.

A method that generates meshes of mixed elements is illustrate in Figure 4.7.2.

B
Figure 4.7.2 conversion of triangles to quadrilaterals.

page 61

_ ___ _________________Chapter 4

The algorithm is as follows.

(a) Find two adjacent elements that form a reasonable quadrilateral

(b) Push quadrilateral onto stack

(c) Pull quadrilateral 'Iquad' off stack

(d) Loop over sides 'Jsides' of Iquad

(e) if Jside has an adjacent triangles Itri

(f) see if we can form a new quad 'Jquad' with adjacent triangle of

Itri

(g) if new quadrilateral formed push 'Jquad' onto stack

(h) end if

(i) endloop

(j) If stack not empty goto (c)

(k) Search remaining triangle elements to see if we can form a quadrilateral

(1) if new quadrilateral formed goto (b)

(m) Terminate.

To speed up the search for adjacent elements the above routine stores a list of

non-converted elements. The routine always selects the optimal adjacent element when

forming quadrilaterals. However no quadrilateral is formed if any angle is less than 20

degrees. After the generation of quadrilaterals the mesh is smoothed to optimize angles.

Similar techniques have been implemented by Johston et al [JSK91] and Moscardini et

al [MCL81].

4.7.3 Generation of high order polyhedral cells.

A region shown in Figure 4.7.3 can be decomposed into convex parts, Figure 4.7.4.

Figure 4.7.3 : Geometry Figure 4.7.4 : Decomposed domain.

Figure 4.7.4 could be classified as a "mesh" and from this initial decomposition

we can proceed to generate grids over these sub-domains using several techniques.

page 62

_________ ________________Chapter 4

As an example, these convex sub-domain can be further subdivided to generate arbitrary
polygon cells, Figure 4.7.5.

Figure 4.7.5 : High order cell domain.

The above domain was generated using a technique where each cell was divided
until its area was within a special tolerance. This tolerance was calculated from taking
the total area of the domain and dividing by the total number of required elements. If we
increase the number of elements we end up with the mesh shown in Figure 4.7.6.

Figure 4.7.6 : refined mesh.

page 63

__ _________Chapter 4

Figures 4.7.5 to 4.7.6 have been smoothed. Before optimization these meshes

would have resembled Figure 4.7.7.

Figure 4.7.7 : Crazy pavement mesh.

Figures 4.7.5 to 4.7.6 are similar to the types of grids generated by methods such

as the Voronoi Diagram [CFM91].

page 64

_______ _____________________Chapter 4
4.8 Conclusions.

All the algorithms presented in this chapter are of computational order of at worst
f\

n with the majority of order n. Therefore, the method of recursive domain bisection
potentially offers a fast and efficient way of generating grids. The method can cope with
complex geometries with relative ease and can generate grids of usable quality.
Therefore, the method presented in this chapter compares favourably with other efficient
algorithms such as Delaunay. However, the new bisection method does not suffer from
the drawbacks of Delaunay triangulation. For example, Delaunay triangulation requires
expensive algorithms after the generation of the grid, to ensure the mesh represents the
model (See Chapter 3).

Since the new bisection technique is a practical and efficient method, with some
algorithms already extended to 3D by other researches in the field of solid modelling, it
seems realistic to extend this technique to three dimensions.

4.8.1 Further extensions.
The new recursive domain bisection method is a very flexible technique, because

once the domain is divided up, there are many possibilities. Many CAD packages,
PATRAN [Pat89], FEMGEM [Fem91] etc , offer simple mesh generating tools that
require the sub-division of a complex region into a number of simpler parts. Since the
initial stage in the code generates simple convex domains, many of these tools can be
applied directly to the resulting geometry. One example is where we have taken the
geometry of a 2D car in a wind tunnel. We then applied the domain bisection algorithm
to subdivide the domain into simpler parts. These subregions were imported into
FEMGEN that generated the final grid. Therefore, once a region is divided up, a method
of generating quadrilaterals in these simpler domains could be applied, in a similar way
to the medial axis method [TaA91], see Chapter 9.

page 65

Chapter 5

Chapter 5
Generation of Grids Over Surfaces.

page 66

_____ __________Chapter 5

5.1 Introduction.

The generation of grids over the surface of complex geometry is a major area of

three dimensional mesh generation. The ability to generate surface grids is an integral

part of the overall tetrahedral mesh generator.

The first section outlines a method of generating surface grids over planar

polyhedral structures, with examples that show an almost linear computational order.

Then grid generation over parametric surfaces will be presented, which will include a

new definition of surface Delaunay triangulation. The chapter will then be concluded with

how the methods used in 2D mesh optimization have been modified to cope with

parametric forms of surfaces.

The Delaunay triangulation is presented in this chapter, as this work was the

initial development of extending grid generation to surfaces. The recursive bisection

technique is not included in this chapter, as at the time this work was undertaken, it was

still under development. However, it is intended that the Recursive bisection method will

later be extended to parametric surfaces.

page 67

_____ _________________Chapter 5

5.2 Surface mesh generation on polyhedral domains.
Generating grids over the surface of polyhedral domains is probably the simplest

form of surface mesh generation. A polyhedral domain is a collection of closed

nonintersecting planar polygon faces. Each polygon face can either be simple or multi-
connected.

A polyhedral domain can be treated as a collection of planar regions with
interface boundaries along all edges. The reason for this is to ensure that elements

generated on adjacent polyhedra are consistent. Therefore, each face can be taken in turn,

rotated onto the XY plane and meshed using any reasonable planar grid generation

algorithm. As can be expected, see regression analysis below, the surface polyhedral
mesh generator is equivalent in computational order to the 2D version.

Regression of cpu on elements

P. o
6 -

3 -

0 -

15
(X 10000)

The above graph shows a linear regression analysis of the data given in table 5.2.1

The regression analysis of the fitted line gave a value of R2 of 0.97 that means a linear
representation of the data is good. Therefore, we can conclude that for the lug shape
model in Figure 5.2.1 we have an order N algorithm.

page 68

__ ___________________Chapter 5

The table below shows CPU time in seconds to generate a surface mesh of 'n' elements

using Delaunay triangulation on the Polyhedral domain in Figure 5.2.1.

Table 5.2.1

No. Elements

272

308

436

922

1508

4136

6160

12374

37224

45960

65978

88462

103582

122968

148814

CPU Time

0.20

0.21

0.25

0.28

0.30

0.70

0.77

2.48

5.30

5.83

7.43

9.07

10.12

11.5

13.18

Figure 5.2.1: Polyhedral Domain.

Figure 5.2.2: Surface mesh with 1508
elements.

The above times were calculated on a Sun

SLC with compile options -g (debug).

Figure 5.2.3: Surface mesh with 6160
elements.

page 69

_________Chapter 5

5.3 Meshing Surfaces using Delaunay Triangulation.
The triangulation of surfaces up to now has mainly been done by transforming the

surface onto a 2D planar region and then applying some well established 2D mesh
generator to this domain [CFM91b][HaA82][ZiP71]. Once the 2D planar region mesh is
completed it is then converted back to the surface. Often this is done with no
consideration of how well structured the mesh will be, once it is mapped onto the
surface. So although you may have a well structured 2D planar region, the resulting
surface mesh can be worthless for any further analysis purposes.

A method of generating well shaped elements on any surface that has an
associated parametric definition, will now be considered, by means of Delaunay
triangulation. An initial method will then be demonstrated, and how this can be expanded
to arrive at a definition of surface Delaunay triangulation.

One way of generating well structured triangles over a surface is to use 3D
Delaunay triangulation.
This is done by:-
(i) Taking a surface and generating a "Bounding base Box" (Figure 5.3.1)

Surface With Bounding Base Box,
Figure 5.3.1.

(ii) Generate nodes over this surface (using some nodal placement algorithm)

page 70

_______________Chapter 5

Note, that it is also beneficial to generate nodes on the base of the bounding
box, as this improves the mesh generator's robustness to rounding errors i.e. cuts down
the number of tetrahedral elements sharing the same node, which reduces the number of

near parallel lines.
(iii) Then use a 3D Delaunay triangulation program to generate the tetrahedral mesh.

(iv) Apply some stitching method on the triangulation to make the Delaunay mesh
conform to the domain. (See Figure 5.3.2)

Figure 5.3.2

(v) The surface Delaunay mesh is then defined by the tetrahedral faces that are
adjacent to the surface.

Note that before removing the tetrahedra, it is possible to apply a nodal refinement
algorithm.

The above method does produce satisfactory surface meshes, but the surface mesh
produced is dependent on the distance between the base of the bounding box and the
surface. So by moving the bounding box base in or out, it is possible to change the
resulting solution; this situation is not ill-conditioned as the nodal position on the surface
has a greater effect on the outcome. Actually, to have any effect on the solution, a
significant increase/decrease in the distance between the base and the surface must occur.

page 71

________________________________Chapter 5

It is possible to take the above concept further and instead of imagining a surface
with a half bounding box, we can think of two twin (identical) coinciding surfaces with
a gap 8 between them, e.g two parallel planes or parametric cubic surfaces, as illustrated
in Figure 5.3.3.

Figure 5.3.3: Parallel Planes

^Siftjr

Figure 5.3.4: Coinciding Surfaces

page 72

___ ________________________Chapter 5
Now generate nodes on both domains, such that the distribution and location of

points are identical with respect to the surfaces' origins, and join the surfaces up to form
a closed domain, see Figure 5.3.4. We can now generate a Delaunay mesh over the points
in 3D space, stitch the domain and remove external tetrahedra.

If we now take a closer look at the surface of the parallel planes (Figure 5.3.3),
it can establish not just the fact that both planes have identical meshes, but also the fact
that this surface conforms to the definition of planar surface Delaunay triangulation. Take
the parallel plane example, and let the distance between the planes tend to zero. As the
distance between these surfaces decreases, the meshes on the planes do not change and
the circum-spheres of the tetrahedra also decrease. The tetrahedra tend to triangles and
the circum-spheres tend to minimal circum-spheres (Figure 5.3.5) of triangles as the
points on the two planes start to coincide. Therefore, we are left with a valid Delaunay
triangulation, but these triangles do not have circum-circles like the planar Delaunay
triangulation but have minimal circum-spheres.

Uncompressed tetrahedron Compressed Tetrahedron

Figure 5.3.5:- Shows a cross section of circum-spheres of a tetrahedral as height 8 tends
to zero.

page 73

__________________________________Chapter 5
If we do the same for the twin surfaces (Figure 5.3.4) we have a surface

triangulation in which no triangle's minimal circum-sphere contains any other triangle's
vertices (Figure 5.3.6).

drcum«pher*

Cross section of top surface circum-
spheres when 8 > 0

Cross section of circum-spheres when 8=0
Figure 5.3.6

Therefore, the definition of surface Delaunay triangulation is : The minimal
circum-sphere of each triangle and the intersection of this sphere and the surface defines
a region, in which no vertices of any other triangle in that surface can be contained.

Two possible methods of producing a surface Delaunay triangulation, will now
be presented.

page 74

____________________Chapter 5

Method 1:

(i) First sort the points in parameter space, such that they are in lexicographically
increasing order.

(ii) Join the first three points to form the initial triangle,
(iii) Then insert the points one at a time from outside the convex hull,

see Figures 5.3.7a and 5.3.7d.
(iv) Find all edge faces of convex hull visible from last inserted point,
(v) Join this point up to the vertices of these faces to form new triangles,

see Figure 5.3.7b

(vi) Then apply Lawson's swapping procedure to make newly generated triangles
which conforms to surface Delaunay triangulation, see Figure 5.3.7c.
i.e check each triangle minimal circum-sphere with neighbouring triangles'
vertices. If neighbour's edge is contained in this region swap its adjacent vertex
with current triangle,

(vii) Repeat steps iv to vi until all points are inserted.

Next point
to be inserted
into mesh.

(a) Convex hull (B) Mesh just after point is inserted,
point has been joined up to
visible triangle's faces

page 75

Chapter 5

(c) After Lawson's swapping
procedure.

(D) After next point is added
to domain.Figure 5.3.7

Note that a bounding or super triangle [S1H84], is not used in the above method
as it is impossible to find. Also Lawson's swapping algorithm is used not just to
overcome some of the problems associated with numerical rounding error, but also to
address the situation when the circum-sphere of a triangle intersects the surface more than
once (Figure 5.3.8). This is overcome by the fact that we are only checking neighbouring
triangles' circum-spheres.

Circum-Sphere of Triangle

Surface
Figure 5.3.8

page 76

________Chapter 5

The Figure 5.3.8 shows a minimal circum-sphere of a triangle intersecting the surface

more than once. This situation presents no problem to the technique.
Method 2j_

i) Use 2D planar Delaunay triangulation in parameter space, to give an initial

approximation to Surface Delaunay Triangulation.

ii) Once the initial approximate mesh is formed, apply Lawson's swapping

algorithm to generate the Surface Delaunay Triangulation.

Of the two methods described above, it was found that the second technique was

more robust. This method avoids the need to establish which edges of triangles are

visible from a given point, which was found to be the part of the code most influenced

by rounding errors in Method 1. Figures 5.3.9Aand 3.3.9B shows two examples of

meshes generated over a parametric cubic patch. The first example shows 2D Delaunay

triangulation of the surface meshed only in parameter space, the second is meshed by the

second method described above and forms a valid surface Delaunay triangulation. The

major difference between the two figures is most noticeable around the leading lower

edge of the two surfaces.

Figure 5.3.9A, Parameter 2D Delaunay Triangulation

page 77

Chapter 5

Figure 5.3.9B, Surface Delaunay Triangulation

5.3.1 Surface Delaunay results.

Figure 5.3.10: Parameter Delaunay
triangulation.

Figure 5.3.11: Surface Delaunay
triangulation.

The above two surfaces were used in the experimental results generated in

table 5.3.1.

page 78

_____^^^ ________________Chapter 5

The following table 5.3.1, lists a comparison between standard parametric Delaunay and

surface Delaunay, giving the maximum and minimum angle of each mesh with average

surface error at the mid node of each triangular element side.

Table 5.3.1

Tri

8

32

50

98

162

200

242

288

392

450

512

578

648

722

800

882

1058

1250

1458

1682

Parametric Delaunay

Max ang

1.5708

2.49978

2.62658

2.64741

2.65236

2.64807

2.65338

2.6543

2.65678

2.6543

2.65762

2.65608

2.65774

2.65673

2.65947

2.6568

2.65656

2.65739

2.65842

2.659000

Min ang

0.67474

0.25173

0.21078

0.20684

0.20632

0.20453

0.20661

0.20399

0.20413

0.20761

0.20452

0.2074

0.20499

0.20654

0.20547

0.20612

0.20596

0.20596

0.20604

0.20619

Sur Err

0.19267

0.04913

0.03085

0.01597

0.00972

0.00793

0.00653

0.00551

0.00405

0.00352

0.0031

0.00274

0.00245

0.0022

0.00199

0.0018

0.0015

0.00127

0.00109

0.00094

Surface Delaunay

Max Ang

1.5708

1.8677

1.89385

1.93021

1.95157

1.96856

1.96375

1.96527

1.96439

1.97563

1.9799

1.99139

1.99912

2.00387

2.00775

2.01541

2.02436

2.03116

2.03802

2.0423

Min ang

0.67474

0.54352

0.47648

0.41602

0.36733

0.35228

0.34101

0.33231

0.31984

0.31524

0.31139

0.30812

0.30533

0.3029

0.30078

0.29892

0.29578

0.29326

0.29118

0.28944

Sur Err

0.19267

0.04849

0.03066

0.01586

0.00964

0.00786

0.00647

0.00547

0.00402

0.00349

0.00308

0.00272

0.00243

0.00218

0.00197

0.00178

0.00149

0.00126

0.00108

0.00094

page 79

Chapter 5

Figure 5.3.12, plots the minimal and maximum angles of each of the two types

of triangulations, here it can be clearly seen that the surface Delaunay gives for all cases
an improved triangulation.

2.«0

240 -

2.00

1 00

1.20

080

0.40 -

0.00
0.00 ZOOM 400 00 600.00 800.00 1000.00 1200.00 1400 00 1600 00 1800.00

Number of elerntnt*
D Maundy max ADdounqy mln 6 Surface Detaunay max X Surface Dotaunoy mln

BBBS—DD D D D LB

Figure 5.3.12: Comparisons between angles in grids.

The Figure below, plots the difference between Parametric Delaunay error against

surface Delaunay triangulation error, a negative value indicates Surface Delaunay returns

a better approximation. Surface error is the average of the distance of mid point of each

element's edge from the parametric surface.

oool

-0.005

-0.006-

-OJKJ7-
0.00 200.00 400.00 BOO.OO BOO.OO 1000.00 12OOOO 14OO 00 1000 00 100000

Number of dement*
D Error difference

Figure 5.3.13 : Difference in surface error between parametric and
surface Delaunay.

page 80

_____Chapter 5

5.3.1 Surface Delaunay triangulation example.
The table below shows CPU time in seconds to generate a surface Delaunay triangulation

of 'n' elements over a parametric surface shown in Figure 5.3.14.

Table 5.3.2

No. Of triangles

8

32

50

98

162

200

242

288

392

512

648

722

882

1058

1250

1458

1682

CPU time seconds

0.067

0.267

0.450

0.600

0.850

0.867

1.267

1.483

2.050

2.650

3.397

3.95

4.7

5.55

8.733

6.767

7.950

Figure 5.3.14: Parametric surface
with 1682 surface triangles.

The above CPU times were calculated on a Sun ELC; the code was compiled without

optimization.

page 81

Chapter 5

Regression of cpu tine on triangles

8

o. 0 4

9 1Z
triangles

15 18
(X 100)

Figure 5.3.15 : CPU time correlation.

The above graph shows a linear regression analysis of the data given in Table
5.3.2. The regression analysis of the fitted line gave a value of R2 of 0.99, which
indicates that a linear representation of the data is an appropriate model. Therefore, we

can conclude that for the above parametric model in Figure 5.3.15 we have an order N

algorithm.

page 82

______________Chapter 5

5.4 Surface Laplace Smoothing
Laplace Smoothing [KaEVO] is a simple but effective method used in 2D and 3D

mesh generation to improve the general shape of elements. In Laplace smoothing each
point is taken in turn and moved to a new location, which is the average of the nodal
positions of all the vertices that are directly connected, see Chapter 4 section 4.4.3.

The problem with Laplace smoothing is it cannot be directly applied to surfaces,
therefore, there is a need to derive a method which weights points in parametric space.
This should enable it to become possible to apply a smoothing algorithm in the parameter
space that improves the shape quality of the elements on the 3D surface.

To achieve Laplace smoothing to a point in parametric space in such a way as to
optimise the element in 3D space the following information is needed:

L - Length of line connecting the points i and j on the surface
(for simplicity this will be the absolute distance between the two points in E3)

PL - Length of the line connecting the points i and j in parametric space.

SR - Sum of the ratios of L/PL of all points connected to point i in the mesh,

n - Number of vertices connected to the point i

Hence the new position for point 'i' becomes:
n

P,= J_ *
SR j=1

page 83

______ ___________________Chapter 5

A simple check for this is to see if it is consistent when we let PLj tend to Lj i.e no

difference between the parametric definition and the true surface. The above equation

tends to :-

n

PJ= ZPj/n
j=i

which is the definition of Laplace smoothing, see Chapter 4 section 4.4.2.

The above methods, in general need a few extra iterations to generate reasonable

results than the standard Laplace smoothing. However, the standard method cannot be

applied to these surfaces. This method tends to improve the shape of the elements with

all the nodes remaining on the surface. However, it cannot guarantee to improve the

surface approximation, which is approximated by the planar elements.

5.4.1 Surface Laplace Smoothing Results

Below two identical surfaces are depicted; Figure 5.4.1 and 5.4.2 show the initial

surface and Figures 5.4.3 and 5.4.4 are the resultant mesh after smoothing was applied.

Figure 5.4.1: Surface before Smoothing. Figure 5.4.2: Parametric Surface before
Smoothing.

page 84

Chapter 5

Figure 5.4.3: Surface after smoothing. Figure 5.4.4: Parametric surface after
smoothing.

Figures 5.4.2 and 5.4.4 depict the surface in parameter space, where u and v are two

parameters which sweep out the surface and take values in the range 0 to 1.

The graph below shows a comparison between surface minimal and maximum

angles of elements before and after smoothing. The smoothed surface angles were taken

for 5 passes of the Laplace smoother. It can be clearly seen that the Laplace angle

smoother improves the quality of the meshed surface. However, the improvement is not

that distinct, because of the limitations of the geometry e.g the minimal and/or maximal

angle can be restricted by the geometry.
280

0.00
0.00 200.00 4OOOO 000.00 800.00 1000.0O I2OO.OO 140O.OO 1 500 OO 1DOO 00

Numbw of •kmtnU
DMox ongta lwfo». AMln onglM before <>Mox ongl* •nwothid mMh XMln angta Mnootlwd mnh

Figure 5.4.5 : Plot of minimum and maximum angles of mesh before and after
smoothing for various number of elements.

page 85

_____________________Chapter 5

The graph below shows how the angles of the mesh improve, for each pass of the

Laplace smoothing routine.

Z.BO

200 •

1.60 •

c
o 1 20 •

O.BO •

0.40

000
100 200 3.00 4.00 5.00 600 700 8.00 0.00 10.00 11.00

Figure 5.4.6 : Angle quality after each pass of the smoothing algorithm.

The order of time complexity for Laplace smoothing is almost order n, which is
depicted in the next graph that plots the number of elements against CPU time for 5
passes of the algorithm.

9.00

800

7.00

6.00 -

n

1 500 -I
il

a. u

4.00 -

3.00 -

200 -

1.00 -

0.00
ODD 200.00 400.00 600.00 800.001000.001200.001400.001600001800.00

Number of elements

Figure 5.4.7 : CPU time to smooth n elements.

page 86

______ Chapter 5

5.5 Vertex Swapping on parametric surfaces
A surface mesh only forms an approximation to the true surface. When a vertex

swapping algorithm [Law77] is applied, it does not just effect the element's shape, but

also the error between the true surface and the surface formed by the mesh.

Therefore a vertex swapping algorithm has two objectives:-

(i) To minimize the maximum angle of the mesh

(ii) To minimize the surface mesh error.

It is almost impossible to satisfy both these goals, but we can assign a weight to

how important each one is for our purposes. For example, if ^1 and ^2 are the errors for

the surface approximation for the two possible triangulations of a given convex

quadrilateral. The values mini and min2 are the minimum angles of the two possible

triangulations and Wl5W2 the weighting functions, the following relations can be defined:

(1) f1=

(2) f2=

For the special case when ^1-0, for relation 1, the second term is set to Wl5 since

this occurs when ^2~0, hence it is assumed zero divided by zero is 1. Similarly for

equation 2 when ^2-0, the second term is set to W2 .

From relation 1 it can be seen that the second term £2/^1 increases as the error

of the initial triangulation decreases; consequently relation 1 decreases as £2

increases. This also holds for equation 2, but vice-versa. Hence the vertices of the

triangles are swapped if f2 > f,.

The main problem with the above relations how to choose the weighting

functions. W, and W2 could both be constants, so if there is a large difference between

the two errors £1 and £2, we choose the one with the smallest error, but if ^1~^2 the

size of the angles has the greater effect on the choice, therefore we could then use

page 87

____ _______________Chapter 5

W 1 =W2=1. Another choice is to let W^Minl and W2=Minl, which relates the error to

the angles of the alternate triangulation.

It is also possible to use different functions like :-

(3) f,= min 1*

(4) f2=

This has the advantage that as ^1,^2 tend to zero, the method tends directly to

the planar swapping algorithm. However, it is difficult to adjust the relationship between

angle and surface error.

5.5.1 How To Calculate Surface Error (Local Surface Error).

To calculate the true surface error can be complex and CPU intensive. However,

it was found that the true surface error is not really necessary, as a rough estimate is

often sufficient, and the reasons for this are discussed below.

One method is to take two adjacent triangles and estimate the error over these

elements by calculating the distance of their centroids from the surface. However, a

quicker method is to calculate the distance of the centroid of the adjacent edge from the

surface, since the algorithm is only based on swapping elements faces. It is then possible

to apply the vertex swapping algorithm by calculating the minimum angles of the two

sets of triangles plus the two distances of the centroids of the two possible adjacent

edges.

5.5.2 What is the effect of the above method?
There is a complete contradiction between an element's optimal shape for meshing

and for surface approximation. For example, when the above method is used on surfaces

that have a constant gradient in one direction and variable in the other, this tends to

produce elements that are compressed in the variable direction, i.e elongated in the

direction of constant gradient. Since minimize the length of an element in the direction

of the largest gradient of the surface, reduces the surface error.

Therefore, a better method is to swap elements' vertices based solely on their

angles. We only then test for surface error when the two sets of angles are similar.

page 88

Chapter 5

5.5.3 Surface Vertex swapping Results
Below two identical surfaces are depicted; Figure 5.5.1 and 5.5.2 show the initial

surface and Figures 5.5.3 and 5.5.4 are the resultant mesh after applying the surface

vertex swapping method.

ZZZZZ/ZZZ7ZZZ
Figure 5.5.1 : Surface before Vertex

swapping was applied.
Figure 5.5.2 : Parametric Surface before

Vertex swapping is
applied.

Figure 5.5.3 : Surface after angle
optimization using vertex
swapping.

Figure 5.5.4 : Parametric surface after
optimization.

Figures 5.5.2 and 5.5.4 depicts the surface in parameter space, where u and v are the two

parameters which sweep out the surface, and are in the range 0 to 1 to form a unit

page 89

_________Chapter 5

square.

The graph below shows a comparison between surface minimal and maximum
angles of elements for the surface before and after angle optimization. It can clearly be
seen that vertex swapping improves the quality of the meshed surface.

ZBO -r

240 •

1

000
0.00 200.00 400.00 600.00 800.00 1000.00 1200.00 1400,00 1600.00 1800.00

Numb«r of etonMntt
DMox angle before, AMTn anglei before OMax angle mapped meih XMVi angle evapped meih

Figure 5.5.5 : Plot of minimum and maximum angles of mesh before and
after optimization for various number of elements.

The order of time complexity for vertex angle optimization is almost order n,
which is depicted in the next graph, which plots number of elements against cpu time.

4JOQ

3.50 -

3.00 -

230 -

2,00 -

1.60 -

1.00 -

030 -

0.00
0-00 200.00 400.00 60000 800.00 1000001200.001400.001600001600.00

or owroontfl

Figure 5.5.6 : Plot of number of elements against CPU time in seconds.

page 90

__ ___________Chapter 5

5.6 Summary and Conclusions.
This chapter has demonstrated that two dimensional mesh generating techniques

can be extended successfully to surfaces without effecting their computational order.
They can be applied in such a way that they generate grids of good quality, whilst
effectively taking account of surface approximation error.

page 91

________________________Part III

Part III
Three dimensional
mesh generation.

This is the last section of this dissertation, which includes an explanation of a new

three dimensional mesh generator with a description of the major algorithms that the

technique is contingent upon. This section then concludes with a summary of major

achievements and possible further extensions.

page 92

Chapter 6

Chapter 6
3D Mesh Generation.

page 93

______ _______________________Chapter 6

6.1 Introduction.

This chapter gives an overview of the research that has been carried out into three

dimensional grid generation. An outline of the initial attempt at the recursive bisection

mesh generation is given, together with geometry representation and bisection techniques.

Dealing with some key features of the geometry, such as cavity removal, is best

carried out before the main task of grid generation. Therefore, the initial bisection planes

are chosen to simplify the model by introducing interface elements that join the cavity

regions to outer boundaries. The selection of bisection planes for mesh generation is then

described, together with how this is implemented to generate rudimentary meshes. The

problems associated with this basic technique are then covered, together with methods

of improvement.

The simplification of a geometry into simpler parts, such as convex regions, and

how this can aid nodal placement is described. Once the domain is sub-divided into

simpler regions the nodal placement algorithm is then implemented, followed by the final

stage of meshing. The final meshing of the domain was found more reliable and faster

using a non-recursive method based on a boundary constrained local min-max algorithm.

The min-max heuristic method was found to be best implemented using local tetrahedral

transformations and operated in an average computational order of nlogn.

page 94

_____ ___________________ ________Chapter 6

6.2 The initial recursive bisection mesh generator.

Below are the steps used in the initial three dimensional recursive domain
bisection mesh generator. This was the starting point from which the final three
dimensional grid generator was developed.

(1) Remove all cavities from polyhedral domains using the technique in section 6.5.

(2) Generate a surface triangulation over the polyhedral domains.

(3) Place all initial polyhedral domains in stack S,

(4) Remove domain D from stack S,

(5) Generate an order list L of face elements' angles,

(6) Choose an edge E from list L with largest edge angle, since these offer
the greatest possibility for domain complexity reduction.

(7) Generate characteristic plane p, a plane which bisects the inner wedge
defined on this edge.

(8) Attempt to find a bisection plane through this edge that divides the region
into two, using the techniques in sections 7.4.3 and 7.3.3.

(9) If a valid bisection plane is not found, choose the next edge from the
list L which does not have the same characteristic plane as previous
bisection attempts on this domain, go to step 8.

(10) If more than ten attempts are made at bisecting this domain,
apply binary mesh operators, section 3.3.

(11) Once the domain is bisected into two regions 3> { and O2, they are added
to the stack S, if they have more than four triangular elements.
If a region has only four triangular faces they form a tetrahedral element
of the mesh.

(12) Repeat steps 4 to 11 until the stack S is empty.

The internal nodal placement is achieved by generating a refined two dimensional
triangular grid over each bisection interface polygon, using the length of the boundary
edges of the cut interface as a guide to mesh density. It should also be noted that any
new interfaces, generated by binary mesh operations, section 3.3, are meshed using the
2D grid generator in Chapter 4. An example of a mesh generated in this fashion is
illustrated in Figure 1.2.1 Chapter 1.

page 95

_______ _______________________________Chapter 6
6.3 Geometry representation.

The following section will give a brief overview of the basic methods and

terminology used to describe three dimensional objects. The geometry representation of

the model used, has a great effect on the types of geometry operations, which can be

applied during the grid generation. Therefore, the geometry representation of the model

effects not just the computational order of the grid generator, but also its reliability and

robustness to computer arithmetic errors. This section is then concluded, with reasons,

why a boundary model representation was selected as the primary input format for the
mesh generator.

6.3.1 Surface based models.

It is easy to generate simple graphical models of real objects, but unfortunately,

points and lines alone do not in general convey sufficient information for the application

of complex algebra operations.Confusion can be avoided if we adopt a more rigorous
view of modelling:

1) Physical objects :By means of models, our aim is to speak and argue about some

real things of our three-dimensional real world. Unfortunately, assuming a

Platonician view, we cannot even perceive a real-world object in its full

complexity and sub-microscopic details, much less represent all aspects of it in

a computer.

2) Mathematical objects : In order to have any hope of modelling objects in a
computer, we must therefore adopt a suitable idealization of the real

three-dimensional physical objects we are ultimately interested in. These

idealized objects should have an intuitively clear connection with the real world,

while being so simple that we can assign a computerized representation to them.

page 96

__________ ______________________________Chapter 6

Therefore a mathematical geometry representation should possess the following

qualities (Requicha's analysis [Req83]).

(a) Expressive power : What objects / forms of objects covered.

(b) Validity : Are all admissible representations valid.

(c) Unambiguity and uniqueness : Do some models have more than one

representation?

(d) Description Languages / Descriptive power

(e) Conciseness : How large are representation of practical models

(f) Closure of operations : Do manipulations of objects generate valid models

(g) Computational ease, applicability and Reliability : Speed of operations and

complexity of coding (order of operations)

The main types of modelling methods that possess the above characteristics are:-

(a) Decomposition models, that represent complex objects as a collection of simple

objects from a fixed collection of primitive object types, combined with a simple 'gluing'

operation.

(b) Constructive models, as above but objects can be combined with a number of

complex operations such as union, intersection, difference etc.CSG (Chapter 2 section

2.1.1) are often built up of Binary trees of primitive objects [Dew88].

(c) Boundary models, which represent objects in terms of boundary data. The

boundary of complex structures are represented as a collection of faces, which in turn,

are often represented in terms of their boundary being a one-dimensional curve.

Therefore, Boundary models may be viewed as a hierarchy of models.

The Expressive power of boundary models combined with the well defined family

of geometry operators, Euler operations [Mar88], make this method the natural choice for

three dimensional grid generation. Boundary models have all the required operations

needed for grid generation by mesh bisection and are the natural way to represent surface

meshes.

page 97

Chapter 6

6.3.2 Polyhedral domains.
The particular subset of boundary representation used by the mesh generator is

polyhedral models. These models are constructed from two-dimensional non-intersecting

primitives, polygonal faces. Each face is in turn constructed from a set of co-planar

points with connecting lines and a surface normal. Each polyhedral face can have any

number of nodes, edges and holes, see Figure 6.3.1.

Figure 6.3.2 shows the hierarchical

structure, which can be used to describe

polyhedral models. The illustration

demonstrates that it is possible to have a

model, which consists of more than one

polyhedral domain. This is necessary for

the accommodation of multi material

regions, a simple example of which is two

adjacent cubes. Figure 6.3.1 : Complex polyhedral domain.

Model

Polyhedron Polyhedron

Polygon Polygon

Vertices Edges
Figure 6.3.2 : Hierarchical structure of Polyhedral models.

page 98

______ __________ ____Chapter 6
6.4 Bisection method.

This section will outline the techniques used for the selection of bisection planes.
The reliability and quality of the techniques used for the bisection of a geometry into
disjointed parts are fundamental to the automatic mesh generator. Sub-dividing geometry
is a highly complex task, therefore in the literature there exist a number of techniques,
see [Man88][Cha84][BaD92] amongst others. These techniques, rely on finding all the
intersections of the cut plane and the faces of the polyhedral domain first. These
approaches [Man88][Cha84][BaD92], were found to be inappropriate for the mesh
generation algorithm, since they often introduced acute angles into the domain [BaD92].
Therefore, techniques based on the above methods were developed, namely the
Polyhedral outface algorithm and Edge following bisection, and are described below.

These methods trace out the boundary of a cut face from an initial starting edge,
lying on the bisection plane of the polyhedral domain. This edge tracing approach enables
local bisection, Figures 6.4.2, where finding the intersection of all polyhedral faces of a
polyhedral domain is inappropriate. Also, it enables the tracing out of non-planar
bisections faces, Figures 6.4.3 and 6.4.4. The Polyhedral cut face algorithm (Figures
6.4.1 and 6.4.2) introduces a planar interface element, where the Edge following bisection
(Figures 6.4.3 and 6.4.4) tries to follow the outer contours of the domain and for any
single bisection generates many interface polyhedra. These two methods are described
in more detail in Chapter 7.3.

Bisection line
A

Typical Bisection

Figure 6.4.1 Bisection of a domain. Figure 6.4.2 Internal bisection polygon.

page 99

Chapter 6

—— Bisection line
A

Figure 6.4.3 Bisection walk which cuts a
domain into two independent regions.

Surface mesh

Bisection walk
Figure 6.4.4: Internal bisection
polygons generation

The polyhedral cut face algorithm is the preferred method, since it is the simplest

and fastest, and only introduces one simple polyhedral interface into domain. However,

this technique for various reasons, see Chapter 7.3.3, cannot always be applied, which

provides the motivation for the second method Edge following bisection that can bisect

all types of geometry without limitations.

6.4.1 Selection of cut face.

Algorithms for the selection of bisection planes for decomposing polyhedral

regions are given in [Cha84] and [BaD92j. However, these algorithms are optimized for

decomposing domains into convex regions and worst case time complexity, i.e speed of

execution. However, we are concerned with the task of bisecting a domain into an

arbitrary number of regions and the resulting quality of the bisection. This is achieved

by avoiding the creation of small angles between polyhedral faces and bisection planes.

The selection of a bisection plane Pb given an initial edge e in a polyhedral region

S is fundamental to the quality of the overall mesh. Edge e is the adjacent edge of the

polygon faces P0 and P t and is defined by the vertices V0 to Vj. The initial stage is the

identification of the inner wedge region. Figures 6.4.5 and 6.4.6 show an inner wedge

region for convex and concave polygon pairs.

page 100

Chapter 6

Inner wedge

Figure 6.4.5 convex polygon's
inner wedge.

Figure 6.4.6 Concave polygon's
inner wedge

The inner wedge region is then bisected into, at most, seven possible bisection

planes, (Figure 6.4.7) with angles of at least ten degrees between them. This provides a

reasonable spread of bisection planes for subdividing the domain. These bisection planes

are used one after another, in the order given in Figure 6.4.7, in an attempt to bisect the

domain using the polyhedral cut face algorithm in section 7.3.1. If all the attempts fail

the process is repeated using the "edge following bisection" method of section 7.3.3

Set of possible
Bisection planes

Figure 6.4.7 Possible bisection planes to resolve domain bisect problem.

page 101

_ ____ _______________________Chapter 6
6.5 The sub-region problem.

Other geometry bisection techniques, [Man88][Cha84][BaD92], handle multiply-
connected regions without modifications. However, it was found by simplifying the
geometry of the domain by introducing interface polyhedra, that join cavity regions up
to the outer boundaries, this enables a simpler and more robust bisection algorithm to be
applied during grid generation. This section will outline a technique that implements the
two bisection techniques Polyhedral splitting algorithm (Chapter 7 section 7.3.2) and
Edge following bisection method (Chapter 7 section 7.3.3).

Geometry simplification is achieved by finding a cutting plane, which bisects both
the inner and outer polyhedral domains. The geometry is then separated into two parts
and a set of interface polygons are generated between the two new independent domains.
In Figure 6.5.1, a cube with a cavity is divided into two simpler polyhedral regions, using
the Polyhedral splitting algorithm and Figure 6.5.2 illustrates this operation using the
Edge following bisection method.

— line of bisection
A

Figure 6.5.1 Decomposing a complex polyhedral region into two simple regions.

— Bisection line
A

Figure 6.5.2 Bisection of a complex domain.

page 102

________ __________________________Chapter 6

The selection of the bisection plane is vital if we want to avoid the creation of
degenerate angles, short edges or narrow regions. However, these problems cannot always
be avoided in complex geometries with several sub-domain regions.

A simple approach is applied for finding the bisection planes, which takes each
face of a sub-polyhedral domain in turn and uses its face normal to define a cutting
plane. This bisection plane is then used in the polyhedral splitting algorithm described
in section 7.3.2 to divide the domain. Figure 6.5.3 shows a region which has been
resolved using this technique.

Interface polygons

Figure 6.5.3 Face polygon of subregion used to bisect domain into two polyhedra.

However, the above algorithm may fail to find an acceptable bisection. If the
above method fails, a second technique is applied where each reflex edge of the inner
domain is examined in turn to see if it can be used to resolve the sub-region. Let P0 and
P, be two adjacent faces that form a reflex edge in the inner polyhedral with normal
vectors N0 and N,, respectively. Let V0 and V\ represent the vertices which form the
adjacent edge of the polygons P0 and Pj. An inner wedge is defined, Figure 6.5.4, which
is the intersection of the half space defined by two planes with normals N0 and NJ that
pass through the edge V0 to V^ A set of planes are then calculated, which subtend the
inner wedge angle between 20 and 30 degrees, and these are then used to resolve the hole
polygon.

page 103

Chapter 6

Figure 6.5.4 Inner wedge

Figure 6.5.5 Example Bisection using the above technique.

If the above method fails the whole procedure is repeated using the alternative

method of edge following bisection, described in section 7.3.4.

page 104

________ _____Chapter 6

6.6 Problems with recursive domain bisections.

The initial recursive 3D mesh generator coupled with the 2D nodal placement
algorithm (Chapter 4 section 4.6.5) was found sufficient to generate a three dimensional
tetrahedral grid. However, it was found that this technique tended to generate grids of
poor quality and offered little control over mesh density, often generating grids with over
refined regions in a way similar to the British Isle's map depicted in Figure 4.5.6 Chapter
4. On regions with complex boundaries and a large number of surface elements there is
a substantial number of rejections of bisection planes and cut interfaces that resulted in
a dramatic increase in CPU time. Also, on complex domains the edge following bisection
method (Chapter 7 section 7.3.3), is used as the main domain cutting algorithm which
often increases the complexity of the domain, measured by the number of polyhedral
faces, and results in highly complex surfaces.

The grid quality generated by this method is very similar to the 2D example of
the British Isle's map depicted in Figure 4.5.5. Even when a min-max solid angle
optimization algorithm (Chapter 7 section 7.5) was implemented little improvement in
the grid could be achieved. This was mainly due the limitations of 3D local
transformations.

From the initial work carried out it became clear that a method of nodal
placement similar to the one in Chapter 3 section 3.6.4, which first decomposed the
domain into a number of convex regions is required.

page 105

__________ __________________________Chapter 6
6.7 Decomposing polyhedral domains into convex regions.

For the nodal placement algorithm to work, the domain has to be decomposed into
convex regions. Decomposing a region into convex parts is a well researched area,
[Cha84][Bad92] and can be achieved by introducing bisection planes which subtend
reflex edges of the model. The algorithm implemented in the mesh generator is outlined
next, and is implemented using the bisection techniques described in Chapter 7 sections
7.3.1 and 7.3.3:

(1) Generate an order list of reflex angles, descending order of angle size. Any angle
between two polygon faces larger than 7t+e, where e is machine tolerance, is
regarded as reflex.

(2) Remove next "reflex angle" edge E from head of list.

(3) If edge E on a double occurring face, add to the tail of list of reflex angles,
go to (2). Double occurring faces are polygons which form an internal
interface within a region, but do not cut the domain completely into two parts.
Therefore, they are identified by the fact that both sides of the polygon are in
the same domain. Double occurring faces with reflex angles are left to the end
after all other angles have been dealt with.

(4) Try to remove reflex angle with either the polyhedral cut face algorithm,
section 7.3.1, or the edge following method section 7.3.3. If the edge following
method is used, add any newly formed reflex edges to the tail of the relevant list.
If this edge cannot be resolved add to the tail of the reflex edge list

(5) repeat from step (2) until all reflex angles are resolved.

In step 4 a reflex edge may not be resolved, the edge is then deferred until other
reflex edges have been resolved; then the sub-polygon containing the difficult edge may
be smaller or may be subdivided by other cut faces into two or more reflex sub-edges.
The above algorithm is not guaranteed to resolve all reflex angles. Therefore, binary
mesh operators [Chapter 3 section 3.3] are applied to any remaining unresolved edges.

page 106

_____^^^ ___________ ____Chapter 6
6.8 Generation of grids within sub-regions.

Once the internal nodes are generated and inserted, described in section 6.11, the
generation of the mesh can begin. An initial attempt at meshing the domain is given by:

(1) Generate a surface grid over each polygon face. This is done to ensure that
the interface of the grids generated in each convex sub-domain is consistent.

(2) Take each region in turn and using the edge following bisection technique, section
7.3.3. attempts to generate a grid of tetrahedra.

Step (2) involved the inclusion of internal nodes that were less than 0.5BW, where Bw is
the band width (see section 7.3.3) of the bisection from the bisection plane. Therefore,
this involves the tracing out of the cut interface boundary along the edges of the domain
being bisected, as in section 7.3.3. The band width of the bisection interface is calculated,
and any internal nodes within half of this distance either side of the cut plane (Chapter
7 section 7.3.3) is included in the set of nodes to be meshed. This set of nodes are then
projected onto the cut plane and rotated onto the Z=0 axis. They are then meshed using
a 2D mesh generator, the connectivity of this mesh is then used to stitch the points in 3D
space. From this bisection the domain would be split into two or more halves and the
associated data structures are updated. This process is applied recursively to each region
until valid tetrahedra are formed.

The above method was found to be slow, since bisection planes were often
rejected. There was also the problem of regions which could not be bisected or
tetrahedralized, which required the introduction of extra edges and / or vertices on the
polygon faces and within the body of the domain. The method would often produce
invalid and intersecting tetrahedra because of the difficulties involved in bisecting regions
using an edge following bisection technique coupled with internal node inclusion.

However, in the literature [Joe92b][Bak92][GHS88][Joe92c] there are several
algorithms published for generating meshes in convex regions using Delaunay
triangulation with a computational order of nlog(n). The method which was selected here
is based on 3D vertex transformations and is described in section 7.5.

page 107

_______ ______________ ____Chapter 6

The initial attempt at meshing the convex regions was implemented using
boundary constrained Delaunay triangulation, however, this was rejected due to the
generation of degenerate tetrahedra, that can result in the failure of the algorithm. An idea
by Joe [Joe89] can be adapted to use a local min-max angle criterion, instead of
circum-spheres of tetrahedra, as a grid generation heuristic. This method of generating
grids in convex regions will be described in Chapter 7.6.

The algorithm implemented is a local min-max meshing technique, which requires
at least one interior node, since there always exists a boundary constrained triangulation
for a convex polyhedral with one mesh node within its interior [WorSl].

The final meshing technique is still a recursive bisection technique, where the
domain is recursively divided until the resulting sub-domains are sufficiently small so
that a simple algorithm, Boundary constrained min-max triangulation, may be applied.
The final sub-domain meshing algorithm may be extended to a full recursive-bisection
technique, once improvements have been made to the bisection part of the program. This
will also have to be done with improvements to the 3D min-max transformation
algorithm, see section 7.6.1.

The benefits of making the algorithm a fully recursive technique are not yet clear,
as the Boundary constrained min-max algorithm is highly efficient. Also, there is no
current thought on how to extend a full recursive bisection technique to automatically
generate quadrilateral and hexahedral elements.

page 108

_______^^ ________________________Chapter 6

6.9 Outline of final mesh generator and results.
The final mesh generator with example results, are presented in this section.

6.9.1 Input requirements.

(1) Input of geometry is in the form of a polyhedral domain, an example input is
given in section 6.13.

(2) The user specifies a required number of elements, which the mesh generator will
try to accommodate.

6.9.2 The mesh generator.

(1) Read data file; simplify model by removing cavities, section 6.5, and remove hole
polygons in polyhedral faces, section 4.6.3.

(2) Decompose polyhedral domain into a set of convex polyhedral regions,
see section 6.10 below.

(3) Generate nodes in polyhedral regions, see below section 6.11.
(4) Generate boundary grids over all polyhedral faces, this ensures that the mesh

conforms between sub-regions.
(5) Generate boundary constrained local min-max triangulation in sub-regions,

section 7.6.

The user then has the following options to optimize the mesh:
(1) Local min-max swapping routine applied over the whole domain, section 7.5.
(2) Laplace's smoothing.

The optimization methods can be applied in different combinations, as the ordering of
these mesh operators can affect the overall quality of the final mesh. For a complete
overview of how modules in the mesh generator can be interlinked, see Appendix A6.

page 109

6.10 Convex domain partitioning.

Figure 6.10.1 : Polyhedral region.

Chapter 6

Figure 6.10.2 : Polyhedral domain
bisected into convex parts.

The above figures represent a polyhedral domain, Figure 6.10.1, which is then divided
into number of convex regions Figure 6.10.2.

The polyhedral decomposition into convex regions is dependent on the complexity
of surface definition. Figure 6.10.3 illustrates a surface mesh of the above polyhedral
domain depicted in Figure 6.10.1. Since a surface mesh already has a large number of
nodes associated with it, the program will try and avoid the introduction of unnecessary
face vertices, therefore, the edge following algorithm in section 7.3.3 is used. The
resulting decomposition is illustrated in Figure 6.10.4, where a large number of bisections
are necessary to generate a set of convex regions.

Figure 6.10.3 : surface mesh. Figure 6.10.4
convex parts.

Decomposition into

page 110

Chapter 6

6.10.1 Domain bisection.

To demonstrate the computation efficiency of the bisection method in section 6.4,
a family of polyhedral domains were defined, which were derived from a common
primitive. The family of polyhedral domains used were derived from taking a sphere, of
any radius, and generating a given number of polyhedral faces over its exterior boundary,
see Figure 6.10.5. Each polyhedral domain was then taken in turn, and the CPU time was
recorded for the mesh generator to perform one bisection. The results obtained, were then
plotted in the form of a graph, see Figure 6.10.6.

The graph below, shows a comparable
linear computational growth for the number of
polyhedral faces against the time taken to
perform a domain bisection. However, since the
primitive object is a sphere, we can only
conclude that the graph below is representative of
the bisection algorithm working on convex
geometries.

Figure 6.10.5 : Set of convex
polyhedral domains

070 -| ——

0.60 -

0.90 -

I""
**-''

* 0.30 -

§

0.20 -

0.10 •

0.00 -a<

D

D

a
D

D

D

D

D

D

D

a
D

D

D D

DDam

» 100.00 200.00 300.00 400.00 500.00 600.00 700,00 800.00 «00.00 1000.00
Number of polyhedral face*

Figure 6.10.6 CPU time to bisect a polyhedral region with a given number of
boundary faces. CPU times are for non-optimized code running on a
Sun Spare station 10.

page 111

Chapter 6

6.10.2 Complex domain bisection.

Since the previous section 6.10.1, was based purely on a convex domain a new

model was developed, see Figure 6.10.7.

Figure 6.10.7 : Set of test domains.

The above domains are generated from a common object, which had a different

number of polyhedral faces generated over it. The common primitive was generated from

two intersecting spheres, of different radii, which has a cylindrical hole passing through

both.

The graph below, is a plot of number of polyhedral faces, over the above object,

against CPU time to preform one bisection of this domain. This graph shows a good

computational comparison for time to preform a bisection of the domain against number

of surface elements.

1
I

1.20

100

000 •

060 -

040 •

020

0.00
0.00 £00.00 400-00 600.00 800.00 1000.00 1200.00 1400.00 1800.00

Numbtr of potytwdrol IOOM

Figure 6.10.8 : CPU time to preform a bisection on a polyhedral domain
with a given number of polyhedral faces.

page 112

_____ _________Chapter 6

6.11 Convex domain shrinking and nodal placement.

The requirement of the nodal placement algorithm is that the user specifies the
required number of elements R and the mesh generator attempts to generate a grid to that
given density. Once the domain is divided up into convex regions, the total volume V of
the domain can be calculated [Sto91] and used to find the ideal nodal spacing Np . To
estimate the average tetrahedral volume Vt we divide the volume V by the required
number of elements R. Therefore the nodal spacing Np is calculate by :

N =JSVt See appendix A2

After the nodal spacing is calculated a method of shrinking convex regions is
applied, as in the method explained in Chapter 4.6.4, which generates nodes on the
surface of concentric domains, Section 7.4.

page 113

______ ____________Chapter 6

6.12 Geometry input requirements.
A 3D mesh generator must be able to cope with relatively complex boundary

models, which consist of polyhedral domains. A typical polyhedral model can have face
holes, interior holes, internal interfaces and / or hole interfaces, Figure 6.12.1.
Faces

Face holes

Interior holes

Internal interfaces

hole interfaces

are regions defined by a set of planar points in counter clockwise
order (when viewed from the outside)
regions defined by a set of planar points in an ordered list around
the boundary of the face.
independent polyhedral regions, which defines a hole inside
another polyhedral.
polygon faces, which define a boundary between two polyhedral
regions.

polyhedral region, which defines the interface of two regions,
of which one is completely contained inside the other.

DOMAIN 1 | DOMAIN fi

Incdrtaoe

B

Figure 6.12.1 Three forms of interface
polygons.
(A) Interface between two domains,
(B) Sub-polyhedral interface,
(C) Hole interface polygon region.

All the above information about a model must be ascertained before the
generation of the grid can begin. This information can either be provided by the user or
a CAD package, however the grid generator should minimize its input requirements.

page 114

______________Chapter 6

Therefore the following information has to be obtained from the geometry description of
the model:

(i) Which groups of polyhedra form interfaces and polyhedral regions,
(ii) The set of polyhedral regions that represent cavities,
(iii) The direction of surface elements' normals,
(iv) Sub-polyhedral domains and the polyhedral regions they are contained in.

The data input requirements of the new bisection method, is based on the
following :

The automatic identification of which groups of polygons (i) form each polyhedral
domain, can only be practically achieved when there are no interface polygons.
Therefore, the user is required to specify which polygon faces belong to which polyhedral
domains, however, interface polygons can be automatically identified by the program.

Whether or not a polyhedral region represents a cavity (ii) has to be either
provided by the user or the CAD package that generated the model. However, the
direction of face normals (Hi) can be established, by taking any face K on each
polyhedral domain. A ray can then be projected from one of the nodes on the face K, in
the direction of the face K's normal. The number of times this ray intersects with the
current polyhedral indicates the direction of the face normal. If there are any polyhedra
faces that intersect the ray with a small angle, which may produce computational errors,
a different node can then be selected on the face K, for the starting point of the ray. Once
the direction normal of one face on a polyhedral domain is established, all other
polyhedra normals can be set relative to this face.

Satisfying point (iv) the identification of sub-polyhedral and to which outer
polyhedral they belong, is relatively straight forward. We can simply take one node of
the polyhedral region that is not a member of an interface polyhedra. A ray testing
routine [Rog85] can then be applied to the model to find which domains are contained
in other regions.

page 115

Chapter 6

6.13 Mesh generator's input format.

Taking the information in section 6.12 into account, resulted in a relatively simple

data input requirement for the new bisection method. The algorithm just requires a list

of points, polyhedral faces and a polyhedral domain face list. The polyhedra faces are

defined as an ordered list of nodes, in either direction around the boundary. This data

input format which is illustrated in the next two examples, can handle most forms of

polyhedral domain with interface boundaries, cavities and sub-domains.

Example 1

An example cube with a cavity adjacent to another cube.
cube with a cavity in, adjacent to another cube.
17 20 3 26 -- No. faces, No. nodes,

No. of polyhedra regions, No. of required elements.

-- nodes X Y Z.0
1
1
0
0
0
1
1
2
2
2
2
0
0
0
0
0
0
0
0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.25

.75

.75

.25

.25

.25

.75

.75

0
0
1
1
0
1
1
0
1
1
0
0

B

^

B

•

.

m

t

f

t

t

.

B

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
.

.

.

.

,

.

.

•

1
1
1
1
0
0
0
0
1
0
0
1

25
25
75
75
25
75
75
25

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0
0
0
0
0
0
0
0
0

.75

.75

.75

.75

.25

.25

.25

.25

.»...... /:....->

Figure 6.13.2 Box with a cavity adjacent to
another box.

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

6
6

-6

1234
7856
1465
4376
1582
2 12 9 3

10 11 8 7
12 11 10 9

3 9 10 7
2 8 11 12
2873
13 14 15 16
17 18 19 20
17 20 14 13
19 18 16 15
17 18 16 13
20 19 15 14

-- polyhedra faces.
-- number nodes in face, node list.

1
6

12

2
7

13

3
8

14

-- polyhedral domains.
4 5 11 -- number of faces, list of faces.
9 10 11

15 16 17 -- negative number of faces indicate a
polyhedral region

cavity

page 116

Chapter 6

Example 2

Example of a Re-entry polyhedral with a complex top face.
Re-entry box

12 16 1 26 -- No. of faces, No. of nodes
No. of required elements

 Nodes X,Y,Z

No. of Polyhedral domains,

0
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0

.

.00000

.00000

.

.

,

.00000

.00000

.00000

.250000

.750000

.750000

.250000

.250000

.750000

.750000

.250000

0
0
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0

.
^

.00000

.00000

.

.00000

.00000

.00000

.250000

.250000

.750000

.750000

.250000

.250000

.750000

.750000

0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
1

.

.
f

t

.00000

.00000

.00000

.00000

.250000

.250000

.250000

.250000

.00000

.00000

.00000

.00000
Figure 6.13.3 Re-entry Polyhedral domain

with complex top face.

4
4
4
4
4
4
4
4
4
4
4
4

1
1
3
2
1
5
9

11
10
12
13
16

4
5
4
3
2
6
10
12
11
16
14
13

3
6
6
7
8
7
11
16
15
13
10
14

2
4
7
8
5
8
12
15
14
9
9

15

-- polyhedra faces.
number nodes in face, node list.

12 123456789 10
-- Polyhedral domain face list

11 12 -- number of faces, list of faces.

As can be seen from the above two examples, the data input is so simple that it
can be learnt quickly. The only meshing information is the required number of nodes
provided by the user. However, this input format is still difficult to generate for complex
shapes.

page 117

_______________Chapter 6

6.14 Summary and Conclusions
As described in this chapter, the initial idea of the recursive bisection mesh

generator has been extensively modified and developed. This has resulted in a

computational and reliable mesh generaton technique.

The method presented in this chapter is still a problem reduction technique, where

an initial geometry is first simplified, by cavity removal and then concavity removal.

Then once this geometry model is sufficiently simplified, a simpler algorithm can then

be applied, based upon boundary constrained min-max tessellation.

The next chapter will now describe the fundamental algorithms on which the new

bisection mesh generator, described in this section is contingent.

page 118

Chapter 7

Chapter 7
3D Mesh Generation

Computational techniques.

page 119

___ __________Chapter 7

7.1 Introduction

This chapter gives a detail description of the low level algorithms, which the last chapter
is contingent on. The Data structure and method of storage used within the mesh
generator, which is crucial for speed and robustness of code, is initially described.

Nodal placement within a mesh generator and its tetrahedra tessellation methods
form the fundamental key to mesh quality. Therefore, a detail description of the four
types of bisection techniques used within the code, which form the heart of the mesh
generator, are presented. These bisection methods are used for domain decomposition and
cavity removal as discussed in Chapter 6.

The nodal placement technique based on convex domain shrinking is described,
together with how this is combined with a direct local boundary constrained min-max
tessellation algorithm. The min-max tessellation method is based on local-transformations
by Joe [Joe89] and is also described.

page 120

__________________Chapter 7

7.2 Data structures

The data structures within the code affect computational speed and ease of
geometry manipulation [BaD92], However, speed and the amount of information stored
must be weighed against memory costs and the types of algorithms implemented. These
issues are examined in this section together with a description of the data structures used
within the mesh generator.

7.2.1 Data requirements of polyhedral domains.

The main elements of a boundary model are :-

faces : are regions defined by a set of planar points and a surface normal,
face holes : regions defined by a set of planar points, which defines a hole

inside a face polygon,
interior holes : independent polyhedral regions, which defines a hole inside

another polyhedral
internal interfaces : polygon faces that define a boundary between two polyhedral

regions

hole interfaces : a polyhedral region, which defines the interface of two regions, of
which one is completely contained inside the other.

A data structure is required to represent all the above characteristics, plus enough
information to enable the efficient application of complex geometry operations. Three of
the main operations that must be preformed on this data structure are :

(1) Insertion of a vertex in the interior of an edge.
(2) Insert an edge in the interior of a face.
(3) Insert a. face in the interior of a polyhedral domain.

Figure 7.2.1 is a graphical representation of the type of information which is deemed
necessary for three dimensional mesh generation, this is based on a winged-edge data
structure [Mar88][Bau75] [Bra79] [GuS85][Kar90].

page 121

Chapter 7

Po 1 yhedra 1 1 Polyhedra 1 2

Predecessor
Vertex

Me Ighbour

Edge 2

Globa
Node

Number

Successor
Vertex

NeIghbour
Edge 1

Edge
Ang I e

Figure 7.2.1 data structure used for polyhedral domains

From Figure 7.2.1 a large amount of information is required to enable efficient

operation of geometry searching. However, the reader should bear in mind that a typical

software analysis package would store far more information about a model.

7.2.2 Detail description of stored data.
Below is listed the data structure required for the representation of polyhedral

domains for three dimensional mesh generation. This data structure is based on the

winged-edge and half-edge data structures described in "an introduction to solid

modelling" [Mar88][Bau75][Bra79].

page 122

__________________________Chapter 7

The top part of a polyhedral data structure is a head list, which points to the

relevant groups of polygon faces.

Head_Pointer_List: Pointer to first polygon face (Polygon_Face_List).

Pointer to next entry in Polygon_Head_List.

Polygon_Face_List: Face_Pointer, negative if face normal points into domain.

Pointer to next element in Polygon_Face_List.

Face Pointer Pointer to first node in Face_Vertex_list.

Face normal.

Sign Pointer of first domain, Domain_Ptrl.

Sign Pointer of second domain, Domain_Ptr2.

Domain pointers are negative, if face normal is pointing into

the domain,

hence Domain Ptrl*Domain Ptr2<0.

Face Vertex List Local node number

Global node number

Face_Pointer

Successor entry in Face_Vertex_List.

Predecessor entry in Face_Vertex_List.

Face_Vertex_List pointer of adjacent face clockwise.

Face_Vertex_List pointer of adjacent face anticlockwise.

Edge angle.

The majority of the above data, is stored to enable efficient traversal of polyhedral

domains. Therefore, the above data structure enables the acquisition of any relationship

between a geometry element with any associated item of the polyhedral domain, e.g

given a node of face, just by traversing the data structure, it is possible to find all

polygons in which it is contained.

page 123

Chapter 7

Figure 7.2.2 illustrates that for an interface polygon A, there can

exist two adjacent faces C and B. Therefore, Face_Vertex_List

has two adjacent pointers, which is sufficient to cover all valid

boundary models such as Figures 7.2.3 and 7.2.4. Figure 7.2.5

illustrates a non-manifold boundary model, which is also

applicable for use in this data structure.

Figure 7.2.2

Region 1

Regions

Ragton2

Region 1

Regie
Region2

Regions

Reoton2
Region 1

Figure 7.2.3 Figure 7.2.4 Figure 7.2.5

Another feature of this data structure is that only one face angle has to be stored

with each vertex entry. The angle between two adjacent faces is stored in the entry which

satisfies the condition (J-I)oc>0, where J,I are the global vertex numbers of the common

edge and a the sign to indicate the direction of the face normal, a is negative if the face

normal points into the domain; otherwise it is positive. Therefore, given a Face_vertex

entry, to find the angle on the edge of this node J and its successor 7, test the condition

(J-I)a. If this is positive the face angle is stored in this Face_Vertex_List entry else it is

stored in the adjacent polygon face entry. Therefore, the angle between each face is only

stored once, which optimizes memory usage and allows for the use of a fast edge angle

testing routines.

page 124

_________ _______________________________Chapter 7
7.3 Generation of cut planes.

The generation of a cut interface is a vital part of any bisection based method of

triangulation. Sub-dividing geometry is a highly complex task, therefore in the literature
there exist a number of techniques, see [Man88][Cha84][BaD89][BaD92][ChP92]

amongst others. These techniques, rely on finding all the intersections of the cut plane

with the faces of the polyhedral domain first. These approaches [Man88][Cha84][BaD92]

[BaD89][ChP92], were found to be inappropriate for the applications in the mesh

generator, due to the generation of acute angles. Therefore, techniques, based on the
above methods were developed, namely the Polyhedral cut face algorithm and Edge
following bisection.

However, the above two methods, Polyhedral cut face algorithm and Edge
following bisection, were not readily extendable to multi-connected geometries. Therefore
the methods, Polyhedral splitting and Contour polyhedral splitting algorithms, were
derived from the previous two techniques to handle the special case of multi-connected
regions. This section will outline these four bisection methods, which are used within the
mesh generation code. The selection of the cut plane is described in the previous Chapter
6 section 4.

7.3.1 Polyhedral cut face.

This section will outline the primary bisection technique which generates a cut
face polygon Cf in a simply connected domain. The method traces out a cut polygon
given an initial edge e0 and the plane of bisection Pb . This techniques differs from other

methods, such as Chazelle [Cha84], in which all intersections between the bisection plane
and the polyhedral domain are found first, which may be multi-connected.

The initial edge e0 with vertices v0 and \ l will form one side of the interface
polygon. The algorithm then proceeds to walk around the polyhedral domain, in a

anticlockwise direction keeping the region to the left, generating new edges one at a time.
This approach allows the rejection of the cut polygon at any time, if it generates any

small angles or is too near to existing vertices. Figure 7.3.1 illustrates a cut polygon that
divides a domain into two separate parts. However, Figure 7.3.2 is the more common

page 125

______________________Chapter 7

case where the cut polygon introduces an internal or double occurring face into the

polyhedral.

Bisection line
A

Typical Bisection

Figure 7.3.1 Bisection of a domain. Figure 7.3.2 Internal bisection polygon.

In this technique it is vital to have an efficient method of establishing which

element should be visited next. If the current element is J and it is assumed that all the

polygons' nodes are in a counterclockwise order, Figure 7.3.3A, when viewed from

Bisection line

Figure 7.3.3 Types of bisection adjacency.

page 126

_____ _______________Chapter 7

outside the domain. Then there exists an edge of polygon /, with vertices N0 and N I5

such that N, is above and N0 is either below or on the bisection plane. Therefore, the

next element to traverse is adjacent to the edge N0 to N t of polygon J. Figure 7.3.3 shows

the three cases when the element J has a (A) touching edge, (B) bisecting edge and (C)

vertex on the bisection plane. However, there are two degenerate cases in the walking

algorithm. These are when N0 and Nj are both on the bisection plane, or N t is below. In

this situation the cut polygon forms degenerate angles with the polyhedral and is rejected.

It is also possible for the bisection

plane to cut a face polygon more than

once, Figure 7.3.4. The nodes on the edge

which touch or bisect the cut plane that is

closest to the previous bisected edge is

selected for N0 and N!. Polygons which

bisect the cut plane in n places will be
visited n/2 times during the algorithm's FiSure 7 ' 3 '4 : Multi intersection,

walk through the polyhedral domain.

\———— Bisection Plane
Previous bisected odge.

The routine generates a list of nodes, which will form the cut polygon, by walking

through the set of polygon faces that intersect the cut plane Figure 7.3.5. The algorithm

walks through each polygon in turn, A to H, in the direction of the arrows generating

new nodes on edges that intersects the cut plane. As the algorithm walks through each

polygon, the angles generated between this element and the cut plane are calculated. If

any of these angles are degenerate, the cut plane is rejected, or else the polygon face is

added to a list of visited faces. In the case when a polygon edge is on the cut plane

(Figure 7.3.3C) the angles between the cut plane and both these faces are calculated.

page 127

Chapter 7

Original
mesh

Figure 7.3.5 Bisection walk through the mesh.

Once a complete loop of the polyhedral domain has been completed, the algorithm

terminates, and the interior angles of the cut polygon are calculated. If the interior angles

are equal to -2n the polygon is external and rejected, see Appendix A4. If the cut

polygon is interior to the polyhedral domain, a further check is carried out to ensure that

it does not intersect or pass too close to any face polygons.

If the cut polygon is accepted the faces which intersect the bisection plane are

then bisected by the insertion of new edges. The cut polygon is then inserted into the

polyhedral domain. The domain is then processed to establish whether it has been

bisected into two complete halves and the relevant data structures are updated.

page 128

__________________Chapter 7

7.3.2 Polyhedral splitting algorithm

The previous algorithm only works on polyhedral domains which have no sub-

polyhedral regions. These occur when there is a hole or sub-domain contained in a

polyhedral model Figure 7.3.6A. Figure 7.3.6B illustrates a typical bisection generated

by this algorithm.

Bisection line
A

Figure 7.3.6 Bisection of a polyhedral with sub-polyhedral domain.

The algorithm is based on a standard bisection method [Man88] that requires a

bisection plane Pb and polyhedral domain S. The method can be described as follows:

(1) Label all nodes as either on, above or below split plane Pb . Reject the cut polygon

if there are any nodes that are too near the bisection plane which do not lie on

it.

(2) Sub-divide all polygons that bisect the cut plane and update polyhedral data

structure. Relabel bisected segments of on polygons as above or below.

For all polygons which lie on the bisection plane, label as below if their surface

normal is in the same direction as the bisection plane, or else label as above.

For any polygons that are not co-planar to the bisection plane, however

touch it along an edge, Figure 7.3.7 . Test to see if the adjacent element on the

touching edge is on the same side of the bisection plane, if it is reject bisection

plane.

page 129

Chapter 7

Polyhedral faces

Bisection Plane

Figure 7.3.7 : Polyhedral faces which touch bisection plane.

(3) Generate list of edges which lie on the bisection plane. These edges are found by
searching the adjacency list of the polygons that are label as down. An edge which
lies on the bisection plane, is any polygon's side which has an adjacent element
which is above the cut plane Pb .

(4) Find lists of vertices that form closed loops, these are polygon faces.
Reject cut plane if any degenerate polygons found.

(5) Classify faces as outer or inner polygon regions, i.e find hole polygons.
This process is simplify by the fact that there are no interface edges or

sub-polygon regions except hole polygons.

(6) Introduce cut edges to remove inner polygon regions.

(7) Insert new interface polygons into polyhedral domain.

(8) Insert new polyhedral domains into polyhedral data structure.

page 130

Chapter 7

Bisection Plane\
/ *

B

Figure 7.3.8 Example bisection of a domain.

Figure 7.3.8A represents a domain which is bisected along the cut plane illustrated

and Figure 7.3.8B shows the resulting bisection. Figure 7.3.8C shows the list of edges,

which lie on the bisection that form a set of three polygons of which one is a hole

region. The last Figure 7.3.8D, show the polygons used to generate the cut interface, the

"hole polygon " has been removed by the introduction of two new cut edges (See Chapter

4 section 4.6.4).

page 131

___ _______________Chapter 7

7.3.3 Edge following bisection method.
The previous bisection methods always introduce new nodes into the polyhedral

model. However, when the surface is complex, as in the case of a surface mesh, this is

often undesirable. Since introducing a large number of nodes in a complicated region can

result in an over refined mesh. The basic idea is illustrated in Figure 7.3.9 where a

domain (A) is cut in half along the edges of the polygons that results in the bisection (B).

Bisection line
A

Surface mesh

Bisection walk

Figure 7.3.9 Bisection walk which cuts a
domain into two independent regions.

Figure 7.3.10: Internal
bisection polygons generation

The method traces out a cut interface given an initial edge e0 and a bisection

plane Pb in a similar way to the method described in section 7.3.1. From the initial edge

e0 the method proceeds to walk around the region in a anticlockwise direction jumping

from node to node of each polygon face.

(Bl Above

\n

(D)

(C) Below
Figure 7.3.11 : Types of bisection elements.

page 132

_______ ___________________Chapter 7

If the current polygon is / and we are at the node n, with local node number Li5

the next node «, and polygon J have to be established. This is achieved by generation a

plane Pp through the node «, and parallel to the plane Pb . If Pp bisects an edge of polygon

/ (Figure 7.3.11 A), then «, is the node closest to the plane Pb on this edge and polygon

J is the adjacent face on that side. However, if Pp is parallel to the edge with node «, of

polygon /, rij is the next node from n, keeping the domain to the left. Figure 7.3.1 IB and

C shows examples of polygons below and above the bisection plane Pb .

The third case is when the plane Pp does not intersect any edges of polygon 7.
Node HJ is set to n, and the following test is carried out:

If polygon / above Pb then:
Polygon J is the element adjacent to the edge

Else if polygon I is below Pp then:
Polygon J is adjacent to the edge {LM , LJ.

(A) (B)

rii n,

nj
Line of element cut

Figure 7.3.12 Special cases.

There are two special cases illustrated in Figure 7.3.12. In case (A) the local

bisection plane is parallel to several line segments of polygon /. Therefore, if the angle

between the line segments, which are adjacent on the node nj, are 180 degrees, the

current polygon J becomes /. Case (B) is when the line from n{ to node n^' bisects more

than one edge of the polygon /. In this case, the edge that is first bisected by the line of
element cut, Figure 7.3.12B, has the node which is closest to this line selected as nf

page 133

_____ ________________Chapter 7

This method walks around the domain using the above rules to generate
a list of interface points / with elements adjacent to each interface line segment. The
routine will reject a possible cut plane if any element adjacent to an interface line
segment forms an acute angle with the bisection plane Pb . The bisection walk is
terminated when a closed loop is found, this is when the node n, is a member of the set
Ip and not equal to nt. The list Ip is then processed to remove any nodes, which are not
a member of the closed loop, since the last «, entry is not necessarily equal to the first
entry in the list 7p.

Local bisection plane
Bisection plane
Bisection cut

Figure 7.3.13 Typical walk through a surface mesh.

The above Figure 7.3.13 shows a typical walk through a surface grid, in which
the algorithm follows the direction of the arrows. Figure 7.3.13B illustrates the bisection
edge generated using this method.

The list of bisection nodes are non-planar, therefore a set of polygon interface
elements are generated. The method used is to project the set of interface nodes onto the
bisection plane as illustrated in Figures 7.3.14 and 7.3.15.

page 134

Chapter 7

...... Projection Lines
— Projected face

Cutting plane
Projected face
Projection lines

Figure 7.3.14 : Projection of cut face. Figure 7.3.15:Projection of cut surface.

Two planes Pu and P, are then generated that are parallel to the bisection plane

Pb and enclose the set of interface nodes. Pu is of a distance max(d 1 ,d2....dn)+\|f from the

bisection plane Pb . The parameters d t to dn are the signed distance of the interface nodes

from the plane Pb, and *F is an additional spacing function. *F is defined as the minimum

acceptable relative distance between cut plane and vertices multiplied by the average

length of an edge on the surface of the domain. The relative acceptable distance is a

constant with a value between 0.2 and 0.6 depending on quality of bisection required, in

most cases a value of 0.4 is adequate. The plane P} is defined as the distance

min(d 1 ,d2....dn)-\j/ from the bisection plane Pb .The term bandwidth of bisection is also

defined as the distance between the planes Pu and Pt .

A polygon region is then generated with a thickness between the two planes Pu

and Pl9 with an outer boundary defined by the set of projected interface points. A test is

then carried out on all nodes within the polyhedral domain that are not directly connected

to an interface node. If any of these nodes are found to be contained within this region

the bisection plane is rejected.

The projection is then rotated onto the X-Y plane where it is meshed using a

standard two dimensional mesh generator. The connectivity of this mesh is then used to

stitch the nodes together in 3D space, which form interface elements. The angle between

all interface elements and their outer boundary are calculated and if any are acute the

bisection is rejected.

page 135

Chapter 7

Unfortunately the rule of adding no additional boundary

nodes resulted in the generation of highly angled interface

surfaces, which were often rejected by the mesh generator.

Therefore, the option of generating a possible mid-node nj' was

introduced. The node nj' is inserted into the mesh if the line

{nj,nj} makes an unacceptable angle with the bisection plane Pb

and the line {n'} is an improvement. Figure 7.3.16

The mid-node n^' is defined at the centre of the edge that is bisected by the local

cutting plane Pp , Figure 7.3.16. Figure 7.3.17 shows a typical bisection walk using

optional nodal placement to avoid highly uneven interface surfaces.

Cut plane Bisection Walk

Figure 7.3.17 Bisection walk with optional nodal placement.

page 136

Chapter 7

7.3.4 Contour polyhedral splitting algorithm

Once again the previous algorithm only works on non-multi connected regions.

Therefore, the need for the following algorithm, which divides regions that have sub-

polyhedra domains. Figure 7.3.18 shows a cube with a hollow section contained within.

-— Bisection line
A

Figure 7.3.18 Bisection of a complex domain.

The first five steps in this algorithm are the same as the polyhedral splitting

algorithm of section 7.3.2. Once the set of interface polygon loops have been established

the method then proceeds to search each loop for a suitable starting edge. This is done

by taking the set of polygon faces that lie on a loop, and then searching them to find the

closest edge which is within an acceptable angle range. Once an edge is found for each

loop a bisection walk is carried out using the method described in the previous section

7.3.3. Each loop is checked with its own set of Pu and Pj planes as described in section

7.3.3. However, the set of interface loops are projected and rotated as a group onto the

XY plane, where they are meshed using a 2D mesh generator. The connectivity of the

mesh is then used to stitch the points in 3D space which form interface polygons. The

angle between all interface elements and their outer boundary are then calculated and if

any angle is acute the bisection is rejected.

page 137

Chapter 7

7.4 Nodal placement using 3D convex domain shrinking.

The nodal placement technique implemented in the mesh generator is akin to the

method of Normal offsetting by Johnston and Sullivan [JoS93]. The Johnston and

Sullivan technique could be applied to domains of arbitrary shape. However, in this

research, it was deemed necessary to restrict this technique to convex domains, for

implementation ease and computational efficiency.

A convex region is shrunk by a nodal spacing factor Np which is described in

Chapter 6 section 11. This is achieved by moving each polygon face Pj of the region in

by a factor Np along its surface normal, Figure 7.4.1, to define a new face Sj.

The set of faces S0,s 1 ..sk , form a set of half-spaces. The intersections of these half-spaces,

if Np is sufficiently small, defines a region H which is the shrunken polyhedral domain.

Face polygon

Normal
direction

\Face polygon
moved in by
a factor Np

Figure 7.4.1 : Face polygon moved inwards by a factor N

page 138

_______ ________________________Chapter 7

In the mesh generator all the polyhedral faces of the model are divided initial into

a set of convex faces, to simplify the algorithm. Therefore, the convex shrinking

algorithm is as follows.

(1) Copy all faces of convex polyhedral domain into the shrunken polyhedral data

structure S.

(2) For each face / in the data structure S do:

(3) Move the plane Pj of the face /, inwards along its normal by a factor Np .

(4) Find the intersection of the plane Pt with other polygons in the shrunken

polyhedral data structure S. Generate new faces and update data

structure S.

The routine which finds the intersection of face 7 with polygons in the shrunken

polyhedral S, and updates S; is as follows:-

(1) Let Pj be the plane defined by the face 7.

(2) Determine if the intersection is empty or the entire polygon,

(i) Label all vertices as above or below plane P{

(Any vertices which lay on the plane Pj are label as above)

(Vertices are classified as on if their distance from the bisection

plane is less than Npe, where e is machine tolerance)

(ii) If all vertices are above the plane Pi5 the intersection is empty.

(3) If intersection is not empty then:
(i) Insert new nodes where edges bisection the plane Pj.

(ii) Subdivide faces which have edges with newly inserted nodes,

(iii) Remove all edges which are above plane Pj,

(vi) Remove all polyhedra faces with deleted edges.

(v) Insert new polyhedral face, made up of the edges formed by the

newly generated nodes, into the data structure S.

Once the shrunken polyhedral domain is generated, sharp angles are then removed

to ensure an even nodal spacing. This is achieved by selecting adjacent faces which have

an angle O, less than a minimal value, 30 degrees [JoS92], Figure 7.4.2A. A plane P is

page 139

_____________Chapter 7

then generated, at a distance a into the domain (Figure 7.4.2B) to remove this acute

angle, see Figure 7.4.2C. The value of a is set proportional to the angle O and nodal

spacing //, and is calculated by H/2tan(3>/2).

Figure 7.4.2 : Sharp angle removal

Each face of the shrunken polyhedral is then processed to remove narrowness or

short edges, see Chapter 4 section 4.6.4. The two dimensional nodal placement algorithm

is then applied to generate face and edge nodal points.

The whole process is then repeated, by shrinking this shrunken polyhedral again

until a degenerate polyhedral is formed. In the case of a degenerate polyhedral domain

a node will be placed at its centroid if the volume of the domain is larger then (2n+l)Vt

where n is number of face nodes and Vt the average tetrahedral volume of the mesh. This

is done to ensure an even nodal density throughout the domain.

page 140

_ ____ ________________Chapter 7

7.5 Three dimensional local transformations (Vertex Swapping).
Three dimensional vertex swapping [Joe89] is in effect a local transformation,

since in reality it is the addition and removal of groups of vertices of tetrahedra. Local

element transformation is based on the idea that groups of elements that form a convex

region can have their internal edges transformed without effecting their external
geometry.

The Four transformations which are used :-

(1) 2 to 3 Mapping (Only if 5 points form a convex domain)

Two tetrahedra with vertices {A,B,C,D} and {A,B,C,E} are transformed

to three tetrahedra {A,B,D,E},{ A,C,D,E} and {B,C,D,E} by the insertion of the

edge {E,D}.

2-3 Mapping

C A

Inserted vertex
Figure 7.5.1 A: Two to three tetrahedra transformation.

Figure 7.5. IB: Two tetrahedra. Figure 7.5.1C: Three tetrahedra.

page 141

_________________Chapter 7

(ii) 3 to 2 Mapping
Three tetrahedra {A,B,D,E},{A,C,D,E} and {B,C,D,E} are transformed

into the tetrahedra {A,B,C,D} and {A,B,C,E} by the removal of the edge {D,E}-
This is the reversal of the process shown in Figure 7.5.1.

(iii) 2 to 2 Mapping (only if the 4 nodes {A,B,C,D} lie on the boundary)

The tetrahedra {A,B,D,E} and {B,C,D,E} are transformed into tetrahedra

{A,B,C,E} and {A,C,D,E} by swapping the edge {BD} to {AC}

2-2 Mapping

——- Swapped vertex

(iv)

Figure 7.5.2

4 to 4 Mapping :-

The tetrahedra {A,B,C,D} {A,B,C,E}, {A,B,F,D} and {A,B,F,E} can be
transformed into {C,F,A,D}, {C,F,A,E}, {C,F,B,D} and {C,F,B,E} or
{A,C,D,E}, {B,C,D,E}, |A,F,D,E} and {B,F,D,E}. This is achieved by moving
the edge {A,B} to {C,F} then to {D,E}.

Transformed edge
Figure 7.5.3 : Four to four translations.

page 142

Chapter 7

Figure 7.5.4A Figure 7.5.4B

Figures 7.5.4A to 7.5.4C show various

4-4 Mapping

(In the order given in Figure 7.5.3).

Figure 7.5.4C

page 143

____ ____________________Chapter 7

The algorithm first generates a linked list Q of all the internal faces within the

current mesh. The algorithm then repeats the following set of operations until the list Q
is exhausted. The procedure is as follows:

(1) remove face / from the head of list Q with vertices {a,b,c}.

(2) Let Itet and Jtet be the two tetrahedral sharing the face I.

Itet and Jtet have vertices {a,b,c,d} and {a,b,c,e} respectively.

(3) If no four of the five vertices {a,b,c,d,e} are coplanar and the edge {c,d} intersects
the interior of the triangle fa,b,c}.

let P = min of the solid angles of the tetrahedra {a,b,c,d},{a,b,c,e}
and 6= min of the solid angles of the tetrahedra {a,b,d,e},{a,c,d,e},{b,c,d,e}
if 6>p then apply the 2-3 transformation and add the faces {a,d,e},{b,d,e} and
{c,d,e} to the tail of Q,

(4) If no four of the five vertices {a,b,c,d,e} are coplanar and either :

(a) the edge {a,b} intersects the interior of the triangle {c,e,d},
(b) or the edge {a,c} intersects {b,e,d},
(c) or the edge {b,c} intersects {a,e,d}.

Then relabel the common face as {a,d,ej so the that the two

adjacent tetrahedra Itet and Jtet become {a,b,d,e} and {a,c,d,ef.
let P= min of the solid angles of the tetrahedra {a,b,d,e},{a,c,d,e},{b,c,d,e}
and 6 = min of the solid angles of the tetrahedra {a,b,c,d},{a,b,c,e}
if 6>p then apply the 3-2 transformation and remove the faces {a,d,e},{b,d,e}

from Q.

page 144

_____ _________________________Chapter 7

(5) The four of the five vertices {a,b,c,d,e} are co-planar ,

relabel the planar face {a,d,b,e} such that the lines {a,b} and {d,e} intersect

if {a,b,d} and {a,b,e} are boundary faces then

let (3= min of the solid angles of the tetrahedra {a,b,c,d},{a,b,c,e}

and 6 = min of the solid angles of the tetrahedra {a,c,d,e},{b,c,e,d}

if 6>p then apply the 2-2 transformation and add the faces {a,d,e} and fb,d,e}

to the tail of Q and remove the faces {a,b,d} and {a,b,e}.

if there exists two tetrahedra {a,b,d,f} and {a,b,e,f}.

let p=min of the solid angles of the tetrahedra {a,b,c,d},{a,b,c,e},{a,b,d,f},{a,b,e,f}

and 6=min of the solid angles of the tetiahedm{a,c,d,e},{b,c,e,d},{a,c,d,f},{b,c,e,f}

if 6>P then apply the 4-4 transformation and add the faces {a,d,e} and {b,d,e}

to the tail of Q and remove the faces fa,b,d} and {a,b,e}.

(6) If none of the previous mapping can be applied, the face is locally optimized.

(7) Repeat steps 1-6 until Q is empty.

The initial order of the faces in the list Q is often arbitrary, however this can be

modified, so the routine start at a particular location within the mesh.

page 145

_________Chapter 7

7.6 Boundary constrained three dimensional triangulation.

The initial attempt at meshing the convex regions was using boundary constrained

Delaunay triangulation, however this was dropped due to the generation of degenerate

tetrahedra which resulted in the algorithm failing. An idea by Joe [Joe89][Bak92]

[Bak89][BSB92] was taken and modified to use a min-max angle criterion instead of

circum-spheres of tetrahedra as a grid generation heuristic. This method of generating

grids in convex regions will be described below.

The algorithm requires at least one interior point, since there always exists a

boundary constrained triangulation for a convex polyhedral with at least one mesh vertex

within its interior [Wb'rSl]. Therefore, if a convex region has no interior points a vertex

is generated at its centroid, which the algorithm will later on try to remove by using local

transformations.

The vertex swapping algorithm is a min-max solid angle local transformation

based method as described in the previous section. The algorithm is modified to check

that before a possible transformation is carried out that no external edges are effected.

The initial stage in the generation of a boundary constrained mesh, is the

connection of all the boundary triangular faces up to one internal point near the centre

of the domain. This triangulation, after begin improved by applying local transformations

based on a min-max angle criterion, forms the initial triangulation of the domain. Then

the remaining internal points are then inserted into the region one at a time.

On the insertion of a vertex, its location within the previous triangulation is first

determined. The vertex can be either on the interior of a tetrahedron, on an edge or a

face. Initial tetrahedra are then formed in the grid that include this newly inserted vertex.

The mesh is then improved using a local min-max angle criteria, which is initialised in

the region where the newly formed tetrahedra were created.

In the case where an internal vertex v was generated for the above algorithm to

work, a further set of transformations are applied. These transformations try to remove

page 146

____________________ Chapter 7

all faces/edges incident on v. Let Ntet be the number of tetrahedral with vertex v, this is

equal to the number of boundary faces. A list Q is generated of all faces with the vertex

v. The algorithm then repeats the following set of operations until Ntet=4:

(1) remove face / from head of Q with vertices {a,b,v}.

(2) Let Itet and Jtet be the two tetrahedra sharing the face I.

Itet and Jtet have vertices {a,b,c,v} and {a,b,d,vj respectively.

(3) If no four of the five vertices {a,b,c,d,v} are coplanar and the edge {c,d} intersects

the interior of the triangle {a,b,v}. A 2-3 mapping is applied, the new face

{d,c,v} is added to the tail of Q and Ntet is reduce by one.

(4)

to {A,B,C,D),{B.,C,D,V>,{A,D,C,V}

Figure 7.6.1 2-3 Mapping

If no four of the five vertices {a,b,c,d,v} are coplanar, and the line

{a,v} intersects the interior of the triangle {b,c,d}, and the tetrahedron {a,c,d,v} is

present. Then apply a 3-2 mapping and remove the faces fa,c,v} and fa,d,v} from

Q, Add the faces {a,v,c} and {a,d,v} to the tail of Q and reduce Ntet by 2.

to {B,C,D>V},{A,B>C. >D}

Figure 7.6.2 3-2 Mapping

page 147

______ _____________________ Chapter 7

(5) The vertices fb,c,d,v} are co-planar and the lines bv and ae are in the quadrilateral

{c,b,d,v} and there exists two tetrahedra {b,c,e,v} and {b,d,e,v}. Apply the 4-4

mapping which swaps the edge {v,b} to {a,e}. Remove the faces {b,c,v},{b,d,v}

and {b,c,v} from Q and reduce Ntet by 2. The face {a,e,v} is added to the tail Q.

-------- Transformed edge

{AAC,V),1B,C,B,V),<B,D,E,V},{A,C,D,V) » IA,C,E,V},lA,B,C,B),lA,D,E,V),|A,B,D.E)

Figure 7.6.3 4-4 mapping

(6) If none of the previous mapping can be applied, add face I to Q.

(7) Repeat steps 1-4 until Ntet is equal to 4 or none of mappings can be applied to the

faces in Q

(8) if Ntet equals 4 the tetrahedron {a,b,c,v},{a,b,d,v},{a,c,d,v} and {b,c,d,v} can be

removed to form one tetrahedron {a,b,c,d} which ineffectually removes the vertex v.

The above algorithm will always terminate as each mapping removes a

tetrahedron incident on v. The method is not always guaranteed to remove an internal

vertex even though a boundary-constrained triangulation exist from the set of boundary

points.

page 148

___ _______________Chapter 7

7.6.1 Local minima

The min-max tetrahedral transformation algorithm implemented in the grid

generator is a local min-max routine. This routine converges to one of the possible local

optimal angle solutions for the transformations implemented, see section 7.5, which may

be far from the global optimal solid angle tetrahedral mesh.

The graph below, Figure 7.6.1, is a plot of mean solid angles, before and after

optimization. This graph is ordered from left to right, into increasing mean solid angles,

before optimization. This graph is generated from a geometry with a fixed nodal

distribution, with various tetrahedral meshes. The results were achieved by taking an

initial mesh, and then applying sets of random transformations to the grid. The geometry

was then optimized by the local-minmax optimization routine. Figure 7.6.2, presents

minimal solid angles of the above meshes, which shows a general minimal angle

improvement.

0.23

0.22 •

0.21

0.20 -

j? 0.19 -

TJ

^ 0.1 B -

I

0.17 •

0.16 -

0.15 -

O.U

AA ^ A A

AA

A / * A
iU A

A A AAA
A ^

000 20.00 40.00 60.00 SO.OO 100.00 120.00 140.00 160DO 180.OO 200.00
M«»h number

D Mean angle before optimization
A Mean angle after optimization

Figure 7.6.1 Mean solid angles before and after optimization.

page 149

Chapter 7

Min Solid Angte

0.002

0.0018-

0.0016

0.0014-

0.0012 J

0.001-

0.0008

0.0006-

0.0004-

O.OOQ

Mesh Numbor

Lagend

D Mbr* optimization

A After optimization

JO,

Figure 7.6.2: Minimal angle of the mesh before and after optimization.

One possible reason for the large number of possible local optima achieved, is
that the optimization routine is limited by the number of transformations implemented.
However, the local optimization algorithm does improve the quality of the final mesh
[Joe91b], and adding new possible transformation would enhance the algorithm.

page 150

____ _________Chapter 7

7.7 Conclusions.

The design and implementation of any algorithm for geometry operations must
be done in conjunction with the model representation and data structure used within the
program. The geometry representation and data structure of the code has a great effect
on computational efficiency and robustness of the overall mesh generation tool.

The sub-division of geometry into simpler parts is a highly complex task, which
is reflexed in this chapter by the number of different bisection methods presented. The
correct mesh bisection technique has to be applied at the right time for the grid generator
to work reliably and efficiently. The sub-division part of the mesh generator tool was
found to be such a complex task that a rudimentary heuristic algorithm, Boundary
constrained local min-max meshing algorithm, is used once the domain is sufficiently
simple. Even the simple mesh generation technique of Boundary constrained local min-
max meshing algorithm has to be implemented in conjunction with a robust and reliable
technique of tetrahedral translations.

For a further discussion of finite precision problems and techniques to minimize
their effects, see Appendix A5.

page 151

Chapter 8

Chapter 8
3D Mesh Generation

Results and Conclusions

page 152

Chapter 8

8.1 Introduction

This chapter will present some example models, which have had three
dimensional tetrahedral meshes generated over their geometry, using the techniques
described in Chapter 6. The Chapter is divided into three sections, to try and give an
indication of the power of the meshing technique, described in this thesis. The three
sections are described next:

Basic Examples : Demonstrates the mesh generators ability to cope
with varies geometry features, computational
efficiency and mesh quality.

Comparison Examples This section is an attempt to compare the
bisection mesh generator's computational
efficiency and mesh quality, with other mesh
generators described in various journals.

Further Examples : The final section illustrates some of the further
examples to which the mesh generator has been
applied to. This section also helps to re-enforce
some of the conclusion drawn in the previous
sections.

The results are presented with CPU time in seconds, for various size grids,
with associate mesh quality measurements. The two mesh quality measures are
element goodness measure, section 2.4.2, and tetrahedral solid angle, section 2.4.1.
These are obtained on the completed mesh before optimization, as this gives an
indication of the power of the basic meshing technique. The CPU times were obtained
for un-optimized code running on a SPARC 10 with the Unix operating system
SunOS release 4.1.3.

page 153

________ ____________________________Chapter 8
8.2 Basic examples

The next four example geometries illustrate the mesh generator's ability to

cope with various basic geometry features, which were discussed in Chapter 7, section

7.1. Each example is presented with an illustration of the geometry with an indication

to which feature it demonstrates. For each example the CPU time to generate various

size meshes is presented, together with a table indicating how CPU time is spread

between the various stages in mesh generation.

The overall CPU profile of the complete time to generate various size grids,

over the example geometry presented in this section is comparable linear, see Figures

8.2.3,8.2.8,8.2.13 and 8.2.18. From the tables 8.2.1,8.2.2,8.2.3 and 8.2.4, of CPU break

down, the bisection part of the code is highly efficient, only taking a fraction of the

overall CPU time of mesh generation. The tables also indicates that the majority of

the meshing time is being taken up by the min-max boundary constrained

triangulation routine, with the nodal placement technique second most CPU intensive.

Each example has the two mesh quality measures, which were presented in

Chapter 3 section 3.3, mean values plotted against mesh size. Both the tetrahedral
solid angle and element goodness measures average values improve with mesh size.

This is a highly desirable feature of any mesh generator, since increasing the number
of tetrahedra should reduce the individually dependency of each element on the

geometry of the problem.

page 154

___Chapter 8
8.2.1 Three dimensional box with a cavity (Example 1).

This example demonstrates the mesh generators ability to deal with domains
with simple cavity regions (Multi-connected regions).

Figure 8.2.1 Geometry of a box with a cavity (Example 1).

Figure 8.2.2 Mesh of a box with a cavity (Example 1).

page 155

Chapter 8

|

40.00

35.00 -

30.00 -

25.00 -

20.00 -

15.00 -

10.OO -

5.00 -

0.00
5000 6000 7000 9000 9000 10000

Number of elements

Figure 8.2.3 Number of elements generated against CPU time (Example 1).

Below is a table showing how CPU time is divided between the various routines in

the mesh generator. The first and second columns are the number of elements and
nodes generated in the grid. The third column, is the setup time of the geometry, such
as hole polyhedral and cavity identification. This is followed by time to sub-divide the
geometry into sub-regions, which then has nodes generated in them, and the times for

this is in column 5. The last two columns are CPU time to generate the final
tetrahedral meshes in the sub-regions and the overall CPU time for mesh generation.

Table 8.2.1: Break down of CPU time, in seconds, used in the code (Example 1).

Elements

173

994

4458

9062

Nodes

67

313

1138

2112

Init
Geom

0.02

0.021

0.02

0.02

Bisect

0.02

0.021

0.022

0.21

Gen.
Nodes

0.1

0.17

0.54

0.76

Gen.
Tets

0.35

4.92

12.63

37.03

Total
Cpu

0.49

5.132

13.212

38.02

page 156

Chapter 8

0.60 -

0.55 -

0.50 -

S 0.45 -

8

o

0.35 -

0.30 -

0.25 -

O

D D D
n n

PL n
n

opu
a

O
n

D

D

D
0 1000 2000 3000 4000 5000 MOO 7000 6000 9000 10000

Number of elements

Figure 8.2.4 Average element goodness measure plot (Example 1).

0.80 -

0,75 -

0.70 -

£

o
& 0.65 -
3
c o

3E

0.60 -

0.55 -

0.50 -
C

D

n n n
D n

n D

n n

n

D

| 1000 2000 3000 4000 6000 MOO 7000 8000 9000 10C00
Number of elements

Figure 8.2.5 Mean solid angle of tetrahedra as mesh size increase (Example 1).

page 157

__Chapter 8

8.2.2 A box with a cavity adjacent to another box (Example 2)

This section presents a simple example of two adjacent independent domains

which share a common boundary interface. One of the region also has a cavity

(hollow) section.

Figure 8.2.6 Geometry of a box with a cavity adjacent to another domain (Example 2).

Figure 8.2.7 Mesh of a box with a cavity adjacent to another domain (Example 2).

page 158

Chapter 8

40.00

35.00 -

30.OO -

25.00 -

20.00 -

15.00

10.00

5.00 -

0.00
0.00 2000.00 4000.00 6000.00

Number of elemerrts
8000.00 10000.00

Figure 8.2.8 Number of elements generated against CPU time (Example 2).

Table 8.2.2 : CPU Break down for the cavity cube with interface (Example 2).

Elements

200

803

4624

9551

Nodes

72

253

1146

2172

Init
Geom

0.025

0.024

0.027

0.025

Bisect

0.022

0.02

0.022

0.021

Gen.
Nodes

0.2

0.18

0.57

0.77

Gen.
Tets

0.22

2.04

14.46

34.43

Total
CPU

0.467

2.264

15.079

35.246

page 159

Chapter 8

0.55 -

0.50 -

0.45 -

° 0.40 -

8

"8 0.35 -
&

0.30 -

0.25 -

0.20 -

° ° ° p
D

n D

°^ a

n
n

=•

X) 2000.00 4000.00 6000.00 8000.00 1000000
Number of elements

Figure 8.2.9 Number of elements against mean goodness factor (Example 2).

0.80 -

0.75 -

0.70 -

f °"85 "

3

c 0.60 -
o
2

0.55 -

0.50 -

0.45 -

D n a n n n
a

n r~| r-j

ft
a

a

3

X> 2000.00 4000.00 6000.00 8000.00 10000.00
Number of elements

Figure 8.2.10 Number of elements against mean solid angle (Example 2).

page 160

Chapter 8

8.2.3 Three dimensional lug geometry (Example 3).

This example illustrates the mesh generator's ability to cope with more

complex domains with holes and concave regions.

Figure 8.2.11 Polyhedral domain of 3D lug (Example 3).

Figure 8.2.12: Mesh of lug, 5432 elements (Example 3)

page 161

Chapter 8

11.00 -

10.00 -

9.00 -

8.00 -

» 7.00 -
c

« 6.00 -
_c

I 3.00 -
a

* 4,00 -

3.00 -

2.00 -

1.00 -

0.00
0.00 2000.00 4000.00 6000.00 8000.00 10000.00 12000,00

Number of «tem«nta

Figure 8.2.13 Number of elements generated against CPU time (Example 3).

Table 8.2.3 : CPU breakdown for the Lug mesh (Example 3).

Elements

410

1134

5432

10170

Nodes

204

412

1407

2387

Init
Geom

0.025

0.025

0.026

0.025

Bisect

0.15

0.15

0.17

0.15

Gen.
Nodes

0.55

0.64

1.35

1.81

Gen.
Tets

0.57

1.15

4.85

9.68

Total
CPU

1.295

1.965

6.396

11.665

page 162

Chapter 8

0.55 -

0.50 -

0.45 -

g 0.40 -

I
| 0.35 -
0

0.30 -

0.25 -

0.20 -

D

D D

D D
n n D

*
D

D

n

n

X) 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00
Number or elements

Figure 8.2.14 Average element goodness measure plot (Example 3).

0.72 -

0.68 -

0.64 -

| 0.60 -
o

5
5
c 0,56 -
o
3

0.52 -

0.48 -

0.44 -
O.C

———————————————————————————————— B ———————————

° 0

fib n D
D

D

D

D

n

K> 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00
Number of elements

Figure 8.2.15 Mean solid angle of tetrahedra as mesh size increases (Example 3)

page 163

__Chapter 8

8.2.4 Cross section of a plane in a wind tunnel (Example 4).

Below, Figure 8.2.16, illustrates a simple plane geometry within a cube. This

example shows the ability of the grid generator to cope with hole polygon regions,

this is illustrated by the outer boundary of the aircraft forming a hole in one side of

the surrounding cube.

Figure 8.2.16: Example of plane geometry (Example 4).

Figure 8.2.17 illustrates the completed three dimensional tetrahedral mesh of

the above geometry.

Figure 8.2.17: Example of plane tetrahedral mesh (Example 4).

page 164

Chapter 8

40.00

35.00 -

30.00 -

25.00 -

20.00 -

15.00 H

10.00 -

5.00 -

0.00
0.00 2000.00 4000.00 6000.00 8000,00 10000,00 12000.00 14000,00

Number of Dements

Figure 8.2.18 : Number of elements generated against CPU time (Example 4).

Table 8.2.5 : CPU use, in the generation of plane in tunnel mesh (Example 4).

Elements

1439

4124

12599

21292

Nodes

415

1027

2812

4590

Init
Geom.

0.03

0.031

0.034

0.031

Bisect

0.35

0.3

0.32

0.3

Gen.
Nodes

2.15

2.73

3.76

4.54

Gen.
Tets

1.4

8.71

37.3

72.61

Total
CPU

3.93

11.771

41.414

77.481

page 165

Chapter 8

0,44 - ———

0.42 -

0.40 -

0.38 -

o
| 0.36 -

f 0.34 -
8cs

0,32 -

0,30 -

0.28 -

0.26 -

D

a

D

aa

a n

D
D

D

D
D

1 1 1 1 1 1

0.00 2000.00 4000.00 6000.00 BOOO.OO 10000.00 12000.OO 14000.00
Number of Dements

Figure 8.2.19: Number of elements against mean goodness factor (Example 4).

VAZO

0.28 -

0.24 -

0.22 -
V

3 0.20 -

w
o
2 0,18 -

0.16 -

0.14 -

0.12 -
O.C

D

D

D
D

a
D

a
a

a
a

a

a

a

IO 2000.00 4000.00 6000.00 BOOO.OO 10000.00 12000.00 14000.00
Number of Elements

Figure 8.2.20 Number of elements generated against Mean solid angle (Example 4).

page 166

Chapter 8

8.3 Comparison examples.

In literature there exist few, or possibly none, real test case examples for mesh
generation. In the few papers, which present any meshes with grid quality measures or
CPU timings, little information is provided about the geometry that their technique is
applied to. Most papers have taken the approach - Here is my algorithm; look what a
good job it has done on a few examples, Sabin M.A [Sab91]. However in this section,
simple geometries from various papers have been reproduced as closely as possible.

8.3.1 Normal offsetting technique

In the paper by Johnston [Joh93] the Normal offsetting technique is described for
three dimensional tetrahedral mesh generation. This paper contains three example meshes,
together with numerical evaluation of the quality of the final solutions using the aspect
ratio a, defined as the ratio of the radius of inscribed sphere to radius of circumscribed
sphere. An ideal value for an equilateral tetrahedron is 0.333 [Bur90]. The first example,
a cubic domain with a slender appendage, from the paper by Johnston [Joh92], being
easy to reproduce, was selected as a test case for comparison with the mesh generator
described in this thesis. Figure 8.3.1 depicts the geometry of the initial problem and
Figure 8.3.2 is the surface mesh of the final solution.

Figure 8.3.1 : Geometry of a cubic
domain with a slender appendage.

Figure 8.3.2 : Final tetrahedral mesh.

page 167

Chapter 8

Table 8.3.1 shows a break down of

the elements by their a values for the two

techniques, normal offsetting and the

bisection technique described in this

thesis. Column two of the table is taken

from the paper by Johnston [Joh93], in

which 762 nodes and 3610 elements with

a mean a value of 0.2398, were generated

over the domain in Figure 8.3.1. The

bisection technique, in this thesis,

generated 837 nodes and 3593 elements

with a mean a value of 0.2183.

Table 8.3.1 : Comparison of results.

a ratio ranges

00.000 -> 0.010

0.010 -> 0.033

0.033 -> 0.067

0.067 -> 0.1 00

0. 100 -> 0.133

0. 133 -> 0.167

0.167 -> 0.200

0.200 -> 0.233

0.233 -> 0.267

0.267 -> 0.300

0.300 -> 0.333

Normal
offsetting

0.20

1.00

1.60

2.00

2.80

3.30

7.00

12.30

33.60

26.30

9.90

Domain
Bisection

0.12

3.86

3.34

4.51

5.12

6.96

7.40

10.05

24.02

25.77

8.85

The two techniques generate meshes, with about the same distribution of
tetrahedral aspect ratios. It could be argued that the normal offsetting technique generates
a better quality mesh. However, if you consider that normal offsetting technique is an
order n166 method [Joh92] and the mesh generator in this thesis is at worst order nlog(n).
Couple this with the fact that with a few passes of a Laplacian smoothing routine
[Her76], a linear computational algorithm, the mesh generated by the bisection technique
could become as good, if not better, than the normal offsetting technique. Then the
bisection mesh generator becomes more attractive.

page 168

__Chapter 8
8.3.2 Mesh generation by binary mesh operations

Shephard and Lo [Shl92] presented a technique of generating coarse meshes

using binary mesh operators, see Chapter 3 section 3.3. In this paper there are four

examples, of which one is provided with some numerical evaluation of the quality of

the grid generated, using a tetrahedral goodness function \, see Chapter 2 section

2.4.2. The domain they used in their analysis is depicted in Figure 8.3.4, and the

resulting mesh generated by the mesh generator in this thesis, Figure 8.3.5.

Figure 8.3.3: Shephard and Lo
[ShL92] test geometry.

Figure 8.3.4 Tetrahedral mesh of
Figure 8.2.3.

Shaphard and Lo obtained a mesh with 21 elements, and a \ minimum and
average values of 0.1493 and 0.4410, respectively. The bisection mesh generator,

presented in this thesis, obtained a mesh with 47 elements, and a minimum value of \

0.0059 and average value of 0.3548.

The 47 elements, was the minimal amount of tetrahedra the bisection technique

could generate for the above domain, Figure 8.3.3. This is largely down to the

requirements of the Boundary constrained mmimax algorithm, which needs an internal

node to be placed at the centre of each sub-domain. These results demonstrate that the

Shaphard and Lo technique can generate a grid with fewer elements and of better

quality than the Bisection technique in this thesis. However, it was found that if the

number of elements was increased to 66, the A, minimal and mean values become

0.1601 and 0.4725, respectively, which is an improvement on Shaphard and Lo

technique.

page 169

__Chapter 8

This result indicates that the bisection technique of mesh generation, presented in

this thesis, is not a minimal grid generation method. However, Shephard and Lo method

is of exponential computational growth, and the bisection mesh generator is a far more

computational efficient technique.

8.3.3 Delaunay and Min-max triangulation.
In this section the two techniques, Min-max and Delaunay, of triangulating a set

of points in E3 are compared. The Min-max triangulation technique forms an integral part

of the bisection mesh generator presented in this thesis.

The method used to compare the two techniques, was to generate several sets of

uniform randomly distribution nodes in E3 . The analysis was repeated several times to

generate the information in Figure 8.3.5,and tables 8.3.2 and 8.3.3. The graph, in Figure

8.3.5, is a plot of the averages of the mean solid angles of meshing the sets of random

uniform nodes. From the graph it can be observed that the min-max technique generates

grids with a better average solid angle value than Delaunay triangulation.

Tables 8.3.2 and 8.3.3 were also generated to demonstrate that the min-max

triangulation routine generates a grid with an overall better distribution of solid angles

than the Delaunay technique. These tables present a break down of solid angle

measurements in the grids for Delaunay and Min-max triangulation, for different number

of nodes. It can be clearly seen from these tables that Delaunay generates more solid

angles in the lower ranges than the Min-max technique.

page 170

0.76

O.64

Chapter 8

0.00 1000.00 2000.00 3000.00
No. Elements

D Ctotauney A Minmeu

4000.00 5000.00

Figure 8.3.5 : Plot of mean solid angles of meshes, for Delaunay and Local min-max
triangulation routines for various size grids.

Table 8.3.2 : Break down of Solid angle ranges for Delaunay and Minmax
triangulation.

No. Nodes

Range

0.00-0.31

0.31 -0.63

0.63 - 0.94

0.94 - 1.26

1.26 - 1.57

1.57 - 1.88

1.88 - 2.20

2.20 - 2.51

2.51 - 2.83

2.83 -3.14

10

Del.

0.45

0.27

0.09

0.00

0.00

0.00

0.10

0.00

0.00

0.00

Minmax

0.09

0.00

0.00

0.00

0.00

0.60

0.20

0.10

0.00

0.00

110

Del.

0.46

0.13

0.03

0.01

0.00

0.00

0.30

0.07

0.03

0.00

Minmax

0.29

0.06

0.02

0.00

0.00

0.44

0.12

0.03

0.01

0.00

510

Del.

0.47

0.14

0.02

0.01

0.00

0.00

0.31

0.06

0.02

0.00

Minmax

0.29

0.05

0.01

0.00

0.00

0.42

0.15

0.03

0.01

0.00

page 171

Chapter 8

Table 8.3.3 : Break down of solid angle ranges for Delaunay and Minmax
triangulation.

No. Elements

Range

0.00 - 0.31

0.31 - 0.63

0.63 - 0.94

0.94 - 1.26

1.26 - 1.57

1.57 - 1.88

1.88 - 2.20

2.20 - 2.51

2.51 - 2.83

2.83 - 3.14

1010

Del.

0.45

0.13

0.02

0.01

0.00

0.00

0.28

0.06

0.02

0.00

Minmax

0.31

0.06

0.01

0.00

0.00

0.46

0.14

0.03

0.02

0.00

2020

Del.

0.46

0.14

0.03

0.01

0.00

0.00

0.26

0.06

0.02

0.00

Minmax

0.30

0.06

0.01

0.00

0.00

0.48

0.12

0.04

0.02

0.00

4010

Del.

0.45

0.14

0.03

0.01

0.00

0.00

0.30

0.07

0.02

0.00

Minmax

0.30

0.06

0.01

0.00

0.00

0.42

0.15

0.03

0.02

0.00

8.3.4 Finite Octree mesh generation.
In the paper [ShG91] on the technique of Finite Octree grid generation by

Shephard and Georges, there are several meshes presented with minimum and maximum
dihedral angle measurements. The technique which they presented was based on an
Octree division of the domain, and the meshing of each octane region was achieved by
binary mesh operators. The method is quoted to be of computational order nlog(n),
however in practice the method exhibits a linear computational growth [ShG91].

The geometry in Figure 8.3.6, is an example taken from the paper by Shephard
and Georges [ShG91], which they used to demonstrate the computational efficiency of
their technique. This domain has been applied to the bisection mesh generator, Figure
8.3.7. and the graph of normalized CPU is presented in Figure 8.3.8. The graph, in Figure
8.3.8. also has the normalized CPU plotted for the Finite Octree technique, from the
paper by Shephard and Georges [ShG91].

page 172

Chapter 8

Figure 8.3.6: Geometry from paper
on Finite Octree technique [ShG91].

Figure 8.3.7: Mesh of Geometry.

1.10

1,00 -

0.00
0.00 1000.00 2000.00 3000.00 4000.00 5000,00 6000,00 7000.00

Number of dements
A FinittOctr** M*thod D Hwction Mtthod

Figure 8.3.8: Plot of normalized CPU time for Finite Octree and Bisection mesh
generators.

The above Figure 8.3.8, shows that the Finite Octree technique from the paper

[ShG91] exhibits a far more linear characteristic for this problem. However, the profile

of the computational efficiency of the bisection method is near linear for this problem.

Other examples in this chapter show a more linear CPU speed up, see Figure 8.4.13,

page 173

Chapter 8

section 8.4.

A further example, presented for the Finite Octree technique, is depicted in Figure

8.3.9, which generated a mesh of 71 elements. In the paper by Shephard and Georges
[ShG91], they give the maximum and minimal dihedral angles for the mesh of the

geometry of Figure 8.3.9, generated by the Finite Octree technique, of 26 and 124
degrees, respectively. This geometry was applied to the bisection mesh generator, Figure

8.3.10, and generated 73 elements with a minimal and maximal dihedral angles of 17 and
130 degrees.

Figure 8.3.9 Example Geometry. Figure 8.3.10: Mesh of 73 Elements.

From these two examples, it seems that the Octree technique is slightly better in
mesh quality and computational efficiency. However, the data on computational
efficiency on the Finite Octree technique, from the paper [ShG91], is inadequate, since
no real CPU data timings were provided, and just quoting a minimal and maximum
dihedral angle provides little information about overall mesh quality.

The two examples demonstrated in this section, to compare the bisection mesh
generator, presented in this thesis, with the Finite Octree technique, provide some
interesting results. The two techniques are very closely related in computation order and
mesh quality. The Finite octree method implements a highly computational efficient
octree division algorithm, with an order n2 binary mesh operation technique in the sub-
regions. Since the order n2 algorithm is confined to very small subregions, the more
computational efficient Octree algorithm dominates the overall computational order of
the mesh generator. The Bisection mesh generation technique, implements a

page 174

__Chapter 8

computational efficient bisection algorithm with an order nlog(n) meshing technique in

the sub-regions, however these sub-regions are larger than the ones used in the Octree

technique. Hence, more detail data is required on the Finite Octree mesh generator to

achieve a better comparison between the two meshing techniques.

8.3.5 Summary.

The bisection mesh generator has preformed well against other techniques,

documented in literature. These results are especially encouraging, if you consider that

these test geometries are taken from others papers. Therefore, the test geometries have

not been adaptive to suit the 3D Bisection mesh generator. The reader should also note

that the 3D Bisection mesh generator has not been manipulated to suit each test

geometry.

As an example, of how a mesh generator can be manipulated, so that it generates

a good quality grid for a particular geometry, we take the second example geometry in

section 8.3.4, Figure 8.3.9. This geometry was used to compare the Bisection mesh

generation technique with the Finite Octree method, by Shephard and Georges [ShG91].

Shephard and Georges method generated a grid with minimal and maximum dihedral

angles of 26.0 and 124.6 degrees, respectively. The Bisection method generated a grid

with minimal and maximal dihedral angles of 17 and 170.6 degrees. However, if the

Bisection mesh generator is tweaked, by adjusting some constants within the mesh code,

a comprehensive improvement in grid quality is achieved. This resulted in a mesh with

minimal and maximum dihedral angles of 30 and 120 degrees, with 76 elements.

Therefore, an improvement can be achieved, in grid quality, for a particular geometry,

by adjusting parameters in the automatic mesh generator.

The problem of comparing mesh generation techniques is a highly complex area,

and there is the need for some standard bench marks (geometries). These bench marks

should be accompanied with some clearly defined criteria set out on how to compare the

results from different grid generators, and what forms a quality mesh over these test

geometries. Many of these problems have been discussed in the paper by M.Sabin

[Sab91], Criteria for comparison of automatic mesh generation methods.

page 175

___ Chapter 8

8.4 Further examples.
This section presents some further examples to which the mesh generator has been

applied to. These examples do not present any new features, which have not already been

discussed in the previous section. However, they do demonstrate that the mesh generator

has been applied successfully to a wide range of geometries. This section also provides

further examples to re-enforce the ideas discussed in the previous sections.

8.4.1 Example 1, simple plane model.

This example demonstrates the mesh generators ability to cope with typical three

dimensional geometries, such as a full three dimensional model of a plane.

Figure 8.4.1 Example 3D plane geometry (Example 1)

Figure 8.4.2 . Example of plane tetrahedral mesh (Example 1).

page 176

Chapter 8

60.00

50.00 -

40.00 -

w "b

• 30.00 -

20.00 -

10.00 -

0.00
0.00 2000.00 4000.00 6000.00

Number of elements
8000.00 10000.00

Figure 8.4.3 : Number of elements generated against CPU time (Example 1).

Table 8.4.1 : Break down of CPU use in the code for example 1 section 8.4.

Elements

959

3124

10194

18197

Nodes

306

843

2403

4018

Init
Geom.

0.025

0.022

0.021

0.023

Bisect

0.4

0.42

0.4

0.45

Gen.
Nodes

1.3

1.9

2.46

3.03

Gen.
lets

1.23

9.25

41.05

91.23

Total
CPU

2.955

11.592

43.931

94.733

page 177

Chapter 8

0.32 -

0.30 -

0.28 -

0.26 -

| 0.24 -

% 0.22 -
8
CS

0.20 -

0.18 -

0.16 -

0.14 -
\Jt,'

D

n n
a

n

D a D

D

*

X> 2000.00 4000.00 6000.00 8000.00 10000.00
Number of Dements

Figure 8.6.4 : Number of elements against mean goodness factor (Example 1).

0,48 -

0.46 -

0.44 -

0.42 -

0.40 -
01

3 0.38 -

g 0.38 -
2

0.34 -

0.32 -

0.30 -

0.28 -
o.c

D

a n
D a

a
D a a

D

n

D

10 2000.00 4000.00 6000.00 8000.00 10000.00
Number of elements

Figure 8.4.5 Number of elements generated against mean solid angle (Example 1).

page 178

__Chapter 8
8.4.2 Example 2, car model.

This car example shows the mesh generators ability to cope with sallow curves,
such as on the sides of the car model.

Figure 8.4.6 Car model geometry (Example 2).

Figure 8.4.7 Car model tetrahedral mesh (Example 2).

page 179

Chapter 8

e
E

CL
O

90.00

80.00 -

70.00 -

60.00 -

50.00 -

40.00 -

30.00 -

20.00 -

10.00 -

0.00
0.00 2000.00 4000.00

Number of elements
6000.00 8000.00

Figure 8.4.8 : Number of elements generated against CPU time (Example 2).

Table 8.4.2 : Break down of CPU use, for the generation of car mesh.

Elements

1048

3878

5148

6538

Nodes

326

1024

1304

1616

Init.
Geom.

0.02

0.02

0.02

0.02

Bisect

0.16

0.1

0.1

0.14

Gen.
Nodes

1.48

2.78

3.34

3.86

Gen.
Tets

1.92

9.58

13.16

17.6

Total
CPU

3.612

12.51

16.646

21.652

page 180

Chapter 8

0.45 -

0.40 -

0.35 -

o

a °-30 •
8
1
0

0.25 -

0.20 -

0.15 -
O.C

D

D
D

D
D

n
D

D

D

D

D

D
Q

X) 2000.00 4000.00 6000.00 8000.00
Number of dements

Figure 8.4.9 : Number of elements against mean goodness factor (Example 2).

0.60 - ———

0.55 -

0.50 -

c QA5 .

•o
•5

c 0.40 -

^

0.35 -

0.30 -

D
D

gn
D

D
D

D

O

D

D

0.25 - ———————————— , ———————————— i ————————— ,
0.00 2000.00 4000.00 6000,00 8000.00

Number of elements

Figure 8.4.10 Number of elements generated against mean solid angle (Example 2).

page 181

Chapter 8

8.4.3 Example 3, Cross section of car in a wind tunnel.

This car in a tunnel geometry is similar to the plane in a wind tunnel, Example

4 section 8.2.2, and shows a further example of a complex polyhedral face existing in

one side of the model. The complex face is where the car body makes a hole in the outer

hexahedral box.

Figure 8.8.1 Car in a tunnel geometry (Example 3).

Figure 8.8.1 Car in a tunnel tetrahedral mesh (Example 3).

page 182
9

Chapter 8

70.00

60.00 -

50.00 -

-g 40.00 -

o>
E

CLo
30.00 -

20.00 -\

10.00 -

0.00
0.00 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00

Number of «lement*

Figure 8.4.13 : Number of elements generated against CPU time (Example 3).

Table 8.4.3 : Mesh generation CPU use for car in tunnel example.

Elements

1064

3375

4449

5888

Nodes

294

838

1086

1437

Init.
Geom.

0.029

0.03

0.031

0.03

Bisect

0.2

0.13

0.18

0.17

Gen.
Nodes

1.46

3.51

4.23

5.37

Gen.
Tets

1.17

4.92

6.9

10.27

Total
CPU

2.859

8.59

11.341

15.84

page 183

Chapter 8

0.36 - ———

0.34 -

0.32 -

0.30 -

i 0.28 -

| 0.26 -

CS

0,24 -

0.22 -

0.20 -

D
D

D

D Q

D
D

D

a

a

cD

0.18 - , ————— , ——————— , ——————— , ——————— , ——————— ,
0.00 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00

Number of elements

Figure 8.4.14 : Number of elements against mean goodness factor (Example 3).

0.52 -

0.50 -

0.48 -

0.46 -

J1 0.44 -

jg
"> 0.42 -
c

0.40 -

0.38 -

0.36 -

0,34 -

a
a

a
a a

n
a

a
a

a

D

a

ft 200000 4000.00 6000.00 8000.00 10000.00 12000.00
Number of etomonte

Figure 8.4.15 Number of elements generated against mean solid angle.

page 184

__________________________Chapter 8

8.9 Discussion of results.
The graphs of CPU time against mesh size demostrate a good comparable linear

relationship. Therefore, any high order algorithms within the code are swamped by the
linear components, which gives the overall computational profile. If the CPU time is
broken down into parts, the majority of the time is accounted for in the triangulation
routine. The nodal placement is the next most CPU intensive, with the bisection of the
domain into disjointed parts being a minor component.

The element mean quality measurements indicate that the element aspect ratio
is poor for coarse grids. However, there is a general steep increase initial in tetrahedral
shape measurements, that then tails off sharply as the density of the grid increases. The
rate at which the element shape indicators improve from the initial coarse triangulation
are more sharply notable for simpler geometries. We can then conclude that the element's
aspect ratio is govern by the geometry of the model for coarse grids and improves as the
number of tetrahedra increase. This is a desirable feature, as increasing the number of
elements should reduce the dependency of the elements quality on the geometry.

The bisection technique introduces new nodes on the surface of a model even
when a surface mesh is provided. Therefore, the minimal triangulation achieved by this
method is not necessarily the minimal possible triangulation, and is governed by the
initial bisection of the geometry. However, when comparing the mesh generator with
other comparable meshing techniques it performs well, and generates meshes of

acceptable quality.

The results show that a computational efficient algorithm based on a bisection
technique can generate grids of workable quality. However, this method cannot be
described as an optimal minimal meshing technique, rather a method that can provide an
initial mesh, for computational purposes, of a given density.

page 185

Chapter 9

Chapter 9
Conclusions.

page 186

_____________________________Chapter 9
9.0 Introduction.

This chapter will give a brief overview of some of the conclusions of the research
carried out in an attempt to generate a reliable three dimensional tetrahedral mesh
generator. The importance of bisections to simplify models for grid generation will be
discussed, together with major achievements. This chapter will then be concluded by
making comparisons with other major techniques and a discussion of possible
improvements and extensions.

9.1 Conclusions.
9.1.1 Preparation of geometry.

Preparation of the geometry is extremely important, not only to improve the speed
of execution, but also to avoid problems with rounding errors. For example, the storing
of face normals for each polyhedra face, enables a fast in-out test to be carried out,
without the need for slow and unreliable ray testing [Rog85]. Also, when a face is
bisected the need to calculate new face normals is eliminated as the old face normal can
be duplicated for each new polyhedral face. This ensures that any faces generated from
an initial polyhedral region have identical face normals, which are not affected by
machine rounding errors.

Since the mesh generator's code was not designed for any particular CAD
package, and to allow for the manual preparation of geometries, the package requires the
minimal amount of information. This is the reason why the preparation of geometry and
identification of key features, such as cavities of the model, is carried out in the initial
stages of mesh generation. If there are any problems with the geometry of the model, this

can be spotted before the actual mesh generation begins.

Another important area is user interaction. The user should have complete control
over mesh generation, with the ability to step in and modify the grid at any point.
However, the mesh generation code should be completely automatic with reasonable
defaults. Hence the mesh generator should be capable of being directly integrated with
a CAD package, and be fast enough to allow for user interaction.

page 187

________ __________________Chapter 9

9.1.2 Quality of algorithms and calculations
During this research the importance of quality and robustness of algorithms was

found to be highly critical. Even for basic calculations, such as the intersection of lines
and planes in 3D space, three or four different methods had to be evaluated. The main
criteria for selecting a method for a routine, was based on its robustness to either
accumulated rounding errors or points of singularity.

Most of the problems associated with any algorithm, within the code, were caused
by the finite precision of the computer. For example in the bisection routine, it had to be
ensured that any newly generated bisection plane did not introduce any ill-conditioned
faces, near parallel lines or planes and surfaces with small angles between them. For a
further discussion of finite precision problems, see Appendix A5, Numerical precision.

9.1.3 The importance of domain Bisection.
Bisection of a domain into simpler regions is the key to mesh generation.

Many CAD packages require the user to divide the model up into simpler regions so that
a grid can be generated. In many ways the key goal is the automation of the process of
dividing a region up into simpler parts, so that it can be meshed using any standard
meshing technique. For example, the bisection part of the technique, presented in this
thesis, was used to sub-divide a region, so a code such as FEMGEN could be used to
generate the final grid, see section 9.3 below.

The importance of domain decomposition is reflected in many major mesh
generation projects that utilize techniques, which simplify geometry by sub-dividing
domains, e.g Medial axis [TaA91], Octree Quadtree [ScS90].

9.2 Summary of achievements and major contributions.
The bisection of geometry for the generation of unstructured meshes has been

demonstrated to be a practical and a valid technique. The technique of Recursive mesh
bisection is an advantageous and computational efficient method of generating two
dimensional unstructured triangular grids. This technique has been adapted to handle all
2D geometries without limitations and can generate high-order polygon elements.

page 188

_____________________________Chapter 9
It has also been established that many 2D element quality optimization techniques

can be extended to surface mesh generation without affecting their computational order,

and can produce acceptable results. The definition of surface Delaunay triangulation,

described in Chapter 5, generates grids with good quality elements in order nlogn, whilst
taking account of the surface approximation error.

The subdivision of 3D geometry is a highly complex task, and the order in which
bisections are applied to a domain can have a dramatic effect on the final quality of the

grid. This thesis has demonstrated, that with the careful selection of bisection planes, a

Bisection Technique of generating three dimensional meshes of good quality is practical

and computationally efficient. This research has also demonstrated that applying a direct

local min-max routine can be as effective as the 3D Delaunay algorithm for

computational order, and has the advantage of not producing any degenerate tetrahedra.

9.2.1 Comparison with other methods.

It is difficult to compare the grid quality of the new bisection mesh generation

technique with other existing methods, since there seems to be no general bench marks
available [Sab91]. The first three examples of 3D grids in Chapter 8, being simple and
easy to reproduce, form ideal bench marks. There is the need for more complex bench
marks, but these three basic geometries, cavity box, cavity box adjacent to another cube
and lug with circler hole region, form a set of basic requirements of any meshing
algorithm. Also these examples are presented with two different element shape measures,

which should make it easy for others to compare their algorithms with the results

presented in this dissertation.

However, from the literature available [CFF85][Joe91][ShL91][YTH91], the new

bisection method's results compare favourably for element quality, see Chapter 8.
Comparison of the algorithms, in this dissertation, with reported computational [CFF85]

[L6h85][ScS89][Joe91] time order of alternative methods, indicate that the routines
presented are amongst the best.

page 189

____________________________Chapter 9
9.3 Further work and enhancements.

This section outlines some possible enhancement and improvements to the grid

generator. However, any enhancements to the code must be carried out in conjunction

with continuing work on improving the reliability, optimization and updating of the
algorithms.

9.3.1 Curved surface mesh generation.

The initial attempts at surface meshing suffered from the problem of poor curve
distance estimating routines, which did not allow the use of the convex polygon shrinking

nodal placement technique. Therefore, the preliminary nodal insertion method of section
4.5.2 was implemented. Although this resulted in poor surface meshes, it did achieve

reasonable angle quality. Hence a fast and reliable method of finding a point on a curve

at a distance 8 from a point p in the direction of a given vector n is required.

The bisection of a parametric surface into two or more independent parametric
surfaces is a vital requirement. This would enable the bisection part of the mesh

generator to be extended from just polyhedral domains to full boundary structures with
parametric surfaces. However, this is a complex area that involves surface fitting and

slope continuity [BaM91].

9.3.2 Combining the two bisection methods.
The bisection part of the code implements two different bisection techniques. One

method bisects the region with a planar cut, where the other technique follows the outer
contours of the domain and generates a non-planar bisection. The first method is

preferred since it does not add a complex interface, just one extra polyhedral face into
the model. Therefore, this bisection will have less effect on any subsequent bisections of

the domain. The edge following bisection introduces a complex surface into the model,

with many polyhedral faces, which have to be considered by any proceeding task.

A relaxation parameter could be introduced into the edge following technique, that
will restrict the extent to which the bisection cut deviates from the plane. This relaxation
parameter could then be varied according to the complexity of the geometry. An interface

page 190

___________________________Chapter 9

mesh could then be generated, and groups of planar elements joined to form one planar
polyhedral face. The identification of groups of planar interface elements would make the
first bisection algorithm obsolete. It should also be possible to set the relaxation
parameter to zero, in the second algorithm, which should result in an identical bisection
to the first bisection algorithm.

9.3.3 Hexahedra mesh generation.
Once a domain is divided up into several elementary regions, hexahedra elements

could then be generated in a similar way to Medial axis mesh generation. For instance,
when generating a hexahedral mesh, this could be done by generating quadrilaterals on
the surfaces of all convex polyhedral faces. Then using algebraic methods, hexahedral
elements could then be generated within convex regions.

The following examples presents some methods of generating quadrilateral
meshes, using a technique of reducing the domain complexity to simpler regions. The
domain (Figure 9.3.1) is first simplified, using the algorithms used in the mesh generator,
into simply connect regions, Figure 9.3.2. The domain can then be further divided into
convex regions, Figure 9.3.3, and then meshed using parametric mesh generation tools,
to generate the final quadrilateral mesh, Figure 9.3.4

Figure 9.3.1: Geometry of problem. Figure 9.3.2: Division into simply
connected regions

page 191

Chapter 9

Figure 9.3.3 : Convex division. Figure 9.3.4: Quadrilateral mesh.

The bisection of the geometry does not have to be strictly convex, Figure 9.3.5. The

subdivision in Figure 9.3.5 was obtained as follows:

(1) Place all simply connected polygons on the stack S.

(2) Take the next polygon off the top of the stack S.

(3) Choose an initial node i, at random, on the boundary of the polygon.

(4) Set the sum of angles oc=0

(5) Let a=a+MAX (0, Or 180°), where Oj is the angle at node i
(6) If oc> 44° Then

Subdivide polygon by introducing a bisection edge at node /.
This bisection line should not introduce any reflex edges into the
polygon.

(7) Move to the next node adjacent to the node i in an anti-clockwise

direction, and let this become the new node i

(8) If all nodes are not processed in the current polygon, goto step 5.

(9) If the stack S not empty goto step 2.

A quadrilateral mesh generated using the subdivision of the geometry in Figure 9.3.5 is

given in Figure 9.3.6.

page 192

Chapter 9

Figure 9.3.5: Parametric subdivision. Figure 9.3.6: Quadrilateral mesh.

If the value at which we generate a bisection edge is increased from 40 to 80 degrees,

in step 6 in the above algorithm, a geometry subdivision is generated as in Figure 9.3.7.

The resulting mesh of the geometry sub-division in Figure 9.3.7, is presented in Figure

9.3.8.

Figure 9.3.7 : Geometry subdivision Figure 9.3.8: Quadrilateral mesh 3.

All the above geometries were bisected by algorithms implemented in the

bisection mesh generator. The final meshes were achieved by importing the subdivided

geometries into FEMGEN. The bisected geometries were meshed in full automatic mode

in FEMGEN with line division 4, which accounts for the poor quality of nodal

distribution in the final meshes.

page 193

__________________________Chapter 9

9.3.4 Integration of a user nodal spacing on each sub-region.
Special meshing points in 3D space could be given a grid density requirement.

The bisection method could then ensure that all mesh density control points are divided
into individual regions. Any region without a mesh density point, could have a mesh
density interpolated, using various nodal distribution functions, from regions that have
nodal spacing specified within them. The mesh density of faces in sub-regions could then
also be interpolated from the two mesh density points on either side. Once the boundaries
have been triangulated the internal mesh density of each sub-region could be graded
internally from the region's boundary triangulation.

The difficulty here is placing the mesh density control points. One way in which
to give more control over grid generation, to the engineer designing the model, is to
integrate the mesh generator directly with the CAD package. This should be done in such
a manner as to let the engineer manipulate the geometry, to allow for the easy positioning
of grid mesh control points. The ability to view and modify initial sub-division of
geometry and to mark sections of the mesh for refinement or de-refinement is also
required. Once the domain is divided up satisfactory the user should then be given
several options to which methods and types of elements to generate over each region.

9.4 Final remark
The bisection method of generating three dimensional unstructured meshes, has

been proven to be a most valuable technique with many path ways for further
development. It is hope that this project will continue and expand into a fully commercial
mesh generation tool, incorporated within appropriate software products.

page 194

Chapter 9

9.4 REFERENCES

[BaB83] R.E. Barnhill and W. Boehm (1983), Surfaces in computer aided geometric
design, North-Holland publishing.

[BaD89] C.L. Bajaj and T.K. Dey (1989), Robust decompositions of polyhedra,
Foundations of Software Technology and Theoretical Computer Science,
Ninth Conference Proceedings, Springer-Verlag, Pages 267-279.

[BaD90] C.L. Bajaj and T.K. Dey (1990), Polygon nesting and robustness,
Information Processing Letters, Vol: 35, Iss. 1, Pages 23-32.

[BaD92] C.L. Bajaj and T.K. Dey (1992), Convex decomposition of polyhedra and
robustness, SIAM Journal of Computing, Volume 21, Pages 339-364.

[Bak92] T.J. Baker (1992), Tetrahedral mesh generation by a constrained Delaunay
triangulation, Proceedings IMACS '91, 13th World congress on
computation and applied mathematics, July 22-26,1991 Trinity college
Dublin Ireland, Vol. 1 , Pages 114-115.

[BaM91] C. Bajaj and K. Myung-Soo (1991), Convex hulls of objects bounded by
algebraic curves, Algorithica, Vol. 6, Iss 4, Pages 533-553.

[Bay73] Bays, C. (1973), Some Techniques for structuring chained hash tables,
Computer Journal 16:2 (May) Pages 126-131.

[Bau75] B. Baumgart (1975), A polyhedron representation for computer vision, In
National Computer Conference, pages 589-596, AFIPS Conf. Proc.

[BeySl] W.H. Beyer (1981), CRC standard mathematical tables, 26th edition,
CRC press Boca Raton Florida.

[BKK84] F.W. Burton, VJ. Kollias and J.G. Kollias (1984), Consistency in
Point-in-Polygon tests, The computer journal, Vol 27, No. 4,
Pages 375-376.

[BoP91] J. Bonet and J. Peraire (1991), An alternating digital tree (ADT) algorithm
for 3D geometric searching and intersection problems, International Journal
for Numerical Methods in Engineering, Vol. 31, Pages 1-17.

[BowSl] A. Bowyer (1981), Computing Dirichlet tessellations, The computer journal
Vol. 24, No. 2, Pages 162-166.

[BoW83] A. Bowyer and J Woodwark (1983), A programmers geometry,
Butterworths publications.

page 195

[Bra79]

[Bre87]

[BrC92]

[Bro92]

[BSC91]

[Bur90]

[Byk76]

[CaM91a]

[CEG92]

[CeS85]

[CFF85]

___________________________Chapter 9

I.C. Braid, (1979) Notes on a Geometric Modeller, CAD Group Document
101, Computer Laboratory, University of Cambridge, June 1979,
Revised 1980.

I.E. Bresenham (1987), Ambiguities in incremental line rastering,
Theoretical foundations of computer graphics and CAD,
Editor R.A. Earnshaw, NATO ASI Series, Pages 329-358.

H. Bronnimann and B. Chazelle (1992), How hard is halfspace range
searching, Proceeding of the Eighth Annual Symposium on Computational
Geometry, Publisher ACM, Pages 271-275.

K. Brodlie (1992), An assessment of general purpose visualization
software, SERC CFD community club, Visualization in computational fluid
dynamics, Professor P. Huctchinson (Chairman), Proceeding from the
seminar at RAL on 9th March 1992.

T.D. Blacker, M.B. Stepshenson and S. Canann (1991), Analysis
automation with paving: A new quadrilateral meshing technique, Advances
in Engineering Software, Volume 13, numbers 5/6, Pages 332-337.

E.K. Buratynski (1990), A fully automatic three-dimensional mesh
generator for complex geometries, International Journal for Numerical
Methods in Engineering, Vol. 30, Pages 931-952.

A.Bykay (1976), Automatic generation of triangular grids: 1-subdivision
of a general polygon into convex subregions; 2- triangulation of convex
polygons. International Journal for numerical methods in Engineering,
Vol 10, 1329.

J.H. Cavendish, and S.P. Marin (1991), Feature-based design and finite
element analysis of functional surfaces, The mathematics of finite elements
and applications VII, Academic Press Limited, Pages 129-140.

B. Chazelle, H. Edelsbrunner, L.J. Guibas, R. Pollack, R. Seidel, M. Sharir
and J. Snoeyink (1992), Counting and cutting cycles of lines and rods in
space, Computational Geometry: Theory and Applications, Vol. 1, Iss. 6,
Pages 305-323.

Z.J. Cendes and D.N. Shenton (1985), Complementary error bounds for
foolproof finite element mesh generation, Mathematics and computers in
simulation 27, Pages 295-305, North-Holland.

J.H. Cavendish, D.A. Field and W.H. Frey (1985), An approach to
automatic three-dimensional finite element mesh generation, International
Journal for Numerical Methods in Engineering, Vol. 21, Pages 329-347.

page 196

[CFM91b]

[Cha92]

[Cha91]

[Cha91a]

[Cha89]

[Cha84]

[ChG92]

[ChG89]

[Cho93]

[ChP92]

[ChP90]

[CJL89]

__________________________________Chapter 9
J.H. Cavendish, W.H. Frey and S.P. Marin (1991), Feature-based design
and finite element mesh generation for functional surfaces, Advances in
Engineering Software, Volume 13, numbers 5/6, pages 226-237.

B. Chazelle (1992), An optimal algorithm for intersecting
three-dimensional convex polyhedra, SIAM Journal on Computing,
Vol 21, Iss. 4, Pages 671-696.

B. Chazelle (1991), Triangulating a simple polygon in linear time, Discrete
and Computational Geometry , Vol 6, Iss, 5, Pages 485-524.

B. Chazelle (1991), An optimal convex hull algorithm and new results on
cutting, Proceeding 32nd Annual Symposium on Foundations of Computer
Science, IEEE Computing Soc. Press, Pages 29-38.

B. Chazelle (1989), An optimal algorithm for intersecting
three-dimensional convex polyhedra, IEEE Computing Soc. Press,
Pages 589-591.

B.Chazelle (1984), Convex partitions of polyhedra: a lower bound and
worst-case optimal algorithm, SIAM Journal of Computing ,
Vol. 13, Pages 488-507.

B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting
line segments in the plane (1992), Journal of the Association for
Computing Machinery, Vol 29, Iss 1, Pages 1-54.

B. Chazelle and L.J. Guibas (1989), Visibility and intersection problems
in plane geometry, Discrete and Computational Geometry, Vol. 4, Iss 6,
Pages 551-581.

M-Y Chow (1993), Control Volume Unstructured Mesh Procedure for
Convection-Diffusion Solidification Processes, PhD dissertation,
University of Greenwich, London U.K.

B. Chazelle and L. Palios (1992), Decomposing the boundary of a
non-convex polyhedron, Algorithm Theory - SWAT '92. Third
Scandinavian Workshop Proceedings, Springer-Verlag, Pages 364-375.

B. Chazelle and L. Palios (1990), Triangulating a nonconvex polytope,
Discrete and Computational Geometry, Vol.5, Iss. 5, Pages 505-526.

F. Cheng, J.W. Jaromczyk, J. Lin, S. Chang and J. Lu (1989), A parallel
mesh generation algorithm based on the vertex label assignment scheme,
International Journal for Numerical Methods in Engineering, Vol. 28,
Pages 1429-1448.

page 197

Chapter 9

[CoJ87]

[Con89]

[Cox93]

[DBS92]

[Dew88]

[DSB92]

[ELJ91]

[EOD93]

[Fem91]

[FaP79]

[FaR92]

[FeP75]

[FHL90]

M.A. Corthout and H. Jonkers (1987), A new point containment algorithm
for B-Regions in discrete plane, Theoretical foundations of computer
graphics and CAD, Editor R.A. Earnshaw, NATO ASI Series,
Pages 279-306.

JJ. Connor (1989), A knowledge based approach for Boundary element
mesh design, Supercomputing in Engineering Structures, Editors P.Melli
and C.A. Brebbia, Computational Mechanics publishing Pages 255-267.

J.Cox, and M.E. Byu (1993), To appear in the Proceeding of the IMA
workshop on Numerical grid generation, July 1993, Minosota.

T.K Dey, C.L. Bajaj and K. Sugihara (1992), On good triangulations in
three dimensions, International Journal of Computational Geometry and
Applications, Vol: 2, Iss: 1, Pages 75-95.

B.R. Dewey (1988), Computer Graphics for Engineers,
Harper and Row publishers Inc.

T.K. Dey, K. Sugihara and C.L. Bajaj (1992), Delaunay triangulation in
three dimensions with finite precision arithmetic, Computer-Aided
Geometric Design, Vol. 9, Iss: 6, Pages 457-470

M.G. Everett, P.J. Lawrence, B. Jones and M.Cross (1991), Software tools
for aspects of computational modelling codes for materials processing,
Mathematical Modelling for Materials Processing, Sept 1991,
Editors M.Cross, J.F.T. Pittmain and R.D. Wood, Pages 529-538.

M.G. Edwards, J.T. Oden and L. Demkowicz (1993), An h-r adaptive
approximate Riemann solver for the Euler equation in two dimensions,
SIAM Journal for scientific computing, Jan 93, Vol 14, No. 1,
pages 185-217.

Femgem/Femview, User manual, Femview limited, July 1991

I.D. Faux and M.J. Pratt (1979), Computational geometry for design and
manufacture, Ellis Horwood (pub), John Wiley & Sons, New York, 1979.

B. Falcidieno and O. Ratto (1992), Two-manifold cell-decomposition of
r-sets, EUROGRAPHICS 1992, Vol. 11 number 3, Pages 393-404,
Editors A. Kilgour and L. Kjelldahl, B. Blackwell publishers.

P. Finnigan, A Hathaway and W. Lorensen (1990), Merging CAT and
FEM, Mechanical engineering 32 (July 1990) ,Pages 32-38.

page 198

[Flo87]

[For87]

[Fry87]

[Fry93]

[Gad52]

[Gas83]

[GHS90]

[GHS88]

[G1A81]

[GrY86]

[Gui90]

[GuP91]

[GuS85]

_____________________________Chapter 9
Leila De Floriani (1987), Surface representations based on triangular grids,
The Visual Computer Vol. 3, Pages 27-50

A.R. Forrest (1987), Geometric Computing Environments, Theoretical
foundations of computer graphics and CAD, Editor R.A. Earnshaw,
NATO ASI Series, Pages 185-197.

W.H. Frey (1987), Selective refinement: A new strategy for automatic node
placement in graded triangular meshes, International Journal for Numerical
Methods in Engineering, Vol. 24, pages 183-220.

Y.D. Fryer (1993), A Control Volume Unstructured Grid Approach to the
Solution of the Elastic Stress-Strain Equation, PhD dissertation,
University of Greenwich, London U.K.

J.W.Gaddum (1952), The sums of dihedral and trihedral angles in a
tetrahedron, American mathematics monthly 59, Pages 370-371.

C.Gasson (1983), Geometry of Spatial forms, Ellis Horwood Ltd.

P.L. George, F. Hecht and E. Saltel (1990), Fully automatic mesh
generator for 3D domains of any shape, Impact of Computing in Science
and Engineering, Vol. 2, Iss 3, Pages 187-281.

P.L. George, F. Hecht, and E. Saltel (1988), Constraint of the Boundary
and Automatic mesh generation, Proceeding Second international
conference on numerical grid generation in computational fluid, Miami,
Pages 589-597, December 1988.

H.E1 Gindy and D. Avis (1981), A linear algorithm for computing the
visibility polygon from a point, Journal of Algorithms, Vol. 2,
pages 186-197.

D. Greene and F.F. Yao (1986), Finite-Resolution Computational
Geometry, Manuscript, Xerox PARC.

M. Guiggiani (1990), Error indicators for adaptive mesh refinement in the
Boundary element method - a new approach, International Journal for
Numerical Methods in Engineering, Vol. 29, Pages 1247-1269.

H.N. Giirsoy N.M. Patrikalakis (1991), Automated interrogation and
adaptive subdivision of shape using medial axis transform, Advances in
Engineering Software, Volume 13, numbers 5/6, Pages 287-302.

L. Guibas and J. Stolfi (1985), Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams, ACM Trans.
Graphics 4, Pages 75-127

page 199

____________________________Chapter 9
[HaA82] R.Haber and J.F. Abel (1982), Discrete transfmite mapping for the

description and meshing of three-dimensional surfaces using interactive
computer graphics, International journal for numerical methods in
engineering , Volume 18, Pages 41-66.

[Her77] L.R. Herman (1977), Laplacian-isoparametric grid generation scheme,
Journal for mechanical division ASCE, Vol 102 , pages 749-759.

[Hoa61] C.A.R. Hoare (1961), Quicksort. Algorithm 63: Partition, and Algorithm.
CACM 4:7 (July).

[Hoa62] C.A.R Hoare (1962), Quicksort, Computer Journal 5:1, Pages 10-15.

[Hof89] C.H. Hoffmann (1989), The problem of accuracy and robustness in
geometric computation, Computer , March 1989 Pages 31-41.

[HoJ93] C.M. Hoffmann and R. Juan (1993), Erep - An editable, high-level
representation for geometric design and Analysis, To appear in Geometric
and production modelling, Editors P. Wilson , M. Wozney, M. Pratt ,
North-Holland.

[JiW90] H.Jin and N.E. Wiberg (1990), Two dimensional mesh generation, adaptive
remeshing and refinement, International Journal for Numerical Methods
in Engineering, Vol. 29, Pages 1501-1526.

[Joe86] B. Joe (1986), Delaunay triangular meshes in convex polygons, SIAM
Journal of Sci. Stat. Comput., Vol. 7, Pages 514-539.

[Joe89] B. Joe (1989), Three-dimensional triangulations from local transformations,
SIAM Journal of Sci. Stat. Comput., Vol. 10, Pages 718-741.

[Joe91a] B. Joe (1991), Construction of three-dimensional Delaunay triangulations
using local transformations, Computer Aided Geometric Design, Vol. 8,
Pages 123-142.

[Joe91b] B. Joe (1991), Delaunay versus max-min solid angle triangulations of
three-dimensional mesh generation, International Journal for Numerical
Methods in Engineering, Vol. 31, Pages 987-997.

[Joe92a] B. Joe (1992), GEOMPACK - a software package for generation of
meshes using geometric algorithms, International Journal for Numerical
Methods in Engineering, Vol. 24, Pages 325-331.

[Joe92b] B. Joe (1992), Three-dimensional boundary-constrained triangulations,
Artificial intelligence, Expert systems and Symbolic computing,
Editors E.N. Houstis and J.R. Rice, Elservier science publishers B.V.
(North-Holland), Pages 215-222

page 200

________ __________________Chapter 9

[Joe92c] B. Joe (1992), Three-dimensional boundary constrained triangulations,
Proceedings IMACS '91, 13th world congress on computation and applied
mathematics, July 22-26,1991 Trinity college Dublin Ireland,
Vol. 1 , Pages 116-117.

[Joe93a] B. Joe (1993), Construction of k-dimensional Delaunay triangulations using
local transformations, to appear in SIAM J. Sci. Comput.,
14th November issue.

[Joh92] B.P. Johnston (1992), Fully automatic two dimensional mesh generation
using normal offsetting, International journal for numerical methods in
engineering, Vol. 33, Pages 425-442.

[JoS86] B. Joe and R. B. Simpson (1986), Triangular meshes for regions of
complicated shape, International Journal for Numerical Methods in
Engineering, Vol. 23, Pages 751-778.

[JoS93] B.P. Johnston and J.M. Sullivan (1993), A normal offsetting technique for
automatic mesh generation in three dimensions, International journal for
numerical methods in engineering, Vol. 36, Pages 1717-1734.

[JSK91] B.P. Johnston, J.M. Sullivan and A. Kwasnik (1991), Automatic conversion
of triangular finite element meshes to quadrilateral elements.
International journal for numerical methods in engineering,
Vol. 31 Pages 67-84.

[JuL93] Y.H. Jung and K. Lee (1993), Tetrahedron-based octree encoding for
automatic mesh generation, Computer-aided design, Vol. 25 No. 3,
Pages 141-153

[KaE70] H.A. Kamel and Eisenstein K.K. (1970) Automatic mesh generation in two
and three dimensional interconnected domains, Symp. high speed
computing, Elastic structures, Liege, Belgium, 1970, pages 455-475.

[Kar90] M. Karasick (1990), Constructing strongly convex hulls using exact or
rounded arithmetic, Proceedings of the sixth ACM Symposium on
Computational Geometry, Berkeley Canada, Pages 44-52.

[Knu73] D.E Knuth (1973), The art of computer programming; Vol 3: searching
and sorting, Addison-Welsey, Reading Massachusetts.

[KSP87] A. Kela , M. Saxena and R. Perucchio (1987), A hierarchical structure for
automatic meshing and adaptive FEM analysis, Engineering Computing
Vol 4 June 1987, Pages 104-112.

[Law72] C.L. Lawson (1972), Transforming triangulations,
Discrete mathematics 3,1972 Pages 365-371.

page 201

____^^ ___________________________Chapter 9
[Law77] C.L. Lawson (1977), Software for Q surface interpolation, Mathematical

software HI, editor J.R. Rice, Academic press, New York, Pages 161-194.

[Law91] PJ. Lawrence and M. Cross (1991), Development of an automatic
three-dimensional mesh generator, CFD news, Vol 2, Number 2 Sep 1991,
Pages 8-14.

[LeC78] B.A. Lewis and M. Cross (1978), IFECS-an interactive finite element
computing system, Applied Mathematical modelling, Volume 2,
September 1978 , Pages 165-175.

[Lee83] Y.T.Lee (1983) Automatic Finite Element mesh generation based on
constructed solid geometry, PhD thesis, University of Leeds.

[LeR76] B.A. Lewis and J.S. Robinson (1976), Triangulation of planar regions with
applications, The computer journal, Vol 21, No. 4, Pages 324-331.

[LiJ93] A. Liu and B. Joe (1993), Relationship between tetrahedron shape
measures, submitted for publication.

[Loh88] R.Lohner (1988), Some useful data structures for the generation of
unstructured grids, Communications in applied numerical methods, Vol 4,
Pages 123-135.

[Lo85]

[Lo88]

S.H.Lo (1985), A new mesh generation scheme for arbitrary planar
domains, International Journal for numerical methods in Engineering,
Vol. 21, Pages 1403-1426.

J.A. Lo (1988), An approach to automatic course three dimensional finite
element mesh generation, Master's thesis 1988, Rensselaer Polytechnic
Institute, U.S.A.

[LoS91] S.H. Lo (1991), Automatic mesh generation and adaptation by using
contours, International Journal for Numerical Methods in Engineering,
Vol. 31, Pages 689-707.

[LPG88] R.Lohner and P.Parikh, C. Gumbert (1988), Interactive generation of
unstructured grids for 3-D problems, Second Int. Conf. on Numerical grid
generation in Computational Fluid Dynamics, Miami Beach, Florida U.S.A.
5-9th December 1988, Pineridge Press.

[Lyu63] L.A. Lyusternik (1963), Convex figures and polyhedra, New York,
Dover Publications.

[Man89] M.Mantyla (1989) Boolean operations of 2-manifolds through vertex
neighbourhood classification, Transactions on Graphics, Volume 5,
Number 1, Pages 1-29, Jan 86.

page 202

___________________________Chapter 9

[Mar88] Mantyla, Martti (1988), An introduction to solid modelling, Computer
science press.

[Mas93] G. Masotti (1993), Floating-point numbers with error estimates, Computer
aided design journal, Vol. 25, No. 9, Pages 524-538.

[MCL81] A.O. Moscardini, M. Cross and B.A. Lewis (1981), Assessment of three
automatic triangular mesh generations for planar regions, Advances in
engineering software, Vol 3, No. 3, Pages 108-114.

[MeP77] B. Mercier and O. Pironneau (1977), Some examples of implementation
and application of finite elements method, Rapport de Recherche No. 248,
IRIA, Le Chesnay, France 1977.

[Mid87] A.E. Middleditch (1987), The representation and manipulation of convex
polygons, Theoretical foundations of computer graphics and CAD,
Ed. R.A. Earnshaw, Nato ASI Series.

[Mil75] W Miller (1975), Software for round-off errors analysis, ACM transactions
on Mathematical software, Vol. 1, No. 2, Pages 118-128

[MLC83] A.O. Moscardini, B.A. Lewis and M. Cross (1983), Agthom-automatic
generation of triangular and higher order meshes, International Journal for
Numerical Methods in Engineering, Vol. 19, Pages 1331-1353.

[MoB83] R. Mohr and R. Bajcsy (1983), Packing volumes by spheres, IEEE
transactions on pattern analysis and machine intelligence, Vol PAMI-5,
No. 1, Jan 1983, Pages 111-116.

[MTC92] R.B. Morris, Y. Tsuji and P. Carnevali (1992), Adaptive solution strategy
for solving large systems of p-type finite element equations, International
Journal for Numerical Methods in Engineering, Vol. 33, Pages 2059-2071.

[NoP88] A.K. Noor and J.M. Peters (1988), Error indicators and accuracy
improvements of finite element solutions, Engineering Computing Vol 5
March 1988, Pages 39-49.

[Pat89] PATRAN Plus 2.4 released, Infografik , No. 6, Page 30.

[Per89] A. Perronnet (1989), Proceeding of the fifth international sylupotrium on
numerical methods in Engineering, R.Gruber, J.Periaux,R.P.Shaw editors,
Springer Verlag.

[PPF88] J.Peraire, J. Periro, L. Formaggia, K. Morgan, O.C. Zienkiewicz (1988),
Finite element EULAR computations in 3-D AIAA, 26th Aerospace
Science Meeting January 11-14 1988 Reno Nevada U.S.A.

page 203

_ ____ _____________________________Chapter 9

[Pie91] L A Piegl (1991), On NURBS: A Survey, ffiEE Computer Graphics &
Applications, 11(1):55-71, January 1991.

[PPM92] J. Peraire, J, Peiro and K. Morgan, Adaptive remeshing for three-
dimensional compressible flow computations, Computational physics ,
Vol. 103, No. 2, December 1992, Pages 269-285.

[Ram82] L.H. Ramshaw (1982), The Braiding of Floating Point Lines, Xerox Palo
Alto Research Centre, CSL Notebook entry.

[Ran91] E. Rank (1989), Adaptive h-,p- and hp- Versions for boundary integral
element methods, International Journal for Numerical Methods in
Engineering, Vol. 28, Pages 1335-1349.

[RaR93] H Ratschek and J Rokne (1993), Test for intersection between plane and
box, Computer aided design journal, Vol. 25, No. 4, Pages 249-250.

[Rec73] Rechenberg I (1973), Evolutionsstrategie, Friedrich Froman Verlag,
Stuttgart, 1973.

[ReqSO] A.A.G. Requicha (1980), Representations of solid objects-theory and,
methods, and systems. ACM Computing Surveys, 12(4):437-464
Dec. 1980.

[Rob87]

[Rog85]

[Sab85]

[Sab91]

[Sar83]

[SBS79]

[Sch78]

J. Robinson (1987), CRE method of element testing and the Jacobian shape
parameters, Engineering Computing, Vol 4 June 1987 pages 113-127

D.F. Rogers (1985), Procedural elements for computer graphics, London,
McGraw-Hill 1985.

M.A. Sabin (1985), The state of Art, Pages 411-482 in fundamental
algorithms for computer graphics, ed R.A. Earnshaw,
NATO ASI Series F17, Springer Verlag (1985)

M.A. Sabin (1991), Criteria for comparison of automatic mesh generation
methods, Advances in engineering software, Volume 13 No. 5/6,
Pages 220-225.

R.F. Sarrage (1983), Algebraic methods for intersections of Quadric
surfaces in GMSOLID, Computer vision, graphics, and image
processing 22, Pages 222-238.

A.J.G. Schoofs, L.H.T.M. Van Beukering and M.L.C. Sluiter (1979), A
general purpose two-dimensional mesh generator. Advances in Engineering
Software, Vol l,No.3,Pages 131-136.

B. Schachter, Decomposition of polygons into convex sets (1978), IEEE
Transactions in computing, Vol. C-27, Pages 1078-1082

page 204

[ScS88]

[ScS89]

[ScS90]

[ShL91]

[ShG91]

[S1H82]

[S1H84]

[Sol85]

[Sto91]

[TaA91]

[ThaSO]

[Thm85]

___________________________Chapter 9

W.J. Schrodeder and M.S. Sherhard (1988), Geometry-based fully
automatic mesh generation and the delaunay triangulation, International
Journal for Numerical Methods in Engineering, Vol. 26, Pages 2503-2515.

W.J. Schrodeder and M.S. Sherhard (1989), An O(N) Algorithm to
automatically generate geometric triangulations satisfying the Delaunay
circumsphere criteria, Engineering with computers, Vol 5, Pages 177-189.

W.J. Schrodeder and M.S. Sherhard (1990), A combined Octree/Delaunay
method for fully automatic 3-D mesh generation, International Journal for
Numerical Methods in Engineering, Vol. 29, pages 37-55.

M.S. Shephard and J.A. Lo (1991), Automatic generation of coarse
three-dimensional meshes using the functionality of a geometric modeller.
Advances in Engineering Software,Volume 13,numbers 5/6, Pages 273-286.

M.S. Shephard and M.K. Georges (1991), Automatic three-dimensional
mesh generation by the finite octree technique, International journal for
numerical method in engineering, Vol. 32, Pages 709-749.

M.L.C. Sluiter and D.L.Hansen (1982), A General purpose automatic mesh
generator for shell and solid finite elements, Computers in Engineering,
Vol.3 (L.E Hulbert,Ed), Book Bo. G00217,ASME,1982, Pages 29-34.

S.W. Sloan, G.T. Houlsbyan (1984), Implementation of Watson's algorithm
for computing 2-dimensional Delaunay triangulations, Advances in
Engineering Software, volume 6, number 4, Pages 192-197.

B.J. Solomon (1985), Surface Intersections for Solid Modelling, University
of Cambridge, PhD. Thesis 1985.

I. Stojmenovic (1991), Bisection and ham-sandwich cuts of convex
polygons and polyhedra, Information processing letters, Vol 38,
Iss. 1, Pages 15-12.

T.K.H. Tarn and C.G. Armstrong (1991), 2D Finite element mesh
generation by medial axis subdivision, Advances in Engineering Software,
Volume 13, numbers 5/6, Pages 313-323.

W.C. Thacker (1980), A brief review of techniques for generating irregular
computational grids", International journal for numerical methods in
engineering, Vol. 15, 1980, Pages 1335-1341.

J.F. Thompson (1985), A survey of dynamically-adaptive grids in the
numerical solution of partial differential equations, Applied numerical
Mathematics 1, Pages 3-27.

page 205

[ThoSO]

[Tou85]

[TPA93]

[WatSl]

[Wei88]

[W6r81]

[YeS84]

[YTH91]

[Z1P71]

__________________________Chapter 9

Thamas A. Standish (1980), Data structure techniques, Addison-wesley
publishing company.

T. Tossaint (1985), Computational Geometry, Elsevier science publishers,

T.K.H. Tarn, M.A. Price, C.G. Armstrong and R.M. McKeag, Computing
the critical points on the medial axies of a planar object using Delaunay
point triangulation algorithm, submitted to IEEE PAMI.

D.F. Watson (1981), Computing the n-dimensional Delaunay tessellation
with application to Voronoi polytopes, The compute journal, Vol 24, No.2,
Pages 167-172.

K.J. Weiler (1988), Boundary graph operators for non-manifold geometric
modelling topology representations, Geometric Modelling for CAD
Applications, Wozny, Mclaughlin and Encaracao (eds)
North Holland 1988, Pages 37-66.

B. Wb'rdenweber (1980), Automatic mesh generation of 2 and 3
dimensional curvilinear manifolds, PhD dissertation , St John's college ,
University of Cambridge.

M.A. Yerry and M.S. Shephard (1984), Automatic three-dimensional mesh
generation by the modified-octree technique, International Journal for
Numerical Methods in Engineering, Vol. 20, Pages 1965-1990.

M.M.F. Yuen, S.T. Tan and K.Y. Hung (1991), A Hierarchical approach
to automatic finite element mesh generation, International Journal for
Numerical Methods in Engineering, Vol. 32, Pages 501-525.

O.C. Zienkiewicz and D.V. Phillips (1971), An automatic mesh generation
scheme for plane and curved surfaces by isoparametric co-ordinates,
International journal for numerical methods in engineering, Vol. 3,
Pages 519-528.

page 206

Appendix

APPENDIX

page 207

Appendix

Al Calculating length of a side of an equilateral triangle given its area.

One of the requirements of the mesh generator is to calculate the length of the

side of an equilateral triangle given its area A.

X

Figure A 1.1 Equilateral triangle.

The area of a triangle is calculated by the cross product of the direction vectors a,b
[Dew88] of two sides :

A=0.5 aXb where aT=[xrx0,yry0]
bT=[x2-Xo,y2-y0]

If we assume (Xo,y0) is at the origin, and the altitude of the triangle is along the axes

X=0. Hence :-

2A=x 1y2-x2y 1 but x1=x2

2A=x 1 (y2-y 1) from the diagram y2=l/2 and y^-1/2
2A=lx! however 12= !2/4+X! therefore x^CSPM)05 where 1>0
A=3°'5l2/4

Therefore the length of a side of an equilateral triangle given its area is:

44,

page 208

______________________Appendix

A2 Calculating length of an edge of an equilateral tetrahedral given its volume.

For an equilateral tetrahedron Figure A2.1 the length of an edge has to be

calculated from its volume V.

Figure A2.1 Equilateral tetrahedra.

The volume of a tetrahedral is calculated from the equation V=(aXb.c_)/6 [Dew88] where

a,b,£ are unit direction vectors:

aT=(xrx0,yry0,zrz0)

bT=(x2-x0,y2-y0,z2-z0)

cT=(x3-x0,y3-y0,z3-z0)

If we assume that the base of tetrahedron is on the z=0 axes, with the altitude of

the base along the x=0 axis and (x0,y0,z0) is the origin, then:

aXb=305!2/2 from Appendix Al.

V=(0,0,3a5l2/2).(x3 ,y3,z3)/6
V=z3305l2/12 however 12= !2/4+z3 therefore z,=(312/4)a5 where 1>0

V=l3/8

Therefore, the length of an edge of an equilateral tetrahedron given its volume is:

page 209

Appendix

A3 Inner and Outer Boundary

Figure A3.1

In the above diagram two identical boundaries are represented, one is a closed

domain as in Figure A3.1A and the other is an inner boundary, Figure A3.IB

representing a hole. The mesh generator has to be able to distinguish between the two

types, and this can be done by summing the angles of the vectors that form the boundary.

Each angle has a value of between -n to 0 if it is a convex angle, or 0 to 71 if it is

concave [Mar88]; Figure A3.2.

If we sum the otj angles in the above

domain:

n

E ar±27C \Anale SSoncave

Figure A3.2

A value of -2n indicates an exterior boundary where 2n is an interior boundary.

page 210

________________________Appendix

A4 Adjacent edge searching.
One common operation carried out in mesh generation is the initialization of

adjacency tables. For example, in the generation of an adjacency table for polyhedral

domains, in which faces sharing a common edge must be established.

A simplistic adjacency searching technique is:

(i) for each face ft in the polyhedral domain

(ii) loop over each edge Cj of the face ff

(iii) for each face fj/ftft, of polyhedra domain

(iv) loop over each edge Cj of the face fi

(v) If the two edges e(and 6j match

(vi) Update adjacency table and return to step (ii)

The above algorithm is slow and of order n2 ; a far superior method is to

implement a hashing table technique which results in a procedure of computational order
of nlog(n).

(i) for each face ft in the polyhedra domain

(ii) loop over each edge Cj of the face ff

(iii) search the hashing table for an entry hi that matches et .

(iv) If entry h{ exists, get Jj and e^ from the hashing table

Update adjacency table and remove the entry ^ from the

hashing table.

Otherwise add entry e{ to hashing table.

At the completion of the above algorithm the hashing table should be empty, if

an adjacency table is successfully generated. The polyhedral faces are stored in a one

dimensional array VL, section 7.2.2, with a face pointer structure FP pointing to the head

of each face vertex list in this vector. Therefore the information store in the hashing

function data structure is the two vertices a,b of edge ef, where a<b, a pointer c which

points to the edge <?, in the array VL, together with the hash function chaining list h. The

hashing table together with hashing table structure is illustrated in Figure A4.1. The

hashing table ht is of a size Htsize, where Htsize should be a prime number greater than

number of edges n in the mesh, this is to minimize collision of the hashing function. The

hashing function used to find the hash key in the hashing table is (a*n+b) mod htsize.

page 211

Appendix

hashing table

Figure A4.1 : Hashing table with associated data structure.

When an associate entry in FV is required for the edge Cj. The two vertices a and

b are used to generate a hashing key value k. The pointer ht[k] gives the starting location

in the hashing function structure of a linked list of edges, which generate the same key

k. The link list is then search for an entry that matches the edge et . If a matching edge

is found, the value of c gives the location of the adjacent edge ^ in the array VL. This

entry is then removed from the hashing structure and returned to the free storage. Column

a is used as a free storage pointer link list when the entry is not used for storing edge

data, a free storage pointer is indicated by a negative value in this column.

A fuller description of hashing tables and functions is given in Data structure

techniques by Standish [ThoSO].

page 212

______________________Appendix

AS Numerical Precision
Geometric algorithms are notorious in practice for numerical instability. Many

algorithms are far from robust for numerical reasons. A common fiction is that

computer's floating-point arithmetic is "accurate enough". Therefore, a common "cure"
for numerical problems is an increase in floating point precision. Obviously, this is not
a real cure, but the effect should be a reduction in the frequency of numerically unstable
cases. In the case of intersecting line segments, increasing precision would permit

accurate intersection of lines at shallower angles. However, the root of many problems
lie in the elementary ill-conditioning of the equations.

The problem with many systems is that we are not dealing with random
configurations, and lines that are nearly parallel are relatively frequent, e.g. computer-
aided design applications. Therefore, shallow intersection angles are common, and merely
increasing the precision is not a substitute for correct handling of special cases, using
appropriate numerical tolerances. Forrest [For87] quotes Solomon [Sol85] in saying that
it is best to carry out all geometric computations as near to the origin as possible. This
is simply that we should not expect significance if we subtract two large floating point
numbers.

Another well known phenomenon in floating point arithmetic, is obtaining
different results from geometric computations depending on the order of evaluation. For
example, if one evaluation order causes numerical overflow, the user often finds that a
slightly different approach eliminates the problem. More dangerously, if numerical
overflow does not occur, we can still obtain inconsistent results which can be difficult

to reconcile.

Even restricting the geometry is not enough to guarantee correct results: Ramshaw
[Ram82] reports difficulties which arose in computation with simple line segments
defined by integer end points, even when using double precision floating point arithmetic.
These problems have been considered by many works [GrY86][Bre87][CoJ87]. Corthout
[CoJ87] technique is to map to an integer grid at the precision of the user's modelling
space. This has the merit of regularising the finite grid we are forced by the computer

page 213

________________________Appendix

to employ.

To try and deal with the above problems the new bisection mesh generator, has

various techniques implemented. The simplest approach applied is a combination of

Relative and absolute error [Hof89]. This is primary used for the comparison of two

numbers [Mas93], e.g. test if x is equal to v:

|x->|<e(l-M) where M=MAX(|x|,|y|), e is machine tolerance.

Other examples are testing if the determinant of a matrix is zero:

eMAX[l,ara2an]>det[A]

Where a... are the entries in the matrix A.

Algorithms such as line and plane intersection are based on robust standard

techniques [RaR93][Man88][BKK84] using interval arithmetic, see [Hof89][Mas93]. The

bisection algorithms, Chapter 7 section 3, uses techniques to try and avoid geometry

features which may cause numerical problems in later geometry operations. This is

achieved by rejecting cut planes which introduce any short edges or acute angles into the

model. This of cause results in a cost in CPU time, however short or acute angles are not

a desirable feature of a tetrahedral mesh. This is also coupled with geometric reasoning

[BaD92J. Therefore, if there is a geometry operation which may result in an inconsistent

decision, a choice is taken to which outcome is less detrimental to the program. For

example, the bisection algorithm implemented in the convex shrinking technique, Chapter

7.4, labels all nodes which are close to the bisection plane, as above. This many result

in some polyhedral faces becoming non-planar, however slightly non-planar faces can be

easily tolerated in the subsequent computation of nodal placement.

page 214

___________________________Appendix
The projection of points and faces onto planes, as in the Edge following cutting

routine Chapter 7 section 7.3.3, utilizes methods of Perturbation [Hof89]. This technique

is where the initial data is slightly altered, during computation, to ensure a well

conditioned set of geometric entities. This is achieved by data normalization [Hof89]

where vertices positions are slightly altered so that they are not too dose to other

geometry entities.

However, many of the more complex error estimation techniques have not been

implemented in the mesh generator, see [Mas93][Mil75]. Since these methods were

considered unnecessary, and can in some cases result in a CPU time increase of 100%

[Mil75]. Therefore, the main weapon used against rounding errors is avoiding
degeneracies [Hof89].

The most dangerous area for ill-conditioned data, is the geometry provided by the

user. This is where near degeneracies cannot always be avoided, and typical models will
possess acute angles or narrowing. The only defence which can be provided against this

problem is for the correct handling of special cases, using appropriate tolerances.

Numerical problems will hinder all attempts to provide a general purpose meshing
tool. As long as we stick to generality, we must realise that there are many perfectly
normal geometric constructions that cannot be represented correctly unless we use infinite

precision arithmetic [For87].

page 215

___________________________Appendix

A6 Mesh generator's modules.
The mesh generator, presented in this thesis, is constructed from a number of

different modules. These modules can be taken and interlinked in different ways, to build

other mesh generators. Figure A6.1 (Page 219), depicts the various modules and how they

interlink. The key below describes the various modules and types of links.

Module/Link Description

Arrow

Dashed Arrow

Double Arrow

2D Geometry Prep.

3D Geometry Prep.

Polyhedral Splitting
Algorithm

Contour Polyhedral
Splitting Algorithm

2D Convex Routine

3D Convex Routine

Direction of data flow.

This module uses another module.
e.g 3D geometry preparation module uses the "Polyhedral
Splitting Algorithm" and the "Contour Polyhedral Splitting
Algorithm".

Modules which interact,
e.g the 2D Recursive bisection technique interacts with the
"Line Node Generator"

Routine which identifies holes/sub-domains and corrects
direction of boundaries. This routine also removes
sub-polygon domains by introducing separators which divide
these domains into a number of simpler regions.
See Chapter 4 sections 4.6.1 and 4.6.4.

Routine which identifies holes/sub-domains, calculates and
corrects direction of face normals, and removes
sub-polyhedral by introducting separator faces which divide
these domains into simpler regions.
See Chapter 6 sections 6.5 and 6.12.

See Chapter 7 section 7.3.2.

See Chapter 7 section 7.3.4

This routine sub-divides the 2D geometry into a number of
convex regions. See Chapter 4 section 4.6.3.

This routine sub-divides 3D domains up into a number of
convex regions. See Chapter 6 section 6.7.

page 216

Appendix

Module/Link Description

Polyhedral Cutface
method

Edge Following
bisection method

See Chapter 7 section 7.3.1.

See Chapter 7 section 7.3.3.

2D Convex nodal
placement

2D Node insertion

Line Node Generator

3D Convex nodal
placement

3D Node insertion

Planar node generator

2D Delaunay

Routine which automatically generates nodes by shrinking
convex domains. See Chapter 4 section 4.6.5.

Once the initial mesh is generated from the boundary nodes,
this routine inserts the internal nodes.
See Chapter 4 section 4.5.2.

This routine works in conjunction with the recursive
bisection mesh generator, to automatically generate internal
nodes. This is achieved by generating nodes alone each
bisection line. See Chapter 4 section 4.5.2.

This routine automatically generates nodes by shrinking 3D
convex domains. See Chapter 7 section 7.4.

Once the initial mesh is generated from the boundary nodes,
this routine inserts the internal nodes.

This routine automatically generates nodes over a cut face,
which is generated by the 3D recursive bisection mesh
generator. This routine is the 2D recursive mesh generator
using the "Line node generation" routine.
See Chapter 5 section 5.2.

2D Delaunay routine using Lawson's swapping algorithm,
See Chapter 3 section 3.5.

2D Recursive Bisection 2D recursive mesh generator, see Chapter 4 section 4.3.

Surface Delaunay

3D Delaunay

Surface Delaunay mesh generator, see Chapter 5 section 5.3.

3D Delaunay using vertex transformations,
see Chapter 7 section 7.5.

page 217

Appendix

Module/Link

3D Min-max

Description

3D Min-max solid angle meshing, using local 3D
transformations, See Chapter 7 section 7.5.

3D Recursive bisection The initial 3D recursive mesh generator, described in
Chapter 6 section 6.2.

Binary mesh operations This routine is used if the 3D recursive mesh generator fails
to find a bisection. See Chapter 3 section 3.3.

2D Vertex Swapping

2D Laplace smoothing

2D vertex swapping, see Chapter 4 section 4.4.1.

2D Laplace smoothing, see Chapter 4 section 4.4.2.

Surface vertex swapping See Chapter 5 section 5.5.

Surface Laplace Smoothing See Chapter 5 section 5.4.

3D Vertex swapping See Chapter 7 section 7.6.

3D Laplace Smoothing See Chapter 4 section 4.4.2.

page 218

QT
Q

OQ c *< O I—
hj

O D 3 OQ O) 0 n»

Ge
om

et
ry

Pr
ep
ar
at
io
n

P
n

Po
ly

he
dr

al
S

pl
it

ti
ng

M
go

rit
hm

.

C
on

to
ur

Po
ly

he
dr

al
S

pl
it

ti
ng

f

I

3D 3-
eo

m
et

ry
Pr

ep
.

Co
nv

ex

Do
ma
in

Po
ly

he
dr

al
O

ut
fa

ce
tle

th
od

Ed
ge

ol
lo

vi
ng

bi
se
ct
io
n

N
o
d
a
l

P
l
a
c
e
m
e
n
t

2D

Co
nv
ex

no
da
l

pl
ac
em
en
t

2D

No
de

In
se
rt
io
n

No
de

Ge
ne

ra
to

r

3D

Co

nv
ex

no
da
l

pl
ac

em
en

t

3D

No
de

In
se

rt
io

n

Pl
an

ar
no

de
je

ne
ra

to
r
X

M
es

hi
ng

2D

D
el

au
na

y

2D ec
ur
si
ve

bi
se

ct
io

n

Su
rf

ac
e

3D 'D
el

au
na

y

3D
H

in
-m

ax

ID ec
ur
si
ve

is
ec

ti
on I

Bi
na
ry

ae
sh
.

op
er

at
io

ns

O
p
t
i
m
i
z
a
t
i
o
n

2D

Ve
rt
ex

wa
pp

in
g

2D

La
pl
ac
e

sm
oo

th
in

g

su
rf
ac
e

Ve
rt

ex
Sw

ap
pi

ng
-P

^

O

Su
rf
ac
e

La
pl

ac
e

sm
oo

th
in

g

D
Ve

rt
ex

va

pp
in

g

D
La

pl
ac

e
mo
ot
hi
ng

ft> a S"

Appendix

page 220

