

JUSTGRID

A Pure Java HPCC Grid Architecture
for Multi-Physics Solvers
Using Complex Geometries.

Thorsten Ludewig

'\Q? V '.':;"}’
~ (53
2] T

A thesis submitted in partial fulfilment of the
requirements of the University of Greenwich

for the degree of Doctor of Philosophy

This research programme was carried out in collaboration with the
University of Applied Sciences Braunschweig/Wolfenbiittel
and the
HPCC-Space GmbH, Salzgitter

Germany

August 2009

Abstract

After the Earth Simulator, built by NEC at the Japan Marine Science and Technology Centre
(JAMSTEC) on an area of 3,250 m2 (50mx65m), began it's work in March 2002 with the
outstanding performance of 35,860 Gflops (40 TFlops peak) [TRIO0], numerous scientists opted in
favour of such a high-performance computation and communications (HPCC) approach,
suggesting to build again Cray type vector supercomputers that dominated scientific computing in
the mid seventies. Today (2009) the extended Earth Simulator has a peak performance of 131
TFlops but it was outperformed by several other systems with multi-core’ architectures. Top 1 in
June 2009 is the RoadRunner build by IBM for the DOE/NNSA/LANL with a peak performance of
1456 TFlops. Multi-core processors are now build in every PC for the consumer market and not
only for HPC systems. It should be remembered that the computer games industry is responsible
for the revolution in high end 3D graphics cards that convert any PC into a most powerful graphics
workstation. It should be obvious, despite the computational power of the Earth Simulator, that this
definitely is not the road of HPCC for general scientific and engineering computation.

“I hope to concentrate my attention on my research rather then how to program”, says
Hitoshi Sakagami, a researcher at Japan's Himeji Institute of Technology and a
Gordon Bell Prize finalist for work using the Earth Simulator [TRI0O0].

| fully agree with this statement, and this is one of the major reasons that | have chosen Java as
high performance computing language. Programming vector computers is a difficult task, and to
obtain acceptable results with regard to announced peak performance has been notoriously
cumbersome. On the other hand, multi-core systems with many processors on a single chip need
to be programmed in a different, namely a multi threaded way. Threads are a substantial part of the
Java programming language. Java is the only general programming language that does not need
external libraries for parallel programming, because everything needed is built into the language. In
addition, there are major additional advantages of the Java language (object oriented,
parallelization, readability, maintainability, programmer productivity, platform independence, code
safety and reliability, database connectivity, internet capability, multimedia capability, GUI (graphics
user interfaces), 3D graphics (Java 3D) and portability etc.) which were discussed in this thesis.

The objective of this work is to build an easy to use software framework for high performance
computing dealing with complex 3D geometries. The framework should also take care of all the
advantages and behaviours of modern multi-core/multi-threaded hardware architectures. In view of
the increasing complexity of modern hardware, working on solutions of multi-physical problems
demands for software, that makes the solving process mostly independent of the available

machinery.

1 A multi-core chip is composed of two or more independent CPUs (cores) in one single processor.

lllustration Index

llustration 1.1.1: GridPro grid of the European Experimental Test Vehicle (EXTV), a

structured grid with 780 blocks. Generated by GridPro™........evininniinnnn, 25
llustration 1.1.2: A structured grid of a turbine. Generated by GridPro™..........ccc.ocooevnn. 26
lllustration 1.2.1: Internal view of the turbine shown in lllustration 1.1.2. Generated by
€] Ts | 23 £o T TUUTTUTTRT PP P PP PPP PR PRPP PRI ELIEEOE 27
lllustration 2.1.1: Massive Parallel Processor System. All computing nodes are sharing one
COMMUNICAtION JAYET.....eieeeeeirie ettt s 29
lllustration 2.1.2: Symmetric Multi-Processor System (SMP) architecture diagram. 30
lNlustration 2.1.3: SMP with threads OVEIVIEW............ooiiiiiiiiiii 30
lllustration 2.1.4: Diagram of one multi threaded process............cccoviniiiiiine: 31
lllustration 2.3.1: UML class diagram of a sample engine class............cccocoonnnnnnnnn 32
Nlustration 2.5.1: A thread or execution context..........ccoriii 35
lllustration 2.5.2: Schema diagram of the ,,green thread" model...........ccccociinininnnnnn 36
lllustration 2.5.3: Schema diagram of the "one-to-one" thread model. One application
thread is mapped to one kernel thread..............ccooiii 37
llustration 2.5.4: "Many-to-Many" thread model. Many application threads are dynamically
mapped to many kernel threads............coooviii e 38
Mustration 2.5.5: Thread States......eeeriirer i 38
llustration 2.5.6: Object lock state before getting the lock flag...........cocooeiiiniiiiinnns 40
lllustration 2.5.7: Object lock state after getting the lock flag.....cccoceeeeeeeeeencinnieeeeeenen 40
lllustration 2.5.8: Object lock state while lock flag is missing, current execution thread will
DE DIOCKE. ..o 40
lllustration 2.5.9: Solution of the well known Mandelbrot Set..........ccooviiiinnn 41
lllustration 2.5.10: Computation of a Mandelbrot Set without any synchronization between
the compute threads.(Snapshot during computation)........ccccceiiiiiiennnn 42
lllustration 2.5.11: Computation of a Mandelbrot Set with global synchronization between
the compute threads (Snapshot during computation)..........coceeniiinnnnn 42
lllustration 2.5.12: Visualization of @ race condition error..........cciiie 43
lllustration 2.6.1: Computation of a Mandelbrot Set with Direct Neighbour synchronization
between the compute threads............covvriiin 44
lllustration 2.6.2: UML Class diagram for a JpMultiblockNode with Direct Neighbour
Synchronization implemented with JpNodeStatusimp.........cccoooeeiinnn 44
lllustration 2.6.3: UML State diagram of a multi block compute NOAE....oiieeiieeeeeerieeeine 48
llustration 2.6.4: Efficiency results for the different synchronization methods increasing the
NUMDBET Of PrOCESSOTS. ...ttt 50
llustration 3.1.1: JUSTGrid framework block diagram. Shows the different parts of the
JUSTGrId architeCtUre.......covviiiieieiier e 51
lllustration 3.3.1: JUSTGrid Architecture Overview. The server itself, in principle, can be
distributed over the internet. ... 54

10

Hlustration 3.4.1: Generic -- static numeric -- Solver procedure............c.ccoocniiniiinnn 55

lllustration 3.4.2: Dynamic JUSTGrid Solver sending NUMENCS............ccooovninininininnnnnnns 55
[Nustration 3.4.3: Dynamic JUSTGrid Solver sending data...............c.ooooiiiiinnin, 56
llustration 3.4.4: Dynamic JUSTGrid solver receiving your self-defined result.................. 56
lllustration 3.5.1: UML digram for JUSTGrid Session classes............ccccocovriiiiiinicciennnn, 57
lllustration 3.5.2: UML Diagram for the JUSTGrid Solver Interface..............c.ccocoeiiiie, 59
lllustration 3.5.3: UML class diagram of the JUSTGird multiblock implementation............. 60
lllustration 3.5.4: The JpCell class represents one cell in a solution domain...................... 61

lllustration 3.5.5: This interface must be filled out for the different boundary conditions.....61
lllustration 3.5.6: The Session object is the interactive steering interface between the client

application and the SErVer.........ccooooii i 61
lllustration 3.6.1;: UML diagram of the JUSTGrid Server classes.........cccccoeeeiiniiiiiiiiiinnnnn.l 62
llustration 3.7.1: JUSTGrid: Client Graphical User Interface (GUI) with an opened class
browser dialog for selecting the solver class to be used........................... 63
lllustration 3.7.2: The Virtual Visualization Toolkit (VVT/ShowMe3D) showing a shaded
triangulated surface of a generic Car...............coe e 63
lllustration 3.7.3: The Virtual Visualization Toolkit (VVT/ShowMe3D) showing a wireframed
triangulated surface of @ generic Car.........oooooi oo 64
lllustration 3.7.4: VVT is showing an Alias Wavefront object file of Cassini........................ 65

lllustration 3.7.5: VVT showing a multiblock Plane3D surface of the European
Experimantal Test Vehicle (EXTV)..... e, 66

lllustration 3.7.6: A simple JUSTGrid front-end for a 2D mono block solver. The 3D mono
block solver is being developed. Upon testing, this solver is merged with

the parallel infrastructure of the JUSTGrid...........cccoooiiiiiii e 67
lllustration 3.7.7: Online view of the solution progress (video production).......................... 68
lllustration 3.7.8: Online visualization of a 3D sphere with JUST Euler 3D......................... 68
lllustration 3.7.9: GRX2D Tool showing a multiblock grid of a NACA 0012 airfoil............... 69
lllustration 3.7.10: GRX3D Tool showing the bounding box and the block boundaries for a
grid of asharp Cone........ooii e 70
lllustration 3.7.11;: GRX3D Tool showing bounding box and all block faces being related to
inflow and wall boundary conditions for sharp cone grid........................... 71
lllustration 3.7.12: GRX3D showing block boundaries and wall bc for a 780 block grid of
the European Experimental Test Vehicle (EXTV).......ccoiiiiiiiiiiiiniinne, 71
lllustration 3.7.13: GRX3D showing the bounding box and all faces being related to wall
and outflow boundary conditions for a 780 block EXTV grid..................... 72
lllustration 3.7.14: GRX3D showing the bounding box and all faces being related to wall
and inflow boundary conditions for a 780 block EXTV grid....................... 72
lllustration 3.7.15: GRX3D showing an enlarged/zoomed view to all faces being related to
wall boundary conditions fora EXTV grid...........ccccovveviiviiiiieiiiieeeeeeee 73
lllustration 3.7.16: The three different option tabs of GRX3D ..., 73

11

Hlustration 3.8.1: Schema diagram for JUSTGrid mixing programming languages via Java

Native INterface JNI ..o e et e e e e e ea 74
lllustration 4.3.1: Description of the Standard Cube............cccooovvieeiiicie e, 77
lllustration 4.3.2: Orientation of faces. Coordinates |, J, K are numbered 1,2,3 where

coordinates with lower numbers are stored first..........coocovvviiiiiiiiiieeinnnn.e. 78

lllustration 4.3.3: Determination of orientation of faces between neighboring blocks as seen
from block 1(reference block). The reference block is always oriented as
shown and then the corresponding orientation of the neighboring face is
determined. (see lllustration 4.3.4).........ccccevereiiiiiiiiiiiee e, 79

lllustration 4.3.4: The illustration shows the overlap of two neighbouring blocks. For the
flow solver, an overlap of two rows or columns is needed. The algorithm is
not straightforward, because of the handling of diagonal points............... 79

lllustration 4.3.5: The 8 possible orientations of neighboring faces are shown. Case 1 to 4
are obtained by successive rotations. The same situation holds for cases 5

to 8 upon being MIrrOred.............coooiiiiiieee e e 80
lllustration 4.3.6: Block structure of a solution domain. JUSTGrid creates one JpBlock and

one Solver instance per grid bloCK.............uoveiiiiiiiiiiiiee e, 80
lllustration 4.3.7: JpBlock contains grid data and JpCell instances...........ccccccccccciiinnn, 81
lllustration 4.3.8: Every JpBlock has six JpFace objects with one JpFacePart per JpFace81
lllustration 5.3.1: Waves in a 1-D MHD Riemann problem.............cooooiiiiiiii 89
lllustration 5.5.1: shows the transverse components of MHD..............cooviiiiiiiiiil, 102
lllustration 5.5.2: shows the transverse components of MHD..................ccooii el 103

lllustration 5.6.1: 2D Case: finite volume grid variables known only at cell centers. Vector
components in the i, j, k directions. (3D) are denoted by indices 1, 2 and 3
respectively. We also can denote components by x, y and z indices, simply

considering the Cartesian case...........c.ccceeieiiiiiiiicci e, 105
lllustration 5.6.2: Discretization of in 2D Case..........oooviiiiiiiiiii e 107
lllustration 5.6.3: Discretization of induction equation..............ccoooiiiiin] 107
lllustration 6.4.1: A test pattern was sent through the solution domain step by step......... 112
llfustration 6.4.2: 9 blocks with all 8 possible orientations............ccooeeiiiiiiii 113
lllustration 6.4.3: Starting test pattern...........coo e, 113
lllustration 6.4.4: Observing the boundary exchange between the blocks........................ 114
lllustration 6.4.5: The correct transport across all block faces was observed................... 114
lllustration 6.5.1: A contour slice of a Laplace 3D solution forabump...........ccoeooeiiiinnnl. 116
lllustration 6.5.2: Screenshot of a solution (density distrubution) for a bump using
Metacomp CFD ... 117
lllustration 6.5.3: Rho (density) distribution over a bump after 1000 iteration with
JUSTSO0IVEr BUIET 3D ...t 117
lllustration 6.5.4: 3D view for a p (density) distribution over the Onera bump using
JUSTSoIVEr BEUler 3D.... .o 118
lllustration 6.5.5: Verification of the stream lines (vectors)..........coo.ooviiiiiieiiieieiee 118

12

lllustration 6.5.6: JUSTGrid GRX3D, simulation preparation tool, showing the grid of the

cone wall and the outflow face.........ccuvieiiieiiiiiiii e, 119
lllustration 6.5.7: JUSTSolver Laplace 3D, Cone, showing one slice on the y-plane........ 119
llustration 6.5.8: JUSTSolver Laplace 3D, Cone, showing the outflow boundary............. 119
lllustration 6.5.9: JUSTSolver Laplace 3D, Cone, showing block edges with one

Aeactivated DIOCK.coceee et e e 119
lllustration 6.5.10: JUSTSolver Euler 3D showing Mach number solution in symmetry

o1 =1 ([T PSPPSR PRTOPPRPPI 120
lllustration 6.5.11: CFD++ comparison simulation.................cococcc e 120
lustration 6.5.12: JUSTSolver Euler 3D with legend and two slices..........c.ccccccinn. 120
lllustration 6.5.13: GridPro™ grid, showing inflow and wall boundaries........................... 121
lllustration 6.5.14: JUSTGrid GRX3D Tool, showing EXTV wall boundary........................ 121
lllustration 6.5.15: JUSTSolver Laplace 3D, EXTV showing one slice at the y-plane....... 121
lllustration 6.5.16: JUSTSolver Laplace 3D, EXTV 3D VieW......cccccoooiiiiiiiiiiiiiiiceeeeeeeeee, 121

lllustration 6.5.17: Timings and efficiency results for 1 to 8 processors, running 2,000
iterations with JUSTSolver Laplace 3D on a 780 blocks EXTV grid........ 122

lllustration 6.5.18: Speedup and efficiency results for 1 to 8 processors, running 2000
iterations with JUSTSolver Laplace 3D on a 780 blocks EXTV grid........ 122

lllustration 7.1.1: JUSTSolver Euler 3D, EXTV, Mach number distribution....................... 125
lllustration 7.1.2: EXTV, Mach number distribution on transparent slices......................... 125

lllustration 7.1.3: Computing time and efficiency results for 1 to 8 processors, running 200
iterations with JUSTSolver Euler 3D and ParNSS on a 780 blocks,
755,300 grid points, 538,752 cells EXTV grid............ooooriiiiiiiiiiieieieenen. 125

lllustration 7.1.4: Speedup results for 1 to 8 processors, running 200 iterations with
JUSTSolver Euler 3D and ParNSS on a 780 blocks, 755,300 grid points,

538,752 cells EXTV Grid. ... i e 126
lllustration 7.2.1: 1D MHD solution, rho (density) distribution for well known Brio & Wu
ShOCK tUDE..... ..o 127

lllustration 7.2.2: The solutions depicted above are a comparison between the classical
Finite-Volume (FV) method (first row) and a divergence-conserved FV
method (second row). Depicted are the contour of By and the absolute
value of the numerical divergence operator for the magnetic induction,

lllustration 7.2.3: Computational results as obtained from JUSTSolver 2D MHD code for
2D Riemann problem: left: density distribution, right: pressure distribution.
The results from Torrilhon are shown in lllustration 7.2.3. (grid: 300X300,
12018 129

lllustration 7.2.4: Computational results for 2D Riemann problem: left: distribution of
velocity in x direction, right: distribution of velocity in y direction. (grid:
B00X3B00, 150,08) it 129

lllustration 7.2.5: Computational results for 2D Riemann problem: left: Bx distribution, right:
By distribution. Comparison with lllustration 7.2.2 shows excellent
agreement with Torillhon results. (grid: 300 x 300, t=0.18)........cevveren..... 130

lllustration 7.2.6: JUSTGrid GRXMonoblock Tool GUI, showing online visualization while
the 2D MHD Riemann solver is rUNNINgG.........cceriiieiiiiiiii e 130

lllustration 8.1.1: Simple numeric benchmark on a Sun Microsystems Enterprise 10000
with 64 UltraSPARC Il CPUs and 256GB main memory..........c.............. 132

Hlustration 8.1.2: The Enterprise 10000 running all 64 CPUs with 100% load during the
(o1 00 o101 =1 (0] s HUUR SRS 133

lllustration 8.1.3: This benchmark shows the very small amount of overhead using threads.
This benchmark was done on a Sun Microsystems Enterprise 6000 with

28 CPUS .. .ot e e 133
lllustration 8.2.1: Parallel efficiency results for an unoptimized Euler 3D code on a Sun Fire

XAAAQD. ... et a e e e e e e et arraaaa s 135
lllustration 8.2.2: Parallel efficiency results for an optimized Euler 3D code on a Sun Fire

XAAAD....... et a e e e et a e e e e e 137
lllustration 8.3.1: Sun T5240 running JUSTEuler 3D with “load=1"...................cerrrrrnnnnn.e. 138

lllustration 8.3.2: Sun T5240 running an optimized JUSTEuler 3D with “load=100"......... 139
lllustration 8.3.3: The illustration shows, increasing computational load by a factor of 20,

that utilization level was already at more than 90%..............ccoovvvvnnnnnn.n. 139
lllustration 8.3.4: Efficiency gains from solver optimization and increased computational
oY= [R U PR 141
lllustration 8.3.5: Parallel speedup gains from solver optimization and increased
computational 10ad............ooooiiiii i 141
lllustration 8.3.6: Parallel speedup gains from solver optimization and increased
computational load based on four cores...........ccooeevvviiiiiiiiiiiiis 142
lllustration 8.3.7: Timings and parallel efficiency results for a Sun Fire X4600, optimized
Euler solver, 10ad=200. ...t 144
lllustration 8.3.8: Efficiency gains from solver optimization and increased computational
load based on four cores comparison for the Sun Fire X4600................ 145
lllustration 8.3.9: Parallel speedup gains from solver optimization and increased
computational load based on four cores for the Sun Fire X4600............ 145
lllustration 8.3.10: The numeric performance progress of the last three major releases of
the server Java Virtual Machine JVM.............oiiiii e, 146
lllustration 8.3.11: The 10 performance progress of the last three major releases of the
server Java Virtual Machine JVM............ooiiic e 147
lllustration 8.3.12: A screen shot of Windows Server 2008s task manager and a linux
perfbar BINAry.......c.coooii e 148

lustration 9.1: JUSTCube this cube illustrates all indices, directions and rotation bases
USEd WIith JUST GIIA. ... 243

14

Index of Tables

Table 2.2.1:

Table 6.1.1:
Table 6.5.1:
Table 6.5.2:

Sequential matrix multiplication using a 30 times 30 matrix doing 10000
iterations on a Linux Pentium 4 PC........oies 31
Computer systems successfully tested With JUSTGrId....ceeeeeeiiieieieiieieeen, 111
Monoblock result for a Laplace 3D computation..........ccovvniinneeen 115
Laplace 3D result for a simple 7 block rectangular grid.............cooociiiiiinns 115

Table 8.1.1: A sequential (1 thread) matrix multiplication using a 30 times 30 matrix doing

Table 8.1.2:

Table 8.2.1:
Table 8.2.2:
Table 8.3.1:

10000 iterations on a single processor Pentium 4 PC running Linux......131

Multithreaded matrix multiplication using a 100 times 100 matrix doing 10000
iterations with 400 threads on a 26 CPU Sun Microsystems Enterprise
12101010 JERTUUUT T T TP T T U U SO P PSP PRSP PR SPPPELPFTTENLIELE 132

Timing results for an unoptimized Euler 3D code on a Sun Fire X4440........ 135

Timing results for an optimized Euler 3D code on a Sun Fire X4440............ 137

Fully utilized Sun Fire X4600 system with 10ad=200.......cccooeiiiii, 143

15

Nomenclature and Constants

e,=1.6x10°°C

j=pv

R(}

5 =1.38054x 10 J/K
N

k

b

area
magnetic induction field

speed of light in vacuum

Alfven wave speed

displacement field

displacement current

total energy per unit mass or per unit volume
(internal plus kinetic plus magnetic energy)
internal energy per unit mass

electric energy density

electromagnetic energy density

unit vectors (Cartesian system in x, y, z direction)
magnetic energy density

electron charge

electromagnetic momentum density
magnetic field

current density

thermal diffusivity

Boltzmann constant

diffusivity

magnetization per volume

17

m,=9.1x10 " kg
N ,=6.023% 10°/ kmol

T A =137x10°T 32

D= e \p 172
3 n

¢

N

P

P =l)-=—ﬁuc
"Lk

el __"e Vel

vi_L_m/v/_L

v .
“ w. ZeB

Re =£=v Laum

m r]
R,=8.31x10"J/Kmol-K

S
T

v=(u,v,w)
v=(vx,vy,0)z'n 2D

Greek Symbols
p=p(x,y, z,1)

p.

18

magnetic Mach number

magnetic stress tensor components
electron mass

Avogadro number

number of electrons in a Debye sphere

polarization per volume

Prandtl number

charge (electric)

electron cyclotron radius (only the velocity component
perpendicular to the magnetic field is effective)

ion cyclotron radius (only the velocity component
perpendicular to the magnetic field is effective)

Reynolds number

magnetic Reynolds number

universal gas constant

Poynting vector

temperature

velocity vector

mass density

electric charge density

%
12
€k T
A[)=- 2
n,e
H=vp
1
n____
Uu”l
eouocz=1
L
o

¢, (4)=[B-dA
b,(4)=[D-da
A
€
Ho
My
o
ne
O,=—
m,v,
, 1”2
n,e
w,,=
g meZzeO
172
ne
w, =
d m,2260

2
kinematic viscosity {TS—}

Debye shielding length
dynamic viscosity

magnetic viscosity (diffusivity)

specific resistance

electric flux, the area A is bounded by curve C

magnetic flux (is 0 if A is closed)

if medium is polarized

e 1n A
permittivity of free space = 8.85x 107222
m
permeability of free space = 47X 10_75—:1

magnetic permeability

Q

n

conductivity

plasma conductivity for direct current

electron plasma frequency

ion plasma frequency

19

w =
pe 2
m,Z" e,
2
BO .
P,=5— magnetic pressure
Ho

Characteristic Numbers in Magnetohydrodynamics

Avogadro number
N ,=6.023% 10°/kmol

Alfven velocity (wave speed)
B

C =

VHy P

Hartmann number
(magnetic body force / viscous force)

1 1
5 ,ReRe, 5
KH=(O' BzL2/H)2=(—A'4;—>2

nt

Mach number

v
M=~
a

Magnetic Reynolds number

Rem=£=vL0um

m

20

Prandtl number

P =l=uc”
"Lk

Reynolds number

_vi
Re= T

Abbreviations
BC

CFD
EFA
HLL

HLLC

MHD
MPI
MPP
JUST
PDE
PVM

SMP

Boundary condition
Computational Fluid Dynamics
Electromagnetic Field Actuators
Harten-Lax-van Leer
Harten-Lax-van Leer-Contact discontinuity
Initial condition
MagnetoHydroDynamics
Message Passing Interface
Massively Parallel Processing
Java Ultra Simulator Technology
Partial Differential Equation
Parallel Virtual Machines

Symmetric MultiProcessing

21

Acknowledgment

| am most grateful for the opportunity to do this research to Prof. Dr. Jochem H&user and Prof. Dr.
Mayur Patel. In particular, | gratefully acknowledge the large number of discussions and the
substantial support of Prof. Dr. Jochem Hauser.

Many thanks are conveyed to my friends Torsten Gollnick, Olav Rybatzki and Dr. Ralf Winkelmann
for their selfless support.

| would like to thank Jean Muylaert ESTEC, ESA, Noordwijk, The Netherlands for his continuous
interest and the provision of wind tunnel data.

| am grateful to Prof. Peter Eiseman, Program Development Comp., White Plains, New York, USA

for numerous stimulating discussions especially on the field of grid generation.
| would like to thank my parents for their encouragement and support.

My heartiest thanks go to my godfather Helmut Scholz for his unselfish help in a hopeless

situation for me.
Last but not least, | would like to thank my family for their support and time to complete this thesis.

This work was partly funded by the ministry of Science and Culture of the State of Lower Saxony,
Germany under AGIP 1999.365 EXTV program.

JUSTGrip was also part of the following EFRE projects partly funded by the ministry of Science
and Culture of the State of Lower Saxony, Germany and the European Commision under contracts
JavaPar 1998.262 and JUST 2002.108.

23

1 Motivation of the Thesis

on page 34). A thread of context wastes much less resources than MPI and PVM libraries. In fact it
demands substantially less resources than a process handled by the operating system. Therefore
a multithreaded application is able to run thousands of threads in a single process. Thread
programming for HPCC and how it is possible to achieve excellent parallel efficiency, with the new
developed Direct-Neighbour-Synchronization (DNS) will be discussed in chapter 2.5 on page 34. It
will be shown in chapter 8.1.1.3 on page 128 that threads give excellent dynamic load balancing.

In addition, Java has great advantages over languages like C, C++ and Fortran because the thread
concept is a built in feature in the language, and hence there is no need to link against libraries that
are operating system dependent.

In addition to the extensive usage of threads for high performance computing and communication
in a pure Java runtime environment, the software framework created as described in this work

provides even more important features.

There exist loaders and writers for various 3D file formats that free the programmer from dealing
with complex geometries. In order to reduces geometry complexity boundary fitted coordinates are
utilized, performing a transformation from physical space to computational space. In computational
space the complex geometry is represented by a uniform rectangular multiblock grid. Naturally the
physical equations have to be transformed as well but there type does not change.

All communication between processors for dynamic load balancing is done by the framework itself.
The solver developer can therefore concentrate on the solution of the governing equations on a
simply connected domain also called a block.

A user of the framework can exchange the default solver by his own solver version during the
compute session, sending the Java compiled byte code to the compute host.

Due to the implemented client/server concept, the Internet capabilities and the interactive steering
features of the framework the possibility of collaborative engineering is provided over an encrypted

secure connection.

In summary the JUSTGrip framework takes care of all geometrical complexity, which is one of the
most difficult part in three dimensional simulations, and provides complete static as well as

dynamic load balancing.

28

2 High Performance Computation Fundamentals

sequential or parallel architectures is essential to provide the raw computing power needed in the
analysis as well as in the design cycles for new air- or spacecraft. Location and type of computer
hardware as well as operating system issues should be totally irrelevant to the user, and he should
not be even aware of the kind of architecture being used as long as the necessary computing
power is provided.

2.4.5 Portability

Most languages are compiled directly to the machine code of the machine on which they are to be
run, meaning that there can be many versions of the executable, one for each machine. The
addition of software and compiler versions to this can make distribution quite difficult. The Java
compiler, on the other hand, generates a neutral file format (extension .class), so called byte code,
from the Java code (extension .java) that is executable on any machine that provides the Java
Virtual Machine software, which is practically universally available, translating the byte code in

native machine code.

2.4.6 Leveraging Business Investment

Programs written in Java can take advantage of the huge investment in the language by the
commercial world. In particular, there are high-quality, free security packages available to provide
authentication and encryption services across a distributed network. We can use commercial Java-
based collaboration tools to allow geographically-distributed groups of engineers to work together.
We can use web technology to allow engineers to run simulations on the supercomputer without
the arcane knowledge of the system that is currently necessary.

2.4.7 Multithreading

In Java, concurrency is achieved via the thread (see also chapter 2.5 on page 34) concept. The
thread concept is best explained by a simple example: consider a TV-screen that posts several
channels at the same time, each shown in its separate small rectangular window. Although these
windows (threads) are independent, they are part of the main screen (process), i.e. they share the
same address space. Threads are run concurrently, the mapping of threads to processors as well
as the scheduling being done by Java and the OS. Thus we have a way to get dynamic load-
balancing of a parallel application without explicitly assigning tasks to processors: a threaded
application is said to be self scheduling. Java also provides a mechanism for synchronizing threads
and for sending messages between threads. Furthermore, we no longer need message-passing
libraries such as MPI and PVM to communicate between threads, but we can use shared memory
or RMI (Remote Method Invocation) instead.

33

2 High Performance Computation Fundamentals

Threads are a substantial part of the Java programming language. Java is the only general
programming language that does not need external libraries for parallel programming, because

everything needed is built into the language.

2.4.8 Dynamic linking

Dynamic linking is the ability for a program to link to external code at runtime. For example,
suppose we have a set of linear equation solvers: Gaussian elimination, GMRES, Multigrid, LU-
decomposition, etc. Traditionally, all of these are linked into one executable file; whereas dynamic
linking allows a new solver to be linked at runtime. Besides reducing code size, this feature allows
software components to be replaced and maintained without relinking the entire code.

2.4.9 Remote Method Invocation

With a distributed computing system, for example, an engineer at a workstation running a
supercomputer simulation, the engineer would like to see the computation just as if it were
happening on the workstation. Java RMI is one way to do this: the engineer (client) manipulates
objects with a user interface, but the actions he performs (the method invocations) are actually
performed on objects on the supercomputer (the server). This transparent distribution of the
computation and steering are vital if we are to provide both the immediacy of a workstation code

with the computational power of the supercomputer.

2.5 Thread programming in HPCC

This chapter gives a general introduction about threads and shows the special issues in thread
programming for high performance computing and communication. It also demonstrates how it is
possible to achieve excellent parallel efficiency utilizing the newly developed Direct-Neighbour-

Synchronization (DNS), while dealing with tens of thousands or more threads.

The thread concept as basic parallelization strategy, delivers an enormous number of options to
speed up parallelization, since fine tuning by threads on all levels of parallelization (i.e, domain
decomposition, numerical algorithm, loops etc.) of a computation is possible

2.5.1 What are Threads?

In Java, concurrency is achieved via the thread concept. The thread concept is best explained by a
simple example: consider a TV-screen that posts several channels at the same time, each shown
in a separate small rectangular window. Although these windows (threads) are independent, they

are part of the main screen (process), i.e. they share the same address space. Threads are run

34

2 High Performance Computation Fundamentals

concurrently, the mapping of threads to processors as well as the scheduling being done by Java
and the OS. Thus, we have a way to get dynamic load-balancing of a parallel application without
explicitly assigning tasks to processors: a threaded application is said to be selfscheduling. Java
also provides a mechanism for synchronizing threads and for sending messages between
threads.

Multithreaded programs extend the idea of muiltitasking one level further such that individual
programs (processes) will appear to perform multiple tasks at the same time. Each task is called a
thread which is the short form for thread of control. Programs that can run more than one thread at
a time are said to be multithreaded. A thread consist of three parts . a virtual CPU, the code to be

executed and the data the code works on.

lllustration 2.5.1: A thread
or execution context

2.5.2 Threads vs. Processes

The architectural differences between threads and processes are shown in chapter 2.1 on page
29 The results shown in chapter 8.1.1.3 on page 128 demonstrates perfectly the lightweight
character of threads.

35

2 High Performance Computation Fundamentals

methods have been deprecated. suspend () is a deadlock prone and stop () is unsafe in terms

of date protection.

Although the thread becomes runnable, it does not necessarily start running immediately. Only one

action at a time can be done on a machine that has a single processor.

In Java technology, threads are usually preemptive, but not necessarily timesliced (the process of
giving each thread an equal amount of CPU time). It is a common mistake to believe that
“preemptive” is a fancy word for “does timeslicing”. The behaviour of most JVM implementations
appears to be strictly preemptive. But across JVM implementations, there is no guarantee of
preemption or timeslicing. The only guarantees lie in the developer's use of wait () and sleep().
The model of a preemptive scheduler is that many threads might be runnable, but only one thread
is actually running. This thread continues to run until either is ceases to be runnable, or another
thread of higher priority becomes runnable. In the latter case, the lower priority thread is
preempted by the thread of higher priority, which gets a chance to run instead.

A thread might cease to be runnable for a variety of reasons. The thread's code can execute a
Thread.sleep () call, deliberately asking the thread to pause for a fixed period of time. The
thread might have to wait to access a resource, and cannot continue until that resource becomes

available.

All threads that are runnable are kept in pools according to priority. When a blocked thread
becomes runnable, it is placed back into the appropriate runnable pool. Threads from the highest

priority non-empty pool are given CPU time.

2.5.5 Thread Synchronization

2.5.5.1 The Problem

Imagine two threads having a reference to a single instance of a stack class. One thread is
pushing data onto the stack and the other one, more or less independently, is popping data off the
stack. In principle, the data is added and removed successfully. However, there is a potential

problem.

Suppose thread a is adding and thread b is removing characters. Thread a has just deposited a
character, but has not yet increment the character index counter. For some reason this thread is

now preempted. At this point, the data model represented in the stack object is inconsistent.

38

2 High Performance Computation Fundamentals

2.6.2 JpNodeStatusimp

The method “readForSync” has two tasks providing the caller method with the current syncld and

notifying all waiting neighbours (threads) about the new state of this node.

synchronized public int readyForSvync ()
{
this.syncId++;
this.setRunState(READY FOR SYNC);
notifyAll();

return syncId;

synchronized public void checkSync(int iteration, int syncId)
{
while (true)
{
if (this.iteration > iteration)
{
break;
}

if ((this.iteration == iteration) && (this.syncId >= syncld))
{

break;
}

try
{
wait();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}

If the current compute node is behind or exactly at the same state as the comparing neighbour
node the execution thread will immediately return from the “checksSync” method. If the current
node is ahead compared to the neighbour node the execution thread will be set into the wait-state.
The execution thread will wait at this point until it receives the notification from the

‘readyForsync” method.

45

3 Multiphysics Framework - JUSTGrid

JUSTGrid provides a layer, the solver package layer, to be implemented on the client site. This
layer is a Java interface, that is, it contains all methods (functions in the context of a procedural
language) to construct a solver whose physics is governed by a set of conservation laws. An
interface in the Java sense provides the overall structure, but does not actually implement the
method bodies. i.e., the numerical schemes and the number and type of physical equations. This
JavaSolver-Interface therefore provides the software infrastructure to the the other two layers, and
thus is usable for a large class of computational problems based on finite volume formulation. It is
well known that the Navier-Stokes equations (fluid dynamics), Maxwell's equations
(electromagnetics, including semiconductor simulation) as well as Schrodinger's equation
(quantum mechanics) can be cast in such a form. Thus, a large class of solvers can be directly
derived from this concept. The usage of this solver package, however, is not mandatory, and any
solver can be sent by the client at run time. All solvers extend the generic solver class, and in case
a solver does not need to deal with geometry, the generic solver class is used directly instead of

the conservation law solver class.

3.2 Highlights

Replace the default solver with your own solver (mathematics).
The design of JUSTGrid allows to replace the default computation class (Solver, Cell,
SessionHandler, BoundaryHandler, ...) on the server, except the Session and Master

Implementation.

Free configurable solver plugin service

Set/Get any value to your solver (Reflection API).

Exchange the solver online during computation.
The exchange of a specific class on the JUSTGrid server can be initiated while the

computation is running without a restart cycle.

Dynamic load balancing obtained for free on SMP Architectures.
Dealing with multithreaded architectures transfers the responsibility for the load balancing
from the application to the operating system. Modern operating systems like Sun Solaris are
very efficient in distributing the thread load on the available collection of CPUs.

Simple geometrical model for the programmer.

JUSTGrid frees the programmer from dealing with complex geometries. The programmer

48

3 Multiphysics Framework - JUSTGrid

focuses on a cell only that is in a mathematical universe where every edge has normalized
length 1. The transformation from the physical- to the mathematical- coordinate system is
done by JUSTGrid.

« Simple Solver API (interface)
The motto observed during the whole design process is that of Einstein who said: Make it as
simple as possible but not simpler. For example, if one likes to write his own multiblock
solver one has to implement only a single method named solve. For other types of solvers

only a few more methods need to be implemented. lllustration 3.1.1 on page 47 depicts an
UML class diagram of the JUSTGrid solver interfaces.

« OnlineVisualization on demand

JUSTGrid provides access to all computational data in the solution domain at any arbitrary
state of the computation. lllustrations 3.5.3 and 3.5.2 are showing online visualizations of the

solution domain.

« Collaborative engineering

Via a unique Session-ID, multiple clients are able to connect to the same compute session
on the server. As an example: if an engineer wants to ask an expert about the correctness of
his computation which is currently running, the engineer sends the Session-ID to the expert,
who could then connect to this compute session and visualize the computation online,

providing his feedback to the engineer.

* Multiple sessions on one server.
The JUSTGrid server is able to run as many sessions as you want; it is only limited by the

available resources on the server system.

+ Application and network security

Java has a very smart security architecture that protects your code and data from
unauthorized access or modification. JUSTGrid benefits from these application security
features and uses the network security layer for client/server communication.

. Loaders and writers for structured and unstructured grids and TecPlot™ data files are

available.
Data files can be stored on the client as well as on the server side.

49

3 Multiphysics Framework - JUSTGrid

54

JpSessionImp is the implementation of the JpSession and the JpServerSession interfaces
on the server side. It is the central object for one complete simulation. It interacts with the

client over the network, initializes all solvers and handles the complete 10.

JpClientSession is the counter part of JpSession on the client side. It is responsible for the

interactive steering, 10 and handles the “callback” events. (e.g. the computation has
finished)

JpClassLoader loads all Java-Class file binaries sent from the client (e.g. JpCell, JpSolver.

JpSolverHandler) into the server memory. It is also responsible for the class security.

JpSessionMonitor provides online information about the state of the overall computation

and also of the state of a single node.

JpSolverHandler initializes the solver parameter provided by the client. It could also be

used to implement additional data input or output formats.

JpSolver contains the numerical implementation for one block.

JpNode, JpMultiblockNode is the execution container for JpSolver. It initializes and runs the

computation, does the boundary exchange, and finalizes the computation.

JpNodeStatus, JpNodeStatusimp gives information about the current state of a node and

implements the synchronization with the attached neighbours.

4 Multiphysics Solver Development with JUSTGrid

4 Multiphysics Solver Development with JUSTGrid

The JUST Framework architecture is prepared for unstructured, structured and merged grids. At

this time the full implementation is only available for structured grids.

4.1 Development Prerequisites
A Java Development Kit (JDK) version 1.4.2 or higher. (http://java.sun.com)

Java 3D APl version 1.3.2 or higher. (https://java3d.dev.java.net/)

A source editor or an Integrated Development Environment (IDE) | prefer the NetBeans IDE

(http://Iwww.netbeans.org) but you can use any editor or IDE you want.

The JUSTGrid archive file named just-fw. jar

Make yourself familiar with the following JUST Framework classes:

O

O

O

hpcc.just.domain.JpCeli
hpcc.just.domain.JpFace
hpcc.just.domain.JpFacePart
hpcc.just.domain.structured.JpBlock

hpcc.just.share.JpMultiblockSolver

If your solver needs to have special initialization methods you also must have a look at the

following two class definitions.

o hpcc.just.share.JpSolverHandler

o hpcc.just.client.JpGenericSolverHandler

For a better understanding of the internal classes you should also read the documentation of

the mathematical vector classes.

o hpcc.math.JpPoint

o hpcc.math.JpVector

o hpcc.math.JpVectorMath

71

4 Multiphysics Solver Development with JUSTGrid

4.2

72

1.

10.

11.

Sample integration of an Euler3D solver into JUSTGrid

Compile the solver as it is.

Run the solver with a well known example and save the result for comparison with the
migrated solver.

Create a new NetBeans project and copy all solver classes into the source directory of this
project. This is an optional task.

Move all solver classes into a new Java package to avoid naming conflicts.

Add the just-fw.jar archive to the projects library settings or add it to your classpath

environment variable.

Determine or create the class files for cell, solver, and boundary handler
Check the order of cell array indices, they must be [lmin-Imax] [Jmin=Imax] [Kemin-Kmax]
Compile the cell, solver, etc. classes

Create a startup.properties file. For more information about this file see chapter 4.4
on page 78.

Start

java hpcc.just.app.cli.Main

ATTENTION: Make sure that all classes of the solver are in the classpath.

Compare the result with the result computed in point 2 to make sure that the changes were

correct.

4 Multiphysics Solver Development with JUSTGrid

77

4 Multiphysics Solver Development with JUSTGrid

4.4.2 Input and output file section

This section describes all input and output files. JUSTGrid is able to handle more than one input
and one output file. This is really important if grid and topology information as well as boundary
conditions are stored in different files. JUSTGrid can also store the result using different data types
(e.g. Tecplot) in seperate files.

Type and name of each input and output file must be specified. A list follows of all file formats
known by JUSTGrid see chapter 4.3.2 on page 76.

input.file.type.0O=gpg
input.file.name.O=blk.tmp
input.file.type.l=gpc
input.file.name.l=blk.tmp.conn

output.file.type.0O=plt
output.file.name.O=output.plt

4.4.3 Numerical section

The numerical section contains only one entry, namely the number of halo-cells to be created
around the blocks for inter-block connectivity (see lllustration 4.3.2)

param.numerical .halocells=1

4.4.4 Physical section

The physical section sets the geometry type of the computation 2D or 3D.

param.physical.type=3D

4.4.5 Solver parameter section

This section can be freely defined by the solver developer or engineer.

param.solver.MaxIterations=1000
param.solver.MachNumber=1.0

Every solver parameter starts with solver.param and will be passed through by JUSTGrid as
an initialization value to every solver instance. The technique to communicate between the
startup.properties file and the solver instance is very easy for the deveploper. Simply write a

name corresponding to the so called setter method into the solver class. In our case this would be:
public class SimpleSolver3D extends JpMultiblockSolver
{

public setMaxIterations(int maxIteration)

{

}

public setMachNumber (double mach)
{

79

4 Multiphysics Solver Development with JUSTGrid

}

Be careful to note that JUSTGrid is case sensitive dealing when with method names. During the
method recognition for the solver parameters, JUSTGrid will follow this sequence:

setMethod(double v), setMethod(int v), setMethod/(String s)

If a matching method is found JUSTGrid invokes this method on all solver instances and continues
with the next parameter.

80

5 Multiphysics Equations in JUSTGrid

5 Multiphysics Equations in JUSTGriD

As an example of a nontrivial system of multiphysics equations the magneto-hydrodynamics
(MHD) equations were chosen. These equations are a combination of the nonlinear equations of
flud dynamics, described by the Navier-Stokes equations and Maxwell's equations of
electrodynamics, and thus represent a genuine muitiphysics problem. In addition, the numerical
solution of these equations exhibits unique challenges in the form of magnetoacoustic and Alfven
waves. Moreover, the constraint of V-B=0 is difficult to maintain. In addition, it must be ensured
that any initial solution numerically satisfies this constraint. In contrast to the analytic solution,
which remains divergence free, the numerical solution needs special treatment to guarantee this
feature. This combination of fluid- and electrodynamics, having a wide range of applications
(plasma physics, aero- and aerothermodynamics, fusion, astrophysics, gas discharges etc.),
requires a challenging numerical solution procedure, because waves from both fluid dynamics and

electrodynamics are present and must be properly resolved.

5.1 Introduction

MHD is useful, if charge separation is negligible. Length scales need to be larger than the Debye
length, and time scales larger than the inverse of the plasma frequency. In other words, the model
cannot be applied to high-frequency phenomena that apply large separation. In order to guarantee

isotropy, the collision frequency has to be higher than the cyclotron frequency.

To further simplify the equations, it should be noted that the displacement current can be

1 0E
neglected, because in VXB=4—7Tj+la—E-, c Ot _ v* and thus the time derivative of the
c ¢ Ot V=B ~?

electric field can be neglected.

It should be noted that from now on the Maxwell equations will be written exclusively using the Si

system, which is more suitable for engineering purposes. Using the Maxwell equations in the MKS

System (which is being used throughout this thesis), VXB=qu=u00(E+v><B) and thus

1 ,
E= V XB—vXB is a dependent variable, and therefore electric field strength E is not

HoO

computed in MHD. That is, the corresponding Maxwell equation is not needed.

81

5 Multiphysics Equations in JUSTGrid

5.2 Magnetohydrodynamic (MHD) Equations

5.2.1 MHD Equations

The MHD equations are the combination of Navier-Stokes and Maxwell equations together with

Ohm's law. The governing equations are listed below.

Continuity equation:

op
—+V- = 5.2.1
Y V-(pv)=0 (5.2.1)
Momentum equation:
d(pv) BB l
+V- —==+PI]-—V-t=0
ot vy u,] Re T (5.2.2)

It should be noted that the expression BB in Egs. (5.2.2) stands for a second rank tensor. Similar
terms occur in Egs. (5.2.4) where the order of the factors is important (vB and Bv).

Energy equation:

o(pE .
<gt >+V'[(pE+P)V—B(v7€)
" 5.2.3
1 . . B VB B | ,_ 629
——(vT) (2 -V) /=0
Re (Y—l)PrMa Re HnT Hpy H, 0
Induction equation:
0B 1 B
92+ V-(vB—Bv)+Vx[—(Vx—=)]=0 (5.2.4)
ot oM,
Bz 2 BZ
where P=p+) E=__p__+v_+ , and Bz=B-B,v2=v-v.
2u,, (y=Dp 2 2u,p

Here E is the total energy per mass unit, comprising internal, kinetic, and magnetic energies. P
is the total pressure, p the static pressure, T denotes stress tensor, and, in terms of
temperature 7', the heat flux vector is given by g=kV T The equations have to be

supplemented by models for conductivity s and magnetic permeability 4,,.

82

5 Multiphysics Equations in JUSTGrid

5.2.2 Ideal MHD Equations

The classic ideal magneto-hydrodynamics (MHD) governing equations can be deduced from the
MHD system given above with additional assumptions. First, the concept of infinite electrical
conductivity implies that the strength of the motion-induced magnetic field overwhelms that of the
applied field. Second, in many flows inertial effects greatly outweigh viscous dissipation and heat
transfer in the medium. Third, the medium is considered to be isotropic (see [SHAO1]). Then the

resulting equations are:

%’;JFV-F:() (5.2.5)

where F is a second rank tensor and U is the vector of variables given by

p
U= PV (5.2.6)

E

B

pv

(E+P)v—B(v-B)
vB—Byv

where p is mass density, v=(u,v,w) is the velocity, B=(BX,B'V,BZ)T is the magnetic

induction field, where E now is the total energy per unit volume, which is defined as (for ideal
MHD)

E=plly— 1)+p(u2+v2+w2)/2+(3i+Bi,+Bi)/2u (5.2.8)

hi

and total pressure is

P=p+(B+B'+B)/2y, (5.2.9)

In additional to the above equations, the magnetic field satisfies the divergence free constraint

V-B=0. This is not an evolution equation and has to be satisfied numerically at each iteration

83

5 Multiphysics Equations in JUSTGrid

step for any kind of grid. Special care has to be taken to guarantee that this condition is satisfied,
otherwise the solution may become non-physical. Due to the coupling of the induction equation to
the momentum and energy equations, these quantities would also be modeled incorrectly. A
special problem arises to guarantee this condition satisfied at curved boundaries.

5.3 MHD Waves

The above ideal MHD equations constitute a non-strictly hyperbolic partial differential system
[SHAO2]. From the analysis of the governing equations in one-dimensional spatio-temporal space,
eigenvector and eigenvalues have been found. The remaining seven eigenvalues of the MHD
equations can also locally degenerate to coincide with each other, depending on the relative
magnitude and orientation of the magnetic field. The seven eigenvalues are

lu,u+c,, ux cs,uicf]. All velocity components are in the direction of propagation of the wave.

These eigenvalues reflect four different wave speeds for a perturbation propagating in a plasma
field: the usual acoustic, the Alfven , and the slow and fast plasma waves:

d

a=(2L) (5.3.1)
op

¢ =Blpu, (5.3.2)

where B, denotes the transverse (normal) component of the magnetic induction field with

respect to the wave front.

2 BZ
2=a’+ —\ a+ —4a’c’, (5.3.3)
pu, | pu,
2 B 2
2 =a’+ +\ a’+ —4ad°c’, (5.3.4)
pPH, | PU,

84

5 Multiphysics Equations in JUSTGrid

f Hlustration 5.5.1 shows the {x-t} diagram
) of all waves at a cell interface resulting
u
from the linearized ideal MHD equations.
u+C,
u-C;
utC,
u-C,
/.u+Cf
ll-Cf
Ug
Uy
lllustration 5.3.1: Waves in a 1-D MHD Riemann problem.

5.4 Flux Formulation using the HLLC Riemann Solver
First, we consider the HLLC (Harten-Lax-van Leer-Contact discontinuity) scheme for the Euler
equations only. Then we extend the HLLC scheme to the MHD equations. The HLLC scheme is

developed from the HLL scheme.

5.41 HLL Flux Formulation

If we consider the shock tube problem, we encounter three different types of waves, namely a
shock wave, a contact discontinuity (across which only temperature and density vary) and a
rarefaction wave. If the initial conditions are such that the shock wave and the contact discontinuity
move to the right, the rarefaction wave is moving to the left. A diaphragm may separate two states
of variables in the shock tube, denoted as left and right states. Accordingly, all variables are
indexed with the letters / and r. Across the diaphragm, thought to be of zero thickness, variables
are discontinuous. Depending on the values of the left and right states, various flow scenarios may
develop. The shock tube is thought to be of infinite length, and variables vary only in the direction
of the flow. Flow is uniform in the lateral direction. In this respect, the shock tube is a model for the
Riemann problem in one dimension. The Riemann problem consists of the PDE and the initial

conditions (IC). There are no boundary conditions (BC) since the region is not bounded.

U+F, (U)=0; IC: U(x,0)= U’ifX<0l (5.4.1)
U,lfx>OJ

The initial values for fluxes are denoted in a similar way,

85

5 Multiphysics Equations in JUSTGrid

F=F(U,)if x<0
F,=F(U,)if x>0

r

IC: F(U(x,0))= (5.4.2)

Numerically, values of U are known at cell centers only, indicated by index / (one-dimensional

problem), but fluxes need to be computed at cell faces with index i+1/2, and thus

approximations to the flux function F, ,, are to be found. Here, the approach by Harten, Lax,

and van Leer (HLL) is followed, with corrections implemented by Batten] to account for the contact
discontinuity (hence the scheme is termed HLLC).

The derivation of the flux function is performed in two stages. First, the HLL scheme is derived, and
in the second stage, the scheme is modified to incorporate the contact discontinuity, producing the
HLLC scheme. A major task is the evaluation of the wave propagation speeds. If u,a denote the
flow speed and the speed of sound, respectively, the Riemann problem has 3 distinct eigenvalues,

namely wu—a,u,u+a where the u eigenvalue has multiplicity 3. In order to approximate the
flux function, the above specified Riemann problem is solved on the domain (x,x,) and

integrated in time from 0 fof,. One obtains

X, { L

fU<x,f_/>dx =[U(x.0)dx+ [F(U(x,,0))dt— [F(U(x,.1))at. (5.4.3)

y?
X, X, 0 0

In order to evaluate the integrals, the (yet unknown) signal speeds s,ands, are considered,

denoting the fastest wave propagation in the negative and positive x-directions. It is assumed,

however, that at the final time 7, , no information has reached the left, x;<0, and right,

x,>0, boundaries of the spatial integration interval, that is

x,<s;t, and x,>s,t, (5.4.4)

Under this assumption, we obtain U(x, ¢,)=U(x,,0)andU(x,,t,)=U(x,.0). Therefore the
last two integrals on the RHS can be immediately evaluated. Using the initial conditions, the first

integral on the RHS is easily calculated, resulting in

86

5 Multiphysics Equations in JUSTGrid

X,

fU(x,t,»)dx =x,U,~x,U+t,(F,—F) (5.4.9)

X,

At time ¢, waves have moved according to their propagation speeds and information has been
carried along the x-axis. Naturally, the initial solution has changed. For the time being, we only
consider two waves with speeds s, and s,. Since s5,>s,, the x domain is subdivided into
three intervals, namely (x,,s,¢,),(s;t,,5,1,),and(s,t,,x,). U is constant within each interval,
but may be discontinuous across each wave (characteristic curve). The integral on the LHS of Eq.

(5.4.5) therefore has to be split into 3 integrals. Since no information has reached the first and the
third intervals, these integrals can be directly calculated.

S/lf X,

JUx,t))dx = [Ulx,t,)dx— [U(x,1,)dx+x,U,~x U+t (F,—F) (5.4.6)

51, x, 5.1,

Evaluating the integral it follows that

U(x,t,)=U, for x€(x,,s,t,)and U(x,t,)=U, forx€(st,, x,) (5.4.7)
Inserting these values results in

st
f Ulx,t,)de =(x~s,;t,)U+(s,t,~x)U +xU—xU-+i,(F,—F) (5.4.8)

st

or

st

[U(x,1,)dx =s,6,U,~s;t,U+t,(F,~F) (5.4.9)

st

With the definition

87

5 Multiphysics Equations in JUSTGrid

s
r s,U,—s,U~+F,—F
L [U(xt)d = 1 ! (5.4.10)

§,—5;

Where U,,, is a constant, depending on the hitherto unknown wave speeds. For a given time

t€(0,1,), the Riemann solution can thus be written in the form

U, ifx<st
U(x,t)={ Uy, Ifst<x<st (5.4.11)
UR l.fX>Srt

The disadvantage of this solution is that contact discontinuities are not properly accounted for that

is, all intermediate states that might exist in the region (s,t‘, ,s,,t_,») were averaged over by the
integration process. Hence, if the solution contains a contact discontinuity, it has been smeared

out, and will not be present in the numerical solution.

The numerical flux computation for the supersonic case is straightforward. Information is traveling
only in one direction, and thus the time dependent flux F,,, at surface x=0 (denoted by
F, ,, in the finite volume approach through the face labeled i+1/2) is either the flux
F,or flux F,. We therefore need only to consider the subsonic case where information across
surface x=0 (Riemann problem) can arrive both sides, namely from the upwind and the
downwind directions. In that case s,<0<s,. For instance, if u>0 (flow velocity) then
s;=u—a and s, =u+a. The question arises how to compute flux F,;;. One immediate

possibility is to set F y;,=F (U ;). However, flux is an integral quantity, and using an averaged

state vector instead of an averaged flux may not be a good approximation. In any case, this has

nothing to do with conservation laws, it would be a purely mathematical procedure, and therefore is

not conservative. In the general case the interface flux F,,, becomes

FI lf0<51
F = F;, if ,<0<s, (5.4.12)
l F, if s,<0

and with

88

5 Multiphysics Equations in JUSTGrid

*_SrF[—S/Fr+S1Sr(Ur—UI) (5413)

ir

S —S[

r

5.4.2 HLLC Flux

The HLLC flux is a modification of the HLL flux. Instead of a single intermediate state U,,;, two
intermediate states U, and U, are assumed, separated by an interface moving with speed

s,, [BATO1]:

if 0<s,
if 5,<0<sy (5.4.14)
, if sy, <0<s,
if s,<0

Upic=

Q Q*S*F

The corresponding interface flux denoted F;,;, is defined as

Fyiie=

!
;s =0=sy (5.4.15)

Applying the Rankine-Hugoniot conditions:

F/=F+s/(U,~U, (5.4.16)
and

Fi=F,+(U-U, (5417

to determine values U,* and U: Batten [] made the assumption that

*

Su=4,=9,=q (5.4.18)

and got the following results

89

5 Multiphysics Equations in JUSTGrid

sM=p,q,(s,—qJ—pIqI<srqz>+Pz—Pr (5.4.19)
Pr(sr‘qr>_p1(5/_%>
prmp, S (5.4.20)
ST Sm
p*=pk<qk_sk>(qk—SM>+pk (5.4.21)
(pu)k=<sk—qk)pkuk+(p — PN, (5.4.22)
Sk—Sm
(pv);=(sk—qk)pkvk+(p —pn, (5.4.23)
Sk—Sm
(pw);=(sk—qk>pkwk+(p —pn, (5.4.24)
sk—sm
e*z(sk—qk)ek—PkQﬁP S v (5.4.25)
d S = Suy

In Egs. from 5.4.20 to 5.4.25, the subscript k stands for / or r. Using Eqgs. 5.4.19 to 5.4.25, the flux

can be calculated as following:

P
pZUZQZ+P*nx
Fi={pv,q,+p n, (5.4.26)
PiWigi+D n.

(ex+P)qx

90

5 Multiphysics Equations in JUSTGrid

5.4.3 HLLC for Magneto-Gasdynamics Equations (MHD-HLLC)

5.4.3.1 Derivation of MHD-HLLC Riemann Solver
Now, the HLLC scheme for MHD can be derived. The 2-D MHD equations. are considered.
Rewriting Egs. 5.4.16 and 5.4.17 for the MHD equations, results in (here the subscripts / and

r are dropped for simplicity)Error: Reference source not found.

* W i * * 1 ' W !
* % * x % p *q * * p pq
pu pugqg+P n—B,B, pu puq+Pn —B, B,
pv pvgq+Pn—B28, pv pvq+Pn,—B,B,
s| B, |~ C]* B;—B;u* =s| B |~ qB.—B,u (5.4.27)
B, q*B:—B:v* B, qB,—B,v
B. 0 B. 0
| E| |(E+P)g-B(Bv)| | £ L(EH”)C]—B,,(B'V)
o : ' '

where B,=B.n+B n, and g=un +vn, Similar to Eq. 5.4.19, the speed g for MHD can

be assumed as SM=q;=q:=q/* and can be obtained from the HLL approximation (Eq. Error:

Reference source not found). This results in the following expression:

. p,.q,(S,—q,)_P/Q/(S/_Q/>+p1—pr_Bil+Bir
q =Suy=—
p,(s,~q,)—p,(s,—q))

(5.4.28)

in order to make the HLLC middle state U " consistent with the integral form of the conservation

laws, which is described as consistency condition by Toro.

* *

. 5,U,—sU~(F,—F)

U, U.= (5.4.29)
5=, 5,—S$, s, =S
Shengtai Li suggests:
. . s B.—s B
Bx/=er_)/('111= r ~xr 1 xl (5430)
s, =S
and
* * HLL * HLL
By[=Byr_By ' B:I=B:r=B H (5431)
B (B-v),=B. (Bv), or (B-v)=(B-v) . (5.4.32)

91

5 Multiphysics Equations in JUSTGrid

(B-v),=(B-v), :=B™"v"™" (5.4.33)
and then
P'=p(s,—q)(¢ —q)+P—B.+(B.). (5.4.34)

With the known values of B:, B;,Bz,q*, and P’ the rest of the components can be derived

easily:
p“‘ Sk—9qk
k=Pk *
Syk—q
* SK—qK (P*_PK)nr_*_BnKB\’K_B*B,:
(pu)x=(pu)g s) T '
Sk—q Sxk—9q (5.4.35)
(pv)*—(pv) Se—qx (P PK)ny+BnKBvK B B '
K= K * ¥
Sk—q Sk—q
F=E Sy qK+P g —P.qy+B(BVv),—B (Bv)
K— ~K * *
Sk—q Sk—q

The quantity "X can be calculated from the conservative variables. We remark that if we had
chosen (B-v);=B;-v;, Eq. 5.4.29 would not be satisfied by the given expressions of
B and V™ .
We can now write the MHD-HLLC flux as
F, if 0<s,
F,=F+s5,(U,=U, ifs<0<q

F,=F,+s5,(U-U,) ifq'<0<s|
F if 5,<0

r

(5.4.36)

Fyc=

5.4.3.2 Summary of the Formulas for Two-dimensional Ideal MHD-HLLC
For the two-dimensional ideal MHD equations (Eq. 5.2.5), the following formulas are used:

Formulas for flux calculation

Define

92

5 Multiphysics Equations in JUSTGrid

B=(B_B, B.)
v=(u,v)
Bn=anx+B_vny

v,=un,tvn,

where index n denotes normal direction.

The flux is given as

- Wavespeed Formulas

= (E+P)v,—B,(uB+vB,) -

pv,
pv,ut+Pn —B,B,
pvnv_*_Pny_BnBy

v.B.—B u
v,B,—B,v
0

The formulas for calculating wavespeeds are given by Eqs

For all dependent variables Roe-averaged values are used:

Uy pitun p,

S
|

} p/+\ pr_

Vi pl+vr\/ P,

<
]

Vot e
E\lp~+E, p,

E

tptip,
Bxlsqrt pl+BxR\j p,

p?+\ p,
B, p+B,pop,

o+ p,
B:,\‘!,—o_,-I—B__R\ ;r

B,

B)’

B.

\p/+\ P,

(5.4.37)

(5.4.38)

. 5.3.11t05.3.4.

(5.4.39)

93

5 Multiphysics Equations in JUSTGrid

For the wavespeeds one finally obtains

S/= ml}’l <q1—cj/ ’ qR()e_ch()L’)

' (5.4.40)
§,= min (q,«_*_c./'rr qRae+c‘/'Roe)
Formulas for intermediate states
.« S,B —S,B
Bi[LL:BY/: w= r~ xi [xl (5441)
i SF_SI
. . S B —-S B
Bf{/'/‘:Bv[: = reor [(5.4.42)
- S’,_S/
S B.—S B
Bl=p =g =22z 2174 5.4.43
z zl zr Sr_S[()
2 2
. p,9.8,~q9,)-p/9,S—q)+P—P—B,+B, (5.4.44)
pR(Sr_qR>—pl(S1_q/)
p*=pK(SK—qK>(q*_qK)+PK—B/21K+B;2 (5.4.45)
prmp ok I
K—Fk~
Se—q
* Sk—qx (P'—Pg)n+B,B,—B B,
(pu)=(pu) s *
SK_q SK—q
% SK_qK (P*—PK)nv+BnKBvK—B Bv (5446)
(pv)e=(pv)g i - V
SK—q SK_q
. Sy=qx P gq —PKqK+BnK(B'v)K_B (B-v)
Ey=Eg -t -
Sc—q Sxk—q
and
(B-u)*=BHLL-uHLL (5.4.47)

94

5 Multiphysics Equations in JUSTGrid
5.4.4 Divergence Free Constraint

5.4.4.1 For Cartesian Grids

The idea of constrained transport is to use simple difference formulas (CD) for the induction
equation. To make the scheme second order accurate in time, a time centered approximation is
taken for the electric field, so, e.g., for 2D ideal MHD in Cartesian grids:

E.=uB,—vB, (5.4.48)

and the magnetic field is updated as

BXTJI)=B)(”,J-)+A1 Ez<f,/+21);E:<r,j—1>
. _yE (5.4.49)

B nl+l =B .n . —At z(i+1,) z(i—=1,)

Wi,) }("]) 2Ax
It is easy to prove that the central difference definition of V-B
B] —B — Bxi —BXI -

(V'B)(,_/)= xi+l,/ xi—1,y + LS+l J=1 (5450)

2Ax 2Ay

is exactly conserved during the time step.

5.4.4.2 For Curvilinear Grids

Introducing the curvilinear magnetic and electric field components for the curvilinear coordinate

system(&,n,C):

~ 1 ’
(B,,B ,B)=—JB,,B,, B.
L Vi) (5.4.51)

(E E, E)=J""(E, E E)

where superscript T indicates the transpose. The Jacobian transformation matrices are

&, & &. Yo Ve Zg
-1.T ’

J=n, n, n.J X, Y, Z, (5.4.52)
g,\' C’v §Z xc y§ Z(

and

95

5 Multiphysics Equations in JUSTGrid

E =vB.—wB,
E =uB.—wB, (5.4.53)
E.=uB —vB,
The elements of J~! are
X —X.
(x i - i+1,/ .k i—=1, 7.k
E) Sk 2A§
X - X . o
(x,),, 4= ”“;A;Jlf (5.4.54)
X k1T X
(xe) == 2ACI

In the curvilinear variables, the induction equation takes the same form as in the Cartesian case:

0 B, OE. OF
= + 7
at on 9t
0B OE, 8EE
— = (5.4.55)
ot 8E ot
0B, oE OEFE
— n 3

ot o0& On

Numerical procedure:
1. calculate curvilinear electric field components(Eq. 5.4.51 and 5.4.53).

2. calculate induction equation according to simple central difference in curvilinear grid (Eq.
5.4.55)

3. update Cartesian field components:

-1
J 'aBE,n,C
ot

B™!' =B" +At|J|

x,y,2° x,y,2

(5.4.56)

96

5 Muitiphysics Equations in JUSTGrid

5.5 Boundary conditions for MHD
When electromagnetic waves are incident on a boundary between different media, some of the
incident energy crosses the boundary and some is reflected.

In general, fields E, B, D, and H will be discontinuous at a boundary between two different media,

or at a surface that carries charge or current.

Maxwell's equations in different media in integral form read

$ D-ds=0,, (5.5.1)

$ B-ds=0 (5.5.2)

¢ E-di=2(Bds (5.5.3)
(' - dt‘ S. - .

$ H-di=I +$‘[—f D-dS (5.5.4)
C enc dt S e

The boundary conditions between two media can be determined using the above formulas.

97

5 Muitiphysics Equations in JUSTGrid

5.5.3 Metallic Boundary Conditions

In a perfect conductor charges are mobile. They move in response to any fields in the fields in the

conductor to produce surface charge density o and surface current density K such that electric

and magnetic fields vanish inside the conductor.

So the following previous results, if the medium labelled 2 is a conductor we have

E'=0
Di=o
H!=Kxn
B =0
1) In the area just outside a perfect conductor, only normal electric field and only tangential

(5.5.12)

magnetic fields exist.
2) Tangential electrical fields and normal magnetic fields vanish.
3) Allfields drops to zero inside a perfect conductor.

These results are utilized for the MHD 2D test case — Riemann Problem 124.

5.6 MHD Divergence Free Numerics

5.6.1 Numerical form of divergence free B field.
In the case of MHD, the induction equation is added, to determine the magnetic inducting field . B
This equation is a transport equation, i.e. is time dependent. In addition, B has to satisfy the

constraint

V-B = 0 atalltimes n, using Gauss' law,

§ B-dd=o (5.6.1)
AU

100

5 Multiphysics Equations in JUSTGrid

Let us consider Cartesian coordinates x,y,z

» % i, j+1/2
| QT and curvilinear coordinates &,n,C. In
| physical space (PS) the grid can be irregular,
- — — — — — — — X but in computational space (CS) the grid is
i-1/2, j % #i,j i+1/2,j _ P P (_) J
| uniform and orthogonal. Provided, we can
. | determine the normal components of B in
N
> §
T i j-1/2 the transformed plane and d A is know, then
W Cell vertices the Cartesian and curvilinear case are the
lllustration 5.6.1: 2D Case: finite volume grid variables | same.
known only at cell centers. Vector components in the |,
j, k directions. (3D) are denoted by indices 1, 2 and 3
respectively. We also can denote components by x, y
and z indices, simply considering the Cartesian case.

It can be shown that any normal vector (direction) is given by:
n=D"'(§,,§,,E.) - n—¢ plane
n=D"'(n,,n,.n.) . £—C plane

n=D"'(C,,C,,C.) : €—n plane

Note: Since B is a vector it can be expressed in Cartesian coordinates,
B=B¢ +Be,+B_ e_. The corresponding normal component is simply
calculated by B-# .

In the following Cartesian symbols are used, but it should be clear how to interpret the equations

for curvilinear coordinates. Integrating (5.6.1) deliver:

B, in=B. _intB, 11— B, ,21,=0 (5.6.2)

Here, as was said above, Ax = Ay = 1 and only half-integer indices were used.

The induction equation (5.6.3), has to be discretized such that equation (5.6.2) is satisfied at all

times, provided the initial solution satisfied V - B = 0 numerically.

The induction equation for ideal MHD is:

0 -
67»[1/ B-dV + fVVXE dv =90 (5.6.3)
It is well known that

E=v X B

101

5 Multiphysics Equations in JUSTGrid

5.6.2 Divergence free B Field in two dimensions.
First, consider the case v = (u,v,0); B =(B,,B,,0).

Therefore E = (0,0,E.) =(0,0,Q)

Calculating V X E in Cartesian coordinates first:

i]k
9o 4 Jd|_+0 0
ox oy 8z| = 5,0 50
0 0 O

It should be noted that all computations use Cartesian components only. Hence (5.6.3) can be
written in 2D:

or * 0Oy g
(5.6.4)
0 0
—B, =—0Q=Q,
or Ox
Discretizing the two equations over a finite volume, one obtains
B’i+}j - Bv i At(Ql 12 T ‘(27,]—]/2) (5 6 5)
Br)l/_;Hl,/ - B; Ly —At(Qt+l/2/ - an—l/Z,/)
Now using equation (5.6.5) at cell faces from equation (5.6.2), we need to calculate:
"“ ~- B! = A - 5.6.6
Bx;1+]/2,_1' Br i+1/2, 7 = t(1+1/2 J+1/2 1+1/2/ 1/2> () a)
BZT}'—l/z,j — B, i—12, = At(Q7 1 — Qi 1/2, 1) (5.6.6b)
B';J;r],,ﬁl/z - B’: g = At Q ,+1/2/+1/2 — QL 1/2/ 12) (5.6.6¢)
B,;Tll,j—l/z - BZ -1 = At(Qz+]/2,j—1/2 - , 1/2, 1/2) (5-6-6d)

Adding up equations (5.6.6a to 5.6.6d) left hand side of equation (5.6.2) from these four equations
(obtained from the discretization of the induction equation) results in:

n+l

71+1 nt+1 n+l
Bx, +12, Bx i—1/2,) + B» ij+12 T Bv Lj-1/2 =

o

V - B at n+l timestep

This can be checked from the above equations, but there is also a geometrical method. It was
assumed that field was divergence free at time level n.

102

5 Multiphysics Equations in JUSTGrid

‘Qi+1/2,j+1/2

N

1] 4L
[] []
Q12,5 i K Q4,102 3 i j

Qi—llZ,j—llz

lllustration 5.6.3: Discretization of lllustration 5.6.2: Discretization of V-B
induction equation in 2D case.

Result: Utilizing the induction equation in 2D in form of equation (5.6.4) with the finite
volume discretization (5.6.5) automatically satisfies the numerical version of

V-B = 0 as given by equation (5.6.2).

The rotation has the same form in the curvilinear coordinates, since the Cartesian rotation was

used in in equation (5.6.4), that is:

oB' _ 8E' OE* 9B _9E' OE = 0B _OE
ot on oc ot OE oc ot on
=0 =0

103

5 Multiphysics Equations in JUSTGrid

5.6.3 Divergence free B field in three dimensions.

Now we consider the 3D case. we have:

E=(E, E, E.)

Tk
0 0 O 0 0 0 0 0
X E=|— — — —-F. E -k, E. + k E
v Ox 0Oy Oz ay © oz ax S oz ¢ Ox
E, E, E,
For the sake of simplicity we use (A, A, Q)
(E.\” Ey’ Eg) = (C} D} E)
VX E=i(-D,+E,) - J(E,~C.) + kD, - C,)
Rotation equation (induction equation)
BE =BE& +BE, + B E.
& &, ¢
M,=\n, n n
., ¢, C
MM =1
B! B, Xe X, X, B, B'
—_ —_ —_ 2
B'|= M,|B, M¢=\ye v, Ve B,|= M, Bz
B B, %oz,) B. B’
137,%/l - 137,J = At(Q?_,ﬂul/z _07,_/—1/2>
2B7j] - 237, - AI(Q,+1/2/ ‘97—1/2,])
337,71 - 3Bn = AHQ, 4172 —97—1/2,/—1/2)

104

K3
E
 dy

X

5 Multiphysics Equations in JUSTGrid

5.6.4 Equivalence of curvilinear grid in physical space and Cartesian
grid in computational space

Note: Only Cartesian grids need to be considered for V-B = (. We have shown that
the transformed equation have the general form:

%fyifdgdnd: + [Fdndg + [6 dgdg + [H dgdn= [Wdgdndc

where F, G, and H are flux vectors that are orthogonal to their respective faces. In the
computational space coordinate directions denoted by indices i, j, and k are orthogonal. Each grid
is uniform. Any grid in physical space is equivalent to a Cartesian grid with uniform grid spacing in

computational space. Therefore, in the following, only the integral form of the divergence free
magnetic inductions field in Cartesian space considered.

Note: In the induction equation we have the term: (vB — Byv|

In 2D we have

g—t—Bx + (uB, — Bu) + (uB, — By| + [uB. — B.w)=0
=0 =0 in 2D

OB, + (vB, — Byu|+ vB, — Bv| + [vB. — B,w|=0
=0 =0 1n 2D

g—B_, +|wB, — Bu| + [wB, — B.v| + (wB. — B.w}=0
=0 in2D =0 in2D =0

This leads to exactly the same equations as in (5.6.4) although we have the divergence form of the

%f Bdv+[{vB — Bv|-dA =0 induction equation.

105

6 Computational and physics model Validation in JUSTGrid

6 Computational and physics model Validation in JUSTGrip

6.1 “Write once run anywhere”
The compiled Java classes (binaries) of the JUSTGrip framework and the GRX Tools where

successfully tested on the following computer system:

JVM Version(s) Computer Model Processor Operating System
Architecture
14.x 15x 1.6.0 Sun Microsystems, Sun Fire V880, 8 SPARC Solaris 9
CPUs, 32GB Memory Solaris 10
1.4.x Sun Microsystems, Enterprise 10000, 64 |SPARC Solaris 9
CPU, 192GB Memory
1.4.x,1.5x 1.6.0 Sun Microsystems, Ultra 40, 2 CPU, 8GB |AMD Dual Solaris 10,
Memory Core Opteron |Windows XP 32 Bit,
Linux Ubuntu 6.06
1.4.x 1.5x 1.6.0 Dell Latitude D820, 1 CPU, 2GB Memory | Intel Core Duo | Linux Ubuntu 6.06
Windows XP 32 Bit
1.5.0 Apple MacBook Pro, 1 CPU, 2GB Intel Core Duo | MacOS X 10.4.8
Memory
1.5.0 Apple PowerBook G4, 1CPU, 768MB Power PC MacOS X 10.4
Memory
1.6.0 PC, 1 CPU, 1GB Memory Intel Pentium 4| Windows Vista RC2
1.4.x,1.5.x,1.6.0 PC, 1 CPU, 1GB Memory Intel Pentium 4 | Linux Mandriva 2007
Linux Fedora Core 5

Table 6.1.1: Computer systems successfully tested with JUSTGrid.

6.2 Loaders and Writers

A good way to validate a loader is to write a writer to be used in parallel. First, load a data structure
into JUSTGrid and if no Java Exception will be thrown write the structure just loaded into a different
file. This just written data file will be named stage 1 data file. A stage 1 data file need not be exactly
the same as the original data file loaded in the first step. There may be differences with space
characters or rounded errors for double number . Therefore it is difficult to compare a stage 1 data
file with an original data file. The next step is to load the stage 1 data file and to write it out again in
a different file (stage 2 data file). Now stage 1 and stage 2 data file must exactly be the same and
are supposed not to change in any way even if one writes a stage 3 data file etc.

6.3 Topology handling for complex geometries

The grid topology is the information about the connectivity between neighbouring blocks, the
orientation of the matching faces, and the physical boundary conditions.

107

6 Computational and physics model Validation in JUSTGrid

120

8 Performance Resuits with JUSTGrid

8.2.3 Optimized JUSTEuler 3D Code

The result of intensive profiling and observing of many environmental metrics of a running Java
process (garbage collector, heap memory, eden (?) space, stack, number of running threads...)
was that the number of new created objects in the eden space was much too high and the garbage
collector created too much load.

With the new Java Visual VM tool, coming with JDK >= Version 1.6.0_07, it was possible to

connect to a running Java process and visualize online the important VM metrics.

To minimize the creation of new objects only 8 lines of code where changed in the inner loop of the
flux computation and 2 lines in the boundary exchange.

Local variables where changed to instance variables and were locally only set to zero.
Old:
method ()

{
Object x = new Object();

New:
Object x = new Object ();

method ()
{

x.setzero ()

The reusing, instead of new creation of objects has a dramatic impact on the numerical load and
the garbage collector, because the amount of dynamic heap access was nearly eliminated. For
instance, on the Apple Mac Book Pro the optimized code is about 10 times faster than the
unoptimized code. On the Sun Fire X4440 the code is about 4 times faster.

132

9 Conclusions and future work

9 Conclusions and future work

With the advent of highly powerful parallel computers simulation science has become the third
pillar of gaining knowledge and information besides classical experiment and mathematical
analysis in understanding complex science and engineering problems. These problems are
described by a multidisciplinary approach, and thus multiphysics formulation for complex
geometries is the enabling technology of simulation science. Both the handling of complex
geometry and the implementation of an efficient parallel strategy as well as the setup of a general
numerical procedure are tasks that are common to most of the multiphysics problems but generally
outside the expertise of the scientist or engineer who actually wishes to perform the simulation.
Moreover, the implementation of the necessary algorithms for complex three dimensional
geometries in combination with a general numerical solution procedure for a large class of physics

problems demands special skills in computational geometry and computer science.

Since these tasks are common to a wide class of simulation problems the implementation of a
versatile framework that provides these basic features seems to be most useful. Of course, to
render such a framework useful for the simulation scientist a straight forward procedure for the
integration of user defined multiphysics solvers must be provided. With JUSTGrio an “easy to
integrate” simulation software framework is available for performing these tasks in an efficient and
effective manner for high performance computation and communication using the Java™ runtime
environment without any additional 3" party libraries. JUSTGrip was created from scratch and
contains more than 76,000 lines of code. JUSTGrio implements a new way of high performance
computing and is streamlined for the new upcoming massive multi core processors that will

dominate the computational scene within the next two years.

It can be used for all kinds of simulation, in particular for multiphysics problems described by
systems of hyperbolic conservation laws (linear and nonlinear), based on the integral formulation of

the conservation laws.

JUSTGrip framework takes care of all geometrical complexity, which is one of the most difficult
parts in three dimensional simulations, and provides complete static as well as dynamic load
balancing. Dynamic load balancing may be of crucial importance when a user needs to implement
a numerical technique depending on its Krylov space dimension. For instance, if a shock wave is
moving through a solution domain the Krylov space dimension is drastically increased at the
location of the shock front, thus leading to a high numerical load that is also moving through the
solution domain. As a result large spatial and temporal computational load imbalance may be
generated. This kind of load imbalance can also be generated if the level of complexity of the

physical model utilized is varying throughout the solution domain. To cope with these kinds of

147

9 Conclusions and future work

problems dynamic load balancing needs to be employed. As a multithreaded application,JUSTGrio
is able to run thousands of threads in a single process and achieves excellent dynamic load
balancing. The various additional GUI-based Applications built around the JUSTGrio are assisting
engineers during the complete simulation processes and providing testbeds for solver developers.
Sample implementations of flow solvers (JUSTSoLver, Laplace, Euler, MHD Riemann) were
created and successfully tested.

e For an existing grid it is now possible to provide 100% pure Java based applications for all
parts of a simulation for systems of hyperbolic conservation laws, based on the integral
form of the conservation equations.

e With JUST a modern, well structured, easy to use and extensible framework can be built.
(JUSTGRD).

e Sample implementations of flow solvers (JUSTSoLver) are available.
e Performance is on par with legacy 'C' code solver.
e JUSTGRrip achieves a better speedup than ParNSS solver written in C.

e Removing all debugging code will further increase the performance of JUSTGrp.

In the future all individual tools developed during this work will be merged into one workbench.
The prepared but not implemented interface for cluster computing on distributed memory systems
needs to be implemented. Performance analysis for different data exchange possibilities in
distributed memory systems must also be done. Research on a better way of integrating legacy
native code written in a different language should also be performed.

148

Appendix: File Formats

A File Formats
A.1 input

A.11 GRX

type: grx

GRX'is our own defined format and is a validated XML file format storing additional information,
namely: description of what ?, physical parameters and boundary conditions. The XML file with its
corresponding DTD (Document Type Definition) together with the result of the computation is
automatically stored as a ZIP-file into the user's file system with the file extension GRX. The ZIP-

file format is a well known format available on any major computer system (UNIX/Linux, Windows,
MacOS, etc.), and can be extracted with tools like Java's JAR, UNZIP or WinZIP.

A.1.2 Plot3D
type: p3d

Plot3D is a simple binary file format, used to represent structured curvilinear grids and scalar or
vector fields defined on these grids. This format originates from the Plot3D program developed by
Pieter Buning [PBUO1] at NASA Ames.

A.1.3 GridPro Grid
type: gpg
Grid definition file in GridPro™ format. (see [GRPO01])

A.1.4 GridPro Topology
type: gpc
Grid topology definition file containing the boundary conditions also. (see [GRP01])

A.1.5 ParNSS Command
type: cmd

ParNSS is our legacy Navier-Stokes solver written in C. The command file is an ASCII file
containing information block connectivity, boundary conditions and the rotation between two

connecting block faces. (see: [HAUO1])

151

Appendix: File Formats

A.1.6 ParNSS Boundary
type:bnd

The ParNSS boundary file contains the boundary conditions only.

A.1.7 HGP XML
type: xml

Is a XML file containing grid and physical and numerical information in one file. It was designed by
Dr. Hans-Georg Paap (HPCC Consultant, Barbing, Germany).

A.2 output

A.2.1 Tecplot
type: plt

Tecplot is a well known ASCII and binary format for storing CFD data. (see: [TPLO1])

A.2.2 GRX
type: grx, see: A.1.1

A.2.3 GridPro Grid
type: gpg, see: A.1.3

A.2.4 Plot3D
type: p3d, see: A.1.2

A.2.5 ParNSS Command
type: cmd, see: A.1.5

A.2.6 ParNSS Boundary
type: bnd, see: A.1.6

152

Appendix: Java APls

B Java APIs used in JUSTGrid
Here is a list of Java API that are heavily used by JUST applications.

B.1 RMI

package: java.rmi

The Java Remote Method Invocation (RMI) system allows an object running in one Java Virtual
Machine (VM) to invoke methods on an object running in another Java VM. RMI provides for

remote communication between programs written in the Java programming language.

B.2 Reflection API

package: java.lang.reflect

The reflection APl represents, or reflects, the classes, interfaces, and objects in the current
Java Virtual Machine. With the reflection APl one can:

e Determine the class of an object.

e Get information about a class's modifiers, fields, methods, constructors, and super classes.

e Find out what constants and method declarations belong to an interface.

e Create an instance of a class whose name is not known until runtime.

e Get and set the value of an object's field, even if the field name is unknown to your program
until runtime.

e Invoke a method on an object, even if the method is not known until runtime.

e Create a new array, whose size and component type are not known until runtime, and then

modify the array's components.

B.3 Thread

class: java.lang.Thread

A thread is a thread of execution in a program. The Java Virtual Machine allows an application to
have multiple threads of execution running concurrently.

153

Appendix: Java APls

Every thread has a priority. Threads with higher priority are executed in preference to threads with
lower priority. Each thread may or may not also be marked as a daemon. When code running in
some thread creates a new Thread object, the new thread has its priority initially set equal to the
priority of the creating thread, and is a daemon thread if and only if the creating thread is a

daemon.

When a Java Virtual Machine starts up, there is usually a single non-daemon thread (which
typically calls the method named main of some designated class). The Java Virtual Machine

continues to execute threads until either of the following occurs:

- The exit method of class Runtime has been called and the security manager has permitted

the exit operation to take place.

« All threads that are not daemon threads have died, either by returning from the call to the

run method or by throwing an exception that propagates beyond the run method.

B.4 Java 2D

package: javax.swing

class: java.awt.Graphics2D

The Java 2D APl is a set of classes for advanced 2D graphics and imaging, encompassing line art,
text, and images in a single comprehensive model. The API provides extensive support for image
compositing and alpha channel images, a set of classes to provide accurate color space definition
and conversion, and a rich set of display-oriented imaging operators.

B.5 Java 3D

package: javax.media.3d

URL: https://java3d.dev.java.net/

Java 3D is a scene graph-based 3D application programming interface (API) for the Java platform.
It runs on top of either OpenGL or Direct3D.

154

Appendix: Java APls

B.6 Media Framework

package: javax.media.3d

URL: http://java.sun.com/products/java-media/jmf/

The Java Media Framework (JMF) is a Java Library that enables audio, video and other time-
based media to be added to Java applications and applets. This optional package, which can
capture, playback, stream, and transcode multiple media formats, extends the Java Platform,

Standard Edition (Java SE) and allows development of cross-platform multimedia applications.

155

Appendix: JUSTSolver Java AP

J_MIN

public static final int J MIN

J_ MIN=2

J_MAX

public static final int J MAX

J_MAX = 5

I_MIN

public static final int I_MIN

|_MIN =3

|_MAX

public static final int I_MAX

|_MAX = 4

Constructor Dgtéirli

JpFace

public JpFace(int faceNumber,
JpBlock parent)

Constructor of a block face

'Method Detail

getFaceNumber

public int getFaceNumber ()

Gets the block face number
Returns:
the face number

getFacePart

public JpFacePart getFacePart (int facePartNumber)

166

Appendix: JUSTSolver Java API

Getting the part number
Returns:

the current part number

getPartWidth

public int getPartWidth ()

Getting the part width
Returns:
the width of the part

getPartX

public int getPartX()

The x position on the block face of the face part. At this time always O
Returns:
the x position

getPartY

public int getPartY ()

The y position on the block face of the face part. At this time always 0
Returns:
the y position

init
public void init()

Initialize the face part

nextlteration

public void nextIteration()

Increase the current iteration to the next iteration

readCommunicationBuffer

public Object(][][] readCommunicationBuffer ()

172

Appendix: JUSTSolver Java API

Reading the communication buffer of the face part with respect to the orientation to
the neighbour face part. (Boundary exchange)
Returns:

An array containing all data for the boundary exchange

setBoundaryCondition

public void setBoundaryCondition (String boundaryCondition)

Sets the boundary condition of the face part
Parameters:
boundaryCondition - A string representing the boundary condition

setNeighborBlockNumber

public void setNeighborBlockNumber (int neighborBlockNumber)

Setting the block number of the neighbouring block
Parameters:
neighborBlocknumber - the block number of the neighbouring block

setNeighborFaceNumber

public void setNeighborFaceNumber (int neighborFaceNumber)

Setting the part number of the neighbouring face
Parameters:
neighborFaceNumper - the number of the neighbouring face

setNeighborFacePart

public void setNeighborFacePart (JpFacePart neighborFacePart)

Sets a reference to the neigboring face part

Parameters:
neighborracepart - the reference to the neighbouring face part

setNeighborFacePartNumber

public void setNeighborFacePartNumber (int neighborFacePartNumber)
Setting the part number of the neighboring face part

Parameters:
neighborFacePartNumber - the part number of the neighbouring face part

173

Appendix: JUSTSolver Java AP

setOrientation

public void setOrientation(int orientation)

Setting the orientation to the neighbouring face part
Parameters:
orientation - the orientation 1 ... 8

setPartHeight

public void setPartHeight (int partHeight)

Setting the height of the part face
Parameters:
partHeight - the height of the part face

setPartNumber

public void setPartNumber (int partNumber)

Setting the unique face part number
Parameters:
partNumber - the unique face part number

setPartWidth

public void setPartWidth(int partWidth)

Setting the width of the part face
Parameters:
partwidth - the width of the part face

setPartX

public void setPartX(int partX)

The x position on the block face of the face part. At this time it should be always 0

Parameters:
partx - The X position

setPartY

public void setPart¥(int partY)

174

Appendix: JUSTSolver Sources

D.8 JUSTGrib source code statistics

. lines of code file§ package method
JUSTGrid framework 21281 98 28 565
GRXMonoblock 2D 7817 45 35 362
GRXMonoblock 3D | 5232 35 15 236
GRX 2D 4276 18 7 115
GRX3D 5512 26 8 144
(

'Showme 3D (VVT) 10735 70 8 313
ControlCenter 1674, 6 1 51
CLI 795 3 1 20
| |

Samples 10169 43 12 421
Tests 7034 33 9 247|
Soler Euler 3D 1429 8 1 46
Solver Laplace 3D 1003 7 1 40
Sum 76957 392 126 2560

237

Bibliography

TRI00:

HPPR:

SHAO1:

SHAO2:

BATO1:

TRRO1:

PBUO1:

GRPO1:

HAUO1:

TPLO1:

HAUO02:

HAUO03:

HAUOA4:

HAUOS:

Tristram, Clair, Supercomputing Resurrected, MIT Technology Review,2003

Heinz-Otto Peitgen, Peter H. Richter, The Beauty of Fractals. Images of Complex
Dynamical Systems, 1986,Springer, Berlin,978-3540158516

Shang J.S., Resent Research in Magneto-aerodynamics, Progress in Aerospace,2001

Shang J.S., Shared Knowledge in Computational Fluid dynamics, electromagnetics,
and Magneto-aerodynamics, Progress in Aerospace,2002

Batten, N. Clarke, C. Lambert and D. Causon, On the choice of wave Speeds for the
HLLC Rieman Solver, Sci. Phys, 1988

M. Torrilhon, Exact Solver and Uniqueness Conditions for Riemann Problem of Ideal
Magnetohydrodynamics, Eidgenoessische Technishe Hochshule,2002

Pamela Walatka, Pieter Buning, Larry Pierce, Patricia Elson, PLOT3D User's Guide,
1990,NASA,NASA TM 101067

Program Development Company, Home page, 2006, www.gridpro.com

Hauser, J., Ludewig, Th., Gollnick, T., Winkelmann, R., Williams, R., D., Muylaert, J.,
Spel, M., A Pure Java Parallel Flow Solver,37th AIAA Aerospace Sciences Meeting and
Exhibit,Reno, Nevada, USA,January, 11-14,1999,AIAA-1999-0549

Tecplot Inc., Home Page, 2006, www . tecplot.com

Hauser,J., Ludewig, T., Williams, Roy D., Winkelmann, R., Golinick, T., Brunett, S.,
Muylaert, J., NASA Panel Java Soundbytes,5th National Symposium on Large-Scale
Analysis, Design and Intelligent Synthesis Environments,Williamsburg, VA,
USA,October, 12-15,1999,

Hauser,J., Ludewig, T., Williams, Roy D., Winkelmann, R., Gollnick, T., Brunett, S.,
Muylaert, J., A Test Suite for High Performance Parallel Java,5th National Symposium
on Large-Scale Analysis, Design and Intelligent Synthesis Environments, Williamsburg,
VA, USA,October, 12-15,1999,

Hauser,J., Ludewig, T., Williams, Roy D., Winkelmann, R., Gollnick, T., Brunett, S.,
Muylaert, J., A Test Suite for High Performance Parallel Java, Advances in Engineering

Software,2000

Hauser, J., Ludewig, T., Gollnick, T., Williams, Roy D., Javagrid: An Innovative Software
for HPCC,A Paper for Computational Fluid Dynamics Conference,Swansea,
UK,September,2001,

241

HAUOQG:

LUDO1:

LUDO2:

LUDO3:

TORO1:

FOSO01:

FOSO02:

GINO1:

HORO1:

HORO2:

MORO1:

MORO02:

242

Hauser, J., Ludewig, T., Paap, H.-G., Muylaert, J.-M., Numerical Modeling of
Divergence Constraints for MHD Equations on Curvilinear Grids,Proceedings of
MASCOT 07, 7th Meeting on applied scientific computing and tools,Roma, ltaly,13-14
September,2007,ISSN 1098-870X

Ludewig, T., Hauser, J., Gollnick, T., Paap, H.-G, JUST GRID: A Pure Java HPCC Grid
Architecture for Multi-Physics Solvers using Complex Geometries,42nd AIAA
Aerospace Science Meeting and Exhibit,Reno, Nevada, USA January, 5-8,2004 AlAA-
2004-1091

Ludewig, T., Hauser, J., Gollnick, T., Dai, W., Paap, H., A Java Based High
Performance Solver for Hierachical Parallel Computer Architectures,43rd AIAA
Aerospace Science Meeting and Exhibit,Reno, Nevada, USA, January, 11-
13,2005,AIAA-2005-1383

Ludewig, T., Papadopulus, P., Hauser, J., Golinick, T., Dai, W., Muylaert, J.-M., Paap,
H., JUSTGrid A Pure Java HPCC Grid Architecture for Multi-Physics Solvers
Performance and efficiency results from various Java solvers.,45th AIAA Aerospace
Science Meeting and Exhibit,Reno, Nevada, USA,January, 8-11,2007,AIAA-2007-1112

E., F., Toro, Rienmann Solvers and Numerical Methods for Fluids Dynamics,
1999, Springer,

Foster, lan, The Grid: Computing without Bounds, Scientific American, Scientific
American,2003

Foster, lan, The Grid: Blueprint for a new Computing Infrastructure, Morgan
Kaufmann,1999

Ginsberg, M., Hauser, J., Moreira, J.E., Morgan, R., Parsons, J.C., Wielenga, T.J.,
Future Directions and Challenges for Java Implementations of Numeric-Intensive

Industrial Applications, Elsevier,2000

Horstman, Cay S., Cornell, G., Core JAVA, Volume I-Fundamentals, 2000,Prentice
Hall,

Horstman, Cay S., Cornell, G., Core JAVA, Volume /I-Advanced Features,
2000,Prentice Hall,

Moreira, J.E., S. P. Midkiff, M. Gupta, A Comparison of Java, C/C++, and Fortran for
Numerical Computing,|1BM ,2002,IBM Research Report RC 21255

Moreira, J.E., S. P. Midkiff, M. Gupta, From Flop to Megaflop: Java for Technical
Computing,|BM ,2002,IBM Research Report RC 21166

SCI01: Scientific Computing World, The Need for Software, Scientific Computing World,2000

WINO1: Winkelmann, R., Hauser J., Williams R.D, Strategies for Parallel and Numerical

Scalability of CFD Codes, Comp. Meth. Appl. Mech. Engng., NH-Elsevier, 1999

TTHO1: G. Toth, The Divergence B = 0 Constraint in Shock-Capturing Magnetohydrodynamics

Codes, Journal of Computational Physics,2000

243

Alphabetical Index

BIIO-WNUe oo eeeeeeseseseseseeeeneEeEeEeEeEeeCe s 7,123
(0] 210 RS 5 7 12p., 21, 25p., 40, 47, 60p., 63, 111, 113, 116, 121, 129, 152, 241, 243
Client......cccovenei.... 6, 11, 28, 34, 48pp., 54, 57pp., 71, 78, 142, 185, 191, 196, 209p., 212, 224, 226

Communication......3, 6, 10, 26pp., 34, 40, 42, 49, 51, 55, 111, 116, 118, 121, 147, 133, 169, 172p.,
175

(07012101 V11 £-) 1 | FUUUT OO ORI
D (] 0] (=L IO 5, 10, 32pp., 50, 148
DYNAMIC HNKING . ..ttt ettt ettt e et n et e e s e a e eeeeen 5, 34
o 1= | TEUTR U TR 6, 27p., 31p., 51, 70, 242
G R K et e
GRX MORNODIOCK. ... e e e e e et 8,14, 126
GRX 2D 11, 65p
€129 4C] B TR 11, 13, 66, 115
AV AP ...
JAVA 3D, 3,9, 66p., 71, 108, 149, 154
Media FrameEWOTK...........oveeeiee e e e 9, 63, 149, 155
MHD. ... 6p., 12pp., 21, 25, 40, 81pp., 91p., 95, 97, 100p., 123pp., 141, 148, 242
BIIO-WWUL .. e e e e 7,123
RIEMANN..... ..ottt 7, 12pp., 85p., 88, 91, 100, 124p., 148, 241
MURIDRYSICS. ... ettt e e e B, 26, 47, 71, 81, 147

Parallel......3, 5, 7p., 10p., 14, 21, 27pp., 40, 42, 47, 59p., 99, 107, 116, 118, 121, 128pp., 133, 136,
139, 144p., 147, 241pp.

POMEADIITY ...ttt e 3,5, 26, 33
QUANTUM MECNANICS. ... 48
RIEMANN. ... 7, 12pp., 85p., 88, 91, 100, 124p., 148, 241
RMI - Remote Method Invocation........ 5,9,12, 19, 25, 28, 32pp., 47, 50p., 57, 72, 74, 76, 89, 97p.,
100p., 128, 147, 149, 153p.
Server........... 6, 10p., 14, 28, 34, 47pp., 58pp., 117, 127p., 131, 133, 139, 142pp., 185, 187pp., 195
SOOIV oo ——ee e eeeee ettt eee e aeee e st e e et et et et et e e
Euler...ccoovevvennnn. 6pp., 11pp., 62, 64, 72, 85, 113, 116, 121p., 130pp., 136, 139, 141p., 144, 148

Laplace....... 7.9, 12p., 15, 111p., 115, 117pp., 148p., 157, 187, 191, 203p., 207pp., 213pp., 219,

245

221, 223, 228pp., 235
Solver. .1, 6p., 9, 11pp., 25p., 28, 34, 40, 47pp., 51PP., 57p., 62, 64pp., 70pp., 76, 78pp., 85, 91,

111pp., 115pp., 121p., 125, 129, 131, 133, 139, 141p., 144, 147pp., 151, 157, 175, 177, 182,
185, 187pp., 203p., 207pp., 219, 221, 223pp., 228pp., 241p.
5p., 10, 28, 31, 34, 38, 40pp., 46, 54, 116, 118, 128

SYNCHroNIZatION.ccccoiiiiirerere e anerrennneeees
TECAGS e eeeeeieaeateteteeeeeesaeieeeieeseeeeeeesisieeeieeeraieesseeseaieetr e e
IMANY-T0-MANY. ...ttt 5, 10, 36p.
TRV (e 3T TP T R P 5, 36
(0] 1= (s X O 1= FUTU U UT U USSP 5, 10, 36p.
S 1 (= TR VT UT P U U U TR O PRSP 10
SYNCRIONIZALION.eiiii it 5, 38, 40, 128
Thread.........ccoovevvevennnnnnn. 3, 5, 8pp., 14p., 27p., 30p., 33pp., 116, 127pp., 132, 134, 148p., 153p.

246

