
Applications of Factor

Analysis to Spectroscopic
Methods

Timothy Graha�ockwell

August 1992

A thesis submitted to the Council for National Academic A wards in partial

fulfilment of the requirements for the degree of Doctor of Philosophy

Sponsoring establishment:

the

UNIVERSITY

���&1 of
GREENWICH

Wellington Street,

Woolwich,

London,

SE18 6PF

Collaborating establishment:

� f ,-, RESEARCH

�

I DEFENCE

I AGENCY

Defence Research Agency,

Quality Assurance Technical

Support,

Royal Arsenal East,

Woolwich,

London,

SE18 6TD

This page intentionally left blank

11

Abstract

Applications of Factor Analysis to Spectroscopic Methods

Timothy Graham Brockwell

A computer program has been developed to perform factor analysis and targi
testing on spectroscopic data. The program offers advantages over other softwai
available on the PC in its ability to work with data matrices of a size limited only b
memory and disk space on the computer, and the inclusion of target testing ar
iterative target testing routines. The program works with numbers of twice tl
precision of other software and evidence is presented of the improved accuracy of th
calculations.

The application of factor analysis to the UV-Vis spectra of a series (
quaternary mixtures of transition metal ions is shown. The number of ions in th
system is determined and the identities of the ions assigned using target testing. Th
effect of inadequate sampling intervals of the data is discussed.

Factor analysis is also shown applied to temperature programmed pyrolysis
mass spectrometry (TPPy-MS) data where multiple factors are found to arise from
single component. The spectra of three substituted ferrocenes are giver
1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic anhydride ferrocene,
l-l'(2,4-dichlorobenzoyl) ferrocene, and 3,4-dichlorobenzoyl ferrocene. The source
of the multiple components from each of the samples is discussed and used to propos
pyrolysis and fragmentation mechanisms. The sensitivity of the factor analys
technique is examplified by identification of factors due to contaminated source;
improper calibration, adsorption effects within the source and bias in the measuremei
of mass spectra.

The identification of components within mixtures is shown using target testin
and the isolation of unknown components demonstrated using both accepted and novi
methods of iterative target testing. The properties of the new methods of iterath
target testing are investigated. The application of the techniques developed is show
using unknown samples analysed by normal analytical techniques. The results of th
analysis showed broad agreement with the normal analysis, though the factor analys
indicated the presence of a component not observed in normal analysis and als
showed incorrect assignment of another.

in

Acknowledgements

My thanks go to all the people who have made it possible for me to complete
this work. To my supervisor, Ed Metcalfe, who has had to put up with my constant
demands for his time, goes my greatest thanks. To Tony Walmsley, a fellow
chemometrician, without who's ear to bend in times of crisis, I would undoubtedly
have not achieved anywhere near as much. To Katherine Timmins, Simon Mundy an<
everyone at Royal Arsenal East for their assistance and sponsorship.

As usual there is a long list of people who have also helped in a myriad of
ways and so my thanks go to John Mendham, Stewart McNaughton, Nick Rees,
Geoff Brown, Vernon Rogers, John Gates, Sian Howells, Mick Brown and Gurvinde
Wall (The Coffee Crew), Philippe Kahn (Borland), Bill Gates (Microsoft), Bernard
Vandeginste, Faye Walker and Gordon Dixon.

This work has been carried out with the support of the Defence Research Agency,
Quality Assurance Technical Support, Royal Arsenal East, Woolwich, London.

IV

Contents
Abstract "
Acknowledgements.. v
Contents ..v
Key to abbreviations and notation ..i>

Matrix notation ...i?
1. .. 1
1. Introduction.. 1

1.1. General theory of factor analysis .. 1
1.1.1. Data pre-treatment.. 2
1.1.2. Reproduction .. 3

1.1.2.1. Principles of factor analysis.............................. 3
1.1.2.2. Graphical interpretation of principal component
analysis ... 5
1.1.2.3. Effects of error in the data8

1.1.3. Transformation.. 1
1.1.4. UV-Vis spectroscopy... 1
1.1.5. Mass spectrometry.. 1
1.1.6. Temperature programmed pyrolysis mass spectrometry 1
1.1.7. Use of factor analysis in chemistry................................. 1

1.1.7.1. General theoretical development......................... 1
1.1.7.2. Elution profile and spectral isolation.................... 1
1.1.7.3. UV-Vis spectroscopy...................................... 2
1.1.7.4. Mass spectrometry... 2
1.1.7.5. Chromatography ...3
1.1.7.6. Other techniques ... 4

2. ..4
2. Aims..4

2.1. General comments... 4
3. ..4
3. Experimental ..4

3.1. Data sets...4
3.1.1. UV-Vis spectrometry data...4

3.1.1.1. Transition metal ion data4
3.1.2. Pyrolysis - mass spectrometry data.................................4

3.1.2.1. Equipment.. A
3.1.2.2. Method.. A

3.1.3. Literature data... 5
3.2. Program development... f

3.2.1. Data processing equipment..5.
3.2.2. Data structures .. 5'

3.2.2.1. Characteristics of mass spectrometer data..............5'
3.2.2.2. Sparse array development5'
3.2.2.3. Extended Memory Specification (EMS) data
structures... 5

3.2.3. Principal component analysis5 (
3.2.3.1. Data pre-treatment...5'
3.2.3.2. Calculation of the covariance matrix....................6
3.2.3.3. Factor extraction procedure6
3.2.3.4. Testing for completion of extraction.................... 6!
3.2.3.5. Calculation of the row matrix............................6!

3.2.4. Determining the dimensions of the data space.................... 6.
3.2.4.1. Variance...6;
3.2.4.2. Error estimates ... 6.
3.2.4.3. Misfits...6
3.2.4.4. Standard error in eigenvalue6
3.2.4.5. Significance level..6:

3.2.5. Optimisation of PCA...6:
3.2.5.1. Accuracy of factor extraction6:
3.2.5.2. Determining completion of extraction 61
3.2.5.3. Estimation of error in the mass spectrometer
data ... 6'

3.2.6. Validation of results from PCA.....................................6'
3.2.6.1. Synthetic data sets ...6'
3.2.6.2. Published data and results6'

3.2.7. Target testing.. 6
3.2.7.1. Transformation constant calculation6
3.2.7.2. Predicted vector determination6

3.2.8. Criteria for the fit of a test vector.................................. 6
3.2.8.1. Error estimates ... 6
3.2.8.2. Visual inspection... 7

3.2.9. Validation of results from target testing........................... 7
3.2.9.1. Synthetic data sets...7
3.2.9.2. Published data and results7

3.2.10.Iterative target testing ..7
3.2.10.1 .Vector modification7
3.2.10.2.Control of iterative process7

4. ..7

vi

4. Results & discussion ..••••••••••••••••••••••••••••^
4.1. Program description ... 7,

4.1.1. Overview... 7^
4.1.2. Keyboard reference... 7^
4.1.3. Menu system ..7!
4.1.4. PCA...7J
4.1.5. Target testing.. 8(

4.2. Optimisation of PCA.. 81
4.2.1. Accuracy of factor extraction81
4.2.2. Determining completion of extraction8!
4.2.3. Estimation of error in the mass spectrometric data9(

4.3. Validation of PCA...9^
4.3.1. Synthetic data sets ..9^

4.3.1.1. Pure data matrix ...9^
4.3.1.2. Raw data matrix..9!

4.3.2. Published data and results ... 9(
4.3.2.1. Mass spectrometer cyclohexane/cyclohexene
data ...9(
4.3.2.2. Mass spectrometer cyclohexane/hexane data9'
4.3.2.3. lHNMRdata..9i

4.4. Target testing validation ..9^
4.4.1. Synthetic data sets.. 9<

4.4.1.1. Pure data matrix ...9?
4.4.1.2. Raw data matrix.. 1(

4.4.2. Published data and results ... 1(
4.4.2.1. Mass spectrometer cyclohexane/cyclohexene
data ... 1(
4.4.2.2. Mass spectrometer cyclohexane/hexane data 1(

4.5. UV-Vis spectrometry.. 1 (
4.5.1. Transition metal ion data .. 1(

4.5.1.1. Data analysis ... II
4.5.1.2. Determination of the rank of the data................... II
4.5.1.3. Abstract matrices .. 11
4.5.1.4. Target testing... 1

4.6. Pyrolysis - mass spectrometry ... 1
4.6.1. Single component data ... 1

4.6.1.1. 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-
dicarboxylic anhydride ferrocene (FCA).......................... 1

VII

4.6.1.2. l-l'(2,4-dichlorobenzoyl) ferrocene

4.6.2. Two component data ... 1!
4.6.2.1. Ferrocene derivative mixture 1!
4.6.2.2. Iterative target testing 1"

4.6.3. Multi-component systems. . .. IS
4.6.3.1. Sample history ... IS
4.6.3.2. Suspected components IS
4.6.3.3. Data pre-treatment ... IS
4.6.3.4. Data analysis ... IS
4.6.3.5. Determination of the rank of the data................... IS
4.6.3.6. Abstract column matrix IS
4.6.3.7. Abstract row matrix 15
4.6.3.8. Target tests ... IS
4.6.3.9. Iterative target tests.. 2C

5. ..21
5 . Conclusion ... 2 1
6. ..21
6. Further work .. 2 1
References
Appendices

Vlll

Key to abbreviations and notation

Matrix notation

Throughout this text, use is made of matrices, vectors and scalars. The following
notation is used to represent the different forms.
Scalars are single numbers and are represented by a lowercase letter, e.g. r and c.
Vectors are a one dimensional array of numbers and are represented by a bold
lowercase letter, e.g. x. By convention, all vectors are regarded as column vectors
unless otherwise indicated by a prime, e.g. x'.
The components of a vector are scalars and are represented by a lowercase letter and a
subscript indicating their position in the vector, e.g. #,., which is the I th component of
vector x.
A matrix is represented by an uppercase bold letter or by an enclosure within square
brackets, the position of a vector or scalar within the matrix is identified using
subscripts. The first subscript identifies the row of the matrix and the second
identifies the column, e.g. x y is a vector containing theyth column of matrix X and

xtj is the element from the * th row and7th column of matrix X.
The transpose of a matrix, whereby rows and columns are interchanged, is indicated
by the use of a prime, ', in the same manner as that used for vectors.
Additional embellishments are used in some cases, a circumflex (or hat), A , is used to
indicate an estimated, or calculated, quantity in line with normal statistical notation.
A bar placed above a quantity indicates an estimation based upon a reduced factor
space.
Following are some examples based upon this notation,

X =

X' =

^22

2\

X\2 X22

is a matrix

is the transposed matrix

is they* column vector of X

x. =[*,., xi2] is the I th row vector

x.. is the I th row andy* column element of matrix X.

IX

Abbreviation Description
%SL............. Percentage significance level
1,1'DCBF...... l-l'(2,4-dichlorobenzoyl)

ferrocene
3,4-DCBF...... 3,4-dichlorobenzoy 1 ferrocene
A................. The absorbance of a

component
A................. A matrix of absorbance values
AET............. The apparent error in the test

vector
ANOVA........ Analysis of variance
ASCII........... American Standard Code for

Information Interchange
ASI.............. Automated spectral isolation
b Coefficient of fit (Bessel's

inequality)
C................. A matrix of component

concentrations
C................. The abstract column, or

loadings, or eigenvector,
matrix

C The concentration of a
component

c Number of columns in the
data matrix

CR............... Curve resolution
D................. The data matrix
DEC............. Digital Equipment

Corporation
E................. A matrix of absorptivity

coefficients
e Molar absorptivity per unit

path length
ED AS Exploratory data analysis of

spectra
EFA............. Evolving factor analysis
El................ Electron Impact (ionization)
EMS............. Extended memory

specification
EPA Environmental Protection

Agency
<j>................. The angle between two

vectors
FCA............. 1,4,5,6,7,7-hexachloro-5-

norbornene-2,3-dicarboxylic
anhydride ferrocene

FTIR Fourier transform infra-red
(spectrometry)

GC............... Gas chromatography
GC-MS Gas chromatography-mass

spectrometry
GLC............. Gas-liquid chromatography
H................. The height of a peak in a

mass spectrum

Abbreviation Description
h ° The height of a pure

component peak
HPLC High pressure liquid

chromatography
IE The imbedded error term
IND.............. The indicator function
ISM A............ Interactive self-modelling

multivariate analysis
ITT Iterative target transformation
ITTFA........... Iterative target transformation

factor analysis
A The eigenvector matrix
X.................. Eigenvalue (and wavelength)
LC Liquid chromatography
MCA Multi-component analysis
MS............... Mass spectrometry
n.................. Number of primary factors
NIPALS......... Non-linear iterative partial

least squares
NMR Nuclear magnetic resonance
/?.................. The partial pressure of a

component
PC Personal computer
PCA Principal component analysis
R The abstract row, or scores,

matrix
r.................. Number of rows in the data

matrix
RE The real error term
REP.............. The real error in the test

vector
RET Real error in the test vector
RMS............. Root mean square
S/N Signal to noise
s Standard deviation
sd................. Standard deviation
SEE.............. Standard error in eigenvalue
SPOIL........... The SPOIL function
SVD Singular value decomposition
T The transformation matrix
TFA Target factor analysis
TIC Total ion current
TPPy-MS Temperature programmed

pyrolysis-mass spectrometry
UV-Vis.......... Ultra-violet visible

(spectrometry)
VARDIA........ Variance diagram
X Arithmetic mean of x
XE The extracted error
XRD............. X-ray diffraction
Z The covariance matrix

1. Introduction

The following text provides the reader with an overview and general
explanation of the principles of factor analysis. For the mathematically inclined,
derivations of the formulae involved in factor analysis and the target testing procedure
are contained in appendices at the end of this thesis. The details specific to the
application of the method in the program are contained in the experimental section
and the source code giving the implementation of the algorithms in Turbo Pascal is
given in the appendices.

Factor analysis was originally developed for use in psychology where it was
used to provide mathematical models describing human ability and behaviour. These
models were based around the work of Charles Spearman' who proposed a theory of
psychology postulating that human intelligence was composed of a single general
factor and a specific factor. This theory was to stand for nearly 30 years before it
became apparent, from the results of factor analysis, that considerably more than two
factors were involved.

In his text on 'Modern Factor Analysis', Harman2 suggests that the
foundations of factor analysis were laid at the beginning of the century in a paper by
Pearson3 , this paper, entitled 'On lines and planes of closest fit to systems of points in
space', contained the statistical aspects of factor analysis. This work was then taken
up and extended by Charles Spearman, to whom the origin of factor analysis is
usually ascribed. The early works on factor analysis, though all aimed at explaining
psychological theories of human behaviour, provided the impetus for the development
of many different methods of factor analysis.

The method of principal component analysis as used in this work is based upon
the early work of Pearson3 and adaptations suggested by Hotelling4

1.1. General theory of factor analysis

The definition of the term factor analysis has changed and expanded since the
first works on factor analysis. Since those early days the techniques and scope of
factor analysis have changed so vastly that a multiplicity of meanings has become
attached to the term. The definition adopted for this work is the one offered by
Malinowski5 ,' Factor analysis is a multivariate technique for reducing matrices of
data to their lowest dimensionality by the use of orthogonal factor space and
transformations that yield predictions and/or recognizable factors'.

The procedure of factor analysis involves three main steps; data pre-treatment,
reproduction and transformation. The first and last steps can be accomplished via
many methods, the second, reproduction, step is always performed to produce a
model of the data based around an orthogonal factor space, generally by principal
component analysis.

1

The principal component analysis finds a subset of orthogonal axes within the
space described by the data that can be used to describe each of the data points.
Because of redundancy in the data the number of factors necessary to describe the
data to within experimental error is generally less than the number of samples in the
original data set resulting in factor compression. In order for the subset of orthogonal
axes to be defined the data must be due to a linear combination of factors, if this
criterion cannot be met then the method of principal component analysis is not
applicable.

1.1.1. Data pre-treatment

The simplest forms of data pre-treatment are algebraic transformations such as
exponentiation, logarithms, reciprocals, etc. These treatments are applied on the basis
of theoretical considerations, for example the logarithms of data obtained from a
kinetics experiment may be used to reduce the effects of rate constants to an additive
property, which is then factor analysable.

Other pre-treatments are applied to assist in cases where different units of
measurement or different orders of magnitude are involved. The four most commonly
used are covariance and correlation about both the mean and the origin. These four
pre-processing methods are all forms of linear transformations and are given in most
standard texts on factor analysis.

Correlation about the mean is the traditional form of pre-processing applied
before factor analysis, it maintains the spatial information contained in the data but
looses both the origin and the magnitude of the original information. Correlation
about the origin maintains the zero point of the data but still looses the relative size
information. Covariance about the mean maintains the relative size information but
looses the zero point of the data. Covariance about the origin does not alter the data in
any way thus preserving the magnitude and origin information. The different
techniques find uses depending upon the characteristics of the data; mass spectroscopy
data has both an absolute zero point and a common scale for magnitude.

The use of the four pre-treatments above was studied by Rozett and Petersen6
using the mass spectra of 22 alkyl benzenes and they concluded that with both R and
Q analysis (R analysis has the data with rows composed of the samples and columns
of spectra, Q analysis is the opposite) the use of covariance about the origin was the
best method of pre-treatment as it preserved both the origin of the factor space at zero
and also the relative sizes of the components. For this reason the analyses performed
in this work on experimental data all use covariance about the origin as the data pre-
treatment.

2

1.1.2. Reproduction

In the reproduction step the data is decomposed using principal component
analysis into a series of eigenvectors. The eigenvectors form an optimised orthogonal
co-ordinate system. The optimization is accomplished by extracting the eigenvectors
from the data successively and finding each eigenvector such that it accounts for the
maximum variance in the data. On removal of an eigenvector from the data, the
contribution made to the data by that eigenvector is then removed thus allowing the
next eigenvector to be identified by the maximum variance criterion once more. By
removing the contribution of each eigenvector from the data after the analysis the
orthogonality of the eigenvectors is assured. The term orthogonality is defined in
mathematics as two vectors being orthogonal if their dot product is equal to zero, this
can be described graphically as visualizing the eigenvectors as axes on a scatter chart
and orthogonality meaning that the axes are perpendicular to each other and are
therefore independent.
1.1.2.1. Principles of factor analysis

The previous explanation is likely to mean little to a reader not versed in the
ideas and terminology of factor analysis so an example is given below to explain the
rationale of factor analysis.

Consider a hypothetical data matrix A containing absorbance measurements of
3 mixtures of the same absorbing species at 3 different wavelengths, such data might
be obtained from a kinetics experiment.

It is known from the Beer-Lambert law that at constant path length the
absorbance, A of a component is described by

A = £C (1)

Where £ is the molar absorptivity per unit path length and c is the
concentration, and that for a mixture the absorbances are additive so

n
A = e,c, + £2 c2 + ••• en cn = £e,c,.

(2)

Where £ is the molar absorptivity coefficient of component j, c, is the
concentration of component 1 and the sum is taken over n components.

The data matrix A contains nine absorbance readings each of which may be
reduced to a summation as in equation (2). An example is shown below for 2
components.

3

2

3

mixture
1 2 3

0.371 0.713 0.219"
0.271 0.515 0.202
0.349 0.641 0.265

' ^22^22 ^21^13

^31^11 £32^21 €32^23

where e, 2 denotes the absorptivity coefficient at A, of component 2,
and C 21 denotes the concentration of component 2 in mixture 1. /^\

This large matrix may, by applying the standard rules of matrix multiplication,
be broken down into two matrices comprising one of concentration values, C, and one
of absorptivity coefficient values, E.

A =

factors
coeff.

1
2
3

1 2

F F21 22

_ £3, £32.

concentrations
1 2 3

r rOil \^

C 21

12

22 23

factors
1
2

Thus in matrix notation equation (4) becomes
A-EC

(4)

(5)

This solution of the equation is readily acceptable to the chemist as it involves
parameters that are known and understood. To calculate this solution mathematically
requires complete knowledge about either E or C. In most chemical problems this
information is not available and the solution not calculable. It is however possible to
find an infinite number of mathematically correct, but abstract, solutions to this
equation giving the form

A = RC (6)

In this equation the matrix, R, is related to the rows of the data matrix and has
dimensions rxn (number of rows by number of factors) and the matrix, C, is related
to the columns of the data matrix and has dimensions nxc (number of columns by
number of factors). It should be noted that the matrix, C, is not the same as the
matrix, C. The two matrices are related, as are matrices R and E, but whilst E and C
contain physically recognizable values of concentration and absorptivity coefficient
the matrices R and C contain abstract values which when multiplied together produce
the original data. The relationship between the pairs of matrices is explained later in
the transformation section.

1.1.2.2. Graphical interpretation of principal component analysis

To understand how it is possible to have an infinite number of solutions it is
necessary to explain the idea of the data defining a space. The measurements on the
columns (samples) in this example are a series of absorbances at different
wavelengths. Each of the columns can be thought of as forming a vector or axis, the
space contained between the axes contains all the data points. The angles, $, between
the vectors formed by the axes can be found from the covariance matrix using a
theorem of analytic geometry7 , which states that for vectors x and y the following
relationship holds.

x'y
0 = arccos.

This allows the vectors to be placed in space as shown in figure 1 . Each
column of the data is treated as a vector and the angles between the vectors found
from equation 7. Each row of the data matrix forms a point within the space bounded
by the column vectors and the value of each of the data points on that row can be
found by the projection of the point onto each column vector in a manner identical to
the Cartesian co-ordinate projection of a point onto the axes of an XY graph.

In our example it is known that all of the measured values can be produced
from a linear combination of two factors, namely, concentration and absorptivity
coefficient. These two factors form a plane in which must lie each of the vectors for
the samples. This can be seen in figure 1 where all three columns of the data matrix,
representing three samples, lie in the plane of the paper.

The abstract matrices R & C are arrived at by a mathematical method called
eigenanalysis and is normally carried out using a least squares technique called
principal component analysis (PC A).

Data Matrix

0.73

X

Column 2

Column 1
0.6

9th row-

0.11

0.03

0.11

0.16

0.30

0.16

0.46

0.60

0.38

0.35

0.25

-0.03

0.06

0.10

0.32

-0.10

0.51

0.73

0.13

-0.03

~-6.29\

0.10 I

0.06 I

0.09

-0.10 i

0.43 i

-0.19:

-0.37 i

0.37:

0.62 ;

X

X
0.1 X

_CL
 0.4 0.37 0.7

Column 3

-0.1

Figure 1: Diagram of the data space of a simple two factor data set. The data space is bounded by the
columns of the data matrix treated as vectors, the individual data points are found from the
perpendicular projection of a row designee (of which there are ten in this example) onto each column
vector.

PCA works by defining a vector that passes through the data such that it
accounts for the largest amount of variance of the data. A second axis is then found
which is orthogonal to the first and which accounts for the largest amount of residual
variance. This process of defining mutually orthogonal axes continues until all of the
variance of the data has been accounted for.

The above explanation of PCA whilst accurate is not particularly easy to
understand so explanation by example is advantageous.

Consider the series of data points used in figure 1, though the data originates
from three column vectors each point may be identified spatially by a pair of co
ordinates defining its position in relation to two perpendicular axes in an identical
manner to co-ordinates on an XY graph. The two axes necessary to obtain the co
ordinates of any point may be positioned at any angle about the origin (so long as they
do not lie on top of each other) and still be able to define the position of the data
points. This explains how it is possible to have an infinite number of possible
solutions to the factor analysis problem.

>. Principal component 1 Scaled abstract column matrix

\ Factor loadings

Column 2

PC1

PC2

0.86

0.51

1.00 -0.44

-0.05 0.90

Abstract row matrix
0.34 -0.21

0.10

,-X Factor scores

\
\ -X Principal

component 2

X

"0.51

X

-0.04
0.09
0.14
0.44
-0.10

0.71

1.01

0.21

0.10
0.15
0.05
0.46
0.04
-0.06
0.51

X Column 3

Figure 2: Diagram showing the relationship between the eigenvectors and the data vectors indicating
how the values in the abstract row and column matrices can be arrived at geometrically.

To reduce the number of possible solutions some constraints are placed upon
the analysis. The axes, or factors, when they are found must be orthogonal. For this
simple planar example this means that the axes will be perpendicular to each other.
Secondly, the axis is placed to account for the maximum variance in the data, this can
be visualized as the axis passing through the greatest concentration of data points.

PCA finds the first of the required two axes in a manner similar to linear
regression whereby the axis passes through the highest concentration of data points
and therefore accounts for the largest variance in the data.

A second axis is then found which is perpendicular to the first and which in
this case would account for all of the residual variance in the data set.

Figure 2 shows the position of the two factor axes (principal components) for
the data in figure 1. It can be seen that the first axis has been positioned to pass
through the greatest concentration of data points. The second axis lies perpendicular
to the first and in this example allows the position of every point to be uniquely
identified. The position of each data point is identified by reference to where lines
drawn from the point, perpendicular to the axis (shown by the dashed line), intersect
the axis. The distance along the axis from the origin (called the projection) produces
the score of the data point on that factor. The values of all the scores for each axis
comprise the abstract row (or score) matrix, R.

The abstract column matrix, which contains the eigenvectors, is related to the
columns of the original data when treated as vectors. The relationship is defined by
the equation

' 111

where
d , k = the k"1 data column,
Ay = the eigenvalue of they' 11 eigenvector,

cjk - they' 1*1 coefficient of the k^ eigenvector and

c; = they"1 eigenvector. ,«,

The eigenvalue is a constant that describes the importance of the associated
eigenvector (factor) to the data. The PCA procedure gives eigenvectors of unit length
with the magnitude removed in the eigenvalue.

The fi~cjk values resulting from this equation are the cosines of the angles

between the column vectors and the factor axes and are called the loadings. The
loadings measure the relative importance of each eigenvector on each column vector.

The values listed for the abstract column matrix in figure 2 have been
multiplied by the root of the eigenvalue and are therefore the cosines of the angles
between column vectors and factor axes.

The example used here is trivial in that only two factors and few samples and
measurements are involved. Normally much larger numbers of samples and
observations are made and the resulting data space can have many more than two
dimensions. Depiction of systems of this form is obviously impossible using graphical
methods and it must be stressed that here lies the difference between orthogonality
and perpendicularity, which thus far have be treated identically. It is mathematically
possible to have any number of factors that are not dependant upon each other
whereas only three axes can possibly be perpendicular to each other. However, the
simple two factor example remains valid for the example in question and will be
referred to again in the explanation of transformations.

A complete derivation of the eigenanalysis procedure is given in appendix 1 .
1.1.2.3. Effects of error in the data

After the principal component analysis, reproduction of the original data can
be achieved by multiplication of the two abstract matrices according to equation 6.

The size of the matrices produced from PCA is determined by the number of
rows and columns of the original data matrix, with the row matrix R having the same
number of rows as the data matrix but only as many columns as there are factors and
the column matrix C having columns equal to the data matrix and rows equal to the

8

number of factors. There is a limitation placed on the number of factors in that there
cannot be a larger number of factors than the smaller dimension of the data matrix.
This means that if the evidence suggests that more factors are required to fully
describe the data then further measurements must be taken to enlarge the smaller
dimension of D, the data matrix. This requirement may be readily fulfilled in
spectroscopic observations where large numbers of data points can readily be
obtained.

In the example in figure 1 the dimensions of the matrices shown are less than
those defined above. This is because the data is completely modelled using two
factors, the third factor produced has an eigenvalue of zero and its associated vectors
in the row and column matrices are also zero and thus may be neglected from the
calculation.

The importance of a particular factor is indicated by the size of its eigenvalue.
Factors are produced by PCA in decreasing order of importance, the value of each
eigenvector's eigenvalue is related to the amount of variance accounted for by that
eigenvector. As there is no experimental error in the values used for the example then
the third factor has no variance to describe.

If random error were added to the data it would be seen on the figure as a
perturbation of the data points in a random direction. It is important to realise that the
direction of the perturbation is not restricted to the plane of the paper but might also
move a data point out of the plane. This has the effect of increasing the
dimensionality of the data as it is now necessary to find a further axis that will come
directly out of the plane of the paper to define the extra variance introduced by the
error. With experimental data the effects of random error generally ensure that as
many factors are found as the smaller dimension of the data matrix. However, as the
effect of random error on the data is generally small then the magnitude of the
eigenvalue associated with the extra factors will be small. One of the useful by
products of the PCA process is that these eigenvectors, caused by experimental error,
may be removed along with their associated columns in the row matrix and the data
matrix may then be reproduced by multiplication of the row and column matrices
according to equation 9 resulting in an immediate improvement of the accuracy of the
data.

D = RC (9)

Where the bar denotes the matrix with the secondary factors deleted. It should
be noted that only the portion of random error that produces unique vectors can be
removed in this way. The portion of error that resulted in perturbation within the
plane of the real factors remains in the data.

The separation of eigenvectors into those describing the data (primary
eigenvectors) and those describing only the effects of error on the data (secondary
eigenvectors) has been the subject of much work resulting in a plethora of different
criteria. Many different methods are described in the standard texts on factor analysis
but these are generally empirical in their approach to determining the size of the
factor space (the number of primary eigenvectors). For use with chemical data
matrices several workers have developed measures aimed at determining the
dimensionality of the data matrix.

One of the simplest and earliest used for chemical data is the Scree test. This
test developed by Cattell8 was used in the work of Rozett and Petersen6 . The Scree test
operates on the assumption that the residual variance should level off before the
factors account for random error when plotted against factor number. The Scree test
is not used in this work but a variant on the method is used where the eigenvalue is
plotted against factor number and the change in gradient used to indicate the change
from primary to secondary eigenvectors.

Another early method for indicating dimensionality is the distribution of
misfit. This term is calculated as the number of points in the reproduced data matrix,
A in this example, which deviate from the true value more than three times the
standard deviation of the original data matrix. The data is reproduced using factors
successively from the first factor until a tolerable number of misfits are found. The
problem with this method is the arbitrary choice of the number of misfits that may be
tolerated. The method was included in this work in an attempt to spot outliers in the
data, unfortunately the large number of calculations involved in its determination
precludes its use with very large data matrices.

The standard error in eigenvalue was developed by Hugus and El-Awady9 .
Based upon a statistical criterion for the vanishing of an eigenvalue, it is calculated
using an estimate of the error in the data. When the eigenvalue falls below the value
calculated for the standard error then the factors must describe only error.

A substantial amount of work has been performed by Malinowski on the
subject of error in factor analysis. In his paper developing the theory of error in factor
analysis, Malinowski 10 derives three related functions for use in determining the size
of the factor space. The real error (RE), imbedded error (IE) and the extracted error
(XE) are all related via a Pythagorean relationship. The terms RE and IE are used in
this work and are calculated for successive factors to produce graphs of error term
against factor number.

RE gives the difference between the pure data unaffected by error and the raw
experimental data. This means that if an estimate of the error contained in the data is
known then comparison of that with the value of RE will define the size of the factor
space when the value of RE falls below the estimate.

10

Interpretation of IE is not as simple. The IE is a measure of the difference
between the pure data and the factor analysis reproduced data. This function will start
at a large value because too few factors are being used and a large difference exists
between the pure and factor analysis reproduced data. Its value will fall as more
factors are included until, after the dimensionality of the factor space is reached, pure
error vectors are being added. This addition will increase the difference and once
again the IE term will increase. When plotted, the correct number of factors should
appear as the minimum on the chart.

Unfortunately the IE term is not always sensitive enough to the minimum and
in some further work Malinowski" develops an empirical term based upon IE called
the indicator function (IND). The IND appears to be more sensitive to the minimum
than IE and both terms are used to complement each other in this work.

The final error term used in this work is the percentage significance level
developed by Malinowski 12 as an extension of work done by Lorber13 . This term has
the advantage that it is based upon well-known and well-understood statistics and can
give an estimate of the size of the factor space without any knowledge about error in
the data. An F ratio is calculated for the eigenvalue of each factor and using the F
distribution converted into a significance level. Work on data sets of previously
determined dimensionality indicates that the eigenvalues pass from primary to
secondary between 5% and 10% significance.

In almost all cases it is unwise to assign the size of the factor space based upon
the evidence of one criterion without considering the evidence presented by the
others. In many cases the values offered are ambiguous and can cover a range of one
or two factors. In such cases credence should be given to those estimates that use an
estimate of error in the data, if the estimate is trustworthy, or if no such estimate is
available then the percentage significance level has proved the most reliable in
published examples.

1.1.3. Transformation

The transformation step of factor analysis has been performed using many
different techniques. One of the earliest and still popular are the rotations. These are
more commonly known as cluster analyses and involve the use of one of a multitude
of available mathematical transforms which operate on the data to rotate the axes so as
to present the data in a form that can be interpreted graphically. They can be useful
for identifying groups of points with similar behaviour and thus find an application in
chemistry for identifying sources of materials, etc. but they provide a dead end for
investigating the data further.

Predictions are the simplest form of transformation possible. The prediction
ability of factor analysis is readily explained using figure 2. If the values are known

11

for two of the samples in the data set then the projection of the point onto the two
axes identifies its position in space. Once its position is known it is a simple matter to
obtain its projection onto the unknown axis thus predicting its value in that sample.
The example might be trivial in this case but if a large data matrix containing many
samples and had a dimensionality of two then the values for all the samples can be
predicted on the basis of two measurements. It is important to note that the prediction
is made without any chemical knowledge of the system and it is this modelling ability
that has made factor analysis so useful.

A more complicated, but more useful to the chemist, method of transformation
is the target test. In the target test a property or function is tested to see if it is a factor
in the data or not.

. /Test vector

Plane containing data points

Factor 1

Predicted
vector

Factor 2

Figure 3: The principle of target testing. The test vector is projected into the data space to produce the
closest fit to the test vector of the data.

In target testing, a vector is defined which is believed to be a basic factor of
the data set, the vector is shown plotted in the factor space of the data in figure 3. The
data, which was described by two factors, lies in a plane defined by factors 1 & 2.
The test vector, if it is not a true factor of the data, will lie outside this plane. The
target testing process projects the test vector onto the plane of the data producing the
predicted vector. The predicted vector is the closest fit to the test vector it is possible
to transform the data into. This allows the test and predicted vectors to be compared
in order to determine whether the factor is important to the data or not. If the test
vector is a true factor in the data then the values for test and predicted vector must be
the same.

A complete derivation of target testing is given in appendix 2.
The power of the target test is in the number of properties that can be tested.

Columns of the original data can be used which, by definition, must give good tests
but these don't give rise to any new information about the data. Tests using
chemically meaningful vectors are the most useful. The choice of vector depends
upon the data being analysed, in the example, as the data is governed by the Beer-

12

Lambert law then test vectors of concentration and extinction coefficient would be
appropriate. It is also possible to use structural test vectors for testing. These are
based upon the structure of the samples and can indicate things like number of carbon
atoms or chain branching. The vectors are composed by assigning an arbitrary scale to
the features being tested for and creating a test vector.

The target test allows the chemist to probe the innermost workings of a system
in the complete absence of any prior knowledge, it also allows single factors to be
tested for without interference from other factors in the data.

1 .1 .4. UV-Vis spectroscopy

The applicability of factor analysis to UV-Vis spectroscopy has already been
clearly demonstrated in the preceding example. To reiterate, the pre-requisite
condition for factor analysis is that the data under investigation is formed from a
linear combination of factors. In UV-Vis spectroscopy with solutions having
concentrations low enough to not suffer from non-linear effects, the absorbance of a
solution is governed by the Beer-Lambert law.

A = ec (1)

Which when expanded to describe several species takes the form.

A = e,c, + e2c2 + ••• encn =
(2)

This linear sum of products satisfies the requirements for successful factor
analysis.

1.1.5. Mass spectrometrv

The spectrum produced from mass spectrometry is dependant upon many
factors, the one producing the most variation is the type of ionization method
employed. In the work performed here all ionization was performed using electron
impact (El) ionization. With El the intensity of a signal is due to the concentration of
a component within the source and the ionization efficiency for that component. The
ionization efficiencies can vary widely from component to component. However, the
efficiencies for a component will be the same for a given set of conditions thus
allowing reproducible spectra to be produced. If two components produce a signal at
the same m/e ratio the signal is additive. It can be seen that from the preceding
discussion that a similar situation exists to UV-Vis spectroscopy with the ionization
efficiencies similar to extinction coefficients. The situation in the mass spectrometer is
further complicated by the concentration not being linked directly to the intensity of
signal but being linked to the partial pressure of the component in the ion source.

Malinowski and McCue14 have presented an equation to link the intensity
(height) of a mass peak to the contributions of each of its components.

13

;='
Where,
#(,-„) = the height of the i* peak in the mixture a,

/£>y.) = the height of the purey* component and

P(ja) - the partial pressure of component/ in mixture a.

Malinowski and McCue then go on to include modifications to allow for
discrimination in a molecular leak inlet and to relate partial pressure in the source
with partial pressure in the inlet and thus allow quantification of the mixtures
investigated. In the work performed here the sample is vaporized directly into the
ionization chamber thus precluding any mass discrimination and allowing the use of
the formula as it stands.

1.1.6. Temperature programmed pyrolvsis mass spectrometry

Westall and Pidduck15 have described the application of temperature
programmed pyrolysis-mass spectrometry (TPPy-MS) to polymer samples. The
technique involves the placing of a small sample of the solid under investigation into a
sample tube contained in an electrically heated probe. The probe is then inserted into
mass spectrometer source so that the vapours exit the sample tube directly into the
ionization chamber of the El source.

The probe is then subjected to an accurately controlled temperature
programme where the temperature of the probe tip is raised at a fixed rate. The mass
spectrometer is set to scan over the required mass range during this temperature
program. The data collected when presented as a total ion current (TIC) against time
trace produces the pyrogram for the sample. Features of interest in the pyrogram can
be selected and the mass spectrum of the corresponding scan studied to identify the
components present.

The temperature program affords a coarse separation of the sample similar in
intent to gas chromatography-mass spectrometry (GC-MS) but the nature of polymer
samples is such that events occur so slowly that they generally overlap with the
evolution of other components of the sample. This co-evolution of components
complicates the interpretation of the individual mass spectra and it is here that factor
analysis is to be applied.

TPPy-MS provides a perfect example of the ability of modern analytical
instruments to acquire many measurements in a short period of time and how much of
the information is left unused by the analyst.

14

1.1.7. Use of factor analysis in chemistry

The growth in the use of factor analysis in chemistry has paralleled the
availability of cheap computing power in the laboratory. The large number of
calculations involved in multivariate statistics made analysis of even modest data sets
time consuming and labour intensive. Early attempts involving the use of statistics
used some innovative techniques to simplify the calculations and generally only gave
an indication of the rank of the data. Serious attempts to use factor analysis for the
interpretation of data had to wait until access to mainframe computers was available.

Malinowski credits the first application of factor analysis to Higman 16 who
attempted to use graphical methods to analyse linear free-energy relationships. The
impact of the computer into the laboratory began to be seen in the 70's when
investigators started to see some of the possibilities of factor analysis and applications
in many different areas were investigated.

1.1.7.1. General theoretical development

Many papers have been published containing different approaches and methods
of calculation for use with factor analysis.

Brown 17 has published a review of published Chemometrics materials for the
period December 87 to November 89. This contains details of papers published in all
areas of chemometrics including those related to factor analysis. Brown also gives
details of software packages that have been produced to perform chemometric
analyses.

This section contains some of the papers that have offered different approaches
to solving problems in factor analysis. Following this section are papers where the
theory has been applied to specific techniques.

Malinowski10 proposed a theory for the way in which error mixes into factor
analysis based around the fact that pure data results in factor compression and real
data invariably gives a number of factors equal to the smaller dimension of the data
matrix. He argues that all the factors beyond the true rank of the data are composed
of only error and their rejection will result in the factor analysis reproduced data
containing less error than the original experimental measurements. The separation of
the factors into primary (due to the data) and secondary (due only to the error) allows
this error reduction benefit to be achieved. Malinowski points out that identification
of primary and secondary factors has been an obstacle to the acceptance of factor
analysis into general use in chemistry and proposes three error terms to assist in the
identification of the primary factors.

15

The error terms are developed around the postulate that the addition that
random error makes to the data may be split into a portion that is irretrievably mixed
in with the data point and a portion that produces the extra secondary axes. The result
of his hypothesis is an equation to describe the error of the secondary axes (called the
real error, RE) which he argues is a measure of the difference between the pure data
and the experimental data thus allowing comparison of this value with a known
estimate of error in the data enabling the number of primary factors to be identified.
In addition to the RE term Malinowski also derives terms to describe the amount of
error remaining in the data (imbedded error, IE) and the amount of error extracted
from the experimental data (extracted error, XE). The three error terms are shown to
be linked by a Pythagorean relationship enabling the third term to be calculated if two
are known. To provide proof for the derived error terms Malinowski uses a variety of
synthetic data sets to which a known error matrix has been added and finds that for
small data sets the terms are in good agreement.

Malinowski" applied his theory of error in factor analysis to a variety of
published data sets. The data are from NMR, MS, UV-Vis, gas chromatography and
drug activity analysis. Use is made of the IE function to identify the number of
primary factors. The theory of errors suggests that for data sets with uniformly
distributed errors the IE function will decrease rapidly as the primary factors are
extracted from the data, reach a minimum at the correct number of factors and then
rise as more and more secondary eigenvectors are added. The results of Malinowksi's
work show that if the error is not uniformly distributed then the IE function can fail to
reach a minimum. In these situations the use of an empirical function called the
indicator function (IND) is proposed. IND has the same behaviour as IE but appears
to be more sensitive to the minimum in cases where the IE fails. The application of
these terms to the published data allows Malinowski to determine the number of
primary factors and then to determine the experimental error in the data set by
calculation of the real error function. Comparison of the calculated RE terms and the
number of factors produced good agreement in most cases and reasonable
explanations were produced for any discrepancies. The analysis of the drug activity
data set produced IE and IND values that increased from factor 1 onwards,
Malinowski had observed this behaviour in data sets of random numbers and suggests
that it is an indicator that the data set is not factor analysable.

Malinowski18 extended his theory of error in target factor analysis to allow the
calculation of an estimate of the error contained in the data produced from
combination target factor analysis. The resultant equation is compared with the error

16

estimates produced by the jack-knife method of Weiner et al. 19 for GLC data and
produces similar values for the RMS error.

Roscoe and Hopke20 give the derivation of a function that may be used to
calculate an error estimate for each individual loading vector. The new term is
calculated alongside the error estimates produced by the jack-knife method and the
two values shown to compare favourably. The primary benefit in the use of the new
calculation method is in the time saved in calculating the value.

Malinowski21 considered a special case of the theory of error applied to target
testing where a pure vector containing no error is used, such as unity tests or
uniqueness tests. In modifying an assumption made in the original derivation the error
introduced into the transformation matrix from the data is accounted for and is used to
produce a new definition for the SPOIL function with narrower region of acceptability
for when pure targets are used.

Eastment and Krzanowski22 have applied the cross validation method of Wold23
using a technique based upon singular value decomposition (an alternative method of
eigenanalysing the data matrix). Their method only involves one complete
decomposition of the data set and the characteristic factors of the sub-matrices are
calculated by an updating process involving considerably less calculation. Adoption of
this approach makes the use of the technique in determining the rank of the data
feasible in terms of calculation time, unlike the computationally intensive method of
Wold.

Hopke et al. 24 have described a computer program developed for the analysis
of sources in environmental samples. The program runs on a CDC Cyber 175
computer and is written in CDC FORTRAN level 4 extended. The program allows
the calculation of the abstract matrices via a Q mode diagonalization procedure. Error
terms are calculated for the decomposed data, chi squared, Exner function and
indicator function are all calculated and may be used to identify the rank of the data.
Target testing is implemented using a system similar to that derived by Malinowski
with the inclusion of a weighting matrix allowing the estimated error in the values of
the test vector to weight the fit of the predicted vector. This weighting process allows
the target test to be used iteratively to arrive at the true factors underlying the data
after using a start point of a uniqueness vector (one containing only one value of unity
the other members being zero). After selection of the true factors target combination
may be performed using concentration values from known samples allowing the
concentrations of the sources to be identified.

17

Hopke and Dharmavaram25 describe changes made to their software for target
transformation factor analysis. Improvements include a modified calculation for
indicator function and the inclusion of R-mode analysis in addition to the original Q-
mode. They mention that some confusion exists as to the difference between R- and
Q- mode analysis, some people define the difference to be the order of multiplication
of the data matrix and its transpose whilst the definition preferred by Hopke is that Q-
mode analysis is the diagonalization of the matrix of correlations about the origin
between the objects and the R-mode analysis is the diagonalization of the matrix of
correlations about the origin between the variables.

Johansson et al. 26 investigate the effects of closure on data used for factor
analysis. Closure occurs when the original data's dynamic range is compressed by
treatments such as normalization. They identify that the risk involved in closed data is
one of spurious correlations between variables. They illustrate their argument with
examples of GC analysis of pine and spruce trees clearly demonstrating the distortion
of the data introduced by the closure. The method commonly used in mass
spectrometry of setting the largest peak to 100% and expressing the other peaks as
percentages is shown to lose most of the variance in the data reducing the chance of
extracting any information from it.

Braden et al. 27 have proposed an alternative to free floating data points in a
target test vector. Their method uses iteration of a single data point by starting with a
zero value, testing and replacing the zero with the value from the test. The vector is
then re-tested to produce a better estimate, this procedure is repeated till a consistent
value is obtained. A proof of the convergent nature of the iterative process is given
and it is demonstrated that the true answer is the one converged upon.

Malinowski12 presented a lucid description of development of Fisher variance
ratio tests for both abstract factor analysis and target testing. The theory behind the
formulae is developed and its application to a wide range of data from previous
publications is given. Malinowski demonstrates that the F-tests based on the Fisher
variance ratio show good agreement with the known number of factors in the data sets
and also compare favourably with the values obtained from the empirical Indicator
function. In target testing the F-test shows itself to able to quantify clearly the fit of a
test vector and compares well with the spoil function.

Lorber and Kowalski28 in this correspondence have given an overview of the
generalised theory of abstract factor analysis and discuss the relationship between

18

Malinowski's target test, Brayden et al.'s iterative target testing of a single point and
Vandeginste and Gemperline's iterative target testing with non-negative constraints.
All the techniques are described as subsets of the EM algorithm29 .

Donahue and Brown30 have presented a new and computationally efficient
method for the orthogonalization of a data matrix. The successive average
orthogonalization method uses the fact that the maximization of variance is in certain
conditions identical to the mathematical mean and borrows a technique from Gram-
Schmidt orthogonalization to adjust spectra to be orthogonal to a vector. The process
was born out of the observation that the first eigenvector is always the average of the
data set and that the first eigenvector can therefore be calculated in just that manner.
The data matrix is then modified by making each spectrum orthogonal to the average
by subtracting an amount equal to the dot product between the vectors multiplied by
the average spectrum. The resulting data matrix is orthogonal to the first factor thus
ensuring the orthogonality criteria, which is not maintained in the related Gram-
Schmidt orthogonalization process. The averaging process is then repeated for the
modified data set but to allow for the direction of each spectrum the first spectrum is
taken as the reference and its dot product with the second spectrum calculated, if the
result is positive the spectrum is added to the first or subtracted if not. This new
running average is then used for the same calculation with the next spectrum. This
results in the second eigenvector and the entire process repeats for successive
eigenvectors. As only one pass through the data matrix is required for each extracted
vector the technique is computationally very efficient. Donahue and Brown compare
the results produced via this method with those produced from the more commonly
used methods of eigenanalysis and find that for primary factors they compare very
well. They identify a problem with determining the direction of a spectrum when its
noise component becomes large but suggest that in these cases the factor is probably
secondary anyway. Overall the method presents itself as very usable for data sets with
good signal to noise and uniform error distributions.

1.1.7.2. Elution profile and spectral isolation

Since it was first realised that factor analysis could give the number of
components present in a data set and that knowing one of the controlling factors
allowed the other to be readily calculated (e.g. knowing the spectrum of a component
allows its concentration to be determined), workers have searched for method that
allow both controlling factors to be identified a priori. The following papers contain
work performed with this end in mind and chart the development of ever more
sophisticated techniques to achieve their aims.

19

Bulmer and Shurvel31 used the techniques developed by Hugus and El-Awady
to confirm results obtained from band resolution studies of acetic acid in carbon
tetrachloride. They used the non-assumption of peak shape offered by factor analysis
to complement the lorentzian based band resolution studies and find identical results
as to the number of absorbing species in the solutions.

Lin and Liu32 describe a numerical method they call automated spectral
isolation (ASI) for isolating the spectra of component substances in mixtures. The
data used must be normalized to a maximum value of 1 before factor analysis. The
decomposed data is then tested with all possible vectors containing all values of 0.08
except for one position that contains the value 1. The predicted spectra produced are
considered possible candidates for the pure component spectra. Their suitability is
quantified by using the RISK function, which gives a measure of the difference
between the predicted vector and the pure component factor space. The best fitting
test vectors up to the number of components in the system are used as the pure
component spectra. The method was tested by recording the IR spectra of 4
compounds and using the Beer-Lambert law to generate 8 mixture spectra. These
mixture spectra were then subjected to the ASI procedure and the spectra of the pure
components calculated with good agreement. The method is shown extended to
electronic spectra where the test vector is modified to a gaussian form to produce
suitable predicted vectors. The criteria for the gaussian function, peak location,
baseline height and half width are selected using a simplex optimization routine.
Again the results are tested on simulated spectra of a mixture of four aromatic
compounds and the predicted spectra show good agreement with those of the pure
components. A study of the effects of noise on data is shown by use of data simulated
with a baseline shift between -0.1 % and +3.5% of the full scale added. The predicted
spectra show considerable inaccuracies but are still recognisable as the pure
component spectra.

Gemperline33 has shown the use of target testing in the determination of elution
profiles of pure components in overlapped liquid chromatography peaks. His method
used the data set presented as for Q analysis, with rows as spectra and columns as
mixtures. This allows the target test to operate upon the row designees that are related
to the concentration domain. The individual pure component peaks are searched for
using uniqueness test vectors. The sum of squares of the difference between the test
and predicted vectors is used as an indicator of approximation of fit of the test vector.
The number of predicted vectors, equal to the rank of the data, which have the
smallest difference are then used in further tests as better approximations to the true

20

factors. In order to improve the approximation of the vector all negative values are
removed and the vector tested. This iterative process is repeated until the RET is less
than the RE in the data or the difference in RMS values of the truncated negative
values between successive test vectors is less than RE. On completion of the iterative
procedure a complete transformation matrix may be formed and the predicted spectra
of the components calculated by target combination. Gemperline demonstrated the use
of the technique on simulated data containing 2,3 and 4 overlapping components, he
also investigated the effect of chromatographic resolution of the error in the
predictions of the elution profiles and found that at a resolution of 0.64 the elution
profiles faithfully follow those of the pure components.

Vandeginste et al. 34 used a system of iterative target transformation to resolve
elution profiles in overlapping peaks from HPLC with diode array detection. Their
approach is similar to that adopted by Gemperline but instead of testing every possible
uniqueness vector they align the eigenvectors produced from principal component
analysis with the axes of the data space by use of a varimax rotation. After the
rotation the eigenvector maxima are used to give the positions of the unity value in
the uniqueness vector. The conditions applied for adaptation of the vector were that
no point could be below a threshold of 0.05 and that if more than one peak appeared
in the vector separated by one or more zeros then the largest peak would be retained
and the others set to zero. On solving the elution profiles of the components the
original spectra were calculated by target combination. The technique was tested on a
series of synthetic data sets containing three, four and six overlapping peaks and
comparison was made with the results obtained from curve resolution studies for the
three component system. The recorded results compared favourably with the original
data used in data synthesis and also with the results from curve resolution.

Maeder and Zuberbiiehler35 have developed a method of factor analysis which
uses the information contained in data sets whose samples are related by time, such as
chromatographic methods. The evolving factor analysis (EFA) method uses the fact
that the components within the sample will evolve at different times. The analysis is
performed by factor analysing the first two samples. The next sample is added and the
data re-analysed, this procedure is repeated to the last sample. The reverse procedure
is possible, starting with the last two samples and adding their predecessors. The
resulting values for eigenvalue, when plotted, show the evolution (for forward
analysis) and decay (for backward analysis) for each component in the system. The
resulting curves are arranged into the columns of the concentration matrix as first
approximations to the concentration profiles. The absorbance matrix is then calculated
using the pseudoinverse to give an approximation to the absorbance profiles. A

21

further approximation to the concentration profiles is calculated via the pseudoinverse
again to produce a better approximation to the concentration profiles. This iterative
process is repeated to convergence after modifying the concentration profiles so that
negative and non significant values are set to zero. The results of the analysis are
absorbance profiles and concentration profiles without any prior knowledge of elution
profile or response. The results of one analysis on model data containing three
overlapping peaks are given with good agreement between the concentration profiles
and absorption spectra being seen.

Gemperline36 has extended his earlier work on curve resolution33 using target
transformation factor analysis by addressing problems of secondary maxima appearing
during the iteration of components and also the difficulty of determining when the
component has been completely resolved. His new approach involves the same start to
the analysis, searching all possible uniqueness vectors to discover the positions of the
components. He then departs from his previous treatment by using a constraints
matrix instead of the eigenvector matrix in the target transformation. The constraints
used are that only one maxima can exist and that negative values are not allowed. The
method is tested on synthetic data sets containing added error and found to produce
better approximations to the elution profiles of the species than the previous method.

Gamp et al. 37 have produced a modification to the rank annihilation factor
analysis algorithm (rank annihilation is another mathematical technique for
determining the number of components in a data set) which allows quantitation of a
species with a known spectrum in the absence of any other knowledge of the response
of individual components. The method is applicable to data sets that compose
different continuous ranges of non-zero response in either the x or y directions, this
includes data from LC with UV detection and spectrophotometric equilibrium studies.
The algorithm works by using evolving factor analysis35 to produce an initial solution
to the species present. The knowledge of the spectral profile is then used to reduce the
data matrix to those measurements which contain no influence from the known
species. The reduced data set is then analysed by PC A and the previously determined
eigenvector for the known species appended to the eigenvector matrix. Using linear
regression the concentration of the known species is then calculated. The method is
shown applied to both LC-UV data and equilibrium studies producing good
approximations to the correct concentrations for a series of chromatographic
resolutions and added errors.

Vandeginste et al. 38 have conducted a study of the effectiveness of two curve
resolution algorithms (CR-2 and CR-3) and iterative target transformation factor

22

analysis (ITTFA) in relation to quantitative liquid chromatographic analysis. Their
study looked at the effects of changing four main factors in the analysis, namely the
ratio of the areas of the elution profiles in the standard, the chromatographic
resolution of the components, the similarity of the spectra of the components and the
ratio of the areas of the elution profiles in the sample. The experiments were
performed according to a factorial design to allow the influence of each factor on the
results to be determined by ANOVA. The results for synthetic data containing two
components showed that the ITTFA algorithm provided the most accurate results with
0.7% error and the CR-2 and CR-3 algorithms giving 1% and 4.5% errors
respectively. The interaction terms of the factorial design showed that the CR
algorithms were strongly affected by noise in the data, chromatographic overlap and
spectral similarity. The results for the three component systems indicated similar
trends. The ITTFA and CR-3 algorithm were then tested on two sets of three
component experimental data and the ITTFA method continued to produce the best
results. It was noted that the ITTFA method began to breakdown when the
chromatographic resolution fell below 0.5 or the relative absorbances of the
components differed greatly. The high sensitivity of the technique to small systematic
error was noted and it was suggested that a calibration sample should always be used
in preference to spectra from another source.

Strasters et al. 39 has provided a very readable study of the strengths and
weaknesses of three methods of determining peak identity and retention time in liquid
chromatographic analysis. The three methods used in comparisons are multi-
component analysis (MCA), target factor analysis (TFA) and iterative target
transformation (ITT). The ability of each technique to identify unambiguously the
components in a data set and the accuracy of predicted elution profiles and absorbance
spectra are considered. Particular emphasis is placed on the effects of
chromatographic resolution and media effects on the accuracy of the results. The
conclusions drawn are that in all circumstances the spectra of the component in the
solvent system being used should be chosen for analyses using MCA or TFA to
minimise inaccuracies. For unambiguous identification of components or for
quantification of systems with low resolution and all species known, TFA should be
chosen. For analysis of systems where the species are not known ITT is the only
option and for systems with very low resolution MCA is the method of choice if the
correct set of spectra in appropriate solvent can be obtained.

Strasters et al. 40 have continued their work on peak tracking in liquid
chromatography by quantifying the observations made in their earlier paper. They
derive three equations from experimental results to describe the dependence of the

23

reproduced spectra on relative concentration, resolution and spectral similarity. The
three equations are then combined to give a single figure describing the reliability of
the spectra produced from the ITT analysis.

Schostack and Malinowski41 give details of a new method for the separation of
overlapping components. The technique uses a form of evolving factor analysis based
on the premise that in a well-behaved system the concentration profiles of the
components can only be positive and the spectral profile must also be positive. The
analysis uses the following steps. Abstract factor analysis (PCA) to determine the
number of components in the system. This is followed by iterative key set factor
analysis to identify a key set of spectra that best describe the components. If no
overlap of the components occurred then this would result in the pure spectra and
component concentrations. In the case of components overlapping the concentration
profiles of the two overlapping components will exhibit a common negative
component. This negative component is added to the respective components profile
and the new spectra calculated using the pseudoinverse. The technique is shown
applied to both simulated and experimental data producing good agreement with the
known results.

1.1.7.3. UV- Vis spectroscopy

The following papers are concerned with the application of factor analysis to
UV-Vis spectroscopic data.

Kankare42 demonstrated the use of factor analysis as a means of determining
the number of components in a complex equilibrium mixture. The work involved the
study of bismuth-chloride complexes by UV-Vis spectrometry. 17 solutions at 27
wavelengths were studied and the data factor analysed to find its rank. Before factor
analysis the experimental data was smoothed by replacing any point whose factor
analysis reproduced value differed by more than three times the standard deviation.
Points outside this value were replaced by the factor analysis reproduced value. The
smoothed data was then factor analysed resulting in what was believed to be more
reliable results. The rank of the data was determined by comparison of the residual
standard deviation of the absorbances with the estimated standard deviation of the
absorbance measurements. The rank is then given by the number of factors whose
residual standard deviation is greater than the estimate. Kankare was then able to
convert the abstract concentration matrix to reflect real values by the use of existing
values of formation constants of the suspected species as initial approximations in a
Newton-Raphson iteration method to calculate a transformation matrix. The

24

transformation matrix was then used with a least squares process to determine the best
approximation to the true formation constants. Having calculated the formation
constants the spectra of the individual species, which would otherwise have been
unobtainable, were readily calculated.

Hugus and El-Awady9 provide an explanation of the applicability of matrix
rank analysis for the determination of the number of species present in data governed
by the Beer-Lambert law. They point out that because of the addition of random error
to experimental data the mathematical rank of an experimental data matrix is
generally equal to the smaller dimension of the data matrix. To determine the true
rank of the data they develop a statistical criterion for the vanishing of an eigenvalue
based upon the idea that the addition of random error to a data point can be described
as the addition of a vector to the mean of the observations of that point. In order to
confirm their assumptions they also calculate values for misfit and chi-squared tests
along with their standard error in eigenvalue function. Their function is tested on two
data sets, one of data obtained from the hydrolytic depolymerisation of binuclear
cobalt (III) complexes and the other from solutions of methyl red at varying pH's.
The ranks of the data sets are found to be three in both cases with the error terms also
in agreement.

McCue and Malinowski43 have applied target factor analysis to unresolved
chromatographic fractions. In their work they made two solutions containing o-,p-
xylene and ethylbenzene. These mixtures were then passed through an HPLC system
resulting in a single unresolved peak. Samples were taken across the peak by means
of a 5ml siphon and the UV-Vis spectra of these aliquots determined using a
spectrometer. The resulting sets of spectra were then analysed using principal
component analysis and the rank of the data determined by calculating error functions
real error, imbedded error and indicator function. The rank of the two data sets was
expected to be 3 in accordance with the number of components in the system and this
was shown to be the case for the first mixture. The values for the second mixture
suggested that there were four components in the system. As a means of identifying
the source of the fourth component the RMS absorbance differences were calculated
between the true data and the factor analysis reproduced data for both 3 and 4 factors.
Comparison of the figures showed that for three factors there was a large discrepancy
between the true and calculated values for fraction 2. This identified the presence of
the fourth factor only in fraction 2 and on removing fraction 2 from the data set and
re-analysing the expected three factors was seen to be present. The fourth component
in fraction 2 was explained as contamination in the receiving vessel. The identity of
the three components was then searched for using target testing. The test vectors used

25

were the three pure components of the mixtures and the pure spectra of m-xylene,
toluene and benzene. The results of the tests clearly showed that the latter three
components were not in the data and that the former three were present.

Haldna and Murshak44 have used target testing to estimate the basicity
constants of weak bases. Their method involved the measurement of the UV-Vis
spectra of solutions of the bases in aqueous solutions of strong acids and the factor
analysis procedure was used to overcome medium effects present with some bases.
The UV-Vis data was decomposed using abstract factor analysis and the rank of the
data determined by the size of the variance accounted for in an eigenvector. The
target testing was performed using a series of test vectors calculated by the program
and based around the calculated values for protonation fraction of the base. All of the
test vectors were then tried by the program and the fit determined by the sum of
squares of the differences between the test and the predicted vectors. Having
determined the best fitting test vector the data was then target combined to produce
the spectra of the mixtures devoid of any medium effects.

Gemperline et al. 45 have shown the application of principal component
regression for background correction in multi-component spectroscopic analysis.
Their technique relies upon the analyst being able to recreate the interfering species
creating the background though no knowledge of the species or their spectra is
necessary. Calibration is achieved by measuring the spectra of a series of standards of
the species of interest and including in at least one of the standards, the interfering
species. Principal component analysis is then performed on the data matrix formed
row-wise from the spectra of the standards. The rank of the data is determined from
the real error criterion. A transformation matrix is then calculated from the known
compositions of the standards. The sample data is formed into a matrix in the same
way as the standards and then the data projected into the concentration space of
standards with a transformation similar to target transformation. The transformation
matrix calculated from the standards is then used to calculate the concentrations of the
samples by the normal target combination step. Gemperline and co-workers
demonstrate their technique on two experimentally generated data sets, one using
transition metal ions and the other using analysis of active ingredients in tablets. Their
answers show good agreement to the known concentrations where the rank of the data
has been correctly identified, however large errors are introduced if the effect of the
background from the interfering species is not adequately modelled.

Malinowski46 has produced a review of the work done in the application of
factor analysis to absorption spectra. An overview of the theory of the analysis is

26

presented and the information available from each step is discussed by reference to
work performed by Malinowski and other workers in the field. Applications shown
include visible spectra of dyes and Raman spectra of aqueous sulphuric acid.

1.1.7.4. Mass spectrom etry

This section contains papers relating to the application of factor analysis to
mass spectrometry in general and pyrolysis mass spectrometry specifically. It will be
noted throughout that the researchers have used some form of reduced data set in the
form of normalized data, averaged scans or averaged analyses or a limited mass range
from within the data.

Davis et al. 47 applied factor analysis to the separation of unresolved peaks in
GC-MS. To investigate the usefulness of the method they used artificial data to assess
the effect of the addition of noise, overlap of the two peaks, peak width of perfectly
overlapping peaks and the effect of tailing of one or both of the peaks. They found
that so long as the difference between the two peaks (peak width or peak centre) was
slightly larger than the added error then the two peaks would be identified even if
they overlapped completely. Their results were also tested on experimental data using
incompletely resolved mixtures of isotopic carbon monoxide and mixtures of n-hexane
and n-heptane and both components were identified in each experiment.

Justice and Isenhour48 applied factor analysis to a data set of 630 mass spectra
containing compounds with seven functional groups. To identify the most important
factors for each functional grouping they developed a weighting equation to rank the
factors in order of importance and applied it to the factor analysis data after
application of a varimax rotation. From the most important factors they identified the
masses in the spectra characteristic of each functional group thus demonstrating the
ability of factor analysis to divine relationships between functional groups and mass
spectra.

Rozett and Petersen6 have studied the use of factor analysis with mass spectral
data. They point out the peculiarities of mass spectral data, namely that it contains a
true origin of zero and that intensities at all masses for all compounds are reported in
the same units. In their investigation they factor analyse the data after performing
various transformations on the data. The transformations investigated are correlation
about both the mean and the origin as well as covariance about the mean and origin.
They conclude that mean centring of either form destroys the information about the
zero point of the spectra and that correlation looses information about the comparative

27

sizes of variables. A description is given of the terminology used to describe the
forms of factor analysis, labelled O to Z, explaining that R analysis has rows of
entities (compounds) and columns of characteristics (intensities) while Q analysis has
rows of characteristics and columns of entities. They go on to test the different forms
of transformation on both Q and R analysis for 22 alkyl benzenes using various
subsets of the original data. They come to the conclusion that covariance about the
origin is the best method to use with mass spectrometry data. The determination of
the dimensionality of the data is discussed using methods based upon the Scree plot
(residual variance versus factor number) and the mean square deviation between the
original measurements and the data reproduced for successive factors and find in both
cases that the rank is three. The theoretical attributes of factor transformations such as
varimax and quartimax rotations and target testing are discussed.

Rozett and Petersen49 study the classification of 22 isomers of C 10H 14 using
typical factors, principal component analysis and varimax rotation. They determine
that three factors are responsible for the data as they account for 99% of the variance
in the data. The presentation of results is based around a variation of the Pearson
correlation coefficient but lacking the mean centring of the vectors. This coefficient of
congruence is used to produce polar plots of the isomers studied to identify clusters of
related compounds. Polar plots are given for all three forms of analysis and
comparisons noted, the same information is also given in the form of a tridimensional
display where the values are plotted on axes that intersect at an angle of 120 degrees.
The resulting triangular chart allows the clustering of the data to be observed. They
observe three unique clusters and two smaller combination clusters and assign a
fragment ion as the source of each cluster. The analysis is continued observing the
dependence of the m/e values on the factors. They conclude that the orientation of the
m/e values is complex and not as easily interpreted as the case of the isomers. Some
tentative assignments are made as to the kinds of fragmentation occurring that give
rise to the observed factors.

Ritter et al. 50 showed the application of factor analysis to chromatography-mass
spectrometry. In their study, which attempted to simulate the effect of an unresolved
peak in a chromatogram by using a series of mixtures of solutions with very similar
mass spectra, they used Q-mode analysis. This is a form of PCA in which the data is
column normalized before analysis by dividing each element by the mean of the data
in the column. The eigenvectors of the data are then found by diagonalization of the
covariance matrix to produce a series of eigenvalues and their associated eigenvectors.
In order to determine the rank or number of components responsible for the data an
error criterion was developed. The earlier work of Hugus and El-Awady was

28

considered as unsuitable as its deduction was based upon the assumption than error in
the data would be would be relative and constant. Ritter et al. obtained their data by
manually digitising the mass spectra obtained on analysis of their mixtures. The error
in their figures was considered to be larger than that present in the data from the
instrument and was therefore constant and absolute. They calculated from their error
estimate a value for the variance in each measurement and a figure for the standard
deviation of each point in the matrix to form an error matrix. The error matrix was
used by recalculating the covariance matrix using increasing numbers of eigenvectors
until the difference between the covariance matrix and its reproduced form was less
than the corresponding error terms in the error matrix. The analysis was applied to
four series of mixtures each resulting in the correct number components being found
whilst only using between 15 and 20 mass numbers carefully chosen to represent the
spectra being investigated. Only a small number of mixtures were used (between 5
and 7). An example of the sensitivity of the technique was given when one of the sets
of test mixtures produced a result of one more component than had been included in
the mixtures. On investigation it was found that the mass spectrometer source was
contaminated with nitrobenzene compounds from an earlier test. Upon re-selection of
the m/e values tested to exclude any contribution from the contaminant the results
then indicated the correct number of components.

Burgard et. al. 51 have used factor analysis to identify and quantify the
nucleosides present in 32 oligodeoxyriboneucleotides. They identified unambiguously
between presence and absence of nucleosides in selected subsets of samples but had
less success when attempting to identify the four nucleosides present simultaneously.
They note that a separation of the nucleosides along varimax rotated axes was clearly
visible but that low intensities of some characteristic ions complicated interpretation
especially for compounds containing all the nucleosides. They then used an R-type
analysis to identify pairs of characteristic ions that gave a ratio between nucleosides.
The compounds were then re-analysed using the ratios between the identified ion pairs
as the data set and the relative loadings compared with the known ratios. Good
agreement was found for those nucleosides with intense spectra and poorer values
returned for the less intense spectra. An attempt was made to sequence the compounds
but the differences between the spectra due to sequencing differences were submerged
beneath experimental error.

Malinowski and McCue14 use the data collected by Ritter et al. 50 to demonstrate
the power of target transform factor analysis for the qualitative and quantitative
determination of components in mixtures. An equation is developed which describes
the components of a particular mixture in terms of their mole fractions expressed as a

29

ratio between two components. This means that if the composition of one mixture is
known then the others may be calculated. The investigation is carried out by the use
of PCA on the data matrix followed by target testing using the pure component
spectra. Examples of good and poor target tests are shown to demonstrate their
differentiation. The data matrix is then expanded by the addition of a mixture of
known composition and the decomposition performed again. The decomposed data is
then subjected to a complete combination using the spectra of the pure components as
constraints and then the compositions of the mixtures calculated using the developed
equation. The calculated values were found to be in poor agreement to the values
stated in the paper but as no figure was placed on the accuracy of the mixtures then it
was concluded that the mixtures had be made with little attention to accuracy as this
was not necessary to the earlier work.

In an extension of his earlier work on theory of error for abstract factor
analysis 10 , Malinowski52 presents a theoretical derivation to describe the effects of
error in target factor analysis. The effects of the error on target testing are quantified
by the calculation of a series of root mean square error terms. The terms relate the
error from the data incorporated into the predicted vector and the error present in the
test vector to the error contained in the predicted vector. The relationship is shown to
be Pythagorean allowing the simple calculation of the third error term if two are
known. Equations are developed to allow the calculation of the apparent error in the
test vector (the difference between the test vector and the predicted vector) and the
real error in the predicted vector (the difference between the predicted vector and the
pure test vector) thus allowing the third error term, the real error in the test vector
(the difference between the test vector and the pure vector). The three terms allow an
estimate to be made of the error contained within the test vector even when no
information is available on the data used in the test vector. The interpretation of the
values of the error terms is discussed and in an attempt to produce some simple values
that allow the validity of a test vector as a primary factor in the data the functions
RELI and SPOIL are proposed. The RELI function gives an indication of how well
the test vector matches a true factor in the data, whilst the SPOIL function provides
not only an indication of whether the test vector is a true factor but also gives an
indication of how the inclusion of the vector in the target combination step will
enlarge or decrease the error in the reproduced data. As a test of the validity of the
theory a test matrix is calculated from known values and a defined amount of error
added. The simulated data thus calculated was then analysed and target tested using
test vectors to which had been added a known amount of error. The results of these
simulations show a very good agreement between known and calculated values thus
validating the theory. The theory was then applied to the mass spectroscopy data of

30

Ritter et al. 50 to demonstrate how the RELI and SPOIL functions may be used to
determine good and poor test vectors. The data for the cyclohexane/cyclohexene
mixtures was used showing good tests for cyclohexane and poor tests for hexane,
which was not present in the mixtures. A further example related to NMR was
presented in which a study of solvent effects was used. The gas-phase shift of the
solvent molecules was used as a test vector giving good indication that it was a true
factor in the data and the error terms indicating that the error in the vapour phase
measurements was approximately four times that of the solution measurements as was
expected from the extra difficulties involved in the vapour-phase measurements.

Rasmussen et al. 53 investigate the use of three separate methods for the
identification of unknown components in mixtures analysed by mass spectroscopy.
The first of the three methods used is Gram-Schmidt orthogonalization, which
calculates a factor space with dimensions equal to the number of spectra used. The
presence of a component is then searched for by calculating the orthogonal distance
between the library test vector and the factor subspace. The second method uses target
transformation as described by Malinowski and uses the Euclidean distance between
the test and predicted vectors as the measure of fit. The final method investigated is
the use of Bessel's inequality test. This has the disadvantage that the largest possible
covariance matrix is created, increasing the calculations necessary. This problem is
surmounted by a modification in the calculation of the eigenvectors allowing the
smaller covariance matrix to be used. A coefficient of fit is calculated between the
normalized test vector from the library data by calculation of the sum of squares of
the dot products between the test vector and the primary eigenvectors. The methods
were tested on calculated data based on pure spectra and also on real data. The results
of the searches produced the correct components for each of the methods though some
difficulty was apparent in determining one of the components with two of the methods
namely the Gram-Schmidt and target testing on the artificial data. Consideration of
the results and calculations necessary for each search allowed Rasmussen et al. to
conclude that the factor space calculated by the Gram-Schmidt orthogonalization was
very similar to that of principal component analysis but required more calculation.
The calculations involved in Bessel's inequality test were the fastest and with the
artificial data gave the best results however when tested with real data it was seen that
in the case of components with similar spectra the test was unable to correctly identify
the component and it was necessary to resort to using target testing and comparing the
test and predicted vectors to identify the correct component. The combination of the
two methods was chosen as the best method for the library search and further
consideration was given to ways of reducing the number of searches necessary by the
use of pre-filters. The two used were an overlap pre-filter, which rejected a test if

31

sufficient of the mass values in the data were not in the test vector and also a
maximum mass pre-filter, which rejected any test that contained masses above the
maximum mass in the data.

Knorr and Futrell54 used the factor analytical technique on mass spectroscopic
data to find the true factors underlying the data. Their method relies upon their being
a region in the data set for each component where only that component has a finite
intensity and is not contributed to by any other component. The method works by first
factor analysing the data and using the indicator function proposed by Malinowski" to
determine the number of components in the system. Then the reduced loadings matrix
is normalized row-wise so that the sum of squares is equal to one. The first mass
unique to a component is found by the smallest loading in the first column. The
justification for this is that the first eigenvector is an average of the data and the first
row of the loadings matrix corresponds to the sum of intensities of all the components
at each mass, for a mass number contributed to only by one component then the sum
would be expected to be small. The second unique mass point is found to be the one
whose value in the second column of the loadings matrix is the most different from
the first unique mass. This is reasoned to be so as the data space is spanned by the
vectors then if one boundary represents the pure case of one component then the
furthest distant point representing the opposite boundary must also be a component.
The third and later unique masses are found in the same way but using the value most
distant from the average of the already known unique masses. Having found the
unique masses the rows of the normalized loadings matrix associated with those mass
numbers are used as a transformation matrix to transpose the scores matrix. This is
achieved by column normalizing the loadings matrix (in its original form) and
multiplying the rows of the scores matrix by the reciprocal of the normalization
constant. The scores matrix is then transformed by multiplication by the
transformation matrix and the new scores matrix calculated. The scores and loadings
matrices are now the mass spectra and concentrations of the data. The technique is
demonstrated using the cyclohexane/cyclohexene data of Ritter et al. 50 with the
calculated spectra shown to be readily identifiable as the two components and the
compositions to be in the correct regions. The inaccuracy in the concentration data is
attributed to poor accuracy in the preparation of the mixtures and also to differences
in the ionization cross section of the components, which was not taken into account in
the calculations.

Aries et al. 55 have used canonical variates analysis to determine the
functionality of the silane used in manufacture of reversed phase HPLC packing
materials and also whether the packing has been end capped or not. Their method

32

used Curie point pyrolysis of the packing and analysis of the resulting data using
GENSTAT on a mainframe computer. The results of their analysis of a series of
commercially available materials generally identified the capped materials correctly
and allowed the functionality of the silane used to be determined. The results
appeared to be affected by the particle size of the samples and unambiguous
identifications were not possible in all cases. The results did indicate the applicability
of the technique.

Windig et al. 56 in an extension to their earlier work on VARDIA (variance
diagrams) produce a form of variance diagram of use in interpretation of time
resolved mass spectral data. The VARDIA approach is an R-type analysis with
entities (samples) arranged as rows in the data matrix. The data matrix is then column
normalized and subjected to principal component analysis. The VARDIA approach
then concentrates on the 2D plane formed by two of the factors. This plane is then
divided into sectors of between 10 and 20 degrees. A sum of the variances accounted
for by loadings contained within a window of 10 degrees either side of the sector
orientation is calculated and the results plotted on a polar chart. The resulting plot
indicates the direction of the sources of variance and by rotation of factors to align
with these directions the spectra of the component responsible for the factor may be
obtained. The VARDIA-S analysis is based upon a similar premise but instead of
considering the 2D plane formed by two factors the rotations are considered about the
origin formed by the spectrometer background and the angles related to the time the
spectrum was gathered. The resulting diagram shows the positions of the components
in the analysis and with suitable transformation the spectra of the individual
components may be found. Examples of the analysis are shown using data obtained
from a Curie point pyrolysis mass spectrometer and modified thermogravimetry
system as a pyrolysis source for a mass spectrometer with analyses performed on
samples of coal, rubber and wood. In all the samples tested the VARDIA-S technique
was able to identify the major components and produce a good approximation to the
component spectrum.

Aries et al. 57 have evaluated a purpose built pyrolysis mass spectrometry
system by comparison of results of three sets of samples, orange juices, pectins and
bacteria, between the instrument and a pyrolysis accessory on a conventional
instrument. The evaluation of their results was performed using principal component
analysis to identify the reproducibility between samples and also the discriminating
power of the system. They found that the purpose built system was better at both
discrimination and reproducibility for orange juice and pectins but that the
conventional instrument performed better with the bacteria.

33

Aries et al. 58 have applied pyrolysis mass spectrometry to the characterisation
of orange juice. In a study of 58 samples of orange juice from different sources it was
possible to differentiate, though not unambiguously, between the country of origin
and in some cases the processor. Analysis was achieved by Curie point pyrolysis of a
centrifuged sample of the orange juice. The resulting scans were averaged and
normalized to the total ion current. The data from all of the samples was analysed
using principal component analysis and the principal component plots studied. The
plot of the first two principal components allowed separation of the components
roughly into their country of origin. To improve the separation canonical variates
analysis was performed and autoscaling of the original data was tried with no
improvement in the separation. The data set was then reduced to the 20 masses that
produced the most discrimination in the data set and the data re-analysed. The results
from this analysis exhibited a greater separation between the countries of origin and
highlighted 6 samples that appeared to be improperly assigned. It was suggested that
some impropriety may have occurred when declaring the country of origin with these
samples. As a further analysis the samples from the individual countries were
analysed and it was found to be possible to identify the individual producer in some
cases.

Aries et al. 59 have used pyrolysis mass spectrometry to investigate pectin
methylation. They used a Curie point pyrolysis of small samples of pectins of known
degree of methylation, averaged and normalized the resulting spectra for each sample
and performed principal component analysis on the resulting data set. They found that
there was a linear relationship between degree of methylation and the first principal
component. They further investigated to identify the mass numbers characteristic of
low and high methylated pectins and using pyrolysis-gas chromatography-mass
spectrometry made assignments for the pyrolysis products giving rise to the mass
values. With this information they proposed pyrolysis mechanisms for the pectins and
identified two masses whose ratio would indicate the degree of methylation with a
precision close to that of the first principal component. They identified an impurity in
one of the pectin samples and observe that the mass values chosen are not necessarily
indicative of degree of methylation and may arise from another independent source
but offer the work as confirmation of earlier methods of degree of methylation
determination.

Magee et al. 60 used pyrolysis mass spectrometry in an attempt to classify 143
fusobacteria. Analysis was performed using Curie point pyrolysis and the data
produced analysed using discriminant analysis and clustering techniques. In general

34

they found that the bacteria could be classified correctly according to genus but with
some notable discrepancies. They attribute the differences to the conventional
classification being based upon chemical reactions and the small amount of enzyme
necessary to perform such reaction being insufficient to change the composition of the
microbe as a whole and thus the pyrolysis mass spectrometry is unable to determine a
difference.

Price et al. 61 have studied the application of principal component analysis to
polymer pyrolysis. In a series of experiments they used Curie point pyrolysis to study
different types of commercial polymers. Their first experiment used
polymethylmethacrylate, polypropylene, nylon 6, nylon 11, nylon 6,6, and
polystyrene. The results of each individual analysis were reduced to the maximum 50
variables required by the software by taking the first 50 mass number with intensities
greater than 2% excluding the air peaks of 28,32,40 and 44. Each spectrum was then
normalized to the TIC and then autoscaled before analysis by PC A. The results were
interpreted by means of principal component plots showing the clusterings of replicate
analyses and the separation of different samples allowing the differentiation of the
sample materials from each other. The second experiment involved the analysis of
four polyacrylics differing only in slight changes in the polymer chain. Once again
good reproducibility was observed between replicate analyses as clustering on the
principal component plots and good separation was seen between the differing
samples. The third experiment attempted to differentiate between several samples of
commercial polypropylenes but failed to produce reasonable results. Price et. al. then
went on to use thermal desorption gas chromatography mass spectrometry on the same
samples to further attempt separation. The samples were heated in a furnace and the
vapours produced trapped on an absorbent. The vapours were then desorbed into a
narrow plug onto a capillary column where they were separated and passed into the
mass spectrometer. The data from each run was converted into an average spectrum
with the first and last spectra subtracted to reduce the background. The first 50 masses
above 2% intensity were again chosen for analysis and this time a separation between
the different samples was observed. The separation was swamped by two of the
samples and an outlier, these were removed and the data re-analysed resulting in a
better separation between the remaining samples. Price et. al. concluded that the
pyrolysis-mass spectrometry was valuable in differentiating between different
polymers but that for differentiating between different sources or blends of the same
type of polymer the information contained in the volatile components of the blend was
necessary and obtainable only via the thermal desorption route.

35

Lee et. al. 62 have applied principal component analysis to GC-MS data with the
sole intention of reducing the amount of noise present in the system. Their application
uses the non-linear iterative partial least squares (NIPALS) algorithm to extract
successive eigenvectors. They use a simple, minimum change in eigenvalue criterion
to identify when the eigenvectors being extracted are describing noise only. They
chose this method above the real error and imbedded error terms because of the low
mass skewed error distribution present in the mass spectroscopy data. They further
point out that as the temperature increases then the error in high mass measurements
may increase (due to column bleed). The residual matrix resulting from these
calculations is then said to contain only noise and by subtracting it from the original
data matrix an improvement in signal to noise (S/N) ratio is obtained. The benefit of
this technique of noise reduction over the more usual smoothing approach is shown
using a test sample of ethyl benzene in varying concentrations. The calculated S/N
ratio for the 10 point Savitsky-Golay smoothed and PC A treated data are shown and
for all concentrations the PCA treated data is shown to give a much improved S/N
ratio. To check that no significant information is being deleted from the spectrum the
smoothed and PCA treated spectra are matched with a spectral library producing a
better match for the PCA treated data.

Snyder et al. 63 have taken the VARDIA approach of Windig and the KEY SET
algorithm of Malinowski to produce a technique called Interactive Self-modelling
Multivariate Analysis (ISMA) and applied it to linear programmed pyrolysis mass
spectrometry using a triple quadrupole mass spectrometer and atmospheric pressure
ionization source. Their study looked at biopolymers and bacteria in an attempt to
identify the biopolymers in the bacterial samples. The ISMA approach uses Q analysis
of normalized spectra for the principal component analysis. The data is then subjected
to a KEY SET analysis where the mass values that are pure to a particular component
are identified. The pure masses are then used in association with VARDIA analysis of
the loadings allowing the masses associated with the pure masses to be seen and
linked with the pure mass using colour coding. Mass spectra of the analysis are then
produced maintaining the colour coding thus allowing the component spectra to be
seen. To reduce the effect of the instrument background on the spectrum the standard
deviation spectra are produced in which only the masses that vary over the course of
the analysis are shown thus reducing the amount of background observed. This
approach would obviously only work with a constant background. To test the analysis
a series of biopolymers were analysed to find their characteristic pyrolysis component
spectra. The bacterial samples were then analysed as well as a mixture of the
biopolymers and the resulting data subjected to ISMA. The results allowed the

36

identification of some of the biopolymers in the bacterial data and their presence was
confirmed by daughter ion mass spectrometry.

Varmuza and Davies64 give examples of the use of Exploratory Data Analysis
of Spectra (EDAS) software. This software uses principal component analysis to
produce projections of the data having maximum variance and thus showing clustering
of samples with similar spectral features. Considerable emphasis is placed upon data
pre-treatment systems in order to emphasise particular characteristics in the data. In
an example using 143 hydrocarbon spectra the modulo 14 spectra were analysed
(spectrum divided into intervals of 14 mass units and the contents of each interval
summed) and shown to be separable into alkanes, alkenes and dienes. They also link
one of the factors to conjugation in the compound. As an aid for identifying the class
of a particular compound the package also performs discriminant analysis allowing
interactive drawing of boundaries between the classes of compound.

1.1.7.5. Chromatography

The papers below are concerned with the work performed in the analysis of
data from various chromatography techniques.

Howery65 discusses the attributes of target transformation factor analysis that
make it ideally suited to the chemist for investigating chemical systems. Emphasis is
placed on the ability of target transformation to test an individual parameter in the
data regardless of the complexity of the data space. Examples are shown of the use of
physical and structural test vectors and the ability to free float unknown data points in
a test vector and get an estimate of the value of the unknown data points. The use of
the combination step is discussed in terms of its ability to model the data without
constraining it to a particular model. The combination step is furthered by its use in
the prediction of new rows of data by using the combination model.

Wold66 proposed a method for the identification of the rank of the data space
based upon cross validation. The method works by deleting a row from the data
matrix and eigenanalysing the resulting matrix. The difference between the points in
the deleted row and the target tested values for the deleted row using successive
values for the rank of the data are calculated and tabulated. The process is repeated
for every row of the data matrix. The prediction sum of squares for each number of
primary factors is then calculated and compared with the value for one less factor. If
the ratio is less than one then the extra factor yields a better prediction, this process is
repeated until the ratio is greater than one giving the size of the factor space. Wold

37

tested his method using the data of retention indices on different liquid phases of
McReynolds67 and finds five significant components after the rejection of 13 outliers
in the data allowing the classification of the liquid phases into five groups.

Hirsch et al. 68 used a form of factor analysis known as Correspondence factor
analysis (CFA), this form of analysis is popular in Europe and was developed by
Frenchman J.P.Benzecri69 . They analysed the Kovats retention indices of a series of
hydrocarbons on a selection of cation exchange resins containing different cations.
The CFA technique works by looking for deviation from proportionality between
rows and columns using a common factor space thus allowing the deviations to be
plotted on the same axis. The two sets of plotted data points, where they occur in
close proximity to each other indicate a similarity in the deviation of their values and
are said to correspond with each other. This allowed Hirsch et al. to identify specific
selectivity effects between individual cations and types of hydrocarbons and to relate
these effects to steric and pi-bonding capacity factors in the groups of hydrocarbons.

Howery et al. 70 assessed the predictive ability of target factor analysis by using
it to predict retention data for 42 solutes and 24 stationary phases. They compared the
data produced from two methods of prediction using TFA with the data obtained
using multiple linear regression. Target combination was used to predict new data
using a key set of typical vectors. The best set of typical vectors was determined by
testing all combinations and keeping the set that produced the smallest RMS error for
the reproduced data set. Target testing was used to predict data by use of the free
floating feature of the test and the effect of using different numbers of known points
was investigated. The results from both techniques were compared with results
obtained from multiple linear regression using both specific models (modelling a
single row) and global models (modelling the entire data set). Howery et al. found
that the answers obtained from both of the TFA techniques were identical when using
the same key vectors but that good answers could also be obtained using test vectors
selected only on chemical insight. The results from linear regression were of similar
accuracy for the specific model but the global model showed a significant drop in
accuracy for data prediction. It was noted that the vectors used as independent
variables by the linear regression were the same as those in the best key combination
set or used a chemically similar species.

Howery and Soroka71 used target factor analysis in an attempt to produce a
model for solute-solvent interactions between 7 straight chain liquid phase solvents
and 49 straight and branched chain solutes. Their data set was taken from the work of
Zielinski and Martire72 who had as a result of their own investigation presented an

38

equation involving three terms to describe the analytical data. Howery and Soroka
analysed the data set and using the evidence of RMS error calculated between original
and factor analysis reproduced data and the theoretical error terms, real error and
indicator function, deduced that the rank of the data was also three. Howery and
Soroka then looked for any unique behaviour in the data. This was accomplished by
reproducing the data after deletion of a single row or column from the data matrix and
observing the effect on the calculated RMS error. A fall in the RMS error indicated
that the removed vector was responsible for unique behaviour in the data. Two
vectors were found to have unique behaviour and their existence was verified by
target testing with a uniqueness vector. They then attempted to model the data using a
key set of typical vectors and associated the components of the resultant key sets with
different chemical properties namely alkane, bromide and iodide solvents. Target
testing was then employed to determine the basic factors of the data. A series of
different physical properties were tried as test vectors and the square, reciprocal and
logarithmic transforms of the values tried. The parameters suggested by Zielinski and
Martire were tested and two, alkene uniqueness and solute group delta, were found to
be basic factors. The third term, ether uniqueness, produced a poor fit indicating it
not to be a basic factor. After testing all the physical properties the three best basic
factors were chosen to model the data, namely the unity vector, halide delta, and the
logarithm of the refractive index, and an equation presented which allowed the
calculation of the retention index with an error fairly near the experimental error.

Howery and Soroka73 have investigated the basic factors that influence
solute/stationary phase interactions. They worked with 18 monomeric stationary
phases and 33 solutes forming 8 groups of chemically similar nature. In their analysis
they identify 6 underlying factors of the data set by using the evidence obtained from
RMS reproduction errors, maximum error in reproduced data, percentage of data
points with error greater than the estimated experimental error and two theoretical
error estimates RE and IND. A search was then performed for the vectors in the data
that contributed most to the data. This was done by two methods, Vector deletion and
Vector addition. In the deletion method a single vector is deleted from the data and
the data reproduced, those vectors that contribute a lot of unique behaviour to the data
will result in a fall in the RMS error in the data. The vector addition method uses the
reversed criterion by using a subset of the data containing the most chemically simple
type and needing only one factor to describe the data. To this subset is added one
vector and the data reproduced, the sets of vectors resulting in the largest increase in
RMS error and also in increase of the number of factors necessary to describe the
factor space are the ones that exhibit unique behaviour. From these techniques
Howery and Soroka noted three solvents with unique behaviour but no solute groups.

39

It was then attempted to identify key sets of typical vectors that accurately model the
data. A percentage representation table was drawn up to identify the typical vectors of
most importance to the data. This was achieved by tabulating the percentages of times
each solvent vector occurred in a target combination model having an RMS error less
than a specified cut off value. The cut off value was arbitrarily set at twice the RMS
error of the corresponding data reproduced from the abstract factors. In the resultant
key sets it was noted that the three solvents found to have unique behaviour were
represented most frequently. A search was then made for factors basic to the data.
First the complete set of uniqueness tests were run to confirm the results from the
earlier tests, then a series of physical factors were used such as McReynolds
constants, molecular weight, etc. The results were very good for McReynolds
constants and diglycerol uniqueness and these factors along with others were used to
form a key set for target combination that reproduced the data with an error only
slightly greater than that in the original measurements.

Following on from earlier work by Hirsch et al. 68 , Howery and Soroka74
applied factor analysis to the retention indices measured at 180° C of 21 alkane and
aromatic hydrocarbons on 10 ionic forms of Amberlyst 15 and Chromosorb P. In
their analysis they discover evidence of four factors in the data and find unique
behaviour for the sorbents Chromosorb P and the magnesium ion form of Amberlyst
15. In the solvents, unique behaviour was noted for 2,2,4-trimethylpentane and
1-heptane. Key combination sets of the abstract vectors were found to reproduce the
data to values near the experimental error and a series of tests performed to identify
basic factors in the data. The best sets of basic factors found were, for the sorbents,
electron affinity, Craig and Nyholm R value, free energy of solvation and the unity
vector. The solute basic factors were carbon number, critical volume, temperature
coefficient of the enthalpy of vaporization and alkene uniqueness. Using the key sets
of basic factors the values for solutes not used in the data set were calculated and
found to produce answers in good agreement with the experimentally found results.

Lochmuller et al. 75 have produced, using TFA, a predictive model for
retention behaviour in reversed phase chromatography. From the use of abstract
factor analysis on 35 different benzene derivatives using a series of two types of
ternary mobile phase they found a subset of three solvent systems and four solutes,
which was able to characterise the system with an error close to the experimental
value. This model was then used to predict the retention behaviour of both solutes and
solvents and the predicted behaviour compared to that found from experiment. In tests
of a four component mixture of solutes the prediction was found to be very good but
an extension to a six component system showed a marked increase in error. It was

40

noted that the model produced low error predictions even for values not spanned by
the original data.

1.1.7.6. Other techniques

The application of factor analysis to chemistry is now extensive and the
following papers cover a variety of areas that have been studied. The list is by no
means exhaustive.

McCue and Malinowski76 have used the technique of target factor analysis to
investigate the infrared spectra of multi-component mixtures. A series of 10 mixtures
of four strongly overlapping components, o-,m-,p-xylene and ethyl benzene, two
further mixtures were prepared with chloroform as an impurity to test the robustness
of the method. The infrared spectra of the mixtures and also of the pure components
were obtained using an FTIR instrument and the resulting data factor analysed. The
ability of target transformation to identify a component in the absence of information
about the rest of the constituents was demonstrated by testing for the compounds
using the pure spectra. Target combination was then performed using the
absorptivities calculated from the pure component spectra. This procedure resulted in
a transformed scores matrix containing the concentrations of each component in the
mixtures which agreed well with the true values. The data from the contaminated
mixtures was then added to the data and the presence of the contaminant noted by the
increase in dimensionality of the data as indicated by the error terms calculated after
abstract factor analysis. The contaminant was then tested for using the pure spectrum
of chloroform and its presence confirmed by the similarity between the test vector and
the predicted vector. Target combination was then performed using the absorptivities
of the components and the impurity and the concentrations in the mixtures found.
Again, they were in good agreement with the actual values. As a comparison the same
concentration values were calculated for the four components using two other
methods, solution by simultaneous equations using the four absorbance maxima of the
components and regression analysis. The results for both techniques compared
favourably for the uncontaminated mixtures but considerable inaccuracies were
evident in the concentration values for the contaminated mixtures. These results
highlight the power and utility of the target testing technique on systems where there
is a lack of information about the identity and number of components in the system.

Roscoe and Hopke77 used target factor analysis to identify the sources of
mineral samples using an iterative target transformation technique. The iterative
technique used unique vectors composed of only zero values except for one row

41

designee that is given the value of unity. The transformation calculation is performed
and the predicted vector used as a better approximation to the true factor. In the
transformation calculation was introduced a weighting factor based on an error
estimate for the designee or the data as a whole. The unweighted transformation was
also tested. It was found that the weighted transformations converged to a steady
value faster than the unweighted ones. It was also found that the sources thus found
compared favourably with the results obtained by the normally used methods of
construction of linear functions of elemental concentration.

Roscoe et al. 78 have investigated the sources of mineral matter inclusion in coal
samples. Their analysis proceeds by abstract factor analysis of the data set and
consideration of several error terms, RMS error, chi-square, Exner function and
average percentage error, to identify the number of independent sources of mineral
matter in the data. It was found that decomposition of the data gave ambiguous
estimates for the rank of the data. On deleting the elemental data for carbon, nitrogen
and hydrogen the number of factors appeared to be between 5 and 6. This was
explained as being due to a natural variation in the ratio of these three elements
during the formation of the coal and that also the indistinct rank was caused by the
carbon data modelling the organic component in the coal. On the basis of this
hypothesis the carbon elemental data was reintroduced and the rank set to 6. The next
step in the analysis was to identify the sources of the mineral matter. Roscoe et al.
proceeded by using a uniqueness vector for each measured element and then target
testing each vector. The predicted vector from each test was then reintroduced as the
new test vector. This iterative approach resulted in the predicted vector converging on
an estimate of the true source. Information about the true elemental profile of known
minerals was used to refine the iterated vectors. The end product of these tests was a
set of vectors believed to represent the sources of the minerals in the coal. Target
combination of the data was then performed to produce the relative concentrations of
the mineral sources in the samples and this data was compared with the data obtained
from x-ray diffraction studies of the same samples. The comparison was achieved
using linear regression and determining the correlation coefficient of the data. Fit was
found to be reasonable for most of the constituents and discrepancies were attributed
to differences in the x-ray scattering properties of the different minerals.

Starks et al. 79 have applied target transform factor analysis to data produced
from X-ray diffractometry. The samples analysed were of multiphase material such as
rock. For each sample the XRD data was acquired and then data on the oxide
composition of the bulk sample was obtained by chemical means. The data produced
from the elemental analysis and a knowledge of the composition of various minerals

42

allowed a series of test vectors to be constructed. The total number of mineral phases
is obtained from the XRD data and the constructed vectors tested. The fit of the test
vectors to the true factors is determined by the jack-knife procedure80 . Once the set of
true vectors was achieved the data was target combined to produce the weight
proportions of the minerals in the samples.

Howery and Rubenstein81 investigated bond dissociation data for 14 different
radicals. They studied both the full 14x14 matrix and a series of selected sub-
matrices chosen for their chemical properties. The dimensionality of the data space
was determined by consideration of theoretical error terms RE and IND and also the
RMS error from combination of the abstract matrices. Target testing was used to
investigate the basic factors of the data. A large number (nearly 50) of possible
candidates composed of physical properties of the radicals or the molecules formed by
the radicals were tested and very good fits obtained. Tests for ionization potential and
group electronegativity were used to predict data and fairly accurate values were
obtained for the missing values.

43

2. Aims

I. To investigate the application of factor analysis to spectroscopic data through
the development of a standalone PC based computer program for performing
factor analysis and target testing with particular reference to temperature
programmed pyrolysis - mass spectrometry (TPPy-MS) and UV-Vis
spectrometry. The program should be capable of working with very large data
sets and be readily modified for experimentation and development of new
techniques for investigating spectroscopic data.

II. To study methods for the determination of the number of components in
spectroscopic data and to identify and interpret the physical and chemical
origins of the components.

III. To analyse the qualitative identification of components present in the data via
target testing and to study various criteria of fit for the components tested.

IV. To develop methods for the investigation of the data using incomplete
information about the components present and particularly using information
gleaned from the data itself (i.e. iterative target testing).

2.1. General comments

The applicability of factor analysis to absorption spectra has been amply
demonstrated in many papers, Malinowski46 provides a review of some of the work
performed. There has been considerably less work in the field of mass spectrometry,
Malinowski and McCue14 have produced a theoretical expression for the intensity of
signal in mass spectroscopy that conforms to the linear sum constraint necessary for
successful factor analysis. Rozett and Petersen6 have studied the used of data pre-
treatments and their effects on the analysis of mass spectroscopy data and concluded
that covariance about the origin was the best method of pre-treatment. This pre-
treatment method will be adopted for use in this work also.

The factor analysis of spectroscopic data has been achieved using several
techniques. Methods such as rank annihilation37 , successive average
orthogonalization30 , evolving factor analysis35 , Gram-Schmidt orthogonalization53 and
singular value decomposition22 have all been used. The method adopted for use in this
work is that described by Malinowski & Howery87 . This calculates the characteristic
eigenvectors of the data using a power method with a Wielandt's deflation. The
requirement of large data matrices and accuracy will require the development of
specific data structures and mathematical routines prohibiting the use of library
routines available commercially. The type of analysis performed will be R analysis
where the spectra are arranged in columns and the samples or consecutive
measurements as rows.

44

The determination of the rank of the data poses a perennial problem in all
fields of factor analysis. The presence of random error in the data invariably means
that the result of the analysis will be a number of factors equal to number of rows or
columns of the data whichever is the smaller. Many workers have proposed different
methods for determining the number of significant factors, the earliest was the
variance criterion where the number of factors used to describe the data was increased
until some arbitrary value for the percentage variance accounted for was reached,
usually around the 99% region. This empirical method is unable to determine the
difference between primary and secondary eigenvectors and so other methods were
developed. Another empirical measure used was the number of misfits. In this test the
data was recreated using consecutive factors and the number of reproduced data points
outside a chosen multiple of the standard deviation of the original data are regarded as
misfits. The empiricism enters in determining the number of tolerable misfits and the
multiple of the standard deviation. Cattel8 proposed the use of the Scree test in which
the residual percentage variance left unaccounted for in the data is plotted against
factors used. The graph was interpreted by looking for a change in gradient marking
the change from primary to secondary eigenvectors. A modified form of this method
will be used in this work, where eigenvalue will be plotted against factor number and
the gradient change observed. The Scree test is a considerable improvement over the
percentage variance criterion but still lacks a quantitative measure. Malinowski10
developed a theory for how the error mixes in with the data in a factor analysis and
developed a triad of quantitative terms to assist in determining the rank of the data.
The real error, imbedded error and extracted error were the terms proposed and the
real error and imbedded error will be used for this work. Later work by Malinowski11
saw the improvement of the information available from the imbedded error by the
development of the empirical, but more sensitive indicator function and this will also
be adopted for use in the program. Hugus and El Awady9 proposed a function to
calculate the standard error in eigenvalue which when used in conjunction with a good
estimate of error in the data has given reliable estimates of rank and this will be
included in the program. The final function to be used in the program for rank
determination is the F-test described by Malinowski 12 which allows the application of
well known and understood statistics to the determination of the rank of the data. In
the application of the F-test it is intended to modify the algorithm given by
Malinowski to allow the calculation of the F-test after extraction of each factor instead
of at the end of the decomposition. This modification will allow the progress of the
decomposition to be monitored and halted before completion resulting in a time
saving for the operator, it also overcomes the problem of being unable to calculate the
F-tests without a full decomposition. One method of rank determination that will not

45

be implemented will be cross validation66 this method was rejected because of the
substantial increase in the number of calculations necessary to perform the method.

In the analysis of the data the problems of closure raised by Johansson et. al. 26
will be considered and in all cases original intensity data will be used as close as can
be calculated.

The use of factor analysis in the interpretation of the physical and chemical
origins of the data has been shown in work by Justice and Isenhour48 and Rozett and
Petersen49 who both used factor analysis to identify m/e values characteristic of
functional groupings.

The use of target testing in the identification of species present within a system
is well demonstrated65 but a quantitative measure for the quality of the fit is necessary.
Work has been performed by Malinowski52- 21 to produce criteria which can be used.
The terms apparent error in the test vector, real error in the test vector, real error in
the predicted vector, reliability and spoil function will all be calculated in the
program. In addition the F-test for target testing 12 will also be implemented. The
product-moment correlation coefficient and the Bessel inequality function53 will also
be used to quantify the fit of test and predicted vectors.

The investigation of factor analysis data using iterative target testing has been
shown by several workers27- 44-77' 78 and a study of the merits of iterative target testing
over target testing presented by Strasters et. al. 39'40 . The primary problem facing the
use of any successful iterative technique is to find adequate convergence criteria. The
use of chemical selection rules ensures convergence towards a chemically meaningful
solution. Current users of iterative target testing33 - 36- 34 work with a Q analysis to enable
them to test the information contained within the elution profiles of the species in the
data. In these cases it is possible to use two selection rules such as;
'there can be no negative concentrations', and
'only one maxima is possible in an elution profile'.

In the case of the program where an R analysis is performed then the target
test investigates the features of the spectra. In this case the only chemical selection
rule applicable is that of 'no negative absorbances or intensities are possible' and the
use of this rule and other non chemical criteria to aid convergence will be
investigated.

46

3. Experimental

3.1. Data sets

3.1.1. UV-Vis spectrometry data

3.1.1.1. Transition metal ion data

Equipment
Kontron Uvikon 86082
Conditions:

Scan range 350-850nm
Scan speed 100 nm/min
Spectral bandwidth 2.0 nm
Wavelength accuracy 0.5 nm
Wavelength precision 0.02 nm
Absorbance accuracy 0.004
Absorbance precision 0.002
Sampling interval l.OOnm
Path length 1cm
Cell Polystyrene disposable

Materials
Unless otherwise noted all chemicals were obtained from BDH (Merck)

Chemicals Ltd. 83
Chemical: Formula: Quoted Purity:
Copper(II)chloride CuCl2 .2H2O 98.5%
Cobalt(II)chloride CoCl2 .6H2O 99.0%
Chromium(III)chloride CrCl3 .6H2O 97.0%
Nickel(II)chloride NiCl2 .6H2O 98%
Potassium permanganate KMnO4 99.5%
Method

Four transition metal ions whose spectra overlapped in the visible region of the
spectrum, were used to make a series of solutions of differing concentrations and the
solution spectra recorded.

The ions chosen were Cu2 + (Xmax ~ 810nm), Co2 + (X,^- 510nm), Ni2+
(\nax~ 395nm) and Cr3 + (Xmax ~ 440nm). Solutions in de-ionised water were
prepared from the hydrated chlorides of each of the ions at a rough concentration of
3mg/cm3 . The spectra were recorded on the Kontron spectrometer and approximate
values for fi^x found. These values were then used to calculate the concentration
necessary to produce solutions with unit absorbance and bulk solutions of each ion
prepared.

47

Using a table of random numbers the compositions of sixteen mixtures of the
four ions were calculated. Each set of four numbers was scaled to the volume of the
flask and the appropriate quantities of bulk solutions combined to make the mixtures.
The concentrations of the mixtures are given in table 1.

Solution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Concentrations /mol I" 1

Cu(II)
0.007
0.008

0.015
0.028

0.014
0.021
0.028
0.010
0.030
0.016
0.023
0.009
0.004
0.011
0.006
0.040

Co(II)
0.108
0.070

0.050

0.024
0.012
0.058
0.013
0.017
0.045
0.020
0.008
0.063
0.063
0.050
0.049
0.018

Ni(II)
0.043
0.019
0.014
0.047
0.043
0.034
0.075
0.092
0.015
0.049
0.124
0.038
0.045
0.060
0.106
0.024

Cr(III)
0.004
0.019
0.021
0.013
0.026
0.011
0.009
0.016
0.013
0.021
0.002
0.016
0.018
0.014
0.007
0.012

Table 1: Concentrations of metal ion in the sample solutions

The spectra of the bulk solutions and each of the mixtures were obtained as an
analog printout. The size and scaling of the printed output was kept constant so that
digitization error was the same for all mixtures. The spectrum of a 0.005M solution
of potassium permanganate was also obtained for use in later testing.

The digitization was performed according to the method given later, at an
interval of 20nm from 350nm to 850nm producing 26 measurements for each
spectrum. The measured heights were then converted to absorbance values and
entered into a spreadsheet for further analysis.

3.1.2.Pyrolvsis - mass soectrometrv data

3.1.2.1. Equipment

VG Analytical84 70-70HS double focusing, forward geometry (EB) mass
spectrometer,
Variable rate temperature controller and direct insertion probe,
DEC PDF 11/84 data system,
RSX -11M -Plus Version 3.0 operating system,
VG Analytical System 11-250 R3.0-84-A data analysis software.

48

Unless otherwise stated the following operating parameters were used.
Scan range 10-650m/e
lonization El
Accelerating potential 4kV
Source temperature 180 ° C
Threshold 500
Probe ramp 60°C/min
Scan type Exponential down scan
Time per scan 6.61 sec/scan
Signal threshold 10 counts
Peak centre detection Peak centroid
Spectra Library National Bureau of Standards & In-house

3.1.2.2. Method

The mass spectrometer is calibrated in accordance with normal practices using
perfluorokerosene as a standard.

A sub milligram portion of the sample is placed into a 20mm x 1mm i.d.
quartz tube, which is placed into the end of the direct insertion probe. Data
acquisition is commenced and after collecting a few scans the probe inserted into the
source. The probe heating ramp is then started and data acquired until evolution of
sample is complete or the probe maximum temperature is reached. On completion of
the run the probe is cooled by the integral water cooling system and withdrawn from
the spectrometer.

For the initial work it was desired to analyse single component systems that
could then be mixed. The TPPy-MS technique is normally used for the analysis of
polymers but a pure sample of polymer is difficult to obtain. For this reason three
substituted ferrocenes were used to collect data on single component systems. The
ferrocenes have high melting points and therefore appear late in the temperature
ramp, similar to polymer samples. Their purity has also been verified by elemental
analysis, X-ray diffraction, and NMR spectroscopy85 so the factors they produce will
be due to the known sample and the spectrometer only.

The ferrocenes selected were, l,4,5,6,7,7-hexachloro-5-norbornene-2,3-
dicarboxylic anhydride ferrocene (FCA), l-l'(2,4-dichlorobenzoyl) ferrocene
(1,1'DCBF) and 3,4-dichlorobenzoylferrocene (3,4-DCBF). Their structures are
given in figure 4.

A series of the above samples were tested and the data collected86 . The samples
and conditions are detailed in table 2.

49

In order to study how the factors underlying the data changed in mixtures and
to study methods of investigating mixtures, a sample was prepared which contained a
mixture of FCA and 1,1 'DCBF.

O Cl

O-CH3

l,4,5,6,7,7-hexachloro-5-norbornene
-2,3-dicarboxylic anhydride ferrocene O Cl

l-l'(2,4-dichlorobenzoyl)
ferrocene

3,4-dichlorobenzoyl
ferrocene

Figure 4: The structures of the three ferrocenes used in the investigation.

Data set
Sample 1
Sensitivity /AFS2
Initial temp /°C
Final temp /°C
Probe insertion @
scan
Ramp start @ scan
Run end @ scan

TB11
Aio-5
25
490
8

17
91

TB12
A
lO'5

25
484
(i)

20
93

TB13
Aio-5
26
500
8

17
92

TB15
Bio-5
25
830
8

17
147

TB18
Cio-5
26
340
8

17
68

TB19
A + Bio-5
22
556
8

17
100

TB20
Blank
10'5

35
830
(ii)

4
132

Sample codes: A=FCA, B=1,1'DCBF, C = 3,4-DCBF
^AFS = amps full scale
i) An error occurred starting the ramp so acquisition was restarted with the probe in situ.
ii) This run was performed with the pyrolysis tube from TB19 without removal from the spectrometer.

Table 2: Ferrocene data collected and run conditions.

Complex polvmer samples
To test the techniques developed it was necessary to use real samples. Two

data sets that had been previously analysed using standard techniques were acquired.

50

Also collected were the spectra of the components believed to be in the samples.
These data sets, MS 1930 and MS1930A86 , were samples of an easily identifiable
polymer but which contained an unknown number of additives.

3.1.3. Literature data

In the course of program development it was necessary to determine that the
software produced the correct values. In order to test these, several data sets
published in the literature were used and the values produced by the program checked
against the published values. The literature data sets are listed in table 3 below.

Authors
Malinowski & Howery87

Cartwright88
Malinowski 12

Lorber13

Calculations compared
PCA, RE, IE, AET, REP,
RET, SPOIL, RELI
Factor extraction
Eigenvalues, F-tests for
eigenvalues and target tests,
RE, IE, IND
F-tests for target tests

Data source
Synthetic

UV-Vis spectra
'H NMR - Weiner et al. 89
MS - Ritter et al. 50

MS - Stenhagen et al. 90

Table 3: Data sets taken from the literature

The synthetic data sets of Malinowski & Howery87 were based upon a 10x3
matrix of numbers calculated from the multiplication of 10x2 and 2x3 matrices. The
data therefore contains only 2 factors. In order to produce error in the pure data a
matrix of error values between 4-1 and -1, selected randomly, was added to the pure
data. The data sets are reproduced below.

"0 4"

1 -1

2 0

3 0

4 3
5 -4

6 5

7 8
8 -2

9 -5

X

X x

"2 5 2"

1 10 -5_

Y

" 4 40 -20"

1 -5 7

4 10 4

6 15 6

11 50 -7

6 -15 30

17 80 -13

22 115 -26

14 20 26

_13 -5 43

D
Figure 5: Calculation of the pure data matrix

Where X and Y are the components of the pure data matrix D. The raw data
matrix (Draw) was created by adding an error matrix (E) to the data matrix as shown
below. The RMS of the added errors was ±0.477.

51

" 4 40 -20"

1 -5 7

4 10 4

6 15 6

11 50 -7

6 -15 30

17 80 -13

22 115 -26

14 20 26

13 -5 43

'-0.1 0.6 0"

0.3 0.5 0.3

-0.7 0.2 -1.0

0.9 0.2 -0.5

0 -0.5 0.5

0.1 -0.2 0.4

-0.6 0.4 -0.4

0.6 -0.9 -0.3

-0.1 -0.3 0.8

0 0.1 0

3.9 40.6 -20.0"

1.3 -4.5 7.3

3.3 10.2 3.0

6.9 15.2 5.5

11.0 49.5 -6.5

6.1 -15.2 30.4

16.4 80.4 -13.4

22.6 114.1 -26.3

13.9 19.7 26.8

13.0 -4.9 43.0_

D E
Figure 6: The creation of the raw data matrix from its components.

The target testing sections of the program were also tested using synthetic
data. The pure test vectors used were columns of matrix X and also a unity vector
composed wholly of 1's. The raw test vectors were created similarly to the raw data
matrix, by the addition of an error matrix to the vector as follows.

"0 4"
1 -1
2 0
3 0
4 3
5 -4
6 5
7 8
8 -2
9 -5_

0.1 -0.1"
-0.2 0

0 0.2
-0.1 -0.2
0.2 0.1
0.1 -0.1

-0.1 0
0 0.1

-0.2 0.1
0.1 0.1_

r 0.1 3.9"
0.8 -1.0
2.0 0.2
2.9 -0.2
4.2 3.1
5.1 -4.1
5.9 5.0
7.0 8.1
7.8 -1.9
9.1 -4.9_

X E
Figure 7: Calculation of the raw test vectors

The columns of the resulting matrix, Xerr , were used as the test vectors. The
error in each vector is the RMS error in the corresponding column of the error
matrix, E, for the first column this is ±0.130 and for the second ±0.118.

The UV-Vis data set of Cartwright88 is composed of a series of spectra of
aqueous solutions containing Cu(II) and other transition metal ions. The spectra of the
six solutions published is shown reproduced in the following table.

52

Wavelength
850.0
825.2
799.6
774.8
750.0
725.2
699.6
674.8
650.0
625.2
599.6
574.8
550.0
525.2
499.6
474.8
450.0
425.2
399.6
374.8
350.8

Solution
1
0.017
0.025
0.039
0.057
0.077
0.09
0.085
0.077
0.077
0.052
0.027
0.013
0.007
0.006
0.004
0.009
0.019
0.069
0.204
0.128
0.023

2
0.064
0.065
0.065
0.061
0.055
0.047
0.038
0.03
0.024
0.02
0.017
0.025
0.071
0.148
0.157
0.122
0.075
0.027
0.011
0.004
0.003

3
0.013
0.019
0.029
0.042
0.057
0.067
0.064
0.058
0.059
0.041
0.023
0.014
0.019
0.034
0.034
0.031
0.029
0.056
0.153
0.095
0.017

4
0.251
0.262
0.266
0.258
0.236
0.201
0.156
0.111
0.075
0.045
0.024
0.015
0.017
0.028
0.028
0.022
0.015
0.013
0.028
0.017
0.003

5
0.124
0.129
0.13
0.126
0.116
0.101
0.079
0.06
0.044
0.03
0.02
0.021
0.05
0.102
0.107
0.084
0.052
0.024
0.028
0.015
0.004

6
0.126
0.133
0.137
0.138
0.132
0.119
0.097
0.074
0.058
0.038
0.023
0.017
0.033
0.064
0.066
0.053
0.036
0.032
0.068
0.041
0.007

Table 4: Digitized spectra between 850nm and 350nm of aqueous solutions containing

Cu(ll) ions in the presence of other metal ions.

Solutes

CH4
CH 3 CN
CH3 C1
CH2C12
CHC13
CH 3 Br
CH 2Br2
CHBr3
CH3 I
CH2I2
CHI3
CH2ClBr
CH2C1CN
CHBrCl2

Solvents
CH 3 CN

12.1
117.6
181.6
326.9
455.7
160.4
305.2
425.4
130.4
238.1
303.3
317.9
256.8
449.7

CH2C12

12.1
118.0
181.1
319.8
438.9
158.8
297.6
412.8
129.3
233.6
295.8
311.2
248.2
432.1

CHC13

12.7
120.0
180.2
317.4
436.1
158.7
295.5
410.0
129.6
232.1
294.5
309.4
246.1
430.4

CC14

13.8
117.4
178.8
317.1
435.0
157.2
295.4
409.2
128.9
232.2
294.7
308.3
244.2
430.0

CS2

13.3
114.8
176.6
313.9
432.5
155.8
292.9
406.9
128.5
232.1
293.1
306.4
242.8
429.0

CH2Br2

13.8
122.7
182.2
321.2
440.8
161.3
300.3
412.6
132.3
234.9
293.9
313.9
252.3
435.4

CHBr3

15.2
127.3
184.1
321.8
439.6
162.9
299.0
411.0
133.7
234.6
292.5
312.4
253.0
433.0

CH 3 I

12.9
122.9
180.6
322.5
446.1
159.6
301.0
416.6
131.0
235.5
296.0
314.8
255.3
439.6

CH2I2

15.1
128.8
185.3
323.5
441.4
163.7
301.0
410.9
135.7
235.0
288.2
315.6
257.8
434.9

Table 5: Chemical shifts of substituted methane solutes in polar and non polar solvents, in

Hz at 60MHz. relative to internal IMS.

53

m/e

27
28
29
39
40
41
42
43
51
53
54
55
56
67
68
69
79
81
82
84

% cyclohexane
80%

2.3
1.2
1.1
3.9
0.7
8.6
3.5
1.6
0.5
0.9
3.6
5.1
14.2
4.4
0.5
4.1
0.4
0.5
1.5

10.5

60%

3.2
1.3
1.1
5.8
1.0

10.5
3.7
1.7
1.1
1.7
8.0
5.4
14.4
11.1
0.8
4.3
0.8
1.0
4.1
11.8

40%

3.4
1.3
1.1
6.8
1.0

10.5
3.1
1.4
1.5
1.7

11.3
4.5
11.4
16
1.1
3.3
1.2
1.6
6.1
8.5

20%

2.1
0.7
0.5
4.9
0.6
6.0
1.1
0.4
1.0
1.7

10.1
1.9
3.6

15.1
0.8
1.0
1.0
1.4
5.4
2.4

Table 6: Digitized intensity values for the cvclohexane/cvclohexene mixtures of Ritter

et al. 60

m/e
27
28
29
39
40
41
42
43
44
54
55
56
57
69
83
84
85
86

% Cyclohexane
100%

1.8
2.1
1.3
2.5
0.7
7.1
3.5
2.2
0.2
0.8
4.6

13.5
1.2
3.8
0.8

10.7
0.9
0.1

90%
1.6
1.8
1.5
2.0
0.5
6.4
3.4
2.5
0.2
0.6
3.7

11.6
2.3
3.4
0.6
8.2
0.8
0.4

80%
2.4
4.1
2.0
2.2
0.6
8.0
3.7
3.3
0.2
0.6
4.3

12.6
3.2
3.4
0.6
8.6
0.8
0.6

50%
2.6
1.8
3.3
2.5
0.5
9.3
4.6
6.2
0.2
0.5
3.5

12.5
7.3
2.7
0.5
7.3
0.6
1.6

20%
2.8
6.8
4.4
2.0
0.3
9.1
4.7
7.4
0.3
0.3
2.4
9.9
9.6
1.6
0.4
3.6
0.5
2.4

10%
2.7
2.8
4.2
2.0
0.4
8.8
4.6
7.9
0.2
0.2
1.1
8.4

11.0
1.0
0.4
2.0
0.3
2.5

0%
2.8
2.0
5.1
1.6
0.4
8.8
4.7
8.6
0.3
0.1
0.9
6.8

12.2
0.2
0.1
0.1
0.1
2.8

Table 7: Digitized intensity values for the cvclohexane/hexane mixtures of Ritter et al. 60

54

The 1 H NMR data of Weiner et al. 89 was used in the validation of the F-test
calculations and is listed in table 5. The data was collected in a study of the proton
shifts of simple substituted methanes in a variety of different solvents.

Two data sets mass spectrometer data sets of Ritter et al. 50 were used. The first
is composed of selected m/e values of a series of mixtures of cyclohexane in
cyclohexene and is given in table 6.

The second data set is composed of the intensities of selected m/e values of a
series of mixtures of cyclohexane in hexane and is given in table 7.

The test vectors used in conjunction with table 6 were given by Lorber13 and
are reproduced below.

m/e
27
28
29
39
40
41
42
43
51
53
54
55
56
67
68
69
79
81
82
84

Test vector
a

18.1
8.9
8.9

20.5
5.0

56.9
25.8
12.2
2.8
4.1
6.2

34.2
100.0

2.9
1.7

23.4
0.6
0.5
0.2

72.9

b
19.4
6.3
2.6

36.6
5.0

36.6
2.7
0.2
8.7

12.9
76.9
5.6
0.4

100.0
5.5
0.1
7.4

11.5
40.9

0.1

c
13.6
12.5

1.0
30.5
3.0

42.5
2.0
0.5
2.2
8.1

64.4
3.2
0.4

100.0
4.6
0.3
3.5
9.6

21.8
0.3

d
11.3
6.5
4.7

13.5
2.7

39.1
11.4
7.2
3.5
6.1

27.5
17.7
25.1

100.0
5.6
4.1
1.4
8.8

31.1
0.7

e
24.9
10.7
4.9

52.0
5.1

64.6
4.5
0.3
5.6

15.5
100.0

7.3
0.4

92.6
3.4
0.3
4.5
8.5
4.5
0.3

Key
a cyclohexane
b cyclohexene
c bicyclo[3. 1 .0]hexane
d fluorocyclohexane
e bicyclopropyl

Table 8: Composition of test vectors used with data in table 6.

3.2. Program development

3.2.1. Data processing equipment

Dell91 System 310 PC compatible computer, 20MHz 80386 with 80387 maths
coprocessor and 8Mb of RAM.
Borland92 Turbo Pascal Professional, Version 5.5.
TurboPower93 , Object Professional 1.0 Library.
Borland92 Quattro.

55

3.2.2. Data structures

Data can be stored in many representations in the computer and the selection
of the most appropriate form can have a major bearing on the ease of design,
implementation and modification of the program. The data analysed by PC A is
composed of real numbers (not integers) arranged in matrices or vectors. Vectors can
be considered as matrices with only one column (or row) so a data structure based
around the matrix was chosen as the most appropriate. From the number of possible
variables of real type available in Turbo Pascal, extended type was chosen to maintain
the maximum numerical accuracy in all calculations.
3.2.2.1. Characteristics of mass spectrometer data

The mass spectrometric data to be investigated in this work was obtained by
scanning over a mass range for a number of scans. The mass spectrum produced from
each scan is composed of a series of mass numbers and corresponding relative
intensities. The sample in the instrument produces signals at discrete m/e values so
even for complex mixtures there are many m/e values scanned for which no intensity
figure is recorded (electronic noise is removed by the mass spectrometer). For the
data set TB19 (see later) nearly 80% of the data points are zeros. In the case of
temperature programmed pyrolysis there can be periods in the pyrogram where
nothing is evolved resulting in only background peaks being recorded. The
combination of these factors results in a large amount of redundant information in the
recorded data. The second important characteristic of the resultant data is the number
of recorded values, for a typical TPPy-Ms run 150 scans each covering a mass range
of 10-650 are recorded resulting in 96,000 data points, or 288,000 values including
the corresponding m/e and scan number values.
3.2.2.2. Sparse array development

The PCA procedure requires the use of the data matrix for calculation of the
covariance and row matrices. The data could be stored on disk or in memory.
Retrieving values from disk is several hundred times slower than accessing a value in
memory so as many accesses are involved then the data need to be stored in memory
for the shortest calculation times. The simplest method of storing the data would be as
an array with array indices of m/e value and scan number. The Pascal extended type
variables each occupy 10 bytes of memory. Thus for the typical data discussed
960,000 bytes of memory would be necessary. This value far exceeds the space
available to the operating system (655,360 bytes) and is thus impossible to use. As a
further problem the predefined Pascal data types can only occupy a maximum size of
65,536 bytes inhibiting the use of the Pascal array type.

56

Turbo Pascal offers a method of circumventing this size restriction by using
the heap. The heap is all the memory available to the operating system and not used
by the program or the stack. Unfortunately in order to find any variable placed in the
heap it is necessary to keep a record of its memory location. Numerous techniques
have been developed to allow use of the heap.

The simplest and most closely related to the array structure is to use storage
mapping functions. With storage mapping functions a block of the heap memory is
allocated large enough to store all the required data points. The data are then placed
into this area in the form of an array. As the size of each data point is known it is
simple to calculate the appropriate position for each point. This approach circumvents
the Pascal data type size restriction but unfortunately still results in a matrix too large
to fit into the operating system memory.

To reduce the number of data points needed to be stored a type of data
structure called the sparse array may be used. In a sparse array only the non-zero data
points are stored. This would appear to result in a size reduction directly proportional
to the number of zeroes in the data. Unfortunately the position of each data point and
the overall dimensions of the matrix must now be stored as well. Furthermore, as the
data is stored on the heap a record of its memory address must also be kept.

These problems were addressed by using a data structure composed of records
and pointers. Records are a feature of Turbo Pascal and are a series of variables of
differing data types that are held together and referenced as if they were a single
variable. Pointers are simply a variable that holds (points to) a memory address. The
data structure was constructed using a pointer, held on the stack, which points to the
start of the array. The array is composed of a circularly linked list of circularly linked
lists. A linked list is a series of records with each record containing the address of the
next and the previous record in the list; the list is circular because the last entry in the
list points to the first entry and vice versa. The first linked list can be thought of as
the rows of the matrix. From each record (row) of the first linked list, starts a second
linked list that contains each value across the row. This structure allows an individual
record to be placed anywhere in the array simply by inserting it into the relevant
linked list. The records also hold the co-ordinates of the data point thus allowing only
the non-zero points to be stored. A full graphical explanation is given in Figure 8.
The figure also includes the index, a singly linked list, used to allow creation of more
than one matrix as is required for PC A. A complete listing of unit DATSTRU2.PAS
is included in appendix 3.

57

c IndexHeader

Title
Rows
Cols
NextEntry
Location

NextColumn
LastColumn
Header
RowNo
UpRow
DownRow

\

7

Index (singly linked list)

True

Data Structure
(circularly linked list
of circularly linked lists)

Next Column
LastColumn
Header
Value
Row
Col

NextColumn
LastColumn
Header
Value
Row
Col

Figure 8: Diagrammatic representation of the sparse array data structure.

The sparse array data structure had the following advantages:
• Small memory requirements for sparse data,
• Dynamic structure (The size of array could be altered easily);

and the following disadvantages:
• Large memory overhead for dense arrays (15 bytes/value overhead),
• Slow access times as linked list has to be traversed each time.

The result of PCA is a number of dense arrays that have to be stored in memory as
well as the original data matrix. So the use of the sparse array structure for these
arrays was wasteful of memory and restricted the maximum size of data that could be
analysed.
3.2.2.3. Extended Memory Specification (EMS) data structures

The lack of memory available to the MS-DOS operating system was placing
severe constraints upon the data sets that could be analysed. To overcome this
limitation a different data structure was developed. The new structure was based

58

around the storage mapping function design but the data was stored in extended
memory (EMS).

The EMS data structure was written using the OPLARRAY object in the
Object Professional library. This allowed access to the EMS functions contained in
the Version 3.0 EMS specification. The EMS data structure divides the data up into
pages and stores each page in EMS or on disk in a virtual array. Using the objects
supplied a new data structure was created. The new code was written using object
oriented programming techniques to create the EMS arrays and a linked list to index
them. A series of short functions were written to act as an interface between the calls
from the program to the old data structure and the objects of the new data structure.

A complete listing of the EMS data structure unit, EMSDAT.PAS, is given in
appendix 3.

3.2.3. Principal component analysis

3.2.3.1. Data pre-treatment

Digitization
The UV-Vis spectra of the transition metal mixtures were digitized from the

original spectra recorded on chart paper. The digitization of the absorbance data was
performed using a ruler. The height of the absorbance line above the baseline was
measured. This was performed at regular intervals along the whole chart length and
repeated in the same manner for each recorded spectrum.

The measurements were entered into a spreadsheet and converted to
absorbance using a scale factor from the graph using equation 11.

SaJ x Lengfhabs = Absorbance
gthmis

where:
= Maximum value on absorbance scale
= Minimum value on absorbance scale

Length^ = Length of axis (mm)
Lengthabs = Distance between base and absorbance line (mm) /j ̂

File conversion
EPA files

Files collected by the mass spectrometer were stored in a format proprietary to
VG analytical on the attached data system. In order to transfer them to the PC for
analysis the files were converted to ASCII using the EPAF program in the
HOUSEKEEPING utility on the data system. The converted files were then
transferred to the PC using the Kermit94 file transfer program.

59

The ASCII files are coded in VG analytical's EPA file format (originally from
the Environmental Protection Agency) and software was written into the program to
enable the file to be read and converted to a data matrix of intensities. The description
of the file format is included in Appendix 4.

Lotus 123 files
Spreadsheets were used throughout the investigation for editing of data and to

produce graphical output. A conversion program was necessary to convert between
the spreadsheet file format and the programs on data format. The most popular file
format for interchange of information between spreadsheets is the format used by
Lotus 123 Version 2. The file format is published by Lotus95 and the conversions were
programmed according to those specifications. Only a limited conversion program
was developed as only numbers are used by the program. Any records referring to
formulae or text are ignored so the incoming data must be in the form of a matrix or
vector starting in cell Al. The data must contain no gaps or other non-number entries.
The conversion program will convert integers to reals automatically. A further feature
is the ability to write matrices in Lotus format with more than 256 columns though
these can only be read by spreadsheets that accommodate more columns such as
Wingz96 . It was necessary to make modifications to circumvent bugs in the Quattro
file import routines. A complete listing of the conversion unit, LOTUSFIL.PAS is
given in appendix 3.
Background subtraction

A common technique used to improve the spectra in mass spectrometry data is
background subtraction. This is achieved by selecting a scan from the beginning of
the analysis when no sample is being evolved (generally after insertion of the probe
but before the temperature ramp is started) and subtracting it from all the scans in the
analysis.
Scan range reduction

With many of the samples analysed most of the data is due to background
signals with peaks of interest over only a few (10-30) scans. It may also only be
necessary to investigate a small region as the other components are well separated. In
these cases the number of scans subjected to analysis was reduced, with a consequent
benefit in analysis time. The reduction was achieved using a spreadsheet to delete the
unwanted columns from the data the remainder being saved.
Air peak subtraction

The background in the mass spectrometer is due mostly to residual air. The
m/e peaks produced in the spectrum are at low mass and unlikely to be due to any
other significant fragment from the sample. The air peaks can be deleted from the
data matrix without loss of sample information. This is achieved by setting to zero the
rows in the data matrix corresponding to m/e 17,18,28,32,40 and 44.

60

Range scaling
In some cases it was desired to have spectra of identical maximum magnitude

To achieve this the spectra were scaled according to equation 12.

^(scaled) = '* '* """ .
^(maxj-a^min)

where
d k (min) = minimum value of d
d k (mzx) = maximum value ofd
dik = j'Mata point of A:"1 row or column

3.2.3.2. Calculation of the covariance matrix

The covariance matrix Z is calculated by pre-multiplying the data matrix D by
it's transpose D' as follows:

Z = D'D (13)

Only half of the covariance matrix is calculated by the program, as all
off-diagonal values are mirrored across the leading diagonal to reduce calculation
times. The covariance matrix is calculated in procedure Covariance_matrix in
MATHUNIT.PAS, which is contained in appendix 3.
3.2.3.3. Factor extraction procedure

The covariance matrix is decomposed into its characteristic eigenvalues via the
following procedure.
1. All elements of the first eigenvector, c, are set to an initial approximation

according to the equation
1" ~ J~c

where c= number of columns (14)

2. A better approximation to the eigenvector is calculated from
Zci = V, (15)

the resulting eigenvector is normalized by dividing each element of the
eigenvector by the normalization constant given by

(16)

Note that the normalization constant becomes the estimate for the eigenvalue
A, as shown on the right-hand side of equation 15.

3. Step 2 produces an approximation to the eigenvector and eigenvalue. Once
calculated the figures are used to repeat the calculation producing better and

61

better approximations, until the required accuracy is obtained as determined by
equation 20.

4. The contribution of the first eigenvector to the covariance matrix is then
removed according to the following equation

Where 9t, is the first residual matrix.
5. Steps 1 to 4 above are then repeated to calculate c2 . With the appropriate

substitutions the equations become

2 (18)

for the approximation to the eigenvector, and

for the second residual matrix. This process is repeated for every eigenvector
in the covariance matrix. The eigenvectors are stored in the form of a matrix,
C, and the eigenvectors are stored as one row in a matrix.

3.2.3.4. Testing for completion of extraction

The approximations to the eigenvector will get closer and closer together with
each iteration. With each calculation a small amount of calculation error will be
introduced into the eigenvector so that the values reached will never be identical. To
determine when the iterations are no longer converging each of the elements of the
eigenvector are compared with the previous values as follows

c.(old)|-|c/ (new)| < threshold ,«~,

The threshold is a constant that may be altered to change the accuracy of the
factor extraction (default 1 x 10~ 19).
3.2.3.5. Calculation of the row matrix

Once the eigenvector matrix has been calculated the row matrix, R, is found
using the following equation

R = DC' (21)

This is the last step in the PCA procedure. The listings of the procedures
necessary to accomplish the previous steps are contained in the unit
MATHUNIT.PAS in appendix 3

62

3.2.4. Determining the dimensions of the data space

3.2.4.1. Variance

The PCA procedure calculates the eigenvectors in the data, in order of
decreasing importance to the data. The eigenvalue associated with the eigenvector
gives a measure of the importance of the eigenvector to the data. The sum of all the
eigenvectors is the total variance in the data set. Knowing the total variance and the
individual variances the percentage variances accounted for by each factor is readily
calculated from

K :
%variance = x 1 00

7=1 (22)

and the cumulative percent variance found for the /1 th factor using

cumulative % variance = - x 100

7=1 (23)

3.2.4.2. Error estimates

In order to assist in the determination of the number of factors necessary to
describe the factor space the error terms developed by Malinowski 10 are calculated
(see the introduction for an explanation of the terms).

The Real Error, RE, is calculated from

RE =
V L,

j=n+\

r(c-n)
(24)

and the related Imbedded Error, IE found using

IE = REJ-
\c

also calculated is the empirical Factor Indicator Function, IND using the
equation

IND=-^

(25)

(26)

63

3.2.4.3. Misfits

This term gives a measure of how well the factor analysis regenerated data fits
the observed data. The fit is determined by counting the number of misfits as a
function of the number of factors used to regenerate the data. A regenerated point is
regarded as a misfit if its value differs from the observed by more than three times the
standard deviation of the experimental data.

The standard deviation of the data is calculated using the standard formula

(27)

and the data regenerated according to the equation below

= \r.

(28)

where D w is the reproduced data matrix using n factors.
3.2.4.4. Standard error in eigenvalue

This term, developed by Hugus and El-Awady9 , is based upon a statistical
criterion for the "vanishing" of an eigenvalue. The calculation is performed using the
following equation

j=\k=\

where
am = standard error in m'h eigenvalue
cmj = /''component of the //^eigenvector

cmk = ^component of the ^eigenvector
and

i=\

1=1

where
= error in d.. (29)

64

This equation allows an individual error term to be entered for every data
point. In this particular implementation a single error term was used for every data
point in the experimental data.
3.2.4.5. Significance level

The percentage significance levels for the eigenvalues are calculated from the
Fisher variance ratios as described by Malinowski 12 . The original paper contains some
typographical errors in the equations given so the expressions have been corrected.
The variance ratio is calculated from

J
j=n+\

where
s = r or c whichever is smaller (30)

The percentage significance level is calculated from an algorithm presented by
Cooke, Craven and Clarke97 which uses the following integral

The integral Ix (a,b) equals the value of the F distribution function,
with &, and k2 degrees of freedom and with argument F
when a = k2 /2, b = &ly/2 andx = k2 /(k2

3. 2. 5. Optimisation of PCA

3.2.5.1. Accuracy of factor extraction

In the eigenanalysis process each factor is found by convergent series. A
starting approximation to the eigenvector is calculated from equation 14. A better
approximation to the eigenvector is then calculated using equation 15

The left hand side of the equation is calculated and the eigenvalue, X,
calculated from equation 16. The sum of the values is used to normalize the
eigenvector to unit length.

The newly calculated eigenvector must be compared with the old one to
determine if it is sufficiently similar to be regarded as identical and therefore fully
extracted. Comparison is achieved by subtracting each of the corresponding values of
the new and previous approximations and comparing these values with a threshold
figure, according to equation 20.

In order to investigate the effect of the magnitude of the threshold on the
eigenanalysis a series of decompositions were performed varying the value the factor

65

extraction test threshold over the range 1 x 10"^ to 1 x 10'22. For each decomposition
the number of iterations necessary for each factor to be extracted was noted and at the
end of decomposition (determined by the number of columns in the data, not by the
residual test procedure discussed later) the residual matrix was saved for later
processing. The residual matrix contains the variance left after the factors have been
removed and theoretically is zero upon completion of decomposition.

The data was interpreted by adding the number of iterations and calculating the
RMS average of the residual matrix. The RMS average was used, as the residual
matrix contains both positive and negative numbers and it was desired to have an
indication of the magnitude of the numbers in the matrix independent of their sign.

Three data sets were tested in this way; the transition metal ion data, UV-Vis
absorbance data from Cartwright88 and a mass spectroscopy data set for FCA (TB11).
The mass spectrometric data set was modified to produce a smaller number of
columns thereby reducing the calculation times. The modifications were deletion of
columns 1-37 (no sample evolved in this region), and deletion of columns
39,41,43,45,47,49,51,53 and 55 (every other column to reduce the number of scans
to 10).
3.2.5.2. Determining completion of extraction

The diagonalization process (PCA) fully describes the data set after the
extraction of a number of factors from the covariance matrix equal to the number of
rows or columns of the original data, whichever is the smaller. However, because of
redundancy in the data the number of factors necessary to describe the data
completely is usually less than the smaller dimension of the data. In order to
determine when the data has been adequately modelled the residual matrix is tested by
comparison of the values in the matrix with a test value. If all of the values in the
residual matrix are smaller than the test value, then the data has been adequately
described and the decomposition process halted.

In order to study the size of the residuals after each factor has been extracted
the program was modified to allow the residual matrix to be saved to disk after each
factor extraction. Data was obtained from this procedure for the transition metal ion
absorbance data and the modified mass spectroscopic data set, TB11.

If the magnitude of the test value is to be modified for each type of data then a
method of determining the test value must be found. The theoretical zero for any set
of data must be the limit of its accuracy. For the absorbance data the accuracy is
simply determined by the manufacturer's specification for the instrument. For the
mass spectrometer no such value is available and one must be estimated.

66

For the transition metal ion data the spectrometer used to collect the spectra
has a quoted accuracy of 0.004 absorbance units. This will translate to a value of
1.6xlO~5 in the covariance matrix (equation 13).

3.2.5.3. Estimation of error in the mass spectrometer data

For the mass spectrometric data an estimate of the error in the procedure was
determined using a blank pyrolysis run (TB20). In the blank run the only peaks
expected are those due to the residual air present in the instrument at all times and
possibly a small amount of hydrocarbon from the pump oil.

The determination of the error in the spectrometer is complicated by the use of
the EPA file format as an intermediary between the mass spectrometer and the PC.
The EPA file format is constructed such that for every scan the peak of maximum
intensity is used as a normalization constant and the magnitude of the rest of the
spectrum coded as an integer between 0 and 999 where 999 is the intensity of the
most intense peak. This introduces an absolute error of 1/1000 of the highest
intensity of each scan for each peak in the spectrum except for the peak of highest
intensity. Consideration of the data showed that the largest signal in the background
was from nitrogen in the air at m/e 28, as the intensity of this peak is measured at the
full accuracy of the data system then its error will be a true measure of the data
systems accuracy unaffected by the EPA file format encoding process. The RMS
error for the N2 peak was calculated and converted to a relative error that was then
applied to the TIC of the sample data and the number so produced used as the
absolute error in the data.

3.2.6. Validation of results from PCA

3.2.6.1. Synthetic data sets

The results from the program were compared with those published by
Malinowski & Howery87 for both the pure and raw data sets. The error terms
calculated for the raw data set were compared with the figures given.

3.2.6.2. Published data and results

Most published work does not include the abstract matrices so comparisons
were limited to eigenvalues and error terms. The works of Weiner et al. 89 and Ritter
et al. 50 were used to compare values produced from the program and their own
calculations.

3.2.7.Target testing

The abstract factors produced from PCA are transformed into the 'closest
fitting 1 vector to the input test vector by a transformation vector t,. The vector is
calculated by a least squares method which is described by the equation

67

l,=A-'R'x, (32)

where the bar denotes a matrix composed of primary eigenvectors only, A is a
diagonal matrix of eigenvalues and x, is the test vector.

3.2.7.1. Transformation constant calculation

It can be seen that part of equation 32 will remain constant for any test vector
if the number of primary eigenvectors is unchanged. To avoid recalculation of this
term for each test it is calculated once at the beginning of any target testing from the
following

T* = A 'S/ (33)

thus simplifying the calculation of the transformation vector to

*/ = T*x, (34)

The calculation of the constant is performed in procedure Calculate_TKON
in unit TARGTEST.PAS, which is contained in appendix 3.
3.2.7.2. Predicted vector determination

The vector predicted by the target testing process is calculated from

*/ = Rt, (35)

where x, is the predicted vector. This calculation is performed by procedure
Calculate_pred_vector in unit TARGTEST.PAS, contained in appendix 3.

3.2.8. Criteria for the fit of a test vector

3.2.8.1. Error estimates

The program calculates several error terms developed by Malinowski52 to aid
quantifying the validity of a test vector.
Apparent error in the test vector (AET)

This term which expresses the difference between the predicted vector and the
test vector is calculated as follows

AET =

(36)

where the summation is the difference between the elements of the test and
predicted vectors.
Real error in the predicted vector (REP}

This term is calculated from the following equation

68

REP = RE|t/ |

where the vector norm ||t 7 | is calculated from

^7" (38)

Real error in the test vector (RET)
The RET is calculated using the Pythagorean relationship between the terms

AET, REP and RET as follows

RET = ^/(AET)2 x (REP)2 (39)

Reliability function (RELI)
This comparison of the real and calculated errors in the test vector is found

from
/ I-(RET) -(RET)'

RELI =
(40)

where (RET) is the value of the real error in the test vector estimated from av 'est.

knowledge of the experimental error in the data used to construct the test vector.
Spoil function (SPOIL)

The SPOIL function is calculated from the ratio

SPOIL =
REP (41)

All of the error terms above are calculated in procedure
Errors_in_test_vector, contained in unit TARGTEST.PAS and listed in
appendix 3.
Significance testing

Percentage significance levels are calculated from the variance ratios described
by Malinowski 12 after removal of the typographical errors. Variance ratios are found
according to the following expression

j=n+ \ j=\ (42)

and the percentage significance level calculated from the incomplete beta
function given in equation 31.

69

3.2.8.2. Visual inspection

Test and predicted vectors were also compared graphically by plotting the
vectors. Two major types of plot were used.

Scatter plots with both test and predicted vectors on the same chart. These
were used when a small number of points needed to be displayed. The test and
predicted vectors were overlaid so that deviations could clearly be seen.

Column charts were used to compare vectors with large numbers of points
such as the mass spectra. The vectors were plotted on separate charts with identical
scales and arranged vertically above each other thus allowing a visual comparison. If
a more careful study of a particular region was needed then an appropriate scale
expansion would be used.

3.2.9. Validation of results from target testing

3.2.9.1. Synthetic data sets

The data sets of Malinowski & Howery87 were used to compare the results
from the target tests and also for the calculation and comparison of error terms listed
above.
3.2.9.2. Published data and results

Test vectors were used from Lorber13 in conjunction with data from Ritter
et al. 50 to compare target test results and error terms including F-tests.

3.2.10. iterative target testing

3.2.10.1. Vector modification

The result of a target test is a vector that has been oriented in the co-ordinate
system described by the factors (i.e. the data space) to most closely approximate the
test vector. If a poor test vector is tested then the result will be oriented to give the
closest fit possible to the test. If the test vector is modified and then resubmitted for
testing, then the orientation within the data space will change to best fit the new
vector. By modifying the test vector according to chemical knowledge it is possible to
iterate the test vector towards a chemically meaningful solution.

If chemically meaningful rules for perturbing the vector cannot be found or are
insufficient to induce convergence to a true factor then an abstract perturbation may
be used. The abstract perturbation is added in an attempt to unsettle the vector
sufficiently to allow the chemical selection rule to move the factor in the direction of
the true factor.

Note: In the following methods all rejected peaks are set to zero.

70

Chemical selection rules
The program performs target testing on the columns of the data matrix which

for the mass spectrometer data are the mass spectra. As the column is a mass
spectrum then it may not contain any negative values as these would be impossible to
obtain. Any spectra produced as a result of a target test that contains negative values
must therefore be regarded as improperly aligned in the data space for representing a
true component spectrum.

Rejection of the negative values in the spectrum and re-submission of the test
vector will allow a closer approximation to the true factor being produced as a result
of the target testing procedure.
Abstract selection rules

Tests showed that the chemical selection rule did not produce a rapid enough
convergence so a selection of abstract methods were developed and tested. Details of
the methods and their development are contained in the results section.
3.2.10.2. Control of iterative process

The control of the iterations in the program was designed to pause the calculation
after each iteration and to update the display enabling the vector to be observed.
Pressing Escape stops the iterative process and any other key continues to the next
iteration. The iterative process was designed to be re-entrant so it may be left and
restarted at any point, allowing intermediate results to be saved. The iterations will
automatically cease if the positive difference between test and predicted vectors is less
than 1 x 10 16 .

71

4. Results & discussion

4.1. Program description

4.1.1 .Overview

The user interface for the program was designed to appear similar to a
spreadsheet. The screen is divided into a series of regions with different functions.
The top line of the display contains the address of the cell currently pointed to by the
cursor and its value expressed in scientific notation to the full number of stored digits.
At the right hand end of the top line is the status flag; which gives the current status
of the program.

Possible status conditions are listed in table 9 below.

Status flag
Ready
ERROR
Wait
Menu
Edit
Point

Indication
Program awaiting instructions
Awaiting clearance of an error condition
Program busy
Awaiting selection from the menu
Editing a value in a matrix
Awaiting selection from displayed choices

Table 9: Explanation of status flag indications.

The second line of the screen is the menu/command line. When the menu is
active the possible selections appear on this line. All typed input to the program is
entered on this line, e.g. editing values, filenames, etc. The third screen line, the
message line, contains a description of the item on the menu/command line or a
prompt for input.

The fourth line of the screen contains the column headings for the matrix;
these may be in standard spreadsheet letter format or in number format. The column
that contains the cursor is indicated by the column heading being highlighted.

Lines 5 to 24 contain the data for the matrix currently being displayed
arranged in columns. The first column contains the row numbers of the data on
display with the row containing the cursor being highlighted as for the column
headings. The data values are displayed left aligned and as plain numbers unless there
are more digits than may be displayed in the current column width in which case the
number is rounded and displayed in scientific notation.

Line 25, at the bottom of the screen, contains the current date and time on the
left. The centre of the line contains the name of the matrix currently being displayed
and the right hand side contains flags to show the current positions of the CAPS
LOCK, NUM LOCK and SCROLL LOCK keys.

72

Figure 9: Screenshot of the program with a data matrix loaded.

4.1.2. Keyboard reference

All control input to the program is via the keyboard and control is almost
exclusively achieved via the menu system. There are a limited number of shortcut
keys and these are listed later.

Cursor movement mostly conforms to the keystrokes found in spreadsheet
packages but with some extensions to make moving around in large matrices easier.
Cursor movement commands are listed in table 10.

Key(s)
-»
;
«-
t
PgUp
PgDn
Tab or Ctrl +-»
Shift + Tab or Ctrl +«-
Home
End
Ctrl + Home
Ctrl + End
Ctrl + PgUp
Ctrl + PgDn

Cursor movement
Moves one column right
Moves one row down
Moves one column left
Moves one row up
Moves one screen page up
Moves one screen page down
Moves one screen page right
Moves one screen page left
Moves to cell Al (Row 1, Column 1)
Moves to last cell in matrix
Moves to the top row in the same column
Moves to the bottom row in the same column
Moves to the leftmost column in the same row
Moves to the rightmost column in the same row

Table 10: Cursor control keys.

The shortcut keys perform operations available on the menu system but in a
single key press. The following table lists the function keys that have been set up to
perform shortcuts.

73

Function key
F2
F5

F6

F7

F8

Name
Edit
Go To

Col Headings

Col Width

Change Matrix

Shortcut
Edits the number pointed to by the cursor
Allows user to enter a cell address and then moves
the cursor to that address
Swaps column headings between numbers and the
spreadsheet letter system
Asks for a column width and reformats data to the
new column width
Allows the matrix being displayed to be changed

Table 11: Function key shortcuts.

At various points in the use of the program input from the user is necessary.
Two possible conditions arise, where there is existing data, and where there is none.
If data already exists the current value is offered to the user for modification; the
existing value is displayed on the menu/command line, after a prompt, with no cursor
visible. If a new value is to be entered then it may be typed in. Immediately a
character key is pressed the existing value is deleted from the line and replaced with
the new character. If it is desired to edit the existing value then an editing key must
first be pressed. This can be the left or right cursor key, Home, End, Delete or Insert.
Pressing any of these keys' results in the cursor becoming visible at the end of the
current value (unless the key pressed moves the cursor, e.g. Home) ready for editing.
The default editing mode is overtype, which will replace the character at the cursor.
Pressing Insert at any time or to enter editing mode will result in the cursor changing
from an underline (indicating overtype mode) to a flashing block (indicating insert
mode) which will allow characters to be inserted at the cursor.

When the modification or new entry is complete it may be entered by pressing
Return; pressing Return without entering anything leaves the original value
unchanged. Pressing Escape at any time will revert to the step before data entry and
leave the value unchanged.

Key
<-
-»
Home
End
Delete
Backspace
Insert

Function
Moves the cursor one character to the left
Moves the cursor one character to the right
Moves the cursor to the leftmost character
Moves the cursor to the rightmost character
Deletes the character at the cursor
Deletes the character to the left of the cursor
Switches between insert and overtype mode

Table 12: Summary of keys used for editing.

The program stores its data in a series of matrices with predefined names. The
display shows only one matrix at a time with the name of the matrix displayed in the
centre of the bottom line. The possible matrices and the data they contain are listed in
table 13. The displayed matrix may be changed using the menu system or the F8

74

shortcut key. Changing the displayed matrix results in the screen showing a list of all
the matrix names with the current matrix being highlighted. The new matrix to be
displayed can be selected by moving the highlight with the cursor keys to the desired
name and then pressing Return.

Matrix name
No Matrix to display
Data Matrix
Covariance Matrix
Residual Matrix
Abstract Column Matrix
Abstract Row Matrix
Composite Matrix
Intermediate Matrix
Transform constant
Target Test Matrix
Vector Differential Matrix

Description
Null entry for blank screen
Original data values
Values of the covariance matrix
Covariance matrix with factors removed
Eigenvector matrix
Contains the scores on the eigenvectors
Contains eigenvalues and error terms
Used for intermediate calculations
Contains the constant for target testing
Contains the test & predicted vector & errors
Used for intermediate results in ITT

Table 13: Table of matrix names.

4.1.3. Menu system

The menu is activated by pressing the / key on the keyboard. The menu is
displayed on the menu/command line as a horizontal list of choices separated by
spaces, with one of the options highlighted to indicate which is selected. The options
in the menu may be selected by use of the left and right cursor keys to move the
highlight and pressing Return to proceed. The message line carries a description of
the currently highlighted command or a listing of the options in the submenu selected.
Menu options may also be chosen by pressing the first capitalized letter of the option.
This is equivalent to selection with the cursor keys and pressing Return, and provides
the fastest method of navigating the menu system.

Some of the menu options perform operations; others lead to a submenu. The
submenu is operated in the same way as the main menu and may contain entries
leading to further submenus. To return to the previous menu or to leave the menu
system the Escape key may be pressed. In general the Escape key may be used to go
back a step or to stop and abandon what ever operation is currently in progress.

Attempting to move the cursor beyond the beginning or end of the line or
pressing a letter key for an option not present in the current menu will result in the
program responding with a beep and the cursor remaining unmoved.

75

Chemometrics File Worksheet Quit

Yes No

Matrix Column width Headings

Load Save Import Export

Lotus

Lotus ERA

Decompose Target test Error Accuracy Minimum

Factors Error Constant Test ITT
Figure 10: Diagram of the menu hierarchy.

The menu hierarchy is shown in figure 10. The main menu, which appears
when / is pressed, contains four options and is shown as the top line in the figure.
Selection of any of the options leads to a submenu where further choices must be
made. The menu entries are described below.

Main menu:
Quit: This option leads to a simple Yes/No submenu. Selection of Yes leaves the

program (If the data has been edited and not saved a further prompt indicating
the fact will be seen). Selection of No returns to the Ready state.

Worksheet: This option leads to the Worksheet submenu.
File: This option leads to the File submenu.
Chemometrics: This option leads to the Chemometrics submenu.

Worksheet submenu:
Matrix: Choosing this option makes the matrix selection screen appear; this

contains an entry for each of the matrices it is possible to store in the program.
The matrix to be displayed is selected using the cursor keys to place the
highlight over the appropriate name and pressing Return. The shortcut key for
this option is F8.

Column width: This option allows the selection of a new column width for the
display. The current column width is offered and a new one prompted for.
Typing the new width and pressing Return results in the display being
reformatted to the new column width. The shortcut key for this option is F7.

Headings: Switches the display between spreadsheet style letters for the column
headings and column numbers. The shortcut key for this option is F6.

76

File submenu:
Load: This option allows files stored in the program's internal (native) data storage

format to be loaded. The filename for the file is asked for and then the name
of the matrix it is to be loaded into is selected. Any existing data is
overwritten and the newly loaded matrix is displayed.

Save: Allows a matrix to be stored to disk in the program's native format. The
filename for the matrix and the matrix to be saved are asked for before the file
is saved; if an existing file is specified then confirmation of the overwrite is
requested.

Import: Selection of this option leads to the Import submenu.
Export: Selection of this option leads to the Export submenu.

Import submenu:
Lotus: This option allows files written in Lotus WK1 format to be translated and

loaded. The filename and matrix to be loaded into are asked for and the file
converted and loaded.

EPA: This option enables files to be translated from the mass spectrometer EPA
format. The filename is prompted for and the matrix to be loaded selected
before converting and loading the file.

Export submenu:
Lotus: This option allows files to be translated and written in Lotus WK1 format. The

filename and matrix to be saved are asked for and the file converted and
saved.

Chemometrics submenu:
Decompose: This option initiates the PCA calculation sequence. The data matrix is

subjected to PCA, error terms calculated for the eigenvalues and the abstract
row matrix calculated. During the course of the factor extraction the screen
shows the current factor, the number of iterations, the percentage and
cumulative percentage variance and the calculated significance level. If the
Escape key is pressed during factor extraction then on completion of the
current extraction the PCA is aborted and the error terms and abstract row
matrix calculated using only the factors already found.

Target test: This option leads to the Target testing submenu.
Error: Allows an estimate for the error in the data matrix to be entered. This has the

effect of enabling the calculation of the standard error in eigenvalue. If the
value is set to zero then the calculation is not performed.

77

Accuracy: This option allows the accuracy of factor extraction to be set. The
default value is 1 x 10~ 19 and it is normally unnecessary to change it.

Minimum: Setting this value allows the program to determine when the residual
matrix no longer contains any useful information. Selection of an appropriate
value is performed by entering the smallest possible meaningful value, e.g. for
the mass spectroscopic data, which is all integer, any number less than 1 is
meaningless and this represents the minimum value. The default value is
IxlO' 19 .

Target test submenu:
Factors: This option must be set to the number of factors that are believed to

model the data accurately.
Error: This option enables an estimate for the error in the test vector to be entered.

This estimate is used in the calculation of the reliability error term for the
predicted vector.

Constant: Part of the calculation involved in target testing is a constant for a
particular combination of abstract row matrix, associated eigenvalues, and
number of factors. Selection of this option calculates the constant part of the
calculation and must be performed before testing and again if any of the
previous list is changed.

Test: Target test the current test vector and calculate associated error terms.
ITT: Starts iterative target testing; after each iteration the error terms are calculated,

the test vector modified in preparation for the next iteration and the display
updated to show the new values. The program then pauses and waits for a key
press. Pressing Escape leaves the testing loop or any other key moves on to
the next iteration.

4.1.4.PCA

The PCA analysis is initiated through the Chemometrics submenu
(Decompose). The only prerequisite for PCA is a data matrix loaded into the matrix
of the same name. Optional entries may be made for the error in the data matrix
(Error), the accuracy of factor extraction (Accuracy) and the smallest meaningful
value for the data (Minimum). Initiating PCA results in the matrices Covariance
Matrix, Residual Matrix, Abstract Column Matrix, Abstract Row Matrix,
Intermediate Matrix and Composite Matrix being deleted and dimensioned to
appropriate sizes resulting in the loss of any data not saved.

Once initiated the decomposition routine covers the display of the matrix to
show a series of messages. Firstly the program indicates where the Intermediate and
Residual matrices are being stored. This gives an indication of the speed of the

78

decomposition, if the matrices are stored in RAM then the fastest calculation speeds
will result, storage in EMS will slow the program and storage on disk will result in
the slowest calculation speed. The speed is affected because of the overhead in
retrieving the data values.

The program then indicates that the covariance matrix is being calculated and
also the completion of the calculations. The factors are then extracted. For each factor
its number is displayed and the number of iterations performed updated until
extraction is complete. The variance and cumulative variance for the factor are then
displayed and the significance level for the factor shown. After all the factors have
been extracted a message is given to show the completion of decomposition and that
the calculation of errors has begun.

Messages are produced for the Real error, Imbedded error and Indicator
functions, Misfits and the standard error in eigenvalue. The error calculations are then
shown to be completed and the elapsed time for the calculations displayed.

The decomposition display remains on the screen until the menu system is
exited by pressing Escape twice to go up through the two levels of menu when the
matrix is redisplayed.

U: 3.90000000000000E+0000
econpose Target test Error Accuracy Minimun

I'igenanalwse bliedata natrix

9fc»:iduai natpiw sstorsd In RflP!
Calculating Co war tart lie mat^ise,

ItectingiBJtifiK data. , .
Pacter: 1 Iteration: 25 U"«r lance s 8&.735K E variance:: 86.?35« Xvt- 13.

icfcax-: 2 Iteration: 7 Httriemces: 13.2S8K Ewariance: 99 . rM3x Mix: 2.
flctu*-: 3 Iteration: 3 Ucu-mnce: a.80?K SwarlancD5.i88.8B9x: MI*S 8.

te c cum ptus i t i.o f i c CN np 1 « t e d
niltM.ilittirti} Er rwrs . , .

Real esr:t-cir. Imbedded error & Indicator function
Misfits
Sttundard. Kvyav l.n eiye rival we

Elapsed time --- 0 IMys,. B HOUFK, 3 Ri»utes r 8 Seconds

10:03:50 Data Matrix

Figure 11: Screenshot of program on completion of decomposition.

The results of PC A may be seen by viewing the appropriate matrix. The
Abstract Column Matrix contains the eigenvectors for the factors arranged in rows.
The abstract Row Matrix contains the associated scores on the row variables. The
Composite Matrix contains the eigenvalues and their associated error terms arranged
in columns with the column number corresponding to the factor number. The order of
terms is given in table 14.

79

Row number
1
2
3
4
5
6
7
8
9

Values
Eigenvalues
% variance
Cumulative % variance
Real error
Imbedded error
Indicator function
Misfit
Standard error in eigenvalue
Significance level

Table 14: Key to rows in the composite matrix.

4.1.5.Target testing

Target testing is controlled through the Target test menu. The prerequisites for
target testing are an Abstract Row Matrix with its associated Composite Matrix
(produced by the PCA procedure or may be loaded from disk as required) and a
Target Test Matrix. The test vector is entered as the first column of the Target Test
Matrix and the length of the vector must equal the length of the Abstract Row Matrix.
There must also be included two further columns for the predicted vector and the
error terms. Supplementary to these requirements the number of factors to be used for
modelling the data must also be entered and the Transform Constant calculated.

The number of factors to be used in modelling the data is entered using the
first (Factors) option in the menu. The second option allows the entry of an estimate
of the error in the test vector which if entered is used in the calculation of the
reliability estimate for the test. Constant, the third entry in the menu, calculates the
constant part of the calculations involved in a target test.

The fourth entry on the menu initiates the target testing procedure. During the
test the predicted vector is calculated and the error terms determined, the predicted
vector is placed in the second column of the Target Test Matrix and the errors in the
third column; the key to the error terms is given in table 15, some of the terms listed
are only calculated during iterative target testing (ITT).

Row number
1
2
3
4
5
6
7
8
9
10

Value
Estimated error in test vector
Apparent error in test vector (AET)
Real error in predicted vector (REP)
Real error in the test vector (RET)
Spoil function (SPOIL)
Reliability estimate (RELI)
Significance level for test vector (%SL)
Iteration number (ITT only)
Difference term (ITT only)
Correlation coefficient (ITT only)

Table 15: Kev to error terms in the third column of the Target Test Matrix.

80

Iterative target testing is performed using the ITT command on the menu. The
ITT process calculates the predicted vector and associated errors as for a normal
target test. A series of extra procedures is also performed as follows. The first
iteration, as indicated by the absence of an iteration number in cell C8 causes the
Vector Differential Matrix to be dimensioned and the original test vector to be copied
to its first column. For each iteration the iteration number is incremented by one, the
difference term and correlation coefficient determined and the error terms calculated
using the original test vector. Depending upon the type of ITT being performed, the
first and second differentials of the predicted vector are also calculated. Finally, the
test vector is modified according to the criteria in use and the screen updated. The
program then pauses until a key is pressed to go on to the next iteration or Escape is
pressed to break out of the loop.

4.2. Optimisation of PCA

4.2.1. Accuracy of factor extraction

The results for the transition metal ion data set are shown in figure 12. It can
clearly be seen that the total number of iterations necessary to complete
decomposition increases linearly with decrease in factor extraction test threshold.

The magnitude of the residuals can be seen to fall sharply after test value
1 x 10'8 to a value of 1 x 10' 18 at test value 1 x 10' 12 . The behaviour of the RMS
average after this point then varies slightly and unpredictably until it becomes constant
at a test value of 1 x 10~ 19 .

The quoted accuracy of calculations for the extended type variables used in the
program is 19 or 20 decimal places. This makes the theoretical minimum value
obtainable around 1 x 10~ 19 , i.e. the point at which the RMS average becomes
constant. The constant values for the residual matrix are taken to indicate that the
limit of accuracy of the calculation method has been achieved. The fact that this value
is virtually achieved with a much lower extraction test suggests that this lower value
might be used to achieve a saving in total number of iterations and therefore a time
saving in decomposition. Reducing the extraction test below 1 x 10~ 12 results in erratic
behaviour of the RMS average which at one point passes close to 1 x 1O20 , lower than
the value at which the residuals become constant; this would at first sight appear to be
impossible but a consideration of the range of values covered in the residual matrices
and the position of their arithmetic means as shown in figure 13 indicates that the
residuals for test value 1 x 10~ 15 have an arithmetic mean closer to zero than any of
the other residuals and the range of values is reasonably evenly distributed about the
mean resulting in a very small RMS average.

81

CO

I
5
o>

0>
.£>
E

-r 1E-05
-r 1E-06

No. of iterations

RMS of residuals

-r 1E-16
-r IE-17

-18

E-20
in co oo CD

Negative log of extraction test

Figure 12: Plot of total iterations against RMS average of residuals for the transition metal ion data
set.

More curious and less easy to explain is why the RMS averages and arithmetic
means for the last four test values are constant but the range changes. The difference
in absolute values in the residual matrices is very small and is probably lost in
calculation error on numbers this small. It also not clear why a wholly negative
residual matrix is produced from an entirely positive data set but study of the other
data sets tested shows that this is not always the case and the final result is thought to
be influenced by the effects of cumulative errors on the calculation producing a non-
random distribution of errors in the final residual matrix.

82

4E-19 -r

2E-19 —

-1E-18

12 13 14 15 16 17 18 19 20 21
Negative log of extraction test

Figure 13: Maximum, minimum and mean values for the transition metal ion data set.

22

m

s
0)

300 -r™

250 --

200

No. of iterations

RMS of residuals

i- •«- t- CM CM

•S 150 —

o .a

Z 100 --

50 --

0
in CD h- oo a

Negative log of extraction test

Figure 14: Plot of total iterations against RMS average of residuals for the Cartwright88 data set.

The results of the analysis of the Cartwright88 data set are given in figure 14,
as can be seen this data set gave very similar results to the above, but it should be

83

noted that the lowest residual RMS average now occurs at a test value of 1 x 10~ 18 .
The results for the mass spectrometer data set (figure 15) also exhibit a similar small
minimum suggesting that this effect is characteristic of the decomposition process.

CO
c
o

2
<D

<D
.a

No. of iterations

RMS of residuals

LO CO h-

Negative log of extraction test

Figure 15: Plot of total iterations against RMS average for the TB11 mass spectroscopy data set.

As the residual matrix is expected to be zero at the completion of
decomposition the selection of the test value that produces the smallest range of values
centred about zero might be expected to produce the most accurate results. However,
the results considered here indicate that the smallest RMS average will not occur at a
fixed test value for every data set, precluding the selection of test values by that
criterion.

It is also interesting that the magnitude of the final residual matrix for the mass
spectroscopy data is 15 orders larger than that of the absorbance data. The absorbance
data covers a range 0 to 1 whilst the mass spectrometer data is in the range 0 to 107 .
Evidently the difference is responsible for the larger residuals but whether this is due
to the range of values or the magnitude is uncertain. Figure 15 shows the same
behaviour of the residuals as the absorbance data sets including the very small, zero
centred residual, in this case at a test value of 1 x 10~ 15 .

From the results considered here it is apparent that the factor extraction test
may be set to a larger value than the theoretical minimum to obtain a saving in time
of decomposition of around 50%. The data indicates a maximum test value of
1 x 10~ 14 to obtain a reasonable decomposition, setting a value above this may result

84

in the relaxing of the constraint of orthogonality in the diagonalization process and
therefore invalidating the linear combination model necessary for successful
interpretation.

The results also seem to indicate that the effects of cumulative errors in the
calculations can be minimised by selection of the appropriate test value to produce the
smallest zero centred residual matrix indicative of the optimum modelling of the data
set. The appropriate test value has been shown to vary for each data set thereby
making its selection impracticable except by the method shown here.

The final recommendation is that the factor extraction test is best set for the
theoretical calculation limit of 1 x 10~ 19 where an accurate diagonalization is
performed for any data set albeit with a penalty in time taken and in the introduction
of slightly more cumulative calculation error than is possible.

4.2.2. Determining completion of extraction

The diagonalization process fully describes the data set after the extraction of a
number of factors from the covariance matrix equal to the number of rows or columns
of the original data, whichever is the smaller. However, because of redundancy in the
data, the number of factors necessary to describe the data completely is often less than
the smaller dimension of the data. In order to determine when the data has been
adequately modelled the residual matrix is tested by comparison of the values in the
matrix with a test value. If all of the values in the residual matrix are smaller than the
test value then the data has been adequately described and the decomposition process
can be halted.

In order to study the size of the residuals after each factor has been extracted
the program was modified to allow the residual matrix to be saved to disk after each
factor extraction. The data obtained from this procedure for the transition metal ion
data set and the mass spectroscopic data set TB11, modified as listed previously, are
discussed below.

If the magnitude of the test value is to be modified for each type of data then a
method of determining the test value must be found. The theoretical zero for any set
of data must be the limit of its accuracy. For the absorbance data the accuracy is
simply determined by the manufacturer's specification for the instrument or by well
defined experimental means. For the mass spectrometer no such value is available and
one must be estimated (see later).

85

<D

1
0.1

0.01
0.001

0.0001
1E-05
1E-06
1E-07
1E-08

~ 1E-09
o> 1E-10
I 1E-11

1E-12
1E-13
1E-14
1E-15
1E-16
1E-17
1E-18
1E-19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Factor number

Figure 16: Plot of the magnitude of the residual matrix and eigenvalue against factor number for the
transition metal ion data set.

tv

*5C
OD

•JO
ov

oc25>%

1̂ 20 -
cr
£
LL

15 -

10 -

5 -

0 - -•+•-
r^-
c>

CO
c>

h»f»ft
LO
CD

B

^t
0

^
-

-t
•

ro
c>

4

•

t

PI

CN
O

/

\

-I

•
/

t

^

T—

c>

/

\

4
1

i

r->

t

O

f
/

\-

y/

t-
o

r

\-

j*

\-
CNJ
C>

\

*
/

\

m

— I

no
d

^

{

m--»--

— \
"fr
o

•--*-*-*-*-•_

Pi Pin,
IT5 CO Is-
O O O

ouw

- 250

- 200 g
CD

£- 150 o

5

- 100 3

- 50

0

Magnitude

Figure 17: Frequency distribution for the first residual matrix of the transition metal ion data set.

86

For the transition metal ion data the spectrometer used to collect the spectra
has a quoted accuracy of 0.004 absorbance units. This translates to a value of
1.6x 10~5 in the covariance matrix as the covariance matrix is found from equation 13
thus squaring the error in each value.

The results of the analysis of the residuals are given in figure 16. The RMS
average is used to give the most representative value for the magnitude of the residual
matrix but the values for the standard deviation were found to be almost identical to
the RMS values for all except the original covariance matrix. A consideration of the
frequency distributions of the residual matrices showed that they have a roughly even
distribution either side of zero (see figure 17).

(43)n

The RMS average is calculated from equation 43 and the standard deviation
from equation 44. It can be seen that the first term in the second equation for standard
deviation is essentially the RMS average; and that for a zero centred distribution, the
result of the second term will be very small thus explaining the similarity. The fact
that the data is now spread about zero when all the measured values were positive
serves to highlight the way the eigenvectors are found. The first eigenvector passes
through the greatest concentration of data points producing, in effect, an average of
the data. The residual matrix will contain the distance between the eigenvector and the
data points and will therefore contain both positive and negative values spread around
zero. The spread is due to unextracted factors and error. After all the real factors have
been extracted, the error, if it is purely random, would be expected to be arranged in
a normal distribution with a mean of zero. This behaviour should allow identification
of real factors from error factors by determining how good the fit of the residuals is
to the normal distribution. Unfortunately the data sets studied here did not show such
behaviour and this is thought to be due to inaccuracies in the diagonalization process
used.

The behaviour of the mean is seen to be markedly different to that of the RMS
average due to the presence of negative values in the residual matrix after the
extraction of the first factor. The mean gives a measure of how well centred on zero
the distribution of values in the residual matrix is and should move towards zero as
factors are extracted. The RMS average gives an indication of the spread of the data
in a manner similar to the standard deviation. The spread of the data is an indication

87

of the amount of information remaining in the residual matrix, so as the factors are
removed it should fall to some minimum value.

The transition metal ion data set contains four components. The eigenvalues
show a sharp fall after four factors in agreement with this. The RMS average and the
mean also show a drop after the extraction of the fourth factor. The mean shows a
further drop after the extraction of the fifth factor that is not reflected in the RMS
average or the eigenvalue and the interpretation of this is not clear. A further fall is
visible after the extraction of factor 9 and again the mean shows a fall for the next
factor as well. This secondary fall is interpreted as the boundary between error in the
data and error introduced by the calculation process itself, which should be
considerably smaller than experimental errors.

This indicates that the mean and RMS average can be used to determine the
number of components in the system but that generally the eigenvalue gives a more
pronounced indication.

From consideration of the accuracy of the instrument, the threshold between
factors describing information and those describing error should be at 1.6x 10"^. As
the data was digitised by hand it might be expected that the errors introduced from
this source will be greater than that from the instrument but a consideration of the
measurement error produces an estimate of 0.003 absorbance units, which is less than
the error from the spectrometer. The theory of propagation of errors results in the
most probable error estimate as follows

Most probable error = V0.004 2 +0.0032
= 0.005 absorbance units (45)

Using the RMS average this shows that the correct number of factors has been
extracted at factor 9. If the mean were used instead then only four factors would be
extracted, in agreement with the number of factors known to be in the data. The test
performed on the residual matrix looks for any absolute number with a magnitude
greater than a threshold and in this case the use of the error estimate as a threshold
would have halted the decomposition at factor 12. The shallow gradient of both the
RMS average and the mean effectively preclude their use in the determination of the
size of the factor space by this method as only a small uncertainty in the error
estimate may change dimensionality by several factors.

The error estimate compares very favourably with the value for real error
calculated by the program for four factors, 0.00509 absorbance units.

It is clear from the results that neither the RMS average nor the maximum
value produce an estimate of the dimensionality of the factor space but that either will
reduce the number of factors extracted without loosing any of the primary factors, the
mean appears in this case to produce the correct dimensionality for the factor space.

Figure 18 shows the results of the residual analysis for the mass spectrometer
data set TB11. Once again the RMS error and the standard deviation values were
found to be very similar.

RMS Avg.

*—— Mean

Error est.

Eigenvalue

1E+16

1E+15

- 1E+14

-: 1E+13

1E+12

- 1E+11

ED

1E+10
4567

Factor number
8 9 10

Figure 18: Plot of the magnitude of the residual matrix and eigenvalue against factor number for the
mass spectroscopic data set TB11.

The level of the error estimate, calculated using the largest peak in the data set
(scan 40, m/e 28) and the estimate of error in the data (see later), is shown on the
graph and indicates that in this case according to RMS average 5 factors are necessary
to adequately span the data space. The mean value suggests that 1 factor is responsible
for the data, in accordance with known facts. The information from the eigenvalues is
not as clear with this example as the previous one but, as one compound is involved
in the analysis only one factor was expected. A further factor is attributable to the air
background present in the spectrometer and it can be seen that after two factors a
considerable fall in the eigenvalue occurs. Another fall occurs after factor 6 and this
is reflected in the behaviour of the mean. The theoretical limit of accuracy for the
mass spectrometer data system is 1, as it is capable of unit resolution. Selection of
this value as the criteria for halting the decomposition results in the whole ten possible
factors being extracted as the magnitude of the residual matrix remains above 1 x 109
until extraction of the last factor when it drops to around 1 x 10'5 .

The results from both data sets show some promise for the reduction of the
number of factors necessary to be extracted from the data. In both the cases here the
combination of the error estimate and mean of residual matrix give the appropriate

89

size for the data space but it would be imprudent to recommend this as a method
without further testing.

It would appear that if a reasonable estimate of the error in the data can be
made then the factor extraction process can be shortened by using the comparison
with the RMS average and a time saving made in the calculation process. If the
current test of searching for the first value above a threshold is abandoned in favour
of comparison with the RMS average then the extra calculation time necessary to
determine such an average must be considered when evaluating the overall time
needed for decomposition. For these reasons the original system was retained but the
program modified to allow the user to halt the decomposition process at will.

4.2.3. Estimation of error in the mass spectrometric data

For the mass spectrometric data an estimate of the error in the procedure was
determined using a blank pyrolysis run (data set TB20).

In the blank run the only peaks expected are those due to the air present in the
instrument at all times and possibly a small amount of hydrocarbon from the pump
oil. The TIC spectrum of TB20 is shown in figure 19, it can be seen that though the
tube had been pyrolysed once a small signal from the sample was evident causing the
increase in the later part of the pyrogram. This may have been due to some sample
remaining in the tube or, more likely, some of the sample may have condensed on the
source and is being vapourized by the heat from the close proximity of the probe tip;
the source is held at a high temperature and the distance from the probe tip to the ion
chamber kept to a minimum to reduce this problem but this evidence indicated that
this source of error in the data will also have to be considered when interpreting
factors. To avoid any problems that might be caused by this residue, only scans 4-70
were used to calculate the error estimate.

The determination of the error in the spectrometer is complicated by the use of
the EPA file format as an intermediary between the mass spectrometer and the PC.
The EPA file format is constructed such that for every scan the peak of maximum
intensity is used to scale the rest of the spectrum as an integer among 0 and 999,
where 999 is the intensity of the most intense peak. This introduces an absolute error
of 1/1000 of the base peak of each scan for each peak in the spectrum except for the
peak of highest intensity. Consideration of the data showed that the largest signal in
the background was from nitrogen in the air at m/e 28; as the intensity of this peak is
measured at the full accuracy of the data system then its error will be a true measure
of the accuracy of the data system unaffected by the EPA file format encoding
process.

90

13800000

c

13700000 --

13600000

13500000 -

13400000 --

O 13300000 -

13200000

13100000 -

13000000 -

12900000 H———h

4 14 24 34 44 54 64 74 84 94 104 114 124

Scan number

Figure 19: TIC pyrogram for mass spectroscopy data set TB20 (Blank run).

3640000

3620000 -

3600000 -

3580000 --

| 3560000

3540000

3520000

3500000 -

3480000 4
4 14 24 34 44 54 64 74 84 94 104 114 124

Scan number

m/e 28 Avg. error -error

Figure 20: Single ion pyrogramfor m/e 28 in mass spectroscopy data set TB20 showing RMS error
estimate for scans 4-70.

91

The intensity of the m/e 28 peak is shown plotted in figure 20, also shown are
the values calculated for the average and the spread of the RMS error. The RMS error
for the N2 peak was calculated from the displacement from the mean and converted to
a relative error. The error for scans 4-70 was found to be 0.75% and for the whole
run, 0.81%. In order to provide the absolute value for error required for
interpretation of the error terms, the largest peak in the entire data set is found and
0.75% of its intensity used as the estimate.

Several assumptions are made in this approach to determining the error in the
data, firstly that the error in the instrument is proportional to the measured intensity
and is not absolute. This is assumed as the signal from a component is due to its
partial pressure within the source and its ionization efficiency the latter being a
effectively unchanging. The partial pressure is due to the amount of sample being
volatilized from the probe and will vary according to the total amount of gas being
produced. As the volatilization will be subject to bulk effects, especially in the case of
polymer samples, then the partial pressure is expected to vary considerably producing
variation in the signal proportional to the size of the signal. It is important to note that
in this case there will be no bulk effects as only the background is being measured
and that for samples the error may be considerably higher than estimated here.

The second assumption is that the error does not change with m/e ratio, the
major factor affecting this is the detector sensitivity. The detectors response is
assumed to be linear to different m/e ions and also linear over the dynamic range of
the instrument as the higher mass ions tend to be of lower abundance.

The last factor not considered is that of interference from neighbouring peaks
or peaks that move in the m/e scale. This is a problem of sampling interval, the
spectra are determined at instrument resolution but are stored in the EPA file format
as unit resolution. If there are peaks present in the data which have a centriod close to
1/2 m/e units then variance in the m/e scale will allow the peak to move from one
unit m/e value to another producing a large error in the data and complicating the
factor analysis. This effect is made even worse if there is a neighbouring peak which
will then vary widely in intensity depending upon into which unit m/e value the
varying peak is placed.

A further problem can be seen in that when the most intense peak is small the
quantization limit imposed by the EPA file format results in small intervals allowing
the modelling of small changes of intensity. If however the most intense peak is large
then the quanta are also large and small changes of intensity are lost in the large
intervals. The net result of this will be to vary the sensitivity of the analysis by
altering its dynamic range throughout the analysis. This will necessarily complicate
the interpretation of the smaller factors that would describe small changes within the

92

data set thus making the identification of components of low concentration that co-
evolve with another more major component difficult if not impossible.

During a run the maximum intensity varies with the amount of material being
evolved from the probe thereby altering the magnitude of the error for each scan. An
upper limit to the error is set by the limit of the analogue to digital conversion of the
mass spectrometer and a lower limit set by the magnitude of the largest air peak when
nothing is being evolved from the probe.

The magnitude of the largest error caused by quantization (0.1 %) is still small
compared to the error estimate calculated from the blank run (— 1 %) and the effect of
this source of error on the data is expected to be small.

93

4.3. Validation of PCA

4.3.1. Synthetic data sets

4.3.1.1. Pure data matrix

The pure data matrix used by Malinowski & Howery87 was analysed using the
program and the results compared with those published.
Covariance matrix

1364 4850 212
4850 24725 -5230
212 -5230 4820

"1364 4850 212"
4850 24725 -5230
212 -5230 4820

.

Published data Calculated results
Figure 21: Comparison of published and calculated results for the covariance matrix of the pure data
set.

Abstract column matrix
"0.180200 0.957463 -0.225372" _ "0.180197 0.957462 -0.225378"
0.348777 0.151999 0.924790_ ~ 0.348804 0.152039 0.924781

Published data Calculated results
Figure 22: Comparison of published and calculated results for the abstract column matrix of the pure
data set.

The small discrepancies in values between the two matrices is ascribed to the
greater accuracy of the program. The published data is calculated by hand and will
contain considerably more rounding error than the values from the program which are
calculated with a precision of 19 significant figures.
Abstract row matrix

^43.52683 -11.0189
-6.18476 6.060277

9.3939 6.614729
14.09085 9.922093
51.43292 4.96532
-20.0421 27.55567
82.59024 6.070623
119.9323
15.81219

43.5267
-6.1847

9.3939
14.0909
51.4330

-20.0419
82.5903

119.9323
15.8124

_-12.4357

-11.0207"
6.0624
6.6143
9.9214
4.9630

27.5564
6.0669
1.1084

31.9674
43.5401_ -12.136

1.11385
31.96834
43.53984

Published data Calculated results

Figure 23: Comparison of published and calculated results for the abstract row matrix of the pure data
set.

94

Eigenvalues

Published data
26868.9
4040.2

Calculated results
26868.88
4040.122

Table 16: Comparison of published and calculated results for the eigenvalues of the pure

data set.

4.3.1.2. Raw data matrix

The raw data matrix used by Malinowski & Howery87 was analysed by the
program and the results compared with those published.
Abstract column matrix

0.180847 0.956468 -0.229048'
0.349120 0.155291 0.924121
0.919462 -0.247089 -0.305838

Published data

0.180847 0.956468 -0.229048'
0.349120 0.155291 0.924121
0.919462 -0.247089 -0.305838

Calculated results
Figure 24: Comparison of published and calculated results for the abstract column matrix of the raw
data set.

The values for the raw data matrix are identical to the published figures, it is
thought that the values for the raw data set were calculated using a computer and not
by hand as was the case for the pure data set.
Abstract row matrix

44.1189 -10.8161 -0.3292
-5.7411 6.5011 0.0746
9.6656 5.5084 -0.4036

14.5264
50.8233

-20.3982

14.5264
50.8233

-20.3982
82.9352

119.2441
15.2177

-12.1847

0.9064
-0.1289

0.0670

9.8520
5.5204

27.8625
5.8277 -0.6886
1.3044 0.6305

32.6784 -0.2836
43.5148 0.0127

44.1189 -10.8161 -0.3292
-5.7411 6.5011 0.0746
9.6656 5.5084 -0.4036

9.8520
5.5204
27.8625

82.9352
119.2441
15.2177

-12.1847

Calculated results

0.9064
-0.1289

0.0670
5.8277 -0.6886
1.3044 0.6305

32.6784 -0.2836
43.5148 0.0127

Published data
Figure 25: Comparison of published and calculated results for the abstract row matrix of the raw data
set.

95

Eigenvalues

Published data
26760.421
4090.5369
2.0717

Calculated results
2670.4214
4090.5369
2.0717

Table 17: Comparison of published and calculated results for the eigenvalues of the raw

data set.

Error terms

Factor
Real error (RE)
Imbedded error (IE)

Published data
1
14.3049
8.2589

2
0.4552
0.3716

Calculated results
1
14.3049
8.2589

2
0.4552
0.3716

Table 18: Comparison of published and calculated results for the error terms of the raw

data set.

The values calculated for standard error in eigenvalue were validated using this
data set by parallel calculation of their values using a spreadsheet and comparison of
the results, which were found to be identical.

4.3.2. Published data and results

4.3.2.1. Mass spectrometer cyclohexane/cyclohexene data

The analysis used by Ritter et al. 50 was a variant of Q-mode factor analysis.
The normal Q-mode factor analysis uses a columnwise normalization involving the
division of each data point by the norm of its associated column, however, the method
used by Ritter et al. 50 involved subtracting the column mean from each member of the
column, usually referred to as covariance about the mean. This treatment was applied
to the data given in table 6 before analysis using the program and comparison with the
published results.
Abstract column matrix

Factor
1
2
3
4

Published data
0.411

-0.633
0.579

-0.309

0.566
-0.275
-0.768
-0.122

0.594
0.245
0.235
0.729

0.397
0.681
0.143

-0.599

Calculated results
0.4112

-0.6330
0.5788
0.3087

0.5656
-0.2753
-0.7678
0.1217

0.5945
0.2452
0.2345

-0.7290

0.3970
0.6808
0.1432
0.5987

Table 19: Comparison of published and calculated results for the abstract column matrix of

the cvclohexane/cvclohexene data set of Ritter et al. 60

The first three factors show good agreement with the published data. The
fourth factor has the correct magnitudes but appears to have its sign reversed and it is

96

unclear whether this is a typographic error or a calculation error in the original paper;
as the factor is describing only error the reversal is not critical.
Eigenvalues and error terms

Factor
Eigenvalue
Real error (RE)
Imbedded error (IE)
Indicator function (IND)

Published data
1
1035.8
1.932
0.966
0.2147

2
222.7
0.154
0. 1092
0.0386

3
0.7
0.118
0.0969
0.1118

4
0.2

Calculated results
1
1035.82
1.9308
0.9654
0.2145

2
222.74
0.1524
0.1078
0.0381

3
0.70
0.1067
0.0924
0. 1067

4
0.23

Table 20: Comparison of published and calculated results for the eigenvalues and error

terms of the cvclohexane/cvclohexene data set of Bitter et al. 60

The calculated values agree well for the eigenvalues and the error terms for
the first two factors. A small difference is apparent in the error terms for the third
factor and it is thought to be caused by the different fourth eigenvector. The
differences do not alter the interpretation of the error terms which still indicate two
primary factors.
4.3.2.2. Mass spectrometer cyclohexane/hexane data

The mass spectrometer data for the mixtures of cyclohexane in hexane
investigated by Ritter et al. 50 were converted to mean centered values as for the
cyclohexane/cyclohexene data. The data was then analysed and the results compared
with those published.
Eigenvalues and error terms

Factor
1
2
3
4
5
6
7

Published data
REa

1.810
0.465
0.128
0.111
0.098
0.074

IEa

0.684
0.249
0.084
0.084
0.073
0.068

INDa x 103
50.27
18.26
8.03

12.30
24.56
73.51

%SLb

0.5
0.2
0.7

37.9
46.1
47.2

Calculated results
Eigenvalue

1059.052
333.860

17.561
0.524
0.314
0.243
0.083

RE
1.807
0.456
0.127
0.109
0.095
0.068

IE
0.683
0.244
0.083
0.082
0.080
0.063

INDxlO3
50.19
18.25
7.95

12.10
23.81
67.97

%SL
3.245
0.159
0.681

31.676
44.922
43.065

Key: RE = Real error, IE = Imbedded error, IND = Indicator function, %SL = percentage
significance level.
Reproduced from Malinowski". bReproduced from Malinowski 12 .

Table 21: Comparison of published and calculated results for the eigenvalues and error

terms of the cvclohexane/hexane data set of Ritter et al. 60

The values calculated for the error terms agree well except for the percentage
significance levels, these show considerable deviation from the published values. The
trend is the same and the dimensionality of the data space is found to be the same

97

from both sets of results. The discrepancies between %SL values will be looked at in
more detail with the *H NMR data set below.
4.3.2.3. *H NMR data

The 1 H NMR data of Weiner et al. 89 was analysed using the program and the
results compared with the published values.
Eigenvalues and error terms

Factor
1
2
3
4
5
6
7
8
9

Published data
REa

2.32
1.12
0.58
0.48
0.37
0.29
0.27
0.22

IEa

0.77
0.53
0.33
0.32
0.27
0.24
0.24
0.21

INDa xl02

3.62
2.29
1.60
1.93
2.30
3.26
6.79

22.43

%SLb

0.0
1.4
3.0

29.0
24.4
33.2
51.0
53.0

Calculated results
Eigenvalue

10243870.24
477.09

95.46
11.63
8.79
3.94
1.56
1.36
0.70

RE
2.32
1.12
0.58
0.48
0.37
0.29
0.27
0.22

IE
0.77
0.53
0.33
0.32
0.27
0.24
0.24
0.21

IND
3.62
2.29
1.60
1.93
2.30
3.26
6.79

22.43

%SL
0.0
1.5
3.0

25.1
22.3
29.3
51.1
55.7

Key: RE = Real error, IE = Imbedded error, IND = Indicator function,
%SL = percentage significance level.
aReproduced from Malinowski". bReproduced from Malinowski 12 .

Table 22: Comparison of published and calculated results for the eigenvalues and error

terms for the 1 H NMR data set of Weiner et al. 89

Factor

1
2
3
4
5
6
7
8
9

Published data
A
10243900

477.09
95.46
11.63
8.79
3.94
1.56
1.36
0.70

A
81300.8
4.5874
1.1364
0.1762
0.1758
0. 1094
0.065

0.0971
0.1167

F

51986.6
10.406

7.96
1.401

1.86
1.33

0.631
0.83

%SL

0.0
1.4
3.0

29.0
24.4
33.2
51.0
53.0

Calculated results
A
10243870

477.09
95.46
11.63
8.79
3.94
1.56
1.36
0.70

A
81300.6
4.5874
1.1364
0.1763
0.1759
0. 1094
0.0650
0.0972

F

51986.3
10.405
7.958
1.401
1.860
1.328
0.629
0.828

%SL

0.0
1.5
3.0

25.1
22.3
29.3
51.1
55.7

%SL*

0.0
1.5
3.0

25.1
22.3
29.3
51.0
55.7

Key: A = eigenvalue, A = reduced eigenvalue, F = F-ratio, %SL = percentage significance
level, %SL* = %SL calculated using F given in published data.

Table 23: Comparison of published and calculated values for eigenvalue, reduced

eiqenvalue, f-ratio. and percentage significance levels for the 1 H NMR data set of Weiner

et al. 89

The values for error terms RE, IE and IND can be seen to have identical
values to those published. The significance level again shows a discrepancy between
the two figures. To further study the differences values calculated at intermediate
points in the calculation of the %SL values were compared with the same values

98

published in Malinowski 12 . The intermediate values checked were the reduced
eigenvalue (A) and the f-ratio (F) and their results are listed in table 23.

From table 23 it can be seen that the eigenvalues from the program are very
similar though not identical and thus produce different F values. The differences are
thought to be due to the published data being calculated in double precision numbers
where the program uses extended precision numbers with twice the number of
significant figures. In order to check that the conversion from F-ratio to percentage
significance level produced the correct results the values for F given in the paper were
used to calculate %SL. The values can be seen to be little changed from those
produced by the program suggesting a problem with the calculation of the F
distribution function. The calculation of the areas in the tail of the F distribution was
then checked using test data provided supplied by Cooke et al. 97 and the results
obtained are tabulated below.

Input
F

18.51
4.41
2.54
4.56

Kl
1

20
10
15

K2
2

10
15
10

Output
Result
0.9500
0.9900
0.9497
0.9900

True value
0.95
0.99
0.95
0.99

Key: F = F-ratio, K1,K2 = degrees of
freedom of numerator and denominator.

Table 24: Validation of the calculation of the area in the tail of the F distribution using the

data supplied bv Cooke et al. 97

The results shown in table 24 clearly indicate that the areas are being correctly
calculated, it must therefore be assumed that the values given by Malinowski 12 are
based upon an approximation to the F distribution, which, under certain
circumstances, contains some error. As the significance level is only important around
the 5-10% level then the approximation used, if correct in these regions, is adequate
as appears to be the case. It should be noted that most approximations to the F
distrbution tend to work only over a limited range for the degrees of freedom and for
that reason the incomplete beta function calculation is to be preferred.

4.4. Target testing validation

4.4.1. Synthetic data sets

4.4.1.1. Pure data matrix

The test vectors for the pure data matrix described earlier (figure 5) were used
to compare the results obtained for the predicted vector in target testing.

99

True factors
Test

0
1
2
3
4
5
6
7
8
9

Published
-0.0001
0.9999
1.9997
2.9996
3.9994
4.9995
5.9991
6.9988
7.9990
8.9990

Predicted
-2.8E-16

1
2
3
4
5
6
7
8
9

Test
4
-1
0
0
3
-4
5
8
-2
-5

Published
4.0003

-1.0001
-0.0001
-0.0001
3.0001

-4.0005
5.0001
8.0004

-2.0005
-5.0008

Predicted
4

-1
-4.40E-17
-4.80E-17

3
-4
5
8

-2
-5

Unity test
Test

1
1
1
1
1
1
1
1
1
1

Published
0.1376
0.1215
0.3119
0.4678
0.7270
0.6421
1.1077
1.3668
1.1787
1.2315

Predicted
0.137615
0.121560
0.311927
0.467890
0.727064
0.642202
1.107798
1.366972
1.178899
1.231651

Published figures and test vectors reproduced from Malinowski & Howery87 .

Table 25: Comparison of published and calculated results of target tests on the pure data

set.

The results in table 25 show the greater calculation accuracy of the program as
the predicted results are much closer to the values of the test vector than published
values.
4.4.1.2. Raw data matrix

The raw data matrix was target tested with test vectors described in figure 7
and the following results obtained.

Vector
Impure factors
Test

0.1
0.8
2.0
2.9
4.2
5.1
5.9
7.0
7.8
9.1

Known error
AET
REP
RET
SPOIL
RELI%
%SL

Published
0.0880
1.1130
1.7590
2.9910
4.0730
5.0080
5.9440
6.9830
8.0710
8.9260
0.130
0.172
0.104
0.137

1.32
97

55.9

Predicted
0.0885
1.1134
1.7592
2.9914
4.0728
5.0080
5.9437
6.9834
8.0714
8.9260
0.130
0.172
0.104
0.137

1.32
97

55.8

Test
3.9

-1.0
0.2

-0.2
3.1

-4.1
5.0
8.1

-1.9
-4.9

Published
4.0270

-1.0000
0. 1460
0.0720
2.9580

-3.9980
5.1250
8.0300

-2.0140
-4.9000

0.118
0.125
0.053
0.113

2.16
100

41.2

Predicted
4.0268

-1.0000
0.1460
0.0723
2.9584

-3.9983
5.1249
8.0297

-2.0137
-4.8997

0.118
0.125
0.053
0.114

2.16
103

41.2

Unity test
Test

1
1
1
1
1
1
1
1
1
1

Published
0.154
0.139
0.280
0.470
0.739
0.643
1.106
1.370
1.190
1.223

Unknown
0.518
0.015
0.518
34.30

Unknown
3.0

Predicted
0.154
0.139
0.280
0.470
0.739
0.643
1.106
1.370
1.190
1.223
0.000
0.518
0.015
0.518
34.33

3
3.0

Published figures and test vectors reproduced from Malinowski & Howery87 , except %SL which are
reproduced from Malinowski98 .

Table 26: Comparison of published and calculated results of target tests on the raw data

set.

100

It can be seen from the table that the program produces results sufficiently
similar to the published values that it may be judged as functioning correctly. The
small differences are ascribed to the greater calculation accuracy of the program as
exemplified by table 25.

4.4.2. Published data and results

4.4.2.1. Mass spectrometer cyclohexane/cyclohexene data

Target tests were performed on the cyclohexane/cyclohexene data set of Ritter
et al. 50 and their results compared with published values.

Test vector1*
Cyclohexane
Cyclohexene
Bicyclo[3.1.0]hexane
Fluorocyclohexane
Bicyclopropyl

Published data8
SPOILC
2.25
3.25
5.79
14.73
14.74

%SLd

29.4
17.2
6.0
1.0
1.0

Calculated results
SPOIL
2.25
3.20
5.79
14.73
14.74

%SL
29.5
17.2
6.0
1.0
1.0

aPublished data reproduced from Malinowski 12
bTest vectors reproduced from Lorber13
C SPOIL function calculated from 41 but using the unbiased estimate
given by Malinowski" and shown in equation 46.
dPercentage significance level calculated from the F-distribution and
equation 42.

Table 27: Comparison of published and calculated results of target tests on the

cvclohexene/cvclohexane data set of Ritter et al. 60

The table of results shows good agreement between the calculated values and the
values published in the literature. The results were obtained by PCA of the untreated
data matrix, ie. covariance about the origin, and not mean centred as in the original
work of Ritter et al. 50 . The test vector was also untreated before testing. The SPOIL
values for this data set were calculated using a modified AET term. The modification
is added to account for loss in degrees of freedom resulting from using fewer than the
maximum number of factors to describe the data. The modification is given in
equation 46.

AET =
!(*,-*,-)'
1=1

r-n

(46)

4.4.2.2. Mass spectrometer cyclohexane/hexane data

The cyclohexane/hexane data set was modified by removing the columns
containing the pure spectra and the row containing m/e 28 values deleted. The

101

resulting data matrix was then factor analysed and the columns of pure spectra used as
test vectors to produce the following results.

Cyclohexane
Test

1.8
1.3
2.5
0.7
7.1
3.5
2.2
0.2
0.8
4.6

13.5
1.2
3.8
0.8

10.7
0.9
0.1

Known error
AET
REP
RET
SPOIL
RELI

Published8
1.9
1.3
2.3
0.6
7.3
3.5
2.1
0.2
0.7
4.9

13.6
1.2
4.1
0.7

10.4
0.9
0.1

0.13b
0.1 8b
0.13b
0.13b
0.70b

102b

Predicted
1.9
1.3
2.3
0.6
7.3
3.5
2.1
0.2
0.7
4.8

13.6
1.2
4.1
0.7

10.4
0.9
0.1

0.15
0.13
0.08
0.62

121

Hexane
Test

2.8
5.1
1.6
0.4
8.8
4.7
8.6
0.3
0.1
0.9
6.8

12.2
0.2
0.1
0.1
0.1
2.8

Published8
2.7
4.8
1.8
0.2
8.7
4.6
8.8
0.2
0.1
0.6
6.9

12.3
0.3
0.3
0.2
0.2
3.0

0.13b
0.17b
0.14b
0.09b
0.56b
112b

Predicted
2.7
4.8
1.8
0.2
8.7
4.5
8.8
0.2
0.1
0.6
6.9

12.3
0.3
0.3
0.2
0.2
3.0

0.16
0.14
0.07
0.52
122

Reproduced from Malinowski and McCue 14 .
bReproduced from Malinowski52 .

Table 28: Comparison of published and calculated results of target tests on the

cvclohexane/hexane data set of Ritter et al. 60

The results show good agreement for the predicted vectors of both
components, the values for REP also agree closely. The discrepancies in the error
term AET are responsible for the other differences observed. Consideration of the
papers containing the original work suggests that the vectors were tested with missing
values. The missing data points are allowed for in the calculation of AET by the
following modification

AET =

\l

p-n

(47)

where p is the number of missing points in the test vector. Is is clear that if
points were missing from the test vector then the estimation of the AET figure will be

102

impaired and will give a different answer to the value given by the program for the

complete vector.

103

4.5. UV-Vis spectrometry

4.5.1 .Transition metal ion data

4.5.1.1. Data analysis

The data matrix, collected and digitized as given in the experimental section,
was analysed using the program. The variables in the program were set as follows;
Error in the data set, 0.005 absorbance units (see equation 45) and the minimum value
set to 0.001 as results from the spectrometer are only given to three decimal places.
When decomposed the analysis ran to five factors before stopping automatically.

The data was re-analysed using the default minimum setting of 1 x 10~ 19 and
the program then ran to the maximum 16 possible factors. This clearly indicates the
time saving benefit of setting a minimum value especially for large data sets.

4.5.1.2. Determination of the rank of the data

The following table gives the results of the error term calculations and the
calculated eigenvalues.

Factor no.
Eigenvalue
% variance
Cum. var.
RE
IE
IND
Misfits
SEE
%SL

1
36.720

89.62
89.62

0.1044
0.0261

4.64E-04
1

0.0118
0.00

2
2.996

7.31
96.93

0.0588
0.0208

3.00E-04
0

0.0123
0.28

3
0.857

2.09
99.02

0.0344
0.0149

2.04E-04
0

0.0121
0.56

4
0.393
0.96

99.98
0.0051
0.0025

3. 5 IE-05
0

0.0120
0.00

5
0.004

0.01
99.99

0.0037
0.0021

3.06E-05
0

0.0128
5.61

Key: Cum. var. = % cumulative variance; RE = real error; IE =
imbedded error; IND = indicator function; SEE = standard error in
eigenvalue; %SL = % significance level.

Table 29: Table of eigenvalues and error terms resulting from PCA of the transition metal

ion data set.

The values in table 29 are used to identify how many factors are responsible
for the data. The eigenvalue gives a measure of how important the factor is to the
data, generally it is not possible to use it alone to determine rank but in conjunction
with the standard error in eigenvalue (SEE) term the error factors may be separated
from the primary factors. Figure 26 shows the eigenvalues plotted with the SEE. The
graph shows the eigenvalue falls sharply after the fourth factor, this behaviour is
common especially when the factors being extracted change from accounting for real
data and describing error in the data matrix. Caution should be exercised when using
such a fall to indicate rank as large errors in the data or even a change in the
magnitude of real factor being accounted for can produce such a drop. In conjunction

104

with the SEE values it can be seen that the estimate of error in the data identifies the
first four eigenvalues as having magnitudes larger than their standard errors and must
therefore describe real information, and the fifth factor, being smaller than the SEE,
must describe error in the data. The evidence of these two terms indicates that the
data has a rank of four, in accordance with the known facts.

I
O)
CO

100 -r

10 -

•j . _.......

0.1 --

0.01 ¥

0.001

Factor number

Figure 26: Plot of the eigenvalues and standard error in eigenvalue (SEE) against factor number for
the transition metal ion data set.

A further estimate of the dimensionality of the data can be made by
consideration of the real error (RE). As there is an estimate of the error present in the
data then comparison of that with the values produced by the program may indicate
the number of primary factors. Comparison of the error estimate of 0.005 absorbance
units with the RE values in table 29 finds that factor four has an almost identical value
(0.0051 absorbance units). The fifth value for RE would normally be undefined as the
decomposition was stopped at factor five but it has been included in table 29 from a
decomposition performed with no minimum value set, and at 0.0037 absorbance units
is below the error estimate and must therefore be regarded as error.

The imbedded error (IE) and indicator function (IND) may also give an
indication of the rank of the data. Their use does not involve a knowledge of the error
in the data and thus they have an advantage over the previous two techniques, they
also serve as a check on the rank in the case of an incorrect estimate of error in the
data set. The theory from which the imbedded error term is derived suggests that its
value should fall to a minimum when the correct number of factors are included in its

105

calculation, and then rise again when error factors are included in the calculation.
Unfortunately the theory relies upon the errors being in a uniform random distribution
and in cases where non-random errors exist may fail to exhibit a minimum. The
indicator function also suffers from the same problems as it is closely linked to the
imbedded error.

Figure 27 shows the functions plotted for the first five factors (values for
factor five are added from the full 16 factor decomposition). No minimum is seen for
either function, even when the full 16 factors are considered, but the sharp fall from
factor 3 to factor 4 is indicative of the change from primary to secondary factors at
factor 4.

1E+00 -r

1E-05

Factor number

Figure 27: Plot of imbedded error (IE) and indicator function (IND) against factor number for the
transition metal ion data set.

For this data set the misfit term is of no use in determining the rank as only
one misfit is obtained for data regeneration using one factor. This serves to highlight
the arbitrary nature of this criterion and the difficulties involved in its interpretation.

The percentage significance level (%SL) shows that factor five is significant at
the 5% level and the factor is therefore indicated to be due to error.
4.5.1.3. Abstract matrices

The abstract matrices contain all the information necessary to recreate the data
but arranged in order of importance to the data. This means that the factor that causes
the most change in the data will be found first. The second factor will be from the

106

second most important source of variation and will show how it adds or subtracts
from the first factor and so on until all the variation in the data has been described.
Studying the vectors of the abstract matrices can provide valuable information about
the sources of variation in a data set. The structure of the abstract matrices is best
observed graphically and there are two common methods of representation. A plot of
the vector against sample (for eigenvectors) or variable axis (for scores) allows the
importance of any sample (or variable) to the data to be gauged. This can be
particularly useful for identifying outliers or unique behaviour in the data set. The
second method is to plot vectors against each other; this technique allows structure in
the data set to be seen, the relationships between the points being seen as clusters or
as linear relationships between successive points.

Because of the way the PCA procedure finds the factors the first vector always
passes through the centre of the data points in a fashion similar to simple linear
regression, this results in the first vectors of the abstract matrices always being the
average of each sample or variable. The second vectors show how the next most
important source of variance in the data varies from the average and thus contains
both positive and negative components.

The vector plots of the abstract column matrix (eigenvectors) show the average
absorbance for each sample for the first vector. The second and following vectors
would normally be expected to show structure in the data set related to the
concentrations of the components in the different samples, unfortunately as the sample
compositions were calculated from a random number table the structure is hidden and
so little information can be gleaned from the plots.

107

c 3 K
)

O

Ex
tin

ct
io

n
co

ef
fic

ie
nt

 l\
 m

ol
-1

 c
m

-1

o

oo

1 I 1 o s c ^ a. a S I

Magnitude

ooooooooooooooooooo o o
O5 T- CO LQ
N- 00 00 CO

Wavelength /nm
Magnitude

oooooooooooooooooooooooooo

Wavelength /nm
Magnitude

-0.2-

mr^Oir-rotos-O) cococOTj-Tr^tTj-Tt 1^.1^.1^.^1^000000
Wavelength /nm

Magnitude
0.4

0.2 4-

OOOOOOOOOOOOOOOOO

-0.2-

OQQpQOQO

Wavelength /nm
Figure 29: Plots of the scores of factors 1-4 against wavelength for the transition metal ion data set

109

The vector plots of the abstract row matrix (scores) are a little easier to
interpret as the wavelength scale is ordered. Figure 28 shows the spectra for the pure
components of the solutions analysed; figure 29 shows the first four scores. The first
factor is the spectrum found if the sample's contributions at each wavelength are
averaged. The second factor shows a maximum at 510 nm corresponding to the
maximum in the spectrum of Co(II), if factor 2 arises from the Co(II) component then
its complementary eigenvector plot should follow the concentrations of Co(II) in the
samples. Figure 30 shows the values for the second eigenvector and the
concentrations after subtraction of the mean concentration. It can be seen that the fit is
not perfect so factor 2 cannot describe the variance of Co(II) alone, indeed the later
part of the factor shows a negative value corresponding to a negative weighting for
Cu(II). This serves to highlight the fact that the PC A process finds vectors to describe
the sources of variance in the data and not the underlying factors. In the case of factor
2 the direction of the factor must lie close to that of Co(II) but not along it. This point
is further exemplified by the presence of peaks at 510nm in the third and fourth
factors as well.

Magnitude
0.4 T

0.241

0

-0.2-

-0.4-

Factor 2

-0.6
1234

Concentration /mol 1-1
5 6 7 8 9 10 11 12 13 14 15 16

Sample no.

Co(ll) cone. - mean cone.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sample no.

-0.04

Figure 30: Plot of the second eigenvector of the transition metal ion data and concentration of Co (II)
in the samples after subtraction of the mean concentration.

110

4.5.1.4. Target testing

Effect of rank on target testing
When target testing, the selection of the number of factors used in modelling

the data is important; too few factors will always result in poor predicted vectors
while too many will unnecessarily reproduce error in the data.

To investigate the effects of varying the rank of the data on target testing the
Cu(II) extinction coefficients were used as a test vector and the vector target tested
using from one to five factors to describe the data. The results are shown in figure 31.
The test using one factor to model the data returns the average spectrum, or more
accurately the first factor. This result is inevitable as using only one factor means that
the data is one dimensional and can only have the values of the first factor.

The introduction of a second factor and retesting now allows the vector to
align as best it can within the space defined between the two factors. The predicted
vector now shows the peak at 810nm but also shows a peak at 390nm. The extra peak
is at the position of the maximum for Ni(II) and consideration of the Ni(II) absorption
profile (see figure 28) shows a broad peak around 710nm, i.e. underneath the Cu(II)
absorbance. This similarity between the two components means that using only two
factors the two components are linked and indistinguishable from each other.

Adding the third factor produces a much closer approximation to the Cu(II)
test vector though a small amount of the Ni(II) can still be seen, also visible is a small
peak at 510nm from the Co(II) indicating the data space still has not been spanned
adequately.

Using four factors, the number of components in the system, produces a very
good predicted vector with only a small deviation at the lower end of the spectrum.
The deviation is due to error introduced by the sampling interval of 20nm. This
occurs when a spectrum contains a peak with a sharp maximum between two sampling
intervals; the digitized spectrum effectively moves the peaks towards the nearer of the
sampling intervals thus distorting the spectrum and adding error to the data. There are
no interferences from the other components and the data space has now been spanned
adequately.

The addition of factor five does not significantly improve the shape of the
Cu(II) absorption but the baseline has been slightly improved. The addition of the
fifth factor has not added anything to the modelling of the Cu(II) peak, the
improvement is due to the error introduced from the sampling interval digitization
now being included in the model. These results show the importance of selecting the
correct number of factors to describe the data and also that if the correct number is
uncertain then it is better to have one too many than one too few.

Ill

Extinction coefficient /mol-11 cm-1
15

12

9-

6

3

0

Cu(ll) test vector

o
LO s o uo co soo

Wavelength /nm

Magnitude
8

Wavelength /nm

Magnitude
12

Magnitude
15

12 ^

Wavelength /nm Wavelength /nm

Magnitude
15

Magnitude
15

Wavelength /nm Wavelength /nm

Figure 31: Plots of the extinction coefficients ofCu(II) and predicted vectors from target testing of the
Cu(II) vector using from 1 to 5 factors to model the transition metal ion data.

112

Magnitude
15

Cu(ll) Test
Cu(ll) Predicted

Wavelength /nm

Magnitude
6

Co(ll) Test
Co(ll) Predicted

Wavelength /nm

Magnitude
5

Ni(ll)Test
Ni(ll) Predicted

Magnitude
25 Cr(lll) Test

Cr(lll) Predicted

Wavelength /nm Wavelength /nm

Magnitude
2500 MnO4 Test

MnO4 Predicted

Wavelength /nm

Figure 32: Plots of the test and predicted vectors for the four components of the transition metal ion
data set (Cu(II), Co(ll), Ni(II) and Cr(IH)) and a non-component (MnO4).

113

True factors
All four of the known components in the transition metal ion data set and one

that was known to be absent were target tested using four factors to model the data.
The extinction coefficients of the pure components were used as test vectors and the
results shown in figure 32 and table 30 obtained. The results of the target tests of the
known components can be seen to mostly give very good predicted vectors; this is
also shown by the error terms calculated for each predicted vector.

Error est.
AET
REP
RET
SPOIL
RELI
%SL

Cu(II)
0.04
0.20
0.10
0.17
1.74

54
12.5

Co(II)
0.02
0.04
0.04
0.02
0.40

104
89.4

Ni(II)
0.01
0.04
0.03
0.03
0.88

79
65.2

Cr(III)
0.06
2.99
0.17
2.98

17.81
6

1.73E-09

MnO4
6.5

454.25
11.81

454.09
38.46

3
0

Table 30: Table of error terms for the predicted vectors shown in figure 32

The error terms for the predicted Co(II) vector are examples of a perfect
result, the real error in the test vector (RET) matches the error known to be present in
the test vector indicating that the vector is present in the data. The SPOIL term is
within the acceptable region described by Malinowski52 , the significance level (%SL)
indicates that the null hypothesis must be rejected thus the vector is a true factor and
the reliability function (RELI) suggests a better than perfect vector (the greater than
100% result arises from approximations made in the derivation).

The values for Cu(II) and Ni(II) do not display the same level of perfection
but still indicate that the vectors are true factors. The differences between the known
error in the vectors and their respective RET terms is due to the sampling interval
digitization problem discussed earlier. This inaccurate representation of the data
means that the same levels of error cannot be achieved in the predicted vector. A
further example of the distortion introduced by the sampling interval is that of the
Cr(III) test vector, the calculated error terms suggest that the vector is not a true
factor but consideration of the plotted vectors shows a good fit but with a shift
towards the higher wavelengths. This is due to the peak shape being distorted by the
sampling interval being too wide and having the effect of shifting the spectrum in
wavelength.
Bad targets

The test vector for permanganate (MnO4) shows clearly that the data cannot be
made to fit the test vector, the best that can be achieved appears to include mostly the
Co(II) contribution to the spectrum. The error terms also reflect the poor fit of the
predicted vector.

114

The fact that a reasonable approximation to the Co(II) spectrum is produced

from testing for MnO4 shows how iterative target testing may be used to find true

factors in the data. The predicted vector produced from the test can be re-presented as

a test vector that is hopefully a better approximation to the true factor and an even

better approximation produced. This process can then be repeated until converged on

the true factor.

115

4.6. Pyrolysis - mass spectrometry

4.6.1. Single component data

The mass spectra of the three substituted ferrocenes used in this investigation
are given on the following page. Where possible the background subtracted spectra
have been used and in all cases the spectrum shown is from the scan corresponding to
the maximum in the TIC pyrogram. All spectra have been normalized to 100% base
peak.

116

00 I
10

0%

80
%

--

60
%

--

40
%

--

a. a •S

—
ti

in
to

nc
ih

/
16

 S
ty »

12
1

12
9

JL

1,
4,

5,
6,

7,
7-

he
xa

ch
lo

ro
-5

-n
or

bo
rn

en
e-

2,
3-

di
ca

rb
ox

yli
c

an
hy

dr
id

e
fe

rro
ce

ne
TB

11
S

sc
an

49

29
8

10
0%

80
%

--

60
%

 -
-

40
% 0%

i
i

i
'

In
te

ns
ity

'
'

*
'

'
*

'
1

'
'

'
1

'
'

1
'

'
'

1
'

'
f

'
'

'
'

1
*

'
'

*
'

1
'

'
'

92

Q
Q

6

4

V

.1
-5.6

1
1

13
9

1-
1'

(2
,4

-d
ich

lo
ro

be
nz

oy
l)

fe
rro

ce
ne

TB
 15

 s
ca

n
74

14
5

17
3

14
7

17
<;

iM
^ T

 .
J

"»
-

I-
1

»i

L.

.
.fc

 .
.^

t-
-.

 U
-

e
i

i
i

'
1

'
*

'
1

'
'

'
'

'
1

'
*

1
'

'
'

1
'

'
'
'

'
'

10
0%

80
%

 +

60
%

40
%

--

In
te

ns
ity

M+

35
8

t
t

t
^
2

'
'

'
'

^
^

'
'

'
'

^
^

S
S

rn
/e

 §
3,

4-
di

ch
lo

ro
be

nz
oy

l f
er

ro
ce

ne

TB
18

sc
an

 5
0

13
9

16
7

20
2

4.6.1.1. 1,4,5,6,7,7-hexachtoro-5-norbornene-2,3-dicarboxylic anhydride
ferrocene (FCA)

Three samples of the FCA were subjected to temperature programmed
pyrolysis mass spectrometric investigation as detailed in the experimental section.

The TIC pyrograms for each of the analyses are shown in figure 34, it can be
seen that runs TB11 and TB12 both produced similarly shaped pyrograms and run
TB13 shows a much sharper and smaller area peak, this is due to a smaller sample
size than in the other two runs.

The TIC^x were at scans 49,51 & 48 for TB11,12 and 13 respectively, a
spread of nearly 20 seconds. Given that the probe ramp is started manually, a spread
of 2 or 3 seconds is possible, as the spread is larger than this then another factor must
be responsible. This may be due to thermal gradients in the probe brought about by
sample shape affecting the contact area between the tube and the sample, or by
differences in the sizes of the tubes affecting their contact between the probe tip and
the tube and thereby influencing transfer of heat from the probe to the tube.

This spread of peak maxima imposes a severe limit on the usefulness of the
pyrograms in identifying a component and highlights the difficulties that exist when
attempting to perform reproducible analyses on the same sample.

o

6.0E+07 -

4.0E+07 -

2.0E+07

Scan number

Figure 34: TIC pyrograms for data sets TB11, TB12 and TB13.

118

Data pre-treatment
The data sets were converted to EPA format using the mass spectrometer data

system and in the process reduced to contain only scans 17 to 91. A further three data
sets were created by subtracting the third scan from every scan in each data set. For
the data set TB12 it was found impossible to convert to EPA format after subtraction,
believed to be due to negative peaks being created in the file as the probe was already
inserted into the spectrometer and a small amount of the sample was detectable. To
overcome this problem the third scan of data set TB11 was subtracted instead and all
three subtracted files converted to EPA format. The background subtracted files are
referred to by appending an S to the name of the data set, i.e. TB1 IS, TB12S and
TB13S.

It was attempted to analyse the EPA files as produced from the mass
spectrometer data system but it was found that the size of the data sets was such that
the program was unable to keep all the necessary matrices in memory. In an attempt
to overcome this problem the program was modified to allow matrices to be written to
disk for intermediate storage. It was found however that even with these modifications
insufficient memory remained to allow the decomposition to complete.

The data sets from the mass spectrometer were therefore truncated in the
number of scans that they contained as shown in table 31. Two of the data sets were
truncated using the mass spectrometer data system and reconverted to EPA format,
the third was shortened using a spreadsheet.

Original file
TB11
TB12
TB13

Scan range
17-91
17-91
17-91

Reduced range
38-56
38-61
38-53

Truncation method
by MS data system
by spreadsheet
by MS data system

Table 31: Scans included in data files TB11. TB12 and TB13 for analysis.

The smaller data sets reduced the memory overhead sufficiently to allow the
program to complete the analysis calculations without error, this memory shortage
prompted the creation of the second data structure to enable the data to be stored in
EMS and allow the program to deal with much larger data sets.
Data analysis

Each data file and its subtracted version were analysed, producing a total of
six sets of results. Program parameters were set as follows,

119

Error est. a
Accuracy1*
Minimum0
Max intensity41«•
Min. base peakf

TB11
246510

IE-19
13296

24651000
m/e28,
scan 41
13283000

TB11S
207200

IE-19
730

20720000
m/e 298,
scan 50

730000

TB12
242070
IE-18 1
16625

24207000
m/e 28,
scan 44
16608000

TB12S
208890

IE-19
1104

20889000
m/e 298,
scan 52

1103000

TB13
236300

IE-19
13578

23630000
m/e 28,
scan 39
15364000

TB13S
178410

IE-19
968

17841000
m/e 298,
scan 48

967000
'Accuracy reduced because factor 3 wouldn't converge at the normal limit of accuracy.
"Estimate of error in the data set, based on 1 % of largest peak in data set.
bAccuracy of factor extraction test - see Optimization of PCA for details.
cMinimum possible data value, set to smallest base peak / 999 - see Appendix 4.
dLargest peak in data set.
em/e ratio and scan number of largest peak.
^Smallest base peak of all of the scans in the data set.

Table 32: Table of operating parameters for the analysis of data sets TB11. TB11S. TB12.

TB12S. TB13 andTB13S.

Table 33 lists the total number of factors found for each data set. It can be seen that
the subtraction of the background from each scan has not reduced the number of
factors necessary to describe the data. The number of factors found for each data set
is equal to the number of scans in each data set; this is the maximum number of
factors possible for each data set. As decomposition did not stop earlier then either all
of the factors are important to the data or the estimate for the residual test was too
low.

Data file
1TB11
1TB12
1TB13

Untreated data
19
24
16

Subtracted data
19
24
16

No. of scans in data set
19
24
16

Table 33: Number of factors found in the data sets TB11. TB11 S. TB12. TB12S. TB13

andTB13S.

As the value for the residual test was set at the smallest possible value measurable by
the data system then it would be expected that the program would attempt to model all
the data including noise from the data system and the instrument. Increasing the value
for the residual test would reduce the number of factors found but a valid method for
producing an accurate estimate of the noise in the system must be found first to avoid
loosing real factors from the data.
Determination of the rank of the data

The amount of variance accounted for by each factor gives an indication of the
number of significant factors in the data. Table 34 shows clearly that the first two
factors account for nearly all of the variance in the data and that in the background
subtracted data the importance of the second factor is reduced considerably. This

120

evidence leads to the conclusion that the background is an important factor in the data
and that its importance to the data may be reduced considerably by background
subtraction.

Factor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Data set
TB11

77.66
22.03

0.28
0.02
0.01

3.05E-03
1.16E-03
9.24E-04
6.60E-04
4.41E-04
3.25E-04
2.36E-04
1.9 IE-04
1.43E-04
7.73E-05
6.92E-05
2.73E-05
2.52E-05
1.29E-05

TB11S
98.54

1.01
0.35
0.06
0.03
0.01

3.05E-03
2.46E-03
1.44E-03
1.1 IE-03
7.1 IE-04
6.69E-04
3.14E-04
2.17E-04
1.82E-04
1.50E-04
6.55E-05
5.90E-05
7.08E-06

TB12
77.08
22.58

0.30
0.02
0.01

2.35E-03
1.05E-03
8.09E-04
5.07E-04
4.2 IE-04
4.02E-04
3.06E-04
1.92E-04
1.53E-04
1.40E-04
6.53E-05
3.10E-05
2.21E-05
1.39E-05
1.13E-05
6.43E-06
4.66E-06
1.28E-06
5.12E-07

TB12S
98.13

1.09
0.69
0.05
0.03
0.01

3.01E-03
1.83E-03
1.64E-03
1.39E-03
1.06E-03
7.72E-04
5.25E-04
2.58E-04
2.25E-04
1.74E-04
9.58E-05
5.39E-05
2.82E-05
1.80E-05
1.04E-05
7.25E-06
2.55E-06
3.95E-07

TB13
88.23
11.70
0.04
0.01
0.01

3.97E-03
1.44E-03
8.43E-04
6.07E-04
3.13E-04
2.57E-04
1.79E-04
8.03E-05
3.83E-05
3.05E-05
7.04E-06

TB13S
98.53

1.07
0.25
0.08
0.03
0.02
0.01

4.38E-03
3.13E-03
1.59E-03
8.97E-04
5.19E-04
2.37E-04
8.07E-05
6.65E-05
2.61E-05

Table 34: Table of percentage variances accounted for bv each factor in data sets TB11.

TB11S. TB1 2. TB12S, TB13 and TB13S.

To consider further the number of factors that comprise the data it is necessary
to look at the error terms calculated during the decomposition stage.

Figure 35 shows the eigenvalues for the first six factors of the TB11 data set
along with the calculated value for standard error in eigenvalue (SEE). It can be seen
that the first three eigenvalues are identified as true factors and that there is a distinct
change in gradient in the eigenvalue plot from factor four onwards which adds
support to this conclusion.

Figure 36 shows a plot for the first six factors of the real error (RE) and the
estimated error in the untreated data. The real error shows a large fall from the first to
the second factor, as suggested by the percentage variance data. The real error crosses
the estimated error after only one factor indicating only one factor in the data, this
appears to be in conflict with the results from the eigenvalues but as the estimate was

121

based upon the observed variation in the background, it should mark the change from
describing factors larger than the background and smaller factors.

1E+16

1E+10
12345

Factor number

Figure 35: Plot of eigenvalue and standard error in eigenvalue (SEE) for data set TB11.

122

1000000 7

100000 :

O)
(0

10000 :

1000

Real error

Error est.

1 23456
Factor number

Figure 36: Plot of real error and estimated error for data set TB11.

Unfortunately as the estimate of error in the data is apparently too large then
the values calculated for SEE, which use the error estimate, must be regarded as
suspect. When the values for SEE are recalculated using the RE estimate of error in
the data set for six factors (see indicator function estimate of rank) the new SEE
values also predict six primary factors.

The error terms that rely upon no prior knowledge of the error in the data may
aid in determining the dimensionality of the factor space. Figure 37 shows that the
imbedded error value falls sharply to factor two but continues to fall with further
factors. Two changes of gradient are visible, one at three factors and another at six
factors. The theory of imbedded error suggests that it should reach a minimum at the
number of factors responsible for the data, this event does not occur with this data
implying that the correct number of factors responsible for the data have not been
extracted or that the function does not work for this type of data. In cases like this,
the change of gradient may mark the change from primary to secondary factors, but
such interpretation must be performed with caution and is best used as a confirmation
of estimates from other sources. Further information imparted by the imbedded error
plot is whether the data is factor analysable or not, non-factor analysable data
produces an increasing imbedded error function from the first factor onwards80 , so this
suggests that the data is produced from the predicted linear combination of factors and
is therefore amenable to factor analysis.

123

1000000

u? 100000

<D

I 10000 :

1000

10000

-r 1000

- 100

Q

o
II
8•o

10

123456 7 8 9 10 11 12 13 14 15 16 17 18
Factor number

Figure 37: Plot of imbedded error (IE) and indicator function (IND)for the data set TB1L

The indicator function does show a minimum at factor six and a sharp gradient
change at factor three. The indicator function is an empirical function derived from
the imbedded error and is generally more sensitive to the minimum value.

The final piece of information of use in determining the dimensionality of the
data is the F-test. The work performed previously by Malinowski 12 led him to the
conclusion that the significance level for the change between primary and secondary
eigenvalues is between 10% and 5%. For TB11 the seventh factor has a significance
level of 15% and the sixth factor a significance level of 5% thus indicating 6 primary
factors in agreement with the indicator function.
Abstract column matrix

The nature of operation of factor analysis is such that the first factor found by
the decomposition is an average of the data set. Because of the way the data was
presented to the program, the eigenvectors are related to pyrograms of the data and
the scores are related to the mass spectra; the plot of the first eigenvector is therefore
the average pyrogram. As only one component was present in the system the average
pyrogram is expected to resemble the TIC pyrogram.

124

oo
CO

o>
CO

ojco-^incoh-oooo

Scan number

CM in COin m m m co in

Figure 38: Plot of factors 1 and 2 for the data set TB11.

Figure 38 shows the first two factors plotted against scan number, it is
immediately obvious that the expected pyrogram is in fact factor two and factor one is
nearly flat. This means that the most dominant factor in the mass spectrum is the
background and not, as expected, the sample peak. The dominance of the background
is assured by its presence in every scan and not by its magnitude. The shape of factor
two is quite clearly the same shape as the TIC pyrogram and follows it almost
exactly; this factor is related to the sample.

This leaves us with an interpretation of the two most important factors in the
data accounting for 99.7% of the variance in the data set. The error produced in
measurements from the mass spectrometer has been estimated to be as large as 1 %,
therefore further factors may not contain significant information, the error term rank
estimate is six factors suggesting that the smaller factors do describe real factors in the
data.

125

00 O> O •«- CM CO
CO CO ^ ^" ^ ^

if) co N- oo

Scan number

o
IO

CM CO ^t LO COin to 10 m 10

Figure 39: Plot of factors 3 and 4 for the data set TB11.

Figure 39 shows the eigenvectors for factors 3 and 4, which bring the total
variance accounted for to 99.99%. These plots are more difficult to interpret on their
own and little can be said about them without further information. What is clear is
that both factors are effectively constant and near-zero either side of the sample peak,
which indicates that they are related to the sample and not to the background and that
factor 3 is associated with the end of the sample peak and factor 4 the beginning. This
means that the sample has given rise to more than the one factor expected. Factors 5
and 6 (not shown) exhibit a more complex shape than factors 3 and 4 but still appear
to be related to the sample. This shows that the decomposition of even a single pure
compound can be complex producing more than one factor.

126

Intensity
•IPP I to •

ot / -

6E7-

4E7-

2E7-

o-

Intensity
4E7-r

2E7-

o-

-2E7-

Intensit}
A 1^ f*4E6-

2E6-

0-

-2E6

A n™ ^-4E6-

Intensit^
QPRI7LO

CCCbto
3E5-

o-
-3E5
-6E5-
QPC_t/co

d u. ii. j. 11.„ . i

8 QOOOOOQQ oiooinoinoK
^-•«-CNCNCOCOTtTl-

r

J J ll. .. 1 . .il. 1 i. , I. L .,• 1

S oooooooo omomoiooin
T-T-CMCMCOCOTt^t

^

i i ..1..J1. ._ ii. , i. , . .

S OOOOOQOO oiooinoLOoiQ
T-T-CMCNCOCOTt^f

f

1

J,l.Jl,,^l,Mit' '-"' -,,,-,...-.'....

ooooooooo momomoinoin
^T-C\ICMCOCOTt <<!t

'jjjj, ^/'v'lro 1 ^^^ OlAJIC I

i
o o o o o in o in Co m CD CD

m/e

^| Score 2

1
o o o o o m o m in in CD CD

m/e

m Score 3

1
§ O Q O in o m in co co

m/e

Score 4

. ^

§ 000 in o in in in co CD

m/e

Figure 40: Plots of factor scores 1-4 for the data set TBIL

127

Abstract row matrix
To identify the sources of variation giving rise to the various factors the

abstract row matrix can be studied. The scores contained in this matrix show the
importance of each m/e ratio to the factors and when plotted appear as a mass
spectrum. The first factor scores will display the average mass spectrum in the same
way that the first factor showed the average pyrogram. The second factor scores
should show the sample spectrum as its eigenvector shows the TIC pyrogram. The
later factor scores may give an insight into the cause of their factors.

Figure 40 shows the factor scores for the first four factors, score 1 shows the
average spectrum as expected. The dominance of the background is shown by the
magnitude of the peaks at m/e 28 and 32 (N2 and O2) and also visible is the average
of the sample spectra at a much reduced magnitude compared to the background.
Score 2 shows the spectrum of the ferrocene derivative on the positive side of the axis
and the peaks m/e 28 and 32 on the negative side. This factor can be thought of a
separating the background from the sample signal. The completeness of this
separation can be seen in figure 41 where the positive portion of the score spectrum is
compared with the spectrum at TIC maximum from the background subtracted data,
providing an extremely good match.

1E7--
Score 2

TB11Sscan49

ooooooooooooo

Figure 41: Comparison of factor score 2 of data set TB11 with scan 49 of data set TB11S.

Consideration of the spectrum for score 3 shows negative values for the
molecular ion peak at m/e 570 and also for m/e 36 and 38 whilst the base peak at m/e

128

298 and the rest of the fragmentation peaks have positive values. The nature of factor
analysis means that the first factor produces an average of the data, the second will
divide the two major sources of variance (sample and background) and the third will
divide any variance left unaccounted into two sources and so on until all the data is
described uniquely. The background is relatively unchanging and as such will
probably be adequately described by the first factor. The sample is separated from the
background very effectively by the second factor, so the third factor must describe the
two major sources of variance in the sample signal. This implies that the molecular
ion peak and the m/e 36 and 38 peaks vary differently to the base peak.

As an aid to the visualization of the different sources of variance in the data,
scores may be plotted against each other to give a 2D or 3D spatial representation of
the factors. Figure 42 shows the 2D graph obtained from plotting the scores for
factors 2 and 3.

-4E6
-2E7

Figure 42: Plot of scores for factor 2 versus factor 3 for the data set TB11.

The graph clearly shows the different sources of variation in the data as lines
pointing in different directions. The axis due to the background is visible containing
m/e 28, 32 and 18 and lies perpendicular to the axis defined by factor 2. It can be
seen that factor 2 bisects the sample and background information thus giving the
negative background and positive sample spectrum seen in the scores for factor 2. The
differing variances of the molecular ion (m/e 570) and the base peak (m/e 298) is also
obvious. Rather more interesting is the m/e 36 value, which is close to but not

129

completely aligned with the m/e 570 source of variance. Most of the other fragment
peaks align closely but not exactly with the m/e 298 peak suggesting that their
production is closely linked with the variance of the base peak but is not exactly the
same.
Ion source chemistry

To explain the sources of the variance it is necessary to look at the chemistry
occurring in the mass spectrometer. The following reactions are likely to occur in the
probe to provide gaseous species that will enter the source and be ionized.

R(s)

R(s)
R(s)

Figure43: Possible reactions occurring at the probe tip.

Where R is the reactant (FCA) and P is the product of some reaction (i.e.
decomposition). In order for the m/e 570 molecular ion to appear then vaporization of
the FCA must occur. The gas phase reactions will be limited by the residence time of
the vapour in the probe tip, once leaving the tip the temperature will fall, effectively
quenching any reaction. The residence time will be affected by the pumping rate and
is believed to be short as evidenced by the sharp fall of the peak in the TIC pyrogram.
Decomposition may occur from the solid or the gas phase and a consideration of the
FCA molecule produces the following likely decomposition mechanism.

o

Cl
Cp0Fe

Cl Cl

O-CH,

Cp0Fe

O-CH,

m/e 298
Figure 44: Proposed decomposition pathway for FCA (Cp

Cl

[m/e 270/282]
cyclopentadiene).

Stable,
not ionized
in source.

130

This decomposition would give rise to the base peak observed in the spectrum
and fragmentation of the m/e 298 ion results in the lower mass peaks observed. These
two possible sources can explain why the m/e 570 and m/e 298 signals are of
different variance and possibly their opposite sign, but it does not provide a rational
explanation for why all the lower mass peaks have positive weightings apart from m/e
36 and m/e 38 (HC1).

2.5E+7

2.0E+7

1.5E+7 --

CO
<D

1.0E+7 -

5.0E+6 --

O.OE+0 *i—* O.OE+0

S in <o 10 in
Scan number

Figure 45: Single ion pyrogramsfor m/e 298 and m/e 570 for data set TB11.

To understand the causes of these other variances it is necessary to look at the
single ion pyrograms of some of the m/e values involved. Figure 45 shows the single
ion pyrograms for m/e 570 and m/e 298. It can be seen that the signal for m/e 298
rises faster than that for m/e 570 but otherwise mirrors the shape of the TIC until scan
51 when the fall for m/e 298 is much greater than for m/e 570. If we assume that the
sharp fall in TIC corresponds to the solid sample being used up then there is no
chemical reason why m/e 570 should fall less quickly. The difference is explained as
being due to bias in the measurement of the mass spectrum. The spectrum is recorded
as an exponential down scan and takes around 6.7 seconds per scan. When scan 51
was started the concentrations of all components were falling rapidly, m/e 570 was
measured first, as the scan passed down to m/e 298 the concentrations fell further
until the m/e 298 value is measured, the concentrations were still falling as the scan
passed on to lower m/e numbers recording still lower concentrations. By this method

131

the bias arises in the scan giving an artificial intensity distortion biased towards the
higher masses.

In terms of variances this can be seen as the separate directions for m/e 570,
m/e 298 and the lower mass fragments in figure 42, the bias has the effect of a
rotation anticlockwise about the origin when viewed in this format. The factor
analysis process maximizes the variance on the factor and so factor three bisects the
variance caused by bias thus producing the negative weighting for m/e 570 and the
positive weighting for the other m/e values. Unfortunately bias in scan 51 does not
explain the negative weights for m/e 36 and m/e 38 (HC1). Consideration of the
single ion pyrogram for m/e 36 given in figure 46 shows that the evolution of HC1
rises with the TIC and reaches a plateau at scan 46 where it stays until scan 51 when
it shows a sharp peak and then an almost exponential fall. This behaviour is unlike the
other components and at scan 51 apparently increases in concentration, for this reason
the m/e 36 and m/e 38 signals are negative and close to m/e 570.

1.6E+6 1.6E+8

1 8.0E+5

2.0E+5

O.OE+0 O.OE+0
00
CO CO

<N co ir> CD Is- O> O T- CM COrfr in in in in •«t 10 CD in in m
Scan number

Figure 46: Single ion pyrogram for m/e 36 for data set TB11.

Explanations have now been found to explain all the sources of variance
visible in figure 42 except the cluster of low mass peak close to the m/e 298 signal.
To explain this the fragmentation in the source must be considered. The thermal
decomposition product at m/e 298 fragments further to produce lower masses, the m/e
570 molecular ion also fragments to give lower m/e fragments via the route given in
figure 47. This shows clearly how the same fragment molecules can arise from

132

different precursors. The m/e 298 signal is the most dominant source as shown by
figure 45 but is perturbed by the contribution from m/e 570 and thus does not align
perfectly with the m/e 298 signal in figure 42.

m/e 298

Cp2Fe

0-CH,

m/e 570

O
0-CH,

Cp/e'

m/e 185

II m/e 213

m/e 121

Figure 47: Partial fragmentation pathway for FCA and its decomposition product.

e
Fe

m/e 56

The eigenvector for factor four (figure 39) shows it to be significant only at
the front edge of the TIC peak. The magnitude of the factor starts to rise from scan
no 40 and shows a sharp peak at scan number 47. Looking at the TIC pyrogram it can
be seen that factor 4 increases with the gradient of the TIC signal, this suggests that
bias may be responsible for this factor too. In this case, for bias to be the cause, the
size of high mass peaks would be artificially reduced and the intensities of the low
masses artificially increased; the factor scores for factor 4 (figure 40) show this to be
the case. The negative value for the m/e 298 peak is due to the negative weighting
imposed by factor 3.

Factor 6 (not shown) has dominant values in its scores for HC1 and the
eigenvector is similar to the shape of the single ion pyrogram (figure 46) and is thus
assigned to describing the unique behaviour of the m/e 36 and m/e 38 peaks. The
shape of the first part of the single ion pyrogram roughly follows the TIC curve until
the plateau at scan 46. Consideration of the sources of HC1 from the sample shows
that the major decomposition route (figure 44) produces hexachlorocyclopentadiene,

133

which contains no hydrogen and therefore cannot produce HCI. Close study of the
mass spectrum of FCA shows two very weak series of peaks at m/e 534 and m/e 498
corresponding to two losses of HCI, from this it is concluded that the HCI is produced
from another less favourable decomposition pathway that competes with the major
one. The decomposition probably occurs by loss of one of the two hydrogen atoms
attached to the norbornane structure along with one of the attached chlorine atoms, as
there are two hydrogen and two observed HCI losses. The explanation for the plateau
is less certain but may be due to the formation of a char, trapping HCI, or simply a
depression in the HCI signal due the rapid evolution of the m/e 298 product
increasing total pressure in the source. There is some supporting evidence for the last
hypothesis in the form of a sharp increase in the magnitude of factor 5 at scan 52
where the total pressure in the source will have fallen after the sample had been used
up. This supposition begs an explanation for the presence of HCI after the sample
signal has finished, the HCI ion profile indicates that either two separate formation
processes are occurring, or that the HCI generated is being "stored" for later release.
This can be explained if HCI is adsorbed on "cold spots" close to the probe, to be
slowly desorbed as the temperature of the probe, and hence the nearby "cold spots",
is raised further. The long tail evident on the m/e 36 trace at higher temperatures is
consistent with this interpretation and it is well known that HCI is difficult to analyse
quantitatively due to adsorption losses 100 .

Factor 6, the last factor describing a true factor according to the error terms,
seems to be related to the m/e 18 signal, which does not quite align with the
background signal, and may be due to atmospheric moisture introduced into the
source chamber when inserting the probe and being reduced by pumping throughout
the analysis, this can be seen by comparison of the single ion pyrograms for m/e 18
and m/e 28 (not shown) where the signal for H2O can be seen to be reduced over the
period of the analysis.

In summary it can be said that the data is composed of six factors (IND and
%SL evidence) and that the sources of variance can be assigned as follows:

• Factor 1 - the average of the data set.
• Factor 2 - separates the background from the sample signal.
• Factor 3 - describes bias from tail of peak.
• Factor 4 - describes bias from leading edge of peak.
• Factor 5 - models the unique behaviour of HCI.
• Factor 6 - models the decay of water vapour over the analysis.

Replicate analyses
Study of the other two data sets (TB12 and TB13) shows that in each case the

error terms, IND and %SL, gave a rank of six and that the first three factors for each
data set were almost identical, factors 4 to 6 had differing interpretations. Factor 3

134

can still be clearly identified with bias in the measurement of the scan at the end of
the sample peak but has a greater magnitude for TB12 and a smaller magnitude for
TB13. This can be seen reflected in the percentage variances listed in table 34, the
change in magnitude can be explained by consideration of when the scan was taken.
Figure 34 shows the TIC pyrograms of the three samples and the markers identify the
start of each scan. TB11 shows scan 51 starting roughly halfway down the decay of
the sample signal, TB12 at scan 53 starts slightly higher in the decay and TB13 starts
the scan near the bottom of the decay. Ignoring the time taken for the system to reset
for the next scan, the marker for the next scan marks the end of the scan. For TB13
the signal has reached background by this point so bias will only affect the high
masses. Both TB11 and TB12 show that the signal still has further to fall at the end of
their scans and will be more affected by bias. The decay of the sample signal appears
to be exponential, so as TB12 started scanning further up the peak it will be affected
to a greater extent than TB11 thus producing the observed effect in factor 3. These
observations act as a confirmation of the interpretation of factor 3 and also explain
why the later factors (4 to 6) are altered, the later factors still describe the other
sources of perturbation in the data but because of the change in factor 3 have become
distorted and some mixing of factors has occurred making interpretation less clear cut.

From the interpretation of the factors contributing to the observed data it is
now clear that for events that occur as rapidly as these, the sampling interval in the
time domain is not small enough and introduces sources of error that complicate
interpretation. It is also clear that for major components the extra variance
complicates the determination of the dimensionality of the data space but does not
affect identification of the components, for minor components, whose contribution of
variance to the data approaches that of the error introduced from inadequate sampling
interval, unambiguous identification may be difficult due to the mixing of the sources
of variance. Reduction of this problem may be achieved by increasing the scan rate
(preferred but not possible with the equipment used) or by reducing the heating rate.
The reduction of the heating rate may not entirely avoid the problem as pure
components may still evolve fast enough to cause sampling rate distortion.
Background subtraction

The results for the background subtracted data error terms gave the same
dimensionality of six factors as indicated by the percentage significance level,
indicator function and imbedded error term. The real error estimate was of no use in
the estimation as its value was found to be much larger than the real error term for
even the first factor. This clearly shows the inadequacy of the current method of
determining the absolute error in the data. The values of the error terms for data set
TB11S are given in table 35 and are typical for all three of the background subtracted

data sets.

135

Factor no.
1
2
3
4
5
6
7
8
9
10

Eigenvalue
4E+15
4E+13
1E+13
2E+12
1E+12
2E+11
lE+11
9E+10
5E+10
4E+10

RE
67945
38811
18967
13177
8259
6763
5921
5051
4457
3876

IE
15588
12592
7537
6046
4237
3801
3594
3277
3067
2812

IND
210
134
74
59
42
40
41
42
45
48

SEE
9E+12
7E+12
2E + 12
8E+12
2E + 12
5E+12
9E+12
4E+12
9E+12
3E+12

%SL
0.0
0.0
0.0
0.9
0.4
7.1

13.1
11.8
16.5
16.4

Key: RE = real error, IE = imbedded error, IND = indicator function,
SEE = standard error in eigenvalue, %SL = percentage significance level.

Table 35: Table of error terms for the first ten factors for data set TB11S.

The estimate of error in the data is found to be far too large as the largest peak
in the data after background subtraction is the base peak from the sample and not, as
previously, the N2 peak from the air background. This indicates that the background
contributes substantially to the error measured in the data and that the background
subtraction technique reduces this source substantially and also that the error in the
measurement of the sample data is less than 1 % of the maximum base peak.

-0.4

Scan number

Figure 48: Plot of factors 1 and 2 for the data set TB11S.

136

o>
CO

O T-

rf Tt
CM
^t

CO
Tf

>^-
•t in -t $ N- ^ O) O t-in in

CNJ
m COin in in

Scan number

Figure 49: Plot of factors 3 and 4 for the data set TB11S.

The reduction of the importance of the background to the data can be seen in
the eigenvectors of TB11S; figure 48 shows the eigenvectors for the first two factors.
Factor 1 can now be seen to be the same shape as the TIC pyrogram and thus
describes the sample signal, factor 2 follows approximately the same shape as factor 3
in the unsubtracted data and is therefore probably related to the bias in measuring scan
51.

Figure 49 shows the eigenvectors for factor 3 and 4 and it can be seen that the
third factor describes the background, thus it can be deduced that the background
subtraction has reduced the importance of the background to the data considerably.
The fourth factor is similar to the fourth factor in the unsubtracted data and describes
the bias at the front of the sample peak.

These results, which were typical for all the background subtracted data,
indicate that the technique of background subtraction is useful for reducing the
magnitude of the background in the data set. Reduction of the importance of the
background in the abstract factors can be useful in cases where a small number of
components are present as their presence in the abstract factors will become more
obvious, unfortunately, the interpretation of smaller factors is made more difficult as
the small residue of the background tends to mix with the smaller factors, this can be
seen in the shape of factor 3 in figure 49, which shows some deviation from the ideal
background behaviour due to the mixing in of the factors describing bias.

137

4.6.1.2. 1-1 '(2,4-dichlorobenzoyl) ferrocene (1-1 'DCBF)

A sample of 1-1'DCBF was analysed by TPPy-MS as detailed in the
experimental section to produce the data set TB15. The TIC pyrogram for the analysis
is shown in figure 50 along with the TIC trace for the subtracted data set detailed
below.

1E+8

OE+0

Scan number

Figure 50: TIC pyrogram for data set TB15.

Data pre-treatment
The data was converted to EPA format using the mass spectrometer data

system and the EPA format file was then converted to spreadsheet format using the
program. The size of the data file was then reduced by removing scans from the
beginning and end of the file, leaving only scans 48 to 84 that contained the pyrogram
peak (all other scans were background only). The truncation of data was performed to
reduce the analysis times.

A further data set was produced from TB15 using the spreadsheet. The m/e
values relating to air in the spectra (m/e 17,18,28,32,40 and 44) were set to zero to
study this method of background removal. The data set produced from this procedure
was named TB15S.
Data analysis

The two data sets were analysed using the following operating parameters;
Error estimate = 901531 (1 % of largest peak in data set, m/e 139 @ scan 74).

138

Minimum = 16137 (smallest base peak / 999).
Accuracy = 1 x 10~ 19 (default value).

Both data sets ran to the maximum number of possible factors before
completion of the decomposition suggesting that, as in the previous experiment, the
minimum value is set too low.
Determination of the rank of the da fa

The variance accounted for by the first fifteen factors in the data sets is given
in table 36. It can be seen that the air peak reduction has reduced the importance of
factor 2 by about 6%, this is much less than the effect of background subtraction on
TB11, etc. Factor 2 for this data does, however, appear to be less important than with
the earlier data sets, this is supported by the fact that for all the earlier data sets the
largest single peak in the data was due to N2 and for this data the largest peak is the
base peak of the sample spectrum indicating that the background has a smaller overall
contribution to the data. Additionally the smaller reduction may be due to the air peak
removal being less efficient compared with background subtraction.

Factor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Data set
TB15
% Variance

91.33
7.86
0.47
0.11
0.10
0.03
0.03
0.02
0.01

8.77E-03
6.98E-03
5.82E-03
2.69E-03
2.13E-03
1.39E-03

%SL
0.0
0.0
0.0
0.8
0.1
4.2
2.1
3.2
3.9
4.8
4.5
3.4

10.2
11.3
16.2

TB15S
% Variance

97.81
1.36
0.51
0.11
0.09
0.03
0.03
0.02
0.01

9.29E-03
7.50E-03
6.21E-03
2.27E-03
1.48E-03
1.30E-03

%SL
0.0
0.0
0.0
0.6
0.1
4.0
2.0
3.5
3.6
4.2
3.5
2.4

11.9
17.1
17.5

Table 36: Table of percentage variances and percentage significance levels for the first

fifteen factors in data sets TB1 5 and TB15S.

The eigenvalues for data set TB15 are shown in figure 51. The eigenvalue can
be seen to fall sharply to the fourth factor where a plateau occurs for one factor
before falling sharply again to another one factor plateau; the eigenvalues then fall
away at a much reduced gradient. Interpretation of the eigenvalues alone would be
difficult given their behaviour in this case. The standard error in eigenvalue crosses

139

the eigenvalue just after factor 3, so, if the error estimate for the data set is correct
then two or three factors are responsible for the data.

1E+16 H

Eigenvalue

SEE

1E+9
co

Factor number

Figure 51: Plot of eigenvalue and standard error in eigenvalue (SEE) for data set TB15.

To look more closely at how well the error estimate fits the data set we can
study the real error function; this is shown in figure 52. The estimate of error based
upon 1 % of the most intense peak in the data produces an estimate far too large for
any of the real error values and must be regarded as suspect along with the standard
error in eigenvalue calculated from it.

As an attempt to find a better error estimate, 1 % of the average of the m/e 28
value at scans 48 and 84 was tried. This can be also be seen plotted in figure 52
passing just above the real error value for the second factor. This indicates one factor
in the data as is known to be the case and thus may be a better method of calculating
the error estimate.

140

1E+6

1E+5 i

1E+4 -

1E+3

Real error

Error est.

m/e 28 est

CO IO

Factor number

Figure 52: Plot of real error and estimated error for data set TB15 showing modified error estimate
based on m/e 28 intensity.

10000

r-CNJCMCSJCNJCMCOcOCO

1000

r 100

Qz
o
I I
o

-r 10

T- co 10

Factor number

Figure 53: Plot of imbedded error (IE) and indicator function (IND)for the data set TB15.

141

The estimates for imbedded error and indicator function are shown in figure
53. The indicator function shows a distinct minimum around factor 13 and the
imbedded error function, whilst not displaying a minimum, also exhibits an inflexion
around factor 13.

Consideration of the percentage significance levels given in table 36 indicates
that 12 factors are responsible for the data, as factor 13 has a value just above 10%
and the significance threshold is between 5% and 10%. The values for IE and IND
are very similar for factors 12 and 13 so it is concluded that 12 factors make up the
data.

The error functions for TB15, like the functions for the earlier data sets,
disagree as to the number of factors necessary to describe the data. It is believed that
the estimates produced by the IE, IND and %SL functions accurately predict the
change from primary to secondary eigenvectors. The single component samples, when
analysed by this method, give rise to more than one factor due to multiple reaction
pathways and complicated background factors. The error estimate, if it can be
determined with sufficient accuracy, appears to give a better indication of the number
of physical components in the sample.

Scan number

Figure 54: Plot of factors 1 and 2 for the data set TB15.

Abstract column matrix
The first two eigenvectors of data set TB15 are shown plotted against scan

number in figure 54. Factor 1 shows clearly the TIC pyrogram and factor 2 is shaped

142

like the background. This is opposite to the results found for TB11, this behaviour is
explained when it is seen that the data set has had too many scans removed. Study of
the single ion pyrograms indicates that sample evolution has started in scan 86 and has
barely returned to zero at scan 94, this means that the sample spectrum, present in
almost every scan, is the most dominant signal and the background therefore falls in
importance to the data. The fall in background signal during the sample evolution is
due to an increase in total pressure within the source reducing the partial pressure of
the background signal.

Figure 55 shows the third and fourth factors of TB15. Their interpretation is
considerably more complex than the earlier two. Both factors show sharp peaks at
scan 75, which suggests that they describe bias in the data as did factor 3 for data set
TB11; as both factors describe the same source of variance then the positioning of
factors for this data set has not been as advantageous as it was for TB11 (allowing
largely individual sources of variance to be seen) and the sources of variance are
mixed together. Two conclusions may be drawn from this evidence; that the data is
more complicated (i.e. has more sources of variance) and that the sources are of
similar importance to the data (i.e. produce similar amounts of variance). The peak at
the beginning of factor 3 may describe bias in the rising edge of the pyrogram, whilst
the jagged beginning of factor four seems anomalous and will be looked at in more
depth. Further factors show even more complicated behaviour.

Scan number

Figure 55: Plot of factors 3 and 4 for the data set TB15.

143

Intensity
4E7 T

3E7

2E7

1E7 +

0

Factor 1

S g O
IT)

O
O
CM CM CO

8
CO

o o o in o oin 8
CO

o
10
CO

m/e

Intensity
1E7-

9E6

6E6

3E6

0

-3E6

Factor 2

oin o o CM
o in CM

o o
CO

o oin o
CO Tt

o in 8in
o in in

o o
CO £

m/e

Intensity
2E6y

1E6-

0

-1E6+

-2E6

i, • .IL k.

Factor 3
o in o o

CM
Om CM CO CO

o in
CO

m/e

Intensity
8E5--

0

-4E5+

-8E5

-1E6

'l||T rpjp VT-'-'T' —— •>-— *• — < —— — ——— '•-••'• ••' • — r ————————————— * —— Q

Hi Factor 4

o o
o in o oo in

CM CM

o o
CO

o m
CO

o o o in in
o in in

o o
CO

m/e

Figure 56: Plots of factor scores 1-4 for the data set TB15.

144

Abstract row matrix
The factor scores for the first four factors are given in figure 56. The scores

for factor 1 show the spectrum of the sample. Factor 2 provides a separation between
the sample and the background, the background being visible on the positive side and
a much reduced sample spectrum on the negative. The background spectrum shows
that the instrument was suffering from hydrocarbon contamination in the source whilst
the sample was analysed and may explain why the number of factors necessary to
describe the data has increased from TB11 and also the complicated nature of the
abstract factors.

Factor 3 shows the results of bias in the fall of the pyrogram, with the
molecular ion peak very large in comparison with the base peak and the smaller
peaks. The spectrum also shows a strong weighting for m/e 84 and m/e 86, a
weighting which is repeated even more strongly in factor 4. These peaks were not
expected from the decomposition of 1-1'DCBF. To try and identify the source of the
peaks, the single ion pyrogram for m/e 84 was plotted; this is shown with the TIC
pyrogram in figure 57.

9E+5

Scan number

Figure 57: Single ion pyrogram for m/e 84 for data set TB15.

The graph shows that the component giving rise to m/e 84 occurs only at the
beginning of the sample peak and is almost identical to the jagged beginning of factor
4. As a further aid in the identification of the component an iterative target test was
performed using a uniqueness vector for m/e 84 and 10 iterations. The resulting

145

spectrum showed peaks at m/e 84,86, at m/e 47,49 and 35,37 and also a very small
peak at m/e 119.

These peaks are consistent with the fragmentation of CDC13 (shown in figure

58) allowing the component to be identified as due to deuterated chloroform that had

been trapped in the crystals of 1-1'DCBF when it was recrystallised from the solution
used for ! H-NMR analysis.

Cl
D-C^CI -Cl

Cl
m/e 119/121/123

D—(-CI
m/e 49/51

C?-CI
m/e 47/49

Figure 58: The fragmentation of deuterated chloroform in the mass spectrometer.

Factor 4, in addition to the negative m/e 84,86 signals also shows a strong

positive signal for m/e 36 and 38 and consideration of the single ion pyrogram for

m/e 36 (figure 59) shows similar behaviour to that observed for m/e 36 in TBll with

HC1 being evolved both during and after the evolution of the sample.

7E+5

OE+0 ——————
oo o
Tf ID S O CM •<* CO

CO CO CO CO
CN CO 00 O CM

|x. (x. 00 CO

Scan number

Figure 59: Single ion pyrogram for m/e 36 for data set TB15.

Factors 3 and 4 both show the base peak at m/e 139 and the molecular ion at

m/e 572 to have weightings of opposite signs, but because the factors are mixed the

way this arises is not obvious. To provide a better visualization of the variation in the

data a plot of factor 2 against factor 4 was constructed. This plot shows that there are

146

many more sources of variation than for the TB11 data set. The variance from the
m/e 84 impurity can be seen as well as the direction of the background signal. The
m/e 18 signal from H2O does not align perfectly with the air peaks and appears to be
grouped with a lot of other low m/e peaks, probably due to the source contamination.
For the sample there can be seen independent variances for m/e 36/38, m/e 139 and
m/e 532.

Score 4
8E5

4E5-

0

-4E5

-8E5-

-1E6

28

-3E6 3E6 6E6 9E6 1E7
Score 2

Figure 60: Plot of scores for factor 2 versus factor 4 for the data set TB15.

Ion source chemistry
To explain why the different sources of variance arise, their chemistry must be

investigated. Consideration of the structure of the 1-1'DCBF produces the expected
fragmentation in the source given in figure 61; the fragmentation is based upon a
pathway given for diacetylferrocene by Sheley and Fishel 101 .

All the fragments are evident in the mass spectrum of 1-1'DCBF except m/e
384, from which it is concluded that the ferrocene breaks apart so quickly that the
fragment is not observed.

Similar to the FCA analysis, the base peak observed in the spectrum is not
produced from the volatilized sample, so the decomposition reactions must be studied
to explain the abundant m/e 139 base peak.

147

O Cl

m/e 92 m/e 64 m/e 39 m/e 145

Figure 61: Proposed fragmentation pathway for 1-1 '(2,4-dichlorobenzoyl) ferrocene.

148

Cl

Accurate mass analysis of m/e 139
The possible decomposition reactions for 1-1'DCBF are not as obvious as

those for FCA and to assist in the identification of the mechanism an accurate mass
analysis was performed on the base peak to unambiguously assign the composition of
the fragment.

The mass spectrometer was tuned to an instrument resolution of 1500 and set
up to perform a linear accelerating voltage scan to cover the range 125-175 m/e. The
sample was then analysed as before but with perfluorokerosene being introduced via
the liquid injection port to act as an internal mass standard.

Two peaks from the perfluorokerosene were selected which bracketed the
sample peak at m/e 139; these were C2F5 at m/e 130.9921 and C3 F7 at m/e
168.98882. Scans of the analysis were selected either side of the sample peak in the
TIC pyrogram so that the perfluorokerosene signals were appreciable in comparison
with the m/e 139 peak. For each scan the peak centroids 1 at 50% peak height were
measured for the two reference peaks and the m/e 139 peak. The data system then
calculated the exact mass by linear interpolation between the reference peaks. The
results obtained are listed below.

Scan number
55
56
57
73
74
75

Average m/e

m/e 139 centroid
139.0596
139.0534
139.0510
139.0552
139.0564
139.0569
139.0554

Table 37: Table of calculated peak centroids for m/e 139 of 1-1 '(2.4-dichlorobenzovl)

ferrocene.

Using the elemental composition calculation program in the MS data system
the possible molecular formulae were calculated. Chlorine atoms were excluded from
the calculation as no isotopic substitution was visible, iron was allowed though it was
expected to be possible to see the isotopic substitution pattern as well, and carbon,
hydrogen and oxygen were also allowed in the formula. The results showed that only
two possible fragments could be formed from the available atoms, these were
CgHnO2 at m/e 139.07590, a discrepancy of 20 mmu (milli-mass units) and C7H U
at m/e 139.05478, a discrepancy of 0.6 mmu. The 20 mmu difference is enormous in
accurate mass analysis terms and thus the only possible fragment can be C7Hn .
Decomposition reaction

The identification of the base peak as having the formula C nH7 + meant that a
possible reaction mechanism could be proposed, this is given in figure 62.

149

Cl

lonization in
MS source

m/el67

H

m/el39
Figure 62: Proposed thermal decomposition mechanism for 1-1'(2,4-dichlorobenzoyl) ferrocene.

Supporting evidence for the mechanism can be seen in the spectrum at m/e
202/204 and at m/e 167. This mechanism does not appear to have been reported for
ferrocenes in the literature and after consideration of the results obtained for 3,4-
dichlorobenzoyl ferrocene it would be expected to occur in any di-chloro substituted

150

benzoyl ferrocene. The intensity of the m/e 139 peak is much reduced without a
chlorine in the ortho position, as shown in figure 33, but is still the favoured
decomposition route.

There is evidence of another decomposition/fragmentation pathway in the mass
spectrum as small peaks below the molecular ion peak indicate two losses of HC1
identical to those for FCA. The loss of two molecules is in this case limited by the
number of chlorine atoms available and not by the number of hydrogen's available as
was the case with FCA. For 1-1'DCBF this reaction is not the only route to produce
HC1 as the m/e 145 fragment in figure 61 could further fragment to produce HC1
rather than the proposed fragments.
Air peak removal

Figure 50 shows that subtracting the air peaks has reduced the magnitude of
the background either side of the sample peak suggesting a reduction in background.

The error terms produced from the analysis are shown in table 38 and show
the same characteristics as the unsubtracted data, including an estimate for the
dimensionality of the data of 12 factors based upon %SL and IND values.

Factor no.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Eigenvalue
2E+15
3E+13
1E+13
3E+12
2E+12
7E+11
6E + 11
4E+11
3E+11
2E-I-11
2E+11
2E+11
6E+10
4E+10
3E+10

RE
47663
29776
18920
15560
11868
10561
9052
7946
6950
6103
5282
4444
4128
3922
3724

IE
7836
6923
5387
5116
4363
4253
3937
3695
3428
3173
2880
2531
2447
2412
2371

IND
37
24
16
14
12
11
10
9
9
8
8
7
7
7
8

SEE
2E+13
4E + 12
1E+13
9E+12
3E+12
8E+12
8E+12
6E+12
1E+13
IE-1-13
1E + 13
2E+13
1E+13
1E+13
1E+13

%SL
0.0
0.0
0.0
0.6
0.1
4.0
2.0
3.5
3.6
4.2
3.5
2.4

11.9
17.1
17.5

Key: RE = real error, IE = imbedded error, IND = indicator function, %SL =
percentage significance level.

Table 38: Table of error terms for the first 1 5 factors for data set TB15S.

Study of the eigenvectors produced from the factor analysis showed no
significant change in any of the factors. The factor scores also appear essentially
unchanged including the second score, which was related to the background in the
untreated data. The two scores for TB15 and TB15S are shown in figure 63 and it can
be seen that the large peaks due to N2 and H2O are gone leaving only the
hydrocarbon contamination in the source, which has now become the new background
with a similar intensity to the hydrocarbon background of TB15.

151

This indicates that the technique of air peak removal does not work as a
method for reducing the number of factors in the data. In this particular case, due to
the large amount of contamination in the source, the subtraction has been particularly
ineffective. Even when the source is clean there are always more than just the air
peaks producing background in the instrument so unless the extra peaks are subtracted
as well (as for background subtraction using the mass spectrometer data system) then
the benefits of air peak removal are limited.

Magnitu
1E7-T
9E6-

6E6
3E6-

0

-3E6

Magnitu
3E6-

2E6-

1E6-

o-

-1E6-

de

J

•

ill,.

H TB 15 factor 2

1 W

oooooooooo
UOOLOOUOOUOOUOO

r-T-CMCMCOCO^t^flf)

de

",l hi
Ll 11,11,1,*.. ,.. J 1 . L . .n ,«! ^.. _.....

oooooooooo
UOOIOOUOOUOOLOO

T-T— CNICNOOOOTfr^frUO

000
UO O UOin co co

m/e

TB15S factor 2

t-
o o o uo o m
UO CO CD

m/e

Figure 63: Comparison of the second factor scores for data sets TB15 and TB15S.

152

4.6.2. Two component data

4.6.2.1. Ferrocene derivative mixture

In a simulation of a system with two components, the ferrocene derivatives
FCA and 1-1'DCBF, were analysed simultaneously by placing a crystal of each
sample in a pyrolysis tube and analysing by temperature programmed pyrolysis mass
spectrometry according to the method laid down in the experimental section.

The TIC pyrogram is shown in figure 64, two maxima are visible, at scans 63
and 78. The aim was to use two components that overlapped closely in the pyrogram
but this was not possible. In this particular case, the presence of two components
could be concluded from the two maxima, as the overlap of components is
incomplete, but there is an overlapping portion between the two maxima that will
complicate the analysis providing approximately real life conditions.

8E+7

7E+7

6E+7 --

5* 5E+7 -

P,
:^4E+7
V)

I 3E+7 -

2E+7

1E+7

OE+0

'•••i

N- o oo en co
O)

Scan number

Figure 64: TIC pyrogram for data set TB19.

Data pre-treatment
The data produced from the analysis was converted to EPA format on the mass

spectrometer data system and then transferred to the PC where it was converted using
the program into a spreadsheet format file.

The size of the file was reduced by deletion of scans containing only
background leaving scans 45-100.

153

Data analysis
The reduced data set was then analysed by the program using the following

parameters.
Error estimate = 25495.
Minimum = 1773 (smallest base peak / 999).
Accuracy = 1 x 10' 19 (default value).

The estimate for error in the data was determined by averaging the intensities
for m/e 28 in the first and last scans of the data set (scans 45 and 100) and using 1 %
of this value as the error estimate.

The analysis ran to the maximum number of possible factors (56) indicating
that the minimum value is not representative of the true minimum value in the data.
Determination of the rank of the data

The percentage variance and percentage significance level values are given in
table 39.

The percentage variance figures show that the first three factors account for a
substantial portion of the total variance (97%) the factors following these account for
substantially smaller portions of the variance in the data. The values for percentage
significance level indicate that the data is not adequately described until factor 18 or
19. These results are similar to the earlier analyses where the single components
needed two factors to describe most of the variance and the percentage significance
level indicated a larger number.

Factor no.
1
2
3
4
5
6
7
8
9
10
11
12
13

% variance
61.194
23.918
12.297

1.693
0.367
0.157
0.092
0.060
0.052
0.042
0.033
0.027
0.014

%SL
0.0
0.0
0.0
0.0
0.0
0.2
0.7
1.5
1.1
0.9
0.8
0.6
2.5

Factor no.
14
15
16
17
18
19
20
21
22
23
24
25

% variance
0.009
0.008
0.007
0.006
0.004
0.003
0.002
0.002
0.001
0.001
0.001
0.001

%SL
5.2
4.8
3.6
3.9
5.9
8.5

11.5
12.2
14.2
15.9
16.5
18.6

Table 39: Table of percentage variances and percentage significance levels for the first 25

factors of the data set TB19.

The eigenvalues and standard error in eigenvalue are shown plotted in figure
65. The first three eigenwalues appear close together and the fourth and further
factors fall in importance rapidly. The standard error in eigenvalue indicates that
factor 14 marks the boundary between primary and secondary eigenvectors

154

contradicting the figure obtained from percentage significance level, previous
estimates of dimensionality given by the standard error in eigenvalue have also been
incorrect because of the estimate of error in the data set being too large and that is
probably also the case here.

The values calculated for the real error and the estimate of error in the data are
shown in figure 66 and clearly show that the error estimate gives a dimensionality of
4. Once again, the estimate of error in the data is too large and even though it is
based upon the magnitude of the background signal, it doesn't identify the
background at factor 3. This makes its use in determining the number of components
in the system untrustworthy.

Figure 67 shows the imbedded error and indicator functions for TB19. The
imbedded error fails to reach a minimum, similar to the single component cases. The
indicator function does exhibit a shallow minimum at factor 19 in agreement with the
value obtained from the percentage significance level values. From these two results
the data can be said to be composed of 19 factors, a considerable increase over the
number for the single components.

1E+16

1E+15

1E+14 -

(D
T>

f 1E+13 S5

1E+12 --_-

1E+11

1E+10

Factor number

Figure 65: Plot of eigenvalue and standard error in eigenvalue (SEE) for the first twenty factors of data
set TB19.

155

Real error

Error est.

Factor number

Figure 66: Plot of the real error function and the estimate of error for the first 20 factors of data set
TB19.

25000

20000 --

y 15000
0>•o

10000

5000 --

100

- 10

O)
(0

0 - —— - 1

Factor number

Figure 67: Plot of imbedded error (IE) and indicator function (IND) for factors 1-50 of data set TB19.

156

Abstract column matrix
The eigenvectors for factors 1 and 2 are shown in figure 68, from the shape of

the factors it can be seen that factor 1 describes mostly the first peak in the TIC
pyrogram, and factor 2 describes the second peak. This is unexpected as the first
factor is always the average pyrogram, closer inspection shows that the first factor
does contain a small second peak. The disproportionate size of the two peaks is
explained by the amount of variance contributed to the total data set. The first peak in
the TIC pyrogram is large and occurs over a number of scans. The second peak is
quite small in comparison and occurs over fewer scans therefore contributing less to
the data. The first factor reflects this by emphasizing the first peak in relation to the
second peak.

In finding the second factor the largest source of residual variance is
described, which in this case is the second peak as the first peak is well modelled by
the first factor, this gives the resulting second factor showing the second peak.

Figure 69 shows the eigenvectors for factors 3 and 4. Factor 3 is related to the
background due to its large constant value from scan 90 onwards. The slope during
earlier scans is explained by the mixing of some of the background signal with factor
1.

Factor 4 exhibits some extremely curious behaviour that, from its position, is
related to the first peak. Factors 5 and 6 (not shown) also follow a similar, erratic
path. Factor 6 also has some significance for the second peak as well. The explanation
for these factors can be divined with reference to their associated factor scores.

157

Scan number

Figure 68: Plot of factors 1 and 2 for the data set TB19.

Scan number

Figure 69: Plot of factors 3 and 4 for the data set TB19.

158

Magnitude
4E7y

3E7--

2E7

1E7

U l.i.ll ,J,..,11. ,^.lll. J JL L _, 1

o o o o o o in o in o in o
*- *- CM CM CO

Magnitude
2E7y

2E7
1E7-

5E6-

0-

-5E6-

J JI1...1J A a , t.. iL 1

-1E7 ———————————————————————————
O 0 0 0 0 0in o in o in o

T- T- CM CNI CO

Magnitude
zt /

1E7-

8E6-

4E6-

0

A F C^

^Jill,!...,. ————————————————

000000in o in o in o
T- T- CM CM CO

Magr

6E6

4E6

2E6

0

-2E6

-4E6

-6E6

itude

Factor

I

S o o o o o o m o m o
r- T- CM CN CO

Factor 1

t 1
o o o o o o . in o in o in o m/e co Tt ^t in in CD

^^^^^^ dv^lUI ^—

__ L-
o o o o o o . in o in o in o m/e co ^- rf in in CD

Factor 3

——————— (————
o o o o o o . in o m o in o m/e co •<* ^ in in CD

-4

u_

o o o o o o . in o in o in o m/e co Tt ^r in in CD

Figure 70: Plots of factor scores 1-4 for the data set TB19.

159

Abstract row matrix
The factor scores for the first four factors are shown in figure 70. Factor 1

shows the average spectrum that, as expected from the eigenvector, shows a strong
spectrum for one component (FCA) and a weaker spectrum for the other (1-1'DCBF)
and the background. The identity of the peaks in the TIC pyrogram was confirmed by
looking at individual scans from the data set to show that the first peak is due to FCA
and the second from 1-1'DCBF.

The second factor scores show a positive weighting for the spectrum of
1-1'DCBF and a negative weighting for the FCA. The background spectrum is also
visible in the positive weightings but at a low intensity.

Factor 3 clearly shows the background spectrum including the contamination
the instrument was suffering from at the time of analysis. Negative weightings for the
spectra of both components are visible.

Consideration of factor four allows us to interpret the curious eigenvector
observed earlier. The weightings show a strong positive peak for m/e 569 and a
strong negative one for m/e 570. This indicates that they vary oppositely to each other
(if one increases the other decreases, etc.) which is unexpected as both peaks arise
from different isotopic substitutions of the molecular ion.

The relative intensities of the molecular ion isotope cluster were calculated
using the mass spectrometer data system producing the following results.

Formula
Element
#atoms
#i so topes

C20H1403FeC16
C
20
2

Cl
6
2

Fe
1
4

H
14
3

O
3
2

Calculated spectrum
Mass
566
567
568
569
570

% Intensity
3.07
0.70

54.56
13.56

100.00

Mass
571
572
573
574
575

% In tensity
24.73
80.34
19.62
35.27

8.44

Mass
576
577
578
579
580

% In tensity
8.97
2.08
1.29
0.28
0.09

Table 40: Table of calculated isotope abundances for the molecular ion cluster of FCA.

For data set TB11 all the isotope peaks were visible down to m/e 579 at
0.28% abundance but for data set TB19 the smaller sample size meant that the
smallest isotope peak visible was m/e 574 at 35% abundance. This means that the
peak at m/e 569 with the strong negative weighting in factor score 4 should not exist
as its abundance is only 13.6%.

To investigate the source of the factor further, single ion pyrograms for both
the masses were plotted and the results shown in figure 71. The pyrograms show that

160

the signal at m/e 570 is incorrectly assigned to m/e 569 for some scans. The three
major isotopes that make up m/e 570 and their exact masses are:

C2oH 1403 56Fe 35 C15 37 C1 = 569.8394
C2oH 1403 54Fe 35C14 37C12 = 569.8411
C2oH 1403 58Fe 35C16 = 569.8407

The identification of the actual m/e value for a peak is calculated by the mass
spectrometer data system using the peak centroid. If, when the instrument was
calibrated, the centroid for the standard was moved slightly higher than its true
position so that the 569.8 peak would be artificially read at around 569.5, then
depending upon which side of the 569.5 the centroid falls is whether the peak is
registered as 569 or 570. The problem is particularly bad for the high m/e values
because of the exponential down scan being used. Factor 4 can be assigned to
describing the variance brought about by the poor calibration of the instrument.

Factor 5 (not shown) exhibits similar behaviour for m/e 567 and m/e 568 and
factor 6 (not shown) describes the inaccuracies for many m/e values over the whole of
the data set.

3.5E+6

3.0E+6

2.5E+6 +

O.OE+0

m/e 569

m/e 570

O-O-Q

Scan number

Figure 71: Single ion pyrogramsfor m/e 569 and m/e 570 for the data set TB19.

161

Score 3
2E7

1E7

8E6

4E6-

0--

•4E6 139
-1E7 -5E6 0 5E6 1E7 2E7 2E7

Score 2
Figure 72: Plot of scores for factor 2 versus factor 3 for the data set TB19.

Despite the errors due to poor calibration and the extra factors introduced into
the data by them, it is still possible to obtain a good differentiation between the
sample components and the background. This can most clearly be seen when the
scores for factors 2 and 3 are plotted against each other as shown in figure 72. The
different directions for each of the two substituted ferrocenes and the background are
clearly visible.
The effect of dimensionality on target testing

The effect of choosing a number of factors to describe the data upon target
tests was studied by using a test vector of a known component (FCA, data set TB11S,
scan 49) and target testing using different numbers of factors to model the data. The
FCA vector was chosen as it was background subtracted, reducing the possibility of
any background mixing in with it, and the available analyses of the other component
(1-1'DCBF) were made when the instrument was suffering from source
contamination, thus the vector used was the purest spectrum of FCA available.

162

Magnitude
6E5

4E5

2E5-

50 60
No. of factors

Magnitude
1.2E5

10 20 30 40 50 60
No. of factors

Magnitude
16

12-

40 50 60
No. of factors

Magnitude
1E2

1EO-
1E-1-
1E-2 1E-3--
1E-4 -
1E-5-
1E-6-
1E-7--
1E-8
1E-9-

1E-10
1E-11-

%SL

r = 0.97

10 40 50 60
No. of factors

Figure 73: Plots of the error terms; apparent error in test vector (AET), real error in predicted vector
(REP), spoil function (SPOIL) and percentage significance level (%SL) against number of factors used
to model the data for data set TB19 with test vector TB11S scan 49.

163

The vector was tested using consecutive factors from 1-30 and then every fifth
factor to 55 factors. The error estimate used for the vector was that used for the data
set, i.e. 207200. The error terms from each test were collated and the results shown
in figure 73. The regression lines were calculated using only the filled markers and
are linear regression except for the %SL chart, which uses exponential regression.

The apparent error in the test vector (AET) falls as larger numbers of factors
are used to describe the data until the curve levels out at factor 24. Two points of note
are that when the curve flattens out into a straight line it still continues to fall, but
slowly. The second point is that the curve becomes a straight line at factor 24 and not
at factor 19. The AET term is an estimate of the error in the test vector based upon
the difference between the test and predicted vectors. It would be expected that the
function would reach a minimum at the correct number of factors necessary to
describe the data and then be level from that point onwards. The observed behaviour
is explained as follows; the test vector in this case, whilst being the purest spectra of
FCA available, still contains some background signal and also, as it was taken from a
different analysis, then there are slight variations between it and the spectra of FCA
contained in data set TB19. This means that the fit produced at the theoretical 19
factors is not quite perfect and that the addition of a few excess factors describing
random error allows a small amount of extra 'freedom' for the target test to model the
discrepancies between the test and the true vector. The fact that the graph does not
completely level out supports this hypothesis as the addition of extra factors of
random error will allow a linear improvement in the fit of the vector for each factor
added and also the improvement in fit will be small as only very small factors are
involved.

The real error in the predicted vector (REP) is calculated using the real error
estimate for the relevant number of factors and the transformation vector. It estimates
the difference between the predicted vector and a theoretical pure vector containing no
error. The graph shows that the function falls rapidly for the first three factors and
then climbs slowly and erratically to a straight line, starting at 24 factors, which then
falls slowly. The graph is interpreted as indicating that the predicted vector containing
the least error is produced using seven factors and the addition of further factors
introduces error into the predicted vector. When it is considered that the factor being
tested is the major component in the data, this result is reasonable, it indicates that to
model the behaviour of FCA only seven factors are needed out of the theoretical 19.
The chart also indicates that after only three factors the largest portion of the
information required to model the component has been found.

The spoil function (SPOIL) is calculated from the ratio between RET and
REP. The RET function is almost identical to the AET plot resulting in the SPOIL
function mirroring the REP function.

164

Intensity
^F7-r

OC7Z.C.I

2E7

1E7-

5E6-

0-

Intensitv
^F7-i

2E7
2E7-

1E7
5E6

0-
f-r";/j-5E6-

Intensitv
^E7nv?^. I

2E7
2E7
1E7-

5E6-

0-
CCTC-utD

Intensity
3E7-
2E7-
2E7-
1E7-
5E6-

0-
ccc-OCD-

. j ..i ..i,.!!.,^ iLjj. u ,
o o o o o c to o to o m c

T- ^- CM <N 0

1

, ha ..1...1L- Jj.il. u .

S O 0 O O C O u^ o 10 c
T- •«- CNJ <N C

r

| .b L . l.-.JL^i 1 1...J.1L U...., .

10 o m o in c
T- T- CM CM C

f

[^ L . t .i,..lJ.,^ 1 1 .J.I L u. .. t .,

o o o o o c in o in o in c
T- T- CM CM C

Test vector

___ L
3OOOOOOO3iooir>omoir>OCOTfTj-lOlOCOCD

m/e

^H ^ factors

i
3OOOOOOODinoinoinoLO oco^-^j-ioincoco

m/e

1 9 factors

I
DOOOOOOODinounomom ocoTt^fmincDCD

m/e

24 factors

I
3OOOOOOODinomQiooin •oco^Ttu5incDCD

m/e

Figure 74: Plot of test vector (TB11S scan 49) and predicted vectors from data set TB19 using 3, 19
and 24 factors to describe the data.

165

The behaviour of the percentage significance level (%SL) is complex and
difficult to interpret. No significant value is produced for the %SL until after factor
19 and then it behaves erratically until factor 24 after which it rises steadily. When 55
factors are being used to model the data it finally reaches a significant level. The
explanation for this is not clear but is believed to be related to the large numbers of
degrees of freedom in the test vector and assumptions made in the derivation of the F-
test.

The results of target testing using varying numbers of factors to describe the
data are shown in figure 74. It can clearly be seen that the spectrum is modelled
extremely well even with only three factors, the molecular ion cluster is not very well
fitted due to the problem with the calibration of the instrument but the rest of the
spectrum is reproduced very well. The addition of the extra factors adds very little to
the spectrum, the most obvious change is in the molecular ion cluster, which better
fits the test vector and some small intensity changes in the lower m/e region are also
visible, certainly the change from 19 to 24 factors is almost negligible and must be
restricted to changes in the smallest peaks that may be from the FCA or from another
source but are of little or no consequence for identification of the component.
Intensity

2E7-
1E7
8E6-
4E6-

Magnitu

4E6-
obt>-
2E6-
1E6

0 ——

: iLuh
o o in o

de

Jl.iL.LI.l.l..jii.

^H TB18 scan 50

„ ,^i i i
oooooooooo m/p inomomoinoino lll/e T-cNCNcoco'tTfininco

ffiH Predicted vector - 3 factors

i
OOOOOOOOOOOO m/pinoinomomoinoino Ml/c v-T-cNCNcoco^^rininco

Magnitude
OCRobo
6E6-
A r~ o4E6-
2E6-

0- I I|. l.l^ Jll.li iL.. UU.,,

jj| Predicted vector - 19 factors

.L~k .J L II _i J.. «. ^ „ .J . 1 .1

^"~ w oooooooooooo m/e in o in o in o m o m o in o T-T-cNCNcoco-^trj-ininco
Figure 75: Plot of the test vector, TB18 scan 50 (3,4-DCBF), and the predicted vectors resulting from
testing data set TB19 (1-1 'DCBF & FCA) using 3 and 19 factors to model the data.

In order to investigate the results produced from testing for a component that
was not present in the data, target tests were performed using data set TB18, scan 50
as a test vector. This data set, containing the pyrolysis of 3,4-DCBF, contains a lot of

166

the peaks found in the other two substituted ferrocene spectra and should therefore
constitute a worst case for testing. The results of these target tests are given in figure
75, which shows how poor the fits of the predicted vectors are. The peak at m/e 139
has been fitted as it is common to both 3,4 DCBF and 1-1'DCBF, as well as a few
other common peaks, but the absence of any signal for the molecular ion clearly
indicates that the test vector is not a component of the data set. The test using three
factors includes peaks for the molecular ions of both the real components and the base
peak for FCA at m/e 298. The test using 19 factors contains only the lower mass
peaks, showing that the extra freedom allowed by a 19 dimension space, as opposed
to the restricted 3 dimension space, has enabled a closer approximation to the test
vector. It is apparent in both cases that the test vector is not a factor.

To determine the feasibility of using target testing as an investigative tool a
test vector was created that contained m/e 139 only with an intensity of 1, the rest of
the values being zero, this is referred to as a uniqueness vector and is normally used
to test for any sample or variable of the data that behaves uniquely. The result of a
uniqueness test is regarded as positive when the predicted vector contains unity for the
selected value and zero or near zero for the other values. In this particular case the
search is not for unique factors but to gain insight into the values that are linked with
a particular m/e value.

Intensity
1EO-

8E-1-

4E-1-
2E-1-

0- ———

f

|ji m/e 139 uniqueness vector

oooooooooooo m/e
in o in o m o in o in o m o lll/c

Magnitude
err iOb-1
4E-1-
3E-1-
2E-1-
1E-1-

0
-1E-1 ————————————————————— —— ———

.1 _ . i i J. _ a _ ,

Predicted vector - 3 factors

...i. i . . I
oooooooooooo m/e
in o m o m o in o m o in o c

Magnitude
OP 4 _ot- 1
6E-1-
4E-1-
2E-1-

o-
_2E-1 ————————————————————————————

- . ,,j _
H Predicted vector - 19 factors

... ,l. ,i • ,

oooooooooooo m/e inoinoinoinomoino /c

Figure 76: Plot of the test vector (m/e 139 uniqueness) and the predicted vectors resulting from testing
data set TB19 using 3 and 19 factors to model the data.

167

The results from testing the uniqueness vector are contained in figure 76. The
two predicted vectors show similar spectra in their low m/e portions, the 19 factor
vector having fewer small peaks, but the molecular ion for 1-1'DCBF is visible only
in the predicted vector using 3 factors. This seems to indicate that the accuracy of the
test is diminishing with the increasing number of factors, in fact, what is happening is
that the addition of the extra dimensions allows the test to produce only those peaks
related to the m/e 139 peak. It was shown in the earlier discussion of the single
component analysis of 1-1'DCBF that the m/e 139 peak is produced from the thermal
decomposition of 1-1'DCBF and not via volatilization and the molecular ion peak,
thus, the molecular ion peak does not appear in the predicted vector. In the case of
the 3 factor test the entire spectrum from all sources appears because there are
insufficient factors to differentiate between anything but the three major sources of
variance, i.e. the two substituted ferrocenes and the background.

It is important to note that the peaks from FCA do not feature in either of the
predicted vectors and this technique of uniqueness testing is therefore valuable in
determining the individual components present in the data, though care must be taken
in selecting how many factors to use in the test.
Intensity

1EO-
8E-1-
CC 1Dt- I
4E-1-
2E-1-

0-

Magnitude
1EO T

8E-1
6E-1
4E-1-
2E-1-

0-
-2E-1 ——

oooooooo inoinoinoino
T- T- CN CN CO CO TT

h, . . .

^§ Air vector

o o o o m/p in o in o /c •^- in in co

Predicted vector - 3 factors

Magnitude
1E0 1 8E-1-

6E-1-
4E-1-
2E-1

0-
-2E-1 —

-|
— »•

oooooooo inomomoino
T- T- CM CN CO CO ^t

I,I J - . _ . .

oooooooo inomoinomoT- T- CN CN CO CO Tl-

O O O O m/pin o in o lll/e •^- in in co

'redicted vector - 19 factors

O O O O m/e in o in o ""** ^ in m co
Figure 77: Plot of the test vector (air background) and the predicted vectors resulting from testing data
set TB19 using 3 and 19 factors to model the data.

The background was also tested for, using a variation on the uniqueness test.
The test vector was constructed using the three most abundant peaks from the air, m/e

168

28, m/e 18 and m/e 32, with the m/e 28 peak having an intensity of 1 and the others
scaled to their normal relative intensities. This air background vector was tested as
before, using 3 and 19 factors and the results are shown in figure 77.

The background spectrum can be seen to contain the hydrocarbon contaminant
seen in the abstract factors. The use of 19 instead of 3 factors has produced very little
change in the predicted vector. This indicates that one factor describes the background
very well. The only peak that has changed is that for m/e 18, the signal for water was
found to require a factor of its own when the abstract factors of FCA were studied
and the change in intensity of the peak between the 3 factor and 19 factor results
suggests that something similar is the case here.

169

4.6.2.2. Iterative target testing

The results from the uniqueness and air background test vectors used on data
set TB19 indicated that testing for a single peak of a particular component resulted in
a complete approximation to that component. There was evidence to suggest that the
resulting vector was not completely pure, for example, peaks from the background
and negative peaks were visible. This led to the idea that an iterative procedure might
allow an analysis to start from a single mass value and to converge to a pure factor.

Re-submission of the result from a target test for testing again results in the
production of a predicted vector that is identical to the test vector. This is obvious
when it is seen that the predicted vector is the closest match to the test vector that can
be made within the constraints of the original data. By resubmitting this best fit vector
the data can be made to fit the vector perfectly as it was created from the data.

In order for the process to converge towards a pure vector the vector must be
modified before re-submission. The best modification would be to delete any peak
that does not belong to the true factor. This, however, requires a foreknowledge of
the true factor that makes the search for the factor redundant. An alternative approach
is to modify the vector according to some rule or rules that will perturb the vector
sufficiently to allow the target testing process to converge towards the true factor.
Chemical selection rules

By far the best rules for modifying of the test vector are based upon
chemically valid criteria. Work performed by Vandeginste et al. 102 , looking at the
elution profiles of components in HPLC, used two selection rules for modifying the
test vector. The rules were that only one maxima was possible (a single component in
the chromatogram) and values below a threshold were set to zero. In the case of the
mass spectra there can be more than one maxima, excluding the use of that rule, but
the setting of values below a threshold to zero is applicable to the mass spectra.

To investigate iterative target testing the program was modified so that the
predicted vector from the target test could be modified and then re-submitted as the
test vector for the next test. For the first tests the vector was modified by the removal
of any negative components, as the mass spectra cannot contain any negative peaks.

In order to determine the progress of the convergence some measure of the
similarity of the test vector and predicted vector is necessary. Convergence is deemed
to have been achieved when the difference between the test and predicted vectors is
constant and the predicted vector is not changing any further. Two measures of vector
similarity were implemented to quantify this, the product-moment correlation
coefficient and a vector difference.

The formula used to calculate the correlation coefficient is given in equation
48, where x, is the 1 th member of x, the test vector and x, is the 1 th member of x, the

170

predicted vector. The term rcorr is used instead of r to avoid confusion with the
number of rows.

(48)
The vector difference is calculated from equation 49 for all positive values of

x only.
r

f = /j
x-x

/=! (49)

The test vectors used in the course of the investigation and a description of
their contents is given in table 41 below.

Name || Description
TV4
TVS
TV6
TV7
TVS
TV9
TV 10
TV11
TV12
TV13

Uniqueness vector, m/e
Air background, m/e 18
Uniqueness vector, m/e
Uniqueness vector, m/e
Uniqueness vector, m/e
Uniqueness vector, m/e
Uniqueness vector, m/e
Uniqueness vector, m/e
Air background, m/e 28
Uniqueness vector, m/e

Table 41 : Table of test vectors

139 = 1 -M+ for 1-1'DCBF
= 0.5, m/e 28 = 1, m/e 32 = 0.27

370 = 1 - peak not in either component
142 = 1- weak FCA peak, not present in 1-1'DCBF
542 = 1 -M+ for FCA
56 = 1 - common to both components
139 = 1908700 - scan 68 intensity
298 = 4803000 - scan 68 intensity
= 384625, m/e 32 = 96156, m/e 18 = 293276 - scan 68 intensity

56 = 2015279 - scan 63 intensity

used in the investiaation of iterative taraet testina.

For the first experiment, using only the zeroing of negative values, the test
vectors TV4, TV6, TV7, TVS and TV9 were tested to a maximum of 10 iterations
and the results saved after each iteration. Four factors were used to model the data as
this number of factors describes over 99% of the variance in the data. The vector
difference is shown plotted against iteration number in figure 78. The results for test
vector TV6 are not shown as the test, for a peak not present in either component,
produced an all zero vector after the first test.

171

10

8
£

0.1 "

0.01 -

0)g 0.001

0.0001 :-

0.00001

4567
Number of iterations

8 10

Figure 78: Plot of the vector difference term against iteration number for test vectors TV4, TV7, TVS
and TV9 resulting from iterative target testing modifying only negative values.

£ o

8
O

3s§o
O

0.1

0.01

0.001

0.0001 v

0.00001 =-

0.000001
4567

Number of iterations
8 10

Figure 79: Plot of the correlation coefficient against iteration number for the test vectors TV4, TV7,
TVS and TV9 resulting from iterative target testing modifying only negative values.

172

The vector difference term shows that the test vectors do not all converge at
the same rate. The steep fall after the first factor is expected as all the test vectors
start with very few significant values, after the first test many of the m/e points
contain values as the best fit vector is produced from the data, resulting in a large
difference term. The changes following the first fall are smaller as the vector now
being submitted is much closer to the true factor. From the second iteration onwards
all the test vectors follow the same path except for TV4, which rapidly levels off to
an almost horizontal line, the values for TVS also show a tendency towards this
behaviour as it approaches the tenth factor. The remaining two factors show no sign
of abatement in their logarithmic fall.

The values for the correlation coefficient are shown plotted against iteration
number in figure 79. The graph shows similar results to figure 78, especially for TV4
and TV9. TVS now shows its fall levelling off more clearly and TV7 now also
exhibits the beginning of similar behaviour. The difference is attributed to the neglect
of any negative values in the predicted vector from inclusion in the calculation of the
vector difference. This difference in behaviour, between the vector difference term
and the correlation coefficient, indicates that for TV4 and TV9 both positive and
negative values are changing by similar amounts, and that for the other two vectors
the negative values are changing more than the positive ones. This might indicate that
the vector is moving in the direction intended.

The target test is a least squares fit of the test vector to the data and will try to
minimize the difference between the target and the predicted vectors. This can be
visualized as the orientation of a vector within a space defined by the data. The
orientation of the vector in a particular direction will result in a value for each point
in the vector according to the projection of the data points on to the vector. The target
test minimizes the differences between the projections and the test vector. In a vector
containing only one non-zero value the least squares difference process tries to fit the
data to all the vector points, including the zero values. The data was decomposed
using covariance about the origin giving the zero value a special significance. If a test
vector is composed of only zeros then the result is always an identical vector. This
means that in the least squares process all the points in the vector fit perfectly except
the non-zero point. The vector will move towards the orientation that will allow it to
adopt the value in the test vector but in doing so will force other points in the vector
to have non-zero values thus producing an error between the test and predicted vector.
The final orientation produced from the least squares process will balance the 'pull' of
the zero and non-zero components in the vector producing a vector that points close to
the right direction but is not quite perfectly aligned.

The intention of the iterative target testing process is to modify the points that
are causing the vector to point in the wrong direction so that the vector can orientate

173

itself correctly. If the negative points are changing more quickly than the positive
points then, as the true factor must have all positive values, so long as the negative
values are reducing in size, the vector must be moving towards the true factor
orientation.

Determination of satisfactory convergence was checked by calculating the
difference between the last two iterations of TV4. This is shown plotted in figure 80.
The difference spectrum shows on the positive side (being added to the vector) the
spectrum of FCA and the background; the negative side shows m/e 139 and the
molecular ion cluster for 1-1'DCBF. This suggests that the vector is not converging at
all but is in fact moving further away from the pure 1-1'DCBF spectrum.

Magnitude

8E-4-
6E-4-

4E-4-
2E-4-

0
-2E-4^

U ML, 1L.J. . .11. | i.. .1 . L. i

HI Iteration 10-9, TV4

. I
oooooooooooooWO ^^ CO ^^ LO ^^ LO f*^ ix^ ^^ l^^ ^^ l^} T"" ^^ OJ OJ CO CO ^F ^^ LO ^f) CO *«O

m/e
Figure 80: Plot of the difference between the tenth and ninth iterations ofTV4.

i ne apparent divergence of the test vector suggests that the zeroing of negative
values is not sufficient to perturb the vector and allow it to move towards the true
factor. A close consideration of the spectrum of FCA reveals that there is also a peak
for m/e 139 present and so the addition of the chlorendic spectrum to the 1-1'DCBF
spectrum is explained and the vector was converging on the true factor.

TV7 was made using a very weak peak in the FCA spectrum, m/e 142, that
was not present at all in the 1-1'DCBF spectrum. The results show that its vector
difference is the smallest of any of the tested vectors and that its correlation
coefficient only just starts to level off over the ten factors of the experiment. The
predicted vector from the tenth iteration shows the spectrum of FCA with only a very
small amount of interference from the molecular ion cluster of 1-1'DCBF. The
difference spectra show that the spectrum of FCA is still being added, but in very
small amounts, and also that the molecular ion peak for 1-1'DCBF is still being
added, also in small amounts. The addition is due to some slight mixing of the two
components as only four factors are used instead of the theoretical 19 necessary to
completely describe the data.

174

Intensity
^Ffi-r

4E6-

3E6-

2E6-

1E6

o-

Intensit)
RCfi-

A ^ r*4E6-

3E6-

2E6-

1E6-

0
1 CC- 1 to-

Intensity
c^cbbon

4E6^

2E6

0

OCR-zto

Intensity
occ/:bb

1E6-

0

-Ibb

llll,illi.l < .lll, lblk,l,ll,,ilL L , ,, „ 1
0 O O O 0 Cin o in o in c

*- T- CM CM C

f

\ J .lliiJ,..iJi ^,li,,ilL,.L. J

o o o o o < in o in o in c
T- x- CM CM C

i

\ ., J|, . 1 . .Jl.J J 1. i.U L. _ 1

o o o o o c in o in o in c
r- T- CM CM C

f

d . 1 1 J- j,, k,.iLi i.... .. — ..*.»

8 1 § 1 § f

Scan 68

i 1
DOOOOQOODinoinoinoin oco^TfinincocQ

m/e

!H Scan68-TV12

i I
oooooooo ^inomoinoin vjco^t^tmincDco

m/e

iH Scan68-TV12&TV10

i..._... .. T _

DOOOOOOODinoinomom ocoTtTrmmcocD

m/e

111 Scan68-TV12&TV11

I .
3inom8moS ocOTtrj-inmcoco

m/e
I________—————————_——._____________.__________,
Figure 81: Plots of ITT produced vectors subtracted from scan 68 of data set TB19. Key to charts - Top
to bottom: Scan 68 of data set TB19; Scan 68 minus iterated air background (TV12); Scan 68-TV12
minus iterated 1-1 'DCBF spectrum; Scan 68-TV12 minus iterated FCA spectrum.

175

The results for TVS, also due only to FCA, show an almost exactly similar
pattern.

TV9's results show a mixed spectrum of FCA and 1-1'DCBF and it appears
that the proportion of each spectrum in the predicted vector depends upon the overall
contribution of each component to that value.

The iterative target testing process using single data points seems to work well
for unique points in the spectrum of a component. The selection of a peak that arises
from more than one source results in a mixed predicted vector thus complicating
interpretation. It must be remembered that the results, in this case, are from testing
single m/e values and if more m/e points are added then the vector would be able to
converge on the true factor and not a mixed one.

To test how well the predicted data fits the true data, a series of iterative target
tests were performed using test vectors containing the values of the base peaks of each
component in scan 68 of data set TB19 and the values for the air spectrum in the same
scan. These test vectors, TV 10, TV 11 and TV 12 were tested for ten iterations. After
the last iteration the magnitude of the original peak was seen to have fallen in each
vector so they were scaled back to the original peak intensity. The vectors were then
subtracted from scan 68 and the results shown in figure 81. The background
subtraction (-TV 12) cleans up the lower portion of the spectrum considerably and the
subtraction of the 1-1'DCBF predicted spectrum (-TV10) gives a close approximation
to the FCA spectrum. The subtraction of the predicted spectrum of FCA (-TV11)
gives a good spectrum of 1-1'DCBF in the lower portion of the spectrum but the
molecular ion cluster is modelled poorly. This is due to only four factors being used
to model the data and the calibration problem present during this analysis, the later,
neglected, factors must describe the variation in the molecular ion peak and thus the
predicted vector fits poorly.

The loss in magnitude observed in this experiment for the m/e value
containing the intensity figure was also observed for the uniqueness vectors. Further
tests indicate that the more factors used to describe the data the less the loss in
original value, also, if more points were added to the vector then the reduction in
magnitude of the original points reduced. These results show how the identification of
the correct dimensionality of the data space is important, the addition of superfluous
factors allows an artificially good fit to the factor thanks to the extra degrees of
freedom introduced, they also indicate that to achieve a good result from a single
target test, several points must be included in the test vector. The target testing
procedure will produce a perfect result for any vector containing fewer points than the
number of factors comprising the data. In the case of the uniqueness vectors only one
point is given a significant value and thus might be expected to contradict this rule. In
fact the test vector contains a full 650 points but most of them are zero, this affects

176

the way the factor is aligned with the true factor and, because of the imperfect
alignment, results in the reduction of magnitude observed. The addition of the extra
points produces better and better alignment with the true factor until nearly 100% of
the original value is returned.

In all of the vectors tested, the convergence appears logarithmic over the early
iterations and then as it approaches the true factor, slows considerably. In order to
make the convergence proceed at a faster rate a positive threshold, below which the
vector point was zeroed, was investigated.

The algorithm that set any negative values to zero was modified to set any
values below the minimum value set for the decomposition to zero. The minimum
value was set, as before, using 1/999th of the smallest base peak in the data set. Test
vectors containing the actual intensities of peaks taken from scans in TB19 were used
for the tests; these were TVIO, TV 11, TV 12 and TV 13. The difference terms (figure
82) and correlation coefficients (figure 83) are shown below. The results for the
difference term show a similar behaviour for TVIO, TV11 and TV12 with a rapid fall
after the first iteration and then a levelling out of the gradient, the flat portion of the
curve shows some undulation not observed for the earlier experiment. TV 13 continues
to fall after the first drop and its gradient increases until at iteration 22 an all zero
vector was returned. The results for the correlation coefficient tell a slightly different
story, TV11 shows a sharp fall that levels out into a plateau for several iterations
followed by a slight increase. TVIO and TV 12 also have a sharp fall to a plateau, but
it is much shorter and is followed by stepwise increases. TV 13 shows this behaviour
more strongly reaching a minimum at the third iteration and then increasing in a
stepwise fashion until the all zero vector is returned.

This indicates that the difference term gives a misleading view of the
convergence and that the correlation coefficient is a better measure. The results also
show that the setting of values below a positive threshold to zero removes important
information from the vector resulting, in the worst case, in the loss of all information
in the vector. The problem is exacerbated by the reduction in magnitude of the values
in the test vector as a result of the less than perfect test.

177

1E+7

1E+5

12345678 9101112131415161718192021222324252627

Number of iterations

Figure 82: Plot of the vector difference term against iteration number for test vectors TV10, TV11,
TV/2 and TV13 resulting from iterative target testing with zeroing below a positive threshold.

o
1o o
o:»
JO

§o
O

0.1

0.01 -.-

0.001

0.0001 V

0.00001

Number of iterations

Figure 83: Plot of the correlation coefficient against iteration number for the test vectors TV10, TV11,
TV/2 and TV13 resulting from iterative target testing with zeroing below a positive threshold.

178

The lack of success of the two methods of iterative target testing led to the
consideration of other methods of perturbing the vector based upon accelerating the
convergence by prediction of the direction the vector is moving in.
Differential addition

The result from a target test differs from the test vector due to three possible
changes in the values contained in the vector. The values may increase, decrease or
remain the same. The values that remain the same must be correct for the true factor
being searched for; the changing values change the orientation of the vector in the
factor space to align it with the true factor. If the changing points in the vector are
found and the amount they are changing increased then the vector should converge
more rapidly.

•+v»V

400 -

OCf)
O\J\J

on/IO\J\J

"250
C £.\J\J
<D
D"
o) onnjj; ZUu

LJ.

1*50 -
\\J\J

4t\r\lUU -

en _<j\>

0 -
c o
c

.III
3 ir> o m o m o0 CNJ CM t- i- O O
3 O O O O O O
3 O O O O O O

m o if
O T- T-o o c
0 O C

Second differential

Figure 84: Frequency distribution of the 1 st second differential of test vector TV4for iterative target
testing on data set TB19 using zeroing of negative values only.

To identify the changing points, the differential of the predicted vector may be
considered. Unfortunately the values of the first differential are affected by the
magnitude of the value in the test vector. To avoid having to determine which values
are significant the second differential was used to find the most rapidly changing
values in the predicted vector. To decide which values to modify the frequency
distributions of the second differentials were studied, a typical differential is shown in
figure 84. They indicated that most values in the vector changed very little with only
a few points having significant changes. This led to the use of a standard deviation
threshold to determine which values would be modified. The modification of the test

179

vector was based upon a multiple of the previous change of that point. Provision was
made that if the vector was seen to be 'bouncing' back and forth between two sets of
values (either side of a true factor) then the differential modification would be stopped
and convergence allowed to continue using the effect of zeroing negative points only.

The results from this method of modification were found to be disappointing.
Initially the threshold for the standard deviation was set too low to affect the vector at
all. When the value of the standard deviation threshold was set high enough to perturb
the vector, the addition to the vector, however small, simply increased the values in
the vector and no convergence was ever achieved, the vector increased in size
continually.
Differential subtraction

Adding to the test vector did not produce the desired acceleration in
convergence so the opposite approach was tested. Many of the points in the mass
spectrum change very little from one iteration to the next. These points all have a
bearing on which direction the vector points. Identification of the points and setting
them to zero might allow the vector to align itself more rapidly. Unfortunately, as the
convergence is approached, all of the points in the vector will change very little and
would thus be set to zero. To avoid this problem the magnitude of the point is
considered and if significant it is left unchanged. The significance of each point and
its magnitude are checked by comparison with a standard deviation window. A value
is chosen for the first differential, below which values are regarded as unimportant
and a value set for the predicted vector above which values are regarded as important.
Any point in the predicted vector that has a differential below the threshold and a
magnitude below the threshold for the vector is set to zero to minimize its
perturbation of the next test.

Numerous combinations of values for the two thresholds were tried between
2sd and O.Olsd by testing using TV4 and saving the vector after each iteration. Figure
85 shows the correlation coefficients for the iterations of some of the values tested.
The results showed that use of values below 0. Isd invariably resulted in no
modification to the vector after very few iterations. Values of 0.25sd and above,
showed signs of the vector alternating between two sets of values and never
approaching the true factor. The best results were obtained with threshold values of
0. Isd and O.lsd. These values perturbed the vector for around five iterations before
leaving it to converge affected only by the zeroing of negative components. This
method appears to allow the vector to approach the true factor more closely than
zeroing the negative values, but the difference is small and takes nearly twice the
number of iterations and thus suffers a penalty in the time involved for analysis.

180

0.01 T

•§ 0.001

o
1
<D

8 0.0001 Key: 0.1/0.1 = differential
threshold/vector threshold

0.00001
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of iterations

Figure 85: Plot of correlation coefficient versus iteration number for TV4 during iterative target testing
on data set TB19 using differential subtraction and various values for the differential and vector
threshold.

In conclusion it can be seen that the iterative approach starting from a single
m/e value can produce spectra which at best would be identifiable using library search
and at worst provide the spectroscopist with valuable extra information to aid in the
identification of unknown components.

The differential addition technique proved unworkable as its modifications
perturbed the vector away from the true factor. The differential subtraction technique
shows some promise but offers, in its present form, little advantage over the simple
chemical selection rule of zeroing negative peaks.

The problems of loss of information due to smaller values returning from each
target test were observed and this loss of information limits the number of iterations
possible for any vector. Reinforcing the new test vector with the original test vector
after each iteration may help in increasing the number of possible iterations but the
problem undoubtedly lies in the small number of significant data points available to
orientate the test vector. An increase in the number of peaks attributable to the
component being searched for gives much better results.

181

4.6.3. Multi-component systems

4.6.3.1. Sample history

The program and techniques developed were tested on real problems using the
data from the analysis of two samples. The samples are referred to as MS 1930 and
MS1930A. Both were from similar origin but of different appearance and were
submitted for identification. The analysis procedure used was identical to the
procedure described in the experimental section.

In the original analysis sample MS 1930 was found to be a polyurethane and
sample MS 1930A a chlorinated polymer using the normal techniques applied to the
results of temperature programmed pyrolysis mass spectrometry. Both the samples
contained complex regions early in the TIC pyrogram that were expected to
correspond to evolution of plasticizers, stabilisers, etc. The results obtained from the
standard analysis methods were that MS 1930 and MS1930A contained two
components each and MS 1930 might also contain a third component. Assignments
were made for all of the components believed to be present.
4.6.3.2. Suspected components

Of the components believed to be present in the samples, the first two listed
below were believed to be in MS1930A and the rest in MS 1930.

The components suspected from the standard analysis are as follows:
Chemfos X (propyl substituted phenyl phosphate),
dioctyl phthalate,
2-chloroethyl phosphate,
hexanedioic acid (adipic acid)
and poly(ethylene adipate).

The structures of the additives are given in figure 86 below.
Information about the mass spectra of the components was available from the

following sources. Chemfos X, dioctyl phthalate, 2-chloroethyl phosphate and
poly(ethylene adipate); reference spectra were obtained from the in-house library on
the mass spectrometer data system. Hexanedioic acid; the reference spectrum for this
component was found from the Eight Peak Index of Mass Spectra103 .
4.6.3.3. Data pre-treatment

The original analysis data files were converted to EPA format using the mass
spectrometer data system and transferred to the PC where they were converted to
spreadsheet format using the program. Both files contained 181 scans and their TIC
pyrograms are shown in figure 87, also shown are the regions of the pyrograms that
were selected for study using the program. For MS 1930 this was scans 30-60 and for
MS1930A scans 20-60 were used. The scans were extracted using a spreadsheet.

182

P=O

C-Pr)n

Chemfos X

0(C8H 17-/so)

0(C8H 17-/so)

dioctyl phthalate

CH2CH2CI

O=P—CH2CH2CI

CH2CH2CI

2-chloroethyl phosphate

C(O)O -CH2CH2O-4-
I -I rv

C(O)O
n

poly(ethylene adipate)

HOOC—C4H8—COOH

hexanedioic acid

Figure 86: The structures of the additives suspected to be present in samples MS 1930 and MS1930A.

TIC
5E8

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190
Scan number

II Extracted
III range

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190
Scan number

Figure 87: Plot of the TIC pyrograms for the data sets MS1930 and MS1930A showing the regions
extracted for further analysis.

183

The additives, whose spectra were available in the in-house library on the
mass spectrometer data system, were converted to EPA format files and transferred to
the PC for use in the target testing procedures discussed later. The mass spectrum for
hexanedioic acid was entered into a blank test vector created in a spreadsheet and the
values given in the Eight Peak Index 103 used for the spectrum.

4.6.3.4. Data analysis

Both data sets were analysed using a minimum value of 100,000 and an error
estimate of the same value. The values were arrived at using 1 % of the m/e 28 peak
at the beginning of the reduced series of scans, this is also the smallest base peak in
the data and thus 1/999th of its value represents the smallest meaningful value.

Both analyses ran to the theoretical maximum number of factors, as has
occurred with all previous data sets.
4.6.3.5. Determination of the rank of the data

The variance accounted for, in both data sets, by the first fifteen factors is
given in table 42 along with the values for the percentage significance levels. The
percentage variance values give very little information about the dimensionality in
either data set; both account for more than 99% of the variance after only three
factors. The values for percentage significance level indicate that for both data sets
there are eight significant factors.

Factor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Data set
MS1930
% Variance

83.41
11.36
4.36
0.54
0.26
0.05
0.01

3.71E-3
1.84E-3
1.30E-3
9.85E-4
8.32E-4
6.60E-4
6.30E-4
4.92E-4

%SL
0.0
0.0
0.0
0.0
0.0
0.0
0.2
4.8

11.2
14.6
17.1
18.1
20.2
19.2
21.5

MS1930A
% Variance

87.53
10.98

1.10
0.24
0.10
0.02
0.01

3.41E-3
1.92E-3
1.26E-3
1.02E-3
9.07E-4
8.45E-4
7.85E-4
7.04E-4

%SL
0.0
0.0
0.0
0.0
0.0
0.1
0.8
6.1

12.1
17.6
20.0
20.9
21.1
21.4
22.2

Table 42: Table of percentage variances and percentage significance levels for the first

fifteen factors in data sets MS1930 and MS1930A.

184

1E+17

Eigenvalue

SEE

1E+11

1E+10 H—I—h

Factor number

Figure 88: Plot of eigenvalue and standard error in eigenvalue for data set MSI 930.

1E+17

1E+16

1E+10 ————————

Figure 89: Plot of eigenvalue and standard error in eigenvalue for data set MS1930A.

185

The eigenvalues and standard error in eigenvalue for both data sets are given
in figures 88 and 89. The SEE values indicate 7 and 5 factors for MS 1930 and
MS1930A respectively. The difference between the estimates produced from the use
of this error term and the %SL has been noted before and is due to an over-estimate
of the error in the data set.

The shape of the graphs of the eigenvalue for both data sets indicates a sharp
change in gradient at around factor 9, close to the 8 factors suggested as the
dimensionality of the data by the %SL term.

The real error terms calculated for the data (shown in figure 90) indicate that
at 8 factors the error in data set MS1930 is 16,800 and MS1930A is 9,600.
Consideration of the size of the data sets shows that the magnitude of MS1930A is
around half that of MS 1930 and in the same ratio as the RE values. The plots of the
real error term also show an inflexion at around factor 8, adding weight to the
selection of that number for the dimensionality of the data.

1E+6

1E+5 :
LU

<D

1

1E+4 :

1E+3
ootOh-cTJT-rOLOh-OiT-oom

Factor number

O) T- CO tr>
CO

r^~
CO

o>
CO

Figure 90: Plot of the real error (RE) terms against factor number for data sets MS1930 and MS1930A.

The results for the imbedded error and indicator function are shown for
MS 1930 and MS1930A in figures 91 and 92 respectively. The results for both data
sets clearly indicate that there are eight primary factors in the data, both the indicator
function and the imbedded error reach minima, though in the case of the imbedded
error it is only a local minimum.

186

120000

100000 --

U? 80000

g
-S 60000 +
®

.o
1 40000

20000 -

0

10000

-: 1000

o

-: 100

10

Factor number

Figure 91: Plot of imbedded error (IE) and indicator function (IND) versus factor number for data set
MS1930.

40000

35000

HI

10000

1000

- 100

oz
c o
3=
O

1

-: 10

CMCgCNCMCMCOOOCOCOCO

Factor number

Figure 92: Plot of imbedded error (IE) and indicator function (IND) versus factor number for data set
MS1930A.

187

Magnitude
0.4

0.2--

0

-0.2--

-0.4

—— Factor 1
-— Factor 2

CM^ CN OOOCM-^-

Scan no

Magnitude
O.c

0.2--

0.1

0

-0.1 --

-0.2

- Factor 1
--- Factor2

I I I I I H I I I I-H I I I I I I I f H I I I I M I I I I I I I I I I

Scan no
Magnitude

0.4

0.2--

Magnitude
0.6

-0.2--

-0.4

Scan no

-0.6 I
TrTr^r-«3--«9-LnLf)Str)ini

Scan no

PCMTl-CpCOOOJ«J-COeO
CNJ CNJ CO CO CO CO CO

Magnitude
0.

Magnitude
0

-0.2--

Scan no Scan no

Magnitude
0.6

0.4--

0.2-

0

-0.2-

Factor 7
Factor 8

-0.4 - I I I I I I M I I I I I I

Magnitude
0

Scan no

-0.2 -

-0.4 - I |

Scan no

Figure 93: Plots of the loadings for factors 1 to 8 for the data sets MS1930 and MS1930A. Left hand
charts are MS 1930 and right hand charts MS1930A.

188

4.6.3.6. Abstract column matrix

The eigenvectors of all eight primary factors are shown in figure 93, the
eigenvectors for data set MS 1930 are on the left and those for MS 1930A are on the
right. In both cases the first factor shows the shape of the TIC pyrogram indicating
that the variance from the sample is greater than the variance from the background
over the range studied.

The second factors show, in MS 1930, a separation of the two peaks apparent
in the TIC pyrogram and in MS1930A, an inverted TIC pyrogram typical of the
background. The background factor for MS 1930 appears at factor 3.

Factor 3 for MS1930A shows a steady rise over the course of the data and
probably describes the variance introduced by the large long peak seen in the TIC
pyrogram (figure 87). A comparable factor is not observed for MS 1930 and
observation of the TIC pyrogram shows a smaller rise in TIC over the extracted
range. This will reduce the variance introduced into the data by that factor and
probably results in the variance being mixed into factors 5 and 6 that both start low
and finish high.

Factor 4 for both data sets shows a maximum at scan 49 and a minimum that
appears around scan 41. Factor 4 for MS1930A also shows a secondary maximum at
scan 32 that is not seen in any of MS1930's factors.

Factors 5 and 6 for MS 1930 show smooth profiles in comparison to the same
factors for MS1930A that contain many jagged edges. This indicates that the factors
for MS1930A are beginning to describe the unique behaviour of individual points.
They still describe a more general source of variance in the data but it is beginning to
become submerged beneath the many small variances produced from the experiment.
The smooth curves of MS 1930 describe, for factor 5, the general increase in TIC over
the range of the data (mixed with some of the earlier factors), and, for factor 6, an
event in the data at scan 51.

Factors 7 and 8 for both data sets contain many sharp features caused by much
smaller perturbations of the data and do not readily yield useful information.

The factors certainly indicate that there are more components in the MS 1930
data set than in the MS1930A data set, as suggested by the standard analysis.

189

Intensity
1PQI CO

8E7

4E7-
2E7-

Intensity

2E7
0-

-2E7-

-4E7

Intensity
3E7n
2E7
1E7

0-
-1E7-
-2E7 ———————————————————————————————— ———

• Factor 1

I

oooooooooooo m/p in o in o m o in o in o in o lll/c

J ||| Factor 2
. ^u ii^i L

. i T f ' " '
OOOOOOOOOOOO m/ein o m o in o in o m o in o""c

i

Factors

V fl I'M

OOOOOOOOOOOO m/ein o m o in o in o in o in o m/c

Intensity
/M™~ O

6E6
3E6-

0-
-3E6-
-6E6-

HI Factor 4
J ,JU lilj..,._. I . i- •• • ' y H | |J ii'- V r '• j • p^- «•

-9E6 oooooooooooo m/e inoinomoinoinoino m/e

Intensity
A t~ f*4E6

o-
-2E6-

A 1^ f*

Factor 5i i j l
lik +JiR J J.Ji^J ' •- j ' j v. p| ..'- -, , ,

-4E6 ————— ~ ——————
oooooooooooo m/e in o m o m o in o in o m o""c

Intensity
oto-
2E6
1E6-

o-
-1E6

1 Factor 6

1 J L 1 ——————, ,. .- ,. , r-^-1 — ̂ -" *••••• —— ' —— ̂ ———————————————

OOOOOOOOOOOO m/pirjomomoinoinoino "l/fc!

Figure 94: Plot of factor scores 1-6 for the data set MS 1930.

190

Intensity
QC7OC.I

6E7-

4E7-

2E7
0-

Intensity

6E7
4E7-

2E7-

0-

Intensitv
QC7OC.I

oh/ -

4E7-

2E7-

o-

Intensit^
OC.I

6E7-

4E7-

2E7

0

lntensit>
1EO-

OC "1oh- i -
6E-1-

4E-1
2E-1

0

I 1.

,il
o

t

o
IT)

/

11.

s

/

8

Chemfos X

UlI....L.... . . ,1 .., u ,1 .1 .

dioctyl phthalate

„ , , 1
o o o o o o o o o o o m/e

ifjj 2-chloroethyl phosphate

, L . , , 1 L .
^^ ^^ ^^ C5 ^^ ^^ ^^ ^^ ^^ ^^ ^^ m/^^^ LO C^ UO f^ l,^ ^^ i,fj ^^ l^ c^3

^§ poly(ethylene adipate)

Jll J.I ..,
ooooooooooo rn/e

^g hexanedioic acid

ooooooooooo m/0

Figure 95: The mass spectra of the components suspected to be present in data sets MSI 930 and
MS1930A.

191

4.6.3.7. A bstract ro w matrix

The scores for the first six factors of data set MS 1930 are shown in figure 94
and the mass spectra of the suspected components given in figure 95.

Factor 1 shows the average spectrum; factor 2 gives a separation between the
two major sources of variance, in this case, the two visible peaks in the TIC
pyrogram.

Factor 2 shows, on the positive side of the score, strong peaks at m/e 44,45
and 129. These peaks appear in the spectrum of poly(ethylene adipate). The negative
side of the score shows peaks that exist in the spectra of 2-chloroethyl phosphate,
hexanedioic acid and dioctyl phthalate.

Factor 3 clearly shows the background signal on the positive side of the factor
with strong peaks at m/e 18,28 and 32. The negative side of the factor shows peaks
found in hexanedioic acid and possibly Chemfos X.

Factor 4 provides a separation between 2-chloroethyl phosphate on the
negative side and hexanedioic acid and possibly Chemfos X on the positive side. In
this case the spectrum on the negative side is a close approximation to the true
spectrum of 2-chloroethyl phosphate though some peaks from other components are
still visible.

Factor 5 shows peaks not present in any of the suspected components on both
sides. This indicates the presence of another unknown component, as the factor has
already been ascribed to the increase in TIC over the course of the extracted data
segment, then the peaks visible are probably from the source of that peak.

Factor 6 has so many other factors mixed in with it that interpretation is
difficult.

The result of looking at the abstract factors gives an indication that the
components might be present in the sample but it is difficult to point to a single factor
containing only the spectrum of a component. To confirm the presence of any of the
additives it will be necessary to target test. Before that stage is reached a further
method that can be used for identifying which m/e values are associated is by use of a
scores plot.

Figure 96 shows the scores for factors 2 and 3 plotted against each other. At
the top of the chart are the m/e values for the background. Just below the horizontal
to the right, are mass peaks visible in the poly(ethylene adipate) spectrum supporting
the assumption that it is a component in the data.

Below the horizontal to the left are the peaks found in the spectrum of
hexanedioic acid also pointing to the presence of that compound in the sample. It is
noteworthy that m/e 55, a peak present in both poly(ethylene adipate) and hexanedioic
acid is positioned midway between the two directions for the components.

192

Score 3
3E7

2E7

1E7

-1E7

-2E7
-4E7 -2E7 2E7 4E7

Score 2
Figure 96: Plot of scores for factor 2 versus factor 3 for the data set MS1930.

Just above the horizontal to the left are peaks found in the spectra of
2-chloroethyl phosphate and dioctyl phthalate, the two factors chosen do not give a
separation between the two components. This indicates that they contribute less to the
variance in the data set than those that are separated, this leads to the conclusion that
the components are present in lesser quantities than the two separated components.

Just visible at the bottom of the chart are m/e 77 and 118, these peaks are
present in the Chemfos X spectrum but their small size and lack of any other
substantial indication of their presence suggests that if a component at all, it will be at
a very low concentration.

The first six factor scores for data set MS1930A are given in figure 97. Factor
1 shows the average spectrum over the whole of the extracted data range.

Factor 2, whose eigenvector (figure 93) was assigned to describing the
background, can now be seen to provide a separation between the background, on the
positive side, and what must be the major component of the peak on the negative side.
The spectrum on the negative side of the factor appears very similar to that for dioctyl
phthalate (figure 95).

193

Intensity
RC7 VC.I

4E7-

2E7-

o-

Intensity
2E7 1
1E7-

0-

-1E7-

-2E7-

lntensit>
QEfi-i^I_VJ

6E6-
OCCobo

o-
-3E6-
ccc-obo

Intensity
2E6-
1E6-

o-
-1E6-
-2E6-
-3E6-

A i™ o-4E6-

Intensit}
•1 CC1 to

5E5
o-

-5E5-
-1E6-
-zbo

Intensity
Ibo
8E5-
4F*S-
^Lv/o-

-4E5-
-8E5-
-Ibo

Factor 1

. Ill.Mlli.Ul.ll., ., .1. i ..

OOOOOOOOOOOO m/elooinoinoiooLoomo /e
T-T-CNCNIOOCOTtTflOlDCO

H Factor 2

* ^"1 y r-ir- • 'i • • ••- - - * - - •

oooooooooooo m/e in o in o m o in o m o in o /c
r-r-CMCNICOCO-tTtinincO

r

• Factors
1

. i J j.^. A_LL»iLVi»k.j .L^I. ._^ j. ^ i ^^^._ . . i . 1 , . L

OOOOOOOOOOOO m/em o m o in o in o in o m o c T-T-csicsicocO'srTtinincD

^

IH Factor 4
. Y l iLLlLll^.ii 1 -ly^J- "• • • ' --^U... .,. 1 i I 1 i . i

oooooooooooo m/e m o m o m o in o m o m o /c
T-T-CNCMOOOO^-^-lOlOtO

/

i Fd^T'or ^ II nav/lUI O__,,, jjj JiJli l(J ,, lit,* ,.l k,ii,Ui. Uf . L 1 M i . 1 , ———————
/"|fr • '
oooooooooooo m/p in o m o in o m o in o m o /c

T-r-CMCNICOCO^-^-lOlOtO

^
iiiiiiiiP Poot/"^!* £%raClUI D

-Y.U^.M ^.X J T ', T.Vr ' ———— »"'L •'••?'' ' ' ——— T-T-T ——— -J ———————————————————————————

oooooooooooo m/e Lnomomomoinomo /e T-T-cMCMcoco-<^Ttininco
,

97: Plot of factor scores for the first six factors of data set MS1930A.

194

Factor 3 shows a positive spectrum containing a very strong m/e 36 and m/e
38 (HC1) signal that is probably from the chlorinated polymer rather than an additive,
this conclusion is supported by the assignment of the associated eigenvector to
describing the overall increase in TIC over the range of the data set. The negative side
of the spectrum shows a strong signal at m/e 18 (H2O) as well as some of the stronger
signals from dioctyl phthalate, the phthalate signals are probably just mixed in with
the factor, which describes a variation in m/e 18 that is not accounted for by factor 2.
This kind of behaviour is typical of m/e 18 and has been observed in all of the
previous samples analysed.

Factor 4 shows m/e 36 on its negative side with some peaks from dioctyl
phthalate and a spectrum similar to that seen on factor 3 on the positive side. It is
thought to describe some variance in the overall increase in TIC.

Factor 5 is more interesting as it shows evidence of Chemfos X on the positive
side, though mixed with something else, and on the negative side shows a spectrum
that looks similar to hexanedioic acid.

Factor 6 appears to be describing much smaller sources of variance in the
data, the only two large peaks are for m/e 18 and m/e 28 so amongst other things this
factor describes the variance between these background signals not accounted for by
factors 2 and 3.

To assist further in visualising the sources of variance in the data, the scores
plots for factor 2 versus factor 3 (figure 98) and factor 4 versus factor 5 (figure 99)
are given. Figure 98 shows three distinct sources of variance, vertically from m/e 36,
to the right from the background and to the left from m/e values found in dioctyl
phthalate. Other sources of variance are indistinct and clustered about the origin.

To better show the other sources of variance factor 4 and 5 were plotted
against each other in figure 99. This view of the data shows the earlier factors to the
left and two further sources of variance at right top and bottom. Right top contains the
m/e values seen in the spectrum of Chemfos X and right bottom contains the values
associated with the hexanedioic acid spectrum.

In order to confirm the presence of the additives in the data it will be
necessary to perform target tests and compare the predicted vectors with the suspected
additives.

195

Score 3
9E6

6E6-

3E6

-3E6

-6E6
-2E7 -1E7 1E7 2E7

Score 2
Figure 98: Plot of scores for factor 2 versus factor 3 for the data set MS1930A.

Score 5
1E6

5E5--

-5E5--

-1E6--

-2E6

100

-4E6 -3E6 -2E6 -1E6 1E6 2E6
Score 4

Figure 99: Plot of scores for factor 4 versus factor 5 for the data set MS1930A.

196

4.6.3.8. Target tests

Target tests were performed for each of the suspected components. The test
was carried out using a test vector normalized to unit intensity, this allows a rough
estimate of how close to the true factor the test vector is, as a true factor will return
100% of its original intensity and the further away from the true factor the test vector
is, then smaller intensities are returned in the predicted vector. An arbitrary error
estimate of 3 % was entered for each test vector.

The results of the target tests for each of the five suspected components, on
each of the data sets, are given in figures 100-104 on the following pages, along with
the original test vectors for comparison.

Figure 100 shows the test for Chemfos X. The result of the test for MS 1930
shows a good match for the base peak and one or two other peaks in the spectrum but
mostly the fit is not very good. There is little evidence here to suggest that Chemfos
X was a component in the sample. The test for MS1930A shows a good match
between the test and predicted vectors. Most of the major peaks in the test vector are
reproduced in the predicted vector and in roughly the same intensity ratios. The
predicted vector appears to be considerably more complex and shows some strong
peaks not present in Chemfos X. The result provides good evidence for the presence
of Chemfos X or a similar compound in MS1930A.

Intensity
1.0n
0.8-

-O~

0.4-
0.2-
0.0-

Intensity 00.0
0.6-
0.4-
0.2-
o.o-

-0.2 J

Intensity
O /;

.0

0.4-
0.2-
o.o-

-0.2-

f

I I I , i J, i LLi~i... i I ..I I. i
oooooooo inoinomomo

r- T- CN CM CO CO "t

f

m
i i i, LV.luL.II^,.,.^,. J.. . , .1.) .1.. i I

OOOOOOOOinoinomomo
t- T- CM CM CO CO Tf

, •

" 44V'>'U1-'U^.'' J ...ilL.,..llll" T* 1"! *^i • r • i r

oooooooo KoioomoinoT- T- CM CM CO CO TT

^§ Chemfos X

, I
o g o o m/e
^t in in co

1 Predicted vector- MS1 930

o o o o m/p in o in o " I/B •^ in in co

Predicted vector - MS1930A

i . I

o o o o m/e
^ in m co

Figure 100: Plot of test and predicted vectors for Chemfos X in data sets MSI 930 and MS1930A.

197

Intensity
1 0-,

0.8
00.0
0.4-
0.2
0.0

Intensity

0.3
0.2
0.1-
0.0

-0.1
-0.2 J

Intensity
1.0n
0.8-
0.6-
0.4-
0.2-
0.0-

-0.2 J

r

r

r

jj
o in

jil

8

j

Oin

L
c c
T

Ulll^M

i
T

J.,.

c c
T

.I..

3 C
3 U
•• T

IJn

3 C
3 U
- T

-I.,

D C
3 lj
— T

^H dioctyl phthalate

l
3OOOOOOOOO m/Poomoinomoino

iH Predicted vector- MS1 930

.J ._..L ^ . * i , . ,

DOOOOOOOOO m/e•5 o in o in o in o in o'c

llf Predicted vector - MS1930A

.... .1 .
3OOOOOOOOO m/en o in o in o in o in o""c

Figure 101: Plot of test and predicted vectors for dioctyl phthalate in data sets MSI 930 and MS1930A.

Intensity
1.0-
0.8-

.0-
0.4-
0.2-
0.0-

Intensity
O Q.cJ-
0.6-
0.4-
0.2-
0.0

-0.2 J

Intensity On.2-
0.1-
o.o-

-0.1-
-0.2-
_n ^« \j.\j

f

f

i

-*+*

1,
o in

8

JJJ

Om

lUf 2-chloroethyl phosphate

I,,,.!.. ,,l
OOOOOOOOOOO m/eoinomoinoinomo m/c

• Predicted vector - MS1930

. ,._ 4 LL.. L Lil.l ...

ooooooooooo m/e o to o in o m o in o in o '

i . ^^ Predicted vector- MS 1930A

ooooooooooo nri/e

702.
MS1930A.

Plot of test and predicted vectors for 2-chloroethyl phosphate in data sets MS1930 and

198

ntensity
1.0 T
0.8-
0.6-
0.4-
0.2
O.O 1

poly(ethylene adipate)

2 m/e

Intensity
1.2 T
0.9-
0.6
0.3
0.0

-0.3
A JdLiLkii

Predicted vector- MS 1930

o o oLO o o om o
CO

oin o o o to o o om

Predicted vector- MS 1930A

<JUL.

Oin Oo Oin Oo Om Oo Om OOo in g m/e

Figure 103: Plot of test and predicted vectors for poly (ethylene adipate) in data sets MS1930 and
MS1930A

Intensity
1 nT.U-
0.8-

.0-
0.4
0.2-
0.0 J

Intensity
10.£.-

0.9-
.D-

0.3-
0.0-

_n ^
U.w

Intensity
1.0n0.8-

O c .0
0.4-
0.2-
0.0-

-0.2 J

f

f

" ,ll

r

: J
]

o m

|i
o in

,l
0m

||r

I

.It

I,

C

r

C

r

C
T1

hexanedioic acid

30000000000 m/e 3 in o in o in o in o in o""c

111 Predicted vector -MS1 930

30000000000 m/e 3 10 o 10 o m o in o in o" l/c

• Predicted vector- MS 1930A

V f V -"r-

3OOOOOOOOOO m/P$ in o m o in o in o in o""c

Figure 104: Plot of test and predicted vectors for hexanedioic acid in data sets MS1930 and MS1930A

199

Figure 101 shows the results for dioctyl phthalate. The test for MS 1930 shows
the base peak being fitted wrongly to the m/e 18 peak, the m/e 149 peak, which
should be the base peak only returns an intensity of 24%. Most of the other peaks in
the spectrum are not fitted at all or fit poorly suggesting that this is not a component
in MS 1930. The predicted vector for MS1930A gives a very good match with all the
major peaks fitted and in the correct ratios indicating that this is a component in
MS1930A.

Figure 102 shows the results for 2-chloroethyl phosphate; this gives a much
better test for MS 1930. All the major peaks in the spectrum are fitted well and the
base peak returns nearly 80% of its original intensity. This result certainly supports
the inclusion of 2-chloroethyl phosphate as a component in MS 1930. The results for
MS1930A quite clearly show that 2-chloroethyl phosphate is not a component in
MS1930A as almost none of the test vector peaks are fitted.

Figure 103 gives the results for poly(ethylene adipate). In this case the base
peak is not fitted correctly in either result. Some of the peaks have a good fit for
MS 1930, but some major peaks are missing and the intensity pattern is not fitted at
all. The results shown here do not support the inclusion of this as a component in
MS 1930 but they indicate that there is a component with similar spectral features to
the test vector. The test for MS 1930A shows that the predicted vector is trying to fit a
completely different component to the major peaks of the test vector thus ruling out
its inclusion in the components of MS 1930A.

Figure 104 has the results from the target test for hexanedioic acid. This test
differs from all the others as the test vector was taken from the Eight Peak Index 103
and therefore contains very little information. It can be seen that a very good fit for
all the peaks in the test vector has been obtained for MS 1930. All of the peaks are
fitted and in the correct ratios (excluding an overly intense base peak). The test for
MS1930A produces a spectrum very similar to the predicted vector for MS 1930, there
are some visible differences in the ratios of the peaks and two peaks at m/e 128 and
m/e 149 are also visible. These extra peaks are also present in the MS 1930 test; if
they are related to the true factor then it cannot be hexanedioic acid, which only has a
mass of 146. It would appear that something is a component of both data sets but
further study is necessary to prove conclusively that it is hexanedioic acid.

The error terms produced from the target tests are shown in table 43. It can be
seen that the RELI function shows a good match for all of the components though
study of the predicted vectors has shown this is not the case. The calculation of RELI
is largely affected by the error estimate in the test vectors and as no estimate was
available the RELI values must be regarded as suspect.

The values for RET are generally above 0.03 for the vectors that give poor
tests and below 0.03 for the vectors producing good tests. The best fitting test (dioctyl

200

phthalate, MS1930A) has an RET value that approaches the 1 % error estimate found
in the mass spectrometer data. More interesting is the SPOIL value that is better for
the poor tests than the good tests in MS 1930 though in MS1930A it produces an
acceptable value for dioctyl phthalate. The values calculated for %SL are all zero
except for MS1930A and dioctyl phthalate, which produces a significance level of
6x 10~8 . The failure of the error terms to provide a useful indication of true factors is
ascribed to the large number of components in each test vector, few of which are
significant to the identification of the component but all add to the error terms
calculated, and the distribution of error in the data is not absolute but proportional,
invalidating some of the assumptions used in the derivation of these error terms. It is
clear from the result for dioctyl phthalate that when a perfect test is approached then
the error terms start to behave normally but can be misleading until then.

Test vector
Error est.

AET
REP
RET

SPOIL
RELI
%SL

MS1930
A
0.03

0.038
0.004
0.038

10.2
79.3

0

B
0.03

0.044
0.004
0.044

10.9
68.7

0

C
0.03

0.029
0.002
0.029

15.7
104.3

0

D
0.03

0.036
0.003
0.036

10.4
83.3

0

E
0.03

0.027
0.002
0.027

15.9
111.8

0

MS1930A
A
0.03

0.038
0.004
0.038

10.0
80.2

0

B
0.03

0.016
0.004
0.015

3.8
192.3
6E-08

C
0.03

0.049
0.006
0.049

8.4
62.0

0

D
0.03

0.047
0.005
0.047

9.5
64.7

0

E
0.03

0.041
0.007
0.040

6.0
75.3

0
Key: A = Chemfos X; B = dioctyl phthalate; C = 2-chloroethyl phosphate;
D = poly(ethylene adipate); E = hexanedioic acid.

Table 43: Table of error terms resulting from target testing suspected components of

MS1930 and MS1930A using 8 factors to model the data.

As a further attempt to quantify the similarity between the test and predicted
vectors the product-moment correlation coefficient (equation 48) was calculated and
also Bessel's inequality test 104 performed according to the formula in equation 50,
where the coefficient of fit, b, is found from the ratio of the norms of the test and
predicted vectors. The result of the function ranges between 0 and 1, with 1 being a
perfect fit.

b = (50)

The results from these calculations are given in table 44, the values have been
converted to percentages for easier reading. It can be seen that for Chemfos X both
score 75% for correlation and 57%,58% for Bessel inequality, but the results of the
target tests are quite different (figure 100) and quite clearly indicate that these
functions can give misleading values as well. The target test indicates quite clearly

201

that Chemfos X is not a component of MS 1930. The values found for dioctyl
phthalate give good agreement, as do the values for 2-chloroethyl phosphate.
Hexanedioic acid is clearly indicated in MS 1930 and is also indicated to be in
MS 1930A though the Bessel inequality test is not as large as the correlation
coefficient. The results also suggest that poly(ethylene adipate) is in both samples
though the target tests suggest that this is not the case. It must be concluded from
these answers that these measures also suffer from the same problem of being too
sensitive to the small peaks in the spectra and therefore indicate the existence of
components not present in the sample. The Bessel inequality test appears to be more
sensitive to poorly fitting tests and may prove to be more valuable than the correlation
coefficient. These two terms may be of more value in ruling out what is not present in
the sample but as a unambiguous quantification of fit they appear unreliable.

Correlation coefficient
Chemfos X
Dioctyl phthalate
2-chloroethyl phosphate
poly(ethylene adipate)
hexanedioic acid
Bessel inequality test
Chemfos X
Dioctyl phthalate
2-chloroethyl phosphate
poly(ethylene adipate)
hexanedioic acid

MS1930
75%
48%
84%
88%
92%

MS1930
57%
24%
71%
79%
85%

MS1930A
75%
95%
38%
79%
81%

MS1930A
58%
90%
16%
65%
66%

Table 44: Table of correlation coefficients and Bessel inequality tests for the target tests of

suspected components on data sets MS1930 and MS1930A.

The results from target testing positively identify 2-chloroethyl phosphate and
hexanedioic acid in MS 1930 and dioctyl phthalate in MS 1930A. The results also
indicate the presence of Chemfos X or a similar material in MS1930A. This is in
agreement with the results obtained from the normal analysis. The target testing has
also ruled out the presence of poly(ethylene adipate) in MS 1930 and suggested the
presence of hexanedioic acid in MS 1930A, which was not observed at all in the
normal analysis.

The target testing has raised question marks against the identity of the
components identified as hexanedioic acid and Chemfos X from the normal analysis
and these will be investigated further using iterative target testing.

202

4.6.3.9. Iterative target tests

To confirm the presence of each component in the data sets the strongest eight
peaks of each suspected component were tested using iterative target testing (ITT).
The iterative target testing procedure using differential subtraction, as developed
earlier, was used. Each data set was tested for each component to confirm the
negative as well as the positive results.

Eight peaks were chosen for the target testing as eight factors are responsible
for the data. This complies with the requirement that the test vector must not contain
fewer points than the number of factors comprising the data. This requirement is
strictly only necessary when points in the vector are free floated, unlike the present
case where a full test vector is being used but containing many zero values. By the
use of eight factors it was hoped to converge towards the suspected component even if
some of the masses selected arise from more than one component, as is almost certain
to be the case for the lower mass peaks. Theoretically if a peak can be found which is
unique to the component being looked for then only that mass number would be
necessary for the test vector.

A problem arises with the test vector for hexanedioic acid, as this test vector
was obtained from the Eight Peak Index 103 then only eight masses are available. It
may be possible to use a subset of these masses if they are unique or are added to by
different components but it is difficult to select these masses. All eight peaks are
therefore used for the test vector and the resulting vector studied closely.
Data set MS] 930

The results from target testing indicated that 2-chloroethyl phosphate and
hexanedioic acid were present in this sample. The results of the iterative target testing
for 2-chloroethyl phosphate are shown in figure 105. The resulting vector can be seen
to match all the peaks of the test vector and follow their intensities reasonably well.
The similarity between the unreduced component spectrum and the predicted vector is
also marked. The only noticeable divergence is for m/e 28 and this is probably due to
the subtraction of the background from the component spectrum. It can therefore be
concluded that 2-chloroethyl phosphate is present in the sample.

Figure 106 shows the result of the ITT for hexanedioic acid. All of the eight
peaks in the test vector are present in the predicted vector and are the eight strongest
peaks in the spectrum; the intensities are also very similar. Little else may be said
about the resulting spectrum without a complete spectrum of hexanedioic acid to
compare it with. The conclusion, based upon this evidence is that hexanedioic acid is

present in the sample.
Figure 107 shows the results for poly(ethylene adipate). The resulting vector

has peaks for all of the eight peaks in the test vector but the intensities are wrong and
the base peak in the predicted vector is not the same as the test vector. Consideration

203

of the predicted vector with the complete spectrum shows that though some peaks
appear, most do not. The component can be regarded as not being present in the
sample.

Figure 108 gives the results for Chemfos X; this test gives a clear indication
that the component is not present in the sample. Very few of the peaks in the test
vector are fitted at all and the predicted vector looks nothing like the full spectrum of
Chemfos X.

Intensity
QC7ot / --

6E7
4E7
2E7

0 i.
8

Intensity
OCT7
Ot/

6E7-
4E7-
2E7-

o-
8

Intensity
5E7-
4E7-

2E7-
1E7-

0- i 1 1 ..lUili

• 2-ch

, i.ii .[.. .L.1
oooooooo oinoinomom

1
oooooooo oinoinomom

,, .1 l.i 1, L L It li , I
-1E7 —————

loroethyl phosphate

o o o m/p o m o " l/c

^g Test vector

8 8 8 m/ein in co

H 1 0 Iterations

§ S § m'e
Figure 105: Plot of suspected component, reduced Speak test vector and result from 10 iterations for
2-chloroethyl phosphate in data set MSI930, exhibiting a positive result.

204

Intensity
1EO-T

8E-1-
CC 1ob- i -
4E-1-
2E-1

Oj

Intensity
4 Cf\IbO-

8E-1-
6E-1-
4E-1-
2E-1

0
-2E-1

oin

f

ill
§

1 L

c c
T1

c
^

i I

3OOOOOOO3inomoLOom
-•"-CMCNCOCOTt^

...f I.I. . . __ IL

B o o o o o o o Cn o in o in o m
-T-CVJCMCOCOTtTt

H hexanedioic acid

o o o m/p o in o l/cin in co

JH! 10 Iterations

o o o m/e o in o " l/cm in CD
Figure 106: Plot of suspected component and result from 10 iterations for hexanedioic acid in data set
MS1930, exhibiting a positive result.

Intensity
8E7y
6E7-
4E7-
2E7-

poly(ethylene adipate)

iiiii.i
o 10 o in oo o in o o om o o o o oin § m/e

Intensity
8E7-
6E7-
4E7--
2E7-

Test vector

Oin Oo Oin Oo Om Oo Oin Oo Otn Oo Oin § m/e

Intensity
6E7y
4E7-
2E7-

0
-2E7

Ud L..ILII LL.

10 Iterations

-_L

2 m/e

Figure 107: Plot of suspected component, reduced Speak test vector and result from 10 iterations for
polyethylene adipate) in data set MS1930, exhibiting a negative result.

205

Intensity

6E7-

4E7
2E7

0-

Intensit
8E7
6E7
4E7
2E7

0

Intensity

3E7
2E7-
1E7-

0
-1E7 —————

i Jl, i
o in

/

0

r

- p j ^

o in

LL.
0
0

,u

0o

• Chemfos X

.. L 1 ..1 1 J t 1 .1 .

oooooooooo m/p inoinoinoinoino m/c

Bl Test vector

oooooooooo m/e looinoinoinoino Ml/c

H 10 Iterations

i .L_. ^tL.i ll _i_ . 1 il L il», L 1 ^

88888888888 m/e
Figure 108: Plot of suspected component, reduced 8 peak test vector and result from 10 iterations for
Chemfos X in data set MS 1930, exhibiting a negative result.

Intensity
ot /
6E7-
4E7-
2E7-

0-

Intensity
QC7ob/ ~
6E7-

4E7-
2E7-

0-

Intensity
ot /
2E7
2E7-
1E7-
5E6-

0
CCC-obb

r

t

f

ill
Oin

I
o in

ilJ
o in

I.,
c c
r

I
C
T

C

T

3
3

3

D

C
U
T

C
U
T

C
U
T

ill Dioctyl phthalate

\
3OOOOOOOOO m/e-> o in o in o in o in o m/c

Test vector

,
DOOOOOOOOO m/eooinoinomoino " l/e

• 10 Iterations

. .1 .. 1. L.. , .. i . L

DOOOOOOOOO m/p oomoinoinoino lll/e

Figure 109: Plot of suspected component, reduced Speak test vector and result from 10 iterations for
dioctyl phthalate in data set MS1930, exhibiting a negative result.

206

The final component's results are shown in figure 109. The dioctyl phthalate
spectrum can be seen to be missing from the predicted vector. The base peak is
incorrect and only a few of the peaks in the test vector have been fitted.

It may be concluded that out of the components tested; the only ones present
in the sample are 2-chloroethyl phosphate and hexanedioic acid.
Data set MS1930A

The same test vectors were used on data set MS1930A in order to substantiate
the earlier conclusion from target testing that the sample contained dioctyl phthalate
and Chemfos X.

Figure 110 gives the result for dioctyl phthalate, unlike the predicted vector
for MS 1930, in this case the predicted vector fits the test vector very well in both
position and intensity. The original spectrum of dioctyl phthalate also fits the
predicted vector very well confirming the presence of dioctyl phthalate in the sample.

Intensity
QP7Ot /

6E7-
4E7-

2E7
o-

Intensity
QP7ot /
6E7-

4E7
2E7-

o-

Intensit)
C^~7
bc.f -
4E7-
2E7-

o-
-2E7-

" jJi.,
0 O Cin o u

t

\ 1
0 0 Cin o u

t

,ili,...li

o o cin o u

|j|f Dioctyl phthalate

I
3000000000 m/e T o in o m o in o in o""c

ill Test vector

1
^ ^^ ^^ ^^ ^^ ^3 ^^ ^3 ^^ ^^ rn/^^ ^^ LO ^^ U"5 ^^ ^O ^^ U^ ^^

III 10 Iterations

I . .

DOOOOOOOOO m/e o o in o in o in o in o /c

Figure 110: Plot of suspected component, reduced Speak test vector and result from 10 iterations for
dioctyl phthalate in data set MS1930A, exhibiting a positive result.

207

Intensity
or: "7ob/
6E7-

4E7
2E7

o-

Intensity
QC7ob/ -

6E7
4E7-

2E7
0

Intensity
2E7-
2E7-
1E7-
8E6-
4E6

0-
AC.R-4bo

I 1, . III -a....... . 1 I ..I I I. L 1 .1
ooooooooolOOlOOlOOUOOlO '-'-CNCNCOOO^t^t

f

ooooooooo
lOOlOOlOOlOOlO

T-T-CMCMCOCOTj-TT

f

; ill 1-

oooooooooLOOlOOlOOlOOlO
T-T-CMCMCOCO^-'st

Chemfos X

§ o o m/fi 10 O " l/e
IO LO CO

H^ Test vector

o o o m/e
O 10 O ' /c
UO IO CO

H 10 Iterations

8 § 8 m/e
IO IO CO

Figure 111: Plot of suspected component, reduced Speak test vector and result from 10 iterations for
Chemfos X in data set MS1930A, exhibiting a positive result (see text).

Intensity
8E7-

6E7
4E7-
2E7-

r

\.

2-chloroethyl phosphate

, ,L 1. . 1 1, . I0 ——————— ———
OOOOOOOOOOOO m/e LOOLOOIOOIOOIOOLOO ' c T-T-CNCNCOOO'itrJ-lOLOCO

Intensity

6E7-

4E7
2E7

Test vector

oooooooooooo m/p10 0 10 0 10 O 10 0 10 O 10 O III/C T-T-CNCMCOCOTtTfLOlOCO

Intensity
8E6-

4E6-
2E6-

o- I n

I

111 10 Iterations

]JllJl,nlilJilLj..d..l jl.^.. J,l, fc .,..JJ L.. J . ii... -L.L. ,. 1 _ „ . .

~'^ l~ u oooooooooooo m/eLOO'00100100100100 " l/e

Figure 112: Plot of suspected component, reduced 8 peak test vector and result from 10 iterations for
2-chloroethyl phosphate in data set MS1930A, exhibiting a negative result.

208

Intensity
8E7j
6E7
4E7-

2E7
0

poly(ethylene adipate)

Liiu.i
oin oo oin oo oin oo om oo oin oo O O m/pin o m/e

Intensity
8E7j
6E7-
4E7-

2E7
0-

Test vector

o in o o o10 o o o o oLO o o o o o 8 m/e
Intensity

4E7
3E7 +
2E7
1E7 +

0
-1E7

10 Iterations

O
LO

O
O

O
IO O

O
O
LO

O
O

O IO
O
O

O
IO

O
O o o m/e

Figure 113: Plot of suspected component, reduced 8 peak test vector and result from 10 iterations of
poly(ethylene adipate) in data set MS1930A, exhibiting a negative result.

Intensity
1EOn

8E-1-
bb- 1
4E-1-
2E-1

0 ——

t

Intensity »P 1ot- 1
6E-1-
4E-1-
2E-1-

o-
-2E-1 ——

o
IO

IJ
o in

IL

c ĉ

L

m| hexanedioic acid

5OOOOOOOjuoomoioom
T- CNI CM CO CO ^ -^t

oooooooo omomoinom
T-r-CNICNJCOCO^t^t

o o o m/p o in o m/t! in in (o

flJI 1 0 Iterations

O O O m/p o in o lll/c
in m CD

Figure 114: Plot of suspected component and result from 10 iterations for hexanedioic acid in data set
MS1930A, exhibiting a positive result.

The results for Chemfos X are shown in figure 111. The predicted vector
shows all the peaks in the test vector but the eight strongest peaks in the predicted
vector do not correspond with the test vector. Comparison of the component spectrum
and the predicted spectrum shows a very good match for all the major peaks in the
spectrum but with intensity variations. The predicted spectrum is also considerably
more complex than the sample spectrum. The differences may be due to mixing into

209

the Chemfos X variance of variance from another component or a different
component of similar chemical composition being present. Another explanation for
the differences may be the sample itself, Chemfos X is a commercial product, not a
pure laboratory chemical, and the observed differences may be due to production
differences between the two samples. If the result of the iterative target testing had
been less complicated it would have been possible to conclude the presence of
Chemfos X, but the addition of so many extra peaks reduces confidence in that
assignment.

The results from testing for 2-chloroethyl phosphate are shown in figure 112.
The predicted vector shows that the base peak has not been fitted as well as many of
the other peaks. The overall spectrum is not at all like that of the component spectrum
and thus can be concluded as not being present in the sample.

Figure 113 gives the results for poly(ethylene adipate) for which similar
conclusions to 2-chloroethyl phosphate must be drawn. The base peak in the spectrum
is not fitted and the overall spectrum does not resemble the component spectrum at
all. The low mass component of the test vector is fitted reasonably well which serves
to highlight the complicated set of sources that produce peaks in this region. The
different sources of the same mass peaks have allowed an approximation to the test
vector to be produced by combining several sources, an approximation that falls down
at the higher mass values. The evidence from tests using only a few low mass peaks
must be treated sceptically in cases where several sources for the peaks may exist.

The last component to be tested is hexanedioic acid; the results are given in
figure 114. The target test for this component suggested that it might be present in the
sample, the predicted vector from ITT also suggests that hexanedioic acid is present
on the basis of all the peaks being matched. Closer observation shows that the
intensities are poorly matched and that the eight strongest peaks are not the same as
the test vector, m/e 27 figuring strongly in the predicted vector. A study of the Eight
Peak Index 103 revealed three entries for adipic (hexanedioic) acid, all different and
one containing m/e 27 as a component. However, also included in the predicted
vector is a strong peak at m/e 73 that was not present in any of the adipic acid
spectra. Bearing in mind the previous paragraph's observations on the use of low
mass peaks in a test vector and without a complete spectrum of hexanedioic acid it
must be concluded that there is a component very similar to hexanedioic acid present
in the sample but that it is not hexanedioic acid. A study of other possible candidates
in the Eight Peak Index 103 produced no possible vectors worth consideration.

To further test the applicability of correlation coefficient and Bessel inequality
test, these functions were calculated between the full spectrum of each component and
the result from the iterative target test and the results are given in table 45 expressed
as percentages. In this case the Bessel inequality test results are considerably smaller

210

than for the target tests. The values for MS 1930 indicate the presence of 2-chloroethyl
phosphate, poly(ethylene adipate) and hexanedioic acid though at 44% from the
Bessel inequality test the poly(ethylene adipate) could be neglected. The results for
MS1930A indicate Chemfos X, dioctyl phthalate and hexanedioic acid though use of
the Bessel inequality test would result in the neglect of ChemfosX. The assumption in
all of these cases is that a true component would have a value greater than 50%
though this is a arbitrary figure which could be modified on the basis of further
experience.

Correlation coefficient | MS 1930
Chemfos X
dioctyl phthalate
2-chloroethyl phosphate
poly(ethylene adipate)
hexanedioic acid
Bessel inequality test
Chemfos X
dioctyl phthalate
2-chloroethyl phosphate
poly(ethylene adipate)
hexanedioic acid

73%
44%
82%
86%
89%

MS1930
34%
15%
57%
44%
78%

MS1930A
73%
94%
27%
79%
76%

MS1930A
25%
74%
7%
38%
56%

Table 45: Table of correlation coefficients and Bessel inequality tests for the iterative

target testing of suspected components of data sets MS1930 and MS1930A.

The results presented here indicate again the importance of visual comparison
of the test and predicted vectors as the calculated values alone are misleading.
Generally the conclusions reached by these values are in agreement with the
conclusions from visual assesment. Particularly interesting is the very low value of
the Bessel inequality test for Chemfos X in MS1930A which adds weight to the
conclusion that it is a chemically similar compound but not Chemfos X.

The uncertainty about Chemfos X and hexanedioic acid in MS1930A was
looked at further using the information contained in the scores plot (figure 99) to
draw single ion pyrograms of some of the obvious sources of variance. Figure 115
below shows m/e 60 and 100, connected with hexanedioic acid and m/e 410 and 118,
connected with Chemfos X. These pairs of m/e values appear to belong to the same
components, to identify the components a different method of target testing was tried.
The intensities of each m/e value were found at each components maximum in the
single ion pyrogram and the largest value set to one, the other component was then
scaled accordingly and the values entered in to test vectors for each component. The
iterative target testing routine was then modified so that after each iteration values
below a threshold were set to zero in an attempt to remove the influence of the small
peaks on the convergence of the vector. When this had been tried previously the

211

magnitude of values in the vector diminished with each iteration until an all zero
vector resulted. To avoid this problem and also to hopefully speed the convergence,
all non zero entries in the original test vector (in this case the two chosen m/e values)
were reentered into the test vector after each iteration. This approach has the
drawback of forcing the direction of the vector to comply with the applied constraints,
but if true values are chosen then convergence should be accelerated. This technique
of vector reinforcement was used for both of the pairs of m/e values, the threshold
below which values were zeroed was set by starting with a large value (0.2), testing
the vector and observing how many values had changed in the new test vector
excluding the original m/e values. The size of the threshold was reduced until
between ten and twenty values appeared in the new test vector. The process was then
restarted with the new parameters and iterated until reasonably constant values were
obtained for difference term and correlation coefficient.

3.0E+6 1.8E+8

O.OE+0

Scan number

Figure 115: Single ion pyro grams for m/e 60, 100, 118 and 41 Of or data set MS1930A.

212

Intensity
0.8 T
0.6-
0.4-
0.2-
0.0-

-0.2-

- JL
1 "T rl r i ' T l t • • r

ooooooooooo
^O f^ i^) ^^ i^} ^^ i,^} ^^ l,^ ^5 1^^

Intensity
O Q

.O

0.6
0.4
0.2-
o.o-

-0.2

Key:'
E
E

1 Bm/e

: ilJljLu.iliki,, . l.nk... iliil i"

60 & 100

g m/e
CO

118&410

oooooooooooo m/e

Fop - m/e 60 & 100; peak intensities 0.61:1; threshold = 0.2; 20 iterations
Bottom - m/e 1 18 & 410; peak intensities 1:0.37; threshold = 0.05; 90 iterations
Both analyses used 8 factors to describe the data set MS1930A.

Figure 116: Plot of results from vector reinforcement iterative target testing ofm/e 60 & 100 and m/e
118 & 410 in data set MS1930A.

The results from the iterative target testing are shown in figure 116. The top
spectrum contains as its eight strongest peaks all the peaks in hexanedioic acid except
for the addition of m/e 73. The results for m/e 118 & 410 show a far more
complicated spectra than that of Chemfos X and the identification of that component
from the standard analysis must now be regarded as suspect.

To resolve the ambiguity surrounding the identity of hexanedioic acid in
MS1930A a complete spectrum was obtained by analysis of a sample of pure
material83 . The pure spectrum was then target tested against both MS 1930 and
MS1930A and the results shown in figure 117. The results from the tests both indicate
the presence of hexanedioic acid. The values for correlation coefficient and Bessel
inequality test were, MS1930 97%,95% and MS1930A 93%,87%; further strong
indication of the component in both data sets. Present in the complete spectrum of
hexanedioic acid is a strong peak at m/e 73 thus explaining the appearance of that
peak in earlier tests.

213

Intensity
Ol_ 1

2E7-
2E7-
1E7-
5E6

0

Intensity
opy
OC- f
2E7-
2E7

5E6-
0-

cce-Obo-

Intensity
OC7Ztif ~

2E7-
1E7-
5E6-

o-

•

: ilJ.llllJ
o c m ĉ

f

: ,llllb.
o c in c

T

f

I

I

111,.

O Cin c
T

HI hexanedioic acid

30000000000 m/e
r-CMCMCOCOTfTj-inintO

B! Predicted vector- MS 1930

_i .1 . . . y .

DOOOOOOOOOO m/e ^inoinoinomoino ' /c

HI Predicted vector - MS1930A

DOOOOOOOOOO m/e 3 in o m o in o m o in o""c

Figure 117: Plot of test and predicted vectors for hexanedioic acid in data sets MS1930 and MS1930A.

In conclusion, the results from the data analysis are broadly in agreement with
those found in the normal course of analysis for MS 1930 except that it does not
contain poly(ethylene adipate). Dioctyl phthalate was confirmed as being present in
MS1930A but also hexanedioic acid is present and the component suggested to be
Chemfos X, is not, but is a chemically similar material.

214

5. Conclusion
A computer program has been developed which will run on a standalone PC

and performs factor analysis and target testing. The particular characteristics of
temperature programmed pyrolysis - mass spectrometry (TPPy-MS) data have been
accomodated within the program by the development of a method of reading the mass
spectrometer data files and by developing a data structure which can store data sets of
a size limited only by the available memory and disk space. Many modifications have
been made to the program to allow the development of new techniques for
investigating spectroscopic data. The program can perform principal component
analysis and calculate a range of error terms for use in determining the number of
components in the data. Target tests may be performed on the analysed data using any
selected number of factors to model the data and several error terms calculated to
assist in determination of the sucess of a test. New methods of iterative target testing
have been developed and tested using the program.

A number of different methods have been tried to determine the number of
components in the data. These are, percentage variance, eigenvalue plots, real error,
imbedded error, indicator function, standard error in eigenvalue, misfit and
percentage significance level. In all the data analysed as part of this work, successsful
assignments of the number of factors responsible for the data has been possible using
the evidence of several of the error terms. The physical and chemical origins of the
factors giving rise to the data have been identified in single and multiple component
systems and the technique shown to be a useful tool in the elucidation of
fragmentation and pyrolysis mechanisms.

The interpretation of the origins of the components proved straightfoward for
the UV-Vis data where extinction coefficient and concentration were the expected
factors for the components, though the distortion which can be obtained from
inadequate selection of sampling interval demonstrated that even simple systems can
provide unexpected problems. The TPPy-MS data showed far more than the expected
concentration and mass spectral information. The number of components found for
even a single pure substance showed that for pyrolysis many different possibilities
occur. The identification of different components for pyrolysis product and
volatilization as well as different and competing routes for pyrolysis has shown this to
be a powerful investigative technique for pyrolysis reactions. Other components
identified in the data sets have been shown to describe source contamination,
absorption of HC1 onto 'cold' surfaces and artefacts introduced into the data from
poor calibration and assumptions made by the data system.

The qualitative identification of components in the data using target testing
was seen to be very effective for the UV-Vis data. The error terms calculated for the

215

UV-Vis target tests indicated clearly whether the component was present in the system
or not. The normal error terms used in the quantification of fit of a test vector were
found to be inadequate for use with mass spectrometer data. Alternative measures of
fit were tested including correlation coefficient and Bessel's inequality function, these
provided a much better indication of fit, particularly Bessel's inequality function.
Most advantageously, the trained eye of the spectroscopist is easily able to discern the
fit of the predicted vector and determine whether the test component is present or not.

Several methods of iterative target testing were developed and varying results
were produced. The method using differential subtraction was seen to give the best fit
of the data in the shortest number of iterations, and gives the advantage that nothing is
assumed about the component, the data is fitted as well as possible to the test vector
with no constraint placed upon the orientation of the vector so that the spectra
produced are purely from the data. The technique of vector reinforcement restricts the
orientation of the vector to that defined by the reinforced components, this allows
ready confirmation of the presence of a component but injudicious selection of test
values will result in a mixed spectrum from incorrect orientation of the vector thus
complicating the interpretation of the results. Use of the two techniques has shown
that it is possible to find components in the data without prior knowledge of the
component or its spectrum and to then produce its spectrum in almost complete
isolation.

Overall the program has shown itself to be a valuable aid in the interpretation
of spectroscopic data and particularly beneficial in the identification of components
present in TPPy-MS data.

216

6. Further work
In general, the program of work undertaken has fulfilled the aims defined at

the outset of the project. With any piece of work there are always modifications
which can be made and areas not investigated through lack of time or resources. The
following outlines the most obvious areas for further investigation.

Since the inception of the program, widespread use has been made of the
singular value decomposition (SVD) algorithm for the decomposition of the
covariance matrix. This algorithm has advantages over the eigenanalysis used in this
work in terms of accuracy and computational efficiency. The algorithm currently used
suffers badly from needing extended numbers of iterations to find factors with similar
eigenvalues. This adds a substantial overhead to the calculation times as well as
adding error to the eigenvectors from the algorithm instability. The addition of the
SVD algorithm would therefore aid substantially the use and accuracy of the program.
The problems being experienced with interpretation of errors and mixing of factors
may also be aided by the use of SVD as the algorithm is very accurate and able to
extract very small eigenvalues succesfully.

One of the most difficult aspects of working with the mass spectrometric data
has been found to be the nature of the error present in the data sets. The error
introduced by the mass spectrometer is not absolute but is proportional to magnitude
and may vary according to m/e ratio. Other workers in the field have used various
data pre-treatment techniques in an attempt to overcome these difficulties but all
suffer from distortion of the information in the data, either by changing its magnitude
or its numerical origin. Both of these techniques have been acceptable in the case of
related mixtures of similar intensities, but with the temperature programmed pyrolysis
data the background is given an enormous boost of importance and all quantitative
information is lost. A better understanding of the way error appears in the data is
necessary for better interpretation of the data and also for the production of purer
component spectra, which currently show mixing of other components due to the non-
linearities introduced by the proportional error in the data.

The target testing has proved a valuable aid in the identification of components
in the data. The interpretation of the test, for this work, has been largely a matter of
observation of the resulting spectra. This approach has been necessary due to the
currently developed criteria of fit and error being seen to be inadequate for this data
and test vectors of this size. Further effort should be expended in finding improved
measures suitable for determining the fit of predicted vectors that do not rely upon the
un-quantitative eye of an experienced observer.

The adoption of SVD as the method of principal component analysis will also
allow the use of row test vector as well as column test vectors. The use of row test

217

vectors will enable particular peaks in the TIC pyrogram to be tested for and
identified.

The inclusion of free floating of points in the test vector should be regarded as
a very important extension of the target testing procedures. The work performed here
has shown that though useful results can be obtained from the use of zeroed entries in
test vectors, the constraints placed upon the vector by the null entries hamper the
orientation of the vector in the optimum direction. By including free floated entries
the alignment should be far less restricted. Some problems, which are inevitable in
this work, arise from the necessity to include sufficient entries to span the data space
thus precluding the perfect test that would otherwise result, and whether the inclusion
of m/e values arising from more than one component will produce a mixed predicted
vector. One interesting area of investigation would be in the use of m/e values that
remain constantly zero throughout the analysis to make up the correct number of
entries to span the data space. Consideration of the theory suggests that the inclusion
of at least one such value should be acceptable thus reducing the burden upon the
operator in selecting sufficient m/e values.

The use of iterative target testing (ITT) in this work has proved itself to be a
powerful investigative tool. Further extensions to this work are suggested following
the promising initial work with vector reinforcement, where non-zero values from the
original test vector are rewritten over the values in the predicted vector, and also in
the use of free floating of entries in the test vector. This may be approached from
several directions, free floating of suspected major peaks to confirm their linkage or
free floating of points below a threshold to remove their influence upon the
convergence.

The inclusion of a target combination step would allow, in cases where
sufficient components could be identified in the pyrogram, the generation of all the
component spectra simultaneously as well as quantitative information from the
pyrograms. This solution may be achieved using ITT of row test vectors to identify
the position of component peaks in the TIC pyrogram followed by the target
combination step using the predicted vectors to form the eigenvector matrix. This
technique automatically produces a row matrix containing the spectra of the
components.

The development of these procedures into iterative key set factor analysis may
prove useful in the analysis of mass spectral data, though its computationally intensive
nature may preclude its use on personal computers.

The computational aspects of the program place a heavy load upon the
hardware and improvents could be realised by receding the mathematics routines in
assembly language. The performance gains from this would be noticeable but
probably not worth the time involved, a better way forwards in this direction would

218

be to re-code the application using a more portable language such as C, which would
allow the program to be used on computers better suited to numerically intensive
calculation, such as workstations. As a further possibility, receding into FORTRAN
would allow the use of transputer based add-in cards for the PC enabling parallel
processing of the data to be performed.

The final recommendation for further work is in the area of improving the
'usability 1 of the program. The most obvious shortcoming in the program is the lack
of graphics to visualize the data generated. If this area can be addressed and facilities
for editing data incorporated into the program then the dependence upon spreadsheets
for the interpretation of the data will be reduced and the biggest single restriction to
the 'usability' of the program eliminated.

219

References

'Spearman, C. Am. J. of Psychology 1904, 15, 201-93.

2Harman, H.H. Modem Factor Analysis, 3rd ed.; The University of Chicago Press: Chicago, 1976,
Chapter 1.

3Pearson, K. Philos. Mag., Series 2 1901, 6, 559-72.

'Hotelling, H. J. Ed. Psych. 1933, 24, 417-41, 498-520.

5Malinowski, E.R. Factor Analysis in Chemistry, 2nd ed.; John Wiley: New York, 1991; Chapter 1.

6Rozett, R.W.; Petersen, M.E. Anal. Chem. 1975, 47, 1301-8.

7Stewart, G.W. Introduction to matrix computations, Academic Press: New York, 1973, Chapter 5.

8Cattell, R.B. Multivariate Behav. Res. 1966, 1, 245.

9Hugus, Z.Z.Jr.; EI-Awady, A.A. J.Phys.Chem., 1971, 75, 2954.

10Malinowski, E.R. Anal. Chem. 1977, 49, 606-12.

"Malinowski, E.R. Anal. Chem. 1977, 49, 612-17.

12Malinowski, E.R. J.Chemometrics 1988, 3, 49-60.

13Lorber, A. Anal. Chem. 1984, 56, 1004-10.

14Malinowski, E.R.; McCue, M. Anal. Chem. 1977, 49, 284-87.

15Westall, W.A.; Pidduck, AJ. J. Anal. App. Pyrol. 1987, 11, 3-14.

16Higman, B. Applied Group-Theoretic and Matrix Methods; Oxford University Press: Oxford, 1955.

17Brown, S.D. Anal. Chem. 1990, 62, 84R-101R.

"Wlalinowski, E.R. Anal. Chim. Acta 1980, 122, 327-30.

19Weiner, P.M.; Liao, H.L; Karger, B.L. Anal.Chem. 1974, 46, 2182

^Roscoe, B.A.; Hopke, P.K. Anal. Chim. Acta 1981, 132, 89-97.

21 Malinowski, E.R. Anal. Chim. Acta 1981, 133, 99-101.

^Eastment, H.T.; Krzanowski, WJ. Tecnometrics 1982, 24, 73-77.

^Wold, S. Technometrics 1978, 20, 397-405.

^Hopke, P.K.; Alpert, D.J.; Roscoe, B.A. Computers and Chemistry 1983, 7, 149-55.

^Hopke, P.K.; Dharmavaram, S. Computers and Chemistry 1986, 10, 163-4.

^Johansson, E.; Wold, S.; Sjodin, K. Anal. Chem. 1984, 56, 1685-88.

^Brayden, T.H.; Poropatic, PA; Watanabe, J.L. Anal. Chem. 1988, 60, 1154-8.

atorber, A.; Kowalski, B.R. Anal. Chem. 1989, 61, 1168-9.

^Little, R.J.A.; Rubin, D.B. Statistical analysis with missing data; Wiley: New York, 1987.

^Donahue, S.M.; Brown, C.W. Anal. Chem. 1991, 63, 980-5.

"Bulmer, J.T.; Shurvell, H.F. J. Phys. Chem. 1973, 77, 256-62.

32Lin, C.H.; Liu, S.H. J. Chinese Chem. Soc. 1978, 25, 167-77.

33Gemperline, PJ. J. Chem. Inf. Comput. Sci. 1984, 24, 206-12.

^Vandeginste, B.G.M.; Derks, W.; Kateman, G. Anal. Chim. Acta 1985, 173, 253-64.

220

y:-,. ,, " i -

References continued
35Maeder, M.; Zuberbuehler, A.D. Anal. Chim. Acta 1986, 181, 287-91.
36Gemperline, P.J. Anal. Chem. 1986, 58, 2656-63.

37Gampp, H.; Maeder, M.; Meyer, C.J.; Zuberbuehler, A.D. Anal. Chim. Acta 1987, 193, 287-93.
38Vandeginste, B.G.M.; Leyten, F.; Gerritsen, M.; Noor, J.W.; Kateman, G. J. Chemometrics 1987, 1,
57-71.

39Strasters, J.K.; Billiet, H.A.H.; De Galan, L; Vandeginste, B.G.M.; Kateman, G. J. Chromatogr.
1987, 385, 181-200.

^Strasters, J.K; Billiet, H.A.H.; de Galan, L; Vandeginste, B.G.M.; Kateman, G. Anal. Chem. 1988,
60,2745-51.

41 Schostack, K.J.; Malinowski, E.R. Chemom. Intell. Lab. Syst. 1991, 10, 303-24.
42Kankare, J.J. Anal. Chem. 1970, 42, 1322-6.

43McCue, M.; Malinowski, E.R., Applied Spectroscopy, 1983, 37, 463-9.
"Haldna.U.; Murshak, A.; Computers and Chemistry, 1984, 8, 201-4.

^Gemperline, P.J.; Boyette, S.E; Tyndall, K. Applied Spectroscopy, 1987, 41, 454-59.
^Malinowski, E.R. ASTM Spectroscopic Technical Publication, 934 (Computerised Quantitative Infra
red Analysis), 1987, 155-68.

47Davis, J.E.; Shepard, A.; Stanford, N.; Rogers, L.B. Anal. Chem. 1974, 46, 821-5.
""Justice, J.B.; Isenhour, T.L. Anal. Chem. 1975, 47, 2286-8.
49Rozett, R.W.; McLaughlin Petersen, E. Anal. Chem. 1976, 48, 817-25.
fitter, G.L.; Lowry, S.R.; Isenhour, T.L.; Wilkins, C.L. Anal. Chem. 1976, 48, 591-5.
51 Burgard, D.R.; Perone, S.P.; Wiebers, J.L Anal. Chem. 1977, 49, 1444-6.
"Malinowski, E.R. Anal. Chim. Acta 1978, 103, 339-54.
53Rasmussen, G.T.; Hohne, B.A.; Wieboldt, R.C.; Isenhour, T.L. Anal. Chim. Acta 1979, 112, 151-64.
"Knorr, F.J.; Futrell, J.H. Anal. Chem. 1979, 51, 1236-41.
55Aries, R.E.; Gutteridge, C.S.; Macrae, R. J. Chromatogr. 1985, 319, 285-97.
*Windig, W.; Chakravarty, T.; Richards, J.M.; Meuzelaar, H.L.C. Anal. Chim. Acta 1986, 191, 205-
18.
"Aries, R.E.; Gutteridge, C.S.; Ottley, T.W. J. Anal. Appl. Pyrol. 1986, 9, 81-98.
'"Aries, R.E; Gutteridge, C.S; Evans, R. J. Food Sci. 1986, 51, 1183-6.
59Aries, R.E.; Gutteridge, C.S.; Laurie, W.A.; Boon, J.J.; Eijkel, G.B. Anal. Chem. 1988, 60, 1498-
1502.
«>Magee, J.T.; Hindmarch, J.M.; Bennett, K.W.; Duerden, B.I.; Aries, R.E. J. Med. Microbiol. 1989,
28, 227-36.
61 Price, D.; Milnes, G.J.; Tayler, P.J.; Scrivens, J.H.; Blease, T.G. Polymer Degradation and Stability
1989, 25, 307-23.
62Lee, T.A.; Headley, L.M.; Hardy, J.K. Anal. Chem. 1991, 63, 357-60.
63Snyder, A.P.; Windig, W.; Toth, J.P. Chemom. Intell. Lab. Syst. 1991, 11, 149-60.
"Varmuza, K.; Davies, A.N. Spectroscopy International 1991, 3, 14-17.

221

References continued
"Howery, D.G. ACS Symposium series, No.52 (Chemometrics: Theory and Applications Symposium)
1976, 52, 73-9.

"Wold, S. Tecnometrics 1978, 20, 397-405.

67McReynolds, W.O. J. Chromatogr. Sci. 1970, 8, 685-91.

^Hirsch, R.F.; Gaydosh, R.J.; Chretien, J.R. Anal. Chem. 1980, 52, 723-28.
^Benzecri, J.P., I'Analyse des donnees, Vol. 2; Dunod: Paris, 1973.

TOHowery, D.G.; Williams, G.D.; Ayala, N. Anal. Chim. Acta 1986, 189, 339-51.

71 Howery, D.G.; Soroka, J.M. Anal. Chem. 1986, 58, 3091-5.
^Zielinski, W.L.; Martire, D.E. Anal.Chem. 1976, 48, 1111-6.

^Howery, D.G.; Soroka, J.M. J. Chemometrics 1987, 1, 91-101.

74Howery, D.G.; Soroka, J.M. J. Chromatogr. Sci. 1987, 25, 149-53.

75Lochmuller, C.H.; Breiner, S.J.; Reese, C.E.; Koel, M.N. Anal. Chem. 1989, 61, 367-75.
76McCue, M.; Malinowski, E.R. Anal. Chim. Acta 1981, 133, 125-36.

^Roscoe, B.A.; Hopke, P.K. Computers and Chemistry 1981, 5, 1-7.

^Roscoe, B.A.; Chen, C.; Hopke, P.K. Anal. Chim. Acta 1984, 160, 121-34.
"Starks, T.H.; Fang, J.H.; Zevin, L.S. J. Math. Geol. 1984, 16, 351-67.

^Malinowski, E.R.; Howery, D.G. Factor Analysis in Chemistry, John Wiley: New York, 1980; Chapter
4.

"'Howery, D.G.; Rubenstein, M. Can. J. Chem. 1987, 65, 1380-3.
^Kontron Instruments Ltd., Blackmoor lane, Croxley centre, Watford, Hertfordshire, WD1 8XQ.

83Merck Ltd., Broom Rd., Poole, Dorset, BH12 4NN.

MVG Analytical, Floats Road, Withenshawe, Manchester, M23 9L3.
85Grant, J.G. Ferrocene-containing Smoke Suppressants and Flame Retardants for Flexible Polyvinyl
Chloride, PhD thesis, 1992.

86Report to DRA, QATS, Royal Arsenal East, Mass spectrometer data sets used in the investigation
of the applications of factor analysis to spectrometric methods, August 1992.
^Malinowski, E.R.; Howery, D.G. Factor Analysis in Chemistry, John Wiley: New York, 1980;
Chapter 5.

^Cartwright, H. International Laboratory, 1986, June, 18-27.
89Weiner, P.H.; Malinowski, E.R.; Levinstone, A.R. J. Phys. Chem. 1970, 74, 4537-42.

^Stenhagen, E.; Abrahamsson, S.; Mclafferty, F.W. Atlas of Mass Spectral Data; Wiley: New York,
1969.
91 Dell Computer Corporation Ltd., Milbanke House, Western Road, Western Industrial Estate,
Bracknell, Berkshire, RG12 1RW.

^Borland International (UK) Ltd., 8 Pavillions, Ruscombe, Twyford, Berkshire, RG10 9NN.

^TurboPower Software, P.O. Box 49009, Colorado Springs, CO 80949-9009.
^Kermit Distribution, Columbia University Centre for Computing Activities, 612 West 115th Street,
New York, NY 10025, USA.

222

References continued
95Lotus Books Lotus File Formats for 1-2-3, Symphony & Jazz. File Structure Descriptions for
Developers, Addison-Wesley Publishing Company, 1987.

*Wingz, Informix Software Inc., 16011 College Boulevard, Lenexa, Kansas 66219.

97Cooke, D.;Craven, A.H.;Clarke, G.M. Statistical Computing in Pascal; Edward Arnold: London,
1985; Chapter 8.

^Malinowski, E.R. Factor Analysis in Chemistry, 2nd ed.; John Wiley: New York, 1991; Chapter 5.

"Malinowski, E.R. Factor Analysis in Chemistry, 2nd ed.; John Wiley: New York, 1991; Chapter 4.

100Galloway, P.M.; Hirschler, M.M.; Smith, G.F. Fire and Materials 1991, 15, 181-89.

•o'Sheley, C.F.; Fishel, D.L. Org. Mass Spectrom. 1972, 6, 1131-37

102Vandeginste, G.M.; Derks, W.; Kateman, G. Anal. Chim. Acta 1985, 173, 253-64

l03The Mass Spectrometry Data Centre Eight Peak Index of Mass Spectra, 3rd ed.; The Royal
Society of Chemistry: Nottingham; 1983.

104Rasmussen, G.T.; Hohne, B.A.; Wieboldt, R.C.; Isenhour, T.L Anal. Chim. Acta. 1979, 112, 151-
64.

223

PL,

Appendices

Table of contents of Appendices

Appendices... 1
Table of contents of Appendices ... 1
Appendix 1 : Derivation of factor analysis ... 3
Appendix 2 : Derivation of target testing... 9
Appendix 3 : Program listing... 12

3.1. UnitDATSTRU2...15
3.2. UnitOVINIT..21
3.3. UnitPFAGLOBS...22
3.4. Unit VID_UTIL...24
3.5. UnitUTILS..26
3.6. UnitEMSDAT..30
3.7. UnitPFAUTILS..34
3.8. UnitEPAIMPRT ...37
3.9. UnitTARGTEST...42
3.10. UnitLOTUSFIL..48
3.11. UnitIO_UNIT ..52
3.12. UnitPFAVID ...54
3.13. UnitMATHUNIT..61
3.14. Unit MENU ...68
3.15. Unit KEYOPS...73

Appendix 4 : Description of EPA file format...................................... 78
4.1. EPA Data format ...78

4.1.1. Fileheader:...78
4.1.1.1. First header line.................................78
4.1.1.2. Second header line..............................79
4.1.1.3. Third header line................................79
4.1.1.4. Fourth header line79

4.1.2. Scandata:...79
4.1.2.1. Scanheader......................................80
4.1.2.2. Mass/Intensity list81
4.1.2.3. Sample EPA file81

Appendix 5 : Abstracts of papers and courses attended........................... 82
6.1. The use of factor analysis in the deconvolution of
overlapping peaks in the UV-Vis spectra of selected transition
metal ions... 82
6.2. Target factor analysis for investigating chemical data........... 82

1 Appendix 0

6.3. The application of Factor Analysis to Temperature
Programmed Pyrolysis Mass Spectrometry Data (TPPyMS)............84

Appendix 0

Appendix 1 : Derivation of factor analysis

The following derivation is taken largely from Malinowski's excellent book, 'Factor
analysis in Chemistry 1 , second edition, 1991.

Principal component analysis is a mathematical technique that attempts to express a
data point, dik , as a sum of product functions. Such a point can be expressed as a
linear sum of n product terms called factors. Each factor is composed of a product of
cofactors as follows,

(1)

where rfj is the/n row cofactor and cjk is they'm column cofactor.

When a complete matrix of data points is considered the equation may be
rewritten in matrix notation to give,

D = RC (2)

where D, R and C are matrices with elements dik , rtj and cjk respectively.
The problem to be solved by principal component analysis is, starting with the

data matrix, D, obtain the row and column cofactor matrices, R and C. This problem
can be solved directly using algorithms like NIPALS but the approach taken in this
work is via the covariance matrix.

The covariance is defined as the product of the data matrix pre-multiplied by
its transpose.

Z = D'D (3)

where D' is the transpose of the data matrix.
The rank of the covariance matrix is determined by diagonalization. The rank

identifies the dimensionality of the factor space and in the case of pure data exactly n
factors would emerge. The effect of experimental error on the data produces a
number of eigenvectors equal to the number of rows, r, or the number of columns, c,
whichever is the smaller. Throughout this derivation it is assumed, for convenience,
that the number of columns is less than the number of rows.

Let f,,f2 ,...,fc be the basis set of unit vectors that defines the factor space.
i.e., "l"

0
0 ' *2 ~

"0"

1
0 f -

9 1

"0"

0
1 etc.

(4)

Appendix 1

These factor axes are orthonormal (orthogonal and of unit length) so that,

where 8jk is the Kronecker delta which has the properties,

'0 if/**

(5)

(6)

A data point can be viewed as a vector in factor space. Hence, instead of
equation 1, a better representation is,

(7)

where d jyt is the data point vector.
The zab element of the covariance matrix is given by,

V c \
d / _m X ^ I X ^ ff I XT"^ fd . = > > r ic \ 7 f-.i.c^au f j m ID / ' I ' J ii I la / J IK k kb

1=1 j=\ (8)

the last step is true because of equation 5.
Equation 8 shows that the whole covariance matrix can be decomposed into a

sum of product terms containing a dyad and the corresponding eigenvalue as follows,
'11

: 12

-21

-2c

-21 -2c

1=1

-c\

-'cc

-c\

(9)

When rewritten in terms of column cofactor vectors a simpler expression
results,

Appendix 1

Z = A,c,c; + A2 c 2 c'2 + - - • + Acccc'
where

1=1
and

Ay is the eigenvalue associated with eigenvector (column cofactor) c . and the term

CjC'j is referred to as a dyad.

We now have an expression relating the covariance matrix to the eigenvalues
and eigenvectors (factor axes) of the data. Mathematically it is possible to define an
infinite number of different sets of factor axes which will adequately describe the
data. In principal component analysis two conditions are imposed upon the calculation
of the factor axes. They are, that as much variance as possible is accounted for by
each factor, and that each axis is orthogonal to the rest of the factor axes. The factor
axes are calculated consecutively accounting for the maximum variance with each
calculation. The contribution of the newly calculated axis to the data is then removed
and the next axis calculated thus ensuring orthogonality.

Each factor axis describes an ever decreasing proportion of the variance in the
data until the complete set of c eigenvectors have been found. The data can be
reproduced using equation 1 , where n is equal to c the values of the data points are
reproduced perfectly. If a value of n less than c is used then the value of the data
point is reproduced less accurately as some of its variance has been neglected. To
keep track of the number of factors being considered the notation of equation 1 is
modified as follows,

manner

where dik is the reproduced data point in the fa row and the &tn column calculated
from the first m factors.

To find the first principal component (factor axis) we proceed in the following
. The residual error, eik (l), is defined to be the difference between the

experimental data point, dik , and the reproduced data point, dik (l), based upon one

factor,

**0) = 4-4*0) (12)

inserting this into equation 1 1 gives,

Appendix 1

In order to maximize the variance accounted for by the factor the residual
error must be minimized. This is done by the application of the method of least
squares. The derivative of the sum of squares of each residual error with respect to
the column factors is taken, giving,

\k

According to the least squares principle the sum is set to zero, so,

•=i •=• (15)

as k varies from 1 to c there are c equations of this form which may be expressed in
matrix form as,

r. (16)

As defined in equation 10 we can see that,

(17)

Inserting this into equation 16 and transposing gives,
D/r. = V. (18)

It can be shown that the data matrix can be written as
D = r1 c; + r2 c'2 + -+rX (19)

Post-multiplying this by c, and setting c'c; = 8ijt so that the eigenvectors are

orthonormal we get,
Dc . = r. (20)

Inserting this into equation 18 gives,
D/DC, =V. (21)

From the definition of the covariance matrix in equation 3 it can be seen that,

Zci = V. (22)

thus giving an expression which can be used to calculate the first principal eigenvector
and its associated eigenvalue.

The second principal component is found by considering the second residual
error,

which, from the definition given in equation 11 can be expressed as,

6 Appendix 1

i22k (24)

The error in the second principal component is minimized by applying the
method of least squares to elk (2) while keeping e^l) constant. The resulting
expression is analogous to equation 14 as follows,

< = 1 2k i=l i=l (25)

To minimize the error, the summation is set to zero, giving,
r

r«2

(26)

There are c equations of this type, which in matrix notation have the form,
r2'E, = c'2 r2'r2 (27)

where E, is an rxc error matrix composed of the first residual errors and A, is
defined as,

(28)

Combining equations 27 and 28 gives
E;r2 = A2 c 2 (29)

Matrix E, can be written as,
E, = D - r,c; = r2 c 2 + r3 c; + • • • + rc< (30)

post-multiplying this by c 2 and maintaining the constraint of orthogonality gives,
E . C 2 =r2 (31)

inserting this into equation 29 gives,
EjE.c, = ^c2 (32)

Using equations 16, 17 and 30 it can be shown that,

1 ' ~ /l\ c \ c \ (33)

and thus the first residual matrix is defined as,
*,=Z-V.c; (34)

and it can be concluded from equations 32, 33 and 34 that,

(35)

Appendix 1

this expression, similar to equation 22, can be used to calculate the numerical values
of the second principal eigenvector, c 2 , and its associated eigenvalue, /l>.

To obtain further principal components the same principles may be applied to
yield the following,

3 (36)

where,
^2 =Z-A,c,c;-A2 c2c; (37)

so it can be seen that the procedure can be continued in this fashion until all the
eigenvectors have been extracted.

The general equations for the principal component analysis are as follows,

^mC ™ + l =AM+ l C ml (38)

where,

(39)

Once the complete set of principal components has been calculated the row
cofactors can be calculated from,

R = DC' (40)

8 Appendix 1

Appendix 2 : Derivation of target testing

The following derivation is taken mostly from Malinowski's book 'Factor analysis in
Chemistry 1 , second edition, 1991.

Transformations of the reference axes found by principal component analysis are
accomplished by the following operation,

(41)

where T is the transformation matrix of dimensions nXn, R is the row cofactor
A,

matrix containing the first n significant factors and X is the transformed row matrix
in the new co-ordinate system.

The inverse of the transformation matrix is used to calculate the transformed
•A

column factor matrix, Y, as follows,

Y - T-'C (42)

So that the data matrix based on n factors, D , may be reproduced by the
following,

D = XY (43)

Many different forms of transformation can be applied to the principal
components via this method, including the subject of this derivation, target testing.

Target testing individual factors is possible because of the mathematical
operation defined in equation 4 1 . This equation allows an individual column of the
transformed row matrix to be calculated. Thus the fa column of the newly
transformed row matrix, x, , is obtained by multiplying the fa column of the
transformation matrix, tM by the row matrix R as follows,

*/ = Rt/ (44)

The individual columns are referred to as the predicted vector, i, , and the
transformation vector, t, . The transformation vector is calculated via a least squares
procedure from the test vector, x, . The least squares procedure seeks to minimize the
deviation between the test vector (called the 'target') and the predicted vector and is
achieved via the following route.

The transformation vector, t, , has components tu ,t2l ,..., tnl .
Each row of R can be viewed as a row vector, thus the fa row of R is a

vector r, having components ri}t ri2t ...,rin . Note that r, is a row vector and r, is a
column vector and care should be taken not to confuse the two.

When i* is multiplied by t,, the projection of the fa row entity on the new
transformed co-ordinate axis is obtained.

*,-/ = r't/ = rn tu + ra t2l + ••• + rm tnl (45)

9 Appendix 2

Multiplying each row vector of the row matrix by t, gives Jcw , Jc2/ ,..., XH ,
which are the elements of x,, the predicted vector. By comparing the elements of the
predicted vector to the corresponding elements of the test vector a term describing the
difference between the vector may be written.

Ax,, = £, - *, = r.f,, + r,/,, +... + rj_, - x.'/ri/ in l nl (46)

where Ax(/ is the difference between the value of xu and xu .
To determine the best t, , the deviation between the test and predicted vectors

is minimized by setting the sum of the derivatives of the squares of the differences
equal to zero. First the square of Axl7 is found,

(Ac) 2 = rV+rV \mil j — rn i v i-ri2 i 2l innl

2ri2 t2lrin tnl

Then the derivative with respect to ?,, is determined,
\2

= 2ft\l + 2^2*21 + '-- + 2Wntnl ~ ^nXi,

(47)

dL (48)

Similar expressions may be obtained for each row designee, r.. By summing
over all the row designees and applying the least-squares criteria we obtain,

^ " - = 0 = t]l^+t2l ^rnri2 + ---+tnl ^rifin - î rilxil
(49)t? *„

This procedure is then repeated with respect to the remaining components of t,
to obtain expressions for ?2/ ,/3/ ,..., tnl giving the following set of simultaneous
equations,

Z Vil = *U Z W* +t2l Z

This equation can be written in matrix notation as follows,
a/ =

(50)

(51)

where,

10

(52)

Appendix 2

Multiplying both sides of equation 51 by B ' gives,
'/ = B-'a,

Examination of equation 54 reveals that,
B = R'R

and examination of equation 52 reveals that,
a /= R'X/

Combining equations 55, 56 and 57 we get,

(53)

(54)

(55)

(56)

(57)

' (58)

It can be shown that equation 56 is equal to a diagonal matrix composed of the
n primary eigenvalues (see equation 17 in appendix 1) and so equation 58 may be
rewritten,

where A" 1 is the matrix containing the reciprocals of the eigenvalues along its major
diagonal.

Equation 59 is the central equation of target testing, with it, the transformation
vector is calculated and the predicted vector found using equation 44.

11 Appendix 2

Appendix 3 : Program listing

The units comprising the target factor analysis program are arranged in the
following hierarchical structure.

Level
1

2

3

4

5

6

Ovinit PFAGIobs

8

Vid util Utils EMSDat

PFAUtil EPAImprt

IO Unit

Targtest Lotusfil

PFAVid

Mathunit

Menu

Keyops

TFA

Figure 1: The unit hierarchy for program TFA. EXE.

The following two pages contain the procedural scope and dependency tables
for the entire program, contained within the table are the unit scopes as determined by
their uses clauses.

The source code listings following are arranged from the lowest level to the
highest within the program and from left to right in the same level.

The first unit in the listings is DATSTRU2 which is the original sparse array
data structure which was superseded by EMSDAT.

12 Appendix 3

P
rocedural

scope and
dependancy

U
nit

;U
til«

^1V
id_util

E
M

S
dat

T
argT

est

—
—

—
—

—
—

—
—

LotusP
il

E
P

A
im

prt

P
P

A
utilS

P
F

A
vid

D
ependent

procedures
C

o
n

ve
rt to

 base 2
6

C
o
n
ve

rt
to

base
10

G
et

date
tim

e

S
trip

trailing

S
trip Je

a
d
in

g

S
tnp

P
ow

er

R
ound

value

S
 tn n g_to_n u m

b er

R
ead

kbd

P
arse coords

C
heck

(or esc

Is
m

ono

S
et b

o
rd

e
r

H
ide cursor

R
estore cursor

•X
bd_light_ttatus

C
olour b

o
x

Pill
screen

G
et a

ttrib
u

te

Initialise
m

atrix

S
et val

G
et val

M
a
trix dim

ensions

T
ype_ol_array

D
elete

m
atrix

S
ave

file

R
ead

file

Free
E

M
S

M
a
trix m

il

C
alculate TK

O
N

C
alculate TV

E
C

C
alculate

P
red

ve
ctor

E
rrors in

test
vector

T
est

ve
ctor

L
o

tu
i im

p
o

rt

Lotus e
xp

o
rt

E
P

A
 im

p
o

rt

V
alue

to
string

W
rite ita

tu
t

C
hange cu

rre
n

t m
atrix

U
pdate tim

e

U
pdate lights

W
rite lo

ca
tio

n

D
raw

 cursor

>
iw

 screen

>
a
w

 headings

W
rite num

ber
w

in
d

o
w

C
lr

m
enu

S
trin

g

in
p

u
t

G
et load

filenam
e

G
et s*ve

filenam

e

hange d
itp

m

a
trix

>
splay error

m
essage

W
rite

text
w

in
d

o
w

lose te
xt

w
in

d
o

w

W
rite

rrw
g

in
w

in
d

o
w

W
nte

(actor num
ber

pdate
 ite

ra
tio

n

num
ber

Top
i

s' :'
*

*
$

o
o

—
 J c

i $ «, !
l
i
s
t

U

O

O

</>

x
X

x
XiiiIi

- •• -

_ .. _

proc

21it!
(D l(t)

a- edi

5
3

?j
Ifac u>

ii
x

i
X

XX

i
T

jxjxi
I

ix

1
iI

i

jre
si

Hi i i,iillil-
! 1 1
ixi

i
—

 H
-

xi
i

Set
border
1

Hide curaor
1

Reatore cuttor
j

Kbd_l.ght_status Colour
boxs

•
i

i
i

i.
j

i
i

—
 U

-

x
x

!

L_

j
X

ix!
-r-K

r
4
^

__i —
—

 i —

I

iI

i
i1

• 3" i1

K

ifI
•

j
{

i!

i

•j
ioK

"H

j

I

-4>+---j —
 —

 —
i

I
i

M

i
':

ill
i

i
i

;
i

. -i- -:-i i
 --i i

 - -
i

i
!

ix
x

_j —
—

—
 U

_
_

1
x

j
—

 1
i 1

.....j
-it

i ! i
i

i
—

 H —!i

4~1
—

 ;-
I

i
!

i
•- ;- -

4
-4

4
^-

i !
i

M
M

xi
—

—
 j —

—
—

Ixi Ix

1

"~1

(0
5,r

Matnxjntt
|

!
1

1

C*lculate_fkoN
]

a0

Calcutate_Pred_vector
|

0ii"* •~ii

iE|

„
„

-
j
-

.
.

_
_

_
_

1

l4
.-4

*^
4
*^

4
*L

i-
—

—
 , —

—
 i —

—
—

—
 *U

 —
—

—
—

—
 L

J_
i

ix
i

j
i

i
i

i
i

i
!

1
1

1
1

1
!

E

x
i

X

i

xi

i1i!Ix
jx

~

5__l

1

•
• -. I3

O-_ i
EPAjmport
]

-
™

Vaiue_to_string
J

3

*»
'

-xl-

X

X

:„.1

r
-
L

i
H

+
i

i
i

-
,

i
i

ix
jxj

i
x
x
lx

ix
X

X

i
X

X

ix
i

!
M

i

M

!
i i

-
-
 -i

E
j

i
S

I

4—
! !

i
—

 . —
 i —

—
 i

i
i

!
E

-
*
 -!

- •• -i.
__ —

 j.

:
!

i i
« • ^ —

!i
I

i
i

i
"i~

~
i ~

~
~

 t

j

i
i

i
i

-t -
 l-i-

1 •*• r- -r T
E

;
E

'.
\

I
i

(

1-1-1 —
—

 r
-i--i

i
i

—
—

 l-r-r-r
—

—
 L_M

 —
 I

M
i

i
i

~
T

h

i
-1

T
U

-
-+

l —
—

*
'•

\
i

- —
 i —

—
j

!
i

!
:

:
:

-4 -
 j-i- •*• ^

 -
i

i
l
l

'"
M

l!

i i i i —
 t

H
rrr—
! i i
i

i
i

i
—

 f-H
-1 —

 !•
M

i-
1

i
•

i
ji

""^

i
!

1i
i

i
+

--+

\
i i

.
! ! i
M

i
i

j

E
i

!

i
i

.„!

1|
i

1

—
 h

•

!
xj

i
ix

i
i

!
!

1

i

-

X

X

X—

m
m

X

X

xix
ix

x|
i

Change
current_matnx
I

Updatejime
!

™

X

|

_„. :

Updat«Jighta
j

Wnte
location
jX

-
X

"TT" 1" i
H
I™...

j
!

E X

.~j__
xi

_X

i i
xi

|x
j

|

i
i

i
_

1
xl

1

i
i !

i
i

i
i

1
i

-» • •
—

 -t *
 ̂

 ^
 *• >-

!
i

i
i

i
i

i

T
 !

11j1

i
i

i
i

L

•*•!--;•*•-
IE

i

E

i
|

!
i:

th
I

i
!

i
i

1

^
-
_

~ —i1

E
E

i
E

E
!

i
i

E
i

—
—

 ill
i i

- 4 .i
IN

'
i

1-

i
i

iE
!

E

-i!i

_
_

j- i

iii

1 !:
j

"

^
~

:~
*

• •

i
_,

i
i

ji

i

_
! —

i
L

!

t

1

-

1ii1

-

Xi j

ih
-h

i
ixi

X

X !___
X

_ . .
ix

"hi

_

-

--

_~

|11

. LijE
.

i—

x.™.-_ i _
 i. .

_

.Lxi
X

X-1
_,.
—

X—L
_

• j-

_
-L

...

...

s3 a fi....

---X--!
rr

.1 .: M
4
.

X

X

X

-x

^ ™XX

-

1fi.... -1*'xI

—*1
1

e}*—...
_-.

-•_

™
.

- -1X
X

xi x
T

x -....X

|

i
_..-..

•-...—

...-~

-i-
4.

"x"""

XXX-_.

X-

xxXX ~3

..._

|XXX

---xx

•XXXX

1i«..._X.XXXX

Get save
filename t

...x

£

6|c.X™a
*Xx

Display_error_message
|- "0s'c

*....

....X"x...

+
Ti

.XXXX... 1--._X

XXXX

™XX

.

TJ
Ci*s'._..........

-... -

0Ii|« *-....... ...1»..._

_ -

:.....i...
!

^X
...xXX

1c c'O*1-.......q.._-...._x

|i 1 1,....J.....X

4:i * '
ii

..j...

...,__....... _..........

w *1........... _s tm..........—

• 1"~

.... •....
.J._.

-~
T

"

J.J..?.
4-4-

:.: . —
....i

....

...........

X..............

............

Covari«nce_matnx
]

_31o
'

l'.....

i!

XX....i.._

IxXXXXXX

X

X.....XXXX-

XX....

5 *«ac.......

....

H
 e
1

t E «.......

....

....

x...

XX.....

__........ ._

8c 23E0c•5.......

Calc_eigen
vector
}...

Test
tor
completed_(actor
:

——B 511

„_

i

...

.
,

.„

_.....
-Hi

+,• -^

x|x1::1r........

........... ~—.._.... -x. -X

X...--

51

o
1

KS fl3

T
J

1.... Ik'
2,m£m
A<•on

i

...

__JX

X...
X_
.

i
_T...—

-4_•:....

......

_

XX

m0I1, 1_...?.X.... {1; ic»

i>....--1xri1
™_.„.. _........... ..".......-

XX

Standard_error_in_etgenvalue
j....X

Errors
in_decomposition
j

X

sti'u

E1r

XX

X

jiji•

......-X
X

f'Z•J1...

E1os' s
i

"'"

X

Xj
i

i

ixl

X

X

Decompose
ii..._ r1ji

—

4
i

+hj1

!1..XXXXX

X

X... —_

1,0i

1

i2i'l

Ij 1c0

C

*0

X

_-Ji
J..*.-.

ixi

:i
i!

...._

X...... ..X....XX

--....

...X

X

X

_
..

....

1:.... _

X...._X

X
-

Get_abserr
j...

_.....

....

....

™
.

-

i0._...

.....

_....

8"oC

O

E121
r....

VT
)'

1--

_
|_

!i
.„!„...
l....

._.i_.....

XX

1......XX

Move_cufsor_up
j-

....

....

I_
_ :...

Move
cursor_down
j.........!1...

.....

....

....

X....-

i'3O_

"1

fs'3 1

0
.

31...

i.....

..J...

ij
_.....

.___iX-

..x_

_....

.....

._.

.....X...

....

_

0IIi........_.. •-..-

Ii~... }
0

O

T
)

01!i

E|.jni_,__.
...ii1

1..E
I
"

i
i

1
I

.... -_

0S

E oo0X
0 io1

j

-

o
1

i
i

ix
J
J
J
 i

]
jiix

lil"
 •

i i
M

-_ _i

~1

>
;

H
-
"
-

!
i

:
i

IE ¥x1
]

IIit

!

X

X

i
!

X

X

xix1

(Call
change^matnx IhandTeJiey

|!__|1ii

X

P
rocedural

scope and
dependancy

U
nit

IO
 unit

M
athunit

M
enu

jK
eyope

D
ependent

procedures
finished

(actor

W
rite data

tile

R
ead data

tile

E
P

A
jm

port
Im

port
M

e

E
xport die

C
ovanance m

atrix
S

et Z to rest d
u

ll
Initialize (actor m

atnx
C

alc interm
ediate m

atrix
C

alc norm
alisation const

C a lc_eigen vector

Test
(or com

pleted
(actor

R
ew

rite factor
m

atnx
C

alc residual
m

atrix
R

esidual
m

atrix zero
test

Real and other error*
M

ean and sd of data m
atrix

M
isfits

E
rrors_in_decom

position
C

lear m
atrices

M
atrix init

Pea

S
elect

from
 m

enu
W

rite m
enu

W
rite m

essage

D
ecom

pose
Error entry

Q
uit

S
et colum

n
w

idth
C

hange_cotum
njieadm

gs
G

et abserr

G
et vecterr

G
et notacc

M
enu_system

R
ead m

enu
file

M
ove cu

rso
rjjp

M
ove cur tor dow

n
M

ove cursor left

M
ove cursor right

M
ove_page_up

M
ove page right

M
ove page left

M
ove to hom

e

M
ove to end

M
ove to

top

M
ove to bottom

M
ove to

(ar left

M
ove to

lar right

dit cell

oto
cell

all change m
atrix

andle key

Top procedures

•M.
1

il
i

-°, -°, I o »
5
3

5 *,
foj'if] J,-°;i,ij?
o ju o 5> |w

 <5 £ a 5 tf S. jo
•' —

 1 —

• i1 8
-' 5

:-~
""--"+

~
:---

4-r—
 J- —

—
—

 A —
—

!
i

1 i
i

i
i

!i--

Kbd_tight_ttatua Colour
box

Ftll_acreen Get
attribute

lnitiali«e_matrix

-i-uj
•

-i
p

J.-u
U

i
i

-
M

 _
_

_
_

_
_

_
_

_
_

_
_

 r-
—

—
 U

4
 —

—
 _j —

—
—

—
—

 1_
!

i
!

!
i

i
M

1
|

j
j

!
. !

M
.L

!......] _U...

-
, —

—
I

i
1

!
!

!
j

j
j

i
M

i
1

i
i

i
I

j
i

i
i

i i
i•

= i
i

i
j

!
1

1
—

 n —
—

 1 —
—

—
i

i
I:

i

i
i

i
j

i
=3 —

 ! —
—i

_

.. U

 _
 .. l_

;-i -.
-
 -

j
i

!
!

i
i

i
i

i
i

i
i

i
i

i

i
i

I-^T
i

i
i

Get
val

M
 a if
i

x_di
men si on*

Type_ol_arfay Delete
matrix Savejile Read

die

i

E

i
t

I§'~

,,.,
|

,,.......
—

—
—

 | —
—

—
 1 —

—
—

—
—

 !
J

i
•

!
:

tr^_j^_
\ \ -++-

i
i

i
i

i
i

i
H

-H
 —

—
—

 h-
i

i
i

i
M

i
!

Matrix
mil
]-

Calcul«(e_TKON
]•

Ce7culale_TVEC
]-

:
i

n
_

r

1
*
^

4

__u_

—~f-i

0i I»'

fo i ict*
0£

0I1

.4

• -

_

i
i

i
:

i i i i

_

1 s' fs'0

__._

.„!.... ,_

Il(_

10|'
I

!

|

IWhte_atalua
i

-h...
...

. ..,—

:M
:

[
 i
|

j

Change
current
matrix
\I

j

MUII
ojapdni *
i

i
|

j

'
 iupdatejights
|

4
-

:t:.L-

:tt:

Wntejocation
{I.......i

I;
B
2k •

_a"

«

>iw_heading*
]r—

i 1c

*-

3H-

1ac

if44
_4: !

i
i

i

U
nit scope

U
ses

U
tils

V
id

util

E
M

S
dat

TargTest

LotusFil

E
P

A
im

prt

P
FA

utils

P
FA

vid

10
unit

M
athunit

M
enu

K
eyops

!
!

i
M

,

i
i

i
i

i
|

1
j

i
ill

III
M

i
i !

i
i

i
i

I
j

M

i
i

i
i

i
i

i
i

..•M
M

 —
—

 M
 —

—
 j_

M
_

-
i

:
:

i
:

:
i

I
i

M
il.

!

i
L

i
!_.. -h:....".....[

U
nit

.
f

i
1

§

^

5
O

>

UJ lilli

*o
o

Q-
u-

u.
r-

_
l

UJ
Q

.
Q

.

co
1

C

n

1 2 E
III™

 —
—

 .

XX

X

X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

i
i

i
j

i
1

;
i

i
j

1
i
l
l
;
!
:

I
i

i
i i !-+-!

i i M
 •

i
|

i
M

i

M

i
M

M
M

i

i i

X

X

X

X

XX

X

X

X

X

X

X

X
X

X

L _j_
--

i

' |* o0.„--
444
T

l !
-h

i:

•Iii-™

-^._

i_

j
1

-I-1 _._ __...
—_

 l...J
.~

__

™

-

Get
Mve_lilename
]—-

Change_diap
matrix
}—...

...

...

_
_

_j_l_.

—
4.

-

j

•;—

-

_-1

--

~

Dtspl«y_error
me***ge
]_..--

1*5

Cloae_text_window
|—

—_4
-
.

.-

i_! J "

__

~
f~

j

|

|

Write
rr»8jn_window
j...

_"— rr-
:i:i

_-

__

_.

c0i• •...

\

jequjnu uoiiBten
ejepdn

........

.....L...
...L.

M
...

—

h.......

u_.

™
.

i

_.

.........

....

™,„.

OSIx....._.

f,X

i

........ :™.

1

....

...

4........._..... •-•-..........

oJ•x_._

5s1.....

x.......„.

—._...............

....._. ,_...............................

0|xXX sX_.

.......

_l_i,-.

...II.................. I8 i. x

;I?"x..........._._.I

XIo'?'

f...

"x.._....

—

....

ir

._............... -~" „„.................... :-- •i|

{Calcjntermed

~X....

.......

...

~|c 2S

10c• (J

O1«-r +X-—-I

X

Test_for_completed_lactor
jIx

-~. „.Ill.-...
~r
_

Rewnte_factor
matrix
]_.

-.....X- iiwi«
o«

....x._ ioS,£

"53

Calc
abatract
row_matrix
]

--.x

1

-h\
n

—........

.._.....

....

...

.... I....

LX— I1-

1*1,i1:

5
2-

™J
-

4-

i +-r
XX

i i
--It
i

!i

ii —i
i

1

j
1

_T i
:±

t
"T.....

....

|

IStandard
error
in
eigenvalue
]X

[

uoimodujooep'uraJOjj^i
1_..XXX 1I0_........

xi

—
I1...

Matrixjnil
]...

_

XL

sis'*...

.....

3~x xXXXXX

X

X

XX

dSxix

E1oi......

1
ix

._

__.....

X

...

*...............-:- Write^mewage
j-...

....

....

~

x!..._.

X-:••f

Decompose
j....

_

J

1,0...

I

X—-

XI

I......

....—....X.......

11 i1....

Chan0e_column
headings
]-._-"•

TX

X...

...

1 i-—........-X

tI
i

S3BJOU
100J
1

\I

........XiX

X

...........

XX

—IXX... i-._

xX
I

XX
 XXXXXX.-.I

-—

...

X

s' I1........„.........X

is lto5 13 ?..

,
j

Move_cur*or
jight
j1

.......-

J...

i
i

jX

i
1

.-

x...

i

Q
.

33?05

Move_page
down
]j

.....

....

....

x:

"~ ...1

Move_page
right
]-........ i ^1i

|01

13

01'

Movejojop
]

EOo.0o«I
f "!•(•

...._._

j

+i....| "

...

f"
1"

-

"

xiKT_.,._
~r r

._ :

. —x

...

...

•o.....i

r !

4
.

__X

f

i

i.. --

.-

—
I

i

i

-.illfX
r

ix!!x

.SOJ1OS--

•5

2IS

J
,

HO
il

-h
1

"~*~"

-1 .i_

-

i

l
!

j
jj

t!
—

 r
...

4
--| ._L.i

-
i

xj

•i
ii

XxXX

ix

i xixiX

i
ii

1
x!

i
ixiX

!

1
x

s|
|

x|
X

J*ixixxi
x!

x|
X

XX

3.1. Unit DATSTRU2
unit DATSTRU2; (Data_structure)

{The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.

{$0+,F+)
{ Creates and maintains a data structure of a)
(sparse array of records indexed by pointers.)
(Records are arranged as circularly linked lists)
(column by column with the top record of each)
(column being a row header which is part of a)
(circularly linked list of rows. Each sparse array)
{ is anchored to a variable held in an index }
{ containing maximum dimensions and a name for the)
{ matrix.)

f***,,***!,**,^!,*^,,,,^,^,^^^,^^,

interface

uses Overlay,PFAGlobs;

function Write_to_matrix (Name : MatrixNameType;
Row,Col : word;
Value : Extended) : boolean;

function Read_matrix (Name : MatrixNameType;
Row,Col : word;

var Value : extended) : boolean;

function Next_val (var Row,Col : word;
var Value : extended) : boolean;

function Matnx_dimensions (Name : MatrixNameType;
var Rows,Cols : word) : boolean;

function Delete_matrix (Name : MatrixNameType) : boolean;

(..».»...**.».»«...•,..,..„».,...,.....,...,«,........,,„,...,,.,„,.,,)

implementation

type
NodePtr = ~Node;
Node = record

NextColumn,LastColumn : NodePtr;
case Header : boolean of

False : (DataValue : extended;
Row,Col : word);

True : (RowNo : word;
UpRow,DownRow : NodePtr);

end;
IndexPtr = ~Index;
Index = Record

NextEntry : IndexPtr;
Title : MatrixNameType;
Rows,Co Is : word;
Location : NodePtr;

end;

var
IndexHeader : IndexPtr; (Origin of record structure }
CurrentEntry : NodePtr; (Current entry in data array }

(..I.,,..*...*...,,.**.....*.*.*.*.***..**.**.**.*.*******.************}

function Start_data_array : NodePtr;

(Creates header for entire data array }

(.------.---------------)

var
DataArrayHeader : NodePtr;

begin
New(DataArrayHeader);
with DataArrayHeader^ do
begin
NextColumn
LastColumn
Header
RowNo
UpRow
DownRow

= DataArrayHeader;
= DataArrayHeader;
= True;
= 0;
= DataArrayHeader;
= DataArrayHeader;

end; (with)
Start_data_array := DataArrayHeader;

end; (Start_data_array)

r**

function Find_val (var Srow.Scol : word;
var MatrixHeader,TestPtr : NodePtr) : boolean;

{ Searches entire data array for a particular }
(entry and returns it's position or the position
(of the next entry (Find_val = False))

var
Found : boolean; (True = successful search

begin
TestPtr := MatrixHeader* .UpRow; (Set pointer to first row header)
Found := False;

15 Appendix 3

while (TestPtr*.RowNo < Srow) and (TestPtr *• MatrlxHeader) do
TestPtr := TestPtr*.UpRow;

(Search row headers till next largest)
{ row or array header reached }

if TestPtr".RowNo = Srow then
begin

TestPtr := TestPtr A .NextColumn;
while (TestPtr".Col < Scol) and not Test Per'.Header do

TestPtr := TestPtr".NextColumn;
if not TestPtr".Header

then Found := (TestPtr".Col = Scol);
end; (if)

(Search ascending columns for a match
(till next largest column or header)
(is reached if no match)

CurrentEntry := TestPtr;
Find_val := Found;

end; (Find_val)

function Next_val (var Row,Col : word;
var Value : extended) : boolean;

(Returns the next value in the data array.)

begin
CurrentEntry := CurrentEntry".NextColumn; (Point to next entry.)
if CurrentEntry*.Header then { Check for row header.)
begin
CurrentEntry := Current Entry*.UpRow; (If header then move up a row.
if CurrentEntry*.RowNo = 0 then (Check for MatrlxHeader.)
begin

Next_val := false; (If MatrlxHeader then mark failiure)
exit; (and leave.)

end (if then)
else
CurrentEntry := CurrentEntry".NextColumn; (Move to first data entry,

end; (if then)
Row := Current Entry*.Row; (Return data.)
Col := CurrentEntry-.Col;
Value := Current Entry".DataValue;
Next_val := true; (Mark success.)

end; (Next_val)

function New_row_header (var TheRow : word;
var InsertPos : NodePtr) : NodePtr;

(Creates a new node to act as)
(a row header)

var
NewNode : NodePtr;

begin
New(NewNode) ;
with NewNode* do
begin
NextColumn = NewNode;
LastColumn = NewNode;
Header = True;
RowNo = TheRow;
UpRow = InsertPos;
DownRow = InsertPos"
DownRow".UpRow = NewNode;
UpRow".DownRow = NewNode;

end; (with)
New_row_header := NewNode;

end; (New_row_header)

DownRow;

procedure Create_node (var TheRow,TheCol : word;
var TheValue : extended;
var InsertPos : NodePtr);

(Creates a new node to hold
(a data value and enters it
(in the data structure)

var
NewNode NodePtr;

-)

begin
New(NewNode);
with NewNode" do
begin

LastColumn
NextColumn
NextColumn".LastColumn
LastColumn".NextColumn
Header
Row
Col
DataValue

end; (with)
end; (Create_node)

= InsertPos".LastColumn;
= InsertPos;
= NewNode;
= NewNode;
= False;
= TheRow;
= TheCol;
= TheValue;

function Delete_value (var Row,Col
var MatrixHeader

wo rd ;
NodePtr) boolean;

Delete selected node from
data structure and tie up

16 Appendix 3

loose ends

var
Found
DelPtr

boolean;
NodePtr;

NextColumn) then

begin
Delete_value := False;
Found := Find_val (Row, Col , MatrixHeader, DelPtr) ;
if not Found then exit;
with DelPtr' do
begin
NextColumn". LastColumn := LastColumn;
LastColumn" .NextColumn := NextColumn;

end;
if (DelPtr*. LastColumn = Del Ptr"
with DelPtr' .NextColumn A do
begin

begin
DownRow" .UpRow := UpRow;
UpRow" . DownRow := DownRow;

end; (with)
Dispose(DelPtr" .NextColumn) ;

end; (if)
Dispose (DelPtr) ;
Delete_value := True;

end; (Delete_value)

(Find node)
Leave if no node)
Delete node)

if node was only entry on)
row then delete row header ;

procedure Check_bounds(IndexEntry : IndexPtr);

var
MaxRow,MaxCol : word;
TestEntry : NodePtr;
Success : boolean;

begin
MaxCol := 0;
TestEntry := IndexEntry".Location".DownRow;
MaxRow := Test Entry'.RowNo;
while not (Test Entry'.RowNo = 0) do
begin

if TestEntry".LastColumn".Col > MaxCol
then MaxCol := TestEntry".LastColumn".Col;
TestEntry := Test Entry".DownRow;

end; (whi le)
If (MaxRow = 0) and (MaxCol = 0)
then Success := Delete_matrix(IndexEntry".Title);
IndexEntry".Rows := MaxRow;
IndexEntry".Cols := MaxCol;

end; {Check_bounds}

{..»..........»..
function Put_val (var IndexEntry :

var Row, Col :
var Value :

: IndexPtr;
: wo r d ;
: extended) : boolean;

(Changes a value in the data }
(structure or adds a value creating
(the necessary nodes)

var
InsertPos,
NewNode : NodePtr;
Found : boolean;

begin
Put_val := False; { Set function to 'unable to insert")
Found := Find_val(Row,Col,IndexEntry".Location,InsertPos); { Find where to change or create new node }
if not Found and (Maxavail < Sizeof(node)) then exit;
if Found then

if Value = 0 then
begin

Put_val := Delete_value(Row,Col,IndexEntry".Location); { If value is zero then delete node }
Check_bounds(IndexEntry); { Check the dimensions of the matrix }
exit

end (then)
else

begin
InsertPos".DataValue := Value; (Edit an existing value }
Put_val := True; (Mark success)
exit (Leave function }

end (then)
else

if Value = 0 then I Don't add zero entries. }
begin

Put_val := true;
ex i t ;

end; (if)
if InsertPos".Header and (InsertPos".RowNo <> Row) then (Check if there is the correct)
begin (row header present)

if Maxavail < (Sizeof(node) * 2) then exit;
NewNode := New_row_header(Row,InsertPos); { or create it)
InsertPos := NewNode;

end; (if)
Create_node(Row,Col.Value,InsertPos) ;
Put_val := True;

end; (Put_val)

function Get_val (var MatrixHeader : NodePtr ;
var Row,Col : word) : extended;

(Finds a data value from)
(the data structure and)
(returns it)

(___ —— - —— —— —— —— ——)

17 Appendix 3

var
FindNode
Found

NodePtr;
boolean!

begin
Found := Find_val (Row, Col .MatrixHeader , FindNode) ;
if Found then
Get_val := FindNode" . DataValue

else
Get_val := 0 ;

end; (Get_val)

procedure Start_index;

(Creates header for the data array index

begin
New(IndexHeader) ;
with IndexHeader" do
begin
NextEntry
Title
Rows
Cols
Location

end; (with)
end; {Start_index)

IndexHeader ;
NONE;
1 ;
1;
nil;

(Create anchor variable.)

(Initialise all fields)

function Find_index_entry (var Name
var PrevEntry , IndexTestPtr

MatrixNameType;
IndexPtr) : boolean;

Searches index to find a matrix.)
Returns a pointer to the entry and the)
one before it (Fi nd_index_entry = true))
or points to the header and the last)
entry of the list (Find_index_entry =)
false).)

var
Found boolean;

i

Start at first entry.)
begin

IndexTestPtr := IndexHeader" . Next Entry ;
PrevEntry := IndexHeader;
Found := False;
while (IndexTestPtr <> IndexHeader) and (not Found) do
begin

Found := (Name = IndexTestPtr" . Title) ; (Test for match. }
if not Found
then begin

PrevEntry := IndexTestPtr;
IndexTestPtr := IndexTestPtr" .NextEntry ; { Look at next record.

end; (if)
end; (while)
Find_index_entry := Found; (Mark success or failure.)

end; (Find_index_entry)

(.,..*, ———•....*.»,*.,,,..,...,,..

procedure Create_index_entry (var Name
var PrevEntry

)

MatrixNameType ;
IndexPtr) ;

Creates a new index entry an inserts it)
at the end of the linked list.)

var
HeaderAddress : NodePtr;
NewNode : IndexPtr;

begin
HeaderAddress := Start_data_array;
New(NewNode)
with NewNode
begin
NextEntry

do

= IndexHeader;
Title
Rows
Cols
Location

end; (with)
PrevEntry".NextEntry := NewNode;

end; {Create_index_entry)

= Name;
= 0;
= 0;
= HeaderAddress;

(Create new header for matrix.)
(Create new index record.)

(Initialise record entries.)

(Set pointer to new matrix }

(Insert entry into index. }

function Delete_matrix (Name : MatrixNameType) : boolean;

{ Deletes every member of a matrix and removes
{ it's entry from the index to free memory.)

var
TargetMatrix, PrevEntry
DelPtr
Found
Success

IndexPtr;
NodePtr;
boolean;
boolean;

begin
Success := False;

18 Appendix 3

Found := Find_index_entry(Name,PrevEntry,TargetMatrix);
if not Found then
begin

Delete_matrix := Success;
ex i t;

end; (if)
DelPtr := TargetMatrix".Location".UpRow;

while (DelPtr <> TargetMatrix".Location) do

begin
DelPtr := DelPtr".NextColumn;
repeat

DelPtr := DelPtr".NextColumn;
Dispose(DelPtr".LastColumn);

until DelPtr".Header;
DelPtr := DelPtr".UpRow;
Dispose(DelPtr".DownRow);

end; (while)
Dispose(TargetMatrix".Location);

(Set to first row past)
(matrix header.)
(For each row till the)
(header is reached.)

(Set to first column past)
(row header.)

{ Delete all entries on row.

(Move up a row.)
(Delete previous row.)

PrevEntry".NextEntry := TargetMatrix".NextEntry;

Dispose(TargetMatrix);
Success := True;
Delete_matrix := Success;

end; (Delete_matrix)

(Delete matrix header.)
Take index entry out)
of the index.)
Delete index entry)
Mark succesful deletion.

function Read_matrix (Name
Row,Col

var Value

MatrixNameType;
wo rd ;
extended) : boolean;

Checks that the matrix)
exists and reads data.)

var
Found : boolean;
PrevEntry,IndexEntry : IndexPtr;

begin
Read_matrix := False;
Found := Find_index_entry(Name,PrevEntry,IndexEntry);
if not Found then
begin

Value := 0;
ex i t;

end; (if)
Value := Get_val(IndexEntry".Location,Row,Col);
Read_matrix := Found;

end; (Read_matrix)

function Write_to_matrix (Name : MatrixNameType;
Row,Col : word;
Value : Extended) : boolean;

(Checks existence of matrix)
(and creates it if necessary)
(then updates the bounds and)
(enters the value.)

var
Found : boolean;
PrevEntry,IndexEntry : IndexPtr;

begin
Write_to_matrix := False;
Found := False;
while not Found do
begin

Found := Find_index_entry (Name, PrevEntry , IndexEntry);
if not Found then
begin

if Maxavail < (Sizeof (Index) + (Sizeof (Node) * 3)1 then exit;
Create_index_entry (Name , PrevEntry) ;

end; (if)
end; (while)
with IndexEntry" do
begin

if Rows < Row then Rows := Row;
if Cols < Col then Cols := Col ;

end; (with)
Write_to_matrix := Put_val (IndexEntry , Row, Col .Value) ;

end; (Write_to_matrix)

function Matrix_dimensions (Name : MatrixNameType;
var Rows, Cols : word) : boolean;

•)

(Finds matrix and returns)
(dimens ions . }

var
Found : boolean;
PrevEntry,IndexEntry : IndexPtr;

begin
Matrix_dimensions := False;
Found := Find_index_entry(Name,PrevEntry,IndexEntry);
if not Found then exit;
Rows := IndexEntry".Rows;
Cols := IndexEntry".Cols;
Matrix_dimensions := Found

19 Appendix 3

end; (Matrix_dimensions)

begin
CurrentEntry := nil;
Start_index;

end. (Data_structure)

20 Appendix 3

3.2. Unit OVINIT
unit Ovlnit;
{The code contained ln this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.

interface
implementation

uses Overlay;

begin
Ovrlnit('TFA.OVR 1) ;
OvrlnitEMS;
OvrSetBuf(30000) ;

end.

Appendix 3

3.3. Unit
unit pfaglobs;

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.)

($0+,F+)

interface

uses Overlay,Crt;

const
Key constants

(Null Character)
{ Beep)
{ Backspace)
(Tab)
(Shift tab)
(Carriage return }
(Escape)
(Space character)
(Slash character)
{ Fl key scan code }
(F2 key scan code)
(F3 key scan code)
(F4 key scan code)
(F5 key scan code]
(F6 key scan code)
(F7 key scan code)
(F8 key scan code }
(F9 key scan code)
(F10 key scan code)
(Insert key scan code)
(Delete key scan code)
(Home key scan code)
(Control home key scan code)
(End key scan code)
{ Control end key scan code }
{ Page up key scan code)
{ Page down key scan code)
(Control page up scan code }
(Control page down scan code)
{ Right arrow scan code }
{ Left arrow scan code)
(Up arrow key scan code }
(Down arrow key scan code)
(Control right arrow key scan code ',
(Control left arrow key scan code)

NullChr
Bell
BkSpc
Tab
Shift tab
CR
Esc
Space
Slash
Fl key
F2 key
F3 key
F4 key
F5 key
F6 key
F7_key
F8_key
F9 key
F10_key
Ins_key
Del_key
Home_key
Ctrl_home
End_key
Ctrl_end
Page_up

_
-
-
=
-
-
-
-
-
=
-
=
=
=
=
=
=
=
=
=
-
=
=
-
-
=

#0;
#7;
#8;
#9;
#15;
#13;
#27;
#32;
#47;
#59;
#60;
#61;
#62;
#63;
#64;
#65;
#66;
#67;
#68;
#82;
#83;
#71;
#119;
#79;
#117;
#73;

Page_down = #81;
Ctrl_pgup = #132;
Ctrl_pgdn = #118;
Cur_right = #77;
Cur_left = #75;
Cur_up = #72;
Cur_down = #80;
Ctrl_rght = #116;
Ctrl_left = #115;

type
Coords = record

Column,Row : word;
end;

StatusRecord = record
Text : String(5];
Colour : byte;
Blinking : boolean;

end;

Str_2 = String(2);
Str_3 = String[3];
Str_4 = String[4];
Str_5 = string[5];
Str_6 = string[6];
Str_8 = string[8];
Str_9 = string[9];
Str_10 = string[10);
Str_12 = string[12];
Str_13 = string[13];
Str_20 = string[20);
Str_30 = string[30);
Str_80 = string[80];
Str_255 = string[255) •
MatrixNameType = (NONE,DATA,COVA,RES I,LOAD,SCOR,

COMP,INTM,TKON,TVEC,TTST,DIFM);
MatrixNameMap = array [MatrixNameType] of Str_30;
StatusType = (RE,ER.WA,Fl,ME,ED,LA,PO,VA);
StatusDataType = array [StatusType] of StatusRecord; (Status flag specs.)
TypeOfFile = (Native,ASCII,Lotus);

var
MonoSystem : boolean;
Found : boolean;
EscPress : boolean;
CapsOn.NumOn,ScrollOn :
NoOfCols : byte;
NoOfRows : byte;

type (Set types)
Any_char = set of char;

const {Typed constants)

(True if Mono card present)
(Flag for data structure procedures)
(Escape flag for procedures)

boolean; { Keyboard light flags)
(Number of columns possible in one screen)
(Number of rows possible on one screen)

FileChanged
RedrawScreen
Refresh
EndSession
Headings
ColWidth
Status
FacExTest
ResNulTest
AbsError
VectErr
NoFacs
CurrentMatrix
Letters
Numbers
Maxlnt
MaxLInt
MaxByte
MaxWord
MaxReal

boolean = false;
boolean = true; (Flag to redraw whole screen]
boolean = true; { Flag to redraw number area)
boolean = false; { Flag to signal end of program)
boolean = true; (Flag to show column headings or numbers
byte = 10; { Width of each number column)
StatusType = RE; (Holds current status of spreadsheet)
extended = le-19;(Factor extraction test value)
extended = le-19;(Completed decomposition test value
extended =
extended =
word = 0;
Ma t r i xNameType
Any_char = ['a' . . ' z '
Any_char = [' 0'..'9'
longint = 32767;
longint = 2147483647
longint = 255;
longint = 65535;
extended = 1.7e38;

(Estimate of error in the data matrix)
(Estimate of error in the test vector)
(Number of factors used to model data)
None; (Name of displayed matrix)
1 z ' , ' A' . . ' 2'] ;

22 Appendix 3

MaxExt

MatrixDim ;

Origin ;

CursorPos

OldCurPos

MatrixNameStr

: Coords

: Coords

: Coords

: Coords

: Mat r ixl

MaxMatrixName

StatusData :

extended = 1 . Ie4932;

(Column:1;Row:1);
1 Dimensions of the current matrix)
(Column:1;Row:1) ;
(Coordinates of top left cell of screen)
(Column:1;Row:1);
(Current cursor screen row and column)
(Column:1;Row:1);
(Old position of cursor on screen)

MatrixNameMap = ('No Matrix to display','Data Matrix',
'Covariance Matrix','Residual Matrix',
'Abstract Column Matrix',
'Abstract Row Matrix','Composite Matrix',
'Intermediate Matrix','Transform Constant',
'Transform Vector','Target Test Matrix',
'Vector Differential Matrix']

MatrixNameType = DIFM,

StatusDataType = ((Text
(Text
(Text
(Text
(Text
(Text
(Text
(Text
(Text

Must be set to last name of)
(MatrixNameType }

'Ready';Co lour:Cyan ;Blinking:false) ,
'ERROR';Colour:Red ;Blinking:true),
'Wait ';Colour:Magenta;Blinking:true),
'Files';Colour:Cyan ;Blinking:false),
'Menu ';Colour:Magenta;Blinking:false),
'Edit ';Colour:Cyan ;Blinking:false),
1 Label';Colour:Cyan ;Blinking:false) ,
'Point' .-Colour: Magenta; Bl inking: false) ,
'Value';Co lour:Cyan ;Blinking:false));

implementation

end.

23 Appendix 3

3.4. Unit VinjjTM_
unit Vid_util;

(The code contained in this unit is Copyright by T.G. Brockwel 1 , 1989-92. All rights reserved.

interface

uses Overlay, Crt ,DOS, PFAGlobs;

{ Video limits: }

const
MaxRow = 25; (Maximum video rows.)
MaxCol = 80; (Maximum video columns.)

(Direct video access data structures:)

type
PCChar = record

character : Char;
attribute : Byte;

end;

CharLine = array (1 .. MaxCol] of PCChar;

InpLines = array [1 . .MaxRow] of CharLine;
Curtype = (Off, Big, Small);

var
vid : Text;
ColorLine : InpLines absolute $b800:$0000;
MonoLine : InpLines absolute $bOOO : $0000;
LineBuf : InpLines; (Video line buffer.)

function Is_mono: Boolean;

procedure BlOSCursor (Size : Curtype);

procedure Set_border (Border : Byte);

procedure Hide_cursor;

procedure Restore_cursor;

procedure Kbd_l ight_status;

procedure Colour_box (TopX, TopY , LwrX , LwrY, Fore, Back : byte;
Blinking : boolean);

procedure Fill_screen (TopX, TopY, LwrX, LwrY : byte;
Character : char);

function Get_attribute (X,Y : byte) : byte;

implementation

function Is_Mono : Boolean; (Determines presence of monochrome video adaptor)

{ IBM-PC equipment flag location is $0040:0010. Bits 4 and 5
set (00110000) indicate monochrome video adapter. }

begin
if ((Mem[$0040:$0010] and $30) = $30)

then Is_Mono := TRUE
else Is_Mono := FALSE;

end; { Is_Mono)

procedure BlOSCursor (Size : Curtype); { Sets the size of the IBM hardware }
(text mode cursor)

var
Regs : registers;

begin
with Regs do
begin

AH := $01;
CL := $07; { Scan line to stop drawing cursor at)

case Size of
Off : CH := $20; { Sets bit 5 to hide cursor)
Big : CH := $00; { Scan line to start drawing cursor at }
Small : CH := $06; { May not work correctly on MDA adapters }

end; (case)
IntrlSlO, Regs)

end; (with)
end; {BlOSCursor)

procedure Set_Border (border : Byte); (Sets screen border)

var
ms_reg : Registers;

begin
Fillchar (ms_reg, SizeOf (ms_reg) , 0) ;
with ms_reg do
begin

ah := $0d;
bl := border;

end; (with)
intr (S10,ms_reg) ;

end; (Set_Border)

procedure Hide_Cursor; (Turns off BIOS cursor)

var
ms_reg : Registers;

begin
ms_reg.ah := $01;
ms_reg.ch := $20;
ms_reg.cl := $00;
IntrlSlO, ms_reg) ;

24 Appendix 3

end; (Hide_Cursor)

procedure Restore_Cursor; Turns BIOS cursor on)

var
ms_reg Registers;

begin
ms_reg.ah := $01;
if MonoSystem then
begin
ms_reg.ch := $0c;
ms_reg.cl := $0d;

end (if then)
else
begin
ms_reg.ch := $06;
ms_reg.cl := $07;

end; (if else)
Intr($10,ms_reg);

end; (Restore_Cursor)

procedure Kbd_light_status; { Shows when lock keys are set }

var
KbdFlag

const
CapsLock = $40;
NumLock = $20;
ScrollLock = $10;

begin (Using masks test which locks are set)
CapsOn := ((KbdFlag and CapsLock) = CapsLock);
NumOn := ((KbdFlag and NumLock) = NumLock),-
ScrollOn := ((KbdFlag and ScrollLock) = ScrollLock);

end; (Kbd_light_status)

: byte absolute $40:$17; (BIOS keyboard flag byte 0)

(7654 3210 bit No.) (Binary masks for test ing)
(0100 0000 ,bit 6 set indicates on)
(0010 0000 ,bit 5 set indicates on)
(0001 0000 .bit 4 set indicates on)

procedure Colour_box (TopX,TopY,
LwrX.LwrY,
Fore,Back : byte;
Blinking : boolean);

(Draws a coloured box between corners)

var
I.J.Attrib by t e;

begin
Attrib := Back'16 + Fore;
if Blinking then Attrib := Attrib *• Blink;
for I := TopY to LwrY do
begin

for J := TopX to LwrX do
begin

if MonoSystem then
MonoLine(I,J).Attribute := Attrib

else
ColorLine[I,J].Attribute := Attrib (Change colour on colour adaptor)

end; {for J)
end; (for I)

end; (Colour_box)

(Calculate)
(colour byte)

(For each row)

(For each column)

(Change colour on mono adaptor)

procedure Fill_screen (TopX,TopY,LwrX,LwrY : byte;
Character : char);

(Fills a specified area]
(area of screen with a)

(character)

I,J : byte; { Local loop control)

(For each row)

(For each column)

(Write char on mono adaptor)

begin
for I := TopY to LwrY do
begin

for J := TopX to LwrX do
begin

if MonoSystem then
MonoLine[I,J).Character := Character

else
ColorLine(I,J).Character := Character; (Write char on colour adaptor

end; (for J)
end; (for I)

end; (FillScreen)

function Get_attribute (X,Y : byte) : byte; (Returns current text attribute
(at location specified by coords

begin
If MonoSystem then
Get_attribute := MonoLine(Y,X) .At tribute

else
Get_attribute := ColorLine[Y,X].Attribute;

end; (Get_attribute)

begin (Vid_util initialisation)
MonoSystem := Is_Mono;

end. (Vid_util)
Determine if mono adaptor

25 Appendix 3

3.5. Unit UTIIS
unit Utils;

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.

($0+,F+)

interface

uses Overlay,Crt,DOS,PFAGlobs,Opdate;

type
SwitchType =(On,Off);

procedure Convert_to_base_26 (Column : word;
var CodeString : Str_255);

procedure Convert_to_base_10 (CodeStr : Str_255;
var Column : word);

procedure Get_date_time (var DayString : Str_30);

procedure Elapsed_time_timer(Switch : SwitchType;
var ETime : Str_80);

procedure Strip (var inp_str : Str_255;
stnp_set : Any_char);

procedure Stnp_Leading (var inp_str : Str_255;
strip_set : Any_char);

procedure Stnp_trai 1 ing (var inp_str : Str_255;
Strip_set : Any_char);

function Power! X : Extended; Y : integer) : extended;

function String_to_number (var InpStr , Value , Mm , Max;
var Code : integer;

Int,AllowZero : boolean) : boolean;

procedure Read_kbd (var inchr.mctl : char);

function Parse_coords (CellAddress : Str_255;
var Row,Col : word) : boolean;

procedure Check_for_esc;

function F_prob(f : real; kl,k2 : integer) : real;

implementation

procedure Convert_to_base_26 (Column : word; (Takes a column No. and)
var CodeString : Str_255); (converts it to letter)

(format spreadsheet style)
const
Multiplier : array[1..5] of longint = (1,26,676,17576,456976);

var
Position,Mm,Limit,I
IntPart
FracPart

byte; (Note I masks Global I for local loop control
word;
real ;

begin
Position := 0; (Indicates current column of code)
FillChar(CodeString,256,' '); (Contains the code }
CodeString(O) := Chr(PredfSizeOf(CodeString)));
repeat (This loop finds the first }

Position := Succ(Posit ion); { multiplier larger than column)
until Multiplier[Position] > Column;
Mm := Pred(Position); (Stores the position of the largest multiple)
for I := Pred(Position) downto 1 do
begin (From the first divisible multiple down to units }

IntPart := Column div Multiplier[I]; { Find the number of multiples }
CodeString[(Length(CodeString) +1 - I)) := Chr(IntPart+64);

(Add the relevant code letter)
Column := Column mod Multiplier[I]; (Calculate the remainder)

end; (for)
I := Length(CodeString); { Set loop length to CodeString length)
Limit := I - (Mm -1) ; { Points to the most significant digit }
repeat

If (Ord(CodeStrmg[I]) < 65) and (I <> Limit) then
{ If code is less than A and not MSD }

begin
CodeString(I) := Chr(Ord(CodeString(I]) + 26); { Set A to Z }
CodeString[Pred(I)] := Pred(CodeString[Pred(I)]);(Subtract 1 from next }

end; (if) (highest bit)
I := I - 1; (Move down code string right to left)

until (I <= Limit); (Until reach MSD }
If (Ord(CodeString[I]) < 65) then CodeString[I] := Chr(32); (If MSD is <A }

end; {Convert_to_base_26} (Set to space }

procedure Convert_to_base_10 (CodeStr : Str_255; (Converts a column code }
var Column : word); (to its decimal value)

const
Multiplier : array [1..5] of longint = (456976,17576,676,26,1);

var
I,Ln : byte;

begin
Column := 0;
Ln := Length(CodeStr) •
for I := 1 to Ln do
Column := Column + (Multiplier((5-Ln)+I] * Ord(UpCase(CodeStr[I]))-64);

end; (Convert_to_base_10)

procedure Get_date_time (var DayString : Str_30);

var
DateStr : DateString;
TimeStr : DateString;

26 Appendix 3

begin
FillChar(DayString,SizeOf(DayString) , ' ') ;
DayString[0] := (OO;
DateStr := TodayString('wwwwwwwww dd/mm/yy');
TimeStr := CurrentTimeString('hh:mm:ss') ;
DayString := DateStr + ' ' + TimeStr;

end; (Get_date_time)

procedure Elapsed_time_timer(Switch : SwitchType;
var ETime : Str_80);

const
DT1 : DateTimeRec = (D : 0;T : 0) ;
DT2 : DateTimeRec = (D : 0;T : 0);

var

Days : word;
Sees : longint;
Hours, Minutes, Seconds : byte;
DayStr,HourStr,MinStr,SecStr : Str_80;

begin
case Switch of

On : begin
DT1.D := Today;
DT1.T := CurrentTime;
ETime := 'Elapsed time = 0' ;

end;
Off : begin

DT2.D := Today;
DT2.T := CurrentTime;
DateTimeDiff(DT1, DT2, Days, Sees);
TimeToHMS(Sees,Hours,Minutes,Seconds);
Str(Days,DayStr);
Str(Hours,HourStr);
Str(Minutes,MinStr);
Str(Seconds,SecStr);
ETime := 'Elapsed time = '+DayStr+' Days, '+

HourStr*' Hours, '+
MinStr+' Minutes, '+
SecStr-t-' Seconds';

end;
end; (case)

end; {Elapsed_time_timer)

procedure Strip_trai1 ing (var inp_str : Str_255;
Strip_set : Any_char);

var (Strips specified characters from the end of inp_str }

len : Byte;

begin
len := Length(inp_str);
inp_str[0] := Chr(O); { Set inp_str length to ZERO.)

while (inp_str(len] in strip_set) and (len > 0) do
len := Pred(len);

inp_str[0] := Chr(len); { Set inp_str to len.)

end; (Strip_trailing)

procedure Strip_Leading (var inp_str : Str_255;
strip_set : Any_char);

var (Strips specified characters from the beginning }

i,len : Byte; (of inp_str }

begin
len := Length(inp_str);
i := 1;
While (inp_str[i) in strip_set) and (i <= len) do

i := Succ(i);
inp_str := Copy(inp_str,i,len);

end; (Strip_leading)

procedure Strip (var inp_str : Str_255; (Removes specified characters }
strip_set : Any_char); (from the start and finish)

(of inp_str)

begin
Strip_Trailing(inp_str,strip_set);
Strip_Leading dnp_str, strip_set) ;

end; (Strip)

function Power(X : Extended; V : integer) : extended; { Calculates X raised)
{ to the power Y where)

var { may be a positive or negative integer)

Z : extended;
I : integer;

begin
Z := 1.0; I := Abs(Y);
while I > 0 do
begin

if Odd(I) then Z := Z * X;
I := I div 2;
X := Sqr(X);

end; (while)
if Y < 0 then Z := 1/Z;
Power ;= Z;

end; (Power)

procedure Round value (var Value : extended; (Rounds an extended number)

P - Places : integer); (to the specified number)

var { of P laces '
Factor : extended;

begin
Factor := Power(10,Places);
Value := Value * Factor;
Value := Round(Value);
Value := Value / Factor;

end; (Round_value)

function String_to_number (var InpStr,Value,Min,Max; { Converts a string to }
var Code : integer; (a real or integer)

Int,AllowZero : boolean) : boolean;

(NOTES: }
(Input string may be any size or string type.)

27 Appendix 3

{ Value must be be either longint or extended. If appropriate range checking)
i is perrormed the result may be typecast to any of the real or integer types)
without a range check error.)

(Max and Mm values must be either longint or extended values only.)
, TK f XS true an inte9er value is returned or else a real value is.)
me tunction may be false if the number is out of range or an unsuccessful)
conversion took place. Code will be non zero if the conversion went wrong.)
ine original value is unchanged if Ok is false.)

I tor extended numbers 0 is valid only if AllowZero is true.)
t Kange checking for extended numbers covers both positive and negative)
I numbers in the range specified by Min/Max.)
(Range checking for integers may include negative numbers by supplying a)
{ negative Min value. }

var
Ok
AbsStr
Abslnt
AbsExt
Tmplnt
TmpExt
ExtMax
IntMax
ExtMin
IntMin

boolean; (Flag for in-range operation)
Str_255 absolute InpStr; (Input string - may be any size)
longint absolute Value; (Variable for integer output)
extended absolute Value; (Variable for real output)
longint; (Temporary integer for conversion)
extended; (Temporary extended for conversion)
extended absolute Max; (Real maximum }
longint absolute Max; (Integer maximum)
extended absolute Min; (Real minimum)
longint absolute Min; { Integer maximum)

begin
(SR-)
case Int of

true : begin
Val(AbsStr,Tmplnt.Code) ;
Ok := (Code = 0) and (Tmplnt >= IntMin) and (Tmplnt <= IntMax);
if Ok then Abslnt : - Tmplnt;

end; (true)
false : begin

Val(AbsStr.TmpExt.Code);
Ok := (Code = 0) and (Abs(TmpExt) >- ExtMin)

and (Abs(TmpExt) <- ExtMax)
or (Code = 0) and AllowZero and (TmpExt = 0);

if Ok then AbsExt := TmpExt;
end; (true)

end; (case)
Strmg_to_number := Ok;

(SR-O
end; (String_to_number)

procedure Read_kbd (var mchr.inctl : char); (Reads keyboard buffer)

begin
mctl := NullChr;
inchr := ReadKey;
if inchr = NullChr then (If control key read next character)

inctl := ReadKey
else

if (inchr in (#1..#31,Slash]) then (Makes keys 1-31 and slash)
inctl := inchr; { control keys }

end; (Read_kbd)

function Parse_coords (CellAddress : Str_255; (Takes a coord string)
var Row,Col : word) : boolean; (and converts it to a)

(row and column number)
const

Delimiter : Any_char = I',', 1 ']; { Coordinate separators)
Max : longint = 65535; (Range check constants)
Min : longint = 1; { for string conversion)
Int : boolean = true; (Flag for integer conversion }
AllowZero : boolean = false; (Flag to disallow a zero entry)

var
I : integer; (Loop control)
RowStr.ColStr : Str_255; { Coordinate strings)
Ok,Convert : boolean; { Logic flags)
SplitPos : byte; { Division between coords)
Code : integer; (Conversion error code)

begin
Convert := false; (Initialization)
Ok := false; (code J
for I := 1 to Length(CellAddress) do
begin

if CellAddressd] in Delimiter { Find division)
then SplitPos := I; < between row t col)

if CellAddressd] in Letters then
begin

SplitPos := I; (Note if col is letters }
Convert := true;

end; (if)
end; (for)
ColStr := Copy(CellAddress,1,SplitPos) ; (Separate col)
Strip_trailing(ColStr,Delimiter) ;
RowStr := Copy(CellAddress,Succ(SplitPos),Length(CellAddress)-SplitPos) ;
if Convert then i Separate row)
begin
Convert_to_base_10(ColStr,Col); { Convert letters to numbers)
Ok := true;

end (if then]
else
begin

Col := longint(Col); (String to word)
Ok := String_to_number(ColStr,Col,Min,Max,Code,Int,AllowZero); (conversion routine
if Ok and (Code = 0)

then Col := word(Col);
end; {if else)
Row := longint(Row); (String to word conversion)
Convert := String_to_number(RowStr,Row,Min,Max,Code,Int.AllowZero);
Row := word(Row);
Parse_coords := Ok and Convert; { Mark success or failiure)

end; (Parse_coords)

procedure Check_for_esc;

var
Inchr,Inctl : char;

begin
If KeyPressed then Read_kbd(Inchr,Inctl);
if (Inctl in [Esc]) then EscPress := true
else EscPress := false;

28 Appendix 3

end; (Check_for_esc)

function F_prob(f : real; klA2 ; integer)

(Statistical 0? ^ reproduced from Cooke, Craven i, Clarke,)
Statistical Computing ln Pascal, 1985, Edward Arnold, London)

eS11°n fU?Ctl0n of th * F d l str l bution based on }
"n and etar«io " ^^ """ functlons

var

LnBeL '' "'}'' i "odlfled degrees of freedom)
. real; log of complete beta function with parameters

(hi and h2.)
x : real; (Argument of incomplete beta function.)

function Ln^gamma (w : real) : real;

f wamCU J a KeS tH K logarlthm °f the gamma function;)
{ w must be such that 2*w is an integer > 0.)

const
a = 0.57236494; (ln(sqrt(pi)) }

var
Sum real; (temporary store for summation of values.)

begin (Ln_gamma)
Sum := 0;
w : = w-1;
while w > 0.0 do
begin

Sum := Sum + In(w);
w := w-1;

end; (while)
if w < 0.0

then Ln_gamma := Sum t a
else Ln_gamma := Sum;

end; (Ln_gamma)

function Beta_ratio(x,a,b,LnBeta : real) : real;

(Calculates the incomplete beta function ratio with)
(parameters a and b. LnBeta is the logarithm of the)
(complete beta function with parameters a and b.)

const
Error = l.Oe-7;

var
c, (c = a + b)
Factorl,
Factor2,
Factor3 : real; (Factors multiplying terms in series.)

integer; (Counters.)
Sum : real; (Current sum of series.)
Temp : real; (Temporary store for exchanges.)
Term : real; { Term of series.)
xLow boolean; (Status of x which determines the end)

{ from which the series is evaluated. }
real; (Adjusted argument. }

begin (Beta_ratio }
if (x=0) or (x=l)
then Sum := x
else begin

c : = a + b ;
if a < c*x
then begin
xLow := true;
y := x;
x : = 1 - x ;
Temp : = a ;
a := b;
b := Temp;

end (if then)
else begin

xLow := false;
y := 1-x;

end; (if else)
Term := 1 ;
j := 0;
Sum : = 1 ;
i := trunc (b+c*y) +1 ;
Factorl : = x/y ;
repeat

j := j+1:
i := 1-1;
if I > 0
then begin

Factor2 := b-j;
if i = 0 then Factor2 := x;

end; (if)
Term := Term*Factor2*Factorl / (a + j) ;
Sum : = Sum + Term;

until (abs(Term) <= Sum) and (abs(Term) <= error*Sum) ;
Factor3 := exp(a*ln(x) + (b-l)*ln(y) - LnBeta);
Sum := Sum*Factor3/a;
if xLow then Sum := 1 - Sum;

end; (if else)
Beta_ratio := Sum;

end; (Beta_ratio)

begin (F_prob)
hi := 0.5 * kl;
h2 := 0.5 * k2;
x := h2/(h2 + hl*f) ;
LnBeta := Ln_gamma (hi) + Ln_gamma(h2) - Ln_gamma (hl+h2) ;
F_prob := 1 - Beta_ratio(x,h2,hl, InBeta) ;

end; (F_prob)

end.

29 Appendix 3

3.6. Unit EMSDAT
unit EMSDAT; { EMS Data Structures)

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.)

(SO+.F+)

interface

uses PFAGlobs.OpRoot.OpLarray;

const
EXVN : AutoPriority = (1EmsArray,IXMSArray,IVirtualArray,INoArray) ;
REXV : AutoPriority = (IRamArray,1 Emsarray,IXMSArray,IVirtualArray);
DefHeapToUse : longint = 16384; (16K space for one page of matrix)
EigRow =1; (constants for rows in COMP matrix)
PVarRow = 2;
PCVarRow = 3;
RERow = 4;
lERow = 5;
INDRow = 6;
MisRow = 7;
SEERow = 8;
SLRow = 9;
CompRows = 9; { Total no of rows in COMP matrix)

procedure Initlalise_matrix(MatrixName : MatrixNameType;
Rows,Cols : word;
HeapToUse : longint;
Priority : AutoPriority;
Filename : string);

function Set_val MatrixName
Row,Col
Value
) : boolean

function Get_val(MatrixName
Row,Col

var Value
) : boolean

MatrixNameType;
wo rd;
extended

MatrixNameType;
wo rd ;
extended

function Matrix_dimensions(MatrixName : MatrixNameType;
var Rows,Cols : word

) : boolean;

function Type_of_array (MatrixName
var MatrixTypeStr

) : boolean;

Matri xNameType;
string

function Delete_matrix (MatrixName : MatrixNameType) : boolean;

Ma t r i xNameType;
string) ;

Ma t rixNameType;
longint;
AutoPriority;
string);

procedure Save_file(MatrixName
F i1ename

procedure Read_file(MatrixName
HeapToUse
Priority
Filename

procedure Free_EMS;

implementation

type
ExtndMatrixPtr = ^ExtndMatrix;
ExtndMatrix = object(OpArray)

constructor Init(Rows,Cols
HeapToUse
Priority
Filename

procedure SetVall Row,Col
Value

procedure GetVall Row,Col
var Value

procedure LoadA(Filename
end;

IndexNodePtr = ^IndexNode;
IndexNode = object(SingleListNode)

Name : MatrixNameType;
MatxAddr : ExtndMatrixPtr;
constructor Initf MatrixName

Rows,Cols
HeapToUse
Priority
Filename

word;
longint;
AutoPriority;
String);
word;
extended);
word;
extended);
String) ;

Ma t r i xNameType;
word;
longint;
AutoPriority;
string);

procedure Entry_name(var MatrixName : MatrixNameType);
function Set_val(Row,Col word;

Value extended
) : boolean

function Get_val(Row,Col word;
var Value extended

) : boolean
function Matrix_dimensions(var Rows,Cols

) : boolean;
function Type_of_array : ArrayType;
procedure Save_file(Filename : String);
procedure Read_file(Filename : String);

word

destructor Done; virtual;
end;

MatlndexPtr = ^Matlndex;
Matlndex = object(SingleList)

function Search_index(MatrixName : MatrixNameType;
var Location : IndexNodePtr

) : boolean;
procedure New_entry(MatrixName : MatrixNameType;

Rows,Cols : word;
HeapToUse : longint;
Priority : AutoPriority;
Filename : string);

end;

30 Appendix 3

Datalndex : MatlndexPtr-
Err : word;

{ ExtndMatrix-s method implementations

constructor ExtndMatnx . Ini t (Rows, Cols
HeapToUse
Priority
Filename

const
ArrayOptions = IRangeCheck;

word;
longint;
AutoPriority;
string);

var
Value extended;

begin
if (Rows = 0) and (Cols = 0)
then begin

if not OpArray.LoadAI Filename,
HeapToUse,
ArrayOptions,
Priority)

then Fail;
end (if then)
else begin

if not OpArray.Init(Rows,Cols,
SizeOf(extended),
Filename,
HeapToUse,
ArrayOptions,
Priority)

then Fail;
Value := 0;
ClearAIValue, Exactlnit);

end; (if else)
Err := ErrorA;

end; {ExtndMatrix.Init)

procedure ExtndMatrix.SetVal(Row,Col : word;
Value : extended);

begin
SetA(Row,Col.Value);
Err := ErrorA;

end; (ExtndMatnx. SetVal)

procedure ExtndMatnx.GetVal (Row,Col : word;
var Value : extended);

begin
RetA(Row,Col.Value) ;
Err := ErrorA;

end; (ExtndMatrix.GetVal)

procedure ExtndMatrix.LoadA(Filename : String);

const
priority : AutoPriority = (IXmsArray,1EmsArray,IVirtualArray,INoArray)
HeapToUse = 0;

begin
OpArray.LoadA(Filename, HeapToUse, 0, priority);
Err := ErrorA;

end; (ExtndMatrix.LoadA)

I-----------
(IndexNode'
(-----------

constructor

s method implementations

IndexNode. Init (MatrixName
Rows, Cols
HeapToUse
Priority
Filename

: MatrixNameType;
: word;
: longint;
: AutoPriority;
: string) ;

begin
if not SingleListNode.Init then Fail;
Name := MatrixName;
new(MatxAddr,Init(Rows,Cols,HeapToUse,Priority,Filename));

end; (IndexNode.Init)

procedure IndexNode.Entry_name(var MatrixName : MatrixNameType) •

begin
MatrixName := Name;

end; (IndexNode.Entry_name)

function IndexNode.Set_val(Row,Col
Value

word;
extended boolean;

begin
MatxAddr^.SetVal(Row,Col.Value);
Set_val := true;

end; {IndexNode.Set_val)

function IndexNode.Get_val(Row,Col
var Value

wo rd ;
extended boolean;

begin
MatxAddr'.GetVal(Row,Co 1,Value) •
Get_val := true;

end; (IndexNode.Get_val)

function IndexNode.Matrix_dimensions(var Rows,Cols : word) : boolean;

begin
MatxAddr A .ArrayDimensions(Rows,Cols);
Matrix_dimensions := true;

end; (IndexNode.Matrix_dimensions)

function IndexNode.Type_of_array : ArrayType;

begin
Type_of_array := MatxAddr'.TypeOfArray;

31 Appendix 3

end; (IndexNode.Type_of_array)

procedure IndexNode.Save_file(Filename : String);

begin
MatxAddr'.StoreA(Filename)-
Err := MatxAddr".ErrorA;

end; (IndexNode.Save_file)

procedure IndexNode.Read_file(Filename : String);

begin
MatxAddr'.LoadA(Filename);

end; {IndexNode.Read_file)

destructor IndexNode.Done;

begin
MatxAddr'.Done;

end; (IndexNode.Done)

I------------------......... ________________)
{ Matlndex's method implementations)
{-----_-_.._...__._______._____.._____._________,

function Mat Index.Search_index(MatrixName : MatrixNameType;
var Location : IndexNodePtr) : boolean;

var
Found : boolean;
Name : MatrixNameType;
IndexPtr : IndexNodePtr;

begin
Search_index := false;
Found := false;
IndexPtr := IndexNodePtr(Data Index".Head) ;
if (IndexPtr = nil) then exit;
while (IndexPtr <> nil) and (not Found) do
begin

IndexPtr*.Entry_name(Name);
Found := (Name = MatrixName);
If Found then Location := IndexPtr;
IndexPtr := IndexNodePtr(Datalndex".Next(IndexPtr)) ;

end; (while)
Search_index := Found;

end; (Mat Index.Search_index)

procedure Mat Index.New_entry(MatrixName : MatrixNameType;
Rows,Co Is : word;
HeapToUse : longint;
Priority : AutoPriority;
Filename : string);

var
NewNode : IndexNodePtr;

begin
new(NewNode, Initl MatrixName,Rows,Cols,HeapToUse,Priority,Filename));
Datalndex'.Append(NewNode);

end; (Matlndex.New_entry)

{................ —— . —— —— —— —— —— —— —— —— —— —— - —— —— }
{ Procedures that are not methods)
{________.----.--__--)

procedure Initlalise_matrix(MatrixName : MatrixNameType;
Rows,Cols : word;
HeapToUse : longint;
Priority : AutoPriority;
Filename : string);

var
Found : boolean;
IndexPtr : IndexNodePtr;

begin
Found := Datalndex'.Search_index(MatrixName,IndexPtr) ;
if Found then exit;
DataIndex'.New_entry(MatrixName,Rows,Cols,HeapToUse,

Priority.Filename);
end; (Initialise_matrix)

function Set_val(MatrixName : MatrixNameType;
Row,Col : word;
Value : extended
) ; boolean;

var
Found : boolean;
IndexPtr : IndexNodePtr;

begin
Found := Datalndex'.Search_index(MatrixName,IndexPtr);
if Found then

Found :- IndexPtr'.Set_val(Pred(Row) ,Pred(Col).Value) ;
Set_val := Found;

end; (Set_val)

function Get_val(MatrixName : MatrixNameType;
Row,Col : word;

var Value : extended
) : boolean;

var
Found : boolean;
IndexPtr : IndexNodePtr;

begin
Found := Datalndex'.Search_index(MatrixName,IndexPtr);
if Found then

Found := IndexPtr'.Get_val(Pred(Row),Pred(Col).Value);
Get_val := Found;

end; (Get_val)

function Matrix_dimensions(MatrixName : MatrixNameType;
var Rows,Cols : word

) : boolean;

32 Appendix 3

var
Found : boolean;
Indexptr : IndexNodePtr;

begin
Found := Datalndex".Search_index(MatrixName,IndexPtr);
if Found then
begin

Found := IndexPtr".Matrix_dimensions(Rows,Cols);
end; (if)
Matrix_dimensions := Found;

end; (Matrix_dimensions)

function Type_of_array(MatrixName : MatrixNameType;
var MatrixTypeStr : string

) : boolean;

var
IndexPtr
Found
MatrixType

IndexNodePtr;
boolean;
ArrayType;

begin
Found := Datalndex~.Search_index(MatrixName,IndexPtr);
if Found
then begin
MatrixType := IndexPtr A .Type_of_array;
case MatrixType of

IRamArray : MatrixTypeStr := 'in RAM';
lEmsArray : MatrixTypeStr := 'in EMS';
IVirtualArray : MatrixTypeStr := 'a Virtual array';
IXmsArray : MatrixTypeStr := 'in XMS';
INoArray : MatrixTypeStr := 'not allocated 1 ;

end; (case)
end; (if)
Type_of_array := Found;

end; (Type_of_array)

function Delete_matrix(MatrixName : MatrixNameType) : boolean;

var
Found : boolean;
IndexPtr : IndexNodePtr;

begin
Found := Datalndex^.Search_index(MatrixName,IndexPtr) ;
if Found then

IndexPtr^.Done;
Datalndex~.Delete(IndexPtr);
Delete_matrix := Found;

end; (Delete_matrix)

procedure Save_file(MatrixName : MatrixNameType;
Filename : string);

var
Found : boolean;
IndexPtr : IndexNodePtr;

begin
Found := Datalndex'.Search_index(MatrixName,IndexPtr) ;
if Found then

IndexPtr^.Save_flie(Filename);
end; (Save_file)

procedure Read_file(MatrixName : MatrixNameType;
HeapToUse : longint;
Priority : AutoPriority;
Filename : string);

e91 Data!ndex".New_entry(MatrixName,0,0,HeapToUse,Priority,Filename) ,

end; (Read_file)

procedure Free_EMS;

begin
Datalndex~.Done;

end; (Free_EMS)

begin (Unit initialisation)
new(Datalndex, Init);

end.

33 Appendix 3

3.7. Unit PFAMTii
unit PFAUtils;

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.

(SO+,F+)

interface

uses Overlay,Crt,DOS,PFAGlobs.UtiIs,Vid_uti1,EMSDat;

procedure Value_to_string (ColWidth
Row,Col

var CellValue

by t e ;
wo rd ;
Str_255);

procedure Write_status (Status : StatusType);

procedure Change_current_matrix (Name : MatrixNameType) ;

procedure Update_time;

procedure Update_lights;

procedure Wn te_locat ion;

procedure Draw_cursor;

implementation

procedure Value_to_string (ColWidth
Row,Col

var Cellvalue

var
Value,Mm,Max
Places
Result,Expnt
Mantissa
Exponent
Spaces

extended;
by t e ;
integer;
Str_255;
Str_255;
Str_255;

by t e ;
wo rd ;
Str_255);

(Obtains a value from the data)
(structure, converts it to a string)

(for the column width }

procedure Split_extended (Value : extended;
var Mantissa,Exponent

{ Breaks an extended number)
Str_255); (into two strings }

var
ValueStr : Str_
OpPos : byte;
Sign : char;

>55;

begin
Str(Value,ValueStr);
OpPos := Pos('E'.ValueStr);
Sign := ValueStr [Succ(OpPos));
Exponent := Copy(ValueStr,(OpPos+2),4);
Mantissa := Copy(ValueStr,1,Pred(OpPos));
Strip_leadmg (Exponent, I ' 0 ')) ;
if Length(Exponent) <> 0
then Insert(Sign,Exponent,1);

end; (Split_extended)

{ Convert number to string }
(Find the E)

(Store sign of exponent }
(Extract the exponent part }
(Extract the mantissa part)

(Remove extra zeros)

{ Add sign to Exponent)

procedure Strip_Nsig_Zeros (var Str

var
Point : byte;

begin
Point : = Pos('.',Str);
if Point > 0
then begin
Strip_trailing(Str, [' 0']) ;
Strip_trailing(Str,['.'));

end (if)
end; (Strip_Nsig_Zeros)

Str_255); (Strips non significant }
{ zeros and hanging dp from
(strings }

(Remove trailing zeros }
{ Remove decimal point }

{ if hanging)

begin (Value_to_strmg)
if (Row <= MatrixDim.Row) and (Col <= MatrixDim.Column) then

begin
Min := Power(10,-(ColWidth-4));
Max := Power(10,(Colwidth-3));
Found := Get_val(CurrentMatrix,Row,Col,Value); (Read value)

I£ Found then
begin

Split_extended!Value,Mantissa,Exponent) ;
case (Abs(Value) >= Min) and (Abs(Value) < Max) of

true : begin
Val(Exponent,Expnt,Result) ;
if Expnt < 0
then Str(Value:ColWidth:(ColWidth-4),CellValue)
else Str(Value:ColWidth:(ColWidth-4-Expnt).CellValue);

Strip_Nsig_Zeros(CellValue);
end; (true)

false : begin
Val(Mantissa,Value,Result); (Convert mantissa to number)

Places := ColWidth-3-(Length(Exponent)); (Calc dec places)

Str(Value:Places:(Places-2).Mantissa); (Mantissa to string)

Strip_Nsig_Zeros(Mantissa);
if not (Exponent = '')
then Insert('E',Exponent,1);
CellValue := Mantissa + Exponent; (Add str to CellValue)

end; (false)
end; (case)
Strip_leading(CellValue, (' ']) ; (Remove leading spaces)

if CellValue(1) <> '-' (Add a space if not negative)

then Insert!' ',Cellvalue, I);
FillCharlSpaces,Succ(ColWidth-Length(CellValue)), ' ') ;

Spaces[0] := Char(ColWidth-Length(CelIValue));
CellValue := CellValue + Spaces;

end (if then)
else
begin

FillChar (CelIValue,Succ(ColWidth) , • ') ;
CellValue(O) := Char(ColWidth);

end; (if else)

34 Appendix 3

end (if then)
else CellValue :=

end; (Value_to_string)'

procedure Write_status (Status : StatusType),

var
Attrib
PrevAttrib
X,Y

begin
X := WhereX
Y := WhereY
PrevAttrib

byte:
by t e ;
by t e ;

= TextAttr;

(Draws status flag in top
{ right hand corner of)
{ screen)

with StatusData[Status] do
begin
Attrib := Colour*16+White;
if Blinking then Attrib := Attrib
TextAttr := Attrib;
GotoXY(76,1);
Write(Text) •

end; (with)
GotoXY(X.Y);
TextAttr := PrevAttrib;

end; (Write_status)

(Using the relevant status record)

(Calculate byte to)
Blink; (set attributes)

(Set attribute appropriately)

(Write flag to screen)

procedure Change_current_matrix(Name

boolean;
var

Ok

MatrixNameType) ; (Resets global)
(variables for a new)

(matrix and displays it)

begin
CurrentMatrix := Name;
CursorPos.Row := 1 •
CursorPos.Column := 1;
Origin.Row := 1;
Origin.Column := 1;
OldCurPos.Row := 1;
OldCurPos.Column := 1;
Ok := Matrix_dimensions (Name , Mat nxDim. Row, Mat rixDim. Column) ;

RedrawScreen := true;
end; {Change_current_matrix)

procedure Update_time; { Writes date and time to bottom line)
(of screen }

var
DateString
OldAttr
X,Y

Str_30;
byte;
by t e;

begin
OldAttr := TextAttr;
X := WhereX; Y := WhereY;
GotoXYd , 25) ;
TextAttr := Get_attribute11,
Get_date_time(DateString);
Write(DateString);
TextAttr := OldAttr;
GotoXYIX,Y);

end; (Update_time)

procedure Update_lights;

25) ;
Get date & time in string 30 chars long }

const
On = Green*16+White;
Off = Black*16+LightGray;
CapsStr
NumStr
ScrStr

(Writes lock lights to screen)

Colour combination bytes)

Attrib

var
OldAttr
X,Y

array [boolean] of Str_5 = (' ',' CAPS');
array (boolean) of Str_5 = (' ',' MUM ');
array (boolean) of Str_6 = (' ','SCROLL 1);

array [boolean] of byte = (Off.On);

byte;
by t e ;

begin
Kbd_light_status;
OldAttr := TextAttr;
X := WhereX; Y := WhereY;
GotoXY(64,25);
TextAttr := Attrib(CapsOn);
Write(CapsStr(CapsOn));
TextAttr := Attrib[NumOn];
Write(NumStr[NumOn]);
TextAttr := Attrib[ScrollOn];
WritefScrStr[ScrollOn]);
TextAttr := OldAttr;
GotoXYIX,Y);

end; (Update_lights)

procedure Write_location; Writes cursor location on top line of screen)

var
CodeString
Value
Row,Col

Str_255; (String to hold contents of screen line)

extended; (Cell value from data structure)

word; (Cell coordinates)

begin
Row := Origin.Row + Pred(CursorPos.Row);
Col := Origin.Column + Pred(CursorPos.Column)
FillChar(CodeString,Succ(T5),' ');
CodeString(O) := Chr(75);
GotoXY(l,l);
TextAttr := Get_attribute(1,1);
Write(CodeString);
if headings then
Convert_to_base_26(Col, CodeString)

else
begin

Str(Col,CodeString);
CodeString := CodeString +

end; (if else)
StriplCodeString,[' ']);
Found := Get_val(CurrentMatrix,Row,Col.Value);
if not found then Value := 0;
GotoXYd,!) ;
Write(CodeString,Row,•: ',Value);

(Calculate cell)
(coordinates)

Clear contents of string)

{ Erase old line contents
Write numbers or letters ?

(Get letters

(Convert number to string
(Add a comma separator

{ Remove spaces from CodeString
(Get value }

(Write string)

35 Appendix 3

end; (Wri te_locat ion)

procedure Draw_cursor; (Draws a cell cursor and row and column cursors)

var
X,Y byte; (25 X 80 coords

1) ColWidth 6;
begin

X := (OldCurPos. Column
Y := OldCurPos. Row + 4 ;
Colour_box (X, 4 , (X + Pred (ColWidth)), 4 , White, Blue , Fal se) ;
Colour_box (X, Y, (X + Pred (ColWidth)), Y , Wh i te , LightGray , Fal se);
Colour_box(1 , Y, 5, Y, White, Blue, False) ;

(Erase old cursor)

_
X i= (CursorPos. Column - 1) * ColWidth
Y := CursorPos. Row + 4;
Colour_box (X, 4 , (X + Pred (ColWidth)), 4 ,Whi te, Cyan, Fal se) , •
Colour_box(X,Y, (X + Pred(ColWidth)), Y .White, Cyan , False) , •
Colour_Box(l , Y, 5, Y, White, Cyan, False) •
OldCurPos := CursorPos;
Write_locat ion;

end; (Draw_cursor)

end.

1 Draw new cursor

(Update location info)

36 Appendix 3

3.8. Unit EPAIMPRT
unit EPAimprt;

{The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.

(SO+,F+)

interface

uses DOS.PFAGlobs.Utils,EMSDat;

procedure EPA_import (Filename
Name

var Err
var ErrMsg

implementation

procedure EPA_import (Filename
Name

var Err
var ErrMsg

PathStr;
: MatrixNameType;
: boolean;
: Str_80);

PathStr;
MatnxNameType;
boolean ;
Str_80);

(Imports an EPA data format)
(file from VG mass spec data)
(system.)

type
BufferType = array !] of byte;

Program control variables
Code
ScanNo
ScaleFactor
LineNo
InFile
Buffer
Buf ferStr
ReadHeader
ScanFinished
Ok
Int
Al lowZero
Found
Max
Mm
Rows, Cols
Row, Col
Value

(EPA file he
OrigFileName
Date
RunStartTime
Sampleld
InstName
RunConds
SecsPerScan
Analyst
Submit tedBy
AccountNo
Formula
MinMass
MaxMass
NoOf Scans

/_ .__ -.___

integer;
integer;
extended;
longint ;

{ String/number conversion code)
(Number of current scan in fi
(Constant to scale intensity
(Line number of data in scan

le)
figures)
record)

file of BufferType; (Input file)
Buf f erType;
string(80] ;
boolean;
boo lean ;
boolean;
boolean;
boolean;
boolean;
longint ;
longint ;
word;
word;
extended;

ader data fields
string[12]; (
s t r i ng [8] ; (
string[5]; (
string (64]; (
s t r i ng [6] ; (
string(64] ; {
real; (
s t r i ng [8] ; (
string 18] ; (
string (8) ; {
s t r i ng [2 0] ; {
word; (
word; (
word; (

.--1

(Contains one line of file }
{ Contains one line of file -
(Flag to read header record]
(Flags the end of each set of

i run info variables }
Name of original data file. }
Date of data acquisition. }
Start time of run.)
Sample identification. }
Instrument Name.)
Run Conditions. }
Seconds per scan for this file.)
Analyst name. }
Submitted by.)
Account number. }
Formula. }
Lowest mass possible. }
Highest mass possible. }
Number of scans in file. }

CR S, LF)

scan data

procedure Error (ErrNum : byte);
{ Passes appropriate error messages)
{ to Display_error_message.)

type
MsgType = array [1..15] of Str_80; (Array to contain messages)

const (Message list
ErrorMsg : MsgType = ('Scan header not found at start of file',

'Scan number out of sequence - file is corrupted',
'Mass/Intensity data list too long (> 77 lines)',

'LineCount and no. of lines in Mass/Intensity list do not match'
'String to number conversion error for Mass value',

'String to number conversion error for Intensity value',
'Unable to write to data matrix',
'String to number conversion error for LineCount in Mass/Intensity list',
'Conversion error for scan number',
'Conversion error for largest peak intensity' ,
'Scan header does not match File header - file is corrupted',
'Conversion error for Seconds per scan',
'Conversion error for lowest Mass' ,
'Error reading file',
'File contains incomplete lines - file is corrupted');

begin
Err := true;
ErrMsg := ErrorMsg [ErrNum] ;
Closet InFile);
Ex i t ;

end; (Error)

procedure Read_line;

var
I : byte;

begin
ReaddnFile.Buf fer) ;
Code := lOResult;
if (Code <>
then begin

Error (14)
exi t ;

end; (if)

0)

37 Appendix 3

for I := 1 to 80 do
begin

BufferStr(I) := Chr(Buffer[I]
end; (for)
BufferStr[0] := Chr(80);

end; (Read_line)

procedure Detatch_line_number;
(Removes the line number from the)
(end of the buffer.)

var
LineStr : Str_2; (String [or LineNo)

begin
LineStr := Copy(BufferStr,Pred(Length(BufferStr)),2); (Copy line number)
Int := true; AllowZero := true; Min := 0; Max := 77;
Ok : = String_to_number (LineStr, LineNo , Mm , Max , Code , Int .AllowZero) ;
if (Code <> 0) or not Ok then Error(8);
DeletelBufferStr,Pred(Length(BufferStr)),2); (Delete line number)

end; {Detatch_line_number)

procedure Dissect_scan_header;
(Breaks scan header line into its components)

Original data file name)
String containing scan number)
Date of run)
Time at start of run)
Time after start time at end of run)
Nominal mass of the largest peak)
Intensity of the largest peak)
Integer intensity of the largest peak }
Reconstructed ion current)

var
tOrigFi leName
ScanNoStr
tDate
tRunStartTime
TimeOfScan
MassLgePeak
Lgelntensity
iLgelntensi ty
Tic

begin
tOrigFi leName

Str 12; (
Str 5; (
Str 8; (
Str_5; (
Str_6; (
Str 4; (
Str_9; (
longint; (
Str_10; (

= Copy (Buff
ScanNoStr := Copy(BufferStr,14,5);
tDate := Copy(BufferStr,21 , 8) ;
tRunStartTime = Copy(BufferStr,30,5) ;
TimeOfScan := Copy(BufferStr,40 , 6);
MassLgePeak := Copy(BufferStr , 52 , 4);
Lgelntensity := Copy(BufferStr,57 , 9);
Tic := Copy(BufferStr,71,10) ;
case ReadHeader of
true : if (tOrigFileName <> OrigFileName)

or (tDate <> Date)
or (tRunStartTime <> RunStartTime

then begin
Error(11);
Ex 11;

end; (true if then)
false : begin

OrigFileName
Date := tDate
RunStartTime

end; (false)
end; (case)
Int := true; AllowZero := true; Mm
Ok := Strmg_to_number (ScanNoStr , ScanNo, Min
if (Code <> 0) then Error(9);
if (Lgelntensity = ' ')

then ScaleFactor 1= 0
else
begin

Max := 999999999;
Ok := String_to_number(

Lgelntensity,iLgelntensity,Min,Ma
if (Code <> 0) then Error(lO);

end; (if else)
ScaleFactor := iLgelntensity/999;

end; (Dissect_scan_header)

= tOrigFileName;

= tRunStartTime;

(Read the relevant sections)
(of the scan header into the)

(appropriate string)

(Compare the file header
(to the scan header.)

(Set the values for)
(the file header.)

(Convert scan no to integer
Maxlnt.Code,Int.AllowZero);

(Convert intensity to integer)

ix.Code, Int .AllowZero) ;

(Calculate scaling factor)

procedure Fmd_max_scan;

var
LinesInFile
BufferSize
SizeOfFile
CurrentPos
TargFile

longint;
longint;
longint;
longint;
file of byte;

begin
Assign! TargFile, Filename);
Reset (TargFile) ;
CurrentPos := FilePosI InFile);
BufferSize := longint (SizeOf (Buf fer));
SizeOfFile := FileSizel TargFile);
LinesInFile := SizeOfFile mod BufferSize;
Closet TargFile) ;
if LinesInFile <> 0
then begin

Error (15) ;
Exit;

end; (if)
LinesInFile
Seek! Infile,
Read_line;
if Err then Exit;
Detatch_l ine_number;
if Err then Exit;
Seek! Infile, (Pred (LinesInFi le) -LineNo)),
Read_line;
if Err then Exit;
Dissect_scan_header;
if Err then Exit;
NoOf Scans := ScanNo;
Seekf InFile, CurrentPos);

end; (Find_max_scan)

:= SizeOfFile div BufferSize;
Pred(LinesInFile));

procedure Read_f ile_header;

38 Appendix 3

1 Reads additional data from the remaining
(three lines of the file header.)

procedure Second_header_l me;

begin
Read_line;
if Err then Exit;
Sampleld := Copy (Buf f erStr , 1 , 64) •
InstName := Copy (Buf f erStr , 74 , 6) ;

end; {Second_header_l ine)

procedure Third_header_l ine;

var
SecScanStr : string[6);
Min : extended;

begin
Read_line;
if Err then Exit;
RunConds := Copy (Bu f f erSt r , 1 , 64) ;
SecScanStr := Copy (Buf f erStr , 75 , 6) ;
Min := 0; Int := false; AllowZero := false;
Ok := String_to_number (

SecScanStr,SecsPerScan,Mm,MaxReal .Code, I nt , Al lowZero)
if (Code <> 0) or not Ok
then begin

Error (12) ;
exi t ;

end; (if)
end; (Third_header_l me)

procedure Fourth_header_l me;

var
StripStr : Str_255;
MinMassStr : string[3);
MaxMassStr : strmg(3];

begin
Read_lme;
if Err then Exit;
Analyst := Copy (Buf f erStr , 5 , 8) ;
SubmittedBy := Copy (Buf f erSt r , 19 , 8) ;
AccountNo := Copy (Buf f erSt r , 33 , 8) ;
Formula := Copy (Bu f f erSt r , 47 , 20) ;
StripStr := Copy (Buf f erStr, 75, 3) ;
Strip! StripStr, I ' ']) ;
MinMassStr := StripStr;
StripStr := Copy (Buf f erStr , 78 , 3) ;
Strip! StripStr, [' ']) ;
MaxMassStr := StripStr;
Min := 0; Int := true; AllowZero := true;
Ok := String_to_nujnber (

MinMassStr, MinMass, Min, MaxWord, Code, Int , Al lowZero) ;
if (Code <> 0) or not Ok
then begin

Error (13) ;
exi t ;

end; (if)
Ok := String_to_nujnber (

MaxMassStr.MaxMass.M in, MaxWord, Code, Int .AllowZero) ;
if (Code <> 0) or not Ok
then begin

Error (14) ;
ex i t ;

end; (if)
end; (Fourth_header_l me)

begin (Read_f ile_header)
Second_header_l ine;
if Err then Exit;
Third_header_l ine;
if Err then Exit;
Fourth_header_l me;
if Err then Exit;
ReadHeader := true;

end; (Read_f i le_header)

procedure Read_scan_data;
(Reads the data from each scan stored in the file)

var
PrevMass : longint; (Last mass number read)
Prevlntensity : longint; (Corresponding or sum intensity)
PrevScanNo : integer; (Last scan number read, for error checking)
LineCount : byte; (Number of lines of mass/intensity data read)

procedure Dissect_scan_data;
{ Splits the file lines into data pairs and)
(writes them to the data structure)

var
Found
MassStr
IntenStr
DataPair
Mass
Intensity

boolean; (Success flag for data structure writes)
Str__3; (Storage for mass number)
Str_3; (Storage for intensity)
Str_6; (Storage for mass/intensity pair)
longint; (Storage for mass number)
longint; (Storage for peak intensity)

procedure Detatch_MI_pair;
(Splits a DataPair from the buffer)

begin
DataPair := Copy(BufferStr,1,6); (Copy first six chars)

39 Appendix 3

Delete(Buf ferStr, 1,6); (Remove six chars from buffer)
end; (Detatch_MI_pa i r)

procedure Spl i t_MI_pai r ;
(Splits a DataPair into two strings) begin

MassStr := Copy (DataPair , 1 , 3) ;
IntenStr := Copy (DataPair , 4 , 3)•

end; (Spl i t_MI_pair)

procedure Convert_MI_pair;
(Converts data pair to numbers }
(and tests for end of scan)var

elntensity : extended; (Intensity of peak as real variable)

begin
Max := 999; Mm := 0; Int := true; AllowZero := true;
Ok : = Strmg_to_number (MassStr , Mass, Mm , Max, Code, Int , Al lowZero) ;
if not (Code = 0) or not Ok
then begin

Error (5) ;
Ex 1 1 ;

end; (if)
Ok : = String_to_number (IntenStr, Intensi ty , Mm , Max, Code , Int , Al lowZero) ;
if not (Code = 0) or not Ok
then begin

Error (6) ;
Ex i t ;

end; (if)
if (Mass = 0) and (Intensity = 0) then { Test for end of data list)
begin
ScanFmished := true; (Flag end of data)
BufferStr : = • ' ; (clear BufferStr)

end (if then)
else

begin
elntensity := Intensity * ScaleFactor; (Calculate true intensity)
Intensity : = Round (elntensi ty) ;

end (if else)
end; (Convert_MI_pa i r)

procedure Wri te_pomt_to_matrix;
(Enters values into the data structure)
(Sums successive intensities of the)
{ same unit mass)

begin
if PrevMass = Mass then

Prevlntensi ty := Prevlntensi ty *- Intensity
else

begin
Prevlntensi ty := Intensity;
PrevMass : = Mass;

end; (if else}
Found := Set_val (Name , PrevMass , ScanNo , Prevlntensi ty) ; (Write value)
if not Found
then begin

Error (7) •
Ex 1 1 ;

end; (if)
end; (Wri te_pomt_to_matrix)

begin (Dissect_scan_data)
Detatch_line_number;
if Err then Exit;
if (Succ(LineCount) <> LineNo)
then begin

Error(4);
Exit;

end; (if)
while (Length(BufferStr) <> 0) do (Loop till end of m/i data)
begin

Detatch_MI_pair;
Split_MI_pair;
Convert_MI_pair;
if not ScanFmished
then Writejpoint_to_matrix;
if Err then Exit;

end; (while)
end; (Dissect_scan_data)

begin (Read_scan_data)
while not Eof(InFile) do
begin

PrevScanNo := ScanNo;
Read_line;
if Err then Exit;
Dissect_scan_header;
if Err then Exit;
if (ScanNo = 0) or not (ScanNo > PrevScanNo)
then begin

Error(2); (Error trap for non-incremental scan numbers)
Ey.it;

end; (if) o ,
LineCount := 0; (Variable initialization for reading MI data)
PrevMass := 0;
Prevlntensity := 0;
ScanFinished := false;
while not ScanFinished do (Read all mass/intensity data)
begin

Read_line;
if Err then Exit;
Dissect_scan_data;
if Err then Exit;
Inc(LineCount); (Count lines read)

end; (while)
if LineNo > 77
then begin

Error (3);
Ex i t ;

40 Appendix 3

end; (if)
if LineCount <> LineNo
then begin

Error(4); (Compare lines read 5, NoOf Lines }
Ex 11;

end; (if)
end; (while)

end; (Read_scan_data)

begin (EPA_import)
ReadHeader := false;
Assign! InFile,Filename);
Reset(InFile);
Find_max_scan;
if Err then Exit;
Read_line;
if Err then Exit;
Dissect_scan_header;
if Err then Exit;
if ScanNo = 0 (Check for file header)

then Read_file_header
else Error(1);

if Err then Exit;
Initialise_matrix(DATA,MaxMass,NoOfScans,DefHeapToUse,EXVN,'DATARRAY.SSS');
Read_scan_data;
if Err then Exit;
Close! InFile);

end; (EPA_import)

end. (EPAimprt)

41 Appendix 3

3.9. Unit
unit TargTest;

{The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.

interface

uses PFAGlobs.Utils,EMSDat;

procedure Calculate_TKON;

procedure Test_vector;

procedure ITTInit;

procedure ITT(var Finished : boolean);

implementat ion

const (typed)
Rows : word = 0;
Cols : word = 0;

const
TestCol = 1; (Column containing test vector)
PredCol = 2; { Column containing predicted vector)
ErrCol = 3; (Column containing error information)
ErrRow =1; { Estimated error in test vector)
AetRow = 2; (Aparrent error in test vector)
RepRow = 3; { Real error in predicted vector]
RetRow = 4; (Real error in test vector)
Spoil Row =5; { Spoil function)
ReliRow = 6; (Reliability estimate)
FRow = 7; (F-test for vector)
IterRow = 8; (Iteration number for ITT)
DiffRow =9; { Difference term row)
CorrRow = 10; (Correlation coefficient for test i pred vectors)

procedure Matrix_init;

var
Found : boolean;
Row,Col : word;

begin
Found := Delete_matrix(TVEC);
Initialise_matrix(TVEC,NoFacs,1,DefHeapToUse, EXVN, 'TVECARAY.SSS ') ;
Found := Matrix_dimensions(TTST,Row,Col);
if (Row <> Rows) or (Col <> 3)
then begin
Write(Bell);
Exit:

end; (if)
end; (Matrix_ini t)

procedure Calculate_TKON;

var
I,K : word;
Found : boolean;
Tmp : word;
Eig.Kon,
Score : extended;

procedure Leave;

begin
Write(Bell);
Exit;

end; (Leave)

beg i n
Found := Matrix_dimensions(COMP,Tmp,Cols); (Uses the composite matrix)
if not Found then Leave; (to determine the no.of cols.)

Found := Matrix_dimensions (SCOR,Rows,Tmp); (Uses the scores matrix to)
if not Found then Leave; (find the no. of rows.)
Found := Delete_matrix(TKON); (Delete any existing constant.)

Initialise_matrix(TKON,NoFacs,Rows,DefHeapToUse,EXVN,'TKONARAY.SSS');

Matrix_init;
for I := 1 to NoFacs do
begin

Found := Get_val(COMP,EigRow,I,Eig);
Eig := 1/Eig;
for K := 1 to Rows do
begin

Found := Get_val(SCOR,K,I,Score);
Kon := Eig * Score;
Found := Set_val(TKON,I,K,Kon);

end; (for K)
end; (for I)

end; (Calculate_TKON)

procedure Calculate_TVEC;

var
Found
I,K
Kon,Test,Trnv

boolean;
word;
extended;

begin
for I := 1 to NoFacs do
begin

Trnv := 0 ;
for K := 1 to Rows do
begin

Found := Get_val(TKON,I,K,Kon);
Found := Get_val(TTST,K,1,Test);
Trnv := Trnv + Kon * Test;

end; (for K)
Found := Set_val(TVEC,I,1,Trnv);

end; (for I)
end; (CalculateJTVEC)

42 Appendix 3

procedure Calculate_Pred_vector;

var
Found
I,K
Score,
Trnv,Pred

boolean;
word;

extended;

begin
for I := 1 to Rows do
begin

Pred := 0;
for K : = 1 to NoFacs do
begin

Found := Get_val(SCOR,I,K,Score);
Found := Get_val(TVEC,K,1,Trnv);
Pred := Pred + Score * Trnv;

end; (for K)
Found := Set_val(TTST,I,2,Pred);

end; (for I)
end; (Calculate_Pred_vector)

type
TestFocusType = (Row,Column);

procedure F_test_pred_vector(TestFocus : TestFocusType;
Rows,Co 1s,NoFacs : word;
var SigLevel : real);

var
J
S
R,C
F
B
K1.K2
Fvalue
REVPool
VarT
Weight
Eig
Tval , Pval
Trval
TotVar
PVar
Sum
TSq
Prob
Found

word; (
word; (
integer; (
integer; (
integer; (
integer; (
real; {
real; I
real; (
real; (
extended; (
extended; (
extended; (
extended; (
extended; (
real (
real (
real (
boolean;

Loop control variable for weight calculation.)
Minimum of Rows and Cols.)
Integer values of Rows and Cols for calculation.
Focus dependent variable.)
Number of missing points in vector. Set to 0. }
Degrees of Freedom tor F-test.)
F ratio for F-test.)
Reduced eigenvalue and error eigenvalue pool.)
Variance between test and predicted vectors.)
Eigenvalue pool weighting value.)
Intermediate storage of eigenvalues. }
Intermediate storage of vector values.)
Intrmd strge of transformation vector values.)
Total variance in data matrix.)
Percentage variance of eigenvector.)
Sum of error eigenvalues.)
Sum of squares of transformation vector. }
Area in tail of F distribution.)

SigLevel
Sum := 0;
:= Cols;
Cols) of
:= Cols;
:= Rows;

B : = 0 ;

begin
Fvalue := 0;
Weight := 0 ;
R := Rows; C
case (Rows >

true : S
false : S

end; (case)
case TestFocus of

Row : F := Cols;
Column : F := Rows;

end; (case)
Kl := (F - NoFacs - B); K2 := (S-NoFacs)
Found := Get_val(COMP,EigRow,1,Eig);
Found := Get_val(COMP,PVarRow,1,PVar);
TotVar := (Eig/PVar)*100;
for J := 1 to NoFacs do
begin

Found := Get_val(COMP,EigRow,J,Eig);
Sum := Sum + Eig;

end; (for j)
Sum := TotVar - Sum;
for J := Succ(NoFacs) to S do
begin

Weight := Weight + (R - J + 1)
end; (for J)
REVPool := Sum / Weight;

; TSq := 0;
1 to F do

(Variable initialization.

Sum := 0
for J :=
begin

Found
Found

{ Sets the maximum number of factors possible
(for the data set.)

(Sets the value of the focus dependent variable,)
(If the Column vectors are being tested then the)
(vector will contain R points and vice versa.)

(D of F.)

(Calculate total variance.)

(Sum non-error eigenvalues.

{ Calculate error eigenvalues. }
(Pool weighting calculation loop.)

(C - J + 1); (Sum weight distribution.)

(Calculate pool reduced eigenvalue.)
{ Variable initialization.)

(Sum the squares of the)
(differences between the test)
(and predicted vectors.)

= Get_val(TTST,J.TestCol,Tval)
= Get_val(TTST,J,PredCol,Pval)

Sum := Sum + Sqr((Pval - Tval));
end; (for J)
for J := 1 to NoFacs do
begin

Found := Get_val(TVEC,J,1,Trval); (Sum the squares of the)

TSq := TSq + Sqr(Trval); (transformation vector.)

end; (for J)
VarT := (F * Sum)/(Kl * TSq); (Calculate vector variance.)
VarT := VarT / ((R-NoFacs+1) * (C-NoFacs+1)); (Weight for error distrib.)

Fvalue := VarT/REVPool; { Calculate F value.)

Prob := F_prob(Fvalue, Kl, K.2); (Calculate area in tail of F dist.)

SigLevel := (1-Prob) * 100; (Calculate 1 tailed significance test.)

end; (F_test_pred_vector)

procedure Errors_in_test_vector;

var
Ret,Rep,Aet,Spoil,Reli
SigLevel
Found
I
SumOfSq,Sum
Test,Pred,Trnv,Re

real ;
real ;
boolean;
word;
extended;
extended;

begin
Found := Set_val(TTST,ErrRow,ErrCol,Vecterr);
(Calculate the Apparent error in the test vector

SumOfSq := 0;
for I := 1 to Rows do
begin

Found := Get_val(TTST,I,2,Pred);
Found := Get_val(TTST,I,1,Test);
SumOfSq := SumOfSq + Sqr((Pred - Test));

end; (for I)

43 Appendix 3

Aet := Sqrt((SumOfSq/Rows));
Found := Set_val(TTST,AetRow,ErrCol,Aet);
(Calculate the Real error in the predicted vector)
if NoFacs = Cols
then begin

Rep := 0;
Exit;

end; (if)
SumOfSq := 0 ;
for I := 1 to NoFacs do
begin

Found := Get_val(TVEC,I,1,Trnv) •
SumOfSq := SumOfSq + Sqr(Trnv)-

end; (for I)
Found := Get_val(COMP, ReRow,NoFacs, Re) ,-
if not Found then Exit;
Rep := Re * Sqrt(SumOfSq);
Found := Set_val(TTST,RepRow,ErrCol,Rep);
if Rep = 0 then Exit;
(Calculate the Real error in the test vector)
Sum := Sqr(Aet) - Sqr(Rep);
if Sum < 0 then Exit;
Ret := Sqrt(Sum) •
Found := Set_val(TTST,RetRow,ErrCol,Ret);
{ Calculate the Spoil function)
Spoil := Ret/Rep;
Found := Set_val(TTST,SpoiIRow,ErrCol,Spoi1) ;
(Calculate the Reliability function)
Reli := 100 * Sqrt((1 -(Sqr(Ret) - Sqr(Vecterr))/Sqr(Aet))) ;
Found := Set_val(TTST,ReliRow,ErrCol,Rel i);
F_test_pred_vector(Column,Rows,Cols,NoFacs,SigLevel);
Found := Set_val(TTST,FRow,ErrCol,SigLevel);

end; (Errors_in_test_vector)

procedure Test_vector;

begin
Calculate_TVEC;
Calculate_pred_vector;
Errors_in_test_vector;
Refresh := true; (Set flag to update matrix display)

end; (Test_vector)

r
C
c<

Iterative

Dnst
Di fmCols
d2Dif
dOldDif :
dNewDif :

target

= 4;
= 4;
word =
word =

testing routines beyond this point (

(No of columns in DIFM matrix.)
(Column of DIFM with 2nd differential)

3; (Column of DIFM with last differential)
2; (Column of DIFM with new differential)

(These values are updated with each iteration)

var
VLen : word; (Vector length of the test vector)

procedure Copy_col_vector(SourceName : MatrixNameType;
SourceCol : word;
DestName : MatrixNameType;
DestCol : word;
VecLen : word);

var
I
Varl

word; { Loop counter)
extended; { Temporary variable)

begin
for I := 1 to VecLen do
begin

Found := Get_val(SourceName,I,SourceCol,Varl);
Found := Set_val(DestName,I,DestCol,Varl);

end; (for)
end; (Copy_col_vector)

procedure Vector_differential(OrigMatx
OrigCol
NewMatx
NewCol
DestMatx
DestCol
VecLen

Ma t r i xNameType ;
word;
Ma t r i xNameType;
word;
MatrixNameType;
word;
word);

var
I
Varl,Var2,dVar
Found

word; (Loop control)
extended; (Temporary variables)
boolean;

begin
for I := 1 to VecLen do
begin

Found := Get_val(OrigMatx,I,OrigCol,Varl);
Found := Get_Val(NewMatx,I,NewCol,Var2);
dVar := Var2 - Varl;
Found := Set_val(DestMatx,I,DestCol,dVar);

end; (for I)
end; (Vector_differential)

procedure Vector_Mean_and_sd(Matx : MatrixNameType;
Column : word;
VecLen : word;

var Mean : real;
var SD : real);

var
Found
I
Value,Sum,SumSq

boolean;
wo r d ;
extended;

begin
Sum := 0; SumSq := 0;
for I := 1 to VecLen do
begin

Found := Get_val(Matx,I,Column.Value)
Sum := Sum + Value;

end; (for I)
Mean := Sum / VecLen;
for I := 1 to VecLen do

(Initialise variables.

Read entry. 1
Total the entries.)

Calculate mean.)

44 Appendix 3

begin
Found := Get_val(Matx,I,Column,Value); (Read entry.)
value := Value - Mean; { Calculate the difference from the mean }
bumSq := SumSq + Value * Value; (Sum the squares of the differences. 'end; (for I)

Sd := sqrt(SumSq / (VecLen - 1));
end; (Vector_mean_and_sd) Calculate the Sd.)

procedure ITTInit;

var
Col
Varl,Var2
Iter

w°rd; (Columns in target test matrix.)
word; { Temporary variables. }
extended; (Iteration no.)

begin
Found := Matrix_dimensions(TTST,VLen,Col); (Find length of test vector.)
Found := Matrix_dimensions(DIFM,Varl,Var2) ; (Check for existing matrix.)
if not Found
then Initialise_matrix(DIFM,VLen,DifmCols,DefHeapToUse,EXVN, 'DIFMARAY.SSS 1) ,
Found := Get_val(TTST,IterRow,ErrCol,Iter) ;
if (Iter = 0) then Copy_col_vector(TTST,TestCol,DIFM,TestCol,VLen);

end; (ITTInit)

procedure ITT(var Finished : boolean);

var
Diff.OldDiff : extended; (Difference between the two vectors.)
CorrCo : extended; (Correlation coefficient)
Iter : extended; (Iteration number)
Unfinished : boolean; (Flag for end of iteration. }

procedure Normalize_vector;

var
I : word;
Max : extended;
Tval : extended;

(Sets the largest value in the vector to)
(unity and scales the vector accordingly. }
(Should be passed an all positive vector.)

begin
Max := 0 ;
for I := 1 to VLen do
begin

Found := Get_val(TTST,I,TestCol,Tval);
if (Tval > Max) then Max := Tval;

end; (for)
for I := 1 to VLen do
begin

Found := Get_val(TTST,I,TestCol,Tval);
Tval := Tval / Max;
Found := Set_val(TTST,I,TestCol,Tval);

end; (for)
end; (Normalize_vector)

Finds largest +ve value.

(Normalizes vector.)

procedure Zero_below_threshold(Threshold : real);

var
I : word;
Tval : extended;

(Sets all values below a threshold value)
(to zero.)
(Should be passed an all positive vector as)
(all negative values will be zeroed.)

begin
for I := 1 to VLen do
begin

Found := Get_val(TTST,I,TestCol,Tval);
if (Tval <- Threshold) then Tval := 0; (Set value to zero if below)
Found := Set_val(TTST,I,TestCol,Tval)

end; (for)
end; (Zero_below_threshold)

procedure Zero_negative_values;

var
I : word;
Tval : extended;

begin
for I := 1 to VLen do
begin

Found := Get_val(TTST,I,TestCol,Tval);
if (Tval < 0) then Tval := 0;
Found := Set_val(TTST,I,TestCol,Tval);

end; (for I)
end; (Zero_negative_values)

procedure Calc_abs_diff;

the threshold.

(Remove negatives.)

var
I
Pval,Tval

word;
extended;

Loop counter)
Temporary storage of vector values.

begin
Diff := 0;
for I : = 1 to VLen do (Sum the differences between the test and

(predicted vectors.)
Found := Get_val(TTST, I , PredCol , Pval);
Found := Get_val(TTST, I , TestCol , Tval) ;
if (Pval >= 0) then Diff:= Diff + abs(Pval - Tval);

end; (for I)
end; (Calc_abs_di f f)

procedure Calc_correlation;

var
I
Pval,Tval
SumX,SumY
SumXY
SumX2,SumY2
Numer,Denom

word; (Loop control variable)
extended; (Temporary storage of vector values.
extended; (Sums of each vector)
extended; (Sum product of vectors)
extended; (Sums of squares of each vector)
extended; (Temporary variables)

begin
SumX := 0; SumY := 0; SumXY := 0;
SumX2 := 0; SumY2 := 0;
for I := 1 to VLen do
begin

Found := Get_val(TTST,I,PredCol,Pval);
Found ;= Get_val(TTST,I.TestCol,Tval);

45 Appendix 3

SumX := SumX + Tval;
SumY := SumY + Pval;
SumXY := SumXY + (Tval * Pval);
SumX2 := SumX2 + Sqr(Tval);
SumY2 := SumY2 + Sqr(Pval);

end; (for I)
Numer := ((VLen * SumXY) - (SumX * SumY));
Denom := Sqrt(((Vlen ' SumX2)-Sqr(SumX))*((Vlen * SumY2)-(Sqr(SumY)))

if (Denom <> 0)
then CorrCo := Numer/Denom
else CorrCo := 0;

end; (Calc_correlation)

procedure Update_error_vector;

begin
Found := Get_val(TTST,IterRow,ErrCol,Iter);
Iter := Iter + 1;
Found := Set_val(TTST,IterRow,ErrCol,Iter);
Found := Set_val(TTST,DiffRow,ErrCol,Diff);
Found := Set_val(TTST,CorrRow,ErrCol,CorrCo);

end; (Update_error_vector)

procedure Slope_prediction;

var
Found
Mean,SD
I
Varl,Var2,Var3
Magn,Thresh

boolean;
real ;
word; { Loop control
extended;
extended;

begin
if (Iter > 1) then
begin

Vector_differentiallDIFM.dOldDif,DIFM.dNewDif,DIFM,d2Dif , VLen) ;

Vector_mean_and_sd(DIFM,d2Dif,VLen,Mean,SD);
Thresh := SD * 10; (Significance threshold)
for I := 1 to VLen do
begin

Found := Get_val(DIFM,I,d2Dif,Var1);
Magn := abs(Var1-Mean); (Absolute magnitude of element

if (Magn > Thresh) then (Test for significance)
begin

Found := Get_val(DIFM,I,dNewDif,Var2) ;
Found := Get_val(TTST,I,TestCol,Var3);
Var3 := Var3 + (2*Var2); { Slope prediction addon)

Found := Set_val(TTST,I,TestCol,Var3);
end; (if Varl)

end; (for I)
end; (if Iter)
case dOldDif = 2 of
true : begin

dOldDif := 3;
dNewDif := 2;

end;
false : begin

dOldDif := 2;
dNewDif := 3;

end;
end; (case)

end; (Slope_prediction)

procedure NSig_removal;

var
Found
Mean, SD
dMean.dSD
I
Varl,Var2
Magn, Thresh
dMagn, dThresh
Count , dCount

boolean;
real;
real;
wo rd ;
extended;
extended;
extended;
word;

Predicted vector values)
1st differential values)
Loop control)
Temporary storage)
Predicted vector values)
1st differential values)
Counters)

begin
Vector_mean_and_sd(DIFM,dNewDif,VLen,dMean.dSD);
Vector_mean_and_sd(TTST,TestCol,VLen,Mean,SD);
Found := Set_val(DIFM,1,dOldDif,dMean);
Found := Set_val(DIFM,2,dOldDif,dSD) ;
Found := Set_val(TTST,11,ErrCol.Mean);
Found := Set_val(TTST,12,ErrCol,SD);
dCount := 0; Count := 0; (Counter initialization)
dThresh := dSD * 0.1; (Significance threshold - differential)

Thresh := SD * 0.05; (Significance threshold - pred vector)

for I := 1 to VLen do
begin

Found := Get_val(DIFM,I,dNewDif,Var1);
dMagn := abs(Varl - dMean); (Absolute magnitude of element)

if (dMagn < dThresh) then
begin

Inc(dCount);
Found := Get_val(TTST,I,TestCol,Var2);
Magn := abs(Var2 - Mean); (Absolute magnitude of element)

if (Magn < Thresh) then
begin

Inc(Count);
Found := Set_val(TTST,I,TestCol,0) ;

end; (if)
end; (if)

end; {for I)
Varl := (dCount / VLen) * 100; (Reuse of Varl and Var2 for % calcs)

Var2 := (Count / VLen) * 100;
Found := Set_val(TTST,13,ErrCol,Varl);
Found := Set_val(TTST,14,ErrCol,Var2);

end; (NSig_removal)

procedure NSig2_removal;

var
Found
Mean.SD
I
Var2
Magn, Thresh
Count

boolean;
real; 1
wo rd ; 1
extended; 1
extended; 1
word; 1

Predicted vector values)
Loop control)
Temporary storage)
Predicted vector values)
Counter)

46 Appendix 3

begin
Vector_mean_and_sd(TTST,TestCol,VLen,Mean , 3D) ;
Found := Set_val(TTST,11,ErrCol,Mean);
Found := Set_val(TTST,12,ErrCol,SD);
Count := 0; (Counter initialization)
Thresh := SD * 1; { Significance threshold - pred vector)
for I := 1 to VLen do
begin

Found := Get_val(TTST,I,TestCol,Var2) ;
Magn := abs(Var2 - Mean); (Absolute magnitude of element)
if (Magn < Thresh) then
begin

Inc(Count);
Found := Set_val(TTST,I,TestCol,0);

end; (if)
end; (for I)
Var2 := (Count / VLen) * 100;
Found := Set_val(TTST,14,ErrCol,Var2);

end; {NSig2_removal)

procedure Reinforce_vector(SourceName : MatrixNameType;
SourceCol : word;
DestName i MatrixNameType;
DestCol : word;
VecLen : word);

var
I : word; { Loop counter)
Varl : extended; { Temporary variable)

begin
for I := 1 to VecLen do
begin

Found := Get_val(SourceName,I,SourceCol,Varl);
if (Varl > 0) then

Found := Set_val(DestName,I,DestCol,Var1);
end; (for)

end; (Reinforce_vector)

begin (ITT)
OldDiff := 0;
Calculate_TVEC; (Perform)
Calculate_pred_vector; (the target test.)
Calc_abs_di f f;
Calc_correlation;
Vector_differential(TTST,PredCol,TTST,TestCol,DIFM.dNewDif,VLen)
Copy_col_vectori DIFM.TestCol,TTST,TestCol,VLen);
Errors_in_test_vector;
Update_error_vector;
if (abstDiff - OldDiff) > le-16) then Unfinished := true;
if Unfinished then
begin

OldDiff := Diff;
Copy_col_vector(TTST,PredCol,TTST,TestCol,VIen) ;

(NSig_removal;)
(Slope_prediction;)
(Zero_negative_values;)
(Normalize_vector;)

Zero_below_threshold(ResNulTest);
Reinforce_vector(DIFM.TestCol,TTST,TestCol,VLen);

end; (if)
Finished := not Unfinished;

end; (ITT)

end. (TargTest)

47 Appendix ?>

3.10. Unit im-iisni
unit LotusFil;

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.)

($0+,F+)

interface

uses DOS,PFAGlobs,EMSDat;

procedure

procedure

Lotus_lmport (Filename
Name

var Err
var ErrMsg

Lotus_export (Filename
Name

var Err
var ErrMsg

PathStr;
Ma t r 1 xNameType ;
boolean;
Str_80) ;

PathStr;
Mat r IXNameType ;
boolean;
Str_80) ;

implementation

const
BofOC
In tOC
NumOC
EofOC
DimOC
WinlOC = 7;
ColWlOC = i
HidCollOC =

0;
13;
14;
1;
6;

(OpCode for beginning of file record }
(OpCode for integer record)
(OpCode for number record)
{ OpCode for end of file record)
(OpCode for Dimensions record)
{ OpCode for Windowl record)

; (OpCode for Col width Win! record)
100; (OpCode for Win! hidden cols record)

type
RecordHeadType = record

OpCode,
RecLen

end;
integer;

NumBodyType = record
Format : byte;
Column,
Row : integer;
Value : double;

end;

IntBodyType = record
Format : byte;
Column,
Row,
Value : integer;

end;

DimenBodyType = record
SCol,
SRow,
ECol ,
ERow : integer;

end;

WinlBodyType32 = record
CurPosCol,
CurPosRow : integer;
Format,
Unusedl : byte;
DefColWidth,
ColsOnScreen,
RowsOnScreen,
LeftCol,
TopRow,
TitleCols,
TitleRows,
LTitleCol,
TTitleRow,
TLCol,
TLRow,
ColsInWin,
Unused2 : integer;

end;

WinlBodyType31 - record
CurPosCol,
CurPosRow : integer;
Format,
Unusedl : byte;
DefColWidth,
ColsOnScreen,
RowsOnScreen,
LeftCol,
TopRow,
TitleCols,
TitleRows,
LTitleCol,
TTitleRow,
TLCol,
TLRow,
ColsInWin : integer;
Unusedlmore : byte;

end;

ColWlBodyType = record
ColID
Width

end;

integer;
by t e;

(Record header construct)

Number body record }

(Integer body record

(Dimensions body record)

(Windowl body record }
(32 byte length for)
{ 123/2 file format }

(Windowl body record '
(31 byte length for }
(123/la file format)

HidCollBodyType = record
HidRec : array [1

end;

(Winl Column width body record)

(Winl hidden column body record)
.32] of byte;

var
InFile
OutFile

file;
file;

{ Input file)
(Output file)

48 Appendix 3

Found
FirstRec
LastRec
ReadDim
RecordHead
NumBody
IntBody
DimenBody
WinlBody32
WinlBody31
ColWlBody
HidCollBody
ByteBuff
I

boolean;
boolean;
boolean;
boolean;
RecordHeadType;
NumBodyType;
IntBodyType;
DimenBodyType;
WinlBodyType32;
WinlBodyType31;
ColWlBodyType;
HidColIBodyType;
by t e ;
longint;

procedure Lotus_import (Filename
Name

var Err
var ErrMsg

{ Success flag for data structure writes)
(Flag for first record in file)
(Flag for last record in file)
(Flag for dimensions read)
(Record header)
{ Body of number record }
{ Body of integer record)
(Body of Dimensions record)
(Body of Windowl record 32 byte length }
(Body of Windowl record 31 byte length)
(Body of Winl column width record)
(Body of Winl hidden column record }
(Buffer for discarded records }
(Loop control for record discards)

PathStr;
Matr1xNameType;
boolean;
Str_80);

(Imports numeric data from a)
(Lotus 123 file into the data)
(matrix)

procedure Error (ErrNum : byte);

type

Passes appropriate error messages)
to Display_error_message.)

MsgType = array 11..6) of Str_80; Array to contain messages)

{ Message list Jconst
ErrorMsg : MsgType = ('Invalid version number in file',

'BOF record appears in the wrong place',
'Data appears after EOF record - Invalid file',
'Non zero entry for EOF record body',
'Unable to write to data matrix',
'No Dimensions record in file - unable to read');

begin
Err := true;
ErrMsg := ErrorMsg[ErrNum } ;
Close(InFile);
exi t ;

end; (Error)

procedure Read_BOF;
(Reads the version number of the file)
(and checks its validity)

const
Verl = 1028; (Version code for 123/1,123/1A)
Symp = 1029; (Version code for Symphony/1.0 }
Ver2 = 1030; (Version code for 123/2 Symphony/1.1 }

var
Version integer; (Version number from file }

begin
BlockReadlInfile,Version,SizeOf(Version) I ;
if (Version <> Verl) and

(Version <> Symp) and
(Version <> Ver2) then Error(1);

if not FirstRec then Error(2);
end; (Read_BOF)

(Read version no)
Compare with valid nos }

{ Check position in file)

procedure Read_dimensions;

wo rd;
var

Rows,Cols

begin
BlockReadl InFile,DimenBody,SizeOf(DimenBody)); (Read body from file)
with DimenBody do
begin

Initialise_matrix(Name,Succ(ERow) ,Succ(ECol),DefHeapToUse,EXVN,'DATARRAY.$$$')
end; (with)
ReadDim := true;

end; (Read_dimensions)

procedure Read_windowl;

wo rd;
var

Row,Col

begin
case (RecordHead.RecLen = 32) of

true : begin
BlockRead(Infile,WinlBody 32,SizeOf(WinlBody32));
with WinlBody32 do
begin
CursorPos.Column := word (CurPosCol);
CursorPos.Row := word(CurPosRow);
ColWidth := byte(DefColWidth);
Origin.Column := word(LettCol);
Origin.Row := word(TopRow);

end; (with)
end; (true)

false : begin
BlockReadl Inflie,WinlBody31,SizeOf(WinlBody31));
with WinlBody31 do
begin
CursorPos.Column := word(CurPosCol);
CursorPos.Row := word(CurPosRow);
ColWidth := byte(DefColWidth);
Origin.Column := word(LeftCol);
Origin.Row := word(TopRow);

end; (with)
end; (false)

end; (case)
end; (Read_windowl)

procedure Read_integer;
(Reads an integer record from the file
(and places it in the data structure)

var
Number extended; (Allows number conversion for data structure)

49 Appendix 3

begin
BlockReaddnf ile, IntBody .SizeOf (IntBody)) ; (Read the body from the file)
with IntBody do
begin

Number := Value; (Convert integer to extended)
Found := Set_val(Name,Succ(Row),Succ(Column),Number);
if not Found then Error(5); (Write value in data structure)

end; (with)
end; (Read_integer)

procedure Read_number;
{ Reads a number record from the file)
{ and places it in the data structure)

var
Number : extended; (Allows number conversion for the data structure)

begin
BlockReadIInfile,NumBody,SizeOf(NumBody)); I Read the body from the file)
with NumBody do
begin

Number := Value; I Convert double to extended)
Found := Set_val(Name,Succ(Row),Succ(Column),Number);
if not Found then Error(5); (Write value in data structure)

end; (with)
end; (Read_number)

begin (Lotus_import)
FirstRec := true;
LastRec := false;
ReadDim := false;
Assign(Infile.Filename);
Reset(Inflie, 1);
while not Eof(Infile) do
begin

BlockReadIInfile,RecordHead,SizeOf(RecordHead));
with RecordHead do
begin

if (OpCode in [IntOC,NumOC]) and (not ReadDim) then Error(6);
case OpCode of

BofOC
DimOC
WinlOC
IntOC
NumOC
EofOC
else

for I

Read_BOF;
Read_dimensi ons;
Read_windowl;
Read_integer;
Read_number;
LastRec := true;

= 1 to RecLen do
BlockReadIInflie,ByteBuf f,SizeOf(ByteBut f));

end; (case)
FirstRec := false;
if LastRec and not Eof(InFile) then ErrorO);

end; (with)
end; (while)
Closednf lie) ;

end; (Lotus_import)

procedure Lotus_export (Filename : PathStr;
Name : MatrixNameType;

var Err : boolean;
var ErrMsg : Str_80);

var
Rows,Cols : word;

procedure Error (ErrNum : byte);
(Passes appropriate error messages)
(to Display_error_message.)

type
MsgType = array [1..3] of Str_80; (Array to contain messages)

const (Message list)
ErrorMsg : MsgType = ('Matrix not found in data structure',

'Matrix to large for spreadsheet file',
'Data point not found in data structure');

begin
Err := true;
ErrMsg := ErrorMsg[ErrNum];
Close(OutFile);
Erase(OutFile);
ex i t ;

end; (Error)

procedure Write_BOF;

const
VersionNo : integer = 1030;

begin
with RecordHead do
begin
OpCode := BofOc;
RecLen := 2;

end; (with)
BlockWrite(OutFile,RecordHead,SizeOf(RecordHead)) ;
BlockWrite(Out File,VersionNo,SizeOf(VersionNo));

end; (Write_BOF)

procedure Write_Dimensions;

begin
with RecordHead do
begin

OpCode := DimOC;
RecLen := 8;

end; (with)
with DimenBody do
begin

Scol := 1;
Srow := 1;
ECol := integer(Pred(Cols));
ERow := integer (Pred(Rows)1;

BlockWrite (OutFile, RecordHead, SizeOf (RecordHead)) ,-
BlockWritel Outfile,DimenBody,SizeOf(DimenBody));

end; (Write_dimensions)

procedure Write_winl_descriptor;

50 Appendix 3

procedure Write_windowl;

begin
with RecordHead do
begin

OpCode := WinlOC;
RecLen := 32;

end;
with WinlBody32 do
begin

CurPosCol := Pred(integer(CursorPos.Column)!
CurPosRow := Pred(integer(CursorPos.Row));
Format := 241;
Unusedl := 0 ;
DefColWidth := 9;
ColsOnScreen

20;RowsOnScreen
LettCol
TopRow
TitleCols
TitleRows
TLCol
TLRow
ColsInWin

Pred(integer(Origin.Column));
Pred(integer(Origin.Row));
0;
0;
4;
4;
72;
0;Unused2

end; (with)
BlockWrite(Out File,RecordHead,SizeOf(RecordHead)) ;
BlockWrite(OutFile,WinlBody32,SizeOf(WinlBody32));

end; (Write_Windowl)

procedure Write_HidCol1;

var
I : by t e;

begin
with RecordHead do
begin

OpCode := HidCollOC;
RecLen := 32;

end; (with)
with HidCollBody do
begin

for I := 1 to 32 do
begin

HidRec[I] := 0;
end; (for)

end; (with)
BlockWrite(Out File,RecordHead,SizeOf(Recordhead)) ;
BlockWritel OutFile,HidColIBody,SizeOf(HidCollBody) ;

end; (Write_HidCol1)

begin (Write_winl_descriptor)
Wri te_windowl;
Write_HidColl;

end; (Write_winl_descriptor)

procedure Write_data {Name : MatrixNameType);

var
I, J
Number
Found

integer;
extended;
boolean;

begin
with RecordHead do
begin

OpCode := 14;
RecLen := 13;

end; (with)
with NumBody do
begin

Format := 255;
for I := 1 to Rows do
begin

Row : = Pred (I) ;
for J := 1 to Cols do
begin

Found := Get_val(Name,I,J,Number);
if not found then Error(3);
Value := Number;
Column := Pred(J);
BlockWrite(OutFlle,RecordHead,SizeOf(RecordHead)) ;
BlockWrite(OutFile.NumBody,SizeOf(NumBody));

end; {for J)
end; (for I)

end; (with)
end; (Write_data)

procedure Write_EOF;

begin
with RecordHead do
begin

OpCode := 1;
RecLen := 0;

end; (with)
BlockWrite(Out File,RecordHead,SizeOf(RecordHead));

end; (Write_EOF)

begin (Lotus_export)
Found := Matrix_dimensions(Name,Rows,Cols) ;
if not Found then Error(1);
if (Rows > Maxlnt) or (Cols > Maxlnt) then Error(2);
Assign(Out File,Filename);
Rewrite(OutFile,1) ;
Write_BOF;
Write_dimensions;
Write_winl_descriptor;
Write_data(Name);
Write_EOF;
Close(OutFile) ;

end; (Lotus_export)

end. (unit LotusFil)

51 Appendix 3

3.11. Unit IP UNIT
unit IO_Unit;

(The code contained in this unit is Copyright by T.G.Brockwell, 1989-92. All rights reserved.)

(SO+.F+)
(Contains function and procedures involved in input }
(and output to any of the standard DOS ports, including)
(screen, keyboard and disk.)

{»**»***»»«»»»*«*»»,«*»*»*»»**»»««.*.*«»..»**»**..*«..»««,»,»«»*»«»««j

interface

uses Overlay,DOS,PFAGlobs,EPAimprt,EMSDat,PFAVid,PFAUt11s,Lot usf i1 ;

procedure Write_data_f1le (FileName : PathStr;
Name : MatrixNameType);

procedure Import_file (Filetype : TypeOfFile);

procedure Export_file (Filetype : TypeOfFile) ;;

(»«»»,»«»».»»W..»«..«».,,.,..,, .»,,.,,.,....,..,..,...,,«,,.,.,,,,,,, J

implementation

type
DataPoint = record

Row,Col : word;
Value : extended;

end;

procedure Wri te_data_f i le (FileName : PathStr;
Name : Mat r i xNameType) ;

{ Writes all the data contained in a named array)
(to a disk file in record form, the fields)
(being Row i Col co-ordinates and the data)
{ value.)

begin
Save_file(Name, FileName) ;

end; (Wri te_data_f lie)

procedure Read_data_f i le
(FileName : PathStr;
Name : Matr i xNameType) ;

begin
Read_f ile (Name, Def HeapToUse, EXVN, Filename) ;

end; (Read_data_f i le)

procedure EPA_import (Filename : PathStr;
Name : MatrixNameType;

var Err : boolean;
var ErrMsg : Str_80);

begin
EPAimprt.EPA_import(Filename.Name,Err,ErrMsg);

end; (EPA_import)

procedure Import_file (Filetype : TypeOfFile);

var
EscPress
Path
Err
Ok
ErrMsg
Msg

boolean;
PathStr;
boolean;
boolean;
Str 80;
Str_80;

begin
Err := false;
Get_load_filename(Path,EscPress) ;
if EscPress then exit;
Clr_menu;
Msg := 'Select the name of the matrix the file is to be loaded as';
Ok := false;
while not Ok do
begin

Change_disp_matrix(Msg,EscPress); (Select matrix to load as)
if EscPress then exit;
if not (CurrentMatrix in [NONE.RESI]) (If wrong selection then)

then Ok := true;
if not Ok then
begin

Status := ER; (Indicate error condition)
Write_status(Status);
Write(Bell);
Msg := 'You cannot load a file to this matrix, please select another';

end; (if)
end; (while)
Ok := Delete_matrix(CurrentMatrix) ; (Remove old matrix }
Status := WA;
Write_status(Status) ;
case FileType of
Native : Read_data_file(Path,CurrentMatrix) ;
ASCII : EPA_import(Path,CurrentMatrix,Err,ErrMsg);
Lotus : Lotus_import(Path,CurrentMatrix,Err,ErrMsg);

end; (case)
if Err then Display_error_message(ErrMsg);
Change_current_matrix(CurrentMatrix);

52 Appendix 3

Status := RE;
Write_status(Status) ;
if CurrentMatrix in [DATA] then PileChanged := false;

end; (Import_file)

procedure Export_file (Filetype : TypeOtFile);

var
EscPress
Path
Err
Ok
ErrMsg
Msg

boolean;
PathStr;
boolean;
boolean;
Str 80;
Str_80;

begin
Err := false;
Get_save_filename(Path,EscPress) ;
if EscPress then exit;
C1r_menu;
Msg := 'Select the name of the matrix to be saved to file';
Ok := false;
while not Ok do
begin
Change_disp_matrix(Msg,EscPress); { Select matrix to save)
if EscPress then exit;
if not (CurrentMatrix in [NONE),RESI]1) (If wrong selection then)

then Ok := true;
if not Ok then
begin

Status := ER; (Indicate error condition }
Write_status(Status);
Write(Bell);
Msg := 'You cannot save this matrix to file, please select another';

end; (if)
end; (while)
Status := WA;
Write_status(Status);
case FileType of

Native : Write_data_file(Path,CurrentMatrix);
Lotus : Lotus_export(Path.CurrentMatrix,Err,ErrMsg);

end; (case)
if Err then Display_error_message(ErrMsg) ,•
Change_current_matrix(CurrentMatrix);
Status := RE;
Write_status(Status);
if CurrentMatrix in [DATA] then FileChanged := false;

end; (Export_file)

end. (IO_UNIT)

53 Appendix 3

3.12. Unit PFAVID
unit PFAVid;

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.

($0+,F+)

interface

uses Overlay,Crt,DOS,PFAGlobs.Uti Is,Vid_Ut11,PFAUtiIs;

procedure Wave_by_by;

procedure Draw_screen;

procedure Write_number_window;

procedure Clr_menu;

procedure String_input (Prompt : Sti_80;
var InpStr : Str_255;

FieldSize : byte;
var EscPress : boolean);

procedure Change_disp_matrix (Msg : Str_80;
var EscPress : boolean);

procedure Get_load_filename (var Path : PathStr;
var EscPress : boolean);

procedure Get_save_filename (var Path : PathStr;
var EscPress : boolean);

procedure Display_error_message(ErrMsg : Str_80);

procedure Write_text_window;

procedure Close_text_window;

procedure Write_msg_in_window(Msg : Str_80);

procedure Write_factor_number(Number : word);

procedure Update_iteration_number(IteratlonNo : word);

procedure Finished_factor(var PVar.PCumVar : extended;
var SigLevel : real);

implementation

procedure Wave_by_by;

begin
TextMode(CO80);
GotoXY(28,12);
Write('Andy is waving goodbye');
Delay(2000);
GotoXY(35,13) ;
Write('Goodbye');
De1 ay (2 0 0 0) ;
GotoXY(35,14) ;
Write('Goodbye');
GotoXY(1,25) ;

end; (Wave_by_by)

procedure Draw_screen; (Draws the non number related part of screen }

procedure Draw_top_window; (Draws the top 3 lines of the screen)

begin
Colour_box(1,1,80,3,LightGray,Black,False); (Set window colour)
Fill_screen(l, 1,80,3, ' '); (Blank window }
Write_status(Status) ;
Write_location;

end; (Draw_top_window)

procedure Draw_bottom_line; { Draws the bottom line of the screen)

begin {Draw_bottom_line}
Colour_box(l,25,30,25,LightGray.Black,False); { Set window colour)
Update_time; (Write date/time)

end; (Draw_bottom_line)

begin (Draw_screen)
Refresh := true; (Flag number area to redraw }
Draw_top_window;
Draw_bottom_line;
Fill_screen(1,4,80,24 , ' '); (Blank number area)
RedrawScreen := false; (Reset drawing flag)

end; (Draw_screen)

procedure Draw_headings; (Write column and row headings)

procedure Write_col_headings; { Writes column heading in centre of column)

var
CodeString,ColLabel : Str_255; (Contains column coded in letters }
ColStart,Offset : byte; (Cursor location variables }
I,j : byte; (Loop control variables }

begin
for I := 0 to Pred(NoOfCols) do { For each column)
begin
ColStart := (I * ColWidth) + 6; (Calculate starting coordinate)
FillChar(ColLabel,Succ(ColWidth),' '); { Blank string)
ColLabel(0] := Char(ColWidth);
if Headings then { Test for numbers or letters }

begin
Convert_to_base_26(Origin.Column + I,CodeString); (Find letters)
Strip(CodeString,(' ']); (Remove spaces from CodeString)

end {if then)
else

Str((Origin.column + I),CodeString); (Turn number into string)

54 Appendix 3

Offset := (ColWidth-Length(CodeString)) div 2; (Centralise CodeString)
Insert(CodeString,Col Label,Succ(Of(set));
GotoXY(ColStart, 4) ;
TextAttr := Get_attribute(ColStart,4);
Write(ColLabel);

end; (for I)
end; (Write_col_headings)

procedure Write_row_numbers;

(Place label centrally)

(Write label)

(Writes row numbers)

var
NumStr
I

Str_5;
by t e;

{ Contains row number as a string
{ Local loop control)

begin
for I := 5 to (NoOfRows + 4) do
begin

NumStr : = '
Str((Origin.Row +1 -5), NumStr);
NumStr[0] := Chr(5);
GotoXYd, I) ;
TextAttr := Get_attribute(1,I);
Write(NumStr);

end; (for)
end; {Write_row_numbers)

(For each screen row)

(Initialize string)
(Convert row number to string)

Set string length to column width)

(Write string

procedure Write_matrix_name;

const
FrgCol = White;
BkgCol = Blue;

{ Writes current matrix name at bottom
(of screen

(Constant for foreground colour)
(Constant for background colour)

var
OldAttr byte; (Saves current text attribute)

begin
Colour_box(32,25,62,25,LightGray,Black,False); (Write block of colour
Fill_screen(32,25,62 , 25, ' '); (Clear existing text
GotoXY(32,25); (Position cursor
OldAttr := TextAttr; (Save current text attribute
TextAttr := FrgColt BkgColMb;
Write(MatrixNameStr[CurrentMatrixJ);
TextAttr := OldAttr;

end; (Write_matrix_name)

begin (Draw_headings)
Colour_box(1,4.80,4,White,Blue,False);
Colour_box(1,5,5,24,White,Blue,False);
Colour_box(6,5,80,24,White,LightGray,False)
NoOfCols := (75 div ColWidth);
NoOfRows := 20;
case (CurrentMatrix = None) of

{ Set new attribute
Write current matrix name

(Restore text attribute

(Colour row headings
Colour column headings
(Colour number window

true : begin
NoOfCols := 1;
NoOfRows := 1;

end; (true)
false : begin { Exception handling for small

if MatrixDim.Column < NoOfCols (matrices
then NoOfCols := MatrixDim.Column;

if MatrixDim.Row < NoOfRows
then NoOfRows := MatrixDim.Row;

end (false)
end; (case)
Write_col_headings;
Wri te_row_numbers;
Write_matrix_name;

end; (Draw_headings)

procedure Write_number_window;

(Number of columns possible on the screen

(Set dimensions of screen

var
CellValue
Row,Col
ColStart
I, J

Str_255; (String containing shortened number)
word; (Cell coordinates)
byte; (Coord of column start)
byte; (Local loop control)

Draw row and column headings
(For each screen row)

(For each column

(Calculate
(cell coordinates

(Get cell value as string
(Calculate print position

(Write cell value }

begin
Draw_headings; (
for I := 5 to (NoOfRows + 4) do
begin

for J := 0 to Pred(NoOfCols) do
begin

Row := Origin.Row +1-5;
Col := Origin.Column + J;
Value_to_string(ColWidth,Row,Col,Cell Value)
ColStart := (J * ColWidth) + 6;
GotoXY (ColStart,I);
TextAttr := Get_attribute(ColStart,I);
Write(CellValue);

end; (for J)
end; (for I)
Draw_cursor;
Refresh := false;

end; (Write_number_window)

procedure Clr_menu; (Clears menu and message lines and restores TextAttr)

begin
TextAttr := Black'16 + LightGray;
GotoXY(1,2);
ClrEol;
GotoXY(1,3);
ClrEol;
Write_status(Status);

end; (Clr_menu)

procedure String_input (Prompt : Str_80;
var InpStr : Str_255;

FieldSize : byte;
var EscPress : boolean);

Takes string input in a field
(and allows editing

var
Inchr,Inctl
Default
FieldStart
CursorPos
CursorSize
StrPos

char;
Str_255;
byte;
byte;

Key input from keyboard(Key input from keyboard)
(Original value for string)
(Points to start of input field)

byte; (Points to current cursor position in field)
CurType; (Holds current size of cursor)
byte; (Points to current position in input string)

	55 Appendix 3

FieldOffset : byte; (Offset of field start from start of string)

procedure Edit_string; (Called it default not accepted to edit string)

var
Ins : boolean; (Flag to signal insertion not overwriting)
InitLoop : boolean; (Flag to force handling of existing keypress)
Loop : integer; { Idle time counter }

procedure Write_field; (Displays string in field at current offset)

begin
GotoXY(FieldStart.WhereY); (Move cursor to field start)
Write(Copy(InpStr,Succ(FieldOffset) ,FieldSize)) ; (Write string)
GotoXYI(FieldStart + Pred(CursorPos)),WhereY); { Position cursor)
StrPos := FieldOffset + CursorPos; (Calculate StrPos)

end; (Write_field)

procedure Add_char; (Adds, Inserts or overwrites a character)

begin
case Ins of

true : Insert(Inchr,InpStr,StrPos); (Insert a new character)
false : if StrPos = Length(InpStr)

then Insert(Inchr,InpStr,StrPos) (Adds new character at end)
else InpStr[StrPos] := Inchr; (Overwrites old character)

end; (case)
case Length(InpStr) > FieldSize of (If string longer than field)

true : FieldOffset := Succ(FieldOffset); { Increase offset)
false : CursorPos := Succ(CursorPos); (else move cursor in field)

end; (case)
end; (Add_char)

procedure Move_left; { Handles left arrow key input)

begin
if CursorPos •> 1 (If not at left of field)
then CursorPos := Pred(CursorPos) (move cursor left)
else if FieldOffset > 0 (or if not at left of string)

then FieldOffset := Pred(FieldOffset); (decrease offset)
end; (Move_left)

procedure Move_right; (Handles right arrow key input)

begin
if StrPos < Length(InpStr) then (If cursor is not at end of string)
begin

case CursorPos < FieldSize of (If cursor is not at end of field)
true : CursorPos := Succ(CursorPos); (move cursor right)
false : FieldOffset := Succ(FieldOffset); (or increment offset)

end; (case)
end; (if)

end; (Move_right)

procedure Move_home; (Handles Home key input)

begin
CursorPos := 1; (Set cursor position to start of string)
FieldOffset := 0; (Set offset to start of string)

end; (Move_home)

procedure Move_end; (Handles End key input)

begin
case FieldSize < Length(InpStr) of (If string is longer than field)

true : begin
CursorPos := FieldSize;(then place cursor at end of field)
FieldOffset := Length(InpStr) - FieldSize; (set offset to)

end; (true) (display end of string)
false : CursorPos := Length(InpStr); (else cursor at end of string)

end; (case)
end; (Move_end)

procedure Delete_char; (Handle Del key input)

begin
DeletednpStr,StrPos, I) ; { Delete a char at the current position)
if (Length(InpStr) = 0) then InpStr := ' '; (Add a space if deleted)

end; (Delete_char) (last char in string)

procedure Backspace; (Handles Backspace key input)
begin
Move_left; (Move left one character)
Write_field; (Rewrite field to clear character)
Delete_char; (and delete it)

end; (Backspace)

procedure Toggle_insert;

begin
Ins := not Ins;
case Ins of

true : CursorSize := Big;
false : CursorSize := Small;

end; (case)
BlOSCursor(CursorSize);

end; (Toggle_insert)

begin (Edit_string)
InitLoop := true; (Flag for keypress already received)
Ins := false; (Default to overwrite mode)
InpStr := InpStr + ' '; (Add a space to the string for input)
Move_end; (Move cursor to end of string)
BlOSCursor(CursorSize); (Show cursor
repeat , ,,Write_field; (Write string)

if not InitLoop then
begin

Loop := 0;
repeat

Inc(Loop);
if Loop = 10000
then begin
BlOSCursor(Off);
Update_lights;
Update_time;
BlOSCursor(CursorSize);

56 Appendix 3

Loop := 0 ;
end; (if)

until KeyPressed;
Read_Kbd(Inchr,Inctl) ; (Read keystroke (

end; (if)
case Inctl of (Act on key input)

NullChr,
Slash
Cur_left
Cur_right
Home_key
End_key
Del_key
BkSpc
Ins_key
CR
Esc

Add_char;
Move_left;
Move_right;
Move_home;
Move_end;
Delete_char;
Backspace;
Toggle_insert; (Toggle insert mode)
InpStrlO] := PreddnpStr (0)) ; (Lose space at end)
InpStr := Default;

else Write(Bell) ;
end; (case)
InitLoop := false; (Flag to force handling of first key press)

until Inctl in [Esc.CR];
BIOSCursor(Off); (Turn cursor off again)

end; (Edit_string)

begin (String_input)
if notlStatus = ER) then Write_status(ED); (Show edit status if no error)
Default := InpStr; (Save original value)
FieldOffset := 0; (Initialize offset)
CursorPos := 1; (and cursor position)
CursorSize := Small; (Set cursor size to Small)
Write(Prompt); (Write the prompt)
ClrEol;
FieldStart := WhereX; (Save the position of the start of the field)
Write(Copy(InpStr,1,FieldSize)); { Write the current value)
repeat
Update_lights;
Update_time;

until KeyPressed;
Read_Kbd(Inchr,Inctl); (Read a key)
if notdnctl in (Esc.CR)) then (If key isn't enter or escape)
beg i n

if Inctl in [NullChr,Slash) then (If the key is a character)
begin

FillCharlInpStr,Succ(FieldSize), ' '); (then clear the field)
InpStr(O) := Chr(FieldSize);
GotoXYIFieIdStart,WhereY) ;
Write(InpStr);
InpStr : = ' ' ; (and clear the string)

end; (if)
Edit_string; (else edit the existing string)

end; (if)
if Inctl = Esc

then EscPress := true
else EscPress := false;

Write_status(Status) ; (Redisplay the default status)
end; (String_input)

procedure Get_load_filename (var Path : PathStr; (Gets and error checks a)
var EscPress : boolean); (filename for loading)

var
Ok : boolean;
InpStr : Str_255; (Filename string)
Prompt,Msg : Str_80; (Text prompts)
Dirlnfo : SearchRec; (File info from disk)

begin
Clr_menu; (Initialization section)
TextAttr := Get_attribute(1,2); ()
Ok := false; ()
Prompt := 'Filename = '; ()
Msg := 'Enter the name of the file you wish to load'; ()
InpStr := ' ' ; ()
while not Ok do
begin

GotoXY(1,3);
Write(Msg); (Write message)
GotoXY(1,2);
String_input(Prompt,InpStr,65,EscPress); (Get string from keyboard)
if EscPress = true then exit; (Leave if procedure aborted)
Path := InpStr;
FindFirst(Path,AnyFile,Dirlnfo); (Try to find the file)
Ok := DosError = 0; (Test for success)
if not Ok then { If no file then)

begin
Status := ER;
Write_status(Status); (Give error message)
Write(Bell);
Msg := 'File does not exist - Enter correct filename'; (and retry)

end; (if)
end; (while)
Status := RE; (Restore system status)

Write_status(Status);
end; (Get_load_filename)

procedure Get_save_filename (var Path : PathStr; (Gets and error checks)
var EscPress : boolean); { a filename for saving)

var
Ok : boolean;
InpStr : Str_255; (Filename strings)
Prompt,Msg : Str_80; (Text prompts)
Dirlnfo : SearchRec; (File info from disk)

begin
Clr_menu; (Initialization section)

TextAttr := Get_attribute(1,2); ()
Ok := false; (}
Msg := 'Enter the filename to save matrix to'; {)
InpStr := ''; ('
while not Ok do
begin

GotoXY(1,3);
Write(Msg); (Write message)

Prompt := 'Filename = ';
GotoXY(1,2);
String_input(Prompt,InpStr,65,EscPress) ; (Get string from keyboard)
if EscPress = true then exit; (Leave if procedure aborted)
Path := InpStr;
FindFirst(Path,AnyFile,Dirlnfo); (Try to find the file)

57 Appendix 3

case DosError of
2,18 : Ok :i true; (Success if not found)
0 : begin

Prompt := 'Overwrite existing file y/n ? ' ; (Ask for)
Write(Bel 1); (confirmation of }
repeat (overwrite }
GotoXY(l,2);
InpS t r : = ' ';
String_input(Prompt,InpStr,2,EscPress);
if EscPress then exit;

until UpCasednpStr [1]) in ['Y'.'N'];
if UpCase(InpStr(l]) = 'Y' then Ok : = true;

end; (0)
else

begin
Status := ER; (Indicate error if other)
Write_status(Status); { file error occurs)
Write(Bell);
Msg : = 'File Error - Please try again

end; (else)
end; (case)

end; (while)
Status := RE; (Restore system status)
Write_status(Status);

end; (Get_save_filename)

procedure Change_disp_matrix (Msg : Sti_80; (Allows selection of the)
var EscPress : boolean); (matrix displayed on)

(screen)
var

I,Name : Mat r i xNameType; (Loop control £, selected matrix)
OldAttr : byte; { Storage of the current text attribute)
NewLine : boolean; (Line increment flag)
Y : byte; (Row coordinate)

const
ClrMsg : Str_80 = '

procedure Select_option (var Name : MatrixNameType; (Gets chosen matrix)
var EscPress : boolean);

var
Inchr,Inctl : char; (Keyboard input variables)

const
OptionNo : byte = 0;
OldOpNo : byte = 0;

procedure Write_Cursor; (Deletes old cursor and writes a new one)

var
Row,Col : byte; (Coordinates)

begin
Row := 4 + OldOpNo div 2; { Calculate row number)
if OldOpNo mod 2=0 (Calculate the column)

then Col := 1
else Col := 32;

Colour_box(Col,Row,(Col+29),Row,Yellow,Blue,false); (Delete cursor)
Row := 4 + OptionNo div 2; (Calculate row number)
if OptionNo mod 2=0 (Calculate the column)

then Col := 1
else Col := 32;

Colour_box(Col,Row,(Col+29).Row,Yellow,Cyan,false); (Write new cursor)
OldOpNo := OptionNo;

end; (Write_cursor)

procedure Cursor_up; { Moves the cursor up one option)

begin
if OptionNo > 1
then OptionNo := OptionNo - 2;

end; (Cursor_up)

procedure Cursor_down; (Moves the cursor down one option)

begin
if OptionNo + 2 < = Ord(MaxMatrixName)

then OptionNo := OptionNo + 2;
end; (Cursor_down)

procedure Cursor_left; (Moves the cursor left one option)

begin
if OptionNo > 0

then Dec(OptionNo);
end; (Cursor_left)

procedure Cursor_right; { Moves the cursor right one option)

begin
if OptionNo < Ord(MaxMatrixName)

then Inc(OptionNo);
end; (Cursor_right)

procedure Move_home; I Moves the cursor to the home position)

begin
OptionNo := 0;

end; (Move_home)

procedure Move_end; (Moves the cursor to the end position)

begin
OptionNo := Ord(MaxMatrixName);

end; (Move_end)

begin (Select_option)
OptionNo := Ord(CurrentMatrix) ; (Set current option as default)
repeat
Write_cursor; (Write the cursor)
repeat (Loop till key pressed)
Update_lights;
Update_time;

until KeyPressed;
Read_kbd(Inchr,Inctl) ;
case Inctl of
Cur_up : Cursor_up; (Handle key input)

58 Appendix 3

Cur_down : Cursor_down;
Cur_le£t : Cursor_left;
Cur_right : Cursor_right;
Home_key : Move_home;
End_key : Move_end;

end; (case)
until Inctl in ICR.Esc];
case Inctl of

CR : begin
Name := MatrixNameType(OptlonNo); (Set matrix selected)
EscPress := false;

end; (CR)
Esc : EscPress := true;

end; (case)
end; (Select_option)

begin (Change_disp_matrix)
NewLine := false-
Y := 4;
if not (Status = ER)

then Write_status(PO) ; (Set status to point)
Name := CurrentMatrix; (Set Name to default)
GotoXY(1,3);
Write(Msg); (Write message)
Colour_box(1,4,80,24,Yellow,Blue,false); (Clear number screen)
Fill_screen(l,4,80,24,' '); ()
OldAttr := TextAttr; (Save current text attribute)
TextAttr := Get_attribute(1,4);
for I := NONE to MaxMatrixName do (For each matrix)
begin (Print names in two columns)

if NewLine then
begin

GotoXY(32,Y);
Write(MatrixNameStr[I));
if Y < 25 then Inc(Y) else Exit;

end (if then)
else
begin
GotoXYd, Y) ;
Write(MatrixNameStr [1)1;

end; (if else)
NewLine ;= not NewLine;

end; (for)
Select_option(Name,EscPress) ; (Select a matrix)
if EscPress then
begin

RedrawScreen := true;
exi t;

end; (if)
TextAttr := OldAttr; (Restore text attribute)
Write_status (Status); (Restore status)
GotoXYd , 3) ;
Write(ClrMsg); { Clear the message)
Change_current_matrix(Name); (Change to the new matrix for display)

end; (Change_disp_matrix)

procedure Display_error_message(ErrMsg : Str_80);

begin
Write_status(ER);
Write(Bell);
GotoXYd, 2) ;
Write(ErrMsg);
GotoXYd, 3) ;
Write('Press any key to continue ');
repeat
until Keypressed;
Halt;

end; (Display_error_message)

procedure Write_text_window;

begin
Colour_box(1,4,80,24,yellow,green,false);
Fill_screend,4,80,24, ' ') ;
Window(1,4,80,24);
GotoXYd, 1) ;
TextAttr := Get_attribute(1,4);

end; (Write_text_window)

procedure Close_text_window;

begin
Window)1,1,80,25);
RedrawScreen := true;

end; (Close_text_window)

procedure Write_msg_in_window(Msg : Str_80);

begin
WriteLn(Msg);

end; (Write_msg_in_window)

procedure Write_factor_number(Number : word);

begin
Write('Factor: '.Number);
GotoXYd 3, WhereY) ;
Write('Iteration: ');

end; (Write_factor_number)

procedure Update_iteration_number(IteratlonNo : word);

begin
GotoXY(24,WhereY);
Write (IterationNo);

end; (Update_iteration_number)

procedure Finished_factor(var PVar.PCumVar : extended;
var SigLevel : real);

var
PVarStr.CVarStr,SLStr : string;

begin
GotoXY(29,WhereY);
Str(PVar:7:3,PVarStr);
Str(PCumVar:?:3.CVarStr) ;

59 Appendix 3

Str(SigLevel:5:l,SLStr) ; , ru , rScr .% % : ',SLStr,'
WriteLn('Variance:'.PVarStr,•% _variance: .CVarbtr,

end; {Finished_factor)

end. (PFAVid)

Appendix 3

3.13. Unit MATHUNIT
unit Mathunit;

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.)

(SO+.F+)

{.«..*...,.,......„.„,...„.„..„......,,.„..„,,„.,,..„,„..,,.,.„,„„...,

interface

I***.**.**.*........,....**.*.,..,.......,.,.,....,.,,..,....,,*..,,..)

uses Overlay,DOS,PFAGlobs,EMSDat,UtiIs,PFAVid,IO_Unit ;

procedure Pea (AbsoluteError : extended);

implementation

procedure Covariance_matr ix (var Rows, Cols : word;
var TotVar : extended) ;

-)

(Calculates the covariance matrix)
(and enters it into the data)
{ structure with a name of RESI .)

var
Found : boolean;
I,J,K : word;
IMax,KMax : word;
Element,Point 1,Point2 : extended;

{ Set outer loop values)

Initialise data point.)
Matrix multiplication loops.

begin
TotVar := 0;
IMax := Cols;
KMax := Rows;
Element := 0;
for I := 1 to IMax do
begin

for J := 1 to I do
begin

for K := 1 to KMax do
begin

Found := Get_val(DATA,K,J,Polnt1); { Read the two)
if not Found then exit; (data points,)
Found := Get_val(DATA.K,I,Point2) ;
if not Found then exit;
Element := Element + (Pointl * Point2); (multiply together and)

end; (for K) (add to data point.)
Found := Set_val(RESI,I,J,Element); { Write point to)
if I <> J then (residual matrix.)
Found := Set_val(RESI,J,I,Element); (Mirror point in matrix)

if not found then exit;
if I = J then TotVar := TotVar + Element;
Element := 0; (Re-initialise data point.)
end; (for J)

end; (for I)
end; (Covariance_matrix)

{».«»»«***»»«««»**»*«*»*«*»****»*******»««*****»*»**»*»» *****»****•*»*}

procedure Set_Z_to_residual(var Cols : word);
(Produces the covariance matrix which }
(is identical to RESI at the outset of)
(Pea.)

{----------------------)

var
I word;
K wo rd;
Element extended;

(._ —— —— —— - —— - —— ——)

begin
for I •= 1 to Cols do (Make every element of Z }
begin ' (identical to RESI.)

for K := 1 to Cols do
begin

Found := Get_val(RESI,I,K,Element);
Found := Set_val(COVA,I,K,Element);

end; (for K}
end; (for I)

end; (Set_Z_to_residual)

(«»»»*»***»»***************"***********'*******''*****'**************'"'*)

procedure Initlalise_factor_matrix (var Cols : word;
var LoopNo : word);

(Assigns the first approximation value)
(for the eigenvector.)

{___- —— —— —— —— —— ——)

var
Pointl : extended;
I : word;
Found : boolean;

begin
Pointl := sqrt(Cols)/Cols; Calculate initial approximation.)

61 Appendix 3

for I :- i to Cols do (Loop through the entries setting them to
begin { their appropriate values.)

Found := Set_val(LOAD,LoopNo,I,Point 1);
end; (for I)

end; (Initialise_factor_matrix)

procedure Calc_intermediate_matrix (var Cols : word;
var LoopNo : word);

(Calculates a better approximation
(to the eigenvector but mixed with
(the eigenvalue.)

var
I
K
Found
Element
Pointl
Point2

word;
wo rd;
boolean;
extended;
extended;
extended;

(For each entry of the intermediate matrix,)

(set its value to zero.)

(Calculate the new point.)

begin
for I := 1 to Cols do
begin

Element := 0;
for K := 1 Co Cols do
begin

Found := Get_val(RESI,I,K,Point 1);
Found := Get_val(LOAD,LoopNo,K,Point2) ;
Element := Element + Pointl * Point2;

end; (for K}
Found := Set_val(INTM,I,1,Element);

end; (for I)
end; (Calc_intermediate_matrix)

I**}

procedure Calc_normalisation_const (var Cols : word;
var NormConst : extended);

(Extracts the eigenvalue from)
(the eigenvector and returns it)
(to the calling routine.)

var
Found boolean;
I word;
Pointl extended;

begin
NormConst := 0; (Initialise the eigenvalue.)
for I := 1 to Cols do
begin

Found := Get_val(INTM,1,1,Point 1); { Read each point and)
NormConst := NormConst + Pointl * Pointl; { calculate constant. }

end; (for 1}
NormConst := SqrC(NormConstI ; (Calculate eigenvalue.)

end; (Calc_normalisation_const)

{«.»»*»»»»»»»**»»»*.»***»*»»****»»»«*»»»»*»»*»*»»***«**«»»»»»*«***«»»)

procedure Calc_eigenvector (var Cols : word;
var NormConst : extended);

(Uses the eigenvalue to produce)
(a better approximation to the)
(eigenvector.)

var
Found : boolean;
I : word;
Element : extended;

begin
for I := 1 to Cols do
begin

Found := Get_val(INTM,I,1,Element); (For each entry, }
Element := ElemenC / NormConst; (calculate eigenvector.)
Found := Set_val(INTM,I,1,Element);

end; (for I)
end; (Calc_eigenvector)

{,..»,,.,,,*,».»,**,,»*«..«,**»..*«*.......»*..•...*•..*»**»..*»**.»*)

function Test_for_completed_factor (var NormConst : extended;
var LoopNo : word;
var Cols : word) : boolean;

(Tests to see if the best }
(approximation has been)
(found and returns true)
(if so.)

var
I : word;
Found : boolean;
Finished : boolean;
Pointl : extended;
Point2 : extended;

begin

62 Appendix 3

(Set function to unfinished.)Test_for_completed factor := false;
I := 0;
repeat

Inc(I) ;
Found := Get_val (INTM, 1 , 1 , Poi nt 1) ;
Found := Get_val (LOAD, LoopNo , I , Pol nt 2) ;
Finished := (Abs (Abs (Poi nt 1) - Abs(Point21) < FacExTest); I Test for complete)

until (not Finished) or (I = Cols); (extraction of factor.)
if Finished then
begin

Found := Set_val (COMP, EigRow, LoopNo , NormConst);
end; (if)
Test_for_completed_f actor := Finished;

end; (Test_for_completed_ factor)

(Store eigenvalue.)

procedure Rewrite_factor_matrix (var Cols : word;
var LoopNo : word);

(Writes the latest approximation)
(to the factor matrix.)

var
I : word;
Found : boolean;
Pointl : extended;

begin
for I := 1 to Cols do
begin

Found := Get_val(INTM,I,1,Point 1);
Found := Set_val(LOAD,LoopNo,I,Point1);

end; (for I)
end; {Rewrite_factor_matrix)

Write eigenvector }
to Factor matrix.)

procedure Calc_residual_matrix (var Cols : word;
var LoopNo : word;
var NormConst : extended);

(Removes the contribution of)
{ the newly calculated eigenvector)
(from the rest of the matrix.)

V

var
Found
Pointl
Point2
Point3

i __ ...

: boolean;
: extended;
: extended;
: extended;
: word;

begin
for I := 1 to Cols do
begin

Found := Get_val(LOAD,LoopNo,I,Point2);
for K := 1 to Cols do
begin

Found := Get_val(RESI,I,K,Point 1);
Found := Get_val(LOAD,LoopNo,K,Point3) ;
Pointl := Pointl - (Point2 * Point3 * NormConst); (Remove factors }
Found := Set_val(RESI,I,K,Point 1); { contribution from]

end; (for K) (Residual matrix.)
end; (for I)

end; (Calc_residual_matrix)

r****«**********************w****»**********r******w**************'

function Residual_matrix_zero_test (var LoopNo : word;
var Cols : word) : boolean;

var
Found : boolean;
Extracted : boolean;
I,K : word;
Pointl : extended;

Tests to see if all the)
factors have been removed)
from the data and returns)
true to the calling routine }
if so.)

begin
Residual_matrix_zero_test := true;
if LoopNo = Cols then exit;
I := 0;
repeat

Inc(I);
K := 0;
repeat

Inc(K) ;
Found := Get_val(RESI,I,K,Pointl); i
Extracted := (Abs(Pointl) < ResNulTest);i

until (Extracted = false) or (K = Cols);
until (Extracted = false) or (I = Cols);
Residual_matrix_zero_test := Extracted;

end; {Residual_matrix_zero_test)

If all possible factors are
extracted then leave.)

Search every entry of the }
Residual matrix to see if }
factors have been extracted.

procedure Calc_abstract_row_matrix (var Rows
var Cols

word;
word;

var LoopNo : word);

63 Appendix 3

(Calculates the complementary matrix)
(to the factor matrix allowing the data)
(to be rebuilt using any number of)
(factors.)

var
Found
I,J,K
Pointl
Point2
Point3 :

I------.-.

: boolean;
: word;
: extended;
: extended;
: extended;

begin
for I := 1 to Rows do
begin

for J := 1 to LoopNo do
begin

: = 0;
:= 1 to Cols do

Pointl
for K :
begin

Found
Found

:= Get_val(DATA,I,K,Point2);
:= Get_val(LOAD,J,K,Point});

Pointl := Pointl + (Point2 * Point}),
end; (for K)
Found := Set_val(SCOP,I,J,Point 1);

end; (for J)
end; (for I)

end; (Calc_abstract_row_matrix)

(Calculate element.)

procedure Real_and_other__erroi s (vai LoopNo : wm<);
var RowK.Cols : w<<ld;
var TotVar : extended);

(Calculates the Real and Imbedded }
(errors and the Indicator function)
(for the extracted eigenvalues.)

var
SumOfEigenvalues
Eigenvalue
RealError
ImbeddedError
IndicatorFunc
Found
I

extended;
extended;
extended;
extended;
extended;
boolean;
word;

begin
SumOfEigenvalues := 0;
for I := 1 to (LoopNo - 1) do
begin

Found := Get_val(COMP,EigRow,I,Eigenvalue);
SumOfEigenvalues := SumOfEigenvalues + Eigenvalue;
RealError := sqrt((TotVar-SumOfEigenvalues) / (Rows * (Cols - I)));
ImbeddedError := RealError * sqrt(I / Cols);
IndicatorFunc := RealError / ((Cols - I) * (Cols - I));
Found := Set_val(COMP,RERow,I,RealError);
Found := Set_val(COMP,lERow,I,ImbeddedError) ;
Found := Set_val(COMP,INDPow,I,Indicatorfunc) ;

end; (for 1}
end; (Real_and_other_errors)

procedure Mean_and_sd_of_data_matrix (var Rows,Cols : word;
var Mean.Sd : extended);

(Calculates the mean and standard)
{ deviation of the data in the data }
(matrix and returns those values to)
(the calling procedure.)

var
Found : boolean;
Row,Col : word;
Value,Sum,SumSq : extended;
Number : word;

(Initialise variables. }
Calculate number of entries.)

(Read entry.)
(Total the entries.

(Calculate mean. }

begin
Sum := 0; SumSq := 0;
Number := Rows * Cols;
for Row := 1 to Rows do
begin

for Col := 1 to Cols do
begin

Found := Get_val(DATA,Row,Col,Value);
Sum := Sum + Value;

end; (for Col}
end; (for Row)
Mean := Sum / Number;
for Row := 1 to Rows do
begin

for Col := 1 to Cols do
beg i n

Found := Get_val(DATA,Row,Col,Value); (Read entry.)
Value := Value - Mean; 1 Calculate the difference from the mean)
SumSq := SumSq + Value * Value; (Sum the squares of the differences.)

end; (for Col)
end; (for Row}
Sd := sqrt(SumSq / (Number -11); f Calculate the Sd.)

end; (Mean_and_sd_of_data_matrix)

{»*»«****»»»»**»*******»*******************'***********'**************}

64 Appendix 3

procedure Misfits (var Cols,Rows,LoopNo : word);

(Calculates the number of data)
(points which lie more than)
(3Sd's outside the data when)
(reproduced with an incremented)
(series of eigenvectors. }

var
Found
Mean,Sd,Sd3
Value
Pointl
Point2
Point3
NoOfMisfits
I,J,K,L

(---- .--.

----------)

boolean;
extended;
extended;
extended;
extended;
extended;
extended;
wo rd ;

------____i

begin
Mean_and_sd_of_data_matrix(Rows,Cols,Mean,Sd);
Sd3 := 3 * Sd;
for I := 1 to LoopNo do
begin
NoOfMisfits := 0;
for J := 1 to Rows do
begin

for K : = 1 to Cols do
begin
Value := 0;
for L := 1 to I do
begin

Found := Get_va1(SCOR,J,L,Polnt1);
Found := Get_val(LOAD,L.K,Point2);
Value :r Value + Pointl * Point 2;

end; (for L)
Found := Get_va1 (DATA,J,K,Polnt3) ;
if abslValue - Point3) ^= Sd3 then

NoOfMisfits := NoOfMisfits + 1 ;
end; (for K)

end; (for J)
Found := Set_val(COMP,MlsRow,I.NoOfMisfits) ;

end; (for I)
end; (Misfits)

(Get mean and Sd.
Calculate test limit

procedure Standard_error_in_eigenvalue (var Rows,Cols,LoopNo
var AbsoluteError

var
Found
SigSq, SigZ
SqAbsErr
DSIGj ,DSIGk
Cm] , Cmk, Dsq
I, J,K,L,M

boolean;
extended;
extended;
extended;
extended;
word;

word;
extended);

(Calculate the standard error)
(in eigenvalue using an }
(estimate of the absolute)
(error.)

begin
if AbsoluteError = 0 then exit;
SqAbsErr := sqr (AbsoluteError) ;
for I := 1 to Cols do
begin

Found := Get_val (COVA, I , I , Dsq) ;
Dsq := Dsq * SqAbsErr;
Found := Set_val (INTM, I , 1 , Dsq) ;

end; (for I)
for M := 1 to LoopNo do
begin

SigSq : = 0 ;
for J := 1 Co Cols do
begin

Found := Get_val (LOAD, M, J , Cm]
Cmj : = sqr (Cm j) ;
for K := 1 Co Cols do
begin

Found := Get_val (INTM, J , 1 , DSIG]) ;
case (j=k) of

true : SigZ := 4 * DSIGj;
false : begin

Found := Get_val (INTM, K, 1 , DSIGk) ;
SigZ := DSIGj + DSIGk;

end; (case : false)
end; (case)
Found := Get_val (LOAD, M, K, Cmk) ;
SigSq := SigSq + (Cmj * sqr (Cmk) * SigZ) ;

end; (for K}
end; (for J)
SigSq := sqrt (SigSq) ;
Found := Set_val (COMP, SEERow, M, SigSq) ;

end; (for M)
end; (Standard_error_in_eigenvalue)

(square of eigenvector element)

procedure Errors_in_decomposi t ion (Rows, Col s , LoopNo : word;
AbsoluteError .TotVar : extennded);

const
Msg : array [1..3] of Str_80 =

(• Real error, Imbedded error & Indicator function'
Misfits' ,
Standard error in eigenvalue 1);

begin
Wri te_msg_in_window(Msg[1]);

65 Appendix 3

Real_and_other_errors(LoopNo,Rows,Co Is,TotVar);
Write_msg_in_window(Msg[2]);
Misfits(Cols,Rows,LoopNo); commented out as a waste of time
Wnte_msg_in_window(Msg[3]) ;
Standard_error_in_eigenvalue(Rows,Cols,LoopNo,AbsoluteError) ;

nd; (Errors_in_decomposition)

procedure Clear_matrices;

begin
Found
Pound
Pound
Found
Found
Found

Delete_matrix(COVA)
Delete_matrix(RESI)
Delete_matrix(LOAD)
Delete_matrix(SCOR)
Delete_matrix(COMP)
Delete_matrix(INTM)

(Delete any existing matrices }
(No warning is given about the)
{ loss of any unsaved data.)

end; (Clear_matrices)

procedure Matrix_init(Rows,Cols : word;
var Found : boolean);

MatrixTypeStr
HeapToUse

s t r i ng;
longint;

begin
HeapToUse := Cols * SizeOf(extended) ;
Initialise_matrix(INTM,Cols,1,HeapToUse,REXV, 'I NTARRAY.$$$');
Found := Type_of_array(INTM,MatrixTypeStr);
if not Found then exit;
Write_msg_in_window(('Intermediate matrix stored '+ MatrixTypeStr));
HeapToUse := Cols * Cols * SizeOt(extended);
Initialise_matnx(RESI , Col s ,Col s , HeapToUse, REXV, 'RESARRAY. $$$');
Found := Type_of_array(RESI,MatrixTypeSt i) ;
if not Found then exit;
Write_msg_in_window(('Residual matrix stored '+ MatrixTypeStr));
Initialise_matrix(COVA,Co Is,Cols,DefHeapToUse,EXVN, 'COVARRAY.$$$'
Initialise_matrix(LOAD,Cols,Cols,DefHeapToUse,EXVN,•LODARRAY.$$$')
Initialise_matrix(SCOR,Rows,Cols,DefHeapToUse,EXVN,•SCOARRAY.$$$')
Initialise_matrix(COMP,CompRows,Cols,DefHeapToUse,EXVN,'COMARRAY.$$$•),

end; (Matrix_init)

procedure Calc_variance(var NormConst,TotVar,CumVar
var Pvar.PCumVar : extended;
var LoopNo : word);

extended;

var
Found boolean;

begin
PVar := (NormConst/TotVar)*100;
CumVar := CumVar + NormConst;
PCumVar := (CumVar/TotVar)* 1 00 ;
Found := Set_val(COMP,PVarRow,LoopNo,PVar);
Found := Set_val(COMP,PCVarRow,LoopNo,PCumVar)

end; (Calc_variance)

procedure F_test_eigenvalue(Rows,Co Is,LoopNo : word;
NormConst,TotVar,CumVar
var SigLevel : real);

extended;

var
J
S
R,C
K1.K2
Fvalue
REV, REVPool
Sum
Prob
Found

word; i
word; <
integer; •
integer;
real; i
real; •
real;
real;
boolean;

begin
Fvalue := 0; SigLevel
R : = Rows ; C : = Co 1 s ;
case (Rows > Cols) of

true : S := Cols;
false : S := Rows;

end; (case)
Kl := 1; K2

Loop control variable for weight calculation.)
Minimum of Rows and Cols. }
Integer values of Rows and Cols for calculation.
Degrees of Freedom for F-test.)
F ratio for F-test.)
Reduced eigenvalue and error eigenvalue pool.)
Eigenvalue pool weighting value.)
Area in tail of F distribution.)

:= 0; Sum := 0; (Variable initialization.)

= (S- LoopNo);
if LoopNo = S then exit;
for J := Succ (LoopNo) to S do

Sum := Sum + (R - J + 1) *
REV := NormConst / ((R - LoopNo

{ D of F.)
{ Exit for undefined final eigenvalue.

(Pool weighting calculation loop.
(C - J + 1);

1) * (C - LoopNo + 1)); (Reduced eig.
{ Pool eig.REVPool := (TotVar - CumVar) / Sum;

if (REVPool = 0) then exit; (Exit for factors < dimensions (pure data).
Fvalue := REV / REVPool; { F ratio.)
Prob t= F_prob(Fvalue,Kl,K2); (Calculate area in tail of F dist.)
SigLevel :=(l-Prob) * 100; (Calculate 1 tailed significance level
Found := Set_val(COMP,SLRow,LoopNo,SigLevel);

end; (F_test_eigenvalue)

procedure Pea (AbsoluteError extended);
(This procedure controls the flow of)
{ the routines necessary to decompose)
{ the data.)

const
Msg : array [1. .6] of Str_80 = ('Calculating Covariance matrix.

'Completed',
'Decomposing data...',
'Decomposition completed',
'Calculating Errors...',
'Error calculation completed');

66 Appendix 3

LoopNo
IterationNo
Rows,Cols
TotVar
CumVar
NormConst
Finished
Found
TimeStr
SigLevel
Pvar
PCumVar

word; (Current factor number of calculations.)
word; (Current iteration of factor extraction. }
word; { Data matrix dimensions)
extended; (Total variance in data)
extended; (Sum of eigenvalues found so far.)
extended; (Eigenvalue)
boolean; (Flag for completed factor extraction. (
boolean; (General boolean operator.)
Str_80; (Elapsed time of decomposition.)
real; (% Significance level of current factor.)
extended; (% variance of current factor.)
extended; (% cumulative variance accounted for. }

(-----------------------)

begin
Elapsed_time_timer(On,TimeStr);
Clear_matrices; (Delete existing matrices.)
EscPress := false;
CumVar := 0;
Found := Matrix_dimensions(DATA,Rows,Cols) ; (Find matrix dimensions.)
if not Found then exit; (Leave if no DataMatrix.)
Write_text_window;
Matrix_init(Rows,Cols,Found); (Initialise matrices for data.)
if not Found then exit;
Write_msg_in_window(Msg[1)1;
Covariance_matrix(Rows,Cols,TotVar);(Calculate Z in RESI matrix for speed.)
Write_msg_in_window(Msg(2)) ;
Write_msg_in_window(Msg[3)1;
Set_Z_to_residual(Cols); (Mirror RESI to COVA.)
LoopNo := 0;
repeat

Inc(LoopNo);
Write_factor_number(LoopNo);
Initialise_factor_mat rix(Cols,LoopNo) ;
IterationNo := 0;
repeat

Inc(IterationNo);
Update_iteration_number(IteratlonNo);
Calc_intermediate_matrix(Cols,LoopNo) ;
Calc_normali sat ion_const(Cols.NormConst);
Calc_eigenvector(Cols,NormConst);
Finished := Test_for_completed_factor(NormConst,LoopNo,Cols);
if not Finished then Rewrite_factor_matrix(Cols,LoopNo) ;:
Check_for_esc;

until Finished or EscPress;
Calc_variance(NormConst,TotVar,CumVar,PVar,PCumVar,LoopNo) •
F_test_eigenvalue(Rows,Cols,LoopNo,NormConst.TotVar,CumVar,SigLevel);
Finished_factor(PVar,PCumVar,SigLevel);
Calc_residual_matnx (Cols, LoopNo, NormConst) ;
if LoopNo <> Cols

then Finished := Residual_matrix_zero_test(LoopNo,Cols);
until Finished or EscPress;
Write_msg_in_window(Msg[4));
Calc_abstract_row_matrix(Rows,Cols,LoopNo);
Write_msg_in_window(Msg[5]);
Errors_in_decomposition(Rows,Cols,LoopNo,AbsoluteError,TotVar);
Write_msg_in_window(Msg(6));
Elapsed_time_timer(Off,TimeStr);
Write_msg_in_window(TimeStr);
Close_text_window;

end; (Pea)

end.

67 Appendix 3

3.14. Unit MENU
unit menu;

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.)

($0+,F+)

interface

uses Overlay,Crt,DOS,PFAGlobs,EMSDat,UtiIs,Vid_ut11,Mat humt,
TargTest,IO_Unit,PFAUtils,PFAVid;

procedure Menu_system;

procedure Change_column_headings;

procedure Set_column_width;

implementation

const
NoOfMenus = 8; (Total number of menus in system)
HeadingWidth = 13; (Maximum width of each entry in a menu)
MaxNoOfOpt ions = 6; (No. of options possible in 80 cols)
OptionGap = ' '; (Space between options in the menu)
CsrClrBkg = Magenta; { Colour constant for the cursor background }
CsrClrFrg = White; (Colour constant for the cursor text }

type
MenuNoRecord = record (Record for menu stack)

Number : byte; (Menu number)
Option : byte; (Option No. in that menu)

end;
MenuRecord = record (Menu record, one for each option entry possible)

Heading : string[HeadingWidth]; (Option name)
Message : Str_80; (Option description)
NextMenu : MenuNoRecord; { Points to next menu)
QuitTree : boolean; (Flag to quit or stay in menu)
HelpMsgNo : byte; (Relevant help message)

end;
MenuLineType = array (1..MaxNoOfOpt ions] of MenuRecord; (Makes up a menu)
MenuListType = array (1..NoOfMenus] of MenuLineType; { Array of menus)
MenuStackType = array [1..NoOfMenus] of MenuNoRecord; (Pointer stack]

var
MenuList ; MenuListType; (Array of menus)
MenuStack : MenuStackType; (Stack of route through menus)
Stacklndex : byte; { Current stack position)
LaunchOption : boolean; (Flag to run an option }
QuitMenu : boolean; (Flag to leave menu system after operation)

procedure Select_from_menu; (Look after selection methods from the menu)

var
inchr.inctl : char; { Contain key codes entered)
PrevOption : byte; { Last selected option)
ChangeMade : boolean; (Flag to cause update of menu }

procedure Highlight_option (Option ; byte); (Puts cursor on }
(selected option)

var
TopX.LwrX : byte; (Start and finish coords of the cursor }

procedure Get_coords (Option : byte); (Calculates TopX and LwrX }

var
I,Offset : byte;

begin
with MenuStack[Stacklndex] do (Using current Stack entry)
begin
Offset := 0; i Initialize offset)
for I := 1 to Pred(Option) do (Add up chars of each option)
Offset := Offset + Length(MenuList[Number,I].Heading)

+ Length(OptionGap);
TopX := SuccfOffset);
LwrX := Offset + Length(MenuList[Number,Opt ion].Heading) ;

end; (with) (Set coords)
end; (Get_coords)

begin {Highlight_option)
Get_coords(PrevOption);
Colour_box(TopX,2,LwrX,2,LightGray,Black,false); (Erase old cursor)
Get_coords(Opt ion);
Colour_box(TopX,2,LwrX,2,CsrClrFrg,CsrClrBkg,false); (Write new cursor)

end; {Highlight_option)

procedure Process_control_key; 1 Acts on control key input)

begin
ChangeMade := true; (Flag to update menu)
with MenuStack[StackIndex) do (Using current stack entry)
begin
with MenuList[Number.Option] do { and associated menu option)
begin

case inctl of
Cur_left : if Option = 1 then Write(Bell)

else Option := Pred(Opt ion); { Move cursor left)
Cur_right : if MenuList[Number,Succ(Option)].Heading = ••

then Write(Bell)
else Option := Succ(Option); (Move cursor right)

Esc : begin
if Stacklndex = 1 then (Leave menu if top of tree)
begin

QuitMenu := true;
LaunchOption := true;

end
else
Stacklndex := Pred(Stacklndex); (Or move up one)

end; (Esc)
CR : begin

if NextMenu.Number =0 1 If bottom of tree)

68 Appendix 3

then LaunchOption := true (then run procedure)
else (or)
begin (move down a level)
MenuStack(Succ(Stacklndex)] := NextMenu;
Stacklndex := Succ(Stacklndex);

end;
end; (CR)

else begin (If none of the above keys]
Write(Bel 1); (Beep)
ChangeMade := false; (Flag no change to menu)

end; (else)
end; (case)

end; (with MenuList)
end; (with MenuStack)

end; (Process_control_key)

procedure Find_option_letter; (Finds options by first letters)

var
I : by t e ;
Found : boolean;

begin
Inchr := UpCase(Inchr); (Force to capitals)
with MenuStacklStacklndex] do (Using current stack entry)
begin

I := 0;
repeat

I := Succ(I); (Search through each option)
Found := UpCase(MenuList(Number,I].Heading(1]) = Inchr;

until Found or (I = MaxNoOfOptions); (Until a match is found)
if not Found then Write(Bell) (If no match then Beep)
else (or)
begin
ChangeMade := true; (Flag to update menu)
if MenuList[Number,I].NextMenu.Number = 0 (Check for bottom)
then { of tree)
beg i n

LaunchOption := true; (if su then flag to run procedure)
Option '. - \ • (Update option no. on stack)

end (if then)
else
begin { if not then increment stack and enter next menu)

MenuStack[Succ(Stacklndex)] := MenuList(Number,11 .NextMenu;
Stacklndex := Succ(Stacklndex);

end; (if else)
end; (else)

end; (with)
end; (Find_option_letter)

begin (Select_from_menu)
with MenuStack(Stacklndex) do (Using current stack entry)
begin
with MenuList[Number,Opt ion] do (and the option it points to)
begin

repeat
Highlight_option(Option); (Display cursor on current option)
repeat
Update_time;
Update_lights;

until KeyPressed;
Read_Kbd(Inchr,Inctl) ; (Get a key stroke)
if Inctl <> NullChr then Process_control_key (Handle control keys)
else Find_option_letter; (and letters)

until ChangeMade; (until a change is made)
QuitMenu := QuitTree; (Check if leaving the menu system after action)

end; (with MenuList)
end; (with MenuStack)

end; (Select_from_menu)

procedure Write_menu (MenuNo : MenuNoRecord) ; (Writes menu to second line)
(of screen)

var
I : byte;

begin
GotoXY(1,2); (Move to menu line)
I := 1;
repeat
Write(MenuList(MenuNo.Number,I].Heading,OptlonGap); (Write each option)
I := Succ (I); (separated by a space)

until MenuList[MenuNo.Number,I].Heading = ''; (till no more entries)
end; (Write_menu)

procedure Write_message (MenuNo : MenuNoRecord); (Writes a message on the)
(third line of the screen)

begin
GotoXYd , 3) ; { Move to message line)
with MenuNo do
begin
WritefMenuList(Number,Option].Message) ; (Write message)

end; (with)
end; (Write_message)

procedure Decompose; (Starts the eigenanalysis)

begin
Write_status(WA); (Change status to wait)
PCA(AbsError); (Decompose)
Write_status (Status); t Restore status)

end; (Decompose)

procedure Error_entry(Prompt,Msg : Str_80;
var TmpExt : extended);

{ Allows entry of error estimate for the data)
(or test vector)

const
Min : extended = 3.4e-4932; (Range checking constants)
Max : extended = I.le4932; (for string conversion)
Int : boolean = false; (Flag for extended conversion)
AllowZero : boolean = true; (Flag to allow return of 0)

var
InpStr : Str_255; (Keyboard input)
Code : integer; { String to number conversion error code)
Ok.EscPress : boolean;

69 Appendix 3

begin
Clr_menu;
TextAttr := Get_attribute(1,2);
Ok := false;
Str(TmpExt,InpStr);
while not Ok do
begin
GotoXYU , 3) ;
Write(Msg);
GotoXYU, 2);
String_input(Prompt,InpStr,25,EscPress); (Get input from keyboard)
Ok : = String_to_number (InpStr, TmpExt , Mm, Max .Code, Int , Al lowZero) ;
if not Ok and (Code = 0)

then Ok := (TmpExt = 0);
if not Ok then
begin

Write_status(ER); | Indicate an error condition)
Write(Bell);

end; (if else)
end; (while)
Write_status(Status) ; (Restore status)

end; {Error_entry)

procedure Quit;

var
InpStr : Str_255;
EscPress : boolean;

begin
if FileChanged then
begin
Write(Bell);
Clr_menu;
while not (UpCase(InpStr[1]) in I'Y'.'N 1]) do
begin
GotoXYU, 2) ;
String_input('Loose changes Y/N ? ',InpSt r,2, EscPress);
if EscPress then exit;

end; (while)
if UpCase(InpStr(1]) = 'Y' then EndSession := true;

end (if then)
else EndSession := true;

end; (Quit)

procedure Set_column_width; (Sets the width of columns displayed on screen)

const
Min longmt = 10;
Max longmt = 23;
Int boolean = true;
AllowZero : boolean =

var
Ok, EscPress : boolean;
Code : integer;
InpStr : Str_255;
Prompt, Msg : Str_80;

(Range checking constants)
{ for string conversion)
(Flag for integer conversion)

false;

(Error code for string/ i nteger conversion
(Keyboard input)
(Text messages)

begin
Clr_menu;
TextAttr := Get_attnbute (1, 2) ;
Ok := false;
Prompt := 'Column width = ';
Msg := 'Enter a value for the width of each column. Range of values 10-23';
Str(ColWidth,InpStr);
while not Ok do
begin
GotoXYU, 3} ;
Write(Msg);
GotoXYU, 2) ;
String_input(Prompt,InpStr,3,EscPress); { Get keyboard input)
ColWidth := longint(ColWidth); (String to byte)
Ok := Stnng_to_number (InpStr, ColWidth , Mm , Max, Code, Int .AllowZero) ;
ColWidth := byte(ColWidth); (conversion routine)
if not Ok then
begin

Write_status(ER); { Indicate error if out of range)
Write(Bell);

end; (if else)
end; (while)
Write_status(Status); (Restore status)
CursorPos.Column := 1; (Move cursor to home)
OldCurPos.Column := 1;
RedrawScreen := true; (Flag to redraw screen)

end; (Set_column_width)

procedure Change_column_headmgs; (Swaps between letters and numbers)
(for column headings)

begin
Headings := not Headings; (Toggle headings)
Refresh := true; (Flag to redraw numbers)

end; (Change_column_headmgs)

procedure Get_facextest;

var
Prompt,Msg : Str_80;

begin
Prompt := 'Accuracy = ';
Msg := 'Enter a value for the test for completion of factor extraction ';
Error_entry(Prompt,Msg,FacExTest);

end; (Get_facextest)

procedure Get_resnultest;

var
Prompt,Msg : Str_80;

begin
Prompt := 'Minimum = ' ;
Msg := 'Enter a value for the smallest meaningful data value ';
Error_entry(Prompt,Msg,ResNulTest);

end; (Get_resnultest)

procedure Get_abserror;

70 Appendix 3

var
Prompt,Msg : Str_80;

begin
Prompt := 'Absolute Error = ';
Msg := 'Enter an estimate for the error in the data set';
Error_entry(Prompt,Msg,AbsError);

end; (Get_abserror)

procedure Get_vecterr;

var
Prompt,Msg : Str_80;

begin
Prompt := 'Vector Error = ';
Msg := 'Enter an estimate for the error in the test vector 1 ;
Error_entry(Prompt,Msg,VectErr);

end; (Get_vecterr)

procedure Get_nofacs;

var
Prompt,Msg : Str_80;
TmpExt : extended;

begin
Prompt := 'Number of factors =
Msg := 'Enter the number of factors to be used to describe the data'-
TmpExt := NoFacs;
Error_entry(Prompt,Msg,TmpExt);
NoFacs := Trunc(TmpExt);

end; (Get_nofacs)

procedure Calc_TKON;

begin
Write_status(WA);
Calculate_TKON;
Write_status(Status) ;

end; (CalcJTKON)

procedure Target_test ;

begin
Write_status(WA);
Test_vector;
Write_status(Status);

end; (Target_test)

procedure IT_Test;

var
Finished : boolean;
Tmp : string;

begin
Wnte_status(WA);
GotoXYfl,2);
ClrEol;
Write('Iterative target testing');
GotoXYd, 3) ;
ClrEol;
Finished := false;
ITTInit;
repeat

ITT(Finished);
GotoXYd , 3) ;
ClrEol;
Writef'Press any key for next iteration or Esc to finish');
Wnte_number_window;
repeat until KeyPressed;
Check_for_esc;
GotoXYd , 3) ;
ClrEol;

until Finished or EscPress;
Write_status(Status);

end; (IT_Test)

procedure Menu_system;

var
Selector : word; (Code to identify procedure to run }
Code : word;
S1,S2 : str_5; (Precursors of Selector)

begin
Stacklndex := 1; (Menu initialization)
MenuStack[Stacklndex].Number := 1; (Code)
MenuStackjStacklndex).Option := 1; ()
LaunchOption := false; ()
QuitMenu := false; {)
Status := ME;
repeat

repeat
Clr_menu;
Write_menu(MenuStack[StackIndex]);
Write_message(MenuStack[Stacklndex]);
Select_from_menu;

until LaunchOption;
with MenuStack(Stacklndex) do (Using current stack entry)
begin

Str(Number,SI); (Calculate first part of Selector)
Str(Option,S2); (Calculate second part of Selector)
SI := SI + S2;
Val(SI,Selector,Code); { Create Selector code)

end; (with)
case Selector of { Use Selector to launch)

21
22
23
24
25
31
32
41
42
43

Decompose;
begin end;(Target_testing;)
Get_abserror;
Get_facextest ;
Get_resnultest ;
Import_file(Native);
Export_f ile(Native) •
Change_disp_matrix('Select the Matrix to be displayed',EscPress)
Set_column_width;
Change_column_headings;

71 Appendix 3

51
61
62
71
72
81
82
83
84
85

end;

Quit ;
Import_f ile(Lotus)
Import_file(ASCII)
Export_file(Lotus)
begin end;(ASCII_export;)
Get_nofacs;
Get_vecterr;
Calc_TKON;
Target_test;
IT_Test;

case)
Launc lOption := false;

until QuitMenu;
Status = RE;
Clr_menu;

end; {Menu_systern)

procedure Read_menu_file;

const
FileName = 'Menu.dat';

(Switch to quit or stay with menu

(Reads menu information from disk)

(Searches for file in DIR)

var
Found : boolean;
Dirlnfo : SearchRec;
InFile : file of MenuListType;

begin
FindFirst(FileName,AnyFile,Dirlnfo) ;
if DosError in[2,18] then
begin

ClrScr;
Writel'File MENU.DAT not found in default directory',Bel 1);
Halt; (Terminal program error)

end; (if)
Assign(InFile,FileName);
Reset(InFile);
Read(InFile,MenuList) ;
Close(InFile);

end; (Read_menu_fi le)

begin
Read_menu_file;

end. (Menu)
Unit initialisation)

72 Appendix 3

3.15. Unit KEYOPS
unit keyops;

(The code contained in this unit is Copyright by T.G.Brockwel1, 1989-92. All rights reserved.)

(SO+.F+J

interface

uses Overlay,Crt,PFAGlobs,UtiIs,Vid_util,EMSDat,PFAUtiIs,PFAVid.Menu;

procedure Handle_key;

implementation

procedure Move_cursor_up; (Moves the cursor up within the screen)
{ boundaries or moves the screen)

begin
if CursorPos.Row > l then (If inside screen)
begin
CursorPos.Row := Pred(CursorPos.Row); (Move cursor position)
Draw_cursor; (Redraw cursor)

end (if then)
else

begin
if (CursorPos.Row = 1) and (Origin.Row > 1) then (If outside screen)
begin (but inside data set)
Origin.Row := Pred(Origin.Row); (Move screen boundaries)
CursorPos.Row := 1; (Reset cursor position)
Refresh := true; { Flag to redraw numbers)

end (if then)
else (If outside screen and data set)
Wnte(Bell) ; { Bleep)

end; (if else)
end; (Move_cursor_up)

procedure Move_cursor_down; (Moves the cursor down within the screen)
(boundaries or moves the screen)

begin
if CursorPos.Row < NoOfRows then (If inside screen)
begin
CursorPos.Row := Succ(CursorPos.Row); (Move cursor position)
Draw_cursor; (Redraw cursor)

end (if then)
else

begin
if (CursorPos.Row = NoOfRows) { If outside screen but)
and ((Origin.Row+NoOfRows) <= MatrixDim.Row) then (inside data set)

begin
Origin.Row := Succ(Origin.Row); (Move screen boundaries)
CursorPos.Row := NoOfRows; (Reset cursor position }
Refresh := true; (Flag to redraw numbers)

end (if then)
else (If outside screen and data set)
Write(Bell); (Bleep)

end; (if else)
end; (Move_cursor_down)

procedure Move_cursor_left; (Moves the cursor left within the screen)
{ boundaries or moves the screen)

begin
if CursorPos.Column > 1 then (If inside screen)
begin

CursorPos.Column := Pred(CursorPos.Column); (Move cursor position)
Draw_cursor; (Redraw cursor)

end (if then)
else

begin
if (CursorPos.Column = 1) and (Origin.Column > 1) then (If outside)
begin (screen but inside data)
Origin.Column := Pred(Origin.Column); (Move screen boundaries)
CursorPos.Column := 1; (Reset cursor position)
Refresh := true; (Flag to draw3 numbers)

end (if then)
else (If outside screen and outside data)
Write(Bell); (Bleep)

end; (if else)
end; (Move_cursor_left)

procedure Move_cursor_right; (Moves the cursor right within the screen)
(boundaries or moves the screen)

begin
if CursorPos.Column < NoOfCols then (If inside screen)
begin
CursorPos.Column := Succ(CursorPos.Column); (Move cursor)
Draw_cursor; (Redraw cursor)

end (if then)
else

begin
if (CursorPos.Column = NoOfCols) { If outside screen and inside data)
and ((Origin.Column + NoOfCols) <= MatnxDim.Column) then

begin
Origin.Column := Succ(Origin.Column); (Move screen boundaries)
CursorPos.Column := NoOfCols; (Reset cursor position)
Refresh := true; (Flag to redraw numbers)

end (if then)
else (If outside screen and outside data)

Write(Bell); (Bleep)
end; (if else)

end; (Move_cursor_right)

procedure Move_page_up; (Moves up one screen of data)

begin
if Origin.Row >= NoOfRows then { If room to move a whole page)
Origin.Row := Origin.Row - NoOfRows (then do so)

else
Origin.Row := 1; { Else set page to top of data)

Refresh := true; { Flag to redraw numbers)
end; (Move_page_up)

procedure Move_page_down; (Moves down one screen of data)

73 Appendix 3

begin
if (Origin.Row + NoOfRows) ., (MatrixDim.Row - Pred(NoOfRows)) (If room to)

then Origin.Row := Origin.Row + NoOfRows (move a whole page then do so }
else
Origin.Row := MatrixDim.Row - Pred(NoOtRows); (Else set bottom of data)

Refresh := true; (Flag to redraw data)
end; (Move_page_down)

procedure Move_page_right; (Moves right one screen of data }

begin
if ((Origin.Column + (2*NoOfCols) ^ MatrixDim.Column)) { If room to move a)
then Origin.Column := Origin.Column + NoOfCols I whole page then do so)
else Origin.Column := MatrixDim.Column - Pred(NoOfCols); (Else move right)
Refresh := true; (of data and flag to redraw data)

end; (Move_page_right)

procedure Move_page_left; (Moves left one screen of data (

begin
if Origin.Column > NoOfCols then (If room to move a whole page)
Origin.Column := Origin.Column - NoOfCols (then do so)

else
Origin.Column := 1; (Else move to left of data)

Refresh := true; (Flag to redraw numbers)
end; (Move_page_left)

procedure Move_to_home; { Moves to top left of data set)

begin
Origin.Row := 1; (Set data boundaries (
Origin.Column := 1;
CursorPos.Row := 1; (Reset cursor position)
CursorPos.Column := 1;
Refresh := true; (Flag to redraw numbers)

end; (Move_to_home)

procedure Move_to_end; (Moves to bottom right of data set)

begin
Origin.Row := MatrixDim.Row - Pred(NoOfRows); (Set data boundaries)
Origin.Column := MatrixDim.Column - Pred(NoOfCols) •
CursorPos.Row := NoOfRows; (Set cursor position)
CursorPos.Column := NoOfCols;
Refresh := true; (Flag to redraw data)

end; (Move_to_end)

procedure Move_to_top; (Moves to top of screen in same column)

begin
Origin.Row := 1; { Move data boundary }
CursorPos.Row := 1; { Set cursor position)
Refresh := true; (Flag to redraw numbers }

end; (Move_to_top)

procedure Move_to_bottom; { Moves to bottom of screen in sajne column }

begin
Origin.Row := MatrixDim.Row - Pred(NoOfRows); (Move data boundary)
CursorPos.Row := NoOfRows; t Set cursor position }
Refresh := true; (Flag to redraw data)

end; (Move_to_bottorn)

procedure Move_to_far_left; (Moves to rightmost column in same row)

begin
Origin.Column := 1; (Move data boundary)
CursorPos.Column := 1; (Set cursor position }
Refresh := true { Flag to redraw numbers)

end; (Move_to_far_left)

procedure Move_to_far_right; { Moves to leftmost column in same row)

begin
Origin.Column := MatrixDim.Column - Pred(NoOfCols); { Move data boundary)
CursorPos.Column := NoOfCols; (Set cursor position)
Refresh := true; (Flag to redraw numbers)

end; {Move_to_far_right)

procedure Edit_cell;

const
Min : extended = 3.4e-4932; (Range checking constants)
Max : extended = I.le4932; (for string conversion)
Int : boolean = false; { Flag for extended conversion)
AllowZero : boolean = true; (Flag to allow a 0 return)

var
Prompt,Msg
InpStr
Code
Ok,EscPress
Found
Row,Col
Value

Str_80; (Text messages)
Str_255; { Keyboard input)
integer; (String to number conversion error code }
boolean;
boolean;
word;
extended;

begin
Clr_menu;
TextAttr := Get_attribute(1,2);
Ok := false;
Prompt := 'Edit value = ';
Msg = 'Edit an existing value or enter a new value';

= Origin.Row + Pred(CursorPos.Row);
= Origin.Column + Pred(CursorPos.Column

Row
Col - _
Found := Get_val(CurrentMatrix,Row,Col,Value);
if not Found then exit;
Str(Value,InpStr);
while not Ok do
begin

GotoXY(l,3) ;
Write(Msg);
GoCoXY(1,2);
String_input(Prompt,InpStr,25,EscPress); (Get input from keyboard)
Ok := String_to_number(InpStr,Value,Min,Max,Code,Int,AllowZero);
if not Ok and (Code = 0)

then Ok := (AbsError = 0);
if not Ok then
begin

74 Appendix 3

Status := ER;
Write_status(Status);
Write(Bell);

end; {if else)
end; (while)
Clr_menu;
Found ;= Set_val(CurrentMatrix,Row,Col.Value);
Status := RE;
Write_status(Status);
Refresh := true;
FileChanged := true;

end; (Edit_cell)

Indicate an error condition

(Restore status)

procedure Goto_cell; { Moves the cursor to a designated cell }

var
CellAddress
Prompt,Msg
Ok,EscPress
Row,Col

Str_255; { Keyboard input string)
Str_80; (Text messages)
boolean;
word;

(Control flags)
Coordinates)

procedure Set_coords;

begin
case (Col < Origin.Column) or (Col > Origin.ColumntPred(NoOfCols)) of

false : CursorPos.Column := SucclCol - Origin.Co 1umn);
true : begin

CursorPos.Column ;= 1;
if Col > MatrixDim.Column - NoOfCols then
begin
Origin.Column := MatrixDim.Co 1umn - Pred(NoOfCols);
CursorPos.Column := SucclCol - Origin.Column);

end (if then)
else Origin.Column := Col;

end; (true)
end; (case)
case (Row ^ Origin.Row) or (Row -. Oi igin . Row + Pred (NoOf Rows)) of

false : CursorPos.Row := SucclRow - Origin.Row);
true : begin

CursorPos.Row : - \;
if Row ^ MatrixDim.Row - NoOfRows then
beg i n
Origin.Row := MatrixDim.Row - Pred(NoOfRows);
CursorPos.Row ;= SucclRow - Origin.Row);

end (if then)
else Origin.Row ;= Row;

end; (true)
end; (case)

end; (Set_coords)

(Initialization code)
begin

Ok := false;
EscPress := false;
Prompt := 'Cell address = ? ';
Msg := 'Enter cell address to goto';
CellAddress := '
TextAttr := Gec_attribute(1,2);
while not Ok do
begin
GotoXYd, 3) ;
Write(Msg);
GotoXYll,2);
String_input(Prompt.CellAddress,12, EscPress) •
case EscPress of

false : begin
Ok := Parse_coords(CellAddress,Row,Col
if (Row > MatrixDim.Row)

or (Col > MatrixDim.Column)
then Ok := false;

if not Ok then
begin

Status := ER;
Write_status(Status) ;
Write(Bell);
Msg := 'Incorrect cell format or address out of range';

end; (if)
end; (false)

true : Ok := true;
end; (case)

end; (while)
Clr_menu;
if not EscPress

then Set_coords;
Refresh := true;
Status := RE;
Write_status(Status);

end; (Goto_cell)

procedure Call_change_matrix;

{ Write message line

(Get address

(Split coordinates
{ Check dimensions

If out of dimensions

(Indicate error

var
Msg
EscPress

Str_80;
boolean;

begin
Msg := 'Select the matrix to be displayed ;
Change_disp_matrix(Msg,EscPress) ;

end; (Call_change_matrix)

procedure Handle_key;

var
inchr.inctl : char;

(Deals with key input from ready mode

Contain key code and extended scan code

begin
Read_kbd(inchr,inctl) ;
case inctl of

Slash
Cur_up
Cur_down
Cur_left
Cur_right
Page_up
Page_down
Tab,
Ctrl_rght
Shi ft_tab,
Ctrl_left

Menu_system;
Move_cursor_up;
Move_cursor_down;
Move_cursor_left;
Move_cursor_right ;
Move_page_up;
Move_page_down ;

Move_page_right ;

Move_page_left;

75 Appendix 3

Home_key
End_key
Ctrl_pgup
Ctrl_pgdn
Ctrl_home
Ctrl_end
Fl_key

F2_key
F5_key
F6_key
F7_key
F8_key

end; (case)

Move_to_home;
Move_to_end;
Move_to_top;
Move_to_botcom;
Move_to_far_left;
Move_to_far_righc;
begin
end;
Edit_cell ;
Goto_cel1 ;
C hang e_coluinn_head ings ;
SeC_column_width;
Ca1l_change_mat r i x ;

Reserved for help system)

end; (Handle_key)

end. (keyops)

76 Appendix 3

program TFA;

(SF+)

uses Overlay,Crt,DOS,Ovlnit,PFAGlobs,PFAVid,Vid_Uti1,PFAUtiIs,Keyops,EMSDac;

{ SO PFAGLOBS)
(SO UTILS)
{ SO VID_UTIL)
(SO OPDOS)
(SO OPLARRAY)
(SO EMSDAT)
(SO PFAUTILS)
(SO PFAVID)
(SO EPAIMPRT)
($O IO_UNIT)
{ SO MATHUNIT)
(SO LOTUSFIL)
($0 MENU)
{ SO KEYOPS)

begin
TextMode(CO80);
Hide_Cursor;
repeat

if RedrawScreen then Draw_screen;
if Refresh then Write_number_window;
if Keypressed then Handle_key;
Update_lights;
Update_t ime;

until EndSession;
Free_EMS;
Wave_by_by;

end.

77 Appendix 3

Appendix 4 : Description of ERA file format

4.1. EPA Data format

The following is a description of the EPA file format used by VG Analytical
for transfer of data to PC systems. Some of the information is gained from reverse
engineering a FORTRAN program supplied by VG. Other aspects of the file format
have been learnt by observation of the data files produced by the data system.

The EPAF program used to convert the data system files to EPA format
accepts switches, two of which are known. The /D switch adds <CR LF> (ASCII
#13,#10) after each 80 char logical record. This switch was not used but files
transferred had the CR,LF pair added. This means that the conversion either defaults
to /D or that Kermit file transfer does this automatically. The /A switch is referred to
in relation to file headers appearing in the middle of a file. It is therefore concluded
that the switch is used to append new data to the end of an existing file.

The format of the file is described line by line below. Each description gives
the position in the line (characters are numbered from 1 to 80 along the line), the
length of each field and the Pascal variable type contained in the field.
4.1.1. File header:

The file header is composed of four lines. Each line is 80 characters long or
82 characters if the CR,LF pair has been added.

A file header is identifiable by a scan number of 0 and has a format identical
to a normal scan header.

A file header does not necessarily appear only at the beginning of the file, if
the /A switch is used in the conversion then it may appear in the middle of the file.
4.1.LI . First header line
Positioi
from,
1
13
14
19
21
29
30
32
33
35

i
to
12
13
18
20
28
29
31
32
34
80

Length
bytes
12
1
5
2
8
1
2
1
2
46

Type

Char
Char
Integer
Char
Char
Char
Integer
Char
Integer
Char

Description

Name of original data file
scan number prefix (#)
scan number (right aligned)
blank
MM/DD/YY date
blank
hour of run start
time separator (:)
minutes of run start
spaces

78 Appendix 4

47.7.2. Second header tine
Positioi
from,
1
65
75

i
to
64
74
80

Length
bytes
64
10
6

Type

Char
Char
Char

Description

Sample identification
blanks
Instrument name

Notes: The Sample ID field appears to contain information about filename, calibration

file, account no. and type of scan (eg MAG).
4.1.1.3.____Third header line
Positioi
from,
1
65
75

i
to
64
74
80

Length
bytes
64
10
6

Type

Char
Char
Real

Description

Run conditions
blanks
seconds per scan for this file

4.1.1.4. Fourth header line
Positioi
from,
1
7
15
21
29
35
43
49
69
74
77
78

i
to
6
14
20
28
34
42
48
68
73
76
77
80

Length
bytes
6
8
6
8
6
8
6
20
5
3
1
3

Type

Char
Char
Char
Char
Char
Char
Char
Char
Char
Integer
Char
Integer

Description

blanks
Analyst
blanks
Submitted by
blanks
Account no
blanks
Formula
blanks
Lowest scanned mass (right aligned)
blank
Highest scanned mass (right aligned)

Notes: The fourth header line shows large discrepancies between the fields shown in

the specification (above) and those observed. For this line the only fields which
appear to be in the correct place are those defining the scan range.

4.7.2. Scan data:

The scan data is composed of a series of blocks, of variable number of lines,

each representing one scan of data.

79 Appendix 4

Data blocks are repeated for successive scan numbers until the end of file or
another scan header is reached.

Data blocks are composed of a scan header and a mass/intensity list.
The last entry of a data block has a zero mass/intensity pair and is padded to

the end of the line with ASCII character #32 (space).
Each data block may contain a maximum of 999 masses which gives a

maximum number of 80 char lines of 77 plus the scan header.
4.1.2.1. Scan header
Positioi
from,
1
13
14
19
21
29
30
32
33
35
40
43
44
46
52
56
57
66
71

i
to
12
13
18
20
28
29
31
32
34
39
42
43
45
51
55
56
65
70
80

Length
bytes
12
1
5
2
8
1
2
1
2
5
3
1
2
6
4
1
9
5
10

Type

Char
Char
Integer
Char
Char
Char
Integer
Char
Integer
Char
Integer
Char
Integer
Char
Integer
Char
Longint
Char
Longint

Description

Name of original data file
scan number prefix (#)
scan number (right aligned)
blank
MM/DD/YY date
blank
hour of run start
time separator (:)
minutes of run start
blanks
mins after start at end scan
blank
seconds after start at end scan
blank
Nominal mass of largest peak
blank
Intensity of largest peak (before scaling)
blanks
Reconstructed ion current = total intensity
recorded in the scan before scaling

Notes: If the reconstructed ion current exceeds the maximum range of the instrument
then the first character of the filename is overwritten with an * and the ion current
field left blank. The data still follows the header but must be regarded as suspect.

80 Appendix 4

4.1.2.2. Mass/lntensltv list
Positioi
from,

1
4

79

i
to

3
6

80

Length
bytes

3
3

2

Type

Integer
Integer

Integer

Description

Nominal mass (increasing order)
Intensity at above mass, scaled to intensity of
base peak = 999
Line number of data

The fields nominal mass and intensity form a mass intensity pair six characters
long. Every peak observed by the spectrometer has its mass rounded to the nearest
integer and its intensity scaled to a percentage of the base peak for the scan to form
the data pairs. The encoding occurs from low mass to high. When each line is filled
with data pairs (13 pairs), a line number is appended to the end which is incremented
for each succesive line to the maximum of 77.

Data continues in this fashion with a CR,LF pair after every 80 chars until a
zero mass/intensity pair is met signifying the end of the data. The rest of the line is
padded with blanks until character 78 where the two character integer gives the line
number.

Because of the rounding of the mass number to the nearest integer it is
possible to have two or more intensity pairs with the same mass number. It is
necessary when converting the file for use to accomodate this or outliers will occur.

4.1.2.3. Sample EPA file
Listed below is the file header and the first scan record from a typical EPA format
file.

TBll #

} D:TB11

0 10/30/90 12:10

7070CAL 7070H MAG

@ FERROC

CHNNNNYAN EDI

7070H

6.61

10 650

DQA/TS

#= G ?@A #= C

LE RUN 2 DQA/TS }
TBll # 17 10/30/90 12:10 1 56
01403501500101600901701801808602700302899902900902900203222003900104001404100601
04200104300304300404400804500505400105500405600205700406000106700206900507000102
071002081002082002083002084001095001097001000000_________________ 03

0 23887000 34827000

81 Appendix 4

Appendix 5 : Abstracts of papers and courses attended

The following courses were attended during the period of registration for PhD.
Lecture course on Mass Spectroscopy, given by Dr. E.Metcalfe, 1989.
6th COMETT Chemometrics School, Brugges, 1990.
The theory and practice of mass spectrometry, British Mass Spectrometry Society
course, London school of Pharmacy, 1991.

The following are the abstracts of papers presented during the period of registration
for PhD.

Paper presented at, Research Topics in Chemistry 1990, RSC sponsored meeting.

6.1. The use of factor analysis in the deconvolution of overlapping peaks in
the UV-Vis spectra of selected transition metal ions.

One of the most commonly occurring problems in analytical chemistry is the
quantification of a component in the presence of other interfering components, much
work has been done to aid the analyst, both in developing methods of separating the
component of interest, and also in developing numeric methods of data analysis to
yield the single quantified component. Most methods of spectral deconvolution make
assumptions about the peak shape in order to separate the components, which
immediately compromises the precision of any results they produce. Factor analysis is
a multivariate statistical technique that operates well in any system that may be
described by a linear combination of factors and makes no assumptions as to the peak
shape.

At low concentrations UV-Vis spectra provide an ideally suited system for
factor analysis as all absorbances are produced by a linear combination of factors
(A = sc, at fixed path length) and absorbances are additive from the individual
components. A series of spectra containing transition metal ions in differing
concentrations in solution are digitized and subjected to factor analysis, the individual
ions' spectra are searched for and identified and their concentrations found. The
converse approach can also be taken and knowing the concentrations of the
components the spectra of the components can be reproduced in isolation from the
interference of other components in the mixture.

Paper presented at Analyticon 90, Olympia.

6.2. Target factor analysis for investigating chemical data.

The modern chemist is often faced with large amounts of data, due to many
variables, and is asked to interpret it. Traditional methods such as plotting graphs and

82 Appendix 5

looking for trends are no longer adequate for such studies and powerful new methods
have been developed, or adapted from other fields for use by the chemist. Factor
analysis is one technique whic has been employed for hte analysis of multivariate data
sets in chemistry. Having its roots in the behavioural sciences, the technique has been
adapted for use with chemical data.

Target factor analysis is a combination of two mathematical procedures,
principal component analysis and target transformation. Principal component analysis
provides a mathematical method for describing the sources of variation in the data in
decreasing order of significance, each source of variance is due to one of the
underlying factors, which, when combined, make up the data. Every source of
variance is accounted for such that the individual factors that make up the data are
found, in order of importance to the data, and then the error inherent within the
system is extracted as factors. The principal component analysis method is applicable
to any data set whic has been produced by a linear combination of factors (i.e. each
component of the data adds, without interaction with the others, to produce the
measured result), which gives it enormous scope within the chemical field. Already
use has been made of it in UV-Vis, IR, NIR, and Fluorescence spectroscopy where
the resultant spectrum is simply the sum of each individual spectra, NMR, where
again the spectra are simply additive, mass spectroscopy, gas chromatography, HPLC
and many others.

One of the first benefits and indeed the original reason for employing factor
analysis in chemistry was to discover the number of components which comprise the
system, this may be achieved if the factors which are not due to error in the system
can be chosen. Much work has been done in this area and awhole series of tests may
be applied to the data in order to guide the chemist in that choice.

On discarding the factors due to error a useful side effect becomes apparent.
As a substantial portion of the error has been removed from the data, then this
technique may be used to improve the data set without knowledge of the source or
type of any error. If however the error is left in the data then it is also possible to
investigate the sources of error.

The end result of the principal component analysis is a series of factors which
make up the data, however these factors are an abstract solution and have no basis in
what chemists regard as real physical parameters such as concentration, dipole
moment, boiling point, etc.

Target transformation provides the chemist with a means of converting the
abstract factors from principal components analysis into a factor having real meaning
to the chemist.

With the data reduced to its factors, application of target transformation may
proceed. Here the chemist is able to draw upon his knowledge and experience by

83 Appendix 5

producint hypotheses about the fundamental nature of the system and testing them
mathematically on the data. If, for example, data involving the retention times of a
series of alkanes on some column packings were being investigated then it would be
reasonable to assume that the boiling point of the original alkane may be a factor in
determining the retention time. To test this assumption the boiling points of the
alkanes are formed into a factor and then , using a mathematical transformation, it is
attempted to convert the factors from the original data to match the test factor.
Because of error in the data and the test values the correlation between test figures
and transformed factor is never perfect but various functions may be calculated to
show how closely they relate. If a good fit is obtained then the assumption is correct
and boiling points are a factor in determining the retention time of the alkane.

This ability to test for a single factor in the data without knowing anything else
about the system provides the chemist with a very powerful tool for investigating
complex systems.

An explanation of the principles of target factor analysis will be given. A
worked example of the technique used in the deconvolution of overlapping spectra of
four transition metal ions with the subsequent determination of their concentrations
will be shown.

Paper presented to the MoD Specialist Working Group -2 Molecular Spectroscopy,
Bridgewater, 1990.

6.3. The application of Factor Analysis to Temperature Programmed
Pvrolysis Mass Spectrometrv Data (TPPvMS)

TPPyMS is currently used for the analysis of unknown polymer samples. The
present use of complex polymer formulations however, poses problems with the
interpretation of the data produced.

The intended objective of this research is to produce a method of mathematical
analysis which will allow the number of components in a sample to be determined,
compared against a library of known samples and if no match is found then an
isolated spectrum produced to allow identification by normal methods.

The project has currently reached the point where some initial data has been
run through the computer software to look at the amenability of the system to this
form of analysis.

The results presented are from two runs of a single pure compound, the
chlorendic anhydride derivative of ferrocene (FCA), pyrolysed under conditions made
as reproducible as possible. The areas discussed include.

A short introduction giving the rationale behind Factor analysis and its ability
to simplify complex data.

84 Appendix 5

Reproducibility between runs and its effect on the identification of components.
The number of components present in the system as shown from the Factor analysis.
The information available from the different forms of data representation possible
with Factor analysis.
The effect of background subtraction on the data.
The insights gained into the fragmentation of the sample.
The perturbations due to bulk effects in the probe
The use of target testing to identify individual components in the system.

85 Appendix 5

