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ABSTRACT

The aim of the research is to develop and apply algorithms for the solution of elastic
stress-strain equations based upon a control volume approach on unstructured meshes.
The purpose is to integrate the solution of solid mechanics with that of fluid flow and
heat transfer within the context of solidification problems in the casting of metals.

The conventional way of solving stress-strain problems is to use a finite element
approach which yields a set of linear equations relating loads to displacements. This
approach works very well and can also deal well with temperature loading, but becomes
problematic when flow and change of phase are included in a transient context. A major
set of projects are under way to develop an integrated suite of algorithms to model the
flow-cooling-solidification-residual stress development process. This project concerns
the component associated with the development of stress-strain distributions under
temperature and other loads.

A control volume formulation solution procedure for the elastic stress-strain equations
in two-dimensions has been developed that solves directly for displacements. The
formulation works for mixtures of quadrilateral and triangular elements in an
unstructured mesh. The control volume finite element code has been tested on a range
of problems, such as a cantilever loaded at one end, a beam with a thermal gradient
applied and a multi-material mixed element non-regular shape with a load applied. The
results for these test cases have been compared to those obtained by standard finite
element codes and analytical solutions where available. Besides the plane stress and
plane strain options, the model has been extended to include axisymmetric problems.
Two examples are used to test the validity of the algorithm for axisymmetric problems.
The results compare very well against other numerical results and analytic solutions for
the three special two-dimensional cases.

Another problem considered at an inteiface is that of friction between two solids. This
non-linear boundary condition has been included in the model. An example of this is
Silica in a mould being pressed, results for the stress-strain code are compared to
previous results.

The control volume stress-strain code has been integrated with the solidification heat
transfer code. Problems of simple castings have been considered. When a liquid
solidUies it may deform away from the mould, so possible air gap formation at the
mould/metal inteiface has been included in the model. Prediction of hole formation in
solidification, in the form of volumetric shrinkage and porosity, has been included into
the coupled heat transfer stress code via a simple model. Examples show encouraging
results when compared to experimental porosity results.
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Chapter 1

Introduction

This chapter details the reasons for performing the research described in this thesis. The

aim of the research is to produce a deformation algorithm that couples easily with a

computational fluid dynamics procedure using a generically similar solution technique

that can be applied to the casting process. Existing methods of solving the elastic stress-

strain equations are discussed including brief details concerning solution of the

computational fluid dynamics equations by the same methods. The new technique

combining the control volume method and unstructured meshes for solving the elasticity

equations is presented along with details of its use in heat transfer and solidification

codes. A brief outline of the following chapters is then presented.

1.1 Existing Numerical Solution of the Elasticity Equations

The historical background of the three main discretisation techniques, finite difference

or finite volume, finite element and boundary element methods, with respect to solid

mechanics are briefly detailed. Where appropriate the influence of a particular method

in the computational fluid dynamics area is also mentioned.

1.1.1 Finite Difference Method

Timoshenko and Goodier (1970) attribute the first application of finite difference

equations in elasticity to Runge when solving torsional problems around 1908, where

the problems were reduced to a linear system of equations. A couple of years later

Richardson solved such algebraic equations with an iterative process resulting in

approximate values of the stresses produced in dams by gravity forces and water
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Chapter 1

pressure. More publications resulted on the finite difference method by Southwell in

1946.

A variety of attempts have been made over the years to solve the elastic stress-strain

equations using finite difference based approaches. One of the earliest approaches for

two-dimensional problems derived an equation with the Airy stress function, '-F, as the

one variable [Griffin and Varga (1963)]. Although a finite difference discretisation of

this fourth-order equation in 'F can be solved relatively straightforwardly, it was not

amenable to complex geometries for all the usual reasons and so has effectively been

abandoned.

Some attempts to solve the coupled displacement equations iteratively were reported in

the 1 960s and subsequently, but only for rather restricted forms of boundary conditions

[Konovalov (1964), Samarskii (1964), Havner and Stanton (1967), Johnson (1970)].

With the advent of computers, it became possible to provide numerical solutions to

several thousand linear equations. Griffin and Kellogg (1967) used a finite difference

method for the solution of axially symmetric and plane elasticity problems making use

of the then high speed digital computers available. Winslow (1966) used a triangular

mesh and Concus (1967) a rectangular mesh to demonstrate the applicability of the finite

difference method to two-dimensional magnetostatic problems.

In the past 20 years there has been a focus upon finite difference or, in its cell integrated

form, control volume otherwise called finite volume, approaches to the solution of

problems involving fluid flow such as in the area of computational fluid dynamics.

Computational fluid dynamics deals with the solution of discretised forms of the partial

differential equations representing transport of mass, momentum and energy. The reason

for the success is that in primitive variable form, the solution of the velocity components

and pressure requires a strongly coupled solution procedure that is best effected at a

nodal level [Patankar (1980)]. Hence the solution of computational fluid dynamics

problems in a control volume context involves iteration to solve for all variables at a

node and then over the whole set of nodes, repeatedly until convergence is obtained.
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In the last few years interest in control volume formulations has been revived in an

attempt to produce an integrated analysis framework, and so further work has been

published by a number of workers [Ng and Benchariff (1989), Dow, Jones and Harwood

(1990), Hattel and Hansen (1990)].

Hattel and Hansen (1991) use a finite difference method technique to solve the three-

dimensional elasticity equations using a staggered mesh. Solidification results and

temperature values are obtained from the Magmasoft code when solving the deformation

and stress prediction of a casting problem.

The algorithms described in the above papers definitely work on the problems shown

where appropriate but are either rather complex, using large discretisation molecules,

and so unsuitable for unstructured meshes or restrictive in their potential capability.

With regard to the representation of the physical complexity of flow processes, control

volume-based computational fluid dynamics codes have certainly represented the state of

the art in most cases [PHOENICS, FLUENT, FLOW3D]. However, until recently, they

have been behind the finite element community in two respects, firstly using a

structured mesh has restricted codes in their representation of complex geometries and

secondly no practical algorithms existed in a control volume framework for modelling

deformation processes.

1.1.2 Finite Element Method

The finite element method is a numerical procedure for solving the differential equations

of physics and engineering, prominent names include Argyris, Clough and Zienkiewicz.

More detailed historical accounts of finite element development can be found in Segerlind

(1976), Zienkiewicz (1970),(1983) and Zienkiewicz and Taylor (1989). It is generally

agreed that the finite element method developed in the 1950's is a useful tool in the

aerospace industry for providing solutions to stress analysis problems, where the great

rewards for slight improvements in weight made it profitable to pioneer the development

and application of the new technique. There was early work in the 1940's by people

such as Hrenikoff, presenting a useful but limited method solving plane stress problems
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by replacing plate elements with bars thus reducing a plate problem to one in structural

analysis [Bowes and Russell (1975)]. The credit of approximating directly to a

continuum region by an element with multiple connecting points must go to Turner,

dough, Martin and Topp (1956) when the first complete presentation of the method was

made. The publication stimulated other researchers and resulted in several technical

articles that discussed the application of the method to structural and solid mechanics

plus the name finite element method was adopted. The derivation of the basic properties

was achieved by physical arguments relating stress or displacement distribution within

the subregion [Zienkiewicz (1970)].

The main catalysts behind the rapid development of the finite element method were the

evolution of computers at the same time as the practical demands of the engineers which

lead to the solution .of real complex elastic problems. The finite element method is not

very practical without the aid of computers with large amounts of storage space required,

and so development of the method and machines has progressed at much the same pace

[Bowes and Russell (1975)].

Only in the late 1960's did mathematicians take a widespread interest in the method and

subsequently contributed significantly to the theoretical understanding and refinement of

the method [Owen and Hinton (1980)]. Melosh (1963) showed that the finite element

method was really a variation of the well known Raleigh-Ritz procedure. The connecting

of the finite element method with a minimisation procedure quickly led to its use in other

engineering areas. The method can be applied to problems governed by the Laplace or

Poisson equations because the equations are closely related to the minimisation of a

functional [Segerlind (1976)]. With the irregular elements there followed rapid extension

of finite element method into nonstructural fields such as Zienkiewicz and Cheung (1965)

who demonstrate the applicability to fluid mechanics and heat conduction. The

application to fluid flow mechanics followed immediately [Zienkiewicz (1970)].

It soon became evident that all the features of the finite difference method and indeed

of other numerical procedures were particular examples of the generalised trial function,

finite element method. Thus Zienkiewicz (1977) concluded that it must contain all the
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merits of the other techniques plus additional advantages. The method is now firmly

established as a powerful and versatile solution technique for a large range of advanced

engineering problems. The advancement from a numerical procedure for solving

structural problems to a general numerical procedure for solving differential equations

or a system of differential equations has been accomplished in 15 years aided by the

advancement of computers [Segerlind (1976)].

Cook, Malkus and Plesha reported on the recent research activity concerning the finite

element method [Ottosen and Petersson (1992)], that only 10 papers were published in

1961 on the finite element method increasing to a cumulative total of over 20,000 by

1986. There are many books on the finite element method such as Zienkiewicz (1977),

Zienkiewicz and Taylor (1989) and Ottosen and Petersson (1992).

The advantages of the finite element method are; the material of individual elements can

vary, irregular domains are no longer a problem, the size of the element can be varied

and boundary conditions such as discontinuous surface loadings present no problem. The

disadvantages include the unstructured mesh that results in very large system matrices.

When it comes to topological considerations the finite element method has the edge while

for highly nonlinear flows involving turbulence and/or combustion control volume

methods are preferable.

Exact stress analysis by the theory of elasticity can be done in very few bodies of simple

geometry and those only when the loads are of particular form. Finite difference

approximations have extended the categories of problems that can be solved enabling the

problems to be converted from those expressed in partial differential equations to

simultaneous linear equations that can be solved to give approximate solutions. Although

this extends the realm of tractable problems, setting up each new problem is a

formidable programming task. The energy approach to the finite element method does

not deal with partial differential equations of equilibrium or compatibility. The elastic

stress-strain equations over a finite element mesh can be transformed into a linear system

of equations relating force and displacement at a point, which can be solved by various

elimination techniques. Solving problems by the finite element method therefore requires
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a working knowledge of matrix methods. Using finite elements the types of problems

that can be solved are almost limitless, as a result of this all the significant software

products that address the problems of solid deformation under load are finite element

based such as ANSYS, ABAQUS and NASTRAN. Finite element based procedures

have been used successfully over the past 30 years for the solution of a whole range of

very complex deformation problems, dominating the solution of deformation processes

[Zienkiewicz (1977)].

[Zienkiewicz and Oñate (1990), Oñate, Cervera and Zienkiewicz (1992)] compared a

finite volume method using triangular elments to the finite element method when applied

to structural mechanics problems. They found the finite element method to be more

accurate.

1.1.3 Boundary Element Method

There has been comparatively recent interest in the boundary element method, also

known as the boundary integral equation method, for solving engineering problems

[Fenner (1986)], with a small number of books available on subject such as Jaswon and

Symm (1977), Brebbia (1978), Chen and Zhou (1992). The boundary element method

has developed in the shadow of the finite difference and finite element methods [Crouch

and Starfield (1983)].

The term boundary elements is used to indicate the method whereby the external surface

of a domain is divided into a series of elements over which the functions under

consideration can vary in different ways, in much the same manner as finite elements

[Brebbia (1978)]. This capacity is very important as, previously integral equation type

formulations were generally restricted to constant sources assumed to be concentrated at

a series of points on the external surface of the body. Crouch and Starfield (1983) claim

that the boundary element methods are inherently very simple to use and flexible for

many kinds of problems, yet they have not received the attention they deserve,

particularly in the various fields of engineering practice dominated by finite elements and

finite difference methods.
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The boundary element technique claims several important advantages over 'domain' type

solutions such as finite elements and finite differences [Brebbia (1978)]. It requires a

much smaller system of equations than the previous methods mentioned which results in

a reduction in data needed to run a problem. In addition the numerical accuracy of

boundary elements is generally greater than that of finite elements. The advantages are

more noticeable in two-dimensional and three-dimensional problems. The method is also

suited to problem solving with infinite domains such as those frequently occurring in soil

mechanics and hydraulics for which the classic domain methods are unsuitable.

Several reasons are given for the lack of use of the method [Crouch and Starfield

(1983)]. Firstly, there are a number of general finite difference and finite element

packages that exist, but the boundary element programs that exist have generally been

written to solve specific problems for certain groups of users. Secondly, practical papers

on boundary element methods describe the subject in the context of a particular problem,

so that it is not always evident that method applied to one type of problem applies to

another. Thirdly, Crouch and Starfield (1983) consider, the theoretical papers on

boundary element methods to be viewed by many scientists and engineers as somewhat

incomprehensible.

Computers have increased the general awareness and understanding of the method with

accurate numerical results to many continuum mechanics pro\lems \&rng produced.

Boundary element methods do provide fast and efficient techniques for obtaining

boundary displacement and stress results, but are not to be used here because of the need

for an algorithm that is compatible with computational fluid dynamics.
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1.2 Control Volume-Unstructured Mesh Method

There are an increasing range of problems that require the solution of both flow and

deformation simultaneously. Two such problem areas include fluid-solid interaction and

the casting of metals components, which involves a transformation from liquid to solid

as the key feature of its processing.

The eventual casting code should handle all the major components of the casting process:

the mould filling, heat transfer, solidification, residual stress development and

deformation of cast. All these components have previously been solved independently

and by a variety of methods. It is hoped the control volume-unstructured mesh method

can deal with all the-processes mentioned simultaneously and with the same qualities that

have been shown by the individual methods.

Recently there has been clear evidence that both methods, finite elements and finite

volume, are moving toward a common ground. Algorithms and techniques developed

solely for use by one method are now being adapted and employed in a similar procedure

by the other. Therefore in future will be difficult to distinguish between the two

techniques resulting in hybrid methods.

Finite element formulations to solve the navier-Stokes equations have been developed that

tend to involve a cross between the control volume-computational fluid dynamics

approach with the solver route followed in conventional finite element analysis

[Minkowycz, Sparrow, Schneider and Pletcher (1988)]. Such codes, for example

FIDAP, can be accurate but are generally relatively more expensive in computer time,

since convergence is a good deal more difficult to achieve than with full control volume

formulations. Recently, finite element algorithms for free surface flows based upon the

ideas of the VOF-control volume fraternity have begun to emerge [Gao, Dhatt, Belanger

and Ben Cheikh (1989), Lewis, Usamani and Huang (1991)]. Hence at this stage for

Casting simulation it appears that the finite element approach has the potential to address

all the key physical components of the technology, albeit rather more slowly than its
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control volume counterpart.

In the past year or two a significant effort has been made to develop conventional control

volume-computational fluid dynamics algorithms in the context of unstructured meshes.

Three commercial computational fluid dynamics-codes based upon control volume-

unstructured mesh formulations have recently appeared in the marketplace; RAMPANT,

ASTEC and STAR-CD represent some products of this effort. Other work has

demonstrated the efficacy of control volume-unstructured mesh algorithms in the solution

of solidification problems [Chow and Cross (1992)]. Hence the one remaining research

issue with regard to assembling a comprehensive analyses capability within a control

volume-unstructured mesh framework is the development of practical algorithms for the

solution of, initially, elastic deformation processes. The purpose of this thesis is to

describe just such an approach in the context of an unstructured mesh [Fryer, Bailey,

Cross and Lai (1991)1: an algorithm for the solution of elastic-stress strain equations in

two dimensions, subject to both temperature and other body force loading, is described.

The algorithm is readily extendable to three-dimensional domains, and the resulting code

can be modularised so that it easily bolts onto any existing control volume-computational

fluid dynamics code.

For the solution of the elasticity equations the vertex centred approach of the control

volume-unstructured mesh method is used here so that it can be fully coupled with the

fluid flow, heat transfer and solidification code of Chow (1993). The fully integrated

code is then applied to the casting processes, in an effort to avoid the problems of

previous casting codes with respect to a lack of integration between the solidification

code and the stress code.

The control volume-unstructured mesh (CV-UM) methods can in general be categorised

into two types, a vertex-centred or cell-centred approach. The classification of the

approach is based on the relationship between the control volume and the finite element

style unstructured mesh. The vertex-centred approach of the control volume-unstructured

mesh technique, also known as the control volume based-finite element method, was

originally presented in the late seventies and early eighties by Baliga and Patankar
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(1980). The basic idea behind the method is to discretise the calculation domain into

elements, just like in finite element calculation, a control volume is then formulated

around the vertices of the element and the conservation principles applied to it. Baliga

and Patankar (1980) described a general method for convection-diffusion problems in

two-dimensions that used three node triangle elements to form polygonal control volumes

as used by Winslow (1966). The method was soon extended to fluid flow and heat

transfer [Baliga and Patankar (1983), Baliga, Pham and Patankar (1983)]. Like many

finite element procedures the method was an unequal order type, where the pressure was

computed at much fewer grid points than the velocity due to the use of macro and micro

sub elements. Prakash and Patankar (1985) then proposed an equal-order velocity

interpolation. Schneider and Raw (1986) using shape functions described a quadrilateral

element control volume-based finite-element algorithm for convection diffusion problems.

Many more enhancements of the control volume finite element methods followed with

respect to fluid flow and heat transfer [Prakash (1986), (1987), Schneider and Raw

(1987a), (1987b), Prakash and Patankar (1987a), (1987b), Hookey, Baliga and Prakash

(1988), Hookey and Baliga (1988), Kettleborough, Hussain and Prakash (1989)]. Good

descriptions of the method are given by Baliga and Patankar (1988), Schneider (1988).

The method of Prakash (1987) has been applied by Letniowski and Forsyth (1991) in

three-dimensions to groundwater contamination problems. The second approach

described as cell-centred, or named irregular control volume method [Chow (1993)], is

viewed as an extension of the control volume method [Patankar (1980)], since when a

structured rectangular mesh is used it is a direct analogue of the standard control volume

method.
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1.3 Outline of Thesis

Chapter 2 contains details about how the elastic stress-strains equations were discretised

for the special cases of plane stress and plane strain in cartesian coordinates and

axisymmetry in cylindrical polar coordinates, using the control volume unstructured

mesh approach. The resulting algorithm was developed as a FORTRAN program that

has options of plane stress, plane strain or axisymmetry for possible thermally and

mechanically loaded objects.

To test the validity of the algorithm and program developed in Chapter 2 various test

cases for the plane stress and plane strain options, some with known analytical

displacement or stress results, were examined in Chapter 3. Fryer, Bailey, Cross and Lai

(1991) describe the algorithm development used in Chapter 2 and give brief examples

demonstrating the soundness of the program, comparing the displacements obtained

against analytical results and a standard finite element code results. The time taken for

the program to reach a converged solution was noted and compared to the finite element

program timing. Chapter 3 details the displacements and stresses obtained using a

standard finite element code, IFECS, and compares these results and the time taken

using the different techniques. The problems considered include a cantilever with a point

loading, a thermally loaded beam and a multi-material cusp type piolthem. ?or eac1n

case various mesh types such as quadrilateral elements, triangular elements and a mixed

mesh containing both types of elements were used. The meshes were also refined to see

the effect on the solutions with respect to how close they reached the analytical

displacements. The effect of tolerance and relaxation parameter used were also studied.

An example of a plate with a hole in the centre with forces applied at two edges was

used to test the accuracy of the stress results obtained from the displacement results.

Two test cases for the axisymmetric option of the program are used to test the validity

of the algorithm and program comparing the results obtained to standard finite element

results (Micr0FIELD) and analytical results where appropriate. The axisymmetry results

are shown in Chapter 3 where, as with the cartesian cases, the mesh size and type are

altered to study the effect on the solution and the time taken to reach a converged
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solution. The examples studied include a hollow sphere with a linear temperature

gradient through it in the radial direction and a thermally and mechanically loaded hollow

sphere.

Friction at the surfaces of the object when it is in contact with a neighbouring object has

been included into the program as a possible effect. Chapter 4 describes the development

of the friction algorithm and the inclusion of it into the deformation code. Results were

collected for a simple test block shape that 'slid' across another object. The

displacements along the contact edge were noted and compared for results obtained when

the block and neighbouring object were rotated to evaluate the generality of the friction

algorithm in producing consistent relative displacement results. A silica brick with test

case results was used as a test to check the friction consistency of displacement results.

In Chapter 6 the elastic stress-strain procedure is coupled with an existing heat transfer

solidification procedure in the department that uses a similar control volume-unstructured

mesh discretisation technique. The resulting code is fully coupled and integrated. The

code is applied to castings where a molten material solidifies and deforms in a mould.

Typically at the mould/metal interface the prediction of an air gap is included [Bailey,

Fryer, Cross and Chow (1993)]. An example comparison of inclusion and exclusion of

the deformation prediction, and hence the air gap formation, enable the visible effect

on the temperature of the casting to be seen.

A porosity prediction model is included in the fully coupled heat transfer, solidification,

deformation code in Chapter 6. The porosity model used is unlike others in the literature

which are entirely empirical because it takes into account the deformation of the casting

as it solidifies. The results produced for various test cases look encouraging when

compared with experimental results where available [Fryer, Bailey, Cross and Chow

(1993)].

Finally, conclusions and suggestions for future work are proposed in Chapter 7, with

references and other auxiliary material completing the thesis.
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Control Volume - Unstructured Mesh

Solution of the Stress-Strain Equations

This chapter explains the development of a control volume unstructured mesh code that

solves the two-dimensional elastic stress-strain equations. The algorithm is developed

for the two-dimensional options of plane stress, plane strain and axisymmetry.

Discretisation of the algorithm using an unstructured mesh is detailed and attention to the

solution procedure is also included. A computer program was written in FORTRAN 77

that can obtain the displacement of an object suitably approximated to either a plane

stress, plane strain or axisymmetric condition. From the deformation of the object the

stresses acting on the object can then be obtained.

2.1 Elasticity Equations

The three-dimensional stress equilibrium equations can be reduced to two-dimensional

equations for special circumstances. The two-dimensional stress equilibrium equations

for the plane stress, plane strain and axisymmetric instances are manipulated using

integration techniques to obtain equations for the resulting deformation of an object when

temperature effects and mechanical loading are applied to the object. The plane stress

and plane strain options use the cartesian axis directions x and y result in the deformation

u and v respectively. The axisymmetric alternative uses the cylindrical polar axis

directions r and z to obtain the displacement of an object in terms of u and w

respectively. More details concerning the derivation of the stress equilibrium equations

and other stress-strain relationships used further in the derivation of the deformation
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algorithms can be found in numerous elasticity books such as Fenner (1986),

Timoshenko and Goodier (1970) and Boley and Weiner (1967). The two-dimensional

stress equilibrium equations are integrated over an unstructured control volume defined

as Figure 2.1.

Control Volume

Figure 2.1: Control Volume for Unstructured Meshes

2.1.1 Plane Stress/Plane Strain Approximations

The three-dimensional elasticity stress equilibrium equations are shown in Appendix A.2

as documented in the elasticity books mentioned previously. Reducing the equations to

axes directions x and y produces the two-dimensional stress equations for equilibrium

shown below:

___ + ___ + F = 0x
(2.1)

___ + ___ + F = 0y

The equations apply at each point within the solid where F and F are internal body

forces. The equilibrium equations are integrated over any closed surface or control

volume as seen in Figure 2.1 where the volume has unit thickness in the z-axis direction,
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Stokes's theorem [Bourne and Kendall (1992)] as in Appendix A.!, for two-dimensional

cartesian coordinates applied to the cartesian equilibrium equations produces

- cy dx) = Jj_Fdxdy	
(2.3)

- dx) = 55- FdxdY

There are well known relationships between stress and displacement [Fenner (1986),

Timoshenko and Goodier (197O), the three-dimensional relationships are shown in

Appendix A.2 for the stress-strain equations and the strain-displacement equations, where

E represents Young's modulus, V represents Poisson's ratio and a the coefficient of

thermal expansion.

2.1.1.1 Plane Stress

One approximation to two dimensions can be made when the thickness of an object in

the z-axis direction is small compared to its other dimensions as shown in Figure 2.2.

rigure Z.L: riane tress
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If forces are applied at the boundary parallel to the plate and distributed uniformly over

the thickness, then the stresses in the z-axis direction are assumed to be extremely small

and approximated to zero such that:

a =a =a =0	 (2.4)
zz	 xz	 yz

which results in the following stress-displacement equations including possible

temperature loading for the plane stress approximation:-

a = ____
E {u

(l-v)	
- (1+v)aT}

a = ____ +v_
E {v

(l-v2)	
- ( 1+v)aT}	 (2.5)

a = ____ +
E {u	 v1

-	 2(1+v)

Substituting the stress-displacement equations (2.5) into the integrated equilibrium

equations (2.3) yields

r( E	 u	 E	 u	 '\

I	 _.dy-	 _.dxi=S
Jc , ( 1-v 2 ) 3x	 2(1+v) ay	

)
(2.6)

r( E av	 E	 v
I	 _.dy-	 _.dxi=S

Jc 2(1+v) 3x	 (1-v2) J	
)

where the sources, S and Si,, of the above equations are given by

E	 v	 E
	S	 .dx-	 Iv	

_(1+v)aTFY]

	

U	 c2(l+v)ax	 (1_v2)L -:j-;

- JJFXdXdY

(2.7)

s =	 I E rau - (1I-v)aT]dx -
	 E	 iu____	 _____- . dy

	2(1+v) y	 )

- JjFdxdy
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Note that the first equation of (2.6) is a control volume formulation for the u-

displacement with a source term that involves only the v-displacement and temperature.

Similarly, the second equation of (2.6) is a control volume formulation for the v-

displacement with a source term involving only the u-displacement and temperature.

2.1.1.2 Plane Strain

If an object is very large in the z-axis direction compared to the other dimensions and

an x-y plane section is considered at the centre of the object as seen in Figure 2.3, the

resulting state of strain in such a section is two-dimensional and independent of z with

no displacement in the z-axis direction.

1-1gure z.i: i-iane train

It is assumed that external forces are applied parallel to the x-y plane and are independent

of the position along the object, then for a section through the centre of the object, the

following will apply in the instance of plane strain

e =e =e =0
	

(2.8)ii	 xz	 yz

From the three-dimensional stress-strain and strain displacement cartesian relationships

as listed in Appendix A.2 using the strain approximations as in equation (2.8) results in

the following plane strain stress-displacement equations
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E	 Ju
= __________ (1-v)	 + v	 - (1+v)aT

(1+v)(1-2v){	 }

E	 Jv
= _________ (1-v)	 + v	 - (1^v)aT}	 (2.9)

(l+v)(1-2v){

E	 1u	 av= _____
	2(1^v){y	 3x

Substituting the stress-displacement equations (2.9) into the integrated equilibrium

equations (2.3) yields

.dy - ______[___E(1-v)	 Ju	 E

	(1+v)(l-2v)x	 2(1+v)y	
J=su

(2.10)

ç	 E	 v	 E(1-v)	 v	 "

2(	
__.dy-	 .dxl=S

l+v)x	 (1+v)(1-2v)y	 )

where the sources, S and St,, of the above equations are given by

s	 (E	 _'dx -
	 E	

- (1+v)aT
c 2(l+V)x	 (1+v)(1-2v)[ &v

- JJFddy

(2.11)

__________	 ______- . dy Is =	
E	 - (1+v)ctT]dx -	 E	 Ju

c(1+v)(12v)L	 x	 2(1+v)ay	 )

- ffF'dy

Note that, as with the plane stress approximation, the first equation of (2.10) is a

control volume formulation for the u-displacement with a source term that involves only

the v-displacement and temperature. Similarly, the second equation of (2.10) is a control

volume formulation for the v-displacement with a source term involving only the u-

displacement and temperature.
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The plane stress and plane strain approximations both produce equations for the

displacements u and v of the form:

f
(k i ±..dY_k2 .dxJ=	 k2 ._.dx - k i [v'._(l #V*)a*T]dYJ

C"

- JjFdxdy

(2.12)

av 11	 f(k1[v_(l +v*)rT]dx - k2.dy')
C	 Iy	 J	 [ 3x	 Jy	

)

- ffFdxdy

where

E
k=

(1-V)

with

E=E	 V'V

k2 = 2(l-v)
(2.13)

(2.14)

for plane stress, and

E= E
(1-v2)

v • =
(1-v)

= (1+v)a (2.15)

for plane strain.

2.1.2 Axisymmetric Approximation

Often cylindrical poiar coordinates are convenient for use with solid geometries where

coordinates r, e, and z are measured in the radial direction relative to the axis, the

angular direction about the axis and the axial direction, respectively. Figure 2.4 shows

a cylinder defined in the r, 0 and z axis directions. The corresponding displacements for

the cylindrical poiar coordinate system r, 0 and z, are u, v and w respectively. When

the effects of temperature and mechanical loading do not vary in the angular direction,

0, a section through the object in the r-z plane can be used as a two-dimensional

cylindrical polar coordinate approximation to the original three-dimensional problem.
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rigure	 yirnuer venneu in ynnuncai
Polar Coordinates

The three-dimensional stress equations of equilibrium in cylindrical polar coordinates are

shown in Appendix A.3. When a problem is symmetrical with respect to the axial

direction and independent of the angle 0 with the displacement v zero, such as a

cylinder under internal pressure, an axisymmetric approximation can be used. The stress

equilibrium equations reduce to:

T____ + ______ + F,. =	

(2.16)
____ + az	 r

___ + ____ +	 + F = 0
Jr	 r

Using the expressions below

1 ( rarr ) - 1 rJa,.,. +

r	 ar	
(2.17)

1 (ra, ) -	 rJcy, +

r ar	 r	 r

the equilibrium equations for the axisymmetric condition simplify to:
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	1 _______ + a rz -	
+ Fr = 0	

(2.18)
rr r

1 a(rzr)	 c:T

____ + ___
rr

Integrating the simplified equilibrium equations with respect to the control volume as in

Figure 2.1 produces:

[i (r y ) + ___ -	
+ F irdrdz = 0

r	 r	 T)	

(2.19)

iJ[
1 

a ( r zr ) 
+ ___ + F]rdrdz = 0

r

where the thicknessof the control volume in the axial direction varies with the radius r.

Using Stoke's theorem for two-dimensional cylindrical polar coordinates as defined in

Appendix A. 1 in terms of r and z the integrated equations become:

(r y dz - r y dr) = ff(Fr_cr00)drdz
C

	

	
(2.20)

f(rcdz - r y dr) = JjFrdrdz

where the left hand side of the equations are now surface integrals to be evaluated at the

surface of the control volume.

The three-dimensional stress-strain and strain-displacement relationships for cylindrical

polar coordinates are seen in Appendix A.3. For the axisymmetric case when the

displacement v = 0, the stress-displacement equations reduce to:
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cy = _______

E	
{i	

Ju	 1u sw')

(1+v)(1-2v)	 r	
(1+v)aT}

E	
{i v)U	 i	 dw')

(1+v)(1-2v)	 r	 r	
(1v)aT}CT00 = ____________ - _^V__+

(2.21)

CT	
E

(1+v)(1-2v) {(1V)
	

U	

}
zz

+....-(1 ^v)cT
az

E	 1u	 iw
CT = ____

2(1+v)	 z	 Jr

Substituting the stress-displacement equations (2.21) into the simplified integrated

equilibrium equations (2.18) yields

(E(1-v)	 r.dz -
	 E

(1+v)(1-2v) r	 2(1+v) z	
J

Ev	 E
udz^	 (1 v).. +v	 Idrdz=S

(I+v)(1-2v)	 fS(1^vxl-2v)[ -	 r
(2.22)

________	
- ______________.._-_r.dr I = S

E	 Jw	 E(1-v)	 w

2(1+v) r	 (1^v)(1-2v) z	 )

where the sources, S and S,,, of the above equations are given by

= (_E	 w	 E	
- (1+v)aTS	 _____ r.dr- ________ V

c 2(1+v)	 (1+v)(1-2v)[	
]r.dzj

SS
Ev

___________—drdz 
+ 

(5 E
ccTdrdz + JjFrdrdz(1+v)(1-2v) 3z	 (1-2v)

(2.23)

___________	 - E iu
r.dz ISW 

=	 ((l+V)(l_2V)[v	 - (1+v)aT]r.dr	
2(1+v)	 )

Ev
+ ___________udr + J'5FrdrdzJc (1 +v)(1 -2v)
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Note that, as with the cartesian two-dimensional approximations, the first equation of

(2.22) is a control volume formulation for the u-displacement with a source term that

involves only the w-displacement and temperature. Similarly, the second equation of

(2.22) is a control volume formulation for the w-displacement with a source term

involving only the u-displacement and temperature.

The deformation equations (2.22) and (2.23), for the displacements u and w of the

axisymmetric case of cylindrical poiar coordinates, are of a similar format to the

deformation equations (2.12) for the displacements u and v in cartesian coordinates where

the coefficients, k1 and k2, are defined as in the plane strain case equations 2.13, 2.15:

k1 
= (l+v)(1-2v)	

k2 
= 2(l^v)	

(2.24)

and x, y, u and v are replaced by r, z, u and w respectively. The original surface

integrals present in the cartesian equations are calculated in the axisymmetric case with

the radius r taken into account. A few extra terms are also used in the axisymrnetric

approximation that are not present in the cartesian approximations.

2.1.3 Boundary Conditions

The axis directions x and y used in this section are general axis directions representing

either the x and y axes of the cartesian coordinate system or the r and z axes of the

cylindrical polar coordinate system. A boundary point can be described as fixed in either

or both the x and y axis directions so that the associated displacement in the x and y axes

directions is prescribed as zero. Otherwise at a boundary the equilibrium equations have

the following form:

n +n =D
xxx	 ivy	 x	

(2.25)
n +G n =D

xvi	 yyy	 y

Where D and D are the components of a stress applied on the boundary as shown in

Figure 2.5.
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S =S +D
U	 U	 X

(2.26)
S, = S + D

Chapter 2

0

Figure 2.5: Stress Applied to Boundary

Nodes lying on the boundary may have external point loads acting on them. For loads

concentrated at these nodes their effect is incorporated into the deformation models via
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2.2 Vertex Centred Discretisation

This section describes a vertex centred approach used with a control volume unstructured

mesh formulation to obtain a discretised solution to the deformation equations derived

in section 2.1. The domain, over which the deformation equations are to be applied,

is discretised into elements. Shape functions are used to transform the global element

geometry to the local domain geometry. The control volumes are defined as the area

surrounding the element vertices or nodes over which the conservation principle is to be

applied. The displacement variables u and v along with the temperature, T, are stored

at the nodes, whereas the material properties are stored within a cell or element. It is

then straightforward to ensure that internal boundaries are coincident with cell vertices.

This section describes the control volume based-finite element mesh method [Baliga and

Patankar (1988), Schneider (1988)] used here for the two-dimensional elasticity

deformation equations.

2.2.1 Domain Discretisation

The solution domain is subdivided into smaller regions and nodes are distributed

throughout the domain forming a mesh of elements. A typical finite element mesh, as

seen in Figure 2.6, consists of sub-regions referred to as elements, a mixed mesh with

both triangular and quadrilateral elements is shown. The vertices of the elements aie

called nodal locations, a triangular element has three and a quadrilateral element four.

The control volume unstructured mesh formulation uses the same finite element mesh,

consisting typically of triangular and quadrilateral elements, so ensuring the full

geometric flexibility associated with the finite element method is preserved.
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rigure z.o: unsiructureu iviesn

A typical unstructured mesh consists of nodes at the corners of the irregular elements.

Variables such as the displacements, u and v, and temperature, T, are stored at the

node with the material properties, such as Young's modulus, E, and Poisson's ratio,

v, stored at the element centre as a representative value of the whole element. For this

reason it is easy to safeguard that internal boundaries are coincident with vertices and no

element will contain more than one material.

2.2.2 Local-Global Coordinate Transformation

In the finite element context it is convenient to work in local coordinates so that each

element may be treated identically, for each individual class of elements, irrespective

of how distorted any element may actually be in terms of global coordinates. The local

coordinate system used is shown in Figure 2.7 for triangular and quadrilateral elements.

It is necessary to relate the global and local coordinates since the conservation law is

applied in terms of global coordinates. This is done using standard shape functions as

shown in Appendix A.4. The coordinate variation within an element is expressed in

terms of the local coordinate system (s, t), so that if for example s is changed whilst t

is kept constant, then in general, both x and y will change with a linear dependence on

s for the case of the bilinear element considered here.
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rigure .I; LocaI-uIooaI ooruinaw ysem

Given that x and y, are the global coordinates at local node i, the coordinate variation

is conveniently described by

x(s,t) =	 N.(s,t)x1

(2.27)

y(s,t) =	 N,(s,t)y1

where	 denotes the number of nodes for the element under consideration, NPT for a

triangular element will be three and for a quadrilateral element will be four. Similarly

with any variable 4i defined at the nodes, its variation within the element can be
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described by the same shape functions employed for the geometric description

4(s,t) =	 N.m.	 (2.28)
i.1

Since the shape functions are continuous, the x and y derivatives of the variable can

be differentiated to yield

a4	
-E	 'I

Is.t	 ,_ Is,:

Is.t	 ii 

aNJ

	 (2.29)

Using the chain rule for partial derivatives, the x and y derivatives of the shape functions

can be determined. In matrix form

3N,	 ax

as	 as

aN1 =

at

ay	 N1

as	 ax

ay aN1

at

(2.30)

where

=ix.as	 i-I as

-'	 NPT	 1T
dy =	 ILlV1

as	 i-I as

=ix.at	 at

-'	 Ne,.
diy = 	'-'

at	 ,	 at

(2.31)

The local derivatives of the shape functions are determined by differentiating the

equations as shown in Appendix A.4 for quadrilateral and triangular elements.

Rearranging equation 2.30 the x and y derivatives of N can be determined
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aN,	 ay	 a )	N1

ax -	 at	 as	 as	 (2.32)

aN1	 7 _ax ax	 aN,
Tas

where

a. ay - ay ax
asat	 at

(2.33)

Equations (2.29) to (2.33) contain all the necessary steps to calculate global x and y

derivatives of 4 in terms of local s and t coordinates and the nodal values.

Figure 2.8 shows atypical surface in the x-y plane.

As

'a'.

S

Figure 2.8: Line Segment of Control Volume

where the distances Ax and Ay are defined by

Ax

x

(2.34)AY=Yb-Y

By using the chain rule we have:

ax	 ax
dx = _ds + _ dt

as	 at

dy =	 + 2Ldt
as	 at

(2.35)

therefore Ax and Ay become
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Ax fds + f.dt= -
	 t	

(2.36)
aa

Ay = fLds + I'dt
-iaa

If the variation of x and y is linear with respect to s and t then

JxAx = - As + - At
JS	 tm

(2.37)

Ly=.2L As+.JL At

where the partial differentials with respect to s and t are evaluated at the midpoint m of

the line segment and

AS=Sb—S	 At=tb—t	 (2.38)

The transformation information described above has been motivated by the requirements

to determine derivatives and integrals as they apply to a control volume.

2.2.3 Control Volume Definition

In the solution domain each node is associated with one control volume. Each surface

of the control volume is defined from the centroid of the element to the midpoint of one

of its sides as shown in Figure 2.1. Each of the elements is divided into several

quadrants, three for a triangle and four for a quadrilateral, by these control surfaces.

The quadrants are known as sub-control volumes (SCV) and are illustrated in Figure 2.1.

A control volume is therefore made up of the sub-control volumes and is polygonal in

shape, which can be assembled at the element level. As neighbouring elements may

consist of different materials, a control volume may be made up of different material

sub-control volumes. The surface integrals developed previously in section 2.1 can be

approximated by values at the midpoint of the control volume sub surfaces. Such points

are called integration points for internal surfaces and boundary integration points for the
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surfaces of sub-control volumes that lie on the solid surface, as shown in Figure 2.9.

-	 rigure z.: integration t-'oints

2.2.4 Discretisation of Deformation Equations

The deformation equations developed in section 2.1 in the integration format are

discretised as suitable over the control volume domain. Figure 2.10 shows a general

node P surrounded by a number of elements. The local geometry defined for each

element surrounding P identifies the control volume edges by the lines s = 0 and t = 0.

Integration

Figure 2.10: Sub-Control Volumes
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For each element a sub-control volume is produced so that the discretisation is the sum

of the contributions from the surrounding sub-control volumes. Where a line

integral is required, a particular sub-control volume will result in two surfaces where the

midpoint of each results in an approximation of the line integral over the surface using

shape functions and the nodes at the vertices of the element concerned.

2.2.4.1 Plane Stress/Plane Strain

From equation (2.12) the general form of the plane stress and plane strain deformation

equations for the displacements u and v are:

5M.dy - L.dx = 5L._.dx - 1R_!'..dy + QT.dy
a

(2.39)

-	 = R.dx - QT.dx - fL.dy
aa	 a	 a

where

M=k 1	L=k2	R=k1 v 	Q=k1(1+v)a	 (2.40)

are the material dependent coefficients and the internal body forces are neglected.

Considering a typical displacement term from equation (2.39) such as

M.dy
	 (2.41)

this can be discretised over the control volume surrounding the node P, such that

M.dy=	 MkI
ax	 k-IC

[j
	 N, k1 k1

ax 
Ut1LYi] (2.42)

and for a typical temperature term discretisation

'2 [N	

1LQT.dy =	
Qk[NkTk

kI	 Li' 1.1	 j	

(2.43)
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where the surface integrals are approximated over the sub-control volumes and the

coefficients Mk and Q" consist of the element dependent material properties. Each

element resulting in a sub-control volume surrounding the node P, consists of N nodes

typically three for triangular elements or four for quadrilaterals. Each sub-control volume

contributes two surfaces where the length,	 is dependent on the surface and the sub-

control volume.

Collecting the contributions from all the sub-control volumes surrounding a node

produces equations of the familiar form

=	 a7u, +

I.'	 (2.44)
N.b

=	 av1 +

where the displacement u and v at the node P is dependent on the displacement of the

N,,,, neighbouring nodes and the source term including the temperature effects.

2.2.4.2 Axisymmetric

From equations (2.22) and (2.23) the general form of the axisymmetric deformation

equations for the displacements u and w are:

- 1L_..rdr + Ru.dz + JfMdrdz + f5R.drdz =

LL.rdr - R.rdz ^ QT.rdz - JjR.j!.drdz + jjQTdrdz

(2.45)

dL.rdz -	 =
3r	 '

C	 C

- QT.rdr - L._.rdz + Ru.dr
C	 C	 C
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L	
E

2(1 +v)
E

- (1-2v)
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E(1-v)
M= _________

(1 +v)(1 -2v)

Ev
R=

(1 ^v)(1-2v)

are the material dependent coefficients and the internal body forces are neglected.

Considering a typical surface integral displacement term from equation (2.45) such that

M.rdz
	 (2.47)

this can be discretised over the control volume surrounding the node P, such that

r 2 1NIT aN!C JNr 
k k 1 k1

M_.rdz=MkI>	
u k

k-I	 L=i Li-i	 r	
Niiriili]

C

and for a typical temperature line integral discretisation

r 2 rN	
k k1	 k1

fQT.rdz =EQk::I>:N:T:
k-I	 L-' [i_i	 f-I	 ]

(2.48)

(2.49)

The extra terms not included in the plane stress/plane strain approximations are

discretised as follows

[N	 Nk k
1 k

J CR. - .drdz =	 R'	 u•
J	 k-i	 L-i	 3r	 ']

[N aN1k 
k 1 k

f IR 
W 

drdz =	 R	 w1
J	 k-I	 Li-i	 z	 ]

N5	 rN

JfQ Tdrdz = Q	 N Tk

kI	 [i=i

(2.50)
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r 2 rN	
k	 k

Ru.dz =	 R'EINu
k-i	 [j.1 LI-I	

tilij

N5 	r2 [N	
k k 1 	k1

Ru.dr =
k-I	 b-i Li-' 

N1iu1Jri]
C

and the final term

N3	 INpr	 ki

JjMdrdz = M" N,L kVk
r	 k-i	 L'"	 r j

When the radius r, is zero the displacement u1 is also zero the u/r1 term is taken to be

zero using L'Hospital's rule, but contributions are still obtained from other nodes in the

particular sub-control volume

The surface integrals and volume integrals are approximated over sub-control

volumes that surround the node P. For the surface integrals evaluation takes place at the

midpoints of the two surfaces for each sub-control volume, but the volume integrals are

approximated at the centre of the sub-control volume. The coefficients Mk, Lk, QIc and

are the element dependent material properties. 	 AlA represents the volume of a

particular sub-control volume surrounding the node P.

Collecting the contributions from all the sub-control volumes surrounding a node

produces equations of the familiar form

a,up =	 a7u1 +
I-I	

(2.51)

a, ' wp =	 a.'w1 + b,'

where the displacement u and w at the node P is dependent on the displacement of the

N,,1, neighbouring nodes and the source term including the temperature effects.
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2.3 Solution Procedure/2D Code - CV-UM

Equation (2.44) consists of a set of equations that define the displacement components

u and v in a coupled form for the cartesian two-dimensional circumstance and equation

(2.51) consists of a set of equations that define the displacement u and w in a coupled

form for the two-dimensional axisymmetric instance. It is then possible to develop a

straightforward iterative algorithm for solving these displacement equations of the general

form

a4 =	 a4, + b,,	 (2.52)
'-I

where the node P is surrounded by	 neighbouring nodes and 4 represents the

displacements u or v for the cartesian case and u or w for the cylindrical polar case.

The coupled equations may now be solved by using the iterative procedure as displayed

in Figure 2.11, translated to a FORTRAN code that for simplicity is referred to in later

chapters as 'CV-UM' (ontroI Volume-Unstructured Mesh). Note that Y represents

either Y or Z, v represents either v or w depending on whether the phne stress, p'ane

strain or axisymmetric option is chosen. At the start of the procedvre the initial data is

read in from files, which includes the information on coordinate points, element

topology, the temperature distribution T(x,y), material properties and boundary

conditions D and D as appropriate.

An initial guess for the v displacement of the problem is made typically zero at each

nodal point in the domain. The discretised u-displacement equation is then solved

obtaining the u displacements using T(x,y) and the latest available approximate solution

for v. The latest available approximate solution for u is then used with T(x,y) to solve

for v using the discretised v-displacement equation. After the new v displacements have

been obtained a check for convergence of u and v is made, if the solutions have not

converged and the number of global iterations is less than the maximum number allowed

a new iteration proceeds with the u-displacement equations being solved with the latest
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INITIAL DATA

ELBENT5

JES.. ETC.

DEFIIE TCXY)
B.C. 's Dx.. Dy.

iter = I

QJESS1
INITIAL V

CALCULATE 5YSTB4
MATRICES FOR
U AND V

Iter = It.r + I
	 II.'

SET UP U
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OBTAIN U DISPLACBIB4T

SET tP V

JUR TEFA
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STRESS STRAIN
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Figure 2.11: Solution Procedure - CV-UM
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v displacements until either convergence is reached or the maximum number of iterations

is exceeded. For a converged solution the displacements are written to a file for use with

post-processing facilities to observe the deformed mesh.

The general discretised equations in the form of equation (2.52) are actually solved using

the correction format, that is,

Old	 C	 old	 (2.53)a4	 =	 a 4 ( 1 +,) +	 -

s-I

where

new	 old	 c
=	 +	 (2.54)

For the inner loops of the iterative procedure when the solution of either displacement,

u or v, is obtained, the tolerance is set to 0.1 because there is no need to achieve strict

convergence as this is guaranteed by overafE convergence, ie,

Rk 
^ 0.1
	

(2.55)
IR°II

where Rk is the residual vector whose elements are (4)I in the kth iteration of the linear

solver.

The linear equations (2.53) in corrected form can be arranged in typical matrix form

A4 C = b C
	 (2.56)

where A is the matrix of coefficients,	 the vector of displacement corrections and bC

the vector in corrected format containing source terms and old displacement values. This

is solved by a conventional conjugate gradient technique with simple Jacobi

preconditioning [Lai and Liddell (1987), Bercovier and Rosenthal (1986)], such that

AC 
=	 (2.57)

where the transformed values are
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b= ______
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The classic conjugate gradient algorithm is then used to obtain the transformed values,

which can then be recovered using

= ____	 (2.59)

to obtain the displacement corrections. This solution technique yields much quicker

convergence than other procedures such as Jacobi and Gauss-Seidel iteration methods.

To ensure rapid convergence of the solution, the displacement term 4, in each instance

of equation (2.53) is over-relaxed so that

(2.60)new	 old	 new	 old
4),, = 4),. +w(4),, -4),,)

where the relaxation factor Co lies between 1 and 2.

The criterion for stopping the overall solution procedure is that when the overall

convergence is checked in the iterative solution procedure the equations below are

computed

IID -	 IICNORM = _______

IID

IlL' - L'IIRNORM = _______

IL3 II

(2.61)

where LV is the dependent variable vector and L is the source vector, at each outer

iteration j, for each of u and v. The solution is then terminated when

Mar(CNORM,RNORM) ^ TOL	 (2.62)

is true for both the u and v equations. A converged displacement solution has been

obtained so the object deformation and corresponding stresses are output and the

algorithm finishes.
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2.4 Conclusion

The stress conservation equations for three two-dimensional cases, plane stress, plane

strain and axisymmetric, have been integrated over an unstructured control volume. The

resulting equations produced containing surface and volume integrals in terms of

displacement have been discretised and approximated at points either on the control

volume surface or the sub-control volume centre. The general equations produced can

be solved using a preconditioned conjugate gradient solver. An algorithm developed to

obtain the displacement results for various thermally and mechanically loaded solid

objects has been written into a FORTRAN code. Using the algorithm the deformation

of solid objects can be obtained after the domain has been subdivided into a mesh of

elements. Effects to be considered include nodal temperature loading throughout the

domain and application of forces at the surface of the domain. The algorithm and

computer code have to be tested and compared to problems with standard analytical

solutions to determine the validity of the method, as discussed in chapter 3.
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Application to Solid Mechanics

The stress-strain control volume unstructured mesh code, 'CV-UM', developed in

Chapter 2 is applied and tested in this chapter. Various examples, some with known

analytical solutions, are applied to the two-dimensional stress-strain code so that the

algorithm can be validated. The collected results are tabulated and compared to results

produced by a standard finite element program for the same problem. The relaxation

parameter and displacement residual tolerance used are altered to observe the effect on

the accuracy of the results and the time taken to obtain the results. Comparisons are

made between differing meshes for the two-dimensional code such as quadrilaterals,

triangles and mixed meshes containing both triangles and quadrilaterals. The algorithm's

capacity for handling more complex geometries and unstructured meshes is also

investigated.

3.1 Example 1: Loaded Cantilever

The first example used to test the accuracy of the two-dimensional code is that of a

cantilever with a point load at the free end. This shows the capabilities of the algorithm

to function with fixed displacements and forces applied to boundaries. The cantilever

beam is long in the x-axis direction compared to the other directions so the assumption

of plane stress is suitable for this problem. The analytical solution to the problem is

known and used for comparison to the two-dimensional displacement results of the

control volume unstructured mesh code. Three styles of mesh were used:- the first all

quadrilaterals; the second all triangles and the third a mixed mesh containing both

triangles and quadrilaterals. For each case a coarse mesh of 33 nodes was used, then

page 41



Chapter 3

a finer mesh with 105 nodes and the third mesh containing 369 nodes. Results were

collected for various displacement residual tolerances and relaxation parameter values.

A standard finite element code was used to solve the problem and the results compared

to the unstructured mesh code.

3.1.1 Problem Specification

The beam has a length of 1,000mm, a height of 200mm and a width of 40mm. The

point load at the end of the cantilever is 35,000N spread over the width of the 40mm.

To model a two-dimensional slice through the cantilever a unit width of one implies the

force applied at the corner node is 875N. A section through the cantilever can be seen

in Figure 3.1.

1-1 lgure i.i: anuieveruescnpcon

For the material properties of the cantilever a Poisson's ratio of 0.25 was used with

Young's Modulus, E of 210,000NImm2. For use with the analytical solution the second

moment of area for the unit thick section through the cantilever, I is 2/3* 105mm4.

3.1.2 Analytical Results

Analytical results for the displacement of the cantilever are available from standard solid

mechanics and elasticity books [Timoshenko and Goodier (1970), Fenner (1986),
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Moscardini (1985)]. Fenner (1986) gives the u and v displacement equations for the

cantilever as:-

u -
	

(Lx x 2	P(2^v)(d"2	 P(2+v)3

	

- i	 -	 6E1	
JY 

+	 6E1	
(3.1)

vP
v - - ___ 

(L-x)y2 - P(4+5v)(d'\2	 (x	 Lx2'\

	

___	 ______ I IX+ I -

	

2E1	 6E1	 )	
E7	 -TJ

For this particular cantilever the equations reduce to:-

' 1,000x-	 + 3 (Y 2_ 1002))	

(3.2)

	

160,000,00OI	 2	 8

1	 ((x 1
v-

160,000,0O0	 8	
- 10O2 x + L(_1000))

At the point A (1000,-100) in Figure 3.1 the u and v displacements are then -0.3125mm

and -2.13802mm to five decimal places respectively.

Moscardini (1985) using the cantilever approximations by Timoshenko and Goodier

(1970) obtains a value for the v displacement at the point A of -2.16mm, where the fixed

end of the cantilever is allowed to distort slightly. The control volume unstructured mesh

code does not produce distortions at the fixed end so the Fenner (1986) solution is used

for comparison. Figure 3.2 shows the cantilever with the displacements resulting from

the applied load.

rigure i.z: uispiaceu anuiever x 1(f))
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3.1.3 Finite Element Results

The finite element package IFECS, Interactive Finite Element Computing ystem [Lewis

and Cross (1978)], was used for the same problem and the results for the displacement

of the cantilever at the point A in Figure 3.1 were collected. Figure 3.3 shows the

standard triangular mesh generated by IFECS and used for the 33 node example.

Appendix B, Figures B.4-B.6, show the node and element structure for the three

different sized triangular meshes used, 33 nodes, 105 nodes and 369 nodes respectively.

Figure 3.3: Triangular Mesh - 33 Nodes

The IFECS two-dimensional code was used on a 386 machine to obtain the displacement

results though the finite element code is essentially a 286 based code. The times for the

finite element code to reach a final solution are displayed in Table 3.1 along with the u

and v displacements at the point A. The displacements are seen to increase in accuracy

as the mesh is refined.

Number of	 displacement at A	 Time for
Nodes	 solution (s)

u (mm) v (mm) ________

33	 -0.172	 -1.17	 11

105	 -0.263	 -1.76	 68

369	 -0.305	 -2.04	 366

lame .5.1 l-'inite Liement Kesults - antiiever
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3.1.4 CV-UM results

The control volume-unstructured mesh algorithm was used to obtain a solution to the

problem for meshes of varying types and sizes. The relaxation parameter, w, was varied

to see what effect it had on the convergence rate. The times for the solution to converge

were also noted for given tolerances and tabulated along with the displacement and the

number of global iterations needed for required convergence.

3.1.4.1 Quadrilaterals

A regular quadrilateral mesh was used for the cantilever problem as shown in Figure 3.4,

which displays the 33 node quadrilateral mesh. The control volume unstructured mesh

code does not use the structured characteristics of the quadrilateral mesh. The

displacement results for this mesh are shown in Table 3.2 for the various tolerances and

relaxation parameters used. The results for the quadrilateral mesh with 105 nodes are

displayed in Table 3.3 and the results for the cantilever with 369 nodes and quadrilateral

elements are shown in Table 3.4. The node and element structure for the three different

sized quadrilateral meshes used can be seen in Appendix B, Figures B.1-B.3. Appendix

B, Figures B.l0-B.13, illustrate the variation in the number of global iterations needed

before the required tolerance is reached for a particular relaxation parameter and

quadrilateral mesh.

Figure 3.4: Quadrilateral Mesh - 33 Nodes

From Table 3.4 the 369 node quadrilateral mesh, the u displacement obtained at the

point A by the unstructured code is -0.314mm and the v displacement -2.115mm. The

results are reasonably close to the analytical solution.
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3.1.4.2 Triangles

The triangular mesh used to solve the cantilever with the unstructured code was the same

as for the finite element code, Figure 3.3, and can be seen for the three different sized

meshes in Appendix B, Figures B.4-B.6. The displacement results and the solution

timings for the triangular mesh with 33 nodes are shown in the Table 3.5; the triangular

mesh with 105 nodes in Table 3.6 and the 369 node triangular mesh results in Table 3.7.

From Table 3.7, the mesh with 369 nodes produces u and v displacements at point A of

-0.304mm and -2.043mm. The results, though not as good as the quadrilateral

displacement results, are very close to the values produced by the finite element code

IFECS. Figures B. 14-B. 17 in Appendix B illustrate the variation for convergence of the

various relaxation parameters used for the different triangular meshes.

3.1.4.3 Mixed Mesh

An arbitrary mesh with mixed triangles and quadrilaterals was designed to test the

algorithm's capability for solving mixed mesh problems. An example of the mesh used

for the beam with 33 nodes is shown in Figure 3.5.

HHK
Figure 3.5: Mixed Mesh - 33 Nodes

Appendix B, Figures B.7-B.9, show in more detail the node and element arrangement

for the different sized mixed meshes. Results for the mixed mesh solution of the

cantilever problem were collected and tabulated. Table 3.8 shows the 33 node mixed

mesh displacements for the various tolerances and relaxation parameters used. Tables 3.9

and 3.10 display the results for the 105 node mesh and the 369 node mesh respectively.

From Table 3.10 the u and v displacement results produced for point A are -0.3 1mm and

-2.095mm, values between the results produced by the triangular and quadrilateral
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meshes. The number of global iterations required to reach a particular tolerance are

compared for the three mixed meshes in Figures B.18-B.21 in Appendix B.

3.1.5 Comparison of Results

Comparing the time for the finite element code and the control volume unstructured mesh

code on the same 386 personal computer, from the timings displayed in Tables 3.1-3.10,

it is seen that the finite element results may be quicker but the accuracy is not as good.

For much larger meshes, with many more nodes, it is expected that the control volume

unstructured mesh code will improve in time taken to reach solution compared to the

finite element solution for the same problem. From the results due to varying the

relaxation parameter co, it is seen that choosing an appropriate value for ü) can greatly

influence the time taken and the number of global iterations taken until convergence to

the required tolerance is reached.

Studying the displacement results for the quadrilateral meshes and the triangular meshes,

the cantilever beam is seen to be more suitable for solution using the quadrilateral

elements as the geometry of the beam itself implies. The quadrilateral element mesh

results are closest to the analytical solution followed by the mixed element mesh and then

the triangular element mesh.

Using the cantilever results for a mesh with 369 nodes and quadrilateral elements, Figure

3.6 demonstrates how the time taken varies with the relaxation parameter used. Graphs

B.l0-B.l2 in Appendix B show how the number of iterations varies depending on the

relaxation parameter chosen. Figure B.13-B.21, Appendix B, illustrate for the triangular

and mixed meshes how the number of global iterations necessary for a required tolerance

to be reached varies with the relaxation parameter used. The optimum relaxation

parameter can be calculated before the displacement results are obtained using a formula

containing the spectral radius of the neighbouring node coefficient matrix [Smith (1975)].

For simplicity, a rough mesh can be used to solve the problem with varying relaxation

parameters, so that an approximate optimum value is obtained. The graphs in Appendix

B show this approximate relaxation value can then be used with a much finer mesh to

obtain more accurate displacement results.
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 32.0313	 51	 -0.175806	 -1.23303

	

1.2	 26.4844	 42	 -0.193642	 -1.34827

	

1.5	 15.5703	 29	 -0.217330	 -1.50081

	

1.7	 12.5273	 19	 -0.232897	 -1.60081

	

1.9	 20.0000	 31	 -0.249818	 -1.71016

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)_[ v disp (mm)

	

1.0	 78.6797	 127	 -0.232716	 -1.59403

	

1.2	 59.0078	 95	 -0.235755	 -1.61353

	

1.5	 34.6133	 55	 -0.238755	 -1.63283

	

1.7	 19.3945	 30	 -0.240640	 -1.64475

	

1.9	 33.0195	 52	 -0.241479	 -1.65234

Tolerance = 0.0001, u & v displacements measured at Point A

[ Relaxation(u)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 131.430	 213	 -0.240553	 -1.64373

	

1.2	 94.01 17	 152	 -0.240868	 -1.64576

	

1.5	 51.9258	 83	 -0.241 192	 -1.64782

	

1.7	 26.2656	 41	 -0.241370	 -1.64897

	

1.9	 46.6133	 79	 -0.241431	 -1.64943

Table 3.2: Cantilever Results - 33 Nodes and Quadrilateral Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(o) ]
	

Time (s)	 Iterations	 u disp. (mm)	 vdisp(mm)

	

1.0	 120.824	 56	 -0.204505	 -1.42438

	

1.2	 101.758	 47	 -0.228898	 -1.58166

	

1.5	 72.2539	 33	 -0.260429	 -1.78480

	

1.7	 49.0664	 22	 -0.280182	 -1.91146

	

1.9	 71.3203	 33	 -0.293071	 -1.99317

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(ci)	 Time(s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 534.781	 251	 -0.293491	 -1.98966

	

1.2	 384.398	 180	 -0.293956	 -1.99260

	

1.5	 208.957	 97	 -0.294340	 -1.99508

	

1.7	 113.625	 52	 -0.294636	 -1.99701

	

1.9	 148.023	 80	 -0.295101	 -2.00024

Table 3.3: Cantilever Results - 105 Nodes and Quadrilateral Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 570.824	 57	 -0.214801	 -1.48149

	

1.2	 482.914	 48	 -0.241279	 -1.65217

	

1.5	 349.340	 34	 -0.275531	 -1.87241

	

1.7	 241.484	 23	 -0.297193	 -2.01211

	

1.9	 384.012	 45	 -0.322732	 -2.19350

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm) 
1

	1.0	 1502.25	 152	 -0.300703	 -2.02712

	

1.2	 1132.04	 114	 -0.305355	 -2.05697

	

1.5	 688.297	 68	 -0.310293	 -2.08858

	

1.7	 401.648	 39	 -0.312787	 -2.10474

	

1.9	 709.668	 88	 -0.316891	 -2.13105

Tolerance = 0.0001, u & v displacements measured at Point A 	 j

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)_[ v disp (mm)

	

1.0	 2594.34	 263	 -0.313308	 -2.10718

	

1.2	 1872.36	 189	 -0.313810	 -2.11038

	

1.5	 1034.39	 103	 -0.314250	 -2.11318

	

1.7	 578.406	 57	 -0.314566	 -2.11518

	

1.9	 1016.16	 131	 -0.314743	 -2.11608

Table 3.4: Cantilever Results - 369 Nodes and Quadrilateral Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 25.3320	 44	 -0.136678	 -0.976973

	

1.2	 20.9883	 36	 -0.148104	 -1.05134

	

1.5	 14.6172	 24	 -0.161707	 -1.13988

	

1.7	 9.61717	 15	 -0.171898	 -1.20453

	

1.9	 19.8359	 34	 -0.169609	 -1.19909

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(o) 1	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 56.4297	 101	 -0.169182	 -1.18494

	

1.2	 42.0898	 75	 -0.170854	 -1.19580

	

1.5	 24.8320	 43	 -0.172565	 -1.20684

	

1.7	 12.3047	 20	 -0.173860	 -1.21452

	

1.9	 31.1061	 55	 -0.173541	 -1.21278

Tolerance = 0.0001, u & v displacements measured at Point A

[ Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 90.3828	 164	 -0.173325	 -1.21164

	

1.2	 64.5078	 116	 -0.173485	 -1.21268

	

1.5	 35.1094	 62	 -0.173665	 -1.21381

	

1.7	 15.6055	 26	 -0.173841	 -1.21490

	

1.9	 45.5469	 82	 -0.173800	 -1.21473

Table 3.5: Cantilever Results - 33 Nodes and Triangular Elements
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Tolerance = 0.01, u & v displacements measured at Point A 	 j

Relaxation(0)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 128.461	 53	 -0.186615	 -1.31116

	

1.2	 107.145	 44	 -0.206949	 -1.44266

	

1.5	 76.5391	 31	 -0.234330	 -1.61920

	

1.7	 50.6602	 20	 -0.249957	 -1.72015

	1.9	 96.1523	 41	 -0.260350	 -1.78333

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations ] u disp. (mm)	 v disp (mm)

	

1.0	 544.838	 227	 -0.260435	 -1.78058

	

1.2	 389.891	 162	 -0.260795	 -1.78289

	

1.5	 216.648	 89	 -0.261 162	 -1.78525

	

1.7	 114.121	 48	 -0.261361	 -1.78654

	

1.9	 217.805	 98	 -0.261549	 -1.78772

Table 3.6: Cantilever Results - 105 Nodes and Triangular Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 621.484	 56	 -0.209555	 -1.44288

	

1.2	 523.953	 47	 -0.234646	 -1.60463

	

1.5	 375.879	 33	 -0.266870	 -1.81247

	

1.7	 256.703	 22	 -0.287491	 -1.94470

	

1.9	 469.672	 49	 -0.313132	 -2.11522

Tolerance = 0.0001, u & v displacements measured at Point A

Re1axation()	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 2621.24	 253	 -0.302936	 -2.03553

	

1.2	 1864.91	 180	 -0.303368	 -2.03831

	

1.5	 1146.64	 100	 -0.303883	 -2.04155

	

1.7	 581.869	 55	 -0.304204	 -2.04367

	

1.9	 1229.72	 137	 -0.304331	 -2.04427

Table 3.7: Cantilever Results - 369 Nodes and Triangular Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 25.4375	 49	 -0.163166	 -1.14690

	

1.2	 21.9219	 41	 -0.180227	 -1.25647

	

1.5	 15.1133	 28	 -0.20018	 -1.38439

	

1.7	 10.2188	 18	 -0.213332	 -1.46800

	

1.9	 16.0977	 30	 -0.227796	 -1.56370

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 104.945	 198	 -0.218618	 -1.49689

	

1.2	 70.4414	 141	 -0.218880	 -1.49856

	

1.5	 38.7930	 76	 -0.219144	 -1.50025

	

1.7	 19.0117	 36	 -0.219303	 -1.50126

	

1.9	 37.9141	 75	 -0.219339	 -1.50129

Table 3.8: Cantilever Results - 33 Nodes and Mixed Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 112.031	 55	 -0.197964	 -1.38780

	

1.2	 93.9570	 46	 -0.221141	 -1.53727

	1.5	 66.4805	 32	 -0.250957	 -1.72941

	

1.7	 47.1445	 22	 -0.271865	 -1.86256

	

1.9	 73.2422	 37	 -0.274670	 -1.87342

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(o.))	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 284.832	 143	 -0.272275	 -1.85970

	

1.2	 214.941	 107	 -0.276230	 -1.88508

	

1.5	 128.625	 63	 -0.280431	 -1.91201

	

1.7	 77.5869	 35	 -0.286360	 -1.92613

	

1.9	 123.953	 65	 -0.284034	 -1.93286

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(co)	 Time (s)	
[	

Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 483.352	 244	 -0.282890	 -1.92709

	

1.2	 346.648	 174	 -0.283299	 -1.92972

	

1.5	 190.988	 95	 -0.283722	 -1.93243

	

1.7	 108.570	 49	 -0.283951	 -1.93391

	

1.9	 182.691	 98	 -0.284100	 -1.93471

Table 3.9: Cantilever Results - 105 Nodes and Mixed Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(e)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 537.252	 57	 -0.212152	 -1.47315

	1.2	 453.406	 48	 -0.238312	 -1.64172

	

1.5	 330.824	 34	 -0.272305	 -1.86025

	

1.7	 229.508	 23	 -0.293159	 -1.99487

	

1.9	 421.594	 51	 -0.306392	 -2.04918

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	
[	

Iterations	 [ u disp. (nim)	 v disp (mm)

	

1.0	 1404.78	 151	 -0.296381	 -2.00818

	

1.2	 1057.64	 113	 -0.300888	 -2.03714

	

1.5	 651.98	 67	 -0.305647	 -2.06770

	

1.7	 377.910	 39	 -0.308412	 -2.08519

	

1.9	 782.637	 100	 -0.308643	 -2.08336

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 2726.76	 259	 -0.308720	 -2.08656

	

1.2	 1753.57	 189	 -0.309321	 -2.09043

	

1.5	 969.398	 103	 -0.309747	 -2.09312

	

1.7	 534.016	 56	 -0.309990	 -2.09460

	

1.9	 1269.56	 162	 -0.310238	 -2.09598

Table 3.10: Cantilever Results - 369 Nodes and Mixed Elements

page 56



Chapter 3

3000

Time (s)
2500

2000

1500

1000

500

0

Key: Tolerance
o 0.01
+ 0.001
o 0.0001

9	 1	 1.1	 1.2	 1.3	 1.4	 1.5	 1.8	 1.7	 1.8	 1.9

Relaxation Parameter o

Figure 3.6: The Graph of Time against Relaxation Parameter
369 Node Cantilever - Quadrilateral Elements

Although the time taken varies depending on the relaxation parameter used, as long as

the mesh is fine enough and a suitably small tolerance is used, the solution will

approximate to the same value, though it may take 4 to 5 times as long to reach a

converged solution as seen in Appendix B Figure B.13. Figure 3.6 indicates that if a

stricter tolerance than 0.0001 is necessary to obtain a more accurate solution, the

quickest solution time will be achieved with a relaxation parameter of approximately 1.7

when the number of global iterations is a minimum.
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3.2 Example 2: Thermal Beam

The thermal beam example tests the algorithms ability to obtain accurate results for

thermal problems. The beam is free to move everywhere except the very centre which

is fixed in the x and y axis directions. The top edge of the beam is heated and the

bottom edge cooled. The assumption of plane stress is again applicable as the length of

the beam is much greater than the other dimensions. The same meshes that were used

for the cantilever problem are used here along with the various relaxation parameter

values and tolerances.

3.2.1 Problem Specification

The beam has a length of 1,000mm and a height of 200mm. The temperature increase

along the top edge of the beam is 25 degrees centigrade and there is a decrease in

temperature of 25 degrees centigrade along the bottom edge. There is a linear thermal

gradient through the beam acting in the y-axis direction so that along the centreline of

the beam the temperature is 0°C. The only point fixed is the node at the very centre of

the beam. Figure 3.7 shows the initial beam and conditions applied.

_______________ 1OOOm	 _______________

. 25 C

2OOn	 . - Fixed point

- 25 C

A

Figure 3.7: Thermal Beam Description

For the material properties of the beam a Poisson's ratio of 0.25 was used with a

Young's Modulus of 210,000N/mm2. The coefficient of thermal expansion, a, was set

at 0.01°C', 50 that the displacements of the beam were clearly visible.
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As with the cantilever beam, three styles of mesh were used:- the first all quadrilaterals;

the second all triangles and the third a mixture containing both triangles and

quadrilaterals. Meshes with 33 nodes, 105 nodes and 369 nodes were used to collect

results for the thermal beam.

3.2.2 Analytical Results

Figure 3.8 shows a general beam which has a temperature gradient in the y-axis direction

only so the temperature function, T, throughout the beam is dependent only on the y-

axis values.

y

[.111	 L/2	 112	
•i,	

b Fl_.

Figure 3.8: General Beam with Y-Axis Thermal Gradient

The temperature gradient for this specific rectangular beam is:

T=T(y)=.L
	

(3.3)

The analytic solution for the u and v displacements of this problem are given by [Boley

and Weiner (1967)]:

U_Lx [(bNT)	
(bM)]	

(3.4)

+
E A

= - (bMT ) 2 - v[(r) + 
L (bMr)] + a(l+v)JTdy

2E1	 E A	 21

Where the area, A, is 2bh and the second moment of area, 1, of the cross section is
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2h3b/3. N and MT are given by the following relationships.

NT = aEJTdy

(3.5)

M = UEJTY dy

For this specific thermal beam when h=100, b=1, 1= 1000 with the material properties

and temperature defined earlier, NT reduces to 0. Using all the information known in

equation 3.4, the u and v displacements can be found at the point A in Figure 3.7. The

analytical solution at A is u =- 125mm and v = -300mm.

The expected displaced mesh is shown in Figure 3.9.

riguie .i 'ispiaeeu i uerrnai eaiii

3.2.3 Finite Element Results

Using the IFECS package comparable finite element code results for the displacement at

point A in Figure 3.7 were recorded along with the time taken. The displacement results

for the thermal beam can be seen in Table 3.11. The triangular mesh used for the three

different mesh sizes can be seen in Appendix B, Figures B.4-B.6. Figure 3.3 shows the

33 node mesh.
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Number of	 displacement at A	 Time for
Nodes

	

	 solution (s)
u(mm) v (mm) _____________

33	 -72.9	 -168	 7

105	 -104.6	 -249	 36

369	 -118.8	 -285	 195

Table 3.11: Finite Element Results - Thermal Problem

3.2.4 CV-UM Results

Various meshes differing in type and size were used with the control volume unstructured

mesh code to test the accuracy of the algorithm as in the cantilever example in 3.1. The

displacements and solution time were compiled in tables for the varying tolerances and

relaxation parameters used.

3.2.4.1 Quadrilaterals

The quadrilateral mesh used is the same as the mesh used in the quadrilateral case for

the cantilever example, Figure 3.4. The three different sized meshes used are shown in

detail in Appendix B, Figures B.l-B.3. The displacement results were collected along

with the time taken for different relaxation parameter values and tolerances. Tables 3.12-

3.14 detail the quadrilateral mesh results for the thermal beam. Graphs showing the

variation in global iterations required for a particular relaxation parameter are displayed

in Appendix B, Figures B.22-B.25. From the 369 node mesh displacement results in

Table 3.14, the u displacement is -124.538mm and the v displacement -298.929mm. The

results are very close to the analytical solution, detailed in section 3.2.2, and are much

better than the finite element results with triangular elements.

3.2.4.2 Triangles

The displacement results for the triangular mesh can be seen in Tables 3.15-3.17. The

mesh used is the same as for the finite element results and can be seen in Appendix B,

B.4-B.6. The value of the relaxation parameter and tolerance were altered to see the
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effect on the displacement results when using the control volume unstructured mesh code.

Appendix B, Figures B.26-B.29, illustrate for the triangular mesh, the variation in

global iterations required for a particular relaxation parameter before the set tolerance is

reached. Table 3.17 detailing the 369 node triangular mesh results, suggests values for

the u and v displacement results of -120.173mm and -288.561mm respectively. These

results are not as accurate as the quadrilateral results but are more accurate than the finite

element triangular mesh results.

3.2.4.3 Mixed Mesh

The mixed mesh used for the cantilever beam is used here for the thermal beam, shown

in Figure 3.5 and Appendix B, Figures B.7-B.9. Altering the tolerance and the value of

the relaxation parameter the displacements were noted as shown in Table 3.18-3.20. The

consequences of using a particular relaxation parameter, for the three mixed meshes,

on the number of global iterations used are seen in Figures B.30-B.33 in Appendix B.

From the mixed mesh results with 369 nodes in Table 3.20 the u and v displacements are

found to be -122.915mm and -295.374mm respectively, values between the triangular

and quadrilateral element results.
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(0)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 15.6602	 26	 -1 13.333	 -266.069

	

1.2	 12.0898	 20	 -1 15.805	 -274.314

	

1.5	 7.52734	 12	 -1 18.953	 -284.523

	

1.7	 7.80078	 13	 -121.750	 -291.601

	

1.9	 18.2422	 32	 -120.732	 -290.110

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(a)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 27.9141	 47	 -119.401	 -285.346

	

1.2	 20.3281	 34	 -1 19.724	 -286.414

	

1.5	 10.3828	 17	 -120.057	 -287.505

	

1.7	 12.4180	 21	 -120.184	 -287.782

	

1.9	 28.7383	 51	 -120.511	 -289.226

Tolerance = 0.0001, u & v displacements measured at Point A

[ Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 41.3750	 70	 -120.118	 -287.625

	

1.2	 28.5156	 48	 -120.142	 -287.706

	

1.5	 13.9023	 23	 -120.183	 -287.835

	

1.7	 15.2188	 26	 -120.185	 -287.836

	

1.9	 50.1094	 89	 -120.190	 -287.827

Table 3.12: Thermal Beam Results - 33 Nodes and Quadrilateral Elements
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pTolerance = 0.01, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 58.5703	 30	 -115.009	 -269.328

	

1.2	 45.2734	 23	 -117.634	 -278.112

	

1.5	 30.1641	 15	 -121.473	 -290.722

	

1.7	 30.8789	 16	 -124.014	 -297.976

	

1.9	 87.9102	 50	 -121.636	 -288.933

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 107.855	 56	 -122.506	 -293.232

	

1.2	 77.5273	 40	 -122.814	 -294.258

	

1.5	 43.4063	 22	 -123.256	 -295.698

	

1.7	 49.01 17	 26	 -123.526	 -296.136

	

1.9	 131.430	 75	 -123.446	 -296.136

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(w)_[	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 159.008	 83	 -123.360	 -295.955

	

1.2	 111.758	 58	 -123.396	 -296.071

	

1.5	 56.7578	 29	 -123.435	 -296.214

	

1.7	 59.7227	 32	 -123.464	 -296.274

	

1.9	 168.734	 97	 -123.441	 -296.192

Table 3.13: Thermal Beam Results - 105 Nodes and Quadrilateral Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(ü)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 261.922	 31	 -115.330	 -269.614

	

1.2	 204.672	 24	 -118.264	 -279.374

	

1.5	 145.770	 17	 -122.504	 -293.198

	

1.7	 141.758	 18	 -123.766	 -298.230

	

1.9	 365.879	 55	 -123.361	 -293.149

Tolerance = 0.001, u & v displacements measured at Point A

LRe1atioh1(	 [	
Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 492.141	 59	 -123.558	 -295.801

	

1.2	 353.078	 42	 -123.860	 -296.806

	

1.5	 203.957	 24	 -124.311	 -298.276

	

1.7	 182.801	 24	 -124.556	 -298.930

	

1.9	 626.813	 94	 -124.645	 -299.244

Table 3.14: Thermal Beam Results - 369 Nodes and Quadrilateral Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 14.2852	 21	 -80.8676	 -186.580

	

1.2	 11.0430	 16	 -82.3853	 -191.553

	1.5	 7.14453	 10	 -84.2108	 -196.913

	

1.7	 11.3711	 17?	 -84.6518	 -197.648

	

1.9	 29.2305	 46	 -83.9004	 -196.641

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 24.5078	 37	 -84.1223	 -196.516

	

1.2	 17.4180	 26	 -84.2710	 -197.007

	

1.5	 9.72656	 14	 -84.5079	 -197.634

	

1.7	 13.8477	 21	 -84.4015	 -197.261

	

1.9	 39.01 17	 62	 -84.4459	 -197.363

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(co)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 34.7813	 53	 -84.4648	 -197.537

	

1.2	 23.8477	 36	 -84.4802	 -197.585

	

1.5	 11.5938	 17	 -84.5042	 -197.651

	

1.7	 18.2422	 28	 -84.5156	 -197.672

	

1.9	 56.9258	 91	 -84.5026	 -197.652

Table 3.15: Thermal Beam Results - 33 Nodes and Triangular Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm) 
J

	1.0	 62.4180	 28	 -102.542	 -239.442

	

1.2	 47.3633	 21	 -104.561	 -246.255

	1.5	 32.3086	 14	 -107.908	 -257.268

	

1.7	 33.2422	 15	 -110.042	 -262.350

	

1.9	 112.910	 56	 -108.434	 -256.899

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 111.703	 51	 -108.522	 -258.407

	

1.2	 81.7031	 37	 -108.836	 -259.447

	

1.5	 45.3281	 20	 -109.147	 -260.499

	

1.7	 53.2422	 25	 -109.340	 -260.965

	

1.9	 167.582	 83	 -109.287	 -260.831

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)_1

	

1.0	 165.223	 76	 -109.229	 -260.639

	

1.2	 116.156	 53	 -109.259	 -260.740

	

1.5	 58.5195	 26	 -109.290	 -260.838

	

1.7	 69.8359	 33	 -109.301	 -260.857

	

1.9	 210.219	 105	 -109.304	 -260.866

Table 3.16: Thermal Beam Results - 105 Nodes and Triangular Elements
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[	
Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 286.922	 30	 -111.237	 -260.134

	

1.2	 231.922	 24	 -114.651	 -271.388

	

1.5	 166.703	 17	 -118.430	 -283.682

	

1.7	 161.098	 18	 -120.471	 -291.596

	1.9	 501.098	 63	 -120.056	 -287.682

Tolerapce = 0.001, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 533.898	 57	 -119.213	 -285.505

	

1.2	 386.371	 41	 -119.549	 -286.621

	

1.5	 231.484	 24	 -119.989	 -288.055

	

1.7	 246.594	 28	 -120.169	 -288.733

	

1.9	 617.817	 89	 -119.922	 -287.480

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(co)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 787.145	 85	 -120.093	 -288.289

	

1.2	 550.496	 59	 -120.125	 -288.397

	

1.5	 306.043	 32	 -120.173	 -288.561

	

1.7	 315.441	 36	 -120.200	 -288.643

	

1.9	 954.613	 125	 -120.164	 -288.512

Table 3.17: Thermal Beam Results - 369 Nodes and Triangular Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Re1axation()	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 12.3086	 24	 -99.9573	 -232.336

	

1.2	 10.1641	 19	 -102.391	 -240.292

	

1.5	 6.42969	 11	 -104.975	 -248.511

	

1.7	 6.75781	 12	 -106.579	 -252.521

	

1.9	 17.2500	 36	 -105.232	 -248.298

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)_[ v disp (mm)

	

1.0	 21.5352	 44	 -105.281	 -248.974

	

1.2	 15.9883	 32	 -105.554	 -249.860

	

1.5	 8.73438	 16	 -105.854	 -250.803

	

1.7	 11.5938	 21	 -105.984	 -251.230

	

1.9	 25.5508	 55	 -105.540	 -249.388

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(w)	 Time (s)	
[	

Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 31.1523	 65	 -105.860	 -250.782

	

1.2	 22.0898	 45	 -105.883	 -250.857

	

1.5	 10.5508	 20	 -105.913	 -250.954

	

1.7	 14.2852	 29	 -105.931	 -251.007

	

1.9	 40.1094	 88	 -105.910	 -250.932

Table 3.18: Thermal Beam Results - 33 Nodes and Mixed Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(e))	 Time (s) J
	

Iterations	 u disp. (mm)	 v disp (mm) ]

	

1.0	 56.5391	 29	 -109.841	 -257.117

	1.2	 45.8242	 23	 -113.036	 -267.701

	

1.5	 32.7500	 15	 -116.467	 -278.979

	

1.7	 37.0313	 19	 -118.012	 -283.145

	

1.9	 90.6055	 51	 -119.350	 -286.369

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(co)	 Time (s)	 Iterations J_u disp. (mm) J v disp (mm)

	

1.0	 104.285	 55	 -117.206	 -280.650

	

1.2	 74.8906	 39	 -117.482	 -281.580

	

1.5	 43.5156	 22	 -117.929	 -283.016

	

1.7	 51.5938	 25	 -118.154	 -283.578

	

1.9	 142.750	 82	 -1 18.176	 -283.578

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 152.637	 81	 -117.990	 -283.167

	

1.2	 107.910	 57	 -118.029	 -283.298

	

1.5	 54.8359	 28	 -118.061	 -282.400

	

1.7	 59.8906	 32	 -118.087	 -283.445

	

1.9	 179.563	 104	 -118.093	 -283.507

Table 3.19: Thermal Beam Results - 105 Nodes and Mixed Elements
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Tolerance = 0.01, u & v displacements measured at Point A

Relaxation(0))	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 263.848	 31	 -113.955	 -266.726

	

1.2	 216.316	 24	 -116.831	 -276.310

	

1.5	 142.359	 16	 -120.683	 -288.948

	

1.7	 155.223	 19	 -122.090	 -292.520

	

1.9	 420.551	 59	 -123.362	 -296.274

Tolerance = 0.001, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm)

	

1.0	 482.855	 58	 -116.112	 -292.035

	

1.2	 353.461	 42	 -122.267	 -293.269

	

1.5	 206.320	 24	 -122.731	 -294.770

	

1.7	 386.320	 29	 -122.932	 -295.350

	

1.9	 579.559	 83	 -123.089	 -295.838

Tolerance = 0.0001, u & v displacements measured at Point A

Relaxation(o)	 Time (s)	 Iterations	 u disp. (mm)	 v disp (mm) j

	

1.0	 713.898	 87	 -122.833	 -295.031

	

1.2	 512.855	 62	 -122.878	 -295.182

	

1.5	 271.371	 32	 -122.915	 -295.296

	

1.7	 281.043	 36	 -122.939	 -295.374

	

1.9	 784.176	 114	 -122.955	 -295.442

Table 3.20: Thermal Beam Results - 369 Nodes and Mixed Elements
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3.2.5 Comparison of Results

The control volume unstructured mesh results are seen to be more accurate than the finite

element results depending on the tolerance and relaxation parameter chosen. Comparing

the timings displayed in Tables 3.11-3.20 for the finite element code and the control

volume unstructured mesh code on the same 386 machine, it is seen that the finite

element results are faster. If the grid was refined further, increasing the number of

elements and nodes greatly, it is expected that the difference in time taken to reach

solution for the two algorithms would be closer.

As with the cantilever problem, the time taken, for the algorithm to reach convergence

to a given tolerance, is greatly affected by the choice of relaxation parameter. If the

tolerance is strict enough the solution will converge to the same displacement results

regardless of relaxation parameter used. Appendix B contains graphs, Figures B.22-

B.33, showing the effect of relaxation parameter chosen. A careful choice of relaxation

parameter used for the larger meshes can greatly reduce the time taken to reach solution.

Studying the control volume unstructured mesh results it is observed that the thermal

beam problem is much more suited to quadrilateral elements than triangular elements as

was the cantilever example of section 3.1.2. Quadrilateral elements produce displacement

results that are nearest the analytical results followed by the mixed element results then

the triangular element results.
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3.3 Example 3: Cusp Problem

For this problem the typical dimensions of a cusp tooth were used. The cusp consists

of three layers of material as seen in Figure 3.10. The problem shows how the control

volume unstructured mesh algorithm can handle multi-material problems and general

unstructured geometries. A typical node on one of the two material boundaries is

surrounded by elements of differing materials. A pressure is applied to the top boundary

of the cusp tooth simulating mastication.

rigure .. lu: uusp initiai rroiem uescripuon

The cusp tooth has a force applied to point A as displayed in Figure 3.10 and the

assumption of plane stress is used when obtaining the resulting nodal displacements.
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3.3.1 Problem Specification

The cusp had a maximum width of 6.8 mm and a maximum height of 6.9 mm. The

material properties for the Young's Modulus, Poisson's ratio and the coefficient of

thermal expansion, which make up the three different layers of the cusp are shown in

Table 3.21.

Young's	 Poisson's	 Coefficient of
Material	 modulus, E	 ratio	 Thermal

N/mm2	Expansion, O(I

1	 2,650,000	 0 3	 0.0

2	 4,000,000	 0.3	 0.0

3	 2,650,000	 0.3	 0.0

-	 Table 3.21: Cusp Material Properties

The coefficient of thermal expansion does not alter the resulting displacements of this

problem as temperature effects are not included in the example.

3.3.2 Finite Element Results

The unstructured triangular mesh used for the cusp is displayed in Figure 3.11, and

consists of 45 nodes. The displacements due to the force applied were found using the

finite element code IFECS. The finite element displacement results at the points A, B

and C as marked in Figure 3.10 can be seen in Table 3.22.

Displacement(x 105mm)
Points

U	 V

A	 -4.085	 -6.825

B	 -4.923	 -3.74 1

C	 -5.803	 -1.191

Table 3.22: Finite Element Cusp Problem Results
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FIU1 J.1 1	 USp IildngUlal L.ICIIJXIIL IVICSIL

Figure 3.12 shows the displaced mesh overlaying the original mesh with the

displacements magnified by a factor of 10,000.

3.3.3 CV-UM Results

The 45 node unstructured Cusp mesh was used with the control volume unstructured

mesh code to obtain the displacements due to the applied stress. Results were collected

for different values of tolerance and relaxation parameter. Two different meshes were

used, one consisting of triangular elements and the other a mixture of quadrilateral and

triangular elements.

3.3.3.1 Triangles

The triangular mesh used with the unstructured mesh code was the same as the mesh

used for the IFECS finite element program as shown in Figure 3.11 consisting of 69

triangular elements. Tables 3.23 to 3.25 show the displacements calculated at the nodes

A, B, and C using the control volume unstructured mesh code for different tolerances and
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relaxation parameters. Figure 3.12 shows the displaced mesh overlaying the original

mesh with the displacements magnified by a factor of 10,000.

Hgure 3.I'2: Cusp Displacements
(x 10,000)

3.3.3.2 Mixed Mesh

The 45 node triangular mesh displayed in Figure 3.11 was altered, where possible, to

create quadrilateral elements that did not affect the position of the nodal coordinate

points. The resulting mixed mesh is seen in Figure 3.13, element boundaries still border

the material boundaries so the same material boundaries are conserved. The control

volume unstructured mesh algorithm was tested on this mixed mesh in the same fashion

as the triangular mesh. The displacement results for various relaxation parameter values

and tolerances are shown in Tables 3.26 to 3.28.

page 76



Chapter 3

Figure 3.13: Cusp Mixed Liement Mesh

3.3.4 Comparison of Results

The finite element results and the triangular control volume unstructured mesh results are

virtually indistinguishable. The mixed mesh resulis vary a Iracüon Irom the others'tut

are not necessarily incorrect as an analytical solution to the problem is not available.

From the results of Tables 3.23-3.28 it is clearly seen that the correct choice of relaxation

parameter used can greatly influence the time taken for the algorithm to reach a

converged solution, though the displacement values only slightly differ.
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Table 3.23: Cusp Problem Results
Triangular Mesh, Tolerance = 0.01
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Table 3.24: Cusp Problem Results
Triangular Mesh, Tolerance = 0.001
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Table 3.25: Cusp Problem Results
Triangular Mesh, Tolerance 0.0001
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Table 3.26: Cusp Problem Results
Mixed Mesh, Tolerance = 0.01
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Table 3.27: Cusp Problem Results
Mixed Mesh, Tolerance = 0.001
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3.4 Example 4: Stress Concentration at a Hole

This example tests whether, once the displacements have been obtained by the control

volume unstructured mesh algorithm, the correct stresses can be obtained. A flat square

plate, Figure 3.14, is subjected to a uniform tensile stress a, at the top and bottom

edges of the plate. At the centre of the plate is a small circular hole. The thickness of

the plate is assumed to be sufficiently small so that the plane stress approximation is

applicable.

Figure 3.14: Square Plate with a Central Hole

3.4.1 Problem Specification

The plate has a width and height of 200 mm and the diameter of the hole is 10 mm.

There is a tensile stress applied to the top and bottom surfaces of 1 ,000N/mm 2. Only one

quarter of the plate need be considered for solution because of the symmetry of the

problem. The Young's modulus for the plate was taken as 210,000 N/mm 2 and the

Poisson's ratio was 0.25. Figure 3.15 shows the quarter of the square plate with the

initial conditions.
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a - 1000N/mm2

C,)

3
3
0

a-5mm\ P Symmetry_	 -
_____ b 100mm _____

Figure 3.15: Plate with Hole Initial Conditions

3.4.2 Analytical Results

The hole at the centre of the plate causes local concentrations of stresses, the maximum

stress being at x = +a (and -a), y = 0, the point P in Figure 3.15. The analytical solution

for the stress at A in Figure 3.14, P in Figure 3.15, is = 3 [Fenner (1986)], where

in this case the stress concentration factor is three. The width of the plate is much larger

than the diameter of the hole so the stresses diminish rapidly with distance from the hole

to the values they would have in its absence. With a tensile stress of 1,000N/mm2

applied at the top edge of the plate and at the bottom edge of the plate, this gives the

analytical stress at point A of 3,000N. The displaced elongated mesh for the top right

quadrant is shown in Figure 3.16.
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(Displacements x4)

3.4.3 Finite Element Results

The finite elements code 1FECS was used with the triangular mesh shown in Figure 3.17

to obtain results for the stress at point A in Figure 3.14. The stress at point A was found

to be 2379.94 N/mm2, giving a stress concentration factor of 2.380.

3.4.4 CV-UM Results

The 83 node unstructured plate mesh was used with the control volume unstructured

mesh code. The results were collected for different values of the tolerance and relaxation

parameter. Two meshes were used to obtain a solution to the problem the first a

triangular mesh, the same as used with the finite element code, and the second a

quadrilateral mesh.

3.4.4.1 Triangles

The triangular mesh shown in Figure 3.17 was used to obtain the stress results at point

A in Figure 3.14. The results were collected and tabulated for different values of the

relaxation parameter and tolerance, as shown in Table 3.30. The stress, 	 calculated
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Figure 3.17: Plate with Hole Triangular Mesh
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at point A is 2717.7N/mm2, which is substantially closer to the analytical solution than

the finite element triangular mesh solution obtained in section 3.4.3
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3.4.4.2 Quadrilaterals

A mesh consisting of quadrilaterals was designed for the plate so that the nodal

coordinate points were the same as for the triangular mesh and is seen in Figure 3.18.

The stress, o,, at the point A in Figure 3.14 was collected and tabulated for a variety

of tolerances and relaxation parameter values. The results can be seen in Table 3.31,

where the stress, obtained is 2234.3N/mm 2 a value less accurate than the triangular

mesh results.

rigure i.io: uauniai.erai iviesn iur riaie wiui riuic
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3.4.5 Comparison of Results

Table 3.29 shows the summarised stress concentration factors for the plate with a hole

obtained using IFECS and the control volume unstructured mesh code.

CV-UM code
Stress	 finite

Concentration	 analytic	 element	 triangles	 quadrilaterals

factor	
3	

J 
2.380	 2.7 17	 2.234

Table 3.29: Hole Problem Stress Concentration Factors

The stress solution nearest to the analytical solution is the triangular control volume

unstructured mesh case. The finite element stress concentration factor is just greater than

the quadrilateral element control volume unstructured mesh stress concentration factor.

The reason the triangular elements perform so much better for this case could be because

the stresses are obtained at the element centres and then approximated at the nodes. For

the triangular case there are twice as many elements and the element centres are much

nearer the point A where the stresses are to be obtained.
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Tolerance = 0.01, Stress measured at Point A (N/mm2)

relaxation (co)	 time (s)	 iterations	 Y-stress (,.,,)

	

1.0	 12.47	 6	 2713.8

	

1.1	 12.42	 6	 2715.9

	1.3	 13.84	 7	 2717.3

	

1.5	 19.95	 11	 2720.0

	

1.7	 33.35	 20	 2715.9

	1.9	 92.53	 61	 2709.7

Tolerance = 0.001, Stress measured at Point A (N/mm2)

relaxation (co)	 time (s)	 iterations	 Y-stress (ar,)

	

1.0	 17.20	 9	 2717.5

	

1.1	 15.61	 8	 2717.6

	

1.3	 16.92	 9	 2717.5

	

1.5	 25.99	 15	 2717.8

	

1.7	 43.46	 27	 2718.2

	

1.9	 124.12	 83	 2716.4

Tolerance = 0.0001, Stress measured at Point A (N/mm2)

relaxation (co)	 time (s)	 iterations	 Y-stress (a)

	

1.0	 25.16	 14	 2717.7

	

1.1	 21.92	 12	 2717.7

	

1.3	 22.97	 13	 2717.7

	

1.5	 36.43	 22	 2717.8

	

1.7	 63.84	 41	 2717.7

	

1.9	 197.42	 134	 2717.7

Table 3.30: Hole Problem Stress results with Triangular mesh
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Tolerance = 0.01, Stress measured at Point A (N/mm2)

relaxation ((i))	 time (s)	 iterations	 Y-stress (a,),)

	

1.0	 10.71	 6	 2231.2

	

1.1	 10.61	 5	 2233.1

	

1.3	 11.70	 7	 2234.3

	

1.5	 16.92	 11	 2234.5

	

1.7	 28.13	 20	 2235.4

	

1.9	 79.34	 63	 2227.9

Tolerance = 0.001, Stress measured at Point A (N/nim2)

relaxation (w) 1	 time (s)	 iterations	 Y-stress (ar)

	

1.0	 13.30	 8	 2233.9

	

1.1	 13.24	 8	 2234.2

	

1.3	 14.23	 9	 2234.2

	

1.5	 21.70	 15	 2234.2

	

1.7	 35.11	 26	 2233.7

	

1.9	 107.91	 87	 2234.9

Tolerance = 0.00001, Stress measured at Point A (N/mm2)

relaxation (o)	 time (s)	 iterations	 Y-stress

	

1.0	 21.37	 14	 2234.3

	

1.1	 18.52	 12	 2234.3

	

1.3	 19.39	 13	 2234.3

	

1.5	 30.27	 22	 2234.3

	

1.7	 51.76	 40	 2234.3

	

1.9	 163.02	 134	 2234.3

Table 3.31: Hole Problem Stress Results with Quadrilateral Mesh
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Chapter 3

3.5 Example 5: Hollow Sphere with Temperature Variation

The hollow sphere has a radial temperature variation such that the inner radius of the

sphere is cooler than the outer radius of the sphere. Figure 3.19 shows a section through

a quadrant of the hollow sphere. The problem can be modelled using the axisymmetric

assumptions and the resulting displacements from the temperature variation obtained.

T=-1O

Figure 3.19: Thermal Hollow Sphere Section

3.5.1 Problem Specification
The inner radius, a, of the sphere is 5cm and the outer radius, b, 10cm as shown in

Figure 3.19. The temperature at the inner radius is -10°C and increases to 10°C at the

outer radius. The radial temperature variation for this problem can then be described by

the function 7' = T(r) = 4r - 30, where a ^ r ^ b. The material has a Poisson's ratio,

v, of 0.25 and a coefficient of thermal expansion, a, is 0.0 1°C'.

page 92



Chapter 3

3.5.2 Analytical Results

The analytical solution for the displacement and stresses of a hollow sphere with radial

temperature variation can be found in Boley and Weiner (1967). The equation for the

radial displacement is summarised below:

i +v [ a3 fT2d + b JT2d + 2(1 -2v) JTr2 drl (3.6)u(r)-
(b 3 -a 3 ) 1 -v	 r2 r	r2	 (1 +v)	 a

For the particular hollow sphere described in section 3.5.1 the equation reduces to:

r2	 hr	 250
u(r)=_-____+	 (3.7)

60	 70	 21r2

Where the radius, r, varies from a = 5cm the inner radius to b = 10cm the outer radius

of the hollow sphere. The radial displacements can be seen in Figure 3.20 overlaying the

original hollow sphere.

riguic	 itieritiiiy iispiaeeu piiere
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3.5.3 CV-UM Results

Figure 3.21 shows the 48 element and 63 node mesh used with the control volume

unstructured mesh code to obtain the displacement of the hollow sphere due to the radial

temperature variation, using the axisymmetric option. The displacements were collected

for each node and then approximated over the nine nodes in a given radius to obtain

averaged values of the displacement for a particular radius. The displacements were

averaged for radius values:- 5, 5.883, 6.666, 7.5, 8.333, 9.166 and 10cm. The results

were collected and tabulated for various relaxation parameter values and tolerances as can

be seen in Tables 3.32-3.35.

rlgulc ..i. piicic \uau.L1IaLcIa1 ivicu

The control volume unstructured mesh code produces a displacement of 0.0978cm at the

inner radius and 0.2111cm at the outer radius of the sphere. The thermal displaced

hollow sphere is shown in Figure 3.20.
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Table 3.32: Thermal Hollow Sphere
Results Tolerance = 0.01
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3.5.4 Comparison of Results

Figure 3.22 display the analytical radial displacements for the hollow sphere along with

the control volume unstructured mesh solution to the problem. The radial displacement

results for the problem using the package MicroFIELD, (MFIELD), are also shown.

MicroFIELD used a mesh containing the same number of elements, as shown in Figure

3.21, but each element had 8 nodes. From the displacements seen in Figure 3.22 the

control volume unstructured mesh displacements are very close to the analytic solution.

The MicroFIELD results are slightly better due to the 8 node elements. Grid refinement

of the quadrilateral mesh used with the unstructured code would produce radial

displacements nearer the analytic solution.

0 . 25

i- 	 0.2
E
U

+i 0.15
C
4)
E
4)
o 0,1

a
.! 0.05
0

0.0
D

-0.05
5	 6	 7	 0	 9	 to

RadTus r (cm)

CV-UM	 flIIELD

Figure 3.22: Thermal Hollow Sphere Displacements

Tables 3.32-3.34 indicate that a relaxation parameter value of 1.2 would produce a

converged solution with the minimum number of global iterations.
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3.6 Example 6: Thermal Sphere with Mechanical Loading

In this example the hollow sphere has an internal and external pressure applied at the

inner and outer radii in addition to a radial thermal variation. Figure 3.23 shows a

section through a quadrant of the sphere. The axisymmetric approximation is suitable

for use when modelling this problem and obtaining the resulting radial displacements.

SYMMETRY
T=6	

T=2

Figure 3.23: Hollow Sphere Section with Applied Pressures

3.6.1 Problem Specification

The geometry and initial conditions for the hollow sphere are the same as used by Bakr

and Fenner (1983) when they modelled the example. The inner radius of the sphere, a,

is 1cm and the outer radius, b, 2cm as shown in Figure 3.23. The inner radius is

maintained at a temperature of 6°C and the outer radius 2°C. The pressure applied at the

inner radius is 5N/cm2 and at the outer radius the pressure applied is 3N/cm 2. The

material properties used have values 1 .ON/cm2 for Young's modulus, 0.3 for Poisson's

ratio and 0.02°C' for the coefficient of thermal expansion.
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3.6.2 Analytical Results

The analytical results for this example are given by Bakr and Fenner (1983). The radial

displacement at the inner radius is 0.4629cm and the radial displacement at the outer

radius is -1.6743cm. These two results indicate the sphere has somehow turned inside

out. Figure 3.24 shows the displaced hollow sphere with the displacements produced by

the control volume unstructured mesh algorithm, showing the outer radius of the sphere

has become the inner radius of the sphere and the inner radius of the sphere is now the

outer radius.

Figure 3.24: 1hermally and Mechanically Displaced pnere

3.6.3 CV-UM Results

Figure 3.21 shows the quadrilateral mesh with 48 elements and 63 nodes used with the

control volume unstructured mesh code. The radial displacements resulting from the

radial thermal temperature variation and the applied pressures were obtained, using the

axisymmetric option, for various relaxation parameter values and tolerances. The radial

displacements were averaged over the nine nodes that had the same radius and the values

were tabulated in Tables 3.35-3.37. The control volume unstructured mesh code produces

a displacement of 0.4528cm at the inner radius and -1.68cm at the outer radius.
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3.6.4 Comparison of Results

Radial displacement results for the problem were collected using the MicroFIELD

package. The same number of elements and mesh were used, but the elements consisted

of eight nodes. The resulting MicroFIELD radial displacements are shown in Table 3.38

(MFIELD), along with the control volume unstructured mesh results, the analytical

results and the boundary integral equation (BIE) results from Bakr and Fenner (1983).

Radial Displacements (cm): CV-UM, MFIELD - Averaged Values.
____________	 Exact, BIE - [Bakr and	 Fenner (1983)]	 ____________

radius, r(cm)	 CV-UM	 Exact	 BIE	 MFIELD

	

1.000	 0.4528253	 0.4629	 0.4626	 0.4554399

	

1.167	 -0.096932	 -0.0899	 -0.0899	 -0.0899009

	

1.333	 -0.5169224	 -0.5122	 -0.5117	 -0.5084117

	

1.500	 -0.8616877	 -0.8586	 -0.8582	 -0.8504378

	1.667	 -1.160206	 -1.1580	 -1.1574	 -1.146567

	

1.833	 -1.429389	 -1.4266	 -1.4254	 -1.413576

	

2.000	 -1.680081	 -1.6743	 -1.6744	 -1.660208

Table 3.38: Comparison of Displacements for Hollow Sphere

The boundary integral equation results are the closest to the analytical results, where

Bakr and Fenner (1983) used curved boundary elements. The control volume

unstructured mesh displacements are fairly close to the analytic displacements, grid

refinement would produce more accurate radial displacement results.
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3.7 Conclusions

The six examples included in this chapter have demonstrated the suitability of the control

volume unstructured mesh algorithm to the application of solid mechanics problems. The

cantilever problem in section 3.1 illustrates the algorithms capacity for treating applied

stresses and fixed displacements as initial conditions. The beam that has a temperature

variation through it in section 3.2 shows thermal problems can be solved efficiently using

the control volume unstructured mesh algorithm. The algorithm can efficiently manage

meshes with various elements such quadrilaterals, triangles or both. The type of mesh

used can then be altered for each specific problem considered. It was shown that

rectangular beams are more suited to quadrilateral elements, with the triangular element

mesh results very similar to the finite element results. The plate with a circular hole in

section 3.4 produces stresses more closely resembling the analytical results when

triangular elements are used.

Multi-material problems such as the cusp in section 3.3 are easily catered for in the

control volume unstructured mesh algorithm. The cusp triangular mesh displacement

results agree with the finite element displacement results. Examples 3.5 and 3.6 show

the capability of the algorithm to manage axisymmetric problems with thermal and

mechanical loading. The results produced are very close to the analytical solutions for

the problems and require no extra computational effort.

The time for convergence at present is slower than the finite element counterparts but

with the inclusion of improved algorithms, such as more efficient solvers, it is hoped

the speed will improve. From the results showing the variation in global iterations with

respect to the relaxation parameter chosen, a clear pattern is seen showing that the most

efficient relaxation parameter for individual problems stays the same regardless of

tolerance and mesh refinement. The optimum relaxation parameter to be used with a

specific problem can be calculated using the spectral radius of the system matrix formed

with the coefficients of neighbouring nodes [Smith (1975)].
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Friction at Boundaries

Frictional forces act along the common surface between two bodies in such a direction

as to oppose the relative movement of the two bodies. This chapter briefly describes the

existing theories of friction established over hundreds of years and more recently. The

classic laws of friction are then included as a boundary condition into the two-

dimensional stress-strain code, described previously in Chapters 3 and 2. The two

bodies are assumed to be in full contact, so that a complicated contact algorithm is not

considered for inclusion and so will not affect the friction boundary displacements. A

simple block is used to test the friction algorithm for a variety of surface angles then a

silica brick example is tested with various mesh sizes.

4.1 DefInition of Friction

Detailed descriptions of the history of the theories of friction can be found in papers such

as Martins, Oden and Simoes (1990), Oden and Martins (1985), Curnier (1984) and

Tabor (1981). It is stated that friction theory has received only episodic attention over

the years whereas the similar plasticity phenomena has advanced much further [Curnier,

(1984)]. Over the last decade the advancement in the solution of contact problems by

means of variational inequalities means that more sophisticated friction models are

required. It is not the purpose of this chapter to suggest new theories of friction, but it

is meant to include an existing generally accepted friction theory into the stress-strain

code described previously. The classic laws of friction are summarised along with more

recent theories of the friction phenomena. A few examples are given for numerical

friction prediction methods.
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4.1.1 Classic Laws of Friction

According to labor (1981), Charles Augustin Coulomb established the basic laws of

friction about one hundred years after Amonton's 1699 ideas on friction. Figure 4.1

shows a free-body diagram for a block resting on a flat surface.

riguie '+.i: rneiiuiiai rurces

When the two bodies in contact are subjected to an applied force, T, which tends to

produce relative sliding motion, frictional forces, F, develop on the interface that tend

to oppose the motion. Forces F and T act in opposite directions with F less than or equal

to T.

The classic friction laws as given by Oden and Martins (1985) are given by:-

(i)	 The frictional force, at onset of sliding and during sliding, is proportional to the

normal contact force
FJ = p R	 (4.1)

The coefficient of proportionality, p, is known as the coefficient of friction. Often two

values of j.t are quoted: the coefficient of static friction that applies to the onset of

sliding and the coefficient of kinetic or dynamic friction that applies during sliding.

(ii) The coefficient of friction is independent of the apparent area of contact.

(iii) The static friction coefficient is usually greater than the kinetic coefficient.

(iv) The coefficient of kinetic friction is independent of the sliding velocity.
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A surface is said to be 'smooth' and frictionless when p. = 0 or 'rough' and frictional

when p. > 0. When the force is applied at the friction boundary there are two possible

outcomes, either

F^p.R
	

(4.2)

and the boundaries of the connecting objects will 'stick' together, or

F=p.R

and the object with the force applied to it will 'slip' against the other object. This

applies to static friction at the onset of sliding. Examples for values of the coefficient

of friction, are 0.2-0.5 for wood on wood and 0.2-0.6 for wood on metals. Other values

can be obtained from engineering data books [Munday and Farrar (1986)].

4.1.2 Recent Theories of Friction

Coulomb suggested -that the asperities on the surfaces of the two connecting bodies were

responsible for the coefficient of kinetic friction often being less than the coefficient of

static friction. Tabor (1981) wrote that the main weakness with the coulomb roughness

model was that it was basically non dissipative. The terminology of 'rough' and

'smooth' surfaces is still used though known to be a false correlation and completely

discredited. The Coulomb law for perfect friction covers a restricted range of tribological

situations.

Tabor (1981) lists three basic elements of friction in unlubricated solids as:-

i) The area of true contact between the sliding surfaces.

ii) The type of strength of bonding that is formed at the interface where sliding

occurs.

iii) The way in which the material in and around the contact regions is sheared and

ruptured during sliding.

This is a substantially different theory from the classic laws of friction in section 4.1.1

for the friction phenomena and the most widely accepted in recent decades [Oden and

Martins (1985), Tabor (1981)]. The friction coefficient can be given as a sum two

components resulting from adhesion and ploughing.
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Oden and Martins (1985) explain that there are cases when the classic laws labelled (i)

and (ii) in section 4.1.1, often known as Amonton's laws, are not true. Section 4.1.1

number (iii) is intimately associated with the stick-slip phenomena referred to in later

sections. The fourth law of section 4.1.1 is now known to be invalid as a large volume

of experimental data has shown the variation of the friction coefficient with the sliding

velocity [Oden and Martins (1985)].

More recent theories of friction with more details can be found in Oden and Martins

(1985) and Martins, Oden and Simoes (1990). Cumier (1984) proposes a general theory

of friction inspired from the field of plasticity, restricted to moderate amounts of slip

with a contact impenetrability condition included as a by-product.

4.1.3 Friction Algorithms in Use

Oden and Martins (1985) use a finite element semi explicit model with a central

difference scheme to test the friction methods. Their preliminary numerical results show

promising simulations which correspond experimentally. Close cooperation is needed

between experimentalists and numerical analysts for a thorough test of friction models.

Moscardini (1985) implements the Coulomb law of perfect friction in a finite element

code INFESA. The iterative results initially produced the stick-slip boundary

displacements expected. The resulting stresses along the friction boundary were re-input

as the boundary forces, but the 'slip' point on the friction boundary rose steadily so that

all the nodes on the boundary became fixed. A finer grid was suggested as a possible

solution to the problem.

A formulation for finite element simulation of frictional contact is proposed by Saran and

Wagoner (1991a), (l991b) for industrial forming processes. The model has to contend

with non-linearities caused by large strains and plastic flow plus the complex boundary

conditions concerning frictional contact. The convergence of two methods was compared

for the solution of a flat sheet of metal under plane strain conditions subject to the

application of a cylindrical punch. The method using the linearised friction-contact

equations failed to converge. Whereas the method where the complete set of governing
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equations were linearised was found to have a quadratic rate of asymptotic convergence.

An elasto-plastic finite element unilateral contact analysis by Hrycaj, Cescotto and Oudin

(1991) with friction used an incremental non-associated plastic constitutive equation.

Katona (1983) uses a simple interface element to simulate contact friction interaction

between two bodies, implemented in a standard finite element program. The two

applications presented and tested with friction coefficient values ranging from infinity,

bonded, to zero, free, produced converged solutions. Katona (1983) states that some

cases not presented did not converge due to the interface being borderline between a

small compressive normal force and a small normal gap, but the lack of convergence

was generally inconsequential with regard to the overall solution.

Ibrahimbegovic and Wilson (1992) use a model that contains a regularised form of the

Coulomb friction law, which stems from an analogy of friction and plasticity

phenomena. The frictional contact model is capable of treating both dynamic and

quasistatic problems without reduction of the coefficient of friction from static to

kinematic.

The Signorini problem with Coulomb's law of friction is considered by Haslinger (1992).

The existence of a solution is determined using a finite element approximation of mixed

type. Klarbring and Björkman (1992) formulate a model for large displacement contact

problems with friction. Contact with a classical formulation of Coulomb's friction law

is used in variational form. A transformation to a non-orthogonal coordinate system at

each contact point is assessed by Runesson, Kjisinski and Larsson (1993) for a novel

implementation of the stick-slip law. The introduction of regularisation to overcome

convergence problems is not used with this method of solution of Signorini's problem.

Important factors in tribology - the study of friction, wear and lubrication, are the

magnitude and distribution of surface temperatures generated by one body sliding against

another. Vick, Furey and Foo (1991) developed a boundary integral equation method

with a moving Green's function to solve the problem of frictional heating. The method

produced accurate results and was unconditionally stable. Boundary elements were used
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by Takahashi and Brebbia (1988) to provide a flexibility approach for contact problems

with and without friction.

Various numerical procedures have been used with varying degrees of success to solve

frictional problems. The major problem, especially with the finite element programs is

a lack of convergence of the solution. Linearisation appears to be an option that can be

used, though the success of this is not guaranteed.

4.2 Implementation in CV-UM code

An algorithm is developed from Coulomb's perfect law of friction for implementation

into the control volume unstructured mesh stress-strain code.

From equation 4.1 the forces (N) can be divided by the area over which they are applied

to obtain the stresses (N/rn 2). In the case of two-dimensional elasticity the forces are

divided by the distance, Ds, as seen in Figure 4.2.

F

F	 IR

Figure 4.2: Applied Frictional Forces

The friction condition becomes:-	
F	 R- = I&—
Ds	 Ds	 (43)

-
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The equation now relates the shear stress, S, to a proportion of the normal stress, SN.

The two conditions for the stick-slip friction law are seen in equation 4.4 and the stresses

shown in Figure 4.3.

Ss<SN	 stick	
(4.4)

Ss = SN	slip

sx

Figure 4.3: Frictional Stresses

The normal and shear stresses can be resolved into components parallel to the coordinate

directions as shown in equation 4.5.

SN Sl+Sm	
(4.5)

S5 = Sm-Sl

where S and S are the components in the coordinate directions. The direction cosines

1 and m are defined as: 1 = cos cx and m = sin a, where a is the angle between the

normal SN and the x-axis as shown in Figure 4.3

The components S and S can be defined in terms of the stresses a,	 and

[Fenner (1986)] shown in equation 4.6 for the two-dimensional case. The stresses a,
and a,, at the nodes are approximated values from the element stresses obtained in

the control volume unstructured mesh stress-strain code.
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S1 =	 + 0m
(4.6)

S =a m+0ly	yv	 1)'

It is possible to rewrite the coordinate stresses S and S in terms of the normal and shear

stresses as seen in equation 4.7
S = SN 1+SS m1	

(47)

S,, = SNm-SS1

Resolving the forces F and R into the axis directions or multiplying equation 4.7 by the

distance, Ds, results in

- SDs = Ds(SNm-SSl) F =Rm-Fly

The forces applied at the boundaries in the axis directions can be defined in terms of the

stresses

F1 = Ds(SNI+SSm)	
(4.9)

F = Ds(SNm-SS1)

For the slip condition of friction as in equation 4.4, equation 4.9 is modified as follows:

F = Ds.SN(l+ILm)	
(4.10)

F, = Ds.SN(m-pl)

The normal stress, 5N' can be calculated using equations 4.5 and 4.6. When a slip

friction boundary point is defined then the forces F1 and F are prescribed at the

boundary. If the boundary is a fixed friction node then the point is defined as a fixed

node. As the contact at the friction interface is fixed the relative displacement i/ in the

x"-axis direction as shown in Figure 4.4 will be zero.

page 113



Chapter 4

rigure 'l.'4: oorciinate systems

The relative displacements LI and V can be defined in terms of the displacement u and

v seen in equation 4.11.	
u' = lu+mv	

(4.11)

v' = lv-mu

When ii is zero, l.v = m.u, so if the u displacement is obtained using the applied force

F then the displacement v can be determined from v = u.m/l and vice versa.

4.2.1 Stick-Slip Friction Algorithm

The stick-slip friction algorithm to be included in the two-dimensional stress-strain code

is illustrated in Figure 4.5. For each node on a friction interface the direction cosines 1

and m are calculated followed by the frictional forces acting at the node if the relative

v displacement is positive.

4.2.2 Solution Procedure

Figure 4.6 shows the inclusion of the friction algorithm, as displayed in Figure 4.5, in

the control volume unstructured mesh stress-strain code. The slip routine is accessed

after the u and v displacements have been obtained for a particular iteration, the

boundary conditions at the friction boundary are then altered if necessary for the next

iteration. For each new global iteration the system matrices for u and v, containing the

coefficients, are recreated to allow for the altered boundary conditions on the friction

interface predicted by the friction algorithm.
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Figure 4.5: Friction Algorithm
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Figure 4.6: Solution Procedure with Friction Algorithm
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4.2.3 Test Results

The two-dimensional friction code was applied to simple test blocks. A square block

with two adjacent sides fixed, a third connecting side has a uniform force applied normal

to it and the final edge, the friction boundary, is in contact with another object as in

Figure 4.9. The resulting displacements along the friction boundary were computed, and

the u and v displacement residuals were found not to converge. The residuals would

oscillate about certain small values as shown in Figure 4.7.

1.0

0.9

0.8
U)
-J

9 0.6
(1)

0.5

0.4
w

0.3

0.2

0.1

0.0
0	 10	 20	 30	 40	 50	 60

GLOBAL ITERATIONS

Figure 4.7: Displacement Residuals for Algorithm with Friction
no Source Linearisation

4.2.4 Linearisation of Source

To solve the problem of oscillating residuals the source terms for the u and v

displacements were linearised [Patankar (1980)]. During an iteration the equations for

the displacement u or v obtained are in the form shown in equation 4.12, where the

value of the displacement at a point depends on the displacements at the surrounding

points.

a	 = V a ,1, 4	 + b	 (4.12)
p p
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Where 4 represents either the u or v displacement. To linearise the source term 	 the

transformation in equation 4.12 is used

b = Sc -
	 Sp	 (4.13)p

where

b
SpIP

old
'Vp

b
Sc = 2 b	 if	 "	 is positive	 (4.14)p	 (bold

Sc = 0	
b	

is negative
(bold

The equation solved for u or v then becomes:-

(4.15)

4.2.5 Revised Solution Procedure

Figure 4.8 shows the revised solution procedure. The difference between this and the

original solution procedure is that after the right hand sides of a particular displacement

equation have been obtained they are then linearised.
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Figure 4.8: Revised Solution Procedure with Friction Algorithm
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4.3 Example 1: Simple Block

A square block is used as a simple test for the friction boundary condition routine. The

block is fixed along the left edge and bottom edge so that it cannot move in any

direction. Along the right edge of the block the friction boundary condition is applied

simulating the block in contact with another object. The top edge of the block has a

pressure applied. An arbitrary value for the coefficient of friction is used initially and

the effect along the right edge of the block noted. The displacements along this edge are

compared to the displacements along the edge if the coefficient of friction was zero and

free to move along the edge of the neighbouring object. Various values of the coefficient

of friction are used to see the general effect this has on the displacement along the

friction boundary. The coefficient of friction is then kept constant at the original value

while the angle of the block is rotated and the relative displacements along the friction

boundary noted.

4.3.1 Problem Specification

The arbitrary square block is taken to be 10cm by 10cm as shown in Figure 4.9. The left

edge and the bottom edge are completely fixed.

-	 10cm

Figure 4.9: Initial block
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The right edge is the friction boundary, which is in contact with the edge of another

object and initially has an arbitrary coefficient of friction value of 0.6. The stress applied

along the top edge is -2,000N/cm 2. The block has a Poisson's ratio of 0.4, a Young's

modulus of 50,000N/cm2 and the coefficient of thermal expansion is 0.0001°C'.

Figure 4.10 shows the quadrilateral mesh used with the control volume unstructured mesh

code, where each element has area 1cm 2. The node numbers along the friction boundary

are shown for reference when displaying the displacement results.

STRESS APPLIED

a
LUx
LL

F IXED

Figure 4.10: Simple Friction Block Mesh

4.3.2 Friction Results

The control volume unstructured mesh code was used to solve the square block problem.

An arbitrary tolerance of 0.0001 was used for the nodal displacement residuals of the

block. The residuals for the first 60 global iterations of the u and v displacements are

shown in Figure 4.11. After 500 iterations the required tolerance had still not been

reached and the displacements were seen to oscillate slightly in similar fashion to the

residuals displayed in Figure 4.11.

Figure 4.12 shows the displaced mesh overlaying the original mesh of the square block.
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Figure 4.11: Displacement Residuals of Block with Source Linearisation
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Figure 4.12: Simple Block Displacements
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Looking at the v displacement along the friction boundary in more detail the nonlinear

properties of the frictional contact can be seen. Figure 4.13 shows the displacement

along the frictional boundary with a value of 0.6 for the coefficient of friction and

compares these to the displacement of the edge if the contact surface was completely

smooth.

06

,.'
U
\_,	 0

-.06

z
uJ

LU	 -1.
0

-Ja
-16

0

>	 -.5

- 26

ii.	 22	 33	 44	 55	 66	 77	 66	 99	 110	 121.

NODE NWBER ON FRICTION BOUNDARY

Fr-iction Coefficient	 .0.0 +0.6

Figure 4.13: The Graph of Displacement at Nodes on Friction Boundary

When the contact surface is completely smooth and the coefficient of friction between

the two surfaces is zero, the displacement obtained along the boundary is linear as seen

in Figure 4.13. When friction is present the displacement is found to be nonlinear with

nodes below a certain point 'sticking' and the nodes the other side 'slipping'.

To investigate the effect of the coefficient of friction, the value along the friction

boundary was altered and the associated displacements obtained. Values for the

coefficient between 0 and 2 were used. The tolerance for the displacement residuals was

kept at 0.0001 and the simulation for each case was allowed a maximum of 500 global

iterations. Again the solution did not reach the required tolerance, but the residuals were
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seen to oscillate slightly and not diverge.

Figure 4.14 shows how varying the value of the coefficient of friction between the two

surfaces alters the displacements of the nodes along the friction boundary. The node that

divides the stick or slip parts on the friction boundary is seen to move along the

boundary as the friction coefficient is altered.

Friction CoeffIcient	 .0.0 '0.3 '0.6	 0.9 x 1 . 2 V20

Figure 4.14: The Graph of Displacement at Nodes on Friction Boundary
for Various Coefficients of Friction

4.3.3 Rotation of Block

To test the friction algorithms capacity for general boundaries the square block was

rotated 30 degrees. The other properties were kept the same so that the relative v

displacements, the tangential displacements, along the friction boundary could be

compared with the v displacements of the original block. Figure 4.15 shows the initial

block rotated 30 degrees, the two edges fixed in the previous example are still fixed and

the top boundary has the same normal pressure applied.

page 124



Chapter 4

4r

,o

8

Figure 4.15: Simple Block Rotation of 30 degrees

The solution for the displacements was considered to have converged when the required

tolerance of 0.0001 was reached as in the non rotated case or the maximum 500 global

iterations were reached. Again the maximum of 500 global displacement iterations were

reached and the required tolerance was not obtained. Figure 4.16 shows the oscillating

u and v displacement residuals when the global iterations vary from 200 to 400 inclusive.

Figure 4.17 shows the displacements of the rotated block when a value of 0.6 was used

for the coefficient of friction between the contact surfaces after 500 displacement

iterations.
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Figure 4.16: Displacement Residuals for Block Rotated 30 Degrees

Figure 4.17: Displacements of Simple Block Rotated 30 Degrees

page 126



Chapter 4

4.3.4 Comparison Results for Different Angles

To test completely the generality of the friction algorithm, the block was rotated between

-90 and 90 degrees, and displacement results collected every 15 degrees. The results for

the relative v displacement at node 110 are shown in Table 4.1. An arbitrary

convergence tolerance of 0.0001 was used for the displacement calculations but in all

cases the maximum number of global iterations, 500, was reached before the required

tolerance was obtained.

Block Rotation v' Displacement
degrees	 (cm) at 110

	

-90	 -0.0642251

	

-75	 -0.0617375

	-60	 -0.0592075

	

-45	 -0.0746322

	

-30	 -0.0697 129

	

-15	 -0.0667230

	

0	 -0.0642406

	

15	 -0.0620162

	

30	 -0.0593366

	

45	 -0.05620 12

	

60	 -0.0695469

	

75	 -0.0665926

	

90	 -0.0641351

Table 4.1: Relative v Displacements on
Friction Boundary for Rotated Blocks

For the friction algorithm to be general for all angles, the relative v displacement at node

110 for the various cases shown in Table 4.1 should be the same. From the Table it is

seen that there is some variation. Figure 4.18 shows more clearly that the variation
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appears not to be random but actually there is a cyclic pattern. This small variation can

be explained by the method of obtaining the stresses at the nodes. The stress calculations

originally obtain values at the centre of the elements from the displacements calculated

at the nodes. These element stresses are then approximated to obtain the nodal stresses.

Where a node is surrounded only by one element, for example at the corner of the block,

then the stress at this node is taken to be the stress at the element centre. Similar

discrepancies occur for boundary nodes surrounded by two elements.

0.0

-0.02

-0.04
0
z

E -0.06
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-0.10
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-0.12
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>

-76	 -60	 -46	 -30	 -15	 0	 15	 30	 45	 60	 76	 90

ANGLE OF BLOCK ROTATION

Figure 4.18: Graph of Relative v Displacements for Block Rotations

Another explanation emanates from the choice of F and F for the frictional force

applied at the slip nodes on the friction boundary. If F is used for the solution of the

u displacements then the v displacement is fixed along the interface line. Similarly if F

is used then u is fixed. Whether to us F or F is dependent on the angle of the

boundary, so errors can result as the fixing of the other displacement is an

approximation.
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4.4 Example 2: Silica Problem

This example was originally considered for solution by Moscardini (1985). Silica shapes

that are often large and complex are manufactured for coke oven construction.

Moscardini (1985) explains that the principle production procedures have not changed

since the 1930's, but the acceptance standards have become increasingly stringent.

There ase two stages of production for the silica shapes, a pressing stage followed by

a firing stage. The green shape needed for firing is produced by placing silica material

into a mould and applying high pressures. The pressing stage can itself be divided into

two phases. The early phase is when the silica material is initially rearranging itself and

increasing in density. The later phase when little compaction occurs most of the particle

bonds will be established. The material recovers its shape after pressing and so it is

assumed to behave in an elastic fashion. During the second phase of the pressing stage

frictional forces occur between the mould wall and the silica, it is these forces that are

to be modelled in this section. Figure 4.19 shows a section through the silica and mould

with the compressive forces acting on the top boundary of the silica. The friction effects

act on the side mould and silica interface walls during this compression.

Figure 4.19: Initial Silica Conditions
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4.4.1 Problem Specification

A typical section through a silica brick as in Figure 4.19 is 30cm long by 10cm high.

As a result of the symmetry of the problem, only half the brick need be considered for

modelling. Using a mesh of 1cm2 quadrilateral elements, as shown in Figure 4.20,

produces 176 nodes, the same mesh that Moscardini (1985) used. Figure 4.20 shows

the numbers of the nodes along the right friction boundary for reference in the results

section. The left edge is the symmetry boundary where the nodes are free to move in

the y-axis direction but essentially fixed in the x-axis direction. The mould for the silica

brick need not be modelled as on both connecting boundaries, the bottom fixed boundary

and the right friction boundary, are assumed to be in full contact with the mould.

crrCC AIiDI Ifl

F IXED

Figure 4.20: Silica Mesh and Boundary Conditions

The compressive stress, P equal to 4,000 N/cm 2, is applied along the top edge of the

brick. The silica at the second phase of the pressing stage is considered to have a

Young's modulus of 50,000 N/cm 2 and a Poisson's ratio of 0.4 [Moscardini (1985)]. The

coefficient of friction used is 0.6.
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4.4.2 CV-UM Results

The control volume unstructured mesh code was used to solve the silica problem with

the mesh shown in Figure 4.20. A refined mesh as shown in Figure 4.21, where each

element is 0.25cm2 and there were 651 nodes, was also used to obtain a solution to the

problem.
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Figure 4.21: Refined Silica Mesh

Figure 4.22 shows the displaced mesh overlaying the original mesh for the silica brick.

The effect of the friction between the brick and the mould can be seen along the right

edge, where the silica brick has not compacted as much as the centre of the brick at the

left edge of the mesh.

The maximum 500 global displacement iterations were used to obtain the displaced mesh

for both the 176 node mesh and the refined mesh.
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The displacement along the friction boundary for the original mesh and the refined mesh

can be seen in Figure 4.23. When the coefficient of friction is zero and linear

displacements result along the friction boundary both meshes are seen to produce the

same expected displacements.

When the coefficient of friction is 0.6, the node marking the stick and slip border is

approximately the same for the 176 node case and the refined 651 node mesh. The

results differ slightly towards the top of the silica brick, possibly due to the

approximation of the stresses at the nodes from the element stresses. The refined mesh

should produce more accurately the nodal stresses and so the frictional stresses for the

two cases will vary resulting in slight variations on the displacements along the friction

boundary.
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Figure 4.23: Graph of Displacement along Friction Boundary

4.4.3 Comparison with other Results

With the silica problem as specified previously, Moscardini (1985) found that the slip

point, the node bordering the edge of the stick and slip regions of the friction boundary,

was about 5 to 6 cm from the bottom of the silica brick. Moscardini (1985) when using

the results further in the iterative algorithm found the slip point rose steadily and did not

converge. The results obtained with the friction algorithm in this chapter, shown in

Figure 4.23, suggest that the slip point is close to node 112 for the initial 176 node mesh

in Figure 4.20. For the refined mesh in Figure 4.21 suggests the slip point is between

nodes 372 and 403. Both meshes produce similar results for the slip point, which is

predicted to be approximately 4.5 to 6 cm from the bottom of the silica brick. A finer

grid could produce more accurate displacement results that might narrow the slip point

interval further.
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4.5 Conclusions

The inclusion of the nonlinear friction algorithm into the two-dimensional control volume

unstructured mesh code resulted in non-convergence of the displacement residuals. In

section 4.1.3 it was seen that often numerical procedures that include friction models

have convergence problems. In this instance the residuals did not diverge, but oscillated

over a small range and it was found that linearising the source term only made the range

of the oscillations smaller. A future friction algorithm could be developed to avoid this

problem altogether.

Ignoring the problem from the residuals, the results for the displacements produced

along the friction boundary are very encouraging. The nonlinear aspects of the boundary

condition are clearly seen when comparisons are made between interfaces with and

without friction. Comparing the results of the silica problem with other simulation results

found the results are in good agreement. Using a refined mesh for the problem produces

a stick-slip point in the same region as the original mesh.

When the small block is rotated and the displacements compared along the friction

boundary it appears that there is some variation of the relative displacements. There are

two possible explanations for this effect. The first could be due to the way the stresses

are approximated at the nodes from the element stresses. The second reason could be

associated with the choice of frictional forces at the slipping points on the interface. As

explained earlier in the chapter one friction force is applied to either the u or v

displacements and the other displacement is fixed so that the node only moves along the

friction boundary. The introduction of contact routine may avoid the second reason

effecting the varying displacements for the rotated block.
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Application to Castings

The two-dimensional deformation code has been integrated and coupled with an existing

two-dimensional control volume unstructured mesh solidification code. The fully coupled

code modelling fluid flow, heat transfer, solidification, deformation and stress

development, is then applied to the casting process and an example of a casting

simulation detailed. The author believes that this is the first time that such a physically

comprehensive analysis of the casting process has been performed.

5.1 The Casting Process

There are many variations of the casting process listed and described in numerous books

[Campbell (1991), Higgins (1989)]. In some cases the mould may be of a simple shape

giving rise to an ingot which is subsequently shaped plastically by forging, rolling or

extrusion. Sand casting involves casting the molten metal into a sand mould of the

desired shape. The resulting casting requires cleaning and light machining to reach the

required measurements. Other casting processes that produce castings closer to the

required shape include investment casting and permanent mould casting.

Consider the mould for a simple sand casting as shown in Figure 5.1. In this case the

mould is made in two halves called the cope and the drag. The cope covers the drag and

the connecting surface is the parting surface. The cope and drag are secured into the

correct location using the pins on the drag and the lugs on the cope. The function of the

runner is to admit the molten metal into the mould cavity through the in gate. The feeder

(or riser) provides, if necessary, a reservoir of molten metal to feed back into the
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casting as it solidifies and shrinks.

1-igure b.!: Sand Lasting Mould Section

The mould is filled with molten metal, heat transfer occurs so that the casting solidifies

and deforms residual stresses forming in the solidified regions. At present mould filling

is generally modelled numerically using finite difference or finite volume schemes. The

finite volume technique is an established method for fluid flow though more recently

finite element methods have also been used. Finite element methods have generally been

used for thermal and stress analysis with finite difference and control volume schemes

being the popular choice for solidification modelling. In the past there has been a lack

of integration in the modelling of the different phenomena. Chow (1993) has developed

a fully integrated control volume-unstructured mesh code solving for fluid flow, heat

transfer and solidification which in this chapter is coupled with the control volume-

unstructured mesh code explained previously.

Adams et a!. (1992) detail the requirements for a casting modelling system in the UK,

to consist of a foundryman's interface for a particular casting process, the casting

modelling framework software, integrated flow, solidification, thermal analysis and

stress analysis programs, a materials database and a database of model and project files.

The current time consuming and costly trial and error methoding approach of the

foundryman will be replaced by a consistent and repeatable numerical procedure run
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rapidly and interactively on a computer, enabling reduction in lead times and costs.

5.2 Software for Casting Simulation

Computer modelling of casting process promises considerable benefits for the methoding

process. Casting software is important for reduction in costs of castings. The aim is to

reduce the lead time for casting production. At present with existing numerical casting

software there is often a technical gulf between foundry users and researchers, little

effort has been applied to make them usable by the foundry engineer [Butlin and

Nutbourne (1993)].

In the U.S.A much money has been devoted to casting modelling, computer codes

produced include PREDICT and PROCAST. Typically finite element packages that have

concentrated on the simulation of particular physical problems. PROCAST uses a finite

element mesh and has a built in two-dimensional quadrilateral and triangular mesh

generator besides the capacity to read in meshes from various finite element packages

such as ANSYS.

From Europe such packages as MAGMASOFT and SIMULOR have been produced

though again they are limited in scope and performance. Finite difference based, limited

in geometry coverage and typically only represent filling, heat transfer and solidification

aspects of the casting process. MAGMASOFT uses an orthogonal cell mesh to represent

heat dissipation and solidification. Fedelich, Mathiak and Deisenroth (1992) conclude,

after using MAGMASOFT to simulate mould filling and cast solidification of a low

pressure die casting process, that a stress/strain analysis of the cast would give additional

valuable information concerning contact zones and air gap formation. MAGMASOFT

is used to simulate the mould filling and solidification of a high pressure die casting

example coupled, though not in a fully integrated sense, with a three-dimensional finite

difference method technique for the thermoelastic equations using a staggered grid

[Hattel, Hansen and Hansen (1993)]. SIMULOR was presented for the first time at the

GIFA '89 exhibition. It provides a three-dimensional simulation of metal filling and
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solidification in a mould, but no deformation or stress prediction.

Other countries such as Japan have established casting modelling software such as the

computer code CASTEM. The three-dimensional finite element code calculates the

solidification sequence and temperature distribution in real time but does not calculate

the metal flow or the internal stresses.

An empirical based code SOLSTAR from FOSECO is available in the U.K. that has an

acceptable user friendly interface and is in use in many Foundries in the U.K and world

wide. SOLSTAR does not attempt to model the fundamental physics underlying the

casting process. SOLSTAR has been described as an "empirical finite difference" code

[Preddy (1993)], that compares the temperature of a cube to the temperatures of the 26

surrounding cubes and essentially obtains a solidification sequence. Another code used

by the foundry industry is FEEDERCALC, a simple code that enables the foundry

engineer to decide on the requirements of the casting with respect to feeders, chills and

insulating sleeves. Methoding packages used in the foundry industry do provide useful

tools for designing castings with risers and chills as necessary, but for more detailed

prediction of defects these packages become too generalised and the need for

mathematical models arises [Hogg (1991)].

According to Adams (1993), the lessons learned during the evolution of structural

analysis 15-20 years ago should enable the exploitation of casting modelling to be

accelerated. Full benefits of process modelling will not be achieved unless the process

can be operated by the foundry engineer, though it must not be seen as a means for

making the skills of the foundryman redundant.

Bellet, Bay, Brioist and Chenot (1992) have developed a three-dimensional finite

element model for the thermomechanical phenomena occurring during the solidification

and cooling of cast products. The mould is assumed to be rigid for the deformation

calculations. Rather than use coincident nodes at domain interfaces the thermal boundary

conditions are modelled by contact thermal resistances.
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Other techniques for casting software include the use of an intelligent knowledged based

system. Upadhya, Paul and Hill (1993) use empirical heuristics for the design of runners,

sprue and gates. Chvorinov's rule, as explained in Chapter 6, is used to aid the design

and positioning of the risers. A knowledge-based expert system called EXCAST is used

by Natarajan, Chu and Kashyap (1989) in order to facilitate the design and

manufacturing of casting components. The global casting soundness is predicted using

an efficient geometry based simulation method modelling the solidification process.

Research is under way to develop a model-based knowledge system for casting design

and manufacturability assessment which integrates a commercial computer aided design

(CAD) package, a database management system, and design algorithms within a frame-

based knowledge engineering environment [Bradley, Adams, Gadh and Mirle (1993)].

ALEXSYS is a prototype expert system designed for use in the aluminium high pressure

die-casting industry . [Webster and Weller (1993)]. The system was designed to reflect

the sub-sets of knowledge within the foundry. Webster and Weller (1993) conclude that

the most important factor in constructing a worthwhile expert system would seem to be

the cooperation and enthusiasm of the expert(s), and in order to gain this there may have

to be sacrifices with regards to pure knowledge engineering theory. Cowell, Knight and

Preddy (1993) aim to produce a computer based system capable of giving advice on

methoding design, to produce a geometric feature analysis tool, capable of representing

features of importance to casting design and to produce a database of example cases.

Unlike other researches in the field, Cowell, Knight and Preddy (1993) propose to

include the modulus model at the initial shape construction stage using a geometric

design-by feature.

With the development of faster computers and use of parallel processing, the use of

numerical techniques for the physical phenomena of the casting process increasing speed

and efficiency will produce casting software capable of competing with existing

methoding casting software. The full casting software could involve computer aided

design tools for methoding the casting design followed by numerical models for casting

simulation and testing. [Cross (1993)] The use of fully automatic mesh generation

facilities and mesh decomposition algorithms needs to be available for the numerical

simulation of the casting.
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5.3 Fundamental Equations for Casting Process

The physical phenomena of the casting process to be included in the casting software

developed in this chapter include:- fluid flow, heat transfer, solidification and stress

analysis. The differential equation governing the conservation of momentum for a two-

dimensional cartesian coordinate system for an incompressible fluid can be written as

[Chow (1993)]:

-+sa(pu) + V.(pYu) = V.(p.Vu)	
ax	

(5.1)
at

a(pv) 
+ V.(pYv) = V.( i tVv) -

at

where .t is the viscosity, p the material density, p the pressure, the resultant velocity,

S and S are the sources for the x and y direction respectively. The u and v are the

cartesian velocity components in the respective directions. For mass conservation in the

flow field an additional equation, the continuity equation, needs to be satisfied

+ V.(pV) = 0	 (5.2)
at

The general conservation of energy equation can be expressed as:

a(ph) 
+ V.(pVh) = V.(kV(h/c)) + Sh	 (5.3)

at

where h is the specific enthalpy, c the specific heat, k the thermal conductivity and Sh

the source term for the volumetric rate of heat generation. Chow (1993) developed a

control volume unstructured mesh code to solve for fluid flow, heat transfer and

solidification. The deformation equations used are those described in chapter 2, where

the equilibrium equations apply to a particular cell for stress with body forces neglected.
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+	 .y=o
ax	 ay

(54)
.zy+

ax	 ay

The stresses resulting from the temperature change of a particular time step are summed

to produce the overall stresses for the total simulation time. The discretised equations

allow for non-linear elastic behaviour, in the form of temperature dependent material

properties such as Young's modulus, E.

5.3.1 MetalfMould Contact

At the start of the simulation, coincident nodes are used at the mould/cast interface.

Here two nodes are defined as having the same coordinate point, but are associated with

two different elements which may have different material definitions [Sanionds, Lewis,

Morgan and Symberlist (1985)]. Figure 5.2 shows an example of the coincident nodes

at the mould/metal interface when the casting material has started to deform.. At present

the mould interface with the casting is prescribed as fixed for use with the simple contact

routine.

rigure z.z: t.omciaent riooes in iviouia ana Last
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5.3.2 Air Gap Formation

At the mould/cast interface a simple geometric routine calculates the size of the air gap.

During the iterative procedure, for both the u and v displacements of the cast material,

the deformation is checked to see if it is moving into the mould. if this is the case then

the nodes moving into the mould are adjusted so that they lie on the mould boundary.

This operation is carried out during the iterative solution procedure to ensure conservation

of mass as all the other nodes feel the restricting effect of the mould. The casting

placement is also adjusted to allow for gravity acting upon it.

Dantzig (1987) states that in foundry castings with sand moulds the size of the air gap

is insignificant resulting from poor thermal conductivity in the sand making the gap

minimal. The modelling experience of Bailey, Fryer, Cross and Chow (1993) has

shown neglecting the gap distance can overestimate the cooling rate by 2%. Thomas,

Samarasekera and Brimacombe (1986) predicting gap formation during continuous casting

and Michalek, Kelly and Dantzig (1986) predicting gap formation in ingot casting use

finite element techniques with essentially an empirical method for gap formation.

The usual procedure for thermal modelling is to assume a convective heat transfer

expression at the interface [Lewis and Roberts (1987)]:

aT
= h(T	 - Td)	 (5.5)

where the effective heat transfer coefficient, dependent on the gap distance, is given by

[Michalek, Kelly and Dantzig (1986)]:

k
h = gap

eff

gap

where kgap is the thermal conductivity of the gap medium, assumed to be air, and gap

is the gap distance. The effective heat transfer coefficient, hCff, is initially 3000W/m2°K

when there is a zero gap distance.

(5.6)
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5.4 Solution Procedure for 2D code - UIFS

The two-dimensional stress-strain code, explained in chapter 2, has been coupled with

the two-dimensional thermal convection, heat transfer and solidification code, from

Chow (1993), involving the equations shown in section 5.3. The control volume

unstructured mesh fluid solidification code termed an irregular control volume method

uses a cell centred approach for determination of results, whereas the deformation

algorithm is vertex based. The same mesh is used for all parts of the fully coupled code

and data transfer between the FORTRAN 77 subroutines is simple without the need for

data conversion routines.

Figure 5.3 shows diagrammatically how two procedures are coupled together in the same

code. At the start of the program the run information is read in from a file containing

such information as tolerance values, relaxation parameters, debug options and restart

switch. The initial problem specific data such as material and thermal properties,

coordinate points, boundary conditions and element topology, are read in from various

files. If the program is being used to continue a previous simulation then a restart file

is read in otherwise initial properties and conditions are set and the simulation time

defined as zero. The flow-solidification ioop is then started, the thermal convection in

the molten metal is obtained followed by the enthalpy calculations. The temperature

material properties are updated along with the liquid-fraction information, if convergence

has not been reached the program continues with another iteration of the flow-

solidification section. Once a converged solution is obtained the stress module is entered.

With the temperature changes obtained in the previous section the deformation of the

solidified parts of casting are found, and the resulting stresses are calculated in the

casting using an additive model. Details about the air gap size between the casting and

the mould enable the heat transfer coefficient at the mould/metal interface to be altered

accordingly. If the required number of time steps has not been reached the next time

step calculations begin otherwise the program dumps the results to various files for use

with post processing facilities. The fully coupled two-dimensional code is identified as

UIFS, where UIFS stands for Unstructured Integrated Fluids and Solids.
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Figure 5.3: Coupled Heat Transfer/Deformation
Algorithm - UJFS
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5.5 Example: T-Bar Casting

This example models the solidification of a section through a simple T-bar casting with

numerous curved boundaries in a sand mould. The results are monitored during

solidification using the fully coupled fluid flow solidification code with the stress-strain

equations. The prediction of an air gap forming between the casting and the mould, as

the casting solidifies and deforms, is also noted. The solidification results are also

monitored with the deformation algorithm switched off, and hence no air gap formation,

to see the effect on the solidification time.

5.5.1 Problem Specification

The side view of the T-bar casting is shown in Figure 5.4, the casting has a diameter of

50cm and a maximum height of 14cm. Due to the symmetly of the problem only half

the casting need be modelled.

10cm

2cm	 I

5cm	 \	 1	 I	 14cm
_	 III	 ____J I

6cm__________	 __________

50cm

Figure 5.4: T-Bar Casting - Side View

Figure 5.5 shows the casting section to be modelled using the coupled code, with the

appropriate boundary conditions noted. The left boundary is the symmetry plane for all

aspects of the simulation. The top boundary of the casting is considered insulated by the

fluid flow and solidification parts of the code and free to move in the deformation part

of the code. All boundary nodes of the mould are at present described as fixed. The
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boundary of the mould and air is defined as having a ambient temperature of 25°C and

the mould/metal boundary is defined using coincident nodes. No filling module is as yet

coupled with the two-dimensional code so the mould is assumed to be completely filled

at the start of the solidification simulation.

rigure D.D: I-bar Lasting - Imtla.1 LonclitiOns

The solidification is modelled using the alloy A-357. Table 5.1 shows the thermal

properties A-357 [Moosbrugger and Berry (1986)] and approximate elastic properties

used in the solidification simulation.

The casting has curved boundaries that are modelled using triangular elements. A two-

dimensional mesh consisting of triangular elements was generated by Lawrence (1993)

for this specific two domain problem. The resulting mesh consisted of 1099 vertices and

2068 elements. To allow for the coincident nodes at the mould/metal interlace extra

nodal points were defined so the total number of nodes increased to 1195. Figure 5.6

shows the initial triangular mesh with coincident nodes at the mould/metal boundary.
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Moulding Sand	 Alloy

Conductivity (W/m°C)	 0.84	 187.0

Specific Heat Capacity (J/kg°C)	 1,120.0	 1,050.0

Density (kg/rn 3)	 1,682.0	 2,670.0

Viscosity (kg/ms)	 0.00181	 0.00181

Young's Modulus (N/rn2)	 21x10'°	 12x10'°

Poisson's Ratio	 0.0	 0.29

Coefficient of Thermal Expansion (°C') 	 0.0	 0.00012

Latent Heat Coefficient (JIkg) 	 -	 432,600.0

Solidus Temperature (°C)	 -	 613.0

Liquidus Temperature (°C)	 -	 660.0

Initial Temperature (°C)	 25.0	 700.0

Table 5.1: Casting - Thermal and Elastic Properties

page 147



Chapter 5

Figure 5.6: T-Bar Casting - Initial Mesh
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5.5.2 UIFS Results

Solidification results were collected using the coupled thermal solidification suess code.

Firstly the results were collected with the deformation algorithm switched on then the

solidification results were collected without the deformation of the casting taken into

account. A time step of 2 seconds was used for the simulation of the casting solidifying.

Figure 5.7 shows the fluid flow pattern after the first 10 seconds of computation

including the deformation prediction.

Figure 5.7: T-Bar - 10 second - Fluid Flow Results

Figures 5.8-5.10 show intermediate results of 5, 15 and 25 minutes respectively when the

casting is allowed to solidify and the deformation and corresponding stresses are also

noted. Each figure displays the liquid fraction, the temperature, the fluid flow and the

effective stress present. Other results such as the density or enthalpy could be monitored.

The figures show the bridging that occurs during the solidification, two separate flow

patterns are seen. The modulus of the T-bar would indicate that the thin section would

freeze first as is seen in Figure 5.8. The first stresses then develop in this region before
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the rest of the T-bar is solid. 15 minutes into the solidification, Figure 5.9 shows that

only the centre of the T-bar is left to freeze. Maximum stresses can now be found at the

mould metal interface at the larger solidified section. The corresponding stresses

resulting in the mould are not modelled at present. Figure 5.10 shows that after 25

minutes only a mushy part at the centre of the T-bar is left to freeze.

The T-bar is completely solidified 34 minutes into the simulation, the resulting stresses

in the T-bar are shown in Figure 5.11. The maximum stress is seen where the large

section of the T-bar is pulled against the mould as the casting contracts. Due to the

deformation and contraction of the casting, an air gap at the mouldlcast interface can

clearly be seen at the right boundary of the T-bar. The deformation at the top of the

casting can also be seen, though they are quite small. The stresses of interest in the

casting are obtained but the resulting stresses formed in the mould due to the casting and

temperature effects are not yet monitored.

The stresses predicted are larger than they should be because of the elastic model used,

rather than a visco-plastic model, though the deformation predicted is correct.

The intermediate casting simulation results predicted when the deformation of the casting

is not calculated are shown in Figure 5.12. At 25 minutes into the solidification the

temperature contours are clearly different at the far end of the casting due to the lack of

air gap prediction so the casting cools faster.

It was found that when the deformation of the casting was neglected the simulation

predicted the casting would take approximately two minutes less time to become

completely solid than with the deformation prediction. This is due to the lack of air gap

prediction and so the heat transfer coefficient calculations at the mould/metal interface

will be incorrect in the simulation when the deformation is not predicted. The maximum

temperature of the casting at 34 minutes was 2°C greater than results when the

displacements were calculated.
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Figure 5.8: T-Bar Casting - Intermediate Results 5 Minutes
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Figure 5.9: T-Bar Casting - Intermediate Results 15 Minutes
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Figure 5.10: T-Bar Casting - Intermediate Results 25 Minutes
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Figure 5.11: T-Bar - Final Stress Results - 34 Minutes
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Figure 5.12: T-Bar Casting - Intermediate Results - No Deformation
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5.6 Conclusions

The two-dimensional control volume unstructured mesh procedure for solid mechanics

has coupled together with the two-dimensional fluid flow solidification procedure very

well. Both procedures were based on very similar algorithms which aided the link

forming the fully coupled and integrated casting code. The T-bar example results from

section 5.5 show results generated simultaneously during the casting solidification

simulation. The temperature changes as the casting cools and solidifies causes the

solidified casting to deform. The deformed casting may cause an air gap formation at

the mould/casting interface. The air gap will influence the effective heat transfer

coefficient at the mould/casting interface. The change in the effective heat transfer

coefficient will change the amount of heat lost through the mould walls for a particular

time step hence the deformation of the casting will vary accordingly. For a computer

program to effectively model the solidification of a casting it is important to include as

many casting physical phenomena as possible. It was shown that if the deformation

calculations are neglected then the simulation will cool the casting to quickly. Bailey,

Fryer, Cross and Chow (1993) show a cooling rate for a casting that was overestimated

by 2% when the displacement calculations were not used. The code introduced here

includes the physical phenomena of thermal convection, heat transfer, solidification,

deformation, stress calculations and air gap formation. Further work might include a

mould filling module coupled with heat transfer and solidification.

The contact between the mould and the casting though effective is not complete. The

casting movement is restricted by the mould and so stresses result in the casting. The

force of the casting on the mould surface at present is not monitored, further work on

the contact analysis can include this. Further work can include the conditions for visco-

plasticity or visco-elasticity when the stress-strain relationships are non-linear.
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Porosity Formation

Porosity prediction is very important for the modelling of sound castings. If shrinkage

porosity can be predicted before the casting is made it can save material, energy and

time. This chapter briefly describes what is meant by porosity with respect to castings

and details some of the existing methods of porosity prediction and examples of usage.

A new porosity prediction method is derived that uses information from the deforming

casting. The inclusion of the porosity algorithm into the control volume unstructured

mesh heat transfer and deformation code is then tested with various examples.

6.1 Porosity Definition

Gas evolution and solidification shrinkage are the two major sources of possible porosity

formation in solidifying metals, acting frequently simultaneously. The porosity is

formed in various locations of the casting and can be either macroscopic or microscopic.

6.1.1 Gas Evolution

Gas evolution occurs during solidification as gases are generally more soluble in liquid

metals than in solids [Kubo and Pehike (1986)]. Two events can influence gas evolution.

Firstly, the decrease in solubility on phase transformation and secondly the liquid phase

is continuously enriched in the gaseous component as the solid is formed and then rejects

the solute species to the liquid. Examples include hydrogen in aluminium alloys and

carbon monoxide, a compound gas, in iron alloys. Foundry techniques exist to reduce

such gases before casting to alleviate the gas evolution in the casting during solidification

[Viswanathan, Sikka and Brody (1992)].
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6.1.2 Solidification Shrinkage

As the metal in the casting freezes there is generally an increase in the density resulting

in a reduction in volume. This occurrence is a primary source of porosity formation in

solidifying castings. It is known that when the metal transforms from the liquid to solid

state the volumetric shrinkage can range from 3-10% [Kubo and Pehike (1986), with

5-8% typical of most cast alloys. Porosity formation as a result of the shrinkage process

can be aided by incorrectly fed castings. As the casting freezes the porosity formed can

be macroscopic or microscopic depending on the alloy.

6.1.3 Macroporosity

Macroporosity, as the name suggests, is the presence of relatively large voids in the

casting. Figure 6.1 shows a region of a casting that has been poorly fed. The residual

liquid is presently cut off from the reservoir of liquid metal stored in the feeder. Due to

the nature of the alloy, short freezing range and low thermal conductivity, a high

thermal gradient results between centre and edge of casting. This skin freezing nature

results in macroscopic porosity forming as the remaining residual liquid in the casting

solidifies. A section through a casting suffering from macroporosity will reveal holes

visible without enlargement.

Solid

Residual Liquid

Figure 6.1: Skin Freezing Alloy

6.1.4 Microporosity

An alloy with a long freezing range and a high thermal conductivity, when solidifying,
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will typically produce microporosity. The low thermal gradient is responsible for the

mushy freezing that takes place as shown in Figure 6.2. To feed the solidification

shrinkage the liquid metal has to be brought through the complicated interdendritic

channels that result from the mushy freezing. The resistance of the residual liquid to

flow in the mushy zone enables microscopic porosity to form between the dendrite arms.

A section through a casting with microporosity will reveal the defect when viewed with

the aid of a microscope.

t1gure b.'2: Mushy Freezing Alloy

6.1.5 Porosity Location in Castings

Figure 6.3 shows location of possible porosity features obtained in a typical casting. To

allow for the volumetric shrinkage in the casting a reservoir of liquid stored in the feeder

is used to feed the casting. More information on the various methods of feeding that take

place during the solidification of the casting can be found in various books and papers

[Campbell (1991), (1969), Kubo and Pehlke (1986), (1985)], but will not be discussed

here. As a result of the loss of liquid from the feeder on freezing a shrinkage pipe will

form in the feeder, or a shrinkage cavity if the top is sealed by the solidified metal. In

the foundry such things as exothermic powders can be used on top of the feeder, where

suitable, to stop the bottom of the shrinkage pipe from reaching as far as the casting.

Progressive freezing ensures the casting freezes before the riser. If for some reason the

riser freezes before the casting has finished solidifying then a hot spot will form in the

casting. A hot spot is a section of casting that is cut off from the feeder and so the

reservoir of liquid stored in the riser cannot feed the casting as it solidifies further. As
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the residual liquid in the casting then freezes macroporosity could then result. This

porosity is often known as centreline shrinkage because of the usual location.

Throughout the casting, depending on the alloy, microporosity may be present due to

impedance of fluid flow through the interdendritic channels as the alloy solidifies. Layer

porosity may form along an isobaric surface in the casting [Campbell (1991), (1968c)].

It has been observed in many different cast alloys including copper and aluminium. It

is initiated, in the mushy/pasty zone, when the hydrostatic tension reaches a critical

level, a pore nucleates then the layer porosity continues along the isothermal and isosolid

surface reducing the hydrostatic tension.

M I CROPOROS I TYSHR I NKAGE	 _________

PIPE

FEEDER
LAYER POROSITY

CR1 SER)

CAST INK3I"

CENTREL I NE 5HR I NKAGE

Figure 6.3: Porosity Location

6.1.6 Pore Nucleation

The mechanisms for pore nucleation have been studied in much detail [Campbell (1967),

(1968a), (1968b), (1969)] and a conclusion reached that the homogeneous nucleation of

pores by shrinkage is seen as impossible. The stress in the liquid is too small by at least

an order of magnitude, so in the absence of assistance from gas, some form of

heterogeneous or non-nucleation process must be responsible for the creation of pores in

unfed regions of castings. If no suitable nucleous is present no pore will form and the
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casting will be sound [Campbell (1991)]. It is often stated that in principle it is feasible

to obtain sound castings without additional supplies of feed liquid to make up for the

solidification contraction.

For the porosity prediction method defined in this chapter, in the absence of gas

evolution, the assumption is made that some heterogeneous nuclei are present to enable

the porosity to form that is normally observed in castings.

6.2 Existing Methods for Porosity Prediction

As the casting solidifies and volumetric shrinkage follows, extra liquid metal is fed to

the casting from the attached feeder. The dimensions and positions of the feeders are

very important to ensure the soundness of the solidified casting. Progressive freezing is

required where the furthest point in the casting from a particular feeder freezes first and

then finally the feeder itself freezes. The modulus for each component or junction of the

casting and each feeder are calculated as appropriate. The modulus is equal to the

volume-to-area ratio. As long as the modulus values increase from casting to feeder,

progressive freezing should result and so facilitate the production of a sound casting.

Following on from this technique, so called Modulus Methods [Hansen and Sabm

(1988)] have been developed that incorporate the modulus into a criterion for porosity

prediction. The well known Chvorinov's rule relates the solidification time of the riser

or casting to the square of its volume-to-area ratio [Viswanathan, Sikka and Brody

(1992)]. Although the rule aims to ensure the feeder retains liquid longer than the

casting, the shape of the casting is not taken into account. Different shapes having the

same modulus show different solidification characteristics jHansen and Sahm (1988)] and

for this reason the rule is therefore a rough approximation where safety factors should

be introduced.

Since the 1960's numerical methods have been used to simulate the solidification

sequence in castings. With the advent of faster computers and faster algorithms, greater

page 161



-i::i	 SOLID

LIQUID

SOLIDUS

I	 CONTOURS

Chapter 6

consideration of criteria functions has been to enable better prediction of deformation

defects. There are now various methods that can to some extent predict shrinkage

porosity [Hansen and Sahm (1988)].

Temperature isotherms can be obtained from numerical heat transfer models. The plots

of the freezing isotherms indicate possible shrinkage porosity if there is bridging,

resulting in a hot spot that cannot be fed. Figure 6.4 shows a casting where no bridging

of the isotherms occurs, and the casting should be sound, and a casting where bridging

results and the casting may have shrinkage porosity. This obvious method gives a good

estimate of shrinkage porosity, but sometimes even if the isotherms do not cross

shrinkage has still been present in the final casting [Viswanathan, Sikka and Brody

(1992)].

BRIEIt'3	 NJ BRID3IF'I

Figure 6.4: Temperature Isotherms

It was noticed [Pellini (1953)], that the magnitude of the temperature gradient, G °C/m,

at the solidus temperature correlated well with the formation of centreline shrinkage

porosities in castings of similar shapes. Unfortunately, the value of G needed to feed

a plate is about 5-10 times smaller than for a bar. A suggested improvement on this

parameter [Niyama et a!. (1982)] introduces the 'Niyama' criterion, where the

temperature gradient is divided by the square of the cooling rate, R. If GI1R is greater

than some critical value then the casting is said to be sound, else some shrinkage
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porosity is present. Both terms should be determined at the solidus temperature.

The Niyama criterion is widely used, though not based on any real physical

understanding of porosity. Ryan et al. (1993) used solidification simulations to solve

recurring shrinkage porosity problems with a large (21,000 kg pour weight) rudder hub

steel casting. The RaRiD/CASTST code used with the criterion function has proved useful

in designing a mould that showed improvements on the shrinkage porosity levels. Dalin

et al. (1992) evaluate the shrinkage present in castings using the Niyama criterion in an

effort to reduce both costs and adjustment times for casting production. The Niyama

criterion is included in the SIMULOR code for predicting macroshrinkage, but for

microshrinkage an alloy specific criteria function is used [Rigaut et al. (1993)]. The

Niyama criterion proves to be veiy useful for predicting shrinkage porosity, but does not

account for the fact that the critical value of G of a bar differs at the feeder end and at

the opposite end [Hansen and Sahm (1988), Pellini (1953)].

Criteria functions for porosity prediction are also of the form of pressure or pressure

related parameters, often Darcy law models are being used [Ampuero, Hoadley and

Rappaz (1991)]. Various other models are in use such as a feeding criteria in the

MAGMASOFT code [Lipinski, Schaefer and Flender (1993)] and an interdendritic

flow based model which makes use of the friction drag within the feeding system [Huang

et al. (1993)].

Recent work has seen the advocation for process maps where the casting processes and

alloy types are divided into four groups with a different criterion selected for each group

[Viswanathaii, Sikka and Brody (1993), (1992), Brody, Viswanathan and Stoehr (1991),

Viswanathan (1990)].

A critical review of solidification models which included a section on shrinkage

[Stefanescu (1993)], stated that the models proposed to date address the principal macro-

aspects but ignore the complicated aspects related to pore nucleation. Physical models

that include pore nucleation concepts may take too long to produce results and require

more physical information before results produced are correct. The foundry engineer aims
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to produce results fairly quickly, generally the models in use achieve this and are also

relatively easy to use.

6.3 Porosity Prediction with UIFS

Consider a section of a solidifying sphere shown in Figure 6.5. As the outside of the

sphere cools and solidifies, the solid part reduces in volume. It is suggested here that

the solid part is able to contract away from the remaining liquid at the centre of the

sphere. The assumption is made that either the critical hydrostatic tension in the liquid

is exceeded or heterogeneous nucleation occurs and a pore will form developing to the

size of the liquid deficit. A short freezing range alloy would result in macroporosity and

a long freezing range alloy would produce inicroporosity in the mushy zone on

solidification. The method is based upon two equations:- mass and density.

SOL I D
SOLID	

I ON

Figure 6.5: Section Through a Solidifying Sphere

The mass of a particular control volume must be the same before and after the

deformation has taken place. This results in the mass equation shown as equation 6.1,

the left hand side representing the post deformation values and the right hand side the

parameter values before deformation.
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oAt = pA	 (6.1)
.n n n 00 0

Where p is the density of the element concerned and A the area for the two dimensional

case.	 represents the porosity values of the element. The subscript n represents the new

time step values after deformation and subscript o the old time step values before

deformation.

The moving of mass from one element to the next is not allowed. At present the effect

of gravity and fluid flow to feed an element are not included. Porosity formed in one

element is unable to move to another element.

The second equation concerns the density of the elements. If porosity is present in a

liquid element then the density of the element is a function of the void density and the

liquid metal density, as shown in equation 6.2.

Pn =	 nPm + (1-4')p	 (6.2)

Where m represents the material properties and v the void properties, the void density

in this case is assumed to be that of air. The density of the liquid metal is kept constant

though the solidified metal does vary in density, due to programming constraints.

The two equations can be combined and rearranged solving for the latest porosity values,

which results in equation 6.3. The right hand side of equation 6.3 consists of only old

previous time step values or known values so therefore the porosity of a particular liquid

element can be obtained for the current time step.

A
=	

2 +4(	 - p )pPv	 Pm	 v 
°A 

0	 (6.3)
n

n	
2(PmPv)

The porosity variable , because of the nature of equation 6.2, can only take values

from 0 to 1. A value of 1 in any particular element indicates the element is solid and

no porosity is present, a value of 0 indicates that the element is completely void of

material. The porosity calculation using equation 6.3 only occurs in an element that is
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not solid, as in any solid element it is assumed that the porosity will not alter. After the

porosity calculations have taken place the density of the element is altered to take into

account the amount of porosity present.

This method takes advantage of the deformation calculation of the coupled heat transfer

stress strain code. If the solid expands rather than contracts the process of porosity

formation can be reversed. The porosity algorithm has been included into the coupled

code as shown in Figure 6.6.

START

me t=O

SOLVE ENTHALPY

EQLTIONS h

CALCULATE S T = h/C

+ LIQUID FPACTION..

CONVERGED

CALCULATE	 T

DEFORMATION UV

CALC. STRESS & GAP

UPDATE MESH

CALCULATE POROS I TV

& UPDATE DENSITY

= .

Figure 6.6: Solution Procedure with Porosity Calculations
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6.4 Example 1: Simple Liquid Block

This example, though very simple and idealised, was designed as a basic test for the

porosity prediction algorithm. It consists of a liquid metal block cooling and solidifying

and, rather unrealistically, the block is not restrained anywhere. In effect gravity is not

acting on the block. As the outer edges of the block cool and solidify intuition predicts

the porosity will form in the centre of the block.

A diagram of the initial liquid metal block is seen in Figure 6.7, with initial dimensions

O.5m by O.5m. The liquid metal is initially at a temperature of 1000°K and the

boundaries in contact with a room temperature of 298°K. The metal has a liquidus and

solidus temperature- of 950°K, so a pure metal is simulated without a mushy zone.

0. 5m

Figure 6.7: Initial Liquid Block

Table 6.1 shows a summary of the material properties used for the metal block. The

value for the coefficient of thermal expansion has been increased so that clearly visible

displacements will be produced as the block deforms.
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Conductivity (W/rn°K) 	 75

Specific Heat (Jfkg°K)	 500

Density (kg/rn3)	 7,000

Latent Heat Coefficient 	 312,600

Poisson's Ratio	 0.29

Young's Modulus	 21x10'°

Coefficient of Thermal Expansion 	 0.00 1

Table 6.1: Pure Metal Material Properties

The mesh used for the liquid metal block is shown in Figure 6.8. The mesh consists of

625 quadrilateral elements of equal size and 676 nodes.

1-'igure b.: Imtial J3Iock Mesh

Using the coupled heat transfer and deformation code with the porosity algorithm, the

liquid metal block was allowed to cool and solidify. Intermediate results, when the

block is still partially liquid, can be seen in Figure 6.9.

page 168



z

x

Chapter 6

1

g	 :

.	 '-.- 	H
•	 •.

\, ,J ,

	 0

.

>
A	 I

Figure 6.9: Block - Intermediate Results
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Figure 6.9 displays, the temperature, liquid fraction, effective stress and porosity of the

block, a few of the results available at any time step with the coupled code. The liquid

fraction indicates the outer edges of the block have solidified leaving a liquid centre,

which is consistent with the temperature distribution shown. The effective stress results

show large values as a result of the elastic assumptions in the coupled code at present.

The porosity results show the porosity is forming in the centre of the block where the

block is still liquid. As there is no gravity acting on the block or fluid feeding effects,

the porosity forms throughout the centre of the block. For the macroporosity that is

expected of a pure metal, if gravity was present with feeding, the porosity would form

nearer the top of the block.

The fmal porosity results, once the block has completely solidified, are shown in Figure

6.10. The maximum levels of porosity are obtained at the centre of the block where

has a minimum value of 0.936. Where a porosity value of an element is 1, this indicates

the element is sound and no porosity is present. The porosity results are as expected

from the porosity algorithm for such an example.

MAX = I
M1N=.96

POROSITY

Figure 6.10: Block - Final Results
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6.5 Example 2: L-Shape Problem

The geometry used for this example is section through an 1-shape type casting with two

feeders. The symmetry of the problem means that only half of the casting need be

considered. The casting was designed taking into account none of the six rules of

feeding [Campbell (1991)], so it is a suitable example for the porosity prediction

algorithm. The casting section is seen in Figure 6.11 as a block im by im. The left

hand boundary representing the symmetry plane.

-

	

	 0.2
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	 A

0
	 r
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Figure 6.11: L-Shape - Initial Conditions

The liquid metal has an initial temperature of 1000°K and the mould a temperature of

298°K. The mould, though present, in this example only acts as a restriction to the

casting. As the mould is completely rigid it defines where the casting can deform to.
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The boundary at the top of the feeder is insulated, so heat is lost through the wail of the

casting and the top of the feeder. The material properties for the metal are the same as

for example 6.4 and are shown in Table 6.1. The metal has a liquidus and solidus

temperature of 950°K as before. The 1-shape mesh shown in Figure 6.12 has 400

elements and 498 nodes, with coincident nodes where the casting boundary meets the

mould boundary.

riglire oiz: L-snape - Mesfl

The solidification and deformation code is used to obtain the porosity results when the

1-shape cools. The results for 5, 10 and 16 minutes are displayed in Figures 6.13, 6.14

and 6.15 respectively.
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Figure 6.13: L-Shape - Results 5 Minutes
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Figure 6.14: L-Shape - Results 10 Minutes
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Figure 6.15: L-Shape - Final Results

Figure 6.13 shows the liquid fraction results and the porosity results after the 1-shape has

been solidifying for 5 minutes. The skin freezing nature of the metal and poor casting

design have resulted in two distinct hot spots. The one at the centre of the casting and

the other at the bottom of the feeder, which is where the porosity is forming. After 10

minutes, the results in Figure 6.14 indicate the only remaining liquid is at the centre of

the casting and the porosity levels have increased in both hot spot areas. The

deformation of the casting from the mould is now clearly visible. When the casting has

finally solidified after 16 minutes, as shown in Figure 6.15, the maximum amount of

porosity present in any element is 0.99 which translates to 1%. Looking at the casting

design, if Chvorinov's modulus method had been applied the porosity predicted would

be in the places shown in Figure 6.15 due to the volume-to-area ratio.
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6.6 Example 3: Simple Casting

This example is based on an experiment carried out by ABEX Experimental Foundry.

The solidification histoiy of the experiment was recorded and compared to computed

results using C.A.S.T. (Computer Aided Solidification Technique), a two and three,

dimensional code [Walther (1987)]. The computer code C.A.S.T. has been used since

the 1970's to gain knowledge of the solidification process. The experiment was intended

to be useful to other computer simulation modellers as a benchmark. This problem

compares the porosity found in the experimental plate and resulting from the Niyama

criterion to the predictions obtained using the method stated in this chapter. The

experiment consisted of a low alloy steel plate with a riser at one end. The casting is

poured into a mould of silica sand with sodium silicate binder. The experiment also had

a zircon blue wash applied to the inside surfaces of the cope and drag.

6.6.1 Problem Specification

The initial experiment was carried out in imperial units as detailed here. The plate was

24 inches long, 8 inches wide and 4 inches high. There was a riser at one end of the

plate that had a diameter of 7 inches with a height of 14 inches above the base of the

plate. The initial dimensions of the casting and riser are seen in Figure 6.16 side view

and Figure 6.17 top view. A sleeve and topping compound were used to insulate the

riser from the surrounding media as seen in Figure 6.18.

The ABEX experiment used a steel alloy, but the computer simulations by C.A.S.T. used

1% Cr steel. The thermal properties for the alloy were not easy to obtain so properties

for the Cr steel were substituted as these were very similar. The 1% Cr steel properties

are used here with the control volume unstructured mesh code and can be seen in

Appendix C. 1 imperial and metric. The density of the metal was kept constant for the

liquid metal unlike in the C.A.S.T. simulation, but the density was allowed to vary in

the solid elements. The thermal properties for the moulding sand can also be seen in

Appendix C.2. The initial temperature of the steel was 1839°K (3310R) and it had

solidus and liquidus temperatures of 177 8°K (3200R) and 1744°K (3 140R) respectively.
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Figure 6.16: Simple Casting - Side View
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Figure 6.17: Simple Casting - Top View

Figure 6.18: Simple Casting - Initial Conditions
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The initial temperature of the insulating sleeve and moulding sand was 298°K (540R).

For the insulating sleeve and riser topping conductivity, specific heat and density the

constant values as used by Waither (1987) were used. These were 0.225 Btu/hr-ft-R,

0.32 Btullb-R and 50 lb/ft3 respectively or in metric 0.3894 168 W/mK, 1,339.759 JilcgK

and 801 kg/m3. For the modelling using the coupled solidification and deformation code

the steel had a Poisson's ratio of 0.29, a Young's modulus of 21x10'° and a coefficient

of thermal expansion of 0.001. A section through the middle of the casting is used for

the simulation. The mesh used to model the casting solidifying is the same as the for the

C.A.S.T simulations JiWaither (1987)] and is shown in Figure 6.19.

Figure b.19: Simple Casting - lmtial Mesh

The mesh has 714 elements, 23 for the insulating sleeve, 209 for the casting and the

remaining 482 for the mould. There are 872 nodes in use, with coincident nodes where

the casting boundary meets either the mould or the insulating sleeve. The heat transfer

coefficient at the interface is dependent on the gap distance as in Chapter 5. As the

casting cools the heat is dissipated through the surrounding mould and sleeve.

6.6.2 Experimental Results

From the ABEX experiment, the casting produced centreline shrinkage as indicated by

the black dots along the plate shown in Figure 6.20. The C.A.S.T. program was also

used with the Niyama criterion to produce porosity predictions, as shown in Figure 6.21.

The C.A.S.T. predictions graded the porosity in three levels:- minor, moderate and major.
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hgure ô.20: ABEX Experimental Results [Walther (1987)]

Figure 6.21: C.A.S.T. Porosity Predictions [Waither (1987)]
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Generally if the Niyama criterion produced a porosity value of 1 then that particular

element was said to be sound for this ahoy. Figure 6.21 also shows the centreline

porosity predictions. The darker regions being the areas of 'major' porosity and the areas

encircling these the 'moderate' porosity.

6.6.3 UIFS Results

The casting solidification was simulated using the coupled solidification and deformation

code. Various results were collected whilst the plate was solidifying.

Figure 6.22 show the liquid fraction results and porosity results after 20 minutes

solidification time. From the liquid fraction results it is clear that most of the casting has

now solidified, so progressive freezing is apparent. The porosity results indicate the

development of centreline shrinkage along the plate.

After 40 minutes solidification time one small corner of the casting is still not completely

solid, as shown in Figure 6.23. Further porosity formation has taken place in the plate

nearer the join of the casting to the feeder and there is porosity predicted along the feeder

edge.

The final results when the whole casting and feeder are solid, one hour and 20 minutes

into the simulation, are shown in Figure 6.24. The porosity pattern has changed very

little form the results at 40 minutes shown in Figure 6.23. A noticeable feature is the

sub-surface porosity near the feeder in the casting section.

page 180



Chapter 6

MAX 983

-	 LiQUID FRACTION

MAX = I
M 999

0.9998
,0.9996

0.999.:
0.9992

1oso
A	 POROSITY	 109985
l-c,. X 10.9955

109983
0.9983

Figure 6.22: Simple Casting - Results 20 Minutes
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Figure 6.23: Simple Casting - Results 40 Minutes
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Figure 6.24: Simple Casting - Final Results

6.6.4 Comparison of Results

The control volume unstructured mesh predictions look very similar to the experimental

results. The prediction of centreline shrinkage in the casting is seen to agree with the

experiment and the Niyama C.A.S.T. predictions. The control volume unstructured mesh

porosity results also predict sub-surface porosity where the casting meets the feeder, this

agrees with the experimental observations shown in Figure 6.20, whereas the C.A.S.T.

predictions are limited to predicting the centreline shrinkage in the casting and feeder.
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6.7 Example 4: Stepped Casting

The test casting was obtained courtesy of Stones Foundry. The alloy used was

aluminium 4.5% copper and it was cast into a resin bonded sand. The casting had been

designed by Keith Preddy at Stones Foundry to follow all rules of feeding. Essentially

freeing the resulting casting from macroporosity. At the time of pour into the casting the

molten metal had a temperature of 720°C and was free from hydrogen so reducing the

effect of gas porosity in the final casting. A thermocouple installed in the feeder head

showed that the temperature of the metal after pouring was 700°C. The final casting

should be free from macroporosity and have generally dispersed microporosity.

6.7.1 Problem Specification

The stepped casting comprises of four steps and on the highest a feeder is positioned.

The feeder is six inches high and the biggest step two inches high. The following three

steps are half the height of the preceding step, so that the final step is 114 inch high.

The side view of the step wedge is shown in Figure 6.25, and the top view Figure 6.26.

rigure o.z): tep vveuge - iae view
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Figure 6.26: Step Wedge - Top View

The ingate is positioned at the back of the step wedge at the feeder end and is 2 inches

wide and 0.5 inche high. The wedge has a width of 4 inches. A section through the

centre of the step wedge is shown in Figure 6.27 along with the mould.

Figure 6.27: Step Wedge - 2-D Slice

The mesh used for the computer simulation is shown in Figure 6.28, it has 4352

elements of varying sizes. There are 4656 nodes including the coincident nodes used at

the mould/metal interface boundary to allow the casting to deform away from the mould
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Figure 6.28: Step Wedge - Initial Mesh
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during cooling. The heat transfer coefficient is altered according to the gap distance of

adjoining elements on the mouldlmetal interface as in chapter 5.

For the material properties of the moulding sand and the alloy simplified constant values

were used as shown in Table 6.2, where the thermal properties are for the premium

casting alloy A357 (L169), aluminium, 7% silicon and 0.6% magnesium [Moosbrugger

and Berry (1986)] and typical elastic values are used.

__________________________________ Moulding Sand	 Alloy	 1
Conductivity (W/m°C) 	 0.84	 187.0

Specific Heat Capacity (J/kg°C)	 1,120.0	 1,050.0

Density (kg/rn3)	 1,682.0	 2,670.0

Young's Modulus	 21x10'°	 21x10'°

Poisson's Ratio	 0.0	 0.29

Coefficient of Thermal Expansion (°C')	 0.0	 0.00012

Latent Heat Coefficient (JIkg) 	 -	 432,600.0

Solidus Temperature (°C) 	 -	 613.0

Liquidus Temperature (°C) 	 -	 660.0

Initial Temperature (°C) 	 25.0	 700.0

Table 6.2: Step Wedge - Thermal and Elastic Properties

6.7.2 Experimental Results

Xrays of the casting showed dispersed microporosity through each of the steps. The

casting was then cut in half down the middle and polished. The polished surface

revealed random surface pores that viewed through a microscope were visible as

microporosity. Photographs of a section of the polished casting are shown in Figures

6.29 and 6.30. The surface pores as visible are pale dots in Figure 6.29. Though the

microporosity was generally dispersed, from the general polished casting surface it was

clear that a slight band of microporosity stretched from the bottom surface of the casting

to the last step.
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6.7.3 UIFS Results

The computer simulation of the step wedge solidification was obtained using the coupled

code with the porosity algorithm. After 2 minutes solidification time the two steps

furthest from the feeder had already frozen, as seen in Figure 6.31. The liquid fraction

results display progressive freezing. The porosity predictions indicate a maximum

porosity of 0.999, which corresponds to less than 0.1%, dispersed through the solidified

steps.

Figure 6.32 shows the solidification results after 5 minutes when the slight deformation

of the end step away from the mould is visible. From the liquid fraction results it is

apparent that the third step is now solid as well. The remaining step and feeder are

mushy as expected for a freezing alloy. The porosity has now developed further along

the wedge. A slight layer appears to have formed, though this still only shows elements

with a maximum porosity of 0.2%.

The final solidification of the casting at 16 minutes is shown in Figure 6.33. The

maximum porosity in any element still measures no more than 0.2%, 2 in 1000, and

there is a slight microporosity visible in the feeder.
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Figure 6.31: Step Wedge - Results 2 Minutes
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Figure 6.33: Step Wedge - Final Results

6.7.4 Comparison of Results

The porosity predictions obtained for the coupled heat transfer and deformation code do

not predict any macroporosity or centreline shrinkage. This is consistent with observing

only dispersed microporosity in the casting section. A slight band of microporosity was

noticed in both the experimental results and the simulation results, from the bottom of

the casting to the top of the casting near the third step. The predictions are very small

values which also indicates microsbrinkage, so comparing reasonably well to the actual

casting.
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6.8 Conclusions

The simple porosity model included in the fully coupled solidification and deformation

code produces reasonable results. Example 3 in section 6.6 produces porosity predictions

of centreline shrinkage in the casting and a small region of sub-surface porosity neas the

feeder. The results agree very well with the experimental results of Walther (1987) for

the problem.

The step wedge casting shows general dispersed porosity which is also indicated in the

porosity prediction of the coupled code. The quantity of porosity in any element of the

domain is found to be extremely small. The porosity algorithm relies on information

concerning the deformation of the casting, whereas most casting software uses the

empirical Niyama criterion relying solely on information obtained when the casting

solidifies.

The porosity is a very simple technique that can be adapted and modified to include other

porosity effects such as gravity and fluid feeding. Further work may entail prediction of

the shrinkage pipes formed in feeders as the casting solidifies and the molten metal is

drained from the feeder to the casting. Mechanisms for pore nucleation may be looked

at in more detail and added to the model.

Gas evolution as a porosity cause is not considered, but at some later stage it may be

possible to consider the chemical structure and gas content of the molten metal as it

solidifies and how this influences the porosity present in the final casting.
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Conclusion

In Chapter 1 the existing major methods for numerically solving the elastic stress-strain

equations were reviewed from a historical point of view. Generally it is concluded that

existing software for the deformation process was fmite element oriented, with the

advantage of solving irregular domains. Boundary elements and finite difference schemes

also provide solutions to solid mechanics problems but are not favoured so much by the

solid mechanics community for a variety of reasons. The need for a discretisation

technique that could couple well with computational fluid mechanics problems lead to

the analysis of the suitability of a control volume unstructured mesh approach to the

solution of the elastic stress-strain equations. Similar unstructured mesh control volume

techniques have successfully been applied to fluid flow and heat transfer problems in the

1980's and more recently to solidification [Chow (1993), Chow and Cross (1992)].

7.1 Control Volume-Unstructured Mesh Deformation Algorithm

The elasticity equations for force conservation, including both thermal and mechanical

loading, were discretised in Chapter 2 for the special two-dimensional cases of plane

stress and plane strain in cartesian coordinates and axisymmetry in cylindrical polar

coordinates. The cliscretisation technique divides the domain into an unstructured mesh

of elements, typically quadrilaterals or triangular elements or both. The control volumes

were then formed around the element vertices, completely filling the domain. Shape

functions were used to map global to local coordinate geometries, in typical finite

element fashion, and finally a set of equations to be solved to obtain the nodal

displacements were formed. On solution of the deformation equations just a simple step
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is then required to obtain the element stresses and strains, followed by the nodal stresses

and strains if required.

A general FORTRAN program was written to enable the solution of elastic problems

with thermal loads and applied forces, for the instances of plane stress, plane strain and

axisymmetry. To increase the speed of the program a conjugate gradient solver with

Jacobi preconditioning was used to solve the system of deformation equations. When

using the program for solution of a two-dimensional elastic problem, there are options

available to alter which include; global residual tolerance, relaxation parameter,

maximum number of global iterations and whether the problem to be solved is one of

plane stress, plane strain or axisymmetry. The other information required by the

program such as nodal coordinate points, element arrangement, boundary conditions,

material properties and initial conditions are read into the program from various data

files.

The displacement and stress results were collected for a selection of problems in Chapter

3, for various residual tolerances, relaxation parameters values, mesh types and mesh

refinements. The rectangular domain problems of the cantilever and thermal beam, as

described in sections 3.1 and 3.2 are found to be more suited to quadrilateral meshes than

triangular meshes. The control volume unstructured mesh problem agrees totally with

the finite element results for the multi-material problem in section 3.3. The nodal

stresses produced in the hole problem in section 3.4 are very close to the analytical

solution with this problem being more suited to a triangular mesh. The axisymmetric

problems of section 3.5 and 3.6 produce displacements that agree, very closely to a

standard finite element program results, the analytical solution and for section 3.6

existing boundary integral equation results.

The time taken to obtain the results was approximately twice the time taken by the finite

element program, even when the most efficient relaxation parameter was used. Further

work could involve inclusion of a routine for generation of the optimum relaxation

parameter to use. With modifications to the two-dimensional stress-strain code, such as

an improved solver and better structuring of the code it is thought the time taken to
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generate results could improve, but whether it could equal the time of the standard finite

element code is uncertain. To decrease the computational time taken further parallel

processing and vectorisation offer an inexpensive option.

The extension of the algorithm to three-dimensions can be accomplished, a necessity for

objects that cannot be approximated by the two-dimensional special cases of plane stress,

plane strain and axisyrnmetry. Work is currently under way at the University developing

a three-dimensional stress-strain code based on the control volume unstructured mesh

technique.

At present purely elastic objects have been considered by the two-dimensional stress-

strain code, there is a need to include non-linear stress-strain relationships. Chapter 4

details the inclusion of a friction algorithm in the stress-strain code, for non-linear

boundary conditions. The example problem results give reasonable answers though the

convergence of the control volume unstructured mesh algorithm is not achieved.

Although the solution does not converge it does not diverge either. From existing

numerical methods often using the finite element method it is seen in section 4.1.3 that

this is often a problem with friction routines. A method for combatting the non-

convergence problem needs to be implemented. At present a simple contact condition

is invoked with the friction boundary condition, future work should include a general

contact algorithm that allows for extension to three-dimensions, as contact theory and

friction are often synonymous. There is current work in the department for two-

dimensional and three-dimensional contact algorithms that can transfer the forces between

domain boundaries as necessary.
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7.2 The Casting Software

In Chapter 5 the two-dimensional stress-strain deformation procedure is fully coupled

with the two-dimensional heat transfer, fluid flow, solidification procedure of Chow

(1993). The fully integrated code is able to model thermal convection, solidification,

heat transfer, deformation and stress formation simultaneously. An example of a casting

approximated to two-dimensions shows the intermediate results as the casting solidifies

and deforms away from the mould. The results appear very encouraging with full

transfer of information; such as temperature from the heat transfer part to the

deformation part, and the updated coordinate geometry from the deformation part to the

rest of the procedures. The inclusion of the deformation code allows the air gap formed

as the casting solidifies between the casting and the mould to be calculated. The air gap

details enable the heat transfer coefficient at the mould/metal boundary to be adjusted

according to the air gap distance. The value of including the deformation code,

therefore the air gap formation, is seen when the same example is simulated with and

without the deformation prediction. The lack of the air gap alters the temperature of the

casting and so the casting solidification time will be artificially reduced as shown in

section 5.5.2. Previous examples using the control volume unstructured mesh code have

shown that the cooling rate of a particular casting may be over estimated by as much as

2% [Bailey, Fryer, Cross and Chow (1993)].

The displacements produced in the two-dimensional control volume unstructured mesh

casting simulation are correct, but the stresses produced by the coupled code are much

larger than they should be, this is because of the linear elastic relationships used. It

follows that there is a need for inclusion of visco-elastic, visco-plastic and other non-

linear stress-strain relationships in the casting software so that the very high temperatures

of the metals can be modelled correctly.

The stresses that form in the mould as the casting solidifies are not yet modelled in the

casting software. With the implementation of more accurate contact algorithms in the

casting software the transfer of stress information from casting to mould and from mould
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to casting is currently under research at the University.

Generally casting shapes are too complex to approximate to the special two-dimensional

cases of plane stress, plane strain or axisymmetiy. Current research at the University has

involved the extension of the two-dimensional heat transfer and solidification code to

three-dimensions. The success of this has lead to the extension of the elastic stress-strain

algorithm to three-dimensions using the same control volume unstructured mesh

technique, a three-dimensional casting software is then to be created.

A simulation of a casting solidifying can take over a day of continual use of a SUN

workstation. If the casting software is ever going to be of practical help in the foundry,

then the simulation time needs to be greatly reduced. The inclusion of faster algorithms

and general neatening of code may reduce the time taken slightly, but achieving a real

time simulation may be difficult at present. A sizable reduction in the computational

time used can be achieved by relatively inexpensive parallel processing and vectorisation.

A simple porosity model was included in the fully coupled code in Chapter 6. The

porosity model, unlike other empirical models, is based on the deformation of the

casting as it solidifies. The porosity results produced in Chapter 6, sections 6.6 and 6.7,

look very encouraging when compared to experimental results. Additional work on the

porosity model may produce even better porosity prediction. At present fluid flow is not

considered when the porosity module is used, future inclusion should produce more

realistic results. No gravity effects are included but modifications to the model should

take this into account as well as the fluid feeding effects. The density of liquid at present

is kept artificially constant future work needs to look at ways of avoiding this without

compromising other properties of the code such as mass continuity. The inclusion of the

shrinkage pipe prediction in feeders is a future consideration, with work currently under

way in the department to take these into account. The possible inclusion of the concept

of pore nucleation at a micro level can be considered. There are many ways that the

porosity model can be modified and improved. The present model shows how easily

other physical effects can be included with in the context of a control volume

unstructured mesh framework.
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To model the complete casting process, the further integration of the coupled casting

code with a filling algorithm of similar discretisation method can be considered. The

inclusion of the filling routine would enable a much more complete prediction of the

casting simulation, at present the mould cavity is assumed to be filled completely before

the start of the casting simulation. Linking the casting software with an automatic mesh

generator would save time and make the program easier to use.

Current work at the University of Greenwich is the creation of a multi-physics software

environment, where standard procedures can be applied to a variety of problems. The

casting software is one application of the elastic stress-strain routine but it is not the only

one.

page 199



Appendix A

Standard Formulae

A.1 Stokes's Theorem

F.dr = ffcurlF.dS

A.1.1 Plane StressiPlane Strain

where F=(L,f2)

cUd +f2dy) = 5ff	 4L}JxdY
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where F = (f f)
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A.2 Cartesian Coordinates

Stress Equations of Equilibrium
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A.3 Cylindrical Polar Coordinates
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A.4 Shape Functions
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Application to Solid Mechanics

B.1 Cantilever/Thermal Beam Meshes

B.1.1 Quadrilateral Mesh
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Figure B. 1: 33 Node Quadrilateral Mesh for
Cantilever and Thermal Beam
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Figure B.2: 105 Node Quadrilateral Mesh for
Cantilever and Thermal Beam
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Figure B.3: 369 Node Quadrilateral Mesh for
Cantilever and Thermal Beam
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B.1.2 Triangular Mesh
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Figure B.4: 33 Node Triangular Mesh for
Cantilever and Thermal Beam
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Figure B.5: 105 Node Triangular Mesh for
Cantilever and Thermal Beam
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Figure B.6: 369 Node Triangular Mesh for
Cantilever and Thermal Beam

page 209



i/I

N

Appendix B

B.1.3 Mixed Mesh

Figure B.7: 33 Node Mixed Mesh for
Cantilever and Thermal Beam
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Figure B.8: 105 Node Mixed Mesh for
Cantilever and Thermal Beam
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Figure B.9: 369 Node Mixed Mesh for
Cantilever and Thennal Beam
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B.2 Cantilever Results
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Figure B.10: Quadrilateral Cantilever Iteration Results 33 nodes
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Figure B.11: Quadrilateral Cantilever Iteration Results 105 nodes

page 213



Appendix B

Key
o Tolerance = 0.01
+ Tolerance = 0.001
O Tolerance = 0.0001

-	 I	 I	 I	 I	 I	 I	 I	 I	 -1

1	 1.1	 1.2	 1.3	 1.4	 1.5	 1.8	 1.7	 1.8	 1.9

Relaxation Parameter

Figure B.12: Quadrilateral Cantilever Iteration Results 369 nodes
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Figure B.13: Cantilever Comparison Displacement Results Quadrilateral Elements 369
Nodes
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Figure B. 14: Triangular Cantilever Iteration Results 33 nodes
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Figure B.15: Triangular Cantilever Iteration Results 105 nodes
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Figure B.16: Triangular Cantilever Iteration Results 369 nodes
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Figure B. 17: Cantilever Comparison Displacement Results Triangular Elements 369
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Figure B.18: Mixed Cantilever Iteration Results 33 nodes
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Figure B.19: Mixed Cantilever Iteration Results 105 nodes
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Figure B.20: Mixed Cantilever Iteration Results 369 nodes
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Figure B.21: Cantilever Comparison Displacement Results Mixed Elements 369 Nodes
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B.3 Thermal Beam Results
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Figure B.22: Quadrilateral Thermal Beam Iteration Results 33 nodes
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Figure B.23: Quadrilateral Thermal Beam Iteration Results 105 nodes
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Figure B.24: Thermal Beam Comparison Displacement Results Quadrilateral Elements
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Figure B.25: Thermal Beam Comparison Displacement Results Quadrilateral Elements
369 Nodes
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Figure B.26: Triangular Thermal Beam Iteration Results 33 nodes
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Figure B.27: Triangular Thermal Beam Iteration Results 105 nodes
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Figure B.28: Triangular Thermal Beam Iteration Results 369 nodes
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Figure B.29: Thermal Beam Comparison Displacement Results Triangular Elements
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Figure B.30: Mixed Thermal Beam Iteration Results 33 nodes
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Figure B.31: Mixed Thermal Beam Iteration Results 105 nodes
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Figure B.33: Thermal Beam Comparison Displacement Results Mixed Elements
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Material Properties

C.1 1% Cr Steel

C.1.1 Conductivity

Conductivity	 Temperature Range
(Btulhr-ft-R)	 T (R)

K = 34.10 - 0.00991 T	 T ^ 1931

K = 8.44 + 0.00338 T	 1931 <T ^ 3140

K = 144.65 - 0.04000 T	 3140 <T ^ 3200

K=16.65	 3200<T

Table C.1: Conductivity - Imperial

Conductivity	 Temperature Range
(W/m°K)	 T (°K)

	

K = 59.0 183 - 0.030873 1 	 T ^ 1072.778

	

K = 14.6075 + 0.0 105298 T	 1072.778 <T ^ 1744.444

	

K = 250.352 - 0.124614 1 	 1744.444 <T ^ 1777.778

K = 28.8 168	 1777.778 <T

Table C.2: Conductivity - Metric
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C.1.2 Specific Heat

Specific Heat	 Temperature Range
(BtuJlb-R)	 T (R)

Cp = 0.0924 + 0.00004094 T	 T ^ 1211

Cp = -0.00828 + 0.0001241 T	 1211 <T ^ 1751

Cp = -6.6322 + 0.003907 T	 1751 <1 ^ 1859

Cp = 11.6047 - 0.005903 T	 1859 <1 ^ 1931

Cp = 0.9247 - 0.0003722 T	 1931 <T ^ 2111

Cp = 0.1038 + 0.00001667 T	 2111 <T ^ 3140

Cp = -207.618 + 0.06617 T	 3140 <T ^ 3200

Cp=0.156	 3200<T

Table C.3: Specific Heat - Imperial

Specific Heat	 Temperature Range
(J/kg°K)	 T (°K)

Cp = 386.855 + 0.30853 1	 T ^ 672.7778

Cp = -34.6663 + 0.935235 '1'	 672.7778 <T ^ 972.7778

Cp = -27767.3 + 29.4436 T 	 972.7778 <T ^ 1032.778

Cp = 48586.1 - 44.486 T	 1032.778 <T ^ 1072.778

Cp = 3871.49 - 2.80496 T	 1072.778 <T ^ 1172.778

Cp = 434.584 + 0. 125628 T	 1172.778 <T ^ 1744.444

Cp = 653.132	 1744.444 <T

Table C.4: Specific Heat - Metric
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C.1.3 Density

Density	 Temperature Range
(lb/cu ft)	 T (R)

p=494-0.0112I	 T^3140

p = 1768.4 - 0.4167 T	 3140 <T ^ 3200

p = 581.1 - 0.04565 T	 3200 <T

Table C.5: Density - Imperial

-	 Density	 Temperature	 Range
(kg/rn3)	 T (°K)

p=7000	 forailT

Table C.6: Density - Metric

C.2 Moulding Sand

C.2.1 Conductivity

Conductivity
(Btulhr-ft-R)

K = 0.44163 -1.9380x10 T + 1.385x10 7 T2

Table C.7: Conductivity - Imperial

page 227



Appendix C

Conductivity
(W/m°K)

K = 0.76437 - 0.00060375 18 T + 0.0000007741295 T2

Table C.8: Conductivity - Metric

C.2.2 Specific Heat

Specific Heat	 Temperature Range
(BtuJlb-R)	 T (R)

Cp = 0.0987 + 0.000155 T	 T ^ 860

	

Cp = 0.1615 + 0.00008375 T	 860 <T ^ 1260

	

Cp = 0.2492 + 0.00001481 T	 1260 <T

Table C.9: Specific Heat - Imperial

Specific Heat	 Temperature Range
(J/kg°K)	 T (°K)

Cp = 413.232 + 1.1681 T	 T ^ 489.669

	

Cp = 676.159 + 0.631152 T 	 489.669 <T ^ 706.739

	

Cp = 1043.34 + 0.11161 T	 706.739 <T

Table C.10: Specific Heat - Metric

C.2.3 Density

Density - Imperial (lb/ft3) : 105

Density - Metric (kg/m3) :1682.1
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