
1514453

A THESIS
entitled

MATHEMATICAL MODELLING OF GAS FLOW NETWORKS IN
PELLET INDURATION SYSTEMS

by

MUHAMMAD ?AFZAL
MSc (App Maths), MSctSoftware Engng)

Centre for Numerical Modelling and Process Analysis
School of Mathematics, Statistics and Computing

Faculty of Technology
University of Greenwich

LONDON SE18 6PF
United Kingdom

JUNE 1994

Submitted in partial fulfilment of the ^
requirements for the award of the ^ $32' ^

i fe

DEGREE OF DOCTOR OF PHILOSOPHY ^ AF2>

of the

UNIVERSITY OF GREENWICH

This research program is sponsored by
Government of Pakistan and University of Greenwich

Abstract

The objective of this research is to develop a simulation software tool, GASFLO,
which should evaluate pressure, flow and temperature distributions of process gas in pellet
induration system networks. Pellet induration systems are complex industrial systems
composed of heterogenous components. The magnitude of gas through leaks i.e. the air
entering or leaving the system from the points other than the known exits, is substantial and
it adversely effects the performance of induration process. These leaks are very difficult to
measure because of the hostile environment in the plant. The modelling of such industrial
systems requires a notable amount of experimentation so the tool has been designed to enable
the user modeller to change the component models and solution algorithms easily.

The conventional methods for flow network simulation are based on process centred
approach, mostly composed of homogeneous components. For ease of computation, the non-
pipe elements are modelled with an approximate linear or non-linear generic equation, whose
coefficients can simulate different states of the element. The resulting set of non-linear
equations is linearised and solved simultaneously using some iterative method. By contrast,
GASFLO is based on device centred or unit based approach, and uses a two level
hierarchical solution algorithm. The pellet induration system network is first idealised into
a connected graph of streams (sets of serially connected components) and nodes. At the top
or coordination level the flow and pressure distributions satisfying the Kirchhoff's laws are
evaluated for the connected graph. At the lower or component level the exact mathematical
models of components are computed, in order of their occurrence in respective streams,
using coordination variables as parameters. The converged flows are used for the temperature
computation. The solution algorithm requires partitioning of the connected graph into forest
and coforest structures, for which secondary algorithms have been developed using specific
heuristics relevant to the pellet induration systems. The rigorous application of software
engineering techniques for the design and implementation of software, enabled the resolution
of the complexity of the modelled system, embedded the characteristics of 'quality software'
into the resulting code and benefits from object orientation, even though it is implemented
in standard FORTRAN 77.

GASFLO predicted results are in a good agreement with the measured results, it has
been validated for a real life pellet induration system. It has been applied to simulate several
practical scenarios, like addition of extra wind boxes to the zones and to determine how the
plant production can be increased by certain ratio, such simulations were not feasible
otherwise. GASFLO takes less than a minute to simulate a real-life pellet induration system
on a 486 PC. The combined simulation with an other software tool, INDSYS, which
evaluates the heat distribution in the solids, is also feasible.

Acknowledgements

I am deeply indebted to my first supervisor, Prof Mark Cross, for his invaluable
assistance, expert guidance and constant encouragement; during the whole course of my
study, he has been a great source of support and motivation.

I am thankful to my second supervisor, Prof Martin Everett, and all my teachers
especially Prof B Knight, Drs D Cowell, C H Lai, M K Patel, K Pericleous, for their
contribution to the different aspects of the present work. I acknowledge the useful discussions
with Jem Pearce (during his stay at Greenwich) which lead to some algorithmic
improvements and generality.

My thanks are due to my colleagues; Jixin, Miltas, M Hughes, J Ewer, Drs P Chow,
A Chan, M Agha and C Bailey who made my stay at university a memorable time; and to
my friends; N M Malik, Riaz Malik, Yaqoub, Yameen, Yasser, Zaheer and Shakeel whose
brotherly and affectionate attitude provided me home-like comfort during this period.

I am grateful to my brothers Ajmal and Ajaib, who shouldered all the family
responsibilities and my family and children for their understanding and patience for my long
absence from home. My thanks are also due to my friends whose letters and calls provided
a constant encouragement.

Finally, I would profoundly acknowledge my sponsors' support: (i) Government of
Pakistan for providing me subsistence at U K and maintenance to my family at Pakistan, (ii)
University of Greenwich for providing extra financial support during this course of study.
I am thankful to my employer at Pakistan for constant encouragement and chase which
enabled me to conclude this research within their allowed time schedule.

11

To the memory of my father

MUHAMMAD ASHRAF
(1928-16/5/1982)

Who didn't live to realize his greatest ambition
that of witnessing me achieving this degree

111

Table of Contents

Abstract ... i

Acknowledgements ... ii

Table of Contents .. iv

Chapter 1
Introduction ... 1

1.1 Brief Review of (Static) Network Simulation 2
1.1.1 Network Formulations 3
1.1.2 Network Solution Methods 5
1.1.3 Some other Formulations and Solution Methods 7

1.2 Objectives of Present Research 11
1.3 Other Applicable Literature 13
1.4 Pellet Induration System Modelling and Solution Scheme 18

1.4.1 Classical Methods for Network Simulation 18
1.4.2 Proposed Method for Pellet Induration System Network

Simulation 19
1.4.3 Route to Implement the Proposed Method 20

1.5 Summary 22

Chapter 2
Mathematical Modelling of
Pellet Induration Systems 23

2.1 Introduction 23
2.1.1 Sintering Process 24
2.1.2 Pelletizing Process 25

2.2 Pellet Induration System 28
2.2.1 Pellet Induration System as Pipe Network 29
2.2.2 Pellet Induration System Components 30
2.2.3 Graph Theoretic Representation of Pellet Induration System . . 32

2.3 Mathematical Modelling and Process Analysis 36
2.3.1 General Aspects of Mathematical Modelling 38
2.3.2 Approaches for Process Analysis Modelling 40
2.3.3 Changing Environments and Mathematical Modelling 42
2.3.4 Device Centred or Unit Based Approach 45

2.4 Mathematical Model for Pellet Induration Systems 46

iv

Table of Contents

2.4.1 Simplifying Assumptions 49
2.4.2 Component Equations 53
2.4.3 Unit Computation 67

2.5 Numerical Scheme for Local Computation 69
2.6 Nomenclature 70

Chapter 3
Solution Algorithms 73

3.1 Air Flow and Temperature Distributions Coupling 73
3.2 Air Flow Distribution Computation 75

3.2.1 Mathematical Formulation 76
3.2.2 Open and Closed Networks 79
3.2.3 Existing Solution Methods and Pellet Induration System

Network 88
3.3 Primary Algorithm for Air Flow Distribution Computation 89
3.4 Existing Algorithms for Loop Detection and Tree Generation 96

3.4.1 General Algorithms 96
3.4.2 Algorithms related to Directed Graphs 97
3.4.3 Algorithms related to Fluid Flow Networks 99

3.5 Secondary Algorithms for Partitioning of Network into Tree and Co-tree
structures 104
3.5.1 Graph Reduction (or Leaks' Tearing) 110
3.5.2 Sub-Network Extraction 113
3.5.3 Dendrite Generation 117

3.6 Algorithm for Leaks' Incremental Variation 118
3.7 Temperature Computation and Communication with INDSYS Code . . . 122
3.8 Algorithm for Temperature Computation 125
3.9 Advantages of Present Approach 129

Chapter 4
Application of Software Engineering
Concepts to Simulation Tools:
GASFLO - A Case Study 131

4.1 Software Engineering (SE) Concepts and Techniques 131
4.1.1 Software Quality Objective 133
4.1.2 Software Development Process Objective 134
4.1.3 Software Life-cycle and SE Techniques 135
4.1.4 CASE Tools 137
4.1.5 Application of SE Techniques for Simulation Code 140

4.2 Problem Specification 144
4.3 Analysis and Logical Design 145

4.3.1 Entity Relationship (ER) Model 145
4.3.2 Attribute Analysis and Data Structures 150

Table of Contents

4.3.3 Data Dictionary 153
4.3.4 Data Flow Diagrams 155
4.3.5 Hierarchical Input Process Output (HIPO) Charts 161
4.3.6 Structured English 165

4.4 Physical Design and Implementation 166
4.4.1 Implementation Decisions 167
4.4.2 FORTRAN 77 - SAVE and ENTRY Constructs 169
4.4.3 Coding Guidelines and Testing 171
4.4.4 Architecture of Unit (Basic Entity) Modules 174
4.4.5 Revised HIPO Chart 177
4.4.6 Implementation and Testing 180

4.5 Characteristics of Implemented Code 183
4.6 Object Oriented Paradigm 185

4.6.1 Some Clarifications about OO 185
4.6.2 Objectives 187
4.6.3 Basic Features 188
4.6.4 Implementation or Migration to OOT 190
4.6.5 OO Programming Languages (OOPLs) 195
4.6.6 GASFLOw and Variants of OO 197

4.7 Summary 199

Chapter 5
Model Calibration,
Validation and Applications 201

5.1 Introduction 201
5.2 Model Calibration 202

5.2.1 Problems in Data Availability 205
5.2.2 Measurable and Available Data 206
5.2.3 Strategy for GASFLO Calibration 207

5.3 GASFLO Validation 212
5.4 GASFLO Capabilities 217

5.4.1 Leaks Inclusion and Exclusion 218
5.4.2 Fans Selectable Alternate Mathematical Models 220
5.4.3 Fixed Pressure Region Nodes 221
5.4.4 Insertion of Wind Box to a Zone 221
5.4.5 Introduction of Cross Flow 223
5.4.6 Evaluation of Temperature Distribution 224

5.5 INDSYS - GASFLO Interaction 225
5.5.1 INDSYS required data (to come from GASFLO) 227
5.5.2 GASFLO required data (to come from INDSYS) 228
5.5.3 INDSYS - GASFLO combined simulation 228

5.6 Case Study 230
5.6.1 Decrease and Increase of Exhaust Fans Flow 231
5.6.2 Increase of Pellet Production rate by 10% 232

5.7 Summary 234

vi

Table of Contents

Chapter 6
Conclusions ... 236

6.1 GASFLO Features 237
6.2 Future Work 239

6.2.1 GASFLO - as a stand-alone package 239
6.2.2 For process control 240
6.2.3 Integration with other related software tools 241

References .. 242

Appendix - A
GASFLO Users' Guide 263

A.I Introduction 263
A.2 GASFLO Requirements 264

A.2.1 Hardware Requirements 264
A.2.2 Software Requirements 265
A.2.3 Installation of GASFLO 265

A.3 GASFLO Program Structure 266
A.3.1 PRPNET - PRePare NETwork 267
A.3.2 CMPNET - CoMPute NETwork 270
A.3.3 DISPLAY - Graphical Output of System Variables 271

A.4 Program Running and Creation of Input Files 271
A.4.1 PRPNET - Prepare Network 272
A.4.2 CMPNET - Compute Network 276
A.4.3 DISPLAY - Display of computed results 292

A.5 INDSYS and GASFLO interaction 296
A.6 Known Failures or Errors 299
A.7 Intended Improvements for Version 3.0 300

Appendix - B
Derivation of the Used Correction Terms 302

Appendix - C
Convergence of Primary Solution Algorithm 309

Vll

Chapter 1

Introduction

Simulation of fluid flow networks using mathematical or computer models is

widespread. The ever improving performance/cost ratios and decreasing hardware prices has

motivated their increased usage and it also promises even wider use in future. The flow

network models can be classified as: static (i.e. steady state) models which are independent

of time; and dynamic (i.e. transient or unsteady state) models where the system variables vary

with time. Both of these categories have their own specific domains of use, different

formulations and development difficulty levels. Steady state models are easier to develop and

used for network analysis. Further, these can be extended for design, optimization and model

based process control systems. The static models are comprised of algebraic equations. The

dynamic models are based on time dependent ordinary and partial differential equations and

algebraic equations. These are used to analyze the unsteady behaviour of networks i.e. how

the introduced disturbances can propagate with time in the network, and for optimization,

operation and planning purposes. The required initial conditions which are sometimes

provided by the respective static models of the network. In fact, for all these models, the

steady state models play a key role, and chronologically, are the first to be developed, later

these are progressively extended for design and other purposes. In this research we will focus

on the development of a steady state model for the simulation of pellet induration system

networks (which will be discussed in detail in Chapter 2).

All flow networks, whether electric, water, natural gas, mine ventilation or pellet

induration system networks are analogous to each other. They must obey the Kirchhoff s laws,

namely: Kirchhoff's Current Law (KCL) i.e. the net flow entering to a node is zero; and

Kirchhoff s Voltage Law (KVL) i.e. algebraic sum of voltage or pressure drop across any

1

Chapter 1______________ Introduction

closed loop is zero. Because of this common basis, the formulation methods and algorithms

for solution are also shared among them. Hamam and Brameller 1971 applied the electrical

network solution algorithm (called a hybrid method) for the computation of natural gas pipe

networks. Coulbeck and Orr 1990 have discussed the similarities between the water and

power distribution networks. Nielsen 1989 has argued that, by changing medium specific

parameters, his program can solve water and natural gas networks. Similarly, the method

proposed by Yevdokimov 1969 is equally applicable to electricity, water, natural gas and

mine ventilation networks. So, the terms 'pipe network' or simply 'network' in subsequent

pages, refers to any fluid flow network, unless it is specifically mentioned.

In this chapter, the existing methods for steady state simulation of networks will be

discussed briefly in Section 1.1. In Section 1.2 the objectives of the present research will be

described, in Section 1.3 the other applicable literature will be mentioned which somehow

influenced the proposed development. In Section 1.4, the differences between the existing

methods and the proposed method will be described and the means to achieve the stated

objectives will be discussed; and chapter will be concluded in Section 1.5.

1.1 Brief Review of (Static) Network Simulation

The steady state network simulation is a mature and well established field. The space

limitation doesn't allow the complete coverage of any of the existing methods or even the

mention of all of these methods. These methods have been well covered in texts like Deo

1974 (electrical networks), Jeppson 1976 (water networks), Osiadacz 1987 (natural gas

networks) and Bhave 1991 (water networks) and thoroughly reviewed by Fincham 1971,

Wood and Rayes 1981, Nielsen 1989, Goldwater and Fincham 1981, Moll and Lowndes 1992.

The network simulation can be regarded, as formed of two parts; first how the network

is formulated into a set of mathematical equations, and then how these equations are solved.

Chapter 1 Introduction

This separation, though quite significant is not that well observed in the literature, sometimes

the same names are used for solution methods as for their formulation. In following

subsections we review the main formulation and solution methods.

1.1.1 Network Formulations :

Using the water networks analogy, any n node (including one source), p pipe general

network will have / = p - n + 1 fundamental loops. There will be n - 1 independent

continuity or flow balance equations and / loop or energy balance equations. The network

solution provides; the pressure or head at these (load) nodes with respect to the given pressure

at source (or reference) node, and flow in each of these p pipes for known node loads (or

demands). The flow through the pipe is related to pressure drop across the pipe by a well

defined equation which is specific to the nature of the network, flowing medium, and flow

regime. This equation, in fact, relates the pressure at both ends of the pipe to its flow, so

knowing any two of these, the third can be computed.

The network equations are written using Kirchhoff s two laws, as every fluid flow

network should satisfy these two conservation laws. Secondly, for solvability reasons, there

should be the same number of (linearly independent) equations as there are variables to be

computed. In general, the networks are solved for the given values of the node loads and

reference node pressure as boundary conditions, but some authors can deal with mixed

boundary conditions.

There are three most commonly used formulations. These are dependent upon the

availability of initial values and the variables intended to be computed.

a) Nodal Formulation. When initial values for load node pressures are known, then using

Kirchhoff s first or current law (i.e. the net flow entering a node is zero) the nodal

equations are written. These will be n-1 in number because the «th equation will be

linear combination of the others. Initially, these equations are in flows, but using the

Chapter 1 Introduction

pressure drop - flow relationship, these can be transformed into load node pressures

or heads (Osiadacz 1987, Jeppson 1976 referred them as H equations). The solution

to these n - 1 equations provides the node pressures which can further provide the

pipe flows. The solution methods based on this formulation are also called as nodal

methods.

b) Loop Formulation. When initial values for pipe flows, satisfying nodal equations are

available then using Kirchhoff s second or voltage law, loop equations are written.

According to this law the algebraic sum of pressure drop across any closed loop in the

network will be zero. The purpose is to find pipe flows which satisfy the loop

equations, so these are usually written in terms of Q + AQ form, where Q is pipe flow

and AQ is the corrective flow for respective loop. These are sometimes called as AQ

equations (Jeppson 1976). Obviously, the number of equations are lesser than the

nodal formulation, but these are more complex. This formulation also requires the

information about loops in the network.

c) Nodal-Loop (Full Equation) Formulation. This formulation frequently appears in recent

literature (e.g. Ormsbee and Wood 1986, Mucharam and Adewumi 1990, Boulos and

Wood 1991 and Boulos et al 1992). According to it, all n - 1 nodal (or flow balance)

equations and / (=p-n+l) loop equations, hence total of p equations are written and

solved simultaneously. Jeppson 1976 writes these equations in terms of pipe flows and

calls them as the Q equations. This formulation increases the overall number of

equations and also requires the information about the loops, but has been widely used

for water networks for other advantages like its extension to compute the exact values

of (design, operation and calibration) parameters explicitly.

In classical literature, the solution methods are categorised as Nodal and Loop

methods. As described by Boyne 1970, for Nodal methods the Kirchhoff s (second law) loop

equations are always satisfied whereas nodal equations are not, so starting from the assumed

nodal pressures (such that they satisfy the loop equations), these pressures are systematically

Chapter 1______________ Introduction

amended until nodal equations are satisfied. Correspondingly, in Loop methods the

Kirchhoff s (first law) nodal equations are always satisfied and loop equations are not, so the

pipe flows are systematically amended, such that the loop equations are satisfied. This

systematic adjustment is carried out using some well defined solution method, either one of

those mentioned in next section or some other.

1.1.2 Network Solution Methods :

Real life networks give rise to very large sets of equations which cannot be solved

analytically or manually and are solved using computers. The following three solution

methods have been widely used for network solution. Since these have been thoroughly

covered in literature and in the mentioned texts so for completion sake these are briefly

described here.

i. Hardy Cross Method: It is the oldest, simplest and empirical method. It was proposed by

Hardy Cross 1936. It suits well to manual calculation and easier to program. Because

of its simplicity Bhave 1986, recommends the use of Hardy Cross method than its

counterparts. Bhave mentions that the overall efficiency of Hardy Cross method is

comparable to other methods, though it takes more iterations to converge, because

Hardy Cross method is simple, it takes much less time to perform one iteration than

the time taken by an iteration of the linear theory or Newton's methods. It can solve

all the three formulations but is more often used for loop formulation. Fincham 1971

has described an efficient variant of original Hardy Cross method, which is like

Newton Raphson applied to single equation, it has better convergence and needs lesser

storage. Boulos 1989 has denounced its use for being a non-matrix method and poor

convergence properties for large networks.

ii. Newton-Raphson or Newton's Method: According to this method the non-linearity of

equations is resolved using Taylors series expansion. The mathematical derivation of

Newton's method is well covered in numerical analysis texts (e.g. Burden and Faires

1989); Osiadacz 1987 has also discussed its development in scalar (single equation)

Chapter 1 Introduction

and vector (i.e. matrix) forms. It is generally applied in matrix form. It requires the

evaluation of Jacobian matrix and is sensitive to initial conditions. For a good initial

guess it has a fast convergence, however, the accomplishment of this guess for a large

equation set is difficult. It has been widely applied especially to the full equation

formulation. Ormsbee and Wood 1986, Boulos and Wood 1991 and Boulos et al 1992

have applied it to solve water networks. Boulos 1989 has also discussed different

variations of Newton's method for improved computational speed, e.g. modified

Newton method, where the same Jacobian matrix is used for certain successive

iterations and then re-evaluated; this saves on the Jacobian evaluation computational

load which is significant.

iii. Linear theory method: This has been proposed by Wood and Charles 1972. According

to this method, the pipe equation which is quadratic in flow and source for all non-

linearity in the system, is linearised explicitly. It is re-written in terms of another

constant which contains previous iteration flow values. This linearised pipe equation

should be used for respective formulation. More often the full set is solved for flows.

Using these flows, the constant is re-evaluated and the iteration repeated. The iterative

procedure is continued until the converged flows are achieved. Wood and Charles

1972 have compared it to Hardy Cross and Newton Raphson methods and found that

it took minimum iterations to converge. Another advantage is that it does not need

initial values, like other methods, instead these can be computed by the program itself.

They have noticed that for successive iterations, after achieving the converged values

sufficiently close to the true value, may oscillate and suggested to reuse the mean of

two previous iteration values.

Hardy Cross is a non-matrix, easy to apply method but takes more iterations to

converge and has poor convergence characteristics for large networks. Newton's and linear

theory methods are more suited to matrix notation, take less iterations to converge, though

time taken per iteration is much larger than for an iteration of Hardy Cross method. The

computation using Hardy Cross and Newton methods needs initial flow values, convergence

Chapter 1 Introduction

of Newton's method is sensitive to the initial guess. Whereas the linear theory method does

not need initial values, but its converged solution oscillates about the real solution. Nielsen

1989 has suggested to use linear theory method for first iteration and Newton's method for

subsequent iterations thus combining the efficiencies of both methods. This approach has been

used by Hansen 1988 and Hansen et al 1991.

1.1.3 Some other Formulations and Solution Methods :

The development of these methods requires thorough research, their realization into

computer programs, validation of these programs and then comparison to already existing

methods, to see how efficient they are. This requires a significant amount of human and

financial investment, which only few groups or companies can afford. This has also

encouraged university-industry collaboration. Because of the challenging nature and potential

gains, these proven efficient methods frequently remain inaccessible to the public domain. The

delay in publication in the public domain could be due to the immaturity of the method

concerned but it is mostly intentional for commercial and competition reasons.

In the following some methods (from the recent literature) are stated, which are either

the extensions to previously stated ones, or have a completely new approach.

Hansen 1988, Nielsen 1989, and Hansen et al 1991, have suggested to formulate the

network, using n-1 nodal continuity equations and p pipe equations, thus forming an extended

set of p+n-1 equations to solve n-1 load node pressures and p pipe flows directly. They used

the linear theory method in the first iteration and Newton's method in subsequent iterations.

Their programs solve water as well as natural gas distribution networks, They have also

exploited the network topology, using graph theoretic techniques to reduce the computational

load by lumping branched subnetwork demands as node loads to the looped network, which

is solved iteratively and the final node pressures being transmitted to branched subnetworks

for their pressure distribution computation.

Chapter 1 Introduction

British Gas, being a pioneer in the simulation of natural gas networks, have

significantly refined these methods for natural gas transmission and distribution networks.

Fincham 1971 and Goldwater and Fincham 1981 give a good review of programs developed

for natural gas and/or at British Gas and the mathematical basis for the development of

simulation programs. The British Gas network is structured hierarchically; the higher level

or transmission network transports gas from source points to the distribution points, from

where the lower level or distribution network distributes it to the end users. To save energy

losses the transmission networks are maintained at high pressure (Batey et al 1961) and to

minimise leaks and maintenance the distribution networks are operated at low pressures (Ellis

et al 1987). The transmission networks are comparatively small having 00's of pipes,

simulated using non-pipe elements (like compressors and regulators etc) and modelled for

dynamic simulation; accordingly the nodal formulation and Newton type solver is used. On

the other hand, the distribution networks contains 000's of pipes, and are modelled for steady

state simulation. Here the loop formulation is used (since it has less storage overheads) and

solved using Hardy Cross method. For loop generation improved algorithms are used which

produce loops with minimal overlap (Fincham and Goodwin 1988). In this span of 30+ years

of simulation research, British Gas has produced a number of programs like PAN (Program

for Analysis of Networks), COSP (COmputer Scheduling Program), OSCAR, FALCON,

OTTO and MINOS etc, for all practical purposes from analysis, design, control, operation,

strategic planning, to scheduling. Details are covered in Fincham 1971, Goldwater et al 1976,

Fincham and Goldwater 1979, Goldwater and Fincham 1981, Francis 1982 and Wilson et al

1986.

The use of direct methods rather than iterative methods was mentioned by Boyne

1970, but he stated the limitations of computer memory with problem size. Now,

technological advances in hardware, has provided much larger memory size even on PCs, so

this case is taken up by Gomasta and Devi 1989. They developed a graph theoretic approach,

introduced a fictitious node and as many fictitious pipes as were the source and load nodes,

partitioned this new connected network into tree and cotree structures, and evaluated the

cutset and circuit matrices. By definition, cutset, is set of those edges of the connected graph

8

Chapter 1 Introduction

which, when torn, break the graph into two separate disjoint graphs. They wrote down the full

equation formulation for this augmented network and used topological properties of the

network and instead of using any of the above stated relaxation (Hardy Cross, Newton's or

Linear theory) methods they directly evaluated the pipe flows and load node pressures. They

have mentioned that their approach always give converged results, is efficient and can

simulate large water distribution networks on a PC.

Deo 1974, has introduced the concept of node admittance matrix (i.e. the nodal matrix

transformed using pipe equations such that its elements are the pipe conductances for

respective incident pipes) for electrical networks. He demonstrated that clusters of serially

connected components could be abstracted by one component offering the same equivalent

resistance (or conductance). This node admittance concept has been extended by Kiuchi 1991

for natural gas networks. Kiuchi wrote down the node admittance matrix and, using assumed

load node pressures, he evaluated node pressures and pipe flows with the help of a SOR

(Successive Over Relaxation) type scheme and compared the results with the Hardy Cross

method for 4 networks. His approach is less sensitive to the initial guess and gives better

convergence, but it is dependent on the used relaxation parameter for which he has specified

a recommended range.

The Critical Path Method (CPM) is an approach well used in operational research and

activity scheduling, where a whole system is reduced to a connected graph of nodes and

edges, where each edge represents an activity and assigned a weight, and nodes represent the

time events. Wang 1982 has used CPM for the steady state analysis of mine ventilation

networks. In his formulation node and edge had the same physical meanings of junction and

airway respectively. However, he assigned the pressure drop across an airway as the weight

of the respective edge and total pressure drop from source to the respective node as the

weight of that node. He applied the graph theoretic tools like, spanning trees and cutsets, and

successfully simulated a multi source, multi sink mine ventilation network having multiple

number of fans, for a controlled flow (where flows in some airways are required to have some

Chapter 1 Introduction

pre-set values) environment. He discussed how this strategy could be extended for

optimization purposes.

The graph theoretic concepts and properties of the resulting cutset and circuit matrices

have been exploited by many authors (e.g. Osiadacz 1987, Gomasta and Devi 1989).

Yevdokimov 1969 has used the orthogonality of these matrices to generate the final equation

set. He wrote equations in such a form that out of the 3p variables (i.e. flow, resistance and

pressure drop across each of the p pipes) any 2p variables can be computed using the

remaining p values as initial conditions. Yevdokimov has provided the algorithms to generate

these matrices and discussed advantages and shortcomings of Hardy Cross and Newton's

methods and proposed another coordinated gradient method for computation of mine

ventilation networks.

Wood and Rayes 1981 have reviewed the existing five algorithms for water networks.

Three of these called PATH (single path adjustment), S-PATH (Simultaneous path

adjustment) and LINEAR (flow adjustment) are based on loop equations, whereas the

remaining two named NODE (single node adjustment) and S-NODE (Simultaneous node

adjustment) are based on nodal equations. They programmed and tested these algorithms on

a big database of available hydraulic networks. They tested for 60 networks of under 100

pipes and 31 network of over 100 pipes. These networks included pumps but not other non-

pipe components like check valves and pressure regulating valves etc as these required special

procedures for some methods. They found that LINEAR and S-PATH gave the best

performance. LINEAR is the application of the Linear theory method using a full equation

formulation (Wood and Charles 1972); and S-PATH is due to Epp and Fowler 1970 which

is the application of an improved version of Newton's method to loop formulation.

Osiadacz and Pienkosz 1988 have described and compared the four most commonly

used methods for steady state simulation of natural gas networks. Two of them are based on

loop formulation, named as 'loop method' and 'loop-node method'; whereas the remaining

two use nodal formulation and called as 'node method' and 'node-loop method'. The resulting

10

Chapter 1 Introduction

equations are solved using Newton's (multi-dimensional) method for all of them. The authors

found that on the basis of computational time performance, 'loop-node method' is the most

efficient. The main reasons for this efficiency are: the generated matrices for this method are

sparser than those generated by the others, and secondly, the order of different steps of

computation within the solution algorithm is optimal. British Gas uses the same loop-node

method for computation of its high-pressure transmission networks with non-pipe components

(Fincham and Goodwin 1986).

Lowndes and Weimin 1988 have given a good review of methods used for

optimization of mine ventilation networks. Whereas, Moll and Lowndes 1992 have discussed

the formulation of mine ventilation networks, and application of either of Hardy Cross,

Newton's or Linear Theory methods to solve the formulated full equation model.

1.2 Objectives of Present Research

The main objective of the present research was to develop a steady state simulation

software tool for pellet induration system networks. Pellet induration systems are a key

component of the iron and steel making industry, and these will be described in detail in

Chapter 2.

This proposed software tool should:

 determine the flow, pressure and temperature distributions in the pellet induration

systems networks,

 communicate with other already existing software tools, used for the simulation of

different aspects of the induration process,

 act as a workbench for the user modeller; enable him/her to refine or change the

mathematical models of the system components, since the field is relatively un

explored, the exact nature of flow is not known and also there does not exist any such

11

Chapter 1 Introduction

models, thus the components' (mathematical) models would require significant

experimentation,

 assist the training of plant operators, analyze networks for plant engineers and provide

guidelines for the managers of the induration systems,

 be extensible to accommodate the needs of all concerned, from the developer to the

end user (including operators, plant engineers and system managers). These

requirements would also change with time and by the use of this tool. For example

it should be user friendly, easier to use and display results in the format the operators

and plant engineers are accustomed to.

 have flexible architecture to facilitate: the developer to improve the computation

algorithms; the user modeller to program and link his own software modules for new

component entities of his interest to be appended to the tool for simulation; the end

user to add or delete any instance of the existing modelled entities at run time through

input files; the addition of further optimization and other required modules to enhance

its functionality for planning and other purposes,

 work on high-end PC compatible, especially 486 machines - since these are powerful

enough, widely and readily available in the induration industry,

 be fast, robust and have qualities proposed for a 'quality software' by the software

engineering community especially the low maintenance costs i.e. ease to accommodate

the required unforseen changes at later stages, of the developed software.

With all the above stated qualities, the architecture of the software tool, will be

flexible enough to extend it to a generic code which might simulate any fluid flow network

as claimed by Yevdokimov 1969 and others.

12

Chapter 1 Introduction

1.3 Other Applicable Literature

To achieve the objectives stated in the last section, and literature survey revealed that

it is possible to attain these goals. In this section, a few of the approaches are mentioned

which directly or indirectly influenced the present research.

In abstract, the mathematical model for steady state simulation of a network, is a set

of non-linear algebraic equations whose size is proportional to the size of the network. These

are coupled equations, the variables computed by one equation are used as parameters for the

computation of others, and a simultaneous solution of this equation set is sought. For our

case, the variables are flows, pressures and temperatures of the process gas, distributed

spatially in the network.

Sargent 1978 has proposed a method, according to which, the original set of equations

is partitioned into smaller subsets, and each of these subsets are solved separately. He

represented these systems of equations by a directed graph, whose nodes correspond to the

respective subsets and edges represent the communication between the nodes. The edges

coming into the node are the information (or parameters) required for the computation and

outgoing edges are the output produced by the node i.e. values of the variables computed

inside the node. The resulting graph may contain closed (directed) loops, showing that the

inputs of a node, say 'A', are coming from another node 'B' which used A's output (directly

or indirectly through some other nodes). Sargent has given algorithms to resolve these loops

(by tearing edges to reduce the original graph into an acyclic graph) and specified the criteria

for optimal solution. He proposed that the solution algorithm should have two iteration cycles,

in the inner iteration cycle the respective nodes be solved treating all incoming variables (or

parameters) as constants, whereas in the outer iteration cycle the variables corresponding to

the torn edges be fed-back to the respective nodes which require them as input. The iterations

are carried out until the variables corresponding to the torn edges converge. This is an

efficient method, it reduces the problem size, requires less storage and is computationally

efficient. He hoped that packages could be developed where these nodes will correspond to

13

Chapter 1 Introduction

the subprograms having respective sets of the equations and the edges would then relate to

the argument lists being used by these subprograms.

Sargent's method has emerged as the well known sequential modular approach, where

the original set of equations is partitioned into smaller subsets or modules and these modules

are computed sequentially. Motard and Westerberg 1981, have mentioned

simulation/modelling packages like FLOWTRAN, CONCEPT and PACER, for chemical

engineering which are developed using a sequential modular approach. These packages

resolve the to be modelled chemical plant as a flowsheet, where each block or node actually

represents a physical unit, and solves its relevant mathematical model. Montagna and Iribarren

1988a, have given algorithms to evaluate the optimal sequence for the computation of these

nodes/modules. Further application of these algorithms to the chemical plants' simulation and

other flowsheeting programs has been discussed by Montagna and Iribarren 1988b.

The general purpose simulation package for process analysis and control of chemical

plants, SPEEDUP, has been based on an extended version of sequential modular approach

named as equation oriented approach, which is even more flexible, as each module/node can

be solved for any of its variables by specifying others as inputs. SPEEDUP can simulate

steady state as well as dynamic behaviour, and can be used for control, operation and

optimization of chemical plants (see Perkins et al 1987 and Bogle and Pantelides 1988).

Livny and Melman 1982 have described their WEizmann Network SIMulation

(WENSIM) package, which is initially intended for the solution of queuing and scheduling

problems on computer networks, however it is claimed to be flexible enough to be extended

for the solution of industrial processes. In WENSIM, the computer network is represented by

directed graph of nodes and edges, where nodes are the processing units and the edges

represent data/signal information. The processing units are independent, highly modular, have

a uniform interface, and can only be activated by the data passed on through edges. The user

modeller can define the network connectivity, and can write his own processing units or

modules conforming to the pre-set interface (necessary for communication with other already

14

Chapter 1 Introduction

existing modules) and embedding all controls required for the computation inside the

respective module (to make it an independent processing unit).

Babrow 1984 has categorised the approaches used for process analysis and quality

physics into two classes: process centred and device centred (which will be discussed in detail

in section 2.3.2). According to the process centred approach, the attention is focused on the

whole system and its behaviour is analyzed. For example all existing simulation packages for

fluid flow networks use this approach, and concentrate on the whole network and study the

flowing medium properties with respect to the whole system. Whereas in the device centred

approach, the attention is centred on the behaviour of individual components of the system,

since the whole system is composed of these primitives. The device centred approach has

been explained by DeKleer 1984. In fact, he has implemented it in the form of an electronic

circuit simulation package, EQUAL, where all individual circuit elements are modelled as

units/modules. The user input circuit schematic is validated and resolved by the program in

the form of a 'mechanism' or directed graph, where each node corresponds to the component

model and the edge conveys the control information or variables required to compute the

respective node. The order of computation of component models is sorted out automatically

by the program and it is unidirectional i.e. on the completion of a component computation the

computed variables are fed to the next connected component and its computation is invoked.

The finally achieved solution should satisfy Kirchhoff s current and voltage laws as well as

individual component models. DeKleer has claimed that the described algorithms are generic

and can be used for any other network by replacing the respective equivalents of current,

resistance and voltage etc.

The device centred approach has further been implemented by Boghosian 1990 and

Chandra et al 1992 in their modern state-of-the-art computer packages. Boghosian has stressed

that harnessing of the available terra-flop raw computational power, to solve the previously

unthinkable and scientifically challenging problems like simulating 'appropriate physics', is

only possible if the shift in basic programming and modelling methodology is made. He has

proposed a data parallel programming methodology for massively parallel Connection

15

Chapter 1 Introduction

Machine CM-2. According to this methodology, finite difference or finite element grid of the

actual modelled domain is mapped onto the configurable (2-D or 3-D) array of processors,

and the connectivity of original grid is also accordingly mapped. Each element of a CFD

problem domain is simulated by the respective processor. The grid related local data resides

in the processor's memory, whereas the data common, and required by other processors for

computation is declared in the form of 'parallel variables'. The implementation of numerical

algorithms and data structures is straightforward, for example, the finite difference application

of CFD problem does not reduce to seven diagonal banded matrix, instead it is a single linear

equation with six coefficients (the parallel variables from neighbouring grids). A 'context flag'

is assigned to each processor, which can deactivate its computation explicitly, if required.

Boghosian has shown results of some really challenging problems from CFD, computational

physics and biological sciences domains. The inability of process centred approach to resolve

the complexity of problems like 'turbulence modelling' is also evident from the projected

computational times, quoted by Jones 1993a, for example, an implementation of k-£

turbulence model for channel flow with refined mesh takes 250 hours on CRAY X-MP super

computer, which confirms the need for strategic shift in modelling methodology, as

emphasised by Boghosian.

An 'Interacting Object Process Model' (IOPM), to simulate real life physical processes

and structural systems, is described by Chandra et al 1992. For the implementation of device

centred approach into IOPM, they benefited from the widely propagated object oriented

technology. They defined the system as composed of hierarchical objects, called holons, i.e.

each holon simultaneously behaves as a whole (when considered individually along with its

children), and as a part (from the viewpoint of its parent or whole system). Like artificial

intelligence, each object can be interrogated, can store its related temporal information, and

can respond with its shallow (or rule based) or deep (model based) knowledge, as desired by

the user. The extensibility of the knowledge base for different views of objects, enables the

modeller to refine the process incrementally. The authors have illustrated the functionality of

IOPM, by applying it to solid and continuum mechanics systems to study their transient

behaviour.

16

Chapter 1 Introduction

For fluid flow networks; Turner et al 1982 and Turner and Rainbow 1983 have

reported their package NAIAD for the simulation of natural gas transmission networks. This

is based on similar lines; all components have been modelled as separate modules, and each

one solves for pressure, temperature and flows by solving mass, momentum and energy

conservation equations. Unfortunately these papers do not provide any information about the

solution algorithm or implementation. Another package SIROGAS, by the same group of

developers, for steady state and transient simulation of natural gas networks, is also developed

using device centred approach. Turner and Simonson 1985 describe a whole network as

composed of two (pipe and node-like) hierarchical components types, which include all sorts

of hydraulic and natural gas network components. They have illustrated the functionality of

the package by simulating a compressor station.

Several packages have been mentioned by IF AC'87 (International Federation for

Automatic Control) proceedings, in context of computer aided process design, operation,

control and automation of chemical plants, which are based on device centred approach or its

variants. For example, Marquardt et al 1987 has described the structure and working of their

dynamic flowsheet simulator, DIVA.

The international conferences arranged by CACHE (Computer Aids for CHemical

Engineering education) and FOCAPD (Foundations Of Computer-Aided Process Design) has

also made similar recommendations for the next generation of computer programs for model

based process control systems. McRae 1990 has asserted that the solution of large scale

flowsheet problem on advanced computer architecture will require new algorithms for optimal

performance and provided guidelines for the design of such new algorithms. He has pointed

out that the presently used approach based on parallelization of serial algorithms will severely

limit the size of the problem and will not be an optimal alternative.

17

Chapter 1 Introduction

1.4 Pellet Induration System Modelling and Solution Scheme

The literature cited in the last section, suggests that, to benefit from the advanced

computability, in terms of hardware, software and numerical methods, the device centred

approach should be chosen rather than process centred approach. Apart from these

recommendations, there are some specific requirements from the perspective of pellet

induration system network which lead to this choice. For this we first, briefly review the

classical network solution methods and then discuss the proposed method based on device

centred approach.

1.4.1 Classical Methods for Network Simulation :

The classical methods for the solution of fluid flow networks (discussed in Section

1.1) have following salient features:

 The formulation and solution methods are based on process centred approach,

 The network components' equations are usually transformed into a consistent (linear

or quadratic) generic equation for computational ease - i.e. the components are treated

as if they are mathematically homogenous (e.g. Osiadacz 1988 treats all non-pipe

components as three termed linear equation whose coefficients can produce the desired

effect of constant upstream or downstream pressure or constant flow; Boulos and

Altman 1991 have assumed a quadratic equation to simulate non-pipe components),

 The relaxation methods, Hardy Cross, Newton's, and Linear Theory, linearize the

original non-linear equations and use iteration to resolve this non-linearity. Whereas

the graph theoretic methods take benefit of the network topology, cutset and circuit

matrices and reduce the equations to a linear set. However, computation in both of

these categories is centralised, carried out in matrix form (except in case of Hardy

Cross method). The user or modeller has neither any control on the computation nor

any choice for the solution method, for an individual component,

18

Chapter 1 Introduction

 The matrix methods, have many advantages, but are complex and have a penalty for

extra storage requirements. For complexity reasons Bhave 1986 has preferred to use

Hardy Cross method. Also the extra storage requirements are more pronounced for

large size networks and sometimes even dictate the choice between loop and nodal

methods (Fincham and Goodwin 1988),

 In general, the node loads or demands are known, and while solving the network,

these are used as parameters.

1.4.2 Proposed Method for Pellet Induration System Network Simulation :

Evaluation of leaks is one of the main objectives of pellet induration system air flow

distribution package. In the literature, detection of leaks has been discussed for natural gas

pipe networks, but these are backed by transient models, which either use SCADA

(supervisory control and data acquisition), telemetry data (e.g. SIROLEAK code by Turner

and Mudford 1988) or depend on the leak detection hardware (Butler 1982). For pellet

induration system, the (to be developed) model should be steady state, and as conveyed by

the practitioners, the instrumentation to determine leaks is not available, hence the described

methods are not of much use.

The proposed model for the evaluation of steady state airflow distributions in pellet

induration system networks is to be based on device centred or unit based approach (as called

by Afzal and Cross 1992) for formulation and for solution, as well. The unit based approach

will be discussed in detail in section 2.3.4 and it will enable us to :

 Model heterogenous components of pellet induration systems as such,

 Carry out decentralised or distributed computation and benefit from the nature of

equations and use appropriate numerical schemes,

 Model leaks like any other network component by treating atmospheric nodes as fixed

grade nodes, having known pressures,

19

Chapter 1_________________ Introduction

 Refine or change the existing (mathematical) models of any of the components,

 Add or delete the instances of any of the modelled component,

 Include more components into the database of modelled components, by writing their

mathematical models, programming them to conform to a standard pre-defmed

interface, and

 it would not require any extra storage space for computation as needed by matrix

methods.

The benefits and qualities of the resulting code will be discussed later on in sections

2.4 and 4.5.

1.4.3 Route to Implement the Proposed Method :

The proposed model or computer package has to be developed from scratch, so there

are no constraints about the component models, solution algorithms, or code architecture and

we can benefit from the existing state of the art methods and techniques, as long as these are

useful to the applied context. For example, graph theory provides a very elegant way to

handle network connectivity and leads to efficient computation, and for the very reason, has

been widely used for the simulation of flow networks (section 1.1). Similarly, from a software

perspective, object oriented technology has been proposed as solution or "silver bullet' for the

development of complex engineering software systems (e.g. Cox 1990, Wilkinson and Byers

1993). In this work we will use these proven techniques.

The evaluation of the airflow distribution in a pellet induration system network, using

proposed method will mainly require the following steps:

 The actual pellet induration system network will be abstracted into a connected graph

of nodes and streams, where streams may consist of single or multiple serially

connected components, and nodes are meeting points of more than one stream, or

endpoints of a stream,

20

Chapter 1 Introduction

 The equation set will be decoupled, and first pressure and flow distributions will be

computed, which will later be used for temperature distribution computation (see

Wilson et al 1986, Fincham and Goodwin 1988),

 The computation of pressure and flow distributions will be carried out by a two level

hierarchical algorithm. At higher or coordination level the abstracted network of nodes

and streams will be solved to satisfy Kirchhoff s current and voltage laws. The so

computed stream flows and node pressures, the coordination (or 'parallel' as called by

Boghosian 1990) variables, will be passed on to the streams as parameters for lower

or component level computation. The finally computed values should satisfy

Kirchhoff s laws as well as component models. Osiadacz and Salimi 1988a, 1988b

proposed a similar two level algorithm for transient simulation of gas flow in single

pipe and pipenetworks respectively, and discussed its benefits for parallelisation. For

coordination level computation we will use an algorithm similar to the one proposed

by Boyne 1970.

 The coordination level solution algorithm (section 3.3) requires the partitioning of the

network into forest (collection of trees i.e. acyclic graphs) and coforest structures, for

which algorithms based on heuristics related to pellet induration system networks and

the constraints of the intended code, will be developed (section 3.5). This development

will be founded on graph theory.

 The code development will be solely carried out on software engineering concepts, as

it promises the solution to the software crisis and guarantees the benefits like re

usability, portability, low maintenance costs etc. In addition, it will provide the

benefits claimed by object oriented paradigm.

How and to what extent these objectives are achieved will be explained in the

following chapters. The mathematical models of network components and definitions relating

to the graph theory (to the level it is needed), will be discussed in section 2.2.3. The primary

solution algorithm for network computation and secondary algorithms for network partitioning

and temperature computation etc will be illustrated in Chapter 3. In Chapter 4 the software

engineering concepts and techniques used to realize the proposed solution method into a

21

Chapter 1___________________________________ Introduction

computer code, GASFLO, will be explained, also the resulting code will be graded against

the object orientation criteria. In Chapter 5 the capabilities of GASFLO and its application

to simulate real life pellet induration plant will be discussed. In Chapter 6 the research will

be concluded pointing out the directions in which further work could be carried out.

1.5 Summary

In this chapter, after a brief discussion on the commonalities of all fluid flow

networks, an overview for network formulation and solution methods is given. In the classical

literature three main formulations; loop, nodal and full equation; and three main solution

methods; Hardy Cross, Newton's and Linear theory; are encountered. These all along with

some more recent methods are briefly described in Section 1.1. In Section 1.2 objectives of

present research are stated, namely, to develop a software tool which should evaluate steady

state pressure, flow and temperature distributions in pellet induration system networks and this

tool should have all properties of quality software.

In Section 1.3, pointers to other applicable literature are provided, which somehow

influenced this research. The principal difference between the classical network solution

methods and the proposed method is the fundamental approach to modelling, the former used

process centred approach whereas the proposed one uses a device centred or unit based

approach - responding to the fact that systems are composed of primitive components, so the

behaviour and functionality of their primitives should be reflected in the performance of the

system.

In section 1.4 the means to achieve the stated objects are briefly described and for

details the pointers are provided.

22

Chapter 2

Mathematical Modelling of

Pellet Induration Systems

2.1 Introduction

In iron making and steel making industry blast furnace is the main production process.

The raw material fed into the blast furnace, is commonly called "burden of blast furnace", and

it needs to be of good quality, to provide a uniform gas-solid contact across the stack. It

should be chemically reducible and keep thermal demand on blast furnace as low as possible.

High grade crushed ore, with size between 10-25 mm, could be fed in directly as burden,

but common iron ore, or particulate cannot be used directly, as burden, instead it is first

agglomerated, in the form of sinters or pellets. According to one estimate, the annual

production from blast furnace process was over 200 million tonnes in late 1970s (Cross et al

1982), which is much more than at present day. The large production rate, desired high

quality of the product and economics of the process, emphasize the importance of the detailed

study of the agglomeration process.

There are two main processes used for agglomeration:

a) Sintering Process

b) Pelletizing Process

23

Chapter 2 Mathematical Modelling of Pellet Induration Systems

2.1.1 Sintering Process :

In sintering process, the mix of crushed iron ore, coke, water and other binding

material, is loaded onto grate or bed, in a layer of constant thickness and covered by a hearth

layer of pre-sintered material. It is passed through the sintering machine. Sintering machine

sinter bed

burnt hrough

v/w
windboxes

processed
sinter

Figure 2.1: The schematic diagram of Sintering Method

is in fact a combination of an ignition hood followed by a series of wind boxes (as shown in

figure 2.1). The downward moving hot air ignites the coke particles in the layer near top

surface. As the bed moves further, the downward moving air, drives this ignition layer

towards the bottom of the bed. Thus igniting and fusing the whole mix, which on cooling

reduces to small chunks called sinters. These are directly fed into blast furnace.

Powerful fans, regulate the flow of hot and cold air through the bed. This also includes

the recirculation of the process gas among different wind boxes, so as to minimize the heat

loss from the system.

It is a continuous process and sintering machine is usually used as an integral unit of

blast furnace plant. Rose 1981 has described the process and given references for detailed

reading on the subject.

24

Chapter 2 Mathematical Modelling of Pellet Induration Systems

2.1.2 Pelletizing Process :

In the pelletizing method, the crushed iron ore or the paniculate (< 5. mm diameter)

is mixed with water and some binding material like, Bentonite and rolled into small pellets

either of spherical or cylindrical shapes of typical diameter of 12 mm (Rose 1981). The wet

pellets commonly known as 'green pellets' are passed through three stages of, drying and pre

heating; firing; and cooling. The first two stages are similar to that of the sintering process.

All these three stages are crucial for produced pellets' quality. Sudden and

uncontrolled temperature changes may damage the texture and strength of the pellets.

Although the pelletizing process is a continuous process, it does not have to be located

at the iron or steel works. Many of the plants are located at mineral sites and the produced

pellets are transported and marketed internationally. Pelletizing is also known as concentration

process, as the moisture which is about 10% by weight evaporates during drying and pre

heating, and on firing the volume is reduced (Cross and Wade 1989), so the produced pellets

are richer in iron content.

There are three mainly used pelletizing processes:

a. Shaft furnace process

b. Straight grate process

c. Grate kiln process

a. Shaft Furnace Process : The green pellets are fed in at the top of the vertical furnace and

hot air is forced into it from the middle (see Figure 2.2a). The pellets move down by action

of gravity in controlled environment, and exit at the bottom. During this travel they are dried

up, pre-heated, fired and cooled down.

25

Chapter 2 Mathematical Modelling of Pellet Induration Systems

This is the oldest

method and has an upper limit

of 500,000 tonnes on its annual

production. Due to this

constraint and other efficiencey

reasons, no new system is built

after mid 1960s.

COMOUSTION
CHAMOCR

SIOEWAU AIR

COMOUSTION AIM

BOTTOM AND CROSS AIM

(b) Straight Grate

b. Straight Grate Process : < a) Shaft Furnace

Structure wise it is like

sintering machine, but instead

of crushed iron ore, green

pellets are loaded on moving

grate, as input (shown in

Figure 2.2b). As they move

deep into the system, they are

dried up, pre-heated, burned

and finally cooled. For heat
conservation, the entire Figure 2.2: Schematic diagrams showing Shaft Furnace

and Straight Grate Methods
chamber is divided into zones,

which enable unidirectional gas flow, either in upward (up draft) or downward (down draft)
direction. These zones are interconnected by large diameter pipes or ducts so that the heat
transfer between gas and pellets is maximum, and heat loss to the atmosphere is minimum.
High power fans are used to drive the process gas through the system. External burners
supply the heat energy to the system. Air at atmospheric temperature is sucked in at cooling
end, which on passing through the packed bed extracts heat from fired pellets. This hot gas
is recouped to the system at convenient zones, such that heat could be transferred back to cold
or wet pellets and finally it is pushed out of the system.

26

Chapter 2 Mathematical Modelling of Pellet Induration Systems

The zone connections are so designed that the temperatures in all the three stages of

the process (drying-heating, firing and cooling) should remain within desired limits as well

as there should be no sudden temperature changes across the packed bed of pellets. All the

three stages of the process occur in the same chamber. This is an efficient and widely used

method.

c. Grate Kiln Process : It is an improved version of straight grate, where all three stages

of induration process are physically separated. The firing takes place in an exclusive unit,

kiln, heat is supplied by external sources and by chemical reactions. The temperature and

complementing chemical reactions, could be controlled precisely, as compared to other

methods. The working principle and zone connections for gas flow are similar to the former

method. Figure 2.3 shows the schematic of a grate kiln system.

Further the bed depths could be varied for drying and cooling stages. Also at some

plants the circular grate are installed for cooling stages. All these refinements make the

system more efficient and hence, the most used one.

The straight grate and grate kiln systems are similar in structure and functionality,

these could be simulated by the same software. This approach has been implemented for heat

distribution codes, like INDSYS (Cross and Englund 1987, Cross 1988) and CASCADE (Patel

et al 1993). The developed mathematical model and the resulting software code, GASFLO,

for grate kiln system, would simulate both systems. The simulation of straight grate system,

using GASFLO, will require the substitution of kiln by the respective firing zone.

In this thesis, hereafter the term 'pellet induration system' would refer to either of the

two systems in general, but for the sake of clarity and consistency, only grate kiln system

would be mentioned as the example pellet induration system in all text and figures. Its

working, with reference to airflow, is discussed in next section.

27

Chapter 2 Mathematical Modelling of Pellet Induration Systems

2.2 Pellet Induration System

The objective of an efficient system is to produce high grade pellets at minimum costs.

The process is illustrated in Figure 2.3.

The green pellets are charged to a moving grate and fed into the down draft DD1 (see

Figure 2.3) zone of drying stage, and moved slowly in temperature controlled environment

towards pre-heat, PH zone. At the exit of PH, their temperature reaches to about 1000 °C,

then they are fed into the kiln, where they are fired at the temperature of about 1300 °C. The

joe

A-8

A-9

B-5

B-4 V 21

Figure 2.3 : A typical pellet induration System

fired pellets are then cooled in cooling stage. In this whole process, air is used as the heat

transport medium. The cool air, at ambient temperature is sucked in by fans 3A and 3B in

cooling zones, Cl and C2 respectively. It is forced to pass through the packed bed of fired

28

Chapter 2 Mathematical Modelling of Pellet Induration Systems

(hot) pellets and on contact, the air extracts heat from the pellets. This hot air is recouped into

the system. Some of it is passed onto the pre-heating stage via the kiln, thus raising its

temperature further, whereas the remainder goes to the drying stage directly by connected

pipes or ducts.

The booster fans 1A and IB, help in maintaining flow within the network, and

generate sufficient head to overcome the head-loss suffered by airflow due to duct wall

friction, the resistance offered by packed bed and other in-line instruments. The valves are

used to regulate the flow through different paths of the network. The zones are so connected,

that the temperature variation is smooth in the whole process and specially in drying stage.

The hot air blown through the packed bed in drying zones, extracts moisture from the green

pellets and dries them up, losing its own temperature. Finally the used air or off-gas is

pumped out of the system by fans 2A and 2B.

To ensure the free, unobstructed movement of the loaded bed, sufficient clearance

between the bed and the zone or system partitions is provided. Though these gaps are very

small as compared to other dimensions, only few centimetres in hight, still these are potential

source for leaks into the system, and contribute towards the process inefficiency. Further,

these leaks can not be measured due to very high temperatures in the system and lack of

instrumentation. Depending upon the neighbouring regions' pressures and the cross-sectional

area of the clearance, these leak flows are quite large and effect the temperature and pressure

distributions significantly. It is practically observed that the 30-45% more air passes through

the fans 2A and 2B than is recuperated into the drying and preheating stages from cooling

stage of the system.

2.2.1 Pellet Induration System as Pipe Network :

Our aim is to find the pressure, flow and temperature distributions of process gas (air)

flow in the system, from that perspective the shown system is like a pipe network in

abstraction. In this respect, it is comparable to natural gas and water distribution municipality

29

Chapter 2 Mathematical Modelling of Pellet Induration Systems

pipe networks. Although it is smaller in size than the distribution networks, it is

comparatively more complex due to the variety of the units involved. In section 2.4 this

aspect will be discussed in detail. The pipes, in fact very large diameter ducts, are for the

conveyance of the airflow among different parts of the system. Leaks and packed beds have

nearly the same functionality, as they connect different regions and provide access for process

gas to flow through them. Whereas at the junctions and zone regions the gas coming from

different paths gets mixed. These components are discussed in detail in the following sections.

Like other pipe networks, the induration system is also solved as a network, and two

Kirchhoff s laws must be satisfied.

2.2.2 Pellet Induration System Components :

The pellet induration systems are big industrial plants, covering large areas of land,

having components of all sorts and complexities. From the gas flow distribution perspective,

the following components play an active role:

Fans: Fans drive the process gas in the system, as does pumps in water networks or

compressors in the natural gas distribution networks. These are usually at system

extremities, ie upstream to cooling stage to suck-in the on-gas (cold air) into the

system, and at the downstream to drying stage to push-out the off-gas (the used hot

air) from the system to the atmosphere. Fans are also installed inside the system to

efficiently regulate the air flows among different zones. The economics of plant and

ultimate cost of the produced pellets are significantly dependent on fans, due to their

initial installation and subsequent running costs.

Pipes: Pipes or ducts provide the interconnection between different components of the

system. These are of different shapes and different cross sections, connected in series

or in parallel. These are very large in size, like mine ventilation system airways,

30

Chapter 2_____________Mathematical Modelling of Pellet Induration Systems

having few squares of meters of cross sectional areas. Pipes are insulated to avoid heat

loss.

Zones: Zones are the physical partitions in the heating and cooling stages of the system.

They provide a controlled temperature environment, and help to regulate gas flow in

specific directions. Zones have input and output regions, separated by packed bed of

pellets. All heat transfer from pellets to air and back to pellets, take place in zones.

In other words a zone consists of an input region, a packed bed and at least one output

region.

Regions: Regions are enclosures above and below the packed beds where different airflow

streams meet. These streams have specific values of system variables i.e. flow rates,

pressures and temperatures of the gas.

Packed beds: These are beds of pellets, through which process gas is forced to flow. At the

entry to the system the pellets are wet, their moisture is evaporated by the hot air as

they move deep into the system. A packed bed has a fixed width, height and other

pellet properties for a stage. However, these properties vary between heating and

cooling stages.

Junctions: Junctions are analogous to regions, but these are meeting point for two or more

pipes. They provide alternative paths to gas flow in the system, which can be used for

optimal functionality. For example, the pressure of off-gas (i.e. the gas leaving the

bed) is always less than that of on-gas (the gas entering the bed), and its temperature

is dependent upon the temperature of the bed. The pressure of the off-gas stream

leaving the bed, could be improved by providing a path, bypassing the respective

zone. This down stream pressure could be controlled (to some extent) by controlling

the flow through the by-pass. In Figure 2.3, the pipe connecting junctions J01 and J02

has similar function.

31

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Valves: Valves are used to control and regulate flows in different paths of the network, by

restricting the cross sectional areas of respective pipes of the system.

Leaks: Leaks are associated with regions. These are flows between two neighbouring regions

or between a region and the atmosphere. The former are called 'internal' and the later

as 'external' leaks. In other words these are the flows, which escape through the small

clearances above and below the bed. As stated earlier, complete sealing of these leak

flows is practically impossible.

2.2.3 Graph Theoretic Representation of Pellet Induration System :

All disciplines have their own terminology and representation styles for easier

communication. For example the schematic of pellet induration system shown in Figure 2.3

is very straight forward for an operator or a plant engineer in the induration industry, all the

geometrical data of the components and measured data from the systems' instrumentation

could be plotted on the schematic. Similarly the opening and closing of valves and variation

of wattage of any of the labelled fans would be equally un-ambiguous to all concerned.

Unfortunately that representation is not that useful from analysis and computational point of

view, where we would be more interested say, in the detection of any cycles or loops for the

satisfaction of Kirchhoff s second law.

In sections 1.1 and 1.2 the use of graph theory for the solution of flow networks was

mentioned. In fact graph theory provides an alternative presentation, which is graphical as

well as set theoretic in nature, and very helpful for the development of algorithms and their

implementation. It is widely used in Computer Science, Deo 1974, for sparse matrices Duff

et al 1990, and for network computation Boulos et al 1991, Osiadacz A J 1987. Graph theory

is a full fledged subject in its own right and reader can consult any standard book (e.g. Deo

1974, Wilson and Watkins 1990, or Syslo et al 1983). Graph theory provides a powerful tool

to visualise networks and their computation and analysis.

32

Chapter 2 Mathematical Modelling of Pellet Induration Systems

A Graph G can be defined as combination of a finite set of streams 5 = { s]f s2, .. ssj

and another finite set of nodes N = { n,, n2, ... nN} and can be represented as G = (S, N).

Also each s, can be presented by an ordered or un-ordered pair of nodes. If the streams have

some specified direction then the G is called as directed graph or digraph. Different authors

use different names for streams and nodes; as edges, links or lines and as vertices or points

etc; respectively. No pre-requisite knowledge of graph theory is assumed, the related

definitions would be given when required in the text.

To convert the pellet induration system schematic into a directed graph, we examine

the system and

 mark all the nodes, where more then one flow paths meet

 mark all the paths linking distinct nodes as streams. Some of the streams will consist

of single components like leaks, beds or pipes, whereas the others will have multiple

components like pipe, fan and pipe; all connected serially and having constant flow

through them.

This categorisation points out that the node will have a constant pressure and

temperature whereas the stream will have fixed flow. The system is linked to atmosphere,

through streams containing fans 3A, 3B, 2A, 2B and external leaks, which will cause

different local pressures, so it will be reasonable to treat these locations as separate nodes and

further, as these will have just one incident stream so we can characterise them as external

nodes, whereas, all other nodes which lie with in the system, have more than one incident

streams, are called as internal nodes. These internal nodes will consist of either a junction or

region and external nodes can represent a boundary. The atmospheric boundary linked to the

system by a leak has different characteristics than the boundaries which act as source or sink,

so these are named differently. The abstraction hierarchy from actual components to the graph

theoretic node stream objects is shown in Figure 2.4.

33

Chapter 2 Mathematical Modelling of Pellet Induration Systems

NETWORK
Graph
Theoretic
View

EXTERNAL INTERNAL SINGLE COMP MULTI COMP

VALVE

ATMOSPHERE

A ° * U a ' PHYSICAL SYSTEM
Components of Pellet Induration Sys

Figure 2.4 : The hierarchical relationship of pellet induration system components to graph
theoretical network object.

Applying above stated transformation to the original system and representing streams

by straight lines and nodes by circles, we get the graph theoretic representation (see Figure

2.5). Different shading patterns are used for internal and external nodes to show their distinct

nature. For cross referencing (to Figure 2.3) the node names have been marked. This

representation is a good tool for visualization of the original system and for development of

algorithms e.g. the loops in the corresponding graph can be very easily specified.

Referring to Figure 2.5, the node R05 has 4 incident streams, two of them are

incoming from nodes R02 and A-6, so it has in-degree of 2, and the other two are out going

streams, so out-degree is also 2; and total-degree of node R05 is 4. Also R02 and A-6 and

the corresponding streams are called predecessors to R05, whereas R06 and ROT are its

successor nodes. Up-end and down-end nodes of a stream are with respect to the (assigned)

flow direction of the stream. External nodes have 'total-degree' of one, i.e. these have only

one incident stream. If the respective stream is 'incoming' then the node is sink, and if it is

34

Chapter 2 Mathematical Modelling of Pellet Induration Systems

A-8 A-9

B-2

Int Node Ext Node

Figure 2.5 : The graph theoretic presentation of pellet induration system

'out-going' then the node is source. All internal nodes have 'total-degree' of more than one.

The connectivity shown in the Figure 2.5 could be presented mathematically in the
form of adjacency or node-stream incidence matrices of order N x S, for a N node and S
stream network. All the nodes and streams are assigned integral numbers and are referred by
the same numbers. The incoming stream are be presented by +1, and all out going by -1; this
convention has been adopted because intuitively the incoming flow adds to the holdup of the
node whereas the outgoing depletes it (Yevdokimov 1968, Hamam and Brameller 1971 and
Boulos et al 1992). Most of the other authors (e.g. Osiadacz 1987, Boulos and Altman 1993)
have used reverse signs for entering and leaving stream, whatever convention is adopted it
is important that it should be followed consistently through out the formulation. For the sake
of clarity the node and stream numbers were not shown in the figure. In the 'node-stream
incidence' matrix, the ith row will have non-zero elements (±1) in columns corresponding to
the streams incident on this ith node, similarly the jth column corresponds to the jth stream,

35

Chapter 2 Mathematical Modelling of Pellet Induration Systems

and will have only two non-zero elements against its up-end and down-end nodes. In short

the node-stream incidence matrix can be presented as

ay = +1 if jth stream is entering ith node

= -1 if jth stream is leaving the ith node

= 0 otherwise

Similarly the loop or mesh matrix of order L x S, could also be written as

bij = +1 if jth stream is in ith loop and has same direction as the loop

= -1 if jth stream is in ith loop but has direction opposite to the loop

= 0 otherwise i.e. jth stream is not in ith loop

The above is the simplest form of representing graph mathematically, more compact

forms like, node-node adjacency (N x N) can contain the stream numbers with +ve or -ve

sign showing whether it is in-coming or out-going stream. Further, the 'in-', 'out-' and 'total-

degree' of a node could be worked out by examining the number of non-zero elements on the

corresponding row. The predecessor, successor linked lists are even more compact and

efficient representations, which will be briefly discussed in section 3.5.1 and shown in Block

A.4. Deo 1974, Syslo et al 1983, Osiadacz 1987 and Ahuja et al 1993 have described the

graph theory application and the related data structures, in detail.

2.3 Mathematical Modelling and Process Analysis

Mathematical modelling is as old as any of the science subjects like Physics and

Mathematics. Any formula say, Hooke's law of stress analysis, Ohms law of electricity,

Maxwell equations of electrodynamics or Navier Stokes equations of fluid mechanics, each

one of these, models a physical phenomena or relationship among some quantities. Even till

the late 1960s it was restricted to only small problems constrained by available human

computational power. Some relatively larger problems were only catered by research

36

Chapter 2 Mathematical Modelling of Pellet Induration Systems

organizations or universities, but that also had more theoretical content. The advent of

computers, their increasing compute power, the mass production of hardware and ever

decreasing prices have changed the whole scenario of application of mathematical modelling.

Now it is hard to find a single field where computer models are not used. From social

sciences to microbiology, all branches of engineering; aeronautics, automobile, avionics,

chemical, civil, electrical, electronics, hydraulics, mining, petroleum, to name a few; nearly

every one has put computer modelling to the best possible use. Now the mathematical

modelling has become a vital tool for every field of engineering and industry.

Some other contributing factors responsible for this rapid growth are:

 the widespread of knowledge of numerical analysis and other related disciplines

 maturity of science subjects to an extent that their results could be integrated to

develop full fledge models

 experience and benefits gained by the use of existing models and the possibility to

build models on the top of the existing ones, by improving or re-using them

 presence of infra structure for their development, availability of proper computer

languages and other related hardware and software tools

 willingness and sincerity of the experts from related fields to share their skill and

cooperate in the development of integrated models

 openness of user, to use them as a valuable tool and to exploit their power even

beyond the foresight of their designers

 the most important of all is, the availability of immense 'raw' compute power and

inexpensive hardware.

The wide range use of these mathematical or more precisely the computer models in

all walks of life is a practical proof of their utility. In the following we mention few of the

benefits these models provide.

 models provide reliable, robust and fast solutions to industrial problems

37

Chapter 2 Mathematical Modelling of Pellet Induration Systems

 these are inexpensive in terms of time, as well as, in finances, as compared to the

other alternatives

 these are flexible, easier to use and doesn't penalise the user for not being expert

 models provide greater control and insight of the problem, to the user at his own pace

and wish for refinement

 these can be used for the initial design of plants, analysis and optimization of the

existing plants, working out operation strategies, training of operators, fault diagnosis,

expert advice and real-time control of plants

 these can simulate what-if scenarios, and can provide answers to the situations, which

otherwise involve risk of human life and property

 models eliminate the need of building prototype, and so the risky situations, when the

large scale actual plants built on well tested prototypes, do not work; leading to multi-

million losses.

Of all these models, a wide spectrum is encompassed by process analysis and

Computational Fluid Dynamics (CFD). Any process or system which embodies, a 'continuum'

somehow, could be dealt as a CFD problem, whether it is airflow around an aerofoil, fire

propagation within a building or a complex multi-phase flow involving chemical reactions.

Petridis et al 1991 and Knight and Petridis 1992 have covered the internal and external

requirements for the development of CFD software, such aspects will be discussed in section

4.1.3 and properties of the intended code will be covered in section 4.5. Here we restrict

ourselves to core of these models, i.e. mathematical model, and concentrate on process

analysis.

2.3.1 General Aspects of Mathematical Modelling

Every computer model has an underlying core, the mathematical model, a set of

equations which are solved numerically and in the end, these should respond to the valid,

realistic inputs, in a manner consistent to physics. The models are evolving by nature.

38

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Although huge compute power is available nowadays, but still the whole physics of a process

can not be embedded into the model in one go, instead it is added to the model incrementally.

The main activities involved in the development of a computer model are:

a. Selection of the processes of the system to be modelled

b. Mathematical representation of these selected processes, and specification of the made

simplifying assumptions if any

c. Computation of solution of the mathematical model (numerically)

d. Validation of the computed results; these should

i. be convergent and stable numerically

ii. not violate, the involved (or modelled) physics

iii. justify the available experimental data

e. Enhancement of the modelled domain by the

i. inclusion of the deletions made during simplification of equations i.e. up dating

of the modelled process to full extent

ii. addition of further processes

The mile-stones of the modelling process are shown in Figure 2.6, the above activities

are shown by arrows. In principle, the 'computed (numerical) solution' should satisfy the

discretised domain, which is subset of 'modelled domain', but by satisfaction of (d) above we

can safely assume that it is valid for whole of the modelled domain. The ultimate aim is that

the modelled domain should be as close to the real world as possible. It is evident from the

figure that the modelling process is cyclic by nature.

39

Chapter 2 Mathematical Modelling of Pellet Induration Systems

2.3.2 Approaches for Process

Analysis Modelling

To develop a mathematical

model for a complex system, first we

analyze its working, which could be

done either by looking at its overall

behaviour and analyzing the involved

processes; or by seeing its physical

constituents and finding out, what is

the functionality of each of its

components. Accordingly there are two

main approaches for modelling of

REAL WORLD

MODELLED DOMAIN

MATHEMATICAL MODEL

11
COMPUTED SOLUTION

d(')

VALIDATED MODEL

2-6 : The modelling process life-cycle

process or any of the complex system (see section 1.3 and Babrow 1984). These are :

Process Centred Approach: Where the main stress is on the detection of the involved

1 'Processes', and modelling of these processes to form the whole system. This is a

distributed approach, since each process spans over a number of physical components,

usually the complete modelled domain, so the complete set of equations is computed

simultaneously. This approach is most widely used in the present day CFD modelling.

For example, if we have to find the steady state flow, pressure, temperature and

species concentration distributions in the chemical plant network, then by 'process

centred approach', the equations for these distributions are written for the whole plant,

(as these are coupled i.e. mutually dependent on each other), and solved

simultaneously. In solution strategy, the inter dependencies of the state variables could

be exploited, say if, pressure and flow are mutually dependent, and temperature and

species concentrations are dependent on flows, but not vice versa; then at the first

stage the coupled set of pressure and flow equations could be solved, and later using

these values temperature and concentration distributions are solved.

40

Chapter 2 Mathematical Modelling of Pellet Induration Systems

This is an established approach, the usage of variables inter-dependencies and

execution of independent processes before the execution of dependent processes, can

lead to significant gains in computational time. Similarly in the transient case the

slowly varying processes could be skipped for couple of intermediate time steps.

Most of the present day CFD and other process analysis software is based on

this approach and hence it can be equally blamed for their shortcomings and in

efficiencies.

Device Centred Approach: In this approach, attention is fixed on the physical components

of the system, these components, called 'Devices' are modelled separately, and finally

linked together to form the whole system. This approach has prompted time and again

in the literature with different names; as device centred by Babrow 1984 and DeKleer

1984; as sequential modular by Montagna and Iribarren 1988a and 1988b; as object

centred by Lipworth et al 1991; and as unit based by Afzal and Cross 1992. This

conforms to the well known object oriented paradigm of computer science and it does

have nearly all the benefits mentioned in object orientation context. The components

are physically connected to each other, this connectivity and the information

transferred along the interface is very important and somehow, it has to be imbedded

into the model.

The components are modelled and executed separately and use the interface

information as parameters or independent variables for their internal computation.

Boghosian 1990, while explaining his 'data-parallel programming methodology' calls

these variables as parallel variables. The equations related to all the processes being

carried out in the component are executed simultaneously inside the component

module.

41

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Unfortunately this approach was not much used, so its benefits could not emerge until

recently, when the shortcomings of other approach came to evidence as mentioned in section

1.3.

Detailed models for CFD, computational physics or any other natural science, if

modelled using former approach, soon become infeasible, even on super computers with

teraFLOP performance, due to their huge computational load and hence exhaustive CPU times

and storage requirements. For example Jones 1993a quotes that the computation of turbulence

(&-e) model, with refined scale, for channel flow problem, would require about 250 hours on

CRAY X-MP. Which suggests that some fundamental strategic change in the basic modelling

approach is required. The device centred approach seems to be the promising solution.

2.3.3 Changing Environments and Mathematical Modelling

In this section we briefly discuss the main features of computer models in the present

day changing environments. The presence of these models in the scientific environment shows

that these are irreplaceable and evolving by their nature, so they should be designed with

broader prospective. The reasons for their longevity being their functionality and the

investment in terms of human effort to improve them to their existing states. As mentioned

earlier, every computer model has a core, i.e. mathematical model, which we will be referring

to in this section. Other implementation matters of these models will be covered in Chapter 4.

At the design level we should take into account the following factors, to which our

models should complement:-

Technological Advances: Most of the time these are related to the advancement of

computers, which is effecting the environment from many angles. Computers are

getting cheaper, their usage is increasing and so is the usage of models, as Chansler

and Rowe 1990, state that now the microcomputers are being used in all the fields of

42

Chapter 2 Mathematical Modelling of Pellet Induration Systems

water industry, from design to control of distribution networks due to their

inexpensiveness and speedy response. Previously the users of the models were

qualified engineers, but now they could be operators with lesser academic

qualifications. Also as their compute power is increasing, so the more complex

engineering problems are now solvable, hence more complexity in the models can be

added. This varied spectrum of addressed problems and users, suggest that the models

should have an 'ease of use' factor.

Secondly this advancement has introduced the wide spread use of computers

in all other related fields. Now computers are widely used in the field of measurement

and instrumentation. Petley 1991 has given the refined (exact to the date) values for

physical constant used in SI system of units. The results produced by a model having

equations with imprecise coefficients (or physical constants) would be harder to match

to the presently available precise measured data within micron accuracy. Our models

should be adaptive to such technological changes.

Experience has shown that by advances in measurement techniques and use of

computers in Industry, the hardware components are continuously improving and so

their related equations, especially if these are empirical relations. For example Young

et al 1979, quoted the following relation for temperature dependent specific heat

capacity of air,

Cp(T) = 1026.3486 - 7.14326xlO'2 x T (2- 1)
+ 4.54916X10-4 x I2 - 2.1334xlO-7 x 7*

which gives the value of 1040.06 J/Kg-°K as compared to the measured one

of 993 J/kg-°K at 300°K as given by Tennent 1971. In contrast Zografos et al 1987

gave an improved relation

43

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Cp(T) = 1061.3 - 0.43282 x T + 1.0234xlO'3 x T2 (2-2>
- 6.4747xlO-7 x 7* + 1.3864xlO-10 x T4

which gives the value as 1007.21 J/kg-°K, which is closer to the experimental.

Thus the architecture of mathematical model should be such that it could readily

accommodate these changing in component equations.

Thirdly, there would be more target sites for the produced models. Just like a

Japanese car designer, the model developers should also think globally for the

requirements of these future users. The facilities for the use of local system of units,

the presentation style and other cultural issues, should be taken into account.

Human knowledge advancement: This is effected by the constant use of the existing

models. The state of knowledge of a user, constantly improves; the first time user,

would have different expectations and would interpret the produced results differently,

then an experienced user. The availability of alternative models for the same problem,

may lead to a different usage of the same model at a later stage. For example

previously it was used as prediction tool for experimental measurements, but later it

may be used to validate the new model. The models should be flexible enough to co

exist and communicate with other models of the field.

The scientific world is constantly changing, people are coming up with better

mathematical models of different complex phenomena every day. For example now

there exist about a dozen turbulence models, each one having its own specificities and

claiming to be better then its predecessors (see Boyson 1993 for a new one). Likewise

Manning proposed two formulas for hydraulic computation in 1889, and in 1895 he

recommended one of them, which was dimensionally consistent but interestingly due

to its complicated nature, was not well received and the other was extensively used

by hydraulic engineers until present day. Yen 1992, has now obtained an improved

dimensionally homogeneous Manning's formula, for water networks' computation.

44

Chapter 2 Mathematical Modelling of Pellet Induration Systems

The architecture of the models should be such that it could readily adopt these sub

models as disposable and replaceable items. Similarly the algorithms and computational

techniques are improving, so these should also be swappable. The device centred or unit based

approach seems very promising and able to accommodate these specified future needs of our

models.

2.3.4 Device Centred or Unit Based Approach

According to this approach the physical boundaries of the system components serve

as the modelling boundaries of 'devices' or 'units' of the system. Their connectivity with the

neighbouring units point out the source and target of the information, and the nature of

information being passed through the interface governs the order of computation. The models

of all the processes occurring inside the units, are encapsulated inside the computational units,

so the variables involved in the mathematical equations would require some considerations.

The distinction between local and global variables is very important, global variables (or

parallel variables as called by Boghosian 1990) are the state variables, for which the system

is being solved. The process could be any physical process taking place in the unit.

Depending upon the problem the respective conservation laws should be satisfied locally, as

well as, globally for a steady state system.

To elaborate the above, consider an example of a pellet induration system, where the

airflow distribution is to be determined, and it is literally the airflow being passed on from

one unit to the other unit, so the information about the airflow i.e. its flow and pressure will

be the state variables. Their values will be exchanged among the neighbouring components.

These variables have a dual role in computation; the unit in consideration will treat the values

of the state variables (passed on by other units) as parameters or independent variables and

will compute them as dependent variable within the unit to pass them on to its neighbours.

This is more or less same as in Finite Difference or Finite Element computation, the values

of state variables at a node are computed in terms of their values at the neighbouring nodes.

45

Chapter 2 Mathematical Modelling of Pellet Induration Systems

2.4 Mathematical Model for Pellet Induration Systems

Our aim is to develop a model to determine the airflow and temperature distributions

in pellet induration systems. As mentioned in section 2.2.1 it can be simulated as a pipe

network, hence the model should satisfy the Kirchhoff s laws. These were proposed initially

by Kirchhoff, for the analysis of electrical networks, but are equally applicable to any sort of

network, which is transporting some conservable continuum medium. These laws are widely

used in water, electrical power, natural gas distribution networks, as well as, mine ventilation

and other such networks. Pellet induration systems use natural air as the flow medium. Here

'nodes' refer to the internal nodes of the network, consisting of either junctions or regions and

'loops' correspond to the fundamental cycles of the equivalent graph (the graph resulted by

ignoring the flow directions in the directed graph). These laws are :

KirchhofTs First Law or KirchhofTs Current (KCL) Law:

Total flow entering to a node is same as total flow leaving the node. Mathematically,

for y'th node, with DEGj incident streams

DEGj <2-3>

where afl is the element of node-stream incidence matrix, with value +1 if ith stream

is incoming to jth node; it is -1 if ith stream is an outgoing from node j; and F, (Kg s" 1) is

mass flow rate in ith stream.

Generalising it for all NM internal nodes of the network:

46

Chapter 2 Mathematical Modelling of Pellet Induration Systems

DEGj

ajt . F,. = 0 for all j = U,...A^ <2-4)

KirchhofTs Second Law or KirchhofTs Voltage (KVL) Law: Each network node should

have a unique pressure, no matter through which route it is approached. Alternatively,

or in the most commonly stated form, the pressure drop across any loop, /, in the

network should be zero, i.e.

TSTRi

£ V (2.5)

Where btt is an element of loop-stream incidence matrix, having value +1 if the flow

direction of ith stream has the same direction as of the /th loop, and value -1 if the

directions are opposite; TSTRlt the total number of streams in the /th loop, and AP,

is the pressure drop in ith stream of /th loop. bu has a value zero for streams which

do not participate in respective loop. The pressure drop for each stream is unique and

independent of the loop to which it is contributing. In generalized form, the above

equation can be written for all NThop fundamental loops of the network, i.e.

7S7X,

. =0 for all I = 1,2,... (2.6)

The flow and pressure distributions provided by the network solution must satisfy

these two laws. The first law may be directly imbedded into the system as node equation. The

second law needs the computation of pressure drops for each of the stream and knowledge

of the fundamental loops of the network. Further these streams are composed of serially

47

Chapter 2 Mathematical Modelling of Pellet Induration Systems

connected components, so the pressure drop across each one of these would be required to

determine the overall pressure drop in the stream.

The mathematical models for the system components provide the specific relations for

this pressure flow inter-dependence. Although the exactness of these component models is

desired, but in reality; the identification and comprehension of all involved physical processes,

complexity of system, precision of measurements and available experimental data are usual

constraints which restrict modellers to live with the approximate component models.

Among different fields, where models are being used, water distribution systems, is

one of the oldest and the most mature branches. Ideally, the component model for flow

through pipe, should contain all the effects, like, nature of flow, pipe data, pipe fittings,

properties of its material, horizontal position and slope, ageing factor and corrosion content

etc, how its friction factor will be affected by time and sufficient experimental data to validate

all these aspects. Availability of these all is clearly impossible so even to the day, all models

start with an approximate but consistent component model (Chansler and Rowe 1990),

compute the network and then refine the basic model.

The main obstacle in comprehension of a physical process or a complex system is the

complexity of the system. Different factors are attributed to complexity by different authors

(see e.g. Chandra et al 1992, Wilkinson and Byers 1993) depending on the modelled

environment. In our case there are three main factors which contribute towards the

complexity:

 Process complexity: The respective process itself is not well explored yet, say for

example, the exact nature of flow through packed bed or through pipe is not known;

so to start from simplest possible model and use an incremental approach is the best

solution.

 Complexity due to connectivity of components: The components forming the system,

are in large number, so are their inter connections. Hence the knowledge of which

48

Chapter 2 Mathematical Modelling of Pellet Induration Systems

component is effecting which, is required, to resolve the interference or 'ripple' effect

due to interactions of components.

 Complexity due to incompleteness of information: The information about the

processes, as well as the exact nature of components and their geometrical and other

data is not completely known.

In modelling the pellet induration system, using the device-centred approach, the

components themselves are not that complex, but they are in large numbers, at least not

digestible by wetware (human brain) without the aid of computer. Their interactions among

each other, adds further complexity to the system. To find the solution of whole system, we

will solve it as network, by satisfying Kirchhoff s laws globally. First we discuss the

component mathematical models and general principles applied in their formulation.

2.4.1 Simplifying Assumptions

Considering the induration system at a macroscopic level, we make the following

assumptions, to simplify the modelling process. Simplifications relating to individual

components' equations will be discussed in related sections.

i. Pipes or ducts in the system have different shapes, i.e. having square, rectangular or

circular cross sections and are connected in various configurations, in series, parallel

or in combination of both. First each non circular pipe is replaced by a circular pipe

of same length, but having a diameter which offers an equivalent wet area (see e.g.

Francis 1975). Secondly, the combination of pipes between two nodes is substituted

by an equivalent pipe which offers the same resistance as the combination. Later in

the simulation the data for this virtual pipe would be used (Jeppson 1976).

ii. The pellet induration is a time dependent process, but with extremely varying time

constants; the time constant for packed bed movement is in hours, whereas for the gas

49

Chapter 2 Mathematical Modelling of Pellet Induration Systems

flow it is in seconds. So, the bed appears as static to moving gas, or from other

perspective, the gas flow will be reaching instantaneously from one end to the other

end of the unit. Hence steady state model is assumed for gas flow.

iii. One dimensional flow is assumed in network. It is normal convention for pipe network

solution and saves significant amount of computation. Pipes are the main constituent

of the network, so as suggested by Ward Smith 1971 and Goldwater and Fincham

1981, one dimensional treatment of flow is valid. This assumption is also conducive

to other components of the network.

iv. The variations of air density is small enough that the process gas could be treated as

incompressible medium. In terms of natural gas networks, it is a medium pressure

system; the measured region pressures range from -30" to +30" of water gauge, which

is nearly atmospheric. In SI units, it turns out to be form 94 KPa to 108 Kpa, whereas

the atmospheric pressure is 101.325 KPascals. The pressures at fans suction or

discharge ends may be beyond the said range, but still the density does not vary

appreciably.

v. Ideal gas law is used in derivation whenever required for conversion of density into

pressure etc; as the average pressure in the system is about atmospheric. Azbel and

Cheremisinoff 1983 states that it is valid up to 10 atmospheres i.e. 103 KPa.

Gas flow in the system is governed by the pressure gradient, i.e. gas flows from higher

pressure to lower pressure, except in the active components like fans. Fans provide a pressure

gain, which is utilised in overcoming the resistance offered to flow by other passive

components like pipes, valves, packed beds and leaks.

There could be two ways for the development of equations of individual components

of the Networks.

50

Chapter 2 Mathematical Modelling of Pellet Induration Systems

a) To start with the basic laws of physics, i.e. mass, momentum and energy conservation,

and derive the network component's equations, with all possible complexities. Then

simplify these equations to the practical situation by applying the feasible assumptions.

or alternatively,

b) To benefit from literature and implement the available knowledge by using the well

tested, valid, analytical or empirical equations for the respective components.

The results of the model based on (a) would be qualitatively consistent, but from

mathematical modelling aspect, these would still require fine tuning of parameters and

validation with experiments for quantitative correctness. The validation phase would be

impossible, if the experimental data is already not in-hand, because the related industry would

not be interested in conducting the experiments for an in-progress model, as it costs time and

effort. In cases, like pellet induration systems, the experiments are very costly and difficult

to perform due to the hostile environment. The results produced by models based on (b) does

not require detailed verification, as the equations or models have already been through this

verification & validation cycle. For example Hazen-Williams formula, Darcy-Weisbach

equation, Manning equation (Chansler and Rowe 1990 and Yen 1992) for water networks; and

Atkinson equation (Wang 1990) for mine ventilation networks; are all different variations of

Bernoulli (mechanical energy balance) equation, with coefficients being validated for the

respective networks, so each one has its own specific range of application, where it provides

correct results. Similarly Osiadacz 1987, gave equations for flow of natural gas through pipes

for low-pressure, medium and high pressure regions. Osiadacz also mentions that the

predicted flows, even by these widely used and well tested equations, are usually higher than

the actual flows, as all friction losses are not catered for in these equations, so he introduced

a notion of 'efficiency factor' which modifies the theoretical friction factor, to produce

comparable results.

51

Chapter 2 Mathematical Modelling of Pellet Induration Systems

In the present research the combination of both of the above two methods would be

used with more emphasis on method (b).

In principle, before incorporating into the model, the respective component equations

are thoroughly checked by verifying that these:

 hold under physical laws

 are dimensionally (and also units wise) consistent

 provide practical values for output variables, when fed with practically possible values

for the input variables.

In a network simulation, main attention should be given to the computation of network

as a whole system. The component equations are the foundation stone of the computation, as

these simulate the behaviour of system variables locally in that component. For network

simulation we require an algorithm, which should compute the component/basic equations in

such a way, that finally not only each of these basic equations is satisfied locally, but also

they provide a consistent global pressure, flow and temperature distributions, for the whole

system.

The resulting software/code is intended to be used internationally, by iron making and

steel making industry, which has not yet adopted a unique system of units, instead each plant

uses the units of its own convenience, depending upon its geographical location and installed

instrumentation. Hence all user related information will be communicated by the code in

plant's units, whereas the computation (and component equation's coefficients) will be carried

out in System International (SI) units. The choice of SI units, will keep the model's

computation independent of user's units, to which the variables will be translated at the

beginning and at the end of computation. It will also enable to compare and incorporate the

improved equations from published literature. This (SI) is the main system of units, which has

been adopted by most of the academic journals and publishers. To conform to any of the new

52

Chapter 2 Mathematical Modelling of Pellet Induration Systems

set of units in future, an other block of code, or a new subroutine will be needed, which will

translate the new set to SI units and back.

2.4.2 Component Equations

Initially when the project was started the zones were treated as a separate entity, but

later it was realized that in fact, it is combination of regions and packed bed, so it was

replaced by the respective components.

The valves could be simulated as a separate entity, but as these occurred physically

with pipes, so these were lumped with the respective pipes, taking into account their specific

nature.

Bernoulli's equation is used to simulate the flow through pipes and flow through

orifices, for leaks. It is recommended by many authors, like Bird et al 1960, especially for

systems with components having single entry and single exit. Nearly every book on fluid

mechanics or transport phenomenon covers its development in detail; Massey 1972, Theodor

1972, Azbel and Cheremisinoff 1983 and Douglas et al 1985 could be seen as few examples.

Osciadacz 1987, derived Bernoulli's equation starting from Newton's second law and

developed it to general flow equation for the transport of natural gas through pipes. He used

different friction factors and obtained; Lacey's equation for low-pressure (or distribution)

networks, Polyflo equation for medium-pressure networks, Panhandle 'A' equation and

Weymouth equation for high-pressure (or transmission) networks. The details for its derivation

are skipped as it is widely covered elsewhere.

For temperature distribution computation, most of heat transfer takes place between

pellets and air, the process gas, in the packed bed. Another heat distribution code, INDSYS

(INDuration SYstem Simulator) Cross 1988 and Cross and Englund 1987, computes the heat

transfer at microscopic level, by solving partial differential equations, and taking into account

53

Chapter 2 Mathematical Modelling of Pellet Induration Systems

all complexities of the system and involved chemical reactions. INDSYS requires airflow

distribution as input and computes temperature distributions of process gas and of pellets, in

the packed bed, in two dimensional space, assuming symmetry in the third dimension. These

temperature distributions are averaged out and fed to GASFLO model as input. The global

heat conservation cannot be applied to the system, unless INDSYS is taken into account. The

overall conservation of thermal energy is achieved by combined iteration of GASFLO and

INDSYS. In GASFLO heat conservation is applied locally at junctions, regions and pipes; and

isothermal flow is assumed for fans and leaks, i.e. there is no heat loss and so temperature

of gas entering to the unit remains unchanged at the exit of the unit.

All equations presented have SI consistent units for their variables and physical

constants. The units of the variables are given in nomenclature section at the end of chapter.

Temperature dependent specific heat capacity of gas, given by equation 2.2 will be

used in the model. The ideal gas law relation is also used in derivation of the presented

equations. Where possible the equations are written in readily computable (FORTRAN)

format, with left hand side variable as to be computed in terms of all others known variables

on right hand side. The computational procedure and solution algorithms will be discussed

in detail in chapter 3.

Junctions and Regions: These are nodes, where two or more streams are meeting. The mass

conservation and thermal energy conservation equations are applied here and the mass

conservation equation (2.3) is re-written for a node, having DEGj incident streams, Flow F

(kg s" 1) and Temperature T (° K) values for all streams are known except for one, say the xth

stream, which are to be computed in terms of the other known ones. The right hand side of

these equations exclude the xth stream, for which flow and temperature are to be computed

so the limits for summation are from 1 to DEGfl. The mass balance equation for jth node

is

54

Chapter 2 Mathematical Modelling of Pellet Induration Systems

DEGrl

F = - T ati .Ftx _ Z~i •*/*•* i
(2'7)

where ajt is element of node-stream incidence matrix, having values +1 if ith stream

is entering jth node, and -1 if it is leaving, 0 otherwise.

To compute temperature we consider thermal energy balance, i.e. the algebraic sum

of thermal energy (or the rate of thermal energy) entering and leaving the node is zero. In the

pellet induration process the temperature of process gas vary from atmospheric temperature,

20 °C (=300 ° K) to 1700 ° C (-2000 ° K). Young et al 1979, have pointed out that the

specific heat for process gas cannot be treated as constant in this range of temperature

variation. An experimentally validated relation for its temperature dependence is given by

Zografos et al 1987. It covers the temperature ranges from 100 ° K to 3000 ° K, which spans

our range of application. Hence this temperature dependent relation, described by equation

2.2 will be used for the computation of specific heat of process gas, Cp (J Kg" 1 °K~ 1). This will

make it non-linear in temperature so its solution will require iteration. The rate of thermal

energy qt for ith stream is Cp(T) * Tt * F, (J s" 1 or Watts). Hence for jth node the heat

balance equation would be

Cp(Tx).Tx = -
DEGj-l

<2'8>
ajx*x

Pipes: Pipes are the main unit, responsible for the transport of process gas from one unit to

the other. These are very large diameter ducts, closely resembling the airways of mine

ventilation systems. Applying the simplification (i) of section 2.4.1 all pipes occurring

physically between two nodes of the network; of any shape and connected in any serial or

parallel configuration; can be replaced by a circular pipe, for which the equations are

55

Chapter 2 Mathematical Modelling of Pellet Induration Systems

developed. These pipes are well insulated, to conserve thermal energy but still a loss of few
degrees of temperature is noticed at the ends.

Assuming the flow is friction-less, isothermal and incompressible, its steady state
behaviour is represented by Bernoulli's equation. It is a high driving system, and flow is
always turbulent, so the resistance offered to flow due to turbulence, as suggested by Azbel
and Cheremisinoff 1983, is used. The friction factor X, uses Reynolds number, Re, which is
further computed from mass flow rate per unit area G (Kg s" 1 m"2) for the respective pipe. The
given form of Bernoulli's equation resembles to the equations developed by Azbel and
Cheremisinoff 1983 and Lugt 1983; and to the well known Atkinson's equation used for mine
ventilation networks, as quoted by Bruce and Koenning 1987, Wang 1990 and Moll and
Lowndes 1992, for incompressible, unidirectional and steady state flow of air in airways. In
the following equations the subscripts 'pipe', 'in' and 'out' refer to respective pipe, its input
(up-stream) and output (down-stream) ends of the pipe.

G = -£- (2.9)

= Dri* xG (2.10)

= 0.0123 + (2.11) Re™

pipe air

where Dpipe, Lpipe and Apipe are diameter (m), length (m) and cross sectional area (m2)
of pipe; P is pressure (Pascals or N m"2); p is density (Kg m"3) of process gas; fi is dynamic
viscosity (Kg m" 1 s" 1) and a is pipe dependent (dimensionless) calibration or efficiency factor

(see Bhave 1991 and Osiadacz 1987).

56

Chapter 2 Mathematical Modelling of Pellet Induration Systems

For temperature computation, the over all heat loss by the pipe would be combination

of heat loss; due to convection, by process gas to the pipe internal surface, and due to

conduction within the pipe from internal surface to external surface and in the layers of

insulation. For steady state case both of these losses will be same i.e. all the heat convected

to the pipe would be conducted to the atmosphere. Bird et al 1960, pp 283-288, has developed
the case for composite cylindrical pipe, which can be directly applied to our scenario. Pipes

are insulated but the material properties of the insulation, its thickness etc are not known; so

its inclusion in implementation is temporarily postponed, hence only single pipe with process

gas flowing inside it, is modelled. The length and cross section wise, approximate temperature
profiles for pipe, are shown in Figure 2.7.

5t
Twall

'//////^^^^

FLOW
Tgas

Twall

D

Tatm

Tgas

Figure 2.7 : Temperature profiles due to convective and conductive heat transfer

Assuming that the process gas has fixed temperature, T^ (°K), which can be taken as

average of the temperatures of the gas entering and leaving the pipe, i.e. of TiH , Tout as the
temperature variation through the pipe is not more than few degrees. Secondly constant

temperature Twall could be assumed for internal wall, this cancels out during derivation and

57

Chapter 2 Mathematical Modelling of Pellet Induration Systems

does not appear in the following equations and ambient temperature Talm is assumed on the
pipe (external) surface. Simplifying the equation given by Bird et al, for single layer pipe, we

have a rate of heat loss from pipe q (J s" 1 or Watts) as

q = 2x71x1^ x

2
In

 4-

/

1 +
2

J
x 6r "|
p^ J

(2.13)

"pipe x "gas

where Temperatures are in °K, Dpipe (m) is internal diameter of pipe and 8/ (m) is pipe
thickness, kpipe (Watt m" 1 °K~ 1) is thermal conductivity of pipe and hgax (Watt m"2 °K"') is heat
transfer coefficient of process gas. For the inclusion of insulation into model we would have
an other term in the denominator of the above equation.

The overall heat transfer is dependent on both processes, in abstract it is like
conductance through the series of resistances, so the highest resistance governs the overall
transfer, in this case it is the convective part which is more effective. In practice the value
for heat transfer coefficient, h^ should be provided by the experimentalists and fed into the
model. In the absence of that we used the approach adopted by Fogiel 1984, and Kay and
Nedderman 1985, and computed its approximate value from the definition of dimensionless

numbers. Physically, the Nu Nusselt no, is the ratio between actual heat loss and conductive
heat loss; the Re Reynolds no. equation 2.10, is the ratio between mechanical and viscous
forces; and the Pr Prandtl no, is the ratio between momentum and heat transfer by molecular
action. In terms of our variables, Nu and Pr numbers are

Nu - ** Pr = *" (2.14)

Where Cpeas (J Kg ' °K"]) is specific heat capacity of process gas at constant pressure,

(Watts m" 1 °K ') is thermal conductivity of gas, other variables have same meanings as

58

Chapter 2 Mathematical Modelling of Pellet Induration Systems

defined previously. Fogiel 1984 has given the following empirical result, relating these

numbers for turbulent flow.

Nu = 0.023 x /te° 8 x Pr04 <2- 15>

Zogrofos et al 1987, has given a temperature dependent relation for thermal

conductivity of air. They obtained it by fitting curves to experimentally available data. Like

Cp its range also conforms to the temperature range of pellet induration system, so it was

used to obtain more realistic results.

kgas(T) s -7.488xlO'3 + 1.7082xlO-4 xr - 2.3758xKT7 xr2

+ 2.2012 xlO- I0 xr 3 + 9.46xlO' 14 xr4 (2J6)

+ 1.5797xlO- 17 xT 5

Using this relation for input temperature T = Tgas ; the variables kgaii , Cpgas , are

determined; which are used to evaluate TV, Re and Nu from the above equations 2.14, 2.10

and 2.15 respectively. Using the definition of Nu number equation 2.14, hgas and finally q

from equation 2.13, are determined.

Now considering overall heat balance for pipe, assuming the work done by the gas as

zero, the total heat entering into the pipe would be heat leaving the pipe with gas and due to

heat loss from its surface.

-xr. (2.17)

outAs by mass conservation Fin = Fout = F, similarly we can safely assume Cpin - Cp(

= Cp and substituting the values for q we can find Tout in terms of Tin or vice versa.

T = r, - 2 (2.18)
M * CpxF

Substitution of Cp by equation 2.2, will make it non-linear in temperature, which is

resolved by iteration.

59

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Packed Beds : The gas flow through packed bed is well represented by Ergun's equation.

Bird et al 1960 has shown its comparison to other equations and concluded its best fit to

experimental results and its applicability for wider range. It was originally presented by Ergun

1952. Now it is widely used in industry. Fenech et al 1987, Ingham et al 1988, Osinki et al

1989, Patel and Cross 1989 and Cross et al 1990 has mentioned its various forms in use.

Most of the authors have used superficial velocity, i.e. the velocity of gas when packed bed

is not present, instead of actual velocity. Resolving the form given by Bird et al, substituting

actual gas velocity, replacing density p of gas in terms of atmospheric pressure Palm and using

gas law with gas constant for air, R (286.68 J Kg" 1 °K" 1); and using the mentioned units; the

equation reduces to

out - p _
out in

par atm

+ ,.75 G
par

(2.19)

where Hbed (m) is bed height, Thtd (°K) is temperature of gas in the packed bed, d^
(m) is particle or pellet's diameter and e (dimensionless) is voidage, i.e. ratio between volume

of voids and volume of the bed.

The first term in the brackets represents the contribution to the pressure drop due to

viscous effects whereas the second term is the contribution due to inertial effects. Ours is the

'high driving' system as mentioned by Fenech et al 1987, so the viscous contribution is

negligible as compared to its inertial counterpart, so first term could be ignored, and hence

RTb
x x *«*.." ; ft*^(l-e) xG2 (2.20)

atm

This equation is used in the model for simulation of packed bed. It is quadratic in

terms of air flow.

The packed bed is the main unit responsible for all heat transfer between the process

gas and the pellets. It embeds all sorts of complexities of air flow in porous medium to

chemical reactions, so the thermal computation of bed is simulated separately by the other

60

Chapter 2 Mathematical Modelling of Pellet Induration Systems

model INDSYS. The process gas temperatures required for GASFLO computation, are

computed by INDSYS and are fed-in as parameters, air flow distribution required by INDSYS

is computed in GASFLO and supplied to INDSYS.

Leaks : These are un-wanted but un-avoidable flows of process gas between the adjacent

regions and between the system and atmosphere. These adversely effect the heat balance of

the system. Ironically due to hostile conditions and instrumentation constraints these cannot

be measured. For un-obstructed movement of packed bed few centimetre clearances above

and below the bed are required, which ultimately results in leaks flow.

It is experimentally observed that a significant amount of process gas is sucked into

the system, from atmosphere, through these leaks, which degrades the system efficiency.

Without determining the sources, and their contribution to this additional flow it is impossible

to minimise it or analyze its effects on the overall system efficiency.

Physically a leak is flow through a small cross sectional area linking the two regions.

It is governed by pressure gradient between the two, from higher pressure to lower pressure.

It is similar to flow through orifice and simulated by the orifice equation.

Applying Bernoulli's equation to the pipe of diameter D, (m), shown in Figure 2.8,

with a sharp edge orifice of diameter D2 (m), assuming no energy loss and pipe being

horizontal, we have

P2
^^^™™^» -f

pg 2g pg 2g

where P,, P2 (Pa) are pressures and v,, v2 (m s" 1) are velocities of gas at section T

and '2' respectively; and g (m s 2) is acceleration due to gravity. Applying continuity equation

i.e. mass entering at section 1 is same as the mass leaving the system at section 2 in steady

state.

61

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Vl =

where A,, A 2 (m2) are cross sectional areas at the respective sections. So substituting

v; in Bernoulli's equation, replacing areas in terms of diameters and rearranging we get

\
Assuming that diameter of orifice, D2 is very small as compared to the pipe diameter,

D,, so (D2 I D,)4 « /, hence the term in the denominator can be ignored. To find out the

Flow through the section 2, F2 (Kg s" 1), we multiply both sides by p and cross sectional area

A 21 we get

F2 = A2

The practically measured flow is

smaller than the theoretically calculated

flow, about 60% for sharp edged orifice

(Douglas et al 1985 pp 162-167). The two

contributing factors for this reduced

measured flow are; there is some loss of

energy due to contraction in contrast to our

(P, -P2)

Pipe

Section 1

Sharp Edged Orifice
Vena Contracts

initial assumption that there is no loss of Figure 2.8 : The flow profile through a sharp

energy, so the velocity at orifice is in fact edged orifice.

less than v2 ; and the flow profile further

converges to say point 'o' commonly known as vena contracta, so the cross sectional area

of flow stream is A 0 , which is smaller than the area/4 2 . Hence the net flow through the orifice

is Cdis times the theoretical flow F2 . Thus

62

Chapter 2 Mathematical Modelling of Pellet Induration Systems

where Cdis is discharge coefficient for the orifice, and its values are dependent on

geometric configuration of the orifice and on the nature of flow, i.e. Cdis = / (Re, D2 1D,).

It is experimentally determined and for standard configurations, its values are given in the

literature.

The above equation can be generalised for leaks, since the aperture and region cross

sectional areas are of comparative sizes as used in the development of above equations, so

re-writing the above equation for leaks;

F2
P = P - ** (2.21)* out f in 22

2 p Cdis A leak

where Pin and Poul are the up-stream and down-stream region pressures.

The thermal computation for leak flows are simple assignment, as there is no heat loss,

so the temperature of the gas entering to the region through a leak would be same as its

temperature at the source region, from where it is coming, hence

= T <2'22>

Valves : Valves are used by operators to route process gas in desired paths of the system and

to control its magnitude. Like other pipe fittings, valves also cause increased resistance to

flow, by restricting the cross sectional area of respective pipe. The opening and closing of

valve in a flow stream causes disturbance, which, in reality, is a transient process, but in our

steady state model, it is assumed that all the changes in valve positioning have been carried

63

Chapter 2 Mathematical Modelling of Pellet Induration Systems

out before the start of simulation and these remain constant during the simulation. After

viewing the results the user can change the valve positioning and restart the simulation.

The valves can be modelled either; as a separate entity, like leaks using a developed

valve equation (see Osiadacz 1987), where valve cross sectional area could be adjusted by the

user; or alternatively, these could be lumped with the pipe model. In principle, valves offer

resistance to flow, so can be dealt in similar way, like other pipe fittings, as treated by most

of the authors.

This lumping can be carried out in two ways. One is by finding the head loss or

pressure drop, caused by the valve individually, using head loss coefficient K, and the notion

that it is proportional to square of flow velocity, and then adding this pressure drop to the

pressure drop of straight pipe of length lorig . This will be the overall pressure drop offered by

the pipe including valve.

The other method is conceptually simple and widely used to accommodate pipe fittings

in flow computation. Here the fitting or valve in the pipe, is replaced by a fictitious pipe (of

same type, characteristics and diameter) of specific length /,, known as equivalent length. In

principle this fictitious pipe offers the same resistance to flow as the corresponding valve or

fitting. So the new length / , ,, to compute pressure drop would be

/ = / . + / (2.23)''new *orig *«

The equivalent length of standard pipe fittings are given in the literature (see Massey

1972, Azbel and Cheremisinoff 1983, Daugherty et al 1985 and Douglas et al 1985). These

are usually given in terms of number of diameters, (LID), so /, the equivalent length (m) of

a pipe of diameter Dpipe, for the given fitting could be evaluated by

64

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Experimentally determined values for head loss coefficients; in terms of K and in

terms of (L/D); for the standard pipe fittings and valves are well covered in the literature. In

Table 2.1, values for some valves are quoted, as referred by Azbel and Cheremisinoff 1983.

The exact nature and the characteristics of the valves, used in the induration system

are not known, so we assume that these could be of any of the Gate, Globe or Check valve

type. To provide a handle to the user to open and close the valve, we use the following

transformation for globe valve:

670.92 r + 271.57 , A , , A = for 0.1<r£l.O
*r2 (2'25)

1.08 xlO 4 for 0.0 ±r ^0.1

where r is (dimensionless) radius of circular cross section of valve opening. This

equation gives the value of (LID) as 300 for fully open i.e. r = 1.0 and as 475 for half open

position i.e r = 0.707. This is derived using the concept that resistance offered is inversely

proportional to valve opening area. The fixed value for the domain, 0.0 < r < 0.1, is merely

to avoid the zero divide exception error for fully closed valve. For other valve types the

numerical coefficients would change.

Knowing the value of (LID) and pipe diameter Dpipe of associated pipe, the equivalent

length lt is computed and added to the original length of pipe. This total length is used for

pipe's computation, using Bernoulli's equation, whereas for temperature computation the

original pipe length is used. In valve computation it is assumed that there is no heat loss, the

temperature of gas leaving the valve is same as it entered the valve.

65

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Table 2.1 : Friction loss coefficients for turbulent flow through valves

Valve Type
Head Loss

Coefficient K (LID)

Gate Valve
Wide Open
Half Open

Globe Valve
Wide Open
Half Open

Angle Valve
Wide Open

Check Valve
Ball
Swing

0.17
4.5

6.0
9.5

2.0

70.0
2.0

9
225

300
475

100

3500
100

Fans : These are the only active components responsible for gas flow in the system. These

are identical to the compressors in natural gas pipe networks, pumps in water distribution

networks, or fans in mine ventilation networks. In contrast to their equivalents, where

graphical characteristic curves are used to simulate, we use the exact equation to model the

behaviour of fans more realistically. We assume isothermal compression, that is any heat

generated due to compression of gas, is removed from the system, by the fan cooling

assembly, thus keeping the fan and gas temperature unchanged.

Azbel and Cheremisinoff 1983, have developed expressions for fans, blowers,

compressors and vacuum pumps, classifying them according to compression ratio Pout l Pin .

The following fan equation is selected from those proposed, in accordance with the range

constraints of our system, and it is modified according to the variables used. It shows that

pressure gain is proportional to the fan electrical wattage N (Watts) and is inversely

proportional to the throughput, mass flow rate of gas passing through the fan, Fin (Kg s' 1).

66

Chapter 2 Mathematical Modelling of Pellet Induration Systems

(2.26)
out

PI*> POM are suction and discharge pressures (Pascals); TJ^ (dimensionless) is isothermal

efficiency of fan, with suggested range of 0.64 to 0.78; R (J Kg" 1 °K" 1) is gas constant for air,

in the used units it is 286.68; F^ (Kg s' 1) is flow, and Tin (°K) is temperature of gas entering

the fan.

For a fixed input pressure, pressure gain verses throughput graph is similar to the

characteristic curves for mine ventilation fans (Hall 1987 and Wang et al 1988), pumps and

compressors (Osiadacz 1987 and Fincham 1971). The used equation responds automatically

to the temperature and flow changes in the process gas passing through the fan. Another

aspect worth noting is the exponential relationship between pressure gain and flow rate, as

compared to their linear or quadratic dependence in other network components.

Like leaks equation 2.22, the temperature computation has simple assignment equation

T = Tt (2.27)
* out In

where Tin (°K) is temperature of process gas at fan's entrance.

2.4.3 Unit Computation

Using a device centred or unit based approach, each of the last section units (except

valves) will be computed independently, in the order of their connectivity. The state variables,

F, P and T computed by one unit will be passed on to the next unit, and so the process will

be repeated for all units in the network, till the sink boundary is reached.

Stream like units; pipe, leak, bed and fan; have a single entry and single exit, and

fixed flow. So generically these will have a combination of five global variables. These are

67

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Pin, Tin, Fin, Poul and Tout . The variables with known values are treated as parameters for the

respective unit. Most of the time, variables are known at one end, and the other end variables

are computed. In some cases both end temperature and pressures are known and flow is

computed for the unit.

Nodes (i.e. junctions and regions) are more complex, and have multiple entry and exit

streams. These will have 2n + 2 variables (and parameters) for n incident streams; comprising

of F,, TI for i=J,2 ... n incident streams, and P,, Tj for the respective jth node. Referring to

the two equations for node unit, the two variables for any of the xth stream will be computed

using the (known) values of all others. The xth stream will be mostly the out going stream,

and so the node temperature Tj will be computed, and all outgoing streams temperature Tx

will be initialized with it. Whereas, the node pressure Py will in fact be computed during the

computation of one of its incoming streams, and will be initialised during the node's

computation. Algorithms described in chapter 4 will further elaborate the computation

strategy, and the specification of xth stream.

Considering each unit, the above described solution strategy satisfies the "n equations

for n variables" constraint. The non-homogeneity of the units can be seen by the respective

pressure-flow equations given in the last section; this might require different numerical

schemes for different units.

The objectives of the present work are that the developed model, should:

work as a frame-work, where the unit's mathematical model and numerical scheme

could be easily swapped by better alternatives, whenever these are available,

be robust and should provide reasonable answers to physically valid inputs.

 be fast, so that it could be used for operator training and control purposes. This

indirectly implies that computational load should somehow be minimised, by using

simple, reliable numerical schemes.

 address to wider application domain and useable on high end PCs.

68

Chapter 2 Mathematical Modelling of Pellet Induration Systems

The above goals could be achieved by embedding the appropriate numerical schemes,

well suited to the nature of the specific equations of the unit, i.e. the mathematical model of

the unit; and computing the associated global variables in terms of parameters locally. The

other advantage is that problem size is much reduced, instead of solving single large set of

equations now, smaller sets of fewer equations are solved simultaneously (Sargent 1978).

Finally, passing these converged results on to other units, so as the minimize the overall

instability in the system.

2.5 Numerical Scheme for Local Computation

In this steady state model, each unit is represented by set of algebraic linear and non

linear equations. These are to be solved simultaneously. There exist a wide variety of

numerical methods to solve such sets, each having its own advantages and shortcomings.

Since different units have different equations, and these are solved independently, so in

principle each unit could use its own local computation scheme, as suited to the nature of its

equations.

The linear equations could be solved by method of substitution, that is evaluating the

desired variable in terms of the known variables (either by its parametric values or by values

known from previous iteration).

The solution of non-linear equations is harder. For this we use the One Point Iteration

Method. This method is referred to by many names, like Iteration Method, Fixed-Point

Iteration or x = g(x) Method, by different authors. It is covered by nearly every book on

Numerical analysis (e.g. see Smith 1979, Gerald and Wheatley 1989 and Burden and Faires

1989). It is simple, robust and gives converged results in few iterations.

According the this method, the solution or approximation of a non-linear equation

69

Chapter 2 Mathematical Modelling of Pellet Induration Systems

/(*) =0 for x e R

is obtained by re-writing it as

where g(x^ is such that, g(xj and g'(x) are continuous functions for all JT, e R. There

could be many such functions, which can generate different sequences of fxj, but those

satisfying

I *'(*,) I < 1

for all jc, e R would give convergent results.

In our model as all equations and the variable domains are known, so all non-linear

equations could easily be approximated by suitable g(x) functions, and the set of equations

for a unit is solved iteratively. Later if some better method emerges then that can replace this

method, for all or some of the units.

2.6 Nomenclature

A Cross sectional area m2

Cp Specific heat capacity of gas at constant pressure J Kg" 1 °K~ 1

D Diameter m

dpar Diameter of panicle or pellet m

DEGj Total degree of jth node i.e. no of incident #
streams on the node

F Mass flow rate of process gas Kg s" 1

g Acceleration due to gravity m s"2

G Mass flow rate of process gas per unit area Kg s" 1 m"2

70

Chapter 2 Mathematical Modelling of Pellet Induration Systems

h

H

k

fitling

L

Nu

P

Pr

q

Q

R

Re

T

Heat transfer coefficient of process gas

Height of packed bed

Thermal conductivity of (pipe) material

Head loss coefficient for (pipe) fitting

Length of the unit

Nusselt number

Pressure of process gas

Prandtl number

Rate of thermal energy or heat loss

Volumetric flow of process gas

Gas constant for process gas (air)

Reynolds number

Temperature of process gas

Velocity of process gas

W rn 2 °K- !

m

W m' 1 °K- f

m

m

N m 2 or Pascals

#

J s' or Watts

m's' 1

286.68 J Kg' 10K' 1

#

°K

m s' 1

Greek letters
a

8t

Calibration or efficiency factor for pipe

Pipe thickness

Packed bed voidage

Iso-thermal efficiency of fan

Dynamic viscosity of process gas

Density of process gas (air)

m

#

(0.6 - 0.9) #

Kg m" 1 s" 1 or Poise

Kgm ' 3

71

Chapter 2 Mathematical Modelling of Pellet Induration Systems

Subscripts:
in / out Up-stream / Down-stream end of the unit

pipe / bed / fan / region Refers to the respective unit of the network
/ junction

72

Chapter 3
Solution Algorithms

3.1 Air Flow and Temperature Distributions Coupling

Considering the component models presented in the last chapter, the resulting

equations could be categorised in to two sets; the one relating to the computation of flow and

pressure or simply the flow distribution and the other relating to the computation of

temperature distribution. The first set is comprised of equations 2.7, 2.9 - 2.12, 2.21 and 2.26

which are used for the computation of flow in junctions, pipes, leaks and fans respectively;

whereas the second set consists of equations 2.8, 2.13 - 2.18, 2.22 and 2.27 which provide

the temperature distribution in the respective components.

The packed bed model uses the Ergun equation (2.19) to relate the pressure,

temperature and flow. The heat transfer between pellet and process gas takes place in packed

bed, taking into account all chemical reactions and material properties, the resulting

mathematical model for heat transfer (and hence temperature computation) is very complex.

It is solved for separately and the computed temperature of process gas are fed into the

GASFLO model as a parameter. The temperature of gas in equation 2.19 can be treated as

constant. The algorithm for temperature computation will be discussed in section 3.8 and the

import of bed temperatures will be discussed in section 5.5. The fan equation 2.26 is also

temperature dependent, but since in the pellet induration system the fans are located at either

suction end, where they suck in natural air which is always at ambient temperature; or within

73

Chapter 3 Solution Algorithms

the network at downstream to some zones (i.e. packed bed), where the temperature of process

gas passing through the fan would be governed by the average temperature of the respective

packed bed. The temperature distribution is mainly effected at junctions or regions (equation

2.8), where mixing of different streams occurs and in pipes (equations 2.13 - 2.18) where

some heat loss to the atmosphere is taking place. The other equations of the set are simple

assignment equations, describing no change in temperature. These junction and pipe related

equations are dependent on the values of flows in the associated streams.

Thus, there exists, a coupling between flow and temperature distributions, but the

dependence of flows on temperature is quite weak, whereas the temperatures are strongly

dependent on flow distribution. Fincham and Goldwater 1979, have also suggested

computation of temperatures in the outer loop whereas the flows and pressures are computed

in the inner loop.

This inter-dependence can be exploited and the two sets of equations can be

decoupled, then each one can be computed in isolation. The flow distribution computation

uses fixed parametric values of temperatures for packed bed and boundary conditions, whereas

the temperature distribution computation uses the recent computed converged flow

distribution. In case, if this strategy is not applied, and the system is solved simultaneously

for both distributions, then the temperature equation 2.8 for junctions, may give fluctuating

values for stream temperatures for some intermittent non-converged stream flows, and may

result in overflow errors.

The present model (GASFLO) is intended to be used as:

 an aid for operator's training, so it should respond to; varying inputs to boundary

conditions, changes in components' parameters e.g. different valve openings, fan

characteristics and leak clearances; and predict the flow and pressure distributions for

his guidance;

74

Chapter 3_______________________ Solution Algorithms

 a potential tool for a control system so that the flow and pressures at critical

components could be displayed and the operator be appraised of any emergency

situation before its occurrence and if possible could assist him for remedial measures;

and

 a tool for the optimization of the whole process to produce high quality product at

minimum cost. In this regard it will be incorporated into the heat distribution model

as a part.

Considering the above goals, the computation of a reliable flow distribution in the

network has primary significance and this is also needed for temperature distribution

computation. Accordingly the main emphasis in describing algorithms and solution procedures

would be, on the evaluation of flow distribution. Later it will be extended to interact with an

already existing heat distribution model INDSYS (see Cross and Englund 1987, Cross 1988),

which would require flow as well as temperature distribution of streams, so the requirements

of this later stage are also taken into account and necessary provisions for temperature

computation in algorithms are also made.

3.2 Air Flow Distribution Computation

In section 1.1 an overview of existing algorithms for the network computation is

given. In section 2.4 the sub-models for the basic components of pellet induration networks

are discussed and conforming to their heterogeneous nature, the unit-based or device-centred

approach (section 2.3.4) is selected from the other available approaches.

The basic principles for the solution of the network remain the same, but the

algorithms described elsewhere are for nodal or loop methods, which are based on a process-

centred approach where the networks also had homogeneous components. Hence such

algorithms can not be applied here without modification.

75

Chapter 3 ____________________ Solution Algorithms

In practice, pellet induration system networks have multiple sources and multiple

sinks. Natural air being the flowing medium is sucked into the system by large fans and after

use it is pumped out to the atmosphere. Also some parts of the system are exposed to

atmosphere, from where the air can leak into or out of the system depending upon its pressure

at this location. The flow at each one of these leaks is not known and is to be determined.

Pressures and temperatures at sources, where the flow is sucked in, are known and have

ambient values. The installed instrumentation provides the values for the flows going out of

the system to the sinks through main pipes or stacks. Fans are used to pump out the process

gas, and this gas is being used for heat transfer from fired pellets to cool and wet pellets, so

it will have varying temperature, and also the pressure of gas at exit from the system will be

higher than atmospheric pressure. Hence the boundary conditions of our networks are :

 Fixed pressures and temperatures at source boundary nodes

 Fixed flow rates of the streams entering sink boundary nodes

 Fixed pressures and temperatures at atmospheric nodes adjacent to leaks, where the

air is being sucked into the system

 Fixed temperatures of process gas at packed beds

All these values of state variables along with the other component related data will be

fed in as parameters for a particular run of the simulation. The model then predicts the values

of state variables; pressure, flow and temperature; for all components of the network.

3.2.1 Mathematical Formulation

Here we formulate the above stated airflow distribution problem in terms of

mathematical equations. Any single-source network of NTNDS total nodes, would have NTNDS -

1 branches or streams in its tree, and if there are NTSTR total streams in the network then

there would be NTSTR - NTNDS + 1 fundamental closed loops and same number of cotree

branches. In pellet induration system networks there are atmospheric nodes, which have fixed

76

Chapter 3 ___________________ Solution Algorithms

pressure, thus for NATM atmospheric or fixed pressure nodes there would be NATM pseudo or

open loops each one linking the respective atmospheric node to the reference or source node.

Hence the total number of fundamental loops would be NTLOOPS, where

_ \7 _ \J j. / 4. \7— ^TSTR "TNDS ^ ^ t- IVATM

As the pellet induration system networks are multiple source and multiple sink

networks, for NSRC sources, the total fundamental loops would be

The nodes can be categorised as internal and external nodes according to their

connectivity (see section 2.2.3). The internal nodes correspond to the pipe junctions and zone

regions whereas the external nodes are sinks, sources or atmospheric nodes. At internal nodes

the Kirchhoff s Current Law (KCL) must be satisfied. The number of nodes in these

categories are related as

or

/Vrvnc " *»«»/" - iVATM = ^V/VT ' ™SINK

So total number of fundamental loops in a NSRC network would be

NTLOOPS

To compute flow distribution in the network, we would solve

KCL equations for all NIffT internal nodes i.e.

77

Chapter 3 Solution Algorithms

Nrsnt
a. F = 0 for i = \ 2 N"ji * i v Juf J 1 »^»---^/Afir

1=1

where a, , is an element of node-stream incidence matrix and F, is flow in the ith

stream; and

 Kirchhoff s Voltage Law (KVL) equations for all NTLOOPS fundamental loops

b AP = 0 for I = \ 1 N un ^ ri u Jur l L >^' •••" TLOOPS

where bt , is an element of loop-stream incidence matrix and AP, is pressure drop in

the ith stream.

The stream flow F, and pressure drop AP, in each stream are related by respective

stream components' mathematical models i.e.

NCOMP

K=l

where iff, represents the overall function of the ith stream, (j)^, corresponds to the Kth

component (mathematical model) of the ith stream and NCOMP is number of components in the

ith stream. As discussed in section 2.4, these component models are non-linear and

heterogeneous by nature. In fact for some components §Ki is equivalent to a set of equations,

whose complexity depends on the nature of the component and the physics embedded into

its model. These models are completely described in section 2.4.

78

Chapter 3_______________________________ Solution Algorithms

Now to determine the airflow distribution in the network, equations 3.3 is substituted

in equation 3.2 and total of NTSTR - NS1NK equations (formed by equations 3.1 and 3.2) are

solved to find flow in NTSTR - NSINK streams i.e. all streams of the network less the streams

connected to sinks, whose flows are known as boundary conditions. Knowing flows in all

streams and pressure at the source nodes (which is another boundary condition), equation 3.3

plus the network connectivity (i.e. information about the path linking the respective node to

the source), we can provide the pressure at each of the internal node.

3.2.2 Open and Closed Networks

The networks, in general, can be of two types:

Open Networks: Networks which do not have any loop or mesh, are named as open

networks. These transform to tree type structure, with source at the route node and sinks at

leaf nodes. Their solution is straight forward and can be described by the following steps:

Step 1. As the flows at the sinks are known, using Kirchhoff s current law (KCL), at

each of the internal nodes the incoming flow can be computed as sum of out

going flows;

Step 2. Knowing the flow in all streams of the network (by Step 1) and pressure at

source node; the pressure at downstream end (or down-end) of each of the

streams leaving the source node can be computed. These down-end pressures

become the node pressure for the respective successor node and upstream end

(or up-end) pressures for the streams leaving these nodes. Then the streams at

next level are picked up and computed. This process is repeated until all the

streams of the network have been exhausted;

Step 3. Knowing the flow in the network streams and temperatures at source node and

of process gas at packed beds, the temperature of out going stream of each of

the nodes can be computed.

79

Chapter 3 Solution Algorithms

The computation of the flow distribution (step 1) is carried out in sink to source

direction that is the direction opposite to the natural flow; whereas the pressure and

temperature distributions (the steps 2 and 3) are computed in source to sink direction.

If the network is composed of multiple sources, then it could be treated as multiple

single sources networks, each having a tree structure and the above computational procedure

can then be applied to each one of them.

f02 Bdy-2

R02

b01

R01

p04

Bdy-2
Sink

bOi

p03

—O R02

s03

R02

0 R01

p01

Bdy-1

p02

101

Bdy-1
O

p02

p01 f01

s01

Bdy-1
Source

(a) (b) (c)

Figure 3.1 Single zone open network; (a) Schematic (b) Stream and node type
components and (c) Directed graph of nodes and streams

To illustrate above procedure for computation, in Figure 3.1, the simplest possible

network, comprised of single zone is presented. FanfOl sucks in air from the atmosphere (i.e.

Bdy-1 or source node), it passes through pipes pOl and p02, enters to region R01, which is

treated as node, because mixing of different streams can take place here if there are leaks

from adjacent zones or atmosphere. Then it passes through packed bed bOJ, region R02, pipe

p03 and fan/02, which pumps it out of the system to atmosphere, treated as Bdy-2 here. The

80

Chapter 3 Solution Algorithms

schematic is shown in Figure 3.1 (a), whereas in Figure 3.1(b) all the stream type components

are presented by lines and node type components are presented by circles. The components

linked serially, which have the same flow and lying between the nodes (regions and

junctions), are further combined into streams and represented by lines, sOl, s02 and s03. Also

the direction of flow is allocated to every stream. The result is a directed graph of streams

and nodes, and is shown in Figure 3.1(c).

As mentioned earlier, the pressure and temperature values are given at the up-end or

source nodes whereas flow values are provided at down-end or sink nodes. In this simple

network Figure 3.1(c), the flow in s03 is given, so by Step 1, execution of KCL at nodes R02

and R01 can determine the flows in streams s02 and sOJ respectively. As the pressure at

source node, i.e. at Bdy-1 is given and knowing flow in sOl, we can use Step 2 to determine

node pressure at its downstream end. Similarly pressures at other nodes can be found.

The evaluation of a stream involves sequential execution of mathematical models of

its basic components, in order of their connectivity. For example the evaluation of sOl, will

in fact be composed of computation of pipe model for pOl, fan model for JO 1, and pipe model

for p02.

In practice open networks are not as simple as this, but they can always be

transformed into a tree structure, where leaf nodes correspond to sinks and the root node

corresponds to the source node. The open networks do not involve any loops, so only one

iteration would be required to compute flow, pressure and temperature distributions.

Closed Networks: Networks having loops (or circuits or meshes as called by different

authors) are called closed networks. The definition of loops vary from author to author and

also it is application dependent. For example, Sargent 1978, defines the loop in directed graph

only if the direction of constituting arcs forms a loop, whereas Osiadacz 1987 considers the

original graph rather than the directed graph, because for distribution networks the direction

81

Chapter 3_____________________ Solution Algorithms

of flow may reverse in some streams during computation. We adopted the latter convention,

as the feed back loops of former type are less likely in pellet induration systems. In our case,

we define a loop as a combination of any two alternate paths (where a path is a combination

of consecutive streams) connecting two distinct nodes i.e. having common start and terminal

nodes. In other words, to determine loops, we consider the equivalent graph (the one without

any directional signs) of the directed graph.

In general a connected network with multiple, say NSRC, sources will in fact, have

NSRC1 pseudo loops, as dealt with by Boulos and Wood 1990 and Bhave 1990, so it will be

treated as a closed network. Our source node notion is the same as the reference node adopted

by Boulos and Wood 1991 and other researchers in hydraulic networks.

The solution of networks involving loops is problematic and requires an iterative

approach. Since virtually all practical networks have loops, any general solver should be able

to cope with them. To see this increased complexity we consider the simplest possible

network with one loop.

In pellet induration systems, the provision for alternate paths to process gas supports

the process in many ways. It enables operators to by-pass a zone in case of emergency, as

well as to control the flow and pressure distribution in different parts of the network for

optimal running of the system. We can introduce a loop in the previously described open

network, by connecting a pipe by-passing the zone. This will introduce two junctions J01 and

J02 and three more pipes to the system. The schematic for this new setup is shown in Figure

3.2(a).

This new network can be similarly transformed to a directed graph of streams and

nodes. Now as the number of nodes has increased so the number of streams would also

increase proportionately. However, at nodes R01 and R02 there are no leaks or other flows,

so p03, R01, bOl, R02 and p05 are embedded in a single stream s02, whereas s03 consists

of a single pipe p04. Now J01, s02, J02 and s03 form a single loop. As a convention we take

82

Chapter 3 Solution Algorithms

Bdy-2

R02

b01

R01

Bdy-2 Bdy-2
Sink

p04 b01
—(JR02

p04 s03

Bdy-1
Bdy-1
Source

(c)

Figure 3.2 Simple closed network with one loop; (a) Schematic (b) Components in stream
and node form (c) Reduced directed graph of nodes and stream with a loop

the clockwise direction as positive direction for the loop.

For solution of this closed network we have the same boundary conditions, i.e. flow

at sink and pressure at source, are known. Likewise the geometrical data of pipes, pellet and

bed data, fan characteristics etc are also specified.

For a network solution the flow and pressure distributions must satisfy the equation

3.1, 3.2 and 3.3 or namely

i. The Kirchhoff s current (KCL) law at all the internal nodes (i.e. the nodes excluding

the boundary nodes) of the network;

ii. The Kirchhoff s voltage (KVL) law for all the loops of the network;

iii. The pressure drop in any stream should be governed by its respective constituent

components' models.

83

Chapter 3_____________________________ Solution Algorithms

In the literature a wide variety of methods of solution have been described (also see
section 1.1); Hardy Cross 1936, Batey et al 1961, Jeppson 1976, Boyne 1970, Fincham and
Goldwater 1979, Goldwater and Fincham 1981, Wood and Rayes 1981, Daugherty et al 1985,
Osiadacz 1987, Nielsen 1989, Bhave 1990, Boulos and Altman 1991 and Turner et al 1991
represent some of the main approaches. Goldwater and Fincham 1981 has compared about
20 of the then existing computational models for the simulation of natural gas networks,
whereas Fincham and Goodwin 1988, have concentrated their attention on the comparison of
underlying methods used in these codes for simulation of natural gas transmission and
distribution networks. Nearly all of these methods used a process-centred approach, and most
of them solve the network using matrix notation, whereas we are interested in solving the
network according to device centred or unit base approach, for the reasons mentioned in
sections 1.2,1.3 and 2.3.

To solve the closed network shown in Figure 3.2(c), the flow in s04, say Fso4, and
pressure at Bdy-1, say PBdy.j, are known, and we have to evaluate flows in streams sOl, s02
and s03 and pressures at nodes J01 and J02 such that they satisfy the KCL and KVL
constraints. The second of the laws can be stated as the pressure at nodes should be unique
and independent of the path followed for computation; that is, whether pressure at J02 is
computed via s02 or s03 it should have same value.

The solution of this network can be obtained by carrying out the following steps:

i. Assume some non-zero, positive flow in stream s03, say Fs03 , applying KCL at node
J02 we compute

F = Fra02 rs04

and similarly for node J01 we have

84

Chapter 3 Solution Algorithms

F = F + Fr r + r 303

ii. As PBdy,j is known, using the recently computed flow Fs01 , we can compute sOL This

will give us pressure PJOI at node JOL

iii. Repeating (ii) above for streams s02 and s03 we can determine the pressure at node

J02, say it has values P'J02 and P"J02 respectively. If these two pressures are equal or

within a specified tolerance then we are done and can compute stream s04 to complete

flow and pressure distributions of the network. But if these are NOT equal then

either

P'J02 > P"J02 => A/^ < &Ps03 that is contribution of anti-clockwise stream,

s03, is greater than the clockwise stream, so the assumed flow Fs03 should be

decreased by an amount AF to adjust this inequality, and by a similar amount

the Fs02 should be increased to satisfy KCL at nodes

or

P'J02 < P"jo2 => APJ02 > AP505 , which is reverse of the previous case, implying

that, the clockwise stream s02 is dominant, so to adjust the inequality the flow

in this stream Fs02 should be decreased.

iv. The determination of correction factor AF is crucial for ultimate convergence, it can

be done by a trial and error method for a simple network like the above example but

it would be not practical for any real multi-loop network. So we link AF to the overall

pressure drop across the loop to make it self-correcting. In this case when P'J02 >

P"J02 , the overall pressure drop ZfAF) in loop, obtained by summing up pressure

drops in the direction shown for loop, would be negative. Suggesting that the anti-

clock wise contribution is dominant, so the flow in s03 should be decreased.

85

Chapter 3________________________________Solution Algorithms

The components comprising the streams s02 and s03 are pipes and packed bed,

in the latter case, the pressure drop AP has quadratic dependence on flow, which may

be approximated as

AP = /(F2) = KF2

where K is stream or component dependent constant. Define AF as a corrective

fraction of loop flow (« F), such that when it is added to the previous flow value

the new flow satisfies KVL i.e.

N N
AP. = £{*,(F,. + AF)2 } =0

i-l i=l

where N is total number of streams comprising the loop, i.e. 2 in this case.

Now expanding the squared term and ignoring second order terms in AF (assumed

very small when compared to F) and re-writing we get

N

AF = --^
N N

i-l i-l

The flow direction is taken into account while evaluating overall pressure drop

in the loop. If the flow direction in the stream is along the loop direction then it will

have positive sign, and a negative sign for stream flow direction opposing loop

direction. The negative sign on the right hand side of above equation takes care of the

increase or decrease of flow in respective streams. The flow direction can be

introduced into the above equation with the help of a loop-stream incidence matrix,

(section 2.2.3) and the corrective flow for anyjth loop of any general network can be

written as

86

Chapter 3 Solution Algorithms

N

AF, = --±

where bjf is element of loop-stream incidence matrix, with value +1 if ith

stream has same direction as jth loop; if these directions are opposite then it is -1.

v. Knowing AFy the flows F, corresponding to streams of the jth loop can be updated as

Since we have single loop, say loop 1, comprised of 2 streams s02 and s03\
and by the shown flow directions, b]s02 is +1 and bls03 is -1, then the flows will be

new j-,old
s02 = FJ02

,new

The steps (i) to (v) will be repeated with this improved flow distribution until the

pressure distribution satisfying KVL is achieved for all loops.

Consider the convergence behaviour of the stream flows and node pressures by above

procedure. Suppose Z (AP) is negative, i.e. counter-clock wise effect is dominant; then

computed AF by step iv would be positive, and so for next approximation of flow, step v

above, Fs02 will increase and Fs03 will decrease by amount AF. If Z (AP) is positive, then the

effect will be reversed on s02 and s03 flows. This shows that the algorithm is self-correcting

and will lead to a converged solution.

87

Chapter 3________________________________Solution Algorithms

For practical networks, having multiple loops, this incremental flow will be computed

for each of the loops, and the corresponding streams' flows updated. Streams participating in

more than one loops will have an effect from each one of these loops. This flow updating

would also effect the flows of the other streams in the network.

In the pellet induration system networks, the streams have components like fans, where

this quadratic relationship of flow with pressure drop is not valid, so the method described

above cannot be generalised. Also to cater the future needs of the model, it is intended to

provide the facility to add more components to network, whose nature of pressure-flow

relationship is unknown at this stage. So we look forward for some method which could

correct flow distribution in the network more efficiently for any generic stream components.

Instead of depending on pressure drop - flow relationship, it should depend upon the values

of state variables at the ends of the network components.

3.2.3 Existing Solution Methods and Pellet Induration System Network

In sections 1.1.2 and 1.4.1 the existing methods for the solution of flow networks are

discussed. All of these methods assume an explicit, well defined and uniform relation between

pressure drop AP, and flow F{ for all streams of the network. This relation is dependent on

the nature of fluid (e.g. air, water or natural gas), geometry of the stream component,

operating conditions (e.g. low, medium or high pressure networks for natural gas distribution

and transmission); and manipulated somehow in the development of solution method. One

such relation for hydraulic networks is exponential or power formula i.e. hf = KQ" where hf

is head loss or pressure drop AP, Q is flow same as F in our notation, and K and n are

constants having specific values for Hazen-Williams, Manning or Darcy-Weisbach equations

(Jeppson 1976). The linear theory method transforms this nonlinear relation into a linear

equation such ashf = [K (?„„"''] Q where Qprtv is previous iteration value of flow and solves

it iteratively (Wood and Charles 1972). Similarly this relation is used for evaluating the loop

flow correction AF in the Hardy Cross method similar to the one shown in section 3.2.2, and

for Newton-Raphson method to evaluate the Jacobian matrix.

Chapter 3 _______________________________Solution Algorithms

According to the device centred approach adopted and the formulation described in

section 3.2.1, the network components are modelled independently and their behaviour

determines the behaviour of the respective streams. Though the component models are well-

defined and explicit, the relation between the pressure drop AP, and flow F, varies from

stream to stream and depends on the components forming the stream. For example the stream

sOl (Figure 3.2) consists of components pOl, fOl and p02 so the equation 3.3 corresponding

to sOl will contain the mathematical models of all these three components whereas stream s03
consists of only one component i.e pOl and hence equation 3.3 for this stream will contain

the mathematical model of pOl only.

We aim to: (1) solve the component models and hence the streams as exactly as

possible by computing the mathematical models specified in section 2.4, (2) facilitate the user

to configure the network and hence define the streams' composition of his choice, and (3) add

further network components to the system at later stage whose models are not known at this

stage. For the accomplishment of these aims, the explicit evaluation and direct substitution

of equation 3.3 into other equations is avoided and instead a hierarchical approach (mentioned

in section 1.4.2) is adopted. According to this approach, at the higher level the network is

solved for Kirchhoff laws and at the lower level the streams are computed by solving the

mathematical models for their constituent components. The interaction between the two levels

is only by passing the values of the desired state variables i.e. node pressures and stream

flows. This algorithm is explained in the next section, and the reasons why other existing

methods cannot be used at least at the higher level will be discussed at the end of next

section.

3.3 Primary Algorithm for Air Flow Distribution Computation

Pellet induration systems have by-pass paths for process gas and also the

interconnections between the different zones are such that practically loops are inevitable.

Secondly, the components are heterogenous by nature, so the assumption i.e. the quadratic

89

Chapter 3 Solution Algorithms

relation used for the derivation of AF (described in section 3.2.2) is not valid for general

streams comprised of the feasible range of components. The example of single zone although

simple provides a clue, that if any real network is reduced to an open network then it can be

easily solved for flow and pressure distribution. Further, since it was a closed network using

the pressure distribution at nodes the flows in the torn (i.e. independent or chord) streams can

be found. Residuals at nodes could then be computed using KCL. These residuals are used

systematically for the correction of flow distribution in the network. This procedure of flow,

pressure distribution computation and its correction is carried out iteratively until the node

residuals become less than the specified tolerance. This converged flow distribution of the

network, gives the pressure distribution which satisfies the Kirchhoff s voltage law, as it gives

the unique node pressure to every node, independent of the path followed for its computation.

The flow distributions can be further used to evaluate temperatures in all the streams of the

network.

The algorithm is described in Figure 3.3. It is simple and very efficient. To explain

its working, we consider a typical pellet induration system shown in Figure 2.3. Applying

graph theoretic notation, the system can be presented as connected graph of E edges and N
nodes, which is shown in Figure 2.5. This connected graph, (E,N), can be partitioned into tree

and co-tree sub-graphs (E^N^ and (Eeo^^Ne0mlm) respectively. The edge and node sets are

such that Etree u Eethtm = E and E^ n Eeo^m = <)> that is an edge can only belong to either

a tree or its co-tree; whereas the node set N^ u Nethlne = N and N^ n Nco.tree * <j) means that

a node can belong to either or both of these partitions. With out going into details how these

partitions were obtained, which will be covered later in section 3.5, the tree and co-tree

partitions of the original graph of the system are shown in Figure 3.4.

Practically, for a network with multiple sources, say /ijrc , the tree structure would in

fact be a Forest, having nsrc trees as its components, one for each of the sources. Whereas the

co-tree would be comprised of all those edges of the network which are not included in any

of the trees. In the following explanation, the directions of computation from 'sink to source'

or vice versa, would refer to the sinks and source of the respective tree of the forest. Also the

90

Chapter 3 Solution Algorithms

Algorithm for a General Network Computation:

Begin

1 .0 Read-in
a) Network Configuration, Components' data and their connectivity
b) Boundary Conditions: Pressure & Temperature for Source and Atmospheric

nodes, and Flows for Sink nodes
c) Computational controls; Tolrnc, Maxltr etc

* 2.0 Generate Tree and Co-tree Structures for the network

3.0 Initialize Co-tree edge flows F°Co.tnt and internal node loads Sg, = 0

4.0 Compute Flow in all Tree edges, F°Tnf, satisfying Kirchhoff's node law (KCL),
{Sink -» Source direction}

ITERATE K = 1
5.0 Compute Pressure at all Tree nodes, P KTne, using edge flows F*'1 Tn0 {Source ->

Sink direction)

6.0 Compute Flow in all Co-tree edges, FKCo.tn9, using recent node pressures P KTn9

7.0 Compute Residuals for all internal nodes; f K, = ^anFK, where a/y is an element of
node-stream incidence matrix

W (lfKil < Tolrnc .or. K > Maxltr) for all internal nodes, go to 12.0

t8.0 Compute overall error in the network, 8Q K, for Kth iteration

t9.0 Distribute the error, 60 K, proportionately to each of the internal nodes 8q,

1 0.0 Compute Corrective flow &FKTne in Tree edges, using 8q, as node loads {in Sink
-» Source direction}

1 1 .0 Compute Flows in Tree edges; FK*1TrM = F*Tn9 +

Increment K = K + 1 ; go to 5.0

12.0 Compute Temperatures for all the edges of network, T, using converged Flows F*

1 3.0 Output Flow, Pressure and Temperature distributions for the network

Stop;

* This algorithm is described separately.
t The respective equations are given in the text.

Figure 3.3 The algorithm for computation of pellet induration networks

91

Chapter 3_________________________________Solution Algorithms

mention of tree computation would imply to the computation of the forest, treating each of

the trees one by one.

Boyne 1970 described a similar method, firstly he named it as new method but later

referred it as Secant method, as the flow correction was based on the well known secant

method. He applied this method to a number of real networks used for natural gas distribution

and transmission and claimed that it gave converged results for these tested networks. So we

use his proposed flow correction equations. He used Travers algorithm (Travers 1967) for

extraction of branch system (or tree structure in our terms) from closed network, which is

based on the resistance offered by the respective pipes and the pipes having high resistance

are declared as independent (or torn) pipes. In other words, it tries to reduce the distribution

network into an open (or tree) network, with minimum flow resistance. For a multi-source

network, Boyne declared one source as primary and others as secondary sources and selected

the pipes adjacent to secondary sources as independent pipes. He was able to accelerate the

convergence of the nodal and loop methods, using extrapolative iterative methods like

Newton-Raphson method, as he solved the network as a linear system of equations of the

form Ax=B, but was not able to accelerate convergence of secant method. Boyne used a

process centred approach and stated that the secant method, would have a storage requirement

of 8.E+6.N.DEGmax for a network of E edges and N nodes and DEGmax as maximum degree

of a node in the network.

The computational procedure according the present algorithm, with the boundary

conditions of known flows at sinks nodes, and known pressures at atmospheric and source

nodes; is described in the following paragraphs.

In the 'initialization' i.e. step 3.0 of the algorithm (Figure 3.3), we assign an

approximate flow to each of edge of the co-tree. Experience has shown that, if these flows

are unique to each of the edges, the algorithm converges faster. These flows are treated as

loads at the respective nodes whilst computing the flow distribution in a tree. The sink node

flows are known as a boundary condition, so starting from the node upstream to the sinks,

92

Chapter 3 Solution Algorithms

b) Cotree

Figure 3.4 The Tree and Co-tree partitions of the described network

we compute each of the tree nodes for Kirchhoff s current law, KCL, and compute the flow
in the tree edge entering the node; by the very definition of a tree, there is always one such
edge. We continue the computation, until the source node or the root of the tree is reached.
This procedure is repeated for each of the trees in the tree structure. Since the source node
pressure is known, as a boundary condition, and flow in the tree edges have been evaluated;
so the pressure at all tree nodes can be evaluated, by executing the respective tree edges in
turn from source to sink direction. Thus at the end of step 5.0 of the primary algorithm (see
Figure 3.3), we have computed pressure at every node of the tree. Indirectly the node pressure
for each of the co-tree nodes is known (see Figure 3.4), so each edge of the co-tree could be
executed, to find its flow, as both of its end pressures are known.

In step 7.0, we use the recent flows for all the edges of the network, (irrespective of
their association with a tree or co-tree) computed in previous steps, and evaluate the residual
/., for each of the internal and atmospheric nodes (i.e. nodes other than boundaries of the
system i.e. source, sink). According to KCL these residuals should be zero for the internal

93

Chapter 3 Solution Algorithms

nodes, but if this is not, then it predicts the deviation from the desired flows and can be

treated as the error. The flows in a tree are improved systematically so as to reduce this error

to zero or to a value smaller than a specified tolerance, say Tolrnc. For this improvement we

use the equations proposed by Boyne 1970. The derivation of these correction terms is given

in Appendix-B.

After evaluating the residuals, at the Kth iteration,/* for all internal and atmospheric

nodes of the network, we compute overall error in the network using the following equations

E i/,1 1
= i>——— for K = 1

A<?* = — for K > 1

E \tf - f~l

where N is number of total internal and atmospheric nodes. This overall error is

distributed on the respective nodes using

N

where ff is the residual or net flow at ith node at Kth iteration, so it could be either

positive or negative. The negative sign in the equation takes care of increase or decrease for

the corrective flow in the tree. In step 10 of the algorithm, the corrective flow is computed

in the tree by assigning §q* as the load to the ith node of the tree with the usual convention,

that is, if it is positive the flow is into the node and if negative the flow is out of the node,

and ignoring all other boundary (sink) flows. Using KCL all nodes are executed in the sink

to source direction and the incremental flow in each of the tree edges, 6Ffre/, is computed.

94

Chapter 3________________________________Solution Algorithms

This is added algebraically to the existing flow of the respective edge, and the corrected flow

in tree is evaluated, as given by step 11.0 of the algorithm. The convergence of the method

for a real-life system is shown in Appendix-C.

The steps 5.0 to 11.0 are repeated, until a converged flow distribution is achieved.

These flows are used to compute the temperature distribution in the network. The computation

of temperature distribution uses the same algorithm, as for pressure computation, and treats

the temperatures of process gas at sources and in packed beds as parameters for simulation.

Like pressure distribution, the temperatures of process gas at nodes, are found using the tree

branches. These node temperatures are input to co-tree branches to find the temperature at

their down stream ends, which are used to evaluate the net heat entering or leaving the node.

The iterations are continued until the net heat energy entering an internal node is zero or less

than a pre-set small value. These computed distributions will satisfy the condition, that all

edges meeting at a node should have same temperature and pressure values as that for the

node.

Using this method, at the higher level only the KCL equations which are linear in

flows are solved simultaneously whereas KVL equations (i.e. equation 3.2) which, after the

substitution of equation 3.2, become nonlinear in flow are not solved directly. Instead, this

method systematically updates the flows in tree branches so that the KVL equations are

satisfied. At the lower level streams are computed through either tree or cotree structures i.e.

steps 5.0 and 6.0 of the algorithm (Figure 3.3) where nonlinear models of the respective

components are solved and the computed state variable (node pressures or stream flows)

values are fed back to the higher level. The recent flow values are used to generate the

correction term and to update the tree flows for next iteration. The nonlinearity due to loops

is resolved by this higher level iteration. The direct substitution of equation 3.3 into equation

3.2 is avoided to conform with the device centred approach and thus for the sake of

heterogeneity and genericity of network components and generality of streams. However, this

algorithm restricts the use of the other standard methods such as linear theory or Newton

Raphson methods at the higher level, as they require the explicit uniform relationship for

95

Chapter 3_____________________________ Solution Algorithms

stream pressure drop AP and flow F. Although, this is a shortcoming of the proposed method

but it is outweighed by the benefits provided by it which are described in sections 1.4, 3.9,

4.5 and 6.1.

From the described primary algorithm the significance of tree and co-tree structures

is obvious. In the following sections we will first briefly review the state of existing

algorithms, generally for loop detection, tree and spanning tree generation; then, why these

were not useable in our case; and lastly the development of secondary algorithms for

partitioning of network into tree and co-tree structures will be shown.

3.4 Existing Algorithms for Loop Detection and Tree Generation

In the last four decades the graph theory has widely been used in many diverse fields,

the algorithms for loop detection and tree generation are the back-bone to the solution

approaches. These have been developed for a variety of domains of applications. These

algorithms have many common features and a noticeable duplication of implied concepts. It

is difficult to make a detailed comparison covering all or most of the related algorithms due

to their vast application domains and extensive research therein. Instead some of the main

algorithms from few of the fields, which contributed to the development of the ones described

in next section, are briefly discussed here.

3.4.1 General Algorithms :
Loop detection and spanning tree generation algorithms are covered by nearly all

books on Graph Theory, Combinatorial Mathematics, Data Structures and Network

Algorithms. For example Deo 1974, Knuth 1973a & 1973b, Tarjan 1983, Syslo et al 1983

and Ahuja et al 1993 have addressed these topics to sufficient details.

96

Chapter 3 Solution Algorithms

Deo 1974, has given a detailed bibliography on the subject. A network can have many

trees and spanning trees. So to impose some restriction in the selection of certain spanning

trees, usually a weight is assigned to each edge of the tree. Then a spanning tree having

minimum weight is defined as (the shortest or) minimal spanning tree. He stated the Kruskal,

Prime and Dijkstra algorithms for the generation of minimal spanning tree and concluded that

Kruskal is not as efficient as the other two, because it required the pre-ordering of edges in

non-decreasing order of their weights, which is computationally expensive for large networks.

Whereas, the Prime and Dijkstra algorithms select the shortest (one with minimum weight)

stream among the incident edges of the node. This is done by tabulating the weights in a

node-node adjacency matrix and manipulating that matrix. Deo 1974 stated his own five step

algorithm for spanning tree generation, which is quite similar to the one given by Traver

explained below.

3.4.2 Algorithms related to Directed Graphs :
The directed graphs, where all edges have a fixed direction, arise from many fields,

e.g. fluid flow networks (which will be described in next subsection), solution of large sets

of algebraic equations, chemical engineering flow sheeting problems and activity scheduling

and critical path analysis problems.

Solution of a large set of equations, specially algebraic equations, since the partial

differential equations PDEs and ordinary differential equations ODEs also reduce to algebraic

equations after discretization, can be obtained by partitioning it into smaller sub-sets. These

(sub-)sets can be computed individually, requiring lesser storage because of reduced problem

size. Exploitation of consistent solution procedures and which variable to be computed from

which equation, depending on the nature of equations can lead to an efficient computational

strategy. These sets can be thought as a modules or programming procedures and the

variables required and being computed by a module as its parameters. If the number of

variables are equal to the number of equations then the module can be computed

independently, but if the number of variables, say v,, are more than the number of equations,

97

Chapter 3 Solution Algorithms

say n,-, then values of the extra, v, - «,, variables would be required for the computation of

respective module and their availability will be a pre-requisite for the module. The solution

procedure can be represented by a directed graph, where the nodes correspond to the modules

i.e. sets of equations and the edges showing the variables. The edges directed towards the

nodes are the required input variables whose values are meant to be known, either as an initial

guess or from previous iteration, and the edges leaving the nodes correspond to the variables

computed at the node i.e. output of the node.

The criteria for partitioning of the original set to smaller subsets is crucial for

efficiency of the solution and is discussed by Sargent 1978. If the resulting graph is acyclic

that is it does not contain any cycles or directed loops then these modules can be computed

sequentially and do not require any iteration, but in practice, the network does normally

contain cycles. These directed cycles are similar to the cycles occurring in activity scheduling

problems, where one node is having input from another which itself is dependent on the

output of the considered node. Indeed these cycles point to the strong coupling of the

equations involved in the concerned modules. To find out some optimal solution strategy,

which gives the precedence order in which the modules or nodes will be computed, first these

directed cycles would be torn-off to get an acyclic graph. The set formed by these torn edges

is called tear set, and the process as tearing (Sargent 1978, Motard and Westerberg 1981 and

Montagna and Iribarren 1988a) or decyclization (Deo 1974) of directed graphs . Then the

network can be solved iteratively, by first assigning some initial values to the variables

associated with these torn edges, and on computation of respective nodes these variables could

be replaced by their computed values in subsequent iterations.

This approach is well used for the solution of chemical engineering flowsheeting

problems. Each physical component or unit of the plant, has a mathematical model which has

a corresponding set of equations and can be represented by a node. It is usually referred as

sequential modular approach in the literature as discussed in section 1.3.

98

Chapter 3___________________________ Solution Algorithms

The overall computational efficiency of the system is dependent on the choice of the

tear set. Similar to minimal spanning tree algorithms a weight, which in fact is a measure of

some physical quantity related to computational efficiency say e.g. the difficulty involved in

computing the corresponding variable from the respective equation, is assigned to each edge.

Lee et al 1966 stated that the tear sets with minimum weight give a precedence order which

results in the fastest computation. The tearing algorithms to determine the optimal tear sets,

have been discussed by Lee et al 1966, Pho and Lapidus 1973, Sargent 1978, Motard and

Westerberg 1981 and Montagna and Iribarren 1988a, 1988b.

The precedence order for computation remains fixed for multiple runs of the process

simulation package for a particular plant so the tearing can be done once and stored and read

by the later runs. This pre-processing facility can result in significant savings in computational

time (Montagna and Iribarren 1988a).

3.4.3 Algorithms related to Fluid Flow Networks :
In reference to fluid flow networks the loop detection and tree generation algorithms

have been described by many authors. The storage requirements and computational efficiency

of all the methods using loops information for their computation, is directly related to the

number and nature of edges (pipes) participating to these loops. The increase in the number

of edges will increase the number of non-zero elements in the loop incidence matrix, which

will increase the storage requirements. Also there will be more non-zero elements in the

related Jacobian matrix for Newton type methods whose generation and solution will require

more time. Hence considerable emphasis has been given to the study of the nature of

generated fundamental loops and their selection among these generated ones. Fundamental

loops (or basic or independent loops) are the loops which does not include any other loop;

and these can be generated from the spanning tree and co-tree information.

Voyles and Wilke 1962 tested different loop configurations for the solution of two

simple hydraulic networks using the Hardy Cross method and found that the resistance of

99

Chapter 3____________________________Solution Algorithms

pipes common to loops is related to the convergence of network. The loop configurations with

common pipes having lesser resistance require fewer iterations to converge.

Daniel 1966 indicated that the basic loops with minimum overlap will provide higher

efficiency for Hardy Cross method, as it would decrease the number of terms required for the

flow correction for each loop. He generated basic loops from the spanning tree, and indicated

that the optimal basic loop for a rectangular grid type network would be the individual

circuits but there does not exist any such tree which can lead to this set of basic loops.

Travers 1967 generalised the notion proposed by Voyles and Wilke, and developed

an algorithm which generates basic loops for natural gas and water networks, having common

pipes with minimal resistance. According to this algorithm all pipes are first sorted out in

ascending order of their resistances and put to a list. A pipe is picked up from the list and

included into tree if:

 one of its ends is already in tree and the other is not, or

 the two ends belong to different trees then the two trees are merged together to form

one tree including this pipe, or

 both ends are not in any of the defined trees then a new tree can be defined.

Otherwise, if both ends of the selected pipe are already in tree then inclusion of this

pipe will introduce a loop, so it is declared as chord (or independent pipe) and placed in co-

tree. The executed pipe is deleted from the list and procedure is repeated until all pipes have

exhausted. The so generated tree will have low resistance pipes and the non-tree or co-tree

pipes will have higher resistance. It would be a spanning tree if the original graph is a

connected graph otherwise it would be spanning forest i.e. collection of trees and so some

authors (e.g. Fincham and Goodwin 1988) have referred it as Forest Method. The non-tree

i.e. cotree branches, along with the tree branches can define the basic loops. This algorithm

is most commonly used for fluid flow networks e.g. Boyne 1970, Osiadacz 1987 and Fincham

and Goodwin 1988.

100

Chapter 3_________________________________Solution Algorithms

Welch 1966, has given the algorithms for loop generation based on incidence matrix

operations and claimed that this is more efficient method for large networks then the methods

based on common search.

Yevdokimov 1969, independently developed this approach (the generation of basic

loops from incidence matrices) further and has given algorithms for generation of cut-sets and

basic loops. He has given the parallel set theoretic formulation of these algorithms which can

manipulate directly the edge and node numbers for generation of basic loops and cut-sets. The

later formulation is easier to program, reduces the storage requirements and user input data

and is faster in computation. Whereas matrix formulation has a sound theoretical base and

straight forward proof for the validity of the stated algorithms. He mentioned that efficiency

of Hardy Cross method is influenced by the basic loops with minimum overlap and

simultaneously the lower possible resistance in common pipes. Whereas the efficiency of Co

ordinate Gradient Method (or Gauss Seidel Network method, which is an improved form of

Hardy Cross method) is dependent on minimal (resistance) spanning tree. He gave an

algorithm for minimal spanning tree generation using set theoretic formulation.

Fincham and Goodwin 1988 have provided the pseudo code for Traver's algorithm in

FORTRAN like IF ... THEN ... statements. They pointed out that the standard methods based

on depth first search or breadth first search, like the ones described by Osiadacz 1987, have

a time requirement of o(n2), and are not efficient for large networks; whereas the Travers

algorithm requires computing time of o(n Iog2n). Unfortunately, the resulting loops have

significant overlap, which is wasteful of storage for loop-pipe incidence matrix and slows

down the convergence of Hardy Cross method. They have given a loop reduction algorithm

which reduces this overlap between loops. This is done when original loops are generated.

As resistance is inversely proportional to the pipe diameter, so they use pipe diameters instead

of pipe resistance. They have provided pseudo code for this reduction algorithm and described

some interesting results about the dependence of convergence on the original spanning tree

generation. For instance the Hardy Cross method converged faster with the original loops

produced by some standard breadth first search algorithm then these were reduced using this

101

Chapter 3_________________________________Solution Algorithms

reduction algorithm. But the loops generated by Traver algorithm and then reduced proved

to be very efficient; i.e. small storage requirement and fast convergence. Most of the programs

developed by British Gas use this improved algorithm, that is initial loops generated by

Traver's algorithm and then reduced, for the generation of basic loops.

Osiadacz 1987 has given five algorithms for loop generation which are the most

widely used by gas network models, including Travers and the two versions of improved

algorithm used by British Gas. He computed the generated loops by each of these algorithms

and concluded the British Gas algorithms give the best loops with minimum overlap thus

resulting in the most sparse matrices and minimum resistance in pipes common to the loops.

Boulos 1989, has stated two algorithms for water networks, both based on breadth first

search. He categorizes the pipes as active, the ones whose both ends have degree two or

more, and non-active which have either one or both of the ends with degree less then two.

During search only active pipes are considered. In the first algorithm, all active pipes are put

to a list, the first pipe of the list is selected and its up-end node is marked as a terminating

node and down-end node as a start node. The breadth first search is started from the start

node and next level nodes are visited, and then from these next level nodes the further

incident nodes are visited. This fanning out process is continued till the marked terminating

node is accessed. Then the circuit formed is enumerated and the selected pipe, being

responsible for this loop is declared as non-active and the degree of its end nodes decreased

by one, which would trigger the pipes adjacent to the selected pipe and participating only in

this loop also to be non-active. So the list of active pipes is updated and search for next loop

is restarted. The procedure is repeated till active pipe list is exhausted. The second algorithm

is based on a spanning tree, where a pipe from co-tree is selected and its up-end is marked

as terminating and down-end as starting nodes, and breadth first search is carried out on tree

branches having active status. Loop is traced when terminating node is visited by search

mechanism, and enumerated. Like the other algorithm, the selected co-tree branch is the

declared as non-active and corresponding tree branches which participated to this loop will

also become non-active. This procedure is carried out for all co-tree branches. The second

102

Chapter 3________________________________Solution Algorithms

algorithm can incorporate the minimum resistance criteria but overlap in loops generated by

both of these would require some explicit resolution.

Wang 1982, described tree algorithms for the solution of mine ventilation networks.

In these networks the air enters from the entrances, circulates in the mine airways so that it

should always satisfy the velocity and concentration standards set by Mine Safety and Health

Administration. Each airway leads to a wall face i.e. the working area after that air is pumped

out through exits. He defined the set of all wall faces as cut-set and two trees. The up-tree

with respect to a reference entrance and down-tree with respect to a reference exit. Using

these trees he traced a critical path, which is the longest possible path and offers maximum

resistance. He optimized the fan locations and characteristics using this critical path.

None of the above reviewed algorithms is generic, instead these all are specific to the

respective application domain, method of formulation and the method used for solution. The

characteristics like low resistance spanning tree for natural gas distribution network using

Hardy Cross method, are not required by a mine ventilation network which are solved using

critical path method. These algorithms were designed to achieve different goals so when

applied to the same network, they produced different outputs (Osiadacz 1987). Also, in these

described networks all edges (or streams in our terms) had same equation relating pressure

drop and flow (only minor variation of some coefficients was needed from edge to edge),

hence its inclusion in tree or in co-tree had no significant computational constraints.

As mentioned in sections 1.3 and 3.4, the pellet induration system network is being

solved using two level hierarchical solution approach. At the top level the network is solved

for coordination or system variables to satisfy the two Kirchhoff s laws whereas at the lower

level the streams are computed to satisfy their constituent components' mathematical models

accepting coordination variables as parameters. Each stream has a variable number of

components, is different from the other streams and has its own computational constraints.

Like wall faces of mine ventilation networks, the packed beds in the pellet induration system

are important units, we want them to be in tree structure and these offer resistance higher than

103

Chapter 3________________________________Solution Algorithms

other components. As the used solution approach (section 3.4) required computation of flow

from a cotree branch when end pressures are given, in consequence the computation of a

multi-component streams will be computationally very expensive, so only single component
streams could be put in cotree. Likewise the leaks could be efficiently computed for flow,

when end pressures are given so these can preferably be placed in cotree, this is a
contradiction to Hardy Cross method requirements as leaks offer less resistance than pipes.

All these specific requirements for pellet induration networks necessitate the development of
another set of domain dependent algorithms. These are described in the following section.

3.5 Secondary Algorithms for Partitioning of Network into Tree and Co-
tree structures

The transformation of a pellet induration system (Figure 2.3) to a connected graph of
nodes and streams (Figure 2.5) using graph theoretic approach was discussed in section 2.2.3.
This graph theoretic representation will be used here, for the development and explanation of
the algorithms. In principle, the implementation details will be discussed in the relevant
sections of chapter 4, but for the sake of completion these have been briefly filled in where

required.

Graph theoretic representation (Figure 2.5) also clarifies the node and stream
incidence. The basic definitions of graph theory are intuitive and are given in section 2.2.3.

Further the 'level' of a node is its distance from the source node in terms of streams.
Referring to Figure 2.5, the node R02 is at level 2, whereas R06 and R07 are at the same
level 4. For a multi-source network, like the one shown in Figures 2.3 or 2.5, the level is sub
network dependent, and is referred to the respective source node.

For ease and computational efficiency the nodes and streams are assigned integral
numbers as identifiers. This is done by numbering the nodes sequentially, starting from a

source node and following the main paths towards the associated sink nodes. Any strategy for

104

Chapter 3 Solution Algorithms

this numbering could be used. The normal depth first search or breadth first search could be

good systematic approaches for the sake of consistency. The algorithms described below for

partitioning are independent of numbering strategy. These are mainly dependent on the node-

stream connectivity and stream weights and are aimed to result in same tree and co-tree

structures for a particular network. Preferably the atmospheric nodes should be stacked at the

end of the sequence. This has an advantage of generating smaller arrays for reduced graphs,

which will be discussed later.

The streams are numbered in the same order as nodes, keeping the streams comprising

of leaks at the end, to generate smaller (computational) loop indices and to accelerate the

execution for NO_LEAK option.

n Node number s Stream num

Figure 3.5 Nodes and streams re-numbered sequentially for computation

The numbered nodes and streams is shown in Figure 3.5. These numbers are used as

identifiers (or indices in case of linked lists) in all later computation. The primary algorithm

for solution of the pellet induration system (Figure 3.3) requires the network to be partitioned

105

Chapter 3_______________________________ Solution Algorithms

into tree and co-tree graph theoretic structures. The pellet induration networks are not very

big as compared to water or gas distribution networks. Although partitioning is possible

manually, it would require some insight by the user, concerning which streams should be torn

to exclude any cycles in the equivalent connected graph (the one without directed streams)

which would then be included in the co-tree structure. The above heuristics and rules of

thumb could be embedded into the algorithm to automate this partitioning and free the user

from pre-requisite knowledge of mathematical modelling or GASFLO's constraints. Fig 3.6

gives the outline of such an algorithm for tree and co-tree generation.

The stream related data is sufficient for the generation of incidence matrices and, as

such, the node data seems to be a duplication. In fact this has been used for validation of the

input stream data, otherwise the generated matrices would have been displayed and the user

would need to be asked to confirm and trace any of the connectivity errors. This dual entry

approach, compels the user to thoroughly sort out the data and check that the components,

especially streams and nodes, are consistently identified. For the simulation of a network, this

configurational program is run once and the linked lists generated by it are used for multiple

number of runs. This configuration needs to be exact, hence it is worth putting slightly more

effort in the data preparation, rather than computing or simulating a wrong network.

The stream weight plays a crucial role in the algorithm, it signifies the priority of the

stream to be included in the tree structure. In other words it shows, how effective the stream

is from the pressure computation point of view, as the tree would be used for computing

pressure distribution. The assignment of a weight to streams is also dependent on the

implementation state of GASFLO. For example, the present implementation assumes that the

cotree streams should be single component streams, later on we can relax this restriction for

multiple components cotree streams. This is merely for computational efficiency reasons.

The co-tree branches' execution, computes the flow, for given pressures at the end

nodes. It is computed iteratively until a converged value of flow is obtained. If a stream is

a multiple component stream, then the pressures for all intermediate interfaces of components

106

Chapter 3 Solution Algorithms

Algorithm for Tree and Co-tree Generation;

Begin

1.0 Read-in
a) Stream and Node data, their composition and connectivity in the Network
b) Source and Sink nodes' association

2.0 Generate Node-Branch & Node-Node incidence matrices of the directed Graph Gd

3.0 Assign weight to streams w.r.t. to their composition, connectivity and other
constraints

4.0 Generate reduced directed graph G'd from Gd ; by deleting zero weight streams
(comprised of Leaks only) and, the resulting disconnected nodes

5.0 Generate node and stream linked lists for predecessors, as well as, successors
of each node

6.0* Partition G'd into disjoint ns (= no. of source nodes) uni-source sub-networks use
Sub-Network Extraction algorithm

7.0* For each sub-network use Dendrite Generation algorithm
Extract main pathways by tearing-off any stream introducing cycles
Mark torn streams as co-tree, and non-torn as tree branches

8.0 Output
a) Linked Lists for composition and connectivity of Streams and Nodes
b) 'NETWORK.INF' binary file having all read-in and generated information, for

use of simulation program GASFLO.

Stop;

* These would be described separately.

Figure 3.6 The Algorithm for generation of Tree and Co-tree structures from a connected
directed graph Gd

would be unknown. Some method would be required, which could assume the consistent

pressure at these intermediate end points and compute the flow in the very first component.

Then keeping that flow fixed for the stream, the remaining components of the stream are

computed for down_end pressures. On executing the final component of the stream, the down

end computed pressure is compared with the known pressure and all intermediate pressures

107

Chapter 3 Solution Algorithms

updated for the next iteration. This process of updating would be carried out until the down

end computed pressure of the final component converges to the initial given down node

pressure of the stream. Active components such as fans, in these multi-component streams,

would complicate the situation further. From the fan equation, the pressure gain is inversely

proportional to flow passing through it. Whereas in all other passive components like pipes,

leaks and beds, the pressure drop is directly proportional to the flow. The computation of

multiple component streams as cotree streams, would not only overload the computation, but

can also lead to oscillations (in case of streams involving fans) and non-converged results.

Hence the alternative, that all cotree streams should be composed of a single passive

component, was adopted. This can be regarded as an implementation constraint of the Code.

The situations requiring multi-component streams as cotree branches can be easily resolved,

by introducing an extra node up stream to the last pipe of the respective stream.

As for cotree streams computation, flow is computed in terms of given (known) end

pressures, so the actual equations of the components occurring as cotree streams, are re

written in the form consistent for the computation. This results in a very efficient and fast

scheme as it would require just few iterations to converge that set of few equations.

Table 3.1 Rules for weight assignment to streams

Stream
Weight

0

1

2

3

4

No of
Components

1

1

1

1

> 1
(multiple)

Component
Nature

Leak

Pipe

Pipe

Bed

any valid
combination

Other conditions

Junction Nodes at both ends

Both end nodes are not Junction
nodes simultaneously

Multi component stream

108

Chapter 3________________________________Solution Algorithms

Heuristic values for stream weights are shown in Table 3.1. Figure 3.7 shows the

excerpts from the output produced by the code showing data for some streams. The stream

and node numbers shown here are related to Figure 3.5 for connectivity and can be traced
back to Figure 2.3 to see their physical position in the network, via Figure 2.5.

The tree and cotree partitioning algorithms is comprised of three basic steps. The leaks

are the best candidate for tearing, as they always exist as single component streams and their

computation as cotree stream is simple. Also their removal from the graph will eliminate
many loops leaving us with a simpler graph to deal in further steps. In the first step we

reduce the graph by tearing off leaks and deleting any of the disconnected nodes. In the
second step, this multiple source reduced graph is partitioned to multiple single source
networks, taking care that each subnetwork should have at least one sink attached to it. In the
third step a tree or dendrite is generated for each of these subnetworks, and all non-tree
streams are collated into a co-tree structure. The following subsections explain each of these

steps:

Str
#

1
2
3

24
25
26

27
28

P -

Up_End
Nd

1
2
3

21
17
9

20
2

> Pipe

Component s

pOl fOl p02
bOl
p03

p22 f06
p23
p06

b07
101

b > Bed f -> Fan

Dn_End
Nd

2
3
4

22
23
10

6
16

1 -» Leak

Strm
wtg

4
3
2

4
2
1

3
0

Figure 3.7 Stream composition, connectivity and assigned weights (Code's Output)

109

Chapter 3 Solution Algorithms

3.5.1 Graph Reduction (or Leaks' Tearing)

In the Graph reduction step of the algorithm, we pick up a stream and check its
weight. If it is a 'Leak' stream, having weight zero, then we retrieve its up end and down end
nodes, and reduce their degree out_degree and in_degree respectively by one, and mark the
stream as 'torn'. After executing all streams of the network, we look for disconnected nodes
by computing the total_degree, afresh for each node. The nodes with zero total_degree would
be the disconnected ones as they now have zero incidence. The degree of the nodes, which
are not incident to any of the leaks, will remain un-affected. Figure 3.8 shows the result of
this reduction. The node numbering strategy can help in generating compact incidence
matrices, if these to-be deleted nodes are placed towards the end. In this case nodes 25 to 28
were the last nodes.

11 12

9 13

n Node number s Stream num

Figure 3.8 The reduced directed graph G'd , after deleting leak streams and disconnected
nodes

110

Chapter 3 Solution Algorithms

Linked Lists Formulation :

The linked lists are very efficient data structures and are well covered in Computer

Science literature see for example Knuth 1973a, 1973b, Deo 1974, Syslo et al 1983, Osiadacz

1987, Duff et al 1990 and Ahuja et al 1993. These could be one directional singly linked lists

or bi-directional doubly linked lists providing access to data in forward and backward

directions. These could be implemented either using pointers or one dimensional arrays. As

FORTRAN 77 lacks pointers, these are implemented using arrays. The assignment of integral

numbers as identifiers to nodes and streams, results in integer arrays, which are efficient in

storage as well as in computation. The simplest and smallest of the used linked lists, in this

network, are for source-sink association. From Figure 3.5, the source node 1, feeds to sink

node 13 only, whereas source node 14 feeds to sink nodes 23,22 and 13. This association can

be presented by three integer arrays,

Src_Nd(), PntrQ and Snk_Nd(). The ith

source, with source node number Src_Nd(i);

feeds to the sink nodes identified by the

nodes Snk_Nd(Pntr(i)) to Snk_Nd(Pntr(i+l)-

1). Figure 3.9 shows the linked list structure

and its equivalent set form is shown in

Figure 3.10. From these figures, the

relationship between the second source,

node 14, to its sinks, 23,22 and 13 is

d

1

2

3

4

5

Src Pntr
Nd

1

14

0

0

0

1
2

5

0

0

Snk
Nd

13

23

22

13

0

Ii

1

2

3

4

5

Figure 3.9 Linked lists for Source-Sink
associated nodes.

established by Pntr(2) to Pntr(2+l) - 1, i.e. indices 2 to 4 or array Snk_Nd().

The step 5.0 of the tree and cotree generation algorithm (Figure 3.6) formulated the

linked lists for nodes and stream of predecessors and successors of each node of the network.

Since all of the leak streams have been declared as torn streams, they and their associated

(disconnected) atmospheric nodes are no longer needed in the algorithm. We concentrate on

the reduced graph G'd , for the generation of linked lists. The further steps of algorithm will

be using these linked lists instead of the incidence matrices.

Ill

Chapter 3 Solution Algorithms

Number of Sources

Source Node Numbers = { 1, 14 }
Source-Sink pointer = { 1, 2, 5, 0, 0 }
Associated Sink Nds = { 13, 23, 22, 13 }

Figure 3.10 The above Linked Lists represented in set form

The incidence matrices present the complete connectivity of the network. In our case,

the maximum node degree is 5, hence in node-stream incidence matrix, a row (associated to

the respective node) can have maximum of 5 elements, in respective columns corresponding

to the incident streams. Only these elements of the incidence matrix will have +1 or -1 values,

depending upon the adopted convention how the incoming and the streams outgoing from a

node are to be interpreted, all other columns will have zeros. Each of the column correspond

to a stream will have only two non-zero entries corresponding to its nodes, thus in total this

e x s matrix will have only 2s non-zero entries. So for larger networks the resulting matrices

are sparse, costly for storage and hence undesirable. This connectivity information can be

transformed into linked lists, which are well packed, easier to use and can efficiently be

ported around among different program units.

In this case the linked lists could be generated either relative to nodes or relative to

streams, as these are interconnected. We generate a Predecessor Node List (PNL), Predecessor

Stream List (PSL), Successor Node List (SNL) and Successor Stream List (SSL), for all nodes

of the reduced graph G'd.

The procedure is straight forward, we pick up a node, see its incidence, enter the

incoming streams and their up_end nodes in the predecessor lists PSLQ and PNLQ, whereas

the outgoing streams and their down_end nodes are entered in successor lists SSLQ and

SNLQ. Independent counters for two categories are maintained for storing or retrieving data

from these lists. Obviously the source nodes do not have predecessors and similarly the sink

nodes have no successors, so zeros at corresponding locations are substituted.

112

Chapter 3 Solution Algorithms

3.5.2 Sub-Network Extraction

For elicitation of disjoint sub-networks from a multiple source multiple sink network

we have to first establish some association between these sources and sinks, i.e. which sinks

are being fed by a respective source. As stated earlier that each of these single source

subnetworks should have at least one sink. This association is computed from the source-sink

information input by the user and network connectivity. According to the assumed flow

direction in the streams some of the sinks will be fed in by more than one sources, but from

subnetwork's reference a sink can belong to only one sub-network.

For this we first select a source node, such that this is linked to minimum number of

sinks, and secondly, the sinks fed by multiple sources should have higher priority to be

counted towards the sources with minimum sinks. In fact, this criteria fulfils our aim that each

source should have at least one sink assigned to it. For example in the considered case, the

source node 1, feeds sink node 13, which is also fed in by the source node 14. Now if node

14 is treated as first source, then the corresponding sub-network will include all its sink

nodes, thus leaving the source node 1, with no sink node, this is an undesired situation, which

should be avoided.

After deciding the order in which the sources would be selected, we extract sub

networks, from the reduced directed graph G'd , one for each source node. The algorithm

(shown in Figure 3.11) for this extraction consists of two passes. In first pass, we start from

the source node and trace its successor nodes and put them to fan-out list. In the second pass,

we start from the sinks associated to the respective source node, and trace the predecessor

nodes and list them into fan-in list. The nodes common to both lists constitute the sub

network, which can be analyzed separately for computation to reduce the complexity. The

sub-network attribute for these nodes is set up.

113

Chapter 3 Solution Algorithms

For subsequent sub-networks, after selecting the common nodes from fan-out and fan-

in lists, the sub-network attribute of each of these nodes is checked to verify that only those

which are not already included in any of the previous subnetworks, are included in the present

subnetwork.

This process is repeated for all source nodes. The resulting node lists for these sub

networks will be disjoint, but physically these are still connected by some of the streams

n Node number s Stream num

Figure 3.12: The two resulted disjoint sub-networks of the system

joining the nodes from different sub-networks. So as a last step of the algorithm, all the

streams (of G'd) are scanned one by one; if its end nodes are not in the same sub-network,

then it is declared as a torn stream. The resulting sub-networks for the considered example

are shown in Figure 3.12.

114

Chapter 3 Solution Algorithms

The purpose of extracting sub-networks, from G'd , was to reduce the complexity in the

system. According to the Graph Theory, any multiple source network, of s sources, e edges

and n nodes; will have / fundamental loops, where

/ = e - n + s

Putting in the values for our example, Figure 2.5, there will be (38 - 28 + 2 =) 12

loops. For tree generation these loops are to be detected and each one of them is to be torn

off, leaving it as a loop-less or acyclic connected graph.

The partitioning of the network to single source sub-networks, reduces the complexity

of the problem enormously. From the resulting sub-networks (shown in Figure 3.12), it is not

only easy to visualize the loops, but also the node, edge and consequently number of loops

have decreased significantly. In these sub-networks the above relation reduces to

/ = e - n + 1 (= 13 - 13 + 1 = 1 for 1st sub-network)

(= 11 - 11 + 1 = 1 for 2nd sub-network)

One could ask that where the other loops have gone, in fact they have been deleted

in the intermediate steps; while tearing the leak streams and the streams linking the sub

networks. Instead we have torn more streams than the required, as a consequence, now we

have two independent sub-networks, disconnected from each other, whereas the 12 tearing

stream restriction would have left us still with a connected network. The independent sub

networks can be dealt with individually.

As mentioned in the last section 3.4, while reviewing existing algorithms, the Travers

algorithm resulted in forest of trees only if the original graph of the network was

disconnected. Nearly all the authors solve multiple source networks, by treating one of the

sources as primary source and use its pressure as reference pressure for computation of node

pressures, most of them (e.g. Osiadacz 1987, Boulos and Ormsbee 1991) use loop based

115

Chapter 3 Solution Algorithms

Algorithm for Sub-network Extraction:

Begin
1.0 Read-in

a) Successor Node and Stream (linked) lists for all Nodes
b) Predecessor Node and Stream (linked) lists for all Nodes
c) Source-Sink nodes association (linked) lists

INITIALIZATION:
p«« = pr«v = 4> I Fan-in = Fan-out = ty

ITERATION:
For each Source Node
2.0 Find Fan-out list

2.1 Select Source node, add to Fan-out list
2.2 Pick up ith node, x, from Fan-out list, mark it as 'picked'
2.3 Trace all y s.th. y = Successor(x), Add y -» Fan-out list
2.4 if (.not. all elements picked) then

i = i + 1; goto step 2.2
endif

3.0 Find Fan-in list
3.1 Select the associated Sink list, Lsink , for selected Source node; j=1
3.2 for all s e Lsink

3.3 Add s -» Fan-in list
3.4 Pick jth node, y, from Fan-in list, mark it as 'picked'
3.5 Trace all x s.th. x = Predecessor(y), Add x to Fan-in list
3.6 if (.not. all elements picked) then

j = j + 1; goto step 3.4
else

Select next sink from Lsink i.e. goto step 3.3
endif

end for loop;
4.0 Take intersection of lists; P^. = Fan-out n Fan-in
5.0 if (.not. First source node) then

Delete from PrM the nodes already marked for previous sub-networks
prw = Nodes for all previous sub-networks
P —P P • P —P UPrr*s ~ ~TM " ~tw ' ~rm ~ rrev w "res

endif

6.0 Mark all Pras nodes as this sub-network nodes
end For (each Source Node) loop:

7.0 Tear off all streams connecting different sub-networks

8.0 Output Node lists for each sub-network
Stop;

Figure 3.11 The algorithm for sub-network extraction

116

Chapter 3_________________________________Solution Algorithms

methods for formulation of the problem and define pseudo-loops between the different sources

or fixed grade nodes. Whereas Boyne 1970, reduced the multiple source network, to single

source networks by tearing of the secondary sources. He tried two alternatives; tearing of the

pipe midway in the path linking the primary and secondary sources, and the edge adjacent to

each of the secondary source; and recommended the latter approach for better results. Like

others, he also computed the pressure distribution in the network with respect to the primary

node.

Pellet induration networks are different from other fluid flow networks, the main

sources (numbers 1 and 14 in Figure 3.8) have exactly similar affect on the pressure

distribution of the respective subnetworks, so logically should be treated as primary sources.

So the well used concept of single primary source is physically not valid. Hence for each of

these extracted sub-networks, the corresponding source should be treated as primary source

for computation of pressure distribution. In the following subsection the extraction of tree

from each of these subnetworks is explained.

3.5.3 Dendrite Generation

To reduce these sub-networks to tree structure, we consider a sub-network at a time.

These could be taken in any order. This algorithm consists of a single pass, and is described

in Figure 3.13. We start from the source node, put it in the list, select from the list first

unselected node, look at its successor nodes, if they are not in the list, include them in the

list and mark the respective successor branches as tree branches (i.e. marking the torn status

as .false.). If the successor node is already included in the list, then, this implies that the

(successor) node has multiple incoming streams, as it has been already accessed through

another node. By definition of Tree each node should have one predecessor stream, so a

decision needs to be made, concerning which stream should be retained in the tree. Hence,

we look at the predecessor streams of this (successor) node, and decide, using the weight

criteria, which of these streams should be torn. The one having higher weight, means have

higher priority, so should be retained in the tree, and the other with lower weight should be

117

Chapter 3 Solution Algorithms

marked as torn stream. Then the next node of the list should be selected and the above

procedure repeated. This selection and marking procedure is continued till all the nodes of

the sub-network are exhausted.

The step 5.0 of the Dendrite Generation algorithm (Figure 3.13), covers the heart of

the tearing procedure, so it is described in detail, as compared to others. It also shows how

linked-lists can help to implement the algorithm in a more comprehensible way.

Finally, after executing all the sub-networks, all torn streams are collated and these

form the Co-tree, whereas the rest would be Tree streams. By Graph theory the resulting tree

is in fact a Forest, that is a combination of trees, not a single tree. In loose terms we call it

tree. The final result of algorithm i.e. the resulting tree and cotree structures are shown in

Figure 3.4, while discussing the computation of the network (section 3.3).

3.6 Algorithm for Leaks' Incremental Variation

The efficiency of the process is dependent on the conservation of thermal energy, i.e.

the heat extracted from the pellets in cooling stage should be optimally utilized by the other

stages. Ideally, there should be no leaks between the system and atmosphere; but in practice,

the gaps between the packed bed and the partitions of the enclosing chamber have to be

provided, for smooth functioning of the process. The different zones have different pressures,

so the process gas flows between them thus causing leaks between different zones and

between the system and atmosphere. The model should be able to optimize the process, by

first adjusting the model parameters, like leaks areas whose exact values are not known but

approximate ranges are given, and later adjusting the flow and pressure distributions as close

as possible to the measured values. Then these distributions should be treated as reference and

further the simulations be carried out by varying controllable system variables, like valve

opening and fan wattage.

118

Chapter 3 Solution Algorithms

Algorithm for Dendrite Generation:

begin
1.0 Read-in

a) Successor Predecessor Node and Stream Linked Lists, related to nodes
b) Sub-Network Node lists c) Source-Sink Node Association
d) Torn State for all Streams

ITERATION :
for all sub-networks

2.0 Initialize //sf = c|>; i = 0

3.0 Select the Source node.s ; Add s -> list

while (.not. all_node_picked) do
4.0 i = i -i- 1 ; Pick the ith node, x, e list

5.0 Look at all of its successors and formulate tree:
do j = 1, Out_Degree(x,)

y, = Successor_Node(x,)
if (y, e list) then it has multiple Predecessors, trace them; Parent = 0

for all k = 1, ln_Degree(y,)
lk = Predecessor_Stream(y,)
Tear if Single pipe component stream
if (Weight(lk) = 1) then

Torn(lk) = True. - it is marked lk as Co-tree branch
else this is any other multiple component stream

Torn(lk) = .False. - it is marked lk as Tree branch
Parent = Parent + 1

endif
end for
Warn if (Parent # 1) and Flag y, and lk etc

else
y, is not present in the list, so include it
Add y, -» list

endif
end do

6.0 To pick the next node of the list, goto 4.0

end of for loop:

7.0 Collate Tree and Co-tree structures by scanning Torn state of all streams

8.0 Output Tree and Co-tree structure for the whole network

Stop;
Figure 3.13 The algorithm for dendrite generation

119

Chapter 3_________________________________ Solution Algorithms

A contributing factor to the system complexity is unavailability of complete

information about the system. Mathematical modelling is very suitable tool to tackle this

problem. For instance in pellet induration system case, we know that the leaks exist at such

and such points, these are rectangular in shape, having width as the width of the bed and

height about 5-10 centimetres. This height depends on the loaded position of packed bed, it

is specific to each leak. In fact the height of the leaks is not known exactly, so we treat it as

a parameter in our computation.

In practice the pressures are maintained, so that the input regions should have

pressures slightly below atmospheric. Ideally these should be exactly atmospheric to give zero

external leaks (leaks between system and atmosphere), but that is difficult to maintain and

susceptible to pressure fluctuations. If these regions pressures get higher than the atmospheric,

then the process gas will be pushed out of the system, which will not only give rise to heat

loss, i.e. system's inefficiency, but can also lead to disastrous \ hazardous situations. This

target value of below the atmospheric provides incoming leaks and is also environmentally

safe. How these incoming external leaks affect the system's overall efficiency, will be

analyzed later in chapter 5.

In section 2.4.2, the mathematical model of a leak was described, physically it is flow

through a gap connecting the two adjacent regions. Its magnitude is dependent on the region

pressures and the cross sectional area of the gap. As compared to other components, pipes and

packed beds, the resistance offered to this flow is negligible, which makes it very sensitive,

even very small increases in leak area can give very large values of flows depending upon

respective end pressures.

All leaks are treated as torn streams (co-tree branches). Their computed flows are

used to correct the flow distribution in tree, which is further used to compute pressure

distribution in the network, and in next iteration these pressures are used to evaluate the torn

stream flows. Hence if for some value of areas, very large flow for a leak are introduced then

120

Chapter 3________________________________Solution Algorithms

it is possible that this may lead to distribution with non-physical results, from which the

system may not recover.

For example consider Figure 2.3, if the area for leak connecting RIO to Atmosphere

A-8, is changed say increased, then the flow through this leak coming into the system will

increase (assuming the PR10 < Patm), which will increase all outgoing flows from the region

RIO, and by KCL execution it will decrease the incoming flow in tree branch i.e. linking RIO

to J07. This will decrease flows in the other branches of tree upstream to this point. Similarly

this new flow distribution will change the pressures at the tree nodes. Suppose the leak area

is such that it produces the incoming leak flow big enough that it reverses the direction of

incoming tree branch from RIO to J07. This is non-physical, because the fans 1A and IB

upstream to J07 will not allow that. The flow and pressures form a coupled system of

equations and interact to the changes in each other, so in most of the cases the system / code

will recover from such unwanted situations, but this recovery will depend upon the input

value of area.

To save user from trial and error, the leaks' areas are incremented successively with

a fixed step size. The algorithm is shown in Figure 3.14. Initially the program starts with a

set of default values for all NTUaks and reads in the value of step size and the final areas to

be set, for the respective NVUaks . The subroutine LEKINI evaluates the maximum number of

steps required by the program to have all leaks set to their respective final areas. First the

converged flow and pressure distributions are computed for default leak areas and then the

leak areas for corresponding NVUalu are relaxed by a step size each, in the direction of their

final values, then using the converged distributions, new flow and pressure distributions are

computed. The subroutine LEKRLX keeps track of the leaks areas and related statistics, e.g.

which are to be increased/decreased, which have achieved their final areas and which are yet

to be changed. The computation continues till the converged distributions are achieved for all

leaks areas relaxed to the required final values.

121

Chapter 3_________________________________Solution Algorithms

A recovery mechanism is also implemented to deal with unsure situations. The flow

and pressure distributions and leak areas are temporarily saved for every successfully

completed step. If for some step the system fails to recover and comes up with non-physical

results, than the previous step saved values are retrieved. As these are already converged

values so further computation is not required and so program stops informing user about the

failure to reach the final desired values.

The aim of this leak areas relaxation is to achieve a flow distribution as close as

possible to the measured results. The experimentally measured result include the flows in

streams containing fans, and region node pressures. The so achieved distribution, can be

treated as reference distribution and other parametric studies could be carried out.

3.7 Temperature Computation and Communication with INDSYS Code

One of the primary aims of the GASFLO model is to compliment the computation of

heat distribution evaluation codes. These codes are now mature and well used in iron industry,

two of them, INDSYS (Cross and Englund 1987) and CASCADE (Patel et al 1993), have

been developed here, at Greenwich University (formerly Thames Polytechnic).

Heat distribution codes are complex, and meant for microscopic studies. They solve

the respective partial differential equations, resulting from conservation laws, and predict the

spatial temperature profiles for process gas and solids. They take into account the chemical

reactions and heat input to the system by different sources, like burners etc. Due to involved

complexity of the process these are compute intensive and modelled separately. Also to

minimize the computational load these are applied to the part of the system, rather than the

whole system. For example the INDSYS, computes for the packed bed only, whereas

CASCADE has facility to compute flow velocity profiles alongside the temperatures, so it can

be applied to only few zones of the induration system. For computation, they require the flow

and temperatures of the streams adjacent to their domain of application. Presently, in the

122

Chapter 3 Solution Algorithms

Algorithm for Leaks' Area Variation:

Begin

1.0 Read-in Number of Leaks' areas to be modified, NVltuk8, StepSize, initial and final
areas of each of these leaks

INITIALIZE
2.0 Evaluate MaxSteps for leaks' area variation by calling

fLEKINI(... A/Vteaks, StepSize, LAreaini, LAreafin, MaxSteps...)
3.0 Initialize Step = 0

LArea = LArea,,•ini

ITERATE
4.0 Step = Step + 1

5.0 Compute Flow and Pressure Distributions in the network;
Use General_Network_Computation Algorithm (Figure 3.3)

if (Results Physical) then
6.0 Backup

state variables Flow -> OldFlow and Press -» OldPress
leak areas LArea -> OldLArea

else !non-physical results - step back to previous step areas
7.0 Retrieve the last step backed up variables

OldFlow -> Flow and OldPress -» Press
OldLArea -» LArea

go to 9.0
endif

if (Step > MaxSteps) go to 9.0

8.0 Compute leaks' areas, adjusted for the next StepSize, by calling
*LEKRLX(NVleaks, Step, LArea)

9.0 Compute Temperature Distribution; Use Temperature_Distribution_Computation
Algorithm (Figure 3.16)

Stop;

1t The procedures LEKINI and LEKRLX are subroutines discussed in text

Figure 3.14 The algorithm for Leaks' Area Variation

123

Chapter 3 Solution Algorithms

absence of any code like, GASFLO, the desired distributions are estimated by trial, which is

not only a laborious process but also requires a good experience and detailed knowledge of

the field.

GASFLO should provide means to communicate with these codes. Since INDSYS is

available so Figure 3.15 shows the would-be communication between these two codes. In

principle, each one of these should be able to run independently, so the variables expected

from the other counterpart are fed in by some guessed values. INDSYS requires the flow and

temperature of the streams feeding into the input regions of the induration system. The other

data required as input is comprised of heat sources, pellets data and network configuration.

It provides the two dimensional (assuming symmetry in third) spatial temperature profiles for

gas and solids in the packed bed. These temperatures can be averaged to find the temperature

of gas in each of the packed beds, which are required by GASFLO for execution of Ergun

equation.

GASFLO requirements are discussed in detail in sections 1.2 and 2.3, briefly these are,

system configuration; components' data e.g. pipes diameters, lengths, fans' wattage, beds'

areas and pellet related data; boundary nodes data; and temperatures of gas in packed bed. On

execution it provides flows and temperatures of all streams and pressures and temperatures

at all nodes of the network.

INDSYS was written in 1970s, in BASIC and has captured good international market

ever since, whereas GASFLO is still in developing state and is written in FORTRAN 77.

Actually, the two should be parts of one code to solve the induration system without any

external interruption, but in view of the background sited above, that is not possible and will

require good amount of work. Alternatively, an external shell with filter like utilities, can be

written which can execute each one of these programs and the filters can parse the output

files to extract the required information, feed that as input to the other code and the other

code is executed. This cycle is carried out till overall convergence is achieved. Before

indulging into the proposed shell writing, the strategy was tested manually and found that

124

Chapter 3 Solution Algorithms

only 4/5 iterations are needed for the overall convergence of the combined system, so even

the effort of writing shell was not thought to be worth while.

Network Configuration
Streams Network Configuration

Components'
Data

Leaks' Areas

GASFLO
GAS FLOw

distribution
evaluation

package

INDSYS
INDuration

SYstem

Simulator

Heat
Input

<r-^

ellets' Data

Flow & Temp for all streams
Press & Temp for all nodes

2D Temp profiles for
pellets and gas
in packed Beds

Figure 3.15 The data transfer between GASFLO and INDSYS codes for temperature
computation

In the following section the algorithm for computation of temperatures in the GASFLO

will be discussed.

3.8 Algorithm for Temperature Computation

In section 3.1 it is described that the temperature computation is dependent on flows,

but instead the flows have a weak coupling with temperatures. Fincham and Goodwin 1988,

also suggest that the equations for natural gas pipe networks should be decoupled, the internal

loop should compute flow and pressure distributions, whereas the external loop should

125

Chapter 3 Solution Algorithms

compute temperature distribution. Same strategy is used for temperature computation in

GASFLO. Figure 3.16 shows the respective algorithm.

In external loop, the program INDSYS is executed, using guessed flow distribution,

and it gives the temperature profiles for gas and solids in packed beds. These can be averaged

for each of the beds and imported into the GASFLO. In internal loop, the converged flow

and pressure distributions are found using Leaks_Area_Variation algorithm (see Figure 3.14)

for specified leak areas, then temperature distribution is computed.

For temperature distribution, the component models (given in section 2.4.2) show that

the nodes and pipes play an active part. Although packed beds are the most active

components, but their temperature computation is done in INDSYS. This will cause a

discontinuity of temperature in the streams containing the beds, i.e. the temperature of process

gas entering the bed will be different from the temperature of gas leaving the bed. At internal

nodes of the network, i.e. junctions or regions, the streams with different flows and different

temperatures meet, so analogous to KCL, the heat energy should be conserved. Using this

energy balance equation the node temperature is computed, which is assigned to all streams

leaving the respective node. Though this will give a unique temperature to each node, but

there is nothing equivalent to KVL, as different streams entering a node can have different

temperatures. As compared to pressures, the node pressures completely specified the pressure

distribution in the network, but for temperature distribution, each stream's up-end temperature

can be same as the up-end node temperature, whereas the down-end temperature of a stream

may have different value then the down-end node temperature.

For this computation, we follow a scheme similar to one used for flow distribution

computation. Temperatures at source nodes and in packed beds are known, so temperatures

are computed from source to sink direction in tree. While executing components, the

corresponding temperature equations for each of the component will be computed.

126

Chapter 3 Solution Algorithms

Algorithm for Temperature Computation;

Begin

I.0 Read-in Temperature at source boundary and atmospheric nodes; parameters
Tolrncint, Tolmcoxt, Maxltretc.

2.0 Obtain Converged Flow distribution in the network for pre-set Leaks' areas;
Use Leaks'_Area_Variation Algorithm

EXT-ITERATION
3.0 Import from INDSYS* the process gas Temperature for all packed beds

ITR = 1
INT-ITERATION

4.0 Compute* Temperature distribution in tree i.e. for all internal nodes and
tree branches (in Source -» Sink direction)

5.0 Compute Temperature distribution in co-tree

6.0 Evaluate ERRORint (i.e. relative error using Temppnv and Temp at internal
nodes)

if (ITR > 2 .and. ERRORint < Tolrncint) go to 8.0

7.0 Update temperature distribution Temppnv = Temp
ITR = ITR + 1
go to 4.0

8.0 Evaluate ERRORext (comparing the computed packed bed gas input
temperatures for current and previous iterations)

if (ERRORext < Tolmcext) go to 11.0

9.0 Export converged Flow and the recent Temperature distributions to INDSYS

10.0 Execute INDSYS with new Flow and Temperature distributions
go to 3.0

II.0 Output Flow, Pressure and Temperature distributions of the network

Stop;

f INDSYS is an other code for computing heat concentration in pellet induration systems.
* See text for details

Figure 3.16 The algorithm for Temperature Computation

127

Chapter 3 Solution Algorithms

After evaluating tree (node as well as stream) temperatures, the co-tree branches are

executed. The co-tree branches, by definition are single component (see section 3.4.1) streams,

mostly comprised of leaks and few are of pipes and beds. The proposed temperature equations

for leaks are simply assignment of up-end node temperature to down-end of the leak stream.

This assignment is very logical and enables us to have the actual stream temperature for all

incoming streams, e.g. if an external leak is coming into the system (i.e. PReg < PAtm) then it

will have atmospheric temperature, but if it is going out of the system then it will have

respective region's (i.e. up-end node) temperature as its temperature. The packed bed down-

end temperature is also an assignment to the temperature computed by INDSYS and fed in

to GASFLO as parameter. The pipe co-tree branches, will assume the up-end node

temperature as temperature at their input end, and would compute by executing their

temperature model, to find the exit end temperature.

The ERROR is computed by comparing the present iteration node temperatures to the

previous iteration ones. If ERROR is larger then the specified tolerance, then temperatures in

tree are re-computed, but now using the last iteration co-tree temperatures. So the computation

of temperature in tree and co-tree, steps 4.0 and 5.0 of the algorithm (Figure 3.16), is

continued until the convergence is achieved, which completes the internal iteration loop.

These converged values for the flow and temperature of the streams feeding into the

input regions of the induration system are exported to the INDSYS, where these are used as

input. This step needs the manual editing to the data files for INDSYS, and requires some

understanding of INDSYS how it represents the network configuration and different

connecting streams.

The external iteration is carried out until the bed temperatures provided by INDSYS

for successive iterations become constant. It was experienced that about 4/5 external iterations

worked for the tested data sets. This interaction of two codes is further elaborated in section

5.5.3.

128

Chapter 3 Solution Algorithms

3.9 Advantages of Present Approach

The developed code GASFLO is based on the unit based approach and it used generic

algorithms for the evaluation of airflow distribution and network partitioning. This approach

has the following advantages over the classical network solution methods:

 Each of the system component categories are modeled as independent modules, which

are extensible e.g. the mathematical model of any of the components can be refined

and changed by modifying the respective module.

 The heuristics based on working experience or for computational efficiency reasons,

can be embedded into the algorithm for network partitioning, by assigning weight to

the streams of the network. This reduces the network into unique tree and co-tree

structures, which are used in further computation.

 Each component is picked up and executed in order of its connectivity in the network.

The component can interrogate themselves for their different states and execute

accordingly, e.g. the execution of nth pipe will first verify its inclusion either in tree

or in co-tree structures, if it is in a tree branch then it will accept Flow and Pin as

inputs and compute Pout as its output, but if it is a co-tree branch then it will accept

Pin and Pout as its inputs and compute Flow.
 More components could be added, either by enhancing the functionality of the existing

modules or units, or, by making them as independent new modules, hence the overall

model can be enhanced or refined. Their physical connection to streams and nodes be

defined in the network configuration.

 Each unit or module is solved as an independent module in terms of the parameters

provided by the neighbouring units of the network, and it computes the locally

converged values of state variables, which are then, passed onto the next unit in the

sequence. This contributes towards the overall convergence of the system and reduces

its computational time requirements.

 Each module can use different numerical scheme, suitable to the nature of its

equations, for local convergence. Presently, One Point Iteration Method (see section

129

Chapter 3 ___ Solution Algorithms

2.6) was used, for all of the modules, as it suited best to the used equations.

Provisions for different views of computation of a module, i.e. computing different

parameters in terms of the others, as mentioned above for a pipe in tree or in co-tree,

could be managed by re-writing the pressure-flow equation in different forms.

 Flexible graph theoretic algorithms, which give insight to the problem and its solution.

These were very helpful to the evolving nature of the code and to the complexity of

the application domain. For example, the leaks areas relaxation and temperature

distribution computation were easily implemented. After depicting the goal, what is

needed to be done? the solution strategy provides a way out how it can be elegantly

done.

Due to presence of all the above advantages, the resulted code GASFLO was able to

cope with varied situations. These included the addition of Valves to the model; enhancing

the role of packed bed as co-tree stream along with being a tree stream, to allow the 'cross-

flow' situation in the network; incremental variation of leak areas; and replacement of zone

unit by its component fundamental units, regions and packed bed. These implementations will

be discussed in detail in Chapter 4.

130

Chapter 4
Application of Software Engineering

Concepts to Simulation Tools:
GASFLO - A Case Study

4.1 Software Engineering (SE) Concepts and Techniques

The term 'Software Engineering' was coined as a result of a conference held in West

Germany, on software crises in 1968. It implies that software should also be developed like

any other engineering product, as it has similar usage, and manufacturing constraints. A

successful software project has to meet time and budget constraints (Bentley 1987) and the

factors like re-use, skilled manpower and efficient tools also contribute in a similar way

towards higher productivity as in other engineering disciplines. The attributes of high quality,

reliability, robustness and ease of use imply the same meanings to software as to any other

engineering product. Hence, the approaches used by other engineering disciplines, to achieve

these attributes and satisfy these restraints, could analogously be applied for software

development.

Most mechanical products, especially the components used by these products; for

example peripheral devices of a Personal Computer (PC) namely printers, mice, keyboards,

monitors, disk drives, even central processing units and chips; are produced by different

vendors and assembled together by the manufacturer. Each one of these components, is

131

Chapter 4 ____________Application of SE for GASFLO Development

complete in itself, performs the intended function and conforms to a standard interface, which

enables it to fit in consistently to its target product. In case of malfunction the faulty

component is tracked down and swapped by its counter part, without effecting other

components of the product.

Accordingly, to induce reliability and re-usability in software, this sector needs to learn

from the experience of other engineering disciplines, so that the components or modules of

a software should behave like black boxes and have qualities to:

 Perform their well-defined intended functions;

 Work independent of each other; and

 Conform to some pre-set standard interfaces.

The increased availability of computers at relatively low prices with higher

computational power has led to their wide spread use in diverse application fields, which

suggests that the future software demands would be even higher than today. The gap between

demand for the software and the software developed would ever increase unless some

disciplined approach is adopted. From the software developer's point of view to handle this

challenge, the process of software development should be:

• Efficient to meet time and budget constraints;

• Productive to respond to these increased future demands;

• Error-free or have least minimal possible errors, which necessitates that more

attention should be focused at the design stage. Since the rectification of an error after

implementation/coding is 30 times more expensive than if it is fixed at design stage;

and

• Maintainable to fix the bugs as well as to respond to the changing needs of the users

and varying specifications required by the clients.

132

Chapter 4 Application of SE for GASFLO Development

These objectives for software quality and development process can be accomplished

by adopting appropriate Software Engineering (SE) principles and techniques. The commercial

or non-scientific domain have widely benefited from these SE techniques and from the well

known outcome the object orientation (OO) technology, which is claimed to be the latest

'silver bullet" to software crisis (Cox 1990). A detailed discussion on OO will be given later,

in section 4.6. Interestingly, about +80% of the literature cited in context of OO discusses

benefits of the object orientation without mentioning how it can be achieved or implemented.

By contrast, here we will be applying the SE techniques to resolve the problems encountered

in the development of software in scientific domain. We will see that the finally resulting

code, GASFLO, will have all the properties promised by software engineering community and

it satisfies the initial objectives laid out in section 1.4. The intermediate benefits to the

software developer (though may not be mentioned explicitly, but) will be evident as it

provides a well defined systematic approach rather then the conventional trial and error

approach to software development.

4.1.1 Software Quality Objective :

The modules are likely to achieve the above stated 'black box' qualities, if they have

the following properties:

Information hiding: A software module should have access only to the data needed by it.

All information relating to the methods used to transform its input to output is

encapsulated inside the module and kept hidden from other modules. The user of the

module should only know about its input and output i.e. interface with other modules.

Cohesion: Modules should be cohesive and preferably perform a single well defined function.

In case of more functions, these all should be complementary and supportive to each

other.

Uncoupling: The modules should be uncoupled so these can function independently. Their

dependence on each other should be explicit and minimal.

133

Chapter 4_______________Application of SE for GASFLO Development

Manageable: They should have a reasonable size, neither too large to understand nor too

small as it will increase the number of total modules present in the software and make

their management complex.

The information hiding principle was proposed by Parnas 1972, and it is the key

concept to software engineering and object orientation.

Above are the main properties which every software product should be expected to

have, irrespective of its field of application. The complete list of properties for an ideal

software product, or the famous 'ilities', can be found in any standard text on software

engineering (e.g Pressman 1988, Sommerville 1989 and Fertuck 1992). Additional properties

specific to an application field can be seen in the respective application area literature.

Petridis et al 1991 and Knight and Petridis 1992, have given one such list for computational

fluid dynamics (CFD) software which includes; efficiency, correctness, robustness,

extendibility (covering design simplicity and modularity), reusability, compatibility,

portability, verifiability, integrity and ease and efficiency of use.

4.1.2 Software Development Process Objective :
From the software developer's view the produced software should have minimal

overheads and be completely documented. It should satisfy some quality as well as

productivity metrics. The process should support the team work, where the personnel related

to software development could swap their roles, like any other manufacturing industry. Some

tool or language which could provide clear communication among different groups of humans

concerned with the software; designers, developers, programmers, users and clients; is

required. Such tool or language should be versatile enough to record all important phases of

the Software Development Life Cycle (SDLC).

The design process should support iteration, that is, it should have minimum cost to

accommodate changes, which could be either bug-fixes or changed requirements or

134

Chapter 4__________________Application of SE for GASFLO Development

specifications. The graphical language with set of rules and different notations for different

phases is an ideal solution. It provides simple, clear, unambiguous and easily comprehendible

communication and encourages all concerned to participate fully in the process.

To achieve these objectives SE provides a disciplined approach to all phases of SDLC,

which enhances the understanding of the problem domain and its solution and clearly records

the process how this solution is achieved.

4.1.3 Software Life-cycle and SE Techniques :
The software life-cycle, in general, can be partitioned into the following four stages:

• Analysis - to analyze the problem domain and determine what is required.

• Design - how the software should be designed so that the resulting code could fulfil

what is required and include the most of the qualities mentioned in section 4.1.1.

• Implementation or construction - transformation of designed software into a tangible

code using some computer language.

• Maintenance - has varied meanings from different perspectives. It is the effort

required to keep the code running for its later life. For large commercial software, it

is the support provided to the user after delivery of the code, mostly bug fixing (Wilde

and Huitt 1992). It could be to meet the initially set goals or to improve efficiency or

even to incorporate the creeping features which are required by the user lately after

using the program.

Most of the authors agree to the above categorization of life-cycle; but some do extend

it to as many as seven stages treating feasibility, problem specification and testing into

separate stages; whereas some like Jackson 1983, contract it to only two stages of

'specification' and 'implementation', although his two stages span the above mentioned four

stages of SDLC. The mutual boundaries or interfaces of these stages are not exactly defined

and also vary from author to author.

135

Chapter 4__________________Application of SE for GASFLO Development

The terminology jargon is quite common in SE literature, even the definition of the

term 'software engineering' differs from author to author (McDermid 1990). The other such

term is 'methodology' which is stated as miss-used word instead of method' by Jackson 1983,

whereas Holloway 1991 comments that any method supporting at least one stage of SDLC

can be regarded as methodology.

A range of methods (or methodologies) exist providing techniques to carry out these

stages, Gane and Sarson (1979), Yourdon (DeMarco 1978), JSD (Jackson 1983), Structured

System Analysis and Design Method SSADM (Ashworth and Goodland 1990), Object

Oriented Analysis and Design OOA/OOD (Coad and Yourdon 1991) and Modular Approach

to Software Construction Operations and Test MASCOT (Moses and Jackson 1991) are some

which are mostly used. These all have their own advantages, inclinations and disadvantages;

for example SSADM fully supports the first two stages and the last two are partially

supported, JSD is mostly used in the domains where the dependence on time has prime

importance for instance control systems. These methodologies have been well used in

commercial, systems analysis, database design and information systems environments and

large benefits have been claimed by their use.

The methodologies themselves are collections of a few basic techniques. All of these

techniques concentrate on different aspects of the system manipulating the underlying data

model of the analyzed system. These have been proposed by the experienced software

developers and have been developed in parallel course of time, originating from different

application fields and so have different terminology and graphical notations. For example

SSADM calls the Entity Relationship model a Logical Data Structure and uses different

notations, whereas the same information is presented by Entity Relationship Diagrams ERDs

by other authors (e.g. DeMarco 1978 and McDermid 1990).

Ironically, the application of these software engineering concepts to scientific

environments and especially for simulation tools, covering all the stages of the life-cycle, is

not previously addressed in literature. The applications using one or two techniques do appear

136

Chapter 4__________________Application of SE for GASFLO Development

in recent literature; for example Petridis et al 1991 and Knight and Petridis 1992 have used

an entity relationship model in the context of a CFD to partition the problem and solution

domains, Wilkinson and Byers 1993 also used an ER model to analyze complex engineering

systems; but they did not benefit from other techniques to cover the whole SDLC.

4.1.4 CASE Tools :

Proper tools always contribute towards the product quality and enhance user

productivity, the Computer Aided Software (or Systems) Engineering (CASE) tools are no

exception. CASE tools are designed to support the techniques spanning all the stages of

SDLC.

CASE is a generic word with a variety of implications. All tools ranging from

analyst's workbench having basic facilities to draw Entity Relationship Diagrams (ERDs),

Data Flow Diagrams (DFDs) and Structured Charts (SCs) etc; to code generators; Integrated

Program Support Environments IPSEs; configuration management and version control

systems; and further to Validation, Verification and Testing VV&T systems, all come under

CASE tools. Their complexity is dependent on the facilities they provide. For example VV&T

tools can generate the test data from program design and apply it for testing phase, in fact

they ensure that the delivered software has been developed correctly, performs according to

specifications and is suitable for its purpose. All CASE tools have three basic parts:

1. Human Computer Interface HCI: This is usually a Graphical User Interface (GUI)

developed on some WIMP (Windows, Icon, Mouse and Pull-down menus)

environment and generates WYSIWYG (What You See Is What You Get) output. The

user of the tool always interacts to the tool through this HCI, and so most of the time

thinks in terms of the graphical notations provided by the tool.

2. Object meta model: This is internal database of the tool, where all the data relating to

different templates, graphical notations, consistency and integrity checking rules are

stored and inferred when required. The user of the tool can only use this internal

database but he cannot modify or update it.

137

Chapter 4_________________Application of SE for GASFLO Development

3. Repository: This is where all the input by the user is stored. The tool captures sufficient

information from the user about the entered objects so it can carry out the internal

validation for its consistency and integrity. Here the user has full access to this

database i.e. to read, write and modify. If the tool provides some import/export facility

then this data could be accordingly formatted from/to the target port. The repository

is also known as Data Dictionary and have similar meanings as would discussed later

in section 4.3.3.

In further discussion the mention to CASE tool will refer to the ones having basic

facilities to support analysis and design stages of SDLC. The main features of these tools are:

 Graphical diagramming support;

 Consistency checking within a phase according to pre-defined rules in meta model.

For example it would not allow to pass data between data stores in data flow

diagrams, or interlinking of two relations in entity relationship diagrams;

 Integrity checking between different phases of the life-cycle;

 Automation and ease of use are the main features, the templates for the respective

diagrams automatically pop-up and the user anchors them where he desires. The tool

prompts for their names and allocates a unique sequential number to each of them by

itself. The data flows and the externals for a process are automatically drawn for lower

level DFDs, and the user is warned if he attempts to delete any of these flows at a

lower level. Also changes made in one phase, say in structure charts are automatically

reflected in other diagrams on which it depended say in data flow diagrams (Fertuck

1992);

 Take away the drudgery of drawing process;

 Support the teamwork, a group of people can start a project jointly, partition and work

independently, and at the end of a phase/project they can merge their work together

(ASCENT2, 1993);

 Provide choice of notations for all the phases of the life-cycle, the one opted once is

followed consistently throughout;

138

Chapter 4 ____________Application of SE for GASFLO Development

 (some of these tools) Can generate code for the modules which are described to

sufficient details;

 Capture sufficient information for the user that is required for different in-built checks;

and

 Provide complete documentation of the development process, comprehensible to all

concerned, with least re-production costs. This can be easily modified to reciprocate

any bug-fix or changed program specifications.

Apart from all these benefits, these tools have sharp learning curve, cannot be used

unless one is familiar with SE concepts and techniques. Good tools with comprehensive

features are expensive, dependent on operating systems and hardware, and are biased towards

a specific audience e.g. Software through pictures (IDE 1992) is UNIX based and generates

'C code; Excelerator (Intersolve 1992) and ASCENT are DOS and MS-WINDOWS based

and generate COBOL and Pascal codes respectively. Excelerator does have screen and form

generation facilities for prototyping and is widely used in commercial environment. ASCENT

(Automated Strict Case Environment at Teesside) is an affordable, good and speedily

improving tool available from an academic (University of Teesside) vendor. It supports Gane

and Sarson, Yourdon, OOA, SSADM, MASCOT and PERT notations. Its version 2.0 (still

in beta test) was available and has been used partially to draw Data Flow Diagrams for this

work.

These tools enable their user to concentrate on the real work avoiding, the drudgery

of the drawing process and consistency checking, but still they require more then the user

would normally put in if he doesn't use a tool. For example, for the best results it is

recommended that the user should draw all the diagrams in rough and sort out the names for

all data flows and objects before hand, otherwise any wrong name associated with a data flow

at a lower level of a DFD can over-write the names of corresponding data flows at higher

levels. Nevertheless, these overheads are negligible as compared to the gains.

139

Chapter 4 Application of SE for GASFLO Development

Holloway 1991, has given a detailed comparison of CASE tools, by categorising them

into nine different types according to their functionality. He has compared the available tools

of each type and has pointed out what features they offer. Also, he has quoted the reasons for

CASE failure in past; and what steps should be taken for successful implementation and how

real gains from CASE could be achieved.

4.1.5 Application of SE Techniques for Simulation Code :

Another side effect caused by a lack of disciplined approach for present day software

development is, an absence of confidence in the product, which is very rightly pointed out

by Thimbleby 1993. Thimbleby has quoted the excerpts from 'disclaimers' of some well-

known large software products and compared them to the 'guarantees' offered by the

manufacturers of other engineering products who not only take all the responsibility for any

malfunction of the product but also offer some compensation in return for it.

Wiegers 1993 has quoted the benefits of increased user satisfaction, productivity,

encouraging development environment and reduction in maintenance costs to 12% by the use

of SE in a small software development team, and concluded from the results of 35 monitored

projects. His experience indirectly points out that the use of SE can increase the confidence

in the produced software.

One of the initial tasks in software development process is abstraction of the process

i.e. to identify all the important entities and related functions which can fully simulate or

model the actual process and ignore others which are not relevant. Isner 1982 mentions three

types of abstractions used for the development of scientific (or FORTRAN specific)

environment programs:

Control Abstraction where the attention is focused on flow of control in program. The most

commonly used representation for this purpose is flow charts. Which are still widely

used by scientific community programmers despite of the facts that flow charts:

140

Chapter 4_________________Application of SE for GASFLO Development

 Require relatively involved information about the problem as pre-requisite,

which is rarely available to start with;

 Are more formal and understood by a limited audience i.e. programming

community only; and

 Portray the problem as a whole and thus are not conducive to its further

partitioning.

Procedural Abstraction concentrates on the procedures performed by the system. This is the

widely used conventional approach presently adopted by the community. It ultimately

leads to global data sharing and distributed decisions in the produced software which

renders it to an unmaintainable code.

Data Abstraction focuses on the data and its related procedures. It implies Parnas 1972

information hiding principle to localise the design decisions along with the data. The

data abstraction results in well maintainable code for complex systems. Parnas 1972a

has compared two programs for a complex operating system, one using a conventional

approach and other using data abstraction and concluded in favour of the latter. Also

the SE proponents strongly support the data oriented or data driven approach, as it

concentrates on data. According to JSP (Jackson 1975), the structure of a program can

be determined if the input/output data streams (or indirectly the underlying data

structures) are known.

Isner 1982 has proposed a three stage methodology for FORTRAN programmers based

on data abstraction. At the design stage he writes down all the needed operations and data

structures informally, which are then refined at the specification stage. For specification he

used the 'state machine' concept i.e. where a system is comprised of finite states, and each

operation either modifies (or 'Operates on') or enquires (or 'Visualises') these data structures.

Isner categorises these operations into O-operation and V-operation groups and writes down

their formal specifications using the actual argument or variable names. In the implementation

stage these formal specifications are coded and the related data structures and operations are

encapsulated together. He opted for the state machine concept rather than other formal

(rigorous mathematical) methods because it was simple and more suited to practitioners.

141

Chapter 4__________________Application of SE for GASFLO Development

Colbrook and Smythe 1990 chose more formal Z type mathematical language and

defined a schema for all considered operations to achieve data abstraction and implemented

using FORTRAN 77. Their claim for this choice was that the state machine concept is not

powerful enough to deal with real life problems. From their results it is obvious that the

formal approach is complex enough to be comprehended and used by practising programmers,

secondly as pointed out by Isner, it is more suitable to the environment where the software

is to be automatically validated.

The present work is based on a data abstraction philosophy. Due to incapability of

state machine and complexity of formal approaches, here we will use the well established SE

techniques; Entity Relationship Diagrams (ERDs), Attribute Analysis (AA) and Data Flow

Diagrams (DFDs); to achieve data abstraction. Instead of committing to any particular

methodology, the underlying techniques would be applied in logical order for the first three

stages of analysis, design and implementation (see section 4.1.2) to achieve a tangible code.

Software engineering methods are well accepted in database design, information

systems and other business environments. Nevertheless, the problems in scientific and non-

scientific domains are inherently different and have different performance requirements. The

scientific problems are comparatively well defined, their input and nature of the expected

output, are known; the relationships between input and output variables are fixed by a

mathematical model. Whereas in non-scientific case, for example an information system, this

relationship is very vague, even the user is not sure what output he is looking for. Many times

the required output is decided by studying a series of outputs produced by the program and

then analyzing the trends of some of the variables. The non-scientific programs deal with

huge amount of data so efficient retrieval and storage have higher priority, whereas the

scientific programs are compute intensive and the faster algorithms to reduce computational

times have higher priority.

Due to the different nature of two domains, the order of application of these SE

techniques for non-scientific environment in not suitable to our problem. For example the

142

Chapter 4 Application of SE for GASFLO Development

information systems methods (McDermid 1990) start with data flow diagrams to understand

the process and to communicate with the user for further elicitation of knowledge i.e. to

gather more system related data to define the problem. Whereas our problem is already

defined to some extent, so we will start with writing down the problem specifications (section

4.2). The order in which these SE Techniques will be applied to the present problem is shown

in Figure 4.1.

E R Analyaia

Att Analysis

D F Diagrams Data Structures

H I P O Chart
Structured English C^ Data Dictionary

i.

LOGICAL DESIGN - S/ware H/ware Independent

PHYSICAL DESIGN - Hard Ware Soft Ware Operating System Dependent

Implementation Issues H ' p ° Chart (Revised)

CODING i=^> i—•TPnT-i ^^> TESTING i:.":.^> GASFLO

Figure 4.1 The applied software engineering techniques to achieve GASFLO (arrows
show their order of application)

In section 4.3 the use of an entity relationship model and attribute analysis will be

discussed to acquire the data structures for these entities. These data structures will represent

problem data and will be used in data flow diagrams, which will depict the process of their

transformation from input data to output data. In our case the process mainly refers to the

computational procedure. The use of a data dictionary and structured English will also be

discussed and the expected hierarchy of software modules will be shown as a Hierarchical

Input Process Output (HIPO) chart. These steps will conclude the first two stages of the

software development life cycle and it will be referred to as Logical Design, due to its

143

Chapter 4 Application of SE for GASFLO Development

complete independence from all hardware and software constraints. Section 4.4 will consider

the implementation decisions, and how the logical design is converted into physical code, this

will conclude the physical design or stage three of the life-cycle. The qualities of the resulting

code with reference to the maintenance costs and the extent to which the code conforms to

the object oriented paradigm will be discussed in section 4.5.

4.2 Problem Specification

The problem specification includes a clear statement about the aims and constraints

of the software, that is what client (the one who ultimately pays for the software) or user

(who uses it) want to do with the code, what outputs they expect it to provide and what inputs

they would be supplying to run the program. The hardware and software constraints are also

mentioned. The problem specification is very vital as it is; the goal for the developer to

achieve, wish list for client/user and a standard for the critic to compare the program with (for

evaluation). In practice the problem specification keeps on changing. For development it

should be agreed upon at least by the client and developer, written down and frozen, till the

coded executable program appears. These should be written clearly to avoid any miss-

interpretation. After initial agreed specifications, all the required changes should be fully

documented.

For pellet induration network airflow distribution simulation, we are required to

develop a simulation tool, GASFLO, which should determine airflow, pressure and

temperature distributions in the network, for known :

 Components and their inter-connections;

 Parametric data for components i.e. friction factors, lengths and diameters for pipes;

cross sectional areas and discharge coefficients for leaks; lengths, widths, heights and

pellet related data for packed beds; valves' types; and controllable component

parameters like fan characteristics, leaks' area variation and valves' openings. The data

related to air, the process gas, is also known; and

144

Chapter 4__________________Application of SE for GASFLO Development

 Given sets of boundary conditions or loadings i.e. known pressures and temperatures

at source and atmospheric nodes and known flow rates at sink nodes. The

temperatures of air coming out of all packed beds is also treated as fixed and known.

Only those network components which contribute towards the airflow are included in

the model. The heat generation, chemical reactions and fuel sources etc are not taken into

account. The simplifying assumptions for the individual components are discussed in section

2.4.1, though in the drying stage of the induration process water vapour is present but for

simplicity single phase one dimensional steady state flow is assumed and modelled. Figure

2.3 may be reconsidered to identify network components which will be referred to in further

discussion.

4.3 Analysis and Logical Design

The SE techniques namely entity relationship model, attribute analysis, data dictionary,

data flow diagrams, Hierarchical Input Process Output (HIPO) charts and structured English

are applied for data abstraction. The intended software modules are presented as modules

referred to in a HIPO chart and described in structured English. This will complete the logical

design of the sought GASFLOw model. These techniques contribute towards the

understanding of the problem and are complementary to each other. The theoretical

background and details of their application procedure are well covered in the cited references.

For space limitation reasons, their description have been kept to the minium possible; these

all have been discussed though some very briefly to give a flavour how these helped to reach

the final (logical) design of software. The realization of this design into code will be

discussed in section 4.4.

4.3.1 Entity Relationship (ER) Model :
This model was proposed by Chen 1976, for database design. He illustrated that ER

model could simulate any of the then existed three data models: relational model, network

model and entity set model for the database design purposes. McGee 1976 has given a

145

Chapter 4__________________Application of SE for GASFLO Development

comparison of these three models and a criteria to select which would be the best for what

domain. The ER model includes the advantages of all of these three models and in addition

it is simple, based on set and relation theory, and has its own graphic representation. Knight

1983 has given the mathematical basis of the ER model and has supported its use for the

scientific domain.

According to ER model the modelled system which is a subset of real world system

as mentioned in section 2.3.1, can be represented by a set of entities and a set of relationships

among these entities. An entity could be anything physical or non-physical, but of interest to

the modelled system and have some data associated with it. A relation or relationship is a

link between two (and or more) entities showing their inter-dependence. The number of

entities linked by a relationship is called the degree of the relationship. In the original paper

P P Chen represented relationship with 'diamond' notation which included the name of the

relation and the lines linking it to the respective entities were indorsed by their participation,

or cardinality ratio. This notation is still widely used in the database field (e.g. Elmasri and

Naventhe 1989). DeMarco 1978 and others used crowfoot notation for relations with a mix

of solid and dotted lines to represent participation. By convention the total participation of

an entity to a relationship is represented by solid line and partial participation (i.e. where the

relation exists without the participation of any of the instances of the respective entity), is

presented by dotted line. This will be explained shortly. SSADM introduced the assignment

of two names to the same relation to improve readability.

Figure 4.2 shows the Entity Relationship Diagram (ERD) for our proposed GASFLOw

model. The entities shown actually represent the entity sets of corresponding component e.g.

'Pipe' as entity in Figure 4.2 represents all pipes of the network. The ends of a relationship

drawn with dotted or solid lines show the optional (or partial) or mandatory (or total)

participation respectively. The crowfoot end represents the cardinality ratio i.e. contribution

of more than one instance of an entity to the relationship. The figure illustrates the following

information:

146

Chapter 4 Application of SE for GASFLO Development

Basic Entities of Pellet Induration Network:

Packed Bed

associal

Pellet
Induration
Network

j connectecLwith

mavcontainlinked t

Mandatory Optional

Figure 4.2 Entity relationship diagram showing basic entities of pellet induration network
for GASFLOw model

 A pellet induration network has many packed beds, it is connected_to many

boundaries, and contains many pipes.

 A packed bed is associated__with many regions.

 Each region is attachedjto a pipe, but every pipe may not be attachedjto a region.

Note that the dotted line is at region end. By convention the nature of participation is

determined by looking at the opposite end entity. The relationship attachedjto is one

to one, with region having total participation (looking at pipe's end) and pipe with

partial participation. The same information could be conveyed more clearly in another

notation by placing 1 at region end and 0/1 at pipe end, and attached_to could be

specified as a (1:0/1) relation.

 Each fan is installedjon a pipe, whereas each pipe may not have an associated or

installedjon fan.

 Many pipes meet_at a junction and a pipe may or may not be between many junctions.

 Many regions are linked Jo a leak and many leaks are linkedjo a region.

147

Chapter 4_________________Application of SE for GASFLO Development

 A leak may_connect to a boundary, when it is external leak, or it may not when it is

internal leak, so the relationship is dotted on boundary end. Viewing from boundary

reference, it mayjconnect to a leak, in case of an atmospheric boundary, or it may not

be connected to a leak for source sink boundaries, which renders the leak end also

dotted. Similarly the relationship connected_\vith between pipe and boundary is also

optional (dotted) on both ends. Again, it is dependent on the nature of the boundary,

if it is source or sink, then it would have an associative pipe but not when it is an

atmospheric boundary.

ERDs clarify the mutual dependence of the entities and provide insight for their data

sharing. For example one can argue that the pellet induration system has only one boundary,

that is atmosphere. If that view is adopted then it will change the relations; connectedjto from

(1 :M) state to (1:1), mayjconnect from (0/1:0/1) to (M:0/l) and connected_with from (0/1:0/1)

to (M:0/l); to not only a more complex state, but will also require that there should be only

one associated pressure with the boundary which negates the physical situation as the

pressures at suction ends i.e. B-l, B-2 (referred to figure 2.3) would be different than at

exhaust B-4 and B-5 ends. This suggests that the entity boundary should have more than one

instance, each representing the atmosphere at a point adjacent to the network locally. This

single boundary would have also increased the number of loops in the network (section 3.3)

and so increased computational complexity.

As mentioned in previous chapters and in sections 1.4, 2.4, and 3.3, in the context of

the used solution method, the network is computed as a two level hierarchical network. It is

resolved into a network of nodes and streams using graph theoretic approach (section 2.2.3).

Then it is solved for the system variables at higher or coordination level to satisfy the

Kirchhoff laws. These system variables are used for the computation of components at the

lower level. The introduction of new abstract entities, node and stream, partition the existing

entities into two separate classes which also effect the existing relationships among the

components of these two classes, which are now redirected through these new entities.

148

Chapter 4 Application of SE for GASFLO Development

Figure 4.3 shows the effect of the introduction of the two abstract entities. Now the

pellet induration system is comprised_of many nodes and it contains multiple streams. The

node links one or more streams and also a stream links to more than one node i.e. links is a

many to many relationship. A node mayjbe either a boundary, a region or a junction, this is

same as .exclusive.or of predicate logic. Similarly a stream could_be either a packed bed, a

leak, or it is made_of multiple (one or more) pipes. The multiple pipe stream can_include a

Basic and Abstract Entities for Pellet Induration Network:

Pellet
Induration
Network

compjj8ea_of \co
— ——— * links ^
Node) ———————————— <
s/V

may be/ T could.be "^
/ may be .^

\ ..^ coulc
Boundary mav _be y Packed Bed /

\

Leak
Junction

Region

ntains Coordination
^> ——— i or Higher level
Stream
-sa^.v^-..-.....-..-.....-..-..-..-..-..-

/ \^ Component
/4je Hr made_of\ or Lower level

Pipe \
_ — , —— can include

may_corjtain Fan

Valve

Figure 4.3 Modified ERD with two additional abstract entities

fan, the encircled 'U' correspond to the Union, usually used in Enhanced Entity Relationship

(EER) notation. The can_include is also (1:1/0) stating the fact that there could be a multiple

pipe stream which does not include a fan, whereas every fan would belong to one of the

multiple pipe stream. The relationship between pipe and valve remain unchanged.

The graphical representation provides abstraction, enables an efficient and easy

communication mode for all individuals related to the software (members of development

149

Chapter 4_________________Application of SE for GASFLO Development

team, clients and users). It also helps in avoiding the ambiguities of textual documentation

which is context sensitive and can easily be interpreted differently by different classes of the

readers.

4.3.2 Attribute Analysis and Data Structures :

Attributes are the measurable properties or qualities of the entities. Some authors from

database domain, using HER notation, put these assigned attributes adjacent to the respective

entities on the ER Diagrams (Elmasri and Naventhe 1989), which provides complete

information about the data corresponding to each of the entities, e.g. primary and secondary

keys and how these can be accessed. In our case the attribute lists are comparatively long for

each of the entities and so are shown separately in Figure 4.4.

The attributes of an entity for GASFLOw model are the required constants or variables

associated with the computation of that entity. These are dependent on the computational

scheme and mathematical model of each of the entities (section 4.4.4).

In Figure 4.4 the abstract entities node and stream contain all information relating to

the connectivity of the network which is required for computation at a higher or coordination

level. Each stream also contains the information about its constituent components. Some of

the attributes though could be acquired from the attributes of other entities, and are repeated

for computational efficiency reasons. For example the information about stream node

connectivity is available in the node attribute list but it is copied to stream attribute list also

to avoid extra computation. In a non-scientific environment it is emphasised that such data

redundancy should be avoided for storage and maintenance requirements as it is expensive

to maintain all copies up to date, but in this case it is justified for computational efficiency

reasons and secondly, the amount of data also is not large.

Each entity is in fact an entity set, that is it contains many instances. So if these

assigned attributes are filled in with their values then each entity will become a table (or

matrix) where each row, or tuple will correspond to an instance of a respective entity, and a

150

Chapter 4 Application of SE for GASFLO Development

Abstract Entities

Node: Node#, Node_Name; ln_Degree, Out_Degree, {Associated_Stream#s}; Pressure,
Temperature, {Stream_Flows}

Stream: Stream*, Stream_Name; UpEnd_Node#, DownEnd_Node#, No_Of_Comps,
{Compjds}; Status, Press_ln, Temp_ln, Flow, Temp_Out, Press_Out

Basic Entities

Boundary: Bdyjd, Bdy_Name; Bdy_Nature(Source | Sink | Atmosphere); Press, Temp,
Flow

Junction: Junjd; ; Press, Temp

Region: Regjd; ; Press, Temp

Fan: Fanjd, Fan_Name; Discharge_Coef, Efficiency, Wattage; Pressjn, Temp_ln,
Flow, TempJDut, Press_Out

Leak: Lekjd; Width, Height, Discharge_Coeff; Press_ln, Temp_ln, Flow, TempJDut,
Press_Out

Pckd Bed: Bed_ld; Length, Width, Height, Voidage, Pellet_Diameter; Pressjn, Tempjn,
Flow, Temp_Out, Press_Out, F_Known

Pipe: Pip_ld; Diameter, Length, Thickness, Conductivity, Fric_Factor, Effi_Fac, Vlv_ld;
Pressjn, Tempjn, Flow, Temp_Out, Press_Out, F_Known

Valve: Vlv_ld; Valve_Type, %_Opening, Equivalent_Length;

{} Multiple valued attribute
(|) Attribute having one of the specified values

Figure 4.4 The attributes assigned to abstract and basic entities of pellet induration
network.

column will contain the values of the associated attribute for all instances of the entity.

The very first attribute or component identification number forms the primary key for

each of these entities and it must be unique. It is generated systematically. The additional

component names mentioned for some of the entities, are the names commonly used by plant

151

Chapter 4 ______Application of SE for GASFLO Development

engineers in their diagrams and correspondence, e.g. the Fan_Ids would be fOl, f02, f03 etc,

but their names in the provided diagrams and data are 3A, 3B, 1A etc, so these are retained

for output and cross referencing purposes.

The hierarchical nature of the network, and introduction of node and stream as abstract

entities in Figure 4.3, shows that the information available for node and stream could be

shared by the entities below them. For example a node can either be a boundary, junction or

region, so the In_Degree, Out_Degree and corresponding stream numbers need not be defined

for these lower level entities (unless there is some special reason for it) and can be passed on

to junction or region nodes at the time of computation of the respective component.

By analyzing the nature and values of the attributes assigned to each of these entities,

we can conclude that each of the attribute lists can be split into three types of data:

(a) Identification data - which includes the component identity and component name if

it exists;

(b) Connectivity or material or geometric property data - which is specific to the

component; and

(c) System variables data - which carries the values of system variables that is pressure,

temperature and flow variables relative to the respective component. The stream type

components (leak, fan, packed bed and pipe) have a constant flow, so a single value

of flow is associated with them alongside the temperature and pressure values at their

ends. Whereas the node type components have temperature and pressure values only.

Computation wise, the data of first two types (a and b) would be read in by the

program and will remain constant during the computation. It will be used for the computation

of the third type (c) i.e. the system variables data, which are variable and are computed by

the program. Then these attribute lists could be presented by a generic data structure

comprising of these three types of data for each of the entity. This is shown in Figure 4.5.

152

Chapter 4 Application of SE for GASFLO Development

Entity

Inst
no.

1
2
3
4
5

Identification
data

Material or Geometric
data

System Variables
data

Figure 4.5 The generic data structure for an entity

Practically a program is supplied with some known raw inputs and it is required to

output the desired unknowns. In terms of the above mentioned generic data structure, the

input fills in the first of the two parts, whereas the program computes the equations of the

components of the network and fills in its third (the variable) part. Of course, the main

function of a program is to fill-in the corresponding data structures.

4.3.3 Data Dictionary :
The Data Dictionary (DD) records the information about the data, its type, nature and

how it is modified during different phases of the software execution. Also known as meta data

or simply data about the data. All data structures are composed of atomic, multi-valued or

composite attributes. Overall storage requirements by a data structure is dependent on the data

types (integer, real, double precision or character etc) of its constituent attributes and the total

number of instances of each respective entity (or dimension). The information where and

which part of a data structure is defined, where it is used (read only) and where it is updated

153

Chapter 4 Application of SE for GASFLO Development

(read and written) is very important for design, function, debugging and maintenance of the

software.

As mentioned in section 4.1.4, DD is a one of the main features of present day

Computer Aided Software Engineering (CASE) tools. These tools help the user initially to

specify the basic information about the atomic attributes, and later these could be combined

into composite data structures. CASE tools provide an integrated environment for all aspects

of software development depending upon the type of the tool, full use of DD is made to

achieve the intended functionality. Data dictionary provides an integration layer for

communication of various techniques (ERDs, DFDs and Structured charts) supported by the

respective tool.

Manually maintenance of DD is cumbersome, but still possible and useful. It is

developed in parallel with other techniques. It can be started after the specification of data

structures, by assigning unique variable names and data types to their constituent attributes.

The definition, usage and modification of each of these variable names is recorded in the form

of a matrix or a table, with a row representing the modification history of a variable name

(or a data structure) and column representing different processes of DFD where it is being

referred. The i/th element of this DD matrix, would imply the state of access or modification

the y'th process has on ith variable name. Finally in the resulting code, the processes of DFD

will transform to the respective coded modules of software so then this DD matrix would

provide the information where the respective data structure has been accessed and modified.

Whereas if program is fully developed using a good CASE tool, the clicking on a variable

name from attribute list, can give information about all processes of DFDs and modules of

structure charts where the variable was referred. This is an invaluable information tool for

program maintenance purposes.

Most of the relational data base management systems use same kind of tables for data

dictionary also as for the storage of ordinary data. They define separate tables; for entities,

attribute and relations definitions, one for each category; and access data from these tables

154

Chapter 4_________________Application of SE for GASFLO Development

using same query language as for other data, which makes the type checking and other

validations of data very simple (Fertuck 1992).

4.3.4 Data Flow Diagrams :

Data Flow Diagrams (DFDs) describe the process of transformation of data from its

input state to final output state. These are very versatile and used for process modelling in

a variety of forms. System analysts use DFDs to model the existing systems to study their

requirements, work out the system specifications and how the automation or computerization

will effect its future working environment.

For our problem we use DFDs to describe the process of computation. How the raw

input; i.e. known data about components, their connectivity, boundary conditions etc; is used

to compute to the required output namely pressure, temperature and flow distributions in the

network.

Data flow diagrams have four components; terminators, processes (or bubbles as

DeMarco calls them), data stores and data flows. Each one has its own graphical

representation, though it varies from author to author e.g processes are presented by soft

(rounded corners) rectangles in Gane and Sarson notation, whereas DeMarco represents them

with circles. We will use the Gane and Sarson notation for DFDs.

DFDs conform to the information hiding principle, the name of each process describes

what it is doing, but NOT how it is being done. These are hierarchical by nature and can been

exploded to further levels to describe the details of any component process of the DFD. These

are flexible and depend on the user how he defines and names them, he can put as many as

seven processes in a single DFD. Thus the same information would be presented differently

by different users. DFDs are a good tool for refinement of ones own thoughts and an aid to

communicate with the users and others. They simulate flow of data and do not show control

or temporal constraints.

155

Chapter 4 Application of SE for GASFLO Development

The boundary of DFD demarcate the range of interest at respective level. All the

components inside the boundary are considered and studied whereas the components outside

the boundary are 'externals'. Externals are treated as black boxes and only data flows coming

from or received by them are of interest at this level. Each process is linked to its neighbours

by data flows, and should have an input and output. Every process is assigned a unique

number which links it to other level processes and used in other documentation for cross-

referencing.

Data flows show the transfer of data among the processes and they work as a stimulus

for the activation of a process and carry its response as output from the process. They link

the other components of DFDs. By convention, each data flow should be given a name which

will specify the input and output of the process. The data stores represent the data structures

so the data flows entering or leaving a data store can have its name and can convey the

desired information. Data flows always start and/or end at a process, they cannot link two

data stores or a data store to a terminator or an external.

Terminators are the objects which are outside the modelled systems' domain. These

are either providers of input to the system or receivers of its output. Data stores denote files

or data structures. These can also be used to isolate the linked processes. For example the two

non-interacting processes, one passing on its output to the other, can be delinked by storing

the output of first process to a data store and then reading input of second process from that

data store, just as happens for batch processes, and both can work independently.

Figure 4.6 shows the context diagram, which is top or zero level DFD. It states that

'user' feeds in raw data to the 'GASFLOw computation' process which passes on the

processed output to the user. The Context diagram has a single process and no number is

assigned to it by convention.

At next level this process can be expanded. Figure 4.7 shows the first level DFD, here

'user' becomes external and placed outside the boundary. It describes that 'GASFLOw

156

Chapter 4 Application of SE for GASFLO Development

LeveI 0.0 Context D i agram

a

User

GASFLOw
Computat ion User

Figure 4.6 Top level (context) data flow diagram

computation' process, it is comprised of two processes; process 1 'PRePare NETwork' reads

in the components connectivity data and formulates the network. The process 2 'CoMPute

NETwork' computes the network using component related data from the user and network

related data fed by the other process.

The externals could be terminators, data stores or processes are drawn with dotted lines

showing they are not considered here and are inherited from the previous level. In Figure 4.7

the output of process 'PRePare NETwork' is stored to a data store 'Network info', instead of

being passed on directly to other process. Both of the processes are linked to user to receive

required inputs and pass on the computed outputs. Obviously, these data flows are specific

to the respective processes. The '*' with process numbers indicates that respective process has

been expanded to include further details.

At level 2.0, both of these processes will be expanded. Figure 4.8 shows the expansion

of process 1 'PRePare NETwork', and describes how it formulates the network connectivity.

The data flows linking the boundary of the DFD at this level are the same as the ones linking

the process at the previous level. Now this DFD has five processes known as sub-processes

157

Chapter 4 Application of SE for GASFLO Development

Level 1.0 Components of GASFLO

GASFLOw Computat i on

PflePare
<ETwrk

Network
info

CoMPute
NETiork

:: '

••user

Figure 4.7 Level 1.0 data flow diagram, exploded version of context process

or children, numbered sequentially from 1.1 to 1.5 and five data stores. The assigned process

numbers have no association with their computational order.

Figure 4.8 describes the process of formulation of network information and can be

correlated to the algorithm (Figure 3.6) defined for this purpose in section 3.5. This DFD

states that the read input is sorted out by process 1.1 ' input-1' into stream and node data, and

stored in 'Stream info' and 'Node info' data stores respectively. The process 1.4 'Generate

Network' reads in from these stores, generates temporary network information and stores it

to 'Temp Network info' data store. The bi-directional data flow to 'Temp Network info' store

implies that the data is updated i.e. read and written. One of the claimed advantages of the

graphical notation is that they are self-descriptive, so the working and data exchange of other

processes in the figure is assumed self evident. Unfortunately, the used version of ASCENT

was still in beta test and generated wrong numbers for DFD processes and sub-processes.

However, correct numbers for these processes have been mentioned in the text.

158

Chapter 4 Application of SE for GASFLO Development

Level 2 D PBPNET - for the preparation of Networt information

Figure 4.8 Level 2.0 DFD showing sub-processes of 'PRePare NETwork'

Refinement of process 2.0 'CoMPute NETwork' is shown in figure 4.9. The input by

Level 2.0 CMPNET - Computation of Airflow Distribution of Network

2 CoMPute NETwork

Figure 4.9 Level 2.0, DFD for process 2.0

159

Chapter 4 Application of SE for GASFLO Development

the user is filtered out by the process 2.1 'Input' and stored to respective data stores, from

where it is read by other processes. Further expansion of process 2.2 'Compute' is shown in

figure 4.10, which explains how the computation is performed. Note all the data stores linked

to process 2.2 at the previous level are now external to this process; and the data store 1

'Network info' provides network related information to all the three sub-processes 2.2.1, 2.2.2

and 2.2.3, as it is needed for their computation.

These processes can be expanded to any desired level. According to DeMarco 1979,

this refinement should be continued to such a level where each process performs a single task

i.e. it is reduced to a basic process. Whereas for a problem like ours, this refinement can be

carried out to the point where the main computational steps or the purpose of the process is

obvious. The functionality of these basic processes can be written down in structured English

Level 3.0 'Compute' - Process of Airflow Distrib Computation

19 !8oun0ary
! Icondl t I one

**12 -Nod*

tin 11
r«Iatid
data

>

-"•*
••--•>

V^.ll

1.2.1

Inlt !• 1 lz»
Co t r •* F 1 <>••

————————— ̂

123

" —————

•> ^1.2.2

find Tr»«
', F low* „ —

\ 4

if-V""""T""-
•. r-. i•. i '-. i

•. i •<. •. i i •-.
: \ i •. i i M i

M 1

*

\
V

\
\
\
\ • . \

...........|

-;;::::::«

V

-K3 ';,..

lelvork
nfo

Figure 4.10 Level 3.0, DFD for process 2.2

(to be described later) and logic could be explained in terms of a decision tree or decision

tables (Fertuck 1992). SSADM provides a special 'Elementary Function Description' form for

160

Chapter 4____ _______Application of SE for GASFLO Development

this purpose, in which along with the narration of the process, the corresponding DFD, data

structure and structure chart references are also filled in.

Data flow diagrams describe the functionality of the system or process in top-down

way. The Information hiding principle helps in concentrating on the components inside the

boundary of DFD. These indirectly help in accomplishing the cohesion in the software

modules. The insertion of data stores enables the partitioning of the process on the basis of

data rather than on control or functionality which decreases overall coupling. For example in

level 1.0, the output of process 1 was stored into data store 'Network Info' which delinked

the two processes. This information or data has been used by many sub-processes of the

process 2 but these processes have no functional coupling and so the whole process

GASFLOw can be decomposed into two sub-programs PRPNET and CMPNET which can

work independent of each other, the latter reads the network related information computed by

the former.

In further discussion the term 'GASFLOw' though implies the overall computation of

the model including PRPNET and CMPNET, but would refer in particular to CMPNET i.e.

how the network airflow distributions are computed.

4.3.5 Hierarchical Input Process Output (HIPO) Charts :
Hierarchical Input Process Output (HIPO) charts (Martin and McClure 1985) show the

organizational structure or the architecture of the software and are also called (with slight

variations) as Structure Charts (SCs). These show how the modules comprising the software

are linked, their span of control and which module controls or calls which. The relationship

between, a controller module usually called the 'master' and the ones called as 'workers', is

local. A worker could be a master for some other modules if it is somewhere in the middle

of the hierarchy.

There is more than one notation to represent these charts. Fertuck 1992, preferred to

present them horizontally to fit them on a standard sheet of paper and for ease of printing

161

Chapter 4__________________Application of SE for GASFLO Development

with the convention that the modules on left side control the ones on the right. Whereas

Jackson 1983, DeMarco 1978 and proponents of HIPO charts use a vertical format and claim

that it is more expressive as the top level controls the lower levels.

In contrast to DFDs which are an analytical tool to describe the functionality of the

modelling process, the SCs are representation of actual software and they refer to actual

source code modules. These modules are represented by rectangles and the links between

them describe the control or call lines. The data and control information required to realize

this call are presented by the side of link. The decisions regarding the execution of these

modules are taken at this time and control information included in parameter list.

Warnier-Orr notation is another horizontal presentation, which uses braces rather than

straight lines for links and does not put data or control information along the call links. This

notation is easier to draw and comprehend the structure of program, but conveys less

information.

We use HIPO chart notation with some improvements to the standard. The flow of

data and control information are shown, but their names are omitted to avoid cluttering the

figure. We also draw the data structures to show their access by different modules to infer

how they are accessed and filled in.

The design of structure charts, is indirectly dependent on the information available

from the application of all previous techniques. The expertise of the concerned individuals

also plays an important role. The relationship between processes of DFDs and modules of

Structure Chart (SC) is not one-to-one, instead it could be many-to-one. The conversion of

each process of a DFD into a software module could result in a large number of modules

which would ultimately increase their mutual coupling and thus hinder their independence.

Alternatively, the groups of DFD processes, performing similar functions and sharing data,

could be identified and combined together to form a module of a SC. This may need merging

of processes from different levels of DFDs and consequently it may modify the data flows

162

Chapter 4 Application of SE for GASFLO Development

for some processes, which would be reflected back in DFDs iteratively. Moreover, the DFDs

described the functionality of modelled process but these do not include any information

about error checking, data validation, iteration or control. In fact these should be carried out

by the software and so these additional requirements are fed into the SCs in the form of extra

control information. The software may require some service routines or library modules,

which could also be shown in SCs.

Finally, these modules of SC could be transformed into the modules of the software

so the properties of cohesion, coupling, manageable size, information hiding, independence,

explicitness and comprehension may once again be reconsidered and the proposed SC be

tested against the set criteria. It is in fact an iterative process. For example to achieve the goal

of high cohesion, low coupling and moderate size, we can try different groupings of the

DFD processes. These properties of cohesion, coupling and module size are inter-related e.g.

high cohesion would demand decreased module size, whereas low coupling will require an

increased module size. In other words; if the module size is large, it will include more

functions and will have lower cohesion thus its size should be decreased for high cohesion.

However, if the module size is small then it will increase total number of modules which will

increase the overall communication between the modules and hence the overall coupling of

the software. To lower coupling the module size should be increased. So the balance between

the two is sought. This may require few iterations but it will save a lot of labour at later stage

if the same changes are done after implementation stage. Fertuck 1992 and others give

guidelines for the design of SCs from the information available from previous steps.

Figure 4.11 shows the initial HIPO chart for GASFLOw model. This shows the airflow

distribution computation and assumes that the data related to network connectivity has already

been computed by the other part and written to 'Network info' file. The main controller

module 'GASFLO' calls three modules 'INPUT', 'COMPUTE' and 'OUTPUT'.

The 'INPUT' reads in; the network related data from 'Network info' file (or data

store), and other data either from files in 'BATCH' mode or from the user interactively using

163

Chapter 4 Application of SE for GASFLO Development

HIPO Chart (initial)

Pgm contrls etc

^c^>"
I Unit Dependent Data

Figure 4.11 The Hierarchical Input Process Output (HIPO) chart for GASFLOw model

'INTRACT. Reconsidering the Figure 4.5 for generic data structure, the first two parts of this

data structure are constant and comprise of input supplied by the user, so 'INPUT' also fills

in these two parts for each of the unit dependent data structure, which is shown as data store

at the bottom. Program Controls, to control program execution and other read in data is

passed onto the main module 'GASFLO'.

'GASFLO' executes the basic worker modules 'JUNC, 'REGION', 'BED', 'FAN',

'PIPE', 'VALVE' and 'LEAK' using intermediate controlling modules 'COMPUTE', 'NODE'

and 'STREAM'. All these basic modules compute the airflow distributions using respective

mathematical models and fill-in the third part of their data structures. A copy of these

computed system variables is also passed on to the controlling modules as 'STREAM'

computation needs node temperatures and pressures, and 'NODE' computation needs stream

flows.

164

Chapter 4 Application of SE for GASFLO Development

The 'OUTPUT' module receives; control and network related data from 'GASFLO'

and reads in unit related data from the respective data stores, transforms it into graphical or

tabular form using 'GRAPH' or 'TEXT' modules respectively as desired by the user; and

finally displays it using 'SCREEN' or prints it as 'HRDCPY'. The 'HRDCPY' or 'SCREEN'

should not be confused with the physical devices, these would in reality be software modules

like device drivers capable of presenting output in either graphical or textual format.

The HIPO chart shows the organizational hierarchy, the module communication with

their immediate bosses or workers and their control span. For complexity reasons, a module

should not control more than seven modules; if others are required then another layer of

controllers should be introduced.

Now the internal data structures for each of the modules or basic entities are known

from ERD and Attribute Analysis; the functionality of each module is obvious from its

corresponding group of DFD processes; and the data and control flows being passed up and

down along the connecting links in the HIPO chart concludes the 'parameter list' or

'interface' for its respective module. These three parts of information completely specify the

modules and structured English for each of the modules can be written.

4.3.6 Structured English :

Structured English is a subset of standard English with few constructs, which can

describe the functionality of a module in a simple, concise and unambiguous way. The

modern computer languages, e.g. Ada, provide constructs to describe the algorithms or

functionality of such modules. Like other SE techniques the structured English is another aid

for increased comprehension and communication among different team members. These

module descriptions are written at design level using information available from data

structures, DFDs and HIPO charts, usually by different people. These modules are coded by

the programmers at later stage; so these descriptions ought to be in a simple, understandable

language and very clear to avoid any misinterpretation.

165

Chapter 4 Application of SE for GASFLO Development

The structured English or specification of a module is in fact the step-wise description

of the method used to transform the input of a respective module to its output. While coding

each of these steps requires a block of some high level computer language code, these

structured English statements can serve as comment lines thus providing an overview of what

is being done by the subsequent block of the code.

Jackson 1983, Pressman 1988, Sommerville 1989 and Fertuck 1992 discuss in detail

the constructs used and advantages of structured English. The algorithms described in chapter

3 used similar constructs. Further in Figure 4.12 (in section 4.4.4) showing sample code, the

comment lines starting with 'C-*', initially presented the structured English for respective

module, later on the statements corresponding to each block were filled in. Indirectly the

structured English works as an outline for the programmer.

ERDs, DSs, DFDs, HIPO charts and structured English complete the logical design

of the software. Up till now, we have postponed all decisions regarding hardware, operating

system or implementation language. As a result the logical design is independent of these

constraints. It can be implemented for any operating system, on any hardware using any

programming language. The next section on physical design and implementation will consider

these issues.

4.4 Physical Design and Implementation

In this section we will be considering the practical problems and their solutions for

converting the logical design into tangible executable code which satisfies the initial

requirements as stated in section 4.2 and fulfils the criteria of quality software. The

hardware/software dependent decisions have been delayed as much as possible to benefit from

the reusability of design e.g. the change of implementation language at some later stage,

would require the repetition of coding part only and could reuse the analysis and logical

design which has already been completed.

166

Chapter 4 Application of SE for GASFLO Development

4.4.1 Implementation Decisions :

Depending on the selected hardware and software any later change would require a

significant amount of work and hence an increased cost, so these required changes should be

well planned and documented. Some of these decisions are dictated by the client according

to his available resources and preferences; e.g. what hardware he has, which operating system

is being used, with what existing codes the new software has to co-exist or communicate and

his preference for some computer language. The developer has to abide by these constraints

and they might be included as an essential requirement, but being an expert himself, has to

use his foresight for the future of the product and should warn the client of any risks

associated to the choice.

For GASFLOw the following choices were made:

1. Hardware platform • IBM PC 1 Compatible: The main reasons being their falling prices,

open standard and enormous computational power. The most important of all, the high

end personal computers (486s) are available at every office or organization (Chansler

and Rowe 1990) including pellet induration sites. These high end PCs can compute

substantially large fluid flow networks, as reported by many authors e.g. Gomasta and

Devi 1989. This provides confidence that these could also well serve the GASFLO

needs.

2. Operating system - MS-DOS2 : This is the operating system available on the PC platform,

in fact it is the consequence of first choice. It is not only widely used but dominant

operating system on PCs.

3. Implementation language • FORTRAN 77: FORTRAN is the most widely used

programming language in scientific domain since its inception in mid 1950s (Metcalf

1985, Wilkes 1993). The initial design objectives; numeric efficiency, clear syntax,

1 IBM PC is registered trademark of International Business Machines corporation for their
Personal Computer

2 MS-DOS is registered trademark of Microsoft Corporation for its Disk Operating System

167

Chapter 4__________________Application of SE for GASFLO Development

natural and simple data structures; promoted its use and widespread acceptance among

the engineers, scientists and technologists which helped the present day dominance.

About 95% of the scientific programs have been written in FORTRAN, in some fields

like finite element methods and structural analysis this ratio is as high as 99% (Filho

and Devloo 1991). After FORTRAN 66 and FORTRAN 77 ANSI (American National

Standard Institution) standards, now FORTRAN 90 standard has been approved but

its compilers would take some to appear in market. This standardization process

resolves portability related problems, enables users to learn just one language and help

them benefit from the ever improving computer hardware. Because of compute

intensive nature of scientific problems, FORTRAN still has no potential competitor

(Metcalf and Reid 1990) and it will remain an ideal solution. The huge investment in

the form of FORTRAN code is an other factor which ensures that this language will

continue its dominance in the scientific domain.

Apart from these and many other positive points, FORTRAN is an old

language and lacks explicit constructs to support the modern SE concepts of 70s and

80s. FORTRAN 77 is mostly criticised for the following shortcomings:

 Fixed syntax and format, which is inherited from its 'card punched input' age;

 Lack of block structured constructs e.g. REPEAT .. WHILE loops etc and

explicit constructs for information hiding, data abstraction, inheritance and

dynamic binding (which would be covered in section 4.6.3);

 Lack of dynamic memory allocation, which restricts the program to define all

storage requirements at compile time;

 Lack of recursion and pointers and better input/output modes which are

provided by other high level languages e.g. 'C;

 Some very powerful and widely used constructs like GOTO and COMMON

(whose advantages compelled every real user of the language and was

supported by texts e.g. Metcalf 1985) are regarded 'dangerous' by software

engineers from maintenance and data sharing points of view respectively. For

168

Chapter 4__________________Application of SE for GASFLO Development

example Fertuck 1992 assigns the worst (i.e. the highest) coupling to a module

as 'Common Coupling' and denounces the use of COMMONs;

 Inability to use duplicate names for subprogram names;

 Lack of constructs for composite heterogenous data structures and user-defined

abstract data types.

The above shortcomings have been addressed in the recent FORTRAN 1990 standard

(F90). F90 provides the proper constructs for information hiding e.g. now abstract data types

can be defined. It has improved syntax; better I/O facilities, variable names up to 31

characters, multiple statements on same line, imbedded comments and free format source code

can all improve the readability. For numerical efficiency; recursion, pointers, array and matrix

operations are provided which will lead to an efficient, compact and easily parallelizable code.

Block structured constructs, and CASE statement has been provided. Dynamic memory

allocation is possible. Complete F90 language has been discussed by Metcalf and Reid 1990,

and Reid 1988 explains its usage for large problems. F90 is superset of F77 unlike other

language extensions e.g. C++ is not proper superset C (Jones 1993), so all programs written

using F77 will run on F90 by default. Although these F77 programs may not be as efficient

as if they are written in F90 which exploits the hardware architecture of the used machine.

It is hoped that with this new standard, FORTRAN will continue its superiority in numerical,

scientific, engineering and technical fields (Reid 1992).

4.4.2 FORTRAN 77 - SAVE and ENTRY Constructs :
These two constructs of standard F77 have played a key role in the development of

GASFLO, for data abstraction and encapsulation. FORTRAN has had a facility for the

definition of local variables in subroutines and function subprograms since its conception.

FORTRAN uses the 'transfer by reference' mode for the transfer of dummy arguments to

subprograms which is computationally efficient. This mode provides the address of the

corresponding dummy variable to a subprogram rather than its actual value. Hence the values

of dummy variables are undefined when control returns to the calling program. Another

problem is that on return of control to the calling program the local variables of the

169

Chapter 4 Application of SE for GASFLO Development

subprogram are undefined or 'forgotten' (Metcalf 1985), so on re-entry to the subprogram the

values of local variables established at a previous visit are not available.

SAVE statement cures this 'forgetting' problem. All the local variables are saved with their

existing values and on re-entry these are available. This enables us to maintain the

data structures by defining them locally in respective modules. Advantages of this

statement has led many vendors to include it as a default facility for their

implementations of F77 standard whereas other compilers provide it when requested

by the user. It can be argued that it is good practice to use SAVE explicitly in all the

modules, and specially where the re-use of the local variables is intended, so that for

every compiler the SAVE option is activated. Otherwise the same software which was

running smoothly on one compiler may produce unexpected results on an other

compiler which does not SAVE by default.

ENTRY statement was introduced in FORTRAN 77 to re-use certain code fragments of

subprograms. In function subprogram the ENTRY name should be assigned a value

and single value will be returned, whereas in subroutine subprogram ENTRY has same

general nature as subroutine itself, it can return any number of values to calling

program. Multiple ENTRY statements could be included in a subprogram, thus

providing a multiple number of points where control can enter into the subprogram.

This is disliked by software engineers as well as the FORTRAN practitioners due to

maintenance and code comprehension problems. Metcalf 1985 has suggested the use

of COMMON (which is even worse) to share data between the modules rather to use

ENTRY statement. Its intelligent use however, not only outweighs the pointed out

disadvantages, but also opens the doors for object oriented programming to F77 users

as demonstrated by Isner 1982, Meyer 1988, Corbin and Butler 1989 & 1990, Butler

and Corbin 1989 and Colbrook and Smythe 1990.

In the following sections the use of these statements will be explained and how the

shortcomings mentioned in respect of maintenance could be overcome.

170

Chapter 4__________________Application of SE for GASFLO Development

4.4.3 Coding Guidelines and Testing :

Like software engineering methodologies, coding guidelines are also application,

language and working environment specific. Software houses and professional developers

have their home grown guidelines, which have evolved with time. These guidelines help new

comers (novice programmers) to understand the coding practices and serve as a disciplined

approach to be adopted by the programmers. Strict adherence to the guidelines is always

beneficial, resulting uniformity in approach, better readable code and decrease of maintenance

costs.

The research environment is different from the software house environment it has its

own aims and objectives, though quality software is one of the common aims between the two

environments. In research the individual involved, the researcher has to play all the roles as

problem initiator, the client, an engineer, mathematician, numerical analyst, software designer,

developer, programmer, and first-time user. So the implementation of such guidelines is not

really possible due to the overheads involved. Fitzsimons and Greenough 1993 have presented

a set of guidelines which could be easily followed and conform to engineering and scientific

environments; but unfortunately these guidelines cover the coding or implementation stage

of SDLC only.

Another approach called 'Literate Programming' is now getting established among

many practitioners, this is based on Prof Knuth's notion that the 'programs should be written

for humans not for machines' (Knuth 1984 and Levy 1993). This idea is supported by a

variety of public domain freely available tools with which a programmer can write the

programs as 'stream of consciousness' in a text file, which can later be manipulated by the

provided tools to extract compiler dependent code and produce the pretty printed

documentation. Majority of these tools are based on public domain TEX software and are

compiler specific. Now some other tools like CLiP are available which are word processor

and compiler independent (Ammers and Kramer 1993). The present state of literate

programming restricts itself to coding phase of SDLC only, as only text could be handled

with these available tools. Some recently proposed tools (Shum and Cook 1993 and Lougher

171

Chapter 4_________________Application of SE for GASFLO Development

and Rodden 1993), which can handle graphics and manipulate hypertext; show the potential

to cover the other stages of SDLC.

In general, all texts on FORTRAN programming e.g. Metcalf 1985, and Ward and

Bromhead 1989 discuss the ethics of good programming. Collins and Miller 1991 has pointed

out common mistakes, mostly due to lack of understanding of the working of FORTRAN

language, and suggested their remedy which in result can improve the program efficiency and

overcome portability problems.

Due to space limitations we will restrict to the following principles in using the SAVE

and ENTRY constructs:

 The source files corresponding to basic entities of the model contain their own unit

dependent data structures which would be maintained incrementally;

 These source files encapsulate all related modules using multiple entry points;

 All source files (in principle), and especially those which are having multiple entry

points, must include SAVE statement;

 Each of these basic entity source files should have at least three modules; ***INI for

initial reading of input and initialization, ***COM for computation of mathematical

model, and ***OPT for output; where *** refers to the three characters of respective

entity name e.g. BED for packed bed, PIP for pipe etc. ***INI should be the first and

subroutine name and ***OPT be the last entry name. If required more entry points

could be inserted in between these two;

 Each entry and subroutine corresponds to its own RETURN. The code segments

between SUBROUTINE ... RETURN and ENTRY ... RETURN are disjoint, that is

each call to a respective module either through subroutine or entry executes its own

code. This has been recommended by other proponents of multiple entry points and

leads to safe program execution and easier maintenance;

 For clarity and readability the same variable names have been used globally for

physical constants, system variables and computational controls. Adherence to F77

172

Chapter 4______ Application of SE for GASFLO Development

required maximum length of six characters, so GASCNS is R the gas constant,

DENSTY is p the density of process gas, ACCURC is 6 the local tolerance of

convergence, TIN is Tin the temperature at the incoming end of the unit etc.

 The data about process gas and program controls is constant and read in by INPUT

module (Figure 4.12 in section 4.4.4) and supplied to all these basic entity modules

once through ***INI, by FORTRAN constraints, on return of control to the calling

program the dummy variable names would become undefined and will not be

available. So to resolve this situation, slightly different names have been used in

dummy argument lists and then in ***INI they are copied to local variables having

the same global name, e.g. gas constant comes into BEDINI subroutine in the guise

of AASCNS and then it is copied to a local variable GASCNS, which is used later on

for computation of the mathematical model. This copying could be done either by

simple assignment statements or using an internal scratch file;

 Re-considering the data structures for respective entities, the mathematical model,

computational algorithm and the present architecture of the basic entity modules, the

parameter list for each entry point is decided;

 All modules of the same category i.e. ***INI, ***COM or ***OPT should have a

uniform interface. For example, the BEDCOM, PIPCOM and LEKCOM all compute

the system variables using their own respective mathematical models, but their

interconnection with other network components is generically of the same type. Hence

for any of these modules the software interface would be:

ENTRY UNTCOM(UNTID, TIN, PIN, FIN, POU, TOU, FLGTRE, FLGTMP)

Where UNT corresponds to any unit, UNITID is the identification of an

instance of the unit, and TIN, PIN and FIN are temperature, pressure and flow at

upstream or incoming end, and POU, TOU are pressure and temperature at the down

stream or outgoing end. FLGTRE and FLGTMP are to control the respective module's

computation for tree or temperature options.

173

Chapter 4____ Application of SE for GASFLO Development

4.4.4 Architecture of Unit (Basic Entity) Modules :

The similarity between data structures and the functionality of basic entities lead to

quite a similar module structure and generically similar code. Figure 4.12 shows the partial

listing of code related to packed bed entity. The packed bed is an important entity, its

mathematical model is given in section 2.4.2, here the software module simulating packed bed

is described. Other basic entity modules like fan, pipe and leak have a similar structure. This

module is comprised of three parts as described previously;

BEDINI (or ***INI) is subroutine name, its main functions are:

 Import of related data which includes; network configurational data e.g. total

number of beds (or the respective units) in the network; the process gas

required by the mathematical model of the unit e.g. dynamic viscosity, gas

constant etc; program control data e.g. input channel for reading data,

maximum number of iterations and convergence criteria for local computation

etc.;

 Explicit declaration of all the variables for a unit whether they are dummy or

local, static or dynamic;

 Reading and validation of the bed (unit) related geometric and parametric data

for each of the packed bed (i.e. for each instance of the unit), in the network

either through a file or interactively from the terminal;

 Computation of constants occurring in the mathematical model of the unit and

save them as local variables for later use.

The unit dependent data structures are defined as local one dimensional arrays,

one array for each attribute of type LOGICAL, CHARACTER, INTEGER or REAL

depending on its nature. The SAVE statement retains the values of these local

variables or unit dependent data structures on RETURN from a module and provides

them on re-entry. After completing all above tasks the control is returned to the calling

module.

174

Chapter 4 Application of SE for GASFLO Development

SUBROUTINE BEDINI(NEWSET, INI, MBEDS, MAXITR, AYNVSC, AASCNS,...)

C-* Variable Declarations

C * Internal Dummy File for formal to local arguments transfer
CHARACTER FDUMMY*80, STRING*80

C * Real constants
REAL DYNVSC, GASCNS, DENSTY, PARDIA, ...

C * Bed dependent Geometric Data Structure
REAL BDAREA(NTBEDS), BEDENT(NTBEDS), BEDOUT(NTBEDS), ...

C * Bed dependent variables
REAL TBEDIN(NTBEDS), PBEDIN(NTBEDS), FBEDIN(NTBEDS), ...

SAVE

C * For storage of formal arguments these are converted to locals
WRITE(FDUMMY,'(2I4,5E12.5)')MBEDS,MAXITR,AYNVSC,AASCNS, ...
READ(FDUMMY,'(2I4,5E12.5)')NEEDS,ITRTNS,DYNVSC,GASCNS, ...

C-* Read in Packed Bed geometeric or parameteric data from terminal or file

C-* Work out and save the Recurring constants
DO IBED = 1, NEEDS

CONSTO(IBED) = (1.0 - VOIDAG(IBED)) / PARDIA
CONSTl(IBED) = 1.75*GASCNS*CONSTO(IBED) / (PRSATM*VOIDAG(IBED)**3)

END DO

RETURN

ENTRY BEDCOM (IBED1, TIN, PIN, FIN, TOU, POU, TREBRC, TMPCMP)

C-* Compute equations of respective bed for required variables
C in terms of given parameters, as dictated by TREBRC and TMPCMP flags

IF (TMPCMP) THEN
C-* Temperature Distribution Computation

ELSE
C-* Flow and Pressure Distribution computation

IF (TREBRC) THEN
C-* Normal Forward computation, Known PIN & FIN to find POU

GO = FIN / BDAREA(IBED)
CONST2 = CONSTKIBED)*BDTMPS(IBED)*BEDHYT(IBED)*GO*GO
POU = PIN - CONST2

ELSE
C-* TORN stream computation i.e. known PIN and POU and to find FIN

CONST2=ABS(POU-PIN)/CONSTl(IBED)/BDTMPS(IBED)/BEDHYT(IBED)
GO = SQRT (CONST2)
FIN = GO * BDAREA (IBED)

END IF
END IF

C-* Initialization of Dynamic Data Structures
100 TBEDIN(IBED) = TIN

RETURN

C * =========
ENTRY BEDOPT (INTIAL, IOUT1, ITR)

C-* Output:
C * INiTIAL = .TRUE, outputs Geometric & Parametric (Static) Data Structures
C * =.FALSE, outputs ITRth iteration values of state (Dynamic) variables

Figure 4.12 The partial listing of module relating to packed bed

175

Chapter 4________ ________Application of SE for GASFLO Development

BEDCOM (or ***COM) is the main part where computation of the mathematical model for

the respective unit takes place. The parameter list includes the unit identification,

coordination level (or state) variables and some flags required for the computation of

respective instances of the unit. As seen in section 3.3, on the solution algorithms, the

computation is split into two stages. First the pressure and flow distributions are

computed and then using these at second stage the temperature distribution is

computed. Further the computation of a component is dependent on its position in the

network i.e. its occurrence in a tree or cotree. For tree branches the pressure at down

stream end POU is found using known pressure at up stream end PIN and flow FIN,

whereas for cotree branches flow FIN is found using known end pressures PIN and

POU. For each of these alternatives, a corresponding set of equations are used and the

flag TREBRC distinguishes between these two. The other flag TMPCMP selects

between the temperature distribution or pressure and flow distribution computations.

Computation of the linear equations requires simple rewriting of the variables

to be evaluated in terms of the known, whereas nonlinear equations would be

computed iteratively using any suitable method, one such method viz. the one point

iterative method was discussed in section 2.5.

Finally the coordination level variables are copied to the local dynamic part of

unit dependent data structure e.g. TBEDIN(IBED) is initialized with TIN where TIN

and IBED were brought into BEDCOM through the parameter list. This way complete

track of variation of state variables can be kept which is useful for debugging and

final detailed output of the network, because for multi-component streams the

information at the interfaces of the components will not be available at the

coordination level. That is why the data structures corresponding to pipe, bed, leak and

fan being stream type components do not inherit the system variable attributes from

the stream entity (Figure 4.3).

176

Chapter 4______ Application of SE for GASFLO Development

On return from ***COM the converged values of the desired variables are fed

back to the calling program.

BEDOPT (or ***OPT) is for the output of the unit, to the channel connected by IOUT

variable. The present implementation outputs for all instances of the unit. It can be

easily modified for a single instance but that does not seem that useful as this part is

usually called at the end of execution. The flag INITIAL controls the choice between

initial i.e. static and final i.e. dynamic data structures of the respective unit.

All modules relating to basic entities are coded using the SAVE - ENTRY architecture

which changed the initial HIPO chart (shown in Figure 4.11). This architecture and analysis

of the coded modules and the data structures also suggested that some of the modules should

be merged further due to their data coupling. These changes were carried out which resulted

in the changes in calling hierarchy and is discussed in next section.

4.4.5 Revised HIPO Chart :
Figure 4.13 shows the revised HIPO chart which resulted due to the implementation

of data structures using SAVE - ENTRY architecture.

The mathematical model for a junction or region (section 2.4.2) is comprised of a

single equation (2.7) i.e. Kirchhoff s first or current law. According to the solution strategy

discussed in section 3.3 (algorithm given in Figure 3.3), the junction or region (the same as

an internal node) will be executed to find the flow in the tree branch coming in to the node

in terms of all other flows connected to that node. From the data structures shown in Figure

4.4 for these two components, it is clear that the majority of the attributes are inherited from

'Node' data structure. Now if their separate modules are written then the code relating to

mathematical model computation would be just duplicated, and secondly there would be more

of data transfer rather than computation, which would penalise the computational efficiency

of the code, so instead, the junction and region related code and data structures were

maintained inside NETINI and equation computation is carried out therein by the entry point

177

Chapter 4 Application of SE for GASFLO Development

NETCOM which computes the flow in tree. The execution of streams is also carried out at

coordination level, but since these comprise multiple distinct components so each one is

computed in turn as shown in Figure 4.13. The coordination level computation is included in

NETCOM. Other modules related to coordination level computation are NETINI, NETFLO,

NETCRC and NETOPT; these all are placed in the unit called NETWORK.FOR. Each

module performs a single task.

As mentioned in section 2.4.2, valves are modelled using the equivalent length concept

i.e. the resistance offered by a valve is converted into an equivalent (length of) pipe and this

length is lumped to the pipe's actual length for pressure drop computation. Thus the valve

computation was included in the pipe's computation. Although the entity fan has a similar

relation with the pipe entity as the valve, fan has a complete mathematical model and being

an important entity, is modelled as a separate entity.

HIPO Chart (Revised)

GASFLO

i Network info
••. COORDN; • OUTPUT..l---~,-_.-.. .1^*.

i Pgm contrls etc NETINI NETFLO NETCOM

: UTLTYS

iBEDOPTf

j FANCOMI \ \|FANACC|
.......«&;::!

j Unit Relate / ...(PIPCOM •* -•••* i

Unit Dependent Data Structs Legend:

^non-exist ; [MODULE

Figure 4.13 HIPO chart revised to implement SAVE-ENTRY architecture

178

Chapter 4______ _______Application of SE for GASFLO Development

In Figure 4.13, the data flows and control flows have not been shown for clarity

reasons, but they are almost same as in Figure 4.11. Here ***INI modules read in the unit

specific data and initialise the Unit Dependent Data Structures UDDSs, e.g. BEDINI reads

in data for all the beds present in the network and stores it into the static part of the

respective UDDSs.

NETCOM computation is controlled by a flag which selects from; tree flow, tree

pressure or cotree flow distribution computation. NETFLO computes error at each of the

internal (i.e. junction and regions) nodes, whereas NETCRC corrects the tree flow distribution

in response to the computed error.

Modules named COORDN and OUTPUT are in fact part of the main program, here

they represent the coordination level computation and output part respectively. The ***COM

modules use the static part of UDDSs, compute the mathematical models of respective entities

and after computation write down the dynamic part. The ***OPT modules access these

completed UDDSs and output them in the format and mode, chosen by the user.

All modules whose names have the same first three characters are placed in one source

file to enable them to use the same data structures. The source file NETWORK.FOR contains

modules NETINI, NETFLO, NETCOM, NETCRC and NETOPT, each one has its own

specific task but they share the data. ERRCHK is for the validation of data so it is used by

all the ***INI modules. SERVICE is a library of utility routines to output data of multiple

instances of an entity simultaneously, these are used by ***OPT modules.

F77 lacks standard functions to access operating system facilities like time, date and

CPU time etc, and these are provided by the compiler vendors. Hence for portability reasons

i.e. to insulate GASFLOw from an operating system, hardware and software dependencies are

confined to a library UTLTYS which uses different names for these utilities and calls these

compiler specific functions underneath. UTLTYS also contains some other functions for the

ease of user I/O e.g. WRTYNO, and for debugging the subroutines WKSHED and WKSVAL

179

Chapter 4 Application of SE for GASFLO Development

write to a file in worksheet format which could be directly viewed and manipulated by some

worksheet program. These library functions are being called by COORDN i.e. main program.

4.4.6 Implementation and Testing :
The revised HIPO chart given in Figure 4.13 clarifies the calling structure of all

modules, whereas the data structures, mathematical model, solution algorithm and program

interfaces provide sufficient information to code each of these basic entity modules.

The utility library modules relating to the user I/O and data validation are written first

and thoroughly tested, as these are to be reused by other modules. Their extensive re-use

saves time, leads to standardisation and increases productivity. These libraries are evolutionary

and incremental by nature and should be designed to be as general as possible. Any part of

the code which is expected to be required by other modules also, can be designed with a

general interface and written as a subprogram which after thorough testing can be placed in

the library.

Earlier phases of the software development life cycle corresponding to the logical

design (section 4.3) were top-down; we started from an overall general problem and refined

it to finer detail and special cases. Now in the implementation stage we used bottom-up

strategy.

The modules shown in HIPO chart (Figure 4.13) are written, putting all modules

related to an entity; say packed bed, fan, pipe and leak; in same source file. Then each of

these source file can be referred as a unit. For each of these units; the ***INI module is kept

as first because it includes all declarations. These units are thoroughly tested. Testing includes

the verification as well as validation. Verification is the process of ensuring that units perform

all the functions (i.e. all corresponding modules are executed) correctly or as defined by some

authors that 'is the product correctly built?' Whereas validation is to evaluate that the units

perform as sought by the mathematical models that it conforms to or simulate the physics of

180

Chapter 4_______ ____Application of SE for GASFLO Development

the process involved, and some authors define it as to ensure that 'the correct product is

built'.

All mentioned software engineering references and Henderson-seller and Edwards 1993

cover the testing in detail and discuss the two major strategies for basic testing:

Clear or White Box Testing is to verify that internal algorithms are accurately implemented

and the software behaves according to its specifications. It is comprised of:

Peer reviews where the other peers examine the design and specifications of the code;

Structured Walk Throughs where a group of people, involving designer, developer,

programmer, user and client, are explained and guided through the different stages of

SDLC. They point out different errors or mistakes which programmer has to fix later

on;

Code Inspections of the produced code by other programmers and point out any miss-

matches between the code and initial specifications.

Black Box Testing is to verify the module interfaces, their external communications and

specification errors. It is carried out by using the executable code and comparing the

outputs produced by the code with that expected. This is a widely used method

although it can not pick up all the errors in the program. This strategy is strictly

dependent on the test data provided. The purpose of test data is two fold, one to find

where it breaks the program and to see that if it works then to see that are the

provided results same as desired. Experienced programmers automate this phase by

writing test programs, which should test every segment of these programs. In context

of 'The errors of TEX' for writing such test programs Prof Knuth writes:

' ... I generally get best results by writing a test program that no sane user would ever think
of writing. My test programs are intended to break the system, to push it to its extreme limits,
to pile complication on complication, in ways that the system programmer never consciously
anticipated. To prepare such test data, I get into the meanest, nastiest frame of mind that I can
manage, and I write the nastiest code I can think of; then I turn around and embed that in even
nastier constructions that are almost obscene. The resulting test program is so crazy that I

181

Chapter 4______ Application of SE for GASFLO Development

could not possibly explain to anybody else what it is supposed to do; nobody else would care!
But such a program proves to be an admirable way to flush the bugs out of software. ... '

Knuth 1989.

For GASFLOw, the first strategy of clear box testing could not be applied as it was

an individual and specialised research work, so more effort was spent on black box testing.

Another FORTRAN constraint that these written units cannot be individually tested

as stand alone programs. So a 'driver' to serve as master for these units was written, which

called these modules and executed them. The uniform interfaces enabled the single driver to

test or verify the functionality of these modules. Each unit represents an object with multiple

instances (or a class with multiple objects) so the selection and execution of different

instances of the unit and similar tests verified the argument lists and correct access of data

structures.

For validation the test data was generated using the physics of the modelled process.

For example for pipe, the down end pressure should be less than the upstream end pressure

for positive flow and it would be reverse for negative flow; increase in thermal conductivity

of pipe material would dissipate more heat energy and cause higher temperature drop. Similar

test for fan, packed bed and leaks were designed to validate that the units correctly execute

their mathematical models and simulate the physics of the process.

After unit testing, integrated testing of system was carried out, by extending the driver

so that it could call more than one units in series. This is equivalent to the computation of

multiple component streams. Initially the junction and region units were written separately

and tested in combination with other units. Later the region and junction units were merged

together as an internal node.

Some examples of integrated testing of units are shown in Afzal 1991, the initial

prototype from which GASFLO was developed and is skipped from here for space limitation

reasons. The test data used for integrated testing was again based on simple physical viable

values, as no experimental data for any test level small networks was available. Results of full

182

Chapter 4_________________Application of SE for GASFLO Development

scale pellet induration plants are discussed as case studies in chapter 5, but these were only

possible after resolving all the errors during testing.

4.5 Characteristics of Implemented Code

The code was implemented based on the above software engineering principles. It

resulted in two parts. The first part PRPNET prepares the network for computation by reading

in the connectivity and nature of all components of the pellet induration system, connecting

them into a network. It then partitions the network into a collection of acyclic trees or a forest
and a set of cotree or coforest networks. This information is further transformed into linked

lists and finally stored into 'network.inf, the network information file for later use. The

second part, the operation part of GASFLO, is actually called CMPNET for the computation

of the network. It reads in the network connectivity in linked list form from 'network.inf file

and boundary conditions and other needed data from the user either interactively or in batch

mode.

The resulting code comprises of 14, F77 source files comprising of 88 modules

(including utility modules) and about 6,200 lines of code, out of which about 52% are

comment lines. Briefly the main properties of the code are:

 The basic entities (or components) of the network are modelled as independent units,

the related data structures and operations are fully encapsulated and completely

insulated;

 The data structures of a unit are completely hidden from outside and can only be

accessed by defining an explicit method or operation for that purpose;

 Multiple entry points and exits enable access to unit's data structures which reduce

argument lists to the minimum possible and the uniformity of these argument lists or

interfaces avoids the common argument miss-match errors;

 Each of the basic unit modules performs a well defined task and operates as a worker

only, so their argument lists have exactly those parameters which are required for the

183

Chapter 4_______ _________Application of SE for GASFLO Development

functionality of respective module, this avoids stamp (which is due to transfer of

complete data structures although only a part is needed) or tramp coupling which is

due to transfer of some parameters which though not required by the considered

module are required for the calling of another module which is being called by this

module;

 Each of the units completely abstracts the actual physical unit in its functionality and

communicates with others through a well defined interface;

 The units are extensible in structure, any number of required entry points can be

defined for a respective unit when desired, though the modules ***INI, ***COM and

***OPT form an initial template;

 The units are well insulated from each other, this facilitates debugging and

maintenance and errors should be easily tracked down by testing the individual unit

with a driver as stated in section 4.4.5;

 Errors of a particular unit remain inside that unit and are not communicated to other

units, except through system variables, which can always be checked;

 For any of these units the mathematical model as well as the solution method for

computation could be replaced or modified independently. This would not effect any

other module and proved to be a very useful facility for mathematical modelling

studies;

 The units, especially the most used ones for computation of the mathematical model

have well defined interfaces which makes their calling procedure error free;

 Has minimum storage requirements; the code does not need any substantial work

space as in matrix base network solution methods (those mentioned in section 1.1) and

as a result, would be able to compute comparatively large networks;

 The algorithms and solution strategies could be implemented as if visually i.e. Figure

4.14 shows the code for execution of a stream which could have multiple components,

where the nature of each component is identified from its 'Comp_Id' and respective

module executed;

184

Chapter 4_________________Application of SE for GASFLO Development

 The modules are quite small for all the units, the component related decisions about

its computation and choice of model etc are included inside the module so the code

is logically less complex and easier to understand and manage as well as to maintain.

In the next section, we consider the object oriented paradigm and in the end we will

evaluate the developed code against OO standards. The capabilities of the developed code,

GASFLO, from the user modeller and the end-user prospective are discussed in section 5.4.

4.6 Object Oriented Paradigm

Object orientation (OO) is the latest proposed solution (or Silver bullet as called by

Cox 1990 and Duff and Howard 1990) to 'software crisis' and hence a key to produce quality

software which is accurate, maintainable, quantitatively sufficient to users increasing demands

and meets the time and budget constraints. OO is a vast subject fully covered in many texts

like Cox 1986, Meyer 1988 and Wimblad et al 1990 and in wide variety of research papers

spanning nearly every field where computers are used. Baker et al 1993 has given a good

review on the object oriented paradigm and compared the present day Object Oriented

Programming Languages (OOPLs). In the following subsections different aspects of OO are

briefly discussed, sources for further information are provided where necessary.

4.6.1 Some Clarifications about OO :
For the expected gains 'object orientation' has become a buzz and selling word. Every

thing from operating systems to databases and programming languages is getting object

oriented. Programmers are learning Object Oriented Programming Languages (OOPLs) to face

the forthcoming challenge. Software houses and other organizations are looking forward to

implement OO for the development of their software as soon as the Object Oriented

Technology (OOT) matures. Its wide range projection has caused some confusions; such as

OOT is revolutionary, it is entirely different approach and would need different people to

implement etc. In fact these notions are not true and need clarification:

185

Chapter 4 Application of SE for GASFLO Development

C*- For FORWaRD i.e. PRESSure Distribution computation
DO 1800 1=1, NTNDS

II = NDPNTR (I)
J = 1

C - BDY/JUN/REG node execution, Skip incoming But slct+exct
C outgoing streams
1100 CONTINUE

IF (INOUT(Il).LT.O) THEN
C - it is outgoing stream of the node (BDY/JUN/REG)

ISLCT = IOSNUM (II)
IF (TORN(ISLCT)) GO TO 1600

C - This part executes the selected tree stream ISLCT, and
C modifies the Down Node TMPR and PRESS values

PIN = PRESS (I)
TIN = TMPR (I)
FIN = FLOW (ISLCT)
DO 1400 K = SFIRST(ISLCT), SFIRST(ISLCT+1)-1

CALL EXTRCT (UNNUM, NODNAT, SCMP(K))

IF (NODNAT.EQ.IPIP) THEN
CALL PIPCOM (UNNUM, TIN, PIN, FIN, TOU, POU,

FOU, FLKNOW, HLCMPT)
GO TO 1200

END IF
IF (NODNAT.EQ.IFAN) THEN

CALL FANCOM (UNNUM, TIN, PIN, FIN, TOU, POU,
FOU, HLCMPT)

GO TO 1200
END IF
IF (NODNAT.EQ.IBED) THEN

CALL BEDCOM (UNNUM, TIN, PIN, FIN, TOU, POU,
FLKNOW, HLCMPT)

FOU = FIN
END IF

1200 CONTINUE
CALL CONVRT (OUTS, INS, .NOT.REVRSE)

1400 CONTINUE
PRESS(DNNODE(ISLCT)) = POU
TMPR (DNNODE(ISLCT)) = TOU

END IF
1600 CONTINUE

C - The following part is invoked for all streams incident to the
C node; incoming, outgoing, torn or tree branches

II = NXTSTR (II)
J = J + 1
IF (II.LT.O .OR. J.GT.IDEG(I)) GO TO 1800
GO TO 1100

1800 CONTINUE

Figure 4.14 Partial listing of module 'NETWORK.FOR' showing stream computation

186

Chapter 4 Application of SE for GASFLO Development

OO is an evolutionary approach, supported by software engineering concepts, just as

in 1970s and 1980s were structured programming, structured design, structured

analysis, CASE tools, Fourth Generation Languages (4GLs) and artificial intelligence.

Each one of these helped in resolving the software crisis to some extent but not as

successfully as was promised by their proponents; (Duff and Howard 1990, Brereton

1993);

OO is a complete way of thinking (or philosophy) rather than simply coding programs

using some Object Oriented Programming Language (OOPL). It is cleaner and easier

to implement an Object Oriented Design (OOD) using OOPL, but it is equally

possible to simulate OO in any of the existing languages like Ada (Corbin and Butler

1990 and Corbin et al 1993), C (Duff and Howard 1990), Fortran (Meyer 1988,

Corbin and Butler 1989 & 1990 and Colbrook and Symth 1993), Pascal (Jacky and

Kalet 1987) and SIMULA (Dahl and Nygaard 1966);

Unlike structured methods where data and procedures are separated using either

traditional process-modelling or fairly recent data-modelling approaches, here in OO

paradigm data and functions are tied together;

In OO the attention is focused on the product rather than on the process producing it

(Cox 1990). It is analogous to the ideas discussed in section 2.3.2 for mathematical

modelling using device-centred or unit based approach rather than the process-centred

approach (Babrow 1984, DeKleer 1984 and Afzal and Cross 1992);

The OO paradigm is another evolved phase of software engineering techniques and

uses same underlying concepts; e.g. data abstraction, modularity, partitioning and

conscious deferral of design decisions; to achieve black box type software modules.

4.6.2 Objectives :
The main objective of OO is to resolve the software crisis by producing high quality,

low cost software and providing a system to manage the software development process. There

are other secondary indirect benefits. For example OO provide mechanisms to:

187

Chapter 4_________________Application of SE for GASFLO Development

 Quickly respond to user's changing needs and requests for enhanced features;

 Fully utilise the hardware as well as software resources. For example the graphics

capability of present day high end personal computers and workstations and available

WIMP (Window Icon Mouse and Pull-down menus) environments;

 Adapt to the changing trends in users interaction with software, e.g. as the Graphical

User Interfaces (GUIs) have completely transformed the way of users thinking and

interaction to scientific programs (Filho and Devloo 1991, so now for wider

acceptance and even for existence such programs must have GUI;

 Deal with 'Megaprogramming' or programming of large problems like Geographical

Information Systems (GISs) which are now possible by the fusion of many related

technologies;

 Harness the availability of immense compute power now available due to

technological advances e.g. GFlops parallel processing or connection machine

technologies, which enable to simulate 'real physics' problems which previously could

never be deemed off (Boghosian 1990 and Chandra et al 1992);

 Model complex engineering systems, the complexity and inter-dependence of whom

components restricted the understanding about their nature previously (Wilkinson and

Byers 1993).

These are few of the domains where OOT have been applied and significant gains

have been reported. Many potential users are still waiting for the technology to mature and

to benefit from others experiences, so that in the meanwhile all implementation problems are

sorted out. Instead, it is quite clear that the success of OOT depends on its application and

usage.

4.6.3 Basic Features :
The list of basic features whose conformance leads to OO varies from author to author

and is also domain specific. It is generally agreed that following four basic features are

necessary for a software to be object oriented:

Abstraction,

188

Chapter 4__________________Application of SE for GASFLO Development

Encapsulation,

Inheritance, and

Polymorphism.

Abstraction or 'Data Abstraction' is to consider only those data attributes and functions (or

procedures) for an object, which are required with reference to the desired objective

of the system; and ignore other data attributes and functions which are irrelevant to

the desired objective. In other words that software object in reality should simulate its

actual physical counterpart in data as well as in functionality.

Encapsulation is the embedding of data attributes and functions (also known as methods)

related to the object in the same software module (or source code file). This feature

distinguishes OO from structured methodology where data and functions are kept

separate from each other. In fact it is just an implementation of information hiding

principle (Parnas 1972). The object data or functions are not visible or available to

other objects until access is explicitly provided by the object itself.

Inheritance is an ability to inherit data attributes and functions from other objects. The

objects behaving similarly are grouped together and placed in general classes, which

can be refined further to form sub-classes. These sub-classes can inherit data attributes

and functions from their base or parent classes. This feature enables the user to

redefine or specialise the functions for the objects of sub-class and thus provides a

mechanism to deal with the complexity of the system. Most of the OOPLs like

SmallTalk, Objective-C, Object Pascal allow only one parent class to sub-classes,

whereas some languages like C++ and Actor allow multiple-inheritance where a Sub

class can have more then one parent classes (Duff and Howard 1990).

Polymorphism, 'message passing' or also known as 'operation or function overloading'

allows different objects to respond to the same message but each object interprets it

according to its own context. For example, Draw(Object) could draw a 'line', 'circle',

189

Chapter 4_________________Application of SE for GASFLO Development

'triangle' or a 'rectangle' depending on the value of 'Object' each one using different

number of arguments and a different function, but this would be invisible to the user

of DrawQ. Polymorphism is implemented using two ways: early or static binding and

late or dynamic binding. In static binding, the respective functions are assigned to the

objects at compile time by say looking at the nature of their arguments; FORTRAN

77 generic functions are an example of static binding e.g. MAX(X) can bind to any

one of the functions MAXO, AMAX1 or DMAX1, depending on data type of X

whether it is integer, real or double precision. For dynamic binding the function

assignment is carried out at execution or run time.

Baker et al 1993 has mentioned that some authors stress that other features, like

garbage collection (i.e. to recover used memory from deleted objects), object persistence,

concurrency and exception handling should also be available in perfect OOPLs.

OO programming promotes high cohesion through inheritance and polymorphism

allows more general and finer grain code. Encapsulation insulates data and functions of an

object from the outside world, which promotes loose coupling. These high cohesion and loose

coupling were the desired characteristics for quality code mentioned in section 4.1.1.

The above mentioned features promote the reusability, independent development and

testing of class libraries. In OO paradigm in fact two systems; one the actual system itself and

other sub-system or library of reusable modules; are built simultaneously. OOT supports

bottom up strategy for software development in contrast to structured methods' top down

approach. So all the developed modules can be thoroughly tested and made bug free at time

of initial development for their later reuse. This reuse leads to overall increased productivity.

4.6.4 Implementation or Migration to OOT :
From the gains reported in recent literature and possible application of OOT to every

field including scientific domain confirms that it would be the future paradigm for successful

development of software. It is evolving speedily though not yet mature.

190

Chapter 4______ ________Application of SE for GASFLO Development

Like any other technology it will take some time until tools and techniques for all

phases of Software Development Life Cycle (SDLC) become established. Structured

programming started in late 1960s, whereas structured design and structured analysis

methodologies became established in 1970s and early 1980s respectively. OO programming

the first phase of GOT started in 1980s and it is now well established but OO Design (OOD)

and Analysis (OOA) are still in the infancy. Lags similar to structured paradigm are expected

for OOT also (Yourdon 1990). Coad and Yourdon 1991 has proposed an OOD methodology,

but in practice most of the OO developers use structured methods design techniques. For

example Moses and Jackson 1991 has emphasized the use of MASCOT 3 (Modular Approach

to Software Construction Operations and Test - which is a method for development of real

time systems) for the development OO software.

OO is a complete philosophy, a different way or view of looking at software. It needs

significant formal training. It could be easier for novice programmers to understand the OO

semantics. Nevertheless it is not impossible for experienced programmers as well. Due to its

sound theoretical base and results achieved to date, the gains are sure, but these are neither

free nor immediate. The promised productivity gains for an organization, for shift to OOT

may take as long as 3 years (Due 1993), till all the involved personnel get properly trained

and investment in reuse resource start paying off. The understanding of basic concepts of OO

is essential and it should be the primary goal, whereas learning of an OOPL is secondary

(Filho and Devloo 1991). Otherwise without proper training some powerful features like

inheritance could be misused and could prove to be disastrous. Lilly 1993 has quoted some

examples of extracting a general class from a special class i.e. showing misuse of inheritance

to override encapsulation, from the codes of some hacking OO programmers. Such semantic

mistakes are impossible to overcome until and unless some higher level OO design and

analysis techniques are used, which could relate and verify the relationships between different

classes. A programmer aware of the OO concepts is less likely to make such mistakes. It

should be realized that formal training of staff is a long-term investment.

191

Chapter 4 Application of SE for GASFLO Development

Gibson 1990 has proposed an analysis methodology called Object Behaviour Analysis

OBA for OO software development. OBA provides a conceptual model of the system and

concentrates on the behaviour of involved objects. The objects are grouped into classes with

respect to their behaviour. OBA supports rapid prototyping at initial analysis and design

stages to elicit more knowledge from the user. The purpose of OBA is to work out the system

requirements and it feeds to design stage which further feeds to coding or implementation

stage (as seen in section 4.3 following conventional approach). The focus on behaviour can

lead to reduction in code as the behaviour common among different objects/classes can be

shared which can lead to hierarchical class structure and promote inheritance.

Waterfall Model
Structured Methods

Fountain Model
Object Oriented Methods

>©ftware-Poof

Figure 4.15 a) Waterfall model for SDLC using structured development (McDermid 1990)
b) Fountain model using OO development (Henderson-sellers & Edwards
1993)

192

Chapter 4_____ _________Application of SE for GASFLO Development

In contrast to the commonly used waterfall model (with different variants) for

structured methodology, Henderson-Sellers and Edwards 1993 has proposed a fountain model

to cover all stages of SDLC for OO environment. Fountain model reflects the iterative and

recursive nature of OO software and supports generalisation and reuse of the code. Figure

4.15 compares the development process for the two models. The rectangles in waterfall and

bubbles in fountain models present different stages of SDLC. In OO environment the classes

are developed as an independent system, so they also follow the similar fountain model with

exception of few bubbles like 'Conceptual Design' and 'System Testing' which are in fact

specifically carried out at initial design and after completion. Finally evaluated classes are

placed in library, from where these could be reused for future systems.

OO development is incremental by nature in contrast to structured (or traditional)

development under which every new system is started from scratch without benefiting from

the reuse of previously developed code.

The other important factors for migration to OOT are readiness to:

 Organizational change in working environment, as the existing hierarchy would be

effected. The usual flat (one without rigid calling hierarchy of modules unlike

structure charts) structure of OO code will also be reflected in working environment;

 Change in individuals working attitude - they will have to co-operate with each other

i.e. to write for others and use others code;

 Invest for reuse resource - like any other code to develop this resource takes time and

effort, or alternatively it is to be purchased from other vendors but that would be only

possible for general purpose libraries;

 Adopt OO either using a new language or simulate OO in already used programming

language. This is a critical decision and would require to consider the used

programming language and dependence of organization on already developed code.

The working life of software is in decades. If the organization has significantly

invested in developed code, then some way must be sorted out for its re-use;

193

Chapter 4______ _______Application of SE for GASFLO Development

 Invest for OO tools and OOPLs - on which future of the organization will depend.

As mentioned earlier OO is not dependent on OOPL, and all existing procedural

languages can simulate OO somehow, so one might argue that the best possible route is to

use same language and simulate OO initially. It will provide good, inexpensive introduction

of OO to the staff to grasp the basic concepts of OO and appreciate its gains. It will enhance

their confidence in implementation of OO, encourage them to utilize the already developed

code and there would be less overheads for investment in OO tools. This route has been

suggested by many authors e.g. Lilly 1990, Duff and Howard 1990; and it has been adopted

(for Fortran simulation) by Butler and Corbin 1989, Corbin and Butler 1989 & 1990, and

Colbrook and Smythe 1990; and for Ada simulation by Corbin and Butler 1990 and Corbin

et al 1993 and they have reported the above stated benefits.

From recent literature it is clear that OOT has been successfully (as only successful

results are published!) applied in many fields and its benefits over the traditional methods

have been mentioned. Some fields are more natural for OOT, where OOT can really excel.

The mature and stable fields like the scientific domain (where methods and algorithms are

stable and can form class libraries) are better candidates for OOT to exploit reuse, than the

immature fields where all process and procedures are still changing like information systems

(Rine 1993). Secondly, especially the fields where the structured methods failed, have also

responded well to OOT, one such field is graphical user interfaces. Nowadays for the software

running in WIMP environment, about 75% of its code is related to GUI whereas previously

in 1980s the hardware allowed only textual display so the user interface of programs used to

be a minimal fraction. OOT also suites well to CAD packages and Graphics, as they have a

well defined hierarchical structure.

For best results the development team could be divided into two groups; builders to

write the class libraries, and users to use these class libraries in their application programs.

The two products have different goals and orientations, class libraries are written for reuse

so must be general whereas the applications are specific to the clients requirements. After

194

Chapter 4________ _________Application of SE for GASFLO Development

some time these goals become the second nature to the programmers of respective groups.

Tools for class browsing are important to both groups to inform what is already available and

save them from its re-invention and hence more productive.

It should be very clear that OO techniques are separate and different then OO tools,

although tools make the OO easy but still it is OO techniques which should be concentrated

on and first grasped.

4.6.5 OO Programming Languages (OOPLs) :

The programming languages is a constantly evolving and improving subject. The

spaghetti code problems caused by 'GOTO' were resolved by the design of new languages

like Pascal, similarly better constructs like 'struct' of C appeared to handle complex data

structure. To promote modularization and realize information hiding, in complex programs

explicit constructs (e.g. 'interface', 'Private', and 'Public') are provided in modern languages

like Modula and Ada.

Now for mega programming problems, the OO solution requires further facilities for

inheritance and polymorphism. These are provided in OO programming languages. The

OOPLs can be divided into two groups:

Real OOPLs

Extended OOPLs

Real OOPLs are the full fledged object oriented programming languages like SmallTalk and

Eiffel. These are in fact object oriented programming environments. They provide the

basic needed constructs as well as OO programming tools. For example a tool for

browsing class hierarchies and methods is vital from OO point of view, it can save

users as well as builders time.

These languages are designed for OO programming, and assume that the user

knows the basic OO concepts. These have sharp learning curve and slightly strange

syntax for conventionally experienced programmer (e.g. the message passing

195

Chapter 4 Application of SE for GASFLO Development

convention). These languages assist programmers to write code general enough for

reuse, enable them to write object oriented programs only thus helping them to make

a complete shift to OO paradigm. For the same reasons their use is strongly

recommended by many authors (e.g. Duff and Howard 1990, Due 1993).

Extended OOPLs are extensions of standard third generation languages like Objective-C,

Object Pascal and C++. These language provide an easier and smooth route to migrate

to OOT. Since the programmer is familiar with the basic language constructs of the

language, so he can easily adapt to new constructs.

C++ is the most popular among this class of OOPLs. It is powerful, conforms

well with the attitudes of 3GL programmers, have all the facilities for OO

programming, and dominates the recent applications in various domains including

scientific computation (Filho and Devloo 1991 and Rapheal and Krishnamoorthy

1993). It has been implemented on all platforms from PCs to Workstations and

mainframes. Now, it is widely taught to future programmers at university level and

claimed to be a step forward from C, while teaching in classroom, but in practice it

is very complex language. Lilly 1993, quoted Bjarne Stroustrup, the inventor of C++

that 'growth of C++ outpaces programmers understanding how to use it'. It is still

evolving and growing. The one man design and cropping features like Templates and

exception handling the addition in recent version are even problematic for C++

compiler writers.

Due to its widespread use, complaints about its various weaknesses are coming

to public. For example C++ is not backward compatible to C, i.e. C++ is not pure

superset of C; which in 5/10 years time, after the acceptance of C++ as a standard and

next revision of ANSI C standard, would result in two C type languages both different

and incompatible to each other. Similarly Barber and Hay 1993 have quoted few

examples of ambiguity of C++ constructs/fragments, their different interpretations at

different implementations, they being compiler writers themselves, have mentioned

that 'C++ is neither context free nor unambiguous'.

196

Chapter 4 Application of SE for GASFLO Development

Now mathematics libraries are available for C++, but basically it is not a

numeric programming language, the efficiencies compared to Fortran are not enough

and this would be one major hurdle for programmers of CFD type compute intensive

fields to shift to this language.

Overall OOPL is a fast growing subject but it is still evolving (Wilkes 1993).

According to Fertuck 1992, yet there does not exist any OOP language on which 'industrial-

strength' information systems could be built.

4.6.6 GASFLOw and Variants of OO :
The properties of GASFLOw described in section 4.5, show that these contains most

of the properties intended from an OO code. To grade whether it is OO or not, we look for

the four basic features (as mentioned in section 4.6.3).

In GASFLOw, the first two features 'data abstraction' and 'encapsulation' are fully

implemented, using SAVE-ENTRY constructs.

The third feature 'inheritance' in reality was not needed in the modelled system so its

implementation was not attempted. Nevertheless it can be simulated in F77 as mentioned by

Corbin and Butler 1989, 1990, Colbrook and Smythe 1990, and by Collins and Miller 1991.

The last feature 'polymorphism' exists but syntactically it is not as succinct as it

would be, as if some OOPL is used. The two reasons for not improving the syntax are; F77

constraint of not allowing duplicate subprogram names and computational efficiency. This

constraint could easily be overcome; by defining another subroutine say CMPOBJ

(OBJNME) to compute an object with generic object name OBJNME; and placing the block

of the call statements PIPCOM, FANCOM, and BEDCOM to compute pipe, fan and bed

respectively in that subroutine. The block shown Figure 4.14 could be replaced by a single

call to CMPOBJ which in turn calls other modules PIPCOM, FANCOM, and BEDCOM

according to the nature of the object. This introduction of the CMPOBJ module would though

197

Chapter 4________ ________Application of SE for GASFLO Development

achieve the clarity in coding but would increase another level in calling hierarchy of HIPO

chart and thus would unnecessarily increase the computational load and communication. For

efficiency reasons this improvement was dropped.

With the present state of the presence of these features in GASFLOw, it is left open

that whether it is graded as object oriented or not. Lipworth et al 1991 have tagged their code

as object centred, although they used Object Pascal (an extended OOPL) for its development

but the final code contained some files which didn't exhibit object like properties and were

more like traditional main programs calling other subprograms. In GASFLOw, we have the

Network module which does the coordination level computation of state variables, calls other

stream type object modules but itself does not conform to object like properties. Corbin et al

1993 have called their code 'Multi-Sim' as object based. They used Ada which being a

modern language still lacks explicit constructs for 'polymorphism' and 'inheritance'. They

simulated the former feature but for complexity reasons left out the latter, and hence called

the code as object based rather than object oriented. According to these tagging standards

GASFLOw satisfies the criteria for both of these terms whereas it satisfies the most of the

properties of object oriented code. The capabilities of GASFLO are also covered in sections

4.5 and 5.4 from software developer and end-user prospective respectively.

Present day system development and maintenance tools, designed for structured

programming; cross referencer, browsers, ripple effect analyzers and static analyzers; are no

more helpful in OO environment. As most of these use the function name (which is meant

to be unique in the whole system for procedural languages) as primary key to trace the

modules, which in OO is not true, here same function can have multiple implementations.

Wilde and Huitt 1992 have mentioned that the inheritance and dynamic binding, being the

strengths of OOT, are problematic from maintenance point of view, they have illustrated

showing examples from SmallTalk code. Lejter et al 1992 have described similar concern

with reference to C++ code, which worsens the problem further by distributing codes for

classes/subclasses to many files. They have also described their proposed cross referencing

tool, XREFDB to deal with this problem.

198

Chapter 4 Application of SE for GASFLO Development

It is mere coincidence that the features not implemented in GASFLOw have been

reported to have some weaknesses. It increases confidence in software engineering techniques

that their application assisted us in implementing only what was really needed and refrained

us from simulating the not needed features artificially, just to conform to GOT.

4.7 Summary

In this chapter the application of software engineering concepts and techniques in

context of scientific domain problems have been discussed. These techniques have been

widely and successfully applied in non-scientific domains and significant gains reported to

resolve the complexity of systems. Due the inherent natural differences of the two domains,

the methodologies proposed for the nonscientific domain can not be applied. Instead, as the

first attempt ever made to apply SE techniques to cover all stages of software development

life cycle in scientific domain, the attention is focused on the software techniques and these

are applied in order suited to the studied domain.

Abstraction is carried out by using entity relationship modelling, attribute analysis and

data flow diagrams. The role of data dictionary is discussed. Initial design is carried out from

the information available from previously applied techniques. Then the specifications of each

of the software module could be written in structured English. This completed the analysis

and logical design stages of software life cycle. The implementation related design decisions

which were consciously postponed are then considered.

The implementation of encapsulation of data structures and functions using FORTRAN

77 reflected major changes in initial design or HIPO chart i.e. hierarchical structure of

software module. The need to encapsulate data structures and functions was dictated by the

analysis and design stages. The revised HIPO chart are drawn and modules and their

specifications are accordingly amended. SAVE-ENTRY constructs of standard FORTRAN 77

enabled to encapsulate the related functions and data of objects together in their respective

files, which could exist independently and behave like objects. The properties like highly

199

Chapter 4 Application of SE for GASFLO Development

cohesive and loosely coupled modules are reflected in the resulting software, called

GASFLOw.

In section 4.6 object oriented paradigm is discussed and the qualities of GASFLOw

are compared with OO features. The application of software engineering enabled us to achieve

the properties desired for a quality software. GASFLOw exhibits all the useful properties of

object oriented technology.

200

Chapter 5
Model Calibration,

Validation and Applications

5.1 Introduction

After development the network models are first calibrated i.e. refined or fine-tuned for

the respective practical network, which is to be modelled. In this phase the available measured

field data is used and the adjustable parameters are modified so that the model reproduces the

scenario being analyzed. Later the calibrated model is checked by carrying out different

parametric studies on the actual network and observing that the predicted results are valid.

Finally, this validated model is used for the analysis and study of the actual system or

process.

The use of models in the simulation of hydraulic, electricity and natural gas networks

is widespread, and a significant amount of data, both measured and computed by the models,

is available in public domain, which makes the validation of new models straight forward. For

pellet induration systems this data is scarce, wherever available it is proprietary and being an

'enterprise resource' is hard to obtain. Also (to the best of author's knowledge) there does not

exist any such model which could evaluate the airflow distribution in induration system

networks and with which, the results of new models could be compared.

In this chapter the calibration, validation and application of the developed code,

GASFLO, to a real life pellet induration system will be discussed. Section 5.2 will cover;

201

Chapter 5 Model Calibration, Validation and Applications

calibration, the problems on the availability of measured data, and the strategy adopted to

calibrate the model. In Section 5.3 the model will be validated and parametric studies will be

carried out for some components of the network and seen that it gives physically valid

response. In Section 5.4 the capabilities of GASFLO i.e. what it can do, will be discussed.

In Section 5.5 the interaction of GASFLO with another software tool INDSYS, which

computes the heat transfer in the packed bed at microscopic level, will be explained and a

combined simulation of the two tools will be carried out. In Section 5.6 a case study will be

described to show a practical what-if scenario, for which the adjustable parameters will be

determined, to increase the production of a pellet induration system plant by say 10%. Such

a case study would simply be not possible without GASFLO or would have required a

significant investment in terms of effort and time. Section 5.7 will conclude the chapter.

5.2 Model Calibration

The model calibration is in fact the refinement or fine-tuning of the model to match

a specific network. It involves the adjustment of different model parameters which require

estimation with the measured data and loading conditions, so that the results predicted by the

model are as close as possible to the observed or measured data for the respective network.

Calibration of models simulating fluid flow networks has been around in different

guises for a good time. Modelling of hydraulic networks as the oldest and mature field now

has well defined and explicit calibration algorithms; whereas other fields like natural gas and

mine ventilation networks use their own domain specific approaches.

In hydraulic network calibration; either pipe head loss coefficients or nodal loads, or

both can be adjusted to match the predicted results by the model to the measured values of

corresponding parameters or variables. Bhave 1991 has categorised these algorithms as

explicit - which use the measured values explicitly, or implicit - where the measured or known

202

Chapter 5 Model Calibration, Validation and Applications

values are used implicitly by defining as many extra equations as are the known values and

solving the complete set of equations simultaneously.

Ormsbee and Wood 1986 described an implicit algorithm which adjusts the pipe head

loss coefficients for known values of node heads or pipe flows. This algorithm calibrates the

network in one iteration and can be applied for different operating conditions. However it can

consider only one loading condition at a time. Boulos and Ormsbee 1991 have extended this

algorithm further to cater for multiple loading conditions. Whereas Boulos and Wood 1990

generalised the algorithm to determine any of the design (pipe diameters etc), operation (pump

speeds or pressure regulating valve settings etc) or calibration parameters (friction factors or

head loss coefficients for groups of pipes etc) of the network.

Bhave 1986 gives an explicit algorithm, which adjusts node loads and pipe head loss

coefficients simultaneously. Herein, the adjustment factors for the node loads and head loss

coefficients are evaluated using predicted and observed values. For the next iteration the node

loads and head loss coefficients are multiplied by these factors. The process is carried out

iteratively until the convergence of these adjustment factors (i.e. the one relating to head loss

coefficients to unity and other relating to node loads to zero) is achieved.

Bhave 1991 has devoted a complete chapter to calibration of water networks and has

explained the above and several other algorithms by solving a simple example using each of

them.

Goldwater and Fincham 1981 included a pipe efficiency factor in the corresponding

pipe (i.e. Panehandle) equation for natural gas networks, and mentioned its manipulation for

network calibration. Osiadacz 1987 has discussed in detail the role of pipe efficiency factor

in natural gas networks. He has explained that the predicted flows in medium and high

pressure networks for non-laminar regimes, are higher than the actual observed flows, so the

inclusion of an efficiency factor (< 1) can remedy this deviation. In fact the efficiency factor

203

Chapter 5 Model Calibration, Validation and Applications

takes into account the extra unaccounted pipe friction e.g. due to the pipe ageing and

corrosion.

Among all fluid flow networks, the Mine Ventilation Networks (MVN) are closer to

those of the pellet induration system's, because they also use air as process gas, consist of

large area ducts and use large fans to transport the process gas in the system. D'albrand et

al 1988, has described the calibration of their software tool called VENDIS (which computes

flow and pressure distributions). Complications, like the presence of obstructions and variation

of geometrical data e.g. lengths and cross sectional areas for some of the channels etc, make

it impossible to have exact resistance values for these MVN components. So they established

a database of the resistances offered by these components for various working conditions, by

running VENDIS for different operating conditions. From available measured data they assign

a reliability factor to each pipe flow or node pressure depending on its degree of correctness,

and defined an objective function based on these reliability factors, predicted and measured

values. Using another software tool called RESFIT, they select the appropriate instances of

the components from the database, which provide the optimal value of the objective function

and hence give the best fit to measured values.

For GASFLO calibration, none of the above algorithms is directly applicable. Instead,

benefiting from the notion of a pipe efficiency factor, we will adjust the pipes' conductances

or head loss coefficients such that the predicted values match to the observed or measured

values. This will be done explicitly and may require several runs of GASFLO. Along with

the pipe efficiency factors, the other adjustable parameters are: isothermal efficiencies for

fans; and discharge coefficients for leaks and valves. The evaluation of all of these parameters

would require a significant amount of measured data, which is unfortunately not initially

available. So we will mainly concentrate on the available data. In Section 5.3 the calibrated

model will be applied to simulate the original network and to illustrate that it produces

physically valid and quantitatively correct results.

204

Chapter 5 Model Calibration, Validation and Applications

5.2.1 Problems in Data Availability :

The pellet induration systems have their own specific constraints for the measurement

and provision of this needed data. To name few of them :

Hostile Environment; The temperature in some parts of the system is as high as 1300°C

which inhibits the proper functionality of the involved instrumentation, and thus it is

not possible to measure state variables in all parts of the system.

Lack of instrumentation due to very large size of respective components. The flows through

the leaks cannot be measured due to the lack of proper flowmeters. Similarly other

components are also of immense size, e.g. pipes are big ducts of few meters

diameters, so special instrumentation would be needed if flow is to be measured;

Lack of mathematical models to determine the airflow and pressure distributions, which

GASFLO is targeting to evaluate. If such models would have existed then they could

be used for the validation of GASFLO. Secondly, their validation would have initiated

the induration industry to measure this required data and encouraged the practitioners

to provide this data readily;

Information is a resource for any enterprise and the pellet induration industry is no

exception. For competition and commercial reasons no one would expose and provide

his data to validate an evolving immature model, until some real gains are associated

with it;

Provision of measured data is expensive as it costs effort and time, so unless there is some

real incentive, the practitioners would not carry out this exercise. Further, the modeller

needs to specify what system variables and at what location in the plant they are to

be measured. These are also dependent on the model being validated/refined.

So in view of all these facts, we have to calibrate GASFLO with an incomplete data

set, most of which is in the form of heuristics and some is practically measured.

205

Chapter 5 Model Calibration, Validation and Applications

5.2.2 Measurable and Available Data :

In pellet induration systems, the fan wattage can be adjusted to vary the pressures up

or down the stream, which consequently changes its throughput; valves openings can be

changed to control the airflow in different paths. Leak areas are almost fixed, their widths

(being associated with beds) are known but their heights are not exactly known. The pipe

dimensions (i.e. lengths and diameters) and bed related data are known. The volumes of

junctions or regions are not known. However, GASFLO being a steady state model does not

compute the overall process gas hold-up in the system or delays in its travel, so the node

volumes are in fact not required. For node (junction and region) computation the stream node

connectivity is needed - which is known.

The data relating to the system variables; flow, pressure and temperature in the

network is rarely known. GASFLO needs only the down-stream end boundary (sink nodes)

flows and up-stream boundary (source nodes) pressures for its computation. The rest of the

data mentioned below is used for comparison of computed and practically measured results.

The measurable data and heuristics available for pellet induration systems are as follows:

 The flows for suction and exhaust fans and also through the stack may be measured.

 The pressures in the zone regions can be measured.

 The temperatures of process gas in the packed bed are known (in fact for GASFLO

these come from the other package INDSYS, which in return needs the airflow

distribution from GASFLO).

Some useful heuristics about the state variable data are:

 The pipes/ducts being very large diameter and smooth, offer very small resistance to

the flow and hence the pressure drop across the pipes/ducts is negligible.

 The resistance offered by leaks is also very small, so minute pressure differences in

the neighbouring regions may lead to significantly large flows.

206

Chapter 5 Model Calibration, Validation and Applications

 The parallel paths having same capacity fans push nearly same flow (e.g. the pressure

and flow variation in paths containing fans 1A and IB in Figure 5.1 are similar).

 The off-gas pumped out of the system by the exhaust fans (2A and 2B in Figure 5.1)

is 30% - 45% more than the on-gas being fed by the cooling zones through kiln and

recuperation duct (i.e. the ambient air sucked in by suction fans 3A and 3B less the

flow going out through the stack).

 Most of the pressure gain provided by the fans is utilized in overcoming the resistance

offered by the packed beds.

 Although the ducts are well insulated there is still some heat lost from duct surface

which may result in loss of few degrees of temperature in long ducts.

A set of known values for these state variables and above stated heuristics are used

for model calibration and as a result a reference output is obtained, which will be used as

base for the parametric studies later. The reference output is obtained by updating the values

of unknown and adjustable parameters of the model systematically. The calibration procedure

(in other words the process to obtain reference output) is described in the next subsection.

5.2.3 Strategy for GASFLO Calibration :
The model calibration is like fine-tuning the software tool to simulate a specific

network. In other words it is to restrict the values of adjustable parameters to narrow ranges

so that model should produce results which agree with the measured data for the respective

network. In Section 2.4.2, we have seen that the computation of the respective network

components requires the values of all used parameters, which must be known. In practice this

is not possible; indeed, some of them cannot even be measured and will never be exactly

known, thus for computation these have to be somehow assumed. In the following it is

explained how sensible values can be assumed for such parameters.

We use the set of known values of the system variables (mentioned in Section 5.2.2)

for a specific network as a guide and evaluate the unknown and adjustable parameters

iteratively. The use of evaluated parameter values as input to GASFLO will produce an output

207

Chapter 5 Model Calibration, Validation and Applications

called Base or Reference Output, which will agree to the set of measured values. In

subsequent parametric studies this base output will be treated as a reference. The procedure

for the realization of the reference output or calibration involves the following steps:

Step-1 Initially, assume reasonable default values for the unknown parameters, e.g. all pipe

calibration factors as unity, fan efficiencies less than one, and discharge coefficients

for leaks and valves as 0.6 (Douglas et al 1985 have quoted this value for sharp edged

orifice).

Step-2 Adjust the discharge coefficients and heights of external leaks by comparing the

predicted and measured flows through suction fans. If the predicted flows are larger

then to reduce them, more flow is allowed to come in from the external leaks so some

of these leaks are opened or their discharge coefficients are increased. This will take

a few runs of GASFLO. After obtaining a reasonable agreement (not exact) between

the predicted and measured flows through fans 3A and 3B, the values of the adjusted

parameters are fixed and next step is carried out.

Step-3 Evaluate the fan efficiencies and pipe calibration factors by treating measured region

pressures as guide values. Start from the suction fans, set their efficiencies so that they

provide the pressure at the exit ends slightly higher than the pressures at the inlet

regions of the cooling zones. Then adjust the calibration factors of the ducts between

the suction fans and input regions, so as to get the predicted region pressures close to

their corresponding measured values. Continue the same procedure for the remaining

duct and fan components, following the sequence of their occurrence in the network.

Step-4 Adjust the discharge coefficients and cross sectional areas of internal leaks to match

the predicted region pressures to their measured values.

The Steps 2 to 4 could be repeated until an output agreeing closely to the known set

of values is found. The updated values for unknown and adjustable parameters will remain

fixed for subsequent analysis and parametric studies performed on the network.

208

Chapter 5 Model Calibration, Validation and Applications

X Pellet Ind Co.; Valve Opening, Stream Flow, Node Pressure, Fan Pressure
Flow rates (dmt/h)

Pressure (inch wg)

Figure 5.1 Reference output for simulated pellet induration system, showing flow and
pressure distributions and valve openings

Figure 5.1 shows the reference output for a real-life pellet induration network, which

was obtained using the above stated procedure. The network consist of 23 pipes, 6 beds, 10

valves, 11 leaks, 6 fans, 8 junctions, 11 regions and 9 atmospheric nodes where system either

sucks in or exhausts out the process gas. When resolved into graph theoretic form (Section

2.2.3) the system reduces into a total of 37 streams and 28 nodes. The composition of the

streams, and component related data for the network is given in Appendix A. The values of

flows (in metric tonnes per hour of dry air) used for calibration were: 376.0, 429.0, 479.0 and

466.0 through the fans 3A, 3B, 2B and 2A respectively, and 174.0 through the stack (i.e.

going out of zone C2 to the atmosphere). The measured and computed region pressures (in

inches of water gauge) are given in Table 5-1.

Results given in the reference output and Table 5-1 show that these are physical,

satisfy the practitioners heuristics and are in fair agreement with the measured results. The

system sucks in 812.0 tph of air through suction fans, out of which 638.0 tph is recuperated

209

Chapter 5 Model Calibration, Validation and Applications

to preheat and drying stages, whereas 945.0 tph is pumped out to atmosphere through exhaust

fans 2A & 2B. This shows that the air being pumped out by the fans 2A & 2B is about 33%

more than what was recuperated from the cooling zone. All region pressures except for the

outlet regions of drying zones (i.e. regions R09 and Rl 1) are within the tolerance of * l/2 inch

of water gauge. We will see in the later runs this is a well integrated system; the effect of

variation of a parameter is not restricted to its immediate neighbourhood of respective

component but is global.

Table 5-1 Comparison of Measured and Computed Region Pressures

NODE PRESSURES in Inches of Water Gauge

Location

Inlet Reg - Cl

Outlet Reg - Cl

Inlet Reg - C2

Outlet Reg - C2

Inlet Reg - PH

Outlet Reg_l - PH

Outlet Reg_2 - PH

Inlet Reg - DD2

Outlet Reg - DD2

Inlet Reg - DD1

Outlet Reg - DDl

Node Name

R01

R02

R03

R04

R05

R06

R07

R08

R09

RIO

Rll

Measured

10.6

-0.7

5.8

-0.3

-0.5

-9.1

-9.1

-1.7

-10.5

-0.5

-10.5

Computed

10.7

-0.6

5.7

-0.5

-0.9

-9.0

-9.0

-1.5

-8.6

0.3

-8.2

The predicted pressure values (Table 5-1) for regions R09 and Rll deviate noticeably

from their measured values by about 2.0 inches of water gauge. Further adjustment to match

these pressures was postponed mainly due to two reasons:

(1) Model behaved smoothly and simulated all network components realistically. Both of

these are outlet regions, whereas for corresponding inlet regions the predicted and

measured pressure values matched well. The inlet and outlet regions are separated only

by the packed bed whose mathematical model i.e. Erguns equation (2.19), is well

tested and widely used in industry (see Section 2.4.2), it does not contain any

210

Chapter 5 Model Calibration, Validation and Applications

adjustable parameter. In fact there doesn't exist any adjustable parameter available to

match them to the corresponding values. Secondly the same bed model has worked

well for other zones, so its modification is not logical.

(2) Following the advice given by Bhave 1991, in the context of hydraulic network

calibration, the resolution of such discrepancies needs the verification of measured

data and examination of the modelled and actual network connectivities. It is possible

there could be some phenomena or component influencing the system but not included

in the modelled network.

Hence we will regard the predicted values as exact, and the outputs of all runs of the

next section for GASFLO validation will be compared to this output, unless it is mentioned

otherwise.

X Pellet Ind Co.; Valve Name, Stream Name, Node Name, Fan Name
Flow rates (dmt/h)

Pressure (inch wg)

F01U

Figure 5.2 Stream, node, valve and fan names for the reference output of simulated
network

211

Chapter 5 Model Calibration, Validation and Applications

In further discussion of results and runs, the names of concerned stream, node, valve

and fan would be mentioned, which are shown in Figure 5.2. To show that the model

produces physically valid and reliable results, variation of parameters of some network

components are described in the next section.

5.3 GASFLO Validation

Model validation is to demonstrate that the output produced by the model is physically

realistic and quantitatively exact or within an acceptable range of the observed or measured

values. We validate the GASFLO model by carrying out parametric studies for all entities of

the components i.e. pipe, fan, valve and packed bed; and verifying that the produced output

conforms to the physics of the process.

For space limitation reasons, results from the eight of the performed parametric study

runs are discussed. The referred node and stream names are shown in the Figure 5.2. The key

node pressures and stream flows are compared in Tables 5-2 and 5-3 respectively. The

remaining stream flows can be computed easily from these given values, e.g. the difference

of flows in sOl and s02 is the flow through the internal leak i.e. stream s27 connecting the

regions R01 and R03. The flow is always from the higher to lower pressures except the

streams containing fans. Similarly for node pressures, the junction pressures have mostly been

skipped from the Table 5-2, while pressures at the nodes above and below them are

mentioned e.g. pressure at J06 has been skipped and it can be evaluated by the pressures

mentioned for R06 and at the fan IB-Entry in the table.

The inputs and resulted outputs are briefly described. In these runs the input to one

of the parameters of a component is changed to see the effect clearly without any interference.

This is also to reduce the complexity of produced effect which in case of multiple

simultaneous changes would be hard to analyze.

212

Chapter 5 Model Calibration, Validation and Applications

(1) The Reference output: As mentioned in the last section it was achieved by adjusting the

fan efficiencies, leak areas and discharge coefficients and pipe efficiency factors. For

further runs values of all of these adjusted parameters will remain fixed. The leak no

5 or s32 was closed in the actual set-up for which the set of measured values was

provided, and it will remain so for all subsequent runs. The discharge coefficient of

leak no 11 i.e. s37 was set to zero, to achieve the minimum possible region pressure

for Rll, otherwise its opening will increase the respective region pressure (see run 5).

This output will be used as base output for the comparison to other runs.

(2) Increase of Local Friction Factor for a Pipe: The friction factor for pipe number 19,

which links J03 to region R08, and represented by 522 was doubled. This increased

the pressure drop across this pipe from 0.9" to 1.7", decreased the flow through the

stream by 11 tph, and because of this 'restriction effect' the pressures upstream to this

pipe in regions R04 and ROB increased, whereas at downstream nodes R08 and R09

they decreased. These changed pressures accordingly effected the internal leaks among

these regions. The effect was more prominent in the zones C2 and DD2 of the system.

The results for the decrease of the friction factor for this pipe, though not presented

in the tables, had entirely opposite affect.

(3) Closing of a Valve: For this, the selection of valves like vOl or v02 would effect the

whole system down stream and complicate the analysis, instead v03 was chosen and

changed its opening from 70% to 35%. This decreased the flow in bye-pass stream

s!6 from 57.0 tph to 29.0 tph, and added it to the input of the zone C2. It also

increased J01 and R03 pressures, but unexpectedly it decreased the pressures at

onwards nodes (i.e. R04, J02, J03, R08 and R09). This was due to increase of flow

in s!8, i.e. flow through the packed bed, which resulted in a higher pressure drop

across the bed (| R03-R04 1) of 6.8" instead of 6.2". The region pressures also effected

the neighbouring regions through leaks.

213

Chapter 5 Model Calibration, Validation and Applications

(4) Increase of Leak Area: The cross sectional area of leak no 4, i.e. s30 was doubled by

increasing its height. Obviously this nearly doubled the stream flow, it increased the

pressures for adjacent regions R06 and R05, which increased the pressures upstream

as well as downstream to these regions. However, the effect on upstream nodes is not

as pronounced as on the downstream nodes. The increase of 14.0 tph in s30 was

compensated by decreasing the flow of other two external leaks 529 and s36 by 12.0

tph. The zones C2 and DD2 remained nearly unaffected.

(5) Opening of the Closed External Leak: The leak 11 i.e. s37 which was initially closed

in the reference run was opened, by just a small amount i.e to 2.0 cm of height (as

leaks area is width of the bed multiplied by leaks height). It sucked in 26.0 tph, and

increased the regions Rll, R09 pressures from -8.2", -8.6" previously to -7.3", -7.8"

respectively. This increase in outlet region pressures decreased the flow through the

beds i.e. in streams s08, s23 by 29.0 and 14.0 tph respectively. The other external leak

s36 remains unaffected (because the RIO pressure was not affected), but the flow

entering to zone DD1, i.e. in stream s07 is decreased by 43.0 tph and PH zone

pressures are increased (see Section 5.4.2) thus sucking less air from atmosphere i.e.

flows in streams 529 and s30 are decreased.

(6) Use of Fixed Pressure Gain for Fans 1A and IB: As described in Chapter 2 and will

be further discussed in Section 5.4, the entity fan can use an alternate mathematical

model. In reference and all previous runs all fans used the fan equation (see Section

2.4), in which pressure gain introduced by the fan is dependent on the pressure on the

entry and on its throughput. This equation has a realistic and self compensating effect,

whereas the alternate fan model introduces the fixed pressure gain into the stream. In

reference run the fans 1A and IB introduced 11.8" and 11.3" of pressure gains and

their throughput were 276 tph and 245 tph respectively. In this run the fixed pressure

gain of 10" for each of these fans was introduced. This resulted in less suction (i.e.

increase in upstream region pressures R06, R07, R05 and R02), less push (i.e. decrease

214

Chapter 5 Model Calibration, Validation and Applications

Table 5-2 Node pressures for parametric study runs

NODE PRESSURES in Inches of Water Gauge

Run ->

Node Name

3A-Exit

R01

R02

R05

R06

IB-Entry

R07

lA-Entry

RIO

Rll

2A-Entry

3B-Exit

J01

R03

R04

J03

R08

R09

2B-Entry

(1)

Rfrnce

11.0

10.7

-0.6

-0.9

-9.0

-10.5

-9.0

-10.8

0.3

-8.2

-18.9

5.8

5.8

5.7

-0.5

-0.6

-1.5

-8.6

-19.9

(2

11

10

-0

-0

-9

-10

-9

-10

0

-8

-19

6

6

6

-0

-0

-1

-8

-20

1

.1

.8

.6

.8

.1

.5

.0

.9

.1

.3

.0

.2

.1

.0

.1

.1

.8

.8

.0

(3)

11.

10.

-0.

-1.

-9.

-10.

-9.

-10.

0.

-8.

-19.

6.

6.

6.

-0.

-0.

-1.

-8.

-20.

0

7

7

0

1

5

1

9

2

3

0

3

3

1

7

8

7

7

0

(4)

11.1

10.8

-0.5

-0.8

-8.7

-10.2

-8.7

-10.6

0.4

-8.0

-18.7

5.9

5.9

5.7

-0.4

-0.5

-1.4

-8.4

-19.7

(5)

11.

11.

-0.

-0.

-7.

-9.

-7.

-9.

0.

-7.

-18.

6.

6.

5.

-0.

-0.

-1.

-7.

-19.

1

2

0

2

5

8

2

8

1

3

3

0

1

1

9

2

3

2

8

0

(6)

11.

10.

-0.

-0.

-8.

-9.

-8.

-9.

0.

-7.

-18.

5.

5.

5.

-0.

-0.

-1.

-8.

-19.

2

9

3

6

1

4

0

4

0

9

6

9

9

7

4

5

5

2

5

(7)

11.0

10.7

-0.7

-1.0

-9.4

-11.0

-9.2

-11.0

0.3

-8.2

-18.9

5.8

5.8

5.6

-0.6

-0.6

-1.5

-8.6

-19.9

(8)

11.1

10.8

-0.5

-0.8

-9.4

-10.8

-9.4

-11.1

0.2

-8.9

-19.6

5.9

5.8

5.7

-0.5

-0.6

-1.6

-9.3

-20.6

in downstream region pressure RIO) and a decrease of overall flow through these two

fans from 521 tph to 474 tph. The internal and external leaks were also affected

correspondingly.

(7) Increase of Fixed Pressure Gain to Fans 1A and IB: Here instead of the 10" pressure

gain it is increased to 12". This caused an effect opposite to the previous run by

increasing the suction and push. It also increased the overall throughput of the two

fans from 521.0 to 531.0 tph. The effect of this increase is more visible on suction

215

Chapter 5 Model Calibration, Validation and Applications

Table 5-3

Run ->

Strm
Name

sOl

s02

s03

s29

s04

s30

slO

s07

s36

s08

s!5

s!6

s!8

s20

s22

s23

Stream flows for parametric study runs

(i)
Rfrnce

390

384

387

55

195

15

247

521

237

579

422

57

372

251

202

381

(2)

390

384

391

53

196

15

248

523

244

580

417

56

367

241

191

378

STREAM

(3)

391

385

384

58

195

15

247

520

242

579

414

29

390

247

198

380

FLOWS in Tonnes /hour

(4)

389

383

386

51

193

29

244

527

229

577

421

56

370

250

202

380

(5)

387

381

381

39

186

14

234

478

235

550

418

56

368

250

204

367

(6)

388

382

379

45

187

14

237

474

252

562

421

56

370

256

209

373

(7)

391

385

389

58

198

15

249

531

233

581

423

57

372

250

200

382

(8)

389

383

383

52

192

15

243

509

241

573

422

57

372

255

204

381

side, i.e. the regions R06, R07 pressures are decreased by about 1.2" as compared to

the run (6).

(8) Increase of Bed Height in Drying and Preheat stages: The bed height for all of the four

beds, corresponding to streams s04, slO, s23 and s08 are increased by 10% i.e. from

14.5 cm to 15.95 cm. This is in fact equivalent to the increase of production of the

plant by 10%, which is always one of the goals for practitioners. This increased the

pressure drop across the packed bed in drying and preheat zones and decreased

pressure in all of the regions from R06 to Rll noticeably. However the flow

distribution is not much affected. This case will be considered further in Section 5.6.2,

216

Chapter 5 Model Calibration, Validation and Applications

where it is shown how the flow distribution can be increased throughout the system

by a similar amount (i.e. 10%) to optimise the induration process.

All the above runs show that the behaviour of GASFLO model is very physical and

provides detailed information about the system variables which is otherwise not possible. Its

use provides insight to the induration process and can assist in control of the system. As seen

it can identify flows entering into the system through leaks, their location and magnitudes,

which are neither practically measurable nor known.

5.4 GASFLO Capabilities

Although GASFLO is still evolving, it is a complete stand alone software tool. It can

compute flow, pressure and temperature distributions (see Sections 3.7-8 and Section 5.4.6)

in pellet induration systems. The algorithm used for computation transforms the original

system into a connected graph and partitions it further into forest (combination of trees or

acyclic graphs) and coforest (the streams of the connected graph which are not contained in

the forest) structures. All this partitioning is done by the GASFLO itself. The partitioning and

solution algorithms are discussed in detail in Chapter 3, the development of GASFLO model

is discussed in Chapter 4; how to use GASFLO is explained in Appendix A.

The qualities of GASFLO code from software engineering perspective are described

in Sections 4.5 and 4.6.6. GASFLO is comprised of two main programs; PREPNET to prepare

the network and CMPNET to compute the prepared network; 88 subroutines (including all

function subprograms, subroutines and entry points); and 6100+ lines of code (including 48%

comments). The working and pre-requisites of main programs are explained in detail in

Appendix-A. The present (or developer's) version of GASFLO includes the needed debugging

facilities e.g. writing internal per iteration or per step values to debugging files, and sends

output to terminal for guidance. This version uses DBOS, the SALFORD F77/386 compiler's

run-time library and extended memory manager which exploits the 80386 and later

217

Chapter 5 Model Calibration, Validation and Applications

processors' hardware. For a typical run, like mentioned in the last or here in this section

GASFLO took about 27 seconds on a 50 MHz 486 machine using DBOS version 386, and

this time reduced to 17 seconds when the proper DBOS 486 version was used. The used

tolerance for error checking was 5.0xlO~03 , where error is the maximum of the relative error

in mass balance at any of the internal nodes. Since the flows are computed in Kg/sec and this

tolerance works out to be 0.018 tph whereas the accuracy of flowmeters is ±1.0 tph. The

removal of unnecessary output to slower devices and to debugging files would improve these

computational times even further.

In this section the GASFLO will be looked at from the functionality perspective, as

a software tool to evaluate airflow distribution in pellet induration systems, that is from the

practitioner's or operators point of view what it can do. In practice the real capabilities of any

industrial software tool are dependent on its use, most of the time these are demanded by the

practitioners and then added by the developer. However as a pre-requisite to this stage, first

the software tool should at least be in useable form and give physically reliable results. The

capabilities stated in the following are to justify that context.

5.4.1 Leaks Inclusion and Exclusion :
The inclusion and exclusion of leaks is one of the facilities which was embedded in

the very early stages of the development of GASFLO. The user can simulate the system in

an ideal state by opting to exclude all the leaks (internal; between the neighbouring regions,

as well as external; between the system and atmosphere) of the system. In practice, the

exclusion of leaks is impossible, although it has always been the wish of the system operators

for efficiency and ease of operation reasons. However, from computational or analysis point

of view it does provide a good insight to the system.

Figure 5.3 shows the output from GASFLO for the example system and with same

boundary conditions as were for the reference output in Figure 5.1. Figure 5.3 demonstrates

that if there are no leaks all the flow going out of the system through fans 2A, 2B and Stack,

218

Chapter 5 Model Calibration, Validation and Applications

X Pellet Ind Co.; Valve Opening, Stream Flow, Node Pressure, Fan Pressure
Flow rates (dmt/h)

Pressure (inch wg)

-so. r

Figure 5.3 Flow and pressure distribution in example pellet induration network with NO
LEAKS option

is to be pumped in by the suction fans 3A and 3B. The flows through the suction fans, in the

absence are noticeably large and can give maximum pressure drop across cooling zone beds.

Also in outlet regions these pressures can reach as low as -39". The network did not reduce

to two independent subnetworks and exchange of flow between the two is visible. Incidently

the flow direction in streams s!3, s!4 and 527 is reversed because the pressure at J03 is less

than the pressures at J04, J05 and J06. For NO LEAKS option GASFLO assigns zero flow

to all leak streams and excludes them from computation, as in this case it treated 26 streams

rather than 37 (leaving 11 streams comprised of leaks) which reduces the computational load

by a significant amount.

219

Chapter 5 Model Calibration, Validation and Applications

5.4.2 Fans Selectable Alternate Mathematical Models :

This is a versatile facility, from the software, computational and practical usage points

of view. As seen in Section 5.3.4, runs (6) and (7) the alternate model of fixed pressure gain

was used for fans 1A and IB.

From modellers perspective, in GASFLO it is possible to add component's models

incrementally; initially one can start with a coarse model of a component based on its

available shallow or heuristic knowledge, which can be replaced by a refined model, later,

on the availability of deep or process based knowledge. The provision of alternate run-time

selectable models for fan entity illustrates a step further, that the coarse model is not only

replaced by the refined model but these both co-exist in the same code.

The fixed pressure gain model for fans was included in the later stages of the

development, after feed-back from the users that it is possible to adjust the fans such that they

provide fixed pressure gain. Indeed, in the original fan model (Section 2.4) the pressure gain

provided by a fan is dependent on - pressure of air at fan's entry, its throughput, efficiency

and wattage; the analysis using this fan model for some cases was too complex to resolve,

especially to isolate the effect of variation of any of these parameters for a specific fan on the

system was difficult. For example in run (5) of the previous section, opening of an external

leak s37 decreased the flow in sOl i.e. throughput of fan 3A. The use of the original fan

model provided a higher pressure gain since the pressure gain is inversely proportional to the

throughput which decreased. This further reduced the flow in s02, the flow through packed

bed in zone Cl, whose model i.e. Ergun's equation also resulted in lower pressure drop, so

both of these resulted a net increase in pressure on all down stream nodes R05, R06 and R07

etc. The overall effect of fan model was realistic, but its dependence on multiple parameters

complicated the 'cause and effect' analysis.

220

Chapter 5 Model Calibration, Validation and Applications

5.4.3 Fixed Pressure Region Nodes :

GASFLO can cater the situations when the pressures at the inlet regions are known

and these are kept to be fixed. This is analogous to fixed grade nodes in hydraulic networks.

From the practitioner's view it is a very useful facility. The leaks into the system are

always dependent on the region pressures, so if they could be controlled, then it is possible

to control leaks to some extent. The simulation of fixed pressure regions is possible only for

inlet regions of the zones. When GASFLO is asked to simulate for a known region pressure

and keep it fixed for the run, then it first verifies that it is an inlet region, looks for the pipe

upstream to the respective region, computes the calibration factor for that pipe, and instead

of computing its downstream pressure when computing pressure distribution in the

corresponding tree (see Algorithm in Figure 3.3 for network computation) it simply initializes

it with the fixed known value.

Figure 5.4, shows a scenario, when pressures for R03, R05, R08 and RIO are

respectively fixed to 4.7, -1.5, -2.5 and -0.3 inches of w.g. The effect on the outlet region

pressures and on flows specially on external leaks s29 and s36 are noticeable.

5.4.4 Insertion of Wind Box to a Zone :
Practically, the insertion of an extra wind box, means extension of packed bed by a

certain length say 10 meters, which is a full-fledged engineering project and would involve

a significant amount of work. Such extension may help the induration process, depending on

the zone or stage being extended. It will result in complete wastage (both in time and finance)

if the expected positive results are not achieved.

Without a software tool like GASFLO such design problems and their after effects

cannot be studied inexpensively. The addition of a wind box will have different effect on the

overall performance of the system depending on the zone to which it is added. GASFLO can

221

Chapter 5 Model Calibration, Validation and Applications

X Pellet Ind Co.; Valve Opening, Stream Flow, Node Pressure, Fan Pressure
Flow rates (dmt/h)

Pressure (inch wg)

-20.5'

3.6"

Figure 5.4 Simulation of network with fixed pressures at inlet regions to zones C2, PH,
DD2 and DD1

easily simulate such an addition by varying the area of respective packed bed, and can show

how the system will be effected.

The addition of a wind box to zone PH, specifically to the bed linking regions R05
and R06 was simulated by increasing the area of bed corresponding to s04 (Figure 5.2) by

25% i.e. from 43.05 m2 in reference run (Figure 5.1) to 53.81 m2 . The results of addition of

wind box to the bed linking the regions R05 and R06, are compared to the reference output

in Table 5-4. This increased the flow in stream s04, since the bed area was increased, which

was compensated by increasing the external leak s29 and decreasing the flow through other

packed bed no 5, i.e. slO. The flows and pressures, upstream to region R05 and downstream

to R06 were affected and their values are shown in the Table. Quite surprisingly the flows and

pressures, except leak linking R07 and R09 i.e. s33 which decreased from 15 tph to 9 tph, in

zones C2 and DD2 mostly remained unaffected by this change.

222

Chapter 5 Model Calibration, Validation and Applications

Table 5-4 Effect of addition of a wind box to zone PH, next to leaks streams 529 and s30

Region Pressures and Flows for Added Wind box Case ___

Reference Added W-Box Reference Added W-Box

Region Pressures

R01

R02

R05

R06

R07

RIO

Rll

10

-0

-0

-9

-9

0

-8

(- of w.g.]

.7

.6

.9

.0

.0

.3

.2

10

-1

-1

-8

-8

0

-7

1

.5

.0

.3

.4

.5

.4

.9

Stream Flows (tph)

sOl

s29

s04

slO

s07

s36

s08

390

55

195

247

521

237

579

.0

.0

.0

.0

.0

.0

.0

393

66

229

233

533

224

576

.0

.0

.0

.0

.0

.0

.0

5.4.5 Introduction of Cross Flow :
This is another practically expensive scenario, in which some part of flow from the

inlet region of one zone is redirected to the outlet region of another neighbouring zone.

Provision of this capability in GASFLO required a noticeable effort. Previously the

computation of packed bed streams could only be executed as tree streams, but simulation of

the cross flow required the option for their computation as 'torn' streams also (Section 3.3).

Because, for tree streams the flows are computed by solving the continuity equation at the

downstream node, whereas for torn (or cotree/coforest) streams' flows are computed using the

values of pressures at the two nodes connected by the respective stream. This required the

improvement of partition algorithms (to include a bed stream as torn stream) and extension

of the software module corresponding to bed entity (to compute bed as a torn stream).

Figure 5.5 shows the results of cross flow from the inlet region (R08) of DD2 zone

to the outlet region (ROT) of PH zone. This was simulated by introducing another bed which

linked these two regions. In fact for this case we just reduced the bed area of bed 4

(corresponding to s23) by 25% and assigned it to new bed. The results can be compared with

the reference output. This output also highlights the role of internal leaks, one can see to what

extent the redirected flow of 91 tph from R08 to R07 is compensated by the internal leaks

from the neighbouring regions. This redirection increased pressures in R07 and R06 by 0.8"

223

Chapter 5 Model Calibration, Validation and Applications

X Pellet Induration Co.;
(Valve Opening, Stream Flow, Node Pressure, Fan Pressure)

291. Pressure (inch wg)

Row rate (dml/h)

244.
0.2' 164, -1.7-

46, |J 260.

Figure 5.5 Flow and Pressure distributions with cross flow from zone DD2 (R08) to the
zone PH (ROT)

and 0.6" respectively, whereas it decreased pressures in regions R08, R09 and Rll. The

pressure at RIO remained almost un-effected due to its exposure to atmosphere through leak

s36.

5.4.6 Evaluation of Temperature Distribution :
GASFLO initially computes the flow and pressure distributions in the network and

using converged values of flows, it evaluates the stream and node temperatures. For this

computation the basic principles are:

 All streams leaving a node should have same temperature as the node temperature

(Kohler et al 1990).

 Overall heat entering a node is same as leaving the node. Node temperature is

computed by this conservation equation assuming that there is complete mixing and

the node is at the same temperature.

224

Chapter 5 Model Calibration, Validation and Applications

 The temperatures related to packed bed are computed by another software tool

INDSYS, in GASFLO these are used as average temperature for the computation of

Ergun's equation.

 No temperature loss is assumed for flow through fans, leaks and valves whereas

convective and conductive heat loss through pipe surface is included in the model. The

pipe material's thermal conductivity (which is not yet known) has been used as

adjustable parameter for temperature computation calibration.

The temperature equations do depend on flow distributions, whereas the latter does not

depend on temperature distribution i.e. the respective two equation sets are loosely coupled

and are computed independently (see sections 3.1, 3.7 and 3.8). In the same run, GASFLO

first evaluates flow and pressure distributions, then using the converged values of flows it

evaluates temperatures. The node and stream temperatures for the flow distribution shown in

Figure 5.5 are presented Figure 5.6.

Although from the induration process perspective 'kiln' is a significant component,

from the view of airflow evaluation (i.e. from GASFLO perspective) it is simply a pipe or

duct. All process gas entering the kiln is being passed on to the PH zone. So, the pipe

upstream to the kiln, kiln and the pipe downstream being connected serially are replaced by

an equivalent pipe (pipe no 3 in the case of the example network), which is further simulated

by stream s03. INDSYS provides the temperature of gas flowing out of the kiln, which

GASFLO simply equates it to the respective stream (i.e. s03) temperature. The leak stream

temperature are the temperatures at their upstream ends.

5.5 INDSYS - GASFLO Interaction

INDSYS (INDuration SYstem Simulator) was developed in mid 1980's and has been

used by induration industry since then. It computes the heat concentration in the key

components of the induration process, namely the packed beds and kiln, and takes into

account the heat transfer, involved chemical reactions and efficiencies of the heat sources -

225

Chapter 5 Model Calibration, Validation and Applications

X Pellet Induration Co.; (Temperature Distribution)

(495.)

Temperatures (oC)

(20.)

(20.) I (136'> (136.)
(3SB.)<=> (368.) 007.). (820.)

Figure 5.6 Temperature distribution for cross flow - bed height 14.5 cm

burners etc. The computation is based on a complex mathematical model of the process and

done at microscopic level. For heat transfer from one zone to another, air is used as process

gas whose flow distribution is needed by INDSYS to compute exactly the heat concentration

in the system and amount of heat transfer from solids (the pellets) to the process gas (the air)

and vice versa in different zones. Details about ENDSYS computation, working and usage are

described elsewhere (e.g. Cross and Englund 1987, Cross 1988).

Here in the following subsections, we will briefly discuss the data required by

INDSYS and GASFLO from each other and how a combined simulation using the two

software tools can be run to get more realistic, detailed and exact results for an induration

system simulation.

INDSYS and GASFLO have been developed independently in different spans of time,

they are written in different computer languages and have even assumed different network

configuration schemes, each using the one which is more suited to its needs. INDSYS treats

226

Chapter 5 Model Calibration, Validation and Applications

induration network as combination of different zones, confines itself to the simulation of

respective zones, and for airflow distribution it assumes how the input or on-gas of one zone

is formed by the output or off-gas from the other zones. In terms of INDSYS airflow

distribution, on-gas of DD2 consists of 80% of off-gas of C2 and 20% of off-gas of PH and

these fractions remain fixed throughout the simulation. Whereas GASFLO considers the

induration network as combination of nodes and stream, and simulates all those components

which contribute to airflow distribution. It computes exact airflow for each of the streams;

e.g. the on-gas of DD2 is represented by stream s23 which is explicitly sum of streams 522

(off-gas from C2) and s34 (off-gas of PH with some mix of air through s36). At the time of

GASFLO's development although the existence of the INDSYS was known it was developed

in isolation without any influence of INDSYS.

5.5.1 INDSYS required data (to come from GASFLO) :
The degree of difficulty to determine flow distribution in pellet induration system is

evident from chapters 1-4. The developers of INDSYS and other such packages (e.g

CASCADE Patel et al 1993) realized the involved complexity and so used guessed flow

distributions instead of indulging into the computation of exact flow distributions. As a result

these packages require several runs to reach to good guess of airflow distribution by hit-and-

trial, nevertheless this approach gave them a good start. However, the validity of such guessed

flow distributions is not guaranteed.

Now GASFLO can provide an exact airflow distribution which was needed by

INDSYS (and its counterparts) and in return the temperatures of gas in packed bed which are

assumed in GASFLO computation can be extracted from INDSYS results.

INDSYS requires:

 Exact values of flows entering into the inlet (the regions upstream to the

packed bed) and outlet (the regions downstream to the packed bed) regions of

all zones,

227

Chapter 5 Model Calibration, Validation and Applications

 Temperatures of these flows entering into the regions.

Since the internal leaks are recuperated from within the system, their inclusion in one

region will be taken as negative flow from the other region, so these are ignored and attention

is focused to the flows being sucked into the system from atmosphere whether through

suction fans 3A and 3B, or through external leaks. Similarly the bye-pass stream (s!6) of C2,

having all attributes of ambient air would be treated as if it is added to the outlet region of

zone C2.

5.5.2 GASFLO required data (to come from INDSYS) :
As mentioned in last section, these are:

 The average temperature of gas entering and leaving the packed bed for each

zone,

 The temperature of gas coming out of kiln and entering PH zone.

INDSYS outputs the temperature distribution of gas and solids in matrix form,

assuming symmetry from front to back, discretising it vertically in 11 layers and horizontally

depending upon its length in number of intervals of equal length. Luckily it also output the

average temperatures entering and leaving the bed, which can be used as input to GASFLO

directly.

5.5.3 INDSYS - GASFLO combined simulation :
Ideally both of these software tools should be integrated to a single simulation tool,

as they are simulating different interdependent subprocesses of the same induration process,

but this integration will involve a significant amount of work. With their existing states, the

following steps can enable the use to run a combined simulation:

Step-1: Run INDSYS with an assumed flow distribution for the simulated network,

228

Chapter 5 Model Calibration, Validation and Applications

Step-2: Extract from the output of INDSYS; the average gas temperatures entering and

leaving the packed bed for each zone and temperature of gas leaving the kiln. Treating

these temperatures as input parameters and run GASFLO,

Step-3: From the output of GASFLO, extract gas flows entering to cooling stages Cl and C2,

and external leaks corresponding to streams s29, s30 and s36. Consider these new flow

distributions as input and run INDSYS.

The steps 2 and 3 should be repeated until converged flow and temperature

distributions are achieved.

This combined simulation will require the understanding of the adopted network

configuration strategies, and the knowledge of procedure to run each of these tools. A

mapping of zones modelled by the INDSYS to the packed beds simulated by the GASFLO

should be first worked out. For example in the modelled network INDSYS treats the pre-heat

(PH) zone as a single zone whereas GASFLO according to its own configurational strategy,

simulates it as combination of three regions R05, R06 and R07, and two beds corresponding

to streams s04 and slO. So the temperatures output by INDSYS for PH zone will need some

interpolation to conform to GASFLO input. Similarly stream s!6 which is bye-pass to cooling

zone C2 is treated by INDSYS as an external leak entering into the system in outlet region

of zone C2. Such intricacies does need a working knowledge of both software tools.

The network shown in Figure 5.5, the one with cross flow, was simulated using both

of these packages. The combined simulation took three iterations to converge. The results,

comprised of key stream flows and temperatures, are shown in Table 5-5. The '0' iteration

corresponds to the INDSYS computation using a well guessed flow distribution, and the

temperatures computed by INDSYS in '0' iteration column were used by GASFLO iteration

T. The flows computed by GASFLO in iteration T were used for INDSYS iteration T,

and so on. The variation between these key flows and bed temperatures was negligible after

3rd iteration hence further iterations were stopped. It has been noticed that the combined

simulation requires 3-5 iterations to converge.

229

Chapter 5 Model Calibration, Validation and Applications

Table 5-5 INDSYS-GASFLO interactive simulation results

Itr no.

Key

0

Stream Flows and Bed Temperatures

1 2 3

Flows from GASFLO (tph)

Through Fan 3A

Through Fan 3B

Stream si 6

External Leak

External Leak

External Leak

s29

s30

s36

434

528

10

20

17

189

.0

.0

.0

.0

.0

.0

386

424

57

35

15

259

.0

.0

.0

.0

.0

.0

384.

414.

61.

41.

15.

265.

0

0

0

0

0

0

384

413

61

42

15

266

.0

.0

.0

.0

.0

.0

Bed Ternpr from INDSYS (°C)

Zone DD1 -

Zone DD2 -

Cross flow -

Zone PH -

Kiln -

Zone C2 -

Zone Cl -

IN

OUT

IN

OUT

IN

OUT

IN

OUT

OUT

OUT

OUT

520

137

605

366

471

611

1214

831

1261

400

1152

.4

.1

.9

.6

.3

.5

.0

.8

.7

.3

.0

445

130

675

296

579

540

1155

832

1244

611

1210

.0

.0

.1

.8

.2

.4

.7

.7

.0

.5

.1

440.

130.

678.

292.

582.

535.

1138.

830.

1240.

631.

1213.

6

0

1

4

8

5

0

0

6

2

1

440

130

678

292

583

535

1136

830

1241

632

1213

.4

.3

.9

.9

.7

.4

.0

.0

.0

.6

.8

5.6 Case Study

In the case study we simulate one of the practical scenarios of how the system's

production can be increased by a fixed amount say 10%. In other words we have to increase

the pellets input by 10% which can be done by increasing the beds' height in zones DD1,

DD2 and PH by 10%, and increasing the overall gas flow through the system, especially the

recuperated flow, by the same amount. The increase of gas flow through the system is

important to complete the induration process and for thermal efficiency reasons.

230

Chapter 5 Model Calibration, Validation and Applications

For this, first we see the behaviour of flow and pressure distributions when the flow

through exhaust fans 2A and 2B is decreased or increased. Later after knowing the source for

this extra gas which is being pumped out; we increase the beds height and flow through the

exhaust fans by 10% and determine the necessary adjustments in the other fans parameters

or valve openings, to achieve the desired increase of gas flow through the suction fans 3 A and

3B.

5.6.1 Decrease and Increase of Exhaust Fans Flow :
The case study is carried out on the same induration system which is shown in Figure

5.5. We keep the bed height same as 14.5 cm and vary the flow through the exhaust fans 3A

and 3B.

Since these exhaust fan flows are used as boundary condition by GASFLO, so their

changed values are fed into the input file. We decrease and increase these flows by 5% and

10%, keeping all other parameters constant. The results for these four along with the standard

case are presented in Table 5-6. The flows through exhaust and suction fans and leaks are the

main influencing variables, so these are compared to see the effect on pressures, the pressure

drops across the beds in zones are also given.

The effect of this increase or decrease is more prominent on the external leak s36, then

on other external leaks s30, s29, and the flows through the suction fans 3A and 3B are least

effected. Similar effect can be noticed from the pressure drops across the zones; DD1 and

DD2 are most effected and the effect on cooling zones Cl and C2 is comparatively negligible.

Results given in Table 5-6 show that an increase (decrease) of 10% i.e. ± 94.5 tph in

the overall exhaust flow; produces an effect of +78 tph (-82 tph) in external leaks and an

effect of +17 tph (-13 tph) in suction flow through fans 3A and 3B. Thus, the increase or

decrease of suction flow is mostly compensated by external leaks into the system rather than

by the suction flow as expected and desired. Similar effects were noticed practically by the

231

Chapter 5 Model Calibration, Validation and Applications

Table 5-6 Effect of decrease/increase of exhaust flow on the system

Stream Flows and Zones

Change -> -10% -5%

Pressure drops

Standard + 5% + 10%

Flows Through (tph)

Exhaust

Exhaust

External

External

External

Suction

Suction

Fan 2A

Fan 2B

Leak s36

Leak s30

Leak s29

Fan 3B

Fan 3A

419

431

182

13

30

414

385

.0

.0

.0

.0

.0

.0

.0

443

455

213

14

40

419

387

.0

.0

.0

.0

.0

.0

.0

466.

479.

244.

14.

49.

423.

389.

0

0

0

0

0

0

0

489

503

275

14

57

429

391

.0

.0

.0

.0

.0

.0

.0

513

527

306

15

64

436

393

.0

.0

.0

.0

.0

.0

.0

Pressure Drop (" of W.G.)

Zone DDl

Zone DD2

Zone PH

Zone C2

Zone Cl

7

6

7

5

11

.9

.7

.1

.9

.1

8

7

7

6

11

.5

.4

.3

.1

.2

9.

8.

7.

6.

11.

3

1

6

2

2

10

8

7

6

11

.2

.8

.8

.3

.4

11

9

8

6

11

.0

.6

.1

.6

.6

practitioners on the actual system and are reported elsewhere (Afzal and Cross 1992). This

also reveals that if the overall flow through the system is to be increased than some

mechanism to restrict these external leaks would be required.

5.6.2 Increase of Pellet Production rate by 10% :
Some runs of GASFLO will be required to simulate this situation. As seen in the last

sections, the increase of production rate needs, the bed height as well as the gas throughput

of the system to be increased by 10%. Since GASFLO uses the exhaust fan flows as boundary

condition so they can be increased straightaway, but (as seen in Section 5.6.1) this will

increase the external leaks rather than the recuperated flow through the cooling stage or

through suction fans. Also the increase of bed height as seen in run (8) of Section 5.3 would

increase the pressure drops across the beds, thus giving a lower pressure in respective outlet

regions, which would increase the external leaks.

232

Chapter 5 Model Calibration, Validation and Applications

To resolve the problem, we first determine the approximate values of external leaks

which would indirectly provide us the desired increased recuperated flows. The leaks are

governed by the respective region pressures (R05, R06 and RIO in this case), so if we could

know the values for these region pressures, then a calibration like procedure can adjust the

parameters systematically to achieve these target region pressures or external leaks. The

GASFLO run with the original exhaust flows and bed height (14.5 cm), whose results are

shown in Figure 5.5, can provide these values. These leaks (through streams s36, s30 and 529)

should be in the range of 244.0, 14.0 and 49.0 tph respectively and the associated region

pressures for regions RIO, R06 and R05 should be 0.2, -8.4 and -0.7 inches of w.g.

The 10% increase in height and in exhaust flow are introduced simultaneously and the

alternate (fixed pressure gain) fan model is opted for the booster and suction fans. Because

X Pellet Induration Co.;
(Valve Opening, Node Pressure, Stream Flow, Fan Pressure)

315. Pressure (inch wg)

Flow rate (dmt/h)

DD2
00" 203, ___ -2.3'

ZL II 304.

Figure 5.7 Flow and pressure distribution for 10% increased production scenario, with
10% more flow through suction and exhaust fans

233

Chapter 5 Model Calibration, Validation and Applications

as stated previously, the effect of original mathematical model for fan entity is quite complex,

whereas the alternate model is easy to manipulate and observe the produced effect. It took

few runs to achieve the desired output, which is shown in Figure 5.7, and it shows that 10%

more flow has been sucked through the fans 3A and 3B. The aim throughout all these runs

have been to increase the throughput of fans 3 A and 3B by 10%, while using the above stated

region pressures for R05, R06 and RIO as guide values so as to control the overall leak into

the system. The resulted output (Figure 5.7) was achieved by using the pressure gains of 12.0,

9.0, 14.0 and 14.0 inches for 3A, 3B, 1A and IB fans respectively, and the valves v05 and

v06 were opened from initially 30% to 40%.

5.7 Summary

The calibration of model for the respective (to be modelled) network is an important

and basic step. It needs to be performed before the analysis is undertaken. During calibration

the adjustable and unknown parameters of the model are modified in the light of available

observed (or field) data, such that the model gives results as close to those observed as

possible. For hydraulic networks, using either Hardy Cross, Newton Raphson or linear theory

methods, well defined algorithms exist for model calibration. But for GASFLO those

algorithms could not be used as it based on a different computational approach so

accordingly, an analogous but different strategy was devised and adopted for calibration,

which caters specifically the pellet induration systems. This is explained in the first part of

the chapter.

After calibrating the model for a real life pellet induration system, it is run for

different parametric studies, to show that it gives physically valid and practical results. The

capabilities of GASFLO are demonstrated by applying it to the commonly encountered

situations of induration industry. This also shows that how this model (or more appropriately

software tool) can assist the practitioners to resolve and simulate the real situations - like

extension of a zone by introducing an extra wind box, and redirection of cross flow from inlet

234

Chapter 5 Model Calibration, Validation and Applications

region of one zone to the outlet region of another; which are otherwise impossible to analyze.

The interaction of GASFLO with another software tool INDSYS, which computes gas

temperatures in packed beds but used a guessed airflow distribution in the system, is

described. The procedure and common data between these two software tools are given. In

the last section a case study is described, which explains what fan and valve settings would

be required if the production of the same system is to be increased by 10%.

All these applications briefly show that how GASFLO can support already existing

software tools in the pellet induration field, and mainly how it can assist the induration

systems' operators, designers and plant engineers in performing their routine jobs, as well as

providing inexpensive, speedy, detailed and practically valid solutions to problematic

situations, which would otherwise either be not possible or be very expensive in terms of time

and finances.

235

Chapter 6
Conclusions

In this research, the development of a mathematical model and the associated software

tool, GASFLO, have been described and the capabilities of the resulting code have been

illustrated. GASFLO has been written in FORTRAN 77, for high-end PC compatibles

especially for 486 machines, and evaluates steady state flow, pressure and temperature

distributions of process gas in pellet induration systems networks.

The computation of GASFLO is based on device-centred or unit based approach, so

that the network components or units are picked up and computed in the order of their

connectivity. This approach lead to an elegant bi-level hierarchical algorithm for the network

computation. The original pellet induration system network is transformed into a connected

graph of streams (comprised of single or serially connected multiple network components

having same flow) and nodes (where more than one stream meets or an external boundary of

the system i.e. atmosphere). At the higher level the network is solved to satisfy the two

Kirchhoff's laws, whereas at lower level the computation of respective streams is carried out

to satisfy the mathematical models of their constituent components. The pressures and flows

are interdependent and computed simultaneously, whereas the temperature and flow equations

are loosely coupled, so the temperature distribution is computed using converged flow

distribution. The computation algorithm requires the partitioning of the connected graph into

forest (collection of trees i.e. acyclic graphs) and coforest (the streams of connected graph but

not belonging to forest) structures, which has been automated by algorithms, based on

heuristics specific to pellet induration systems.

236

Chapter 6 Conclusions

The solution algorithms have been implemented in GASFLO. The results of GASFLO

simulation application to a real pellet induration systems (whose data was available) show that

they always converge and are versatile, robust and fast.

Realizing the involved complexity, and desired capabilities from the outset, the

development of GASFLO was based on software engineering principles and techniques. The

'encapsulation' and 'information hiding principle' played a vital role in the resulting code.

The resulting code is comprised of 2 main programs and 88 routines, and is 6.1+ KLOC

(thousands of lines of code).

6.1 GASFLO Features

The present (developer's) version of GASFLO takes about 27 seconds to simulate a

typical pellet induration system, on a 486 50 MHz machine with 386 version of DBOS, the

Salford FTN77 run-time library and extended memory manager. This time reduces to 17

seconds if the more recent 486 version of DBOS is used. These timings can still be improved

for 'users version' by avoiding the output to slow devices (i.e. terminal) and debugging

related files (which was required for development). The output from GASFLO can be seen

graphically on screen or printed on a PostScript printer.

From developer's view, the new network component entities can be added into the

system by writing their respective software modules. The data and methods (including the

mathematical model and its computation) related to the entity are encapsulated together into

the corresponding software module, using SAVE and ENTRY constructs of standard

FORTRAN 77. The modules are mutually well insulated and communicate with each other

through a pre-defmed generic interface. The developer can use any numerical scheme

appropriate to the nature of equations of the mathematical model of respective entity. The

existing modules' functionality and their data structures can be extended. This architecture

237

Chapter 6 Conclusions

is flexible, powerful and the resulting code has very low maintenance costs (i.e. easy to

change).

As a modeller's workbench, the mathematical model for any entity can be refined and

its effect seen. The alternate mathematical models, coarse as well as refined, can be embedded

into the same module and can be selected at run-time. The modelled process can be extended

by adding corresponding code to the only effected entity modules. For example the

computation of temperature distribution was added to GASFLO at a later stage of its

development, its implementation required significant addition to node and pipe modules but

was a simple initialization for leak module. This extensible and incremental nature of

GASFLO makes it an ideal software tool which conforms to the modelling environment needs

and character.

As a practitioner's assistant, GASFLO, can simulate pellet induration systems

realistically, speedily and inexpensively. It can be readily used for operator training and

analysis, and can communicate with another software tool, INDSYS, which computes heat

concentration in pellet induration systems. It can simulate quite complicated but practical

situations; like addition of extra wind box to a zone, cross flow from inlet region of one zone

to the outlet region of another zone, or increase of pellet production rate etc; with least effort

and can predict the disastrous situations whose implementation, otherwise, could lead to

unrecoverable losses.

The solution algorithm uses sink node flows and source node pressures as initial

condition for computation, which are known parameters for any pellet induration system.

However, it seems to be a limitation from the generality aspect since presently GASFLO,

cannot use other initial conditions to start its computation e.g. source node flows and sink

node pressures as initial conditions.

238

Chapter 6 Conclusions

6.2 Future Work

GASFLO has very flexible and powerful architecture, and especially: the fast

algorithms; being founded on software engineering principles and hence independent object
like resulting modules; the facilities to refine or replace the component mathematical models

and extend the modelled process; assure a great potential. To harness this potential it is

suggested that future work can be initiated in the following three main directions:

6.2.1 GASFLO - as a stand-alone package:
It can be readily used for operator training and analysis of pellet induration systems.

It reads input from data files which are to be created by the user, who is presumed to have

knowledge of the system and network configuration strategy used by GASFLO. The addition

of following features would make it an ideal, user friendly and more productive tool.

 Graphical User Interface (GUI) - having all WIMP (window, icon, mouse and pull

down menus) attributes, providing facilities to the user to; compose the network by

dragging and placing the component icons of his choice on the board; enter required

data through forms and its validation; connect and compute the network by clicking

on icons or through pull down menus. Similarly display and hardcopy of input data

and computed output in the user familiar graphical format. A platform like Microsoft

Windows 3.1 or later could be an ideal environment for such GUI.

 Extension of modelled process (airflow) to include 2-phase flow computation. In fact,

the drying and pre-heat zones have noticeable water vapour content, so for more

realistic results and for thermal efficiency, so instead of considering it as single phase

flow the model should treat it as two-phase flow.

 Generalisation of the component (mathematical) models to simulate: mine ventilation,

hydraulic, natural gas or any other fluid flow networks' components. Since all these

239

Chapter 6 Conclusions

use Kirchhoff s law at higher level, so only code relating to the individual components

(say compressors in case of natural gas or pumps for water networks instead of

presently modelled fans) i.e. at all lower level, would be required to be added.

 The facility to link and execute from user-written linkable modules, and keeping the

higher level computation related modules as a dynamic link library (DLL), would

excel its power as workbench.

 Addition of optimization module to enhance its usage as a tool for design, operation

and planning purposes.

 Extension to transient simulation and provision for the computation of species

concentration, could enable it to simulate more challenging projects like propagation

of fires in mine ventilation networks. The interrogatable nature of system components

can keep the computational loads to minimum e.g. only those paths or parts of the

network where smoke has reached can compute the fire model, in addition to the

airflow model.

6.2.2 For process control :

The present state and its computational speed instigates that it can be used for process

control. As a supervisory control system it could receive the control variables from telemetry

data, predict the results verify that they are within their valid ranges, if not then suggest the

user of required settings of controllable components. Later it could be upgraded to fully

automated process based control system, where to avoid human related input errors the system

could actuate the controllable devices itself. Such state of plant operation will make the

induration process very efficient, improving the pellet quality by precise control, more

effective use of man-power, saving in fuel costs by less burning and hence more environment

friendly.

240

Chapter 6 Conclusions

6.2.3 Integration with other related software tools :
It will depend on the nature and extent to which this integration is sought. It will

require that the other tools and GASFLO use the same network configuration strategy, and

should communicate to each other implicitly. However, this will require re-writing of some

portions of the codes of these packages to fulfil this homogeneity. Otherwise a communication

layer could be written which could import and export data from GASFLO to the format

required by these packages.

It is suggested that wherever possible the computational core of GASFLO i.e. the

higher level computation should not be disturbed, and all other facilities like any of the above

mentioned, should be bolted on the top of that. The GASFLO architecture permits that

elegantly. It will keep the variation to minimum and hence lower costs for the maintenance

of its further versions.

241

References

Afzal M (1991)
Evaluation of Gas Flow Distribution in Process Analysis

Dissertation for MSc in Scientific & Engineering software technology,
Thames Polytechnic, (presently Greenwich University), London

Afzal M and Cross M (1992)
"Mathematical modelling of the gas flow distribution in iron ore pellet induration
systems"

Proc of 10th Process Technology Division Conf,
April 5-8, 1992, Tronoto, Published by AIME;

Vol 10, pp 367-374

Ammers E W and Kramer M R (1993)
"The CLiP style of literate programming"

ftp from ammers@rcl wau.nl

Ahuja R K, Magnanti T K and Orlin J B (1993)
Network Flows - Theory, Algorithms and Applications

Printice Hall Englewood Cliffs, New Jersey

Angell I O and Griffith G (1989)
High-resolution Computer Graphics Using FORTRAN 77

Macmillan

ASCENT (1993)
ASCENT: Automated Strict Case Environment at Teesside
Documentation version 2

University of Teesside, UK

Ashworth C and Goodland M (1990)
SSADM: A Practical Approach

McGraw-Hill Book Co

Azbel D S and Cheremisinoff N P (1983)
Fluid Mechanics and Unit Operations

Ann Orbor Science

242

References

Babrow D G (1984)
"Qualitative reasoning about physical systems: An introduction"

Artificial Intelligence, V 14, pp 1-5

Barber G and Hay A (1993)
"EPC compilers on Unix"

Proceedings of UNICOM seminar on 'FORTRAN and C in Scientific
Computation', Brunei University, UK, 9-10 June 1993, pp 88-112

Barker H A, Grant P W, Jobling C P and Townsend P (1993)
"The object oriented paradigm: A mean for revolutionizing software development"

Computing & Control Engineering Journal, V 4, no 1,
pp 10-14, Feb 1993

Batey E H, Courts H R and Hannah K W (1961)
"Dynamic approach to gas pipeline analysis"

The Oil and Gas Journal, pp 65-78, Dec 18 1961 issue

Bentley J (1987)
"Programming pearls - the Furbelow memorandum"

Communications of the ACM, V 30, n 12, pp 998-999, Dec 1987

Bhave P R (1986)
"Unknown pipe characteristics in Hardy Cross method of network analysis"

J. Indian Water Works Assoc, V 18, n 2, pp 133-135

Bhave P R (1990)
"Rules for solvability of pipe networks"

J. Indian Water Works Assoc, V 22, n 1, pp 7-10

Bhave P R (1991)
Analysis of FLOW in WATER DISTRIBUTION NETWORKS

Technomic Publishing Co, Lancaster, Pennsylvania US

Bird R B, Stewart W E and Lightfoot E N (1960)
Transport Phenomena

International Edition, John Wiley & Sons

BoehmB (1981)
Software Engineering Economics

Printice-Hall, Englewood Cliffs, New Jersey

243

References

Boghosian B M (1990)
"Computational physics on the connection machine : Massive parallelism - a new
paradigm"

Computers in Physics, pp 14-33, Jan-Feb 1990

Bogle I D L and Pantelides C C (1988)
"Sparse non-linear systems in chemical process simulation"

In SIMULATION AND OPTIMIZATION OF LARGE SYSTEMS;
Osiadacz A J (Ed), Oxford University Press, Oxford, pp 245-261

Boulos PF(1989)
Explicit Determination of System Parameters for Upgrading and Enhancing Water
Distribution Systems

PhD Thesis, Civil Engineering Department,
University of Kentucky, Lexington, KY 40506

Boulos P and Altman T (1991)
"A graph-theoretic approach to explicit non-linear pipe network optimization"

Journal of Applied Mathematical Modelling, V 15, n 9, pp 459-466

Boulos P F and Altman T (1993)
"An explicit approach for modelling closed pipes in water networks"

Applied Mathematical Modelling, V 17, n 8, pp 437-443

Boulos P, Altman T and Sadhal K (1992)
"Computer modelling of water quality in large multiple source networks"

Applied Mathematical Modelling, V 16, n 8, pp 439-445

Boulos P F and Ormsbee L (1991)
"A comprehensive algorithm for network calibration"

18th Annual Water Resource Conference, New Orleans, pp 949-953

Boulos P F and Wood D J (1990)
"Explicit calculation of pipe network parameters"

J of Hydraulic Engineering, Proc ofASCE, v 116, n 11, pp 1329-1345

Boulos P F and Wood D J (1991)
"An explicit algorithm for calculating operating parameters for water networks"

Civil Engineering Systems, V 8, pp 115-122

Boxer G(1988)
Work Out Fluid Mechanics

Macmillan Education

244

References

Boyne G C (1970)
The Design and Analysis of Gas Distribution Networks

PhD Thesis, Dept of Civil Engineering,
Heriot-Watt University, Edinburgh, UK

Boyson H F (1993)
"Renormalization group theory based turbulence models and their application to
industrial problems"

Proc of European Conf on Engineering Applications of CFD;
Sept 7-8, 1993, IMechE, London; Paper no C461/035/93; pp 43-47

Brereton R G (1993)
"Object oriented programming for personal computers"

Chemometerics Intelligent Laboratory Systems, V 19, pp 127-127

Bruce W E and Koenning T H (1987)
"Computer modelling of underground coal mine ventilation circuits: Selection and
application of airway resistance valves"

Proc of 3rd Mine Ventilation Symposium; Oct 12-14 1987, Pennsylvania;
Mutmanski J M (Ed); Society of Mining Engineers; pp 519-525

Burden R L and Faires J D (1989)
Numerical Analysis

4th Edition, PWS-KENT Publishing Company, Boston

Butler NC (1982)
"Pipeline leak detection techniques"

Pipes and Pipelines International, pp 24-29, April 1982

Butler G F and Corbin M J (1989)
"Object oriented simulation in Fortran 77"

REA working paper MM 38/89; 20 Pages, Nov 1989

Chandra S, Blockey D I and Woodman N J (1992)
"An interacting object physical process model"

Computing Systems in Engineering, V 3, no 6, pp 661-670, Dec 1992

Chansler J M and Rowe D R (1990)
"Microcomputer analysis of pipe networks"

Water/Engineering & Management, V 137, no 7, pp 36,38,39; July 1990

Chen PP (1976)
"The entity relationship model - towards a unified view of data"

ACM Transactions on Database Systems, V 1, no 1, pp 9-36, Mar 1976

245

References

Goad P and Yourdon E (1991)
Object Oriented Design

Printice-Hall, Englewood Cliffs, New Jersey

Colbrook A and Smyth C (1990)
"Formal specification of data abstraction in Fortran 77: Abstract arrays"

Software Engineering Journal, V 5, no 3, pp 151-159

Collins W R and Miller K W (1991)
"Defining and implementing FORTRAN generic abstract data types"

Information and Software Technology, V 33, no 4,
pp 281-291, May 1991

Corbin M J, Birkett P R and Crush D F (1993)
"Multi-Sim: A distributed object-based simulation environment in Ada"

Proceedings of European Simulation Symposium ESS'93,
Delft, pp 405-410

Corbin M J and Butler G F (1989)
"Object oriented simulation is FORTRAN"

Proceedings of Society of Computer Simulation Conference,
Tempa, Florida, 28-31 Mar 1989

Corbin M J and Butler G F (1990)
"Object oriented simulation in Fortran and Ada"

Proceedings of 1990 UKSC Conference on Computer Simulation,
Brighton, Uk, pp 63-68

Coulbeck B and Orr C H (1990)
"Computer-aided analysis, design and operation of water distribution systems versus
power distribution systems"

Proceedings of 25th, University Power Engineering Conference,
Aberdeen, 1990, pp 465-468

Cox B J (1986)
Object Oriented Programming: An Evolutionary Approach

Addison Wesley, Reading MA

Cox B J (1990)
"There is a Silver Bullet"

BYTE, V 15, no 10, pp 209,210,212,214,216 & 218, Oct 1990

Crosier R(1991)
"FORTRAN programming techniques"

Journal of Quality Technology, V 23, no 4, pp 348-354, Oct 1991

246

References

Cross M (1988)
'INDSYS - Iron Ore Pelletizing INDuration SYstem Simulation' User Guide for MS-
DOS version

Computational Software Ltd, Surrey, UK

Cross M, Bogren E C, Wakmen J S and Frans R D (1982)
"Mathematical Models of Iron Ore Pellet Induration - Validation and Application"

Proc of 3rd Process Technology Conference,
American Institute for Mining, Metallurgical

and Protect Engineers, pp -

Cross M and Englund D (1987)
"Assessment of Iron Ore Induration System using Computer Simulation"

Mathematical Modelling of Material Processing Operations,
Metallurgical Society Inc.

Cross M, Patel M K and Afzal M (1991)
"Computer simulation of pellet induration for process optimization and control"

Proc of 52nd Annual Mining Symposium, Jan 16-17, 1991;
Duluth Minnisota; Published by SMME(AIME); pp 353-365

Cross M, Patel M K and Wade K C (1990)
"Analysis of the gas flow and heat distribution in iron ore pellet induration systems"

In Control'90: Minerals and Metallurgical Processing;
Rajamain R K and Herbert J A (eds)\Published by SME-AIME, pp 99-108

Cross M and Wade K C (1989)
"Computer simulation of iron ore pellet induration with additives"

ICHEME-5th International Symposium on Agglomeration; pp 291-298

Cross M and Young R W (1976)
"Mathematical model of rotary kilns used in the production of iron ore pellets"

Ironmaking and Steelmaking, no.3; pp 129-137

Dahl O J and Nygaard K (1966)
"SIMULA - An ALGOL based simulation language"

Communications of the ACM, V 9, no 9, pp 671-678

D'albrand N, Be'gis D, Chavant G and Gunther J (1988)
"Validation of measurements used to solve ventilation problems"

4th Int Mine Ventilation Congress, Brisbane, Queensland,
July 1988, pp 133-139

247

References

Daniel P T (1966)
"The analysis of compressible and incompressible fluid networks"

Trans of Inst of Chem Engrs; V 44, pp T77-T84

Daugherty R L, Franzini J B and Finnemore E J (1985)
Fluid Mechanics with Engineering Applications

McGraw Hill Book Co pp ix-xi, 28-9, 253-6

DeKleer J(1084)
"How circuits work"

Artificial Intelligence, V 24, pp 205,280

DeMarcoT(1978)
Structured Analysis and System Specification

Printice-Hall, New York

Denshyar H (1976)
One Dimensional Compressible Flows

Pergamon Press N. Y.

DeoN (1974)
Graph Theory with Applications to Engineering and Computer Science

Printice Hall

Douglas J F, Gasiorek J M and Swaffield J A (1985)
Fluid Mechanics

2nd Ed., Longman Scientific and Technical Series

Due R T (1993)
"Object oriented technology - The economics of a new paradigm"

Information Systems Management, V , no , pp 69-77, Summer 1993

Duff C and Howard B (1990)
"Migration patterns"

BYTE, V 15, no 10, pp 223,224,226-228,230 & 232, Oct 1990

Duff I S, Erisman A M and Reid J K (1990)
Direct Methods for Sparse Matrices

Oxford Science Publications

Ellis M and Stroustrup B (1990)
The Annotated C++ Reference Manual

Addison Wesley

248

References

Ellis D W, Worall K E and Miller S P (1987)
"The computer control of pressures in distribution networks - British gas/Wales"

The Institute of Gas Engineers, Communication 1354, 27 pages, Nov 1987

Ellison A (1993)
"Modelling, philosophy and limitations"

Computing & Control Engineering Journal, V 4, no 4,
pp 190-192, Aug 1993

Elmasri R and Navethe S B (1989)
Fundamentals of Database Systems

World Student Series, Addison Wesley
The Benjamin/Cummings Publishing Co, California

Epp R and Fowler A G (1970)
"Efficient code for steady state flows in networks"

Journal of Hydraulics Division, Proc ofASCE, V 96, n HY1, pp 43-56

Ergun S (1952)
"Fluid flow through packed columns"

Chem Eng Prog, v 48, pp 89-94

Fairley R (1985)
Software Engineering Concepts

McGraw-Hill, New York

Fenech K, Cross M and Voller V R (1987)
"Numerical modelling of the cohesive zone formulation in the iron blast furnace"

PCH - PhysicoChemical Hydrodynamics, V 9, n 1/2, pp 71-83

Fertuck L (1992)
System Analysis and Design - with CASE Tools

Wm. C. Brown Publishers, Cubuque, IA 52001, USA

Filho J S R A and Devloo P R B (1991)
"Object oriented programming in scientific computation: The beginning of new ERA"

Engineering Computation, V 8, no , pp 81-87,

Fincham A E (1971)
"A review of computer programs for network analysis (developed at London Research
Station)"

The Gas Council Research Communication no CG189, London

249

References

Fincham A E and Goldwater M H (1979)
"Simulation models for gas transmission networks"

Transactions of Institute of Measurement and Control, v 1, n 1,
pp 3-13, Jan-Mar 1979

Fincham A E and Goodwin N H (1988)
"Methods for gas network simulation"

In: Osiadacz A J (Ed) Simulation and Optimization of Large Systems;
Oxford University Press, pp 209-227

Fitzsimons C J and Greenough C (1993)
"A programming guide for the development of engineering application software in
FORTRAN"

Report, Mathematical Software Group, RAL, 27 pages, Jan 1993

Francis JRD (1975)
FLUID MECHANICS for Engineering Students

Edward Arnold

Francis R F (1982)
"The efficient management of the bulk transmission of gas"

Gas Engineering and Management, V 22, pp 123-133

Gane C and Sarson T (1979)
Structured Systems Analysis; Tools and Techniques

Printice-Hall, New York

Gerald C F and Wheatley P O (1989)
APPLIED NUMERICAL ANALYSIS

4th Edition, Addison-Wesley Pub Co (World Students Series)

Gibson E (1990)
"Objects - born and bred"

BYTE, V 15, no 10, pp 245,246,248,250,252 & 254, Oct 1990

Goldwater M H and Fincham A E (1981)
"Modelling of gas supply systems"

In: Nicholson H (Ed) Modelling of Dynamical Systems;
Vol-2, Peter Pereginus Ltd, pp 150-177

Goldwater M H, Rogers K and Turnbull D K (1976)
"The PAN Network Analysis Program - its development and use"

Institute of Gas Engineers, Communication 1009, London

250

References

Gomasta S K and Devi R (1989)
"Analysis and optimization of pipe networks"

Proceedings of Conference on Engineering Software,
New Delhi, India, Norsa Publishing House, pp 383-389

Hall C J (1987)
"Work/lost work, Fan/system: Characteristic curves"

Proc of 3rd Mine Ventilation Symposium; Oct 12-14 1987, Pennsylvania;
Mutmanski J M (Ed); Society of Mining Engineers; pp 418-430

Hamam Y M and Brameller A (1971)
"Hybrid method for the solution of piping networks"

Proceedings of 1EE, V 118, n 11, pp 1607-1612

HansenCT(1988)
Optimization of Large Networks for Natural Gas

PhD Thesis; Institute for Numerical Analysis,
The Technical University of Denmark, Lyngby, DK 2800

Hansen C T, Madsen K and Nielsen H B (1991)
"Optimization of Pipe Networks"

Mathematical Programming, V 52, n 1, pp 45-58

Hardy C (1936) [Referred by Fincham 1971, Jeppson 1976 and others]
"Analysis of flow in networks of conduits and conductors"

Experimental Station Bulletin no 286, University of Illinois

Henderson-Sellers B and Edward J M (1993)
"The fountain model for object oriented system development"

Object Magazine, V , no , pp 71-74,76 & 79, July-Aug 1993

Holloway S (1991)
Choosing CASE Tools

DCF, Information Management Consultancy Ltd, Surrey, U K; 35+ pages

IDE (1992)
Software Through Pictures - Introduction to StP Integrated Structured Environment
Release 4.2D

Interactive Development Environments (IDE), Calafornia 94105

Ingham D B, Heggs P J and Hildyard M L (1988)
"The evaluation of pressure drop across a filter using the boundary element method"

Mathematical Engineering in Industry, vol 2, no 1, pp 1-18

251

References

Intersolve (1992)
Refernce Guide - Excelerator Windows Ver 1.0

Intersolve Inc; Rockville, Maryland 20852

IsnerJF(1982)
"A Fortran programming methodology based on data abstraction"

Communications of the ACM, V 25, no 10, pp 686-697

Jackson M A (1975)
Principles of Program Design

Academic Press, London
Jackson M (1983)

System Development
Printice-Hall International

Jacky J P and Kalet I J (1987)
"An object oriented programming discipline for standard Pascal"

Communications of the ACM, V 30, no 9, pp 772-776

Jeffrey A (1971)
Mathematics for Engineers and Scientists

Thomas Nelson Ltd (London)

JeppsonRW(1976)
Analysis of Flow in Pipe Networks

Ann Arbor Science, MI 48106

Jones D (1993)
"The C standard and its continuing evolution"

Proceedings of UNICOM seminar on 'FORTRAN and C in Scientific
Computation', Brunei University, UK, 9-10 June 1993, pp 214-220

Jones W P (1993a)
"Turbulence Modelling"

Keynote Address to European Conference on Engineering
Applications of CFD, IMechE, London, 7-8 Sept 1993

Kiuchi T (1991)
"Calculation of steady state flows in pipeline networks by means of the node
admittance matrix" ~ in Japanese

Nippon Kikai Gakkai Ronbunshu B hen, V 57, n 540, pp 2784-2790

252

References

Knight B (1983)
"A mathematical basis for entity analysis"

In Entity-Relationship Approach to Software Engineering;
Davis C G, Jojodia S, Ng P A and Yeh R T (Eds.);

Elsevier Science Publishers B. V. (North-Holland), pp 81-90

Knight B and Petridis M (1992)
"FLOWES: An intelligent computational fluid dynamics system"

Engineering Application of Artificial Intelligence, V 5, n 1, pp 51-58

Knuth D E (1973a)
The Art of Computer Programming: Vol - 1 Fundamental Algorithms

2nd Edition, Addison Wesley, Reading

Knuth D E (1973b)
The Art of Computer Programming: Vol - 3 Sorting and Searching

Addison Wesley, Reading

Knuth D E (1984)
"Literate Programming"

Computer Journal, V 27, no 2, pp 97-111

Knuth D E (1989)
of r

Software Practice & Experience, V 19, no 7, pp 607-685, July 1989
"The errors of TEX"

Kohler W, Walcher M and Kastner W (1990)
"SIMULATION of two-phase flow in pipe networks"

Proc of 1990 European Simulation Multi-Conference Modelling &
Simulation, pp 503-507

Lee W, Chris-Tewen J H and Rudd D F (1966)
"Design variable selection to simplify process calculations"

AIChE Jr, V 12, n 6, pp 1105-1110

Lejter M, Meyers S and Reiss S (1992)
"Support for maintaining object oriented programs"

IEEE Transactions of Software Engineering, V 18, no 12,
pp 1045-1052, Dec 1992

Levy S (1993)
"Literate programming and CWEB"

Computer Languages, pp 67-68,70, Jan 1993

253

References

Lilly S (1993)
"Is object programming harmful?"

Object Magazine, V , no , pp 68-70, July-Aug 1993

Lipworth A D, Walker A J and Annegarn H J (1991)
"FORTRAN package renewal using object-centred design techniques"

The Transactions of the SA institute of Electrical Engineering,
V 82, no 1, pp 43-51, Mar 1991

Livny M and Melman M (1982)
"A package for network simulation"

Proc of 5th Biennial Conference of Simulation Society of Australia;
University of New England, Armidale, 10-llth May 1982, pp 10-15

Lougher R and Rodden T (1993)
"Group support for the recording and sharing of maintenance rational"

Software Engineering Journal, V 8, no 6, pp 295-306, Nov 1993

Lowndes I S and Weimin H (1988)
"The application of optimization methods to mine ventilation planning"

University of Nottingham, Mining Department Magzin, XL, pp 39-47

Lugt H J (1983)
Vortex Flow in Nature and Technology

John Wiley & Sons, pp 119-126

Mannings R (1889) [Cited by Yen B C 1992]
"On the flow of water in open channels and pipes"

Trans of Inst of Civil Engineers of Ireland, v 20, pp 161-207

Mannings R (1895) [Cited by Yen B C 1992]
"On the flow of water in open channels; Supplement"

Trans of Inst of Civil Engineers of Ireland, v 24, pp 179-207

Marquardt W, Roll P and Gilles E D (1987)
"Dynamic process flowsheet simulation - an important tool in process control"

Proc of International Federation of Automatic Control,
IFAC'87, V 2, pp 374-379

Martin J and McClure C (1985) [ref by Fertuck for HIPO charts notation]
Diagramming Techniques for Analysts and Programmers

Printice-Hall

254

References

Massey B S (1972)
Mechanics of Fluids

Van Nostrand Reinhold

McDermid D C (1990)
Software Engineering for Information Systems

Blackwell Scientific Publications

McGee W C (1976)
"On user criteria for data model evaluation"

ACM Transactions on Data Base Systems, V 1, no 4,
pp 370-387, Dec 1976

McRae G J (1990)
"Chemical process modelling and simulation using advanced computational
architectures"

Proc of 3rd International Conf on Foundations of Computer-Aided
Process Design; Siirola J J, Grossmann I E and Stephanopoulus G (Eds);

held at Snowmass, Colorado, 10-14 July 1989;
Published by CACHE and Elsevier (1990)

Metcalf M(1985)
Effective Fortran 77

Clarendon Press Oxford

Metcalf M and Reid J (1990)
Fortran 90 Explained

Oxford University Press

MeyerB (1988)
Object Oriented Software Construction

Printice Hall, New York

Moll A T J and Lowndes I S (1992)
"Graph theory applied to mine ventilation analysis"

IMA Bulletin, V 28, n 6/7/8, pp 103-106

Montagna J M and Iribarren O A (1988a)
"Optimal resolution sequence of problems modeled by directed graphs"

Mathematical Computer Modelling, V 10, n 7, pp 515-521

Montagna J M and Iribarren O A (1988b)
"Optimal computation sequence in the simulation of chemical plants"

Computer & Chemical Engineering, V 12, n 1, pp 71-79

255

References

Moses J and Jackson K (1991)
"Ensuring robustness and reliability of object oriented software using MASCOT 3"

In Reliability and Robustness of Engineering Software II;
Eds Brebbia C R and Ferrante A J; Elsevier, pp 19-34

Motard R L and Westerberg A W (1981)
"Exclusive tear sets for flowsheets"

AIChE Journal, V 27, n 5, pp 725-732

Mucharam L and Adewumi M A (1990)
"A compositional two-phase flow model for analysing and designing complex pipeline
network systems"

Proc of CIM/SPE (Society of Petroleum Engineers) Technical Meeting,
Calgary, Canada, pp (18)1-(18)16

Nielsen H B (1989)
"Methods for analyzing pipe networks"

Journal of Hydraulic Engineering, v 115, n 2, pp 139-157, (Feb 1989)

Ormsbee L E and Wood D J (1986)
"Explicit pipe network calibration"

J Water Resources, Planning and Management, Proc ofASCE,
v 112, n 2, pp 166-182

Orr and Ken (1987) [ref by Fertuck 1992 for Warnier-Orr SCs notation]
Structured Requirements Definitions

Ken Orr and Associates Inc

Osiadacz A J (1987)
Simulation and Analysis of GAS Networks

E & F N Spon, London

Osiadacz A J (1988)
"Method of steady state simulation of a gas network"

Int Journal of Systems Science, V 19, n 11, pp 2395-2405

Osiadacz A J and Pienkosz K (1988)
"Methods of steady state simulation for gas networks"

Int Journal of Systems Science, V 19, n 7, pp 1311-1321

Osiadacz A J and Salimi M A (1988a)
"Comparison between sequential and hierarchical simulation of gas networks:

Part I: Dynamic simulation of gas flow in single pipe"
Information and Decision Technologies, V 14, pp 77-98

256

References

Osiadacz A J and Salimi M A (1988b)
"Comparison between sequential and hierarchical simulation of gas networks:

Part II: Dynamic simulation of gas flow in networks"
Information and Decision Technologies, V 14, pp 99-123

Osinski E J, Barr P V and Brimacombe J K (1989)
"Mathematical model for gas flow through a packed bed in the presence of sources
and sinks"

The Canadian Journal of Chemical Engineering, V 67, pp 722-730

Parnas D L (1972)
"A technique for software module specification with examples"

Communications of the ACM, V 15, no 5, pp 330-336, May 1972

Parnas D L (1972a)
"On the criteria to be used in decomposing system into modules"

Communications of the ACM, V 15, no 12, pp 1053-1058, Dec 1972

Patel M K and Cross M (1989)
"The modelling of fluidized beds for ore reduction"

Proc of 6th Conf on Numerical Methods in Lamiar and Turbulent flows;
Taylor C, Gresho P, Sani R L and Hauser J (Eds)',held at Swansea U.K.,

June 11-15 1989; Peneridge Press; pp 2051-2068

Patel M K, Pericleous K and Cross M (1993)
"Numerical Modelling of Circulating fluidized beds"

Computational Fluid Dynamics, V 1, pp 161-176

Perkins J D, Barton G W, Chan W-K and Howell J M
"The use of SPEEDUP simulation package for process operability analysis"

Proc of Int Federation of Automatic Control; IF AC'87, V 2, pp 380-385

Petridis M, Knight B and Edward D (1991)
"A design for reliable CFD software"

In Reliability and Robustness of Engineering Software II;
Eds Brebbia C A and Ferrante A J; Elsevier, pp 3-17

Petley B W (1991)
"Fine tuning the SI units and fundamental physical constants"

Proc of Royal Society of London, Series A, vol 433, pp 219-233

Pho T K and Lapidus L (1973)
"Topics in computer-aided design: Part I - A optimum tearing algorithm for recycle
systems"

AIChE Jr, V 19, n 6, pp 1170-1181

257

References

Pressman R S (1988)
Software Engineering - A Practitioners Approach

McGraw-Hill Book Co

Raphael B and Krishnamoorthy C S (1993)
"Automating finite element development using object oriented technology"

Engineering Computation; V 10, no , pp 267-278

Reid J K (1988)
"Using FORTRAN 8x to solve large problems"

In Simulation and Optimization of Large Systems;
Osiadacz A J (Ed), Clarendon Press Oxford, pp 161-173

Reid J (1992)
"The advantages of FORTRAN 90"

Computing, V 48, no 3-4, pp 219-238

Rine D (1993)
"Object oriented technology and software reuse"

Computer (IEEE), Vol , no , pp 6-6, July 1993

Rizman K and Rozman I (1993)
"Facilitating composition and increasing object reusability by means of an event-driven
object oriented development"

Microprocessing and Microprogramming, no 37, pp 111-114

Rose E (1981)
"Ironmaking and Steelmaking -1"

In: Nicholson H (Ed) Modelling of Dynamical Systems vol-2
Peter Peregrinus Ltd

SargentRWH(1978)
"The decomposition of systems of procedures and algebraic equations"

In: Watson G A (Ed), Proc of Biennial Conference, Dundee 1977,
(Lecture notes in Mathematics # 630 - Numerical Analysis)

Published by Springer - Verlag

Smith J P (1988)
Digital Records - Utility Applications

The Institute of Gas Engineers; Communication 1362, pages 18

Smith W A (1979)
ELEMENTARY NUMERICAL ANALYSIS

Harper and Row Publishers

258

References

Sornmerville I (1989)
Software Engineering

3rd Edition, Addison Wesley

Shum S and Cook C (1993)
"AOPS: an abstraction oriented programming system for literate programming"

Software Engineering Journal, V 8, no 3, pp 113-120, May 1993

Syslo M, Deo N and Kowalik J S (1983)
Discrete Optimization Algorithms with PASCAL Programs

Printice Hall

Sissom L E and Pitts D R (1972)
Elements of Transport Phenomena

McGraw Hill Book Co pp 12-13

Tarjan R E (1983)
Data Structures and Network Algorithms

CBMS-NSF, Regional Conf Series in Applied Maths; SIAM

TennentRM (Ed) (1971)
Science Data Book

TheodorL(1971)
Transport Phenomena for Engineers

Olier & Boyde Publishers

International Text Book Co

Thimbleby H (1993)
"A personal view: software mechanics"

Software Engineering Journal, V 8, no 3, pp 110-111, May 1993

Travers K (1967)
"The mesh method in gas network analysis"

Gas Journal, V 332, pp 167-174

Turner W J, Bakker N A and Severs M (1982)
"Simulation of natural gas pipeline networks"

Proc of 5th Biennial Conf of Simulation Society of Australia,
University of New England, Armidale, 10-11 May 1982, pp 154-158

Turner W J, Kwon P S-J and Maguire P A (1991)
"Evaluation of a gas pipeline simulation program"

Mathematical and Computer Modelling, v 15, n 7, pp 1-14

259

References

Turner W J and Mudford N R (1988)
"Leak detection, timing, location and sizing in gas pipeline"

Mathematical Computer Modelling, V 10, n 8, pp 609-627

Turner W J and Rainbow M J (1983)
"NAIAD - A package for modelling flow networks and heat transport systems"

Proc of Conf on Computers and Engineering, Sydney,
31st Aug - 2 Sept 1983, pp 127 - 131

Turner W J and Simonson M J (1985)
"Compressor station transient flow modelled"

Oil and Gas Journal, V 83, n 20, pp 79-83

Usman A, Powell R S and Sterling M J H (1987)
"Comparison of Colebrook-White & Hazen-Williams flow models in real-time water
network simulation"

Computer Applications in Water Supply:
Vol-1, System Analysis & Simulation; Coulbeck B and Orr C H (Eds);

pp , John Wiley & Sons

Voyles C F and Wilke H R (1962)
"Selection of circuit arrangements for distribution network analysis by the Hardy Cross
method"

Journal of American Water Works Association, V 54, n 3, pp 285-290

Wang Y J (1982)
"Critical path approach to mine ventilation networks with controlled flow"

Transactions of Society of Mining Engineers of A1ME,
V 272, pp 1862-1872

Wang Y J (1990)
"Solving mine ventilation networks with fixed and non-fixed branches"

Mining Engineer, vol 42, no 9, pp 1091-1095; Sept 1990

Wang Y J, Mutmanski J M and Harthan H L (1988)
"Characterizing multiple operating points in mine ventilation systems"

4th International Mine Ventilaton Congress, Brisban, Queensland,
July 1988, pp 93-100

Ward Smith A J (1971)
Pressure Losses in Ducted Flows

Butterworth London

260

References

Ward T and Bromhead E (1989)
FORTRAN and the Art of PC Programming

John Wiley and Sons

Welch J T (1966)
"A mechanical analysis of the cycle structure of undirected linear graphs"

Jr of Assoc of Computing Machinery, V 13, n 2, pp 205-210

WiegersKE(1993)
"Implementing software engineering in a small software group"

Computer Languages, V 10, no 6, pp 55-58,60,62,64; June 1993

Wilde N and Huitt (1992)
"Maintenance support for object oriented programs"

IEEE Transactions on Software Engineering, V 18, no 12,
pp 1038-1044, Dec 1992

Wilkes M V (1993)
"From FORTRAN and ALGOL to object oriented languages"

Communications of the ACM, V 36, no 7, pp 21-23, July 1993

Wilkinson M K and Byers P J (1993)
"The engineering of complex software systems"

Computing & Control Engineering Journal, V 4, no 4,
pp 187-189, Aug 1993

Wilson J G, Mallinson J R and Cheney J E (1986)
"Simulation and optimization of gas transmission systems"

Proc of 1986 International Gas Research Conference, Toronto, pp 373-385

Wilson J G, Wallace J and Fur B P (1988)
"Steady-state optimization of large gas transmission systems"

In: Osiadacz A J (Ed) Simulation and Optimization of Large Systems
Oxford University Press, pp 193-207

Wilson R J and Watkins J J (1990)
GRAPHS - An Introductory Approach

John Wiley & Sons

Wimblad A L, Edwards S D and King D R (1990)
Object Oriented Software

Addison Wesley, Reading MA

261

References

Wood D J and Charles CO A (1972)
"Hydraulic network analysis using linear theory"

Journal of Hydraulics Division, Proc ofASCE, V 98, n HY7, pp 1157-1170

Wood D J and Rayes A G (1981)
"Reliability of Algorithms for pipe networks"

Journal of Hydraulic Division, ASCE, V 107,
n HY10, pp 1145-1161, (Oct 1981)

Yen B C (1992)
"Dimensionally homogeneous Manning formula"

Journal of Hydraulic Engineering, vol 118, no 9, pp 1326-1332

Yevdokimov A G (1969)
"A theory of the solution of steady state network problems with special reference to
mine ventilation networks"

Int Journal of Numerical Methods in Engineering, V 1, pp 279-299

Young R W, Cross M and Gibson R D (1979)
"Mathematical model of grate-kiln-cooler process used for induration of iron ore
pellets"

Ironmaking and Steelmaking; no 1, pp 1-14
The Metals Society, London Publication

Yourdon E (1990)
"Auld lang syne"

BYTE, V 15, no 10, pp 257,258,260,262 & 264, Oct 1990

Zografos A J, Martin W A and Sunderland J E (1987)
"Equations of properties as a function of temperature of seven fluids"

Computer Methods in Applied Mechanics and Engineering;
Vol 61, pp 177-187

262

Appendix - A
GASFLO Users' Guide

A.I Introduction

GASFLO is a software tool to determine the airflow distribution in pellet induration

system pipe networks. The airflow distribution includes the computation of the flow of

process gas in all paths, its pressures at all nodes and its temperature at all nodes and paths

of the network.

The manufacture of iron ore pellets is a well established industry and induration

process is an important component of this industry. The indurated or processed pellets are

used as raw input for the blast furnace process in ironmaking and steelmaking. Air is used

as process gas for the induration process and it transfers heat among different stages of the

process. The air at ambient temperature is pumped into the system in the cooling stage and

passed through the hot burnt pellets to cool them, where the gas extracts heat from the pellets,

which is transferred to the drying and heating stages of the system. The working of pellet

induration systems is explained in Chapter 2 and by Rose 1981.

The hostile environment restricts the ability to measure all the variables required for

the optimization of the induration process. Without a tool such as GASFLO, the concerned

staff have to rely on the approximate guessed data which is usually inaccurate and erroneous.

Consequently, the optimization strategies lack confidence due to the inherent inaccuracy in

263

Appendix-A __ GASFLO Users* Guide

the airflow distributions. Some packages like INDSYS (Cross and Englund 1987) have

appeared for the study of heat concentration in the system but they also need to have the

airflow distribution defined. Hence, the quality of their results is dependent on the exactness

of the fed in airflow distribution.

In the following; section A.2 covers the requirements of GASFLO software tool and

installation of the package; section A.3 describes the structure of the tool and input/output

data files; section A.4 illustrates the creation of main input data files, the running procedure

and the graphical display of the computed results; section A.5 shows how the results from

GASFLO are used by INDSYS and vice versa; in the last section A.6 some possible future

extensions are discussed.

A.2 GASFLO Requirements

GASFLO is written in standard FORTRAN 77. Presently it works on high end PCs

(i.e. 100% IBM compatibles), but later if required it can be ported to other platforms. The

hardware and software requirements for GASFLO are :

A.2.1 Hardware Requirements :
The computation of GASFLO requires:

 IBM PC 100% compatible machine with a 386SX or higher processor;

 High resolution colour monitor with VGA or SVGA graphics card;

4 MByte of RAM;

 3 Mbytes of hard disk storage; and

 PostScript printer for printing graphical output of computed results.

264

Appendix-A _______________GASFLO Users' Guide

A.2.2 Software Requirements :
GASFLO has been developed using FTN77/386 Salford compiler, which enables to

exploit the 32 bit capability of these high end machines, but the compiler uses its own run

time library and extended memory manager DBOS to overcome the DOS 640K limitation.

The software related requirements are:

Microsoft DOS 5.0 or later;

 DBOS - the extended memory manager and run-time library. This needs to be pre-

loaded to run the programs PRPNET and CMPNET;

 Graphical display of result requires the UNIX like 'awk' and 'sed' utilities to

automate the editing of the 'static' PostScript file;

 GhostScript - a public domain PostScript viewer to display of the edited PostScript file

on the screen.

A.2.3 Installation of GASFLO :
GASFLO comes on a 3.5" high density floppy and can be installed on hard disk by

typing (from A:)

A:\> INSTALL2 d:

Where d: is the target drive where GASFLO is to be installed.

GASFLOW USER PIC-FILE

———— DAT-FILE

——— SCRIPTS

UTILITYS

V2-0

Figure A.I Directory tree for GASFLO

265

Appendix-A ____________ GASFLO Users' Guide

INSTALL2 unpacks the files into the directory structure shown in Figure A.I. and

provides sufficient guidance for changes required to be made in the batch files for successful

running of the program. In directory UTILITYS, the files README, README.V20 and

GASFLOW.LST respectively give information about the DBOS, gasflow version 2.0 and a

list of all files included in the package with brief description of their functions.

INSTALL2 generates the GASFLOW.BAT file taking into account the selected target

drive, which when run modifies the PATH to include UTILITYS and V2-0 directories. In

some cases when the original PATH is significantly long, the failure of this modification has

been noticed. This is due to the DOS limit of 127 characters for PATH string and would

require manual adjustment by typing in command like

PATH=C: \ ; C: \DOS ; . . . ; d: \GASFLOW\UTILITYS ; d: \GASFLOW\V2 - 0 ;

Where ... represents the other directories of ones choice and d: is the target drive

where GASFLOW is installed. The presence of these directories in path is required for

efficiency reasons. For example, GhostScript is not compatible with DBOS, so display of

results via GhostScript requires the DBOS to be down loaded, and loaded again for the

running of PRPNET or CMPNET. The batch files used for viewing results can do this loading

and unloading efficiently and invisibly.

A.3 GASFLO Program Structure

GASFLO consists of the following three main parts:

1. Preparation of the Network (PRPNET.EXE),

2. Computation or Simulation of the Network (CMPNET.EXE), and

3. Output of computed results in graphical format (DISPLAY.BAT).

266

Appendix-A GASFLO Users' Guide

All these three are stand alone programs. Figure A.2 shows their inter-dependence

through data files. It shows that the output produced by the program PRPNET i.e.

NETWORK1NF, being used by CMPNET. Similarly CMPNET produces DISPLAY.DAT which

is used by DISPLAY. Apart from these two files other input files are to be provided by the

user to run the respective programs. Figures A.3a and A.3b show the lists of input and output

files for these programs. The functionality of these programs is briefly discussed in the

following subsections .

GASFLO

Preparation of
Networ

PREPNET.INP
Comput

Net\ vork

COMPNET.IN

\^'"~NETWORK
i .INF

ation of Graphical output of
>uted Results

INTRACT.STP
PREPNET.OPT

f SETOPS.OPT

\ DEBUG.OPT
\. NODPRS.OPT

FIGURE.EPS

Parameter list

DISPLAY.DAT

PICOUT

Device
Dependent

Picture

COMPNET.OPT

Terminal

LOCRC.OPT>
STFLOW.OPT/" (for Debugging)

Legend :

Shared File

.BAT .EXE

Figure A.2 GASFLO program main parts and their related input/output data files

A.3.1 PRPNET - PRePare NETwork :
Analysis of any induration system requires a significant number of runs of respective

system, each varying from the other by only few input parameters. The network structure

267

Appendix-A GASFLO Users' Guide

remains constant for all these runs, so the information related to the connectivity of network

should logically be compiled once and reused time and again until there is some physical

change in the network. The program PRPNET is to do this compilation task.

PRPNET.EXE

Input Files:

PREPNET.INP

Output Files:

PREPNET.OPT

NETWORK.INF

SETOPS.OPT

Terminal

CMPNET.EXE

Input Files:

COMPNET.INP

Input and Output Files for PRPHET and CMPMET
Components of QASFLO

Main input file for PRPNET, includes total number of network components and
information about node and stream connectivity information

Output of PREPNET gives information about the network components'
connectivity in the linked lists form

The network connectivity information written in the binary CMPNET readable
form to avoid errors from direct editing

Output from the performed SET Operation routines, while executing tree
partitioning algorithms (for debugging)

Output on terminal, includes node-node and node-stream incidence matrices,
stream composition, status of streams whether belonging to tree or Cotree
and overall counters controlling linked list structures. [This can be re
directed to some file using DOS re-direction facility]

NETWORK.INF

CALFACS.STP

INTRACT.STP

Output Files:

COMPNET.OPT

Terminal

DISPLAY.DAT

DEBUG.OPT

Main input file, containing program controls, process gas, geometrical and
property data for each component of the induration system

Network components' connectivity data in linked list format in binary mode,
produced by PRPNET

Calibration or efficiency factors for all pipes

Stores the run-time options for the program from previous run of CMPNET, to
relieve user from specifying same options and to improve execution time.

Detailed Output in text form; contains property, geometric and distribution
related data for all components. The output on each iteration of the
computation can be stored. This file also includes network connectivity
information i.e. copy of PREPNET.OPT.

The interactive output on screen. At various stages CMPNET also asks input
from terminal, so it is input as well as output file.

This includes the final computed (Airflow, Pressure and Temperature)
distributions of the network for all streams and nodes. This file is being
used as input for DISPLAY.BAT.

Contains information about the relaxation of leaks areas. This is mainly to
aid debugging of the program.

NODPRS.OPT Shows node pressures at selected nodes for each iteration.
STFLOW.OPT Shows stream flows of selected stream for each iteration.
FLOCRC.OPT Shows error or flow imbalance at selected nodes for each iteration.
(These three files output in spreadsheet format, so that these could be directly imported
and plotted using some package like Lotus 1-2-3. These are to identify the misbehaving
network components and track down algorithmic errors)

Figure A.3a The input and output files of programs PRPNET and CMPNET

268

Appendix-A _______GASFLO Users 1 Guide

PRPNET prepares the network information file, NETWORK.INF, by reading in the file

PREPNET.1NP which contains the connectivity of all network nodes and streams, and

composition of each of these streams. It transforms the network information into the node-

stream and node-node incidence matrices and shows them on screen or via Terminal. Further

these incidence matrices are re-written in linked list structures and output in file

PREPNET.OPT. For reuse the same information is also written in a FORTRAN direct access

file NETWORK.INF in binary format, which cannot be manually edited and requires less

storage, and it is efficiently read in by CMPNET program. There is an other output file called

SETOPS.OPT which contains the outputs of different set operations performed by tree

partitioning algorithm.

Input and output files for DISPLAY
Component of GASFLO

DI8PLAY.BAT

Input Files:

FIGURE.EPS The main Encapsulated PostScript graphic file. Which contains stubs
for network components whose computed values are to be displayed

Parameter list These are the parameters fed in by the user at command line stating
what distributions are to be displayed and what is the destination
device for generated output

DISPLAY.DAT This file is output by CMPNET and contains the computed variables
and their corresponding stubs. It is written in specific format so
that it can be easily manipulated by the 'awk' utility

Output Files:

PICOUT This is the edited FIGURE.EPS file, with stubs replaced by their
corresponding computed values picked-up from DISPLAY.DAT. It is
scaled and rotated according to the options specified in parameter
list, for specific output device i.e. either for screen usable via
GhostScript or for PostScript printer

Figure A.3b Input and output files for DISPLAY component of GASFLO

For debugging and confirmation that correct network is being modelled, the Terminal

file can be redirected using standard DOS redirection command '>' and printed or viewed on

the screen. All these three output files, Terminal PREPNET.OPT and SETOPS.OPT provide

sufficient information to track down the problems introduced during the preparation of input

file or some malfunction of the algorithms.

269

Appendix-A ____________________GASFLO Users* Guide

A.3.2 CMPNET - CoMPute NETwork :

CMPNET is the most dominant part of GASFLO. It reads in NETWORK.INF,

INTRACT.STP, CALFACS.STP and COMPNET.INP files and computes the airflow, pressure

and temperature distributions for the induration system (mostly referred as 'network').

COMPNET.INP includes all data related to program controls, process gas and component

material and geometric properties, which is required for the computation of respective

mathematical models. CALFACS.STP contains the calibration factor data for all pipes of the

network, these are same as pipe efficiency factor, which should ideally be unity but since the

pipe friction factor and other data is not completely known so their values are adjusted to

compensate that data. This needs some fine tuning to get region pressures close to physical

values. INTRACT.STP is a file generated by CMPNET itself, which restores the chosen

options for different control parameters at run-time and in subsequent runs this file is read by

the CMPNET instead of asking user for these inputs from terminal.

The computed results are output in tabular form in COMPNET.OPT and

DISPLAY.DAT. The former file contains the detailed output relating to all instances of each

entity i.e. for every pipe and every fan etc. It can have the variable for each iteration or after

any selected step. Whereas DISPLAY.DAT file contains the final output relating to fans' end

pressures, valve openings, stream flows and temperatures (at exit end), and pressures and

temperatures for all nodes. The other difference is that since the COMPNET.OPT is mostly

used for debugging so it contains the values of system variables in computational units

whereas in DISPLAY.DAT these are in experimental units.

CMPNET also outputs to DEBUG.OPT file which contains the data related to

execution and to the Terminal. The contents of some other auxiliary output files;

NODPRS.OPT for node pressures, STFLOW.OPT for stream flows and FLOCRC.OPT for

error in flows at internal nodes; can be selected by the user while running the program. These

NODPRS.OPT, STFLOW.OPT and FLOCRC.OPT files are in spreadsheet compatible format

and can be easily imported into some LOTUS 1-2-3 like spreadsheet package to view the

values graphically and trace the problematic component. In fact these were the aids for the

270

Appendix-A _______ GASFLO Users* Guide

development stage and for algorithmic refinements, but still these can be used for continuous

monitoring of any node or stream variable.

A.3.3 DISPLAY - Graphical Output of System Variables :

DISPLAY is post-processor of GASFLO. This was developed as an ad hoc facility to

display the computed output values on the actual figure. This will be used until a complete

Graphical User Interface is developed for GASFLO.

DISPLAY is a batch file which makes use of different public domain utilities to

achieve the desired goal. It reads in DISPLAY.DAT produced by CMPNET and FIGURE.EPS
input by the user. FIGURE.EPS is usually a schematic of simulated network drawn by some

drawing package and exported as Encapsulated PostScript file. It is important that .EPS file

should contain the same component names (referred as 'stubs') whose values are to be output

on the figure, as these are used in DISPLAY.DAT along with their computed values.

DISPLAY replaces the stubs in FIGURE.EPS by their corresponding values given in

DISPLAY.DAT and scales the edited drawing i.e. PICOUT for the chosen device. Figure A.4

shows the DISPLAY related files and its working will be discussed in Section A.4.3.

A.4 Program Running and Creation of Input Files

The components of the GASFLO program should be run in the specified order.

PRPNET produces NETWORK.INF file, which is being used by CMPNET, and further, the

output of CMPNET i.e. DISPLAY.DAT is used by DISPLAY to output the computed results

graphically. The sample listings of source of the input and output files for these programs will

be given later in Blocks A.1-A.5. In this section we mainly discuss the creation of input files

and procedures to run these programs.

271

Appendix-A GASFLO Users' Guide

Graphical output of
Computed Results

FIGURE.EPS

Parameter list

i DISPLAY.DAT

D
I

S
P
L
A
Y

cript
PS Viewer

Device
Dependent

Picture

PostScript
Printer

Figure A.4 Display or printing of GASFLO computed results in graphical format

A.4.1 PRPNET - Prepare Network

In general the information provided by the practitioners about the systems to be

analyzed is not in the state as it is required by the software tool. PRPNET deals with the

connectivity of the network. The transformation of available information to the concrete input

data for computer programs needs some basic procedure. In practice, the information about

the pellet induration system is usually given as 'plant schematics' like the one shown in

Figure 2.3. To create the input data file for PRPNET program (i.e. PREPNET.INI file whose

partial listing is shown in Block A.I) needs the following steps:

Step-1: Mark all the nodes and components on the schematic,

Step-2: Reduce all non-circular pipes or ducts into their equivalent circular pipes, since the

mathematical model caters only circular pipes. The pipes connected to other pipes

either in series or in parallel, should be replaced by an equivalent pipe offering the

212

Appendix-A ______GASFLO Users' Guide

same resistance to the flow. This reduces the overall size of the network and lessens

the computational load. This also promotes connections between different components

rather than between pipes,

Step-3: Assign integral identification numbers to each of the components tagged with their

entity names. The resulting six character name is treated as name of each of the

network components,

Step-4: Identify all streams i.e. the components connected serially and having constant flow

through them and note down the composition of each of the streams,

Step-5: Assign a default flow direction to each stream,

Step-6: Allocate an integer identity numbers to each node and each stream. First all nodes be

numbered, starting from a source to its sinks following the assigned flow direction,

and then repeating the same procedure for subsequent source nodes. The nodes once

numbered are skipped on further encounters. A similar approach is adopted for the

numbering of all the streams. The separate integer sequences from 1 to NTNDS for

nodes and 1 to NTSTR for streams would result, which are used while referring to

the connectivity of the network components.

Now after following these steps, the nodes and streams have been identified and the

composition of each of the streams is known. The network can be drawn in graph theoretic

form as a connected graph of 'nodes' and 'edges', this will be helpful to visualise the

resulting tree and cotree structures which are computed by PRPNET. Now the input data file

PREPNET.INP, for PRPNET can be created. PREPNET.INP consists of the following four

types of data:

a. Node and stream related statistics;

273

Appendix-A GASFLO Users* Guide

NTNDS - no of total nodes, NTSTR - no of total streams, NTSRCS - no of total

sources, and NTSNKS - no of total sinks.

b. Data for each of the NTSTR streams;

ISTR - stream number, NDUP - Upstream end node number, NDDN - downstream

end node number, NCMPS - number of components comprising the stream, and

CMPNAM(1 .. NCMPS) - component name for each of the components.

c. Data for each of the NTNDS nodes;

NODID - node (identification) number, NDEG - node degree i.e. number of incident

streams on the node, LSTRM(1..NDEG) - list of stream numbers incident on node

{streams leaving the node must have -ve sign}, and NODNAM - a six character string

as the name of the node.

d. Data related to each of the NTSRCS source nodes;

ISRC - source node Id, NSNKS - no of sink nodes it is feeding to, and LSNKS(1 ..

NSNKS) - list of sink nodes associated to the respective source.

All this data is related to network connectivity. The component (as well as node)

names are six character strings and are enclosed in quotes according to FORTRAN data

conventions. The first three characters correspond to the entity name i.e. fan, region, bed etc

and last two integers determine its instance number in the entity, and these two parts are

separated by a '-'. For example 'FAN-01' is the first fan, 'REG-11' is the llth region and

'BED-06' is the 6th packed bed.

Block A.I shows the partial listing of the file PREPNET.INP for a typical pellet

induration system. The first line is read as a comment line and is not read by the program,

whereas in subsequent lines the characters following '!' are also comments enabling user to

refer what the respective data is referring to, these are also not read by the program.

274

Appendix-A GASFLO Users' Guide

Block A.1 Listing of PREPNET.INP file

IThis is a PREPNET.INP file; for NETwork CONfiguration - 17th July 93 (Sat)
28,38,2,3 !ntnds,ntstr,ntsrcs, ntsnks

1,
2,
3,
4,
5,
6,
7,
8,
9,

10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
1,
2,
3,
4,
5,
6,
7,
8,
9,

10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
1,

14,

1
2
3
4
5
7

10
11
12
4
6
8

24
24
14
15
15
16
17
18
19
19
20
21
17
9

20
2
3

25
26
5
4
6

11
12
27
28
1
3
3
5
4
5
3
3
2
3
4
4
1
1
3
3
4
3
3
5
4
1
1
3
1
1
1
1
1
3

,

,
,
,
,
,
,
,
,
,
,
,
/
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

2,
3,
4,
5,
7,

10,
11,
12,
13,
6,
8,
9,
7,
8,

15,
18,
16,
17,
18,
19,
24,
20,
21,
22,
23,
10,
6,

16,
17,
4,
5,
6,

20,
21,
20,
21,
11,
12,
-1,
1,
2,
3,
4,

10,
5,

11,
12,
6,
7,
8,
9,

-15,
15,
17,
18,
19,
20,
22,
23,
24,
25,
21,

-30,
-31,
-37,
-38,
13
23,

3, 'PIP-01
1, 'BED-01
1, 'PIP-03
1, 'BED-03
1, 'PIP-07
3, 'PIP-08
1, 'PIP-10
1, 'BED-06
2, 'PIP-11
1, 'BED- 04
1, 'PIP-04
2, 'PIP-05
1, 'PIP-21
1, 'PIP-20
3, 'PIP-12
1, 'PIP-15
1, 'PIP-14
1, 'BED-02
1, 'PIP-16
1, 'PIP-17
1, 'PIP-18
1, 'PIP-19
1, 'BED-05
2, 'PIP-22
1, 'PIP-23
1, 'PIP-06
1, 'BED-07
1, 'LEK-01
1, 'LEK-02
1, 'LEK-03
1, 'LEK-04
1, 'LEK-05
1, 'LEK-06
1, 'LEK-07
1, 'LEK-08
1, 'LEK-09
1, 'LEK-10
1, 'LEK-11

'BDY-01'
-28, -2,'
-29, -3,'
30, -33,
31, -5,
27, 32,
13, -6,'
14, -12,'

' , 'FAN-01' , 'PIP-02' !St#,Upnd,Dnnd,Ncmps, (Crap-names)
1

<
•
' , 'FAN-04' , 'PIP-09'
'
'
' , 'FAN-05'
'
'
' , 'FAN03'
'
'
' , 'FAN-02' , 'PIP-13'
'
'
'
'
'
'
'
'
' , 'FAN-06'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

!Nd#,Ndeg, (Strm#s) {-ve GOING OUT},Ndname
REG-01'
REG- 02'
-4, -10, 'REG-05'
-32, 'REG-06'
-34, -11, 'REG-07'

JUN-06'
JUN-05'

-26, ' JUN-08'
26, -7,'
37, -8,
38, -36,

'BDY-05'
'BDY-02'
-17, -16,'
28, -18,'
29, -19,
16, -20,'

-22, -21,'
33, 35,
34, 36,

'BDY-04'
'BDY-03'
-13, -14,'
'ATM-06'
'ATM-07'
'ATM-08'
'ATM-09'

JUN-07'
-35, 'REG-10'
-9, 'REG-11'

JUN-01'
REG- 03'
-25, 'REG-04'
JUN-02'
JUN-03'
-23, -27, 'REG-08'
-24, 'REG-09'

JUN-04'

!isrc,no of fed snks, snk_#s
22, 13

275

Appendix-A _____________GASFLO Users* Guide

PRPNET can be run by typing in PRPNET from command line and it will ask for

input filename, which contains node and stream related connectivity information. In response

'PREPNETJNP' could be specified. This is to enable the user to use the name of his own

choice and simulate multiple networks simultaneously. The output produced on the terminal

can be redirected to a file say Terminal.out, simply by typing in PRPNET >
Terminal . out on command line. The output files produced by PRPNET has been briefly

described in Figure A.3a. PREPNET.OPT the output file containing linked lists for node and

stream related connectivity information is included in COMPNET.OPT which will be

discussed in next Section.

A.4.2 CMPNET - Compute Network :
CMPNET is the main simulation part of the GASFLO tool. It simulates the network,

computes the airflow, pressure and temperature distributions. The computed results along with

the input data are output to COMPNET.OPT file. Other output files are; DISPLAY.DAT which
is used for graphical display of results and manipulated by DISPLAY program; DEBUG. OPT
contains data relating to program debugging mainly for fan and leak area step-wise relaxation;

NODEPRS.OPT, STRMFLO.OPT and FLOCRC.OPT are files in which the data for selected

nodes or streams can be sent for successive iterations. These files are in spreadsheet

compatible format and selection of nodes, streams and start step and iterations is possible at

run time through these data files.

CMPNET uses four input files; namely NETWORK.INI, which contains all network

connectivity information and is being generated by PRPNET, it is in binary form;

COMPNET.INP, which is the main input file containing data about program controls, process

gas, system components, and boundary conditions; INTRACT.STP contains the run-time

program control parameters, first time these parameters are read interactively and saved to this

file (in ASCII form), later for subsequent runs this file is read by the program without any

user interaction and thus enabling faster computation; CALFACS.STP contains the calibration

or pipe efficiency factors for all pipes and it is created in batch mode i.e. using editor.

276

Appendix-A _____GASFLO Users' Guide

The input files for CMPNET can be generated either interactively or in batch modes.

In interactive or dialogue mode, the required inputs for all instances of each simulated entity

are asked and input in turn. This is useful mode for novice users, however it is time

consuming and it becomes boring because of the bulk of input required. CMPNET saves the

read input to a specified file which can be edited and reused. Another shortcoming of this

mode is that the whole process of input should be completed in one session, in case of crash

or some data error, the created file is lost and the process is to be repeated from start. In

batch mode these input files are created using some standard editor observing FORTRAN 77

data read conventions e.g. comma delimitation, enclosure of strings in single quotes etc. Since

FORTRAN 77 looks only for the variables specified in READ statement so the comments can

be entered in the remaining space on the lines in data file. These comments could (be their

variable names or any other explanatory note) serve as guide for later changes in the file.

Creation of COMPNET.INP can be started from Step-2 of last section. It would be

quite useful if one draws out the network in graph theoretic form also. All the instances of

an entity should be grouped together and their common and specific data collected before

hand. The pipe related data needs special attention. First all the non-circular pipes are

converted into circular pipes offering same resistance to flow. This uses the concept that

friction offered to flow is proportional to mean hydraulic depth which is cross sectional area

divided by the wet perimeter (Francis 1975). Then the pipes' interconnections, either in

parallel, series or both, are resolved by reducing them to a single equivalent pipe. This

conversion is done manually and should be done carefully as data for these equivalent pipes

is used for simulations by CMPNET.

The input file COMPNET.INP contains the following types of data:

a. Program controls,

b. Process gas related data,

277

Appendix-A ____GASFLO Users* Guide

c. Data about all the entities; pipe, valve, fan, bed and leak. The data for each entity follows

a comment line, which is skipped by the program. First the number of instances of

each entity are read, then the data common for all instances, and after that data

specific to each instance is read.

d. Data related to leak areas relaxation is read. It is also in the form similar to type (c) above.

Fist number of leaks N2CHNG whose areas are to be changed and stepsize for

relaxation STPSIZ are read. Then the final values of their respective heights HYTFIN

are read for all of these N2CHNG in turn.

e. Boundary conditions data in experimental units. The boundaries are all those nodes (source,

sink and atmosphere) from where the system can either suck in or exhaust out the

process gas. First total number of boundaries NTBCNS is read then for each of these

boundaries, a boundary name, a 20 character comment, boundary temperature

BCTEMP, pressure BCPRSR and flow BCFLOW are read. Although only source

and atmospheric node pressures and temperatures, and sink node flows are used in

computation but these all are read for the sake of format consistency.

f. Counters to dump data to spreadsheet compatible file are read. These are total number of

nodes and respective node numbers and similarly for streams are specified. This

information is used when the flag DEBUG in program controls is .TRUE.

The detailed discussion of variables etc is not possible, the sample input data file is

given in Block A.2 with variable names specified, which provides sufficient information to

understand and enable the running of CMPNET program.

Block A.2 Listing of sample COMPNET.INP file

IThis is set-up data file COMPNET.INP; for Cross Flow in R08 to R07;11-01-93
FALSE.,.TRUE.,1000 1DEBUG, VLVINC, IPRINT

5.0E-03 1ACCURC Global
! The following is read-in by INPUT subroutine

278

Appendix-A GASFLO Users' Guide

23,6,7,7,11,11,9
2.OOOOOOE-05,1.400000
286.68,102.0,1.205
1.01325E+05,293.0
50,1.OOOOOOE-05

1NPIPS,NFANS,NJUNS,NEEDS,NREGS,NLEKS,NBCNS
!DYNVSC,RATSPH
!GASCNS,SPHTCP,DENSTY
!PRSATM,TMPATM
!ITRTNS,ACCURC

! The following is the Pipes' related data
23 1NPIPS
100.0,2.500000E-02,500.0,86126.25
'BDY-01','F3A-01',1.707,10.058,1.0
'F3A-01','REG-01',2.271,12.192,1.0
'REG-02' 'REG-05',2.802,29.566,0.10
'REG-07' 'JUN-05',2.695,4.3434,1.0
'JUN-05' 'F1A-03',3.052,6.7056,1.0
'F1A-03' 'JUN-07',2.568,30.48,1.0
'REG-06' 'JUN-06',2.695,4.3434,1.0
'JUN-06' 'FIB-04',3.052,6.7056.1.0
'FIB-04' 'JUN-07',2.766,39.929,1.0
'JUN-07' 'REG-10',2.568,4.572,0.1
'REG-11' 'F2A-05',2.677,22.860,1.0
'BDY-02' 'F3B-02',2.351,9.4488,1.0
'F3B-02' 'JUN-01',3.005,3.048,1.0
'JUN-01' 'REG-03',3.005,4.572,1.0
'JUN-01' 'JUN-02',1.168,16.1544,1.0
'REG-04' 'JUN-02',3.046,7.3152,1.0
'JUN-02' 'JUN-03',3.046,15.24,1.0
'JUN-03' 'JUN-04',1.759,9.144,1.0
'JUN-03' 'REG-08',3.098,38.7096,0.4
'JUN-04' 'JUN-05',1.106,14.9352,1.0
'JUN-04' 'JUN-06',1.106,5.1816,1.0
'REG-09' 'F2B-06',2.677,22.860,1.0
'REG-04

IPIPCON,PIPTHK,FLOMAX,PRSMIN(85% of PRSATM)
!UPUNIT,DNUNIT,PIPDIA,PIPLEN,LOCFF pipe#l

! #2

for pipe#5
! for pipe#6 LOCFF=2.5

! for pipe#9 LOCFF=2.5
for pipe#10

for pipe#15

for pipe#20

'F2B-06
'BDY-03',3.9624,30.48,1.0

! The following is the Valves
10
'DAMPER','GATE','GLOBE'
500.0,325.0,250.0
1,
2,
3,
4,
5,
6,
7,
8,

'Val-01'
'Val-02'
'Val-03'
'Val-04'
'Val-05'
'Val-06'
'Val-07'
'Val-08'

,95
,60
,70
,30
,30
,80
,90
,90

.0,

.0,

.0,

.0,

.0,

.0,

.0,

.0,

1,
12
15
21
20
23
5,
8,

' GLOBE '
, ' GLOBE '
, ' DAMPER
, ' DAMPER
, ' DAMPER
, ' DAMPER
' DAMPER '
' DAMPER '

! Stack approximated values; Last pipe#23
related data - read_in by PIPNEW.FOR

1NVLVS
!3 Supported Valve Types
!Supported Valves' Discharge COeFficients
!IV,VLVNAM,VLVOPN(%age),IVPIP,VLVTYP

9.'Val-09',80.0,22,'DAMPER'
10.'Val-10',80.0,11,'DAMPER'
! The following is Fans related data; Orignal Designe Fan data
6 !NFANS
0.65,0.90,179292.41,273.0,20.0,10288.45,9826.2,10819.25,2
0.90,0.90,153788.75,273.0,44.0,10290.99,9917.6,10829.4,2
0.65,0.90,352292.17,588.6,22.0,10009.08,9854.1,10468.8,2
0.65,0.90,299189.31,588.6,38.0,9991.30,9902.4,10476.4,2
0.65,0.90,387840.60,369.12,54.0,10245.27,9995.9,10329.1,2
0.65,0.90,432504.92,399.7,56.0,10103.05,10052.3,10324.0,2

!DISCOF,EFFCNCY,WATTAGE,IFSTAT
!fan#2-3B 1318720.0
!fan#3-lA 1580800.0

!fan#4-lB 1580800.0
!fan#5-2A
!fan#6-2B

1,104.4,0.2,20.0,9.0,.FALSE.
2,119.2,0.2,20.0,7.0,.FALSE.
3,67.5,0.3,500.0,10.0,.FALSE.
4,60.0,0.3,500.0,10.0,.FALSE.
5,129.4,0.2,100.0,12.0,.FALSE

!f01-3A,IDl,AVRGFL(Kg/s),RNGFRC(%age of =/-),...
!f02-3B,...TMPFAN(degC),PRGAIN",FXDPRS

!f03-lA
!f04-lB
!f05-2A

6,133.0,0.2,100.0,12.0, .FALSE. ! f06-2B
! The following is Beds related data; Orignal BEDHYT & BEDWDTs;23-4-93 BED data chngd
7 1NBEDS; data fed in on llth Jan 1993(Mon)
0.011,86126.25 1PARDIA,PRSMIN (85% of PRSATM)
84.5,20.0,1132.7,0.76,3.0,0.46 !Bed#IBDAREA,BDTENT,BEDOUT,BEDHYT,BEDWDT,VOIDAG (Tent=1300 K
before 11/2/92)

!Bed#2
!Bed#3 incrsd BEDHYT .145 to .1595 by 10%
!Bed#4
!Bed#5,75% of 68.9, rest lumped to B-7,11/1/93
!Bed#6 TBDENT chngd from 293. on 8-12-92

!Bed#7 introdusced for X-flow on 11-01-93
The following is Leaks related data; Orignal leaks Areas

11 1NLEKS; data fed in on 17th Sept 1992(Thu)
!Leak#l;ID,WIDTH(cm),HEIGHT(cm),DISCOF (from 4.0)
!Leak*2
!Leak#3 lastly 0.825,0.7

!Leak#4
!Leak#5 as if there is no obstruction lastly 4.125,

82.5,20.0,726.0,0.76,3.0,0.46
43.05,1198.0,806.2,0.1595,5.5,0.35
43.05,774.4,391.5,0.1595,5.5,0.35
51.67,727.9,240.3,0.1595,5.5,0.35
86.1,372.0,116.12,0.1595,5.5,0.35
17.23,727.9,391.5,0.1595,5.5,0.35

1,
2,
3,
4,
5,
6,
7,
8,

300
300
550
550
550
550
550
550

.0,

.0,

.0,

.0,

.0,

.0,

.0,

.0,

1
4
2
1
5
4
5
5

-0,
.0,
.0,
.0,
.0,
.0,
.0,
.0,

1
1
1
1
1
0
1
1

.0

.0

.0

.0

.0

.0

.0

.0

!Leak#6
!Leak#7

!Leak*8
XAREA, DISCOF
lastly 1.925,0.95

279

Appendix-A _____GASFLO Users' Guide

9,550.0,5.0,1.0 !Leak#9 as if there is no obstruction .9m lastly 4.950,0.95
10,550.0,2.0,1.0 !Leak#10 lastly 4.675,0.95
11,550.0,2.0,1.0 !Leak#ll
! The following lines used for LEaKs' height ReLaXation, if N2CHNG=0 no RLXtn
6,4.0 !N2CHNG,STPSIZ
10,37.0 !for N2CHNG leaks input Leak#,HYTFIN (in Cms)
8,27.5
9,35.0
11,0.0
3,12.0
5,15.0
! The following is Bdys related data
9 ! NTBCNS; data fed in on 28th July 1992(Tue)
BC-1; Up-end to F3A !Bc#l; BCNAME
40.0,17.0,13811.61 ! BCTEMP,BCPRSR,BCFLOW(Ibs/min) in EXP units
BC-2; Up-end to F3B !Bc#2
40.0,16.0,15758.46
BC-3;Dn-end to STACK !Bc#3
608.0,0.0,174.0 17487.963,before was 6391.54 Ibs/min, now in tph
BC-4; Dn-end to F2B !Bc#4
240.0,0.0,527.0 !|orignal 17595.11,before was 19354.621 Ibs/min, now in tph
BC-5; Dn-end to F2A !Bc#5
245.0,0.0,512.0 !|orignal 17117.58,before was 18829.338 Ibs/min, now in tph
ATM-06,-lnkd->REG-05 !Bc#6
40.0,0.0,0.0
ATM-07;lnkd->REG-06 !Bc#7
40.0,0.0,0.0
ATM-08;lnkd->REG-10 !Bc#8
40.0,1.0,0.0
ATM-09;lnkd->REG-ll !Bc#9
40.0,0.0,0.0
! The following is read by NEWALG-main for output dumping to Worksheet format
4 1NUMNOD
9,10,11,21
6 INUMSTR
12,26,6,7,36,34

The connectivity data for components come from NETWORK.INF file, the up-end and

down-end components mentioned in context of pipe entity have just been used for output

purpose only. These are to keep track of equivalent pipes that what they represent and to what

other network components they are connected to. The upend and down-end components

mentioned here are not used in the actual computation.

The program is run by typing CMPNET from command line. If the file INTRACT.STP

does not exist in the current directory, then it generates one and asks all required inputs from

the user interactively. However, if the file exists then it compares the date when it was

previously read with today's date, in case these two are same then program proceeds without

any further request for data, but if these dates are different then the user is asked whether it

should modify the date to today's date, enter 'yes' to proceed. The objective of this file is to

automate and facilitate multiple runs to simulate a system having same values for most of the

parameters.

Block A.3 shows the contents of a sample INTRACT.STP file.

280

Appendix-A GASFLO Users' Guide

Block A.3 Listing of a sample INTRACT.STP file

100 1MAXITR
Y !LEAKS
N !CALBRT
Y !DMPWKS

20 1STPSLC
1 1SLCITI

200 SSLCITF
26-03-94 STODAY

3 INUMRUN

Any of these parameters can be changed by editing this data file. MAXITR is

maximum number of iterations to be performed at a step; LEAKS is a flag to include (Yes)

or exclude (No) leaks from the simulation; similarly CALBRT, DMPWKS are also flags to

calibrate the network and to dump out in worksheet format to .OPT files for debugging

respectively. Next three integer variables are to control this selection for dumping STPSLC

selects the step, and SLCITI, SLCITF are initial and final iteration numbers. TODAY is a

string for today's date, it must be input in the shown format (or be prepared to re-run the

program). NUMRVN is run number of current simulation which is incremented by one each

time CMPNET is run.

On successful completion of the CMPNET run, the user is asked to enter a comment

(usually identifying the objective of present run) which along with other key information

about the run, like run number, date of execution and CPU time used etc, is embedded in

DISPLAY.DAT file and serves as reference in graphical output.

The main CMPNET output file is COMPNET.OPT, which contains all input data,

connectivity information, geometrical and property data of all instances, initial fed in

boundary conditions, and flow, pressure and temperature distributions with respect to each of

the network components. These values are output in computational as well as in experimental

units. The connectivity information read through NETWORK.INF file is output in linked lists

form, this includes the information about stream composition as well. The computed results

281

Appendix-A GASFLO Users' Guide

can be output on each iteration to see how these are improving, but obviously it will require

good amount of space.

Block A.4 shows the excerpts from the COMPNET.OPT file. The repetitive parts have

been deleted for space reasons.

Block A.4 Partial listing of a sample COMPNETJNF file

Output of CMPNET ****

Flowing medium properties :

GASCNS = 286.6800 N-m/Kg-K
SPHTCP = 102.00000 N-m/Kg-K
DENSTY = 1.205 Kg/m**3

NETWORK consists of

Pipes = 23
Regions = 11

Fans = 6
Leaks = 11

Computational constants :

(Global) Max.Itrns
(Local) Max.Itrns

Program Executed on 26-03-94
Started at 16:17:09

DYNVSC = 0.00002 N-s/m**2
RATSPH = 1.400 #

100
50

Printing Options :

DEBUG = F

Beds = 7
Junctions = 7

Accurac =
Accurac =

0.500E-02
0.100E-04

Print Intrvl =1000

Following are the READ-in values for 9 Bndy Cndtns
{ in Experimental units }

Sr. Name or
Description

1 BC-1; Up-end to F3A

2 BC-2; Up-end to F3B

3 BC-3;Dn-end to STACK

Temp
o F

40.0

40.0

608.

Stat.Pres
" of Water

17.0

16.0

O.OOOE+00

Flow
Lbs/Min

0.138E+05

0.158E+05

174.

ATM-09;lnkd->REG-ll 40.0 O.OOOE+00 O.OOOE+00

Boundary condition variables converted :
{ in COMputational/SI units }

Sr. Name or
Description

1 BC-1; Up-end to F3A

2 BC-2; Up-end to F3B

3 BC-3;Dn-end to STACK

Temp
o K

313.

313.

881.

Pres
Pascal

0.106E+06

0.105E+06

0.101E+06

Flow
Kg/Sec

0.384E+04

0.438E+04

48.3

282

Appendix-A GASFLO Users' Guide

9 ATM-09 ;lnkd->REG-ll 313.

INITIAL input for 23 pipes of network

Material Conductivity : 100.000 Pipe thickness:

(Pipes
Pipe

#

+

-

INITIAL

Fan
#

1

2

3

4

5

6

1

2
3
4
5

6
7
8

9
10

22

23

followed by '*' contain valves)
Diameter Length Up-end
meter meter unit

1.707 10.058 BDY-01
*

2.271 12.192 F3A-01
2.802 29.566 REG-02
2.695 4.343 REG-07
3.052 6.706 JUN-05

*

2.568 30.480 F1A-03
2.695 4.343 REG-06
3.052 6.706 JUN-06

*
2.766 39.929 FIB-04
2.568 4.572 JUN-07

2.677 22.860 REG-09
*

3.962 30.480 REG-04
*

0.101E+06

0.0250 m

Dn-end
unit

F3A-01

REG- 01
REG- 05
JUN-05
F1A-03

JUN-07
JUN-06
FIB-04

JUN-07
REG- 10

F2B-06

BDY-03

O.OOOE+00

inputs for 6 fans in the network

D.Coef
f

0.650

0.900

0.650

0.650

0.650

0.650

Parameteric

Efcncy Wattag Tcrtcl
Watt o K

0.900 0.17929E-I-06 273.00

0.900 0.15379E+06 273.00

0.900 0.35229E+06 588.60

0.900 0.29919E-»-06 588.60

0.900 0.38784E+06 369.12

0.900 0.43250E+06 399.70

input of 11 Leaks in the NETWORK

Leak # Cross-AREA Dis-Coeff
m**2 #

L01 0.30000E-01 1.00

L02 0.12000 1.00

L03 0.11000 1.00

L04 0.55000E-01 1.00

Pcold
Pascal

10288.

10291.

10009.

9991.3

10245.

10103.

IFSTAT
#

2

2

2

2

2

2

Lll 0.11000

INITIAL DATA FOR BEDS

Number of Beds in network = 7

Bed related parameters:

1.00

283

Appendix-A GASFLO Users' Guide

PARDIA =

Bed
no.

1

2

3

4

5

6

7

Bed
Area

84

82

43

43

51

86

17

.500

.500

.050

.050

.670

.100

.230

0.01100 m

Bed
Temp

849

646

1275

855

757

517

832

.350

.000

.100

.950

.100

.060

.700

Bed
Voidag

0

0

0

0

0

0

0

.760

.760

.160

.160

.160

.160

.160

0

0

0

0

0

0

0

Height

.460

.460

.350

.350

.350

.350

.350

No. of Total Streams :

STREAMS AND LINKED-LIST
STRUCTURE

38

INDEX=

SCMPs=

NXTCMP=

SPREV=

SNAME=

SFIRST=

SLAST=

TORN_st=

UPNODE=

DNNODE=

InclFN=

INDEX =

SCMPs=

NXTCMP=

SPREV=

SNAME=

SFIRST=

SLAST=

TORN_St=

UPNODE=

DNNODE=

InclFN=

INDEX =

SCMPs=

NXTCMP=

1

pOl

2

0

sOl

1

3

.F.

1

2

1

13

Pll

14

0

s!3

19

19

.T.

24

7

0

25

p!4

0

2

fOl

3

1

s02

4

4

.F.

2

3

0

14

£05

0

13

s!4

20

20

.T.

24

8

0

26

b02

0

3

p02

0

2

s03

5

5

.F.

3

4

0

15

b04

0

0

s!5

21

23

.F.

14

15

4

27

p!6

0

4

bOl

0

0

s04

6

6

.F.

4

5

0

16

p04

0

0

s!6

24

24

.T.

15

18

0

28

p!7

0

5

p03

0

0

s05

7

7

.F.

5

7

0

17

p05

18

0

s!7

25

25

.F.

15

16

0

29

p!8

0

6

b03

0

0

s06

8

10

.F.

7

10

3

18

f3

0

17

s!8

26

26

.F.

16

17

0

30

p!9

0

7

p07

0

0

s07

11

11

.F.

10

11

0

19

P21

0

0

s!9

27

27

.F.

17

18

0

31

b05

0

8

p08

9

0

s08

12

12

.F.

11

12

0

20

p20

0

0

s20

28

28

.F.

18

19

0

32

P22

33

9

f04

10

8

s09

13

14

.F.

12

13

0

21

p!2

22

0

s21

29

29

.F.

19

24

0

33

f06

0

10

p09

0

9

slO

15

15

.F.

4

6

0

22

f02

23

21

s22

30

30

.F.

19

20

0

34

p23

0

11

plO

0

0

sll

16

16

.F.

6

8

0

23

P13

0

22

s23

31

31

.F.

20

21

0

35

p06

0

12

b06

0

0

s!2

17

18

.F.

8

9

2

24

P15

0

0

s24

32

33

.F.

21

22

0

36

b07

0

284

Appendix-A GASFLO Users' Guide

SPREV=

SNAME=

SFIRST=

SLAST=

TORN_st=

UPNODE=

DNNODE=

InclFN=

INDEX=

SCMPs=

NXTCMP=

SPREV=

SNAME=

SFIRST=

SLAST=

TORN_st=

UPNODE=

DNNODE=

InclFN=

0

s25

34

34

.F.

17

23

0

37

101

0

0

s37

46

46

.T.

27

11

0

0

s26

35

35

.T.

9

10

0

38

102

0

0

s38

47

47

.T.

28

12

0

0

s27

36

36

.T.

20

6

0

39

103

0

0

0

s28

37

37

.T.

2

16

0

40

104

0

0

0

s29

38

38

.T.

3

17

0

41

105

0

0

0

S30

39

39

.T.

25

4

0

42

106

0

0

0

s31

40

40

.T.

26

5

0

43

107

0

0

0

s32

41

41

.T.

5

6

0

44

108

0

0

32

s33

42

42

.T.

4

20

0

45

109

0

0

0

s34

43

43

.T.

6

21

0

46

110

0

0

0 0

s35 s36

44 45

44 45

.T. .T.

11 12

20 21

0 0

47

111

0

0

NODES and LINKED-LIST
STRUCTURE

No. of

NINDEX=

In/Out=

STRNUM=

NXTSTR=

NINDEX=

NODNAME=

NDPNTR=

InDEGree=

N INDEX =

In/Out=

STRNUM=

NXTSTR=

Total

1

-1

1

-1

1

B01

1

1

13

1

4

14

NODES

2

1

1

3

2

R01

2

3

14

1

31

15

:

3

-1

28

4

3

R02

5

3

15

-1

5

16

28

4

-1

2

-2

4

R05

8

5

16

-1

32

-5

5

1

2

6

5

R06

13

4

17

1

10

18

6

-1

29

7

6

R07

17

5

18

1

27

19

7

-1

3

-3

7

J06

22

3

19

1

32

20

8

1

3

9

8

J05

25

3

20

-1

34

21

9

1

30

10

9

J08

28

2

21

-1

11

-6

10

-1

33

11

10

J07

30

3

22

1

5

23

11 12

-1 -1

4 10

12 -4

11 12

RIO Rll

33 37

4 4

23 24

1 -1

13 6

24 -7

285

Appendix-A GASFLO Users' Guide

NINDEX=

NODNAME=

NDPNTR=

InDEGree=

NINDEX=

In/0ut=

STRNUM=

NXTSTR=

NINDEX=

NODNAME=

NDPNTR=

InDEGree=

NINDEX=

In/Out=

STRNUM=

NXTSTR=

NINDEX=

In/0ut=

STRNUM=

NXTSTR=

NINDEX=

In/Out=

STRNUM=

NXTSTR=

NINDEX=

In/0ut=

STRNUM=

NXTSTR=

FINAL varia

Pipe
#

1

2

13

BOS

41

1

25

1

11

26

25

A06

73

1

37

1

8

38

49

1

18

50

61

1

35

62

73

-1

30

-25

bles of

14

B02

42

1

26

1

14

27

26

A07

74

1

38

1

38

39

50

1

29

51

62

-1

23

63

74

-1

31

15

J01

43

3

27

-1

12

-8

27

A08

75

1

39

-1

36

40

51

-1

19

52

63

-1

27

-20

75

-1

37

-26 -27

Output of

23 pipes

16

R03

46

3

28

1

12

29

28

A09

76

1

40

-1

9

-12

52

-1

25

-17

64

1

23

65

76

-1

38

17 18

R04 J02

49 53

4 3

29 30

-1 1

26 6

-9 31

41 42

1 -1

9 15

-13 -14

53 54

1 1

19 16

54 55

65 66

1 1

34 36

66 67

-28

CMPNEET on

in NETWORK at

Up-stream end
Temp Pres
K Pascal

313.00

312.36

0.1056E+06

0.1045E+06

Flow
Kg/S

120.5

120.5

19 20 21 22 23

J03 R08 R09 B04 B03

56 59 64 68 69

35411

31 32 33 34 35

1-1 1 1-1

26 7 7 37 8

32 -10 34 35 36

43 44 45 46 47

1-1-1 1 1

15 17 16 17 28

44 45 -15 47 48

55 56 57 58 59

-1 1-1-1 1

20 20 22 21 22

-18 57 58 -19 60

67 68 69 70 71

-1 1 1 1-1

24 24 25 21 13

-21 -22 -23 71 72

24

J04

70

3

36

-1

35

-11

48

-1

18

-16

60

1

33

61

72

-1

14

-24

4 th Iteration ******************

4 th Iteration :

Dn-stream end
Temp Pres

K Pascal

312.36 0.1028E+06

311.76 0.1044E+06

286

Appendix-A GASFLO Users' Guide

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

FINAL

Fan
#

1

2

3

4

5

6

1401

664

664

655

982

938

911

699

389

313

312

312

312

998

831

789

789

741

741

476

998

.07

.50

.71

.29

.04

.63

.08

.97

.12

.00

.55

.44

.44

.92

.18

.06

.06

.22

.22

.29

.92

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.1012E+06

.9831E+05

.9830E+05

.1014E+06

.9824E-I-05

.9823E+05

.1014E+06

.1013E+06

.9851E+05

.1053E+06

.1041E+06

.1041E+06

.1041E+06

.1012E+06

.1012E+06

.1012E+06

.1012E+06

.1012E+06

.1012E+06

.9824E+05

.1012E+06

Values of variables for

input e
Temp Pres
o K Pascal

312.36 0

312.55 0

655.28

911.08

383.71

464.49

n d
Flow
Kg/s

.10285E+06 120.

.10288E-»-06 143.

97593

97682

95319

94863

•

•

97.

85.

142.

146.

121

89.

97.

97.

77.

85.

85.

183

142

143

143

122

21.

73.

95.

16.

78.

.0

52

62

62

39

61

61

.2

.2

.9

.9

.6

25

83

08

33

76

8.099

8.227

146

48.

6 Fans

.4

33

After

o u t p
Temp
o K

55 312.36

88 312.55

62 655.28

61 911.08

22 383.71

39 464.49

968.

657.

655.

655.

958.

911.

749.

692.

383.

312.

312.

312.

312.

961.

789.

741.

695.

741.

741.

464.

858.

53

65

28

29

92

08

84

49

71

55

43

26

44

13

05

20

25

22

22

49

84

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.1011E+06

.9830E-1-05

.9759E+05

.1013E+06

.9823E+05

.9768E+05

.1013E+06

.1013E+06

.9532E+05

.1029E+06

.1041E+06

.1040E+06

.1012E+06

.1012E+06

.1012E+06

.1012E+06

.1009E+06

.9830E+05

.9823E-t-05

.9486E+05

.1012E+06

4 Iterations

u t
Pres
Pascal

end

0.10450E+06

0.10407E+06

0.10144E+06

0.10141E+06

98145

97914

•

Flow
Kg/s

120.55

143.88

97.62

85.61

142.22

146.39

T.Cntrlr
Fcold
Kg/s

0.00

0.00

0.00

0.00

0.00

0.00

Computed values for 12 Leaks after 4 Iterations

Leak
no.

L01

L02

L03

L04

LOS

L06

L07

Up-end PRES
Pascal

0.10442E+06

0.10119E+06

0.10133E+06

0.10133E+06

98240.

0.10110E+06

98311.

FLOW
Kg/S

0.95259

-1.4343

15.308

4.7427

-10.817

O.OOOOOE-t-00

3.5402

Dn-end PRES
Pascal

0.10400E+06

0.10125E-t-06

0.10110E+06

98240.

98311.

0.10094E+06

98243 .

287

Appendix-A GASFLO Users' Guide

L08

L09

L10

Lll

0.10130E+06

98515.

0.10157E+06

0.10133E+06

44.190

49.286

52.463

O.OOOOOE+00

OUT PUT for 7Beds after 4 Iterations

Bed
#

1

2

3

4

5

6

7

Temp
in

311

312

903

903

666

614

666

.765

.250

.120

.120

.589

.309

.589

Pres
in

104415

103996

101102

101102

100944

101298

100944

.000

.641

.203

.203

.516

.703

.516

Flow
in

119

123

61

74

93

191

29

.592

.582

.826

.511

.563

.507

.369

Pres
out

101186

101245

98240

98311

98242

98514

98311

.445

.727

.078

.414

.648

.648

.414

0.10094E+06

98243.

0.10130E+06

98515.

Nodes Pressure & Temperature Distribution

Nd# Nd_Name Nd_Pressure
11 of Water

Nd_Temperature
(oC)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

B01
R01
R02
R05
R06
R07
J06
J05
J08
J07
RIO
Rll
BOS
B02
J01
R03
R04
J02
J03
R08
R09
B04
B03
J04
A06
A07
A08
A09

17.000
12.375

-0.61216
-0.95004
-12.504
-12.220
-12.535
-12.260
0.30447
-0.12180
-0.26484
-11.426
-12.913
16.000
10.911
10.667

-0.43058
-0.45661
-0.54469
-1.6551
-12.512
-13.834
-0.77680
-0.57151
-0.63243E-05
-0.63243E-05
0.99999
-0.63243E-05

40.000
38.765
1128.1
630.12
709.04
391.50
665.63
391.71
382.29
426.97
341.31
116.12
245.00
40.000
39.436
39.250
725.92
558.18
516.06
393.59
203.29
240.00
608.00
468.22
40.000
40.000
40.000
40.000

Streams Flow & Temperature Distribution

St# St_Name St_Flow
Tonnes/Hr

St_Temperature
(oC)

1
2
3
4
5
6
7

sOl
s02
s03
s04
s05
s06
s07

433.96
430.53
435.65
222.57
278.59
308.21
659.64

38.765
1132.7
695.53
806.20
685.92
476.84
419.49

288

Appendix-A GASFLO Users' Guide

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

s08
s09
slO
sll
s!2
s!3
s!4
s!5
s!6
s!7
s!8
s!9
s20
s21
s22
s23
s24
s25
s26
s27
s28
s29
s30
s31
s32
s33
s34
s35
s36
s37
s38

689.43
512.00
268.24
322.28
351.43
29.618
29.155
517.99
76.513
441.47
444.90
265.78
342.30
58.775
283.52
336.83
527.00
174.00
351.42
105.73
3.4293

-5.1636
55.108
17.074

-38.942
O.OOOOOE+00
12.745
159.08
177.43
188.87

O.OOOOOE-t-00

116.12
110.71
391.50
384.65
382.28
468.22
468.22
39.433
39.436
39.256
726.00
688.13
516.05
468.20
422.25
240.30
191.49
585.84
382.29
391.50
38.765
725.92
40.000
40.000
391.50
630.12
391.50
341.31
116.12
40.000
40.000

Finished at 16:17:39
CPU time used 00:00:30

The node and stream names here are worth noticing, these names have been generated

by PRPNET, the first alphabetic character for node names is capital letter B - for sink and

source boundary, A - for atmosphere linked to leaks, J - for junction and R - for regions.

Whereas the streams first character 's' is always in lower case. Similarly the new component

names are also in lower case and all these are of length 3 rather than 6 as were input in

PREPNET.INP file. The same node and stream names would be used in the other output file

DISPLAY.DAT, whose listing is shown in Block A.5.

Block A.5 Listing of Sample DISPLAY.DAT file

(3) 26-03,-1617 hrs[ACCU= 5.000E-03 MAXITR=100,MXSTPs= 9,CPU Time=00:30] Run second time now
directories are in path AL
Node B01 17.0
Node R01 12.4
Node R02 -0.6
Node R05 -0.9
Node R06 -12.4
Node R07 -12.1
Node J06 -12.4

289

Appendix-A GASFLO Users' Guide

Node JO5
Node JO8
Node JO7
Node RIO
Node Rll
Node BOS
Node BO2
Node J01
Node R03
Node R04
Node JO2
Node JO3
Node R08
Node R09
Node BO4
Node BO3
Node JO4
Node A06
Node A07
Node A08
Node A09
Stream sOl
Stream s02
Stream s03
Stream s04
Stream s05
Stream s06
Stream s07
Stream s08
Stream s09
Stream slO
Stream sll
Stream s!2
Stream s!3
Stream s!4
Stream s!5
Stream s!6
Stream s!7
Stream s!8
Stream s!9
Stream s20
Stream s21
Stream s22
Stream s23
Stream s24
Stream s25
Stream s26
Stream s27
Stream s28
Stream s29
Stream s30
Stream s31
Stream s32
Stream s33
Stream s34
Stream s35
Stream s36
Stream s37
Stream s38
Valve vOl
Valve v02
Valve v03
Valve v04
Valve v05
Valve v06
Valve v07
Valve v08
Valve v09
Valve vlO
Fan F01
Fan F02
Fan F03
Fan F04
Fan F05
Fan F06
Temperature B01
Temperature R01
Temperature R02
Temperature R05
Temperature R06

-12.1 "
0.5 "
0.0 "

-0.1 "
-11.3 "
-12.8 "
16.0 "
11.0 "
10.7 "
-0.3 "
-0.3 "
-0.4 "
-1.5 "

-12.4 "
-13.7 "
-0.7 "
-0.5 "
0.0 "
0.0 "
1.0 "
0.0 "

1 434.
2 431.
3 436.
4 223.
5 279.
6 308.
7 660.
8 689.
9 512.
0 268.
1 322.
2 351.
3 30.
4 29.
5 518.
6 77.
7 441.
8 445.
9 266.
0 342.
1 59.
2 284.
3 337.
4 527.
5 174.
6 351.
7 106.
8 3.
9 -5.
0 55.
1 17.
2 -39.
3 0.
4 13.
5 159.
6 177.
7 189.
8 0.

95. %
60. %
70. %
30. %
30. %
80. %
90. %
90. %
80. %
80. %
6.1 12
6.3 11

-15.0 0
-14.6 0
-24.1 -12

.7

.0

.5

.3

.8
-25.9 -13.7

40.
39.

1128.
630.
709.

290

Appendix-A GASFLO Users' Guide

Temperature R07 392.
Temperature J06 666.
Temperature J05 392.
Temperature J08 382.
Temperature J07 427.
Temperature RIO 341.
Temperature Rll 116.
Temperature 805 245.
Temperature B02 40.
Temperature J01 39.
Temperature R03 39.
Temperature R04 726.
Temperature J02 558.
Temperature J03 516.
Temperature R08 394.
Temperature R09 203.
Temperature B04 240.
Temperature B03 608.
Temperature J04 468.
Temperature A06 40.
Temperature A07 40.
Temperature A08 40.
Temperature A09 40.
Temperature sOl 39.
Temperature s02 1133.
Temperature s03 696.
Temperature s04 806.
Temperature s05 686.
Temperature s06 477.
Temperature s07 419.
Temperature s08 116.
Temperature s09 111.
Temperature slO 392.
Temperature sll 385.
Temperature s!2 382.
Temperature s!3 468.
Temperature s!4 468.
Temperature s!5 39,
Temperature s!6 39,
Temperature s!7 39,
Temperature s!8 726,
Temperature s!9 688,
Temperature s20 516,
Temperature s21 468
Temperature s22 422
Temperature s23 240,
Temperature s24 191,
Temperature s25 586,
Temperature s26 382,
Temperature s27 392,
Temperature s28 39,
Temperature s29 726
Temperature s30 40,
Temperature s31 40,
Temperature s32 392,
Temperature s33 630,
Temperature s34 392.
Temperature s35 341.
Temperature s36 116.
Temperature s37 40.
Temperature s38 40.

The format shown for DISPLAY.DAT is specific to the needs of the program

DISPLAY, which reads in this file. The first line includes the comment generated by the

CMPNET. This file has two parts, the first relates to flow and pressure distribution whereas

the later part corresponds to temperature distribution. Both of these parts have slightly

291

Appendix-A _____GASFLO Users' Guide

different formats, since for the first the flows are associated to streams and pressures to nodes,

whereas in the second part each node and stream is having a temperature.

The general format for the flow and pressure distribution is:

Entity_Name / Instance_Name / Variable_Value, Units

Where Entity_Name can be exclusively a node, stream, valve or a fan;

Instance_Name is the component name for respective component; Variable_Value

is pressure value for node and fan entities, flow value for stream and percentage of valve

opening for respective valve; Units are " representing pressure in Inches of water, % for

valve opening and blank for flow. The upend and downend pressures are refered for fans so

the variable value field has two values. All fields are terminated by white-space.

Since the temperature distribution is to be plotted only for node and stream entities

so the format for the second part of output is simpler. It has fields

Temperature, Instance_Name, Variable_Value

Where the fist field Temperature remains fixed for all instances of Node and

Stream entities; Instance_Name contains the node or stream names; and

Variable_Value is corresponding value of temperature for respective instance.

Manipulation of this data file by program DISPLAY will be discussed in next section.

A.4.3 DISPLAY • Display of computed results :
This is the post-processor part of GASFLO. It can either display the computed airflow

distribution graphically on screen, or can print it on a PostScript printer. Basically it is a batch

file which is run by typing

DISPLAY -P Picture.fil -DDISPLAY.DAT [-Q|-V|-H] Parameter-list

292

Appendix-A ____GASFLO Users* Guide

Where the switches and parameters in Parameter-list are case sensitive, so must

be input in the shown case. The switches have following meanings:

-P indicates the next argument is the static PostSctipt picture file,

-D indicates the next argument is a data file DISPLAY.DAT generated by program

CMPNET,

-Q to send or queue the produced graphical output to PostScript printer,

-V to view the produced graphical output on screen using PostScript viewer like

GhostScript (this is default), and

-H shows a brief help about the syntax of the expected command.

The Picture.£11 is a static PostScript file (procedure for whose creation will be

discussed shortly), and Parameter-list may contain any or all of the following pairs:

[Node Pressure], [Stream Flow], [Fan Pressure], [Valve Opening]

Where first argument of each of the pair is entity name and second is its attribute.

The display of temperature distribution is carried out on separate diagram, and it is

activated by the copy of same program but with different name DISPLAYT instead of

DISPLAY. Which uses the same syntax as described above, but with corresponding static

picture file and the Parameter-list has only pair as

[Temperature Distribution]

Obviously without [] brackets.

Creation of static picture file
The easiest possible way to create the static file is by using any drawing package

which can export (encapsulated) PostScript files. We used Draw Perfect 1.1 to create the

provided sample static files. While drawing important points to remember are:

293

Appendix-A GASFLO Users* Guide

a. Draw the figure as close as possible to the original schematic of the plant,

b. Decide for the locations on the diagram where data is to be output, and mark them with

'stubs' using exactly same names as instance names in the shown DISPLAY.DAT file,

c. Choose the desired appearance for text (e.g. italics, or underline etc) when entering stubs.

It would be easier for the reader later on to recognise if all flow values have one

appearance and pressures the other,

d. Enter the stubs; 'Something' in the drawing to output heading which will be generated by

the DISPLAY using arguments from parameter list; and 'Reference' to output the

comment line identifying the displayed output. These two should have exactly the

same case and can have appearance as desired by the user. For example the heading

or title can have large and bold appearance to be visible, whereas comment can be in

very small or fine font to avoid viewer's distraction but readable for careful reader,

e. After completing the drawing, export it as PostScript or Encapsulated PostScript as is

facilitated by drawing package and name it as Picture.£11.

Figure A.5 shows a sample static picture file generated by the above procedure, for

flow and pressure distribution output.

Working of DISPLAY:
Conceptually, working of DISPLAY is very straight forward. For example the

command line:

DISPLAY -P Picture.file -D DISPLAY.DAT -Q Node Pressure Stream

Flow Valve Opening Fan Pressure

would produce an output like the one shown in Figure 5.3, which in fact involved

following steps;

294

Appendix-A GASFLO Users' Guide

XYZ Pellet Induration System
(Something)

s12
Pressure (inch wg)

Flow rate (dmt/h)

Reference

Figure A.5 The static figure of a typical pellet induration system containing 'stubs'

1. First a SPECFILE is generated by parsing the attributes corresponding to parameter list.

In this case it will contain the string

'Node Pressure, Stream Flow, Valve Opening, Fan Pressure'

The commas between the different groups will be inserted by DISPLAY,

2. According the this generated SPECFILE, the program will scan the DISPLAY.DAT file,

look for the required entities the instance names and their values and copy them down

into another temporary file SEDSCPT,

3. It will edit the Picture fil, using SEDSCPTfile, each of the instance name stub by its value,

295

Appendix-A _______________GASFLO Users' Guide

4. The edited Picture.fil named temporarily as PIC OUT would be scaled and rotated

according to the destination device, screen or printer, and displayed if it is screen.

In Figure A.5, the replacement of 'Something' with the contents of SEDSCPT, and

other stubs by their values from the DISPLAY.DAT can be noted in the produced output like

Figure 5.3. All utility programs required by DISPLAY program are placed in directory

UTILITYS.

For easier and efficient running of DISPLAY, the above stated command line is placed

in another batch file, called SHOW-F&P.BAT to show flow and pressure distributions, and

similarly SHOW-TPR.BAT to show temperature distribution in the sample network. Both of

these does not require any arguments so they can be easily typed and are less prone to errors.

A.5 INDSYS and GASFLO interaction

These two software tools, though are related to induration system simulation and are

from same group. However, they address different aspects of induration systems and are

developed independently. They have different user interface and slightly different semantics.

INDSYS, INDuration SYstem Simulator, is a product of late 1980's, well used in

industry, written in GW-BASIC, simulates heat concentration in the system, and now stands

out as a mature reliable tool (Cross 1988, Cross and Englund 1987). Its computation takes

into account the involved chemical reactions, heat exchange due to solid-gas interaction and

the heat sources. The pellet induration system is modelled as combination of 'zones', where

each zone is either a grate (i.e. an enclosure containing packed bed) or a kiln. A zone has an

on-gas, the process gas coming into the zone, and off-gas, the gas going out of the zone,

which are basically input and output of the enclosed packed bed. The on-gas of a zone is

either from atmosphere or a combination of off-gas from other zones, and it is provided in

296

Appendix-A ____________________GASFLO Users* Guide

terms of the respective zones' percentages. The on-gas to some zones can come in as external

leakage directly from the atmosphere.

INDSYS simulation requires the magnitude and temperature of the on-gas and external

leakage flows for all zones, and computes the spatial temperature distribution of solids as well

as gas in packed bed. Assuming symmetry in third dimension (i.e. in the direction of width

of packed bed) the results are provided in two dimensional discretised space (i.e. in length

and height of bed). Length-wise the zone (or the packed bed associated to it) is discretised

into, say n, intervals of equal length, and height-wise it is divided into 10 layers. Proper

mixing of gas temperature is assumed in the zone regions, above and below the packed bed,

and for the gas travelling in different streams, so an average temperature of on-gas is assumed

for input to each zone. The computed results provide the temperature profiles for gas and

solids, in tabular form by the .OUT file which can be presented graphically on screen using

the post-processor program GINDSYS. A simulation of INDSYS for a typical induration

system, takes about 5-10 minutes on a 486, 33 MHz PC machine.

INDSYS does not simulate components like pipes/ducts, fans or valves etc, instead it

simulates packed beds only. Also for a system like shown in Figure 5.3, it sequentially

assigns numbers 1 to 6 to zones DD1, DD2, PH, kiln, Cl and C2; which does not conform

to the numbering conventions used by GASFLO (as will be discussed shortly).

GASFLO computes flow, pressure and temperature distribution in the whole induration

system network at a macroscopic level (i.e. at the interface of all components of the network),

based on (already discussed) boundary conditions and average temperatures provided by

INDSYS for off-gas from the packed beds. In GASFLO, instead of zones, packed beds are

treated explicitly. For a network shown in Figure A.5, the packed beds are numbered as 1 to

6 for zones Cl, C2, PH,, PH2 , DD2 and DDL Since PH has two output regions so its

associated packed bed is split into two. From airflow prospective the kiln does not play any

significant role, except the temperature of process gas passing through the kiln is raised by

certain amount, so this behaviour is embedded into the pipe containing kiln, rather than

simulating it as an exclusive identity as done by INDSYS. The flow through bed is modelled

297

Appendix-A ___ GASFLO Users' Guide

by Ergun's equation, which needs average temperature of gas through the bed, which is

worked out inside the GASFLO from the read input values TBEDIN and TBEDOU for

respective bed.

The airflow distribution provided by GASFLO is required as input by INDSYS and

the gas temperatures for packed bed computed by INDSYS are needed for GASFLO

computation. Thus for realistic and complete simulation of an induration system the two tools

should be run interactively and iteratively using each others outputs. This iterative process

should be continued until a converged temperature distribution is achieved. The interactive

and alternate running of INDSYS and GASFLO is possible with their existing states, by

manually extracting the required data from the respective output files and editing the

corresponding input files. It will require following steps:

Step-1: Establish association between

a. the zones of INDSYS and packed beds of GASFLO, by comparing the bed

related data, their heights, widths and lengths and their connectivity to other

components

b. external leakage and off-gas zone flows of INDSYS to the stream numbers of

GASFLO

c. the grid points for on-gas or first layer and for last layer of each bed in

INDSYS output file to the TBEDIN and TBEDOU of respective beds of

GASFLO

Step-2: Assume flow distribution and run INDSYS,

Step-3: Extract gas temperatures relevant to each packed bed manually from INDSYS output

file, work out TBEDIN and TBEDOU by averaging for all beds. Edit the input file

for GASFLO to substitute these bed temperatures,

Step-4: Run GASFLO, and compute the flow, pressure and temperature distributions for the

network. Extract flow and temperature for all streams (including leaks) coming into

298

Appendix-A ________________GASFLO Users' Guide

the regions upstream to each bed. Edit the input data file for INDSYS to substitute

these available values,

Step-5: Run INDSYS (with recent flow distribution)

Steps 3 to 5 might be continued, until converged temperature distribution in the system

is achieved. This takes about 2-5 iterations for a typical pellet induration system.

A.6 Known Failures or Errors

DISPLAY: Error with message

sed: SEDSCPT (line 2): garbage after command

on screen is due to input of some reserved character such as V, which is delimiter for

the 'sed', in the typed-in comment line. This can be corrected by editing the

DISPLAY.DAT file to eliminate such characters from the comment line, and re-running

the DISPLAY (or the other batch files SHOW-F&P etc which call DISPLAY).

CMPNET: Gives self explanatory error messages.

 Errors due to mismatch of counters, numbers of instances of the modelled entities. The

network information file generated by PRPNET carries different number than the

corresponding number provided by COMPNET.1NP data file.

These errors can be corrected by editing the COMPNET.INP file for correct

number.

 Errors due to wrong format of input data say real values for integer variables or for

example specification of date in format other than dd-mm-yy may lead to program

299

Appendix-A ____________________GASFLO Users' Guide

crash. Such errors can be cured by input of variables in the right format and re

running the program.

A.7 Intended Improvements for Version 3.0

GASFLO has been developed on the software engineering principles. It is extensible,

more entities can be added. It can configure and partition the network from the input

connectivity. The data for all instances can be input interactively or through a pre-edited file.

More entities can be added to the system by writing separate modules according to a specific

template provided, which enables to embed data and methods together. In the existing entities

the mathematical model or their numerical method (or both) can be changed or replaced, and

different modules can have different computational methods. Even an entity can have multiple

mathematical models and different models can be selected for different instances at run time.

These facilities make it an invaluable tool for mathematical modellers. It is very fast, takes

less than a minute to simulate a typical pellet induration system on a 486 PC. It provides

flow, pressure and temperature distributions in the whole network, including variables like

leakages, which are though qualitatively sensed by practitioners but they along with some

other variables can not be quantified by proper measurements due to hostile environment.

However, still it lacks the following facilities which are intended to be provided in the

future version:

 Graphical User Interface, through which the user can select the available entities, by

combining different instances of these entities one could draw the network, input the

required data be editing through provided forms, and simulate the network. The

boundary conditions and component parameters etc could be changed by clicking on

respective components.

 Facility for adding user defined entities, by writing them as FORTRAN modules and

compiling and linking them to the already existing entity library.

300

Appendix-A GASFLO Users' Guide

 Refinement of existing entities' mathematical models to more specific ones, which are

developed as a necessity with insufficient data available about their nature, the

examples being the fans and valves and these have been tested for their physical

results.

 The process gas has been treated as single phase incompressible medium for simplicity

reasons. Whereas in practice, in drying and heating stage the presence of water

vapours necessitates that it should be dealt as two phase flow. Secondly, the

temperature range shows that there is significant variation of air density, which

emphasizes that compressibility of air should be taken into account.

 Validation of input data and provision of default data for some standard parameters

to lessen the burden on user for pre-requisite knowledge of these variables.

301

Appendix - B
Derivation of the Used Correction Terms

In this appendix we will derive the correction terms used by the primary solution

algorithm (Figure 3.3) discussed in section 3.3, these terms were proposed by Boyne 1970.

We will first develop these terms for a single loop network described in section 3.2.2, and

later generalise them to general multiple loop network.

According to the steps mentioned in the primary solution algorithm (cf. Figure 3.3),

first the network is partitioned into tree and cotree structures, then using known sink node

flows (a boundary condition) and an assumed cotree flow distribution the flows in tree

streams are evaluated. In steps 5.0 and 6.0 the pressures at tree nodes and flow in cotree

branches are computed, which are then used to evaluate the residuals at all the nodes. If these

residuals are not within the specified tolerance then the flows are corrected and steps repeated.

The residual at the ith node, /, will be a function of flows from the incident streams and

given by equation 3.1 namely,

, F (B.I)
-»' " ft » >

where Fj is flow in the jth stream and afj is an element of the node-stream incidence

matrix.

This residual will be non-zero and will mainly depend on the values of flows in the

cotree branches because at the current iteration the cotree flows have been evaluated from the

302

Appendix-B Derivation of Correction Terms

recent pressure distribution, which are different and lead to the flow imbalance at the nodes

connected by the cotree branches. The final solution to the network will provide such a value

of cotree flows i.e. F*cotree which will reduce this / to zero for all internal nodes and hence

satisfy all the loop equations 3.2. i.e.

cotree
\ = f = A (B.2)
' Ji u

For our example single loop network (Figure 3.2), the cotree is comprised of stream

s03 only and the recent computed flow Fs03 introduces non-zero residuals of amount fm and

fm at respective nodes both of these are equal and opposite in sign.

We need to determine the value of Fcotree which reduces the nodal residual/ to zero.

By Newton Raphson method or Taylor's theorem, the value of Fcotree can be determined

iteratively, for (K+l)th iteration it can be approximated as

K+ l = F K + AF*cotree * cotree ** * cotree

Where

,K

A FcotreeK Jj^ "cotree' /i»

Ji {*'cotret'.'

In GASFLO, using the device centred approach the relationship///**,.,,^ is dependent

on the mathematical models of the network components making the cotree branch, so the

derivative f- with respect to FcotreeK, in the denominator of the above equation is not readily

available and would require numerical differentiation which is computationally expensive and

complicated. By contrast, the previous iteration values of cotree flows and node residuals are

available so using these the derivative can be approximated as

Substituting this into equation B.4, we have

303

Appendix-B Derivation of Correction Terms

J\ \^ cotree' =
cotree) -

cotree

cotree cotree

(B.5)

AFcotree
cotree cotree

•/A cotree' ~ Ji^" cotree'

(B.6)

Figure B-l Application of Secant method to find the root Fcotft * of the equation fi(Fcotree)

The equations B.3 and B.6 are in fact the well known Secant method which states that

the next estimate of Fcotree would be the value where the secant to the curve/ (drawn between

its previous two values) intercepts the Fcotree axis. This is shown graphically in Figure B-l.

Using the definition Fcotree
K'J — A J7 K'1

cotree cotree the equation B.6 becomes

304

Appendix-B Derivation of Correction Terms

AF* MFLm)*V
, j« A ~ 1 -^

corr" J /-R7^
^"cotree „ , v '

cotree' i* cotree '

In principle this correction is applied to the cotree flows to obtain a better estimate

which alters the flow in tree branches. For our single loop network this increase of &FKcotree

in cotree branches will require; an increase of flow in all tree branches between the node J01

and the source node i.e stream 507 by an amount of &FKcotree , as well as, a decrease of flow

by the same amount in all the branches of tree between the other end (702) of the respective

cotree branch and the source node of the network i.e. the streams s02 and sOL These

corrections can be applied directly to tree branches by treating it as a node load at the

respective nodes. Let 60,* be the node load for the ith node and at Kth iteration which is

same in magnitude as cotree flow correction A FKcotree (also changing &FcotreeK'! to 60 *"' in the

equation), then

(B-8)
Ji^ cotree' ~ fi^ cotree'

The same sign convention is adopted for these node loads as for the other streams i.e

it is positive for the flow coming into the node and negative for the outgoing flow. As

mentioned in section 3.2.2 the negative sign with the above node load reflects the desired

increase or decrease of flows in respective tree branches hence

(B.9)

Now we evaluate the overall system correction, which is sum of corrections at the

individual nodes. Let this be A<2* for Kth iteration. For our single loop network, there is only

one cotree branch linking the two nodes, so

305

Appendix-B Derivation of Correction Terms

These node loads are always equal for the respective end nodes of a cotree branch, so

for the single loop network and for (K-l)th iteration the above system correction can be re

written as

1 = 2x169
*-'

Substituting this in equation B.9 , the node load becomes

(B

The absolute term in the denominator term is also same for both nodes J01 and J02,

hence the equation can be re-written using summation form as

. * = " 2
Z^t \Ji cotree cotree
i=l

Using this node load term the system correction for Kth iteration for the single loop

network can be evaluated as

306

Appendix-B Derivation of Correction Terms

K _

or

2

wl.) - /, (JT^~^ \
^f cotree)

E 1/iCfi.) - K-l ,
cotree^

(B.13)

The relationship between the individual node load and the overall system correction

at Kth iteration can be obtained by dividing equation B.I2 by equation B.13, and re-arranging

as

cotret;
(B.14)

These relations can be extended for a multiple loop network having N nodes. In fact

only the nodes connected to cotree branches will have non-zero loads i.e. the flow imbalance

and others will have zero node loads but for computational ease the summations can be

extended to all internal and atmospheric pressure nodes (since these are linked to the system

by leak streams which are treated as cotree branches) of pellet induration systems. The

general relations for overall system error, A £>*, and distributed node load, 5 q? give the

Boyne's corrections used in section 3.3. These are

307

Appendix-B Derivation of Correction Terms

N

\JiWcotree) ~ cotree

N

E

The equations B.15 and B.16 form a complete set for the iterative computation. For

simplicity of the notation since/(FKcotree) is the node error, worked out using Kth iteration

flows irrespective of tree or cotree branches. Thus, in the text, the variable/* is used instead

To start with (that is for K=l) Boyne suggested to use

N

t-\ (B.17)

where/7 is the node imbalance computed from initial flow values of respective cotree

branches.

308

Appendix - C
Convergence of Primary Solution

Algorithm

According to the primary solution algorithm, which is described in section 3.3 and

shown in Figure 3.3, the improvement of stream flows in tree branches is continued until the

Error i.e. flow imbalance at each of the internal nodes becomes less than a pre-set tolerance,

Tolrnc. Mathematically

Error = maa.(fltf29 ...fN) = max(/j)

If the convergence is not achieved then further iterations are terminated after

performing certain pre-set maximum number of iterations, say Maxltr.

For a realistic simulation the leak areas cannot be opened to full extent in one go,

since these may lead to very large flows which can crash the program. Thus, from the initial

and final values of respective leak areas the required number of steps (of fixed size) are

worked out and the simulation is carried out step-wise feeding the finally converged values

of state variables (stream flows and node pressures) of current step as the initial values to the

next step plus the new set of leak areas. The nodal errors and overall system error are used

to update tree stream flows, until a converged solution is achieved for respective (incremental

309

Appendix-C Convergence of Primary Solution Algorithm

leak opening) step. This procedure is continued until final leak areas for all leaks are reached

(the computation procedure is explained in section 3.6 and algorithm given in Figure 3.14).

The per iteration values of (1) Error i.e. maximum of the nodal flow imbalance of all

of the internal nodes, (2) name of the node responsible which generated this error, and (3) the

overall system error i.e. A Q K by equation B.15 are shown in Block C.I for one of the steps

performed for the simulation of a real-life pellet induration plant whom pressure and flow

distributions are shown in Figure 5.5.

Block C.I: The per iteration values of Error, ResNode, and A ff for one of the
steps of the simulation

Itr
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Error
12.9
48.9
330.
53.0
19.4
8.05
17.8
33.1
9.45
3.21
3.16
3.31
35.4
28.5
5.60
1.62
1.42
1.35
4.06
7.63
3.42
1.08
1.07
1.25
8.42
11.5
1.35

0.918
0.879

RNode
R05
Rll
J08
J07
R08
R07
J07
J08
J07
J07
R07
J07
J08
J07
J07
R08
R08
R08
J07
R07
J07
R08
R08
J07
J08
J07
R06
R06
R06

DELQK
28.0
24.9
19.2
4.44
4.72
2.82
1.97
1.50

0.340
0.327
1.66
2.54
2.44
1.05

0.341
0.165
0.301
0.536
0.591
0.479
0.165
0.137
0.453
0.928
0.908
0.464
0.104
0.167
0.610

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

0
0
0

0
0
0
0

0
0
0
0

0
0
0
0
0

0
0

1.93
10.8
3.30
.623
.544
.496
1.43
16.7
4.76
.797
.419
.352
.154
1.10
4.34
.641
.151
.152
.137
1.71
5.59
.267
.906E-01
.880E-01
.828E-01
.934
1.69
.846E-01
.569E-01

J08
J07
J08
R06
R08
R08
J08
J07
J08
J07
R06
R06
R07
J08
J07
J08
R08
R08
R08
J08
J07
JOB
R08
R08
J07
J08
J07
J08
R08

0
0
0
0.
0
0
0
0
0
0.
0.
0
0
0
0
0.
0.
0.
0
0
0
0.
0.
0.
0
0

0.
0.
0.

.690

.580

.175
594E-01
.119
.892
.974
.886
.228
520E-01
409E-01
.223
.259
.263
.204
368E-01
181E-01
997E-01
.312
.313
.237
157E-01
983E-02
520E-01
.113
.112
717E-01
720E-02
808E-02

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.545E-01

.553E-01
1.66
1.79
.489E-01
.397E-01
.138E-01
. 644E-01
.127
.324E-01
.142E-01
.136E-01
.351E-01
.400
.168
.110E-01
.103E-01
.932E-02
.323E-01
.626E-01
.357E-01
.559E-02
.518E-02
.505E-02
.281E-01
.162
.299E-01
.383E-02

R08
J07
J08
J07
R08
R08
R06
JO 8
J07
J08
R08
R08
J08
J07
J08
R08
ROB
R07
J07
J08
J07
R08
R08
R08
J07
J08
JO 7
R08

0
0
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

.102

.145

.142
705E-01
382E-02
172E-01
975E-02
979E-02
701E-02
242E-02
193E-02
223E-01
242E-01
226E-01
741E-02
927E-03
667E-02
589E-02
549E-02
434E-02
182E-02
606E-03
201E-02
868E-02
891E-02
778E-02
134E-02
307E-03

In GASFLO, the Tolrnc is chosen as 5.0E-03, since the nodal errors i.e. flow

imbalance at internal nodes is worked out in Kilogram per second (Kg/sec) whereas at actual

plants the airflows are measured in tonnes per hour (tph), and with maximum accuracy of

±1.0 tph. The specified tolerance is less than 0.02 tph which is sufficiently small to produce

reasonably good physical results.

310

Appendix-C Convergence of Primary Solution Algorithm

Convergence of Primary Solution Method
Max Nodal Flow Imbalance Vrs Iteration

34 45
Iterations

Figure C.I The behaviour of maximum nodal error, Error, for a typical real-life pellet
induration system network

Figures C. 1 show the behaviour of Error i.e. the maximum nodal error with respect

to successive iterations. The system effectively converges in 45 to 50 iterations. Initially the

system has smaller error but it increases significantly in next few iterations to accommodate

the new leak flows and it dies down as the tree flows are accordingly adjusted. Some visible

oscillations are due to the dependence of error on different nodes as each iteration may be due

to a different internal node (see Block C.I). However, the magnitude of the error decreases

on successive iterations. The nodal errors could be either positive or negative, but the Error

being the maximum, always has positive value, as nodal errors alternate sign at the opposite

ends of the respective cotree branch, and thus there always exist some positive value (see

Appendix-B).

311

Appendix-C Convergence of Primary Solution Algorithm

Convergence of Primary Solution Method
Overall System Error Vrs Iteration

34 45 56
iterations

Figure C.2 The behaviour of overall system error for a real-life pellet induration system
simulation

Figure C.2 shows the overall system error A Q*, being some aggregate function of all

nodal values; it is positive, less violent and more smooth than the Error. Like Figure C.I, it

shows that the system converges in about 45 to 50 iterations.

The spreadsheet compatible debugging files for GASFLO, mentioned in section A.3.2

and briefly described in Figure A.3a, provide an excellent facility to monitor and study any

of the system variables at run time. The desired node pressures and errors, and stream flows

etc can be selected at run time through data input file for any step and for any range of

iterations. Later these files can be imported into any spreadsheet package (e.g. Lotus 1-2-3,

VP Planner, Quartro Pro or Microsoft Excell) and the respective variables can be analyzed

using the graphical facilities provided by the package. The graphs presented in this appendix

are generated using this facility.

312

Appendix-C Convergence of Primary Solution Algorithm

For example from Block C.I, it is evident that error at some of the iterations was due

to junction nodes J08 and J07 and region node R09. Referring back to the network

connectivity given in Block A.4 and illustrated in Figure A.5, these nodes connect streams

s26 and s07 respectively. In fact, the junction node J08 is at the exit of fan 1A, and the

stream linking it to node 707 is 526.

Nodal Error at Nodes - J07, J08, R09
Nodal Error Vrs Iterations

400

1 12 23 34 45 56
iterations

67 78

Figure C.3 The behaviour of the individual nodal errors mainly responsible for Error of

the system

Figure C.3 shows the behaviour of individual errors at nodes J08, J07 and R09. The

disturbing network component could also be tracked down from these monitored variables.

Figure C.4 shows the behaviour of flows in streams s26 and s07. It should be noticed

from the network connectivity that s26 is a cotree branch, and its flow is computed from the

respective end-node pressures i.e. pressures at nodes J08 and J07. This shows that although

313

Appendix-C Convergence of Primary Solution Algorithm

Stream Flows on Successive Iterations
(for streams s26 and s07)

200

IIMtmiMHilMH S26

34 45 56
Iterations

67 78

Figure C.4 Improvement of stream flows for streams s26 and 507

the flow distribution in tree branches is comparatively smooth (i.e. flow in sOT) but still the

computed junction pressures at J08, J07 are appreciable enough to generate a noticeable

variation in cotree branch flows (e.g. stream s26).

It is noticed that at initial steps, the system needed more iterations as compared to

later steps. Since in the later steps the converged values of system variables are used from

the previous steps.

314

