UNIVERSITY

GREENWICH

Greenwich Academic Literature Archive (GALA)
- the University of Greenwich open access repository
http://gala.gre.ac.uk

Citation for published version:

Pericleous, K.A. and Dempsey, S. (1996) Development of a fractal-based LES model in PHOENICS.
Phoenics Journal of Computational Fluid Dynamics and Its Applications, 9 (1). ISSN 0969-8248

Publisher’s version available at:

Please note that where the full text version provided on GALA is not the final published
version, the version made available will be the most up-to-date full-text (post-print) version as
provided by the author(s). Where possible, or if citing, it is recommended that the publisher’s
(definitive) version be consulted to ensure any subsequent changes to the text are noted.

Citation for this version held on GALA:

Pericleous, K.A. and Dempsey, S. (1996) Development of a fractal-based LES model in PHOENICS .
London: Greenwich Academic Literature Archive.
Available at: http://gala.gre.ac.uk/5951/

Contact: gala@gre.ac.uk


http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

The PHOENICS Journal of Computational Fluid Dynamics and its Applications
Vol. 9 No. 1 April 1996
ISSN 0969-8248

Development of a fractal-based LES model in PHOENICS

K A Pericleous and S Dempsey
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ABSTRACT

This study concerns the development and validation of a new turbulence model for
CFD simulations. The fractal theory of Mandlcbrot (1974) and the dissipation-in-a-box
formulation of Sreenivasan(1984) are used to determine local dissipation rates for use in a
Large-Eddy-Simulation (LES) framework. Such a model has theoretical advantages over
“industry-standard" two-equation models such as the k-¢, (a)because it removes some of the
ambiguities associated with the formulation of the € - turbulence energy dissipation equation
and (b)it does not assume isotropy above the sub-grid dimension. The model is in fact simpler
and numerically more stable than Reynolds stress closures and therefore more useful for
engineering computations, The LES mode] of Ciofallo (1988) is auached to PHOENICS
together with the fractal subgrid formulation given here, 10 create the FLES model.

1. INTRODUCTION

The behaviour of shear layers, laminar-turbulent intermittency regions, flame fronts
and generally the interface between regions of high and low vorticity in a fluid display fractal
characteristics, Mandelrodt (1974) was the first to relate fractals 1o the geomelry of
turbulence, The often observed spirals, rills, and tumns in the fluid are fractals with planar
dimensions, measured to be close 1o D=2.36 (Meneveau et al. (1987)). This dimensional
consistency which was found to hold for a range of flows, including laboratory jets and
wakes, grid turbulence and even large-scale atmospheric flows. It has been suggested that this
unique dimension which is equivalent to that obtained in a 0.3/0.7 Cantor set, is due 1o the
split of energy between eddies of various sizes in Kolmogorov’s turbulent energy cascade.
Recent research (Sakai et al. (1994)) has shown that there are deviations from this value. A
constant dimension will be used in the development of our model.

Dissipation is the most uncertain quantity in any turbulence model. It is highly
intermittent and it cannot be described well statistically, although researchers of the calibre
of Kolmogorov (1962) auempted to do so (the so-cailed log-normal model). Dissipation is
concentrated in areas of high vorticity, characterising the fractal interfaces. Dissipation, as
shown by Frisch et al.(1985), is then a scalar fracital distribution, on a fractal base. To
examine it, one may use multi-fractal mathematics.

Since fractals have the property of self-similarity at all scales, the classical eddy

41



The PHOENICS Journal of Computational Fluid Dynamics and its Applications
Vol. 9 No. 1 April 1996
ISSN 0969-8248

dissipation ¢ascade in a box of a given size, may be described with an equivalent fracial
cascade. In the context of CFD, the box is then a computational control volume (CV), and
the integral quantity derived, is the total dissipation, ¢ within it. This idea may be used to
develop a transport equation for ¢, but then questions need 1o be answered regarding the
anisoiropy of turbulence (due to curvature or body force), and its effect on the base fracial
dimension. More research is needed to provide the answers. Alternatively, we may assume
that provided the "box” is very small, (a)transportis not very important, and (b)the eddies
remain isotropic a1 small scales. A Large-Eddy-Simulation (LES) mode! may then be
appropriate, in which case, anisotropy ¢an be resolved, and the multi-fractal represents the
subgrid dissipation ¢, from which 2 subgrid viscosity ¥, may be derived. These ideas form the
foundation of the FLES model, as it has been named, which was ficst presented (in 2D), by
the authors in Dempsey et al. (1994). The LES vehicle adopted to test this model, is the one
presented by Ciofalio (1989); this is a spacial {filtering model, as opposed to the specizal
approach pioneered by Lesieur (1987).

This paper provides further details of the mathematical formulation and algorithmic
development of the FLES method in 2 Control-Volume (CV) framework, and its application
to two test-cases, a rectangular duct with wall heat transfer (2D) and gravity effects, and 2

backward-facing step (in 3D).
2. MATHEMATICAL FOUNDATION
2.1 Standard subgrid models

A {ull description of LES models is given, amongs: others, in Voke and Collins(1983),
Ferziger (1977), Moin and Kim (1982). The complete set of equations is (see Ciofalo{1988)),

&l,-o
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;&j -l.ai;ai"zya(v,.y)ﬁ'a‘l’
& pax, ax o | ax i
.aﬂ = —gﬁ - .i[(¢¢a )ﬂ] = (l)
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P = Zpk
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where, vs i5 the eddy viscosity, e, is the thermal diffusivity and K, is the turbulent kinetic
energy (the subscript s denotes subgrid quantities). If v, is determined by the grid scale and
€, is the total subgrid dissipation, then dimensional analysis leads to:-

v, = Fel"p® 2)

where, F is a constant and h the grid scale. It is difficult to estimate €, so Smagorinsky (1963)
modelled it using the large scale shear rate, (note, Kwak (1975) used vorticity instead of S.,
and Schumann (1975) related v, to the subgrid energy);
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In this work, the fractal properties of the subgrid scale dissipation are used to estimate €,
Since a fractal description assumes similarity at all scales, and since, as we assume, only the
largest length scale in the model relates to large scale quantities, it is expecied that the
accuracy of the calculation will depend less on the fineness of the filter used, enabling use
of coarser meshes, an important practical consideration.

2.2 Fractals K

Nature is not composed of perfect Euclidean figures; surfaces are pitted and grooved,
coastlines are infinitely wavy and the borders of leaves consist of ever decreasing copies of
the whole. The general concept of fractals is that parts of an object at different scales
resemble the whole in some way, and that the 'fractal dimension’ of the object is greater than
its topological dimension (e.g. the rwo-scale Cantor set with exponents 0.3 and 0.7 has a
fractal dimension of 2.36). Da Vinei (¢.1490) first observed that the eddies in turbulent flow
possess a comparabje property of seif-similarty. Their fractal dimension lies close to 2.36
(Meneveau et al.(1987)). Tt seems natural to employ fractal methods to model turbulence,
utilizing the scaling properties of eddies, or more appropriately the transfer of turbulent
energy and dissipation amongst them.

2.3 Scaling Properties
Since the Navier-Stokes equations given below deseribe turbulent flow completely, the
fractal nature of turbulence must be hidden in them.

.‘?D.? . “V(plp) + vV @

Frisch (1985) observed that a set of scaling transformations within the limitsof y< r, £’ =
L and L> >y preserve (4). L is the large scale imposed by external flow conditions and »
is the Kolmogorov microscale below which turbulent kinetic energy is dissipated into heat by
viscosity. The scaling transformations are:-

F = AF

V = 2PV

'/ - ).‘..”‘ (S)

(/) = A*(p/p)

where A is a length-scale factor, and a is a scaling exponent. The dissipation € under the
same scaling transformations and at high Re (see Sreenivasan (1984)) is given by,

3
5"’ (6)

v r

where dv, 3s & typical velocity difference over some length scale r. Then, ¢, rescales as:-
Using A=r*/r and teking r’=L, leads to,
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t: = 1"’:, (7)
r e-]
e, = c‘!—) (8)
1L
Therefore, a can be expressed as a function of €, (where €, # 0);
« = In(e Je )/In(r/L) + 1 )

Each of the quantities in equation (9) is governed by 2 probability distribution; the probability

densities of ¢, and & are related by the following equation:-

P (x)|dajde,]
P(e,»0)

P(e) = (10)

The denominator dictates that at least part of the dissipation fractal at scale r belongs to the
domain of size r. Equation (10) gives the probability density of g, which is the total
dissipation contained in a box of size r. From the & equation follows,

ds 1 (11)
de, & )n(r/L)

To evaluate the R.H.S. p.d.f’s we must use the multi-fractal framework.

2.4 Multifractals
Equation (9), can be rewritten as

0% (i}u-: - ol (12)
r Lot

Then, it may be assumed that a is a weight distributed on the fractal representing the areas
of the flow containing dissipation, €,. In effect, @ has then a multifractal distribution, We
denote by f(a} the fractal dimension of the set over which the sczling exponent tekes a value
between « and e+da. Meneveau et al.(1587), have shown how to derive f(a), in terms of
D,, 2 generalized dimension for a power law exponent q(see also Hentschel & Procaccia
(1983) and Helsey ct al. (1986)). The resulting analytic expressions are given below:-

fe) = ag-(g-1)(D ~d+1y+d-1

d {13)
€= 2l -0, -d 1]

So, we can calculate @ and f(a) when D, is known. For homogencous fractals, D, is in fact
a constant, and does not depend on g. Meneveau et al. (1987), have determined the () vs
a curve for a series of linear sections of the dissipation field (ie d = 1) and for a wide range
of flow situations. These included a laboratory boundary layer, the wake of a cylinder, grid
turbulence and an atmospheric boundary layer. It has been found that for these and other
flows studied by other investigators, that the [(«) distribution is quasi-identical and so a single
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curve provides a very good approximation. The ¥
form of the fla) curve, which represents the
measured specirum of the multifractal, suggests 2
parabola. The curve is not in fact parabolic; it has
a maximum at @ = 1.117, and intersects the a- t@ |
axis at @ = 0.51 and a=1.78 (see Figure 1).

194
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2.5 Probability density function of ¢,

With the f(@) curve known, the p.d.["s of
equation (10), can be constructed. First, consider - o
Pic, # 0); this is equal to the probability thata 00X pigyre 1. The f(a) curve ({from
of size r contains part of the multifractal. It €30 pNgapeveau et al. (1989)
be written as a function of the multifraceal
dimension D, and r as,

P{e,#0) -c,(r}L)"D" (14)
Similarly, for P(a), considering that iso-a sets are fractals we can write,
P(a) = cy(r/L) ™) (15)

where ¢, and c, are constants, Combining the last two equations we get finally,
crl L)%VJN‘J‘M +1)
¢, [ln(r/L)|

(16)

Pe) =

with a new constant C, replacing the previous two.
3. FLES SUBGRID MODEL

The biggest uncertainty in LES lies in estimating subgrid scale quantities from the
macro-scale velocities. In the calculation of v we need the value of ¢ at each computational
node. In the previous section we saw how, using the multifractal formalism, 2 p.d.f. for
dissipation at scale r can be calculated. The p.d.f. is used to estimate the dissipation in each
CV cell, dependent upon the value of &, the dissipation of large eddies present in the cell.
In the absence of a transport equation for ¢ the expression due to Hinze (1975) has been
used; then, as a function of the macro-scale velocities,

ou ou
e, = vj— + =L (17
at, ax;

From equation (17) we then get,
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s 2 T (017 ol ’“”_,,g' (18)
2N ln(r/L) |

Assuming a total probability of 100%, the constant C may be evaluated. The limits of
integration are obtained from the f-a funcion, given that &, = 0.5] and «,,, = 1.78, and
assuming negative values of f(e) are cither unphysical, or represent rare evenls in the
dissipation field. The volume average subgrid dissipation in 2 CV cell has thus been
caleulated. This is then used 10 estimaie the subgrid scale viscosity.

Vg ™ Fhtel? (19)

In this expression, derived from dimensional considerations, F is a constant 10 be determined
and h the filter length related to the cell size. Finally,

e, = e, (D" (20)

The integrals arc evaluated using Simpson’s method and a suitable step length.
To accommodate near-wall effects the Van Driest damping function is incorporated at present
in the expression for v,, previously used in LES simulations by Quarini et al. (1979);

v, = Fe,(hD)*® @1

D =1 - exp[-(y"/A")] 22)

with v* the normalized distance to the nearest wall, A* = 25, The constant F is calculated
by comparison with Smagorinsky and k-¢ results in 2 duct; then, F=0.015. At first, this
value appears to be one order of magnitude lower than that employed in Smagorinsky models.
However, it should be recognised that to be comparable, F should be multiplied by C*?. As
C==30 for the cases studied, the equivalent value of F is then ¢lose to 0.05.

4.CASES STUDIED

4.1 Test Case 1 - Turbulence decay in a duct

The case considered is a two-dimensional rectzngular duct, The inlet boundary
conditions are a plug velocity profile (Re=20000), to which have been added random
fluctuations of about 10% of the bulk fluid velocity. No attempt has been made as yet, to
account for the turbulence energy spectrum at the inlet. However, the fluctuation has been
filtered, to remove frequencies which would otherwise fall below the subgrid scale limit
chosen. For the enthalpy a similar method is employed with a plug profile hot fluid with a
random variation entering & colder fluid. Gravity effects are modelled using 2 Boussinesq
approximation which adds a momentum source term in the axial direction equal to,

G = oLl - B @3)
?
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The subscript ref denotes a reference value ard g is the volumetric coefficient of thermal
expansion. Fluctuation amplitudes are compared for different gravity directions.

4.2 Test Case 2 - Flow over a backward-facing step

This is the study of the flow (Re=38000) in a duect with a 1.5:1 ratio sudden
expansion. The inlet boundary conditions are a plug velocity profiie as in the previous case
and a short run-in is allowed for a turbulent veiocity profile to develop as shown in figure 2.
Of interest here are the correct treatment of the expanding shear-layer and prediction of the
position of the reattachment zone. Studies on this case include the effect of not filtering the
inlet boundary conditions and spatial grid sensitivity analysis, The length of time steps used
in this study is 0.25% of the Jarge eddy turnover time. A cartesian 93x60x10 grid was the
ficest grid used, The grid is equally spaced in the axial {x) and laterai (z) directions and
concentrated near the \vyalls in the vertical {y) direction 10 achieve sufficient resolution of the
boundary layer. Symmetry conditions were assumed in the Jateral (z) direction.

The mode] was attacked 1o a CV-type general purpose CFD code using time-explicit
time stepping and SIMPLE type pressure-velocity coupling. The calculations are initiated by
superimposing a random velocity component to the inlet stream and then marching in time
until statistically invardant conditions are reached (about 1400 timesteps). The results obtained
contain mean and fluctuating velocities and temperatures, and in addition the subgrid
quantities, effective viscosity, integral k (kinetic energy of turbulence) etc. The results,
compared against experiments, conventional k-¢ simulations and the standard Smagorinsky
model show good agreement.

Shear Layer

= P —
b -\

Figure 2: The bacward-facing step

Airogag 1wy

5. NUMERICAL RESULTS

First, the duct flow with buoyancy (see also Dempsey et al.(1994)). Figure 3 shows the value
of the subgrid viscosity in 2 section across the duet. As expected it is high ciose to the walls
where turbulence is generated but falls away sharpiy at the wall and in the middle of the flow
where most of the transport is at the large scales. In Figure 4, the effect of gravity on the
axial velocity fluctuations is depicted. Axial fluctuations are ephanced when the flow is
against the gravity vector, as in a rising thermal plume, and suppressed if the flow and
gravity directions are the same, as expected in a stratifying situation. When there is no
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gravity, decay follows the theoretical grid decay curve.

LN L)
-
LR L) o -1
LAl o =
e 12 o.: X e.: 0.: L0 257 o v $
Figure 3: Subgrid viscosity across duct Figure 4: Effect of gravity on velocity
fluctuations

Next, results from the backward facing step computation are shown. Figure S,
compares the time-averaged streamlines for the FLES model (a), and (b) the standard k-£
formulation. The k-¢& model shows the basic recirculation zone but with a diminished iength,
5.9h; the FLES model shows good agreement with a recirculation length of 7.0h (7.2h
Ilegbusi (1979)) and also captures the counter rotating vortex at the bottom of the step and
the small recirculation zone at the top of the duct.

w | o= Y
) L.x

o) ]ES :

Figure 5: Recirculation behind the step (a) FLES; (b) k-¢

Velocity profiles of time-averaged and instantaneous axial velocity at different stations in the
duct are given in Figure 6. The reattachment area appears to oscillate around the time
averaged value. Figure 7, shows contours of various quantities of interest along the vertical
midplane of the duct. Figure 73, first shows the subgrid viscosity; maximum values occur in
the shear layer, and downstream of the reattachment point. A peak at the top surface, marks
the secondary separation region. Figure 7b, shows the fluctuating component of the axial
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velocity - not a
subgrid  quaatity. ]
Maximum
amplitudes  reach
27% of the mean veione ivi
inlet velocity. cos

Maxima lie on
either side of the
reattachment point,
again  signalling
oscillation of the
shear layer

o t¢ —

|

-3y

a S ik e
@ R A
S o

(b) e -

Figure 7: Mid-plane values,{a) Subgrid viscosity (b) U’ fluctuations
6. CONCLUSIONS

This work demonstrates that by assuming similarity of scales in turbulent flows 2
fractal description of the subgrid eddy viscosity can be used. The resulting Fractal-LES
scheme can be attached to standard CV type CFD codes, so that it can be readily accessed
by engineers. Although much development is needed, the model has already demonstrated
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how, features of the fJow which other models cannot easily resolve, i.e, the secondary
recirculation zofies in a backward facing step and the effects of gravity on non-isothermal
flow can be casily captured.

Like all LES derivatives, the present model is expensive to use, compared to
traditional twg-equation models of turbulence. However it offers much more in terms of
physical realism 2ad it is simple 10 apply, having only one adjustable constant.
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