
JUSTGrid A Pure Java
HPCC Grid Architecture for

Multi-Physics Solvers,

Thorsten Ludewig

August 2009

JUSTGRio
A Pure Java HPCC Grid Architecture

for Multi-Physics Solvers
Using Complex Geometries.

Thorsten Ludewig

3

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the degree of Doctor of Philosophy

This research programme was carried out in collaboration with the

University of Applied Sciences Braunschweig/Wolfenbuttel

and the

HPCC-Space GmbH, Salzgitter

Germany

August 2009

Abstract
After the Earth Simulator, built by NEC at the Japan Marine Science and Technology Centre

(JAMSTEC) on an area of 3,250 m2 (50mx65m), began it's work in March 2002 with the

outstanding performance of 35,860 Gflops (40 TFIops peak) [TRIOO], numerous scientists opted in

favour of such a high-performance computation and communications (HPCC) approach,

suggesting to build again Cray type vector supercomputers that dominated scientific computing in

the mid seventies. Today (2009) the extended Earth Simulator has a peak performance of 131

TFIops but it was outperformed by several other systems with multi-core 1 architectures. Top 1 in

June 2009 is the RoadRunner build by IBM for the DOE/NNSA/LANL with a peak performance of

1456 TFIops. Multi-core processors are now build in every PC for the consumer market and not

only for HPC systems. It should be remembered that the computer games industry is responsible

for the revolution in high end 3D graphics cards that convert any PC into a most powerful graphics

workstation. It should be obvious, despite the computational power of the Earth Simulator, that this

definitely is not the road of HPCC for general scientific and engineering computation.

"I hope to concentrate my attention on my research rather then how to program", says
Hitoshi Sakagami, a researcher at Japan's Himeji Institute of Technology and a
Gordon Bell Prize finalist for work using the Earth Simulator [TRIOO].

I fully agree with this statement, and this is one of the major reasons that I have chosen Java as

high performance computing language. Programming vector computers is a difficult task, and to

obtain acceptable results with regard to announced peak performance has been notoriously

cumbersome. On the other hand, multi-core systems with many processors on a single chip need

to be programmed in a different, namely a multi threaded way. Threads are a substantial part of the

Java programming language. Java is the only general programming language that does not need

external libraries for parallel programming, because everything needed is built into the language. In

addition, there are major additional advantages of the Java language (object oriented,

parallelization, readability, maintainability, programmer productivity, platform independence, code

safety and reliability, database connectivity, internet capability, multimedia capability, GUI (graphics

user interfaces), 3D graphics (Java 3D) and portability etc.) which were discussed in this thesis.

The objective of this work is to build an easy to use software framework for high performance

computing dealing with complex 3D geometries. The framework should also take care of all the

advantages and behaviours of modern multi-core/multi-threaded hardware architectures. In view of

the increasing complexity of modern hardware, working on solutions of multi-physical problems

demands for software, that makes the solving process mostly independent of the available

machinery.

A multi-core chip is composed of two or more independent CPUs (cores) in one single processor.

Table of Contents

Abstract 3

Nomenclature and Constants 17

Acknowledgment 23

1 Motivation of the Thesis 25
1.1 Challenges and current status of computational simulation for CFD.............25

1.2 Objective and Scope of the Thesis... 27

2 High Performance Computation Fundamentals 29
2.1 Parallel System Models.. 29

2.1.1 Massive Parallel Processing System (MPP)..29
2.1.2 Symmetric Multiprocessing System (SMP)... 30
2.1.3 SMP with Threads..30
2.1.4 One multithreaded process..31

2.2 Legacy Codes..31

2.3 Object Oriented Programming...32

2.4 Java...32
2.4.1 Java Technologies..32
2.4.2 Object Oriented Programming... 32
2.4.3 Robustness.. 32
2.4.4 Concurrent, distributed, parallel... 32
2.4.5 Portability..33
2.4.6 Leveraging Business Investment...33
2.4.7 Multithreading...33
2.4.8 Dynamic linking.. 34
2.4.9 Remote Method Invocation.. 34

2.5 Thread programming in HPCC.. 34
2.5.1 What are Threads?.. 34
2.5.2 Threads vs. Processes...35
2.5.3 Models of Thread implementations..36
2.5.3.1 Many-to-One (Green Threads) Thread Model.. 36
2.5.3.2 One-to-One Thread Model.. 36
2.5.3.3 Many-to-Many Thread Model..37
2.5.3.4 Best Thread Model for JUSTGrid..37
2.5.4 Thread Scheduling... 37
2.5.5 Thread Synchronization... 38
2.5.5.1 The Problem..38
2.5.5.2 The Object Lock Flag..39
2.5.6 Thread programming challenges... 40
2.5.6.1 Comparison of Thread synchronization techniques within a HPCC code. .40
2.5.6.2 No synchronization..41
2.5.6.3 Global synchronization..41
2.5.7 Race condition and deadlock - common programming pitfalls in parallel
execution systems...42

2.6 Direct Neighbour synchronization (DIMS)... 43
2.6.1 JpMultiblockNode...44

2.6.2 JpNodeStatuslmp..-.-45
2.6.3 Efficiency results for the different synchronization methods..........................46

3 Multiphysics Framework - JUSTGrid 47
3.1 Introduction...^ 47
3.2 Highlights...48

3.3 Client/Server internet architecture.. 50
3.4 Communication and Computation Procedure... 51

3.4.1 Generic --static numeric-- Solver... 51
3.4.2 Dynamic JUSTGrid Solver... 51
3.4.2.1 Sending the numerics... 51
3.4.2.2 Sending the data...52
3.4.2.3 Receiving the result...52

3.5 Session API..52
3.5.1 Solver... 55
3.5.2 Cell... 57
3.5.3 Boundary Handler.. 57
3.5.4 Session...57

3.6 Standalone Server (JpMaster)... 58
3.7 Client Applications..58

3.7.1 Command Line Interface..58
3.7.2 Simple Client.. 59
3.7.3 ShowMe 3D..59
3.7.4 GRX Monoblock Tool...62
3.7.4.1 GRX Monoblock Tool-2D...62
3.7.4.2 GRX Monoblock Tool-3D...64
3.7.5 GRX Tool (multiblock)..65
3.7.5.1 GRX 2D Tool...65
3.7.5.2 GRX 3D Tool... 66

3.8 Using legacy C or Fortran Code within JUSTGrid...70

4 Multiphysics Solver Development with JUSTGrid 71
4.1 Development Prerequisites..71
4.2 Sample integration of an EulerSD solver into JUSTGrid..................................72
4.3 JUSTGrid provided structure...73

4.3.1 Description of the Standard Cube..73
4.3.2 JUSTGrid Java class representation of a structured grid..............................76

4.4 The startup.properties file..78
4.4.1 Client class section.. 78
4.4.2 Input and output file section... 79
4.4.3 Numerical section...79
4.4.4 Physical section... 79
4.4.5 Solver parameter section... 79

5 Multiphysics Equations in JUSTGrid 81
5.1 Introduction... 81

5.2 Magnetohydrodynamic (MHD) Equations...82

5.2.1 MHD Equations.. 82
5.2.2 Ideal MHD Equations.. 83

5.3 MHD Waves..84

5.4 Flux Formulation using the HLLC Riemann Solver...85
5.4.1 HLLFlux Formulation...85
5.4.2 HLLC Flux.. 89
5.4.3 HLLC for Magneto-Gasdynamics Equations (MHD-HLLC)...........................91
5.4.3.1 Derivation of MHD-HLLC Riemann Solver...91
5.4.3.2 Summary of the Formulas for Two-dimensional Ideal MHD-HLLC............92
5.4.4 Divergence Free Constraint... 95
5.4.4.1 For Cartesian Grids...95
5.4.4.2 For Curvilinear Grids...95

5.5 Boundary conditions for MHD... 97
5.5.1 Transverse Components (normal to the boundary)....................................... 98
5.5.2 Tangential Components (parallel to the boundary)..99
5.5.3 Metallic Boundary Conditions.. 100

5.6 MHD Divergence Free Numerics... 100
5.6.1 Numerical form of divergence free field.. 100
5.6.2 Divergence free Field in two dimensions.. 102
5.6.3 Divergence free field in three dimensions...104
5.6.4 Equivalence of curvilinear grid in physical space and Cartesian grid in
computational space... 105

6 Computational and physics model Validation in JUSTGrid 107
6.1 "Write once run anywhere"..107

6.2 Loaders and Writers... 107

6.3 Topology handling for complex geometries..107
6.3.1 Connectivity.. 108
6.3.2 Orientation..108

6.4 Boundary Data Exchange...108

6.5 Numerics.. 111
6.5.1 1 Block- JUSTSolver- Laplace 3D.. 111
6.5.2 7 Blocks - JUSTSolver - Laplace 3D.. 111
6.5.3 Bump.. 112
6.5.3.1 JUSTSolver-Laplace 3D..112
6.5.3.2 Euler 3D...113
6.5.4 3D Cone... 115
6.5.4.1 JUSTSolver Laplace 3D..115
6.5.4.2 JUSTSolver Euler3D (1st order, explicit, structured multiblock) compared
with CFD++ (2nd order, unstructured)...116
6.5.5 European Experimental Test Vehicle (EXTV)..117
6.5.5.1 JUSTSolver Laplace 3D..117

7 Multipysics Simulation Results with JUSTGrid 121
7.1 JUSTSolver EulerSD... 121

7.2 Magneto Hydro Dynamic (MHD).. 123
7.2.1 Brio-Wu's Shock-Tube... 123
7.2.2 MHD 2D test case - Riemann Problem..124

7.2.2.1 Computational Domain... 124
7.2.2.2 Initial Conditions..124
7.2.2.3 Boundary Conditions... 124
7.2.2.4 Structure of Solution..124
7.2.3 JUSTGrid's GRXMonoblock Tool... 126

8 Performance Results with JUSTGrid 127
8.1 Simple Tests.. 127

8.1.1 Matrix multiplication.. 127
8.1.1.1 Sequential Matrix Multiplication.. 127
8.1.1.2 Multithreaded Matrix Multiplication...128
8.1.1.3 Scaling of a simple numeric benchmark... 128

8.2 Code optimizations and Influence of the computational load on the parallel
efficiency... 129

8.2.1 Utilized computer systems... 130
8.2.2 Unoptimized JUSTEuler3D Code... 130
8.2.2.1 Benchmark Result- Unoptimized JUSTEulerSD..................................... 131
8.2.3 Optimized JUSTEuler 3D Code... 132
8.2.3.1 Benchmark Results - Optimized JUSTEuler 3D....................................... 133

8.3 Additional Computational Load... 134
8.3.1 Benchmark Results - Load efficiency on Sun T5240...................................134
8.3.2 Benchmark Results for different numerical load on a Sun Fire X4440........136
8.3.3 Benchmark Results for different numerical load on a Sun Fire X4600 m2..139
8.3.3.1 Efficiency gains from increased computational load based on 4 cores....140
8.3.4 Java Development Kit JDK/JVM progress...142
8.3.4.1 Numeric performance... 142
8.3.4.2 IO Performance... 143
8.3.5 Operating System comparison...144
8.3.5.1 Timing, parallel efficiency and speedup results for the different operating
systems... 145

9 Conclusions and future work 147

Appendices 149
A File Formats 151
A.1 input.. 151

A.1.1GRX..151
A.1.2Plot3D...151
A.1.3GridPro Grid..151
A. 1.4GridPro Topology.. 151
A.1.5ParNSS Command... 151
A.1.6ParNSS Boundary.. 152
A.1.7HGPXML..152

A.2 output... 152
A.2.1Tecplot... 152
A.2.2GRX..152
A.2.3GridPro Grid.. 152
A.2.4Plot3D...152
A.2.5ParNSS Command... 152
A.2.6ParNSS Boundary.. 152

8

B Java APIs used in JUSTGrid 153

B.1 RML.. 153

B.2 Reflection API..153

B.3 Thread.. 153

B.4 Java 2D... 154

B.5 Java 3D...154

B.6 Media Framework.. 155

C JUSTSolver Template - Laplace 3D - Java API 157

D JUSTSolver Template - Laplace 3D - Source Code 219

D.1 FlowVars.java...219

D.2 GlobalVars.java... 221

D.3 LaplaceSolverSD.java... 223

D.4 Main.java.. 228

D.5 SimpleBoundaryConditions.java...228

D.6 SimpleBoundaryHandler.java.. 231

D.7 SimpleCell.java.. 235

D.8 JUSTGrid source code statistics...237

E JUSTCube 239

Bibliography 241

Alphabetical Index 245

Illustration Index

Illustration 1.1.1: GridPro grid of the European Experimental Test Vehicle (EXTV), a

structured grid with 780 blocks. Generated by GridPro25

Illustration 1.1.2: A structured grid of a turbine. Generated by GridPro26

Illustration 1.2.1: Internal view of the turbine shown in Illustration 1.1.2. Generated by

GridPro ..27

Illustration 2.1.1: Massive Parallel Processor System. All computing nodes are sharing one

communication layer...29

Illustration 2.1.2: Symmetric Multi-Processor System (SMP) architecture diagram...........30

Illustration 2.1.3: SMP with threads overview.. 30

Illustration 2.1.4: Diagram of one multi threaded process... 31

Illustration 2.3.1: UML class diagram of a sample engine class..32

Illustration 2.5.1: Athread or execution context...35

Illustration 2.5.2: Schema diagram of the ,,green thread" model..36

Illustration 2.5.3: Schema diagram of the "one-to-one" thread model. One application

thread is mapped to one kernel thread.. 37

Illustration 2.5.4: "Many-to-Many" thread model. Many application threads are dynamically

mapped to many kernel threads...38

Illustration 2.5.5: Thread States...38

Illustration 2.5.6: Object lock state before getting the lock flag...40

Illustration 2.5.7: Object lock state after getting the lock flag...40

Illustration 2.5.8: Object lock state while lock flag is missing, current execution thread will

be blocked.. 40

Illustration 2.5.9: Solution of the well known Mandelbrot Set.. 41

Illustration 2.5.10: Computation of a Mandelbrot Set without any synchronization between

the compute threads.(Snapshot during computation)................................42

Illustration 2.5.11: Computation of a Mandelbrot Set with global synchronization between

the compute threads (Snapshot during computation)................................42

Illustration 2.5.12: Visualization of a race condition error.. 43

Illustration 2.6.1: Computation of a Mandelbrot Set with Direct Neighbour synchronization

between the compute threads..44

Illustration 2.6.2: UML Class diagram for a JpMultiblockNode with Direct Neighbour

Synchronization implemented with JpNodeStatuslmp...............................44

Illustration 2.6.3: UML State diagram of a multi block compute node.................................48

Illustration 2.6.4: Efficiency results for the different synchronization methods increasing the

number of processors...50

Illustration 3.1.1: JUSTGrid framework block diagram. Shows the different parts of the

JUSTGrid architecture..51

Illustration 3.3.1: JUSTGrid Architecture Overview. The server itself, in principle, can be

distributed over the internet...54

10

Illustration 3.4.1: Generic - static numeric - Solver procedure.. 55

Illustration 3.4.2: Dynamic JUSTGrid Solver sending numerics..55

Illustration 3.4.3: Dynamic JUSTGrid Solver sending data..56

Illustration 3.4.4: Dynamic JUSTGrid solver receiving your self-defined result...................56

Illustration 3.5.1: UML digram for JUSTGrid Session classes...57

Illustration 3.5.2: UML Diagram for the JUSTGrid Solver Interface.....................................59

Illustration 3.5.3: UML class diagram of the JUSTGird multiblock implementation.............60

Illustration 3.5.4: The JpCell class represents one cell in a solution domain......................61

Illustration 3.5.5: This interface must be filled out for the different boundary conditions.....61

Illustration 3.5.6: The Session object is the interactive steering interface between the client
application and the server.. 61

Illustration 3.6.1: UML diagram of the JUSTGrid Server classes..62

Illustration 3.7.1: JUSTGrid: Client Graphical User Interface (GUI) with an opened class
browser dialog for selecting the solver class to be used...........................63

Illustration 3.7.2: The Virtual Visualization Toolkit (WT/ShowMe3D) showing a shaded
triangulated surface of a generic car.. 63

Illustration 3.7.3: The Virtual Visualization Toolkit (WT/ShowMe3D) showing a wireframed
triangulated surface of a generic car.. 64

Illustration 3.7.4: WT is showing an Alias Wavefront object file of Cassini........................65

Illustration 3.7.5: WT showing a multiblock PlaneSD surface of the European
Experimantal Test Vehicle (EXTV)... 66

Illustration 3.7.6: A simple JUSTGrid front-end for a 2D mono block solver. The 3D mono
block solver is being developed. Upon testing, this solver is merged with
the parallel infrastructure of the JUSTGrid...67

Illustration 3.7.7: Online view of the solution progress (video production)..........................68

Illustration 3.7.8: Online visualization of a 3D sphere with JUST Euler 3D.........................68

Illustration 3.7.9: GRX2D Tool showing a multiblock grid of a NACA0012 airfoil...............69

Illustration 3.7.10: GRX3D Tool showing the bounding box and the block boundaries for a
grid of a sharp cone..70

Illustration 3.7.11: GRX3D Tool showing bounding box and all block faces being related to
inflow and wall boundary conditions for sharp cone grid...........................71

Illustration 3.7.12: GRX3D showing block boundaries and wall be for a 780 block grid of
the European Experimental Test Vehicle (EXTV)......................................71

Illustration 3.7.13: GRX3D showing the bounding box and all faces being related to wall
and outflow boundary conditions for a 780 block EXTV grid.....................72

Illustration 3.7.14: GRX3D showing the bounding box and all faces being related to wall
and inflow boundary conditions for a 780 block EXTV grid.......................72

Illustration 3.7.15: GRX3D showing an enlarged/zoomed view to all faces being related to
wall boundary conditions fora EXTV grid.. 73

Illustration 3.7.16: The three different option tabs of GRX3D ...73

11

Illustration 3.8.1: Schema diagram for JUSTGrid mixing programming languages via Java
Native Interface JNI ...74

Illustration 4.3.1: Description of the Standard Cube..77

Illustration 4.3.2: Orientation effaces. Coordinates I, J, K are numbered 1,2,3 where
coordinates with lower numbers are stored first..78

Illustration 4.3.3: Determination of orientation effaces between neighboring blocks as seen
from block preference block). The reference block is always oriented as
shown and then the corresponding orientation of the neighboring face is
determined, (see Illustration 4.3.4)...79

Illustration 4.3.4: The illustration shows the overlap of two neighbouring blocks. For the
flow solver, an overlap of two rows or columns is needed. The algorithm is
not straightforward, because of the handling of diagonal points...............79

Illustration 4.3.5: The 8 possible orientations of neighboring faces are shown. Case 1 to 4
are obtained by successive rotations. The same situation holds for cases 5
to 8 upon being mirrored.. 80

Illustration 4.3.6: Block structure of a solution domain. JUSTGrid creates one JpBlock and
one Solver instance per grid block... 80

Illustration 4.3.7: JpBlock contains grid data and JpCell instances.....................................81

Illustration 4.3.8: Every JpBlock has six JpFace objects with one JpFacePart per JpFace81

Illustration 5.3.1: Waves in a 1-D MHD Riemann problem.. 89

Illustration 5.5.1: shows the transverse components of MHD...102

Illustration 5.5.2: shows the transverse components of MHD...103

Illustration 5.6.1: 2D Case: finite volume grid variables known only at cell centers. Vector
components in the i, j, k directions. (3D) are denoted by indices 1, 2 and 3
respectively. We also can denote components by x, y and z indices, simply
considering the Cartesian case.. 105

Illustration 5.6.2: Discretization of in 2D case...107

Illustration 5.6.3: Discretization of induction equation...107

Illustration 6.4.1: A test pattern was sent through the solution domain step by step.........112

Illustration 6.4.2: 9 blocks with all 8 possible orientations...113

Illustration 6.4.3: Starting test pattern.. 113

Illustration 6.4.4: Observing the boundary exchange between the blocks........................114

Illustration 6.4.5: The correct transport across all block faces was observed...................114

Illustration 6.5.1: A contour slice of a Laplace 3D solution fora bump..............................116

Illustration 6.5.2: Screenshot of a solution (density distrubution) for a bump using
MetacompCFD++.. 117

Illustration 6.5.3: Rho (density) distribution over a bump after 1000 iteration with
JUSTSolverEuler 3D... 117

Illustration 6.5.4: 3D view for a p (density) distribution over the Onera bump using
JUSTSolverEuler 3D... 118

Illustration 6.5.5: Verification of the stream lines (vectors)..H8

12

Illustration 6.5.6: JUSTGrid GRX3D, simulation preparation tool, showing the grid of the
cone wall and the outflow face..................................-- 119

Illustration 6.5.7: JUSTSolver Laplace 3D, Cone, showing one slice on the y-plane........119

Illustration 6.5.8: JUSTSolver Laplace 3D, Cone, showing the outflow boundary............. 119

Illustration 6.5.9: JUSTSolver Laplace 3D, Cone, showing block edges with one
deactivated block.. 119

Illustration 6.5.10: JUSTSolver Euler 3D showing Mach number solution in symmetry
plane... 120

Illustration 6.5.11: CFD++ comparison simulation... 120

Illustration 6.5.12: JUSTSolver Euler 3D with legend and two slices................................ 120

Illustration 6.5.13: GridPro grid, showing inflow and wall boundaries........................... 121

Illustration 6.5.14: JUSTGrid GRX3D Tool, showing EXTV wall boundary........................121

Illustration 6.5.15: JUSTSolver Laplace 3D, EXTV showing one slice at the y-plane.......121

Illustration 6.5.16: JUSTSolver Laplace 3D, EXTV 3D view..121

Illustration 6.5.17: Timings and efficiency results for 1 to 8 processors, running 2,000
iterations with JUSTSolver Laplace 3D on a 780 blocks EXTV grid........122

Illustration 6.5.18: Speedup and efficiency results for 1 to 8 processors, running 2000
iterations with JUSTSolver Laplace 3D on a 780 blocks EXTV grid........122

Illustration 7.1.1: JUSTSolver Euler 3D, EXTV, Mach number distribution.......................125

Illustration 7.1.2: EXTV, Mach number distribution on transparent slices.........................125

Illustration 7.1.3: Computing time and efficiency results for 1 to 8 processors, running 200
iterations with JUSTSolver Euler 3D and ParNSS on a 780 blocks,
755,300 grid points, 538,752 cells EXTV grid..125

Illustration 7.1.4: Speedup results for 1 to 8 processors, running 200 iterations with
JUSTSolver Euler 3D and ParNSS on a 780 blocks, 755,300 grid points,
538,752 cells EXTV grid...126

Illustration 7.2.1: 1D MHD solution, rho (density) distribution for well known Brio & Wu
shock tube.. 127

Illustration 7.2.2: The solutions depicted above are a comparison between the classical
Finite-Volume (FV) method (first row) and a divergence-conserved FV
method (second row). Depicted are the contour of By and the absolute
value of the numerical divergence operator for the magnetic induction,
div(O)...128

Illustration 7.2.3: Computational results as obtained from JUSTSolver 2D MHD code for
2D Riemann problem: left: density distribution, right: pressure distribution.
The results from Torrilhon are shown in Illustration 7.2.3. (grid: 300X300,
t=0.1s).. 129

Illustration 7.2.4: Computational results for 2D Riemann problem: left: distribution of
velocity in x direction, right: distribution of velocity in y direction, (grid:
300X300, t=0.1s).. 129

Illustration 7.2.5: Computational results for 2D Riemann problem: left: Bx distribution, right:
By distribution. Comparison with Illustration 7.2.2 shows excellent
agreement with Torillhon results, (grid: 300x300, t=0.1s)......................130

13

Illustration 7.2.6: JUSTGrid GRXMonoblock Tool GUI, showing online visualization while
the 2D MHD Riemann solver is running...130

Illustration 8.1.1: Simple numeric benchmark on a Sun Microsystems Enterprise 10000
with 64 UltraSPARC II CPUs and 256GB main memory......................... 132

Illustration 8.1.2: The Enterprise 10000 running all 64 CPUs with 100% load during the
computation.. 133

Illustration 8.1.3: This benchmark shows the very small amount of overhead using threads.
This benchmark was done on a Sun Microsystems Enterprise 6000 with
28 CPUs... 133

Illustration 8.2.1: Parallel efficiency results for an unoptimized Euler 3D code on a Sun Fire
X4440...135

Illustration 8.2.2: Parallel efficiency results for an optimized Euler 3D code on a Sun Fire
X4440... 137

Illustration 8.3.1: Sun T5240 running JUSTEuler 3D with "load=1"................................... 138

Illustration 8.3.2: Sun T5240 running an optimized JUSTEuler 3D with "load=100".........139

Illustration 8.3.3: The illustration shows, increasing computational load by a factor of 20,
that utilization level was already at more than 90%............................... 139

Illustration 8.3.4: Efficiency gains from solver optimization and increased computational
load ..141

Illustration 8.3.5: Parallel speedup gains from solver optimization and increased
computational load... 141

Illustration 8.3.6: Parallel speedup gains from solver optimization and increased
computational load based on four cores.. 142

Illustration 8.3.7: Timings and parallel efficiency results for a Sun Fire X4600, optimized
Euler solver, load=200.. 144

Illustration 8.3.8: Efficiency gains from solver optimization and increased computational
load based on four cores comparison for the Sun Fire X4600................145

Illustration 8.3.9: Parallel speedup gains from solver optimization and increased
computational load based on four cores for the Sun Fire X4600............ 145

Illustration 8.3.10: The numeric performance progress of the last three major releases of
the server Java Virtual Machine JVM...146

Illustration 8.3.11: The IO performance progress of the last three major releases of the
server Java Virtual Machine JVM... 147

Illustration 8.3.12: A screen shot of Windows Server 2008s task manager and a linux
perfbar binary.. 148

Illustration 9.1: JUSTCube this cube illustrates all indices, directions and rotation bases
used with JUSTGrid... 243

14

Index of Tables

Table 2.2.1: Sequential matrix multiplication using a 30 times 30 matrix doing 10000

iterations on a Linux Pentium 4 PC..31

Table 6.1.1: Computer systems successfully tested with JUSTGrid..................................111

Table 6.5.1: Monoblock result for a Laplace 3D computation.. 115

Table 6.5.2: Laplace 3D result for a simple 7 block rectangular grid.................................115

Table 8.1.1: A sequential (1 thread) matrix multiplication using a 30 times 30 matrix doing

10000 iterations on a single processor Pentium 4 PC running Linux......131

Table 8.1.2: Multithreaded matrix multiplication using a 100 times 100 matrix doing 10000

iterations with 400 threads on a 26 CPU Sun Microsystems Enterprise

6000..132

Table 8.2.1: Timing results for an unoptimized Euler 3D code on a Sun Fire X4440........135

Table 8.2.2: Timing results for an optimized Euler 3D code on a Sun Fire X4440............137

Table 8.3.1: Fully utilized Sun Fire X4600 system with load=200.....................................143

15

Nomenclature and Constants

A area

B magnetic induction field

c speed of light in vacuum

B
c A— I—— Alfven wave speed

D displacement field

dD
 displacement current
dt

E total energy per unit mass or per unit volume

(internal plus kinetic plus magnetic energy)

e internal energy per unit mass

e electric energy density
e

e e», =e e +e n, electromagnetic energy density

^i'^j'^k un 't vectors (Cartesian system in x, y, z direction)

em magnetic energy density

e0 = 1.6 x 10~ 19 C electron charge

G, electromagnetic momentum density

H magnetic field

j=pv current density

k thermal diffusivity

Boltzmann constant

diffusivity

M magnetization per volume

17

C

V
magnetic Mach number

magnetic stress tensor components

electron mass

Avogadro number

3/2
—[77 number of electrons in a Debye spheren *

polarization per volume

V A* 6' =—=—L Prandtl number r L k

charge (electric)

VgV^ electron cyclotron radius (only the velocity component
e B perpendicular to the magnetic field is effective)

^v,^ ion cyclotron radius (only the velocity component
'eB perpendicular to the magnetic field is effective)

— Reynolds number
v

Re m =— =v ^ (J ^m magnetic Reynolds numbern

K universal gas constant

S Poynting vector

T temperature

/ n\- ->r» velocity vector v=(v x ,v v ,0)w2D '

Greek Symbols
p = p (x , y, z, t] mass density

p, electric charge density

18

A D =,
ne e

1/2

mkinematic viscosity

Debye shielding length

dynamic viscosity

<JjU*
magnetic viscosity (diffusivity)

_

cr specific resistance

E-dA
electric flux, the area A is bounded by curve C

magnetic flux (is 0 if A is closed)

= J D-dA
A

if medium is polarized

permittivity of free space = 8.85 x 10 -12 As
V m

permeability of free space = 4 TT X10-i Vs
Am

m magnetic permeability

cr conductivity

ne e
plasma conductivity for direct current

ne e
1/2

electron plasma frequency

n t e

m,Z e (

1/2

ion plasma frequency

19

2 1/2
ne e

e0

Bl
Pm = ^— magnetic pressure

Characteristic Numbers in Magnetohydrodynamics

Avogadro number
. i ^26

Alfven velocity (wave speed)
B

Hartmann number
(magnetic body force / viscous force)

Mach number

Magnetic Reynolds number
v L

r ^ v r m

Im

20

Prandtl number

L

Reynolds number
vLRe = n

Abbreviations
BC

CFD

EFA

HLL

HLLC

1C

MHD

MPI

MPP

JUST

PDE

PVM

SMP

Boundary condition

Computational Fluid Dynamics

Electromagnetic Field Actuators

Harten-Lax-van Leer

Harten-Lax-van Leer-Contact discontinuity

Initial condition

MagnetoHydroDynamics

Message Passing Interface

Massively Parallel Processing

Java Ultra Simulator Technology

Partial Differential Equation

Parallel Virtual Machines

Symmetric Multiprocessing

21

Acknowledgment

I am most grateful for the opportunity to do this research to Prof. Dr. Jochem Mauser and Prof. Dr.

Mayur Pate/. In particular, I gratefully acknowledge the large number of discussions and the
substantial support of Prof. Dr. Jochem Mauser.

Many thanks are conveyed to my friends Torsten Gollnick, Olav Rybatzki and Dr. Ralf Winkelmann
for their selfless support.

I would like to thank Jean Muylaert ESTEC, ESA, Noordwijk, The Netherlands for his continuous
interest and the provision of wind tunnel data.

I am grateful to Prof. Peter Eiseman, Program Development Comp., White Plains, New York, USA
for numerous stimulating discussions especially on the field of grid generation.

I would like to thank my parents for their encouragement and support.

My heartiest thanks go to my godfather Helmut Scholz for his unselfish help in a hopeless
situation for me.

Last but not least, I would like to thank my family for their support and time to complete this thesis.

This work was partly funded by the ministry of Science and Culture of the State of Lower Saxony,
Germany under AGIP 1999.365 EXTV program.

JUSTGpiD was also part of the following EFRE projects partly funded by the ministry of Science
and Culture of the State of Lower Saxony, Germany and the European Commision under contracts
JavaPar 1998.262 and JUST 2002.108.

23

1 Motivation of the Thesis

1 Motivation of the Thesis

1.1 Challenges
and current status
of computational
simulation for CFD
Today Computational Fluid

Dynamics (CFD) and

related computer

simulations are used in

many areas of research

and development. In these

days computer simulation is

the enabling technology in

the design of vehicles

(aeroplanes, cars, ships) as

well as combustion engines

or turbines to optimise their
performance and making

Illustration 1.1.1: GridPro grid of the European Experimental Test Vehicle
them more energy-efficient. (EXTV), a structured grid with 780 blocks. Generated by GridPro™

Space flight vehicles in

particular, are subject to extreme heating rates during reentry from outer space because of intense

atmospheric friction, thus requiring a carefully designed thermal protection system. In order to

determine those surfaces of a vehicle that are exposed to most severe heat flux along the reentry

trajectory at a given angle of attack, extensive simulations need to be performed.

In medical applications, for example (among numerous other cases), to aid doctors before actually

performing surgery, simulations of pressure ratios in an artery are now being carried out routinely.

State of the art development of electronic high tech components are not practicable without

simulations of electric fields and quantum-mechanical effects.

Interdisciplinary simulations, for example the coupling of the traditional fluid dynamics with

electromagnetic fields (magnetohydrodynamics, MHD), examine the influence of electromagnetic

fields on an existing flow field to perhaps substitute in future aerodynamic control surfaces.

To meet the demands of modern computational flow simulations, an engineer or software

developer simulating a flow field (solver) encounters many difficulties. Traditional CFD grids for

aerospace and automotive industries are getting more and more complex, and grids with tens of

25

1 Motivation of the Thesis

millions of points are not uncommon anymore. Completely different types of geometric shapes
introduce additional requirements, for instance, in CFD for medical applications. Chemical
reactions and electromagnetic fields have an influence on the requirements of the simulation and
therefore a need for multiphysics solvers exists.

It is also difficult for a solver developer to perform rapid prototyping because of the missing
software development infrastructure, despite the fact that existing libraries can be reused.
However, since Moore's law is still intact, namely that every 18 months the overall power of
computer systems doubles, new computer systems with new operating systems are constantly
becoming available, and therefore quite often major differences exist between these systems
causing large efforts even for minor changes. Hence the developer must always readjust his
software library to ensure that it still works with new system configurations. This task can consume
a lot of time of the actual development process for a solver.

Illustration 1.1.2: A structured grid of a turbine. Generated by GridPro™

thus guaranteeing complete software portability.

This is one of the main
reasons why the creation of
a simulation software
framework for high
performance computation
and communication using
the Java™ runtime
environment should be of
great importance.

Due to Java's
independence from
processors and operating
systems, any compiled
code can be executed
without any changes on
every platform provides a
Java runtime environment,

Huge numerical grids need enormous computing resources and if the simulation program performs
computations in the multiphysics regime, the computational demand grows dramatically. The only
way in getting results for such problems lies in the use of multiple processors. This strategy
requires the solution of the essential problem of load balancing that is distributing the total
computational load onto the set of processors in order to achieve uniform loads. In order to

26

1 Motivation of the Thesis

optimise parallel speedup an almost uniform computational load is necessary. The difference

between an unbalanced versus a balanced system may result in highly different speedup factors. A

worst case scenario would be if one processor was running 100% of the load and all others were

idle. The most popular software libraries to ensure the communication between the processors are

MPI (Message Passing Interface) and PVM (Parallel Virtual Machines). These vendor specific C or

Fortran libraries are optimised for MPP (Massive Parallel Processors) systems. MPI/PVM are

providing a high performance communication layer between processors. The major disadvantage

of MPP systems are to get reasonable dynamic load balancing. In order to achieve this, one has to

use complex technologies like domain decomposition and the grouping of messages to obtain

dynamic load balancing etc.

1.2 Objective and
Scope of the Thesis
However a novel trend has

been set up in computer
industry, by providing
processors with more than
one execution core. Two
cores on a single processor
chip are now common and

four core chips will soon
become available from Intel

and AMD (spring 2007).

Other processors like the

Niagara 1 (UltraSPARC T1)

from Sun Microsystems
have 8 cores with 4

execution engines on a

single chip that means mustration 1.2.1: Internal view ofthe turbine shown in Illustration 1.1.2.
there are 32 CPUS Generated by GridPro ',TM

available per chip. The Niagara 2 available since 2007, has 8 cores with 8 execution engines.

UltraSPARC T3 (Rainbow Falls) is announced for 2010 is supposed to have 16 cores with 8

execution engines pre core.

One execution engine is called strand by hardware designers to separate them from software

threads. Strands and hardware threads are the same. This line of parallel development demands a

completely different parallel strategy that lies in the extensive usage of threads (see chapter 2.5.1

27

1 Motivation of the Thesis

on page 34). A thread of context wastes much less resources than MPI and PVM libraries. In fact it
demands substantially less resources than a process handled by the operating system. Therefore
a multithreaded application is able to run thousands of threads in a single process. Thread
programming for HPCC and how it is possible to achieve excellent parallel efficiency, with the new
developed Direct-Neighbour-Synchronization (DNS) will be discussed in chapter 2.5 on page 34. It
will be shown in chapter 8.1.1.3 on page 128 that threads give excellent dynamic load balancing.

In addition, Java has great advantages over languages like C, C++ and Fortran because the thread
concept is a built in feature in the language, and hence there is no need to link against libraries that
are operating system dependent.

In addition to the extensive usage of threads for high performance computing and communication
in a pure Java runtime environment, the software framework created as described in this work
provides even more important features.

There exist loaders and writers for various 3D file formats that free the programmer from dealing
with complex geometries. In order to reduces geometry complexity boundary fitted coordinates are
utilized, performing a transformation from physical space to computational space. In computational
space the complex geometry is represented by a uniform rectangular multiblock grid. Naturally the
physical equations have to be transformed as well but there type does not change.

All communication between processors for dynamic load balancing is done by the framework itself.
The solver developer can therefore concentrate on the solution of the governing equations on a
simply connected domain also called a block.

A user of the framework can exchange the default solver by his own solver version during the
compute session, sending the Java compiled byte code to the compute host.

Due to the implemented client/server concept, the Internet capabilities and the interactive steering
features of the framework the possibility of collaborative engineering is provided over an encrypted
secure connection.

In summary the JUSTGpio framework takes care of all geometrical complexity, which is one of the
most difficult part in three dimensional simulations, and provides complete static as well as
dynamic load balancing.

28

2 High Performance Computation Fundamentals

2 High Performance Computation Fundamentals

2. 1 Parallel System Models

2.1.1 Massive Parallel Processing System (MPP)
MPP systems or so called Beowulf cluster systems sharing there high speed interfaces (crossbar)

or network interfaces only. These are computer farms with many single computers in a rack or

many single system boards in one computer case.

io system
memory

code

data

process

(CPU)

^memory

code

data

process

(CPU)

Illustration 2.1.1: Massive Parallel Processor System. All
computing nodes are sharing one communication layer.

The Beowulf type cluster systems are

very popular because they are

significant cheaper than a huge SMP

machine. One of the serious

disadvantages of MPP systems is the

dynamic load balancing, one has to

do a lot of work and thinking about

complex strategies to get a balanced

processor load.

29

2 High Performance Computation Fundamentals

2.1.2 Symmetric Multiprocessing System (SMP)
~ In SMP systems the parallel

computation shares the IO

subsystem a defined amount of

memory and the program code is the

same for every processor. Only the

data area in the memory is allocated

to the processors.

Illustration 2.1.2: Symmetric Multi-Processor System (SMP)
architecture diagram.

2.1.3 SMP with Threads

data

process

(CPU)S (CPU)

(CPU)5 (CPU)<

data

process

(CPU

(CPU)<

io system

shared memory

code
X . , X

/ data /
X X

process

(CPU)5

(CPU)<

(CPU)^

(CPU)<

X
X

data

process

(CPU)< (CPU)

(CPU)5 (CPU)<

Illustration 2.1.3: SMP with threads overview

SMP with threads is going one step

further that is everything is shared be

it data, code, or io by the execution

contexts. (Threads)

30

2 High Performance Computation Fundamentals

2.1.4 One multithreaded process

/
/

y*

I

/
/

/ io system

code

thread

(CPUK

thread

(CPUK

thread

(CPUK

data

thread

(CPU)<

thread

(CPUK

thread

(CPUK

thread

(CPUK

thread

(CPUK

thread

(CPUK

/
/

s

/
/

/
/

/
/

/

Illustration 2. 1.4: Diagram of one multi threaded process

From the developers view this model

is the easiest one. With a modern

operating system like Sun

Microsystems Solaris the compute

session gets the dynamic load

balancing for free if enough parallel

threads are started. The difficulty in

the threaded programming model is

the synchronization between threads

and the way to get exclusive access
on specific data. Java has solutions

for these problems built in.

Runtime (2GHz, Pentium4, 1GB Memory)
I Sun JVM 1.4.2_Q2 (-server)_____
IGNU gcc \^rsion 3.3.1 (-03 -mcpu=pentium4)

time in s

2.2 Legacy Codes
The newer versions of Java are serious
competitors to the traditional HPCC
programming languages like FORTRAN or ^NUgcc ^rsion^37TT-O3 -mcpu=pentium4) ! _3/l_6

Table 2.2.1: Sequential matrix multiplication using a 30 times 30
C/C++. The Single-processor performance matrix doing 10000 iterations on a Linux Pentium 4 PC

2.12

of a Java code is now on par with C++,
and the speedup on common symmetric multi processor (SMP) machines is excellent.

31

Engine

Attributes
private double rpm
private int state

Operations
public Engine!)
public double getRpm()
public void setRpm(double val)
public int getState()
public void setState(int val)

2 High Performance Computation Fundamentals

2.3 Object Oriented Programming
One of the most important factors is the construction of

classes and objects. A class is a template, or blueprint for

an object: thus there may be many objects of a given class.

A class is the combination of data structures, methods

(functions in Fortran and C) that perform operations on the

data structures and fields (variables in Fortran and C), and
the fields (variables) of this class. Objects provide

inheritance : given an object 'Engine', for example, with

certain properties and methods, we can define a new class __________________
. . .. , ._ . , ,. I, .1 nnn \ n ~ Illustration 2.3.1: UML class diagram of

'JetEngme 1 that inherits from Engine (after all, a Jet engine a sample engine dass

is a type of Engine). All the properties and methods for
Engine work just as well for JetEngine, though some may be implemented differently. Another

valuable property of objects is information-hiding : the complexity of an object may be only
exposed through a simple interface, so that the object is easy to use and understand. A wristwatch

is like this - it has a complex internal structure, but the display of the time is a simple interface.

2.4 Java

2.4.1 Java Technologies
For our objectives we need certain software technologies, some of which may not be well-known in

the HPCC community. Java seems to be the only programming environment that provides all of

them: the list below summarizes some of the terminology:

2.4.2 Object Oriented Programming
See: Object Oriented Programming in chapter 2.3 on page 32.

2.4.3 Robustness
Inevitably, things sometimes go wrong during the flow simulation: files missing, bad grid cells,

arithmetic errors, unphysical values, dropped network connections, etc. etc. Java has a rigorous

way to classify and handle such exceptions, coercing the programmer to think about these things

while writing the code.

2.4.4 Concurrent, distributed, parallel
Connecting Java objects across disparate machines and networks or running Java code on

32

2 High Performance Computation Fundamentals

sequential or parallel architectures is essential to provide the raw computing power needed in the
analysis as well as in the design cycles for new air- or spacecraft. Location and type of computer
hardware as well as operating system issues should be totally irrelevant to the user, and he should
not be even aware of the kind of architecture being used as long as the necessary computing
power is provided.

2.4.5 Portability
Most languages are compiled directly to the machine code of the machine on which they are to be
run, meaning that there can be many versions of the executable, one for each machine. The
addition of software and compiler versions to this can make distribution quite difficult. The Java
compiler, on the other hand, generates a neutral file format (extension .class), so called byte code,
from the Java code (extension .Java) that is executable on any machine that provides the Java
Virtual Machine software, which is practically universally available, translating the byte code in
native machine code.

2.4.6 Leveraging Business Investment
Programs written in Java can take advantage of the huge investment in the language by the
commercial world. In particular, there are high-quality, free security packages available to provide
authentication and encryption services across a distributed network. We can use commercial Java-
based collaboration tools to allow geographically-distributed groups of engineers to work together.
We can use web technology to allow engineers to run simulations on the supercomputer without
the arcane knowledge of the system that is currently necessary.

2.4.7 Multithreading
In Java, concurrency is achieved via the thread (see also chapter 2.5 on page 34) concept. The
thread concept is best explained by a simple example: consider a TV-screen that posts several
channels at the same time, each shown in its separate small rectangular window. Although these
windows (threads) are independent, they are part of the main screen (process), i.e. they share the
same address space. Threads are run concurrently, the mapping of threads to processors as well
as the scheduling being done by Java and the OS. Thus we have a way to get dynamic load-
balancing of a parallel application without explicitly assigning tasks to processors: a threaded
application is said to be self scheduling. Java also provides a mechanism for synchronizing threads
and for sending messages between threads. Furthermore, we no longer need message-passing
libraries such as MPI and PVM to communicate between threads, but we can use shared memory
or RMI (Remote Method Invocation) instead.

33

2 High Performance Computation Fundamentals

Threads are a substantial part of the Java programming language. Java is the only general
programming language that does not need external libraries for parallel programming, because
everything needed is built into the language.

2.4.8 Dynamic linking
Dynamic linking is the ability for a program to link to external code at runtime. For example,
suppose we have a set of linear equation solvers: Gaussian elimination, GMRES, Multigrid, LU-
decomposition, etc. Traditionally, all of these are linked into one executable file; whereas dynamic
linking allows a new solver to be linked at runtime. Besides reducing code size, this feature allows
software components to be replaced and maintained without relinking the entire code.

2.4.9 Remote Method Invocation
With a distributed computing system, for example, an engineer at a workstation running a
supercomputer simulation, the engineer would like to see the computation just as if it were
happening on the workstation. Java RMI is one way to do this: the engineer (client) manipulates
objects with a user interface, but the actions he performs (the method invocations) are actually
performed on objects on the supercomputer (the server). This transparent distribution of the
computation and steering are vital if we are to provide both the immediacy of a workstation code
with the computational power of the supercomputer.

2.5 Thread programming in HPCC
This chapter gives a general introduction about threads and shows the special issues in thread
programming for high performance computing and communication. It also demonstrates how it is
possible to achieve excellent parallel efficiency utilizing the newly developed Direct-Neighbour-
Synchronization (DNS), while dealing with tens of thousands or more threads.

The thread concept as basic parallelization strategy, delivers an enormous number of options to
speed up parallelization, since fine tuning by threads on all levels of parallelization (i.e, domain
decomposition, numerical algorithm, loops etc.) of a computation is possible

2.5.1 What are Threads?
In Java, concurrency is achieved via the thread concept. The thread concept is best explained by a
simple example: consider a TV-screen that posts several channels at the same time, each shown
in a separate small rectangular window. Although these windows (threads) are independent, they
are part of the main screen (process), i.e. they share the same address space. Threads are run

34

2 High Performance Computation Fundamentals

concurrently, the mapping of threads to processors as well as the scheduling being done by Java

and the OS. Thus, we have a way to get dynamic load-balancing of a parallel application without

explicitly assigning tasks to processors: a threaded application is said to be selfscheduling. Java

also provides a mechanism for synchronizing threads and for sending messages between

threads.

Multithreaded programs extend the idea of multitasking one level further such that individual

programs (processes) will appear to perform multiple tasks at the same time. Each task is called a

thread which is the short form for thread of control. Programs that can run more than one thread at

a time are said to be multithreaded. A thread consist of three parts : a virtual CPU, the code to be

executed and the data the code works on.

Illustration 2.5.1: A thread
or execution context

2.5.2 Threads vs. Processes

The architectural differences between threads and processes are shown in chapter 2.1 on page

29. The results shown in chapter 8.1.1.3 on page 128 demonstrates perfectly the lightweight

character of threads.

35

2 High Performance Computation Fundamentals

2.5.3 Models of Thread implementations
Three different types of thread implementations are available in various Java Virtual Machines

(JVM).

2.5.3.7 Many-to-One (Green Threads) Thread Model

The Many-to-One model was the first thread model

Java implements. Nowadays it is only used with

Java embedded Virtual Machines. This model puts

all Java application threads to one native kernel

thread. It is not possible to build a multiprocessor

= Thread

O = LWP

Native

Java Application

User Space

Kernel Space

SchedulaWe entity
(e g "LWP")

Illustration 2.5.2: Schema diagram of the ,,green
thread" model

application with this model.

2.5.3.2 One-to-One Thread Model

= Thread

o. LWP Native

Java Application

User Space

Kernel Space

Illustration 2.5.3: Schema diagram of the "one-
to-one" thread model. One application thread is
mapped to one kernel thread.

The One-to-One model puts one application thread

on one kernel thread. It uses more kernel

resources than the Many-to-Many model but for

SMP machines with a large number or processors

the thread context switch is much faster and

performance increases.

36

2 High Performance Computation Fundamentals

2.5.3.3 Many-to-Many Thread Model

= Thread

= LWP

-l-t-l 1 Java Application

User Space

Kernel Space

Illustration 2.5.4: "Many-o-Many" thread model.
Many application threads are dynamically
mapped to many kernel threads.

The Many-to-Many Model was for a long time

preferred over the One-to-One model because of

much lesser use of kernel resources. Moreover on

a dual processor system it was the best model to
run thousands of threads on a single machine. But
now the focus is more on performance and

memory is cheap these days, so the Many-to-Many
model is no longer in use.

2.5.3.4 Besf Thread Model for JUSTGmo

Today most modern operating systems like Linux, Mac OS X, Solaris, and Windows are utilising
the One-to-One Thread Model to support the optimal performance on multi-processors systems.
Furthermore, this also is the best mechanism for supporting the JUSTGpio framework.

2.5.4 Thread Scheduling
A Thread object can exist in many different states throughout its lifetime. Illustration 2.5.5 Shows

this idea:

New

O
sleepO timeout, joinQ or interruptQ

Otherwise
Blocked

start{)

Dead

Blocked in
object's wait()

pool

notifyO

interrupt!)

Blocked in
object's lock

pool

Illustration 2.5.5: Thread States

With the Java Development Kit (JDK) version 1.2, the suspend(), resume (), and stop

37

2 High Performance Computation Fundamentals

methods have been deprecated, suspend () is a deadlock prone and stop () is unsafe in terms

of date protection.

Although the thread becomes runnable, it does not necessarily start running immediately. Only one

action at a time can be done on a machine that has a single processor.

In Java technology, threads are usually preemptive, but not necessarily timesliced (the process of

giving each thread an equal amount of CPU time). It is a common mistake to believe that

"preemptive" is a fancy word for "does timeslicing". The behaviour of most JVM implementations

appears to be strictly preemptive. But across JVM implementations, there is no guarantee of

preemption or timeslicing. The only guarantees lie in the developer's use of wait () and sleep () .

The model of a preemptive scheduler is that many threads might be runnable, but only one thread

is actually running. This thread continues to run until either is ceases to be runnable, or another

thread of higher priority becomes runnable. In the latter case, the lower priority thread is

preempted by the thread of higher priority, which gets a chance to run instead.

A thread might cease to be runnable for a variety of reasons. The thread's code can execute a

Thread, sleep () call, deliberately asking the thread to pause for a fixed period of time. The

thread might have to wait to access a resource, and cannot continue until that resource becomes

available.

All threads that are runnable are kept in pools according to priority. When a blocked thread

becomes runnable, it is placed back into the appropriate runnable pool. Threads from the highest

priority non-empty pool are given CPU time.

2.5.5 Thread Synchronization

2. 5. 5.1 The Problem

Imagine two threads having a reference to a single instance of a stack class. One thread is

pushing data onto the stack and the other one, more or less independently, is popping data off the

stack. In principle, the data is added and removed successfully. However, there is a potential

problem.

Suppose thread a is adding and thread b is removing characters. Thread a has just deposited a

character, but has not yet increment the character index counter. For some reason this thread is

now preempted. At this point, the data model represented in the stack object is inconsistent.

38

2 High Performance Computation Fundamentals

2.5.5.2 The Object Lock Flag

In Java technology, every object has a flag associated with it. One can think of this flag as a "lock

flag". The keyword synchronized enables interaction with this flag, and allows exclusive access

to code that affects shared data. The following sample shows two "synchronized" methods of our

stack implementation mentioned in 2.5.5.1.

Object this

Data

Thread before
synchronized (this)

public void push(char c)

synchronized < this) {
data [idx] = c;
i dx + + ;

Code
Illustration 2.5.6: Object lock state before
getting the lock flag.

Object this

Data

Thread after synchronized (this)

public void push! char c)

 synchronized! this) {
data [idx] = c ;

Code
Illustration 2.5.7: Object lock state after getting
the lock flag

The thread waiting for the lock flag of an object cannot resume running until the flag is available.

Therefore, it is important for the holding thread to return the flag when it is no longer needed.

Object this

Data

waiting for
object lock

Thread try to execute
synchronized(this

public void push(char c)

{
synchronized! this) {

data[idx] = c;
idx++;

Q OCj e Lock flag is missing

Illustration 2.5.8: Object lock state while lock flag
is missing, current execution thread will be
blocked

39

2 High Performance Computation Fundamentals

2.5.6 Thread programming challenges.

How to deal with tens of thousands of threads in one simulation process? The answer to this

question is very easy if the problem to be solved can be divided into autonomous parts without any

communication between theses parts. Just start one thread per part or so called domain or block

and wait until they all become ready. But for all of the problems we have in mind (CFD, MHD, ...)

communication between blocks (domains) is crucial in order to solve the problem at all.

Communication between threads (blocks) cannot be done at arbitrary times during the

computation. It has to be done at particularly defined points to be sure to transport valid data only

between the blocks. Generally this has to be done before a numerical iteration step is initiated.

Hence the difficulty is to find an efficient mechanism for threads to wait for other threads to become

ready. As shown in chapter 2.5.5 the Java environment provides a synchronization mechanism for

threads , but there are different techniques to achieve the best possible parallel efficiency.

2.5.6. 1 Comparison of Thread synchronization techniques within a HPCC code

A Solver for the well known Mandelbrot Set was

developed as a test case for three reasons. First,

from the numerical aspect the Mandelbrot Set

problem is highly load imbalanced over the

complete solution process. This is important to

see the different behaviour of the compute

threads (blocks). Second is the fact that there is

no data exchange between the blocks, otherwise

it would be impossible to implement a test case

without any synchronization. The third and last

reason was the possibility to visualize the three

different synchronization methods to depicting the dead lock and race condition errors.

All three synchronization methods use 64 threads. One compute thread is responsible for one

block (stripe).

The Mandelbrot Set is a fractal named named after BenoTt Mandelbrot. Greatly illustrated and

described in "The Beauty of Fractals. Images of Complex Dynamical Systems" by Heinz-Otto

Peitgen and Peter H. Richter [HPPR].

Illustration 2.5.9: Solution of the well known
Mandelbrot Set.

40

2 High Performance Computation Fundamentals

2.5.6.2 No synchronization

Illustration 2.5.10: Computation of a Mandelbrot
Set without any synchronization between the
compute threads. (Snapshot during computation)

This sample shows the numerically imbalanced

character of the Mandelbrot Set computation.

While one thread has already finished other

threads are many iterations behind. The

maximum iteration number is also the possible

maximum iteration difference if there is no

synchronization. Because of the lack of any

synchronization this is the fastest method for any

number of processors.

2.5.6.3 Global synchronization

Illustration 2.5.11: Computation of a Mandelbrot
Set with global synchronization between the
compute threads (Snapshot during computation)

To achieve global synchronization all threads

need to be synchronized with one global object

lock flag. Maximum iteration difference over all

domains is 1. It takes a few lines of code only to

implement this synchronization method, and the

performance efficiency lost for one and two
processors compared with the "no synchro­

nization" method is really small. With more than

two processors this synchronization method

becomes more and more inefficient because of

the rising number of native system threads,

waiting for the last thread to become ready. See the result in 2.6.3 on page 46.

41

2 High Performance Computation Fundamentals

2.5.7 Race condition and deadlock - common programming pitfalls in
parallel execution systems

The two most common pitfalls in parallel
programming with synchronization are the race

condition and the deadlock. The "race condition"

error occurs if a thread suddenly is no longer

synchronized and simply keeps running (see

Illustration beside). Next, suppose thread (A)

waits for thread (B) to become ready and thread

(B) waits for thread (A) to become ready and
together they wait forever, this is called "dead
lock" error. The basic approach avoiding "race

conditions" is serializing the problem which,
however, is no option for JUSTGpio. Even the known solutions for avoiding "deadlocks" like the

Banker's algorithm (using maxima values as a break condition) or the wait/die algorithm one

threads waits until the other dies, will not give a consistent valid solution. The only way to avoid

such errors is careful algorithm design and more comprehensive testing of the complete simulation

environment. In fact the JUSTGRio framework is also responsible for synchronization and

communication between threads a developer does not need to take care about these difficult tasks.

Illustration 2.5.12: Visualization of a race condition
error

42

2 High Performance Computation Fundamentals

2.6 Direct Neighbour synchronization (DNS)
To reduce the number of idle threads the novel

technique of Direct Neighbour synchronization

(DNS) was developed. Threads are synchronized

with direct neighbours only, one object lock flag

per thread. Thus the maximum iteration

difference between neighbours was reduced to 1.

In Illustration 2.6.1 one can see the centre blocks

with the most numerical load (colour=black) are

behind the blocks at the boundary. This synchro­

nization technique gives the operating system

much better handle to distribute the compute

threads over all available native system threads. For the DNS an additional Object for the

synchronization is needed to avoid the deadlock prone.

Illustration 2.6.1: Computation of a Mandelbrot Set
with Direct Neighbour synchronization between the
compute threads

LJ JpNode
Attributes

private int idCnunter = 0
protected Thread nodeThread = nul
phvate int umqueld

Operations
public JpNodet)
public int getUniqueld()
public void initNodei >
public void start()
public void itop(I

0.." riodeArrav

LJJpMultiblockNode

private int numberOfNeighbors = 0

Operations
public JpMultiblockNodel JpMultiblockSolver solver. JpBlock block. JpNode nodeArray[0.."]
public void runl)
package void justNotifyl)
private void boundaryConditions()
private void boundarvExchanget)
private void facePartBoundaryExchangel JpFacePart facePart)
private void synchronizeWilhNeigborsl)

public void initNode()
public void start!)
public void stopl)

Operations Kedefined From JpNode

public
publii
puhh

publi
euhlu
mibjii
pjiMil
piibJii
pjibik
poiijlii
pubh

BUbJlS

«interface»
N JpNodeStatus

Attributes

int READY = 0x00000001

int SYSTEM = 0x00000002

int WAITING = 0x00000004

mt SUSPENDFD = 0x00000040

int STOPPED = 0x00000008

mt SOLVING = 0x00000020

mt SOLVER FXCFPTION = 0x00020000

int READY FOR SYNC = 0x00000080

mt OTHER EXCEPTION = 0x00040000

mt OK = 0x00000000

mt INTERRUPTED = 0x00010000

int INITIALI7FD = 0x00000010

Operations

JpNodeStatusImp
Attributes

private int errorState
private int iteration
private int runStale
private int syncld

neighbours

Operations
publicJpNodeStatuslmpf)
public void checkSynet int iteration, int syncld)
public int getErrorStatel)
public mt getlterationt)
public int getRunState()
public int gelSyncldf }
public mt incrementlterationl)
public int readyForSync()
public void seiErrorStatet int stale)
public void setlterationl ml iteration)
public void setRunSiate(mt state)

Illustration 2.6.2: UML Class diagram fora JpMultiblockNode with Direct Neighbour Synchronization
implemented with JpNodeStatusImp___________________________________

The class JpNodeStatusImp in JUSTGrid implements the DNS. Every compute node (thread), in

43

2 High Performance Computation Fundamentals

our case JpMultiblockNode, is initialized with an Array of references to its neighbours and contains

one instance of JpNodeStatuslmp. Additionally JpNodeStatus indicates the current status of a
Node.

Start

Yes

Compute (solve) one Iteration

Synchonlze with
neighbours

Finalize computation

<§>

Finish

Illustration 2.6.3: UML State diagram of a multi block
compute node.

Due to the fact that there are normally
more than one synchronization points in a
computation cycle (iteration) the DNS
status object must recognize the different
synchronization points (Illustration 2.6.3).
The current iteration number is insufficient
to identify a unique point in the execution
path. Therefore it was necessary to extend

the "checkSync" method call by an

additional identification parameter
U _._ -i J7syncld .

2.6.1 JpMultiblockNode
Every instance of JpMultiBlockNode represents one execution thread. On every synchronization
point all neighbour states must be checked. If one ore more neighbours are not ready to
synchronize the current thread go into "waif-state.

private void svnchronizeWithNeiqbors() throws InterruptedException

int iteration = nodeStatus. getlteration ();
int syncld = nodeStatus. readyForSync ();

if (neighborNode != null)

for (int i = 0; i < neighborNode.length; i++)

if (neighborNode[i] != null)

neighborNode[i].nodeStatus. checkSync (iteration, syncld);

}

To check all neighbours first the current iteration and the current syncld will be received from the

own status object (JpNodeStatuslmp). Then all neighbours will be checked for their state.

44

2 High Performance Computation Fundamentals

2.6.2 JpNodeStatuslrnp

The method "readForSync" has two tasks providing the caller method with the current syncld and

notifying all waiting neighbours (threads) about the new state of this node.

synchronized public int readvForSvnc()
{
this.syncld++;
this. setRunState (READY_FOR_SYNC);
notifyAHO ;

return syncld;
}

synchronized public void checkSvnc(int iteration, int syncld)

while (true)

if (this.iteration > iteration)

break;
}

if ((this.iteration == iteration) && (this.syncld >= syncld)

break;
}

try

wait () ;

catch (InterruptedException e)

e .printStackTrace() ;

If the current compute node is behind or exactly at the same state as the comparing neighbour

node the execution thread will immediately return from the "checkSync" method. If the current

node is ahead compared to the neighbour node the execution thread will be set into the wait-state.

The execution thread will wait at this point until it receives the notification from the

"readyForSync" method.

45

2 High Performance Computation Fundamentals

2.6.3 Efficiency results for the different synchronization methods

The "No Synchronization" (NS) test case is the reference for the "Global Synchronization" (GS) and

the "Direct Neighbour Synchronization" (DNS).

! No Sync(NS)
I Global Sync(GS)

DirectNeighbour Sync
(DNS)

0.00

Number of processors

Illustration 2.6.4: Efficiency results for the different synchronization
methods increasing the number of processors

Due to the more complex implementation of the DNS the GS shows better results for 1 and 2

processors. But starting with 4 or more processors the DNS demonstrates its advantage against

the GS even for this simple Mandelbrot Set test case. Nowadays the computer industry provides

multicore processors with many native threads per core, for instance, there already exists the Sun

Microsystems UltraSPARC T2 with 8 cores and 8 threads per core, all in one processor. This

processor presents itself to the operating system as a collection of 64 single CPUs accessing one

shared memory system. Other companies like Intel have similar multicore systems on their road

map. With such systems the "Direct Neighbour Synchronization" is a powerful strategy to achieve

efficient load balancing over all available CPUs, independent of their number.

46

3 Multiphysics Framework - JUSTGrid

3 Multiphysics Framework - JUSTGRio

3.1 Introduction
JUSTGrid is a completely Java based software environment for the user/developer of HPC

software. JUSTGrid takes care of the difficult tasks of handling very complex geometries (aircraft,

spacecraft, biological cells, semiconductor devices, turbines, cars, ships etc.) and the

parallelization of the simulation code as well as its implementation on the internet. JUSTGrid builds

the computational Grid, and provides both the geometry layer and parallel layer as well as an

interface to attach any arbitrary solver package to it. JUSTSolver is a pure Java CFD solver plugin

for JUSTGrid, based on finite volume technique, and thus can be used for any kind of hyperbolic

problem (system of hyperbolic equations).

JUSTGrid provides the coupling to any existing solver, but freeing this solver from all the

unnecessary burden of providing its own geometrical and parallel computational infrastructure.

Because of Java's unique features, JUSTGrid is completely portable, and can be used on any

computer architecture across the Internet ,as long as a Java Runtime Environment (JRE) is

provided.

If the solver object is written in Java, the Remote Method Invocation (RMI) class is used, if not, the

Common Request Broker Architecture (CORBA) or the Java Native Interface (JNI) is employed to

integrate so called legacy solvers. The server does not need to know anything about the solver as

long as the solver interface is correctly implemented. The parallelization is entirely based on the

Java thread concept. This thread concept has substantial advantages over the PVM or MPI library

parallelization approach, since it is part of the Java language. Hence, no additional parallelization

libraries are needed.

Maxwell Schrodnger
(etectromagietics) (quanlim mechanics)

Solver

Results Debugging Surface
Session Tracking Conversion

Visualization

Dynamic Load Balancing

Parallelization

omplex Geometrie

I Interactive Collaborative System
Steering Engineering Security

Internet

Outsourcing

Illustration 3.1.1: JUSTGrid framework block diagram. Shows the
different parts of the JUSTGrid architecture.

47

3 Multiphysics Framework - JUSTGrid

JUSTGrid provides a layer, the solver package layer, to be implemented on the client site. This

layer is a Java interface, that is, it contains all methods (functions in the context of a procedural

language) to construct a solver whose physics is governed by a set of conservation laws. An

interface in the Java sense provides the overall structure, but does not actually implement the

method bodies, i.e., the numerical schemes and the number and type of physical equations. This

JavaSolver-lnterface therefore provides the software infrastructure to the the other two layers, and

thus is usable for a large class of computational problems based on finite volume formulation. It is

well known that the Navier-Stokes equations (fluid dynamics), Maxwell's equations

(electromagnetics, including semiconductor simulation) as well as Schrodinger's equation

(quantum mechanics) can be cast in such a form. Thus, a large class of solvers can be directly

derived from this concept. The usage of this solver package, however, is not mandatory, and any

solver can be sent by the client at run time. All solvers extend the generic solver class, and in case

a solver does not need to deal with geometry, the generic solver class is used directly instead of

the conservation law solver class.

3.2 Highlights

• Replace the default solver with your own solver (mathematics).

The design of JUSTGrid allows to replace the default computation class (Solver, Cell,

SessionHandler, BoundaryHandler, ...) on the server, except the Session and Master

Implementation.

• Free configurable solver plugin service

Set/Get any value to your solver (Reflection API).

• Exchange the solver online during computation.

The exchange of a specific class on the JUSTGrid server can be initiated while the

computation is running without a restart cycle.

• Dynamic load balancing obtained for free on SMP Architectures.

Dealing with multithreaded architectures transfers the responsibility for the load balancing

from the application to the operating system. Modern operating systems like Sun Solaris are

very efficient in distributing the thread load on the available collection of CPUs.

• Simple geometrical model for the programmer.

JUSTGrid frees the programmer from dealing with complex geometries. The programmer

48

3 Multiphysics Framework - JUSTGrid

focuses on a cell only that is in a mathematical universe where every edge has normalized

length 1. The transformation from the physical- to the mathematical- coordinate system is

done by JUSTGrid.

• Simple Solver API (interface)

The motto observed during the whole design process is that of Einstein who said: Make it as

simple as possible but not simpler. For example, if one likes to write his own multiblock

solver one has to implement only a single method named solve. For other types of solvers

only a few more methods need to be implemented. Illustration 3.1.1 on page 47 depicts an

UML class diagram of the JUSTGrid solver interfaces.

• OnlineVisualization on demand

JUSTGrid provides access to all computational data in the solution domain at any arbitrary

state of the computation. Illustrations 3.5.3 and 3.5.2 are showing online visualizations of the

solution domain.

• Collaborative engineering

Via a unique Session-ID, multiple clients are able to connect to the same compute session

on the server. As an example: if an engineer wants to ask an expert about the correctness of

his computation which is currently running, the engineer sends the Session-ID to the expert,

who could then connect to this compute session and visualize the computation online,

providing his feedback to the engineer.

• Multiple sessions on one server.

The JUSTGrid server is able to run as many sessions as you want; it is only limited by the

available resources on the server system.

• Application and network security

Java has a very smart security architecture that protects your code and data from

unauthorized access or modification. JUSTGrid benefits from these application security

features and uses the network security layer for client/server communication.

• Loaders and writers for structured and unstructured grids and TecPlot™ data files are

available.
Data files can be stored on the client as well as on the server side.

49

3 Multiphysics Framework - JUSTGrid

• Modern object oriented software architecture

The object oriented architecture allows to benefit from techniques like inheritance, data

encapsulation and message passing. These are some of the features that make the code

more robust and maintainable.

• Automatic topology recognition

The framework finds all matching edges and faces.

3.3 Client/Server internet architecture

Solver/Code Development

Session-ID

Internet,
Intranet

Session-ID

Visualization

Session-ID

Server
Session-ID

Collaborative Engineering

Illustration 3.3.1: JUSTGrid Architecture Overview. The server itself, in
principle, can be distributed over the internet.

With a distributed computing system, for example an engineer at a workstation running a

simulation on a supercomputer, the engineer would like to see the computation just as if it were

happening on the workstation. The Java Remote Method Invocation (RMI) is one way to do this:

the engineer (client) manipulates objects with a user interface, but the actions he performs (the

method invocation} are actually performed on objects on the supercomputer (server). This

transparent distribution of the computation and steering are vital if we are to provide both the

immediacy of a workstation code with the computational power of the supercomputer.

If the client establishes the first connection to the server and upon requesting a new session, a

random 64Bit Session-ID is created on the server and sent back to the client. Every further action

to the session is bound to that Session-ID. With a valid Session-ID many clients are able to

connect to the same session and give engineers the possibility to steer or visualize the

50

3 Multiphysics Framework - JUSTGrid

computation from many different clients (collaborative engineering). Another advantage of

JUSTGrid is in case the internet connection to the server breaks down a client can easily

reestablish the connection to the server as soon as the internet connection is up again using the

Session-ID. While the internet connection is down the computation does not stop and no data will

be lost. Additionally to the communication with RMI, JUSTGrid has also implemented a streaming

server for large data files because RMI is packet oriented and inefficient for large continuous data

sets.

3.4 Communication and Computation Procedure

3.4.1 Generic -static numeric- Solver
A generic (written in C or Fortran) flow solver provides a precompiled

set of functionality to an engineer. It has a static predefined

functionality. All provided numerical strategies have do be declared at

build time of the solver executable. The only way to extend the system

with new functions is to compile and link the changed source code

again. If you do not have the source code of the solver (e.g. a

commercial flow solver) one cannot extend the system.

The user data will be handled like filling out a predefined form.

R=A+ B/C 3.4.2 Dynamic JUSTGrid Solver
The JUSTGrid framework can also provide, like a generic solver system,

predefined functionality to the engineers. But in addition, it provides the

availability to send user specified numerics (solver) to the framework. It

is possible to change the numeric code during the runtime of a

computation at multiple times.

u^vvwrwKfr sff<wvj> n \J>IIIHM

S@/^@f $®mta«figmnmms, 3.4.2.1 Sending the numerics
The JUSTGrid standard way is first sending the numeric to the JUSTGrid server.

51

3 Multiphysics Framework - JUSTGrid

= 10
B[1]=20

= 4
A[2] = 10
B[2]=20
C[2] = 4 A[3] = 10

B[3] = 20
C[3] = 4

X
Illustration 3.4.3: Dynamic JUSTGrid
Solver sending data

3.4.2.2 Sending the data
The next step is sending all data needed by your solver

for the computation. The JUSTGrid Framework can

receive additional data any time the solver requests

them.

= 15
R[2] = 15
R[3] = 15

3.4.2.3 Receiving the result
Receiving the results: The last step is receiving your self defined
results. As a matter of of fact, of course the JUSTGrid framework is able

to send back as many results and at any iteration one want.

Illustration 3.4.4:
Dynamic JUSTGrid
solver receiving your
self-defined result

3.5 Session API
The following Illustrations for the Session, Server, ... APIs are created using UML.

The Unified Modeling Language (UML) is a standard language for specifying, visualizing,

constructing, and documenting the artifacts of software systems, as well as for business modeling

and other non-software systems. The UML represents a collection of best engineering practices

that have proven successful in the modeling of large and complex systems.

The UML is a very important part of developing object oriented software and the software

development process. The UML uses mostly graphical notations to express the design of software

projects. Using the UML helps project teams communicate, explore potential designs, and validate

the architectural design of the software.

52

3 Multiphysics Framework - JUSTGrid

0..*
neighborNode ra

JpMultiblockNode
{ From node }

Illustration 3.5.1: UML digram for JUSTGrid Session classes

The Session API is responsible for Java class loading and transmitting and receiving all information
needed by the server to run a compute session. It deals also with the event and solver handlers for
interactive steering.

53

3 Multiphysics Framework - JUSTGrid

JpSessionlmp is the implementation of the JpSession and the JpServerSession interfaces
on the server side. It is the central object for one complete simulation. It interacts with the
client over the network, initializes all solvers and handles the complete IO.

JpClientSession is the counter part of JpSession on the client side. It is responsible for the
interactive steering, IO and handles the "callback" events, (e.g. the computation has
finished)

JpClassLoader loads all Java-Class file binaries sent from the client (e.g. JpCell, JpSolver.
JpSolverHandler) into the server memory. It is also responsible for the class security.

JpSessionMonitor provides online information about the state of the overall computation
and also of the state of a single node.

JpSolverHandler initializes the solver parameter provided by the client. It could also be
used to implement additional data input or output formats.

JpSolver contains the numerical implementation for one block.

JpNode, JpMultiblockNode is the execution container for JpSolver. It initializes and runs the
computation, does the boundary exchange, and finalizes the computation.

JpNodeStatus, JpNodeStatuslrnp gives information about the current state of a node and
implements the synchronization with the attached neighbours.

54

3 Multiphysics Framework - JUSTGrid

3.5.1 Solver

JpSolverException
{ From share }

Attributes
private String message

Operations
public JpSolverExceptiont)
public JpSolverException(String message)
public String getMessaget)
public String toStringl)

JpSolver
{From share}

Attributes

Operations
public Object getDataObjectt inr datald)
public JpBoundaryCondition[0.."J getFacesf)
public Object getOutputVarst mt gridl, int gridj, int gridK)
public void setDataObjectf int datald, Object object)
public boolean solvef int iteration)

JpCenericSolver
I From share }

Attributes

Operations
public void finishSolver()
public void initSolvert int maxNumberOfNeighbors, int nodeld)
public void postSolveUpdate(int iteration)
public void preSo/veUpdatef int iteration)
public void setNeighborObject(JpSolver neighborObject, int edge)

JpMultiblockSolver
{From share j

Attributes

Operations
public void finalizeSolverf)
public void initSolver(JpDomain block, int nodeld)

Illustration 3.5.2: UML Diagram for the JUSTGrid Solver Interface

The solver api provides the interfaces for different types of solvers. For example since the

JpGenericSolver has no connection to any structured grid data, the user himself must implement

all data communication (e.g. this is the case for the Mandelbrot-Set solver). In general, solvers

implement the JpMultiblockSolver interface and thus get all the advantages of the JUSTGrid

framework. Both solver types can throw JpSolverExceptions exceptions if an error occurs while

running the computation.

55

3 Multiphysics Framework - JUSTGrid

JpBlock
I From structured 1

Public Int NUMBtR QF FACFS-&

pilvai? String blOckName

private ir
private n
private 11
private ti
private n
private u

blockNumber
gndl
gridj
gndK
numberOfHaloCel
unique Id

p<va<wts
public jpBlotkl Ini unlqu«ld, mt grldl. int grldj. mt grid*)
publicJp6lock[0..'| gctBlockArrayt)
public Siring geiBtockNamet)
public int getBlockNumbert)
public JpBoundarvHandler getBoundaryHandlerl)
public JpCell geiCelH int i, ini j)
public JpCell getCelH int i. int j, int k)
public JpC«ll(0..*,0..'.0..'] g«tC*lts<)
public JpFace getFacel int faceNo)
publk jpFace[0 .*) getFacesi I
public ml geiGndK I
public int gerCndJ()
public ml getCndKI)
public jpVector getGndVeciorl mi I. int j, int k)
public JpVector[0 .•.()..*,0..*) getGndVectorArrayl)
public mt getCndVectorCountl)
public JpCell getJpCellt mi i)
public JpCell getNeighbort mi face, mt depth, JpCell cell)
publk mt getNumberOfCelKl)
public mt getNumberOfHaloCellsI)
public jpSorver get$otver(I
public mi geiUniqueldl)
public void setBlockArrayl JpBlock blockArraylO .'])
public void setBlockNamel String blockName)
public void setBlockNumberl int blockNumber)
public void setBoundaryHandler(JpBoundarvHandler boundaryHandler)
public void setCellsf JpCell jpCell. mt numberOfHaloCells)

public votd setF«e(jpface face, mt fac«No)
public void setCndK int gridl)
public votd setCndJt mt gndj)
public void setGndKt int gndK)
public void «tCndVecior(Jpvtctor vector, mt I, int j. mi k)

public void setSolverl JpSolver solver)
publk void updaieBoundaryCondmonsl mt type)

0..*

blockArray JpCell
{From domai

it NUM6E.R-OF-FACES = 6
public double flnlteVolume

public Object getOataf)
public JpVector getFaceVector(int face)

c JpVector|0.."] getFaceVectorsf)
c double geTFmiteVolumet)
c void setDaraf Object data)

oid setFiniteVolumet double fmiteVol

faceVectorArray

0. ".0 *.0 '

gndVeclorArray

boundaryHandler

JpBoundaryHandler
! From domain J

public void mat jpUock jpBiock)
public void setFacest jpBcundiryCondtrton facet(0..'l)
public void updateBoundarYCondittonst inl type)

JpVector
(From math j

public double x
public double y
public double z

publn

publi
public
public
public
publi
public
public
public
public
public
public
public
public
public
public

JpVector] j

JpVectorf JpVector pareni)

JpVectorl double x. double v. double z !
jpVectO' addl JpVector vector)
mt compareTof Object 0)
JpVector cioss(JpVector vector 1)
JpVector crossf JpVector uectorl. JpVector vecror2)

jpVecior div(double divisor)
double doKJpVeaor vector)
JpVector getZeroVectoridf jpVector tupleBd }
JpVector getZeroVectoridl doubly x, double y, double z)
double lengthf f
void max(jpvector tupleBd)
void max(double x. double v. double z)
void min(JpVector tupleSd)

JpVector mult double (acior}
public
public String toStrmg{ >

jpBlock

JpFace
[From domair

public 1
DU^IlC 1

public I
DUbllC 1

T 1 MIN = 2
i 1 MAX - S
t 1 MIN - 3
1 | MAX - 4

private mt faceNumber

Opera t

public JpFacel mt faceNumber. JpBlock parent 1
public mt getFaceNumberl)

public JpFacePart[0 "j getFacePartsl)
public JpBlock geiParentBlockl)
public void setFaceNumbert mt faceNumber)
public void setFacePartf JpFacePart facePart, Int

parentFace

0."

facePartArray

JpFacePart
(From domain }

Attributes

private Object communicationBuffer[0. *,0 ',0 *]
private mt halo

private mt neighbot8loc<Number
private mt neighborFaceNumber

private mt orientation

private mt partNurnber
private mt partWidih
private mt partX
private mt partY

Operations
public JpFacePanf int parrNumber. JpFace parent)
public String getBoundaryCorditionl)
public mt getlteranon) I
public Int geiNelghborBlockNumber()
public Int getNeighborFaceNumberf)
publtc JpFacePart getNeighborFacePartl)
public mt getNeighborFaceParr.Number(i
public mt gecOnemationf)
public JpFace getParentFacet)
public mt getPartHeightl)
public int getPartNumber()
public mt getPanWIdthf)
public mt getPartXl)
public mt getPanY()
public void imt()
public void nextlterationf }
public Object[0..",0..'.0..'] readCommunicationBufferl)
public void setBoundaryCondition< String boundarvCondition)
public void seiNelghborBlockNumberf mt neighborBlockNumber)
public void setNeighborfaceNiimberl mt neighborFaceNumber)

public void setNeighborFacePartl JpFacePart neigrtborFacePart)
public void setNeighborFacePartNumbert mt neighborFacePartNurnber)

public void setPatHeighM mt partHeight)
public void ietPariNumberf mt partNumber)
public void setPanwidthl mt panWidth)
public void setPanXt mt partX)
public void setPanY(ml partY)
public void writeCommunlcatlonBufferl Object buffer[0. ',0. '.0 .'))
private void log{ Strmg message)

neighborFaceParl

Illustration 3.5.3: UML class diagram of the JUSTGird multiblock implementation

Illustration 3.5.1 shows the complete internal class structure representing a structured grid. For

detailed information and illustrations see chapter 4.3.2 on page 76.

56

3 Multiphysics Framework - JUSTGrid

3.5.2 Cell

///
re
d<

JpCell
{ From domain }

Attributes
Dublic int NUMBER OF FACES = £
public double finiteVolume

Operations
public Object getDatai)
public JpVector getFaceVectort int face)
public JpVector[0..*) getFaceVectors<)
public double getFiniteVolume()
public void setDataf Object data)
public void setFaceVector(int face, JpVector faceVector)
public void setFiniteVolumet double finiteVolume)

ustration 3.5.4: The JpCell class
^presents one cell in a solution
itnain.

JUSTGRiD initializes all JpCell objects for every block. JpCell

contains no geometrical information but the normal vector for

every cell face and the finite volume for this cell. Each face

normal vector points in the normal direction and the vector

length represents the face area.

3.5.3 Boundary Handler

///
m
b(

JpBoundaryHand/er
/ From domain /

Attributes

Operations
public void init(JpBlock jpBlock)
public void setFaces(jpBoundaryCondition faces[0..*])
public void updateBoundaryConditions(int type)

ustration 3.5.5: This interface
ust be filled out for the different
lundary conditions.

A boundary handler is associated to each block. The boundary

handler will be executed by the JUSTGpio framework before

every single iteration of the solver main compute method.

3.5.4 Session

JpSession
i From share I

public int ACKNOWLEDGE = OxSA
public int INIT_NODE_VIA_IO_STREAM = 1
public int SOLVER_HANDLER_READ_DATA = 2
public int SOLVER_HANDLER_WRITE_DATA = 3
public inl UPDATE,NON - 0
public ini UPDATE_PRE_SOLVE = 1
public int UPDATE_POST_5OLVE = 2
public ini UPDATE_ON_5OLVE = 3

Attributes

Operations
public void abonSessionf }
public void destroySessionf)
public long[0..'J getNodeStatusArrayt)
public JpSolver getSolverf int nodelndex)
public Object getSolverDataObjectt int nodelndex, Int datald)
public void
public void
public void
public void
public void
public void
public boole
public void
public void
public void
public void
public void
public void
public void

nitNodel int nodelndex >
nitNodet int nodelndex, byte solverObjectDatald..'!)
nitNodet int nodelndex, JpSolver solver)
nitSessiontJpCliemSesston clientSession)
nitSession< int numberOfNodes, int maxNumberOfNeighbors, JpdientSession clientSession)
nitSolverHandlerl byte handlerObjectData[0.. •]!
in isSessionReadyf)
etMaxlterationf long maxlteration)
etNodeNeighborObjectl int nodelndex, int neighborlndex, in! edge)
etSolveUpdateSequencef int solveilpdateSequence)
etSolveUpdateSynchronization(boolean solveUpdateSynchronization)
etSolverDataObjectl int nodelndex, int datald, Object object)
tartSessiont)
fopSess/onC)

Illustration 3.5.6: The Session object is the interactive steering
interface between the client application and the server

The JpSession interface is the central

object between the sever and the

client. JpSession is implemented as an

unicast remote object which allows to

remotely communicate with this object

via Java Remote Method Invocation

(RMI) over the internet. It is

responsible for initializing the

computation, data exchange and
interactive steering.

57

3 Multiphysics Framework - JUSTGrid

3.6 Standalone Server (JpMaster)

JploStreamStatusImp
1 From server (

JpServerSession
{ From share 1

JploStreamStatus
{ From share)

JpMaster

JpMaster

JpMasterlmp
[From JpSessionlmp } ioStreamServer

JpMaster

JploStreamServer
(From server}

JploStreamStatus

JploStreamSession
{ From server}

Illustration 3.6.1: UML diagram of the JUSTGrid Server classes

JpMaster is the standalone server programme running typically on a large compute system with

(hopefully) a large number of processors. The JpMaster is able to exchange the default solver with

a user supplied solver during a computation. JpMaster handles different solvers in different session

simultaneously.

3.7 Client Applications

3.7.1 Command Line Interface
The command line interface is provided by the just-fw. jar file. This file contains all JUSTGrid

classes. The interface is invoked as follows:

Java hpcc.just.app.cli.Main

The command line interface reads a file called startup.properties which contains all

information needed by JUSTGrid to run a compute session. For detailed information about the

startup. properties file see chapter 4.4 on page 78.

58

3 Multiphysics Framework - JUSTGrid

3.7.2 Simple Client

JavaCrid Client GUI
File Help
-Settings

Classes [Input Data; Output Data |

Solver Class [

Cel Class

j-XhJtput Loff——

rSession Information-

I: Session Id

I Stop I Clear Log

Select Solver Implementation class
3 Classpath

B Idlest
-C3 cle
>-[l3 example

PI sample
§) Celllmplemenlalion
@ Solverlmplementation

Class name sample.Solverlmplementation

Illustration 3.7.1: JUSTGrid: Client Graphical User Interface (GUI) with an
opened class browser dialog for selecting the solver class to be used

This GUI provides the interface between the user and the JUSTGrid collecting all information

necessary to run the parallel application. In addition, the GUI also provides guidelines for the user

to facilitate the usage of the application. The user starts a session and obtains a session ID that

subsequently can be used to access the server from any other machine connected to the

computational grid anywhere on the Internet.

3.7.3 ShowMe 3D

«3 Appl ShwMrtO n 5howMe3. . VwwPort H ShowMsJ. ' ft Slatting

Virtual Visualization Toolkit (VVT/ShowMe3D) showing a shaded
triangulated surface of a generic car.

59

3 Multiphysics Framework - JUSTGrid

"•Cja'} : && ' • Sl.rt.n6T.. |ff pP' " J ffl 1 M ̂ f f |Q ' W.J |.n 1. 13 ill ao ^

Illustration 3.7.3: The Virtual Visualization Toolkit (VVT/ShowMe3D) showing a wireframed
triangulated surface of a generic car.

This program provides a way to visualize and investigate complex simulations with a thin client;

that is, a machine with just a normal web browser and a low-speed connection to the internet. The

client is not assumed to have expensive and complex visualization software installed. The files for

the simulation data as well as the visualization software are installed on a powerful server

machine.

In JUSTGrid remote data visualization along with data compression and feature extraction as well

as remote computational steering is of prime importance. Since JavaGrid allows multiple sessions,

multiuser collaboration is needed. Different visualization modules are needed, but here a

computational fluid dynamics (CFD) module that allows the perusal of remote CFD data sets will

be developed, based on the JavaSD standard.

In large simulations, grids with millions of cells are computed, producing hundreds of megabytes of

information during each iteration. Depending on the numerical scheme, several thousand iterations

may be needed either to converge to a steady state solution or to simulate a time-dependent

problem. Hence a fast connection is needed to move data to the client where it can be analyzed,

displayed or interacted with to navigate the parallel computation on the server. Therefore a visual

interactive package, termed the Virtual Visualization Toolkit (WT) is provided (see Illustration

3.3.1).

60

3 Multiphysics Framework - JUSTGrid

A suitably authenticated client sends a request that is translated by the server into a response that

may consist of several image files linked together by an index page that provides captions and

other metadata. The request that is sent to the server is an XML document that instructs the

visualization software, which may contain file names, filtering commands, and the type of

visualization software to be used. At present the widely used graphics packages Tecplot and

Ensight are considered for this role. The bulk of the request is in the scripting language used by

the chosen software, containing camera angles, ISO surface values, colors, and so on; that is all

the information required to build one or more images of the flow.

•3 ABpU.l.n. Pi.ce. Sy.1.™ 0£j|g ,} ._: ^^

Illustration 3.7.4: VVT is showing an Alias Wavefront object file of Cassini

Clients with more powerful machines and/or a high bandwidth connection to the server might like

more than images. In addition, one can consider sending back to the client a X3D/VRML file

(Extensible 3D, the next-generation Virtual Reality Modeling Language based upon XML the

Extensible Markup Language). This contains a three-dimensional description of space, rather than

just a two-dimensional image. Viewers are available as a plug-in to a web browser (eg. XJ3D or

Cosmo player). A client could, for example, select a density ISO surface value, and have the

complete surface returned as a X3D/VRML file, which can then be interactively rotated, zoomed,

and viewed within the client's web browser. The intellectual challenge of this work is to provide the

client with a way to effectively form the request. This would take the form of a dialogue. Initially,

there could be a choice of servers and the CFD files they contain; when a geometry is chosen

there might be a choice of flight configurations and flow variables. Once a particular simulation is

61

3 Multiphysics Framework - JUSTGrid

chosen, then thumbnail views could be displayed, generated either as part of the metadata or

generated dynamically. The client can then change parameters with sliders and buttons, and rotate

the camera angles through a small X3D/VRML model of the chosen configuration. The client can

think of the request that he is generating as a multi-page form that he can adjust by going forward

or back. The client can also request the XML document corresponding to the request, for storage

or editing.

•3

Illustration 3.7.5: VVT showing a multiblock PlaneSD surface of the European Experimantal Test
Vehicle (EXTV)

Once the request is complete, it can be sent to the server for conversion to a visual response by

opening the relevant files by the VVT.

3.7.4 GRX Monoblock Tool

3. 7.4.1 GRX Monoblock Tool - 2D
This JUSTGrid simple frontend (Illustration 3.7.6) is a rapid prototype to demonstrate the simplicity

of a well designed GUI for a 2D mono block Euler solver. It converts GridPro™ and TecPlot™ grid

files into GRX file format, (see chapter A on page 151). This frontend acts also as a control center

for the Euler solver.

62

3 Multiphysics Framework - JUSTGrid

Flit Edit View Help

Input/Output Files

Input File /home/n

Output Fit* <

Description

Name FUII Lavai Nozzle

Author DHPCC CLE

Version 11 o

One.2003-1-12 19.37:44

Creator CRX MonoblockTool

Description simple :D test case

| Convert ^ Convert and run Euler2D C3 Extract Tecplot result from tnput CRX file

Log
Unique ID = not set

GKXURUnpuTStream closeQ umaueid-noi s

GRXURUnputSiream closeQ uniQuelO-0

JJL __„„.._..
Memory Usage

fi?r Memory

Total Memory

46771392

132870144

X<:io

Illustration 3.7.6: A simple JUSTGrid front-end for a 2D mono block solver. The 3D mono
block solver is being developed. Upon testing, this solver is merged with the parallel
infrastructure of the JUSTGrid.

Dealing with the Java Media Framework one has the possibility to render video files from the

solution domain during the computation (Illustration 3.7.7), employing the integrated video player to

display the solution video in real time . The integrated video player acts like a normal video player,

for instance, the usual commands, forward, pause and reverse playing are available. In

JUSTGrid remote data visualization along with data compression and feature extraction as well as

remote computational steering is of prime importance. Since JUSTGrid allows multiple sessions,

multiuser collaboration is needed. Different visualization modules are needed, but here a

computational fluid dynamics (CFD) module, allowings the perusal of remote CFD data sets is

being developed, based on the JavaSD standard.

63

3 Multiphysics Framework - JUSTGrid

Progress View

Time-00975s Iteration - 1950 variable - RHO AoA - 0 0 Mach . 0 95

Residual

Iteration 1961

Norm 00017127543222913058

Illustration 3.7.7: Online view of the solution progress (video
production).

3.7.4.2 GRX Monoblock Tool - 3D

Illustration 3.7.8: Online visualization of a 3D sphere with JUST Euler 3D

This JUSTGrid simple frontend is a rapid prototype to demonstrate a GUI for a 3D mono block

Euler solver with online visualization of the solution on specified block faces.

64

3 Multiphysics Framework - JUSTGrid

3.7.5 GRX Tool (multiblock)

3.7.5.7 GRX2D Tool
The JUSTGpiD GRX2D Tool can be used to prepare a simulation run. JUSTGRio GRX2D is also

based on the JUSTGwo framework and uses the same loaders and utility classes as JUSTSowER

to visualize a grid. It is the very first test to check if JUSTGwo can handle a given grid. In addition

to the visualization one can specify solver specific parameters like ,,max number of iterations",

,,Mach number" or ,,Dt". These parameters are not predefined but depend on the selected solver.

GRX2D automatically scales the hole grid into the viewing area. It is able to highlight and show the

bounding box of the complete gird, the single block boundaries, block numbers and even the cells.

DlOC
3IOC
3IOC
3lOC
DlDC

#10
#11
#12
#13
#14

= 101j=17k = 2 ^j
= 101 J.17K-2
-101 J-17K-2
-101 j-17 k.2
= 101|.17k«2 3

Options

4)0 Bounding Box

jjj Block Boundaries

^0 Block Numbtrs

^ Cells

Boundary Conditions
rnoi set*
! inflow
outflow
w*n

MI "cur + (eft mouse burton to select or
s elect any boundary tontition

Memory Monitor

Memory Usage \ ,,

Free Memory 13755232

Total Memory 32833536

Illustration 3.7.9: GRX2D Tool showing a multiblock grid of a NACA 0012
airfoil

65

3 Multiphysics Framework - JUSTGrid

3.7.5.2 GRXSDTool

Like JUSTGRID GRX2D the JUSTGmo GRX3D Tool can also be used to prepare a simulation run.

Even the 2D tool JUSTGmo GRX3D is based on the JUSTGRio framework and uses the same

loaders and utility classes as JUSTSOLVER to visualize a grid. In difference to the JUSTGRio GRX2D

this tool needs the Java 3D API for the visualization.

Illustration 3.7.10: GRX3D Tool showing the bounding box and the block boundaries for a grid of
a sharp cone

The view can be freely moved, rotated, and zoomed by using the computer mouse. The boundary

conditions specified by a boundary file or a GridPro topology/connectivity file are automatically

shown at the right frame. One can select one or more boundary conditions to visualize all block

faces being related to the specified boundary conditions.

Java 3D is a pure Java extension for visualizing and interacting with 3D scenes.

66

3 Multiphysics Framework - JUSTGrid

fnt Memory 208JO!SO
Total Memory $4722566

Illustration 3.7.11: GRX3D Tool showing bounding box and all block faces being related to
inflow and wall boundary conditions for sharp cone grid

Java 3D is a very powerful API. These pictures are demonstrating some of its implemented

capabilities.

Illustration 3.7.12: GRX3D showing block boundaries and wall be for a 780 block grid of the
European Experimental Test Vehicle (EXTV)

67

3 Multiphysics Framework - JUSTGrid

Illustration 3.7.13: GRX3D showing the bounding box and all faces being related to wall and
outflow boundary conditions for a 780 block EXTV grid

It is possible to rotate, move or zoom into the loaded grid with no special hardware. A common

laptop computer with a simple 3D graphics card is powerful enough to work.

Illustration 3 7 14: GRX3D showing the bounding box and all faces being related to wall and
inflow boundary conditions for a 780 block EXTV grid

68

3 Multiphysics Framework - JUSTGrid

Illustration 3.7.15: GRX3D showing an enlarged/zoomed view to all faces being related to wall
boundary conditions for a EXTV grid.

Options

^P Bounding Box

Sy Block Boundaries

^

90 Cells

Boundary Conditions
not set*

inflow
outflow
wall

Pits* "Ctrl" + left mouse button to select or
deselect any boundary contition

Options
Geometry Type

Type

Solver Classes

Options

Solver jsolvgr3d LaplaceSolverj

Cell |]lacesolver3d SimpleCellzl |

8oun<>»rv |j SimpleBoimdaryHamiieri

Number of halo cells

Number 1 "

Solver Variables
Name Value

AngleOfAttack
Di
MachNumber
Maxlterations

0 0
0.001
6 0
1000

Name Cone Laplace 3D|
Author JThorsten Ludewig

Version :i o

Date 2006-04-26 09 53 56
Creator JUST CRX 2D Tool

Description icone Laplace 3D
Simple Solver
[Template

show j lnf°
Show Parameter I Info Show Parameter mfo

Illustration 3.7.16: The three different option tabs of GRX3D

• The "Show" option tab is responsible for the viewing area. One can specify what should be

visualized.

• Within the "Parameter" tab all physical and numerical parameters needed by the simulation

can be specified.

• The "Info" tab is for additional information only.

69

3 Multiphysics Framework - JUSTGrid

3.8 Using legacy C or Fortran Code within JUSTGrid
While one can write the solver entirely in Java, there are situations where Java alone does not

meet the needs of the application. Programmers use the Java Native Interface (JNI) to write Java

native methods to handle those situations when an application cannot be written entirely in Java.

One common task is to integrate legacy C or Fortran code into the JUSTGrid framework.

Fortran Implementation

C/C++Implementation C/C++Wrapper

Header File (javah)

Java abstract Wrapper Class

JUSTGrid (Java)

Illustration 3.8.1: Schema diagram for
JUSTGrid mixing programming languages
via Java Native Interface JNI

All tools to create such an environment are part of the Java Development Kit (JDK).

The difficulties of doing such integration are:

1. Data exchange between Java and the native code. Java uses a data format, which is

identical for all Java Virtual Machines independent from the underlaying hardware. The

data converting part could be very time consuming.

2. The native code must be provided by a dynamic link library (Windows, .DLL), shared library

(Solaris, Linux, .so) or dynamic library (Mac OS X, .dylib). Static code cannot be integrated

into a Java VM.

The complete integration of a sample Fortran code into JUSTGrid was tested in a prove of concept

for the US Air Force. The projects working title was "witch's cauldron".

70

4 Multiphysics Solver Development with JUSTGrid

4 Multiphysics Solver Development with JUSTGrid
The JUST Framework architecture is prepared for unstructured, structured and merged grids. At
this time the full implementation is only available for structured grids.

4.1 Development Prerequisites
• A Java Development Kit (JDK) version 1.4.2 or higher, (http://java.sun.com)

• Java 3D API version 1.3.2 or higher. (https://java3d.dev.java.net/)

• A source editor or an Integrated Development Environment (IDE) I prefer the NetBeans IDE
(http://www.netbeans.org) but you can use any editor or IDE you want.

• The JUSTGrid archive file named just-fw. jar

• Make yourself familiar with the following JUST Framework classes:

o hpcc.just.domain.JpCell

o hpcc.just.domain.JpFace

o hpcc.just.domain.JpFacePart

o hpcc.just.domain.structured. JpBlock

o hpcc.just.share.JpMultiblockSolver

If your solver needs to have special initialization methods you also must have a look at the
following two class definitions.

o hpcc.just.share.JpSolverHandler

o hpcc.just.client.JpGenericSolverHandler

For a better understanding of the internal classes you should also read the documentation of
the mathematical vector classes.

o hpcc.math.JpPoint

o hpcc.math.JpVector

o hpcc.math.JpVectorMath

71

4 Multiphysics Solver Development with JUSTGrid

4.2 Sample integration of an EulerSD solver into JUSTGrid
1. Compile the solver as it is.

2. Run the solver with a well known example and save the result for comparison with the

migrated solver.

3. Create a new NetBeans project and copy all solver classes into the source directory of this

project. This is an optional task.

4. Move all solver classes into a new Java package to avoid naming conflicts.

5. Add the just-fw. jar archive to the projects library settings or add it to your classpath

environment variable.

6. Determine or create the class files for cell, solver, and boundary handler

7. Check the order of cell array indices, they must be [lmin-lmax] [Jmm-Jmax] [Kmin-Kmax]

8. Compile the cell, solver, etc. classes

9. Create a startup.properties file. For more information about this file see chapter 4.4

on page 78.

10. Start

Java hpcc.just.app.cli.Main

ATTENTION: Make sure that all classes of the solver are in the classpath.

11. Compare the result with the result computed in point 2 to make sure that the changes were

correct.

72

4 Multiphysics Solver Development with JUSTGrid

4.3 JUSTGrid provided structure

4.3.1 Description of the Standard Cube
A formal description of block connectivity is
needed to perform the block updating, i.e., to do
the message passing. To this end, grid

K

#3

I

Illustration 4.3.1: Description of the Standard Cube

To

information is subdivided into topology and
geometry data that are kept separate. The
following format is used for both the grid
generator and the flow solver, using the same
topology description. All computations are done
for a standard cube in the computational plane
as shown in Illustration 4.3.5. The coordinate
directions in the computational plane are
denoted by I,J, and K and block dimensions are
given by l max, Jmax and Kmax , respectively.

In the computational space, each cube has its own right-handed coordinate system (I,J,K), where
the I direction goes from back to front, the J direction from left to right, and the K direction from
bottom to top, see Illustration 4.3.5. The coordinate values are by proper grid point indices i, j, k in
the I, J, K directions, respectively. That means that values range from 1 to l max in the I direction,
from 1 to Jmax in the J direction, and 1 to Kmax in the K direction. Each grid point represents an
integer coordinate value in the computational plane.

A simple notation of planes within a block can be defined by specifying the normal vector along
with the proper coordinate value in the specified direction. For example, face 2 can uniquely
defined by describing it as a J plane with ay value 1 i.e., by the pair (J,1) where the first value is the
direction of the normal vector and the second value is the plane index. Thus, face 4 is defined by
the pair (I,J). This notation is also required in the visualization module.

73

4 Multiphysics Solver Development with JUSTGrid

K
1max i

mm
v

mm

max

I
max

K
mm

Illustration 4.3.2: Orientation of faces. Coordinates I, J, K are numbered 1,2,3 where
coordinates with lower numbers are stored first.

Grid points are stored in such a way that the I direction is treated first, followed by the J and K
directions, respectively. This implies that K planes are stored in sequence.

In the following the matching of blocks is outlined. First, it is shown how the orientation of the face
of a block is determined. Second, rules are given how to describe the matching of faces between
neighboring blocks. This means the determination of the proper orientation values between the
neighboring faces. To determine the orientation of a face, arrows are drawn in the direction of
increasing coordinate values. The rule is that the lower-valued coordinate varies first, and thereby
the orientation is uniquely determined. The orientation of faces between neighboring blocks is
determined as follows, see Illustration 4.3.3.Suppose blocks 1 and 2 are oriented as shown. Each
individual block has its own coordinate system (right-handed). For example, orientation of block 2
is obtained by rotation of TT of block K-axis - rotations are positive in a counterclockwise sense.

74

4 Multiphysics Solver Development with JUSTGrid

Illustration 4.3.3: Determination of orientation of faces between neighboring
blocks as seen from block preference block). The reference block is always
oriented as shown and then the corresponding orientation of the neighboring
face is determined, (see Illustration 4.3.4)

block connectivity

block extension

block extension
Illustration 4.3.4: The illustration shows the overlap of two
neighbouring blocks. For the flow solver, an overlap of two rows
or columns is needed. The algorithm is not straightforward,
because of the handling of diagonal points.

75

4 Multiphysics Solver Development with JUSTGrid

Thus face 4 of block 1 (used as the reference block) and face 4 of block 2 are matching with the

orientations as shown, determined from the rules shown in Illustration 4.3.4. All cases is group 1

can be obtained by rotating a face about an angle of 0, 1/2 TT, TT or 3/2 TT. This is also valid for

elements in group 2. The code automatically recognizes when the orientation between two faces

needs to be mirrored. Thus cases 1 and 7 in Illustration 4.3.4 are obtained by rotating case 1 by

TT/2. Here, the rotations are denoted by integers 0,1,2 and 3, respectively.

rotation

0

case 1 H

i mirror

3TT

stand a
plane

Illustration 4
by successi\

i odbt; /
rd _
i i

1 1 Utfb ti U

mmam mi

• uabe o

+
case o I

.3.5: The 8 possible orientations of neighboring faces are shown. Case 1 to 4 are obtained
/e rotations. The same situation holds for cases 5 to 8 upon being mirrored.

Illustration 4.3.6: Block structure of a solution domain.
JUSTGrid creates one JpBlock and one Solver instance
per grid block.

4.3.2 JUSTGrid Java class
representation of a structured
grid
JUSTGrid reads in grid files in various

formats see chapter 4.3.2 on page 76. After

loading and parsing the grid file JUSTGrid

provides a JpBlock array to the compute

session. For every grid block one JpBlock-

and one solver instance with a unique id

will be created.

76

4 Multiphysics Solver Development with JUSTGrid

77

4 Multiphysics Solver Development with JUSTGrid

JpCell

Illustration 4.3.7: JpBlock contains
grid data and JpCell instances

A JpBlock contains its unique id the grid data array and an array

containing all initialized JpCell instances including all halo cells.

The order for both arrays is [Imm-Lax] [Jmm-Jmax] [Kmin-Kmax]. It is
really important to take care of this order while you are writing

your own code. Changing the order from [K][J][I] takes much

time and raises the possibility of errors.

JpFace

JpFacePart

Illustration 4.3.8: Every JpBlock has six JpFace
objects with one JpFacePart per JpFace

The connection between block faces and the
boundary conditions are stored in the
JpFacePart object. Due to the missing
implementation of merged blocks every JpFace
contains exactly one JpFacePart.

4.4 The star tup. proper ties file
The startup.properties file contains all information needed for a computation.

4.4.1 Client class section
The client section tells JUSTGrid which classes to use for the current compute session. It is

possible to change the default generic solver handler for special initialization methods but normally

it is not necessary to do.

client.solverhandler.class=hpcc.just.client.JpGenericSolverHandler
client.boundaryhandler.class=simplesolver3d.SimpleBoundaryHandler
client.cell.classesimplesolver3d.SimpleCe11
client.solver.class=simplesolver3d.SimpleSolver3D

78

4 Multiphysics Solver Development with JUSTGrid

4.4.2 Input and output file section
This section describes all input and output files. JUSTGrid is able to handle more than one input
and one output file. This is really important if grid and topology information as well as boundary
conditions are stored in different files. JUSTGrid can also store the result using different data types
(e.g. Tecplot) in seperate files.

Type and name of each input and output file must be specified. A list follows of all file formats
known by JUSTGrid see chapter 4.3.2 on page 76.

input.file.type.0=gpg
input.file.name.0=blk.tmp
input.file.type.l=gpc
input.file.name.l=blk.tmp.conn

output.file.type.0=plt
output.file.name.0=output.pit

4.4.3 Numerical section
The numerical section contains only one entry, namely the number of halo-cells to be created
around the blocks for inter-block connectivity (see Illustration 4.3.2)

par am. numerical .halocells=l

4.4.4 Physical section
The physical section sets the geometry type of the computation 2D or 3D.

par am. physical . type = 3D

4.4.5 Solver parameter section
This section can be freely defined by the solver developer or engineer.

par am. solver .Maxlterations=1000
param. solver .MachNumber=l . 0

Every solver parameter starts with solver. param and will be passed through by JUSTGrid as

an initialization value to every solver instance. The technique to communicate between the
startup . properties file and the solver instance is very easy for the deveploper. Simply write a

name corresponding to the so called setter method into the solver class. In our case this would be:

public class SimpleSolver3D extends JpMultiblockSolver

{
public setMaxIterations (int maxlteration)

public setMachNumber (double mach

79

4 Multiphysics Solver Development with JUSTGrid

Be careful to note that JUSTGrid is case sensitive dealing when with method names. During the
method recognition for the solver parameters, JUSTGrid will follow this sequence:

setMethod(double v), setMethod(int v), setMethod(String s)

If a matching method is found JUSTGrid invokes this method on all solver instances and continues
with the next parameter.

80

5 Multiphysics Equations in JUSTGrid

5 Multiphysics Equations in JUSTGno
As an example of a nontrivial system of multiphysics equations the magneto-hydrodynamics

(MHD) equations were chosen. These equations are a combination of the nonlinear equations of

fluid dynamics, described by the Navier-Stokes equations and Maxwell's equations of

electrodynamics, and thus represent a genuine multiphysics problem. In addition, the numerical

solution of these equations exhibits unique challenges in the form of magnetoacoustic and Alfven

waves. Moreover, the constraint of V-/J=0 is difficult to maintain. In addition, it must be ensured

that any initial solution numerically satisfies this constraint. In contrast to the analytic solution,

which remains divergence free, the numerical solution needs special treatment to guarantee this

feature. This combination of fluid- and electrodynamics, having a wide range of applications

(plasma physics, aero- and aerothermodynamics, fusion, astrophysics, gas discharges etc.),

requires a challenging numerical solution procedure, because waves from both fluid dynamics and

electrodynamics are present and must be properly resolved.

5. 1 Introduction
MHD is useful, if charge separation is negligible. Length scales need to be larger than the Debye

length, and time scales larger than the inverse of the plasma frequency. In other words, the model

cannot be applied to high-frequency phenomena that apply large separation. In order to guarantee

isotropy, the collision frequency has to be higher than the cyclotron frequency.

To further simplify the equations, it should be noted that the displacement current can be

I 8E
A _____ -t ^ -W-^ _____ _^^__^_____

neglected, because in Vx/f =— y'H———-, c dt v and thus the time derivative of the
c c ot -rj—^^~

electric field can be neglected.

It should be noted that from now on the Maxwell equations will be written exclusively using the SI

system, which is more suitable for engineering purposes. Using the Maxwell equations in the MKS

System (which is being used throughout this thesis), VxB = p0 j=ij () o-(E + vxB) and thus

E- —— VxB-vxB is a dependent variable, and therefore electric field strength E is not
Ho 0"

computed in MHD. That is, the corresponding Maxwell equation is not needed.

81

5 Multiphysics Equations in JUSTGrid

5.2 Magnetohydrodynamic (MHD) Equations

5.2.1 MHD Equations
The MHD equations are the combination of Navier-Stokes and Maxwell equations together with

Ohm's law. The governing equations are listed below.

Continuity equation:

0 (5.2.1)
dt

Momentum equation:

(5 . 2 . 2)
Re

It should be noted that the expression BB in Eqs. (5.2.2) stands for a second rank tensor. Similar

terms occur in Eqs. (5.2.4) where the order of the factors is important (vB and Bv).

Energy equation:

' \fj a, T- L j v

1

"\)
Vm

n (*
r VB .7 B' -\ 7-n

(5.2.3)

Re

Induction equation:

j-w i«fc_ff»i^i/vi_rwY B^.J.W.I«fC)]=0 (5.2.4)

where P-p ——— , E=- — ̂7— +- — - —— , and B2 = B B, v2 = v-v.2

Here E is the total energy per mass unit, comprising internal, kinetic, and magnetic energies. P

is the total pressure, p the static pressure, T denotes stress tensor, and, in terms of

temperature T, the heat flux vector is given by q = kVT. The equations have to be

supplemented by models for conductivity s and magnetic permeability n m .

82

5 Multiphysics Equations in JUSTGrid

5.2.2 Ideal MHD Equations
The classic ideal magneto-hydrodynamics (MHD) governing equations can be deduced from the

MHD system given above with additional assumptions. First, the concept of infinite electrical

conductivity implies that the strength of the motion-induced magnetic field overwhelms that of the

applied field. Second, in many flows inertial effects greatly outweigh viscous dissipation and heat

transfer in the medium. Third, the medium is considered to be isotropic (see [SHA01]). Then the

resulting equations are:

dU
dt

+ V-F=0 (5.2.5)

where F is a second rank tensor and U is the vector of variables given by

P
pv
E
B

(5.2.6)

F-

pv
pvv+PI-BB

(E + P)v-B(vB)
vB-Bv

(5.2.7)

where p is mass density, v=(u,v,w)T is the velocity, B=(Bx ,By , B.) r is the magnetic

induction field, where E now is the total energy per unit volume, which is defined as (for ideal

MHD)

m (5.2.8)

and total pressure is

(5.2.9)

In additional to the above equations, the magnetic field satisfies the divergence free constraint

V-/* = 0. This is not an evolution equation and has to be satisfied numerically at each iteration

83

5 Multiphysics Equations in JUSTGrid

step for any kind of grid. Special care has to be taken to guarantee that this condition is satisfied,
otherwise the solution may become non-physical. Due to the coupling of the induction equation to
the momentum and energy equations, these quantities would also be modeled incorrectly. A
special problem arises to guarantee this condition satisfied at curved boundaries.

5.3 MHD Waves
The above ideal MHD equations constitute a non-strictly hyperbolic partial differential system
[SHA02]. From the analysis of the governing equations in one-dimensional spatio-temporal space,
eigenvector and eigenvalues have been found. The remaining seven eigenvalues of the MHD
equations can also locally degenerate to coincide with each other, depending on the relative
magnitude and orientation of the magnetic field. The seven eigenvalues are :

[u,u±c A ,u±cs ,u±cf \. All velocity components are in the direction of propagation of the wave.

These eigenvalues reflect four different wave speeds for a perturbation propagating in a plasma
field: the usual acoustic, the Alfven , and the slow and fast plasma waves:

(5.3.1)

(5.3.2)

where Bn denotes the transverse (normal) component of the magnetic induction field with

respect to the wave front.

0 2 2j_ B' 2c s =a H——
1 1 \Z5

~> JOn \Cl \ pvm)
2

2 2a C A (5.3.3)

2 2
52 a 2 +- A 2 2— 4# c. (5.3.4)

84

5 Multiphysics Equations in JUSTGrid

i

u-Cs

u-Ca

u-Cf

UL ~"""--..\\

t
u

/ u+Cs

/ / .-'' ..u+Cf

,

Illustration 5.3. 1: Waves in a 1-D MHD Riemann problem.

Illustration 5.5.1 shows the {x-t} diagram

of all waves at a cell interface resulting

from the linearized ideal MHD equations.

5.4 Flux Formulation using the HLLC Riemann Solver
First, we consider the HLLC (Harten-Lax-van Leer-Contact discontinuity) scheme for the Euler

equations only. Then we extend the HLLC scheme to the MHD equations. The HLLC scheme is

developed from the HLL scheme.

5.4.1 HLL Flux Formulation
If we consider the shock tube problem, we encounter three different types of waves, namely a

shock wave, a contact discontinuity (across which only temperature and density vary) and a

rarefaction wave. If the initial conditions are such that the shock wave and the contact discontinuity

move to the right, the rarefaction wave is moving to the left. A diaphragm may separate two states

of variables in the shock tube, denoted as left and right states. Accordingly, all variables are

indexed with the letters / and r. Across the diaphragm, thought to be of zero thickness, variables

are discontinuous. Depending on the values of the left and right states, various flow scenarios may

develop. The shock tube is thought to be of infinite length, and variables vary only in the direction

of the flow. Flow is uniform in the lateral direction. In this respect, the shock tube is a model for the

Riemann problem in one dimension. The Riemann problem consists of the PDE and the initial

conditions (1C). There are no boundary conditions (BC) since the region is not bounded.

U,ifx<0
Ur ifx>0

(5.4.1)

The initial values for fluxes are denoted in a similar way,

85

5 Multiphysics Equations in JUSTGrid

1C: F(U(x,Q)) = F,=F(U,)ifx<0
Fr = F(Ur)ifx>0

(5.4.2)

Numerically, values of U are known at cell centers only, indicated by index / (one-dimensional

problem), but fluxes need to be computed at cell faces with index i+\/2, and thus

approximations to the flux function Fi+l/2 are to be found. Here, the approach by Marten, Lax,

and van Leer (HLL) is followed, with corrections implemented by Batten] to account for the contact

discontinuity (hence the scheme is termed HLLC).

The derivation of the flux function is performed in two stages. First, the HLL scheme is derived, and

in the second stage, the scheme is modified to incorporate the contact discontinuity, producing the

HLLC scheme. A major task is the evaluation of the wave propagation speeds. If u,a denote the

flow speed and the speed of sound, respectively, the Riemann problem has 3 distinct eigenvalues,

namely u—a,u,u+a where the u eigenvalue has multiplicity 3. In order to approximate the

flux function, the above specified Riemann problem is solved on the domain (x,,x r) and

integrated in time from Qtot f . One obtains

- I '/ •/

U(x,t f)dx = jU(x,Q)dx + f F(U(x,,t))dt-S F(U(x,,t))dt.
'

In order to evaluate the integrals, the (yet unknown) signal speeds s,andsr are considered,

denoting the fastest wave propagation in the negative and positive x-directions. It is assumed,

however, that at the final time t f , no information has reached the left, x,<Q, and right,

x r>0, boundaries of the spatial integration interval, that is

and xr >sr t f (5.4.4)

Under this assumption, we obtain U(xl ,tf) = U(xl ,0)andU(xr ,t f)=U(xr ,Q). Therefore the

last two integrals on the RHS can be immediately evaluated. Using the initial conditions, the first

integral on the RHS is easily calculated, resulting in

86

5 Multiphysics Equations in JUSTGrid

]u(x,tf)dx =x,U,-x l Ul +tf (F,-Fl)

At time t f waves have moved according to their propagation speeds and information has been

carried along the x-axis. Naturally, the initial solution has changed. For the time being, we only

consider two waves with speeds sl and sr . Since sr >s,, the x domain is subdivided into

three intervals, namely (xl ,sl t f],(sl t f ,sr t f),and(sr t f ,x r). U is constant within each interval,

but may be discontinuous across each wave (characteristic curve). The integral on the LHS of Eq.

(5.4.5) therefore has to be split into 3 integrals. Since no information has reached the first and the

third intervals, these integrals can be directly calculated.

r- I I' I "r

J U(x,t }dx =- J U(x,tf)dx-f U(x,t f)dx + xr U r -x,Ul +tf (Fr -Fl) (5 - 4 - 6)
s,t,

Evaluating the integral it follows that

= U r forxe(s,t f ,xr) (5.4.7)

Inserting these values results in

v,
J U(x,tf)dx =(xl -sl t f)U l +(sr tf-x r)Ur +x r Ur -x ! Ul +t f (F-Fl } (5-4-8)

or

J U(x,tf)dx =sr tf U-sl tf Ul +tJ (F-Fl }

With the definition

87

5 Multiphysics Equations in JUSTGrid

•v,
f , b r *J . J/ I/ /T^

: = ——^——r U(x,t f)dx - J—JL——L-
f I f, __ el*'-' o — c
'/•^ r ^//sj, A r A l

(5.4.10)

Where V HLL is a constant, depending on the hitherto unknown wave speeds. For a given time

,t), the Riemann solution can thus be written in the form

U(x,t)=\
U L ifx<s,t

U HLL tfs,t<X<Sl t

U R ifx>s r t

(5.4.11)

The disadvantage of this solution is that contact discontinuities are not properly accounted for that

is, all intermediate states that might exist in the region (s,t f ,s r t f) were averaged over by the

integration process. Hence, if the solution contains a contact discontinuity, it has been smeared

out, and will not be present in the numerical solution.

The numerical flux computation for the supersonic case is straightforward. Information is traveling

only in one direction, and thus the time dependent flux FHLL at surface .x=0 (denoted by

Fi+l/2 in the finite volume approach through the face labeled z + 1/2) is either the flux

F^rjluxF,. We therefore need only to consider the subsonic case where information across

surface x=0 (Riemann problem) can arrive both sides, namely from the upwind and the

downwind directions. In that case sl <Q<sr . For instance, if u>0 (flow velocity) then

Si=u—a and s r =u+a. The question arises how to compute flux FHLL . One immediate

possibility is to set FHLL=F(UHLL }. However, flux is an integral quantity, and using an averaged

state vector instead of an averaged flux may not be a good approximation. In any case, this has

nothing to do with conservation laws, it would be a purely mathematical procedure, and therefore is

not conservative. In the general case the interface flux FHLL becomes

HLL

F, ifO<s,
F: (5.4.12)

and with

5 Multiphysics Equations in JUSTGrid

Sr-S
(5.4.13)

r l

5.4.2 HLLC Flux
The HLLC flux is a modification of the HLL flux. Instead of a single intermediate state UHLL two

intermediate states U] and U* are assumed, separated by an interface moving with speed

SM [BAT01]:

" ~

U, iftXs,
U] ifs,<0<sM
U\ ifsM <Q<sr
U, ifsr <Q

(5.4.14)

The corresponding interface flux denoted FHLLC > " s defined as

17 _
r HLLC ~

F,
F] (5.4.15)

Applying the Rankine-Hugoniot conditions:

and

(5.4.16)

(5.4.17)

to determine values £7* and U* Batten [] made the assumption that

* * * (5.4.18)

and got the following results

89

5 Multiphysics Equations in JUSTGrid

P r (sr -qr }-P,(s,-q,}
(5.4.19)

•V-'
(5.4.20)

(5.4.21)

(5.4.22)

, y x*_

sk- gm
(5.4.23)

(5.4.24)

Sk~ SM

(5.4.25)

In Eqs. from 5.4.20 to 5.4.25, the subscript k stands for / or r. Using Eqs. 5.4.19 to 5.4.25, the flux

can be calculated as following:

(5.4.26)

90

5 Multiphysics Equations in JUSTGrid

5.4.3 HLLC for Magneto-Gasdynamics Equations (MHD-HLLC)

5.4.3. 1 Derivation of MHD-HLLC Riemann Solver

Now, the HLLC scheme for MHD can be derived. The 2-D MHD equations, are considered.

Rewriting Eqs. 5.4.16 and 5.4.17 for the MHD equations, results in (here the subscripts / and

r are dropped for simplicity)Error: Reference source not found.

pq

1 1
*p

* *
p u

* *

P vB:*
By

B*.
E*

i ,

—

* *
p q

% # * $ * +

p u q + P n x -Bn Bx
* * * * *

p v q +P n v —Bn B v
qZ\-B\u

* * * *
q B v -Bn v

0
(E f + P*)q f -B*n (B-v)*

, ,

= ^

i i
P

pu
pv
Bx
j-y
By

B z
E

\ \

—

Pn x -Bn Bx

vq + Pn v -Bn B,
qBx -Bn u (5.4.27)

0
? + P)q-Bn (B'v)

i

where Bn = Bx nx +B v n v and q=unx +vn v Similar to Eq. 5.4.19, the speed q* for MHD can

be assumed as SM —ql —qr — ql and can be obtained from the HLL approximation (Eq. Error:

Reference source not found). This results in the following expression:

(5.4.28)

in order to make the HLLC middle state U* consistent with the integral form of the conservation

laws, which is described as consistency condition by Toro.

Sr ~ Sl S r~ S l
(5.4.29)

Shengtai Li suggests:

S r xr S l xl
(5.4.30)

and

* * HLL * * HLL (5.4.31)

or (5.4.32)

91

5 Multiphysics Equations in JUSTGrid

HLL HLLIn * In * nHLL(B'V\-(B-v}r :-B -v (5.4.33)

and then

(5.4.34)

With the known values of B*x , By ,B.,q , and P* the rest of the components can be derived

easily:

SK ~q
f- i

T) T)
- — D L> ,

,
(pv)K =(pv) K

S K-q S
SK~<IK . (P*-P K)ny
c cSK -q S

-B B (5.4.35)

S K -q SK -q

The quantity VHLL can be calculated from the conservative variables. We remark that if we had

chosen (B'v)l = B*k -v"k , Eq. 5.4.29 would not be satisfied by the given expressions of

5* andV* .

We can now write the MHD-HLLC flux as

17 —r HLLC~

F,

F=Fr +sr (U*r -Ur)*
F

(5.4.36)

5.4.3.2 Summary of the Formulas for Two-dimensional Ideal MHD-HLLC
For the two-dimensional ideal MHD equations (Eq. 5.2.5), the following formulas are used:

• Formulas for flux calculation

Define

92

5 Multiphysics Equations in JUSTGrid

B=(Bx ,B v ,Bf
v = (u,v) T

B=Bx nx +By n y

where index n denotes normal direction.

(5.4.37)

The flux is given as

F=

pvn u+Pnx -Bn Bx
pvn v+Pn v-Bn B v

(E+P}vn -Bn (uB x +vBy]

vn B v-Bn v
0

(5.4.38)

• Wave speed Formulas

The formulas for calculating wavespeeds are given by Eqs. 5.3.1 to 5.3.4.

For all dependent variables Roe-averaged values are used:

= \PlPr

_ U,\u — —— = —— =
\ pr

-i ^
i Pl+\ P r

_ pr B- ——— = —— = ——
\ _Pl+\ P r __

B vl \ p, + B vR \ p,.

_D . — ————— = ——— =

\ Pi+\ Pr

(5.4.39)

93

5 Multiphysics Equations in JUSTGrid

For the wavespeeds one finally obtains

s,= min (q-cfl ,q Ro -cflJ
sr =min(qr +c fr ,qRoe +c fRoe)

Formulas for intermediate states

and

94

* *

>////_ D* _ /?* _ S r Byr~ Sl Byl

•3 r i3/

S K -q

SK -q S K -q
* *p 9 -PK q K +BnK (B-v} K -B (B-v)

HLL

(5.4.41)

B-=B V/ =B V = ' * ' » (5.4.42)

(5.4.43)

(5.4.44)

(5.4.45)

SK -q
- (5 - 4 - 46)

(B-u) =B"L -u"LL (5.4.47)

5 Multiphysics Equations in JUSTGrid

5.4.4 Divergence Free Constraint

5.4.4. 1 For Cartesian Grids
The idea of constrained transport is to use simple difference formulas (CD) for the induction
equation. To make the scheme second order accurate in time, a time centered approximation is
taken for the electric field, so, e.g., for 2D ideal MHD in Cartesian grids:

, = uB v -vBx (5.4.48)

and the magnetic field is updated as

F —F^z(i.j + l) ^z(,.j-\——————

(5.4.49)

It is easy to prove that the central difference definition of V B

' •"*/-!,y L *>xi,j+\ "xi,j-\

2Ax 2A v
(5.4.50)

is exactly conserved during the time step.

5.4.4.2 For Curvilinear Grids
Introducing the curvilinear magnetic and electric field components for the curvilinear coordinate

system(5,rj,£):

(5.4.51)

where superscript T indicates the transpose. The Jacobian transformation matrices are

J = 1y X (5.4.52)

and

95

5 Multiphysics Equations in JUSTGrid

Ex =vB_-wB v
(5.4.53)

Ez = uB v-vBx

The elements of j~ l are

X i+\J.k~~ X i

2An
(5.4.54)

Xi, i, k

In the curvilinear variables, the induction equation takes the same form as in the Cartesian case:

dB dEr dE,-r-1 = ——— - + —— - (5.4.55)

dt

Numerical procedure:

1. calculate curvilinear electric field components(Eq. 5.4.51 and 5.4.53).

2. calculate induction equation according to simple central difference in curvilinear grid (Eq.
5.4.55)

3. update Cartesian field components:

r~l o n

B n+l =B" +At\J\——•——^^ (5.4.56)
"x,y ,z x,y ,7. \ \ . ^ '

96

5 Multiphysics Equations in JUSTGrid

5.5 Boundary conditions for MHD
When electromagnetic waves are incident on a boundary between different media, some of the

incident energy crosses the boundary and some is reflected.

In general, fields E, B, D, and H will be discontinuous at a boundary between two different media,

or at a surface that carries charge or current.

Maxwell's equations in different media in integral form read

(5.5.1)

(6 B-dS = Q (5.5.2)

d ' ~ "" (5.5.3)

(5.5.4)

The boundary conditions between two media can be determined using the above formulas.

97

5 Multiphysics Equations in JUSTGrid

5.5.1 Transverse Components (normal to the boundary)
Apply Eq. 5.5.1 to a small thin box which extends very slightly into both materials:

1) Volume charge densities do not contribute to Qenc as the box is infinitely thin.

2) For the same reason, the edge of the box does not contribute to the flux.

3) Top and bottom of the box contribute with opposite signs as the two normals have opposite
directions.

Illustration 5.5.1: shows the transverse components of MHD

So we have

Dl -a-D2 -a = Qenc = aa (5.5.5)

Where a-\a is the area of the box top, the vector a is directed along its normal, and a is

the surface charge density. Hence for D 1 , the normal transverse components of D , we

have

-L (5.5.6)

Where erl and e r2 are respective relative permittivities of the materials. Similarly, starting from

Eq. 5.5.2 we have for the transverse components of the magnetic field:

^-# = 0 (5.5.7)

98

5 Multiphysics Equations in JUSTGrid

5.5.2 Tangential Components (parallel to the boundary)
Apply eq. 5.5.3 to a thin rectangular loop of the length I straddling the boundary:

1) two shorter sides do not contribute to the loop integral, as they are infinitely short;

2) for the same reason, the flux of the magnetic field across the loop also vanishes;

3) top and bottom sides of the loop contribute with opposite signs as they have opposite

directions.

An

Illustration 5.5.2: shows the transverse components of
MHD

So we have

Hence, for £ y the tangential components of E , we have

(5.5.8)

(5-5.9)
Similarly, starting from eq. 5.5.4, we have for the tangential components of the magnetic field

(5.5.10)
Where bold K is the surface current density and n is the surface normal. So

(5.5.11)

Where, p rl and v r2 are respective relative permeabilities of the two media.

99

5 Multiphysics Equations in JUSTGrid

5.5.3 Metallic Boundary Conditions
In a perfect conductor charges are mobile. They move in response to any fields in the fields in the

conductor to produce surface charge density a and surface current density K such that electric

and magnetic fields vanish inside the conductor.

So the following previous results, if the medium labelled 2 is a conductor we have

£[=0

(5.5.12)

1) In the area just outside a perfect conductor, only normal electric field and only tangential

magnetic fields exist.

2) Tangential electrical fields and normal magnetic fields vanish.

3) All fields drops to zero inside a perfect conductor.

These results are utilized for the MHD 2D test case - Riemann Problem 124.

5.6 MHD Divergence Free Numerics

5.6.1 Numerical form of divergence free B field.
In the case of MHD, the induction equation is added, to determine the magnetic inducting field . B

This equation is a transport equation, i.e. is time dependent. In addition, B has to satisfy the

constraint

V B = 0 at all times n, using Gauss' law,
B-

A(U)

100

5 Multiphysics Equations in JUSTGrid

>, 7+7/2

\/ ~?\ ^T ,
_s/~7\

,7

X Cell vertices
Illustration 5.6.1: 2D Case: finite volume grid variables
known only at cell centers. Vector components in the i,
j, k directions. (3D) are denoted by indices 1, 2 and 3
respectively. We also can denote components by x, y
and z indices, simply considering the Cartesian case.

Let us consider Cartesian coordinates x,y,z

and curvilinear coordinates <;,>?,£. In

physical space (PS) the grid can be irregular,
but in computational space (CS) the grid is
uniform and orthogonal. Provided, we can

determine the normal components of B in

the transformed plane and dA is know, then
the Cartesian and curvilinear case are the
same.

It can be shown that any normal vector (direction) is given by:

-£ plane

n = D~\r] x ,r] y ,Y] z) : ^-t, plane

• l~r\ plane

Note: Since B is a vector it can be expressed in Cartesian coordinates,
B = Bx e x +By e v +Bz e z . The corresponding normal component is simply
calculated by B h .

In the following Cartesian symbols are used, but it should be clear how to interpret the equations

for curvilinear coordinates. Integrating (5.6.1) deliver:

- R =0 (^ fi 9^•*•* v •/ —1/2 \\J.\J.e.)

Here, as was said above, Ax = Ay = 1 and only half-integer indices were used.

The induction equation (5.6.3), has to be discretized such that equation (5.6.2) is satisfied at all

times, provided the initial solution satisfied V • B = 0 numerically.

The induction equation for ideal MHD is:

^-f B-dV + f Vx£ dV = 03 t J V •> Vdt j v (5.6.3)

It is well known that

E - v X B

101

5 Multiphysics Equations in JUSTGrid

5.6.2 Divergence free B Field in two dimensions.
First, consider the case v = (w,v,0); B = (B X ,B V ,Q).

Therefore E = (0,0,£ z) = (0,0,fi)

Calculating V X E in Cartesian coordinates first:

/
d

dx
0

j
d

dy
0

k
d

dz
n

* Q~ l dy o - n

It should be noted that all computations use Cartesian components only. Hence (5.6.3) can be

written in 2D:

JL
dy

n =

v D _ u n — "oT-^v - ~~Z~M ~
dt dx

(5.6.4)

Discretizing the two equations over a finite volume, one obtains

R £?" — A +((~) n C^ n \
D X:IJ ~ &x; i.j — ^t**i,j+]/2 * Z i,j-\l2)

Now using equation (5.6.5) at cell faces from equation (5.6.2), we need to calculate:

(5.6.5)

Bx :i+\/2j

B" +I -
D x; i-M2j

-1/2) (5.6.6a)

-1/2) (5.6.6b)
_ D" — Af(n" — n" , } (5 6 6C1)i> y ; 1 + 1/2 ~~ V /+!/2 / + 1/2 ,— 1/2; —1/2/ yw.<j.wv/y

^lj-1/2 - K, ,,7-1/2 = At(n"+mj-m ~ fil-ii2,,-m) (5.6.6d)
Adding up equations (5.6.6a to 5.6.6d) left hand side of equation (5.6.2) from these four equations

(obtained from the discretization of the induction equation) results in:

-1/2,7 + B y: " ~

V B at n + l timestep

This can be checked from the above equations, but there is also a geometrical method. It was

assumed that field was divergence free at time level n.

102

5 Multiphysics Equations in JUSTGrid

B
'M-1/2.J

B,

Illustration 5.6.3: Discretization of
induction equation

oAa z __ -t i ry • _ 1/"5

Illustration 5.6.2: Discretization of
in 2D case.

Result: Utilizing the induction equation in 2D in form of equation (5.6.4) with the finite
volume discretization (5.6.5) automatically satisfies the numerical version of
V B = 0 as given by equation (5.6.2).

The rotation has the same form in the curvilinear coordinates, since the Cartesian rotation was

used in in equation (5.6.4), that is:

dt

dE'
' dn

dB2

dt

dE3 dB' dE
dt

= 0

103

5 Multiphysics Equations in JUSTGrid

5.6.3 Divergence free B field in three dimensions,
Now we consider the 3D case, we have:

E = (Ex , Ey , E z]

/
d
dx
Ex

i
Q
dy

Ey

*

k
d
dz
Ez

= i d E d E
dy : dz y J

f^ ^ \ **"

dx z dz x ;
ft m fl

dx y dy

For the sake of simplicity we use (A, A,

(Ex , E y , E z) = (C, D, E)

V X E = 1(-D V + E z] - j(Ex - C z) + k(Dx - C v)

Rotation equation (induction equation)

Mx =

B2

B, z z, n ?

Bx
B y
B.

B 1
B2

104

5 Multiphysics Equations in JUSTGrid

5.6.4 Equivalence of curvilinear grid in physical space and Cartesian
grid in computational space
Note: Only Cartesian grids need to be considered for V-U = 0 . We have shown that

the transformed equation have the general form:
+ J G dld^ + J H <

where F, G, and H are flux vectors that are orthogonal to their respective faces. In the

computational space coordinate directions denoted by indices i, j, and k are orthogonal. Each grid
is uniform. Any grid in physical space is equivalent to a Cartesian grid with uniform grid spacing in
computational space. Therefore, in the following, only the integral form of the divergence free
magnetic inductions field in Cartesian space considered.

Note: In the induction equation we have the term: (vB - Bv

In 2D we have

d—B x + (uBx - Bx u] + (uBy - B xv} + (uB._ -
=0 =0 in 2D

vB - Bu + vB - Bv + vB. - B yw)=Qx y y y
=0 =0 m2D

dt y
^-B. + (wBx - BM) + (wB v - B : v) + wB: - B_w)=Q

= 0 in2D =0 in2D =0

This leads to exactly the same equations as in (5.6.4) although we have the divergence form of the

£\ /» /»
•f-] BdV+J \vB - Bv}dA =0 induction equation.

105

6 Computational and physics model Validation in JUSTGrid

6 Computational and physics model Validation in JUSTGRio

6.1 "Write once run anywhere"
The compiled Java classes (binaries) of the JUSTGRio framework and the GRX Tools where

successfully tested on the following computer system:

JVM Version(s)

1.4.x, 1.5.x, 1.6.0

1.4.x

1.4.x, 1.5.x, 1.6.0

1.4.x, 1.5.x, 1.6.0

1.5.0

1.5.0

1.6.0

1.4.x, 1.5.x, 1.6.0

Computer Model

Sun Microsystems, Sun Fire V880, 8
CPUs, 32GB Memory
Sun Microsystems, Enterprise 10000, 64
CPU, 192GB Memory

Sun Microsystems, Ultra 40, 2 CPU, 8GB
Memory

Dell Latitude D820, 1 CPU, 2GB Memory

Apple MacBook Pro, 1 CPU, 2GB
Memory
Apple PowerBook G4, 1CPU, 768MB
Memory
PC, 1 CPU, 1GB Memory
PC, 1 CPU, 1GB Memory

Processor
Architecture
SPARC

SPARC

AMD Dual
Core Opteron

Intel Core Duo

Intel Core Duo

Power PC

Intel Pentium 4
Intel Pentium 4

Operating System

Solaris 9
Solaris 10
Solaris 9

Solaris 10,
Windows XP 32 Bit,
Linux Ubuntu 6.06
Linux Ubuntu 6.06
Windows XP 32 Bit
MacOSX 10.4.8

MacOSX10.4

Windows Vista RC2
Linux Mandriva 2007
Linux Fedora Core 5

Table 6.1.1: Computer systems successfully tested with JUSTGrid.

6.2 Loaders and Writers
A good way to validate a loader is to write a writer to be used in parallel. First, load a data structure

into JUSTGrid and if no Java Exception will be thrown write the structure just loaded into a different

file. This just written data file will be named stage 1 data file. A stage 1 data file need not be exactly

the same as the original data file loaded in the first step. There may be differences with space

characters or rounded errors for double number. Therefore it is difficult to compare a stage 1 data

file with an original data file. The next step is to load the stage 1 data file and to write it out again in

a different file (stage 2 data file). Now stage 1 and stage 2 data file must exactly be the same and

are supposed not to change in any way even if one writes a stage 3 data file etc.

6.3 Topology handling for complex geometries
The grid topology is the information about the connectivity between neighbouring blocks, the

orientation of the matching faces, and the physical boundary conditions.

107

6 Computational and physics model Validation in JUSTGrid

6.3.1 Connectivity
JUSTGRiD recognises the connectivity of a block automatically. For validation purposes several
large grids were read in, and the connectivity information was written out and compared with the
known connectivity.

6.3.2 Orientation
JUSTGpiD recognises the orientation of the neighbouring faces automatically. To validate the
recognised orientation several large grids were read in, and the orientation information was written
out and compared with the known orientation information.

6.4 Boundary Data Exchange
A Java program was built to test the boundary exchange for all 8 possible orientations. The picture
below was produced by this program and shows (utilizing the Java 3D API) a 9 block grid with cell
midpoints.

Illustration 6.4.1: A test pattern was sent through
the solution domain step by step.

108

6 Computational and physics model Validation in JUSTGrid

Illustration 6.4.2: 9 blocks with all 8 possible orientations

The test solution domain consists of 9 blocks with 5x4x8 cells in each block.

Illustration 6.4.3: Starting test pattern

During the observation or tne test pattern running tnrougn tne solution aomam tne cen oounaaries

are not shown for better view of the cell midpoints.

109

6 Computational and physics model Validation in JUSTGrid

Illustration 6.4.4: Observing the boundary exchange between the blocks.

Every singe step (iteration) is done by a manual mouse-click to carefully inspect the boundary

exchange on the block boundaries.

Illustration 6.4.5: The correct transport across all block faces was observed.

After the successful transport of the test pattern through the whole solution domain the test was

also successfully done in th e reverse direction, from the way back to the start

110

6 Computational and physics model Validation in JUSTGrid

6.5 Numerics
Several simulations were performed to ensure the correct working of the different layers of the

JUSTGRiD framework. JUSTGpio is the core of JUST, the Java Ultra simulator technology. Hence

utmost care was taken to prove that JUSTGpiD works absolutely correct. The solvers implemented

in package JUSTSoLVER will test the JUSTGpio functionality, performance and efficiency. At

present, numerical and physical accuracy of the computational scheme and physical validity of the

model, however, are of lesser importance. Therefore, in some computations, a Laplace solver was

used to mimic a CFD problem, see below.

6.5.1 1 Block - JUSTSoLVER - Laplace 3D
The Laplace solver uses Dirichlet boundary conditionsthat means, in this case inflow (v=1) and

wall (v=0) boundaries have fixed values. At the outflow boundary extrapolation is used that means,

values will be transported out of the solution domain.

Table 6.5.1: Monoblock
result for a Laplace 3D
computation.

This is a real simple mono block test case to validate the Laplace solver

numerics. After a few iterations an equilibrium is achieved between the

inflow (1=red) and the wall (0=blue) faces.

6.5.2 7 Blocks - JUSTSoLVER - Laplace 3D
With this sample the simplest communication between the

block boundaries is validated. In this case the blocks are

not rotated against their neighbours. It should be noted, in

order to provide complete geometrical fexibility, each

block needs to have its own local coordinate system.

Therefore, the correct transformation of information

across block faces has to be ensured.

Table 6.5.2: Laplace 3D result for a simple 7
block rectangular grid.

111

6 Computational and physics model Validation in JUSTGrid

6.5.3 Bump
The next example is a 22 block grid for the well known aerodynamic example from ONERA, called

the ONERA bump. This grid has 16,038 points and the solution domain uses 11,264 cells, without

halo cells.

6.5.3. 1 JUSTSoLVER - Laplace 3D

Illustration 6.5.1: A contour slice of a Laplace 3D solution fora
bump.

At first the bump was tested with the JUSTSoLVER Laplace 3D.

112

6 Computational and physics model Validation in JUSTGrid

6.5.3.2 Euler 3D
For the first numerics test for a real CFD problem using the JUSTSOLVER Euler 3D, supersonic

Mach 2.0 free stream conditions are used.

Illustration 6.5.2: Screenshot of a solution (density distrubution) for a
bump using Metacomp CFD++

The illustration above shows a solution from an unstructured grid of the bump using the

commercial flow solver Metacomp CFD++ as a reference. The CFD++ solution is 2 nd order

accurate. All simulations with JUSTSOLVER Euler 3D are 1 st order accurate only.

Illustration 6.5.3: Rho (density) distribution over a
bump after 1000 iteration with JUSTSolver Euler 3D

113

6 Computational and physics model Validation in JUSTGrid

Illustration 6.5.4: 3D view for a p (density) distribution over the Onera
bump using JUSTSolver Euler 3D

Illustration 6.5.5: Verification of the stream lines (vectors)

114

6 Computational and physics model Validation in JUSTGrid

6.5.4 3D Cone
Simple 3D cone, 8 blocks, 5,832 grid points,

4,096 cells without halo cells.

The cone was selected because it is a well

known test case. It was thus possible to

nearly check the complete functionality of

JUSTGRID.

Illustration 6.5.6: JUSTGrid GRX3D, simulation
preparation tool, showing the grid of the cone wall and

This Illustration shows how the JUSTGRiD the outflow face.

GRX3D Tool can be used to prepare a simulation run. JUSTGRiD GRX3D is also based on the

JUSTGRiD framework and uses the same loaders and utility classes as JUSTSOLVER to visualize a

grid. It is the very first test to check if JUSTGRiD can handle a given grid. In addition to the

visualization one can specify solver specific parameters like ..max number of iterations", ,,Mach

number" or ,,Dt". These parameters are not predefined but depend on the selected solver.

6. 5.4.1 JUS TSOLVER Laplace 3D
The Laplace solver uses Dirichlet boundary conditions, that means in this case inflow (v=1) and

wall (v=0) boundaries have fixed values. At the outflow boundary extrapolation is used that means

the value will be transported out of the solution domain.

Illustration 6.5.7: JUSTSolver
Laplace 3D, Cone, showing one
slice on the y-plane.

Illustration 6.5.8: JUSTSolver
Laplace 3D, Cone, showing
the outflow boundary.

Illustration 6.5.9: JUSTSolver
Laplace 3D. Cone, showing block
edges with one deactivated block.

115

6 Computational and physics model Validation in JUSTGrid

The following tasks could be verified with this simple test case:

1. Parallelization - JUSTGmo starts one Thread per block and one monitor thread. All

available processors are been used by the simulation. If the computational grid has

less blocks than the compute system's number of processors then the surplus

processors will be idle.

2. Synchronization - JUSTGpio implements a loose synchronization between the

neighbouring blocks. Therefore it is possible that neighbour blocks are one iteration

ahead.

3. Communication - JUSTGpio is also responsible for the boundary update between the

neighbouring blocks. One can specify any number of halo cells.

6.5.4.2 JUSTSOLVER EulertD (1st order, explicit, structured multiblock) compared
with CFD++ (2nd order, unstructured)
To test the numerical correctness of JUSTSoLvep Euler3D the result of the cone simulation is

compared with the result from a commercial CFD solver (CFD++).

Illustration 6.5.10: JUSTSolver Euler
3D showing Mach number solution in
symmetry plane.

Illustration 6.5.11:
CFD++ comparison
simulation.

I
5.09
4.70 I
4.3?
3.94
3.56
3.18
2.80
2.42
204
!.66
! 28

Illustration 6.5.12: JUSTSolver
Euler 3D with legend and two
slices.

Showing the Mach number distribution for a Mach 6.0 simulation after 2,000 iterations. Although

the JUSTSOLVER EulerSD simulation is only 1st order accurate, compared with the CFD++ result

the Mach number distribution differs not much.

116

6 Computational and physics model Validation in JUSTGrid

6.5.5 European Experimental Test Vehicle (EXTV)

m8$$m^p-"^'^*T 4i —H^-'C'V--'"''

Illustration 6.5.13: Grid Pro™ grid,
showing inflow and wall boundaries.

Illustration 6.5.14: JUSTGrid GRX3D Tool, showing
EXTV wall boundary.

With 780 blocks, 755,300 grid points and 538,752 cells without halo cells, the EXTV grid is a

serious test case for larger simulations. The size of this test case is ideal for efficiency and

speedup tests, because it has a reasonable number of blocks and produces enough numerical

work load to achieve a homogeneous dynamic load balancing across all available processors. The

simulations were run on a Sun Microsystems Sun Fire V880 server with 8 UltraSPARC III

processors (1.2GHz) and 32GByte main memory running Solaris 10 06/06.

6.5.5.1 JUSTSoLVER Laplace 3D

117

6 Computational and physics model Validation in JUSTGrid

Illustration 6.5.15:
JUSTSolver Laplace 3D,
EXTV showing one slice at
the y-plane.

Illustration 6.5.16:
JUSTSolver Laplace
3D, EXTV 3D view.

-
c
o

Timings and Efficiency
3500

*3S7

w 3000^1%—-—"

2500-

2000 -
0)

g_ 1000 -
E
<j 500 -

106%

1S32

1104

850
692 ,„„
a 590o -

,-„521

- 120%

- 100%

- 80%

- 60%

- 40%

12 20%

-m-Tme
'-»-Efficiency

0%

3456

Number of processors

Illustration 6.5.17: Timings and efficiency results for 1 to 8 processors,
running 2,000 iterations with JUSTSOLVER Laplace 3D on a 780 blocks EXTV
grid.

The JUSTSOLVER Laplace 3D is again used to test parallelization, synchronization and

communication features of JUSTGpio for this large configuration. In order to produce sufficient

numerical load the computation was done for 2,000 iterations.

118

6 Computational and physics model Validation in JUSTGrid

Speedup and Efficiency
8,0 120%

6,0 -

Q. 5,0

1 4,0-
Q.

2,0 -1

1,0 H

0,0

106%
!%—— — "*——-_ 98% 6

* ——— —— ̂ «&— ______&

4,7L.'

2,9
L

V

p

I I I I I
2 3 4 5 6 7 {

; 7 100%
o/

'- 80%

- 60%

40%

20%

- 0%

-20%

3

Number of processors

-D Speedip
-»- Efficiency

Illustration 6.5. 18: Speedup and efficiency results for 1 to 8 processors,
running 2000 iterations with JUSTSOLVER Laplace 3D on a 780 blocks EXTV
grid.

The super linear speedup achieved from one to two processors is observed in many different Java

programs. This reflects the behavior of Java's HotSpot compiler. Using only one processor the

profiling task of the HotSpot compiler itself consumes appreciable time to find the program's most

time consuming regions (hot spots). JUSTSoLVER Laplace 3D demonstrates excellent (almost

linear) speedup at the hardware configuration utilized.

119

6 Computational and physics model Validation in JUSTGrid

120

7 Multipysics Simulation Results with JUSTGrid

7 Multipysics Simulation Results with JUSTGRio

7.1 JUS TSOLVER EulerSD
To compare the Java based JUSTSowER EulerSD with a flow solver written in 'C' (ParNSS) an

EXTV simulation using a free stream value of Mach 8.0 and an angle of attack 0.0 was chosen.

Illustration 7.1.1: JUSTSolver Euler
3D, EXTV, Mach number distribution.

Illustration 7.1.2: EXTV, Mach
number distribution on transparent
slices.

ParNSS is a legacy 3D structured multiblock code written in 'C 1 . ParNSS is utilizing the MPI

(Message Passing Interface) library to implement the parallelization and communication between

neighboring blocks. The implemented numerics for the flux computation (van Leer) for ParNSS and

JUSTSOLVER Euler3D are almost identical (99%) at the source code level. Hence, this provides an

excellent opportunity to perform reliable performance comparisons between a 'C 1 based CFD

solver and a Java based flow solver.

ParNSS (C) vs. JUSTGrid (Java) - Computing time
1800 -

-0
§ 1400 r
O
$ 1200 -

~ 1000

•^ 800 -
0)
"3 600 -
a.

I 400 -
O

200 -

0 -

1

""^~z:
2345675

i- 120%

- 100%

- 80%

L 60%

- 40%

r 20%

- 0%

3

Number of processors

-0 Time (ParNSS)
*• Efficiency (ParNSS)
" Time (JUSTGrid)

j Z. Efficiency (JUSTGrid)

Illustration 7. 1.3: Computing time and efficiency results for 1 to 8 processors,
running 200 iterations with JUSTSolver Euler 3D and ParNSS on a 780
blocks, 755,300 grid points, 538, 752 cells EXTV grid.

121

7 Multipysics Simulation Results with JUSTGrid

Due to the profiling task of the HotSpot compiler the Java solver is much slower with one processor

than the 'C' solver. Employing 5 or more processors JUSTSOLVER EulerSD is faster than ParNSS.

For 8 processors the time difference is already more than 30 seconds for only 200 iterations.

ParNSS (C) vs. JUSTGrid (Java) - Speedup

«= Speedjp (RarNSS)
*-Speedjp(JUSTGri<$

1234567

Number of processors

Illustration 7.1.4: Speedup results for 1 to 8 processors, running 200
iterations with JUSTSolver Euler 3D and ParNSS on a 780 blocks, 755,300
grid points, 538,752 cells EXTV grid.

JUSTGpiD / JUSTSOLVER EulerSD achieves better linear speedup than ParNSS. In 8.1.1.3 it is

shown that Java programs can achieve linear speedup for numerical applications on large SMP

machines with more than 60 processors.

Note: Both computations, Java and C were not able to 100% utilize all 8 processors.

This is the reason of the not optimal results for both computations above. In the next

chapter the influence of the computational load on the parallel efficiency on current

hardware will be shown.

122

7 Multipysics Simulation Results with JUSTGrid

7.2 Magneto Hydro Dynamic (MHD)

7.2.1 Brio-WiTs Shock-Tube
The solution was computed up to time t =

0.25s, because the numerical solution has

reached the end of the computational

domain. Computational results show

excellent agreement with the original

results. This shows that the physics and

numerics are implemented correctly.

Rho distribution, Brio & Wu shock tube
1.2 -i

1.0

o

0.8 -

0,6 -

0.4

0,2 -

0,0 -1

Xfrom-LOto +1.0

Illustration 7.2.1: 1D MHD solution, rho (density)
distribution for well known Brio & Wu shock tube.

123

7 Multipysics Simulation Results with JUSTGrid

7.2.2 MHD 2D test case - Riemann Problem
This 2D Riemann problem was selected from Torrilhon [TRR01].

7.2.2.1 Computational Domain
The computational domain is given by the rectangle [-0.4,0.4;-0.4,0.4].

7.2.2.2 Initial Conditions

initial

x<0, y<0

otherwise

Po(x,y)
10

1

data(fl 0 =-j=(l,C
V2

U x

0
0

>,0) 7")

UY p0(x,y)
0 15
0 0,5

7.2.2.3 Boundary Conditions
The boundaries are treated as outflow boundary.

7.2.2.4 Structure of Solution
A solution was computed up time level t = 0.1 s.

Konturan d«s Bgtrogst von dhr0' B

-0.3
-0.3

Konturen d«r Kompon«nto B"1'
i —

Konturen d«s B«trag«ivon div (0) B
i i i i i i i i i i l i ——————

-0.3
-0.3

Illustration 7.2.2: The solutions depicted above are a comparison between the classical Finite-Volume (FV)
method (first row) and a divergence-conserved FV method (second row). Depicted are the contour of By
and the absolute value of the numerical divergence operator for the magnetic induction, div(O).

124

7 Multipysics Simulation Results with JUSTGrid

The computational grid comprises 300 x 300 cells. In the following computational results from

JUSTSolver MHD Riemann 2D are presented and compared with the computations of Torillhon.

>- 0

96471
9 1176
85882
80588
7 5294
70000
64706
59412
54118
4 8824
4 3529
38235
32941
2 7647
22353
1 7059
1 1765

>- 0

Pgas

144314
135784
127255
11.8725
11 0196
10 1667
93137
84608
/ 6078
6 7549
59020
50490
4 1961
3 3431
24902
1 6373
0.7843

0 3

Illustration 7.2.3: Computational results as obtained from JUSTSolver 2D MHD code for2D Riemann
problem: left: density distribution, right: pressure distribution. The results from Torrilhon are shown in
Illustration 7.2.3. (grid: 300X300, t=0.1s)

1 1892
1.0989
1.0085
0.9182
08279
07376
06473
05570
04667
03764
0.2861
0.1958
0.1055
00152
00751
0.1654
0.2557

-03 -02 -01

>- 0

1.1892
1.0989
1 0085
09182
08279
07376
0 6473
0 5570
04667
0 3764
02861
0 1958

1055
00152
0.0751
0 1654
02557

0 3

Illustration 7.2.4: Computational results for2D Riemann problem: left: distribution of velocity in x
direction, right: distribution of velocity in y direction, (grid: 300X300, t=0.1s)

125

7 Multipysics Simulation Results with JUSTGrid

1.5657
1 4766
1 3875
1 2984
1 2093
1 1202
1 0311
09420
08529
07638
0 6747
05856
04965
04074
03183
0.2292
0.1401

0 3

>- 0

-0 1 -

-02-

-0 3, 0 3

Illustration 7.2.5: Computational results for2D Riemann problem: left: Bx distribution, right: By
distribution. Comparison with Illustration 7.2.2 shows excellent agreement with Tohllhon results, (grid:
300 x 300, t=0.1s)

Prowess

Residual Time = 0 05s Iteration = 500 variable = RHO

-43D -iW -in -lug C 1«I HW)»» 409 S3i
ncration

luntlon 522
Norm 01898604042494547

n) Contour Virltble JMM>|»J

| Slop compuutton !{

Illustration 7.2.6: JUSTGrid GRXMonoblock Tool GUI,
showing online visualization while the 2D MHD Riemann
solver is running.

during the simulation.

7.2.3 JUSTGRID'S
GRXMonoblock Tool
The Illustration beside shows the online

visualization feature of JUSTGrid's

GRXMonoblock Tool. It gives a good

impression about the current state of the

simulation. Clearly, it is not meant to be a

replacement for visualization tools like

TecPlot™ or Ensight™. Another useful

feature of JUSTGrid's GRXMonoblock

Tool is the QuickTime™ movie generation

126

8 Performance Results with JUSTGrid

8 Performance Results with JUSTGpio

8.1 Simple Tests
First some simple standard test were done to compare the execution speeds of C++ and Java.

8.1.1 Matrix multiplication

8.1.1.1 Sequential Matrix Multiplication
A sequential (1 thread) matrix multiplication using a 30 times 30 matrix doing 10000 iterations on a

single processor Pentium 4 PC running Linux.

Exactly the same source was used for both benchmarks. (C++ and Java)

// get start time here
for (n=0; rKmaxIterations; n+ +)

for (i = 0; i<dim;

for(j=0; j<dim; j •
{

for(k=0; k<dim; k++)

c[i] [j] += a[i] [k]*b[k] [j] ;

}
}

// get end time here

Runtime (2GHz Pentium 4, 1GB Memory)
GNU g++ -O3 -mcpu=pentium4 -march=pentium4 -Wall
(Version 3.3.1)
Intel ice -O3 -mcpu=pentium4 -march=pentium4
(Version 8.0)

1 run
3,15

3,23

Sun Java HotSpot Client VM (Version 1.4.2 02-b03) 3,86
Sun Java HotSpot Server VM (Version 1.4.2 02-b03) 3,55

2 run
3,19

3,23

3,88
3,51

3 run 4 run 5 run 6 run 7 run
3,22

3,25

3,90
2,12

3,16

3,23

3,90
2,12

3,15

3,23

3,90

3,17

3,23

3,90
2,12| 2,12

3,16

3,23

3,89
2,13

8 run
3,16

3,25

3,90
2,12

Table 8.1 .1 : A sequential (1 thread) matrix multiplication using a 30 times 30 matrix doing 1 0000 iterations
on a single processor Pentium 4 PC running Linux.

a and b are the source and c the destination matrix, dim and maxiterations aren't constant

variables so the compilers are not able to do an unroll loop optimization.

The most important result of this benchmark is the enormous speed improvement after the two

warmup phases of the Sun Java HotSpot Server VM. This Java runtime version is about 1.5 times

faster then the compiled C++ binary.

Due to a Linker error we could not use the -fast option with the Intel compiler.

127

8 Performance Results with JUSTGrid

8.1.1.2 Multithreaded Matrix Multiplication

Runtime
1.1.8J4
1.2.2_08
1.3.0JD3 Server
1.3.1JD2 Server
1.4.0_01 Server
1.4.1_02 Server

time in s
516,94

38,97
37,47
21,69
19,51
17,31

C++-GCC 26,65
Table 8.1.2: Multithreaded matrix multiplication using a
100 times 100 matrix doing 10000 iterations with 400
threads on a 26 CPU Sun Microsystems Enterprise
6000.

In this configuration the C++ and the Java

runtimes are on par.

8.1.1.3 Scaling of a simple numeric
benchmark
In this ultra-simple program, many identical

threads are used for simple arithmetic

computing multiplications and divisions. It is an

embarrassingly parallel problem, meaning that

the threads do not have to communicate, and thus there is no need for thread synchronization.

The code computes a fixed number of multiplications and divisions and it splits the work among a

variable number of threads. These threads then are mapped to the processors by the operating

system, relieving the user of the need to employing any kind of message passing library as well as

a load balancing algorithm. The code runs on any kind of platform as long as a Java virtual

machine is available.

The purpose of this code is to determine whether multi-threading produces a parallel (linear)

speedup on the target machine.

Si
10000 -

9000 -,

05 8000 -

0 7000 -

c
'a, 5000
p 4000 -

3000 -

2000 -

1000 -

0 -

Illustratiot
10000 wit

mple numeric without communication 10e11 iterations

i • ——— — v ———— -- — ----- —— -f— ;.•- - 4-i-u--:— -^i— H-M-H- l ''.*••
; i ; i ; , i ' | : i : i ; ! M ' M M ,» •

i M • i : [i i ' i • M ! j ! ' i •.•***** ! 1 • 1 •

! : ' ' : : ; ! : • '. ' . »"*«* , . , N i ' ! : : ;
• : : : ' : ' /••»«-** ^ : : : MM.

.' : »«* : ;i-: • i • i . ; i • M i ' i

" : ^»*** 1 M : M ! . ' 1 : • ! M M ' 1
V>*'* : 'MM i 1 : 1 | ; I "•• \ ''•''•• MM

r 72
- 64

- 56

- 48

- 40

- 32

- 24

- 16

_ e

•• 71 me in s
-•-Speedup

r i i i i i i — n — rrm — i " i i i ———— TTTTTI —— 1 1 ' i ITTTI i i n i i r i i i i TT i i V u
23456789111111111 1222222222233333333334444444444555555555566666

0123456789012345678901234567890123456789012345678901234
Number of CPUs

i 8. 1. 1: Simple numeric benchmark on a Sun Microsystems Enterprise
h 64 UltraSPARC II CPUs and 256GB main memory.

Every benchmark in the single threaded and also in the multi threaded benchmark was done 8

times in the same Java runtime environment.

The performance losses at about every 8 CPUs noticed in Illustration 8.1.1 might be a behavior of

the hardware architecture of the Sun Microsystems Enterprise 10000 server.

128

8 Performance Results with JUSTGrid

u
i

_i

• 1 ^ _ - v

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43 49 50
J
51 52 53

J
54 55 56

J
57

J
52 59 60 61

J
62

1

53

Illustration 8. 1.2: The Enterprise 10000 running all 64 CPUs with 100% load during the computation.

MultiThreaded Simple Numerics
600

-O 500 -
c
O 400 -
0)

.E 300 -

i 200
i-

100 -i

I-Computation time

D C Q E

1 234567891 1 1 1 1 1 1 1 1 1 222222222451 2481 371
01234567890123456782612497514

24869863
2483

6

Number of Threads

Illustration 8.1.3: This benchmark shows the very small amount of overhead using threads. This
benchmark was done on a Sun Microsystems Enterprise 6000 with 28 CPUs.

Illustration 8.1.3 shows that even in case of some 512 threads per CPU the overall computing time

rises only slightly.

8.2 Code optimizations and Influence of the computational load on the
parallel efficiency
In this chapter we will present performance and efficiency results for CFD (Computational Fluid

Dynamics) for complex 3D geometries, using the two components of JUST, namely JUSTGpio

and JUSTSoLVER on several different multi core computer architectures. The goal is to provide

guidelines to achieving best efficiency from modern Java virtual machines (JVM).

All upcoming tests are done on the EXTV grid with 780 blocks, 755,300 grid points containing

538,752 cells without halo cells.

129

8 Performance Results with JUSTGrid

8.2.1 Utilized computer systems
Three different shared memory computer systems where used to run the parallel efficiency tests.

Sun Microsystems - Sun Fire X4440

Processor type

Processor frequency

Level 2 cache

Level 3 cache

Total number of processors

Total number of cores

Main memory

AMD Opteron 8380, quad core

2.5GHz

4 x 512KB

6MB

4

16

64GB

Sun Microsystems - Sun Fire X4600 m2

Processor type

Processor frequency

Level 2 cache

Level 3 cache

Total number of processors

Total number of cores

Main memory

AMD Opteron 8384, quad core

2.7GHz

4 x 512KB

6MB

8

32

64GB

Sun Microsystems - Sun Fire T5240

Processor type

Processor frequency

Level 3 cache

Total number of processors

Total number of cores

Total number of hardware threads

Main memory

UltraSPARC T2+, 8 cores, 8 hardware
threads per core

1.4GHz

4MB

2

16

128

64GB

8.2.2 Unoptimized JUSTEuler 3D Code
The JUSTEuler 3D source code was taken from the legacy 'C 1 based ParNSS code. Over 90% of

the Java source code is identical to the 'C' code. Following Kernighans Law "make it right before

you make it faster" the code was not optimized for a Java Virtual Machine. With the unoptimized

code it was not possible to achieve acceptable results on this modern computer architecture. The

code could not fully utilize the available hardware and therefor the parallel efficiency results were

not achieved. (See Illustration 8.1.2 on page 129)

130

8 Performance Results with JUSTGrid

8.2.2. 1 Benchmark Result - Unoptimized JUSTEuler 3D

OS
Java Development Kit (JDK)

JDK parameter

Solaris 10 10/08 s10x_u6wos_07b X86

JDK 1.6.0J3, 32Bit, Server VM, Parallel Garbage Collector

Java -d32 -server -Xcomp -Xnoclassgc -XmsSOOOm
-XmxSOOOm -XX:MaxPermSize=512m -XX:
+UseFastAccessorMethods-XX:+UseParallelGC
eulersolverSd.Main

1600

1400

Sun FireX4440

•time
•not optimized

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of cores

Illustration 8.2.1: Parallel efficiency results for an unoptimized Euler 3D
code on a Sun Fire X4440

#cores time not optimized
1 1557,879 100,00%
2 950,257 81,97%
3 702,702 73,90%
4 586,772 66,37%
5 575,776 54,11%
6 523,241 49,62%
7 506,846 43,91%
8 488,036 39,90%
9 460,815 37,56%

10 450,652 34,57%
11 482,015 29,38%
12 455,470 28,50%
13 451,240 26,56%
14 426,459 26,09%
15 422,509 24,58%
16 425,275 22,90%

Table 8.2.1: Timing results for an
unoptimized Euler 3D code on a
Sun Fire X4440

Three years ago, the results where totally different. The overall system performance was much

slower and therefore this bad effect was not recognizable.

131

8 Performance Results with JUSTGrid

8.2.3 Optimized JUSTEuler 3D Code
The result of intensive profiling and observing of many environmental metrics of a running Java
process (garbage collector, heap memory, eden (?) space, stack, number of running threads...)
was that the number of new created objects in the eden space was much too high and the garbage
collector created too much load.

With the new Java Visual VM tool, coming with JDK >= Version 1.6.0_07, it was possible to
connect to a running Java process and visualize online the important VM metrics.

To minimize the creation of new objects only 8 lines of code where changed in the inner loop of the
flux computation and 2 lines in the boundary exchange.

Local variables where changed to instance variables and were locally only set to zero.

Old:

method()
{
Object x = new ObjectO;

New:

Object x = new ObjectO;

method ()
{
x.setZero () ;

The reusing, instead of new creation of objects has a dramatic impact on the numerical load and
the garbage collector, because the amount of dynamic heap access was nearly eliminated. For
instance, on the Apple Mac Book Pro the optimized code is about 10 times faster than the
unoptimized code. On the Sun Fire X4440 the code is about 4 times faster.

132

8 Performance Results with JUSTGrid

8.2.3. 1 Benchmark Results - Optimized JUSTEuler 3D

OS Solaris 10 10/08 s10x uGwos 07b X86

Java Development Kit (JDK) JDK1.6.0_13, 32Bit, Server VM, Parallel Garbage Collector

JDK parameter Java -d32 -server -Xcomp -Xnoclassgc -XmsSOOOm
-XmxSOOOm -XX:MaxPermSize=512m -XX:
+UseFastAccessorMethods-XX:+UseParallelGC
eulersolverSd.Main

Sun FireX4440

•time
•efficiency

200

0%
12345 6 7 8 9 10 11 12 13 14 15 16

number of cores

Illustration 8.2.2: Parallel efficiency results for an optimized Euler 3D code
on a Sun Fire X4440

time efficiency
1158,323 100,00%

111,83%
110,35%
105,17%
103,05%
96,79%
92,40%
90,93%
86,30%
83,26%
78,34%
74,81%
75,07%
72,56%
73,72%

#cores
1
2 517,878
3 349,898
4 275,349
5 224,799
6 199,455
7 179,093
8 159,229
9 149,135

10 139,114
11 134,425
12 129,033
13 118,692
14 114,032
15 104,754
16 103,737 69,79%

Table 8.2.2: Timing results for
an optimized Euler 3D code
on a Sun Fire X4440

With the simply optimized Euler code the computation was 4 times faster on all 16 cores compared

to the unoptimized code. Cpu utilization was only 70%-80% per core, therefore overall parallel

efficiency was about 70% only.

133

8 Performance Results with JUSTGrid

8.3 Additional Computational Load
The computational load of the selected Euler 3D problem was too small to fully utilize the available

computing power. For benchmarking purposes, fluxes across faces were computed multiple

times. The variable Joad" gives the number of sub loops during one iteration.

8.3.1 Benchmark Results - Load efficiency on Sun T5240
The Sun Microsystems, Sun T5240 was not designed for High Performance Computing, but it can

be an acceptable system for problems where the number of processors is more important than the

single thread performance. For 2010, the Sun Niagara 3 chip is expected with 16 cores and 16

hardware threads on each core. With 256 hardware threads on each processor the 8 processor

Niagara 3 system, also expected for 2010, will have 2048 hardware threads and each of theses

hardware threads will act like a general purpose processor.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 83 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Illustration 8.3.1: Sun T5240 running JUSTEulerSD with "load=1"

perfbar cpu monitor: green=user usage, red=kernel usage, blue=idle.

Even on the T5240 with a modestsingle thread hardware performance the simulation was not big

enough to fully utilize the available cpu resources.

134

8 Performance Results with JUSTGrid

0 1 2 3 4 5 6 7 8 9 10 11 12 1? 14 15 16 17 18 19 20 21 22 2? 24 25 26 27 28 29 30

32 33 34 35 36 37 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 89 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Illustration 8.3.2: Sun T5240 running an optimized
JUSTEuler3D with "load=100"

Assuming with a load of 100 the processors of the T5240 were 100% utilized the computations for

the following load values are done.

load
computing time
load efficiency

1 2 5 10 20 50 100
144,243 200,372 331,856 612,516 1187,706 2894,877 5785,568 seconds
40,11% 57,75% 87,17% 94,46% 97,42% 99,93% 100,00%

Numerical load influence on parallel efficieny
6.000 ___——————— 100%

5.000

CD 4.000
E•^=
O)
j; 3.000
Q.
E
8 2.000

1.000 ——...———

~load efficiency
40% "computing time

30%

20%

10%

0%
10

number of additional loops

100

Illustration 8.3.3: The illustration shows, increasing computational load by a factor
of 20, that utilization level was already at more than 90%.

135

8 Performance Results with JUSTGrid

8.3.2 Benchmark Results for different numerical load on a Sun Fire
X4440
Timing and parallel efficiency results for different load values on an optimized Euler code inclusive

one benchmark on an unoptimized Euler code.

#cores
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

time
1557,879

950,257
702,702
586,772
575,776
523,241
506,846
488,036
460,815
450,652
482,015
455,470
451,240
426,459
422,509
425,275

not optimized
100,00%

81,97%
73,90%
66,37%
54,11%
49,62%
43,91%
39,90%
37,56%
34,57%
29,38%
28,50%
26,56%
26,09%
24,58%
22,90%

#cores
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

time
1158,323
517,878
349,898
275,349
224,799
199,455
179,093
159,229
149,135
139,114
134,425
129,033
118,692
114,032
104,754
103,737

loacM
100,00%
111,83%
110,35%
105,17%
103,05%

96,79%
92,40%
90,93%
86,30%
83,26%
78,34%
74,81%
75,07%
72,56%
73,72%
69,79%

Scores
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

time
3342,463
1429,317

932,371
697,295
580,354
490,003
425,291
374,745
339,593
314,488
289,398
273,788
244,984
234,387
222,700
204,501

load 5
100,00%
116,93%
119,50%
119,84%
115,19%
113,69%
112,27%
111,49%
109,36%
106,28%
105,00%
101,74%
104,95%
101,86%
100,06%
102,15%

#cores
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

time
10051,070
5787,959
3345,290
2411,630
1936,689
1582,043
1354,922
1197,699
1078,350

976,070
880,764
825,282
745,982
705,805
635,915
618,387

load 20
100,00%

86,83%
100,15%
104,19%
103,80%
105,89%
105,97%
104,90%
103,56%
102,97%
103,74%
101,49%
103,64%
101,72%
105,37%
101,59%

#cores
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

time
55317,510
27708,375
14934,260
11334,756
8934,050
7419,530
6497,718
5711,156
5039,137
4524,777
4114,497
3780,712
3481 ,365
3109,710
3000,380
2839,896

load 100
100,00%

99,82%
123,47%
122,01%
123,84%
124,26%
121,62%
121,07%
121,97%
122,25%
199 99% 0 1 2 3 4 E> 6 7 8 9 10 11 12 13 14 15

121,93%
122,23%
127,06%
122,91%
121,74%

The last illustration shows the Solaris perfbar tool on the fully utilized system.

136

8 Performance Results with JUSTGrid

Efficiency

o
c
3>
ote
CD

9 10 11 12 13 14 15 161234567

•not optimized
•load 1
load 5

•load 20
•load 100

Illustration 8.3.4: Efficiency gains from solver optimization and increased computational load

As we can see in the combined efficiency diagram there is a lot of influence on the computation

coming from the OS memory management and the Java HotSpot compiler. This is the reasons why

the computation with 1 to 2 cores differs substantially from the rest.

Parallel Speedup

10 11 12 13 14 15 16

•not optimized
•load 1
load 5

•load 20
•load 100

Illustration
load

number of cores

8.3.5: Parallel speedup gains from solver optimization and increased computational

Because of the improper starting point with one core, due to the behavior of the HotSpot compiler,

a maximum super linear speedup of about 20 was achieved with 16 cores only.

137

8 Performance Results with JUSTGrid

To rener the speedup diagram more meaningful, I chose only the values for 4,8,12 and 16 cores.

In this case, the maximum linear speedup is 16 and this maximum value was actually achieved.

o
CO

Parallel Speedup based on four cores

mot optimized
• load 1
load 5

• load 20
1 load 100

number of cores

Illustration 8.3.6: Parallel speedup gains from solver optimization and increased computational
load based on four cores.

#cores
not optimized

loacM
load 5

load 20

4 8
4,00 4,81
4,00 6,92
4,00

12 16
5,15 5,52
8,54 10,62

7,44 10,19 13,64
4,00 8,05 11,69 15,60

load 100 4,00 7,94 11,99 15,97

Without this measure, when using less than four cores, realistic linear speedups were achieved

and the influence of the additional load was perfectly demonstrated.

138

8 Performance Results with JUSTGrid

8.3.3 Benchmark Results for different numerical load on a Sun Fire
X4600 m2
After the X4440 benchmarks a SUN X4600 with 32 cores was available. In addition, a new Solaris
version was available. A load value of 200 was needed to fully utilize this system. This
configuration twice as fast as the older X4440.

OS

Java Development Kit (JDK)
JDK parameter

Solaris 10 05/09 s10x_u7 X86
JDK 1.6.0J3, 32Bit, Server VM, Parallel Garbage Collector
Java -d32 -server -Xcomp -Xnoclassgc -XmsSOOOm
-XmxSOOOm -XX:MaxPermSize=512m -XX:
+UseFastAccessorMethods-XX:+UseParallelGC
eulersolver3d.Main

#cores
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Table 8.3.1

time
78528,693
43730,783
27539,026
21604,411
16367,433
13666,323
11580,088
10523,193
9026,869
8235,249
7448,740
6742,094
6234,053
5854,603
5489,885
5125,938
4763,481
4593,263
4323,053
4108,359
3870,309
3749,976
3624,702
3390,473
3229,594
3186,089
3009,084
2919,952
2834,210
2805,211
2693,924
2568,488

Fully utilized

efficiency
100,00%
89,79%
95,05%
90,87%
95,96%
95,77%
96,88%
93,28%
96,66%
95,36%
95,84%
97,06%
96,90%
95,81%
95,36%
95,75%
96,97%
94,98%
95,61%
95,57%
96,62%
95,19%
94,20%
96,51%
97,26%
94,80%
96,66%
96,05%
95,54%
93,31%
94,03%
95,54%

speedup
1,00
1,80
2,85
3,63
4,80
5,75
6,78
7,46
8,70
9,54

10,54
11,65
12,60
13,41
14,30
15,32
16,49
17,10
18,17
19,11
20,29
20,94
21,66
23,16
24,32
24,65
26,10
26,89
27,71
27,99
29,15
30,57

Sun Fire X4600 system
with load=200

As was already visible on the 16 cores Sun Fire X4440, the results with 1 and 2 cores differs
substantially from the subsequent results because of the Java HotSpot VM engine. Therefore only
the results based on 4 cores should be used for comparison.

139

8 Performance Results with JUSTGrid

Sun FireX4600, JUSTEuler3D, load=200

'time
'efficiency

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

number of cores

Illustration 8.3.7: Timings and parallel efficiency results for a Sun Fire X4600, optimized
Euler solver, load=200.

8.3.3.1 Efficiency gains from increased computational load based on 4 cores

#cores
4
8

12
16
20
24
28
32

#cores
4
8

12
16
20
24
28
32

load
time

287,543
172,602
134,482
114,842
110,059
102,916
97,945
98,849

load
time

2311,097
1110,819
761,313
586,031
484,966
418,592
367,783
31 9, 1 70

1

efficiency
100,00%

83,30%
71 ,27%
62,60%
52,25%
46,57%
41,94%
36,36%

20
efficiency

100,00%
104,03%
101,19%
98,59%
95,31%
92,02%
89,77%
90,51%

speedup
4,00
6,66
8,55

10,02
10,45
11,18
11,74
11,64

speedup
4,00
8,32

12,14
15,77
19,06
22,08
25,14
28,96

load 200
#cores

4
8

12
16
20
24
28
32

time
21604,411
10523,193
6742,094
5125,938
4108,359
3390,473
2919,952
2568,488

efficiency
100,00%
102,65%
106,81%
105,37%
105,17%
106,20%
105,70%
105,14%

speedup
4,00
8,21

12,82
16,86
21,03
25,49
29,60
33,65

#co res
4
8

12
16
20
24
28
32

load
time

684,280
370,866
265,197
214,172
184,546
153,222
140,169
138,947

5
efficiency

100,00%
92,25%
86,01%
79,88%
74,16%
74,43%
69,74%
61,56%

speedup
4,00
7,38

10,32
12,78
14,83
17,86
19,53
19,70

load 100
#cores

4
8

12
16
20
24
28
32

time
10458,978
5120,783
3517,552
2645,301
2103,597
1736,162
1502,180
1325,809

efficiency
100,00%
102,12%

99,11%
98,84%
99,44%

100,40%
99,46%
98,61%

speedup
4,00
8,17

11,89
15,82
19,89
24,10
27,85
31,56

140

8 Performance Results with JUSTGrid

Efficiency gains from increased computational load
Sun Fire X4600, JUSTEuler 3D

o
c
V
o

SE
0)

ro
ro
CL

•load 1
1 load 5
load 20

• load 100
•load 200

12 16 20

number of cores

Illustration 8.3.8: Efficiency gains from solver optimization and increased
computational load based on four cores comparison for the Sun Fire X4600.

Parallel speedup base on four cores
Sun Fire X4600, JUSTEuler 3D

36

32

• load 1
• load 5
load 20

•load 100
•load 200

16 20

number of cores

24 28 32

Illustration 8.3.9: Parallel speedup gains from solver optimization and increased
computational load based on four cores for the Sun Fire X4600._________

These results shows that JUSTGrid is able to achieve perfect linear speedup on modern multi-

core systems under the right conditions. As it was shown, the simple Euler Solver produces not

enough computational load to fully utilize such type of systems. But additional numerical load can

be generated by more complex geometries or more costly numerical problems, e.g. Navier-Stokes,

MHD, ...simulations.

141

8 Performance Results with JUSTGrid

8.3.4 Java Development Kit JDK / JVM progress
Over the last three major releases of the Java Development Kit (JDK) the Java Virtual Machine

(JVM) has delivered substantial performance progress both for the numerical and the IO

performance. The JDK comes with two different JVMs, the Client VM and the Server VM. While the

Client VM is optimized for fast response on User interaction and visualization, the Server VM is

optimized for IO and computation. The results in this chapter are done with the Server VM only.

Computer system Sun Fire X4600, AMD Opteron 8384, 64GB, 32 cores
OS Solaris 10 05/09 s10x u7 X86

8.3.4.7 Numeric performance
For the numerical performance results the EXTV grid with 780 Blocks was used, running the

optimized JUSTEuler 3D solver with an additional load factor of 100.

Java Development Kit, Server VM
1.4,2 18
1.5.0 18
1.6.0 13

computing time 32 Bit
1570,516
1403,052
1340,101

computing time 64 Bit

1591,733
1365,683

JDK Version Progress
Numeric Performance

1600

1550
in

T3

o
CD 1500

CD

•I
O)

w
^

£ o o

computing time 32
Bit
computing time 64
Bit

1450

1400

1350

1300

1250

1200
1.4.2J8 1.5.0J8 1.6.0J3

JDK Version, Server VM

Illustration 8.3.10: The numeric performance progress of the last three
major releases of the server Java Virtual Machine JVM

Since JDK 1.5 a 64 Bit Server VM is available for Solaris X86 systems. Because of the limitation to

4GB memory of the 32 Bit VM, the progress of the 64 Bit VM is of major interest. It is important to

observe that most of the progress of the numeric performance was done within the 64 Bit Server

VM.

142

8 Performance Results with JUSTGrid

8.3.4.2 IO Performance
As IO performance test the receiving times for the computed solution of the EXTV 780 Block grid

were used.

Java Development Kit, Server VM
1.4.2 18
1.5.0J8
1.6.0J3

IO 32 Bit
24,693
22,594
16,651

IO 64 Bit

14,987
10,440

T3

O
O
CD

O)

"CD
O
CD

25

20

15
CD
E

10

JDK Version Progress
IO Receiving Result

IO 32 Bit
IO 64 Bit

1.4.2J8 1.5.0J8 1.6.0J3

Java Development Kit Version, Server VM

Illustration 8.3.11: The IO performance progress of the last three major
releases of the server Java Virtual Machine JVM

While at this time the 32 Bit VM is slightly faster regarding the numeric performance than the 64 Bit

VM (with the JDK 1.6), the IO performance of the 64 Bit Server VM was fbetter than the 32 Bit VM

at all versions of the JDK. But it is encouraging to see that the IO performance is also progressing

with every release of the JDK.

143

8 Performance Results with JUSTGrid

8.3.5 Operating System comparison
To examine the influence of the underlaying operating system exactly the same version of the

Java Development Kit was run employing the same Hardware. The following Operating Systems

where installed on the Sun Fire X4600:

• Linux CentOS 5.3, 64 Bit

• Microsoft, Windows Server 2008 HPC Edition, 64 Bit

• Sun Microsystems, Solaris 10 05/09, 64 Bit

Computer system

Java Development Kit (JDK)

JDK parameter

Sun Fire X4600, AMD Opteron 8384, 64GB, 32 cores
JDK 1.6.0 J 3, 64Bit, Server VM, Parallel Garbage Collector
Java -d64 -server -Xcomp -Xnoclassgc -Xms4096m
-Xmx4096m -XX:MaxPermSize=512m -XX:
+UseFastAccessorMethods-XX:+UseParallelGC
eulersolverSd.Main

Again, for these benchmarks the EXTV grid with 780 Blocks was used, running the optimized

JUSTEulerSD solver with an additional load of 100.

Illustration 8.3.12: A screen shot of Windows Server 2008s task manager and a linux perfbar binary.

On all three operations systems the utilization of the available 32 cores was 100%.

144

8 Performance Results with JUSTGrid

8.3.5. 1 Timing, parallel efficiency and speedup results for the different operating
systems

Linux CentOS 5.3, 64 Bit
#cores time efficiency

4 10516,928 100,00%
8 5258,885

12 3552,032
16 2624,060
20 2099,458
24 1761,249
28 1538,817
32 1333,300

Receiving result

99,99%
98,69%

100,20%
100,19%

99,52%
97,63%
98,60%

speedup
4,00
8,00

11,84
16,03
20,04
23,89
27,34
31,55

= 11,531s

Windows Server 2008 HPC Edition, 64 Bit
Scores time efficiency speedup

4 10476,461 100,00% 4,00
8 5301,133

12 3555,450
16 2641,238
20 2119,352
24 1760,596
28 1514,504
32 1332,108

Receiving result

98,81%
98,22%
99,16%
98,86%
99,18%
98,82%
98,31%

= 13,249s

7,91
11,79
15,87
19,77
23,80
27,67
31,46

Solaris 10 05/09, 64 Bit Server VM
#cores time efficiency

4 10469,228 100,00%
8 5260,483 99,51%

12 3521,664 99,09%
16 2629,971 99,52%
20 2103,885 99,52%
24 1763,857 98,92%
28 1521,113 98,32%
32 1330,124 98,39%

speedup
4,00
7,96

11,89
15,92
19,90
23,74
27,53
31,48

Receiving result = 10.040s

There were no significant differences in the parallel efficiency and speedup between the three

operating systems. The only timing differences are in the IO subsystem, which is fastest on

Solaris.

Solaris has a real advantage against Linux and Windows running these tests due to the fact that

Solaris is capable to switch cpus on and off while the OS is running. To change the number of

available processors for Linux or Windows, a reboot of the OS is required. Especially under

Windows an annoying strange behavior is that a restart only all of the available CPUs/cores can

be utilized, and/or the number of available processors can be decreased only but not increased.

145

9 Conclusions and future work

9 Conclusions and future work

With the advent of highly powerful parallel computers simulation science has become the third

pillar of gaining knowledge and information besides classical experiment and mathematical

analysis in understanding complex science and engineering problems. These problems are

described by a multidisciplinary approach, and thus multiphysics formulation for complex

geometries is the enabling technology of simulation science. Both the handling of complex

geometry and the implementation of an efficient parallel strategy as well as the setup of a general

numerical procedure are tasks that are common to most of the multiphysics problems but generally

outside the expertise of the scientist or engineer who actually wishes to perform the simulation.

Moreover, the implementation of the necessary algorithms for complex three dimensional

geometries in combination with a general numerical solution procedure for a large class of physics

problems demands special skills in computational geometry and computer science.

Since these tasks are common to a wide class of simulation problems the implementation of a

versatile framework that provides these basic features seems to be most useful. Of course, to

render such a framework useful for the simulation scientist a straight forward procedure for the

integration of user defined multiphysics solvers must be provided. With JUSTGpiD an "easy to

integrate" simulation software framework is available for performing these tasks in an efficient and

effective manner for high performance computation and communication using the Java™ runtime

environment without any additional 3rd party libraries. JUSTGmo was created from scratch and

contains more than 76,000 lines of code. JUSTGpio implements a new way of high performance

computing and is streamlined for the new upcoming massive multi core processors that will

dominate the computational scene within the next two years.

It can be used for all kinds of simulation, in particular for multiphysics problems described by

systems of hyperbolic conservation laws (linear and nonlinear), based on the integral formulation of

the conservation laws.

JUSTGpiD framework takes care of all geometrical complexity, which is one of the most difficult

parts in three dimensional simulations, and provides complete static as well as dynamic load

balancing. Dynamic load balancing may be of crucial importance when a user needs to implement

a numerical technique depending on its Krylov space dimension. For instance, if a shock wave is

moving through a solution domain the Krylov space dimension is drastically increased at the

location of the shock front, thus leading to a high numerical load that is also moving through the

solution domain. As a result large spatial and temporal computational load imbalance may be

generated. This kind of load imbalance can also be generated if the level of complexity of the

physical model utilized is varying throughout the solution domain. To cope with these kinds of

147

9 Conclusions and future work

problems dynamic load balancing needs to be employed. As a multithreaded application, JUSTGRio
is able to run thousands of threads in a single process and achieves excellent dynamic load

balancing. The various additional GUI-based Applications built around the JUSTGpio are assisting

engineers during the complete simulation processes and providing testbeds for solver developers.
Sample implementations of flow solvers (JUSTSoLVER, Laplace, Euler, MHD Riemann) were
created and successfully tested.

• For an existing grid it is now possible to provide 100% pure Java based applications for all

parts of a simulation for systems of hyperbolic conservation laws, based on the integral
form of the conservation equations.

• With JUST a modern, well structured, easy to use and extensible framework can be built.

(JUSTGRio).

• Sample implementations of flow solvers (JUSTSoLVER) are available.

• Performance is on par with legacy 'C' code solver.

• JUSTGRio achieves a better speedup than ParNSS solver written in C.

• Removing all debugging code will further increase the performance of JUSTGRio.

In the future all individual tools developed during this work will be merged into one workbench.
The prepared but not implemented interface for cluster computing on distributed memory systems
needs to be implemented. Performance analysis for different data exchange possibilities in
distributed memory systems must also be done. Research on a better way of integrating legacy
native code written in a different language should also be performed.

148

Appendices

Appendix Table of Contents
A File Formats.. 155
A.1 input.. 155

A.1.1GRX..155
A.1.2Plot3D...155
A.1.3GridPro Grid.. 155
A.1.4GridPro Topology.. 155
A.1.5ParNSS Command... 155
A.1.6ParNSS Boundary.. 156
A.1.7HGPXML..156

A.2 output... 156
A.2.1Tecplot... 156
A.2.2GRX..156
A.2.SGridPro Grid.. 156
A.2.4Plot3D...156
A.2.5ParNSS Command... 156
A.2.6ParNSS Boundary.. 156

B Java APIs used in JUSTGrid..157
B.1 RMI..157
B.2 Reflection API..157
B.3 Thread...^^
B.4 Java 2D...158
B.5 Java 3D... 158
B.6 Media Framework..159

C JUSTSolver Template - Laplace 3D - Java API..................................... 161
D JUSTSolver Template - Laplace 3D - Source Code.............................223
D.1 FlowVars.java... 223
D^GIobalVars.java..225
D.3 LaplaceSolverSD.java... 227
D^Main.java.. 232
D.5SimpleBoundaryConditions.java...232
D.6 SimpleBoundaryHandler.java.. 235
D.7SimpleCell.java..239

D.8 JUSTGrid source code statistics...241

E

149

Appendix: File Formats

A File Formats

A.1 input

A.1.1 GRX
type: grx

GRX is our own defined format and is a validated XML file format storing additional information,
namely: description of what ?, physical parameters and boundary conditions. The XML file with its
corresponding DID (Document Type Definition) together with the result of the computation is
automatically stored as a ZIP-file into the user's file system with the file extension GRX. The ZIP-
file format is a well known format available on any major computer system (UNIX/Linux, Windows,
MacOS, etc.), and can be extracted with tools like Java's JAR, UNZIP or WinZIP.

A.1.2 Plot3D
type: p3d

PlotSD is a simple binary file format, used to represent structured curvilinear grids and scalar or
vector fields defined on these grids. This format originates from the PlotSD program developed by
Pieter Buning [PBU01] at NASAAmes.

A.1.3 GridProGrid
type: gpg

Grid definition file in GridPro™ format, (see [GRP01])

A.1.4 GridPro Topology
type: gpc

Grid topology definition file containing the boundary conditions also, (see [GRP01])

A.1.5 ParNSS Command
type: cmd

ParNSS is our legacy Navier-Stokes solver written in C. The command file is an ASCII file
containing information block connectivity, boundary conditions and the rotation between two

connecting block faces, (see: [HAU01])

151

Appendix: File Formats

A.1.6 ParNSS Boundary
type:bnd

The ParNSS boundary file contains the boundary conditions only.

A.1.7 HOP XML
type: xml

Is a XML file containing grid and physical and numerical information in one file. It was designed by

Dr. Hans-Georg Paap (HPCC Consultant, Barbing, Germany).

A.2 output

A.2.1 Tecplot
type: pit

Tecplot is a well known ASCII and binary format for storing CFD data, (see: [TPL01])

A.2.2 GRX
type: grx, see: A. 1.1

A.2.3 GridProGrid
type: gpg, see: A. 1.3

A.2.4 Plot3D
type: p3d, see: A. 1.2

A.2.5 ParNSS Command
type: cmd, see: A. 1.5

A.2.6 ParNSS Boundary
type: bnd, see: A. 1.6

152

Appendix: Java APIs

B Java APIs used in JUSTGrid
Here is a list of Java API that are heavily used by JUST applications.

B.1 RMI
package: java.rmi

The Java Remote Method Invocation (RMI) system allows an object running in one Java Virtual
Machine (VM) to invoke methods on an object running in another Java VM. RMI provides for
remote communication between programs written in the Java programming language.

8.2 Reflection API
package: java.lang.reflect

The reflection API represents, or reflects, the classes, interfaces, and objects in the current
Java Virtual Machine. With the reflection API one can:

• Determine the class of an object.
• Get information about a class's modifiers, fields, methods, constructors, and super classes.
• Find out what constants and method declarations belong to an interface.
• Create an instance of a class whose name is not known until runtime.
• Get and set the value of an object's field, even if the field name is unknown to your program

until runtime.
• Invoke a method on an object, even if the method is not known until runtime.
• Create a new array, whose size and component type are not known until runtime, and then

modify the array's components.

8.3 Thread
class: java.lang.Thread

A thread is a thread of execution in a program. The Java Virtual Machine allows an application to
have multiple threads of execution running concurrently.

153

Appendix: Java APIs

Every thread has a priority. Threads with higher priority are executed in preference to threads with
lower priority. Each thread may or may not also be marked as a daemon. When code running in
some thread creates a new Thread object, the new thread has its priority initially set equal to the
priority of the creating thread, and is a daemon thread if and only if the creating thread is a
daemon.

When a Java Virtual Machine starts up, there is usually a single non-daemon thread (which
typically calls the method named main of some designated class). The Java Virtual Machine
continues to execute threads until either of the following occurs:

• The exit method of class Runtime has been called and the security manager has permitted
the exit operation to take place.

• All threads that are not daemon threads have died, either by returning from the call to the
run method or by throwing an exception that propagates beyond the run method.

B.4 Java 2D
package: javax.swing

class: java.awt.Qraphics2D

The Java 2D API is a set of classes for advanced 2D graphics and imaging, encompassing line art,
text, and images in a single comprehensive model. The API provides extensive support for image
compositing and alpha channel images, a set of classes to provide accurate color space definition
and conversion, and a rich set of display-oriented imaging operators.

8.5 Java 3D
package: javax.media.3d

URL: https://java3d.dev.java.net/

Java 3D is a scene graph-based 3D application programming interface (API) for the Java platform.
It runs on top of either OpenGL or DirectSD.

154

Appendix: Java APIs

8.6 Media Framework
package: javax.media.3d

URL: http://java.sun.com/products/java-media/jmf/

The Java Media Framework (JMF) is a Java Library that enables audio, video and other time-

based media to be added to Java applications and applets. This optional package, which can

capture, playback, stream, and transcode multiple media formats, extends the Java Platform,

Standard Edition (Java SE) and allows development of cross-platform multimedia applications.

155

Appendix: JUSTSolver Java API

C JUSTSOLVER Template - Laplace 3D - Java API
The JavaDoc API documentation in this chapter is only is subset of the complete JUSTGpio
framework API documentation. This subset contains all documentation needed by the JUSTSOLVER
sources in the next chapter.

Package Summary
hpcc.just. domain
hpcc.just.domain. structure
d
hpcc.just.share"

hpcc.math
laplacesolverSd

Page

157

175

185

196

203

Package hpcc.just.domain
Interface Summary

JpBoundaryCondition

JpBoundaryHandler
JpDomain

The JpBoundaryCondition condition interface simply define the
NOT_SET variable.

The JpBoundaryHandler interface.

This interface lists the requirements that a domain must meet.

Page

157

158

163

Class Summary

JpCell

JpFace
JpFacePart

This class represents a cell in the solution domain it contains
information like face area, finite volume, ... but no U vector!
JpFace contains all information for a structured block face.
This class represents an area on a block face.

Page

159

164

168

Interface JpBoundaryCondition
hpcc.iust.domain

public interface JpBoundaryCondition

The JpBoundaryCondition condition interface simply define the NOT_SET variable.

Author:
Thorsten Ludewig

Field Summary Page

157

Appendix: JUSTSolver Java API

String NOT SET
Boundary condition NOT_SET

158

Field Detail

NOT_SET

public static final String NOT_SET

Boundary condition NOT_SET

Interface JpBoundaryHandler
hpcc.just.domain

All Superinterfaces:
Serializable

All Known Implementing Classes:
SimpleBoundarvHandler

public interface JpBoundaryHandler
extends Serializable

The JpBoundaryHandler interface.

Author:
Thorsten Ludewig

Method Summary
void

void

void

init (JpBlock ipBlock)
Initialization of the boundary handler

setFaces (JpBoundarvCondition [I
Sets the boundary condition array for the

faces)
block faces

updateBoundaryConditions (int type)
Before every single compute iteration this

JUSTGrid framework.
method will be executed by the

Page

758

159

159

Method Detail

init
public void init (JpBlock jpBlock)

Initialization of the boundary handler

158

Appendix: JUSTSolver Java API

Parameters:
: - Reference to the parent block

setFaces

public void setFaces (JpBounciarvCondition [1 faces)

Sets the boundary condition array for the block faces
Parameters:

faces - the faces array

updateBoundaryConditions

public void updateBoundaryConditions (int type)

Before every single compute iteration this method will be executed by the JUSTGrid
framework.
Parameters:

type - The type of the boundary update.

Class JpCell
hpcc.just.domain

java.lang.Object

I— hpcc.just.domain.JpCell

All Implemented Interfaces:
Cloneable, Serializable

Direct Known Subclasses:
SimpleCell2

abstract public class JpCell
extends Object
implements Serializable, Cloneable

This class represents a cell in the solution domain it contains information like face area,
finite volume, ... but no U vector!

Author:
Thorsten Ludewig

Field Summary Page

159

Appendix: JUSTSolver Java API

double

static

finiteVolume
The finite volume

NUMBER OF FACES
The number of cell faces - since we are using cubes: NUMBER_OF_FACES = 6

YOU

7 OU

Constructor Summary
JpCell ()

Page

161

Method Summary
abstract

Object

JpVector

JpVector [
]

double

abstract
void

void

void

qetData ()
This method must return an object containing all boundary exchange information

for this cell.

QetFaceVector (int face)
Gets a face vector for one cell face

ATTENTION!

cretFaceVectors ()
Gets an array containing all face vectors for this cell

cretFiniteVolume ()
Gets the finite volume of this cell

setData (Obiect data)
This method sets all infomation from a baoundary exchange.

setFaceVector (int face, JpVector faceVector)
Sets a face vector for one cell face

ATTENTION!

setFinite Volume (double f initeVolume)
Sets the finite volume of this cell

Page

161

161

161

161

162

162

162

Field Detail

NUMBER_OF_FACES

public static final int NUMBER_OF_FACES

The number of cell faces - since we are using cubes: NUMBER_OF_FACES = 6

finiteVolume

public double finiteVolume

The finite volume

160

Appendix: JUSTSolver Java API

Constructor Detail

JpCell

public JpCell

Method Detail

getData

public abstract Object getData ()

This method must return an object containing all boundary exchange information for
this cell.
Returns:

the exchange information

getFaceVector

public JpVector getFaceVector(int face)

Gets a face vector for one cell face

ATTENTION! The index starts at 1 not at 0
Parameters:

face - the face index (from 1 to 6)
Returns:

the face vector for the specified face
See Also:

getFaceVectors (). setFaceVector(int face, JpVector faceVector).

NUMBER OF FACES

getFaceVectors

public JpVector[] getFaceVectors(}

Gets an array containing all face vectors for this cell
Returns:

this cell's face vectors
See Also:

getFaceVector(int face) . setFaceVector(int face, JpVector faceVector).

NUMBER OF FACES

getFJniteVolume

public double getFiniteVolume()

161

Appendix: JUSTSolver Java API

Gets the finite volume of this cell

Returns:
this cell's finite volume

See Also:
setFiniteVolume(double finiteVolume

setData

public abstract void setData (Object data)

This method sets all information from a boundary exchange.
Parameters:

data - the neigboring cell information

setFaceVector

public void setFaceVector (int face,
JpVector faceVector)

Sets a face vector for one cell face

ATTENTION! The index starts at 1 not at 0
Parameters:

face - the face index (from 1 to 6)
facevector - the face normal vector the length represents the area of the cell
face

See Also:
getFaceVectors(). setFaceVector(int face. JpVector faceVector).
NUMBER OF FACES

setFiniteVolume

public void setFiniteVolume (double finiteVolume;

Sets the finite volume of this cell
Parameters:

fimtevoiume - the finite volume
See Also:

getFiniteVolume()

162

Appendix: JUSTSolver Java API

Interface JpDomain
hpcc.just.domain

All Known Implementing Classes:
JpBlock

public interface JpDomain

This interface lists the requirements that a domain must meet. A domain contains cells that
holds the variable to be computed

Author:
Thorsten Ludewig

Method Summary
°pLei -

int

void

aet JpCell (int i)
this method returns the cell at index i

cretNeiqhbor (int face, int depth, JpCell cell)
this method returns a neighboring cell specified by the face, the depth (i.e. area

of influence of the numerical scheme) and the original cell

aetNumberOf Cells ()
this method returns the number of cells that resides in the

updateBoundaryCond.it ions (int type)

domain

This method will be executed by the framework to initiate the update of the
boundary conditions.

Page

163

163

164

164

Method Detail

getJpCell

public JpCell getJpCell (int i)

this method returns the cell at index i
Parameters:

i - index of a cell in the domain
Returns:

cell object of type JpCell

getNeighbor
public JpCell getNeighbor(int face,

int depth,
JpCell cell

this method returns a neighbouring cell specified by the face, the depth (i.e. area of

163

Appendix: JUSTSolver Java API

influence of the numerical scheme) and the original cell
Parameters:

face - face of the cell
depth - depth from the face
ceii - the original cell

Returns:
neighbouring cell of type JpCell

getNumberOfCells

public int getNumberOfCells ()

this method returns the number of cells that resides in the domain
Returns:

number of cells; of type int

updateBoundaryConditions

public void updateBoundaryConditions(int type)

This method will be executed by the framework to initiate the update of the
boundary conditions.
Parameters:

type - the type of the boundary condition update (not necessary)

Class JpFace
hpcc.just.domain

Java.lang.Object

I— hpcc.just.domain.JpFace

public class JpFace
extends Object

JpFace contains all information for a structured block face.

Author:
Thorsten Ludewig

Field Summary
static

final int I MAX
I MAX =4

Page

166

164

Appendix: JUSTSolver Java API

static

static

static

static

static

I MIN
I_MIN = 3

J MAX
J_MAX = 5

J MIN
J_MIN = 2

K MAX
K_MAX = 6

K MIN
K_MIN = 1

w r*r>
IOO

•i CC1 bo

loo

•4 CCloo

7 DO

Constructor Summary
JpFacednt faceNumber, JpBlock parent)

Constructor of a block face

Page

166

Method Summary
int

JoFacePar
t

JoFacePar
t[]

JcBlock

void

void

qetFaceNumber ()
Gets the block face namuber

qetFacePart (int f acePartNumber)
JUSTGrid is prepared for merged grid, which means a bock face can have

multiple face parts connecting to other face parts on different blocks.

qetFaceParts ()
Return all face parts

qetParentBlock ()
Gets the parent block

setFaceNumber (int faceNumber)
Sets the unique face number

setFacePart (JpFacePart facePart, int f acePartNumber)
Sets a reference to a face part

Page

166

166

167

167

167

167

Field Detail

K MIN

public static final int K_MIN

K MIN = 1

K_MAX

public static final int K_MAX

K MAX = 6

165

Appendix: JUSTSolver Java API

publi c static final int J MIN

public static final int J MAX

I MIN

public static final int I MIN

I MAX

public static final int I MAX

I MAX = 4

I Constructor Detail

JpFace

public JpFace(int faceNumber,
cTpBle,,: k parent)

Constructor of a block face

I Method Detail

getFaceNumber

public int getFaceNumber()

Gets the block face number
Returns:

the face number

getFacePart

public JpFa ce Par t getFacePart(int facePartNumber)

166

Appendix: JUSTSolver Java API

JUSTGrid is prepared for merged grid, which means a bock face can have multiple
face parts connecting to other face parts on different blocks. The implementation at
this time is for 1 face part only.
Parameters:

facepartNumber - the face part number
Returns:

the reference to the face part

getFaceParts

public JpFacePart[] getFaceParts ()

Return all face parts
Returns:

an array containing all face parts

getParentBlock

public JpBlock getParentBlock ()

Gets the parent block
Returns:

the reference to the parent block

setFaceNumber

public void setFaceNumber(int faceNumber)

Sets the unique face number
Parameters:

- the unique face number 1 ... 6

setFacePart

public void setFacePart (JpFacePart facePart,
int facePartNumber)

Sets a reference to a face part
Parameters:

- the reference to the face part
- the unique face part number - at this time always 1

167

Appendix: JUSTSolver Java API

Class JpFacePart
hpcc.just.domain

java.lang.Object
I— hpcc.just.domain.JpFacePart

public class JpFacePart
extends Object

This class represents an area on a block face. At this time there is only one face part per
block face.

Author:
Thorsten Ludewig

Version:
1.0

See Also:
JpFace

Constructor Summary
JpFacePart (int partNumber, JpFace parent)

Constructor declaration

Page

170

Method Summary
String

int

int

int

JoFacePar
t

int

int

JpFace

int

cretBoundarvCondition ()
Get the boundary condition of the face part

cretlteration ()
The current iteration computed on this face part

cretNeiahborBlockNumber ()
Getting the block number of the neighbouring block

cretNeiahborFaceNumber ()
Get the number of the neighbouring face

cretNeiahborFacePart ()
Get a reference to the neighbouring face part

cretNeicrhborFacePartNumber ()
Getting the part number of the neighbouring face part

cretOrientation ()
Getting the orientation to the neighbouring face part

aetParentFace ()
Getting the reference to the parent face

aetPartHeiaht ()
Getting the height of the part face

Page

170

170

170

170

171

171

171

171

171

168

Appendix: JUSTSolver Java API

int

int

int

int

void

void

Object!]
[] []

void

void

void

void

void

void

void

void

void

void

void

void

QetPartNumber ()
Getting the part number

cretPartWidth ()
Getting the part width

cretPartX ()
The x position on the block face of the face part.

cretPartY ()
The y position on the block face of the face part.

init ()
Initialize the face part

nextlteration ()
Increase the current iteration to the next iteration

readCommunicationBuf f er ()
Reading the communication buffer of the face part with respect to the orientation

to the neighbour face part.

setBoundarvCondition (Strincr boundarvCondition)

Sets the boundary condition of the face part

setNeicjhborBlockNumber (int neiqhborBlockNumber)

Setting the block number of the neighbouring block

setNeiahborFaceNumber (int neighbor FaceNumber)
Setting the part number of the neighbouring face

setNeiahborFacePart (JpFacePart neicrhborFacePart)

Sets a reference to the neighbouring face part

setNeiahborFacePartNumber (int neiahborFacePartNumber)

Setting the part number of the neighbouring face part

setOrientation (int orientation)
Setting the orientation to the neighbouring face part

setPartHeight (int partHeiqht)
Setting the height of the part face

setPartNumber (int partNumber)
Setting the unique face part number

setPartWidth(int partWidth)
Setting the width of the part face

setPartX(int partX)
The x position on the block face of the face part.

setPartY(int partY)
The y position on the block face of the face part.

writeCornmunicationBuffer (Obiect [1 Fin buffer)
Writing the communication buffer to the halo cells.

171

172

172

172

172

172

172

173

173

173

173

173

174

174

174

174

174

174

175

169

Appendix: JUSTSolver Java API

Constructor Detail

JpFacePart

public JpFacePart(int partNumber,
JpFace parent)

Constructor declaration

Method Detail

getBoundaryCondition

public String getBoundaryCondition ()

Get the boundary condition of the face part
Returns:

A string representing the boundary condition

getlteration

public int getlteration ()

The current iteration computed on this face part
Returns:

the iteration

getNeighborBlockNumber

public int getNeighborBlockNumber()

Getting the block number of the neighbouring block
Returns:

the neighbour block number

getNeighborFaceNumber

public int getNeighborFaceNumber ()

Get the number of the neighbouring face
Returns:

the neighbouring face number

170

Appendix: JUSTSolver Java API

getNeighborFacePart

public JpFacePart getNeighborFacePart()

Get a reference to the neighbouring face part
Returns:

the reference to the neighbouring face part

getNeighborFacePartNumber

public int getNeighborFacePartNumber ()

Getting the part number of the neighbouring face part
Returns:

the part number of the neighbouring face part

getOrientation

public int getOrientation()

Getting the orientation to the neighbouring face part
Returns:

the orientation

getParentFace

public JpFace getParentFace()

Getting the reference to the parent face
Returns:

the reference to the parent face

getPartHeight

public int getPartHeight ()

Getting the height of the part face
Returns:

the height

getPartNumber

public int getPartNumber

171

Appendix: JUSTSolver Java API

Getting the part number
Returns:

the current part number

getPartWidth

public int getPartWidth()

Getting the part width
Returns:

the width of the part

getPartX

public int getPartX()

The x position on the block face of the face part. At this time always 0
Returns:

the x position

getPartY

public int getPartY()

The y position on the block face of the face part. At this time always 0
Returns:

the y position

init

public void init()

Initialize the face part

nextlteration
public void nextlteration()

Increase the current iteration to the next iteration

readCommunicationBuffer

public Objectf][][] readCommunicationBuffer()

172

Appendix: JUSTSolver Java API

Reading the communication buffer of the face part with respect to the orientation to
the neighbour face part. (Boundary exchange)
Returns:

An array containing all data for the boundary exchange

setBoundaryCondition
public void setBoundaryCondition (String boundaryCondition)

Sets the boundary condition of the face part
Parameters:

- A string representing the boundary condition

setNeighborBlockNumber
public void setNeighborBlockNumber (int neighborBlockNumber)

Setting the block number of the neighbouring block
Parameters:

- the block number of the neighbouring block

setNeighborFaceNumber
public void setNeighborFaceNumber (int neighborFaceNumber)

Setting the part number of the neighbouring face
Parameters:

- the number of the neighbouring face

setNeighborFacePart
public void setNeighborFacePart (JpFacePart neighborFacePart)

Sets a reference to the neigboring face part
Parameters:

- the reference to the neighbouring face part

setNeighborFacePartNumber
public void setNeighborFacePartNumber (int neighborFacePartNumber)

Setting the part number of the neighboring face part
Parameters:

- the part number of the neighbouring face part

173

Appendix: JUSTSolver Java API

setOrientation

public void setOrientation(int orientation)

Setting the orientation to the neighbouring face part
Parameters:

orientation - the orientation 1 ... 8

setPartHeight
public void setPartHeight(int partHeight)

Setting the height of the part face
Parameters:

- the height of the part face

setPartN umber
public void setPartNutnber (int partNumber)

Setting the unique face part number
Parameters:

- the unique face part number

setPartWidth

public void setPartWidth(int partwidth)

Setting the width of the part face
Parameters:

- the width of the part face

setPartX
public void setPartX(int partX)

The x position on the block face of the face part. At this time it should be always 0
Parameters:

partx - The x position

setPartY
public void setPartY(int partY)

174

Appendix: JUSTSolver Java API

The y position on the block face of the face part. At this time it should be always 0
Parameters:

party - The y position

writeCommunicationBuffer

public void writeCommunicationBuffer (Object[][][] buffer;

Writing the communication buffer to the halo cells.
Parameters

buffer - the data array

Package hpcc.just.domain.structured

Class Summary
JpBlock A JpBlock is the representation for a single strucktured domain (block).

Page
175

Class JpBlock
hpcc.just.domain.structured

java.lang.Object

I hpcc.just.domain.structured.JpBlock

All Implemented Interfaces:
JpDomain

public class JpBlock
extends Object
implements JpDomain

A JpBlock is the representation for a single structured domain (block). It it is the parent
container for: solver, cells, geometry and boundary handler.

Author:
Thorsten Ludewig

Field Summary
static

final int
NUMBER OF FACES

In this implementation the number of faces is fixed to 6.

Page

177

Constructor Summary Page

175

Appendix: JUSTSolver Java API

JpBlock (int uniqueld, int gridl, int gridJ, int gridK)
Constructor declaration

178

Method Summary
JoBlockl]

String

int

JpBoundar

JpCell

JECell

[] []

JcFace

JpFaCe ['

int

int

int

JpVector

JoVector \
I [] []

int

JeCell

JpCell

int

int

cretBlockArray ()
Returns the reference to the all blocks array

aetBlockName ()
Returns the free defined block name

aetBlockNumber ()
Returns the block number

aetBoundaryHandler ()
Returns the associaded boundary handler object.

cretCellfint i, int i)
Returns one cell in 2D.

aetCelldnt i, int i, int k)
getJpCell returns the [ij.k] given cell ATTENTION!

aetCells ()
JpCell returns a reference to the 3D JpCell array

qetFace(int faceNo)
Returns a block face object

qetFaces ()
Returns an array containing all block faces

cretGridl ()
Returns the number of grid points in I direction.

aetGridJ ()
Returns the number of grid points in J direction.

cretGridK ()
Returns the number of grid points in K direction.

aetGridVector (int i, int 1, int k)
Returns a single grid point.

aetGridVectorArray ()
The complete grid for this block.

aetGridVectorCount ()
Returns the total number of grid points

aetJpCell (int i)
Deprecated, this method is obsolete

aetNeiqhbor (int face, int depth, JpCell cell)
Deprecated, this method is obsolete

cretNumberOf Cells ()
Deprecated, this method is obsolete

aetNumberOf HaloCells ()
Returns the specified number of halo cells

Page

178

178

178

178

179

179

179

179

180

180

180

180

180

181

181

181

181

182

182

176

Appendix: JUSTSolver Java API

JoSolver

int

void

void

void

void

void

void

void

void

void

void

void

void

aetSolver ()
Returns a reference to the solver object

cjetUniqueld ()
Returns the unique block id

setBlockArrav (JpBlock \ 1 blockArrav)
Set the reference to the all block array

setBlockName (Strincr blockName)
Sets the block name

setBlockNumber (int blockNumber)
Sets the block number

setBoundarvHandler (JpBoundarvHandler boundaryHandler)
Sets the boundary handler object.

setCells (JpCell ipCell, int numberOf HaloCells)
This method initialize the complete cell array including the halo cells

setFace (JpFace face, int faceNo)
Sets the block face object.

setGridldnt aridl)
Sets the number of grid points in 1 direction

setGridJdnt aridJ)
Sets the number of grid points in J direction

setGridKdnt aridK)
Sets the number of grid points in K direction

setGridVector (JpVector vector, int i, int i, int k)
Sets a single grid point vector

setSolver (JpSolver solver)
Sets the solver object.

updateBoundarvConditions (int type)
Calls the update boundary

7oZ

loZ

183

183

183

7oJ

loo

184

184

184

184

184

/GO

185

Methods inherited from interface hpcc.just.domain.JpDomain

getJpCell, aetNeiahbor, aetNumberOfCells, updateBoundarvConditions

Field Detail

NUMBER_OF_FACES

public static final int NUMBER_OF_FACES

In this implementation the number effaces is fixed to 6.

177

Appendix: JUSTSolver Java API

Constructor Detail

JpBlock

public JpBlock(int uniqueld,
int gridl,
int gridJ,
int gridK)

Constructor declaration

Method Detail

getBlockArray

public JpBlock[1 getBlockArray ()

Returns the reference to the all blocks array
Returns:

the array containing all blocks

getBlockName

public String getBlockName ()

Returns the free defined block name
Returns:

te block name

getBlockNumber

public int getBlockNumber(}

Returns the block number
Returns:

the block number

getBoundaryHandler

public JpBoundarvHandler getBoundaryHandler ()

Returns the associated boundary handler object.
Returns:

the boundary handler

178

Appendix: JUSTSolver Java API

getCell
public JpCell getCell(int i,

int j)

Returns one cell in 2D. The index starts at 1
Parameters:

i - i index
j - j index

Returns:
the cell object

getCell

public JpCell getCell (int i,
int j ,
int k)

getJpCell returns the [i,j,k] given cell

ATTENTION! the start index of i,j,k is 1 not 0 and ends at (e.g for i) gridl -1 so your
loop should look like this:

int gridl = jpBlock.getgridl() ;
for (int i=l; i

The number of cell in each direction is the number of grid points in that direction - 1!
Parameters:

i - cell index in i direction
j - cell index in j direction
k - cell index in k direction

Returns:
returns the [i,j,k] given cell

getCells

public JpCell fl [HI getCells ()

JpCell returns a reference to the 3D JpCell array
Returns:

the reference to the 3D JpCell array
See Also:

aetCell(int i, int i, int k)

getFace
public JpFace getFace(int faceNo!

179

Appendix: JUSTSolver Java API

Returns a block face object
Parameters:

faceNo - face number 1 ... 6
Returns:

the JpFace

getFaces

public JpFace f1 getFaces ()

Returns an array containing all block faces
Returns:

the array

getGridl

public int getGridl ()

Returns the number of grid points in I direction.
Returns:

number of grid points in I direction.

getGridJ

public int getGridJ ()

Returns the number of grid points in J direction.
Returns:

number of grid points in J direction.

getGridK

public int getGridK ()

Returns the number of grid points in K direction.
Returns:

number of grid points in K direction.

getGridVector
public JpVector getGridVector(int i,

int j ,
int k)

Returns a single grid point.

180

Appendix: JUSTSolver Java API

Parameters:
i-l
j-J
k-K

Returns:
the grid point

getGridVectorArray

public JpVector[1[][] getGridVectorArray()

The complete grid for this block.
Returns:

a vector array with all grid points for this bock

getGridVectorCount

public int getGridVectorCount ()

Returns the total number of grid points
Returns:

the total number of grid points

getJpCell

public JpCell getJpCell (int i)

Deprecated, this method is obsolete

Dummy method
Specified by:

aetJpCell in interface JpDomain
Parameters:

i - type
Returns:

null

getNeighbor
public JpCell getNeighbor(int face,

int depth,
JpCell cell)

Deprecated, this method is obsolete

Dummy method

181

Appendix: JUSTSolver Java API

Specified by:
qetNeiqhbor in interface JpDomain

Parameters:
face - Face
depth - Depth
ceii -Cell

Returns:
null

getNumberOfCells

public int getNumberOfCells ()

Deprecated, this method is obsolete

Dummy method
Specified by:

qetNumberOfCells in interface JpDomain

Returns:
0

getNumberOfHaloCells

public int getNumberOfHaloCells()

Returns the specified number of halo cells
Returns:

the number of halo cells

getSolver

public JpSolver qetSolver ()

Returns a reference to the solver object
Returns:

the solver object

getUniqueld

public int getUniqueld()

Returns the unique block id
Returns:

the unique block id

182

Appendix: JUSTSolver Java API

setBlockArray

public void setBlockArray (JpBlock[1 blockArray)

Set the reference to the all block array
Parameters:

- the all block array

setBlockName

public void setBlockName (String blockName)

Sets the block name
Parameters:

- the block name

setBlockNumber

public void setBlockNumber (int blockNumber)

Sets the block number
Parameters:

- the block number

setBoundaryHandler

public void setBoundaryHandler (JpBoundaryHandler boundaryHandler)

Sets the boundary handler object.
Parameters:

- the boundary handler

setCells
public void setCells (J^CejU. jpCell,

int numberOf HaloCells)

This method initialize the complete cell array including the halo cells
Parameters:

- the prototype cell from that all cells be generated
s - number of halo cells

183

Appendix: JUSTSolver Java API

setFace

public void setFace (JpFace face,
int faceNo)

Sets the block face object.
Parameters:

face - the block face object
- the face number 1 ... 6

setGridl

public void setGridl(int gridl)

Sets the number of grid points in I direction
Parameters:

- the number of grid points in I direction

setGridJ

public void setGridJ(int gridJ)

Sets the number of grid points in J direction
Parameters:

- the number of grid points in J direction

setGridK

public void setGridK(int gridK)

Sets the number of grid points in K direction
Parameters:

- the number of grid points in K direction

setGridVector

public void setGridVector (JpVector vector,
int i,
int j ,
int k)

Sets a single grid point vector
Parameters:

vector - the grid point
i-l

184

Appendix: JUSTSolver Java API

k-K

setSolver

public void setSolver (JpSolver solver)

Sets the solver object.
Parameters:

solver - the solver object

updateBoundaryConditions

public void updateBoundaryConditions (int type)

Calls the update boundary
Specified by:

updateBoundarvConditions in interface JpDomain

Parameters:
type - type of the boundary update

Package hpcc.just.share

Interface Summary
JploStreamStatus
JpMultiblockSolver

JpServerSession

JpSolver

JpSolverHandler

JParNSS io stream status interface

Interface description for a multi block solver

JParNSS Server Session interface is used for server side access to the
JpSession class.

JParNSS Solver interface A client application must implement this
interface.

JpSolverHandler interface represents

Page
J85

187

188

191

195

Exception Summary

JpSolverException
The JpSolverException will be thrown
occur.

Page

if an unexpected error will
/ i/O

Interface JploStreamStatus
hpcc.iust.share

public interface JploStreamStatus

JUSTGrid io stream status interface

185

Appendix: JUSTSolver Java API

Author:
Thorsten Ludewig

Method Summary
void

int

void

void

destroy ()
destroy the io stream

cretld ()
get the command id

receiveAcknowledqe ()
wait for receiving an acknowledge signal

sendAcknowledge ()
send and acknowledge signal

Page

186

186

186

186

Method Detail

destroy

public void destroy ()

destroy the io stream

getld

public int getld()

get the command id
Returns:

the unique id of the io stream

receiveAcknowledge

public void receiveAcknowledge ()

wait for receiving an acknowledge signal

sendAcknowledge

public void sendAcknowledge ()

send and acknowledge signal

186

Appendix: JUSTSolver Java API

Interface JpMultiblockSolver
hpcc.just.share

All Super-interfaces:
JpSolver

All Known Implementing Classes:
LaplaceSolver3D

public interface JpMultiblockSolver
extends JpSolver

Interface description for a multi block solver

Author:
Thorsten Ludewig

Method Summary Page

finalizeSolver() 787
This method finalizes the solver object on the server side.

initSolver (JpDomain block, int nodeld)——————— 787
This method initializes the solver object on the server side.

Methods inherited from interface hpcc.just.shareJpSolver

qetDataObiect, qetFaces, qetQutputVars, setDataQbiect, solve

Method Detail

finalizeSolver

public void finalizeSolver()

This method finalizes the solver object on the server side.

initSolver

public void initSolver(JpDomain block,
int nodeld)

This method initializes the solver object on the server side.
Parameters:

block - the block to work on
d - ^ unique node/solver id

187

Appendix: JUSTSolver Java API

Interface JpServerSession
hpcc.iust.share

public interface JpServerSession

JUSTGrid Server Session interface is used for server side access to the JpSession class.
The JpSolverHandler uses this interface.

Author:
Thorsten Ludewig

Method Summary
JoSolver [

]

JpSclverH
- ~i 1 - V-

void

void

void

void

void

void

void

void

void

void

cretSolverArray ()
getting the solver array

cretSolverHandler ()
getting the current solver handler

initAHServerBoundarvHandlers (JpBoundarvHandler
boundary Handler)

initializing all boundary handler on the server
initAHServerCells (JpCell cell, int haloCells)

initialize all JpCells
initAHServerNodes (JpSolver solver)

initialize all nodes
initServerBoundarvHandler (int blocklndex,
JpBoundary Handler boundaryHandler)

Initialize one boundary handler
initServerNode (int nodelndex)

initialize a specific node
initServerNode (int nodelndex, JpSolver solver)

initialize a specific node with a JpSolver
initServerSession (JpBlock [1 block)

initialize the JpSession
initServerSession (int numberOf Nodes , int
maxNumberOf Neighbors)

initialize the JpSession
setServerNodeNeiahborObject (int nodelndex, int
neighborlndex, int edge)

binding a nodes edge to a neighbour node (topology information)

setSolverArrav (JpSolver [1 solverArray)
setting up a reference to the solver array

Page

189

189

189

189

189

190

190

190

190

190

191

191

188

Appendix: JUSTSolver Java API

Method Detail

getSolverArray

public JpSolver[1 getSolverArray ()

getting the solver array
Returns:

a reference to the solver array

getSolverHandler

public JpSolverHandler getSolverHandler (

getting the current solver handler
Returns:

the current solver handler

initAIIServerBoundaryHandlers

public void JnitAllServerBoundaryHandlers (JpBoundaryHandler boundaryHandler!

initializing all boundary handler on the server
Parameters:

- a reference to a boundary handler object

initAIIServerCells

public void initAIIServerCells (JpCell cell,
int haloCells)

initialize all JpCells
Parameters:

ceii - a reference to a cell object
haioceiis - number of halo cells

initAIIServerNodes

public void i nitAHServerNodes (JpSolver solver)

initialize all nodes
Parameters:

solver - a reference to a solver object

189

Appendix: JUSTSolver Java API

initServerBoundaryHandler

public void initServerBoundaryHandler (int blocklndex,
JpBoundarvHandler boundaryHandler)

Initialize one boundary handler
Parameters:

- index of the block
- the reference to the boundary handler object

initServerNode

public void initServerNode (int nodelndex)

initialize a specific node
Parameters:

x - index of a node

initServerNode

public void initServerNode (int nodelndex,
JpSolver solver)

initialize a specific node with a JpSolver
Parameters:

nodemdex - index of a node / block
solver - a solver object

initServerSession

public void initServerSession (JpBlock [1 block)

initislize the JpSession
Parameters:

block - the Multiblock structure

initServerSession

public void initServerSession (int numberOfNodes ,
int maxNumberOfNeighbors)

initialize the JpSession
Parameters:

- the total number of nodes/solvers with this session
- the msximum number of neighbour nodes for one

node

190

Appendix: JUSTSolver Java API

setServerNodeNeighborObject

public void setServerNodeNeighborObject (int nodelndex,
int neighbor Index,
int edge)

binding a nodes edge to a neighbour node (topology information)
Parameters:

nodeindex - index of a node
neighbor-index - index of the neighbor node
edge - edge to bind with the neighbor node

setSolverArray

public void setSolverArrav (JpSolver [1 solverArray)

setting up a reference to the solver array
Parameters:

- a solver array

Interface JpSolver
hpcc.just.share

All Known Subinterfaces:
JpMultiblockSolver

All Known Implementing Classes:
LaplaceSolverSD

public interface JpSolver

JUSTGrid Solver interface A client application must implement this interface. Every server
node makes a reference to one solver object.

Author:
Thorsten Ludewig

Method Summary
Object

JoBoundar
vConditio

n[]

getDataOb-ject (int datald)
get solver data from the solver object

qetFaces ()
Returns the faces array

Page

192

192

191

Appendix: JUSTSolver Java API

Object

void

boolean

aetOutputVars (int crridl, int qridJ, int qridK)
Returns an object representing the flow vars for on grid point

setDataObiect (int datald, Obiect object)
send data objects to the solver object

solve (int iteration)
The .solve' method contains the numerics for ONE iteration.

192

192

193

Method Detail

getDataObject

public Object getDataObject (int datald)

get solver data from the solver object
Parameters:

dataid - this parameter is used to select a specific object
Returns:

a data object

getFaces

public JpBoundaryCondition[1 getFaces()

Returns the faces array
Returns:

the faces array

getOutputVars

public Object getOutputVars (int gridl,
int gridJ,
int gridK)

Returns an object representing the flow vars for on grid point
Parameters:

gridl - I
gridJ-J
gridK - K

Returns:
an object representing the flow vars for on grid point

setDataObject

public void setDataObject(int datald,
Object object)

192

Appendix: JUSTSolver Java API

send data objects to the solver object
Parameters:

dataid - this parameter is used to select a specific object
object - the data object

solve

public boolean solve (int iteration)
throws JpSolverException

The .solve' method contains the numerics for ONE iteration.
Parameters:

iteration - the current iteration
Returns:

is NOT ready
Throws:

JpsolverException - 3 US6T Specific exception

Class JpsolverException
hpcc.just.share

java.lang.Object
I— j ava.lang.Throwable

I— Java.lang.Exception

I— hpcc.just.share.JpsolverException

All Implemented Interfaces:
Serializable

public class JpSolverException
extends Exception

The JpSolverException will be thrown if an unexpected error will occur.

Author:
Thorsten Ludewig

Constructor Summary Page

JpSolverException()
The default constructor

JpSolverException (String message)
Constructor with a message

193

Appendix: JUSTSolver Java API

Method Summary
String

String

getMessage ()
Returns the exception message

toString ()
Returns a string represents the JpSolverException

Page

194

194

Constructor Detail

JpSolverException

public JpSolverException ()

The default constructor

JpSolverException

public JpSolverException (String message)

Constructor with a message

Method Detail

getMessage

public String getMessage ()

Returns the exception message
Overrides:

getMessage in ClaSS Throwable

Returns:
the exception message

toString

public String toString ()

Returns a string represents the JpSolverException
Overrides:

toString in ClaSS Throwable

Returns:
a string represents the JpSolverException

194

Appendix: JUSTSolver Java API

Interface JpSolverHandler
hpcc.iust.share

public interface JpSolverHandler

JpSolverHandler interface represents

Author:
Thorsten Ludewig

Method Summary
voia

void

void

void

void

destrovHandler ()
Destroy the session handler

initHandler (JpServerSession ipServerSession)
Initialize the solver handler

readData (Inputstream inputstream, Outputstream
outputStream, JpIoStreamStatus ipIoStreamStatus,
String command)

Read data from session
startSession ()

Called from jpSession.startSession();
writeData (Inputstream inputstream, Outputstream
outputStream, JpIoStreamStatus ipIoStreamStatus ,
String command)

Write data to session

Page

195

195

196

196

196

Method Detail

destroyHandler

public void destroyHandler(

Destroy the session handler

initHandler

public void initHandler (JpServerSession ipServerSession)

Initialize the solver handler
Parameters:

- reference to server session

195

Appendix: JUSTSolver Java API

readData

public void readData (InputStream inputStream,
OutputStream outputStream,
JpIoStreamStatus jpIoStreamStatus,
String command)

Read data from session
Parameters:

mputstream - the input stream for reading from the client
outputStream - the output stream to the client
ipiostreamstatus - the status of the io stream
command - free definable command string

startSession

public void startSession()

Called from jpSession.startSession();

writeData

public void writeData(InputStream inputStream,
OutputStream outputStream,
JpIoStreamStatus JpIoStreamStatus,
String command)

Write data to session
Parameters:

inputstream - the input stream for reading from the client
outputStream - the output stream to the client
] P iostreamstatus - the status of the io stream
command - free definable command string

Package hpcc.math

Class Summary

Jp Vector This is a simple vector class.

Page

196

Class JpVector
hpcc.math

java.lang.Object
I— hpcc.math.JpVector

196

Appendix: JUSTSolver Java API

All Implemented Interfaces:
Cloneable, Comparable, Serializable

public class JpVector
extends Object
implements Serializable, Cloneable, Comparable

This is a simple vector class. The vector contains the three double components x,y,z
ATTENTION The access modifiers of the components are public to have a faster access
on it but this is also a dangerous behaviour of this class!

Author:
Thorsten Ludewig

Field Summary
double

double

double

X

the x component of this vector

Y
the y component of this vector

z
the z component of this vector

Page

198

199

199

Constructor Summary
JpVector ()

this ,, default" constructor creates a zero vector

JpVector (double x, double y, double z)
this constructor creates the vector from the tree individual components

JpVector (double [I x)
this constructor creates a vector form the given double array

JpVector (JpVector parent)
create a vector from the given vector

Page

199

199

199

199

Method Summary
final

JpVector

int

final
JpVector

add (JpVector vector)
the add method adds every component of the given vector on the corresponding

component of this vector

compareTo (Object o)
Compare this vector with an other one, Only if the vectors have identical

components this method returns a 0.

cross (JpVector vectorl)
this method computes the cross product of the given vectors and stores the result

in this vector

Page

199

200

200

197

Appendix: JUSTSolver Java API

final

double

final
JpVector

final

JpVector

JoVector

final

void

void

void

void

final
JoVector

final

String

cross (JpVector vectorl, JpVector vector2)
this method computes the cross product of the given vectors and stores the result

in this vector

distance (JpVector vector)
Returns the distance to the given vector

diy (double divisor)
this method divides each component by the given divisor

dot (JpVector vector)
this method computes the scalar dot product of the given vector to this vector

cretZeroVector3d (double x, double v, double z)

A method finding the zero point (mid point) between to vectors

aetZeroVec tor 3d (Jp Vector t up 1 e 3 d)
A method finding the zero point (mid point) between to vectors

lenath ()
this method computes the length of this vector

max (double x, double y, double z)
Compare each single component of a second vector and stores for each

component the maximum value.

max (JpVector tupleSd)
Compare each single component of a second vector and stores for each

component the maximum value.

min (double x, double y, double z)
Compare each single component of a second vector and stores for each

component the minimum value.

min (JpVector tuple3d)
Compare each single component of a second vector and stores for each

component the minimum value.

mul (double factor)
this method multiply the given factor to each component of this vector

sub (JpVector vector)
the sub method subtracts every component of the given vector from the

corresponding component of this vector

toStrinq ()
this method returns the String representation of this vector

200

200

201

201

201

201

202

202

202

203

202

20?

203

203

Field Detail

public double x

the x component of this vector

198

Appendix: JUSTSolver Java API

public double y

the y component of this vector

public double z

the z component of this vector

Constructor Detail

JpVector

public JpVector (

this ,,default" constructor creates a zero vector

JpVector

public JpVector (double [] x)

this constructor creates a vector form the given double array

JpVector
public JpVector (JpVector parent;

create a vector from the given vector

JpVector
public JpVector(double x,

double y,
double z)

this constructor creates the vector from the tree individual components

Method Detail

add
public final JpVector add(JpVector vector;

199

Appendix: JUSTSolver Java API

the add method adds every component of the given vector on the corresponding
component of this vector
Parameters:

vector - the vector to add on this vector
Returns:

this ,,result" vector

compareTo

public int compareTo (Object o)

Compare this vector with an other one, Only if the vectors have identical
components this method returns a 0. In all others cases it returns a -1.
Parameters:

o - the other vector
Returns:

Oor-1

cross

public final JpVector cross (JpVector vectorl)

this method computes the cross product of the given vectors and stores the result in
this vector
Parameters:

vectori - the first vector
Returns:

this ,, result" vector

cross
public final JpVector cross (JpVector vectorl,

JpVector vector2)

this method computes the cross product of the given vectors and stores the result in
this vector
Parameters:

vectori - the first vector
vector2 - the second vector

Returns:
this ,,result" vector

distance
public double distance (JpVector vector;

200

Appendix: JUSTSolver Java API

Returns the distance to the given vector
Parameters:

vector - the given vector
Returns:

the distance

div

public final JpVector div(double divisor)

this method divides each component by the given divisor
Parameters:

divisor - the divisor
Returns:

this ,,result" vector

dot

public final double dot (JpVector vector)

this method computes the scalar dot product of the given vector to this vector
Parameters:

vector - the vector to compute with
Returns:

the scalar result value

getZeroVectorSd

public JpVector getZeroVector3d (JpVector tupleSd)

A method finding the zero point (mid point) between to vectors
Parameters:

tupiesd - the second vector
Returns:

the vector to the zero point

getZeroVectorSd

public JpVector getZeroVectorSd (double x,
double y,
double z)

A method finding the zero point (mid point) between to vectors
Parameters:

x - x component
y - y component

201

Appendix: JUSTSolver Java API

z - z component
Returns:

the vector to the zero point

length

public final double length ()

this method computes the length of this vector
Returns:

this ,,result" vector

max

public void max (JpVector tuple3d)

Compare each single component of a second vector and stores for each
component the maximum value.
Parameters:

tuP ie3d - the second vector

max

public void max (double x,
double y,
double z)

Compare each single component of a second vector and stores for each
component the maximum value.
Parameters:

y. -x component
y - y component
z - z component

mm
public void min(JpVector tupleSd)

Compare each single component of a second vector and stores for each
component the minimum value.
Parameters:

- the second vector

202

Appendix: JUSTSolver Java API

mm

public void min (double x,
double y,
double z)

Compare each single component of a second vector and stores for each
component the minimum value.
Parameters:

: - x component
y - y component
z -z component

mul

public final JpVector mul (double factor)

this method multiply the given factor to each component of this vector
Parameters:

factor - the factor to multiply with
Returns:

this ,,result" vector

sub

public final JpVector sub (JpVector vector)

the sub method subtracts every component of the given vector from the
corresponding component of this vector
Parameters:

vector - the subtracting vector
Returns:

this ,,result" vector

toString

public String toString ()

this method returns the String representation of this vector
Overrides:

toString in ClaSS Object

Returns:
the three components separated by a space

Package Iaplacesolver3d

203

Appendix: JUSTSolver Java API

Class Summary Page

FlowVars This class contains all fields/variables that are stored in one cell and
where transported to the neighbor cells.

204

GlobalVars
LaplaceSolverSD

Main

This global class is to compute the norm/residual.

A sample implementation of a 3D Laplace solver.

This Main class is only a wrapper for hpcc.just.app.cli.Main and a
shortcut for running from an IDE (Integrated Development
Environment).

SimpleBoundaryCondition This class is implementing the different boundary conditions.

SimpleBoundarvHandler The SimpleBoundaryHandler class is responsible for setting the
boundary conditions.

207

208

213

214

215

SimpleCell2 SimpleCell represents a single cell in the solution domain. 217

Class FlowVars
laplacesolverSd

java.lang.Object

I— laplacesolver3d.FlowVars

All Implemented Interfaces:
Serializable

public class FlowVars
extends Object
implements Serializable

This class contains all fields/variables that are stored in one cell and where transported to
the neighbour cells. In the Laplace 3D sample it contains one field only named "mach".
This type of data structure in general is called the U-vector.

Author:
Thorsten Ludewig

Field Summary
double mach

A simple flow var field.

Page

205

Constructor Summary
FlowVars ()

Default constructor for FlowVars.

FlowVars (FlowVars vars)
This constructor creates a copy of the given FlowVars object.

Page

205

205

204

Appendix: JUSTSolver Java API

Method Summary
void

Object

void

void

void

void

void

add(FlowVars u)
Add the values of the given flow vars to the current vars.

clone ()
Clone the current FlowVars object.

div (double d)
Divide all fields containing by the FlowVars object by the given divisor.

mul (double d)
Multiply all fields containing by the FlowVars object by the given multiplier.

set (FlowVars u)
Set all fields of the current FlowVars object to the same values of the given

FlowVars object.

setZero ()
Set all fields zero

sub (FlowVars u)
Subtract from the current FlowVars object fields the corresponding fields of the

given FlowVars object.

Page

205

206

206

206

206

206

207

Field Detail

mach

public double mach

A simple flow var field. It it named "mach" but it is a simple double number with no
relation to a real Mach number.

Constructor Detail

FlowVars

public FlowVars

Default constructor for FlowVars.

FlowVars
public FlowVars (FlowVars vars)

This constructor creates a copy of the given FlowVars object.

Method Detail

add

public void add(FlowVars u]

205

Appendix: JUSTSolver Java API

Add the values of the given flow vars to the current vars.
Parameters:

u - The flow vars to add on

clone

public Object clone (}

Clone the current FlowVars object, (make a copy of it)
Overrides:

clone in ClaSS Object

Returns:
An instance of the cloned FlowVars object

div

public void div(double d)

Divide all fields containing by the FlowVars object by the given divisor.
Parameters:

d - The divisor

mul

public void mul (double d)

Multiply all fields containing by the FlowVars object by the given multiplier.
Parameters:

d -The multiplier

set
public void set(FlowVars u)

Set all fields of the current FlowVars object to the same values of the given
FlowVars object.
Parameters:

u - The FlowVars object to set from

setZero

public void setZero ()

Set all fields zero

206

Appendix: JUSTSolver Java API

sub

public void sub (FlowVars u)

Subtract from the current FlowVars object fields the corresponding fields of the
given FlowVars object.
Parameters:

u - The FlowVars object

Class GlobalVars
Iaplacesolver3d

java.lang.Object

I— Iaplacesolver3d.GlobalVars

public class GlobalVars
extends Object

This global class is to compute the norm/residual. It it implemented as a singleton pattern.

Author:
Thorsten Ludewig

Method Summary
static
double

static
void

static
void

getNorm ()
Return the current norm/residual

setNumberOf Blocks (int number)
To initialize the GlobalVars object correct it needs to know the total number of

block for the complete computation.

writeNorm(double norm, int iteration)

Write the norm from a block to the global norm.

Page

207

208

208

Method Detail

getNorm

public static double getNorm ()

Return the current norm/residual
Returns:

the current norm/residual

207

Appendix: JUSTSolver Java API

setNumberOfBlocks

public static void setNumberOfBlocks (int number)

To initialize the GlobalVars object correct it needs to know the total number of block
for the complete computation.
Parameters:

number - number of blocks

writeNorm

public static void writeNorm (double norm,
int iteration)

Write the norm from a block to the global norm.
Parameters:

norm - norm from the block
iteration - iteration the block has finished

Class LaplaceSolverSD
Iaplacesolver3d

java.lang.Object

'— Iaplacesolver3d.LaplaceSolverSD

All Implemented Interfaces:
JpMultiblockSolver. JpSolver. Serializable

public class LaplaceSolverSD
extends Object
implements JpMultiblockSolver. Serializable

A sample implementation of a 3D Laplace solver.
The execution sequence is:

1. Construtor: creates an instance of the solver
2. initSolver: initialize the solver with references to the framework

3. setXX: setting all solver parameters from the startup.properties file

4. postlnitialization: computing/setting free stream conditions

5. solve: loop until simulation is finished
6. finalizeSolver: after simulation is finished
7. getOutputVars: for creating an output file

Author:
Thorsten Ludewig

Field Summary Page

208

Appendix: JUSTSolver Java API

Flow Vars

double

freeS treamConditions
The free stream condition information

machNumber
The Mach number

210

210

Constructor Summary
LaplaceSolver3D ()

Creates a new instance of LaplaceSolverSD

Page

210

Method Summary
void

Object

JpBcunctar

n[]

Object

void

void

void

void

void

boolean

f inalizeSolver ()
This method will be executed after all computation is done.

cjetDataObject (int i)
For the interactive steering a client application could use this method to order

specific data from the solver.

cretFaces ()
Returns an array with all face boundary conditions for this block.

aetOutputVars (int i, int i, int k)
getOutputVars must return an object with public fields containing all vars for the

solution output e.g TecPlot output.

initSolver (JpDomain block, int nodeld)
Initialize the solver with the references to the framework

postlnitialization ()
Is responsible for computing/setting free stream conditions

setDataObject (int i, Obiect obiect)
For the interactive steering a client application could use this method to set

specific data at the solver.

setMachNumber (double machNumber)
Sets the Mach number (solver parameter).

setMaxIterations (int maxlteration)
Sets the maximum number of iteration (solver parameter).

solve (int currentlteration)
The ,,main" method of the solver.

Page

210

210

211

211

211

211

212

212

212

212

Methods inherited from interface hpcc.just.shareJpMultiblockSolver

finalizeSolver, initSolver

Methods inherited from interface hpcc.just.shareJpSolver

getDataObiect, aetFaces, getQutputVars, setPataObiect. solve

209

Appendix: JUSTSolver Java API

Field Detail

freeStreamConditions

public FlowVars freeStreamConditions

The free stream condition information

machNumber

public double machNumber

The Mach number

Constructor Detail

LaplaceSolverSD

public LaplaceSolverSD ()

Creates a new instance of LaplaceSolverSD

Method Detail

finalizeSolver

public void finalizeSolver ()

This method will be executed after all computation is done.
Specified by:

finalizeSolver in interface JpMultiblockSolver

getDataObject

public Object getDataObject (int i)

For the interactive steering a client application could use this method to order
specific data from the solver. In this case it always returns null.
Specified by:

aetPataObiect in interface JpSolver

Parameters:
i - A tag specified by the developer of a solver

Returns:
the ordered data object

210

Appendix: JUSTSolver Java API

getFaces

public JpBoundarvCondition[1 getFaces (}

Returns an array with all face boundary conditions for this block. In this sample it is
not needed.
Specified by:

getFaces in interface JpSolver

Returns:
null

getOutputVars

public Object getOutputVars (int i,
int j ,
int k)

getOutputVars must return an object with public fields containing all vars for the
solution output e.g TecPlot output.
Specified by:

qetOutputVars in interface JpSolver
Parameters:

i - is index for GRID I
j - is index for GRID J
k - is index for GRID K

Returns:
the flow field vars object

initSolver

public void initSolver (JpDomain block,
int nodeld)

Initialize the solver with the references to the framework
Specified by:

initSolver in interface JpMultiblockSolver

Parameters:
block - reference to the block

- the unique node id

postlnitialization

public void postlnitialization ()

Is responsible for computing/setting free stream conditions

211

Appendix: JUSTSolver Java API

setDataObject

public void setDataObject (int i,
Object object)

For the interactive steering a client application could use this method to set specific
data at the solver.
Specified by:

setDataObnect in interface JpSolver

Parameters:
i - A tag specified by the developer of a solver
object - data object

setMachNumber

public void setMachNumber (double machNumber)

Sets the Mach number (solver parameter). It is called by the framework during the
processing of the startup.properties file.
Parameters:

- the Mach number

setMaxlterations

public void setMaxlterations (int maxlteration)

Sets the maximum number of iteration (solver parameter). It is called by the
framework during the processing of the startup.properties file.
Parameters:

- maximum number of iterations

solve
public boolean solve(int currentlteration)

throws JpSolverException

The ,,main" method of the solver. It will be executed until the return value is false.
Specified by:

solve in interface jpsoiver
Parameters:

currentlteration - the current iteration
Returns:

break condition
Throws:

on - Throws an unexpected solver exception

212

Appendix: JUSTSolver Java API

Class Main
Iaplacesolver3d

Java.lang.Object

'— laplacesolver3d.Main

public class Main
extends Object

This Main class is only a wrapper for hpcc.just.app.cli.Main and a shortcut for running from
an IDE (Integrated Development Environment). It is normally not necessary.

Author:
Thorsten Ludewig

Version:
1.0

See Also:
hpcc.just.app.cli.Main

Constructor Summary
Main ()

Page

213

Method Summary
static

void
main (String M arqs)

The main method to start with the JVM

Page

213

Constructor Detail

Main

public Main ()

Method Detail

mam

public static void main (String[] args)

The main method to start with the JVM
Parameters:

- the command line arguments

213

Appendix: JUSTSolver Java API

Class SimpleBoundaryCondition
laplacesolverSd

java.lang.Object

I— laplacesolverSd.SimpleBoundaryCondition

abstract public class SimpleBoundaryCondition
extends Object

This class is implementing the different boundary conditions.

Author:
Thorsten Ludewig

Constructor Summary
SimpleBoundaryCondition ()

Page

274

Method Summary
abstract

void

static
SimoIeBcu
ndarvCcnd

-tier.

compute (Simple Cel 12 cell, SimpleCell2 neiahbor,
LaplaceSolver3D solver, JpVector normal)

This method computes the specific boundary contition.

qetBoundaryCondition (String conditionName)

This method is called by the boundary handler the result is an object for the given
type of the boundary condition.

Page

214

215

Constructor Detail

SimpleBoundaryCondition

public SimpleBoundaryCondition(

Method Detail

compute
public abstract void compute (SimpleCell2 cell,

SimpleCell2 neighbor,
LaplaceSolver3D solver.
JpVector normal)

This method computes the specific boundary condition. Because it is abstract it
must be filled out by a child class.
Parameters:

ceii -The current cell
neighbor - the neighbour cell
solver -the solver

214

Appendix: JUSTSolver Java API

normal - the cell face normal vector

getBoundaryCondition

public static SimpleBoundarvCondition getBoundaryCondition (String conditionName)

This method is called by the boundary handler the result is an object for the given
type of the boundary condition.
Parameters:

conditionName - A String representing a boundary condition type/name
Returns:

An object computing the specified boundary condition.

Class SimpleBoundaryHandler
Iaplacesolver3d

Java.lang.Object
I— Iaplacesolver3d.SimpleBoundaryHandler

All Implemented Interfaces:
JpBoundaryHandler. Serializable

public class SimpleBoundaryHandler
extends Object
implements JpBoundaryHandler

The SimpleBoundaryHandler class is responsible for setting the boundary conditions.

Author:
Thorsten Ludewig

Constructor Summary
SimpleBoundaryHandler ()

Creates a new instance of SimpleBoundaryHandler

Page

216

Method Summary
void

void

void

initfJpBlock ipBlock)
Initialization of this class will be executed by the JUSTGrid framework.

setFaces (JpBoundarvCondition \ 1 ipBoundarvCondition)

Sets the face boundary condition information for this block

setSimpleSolverSD (LaplaceSolver3D solver)
Sets the reference to the Laplace solver.

Page

216

216

216

215

Appendix: JUSTSolver Java API

void updateBoundarvConditions (int type)
Before every single compute iteration this method will be executed by the

JUSTGrid framework.
277

Methods inherited from interface hpcc.just.domain.JpBoundary Handler

init, setFaces, updateBoundarvConditions

Constructor Detail

SimpleBoundaryHandler

public SimpleBoundaryHandler ()

Creates a new instance of SimpleBoundaryHandler

Method Detail

init

public void init (JpBlock jpBlock)

Initialization of this class will be executed by the JUSTGrid framework.
Specified by:

init in interface JpBoundarvHandler

Parameters:
k - the parent block reference

setFaces

public void setFaces (JpBoundarvCondition[1 jpBoundaryCondition)

Sets the face boundary condition information for this block
Specified by:

setFaces in interface JpBoundaryHandler

Parameters:
] PBoundarycondition - the boundary conditions

setSimpleSolverSD

public void g*»i-.simpleSolver3D (LaplaceSolver3D solver)

Sets the reference to the Laplace solver.
Parameters:

solver - the parent solver

216

Appendix: JUSTSolver Java API

updateBoundaryConditions

public void updateBoundaryConditions (int type)

Before every single compute iteration this method will be executed by the JUSTGrid
framework. For this sample the type is not nessesary.
Specified by:

updateBoundarvConditions in interface JpBoundarvHandler

Parameters:
type - The type of the boundary update.

Class SimpleCeN2
Iaplacesolver3d

java.lang.Object

I—hpcc.just.domain.JpCell

I— laplacesolverSd.SimpleCell2

All Implemented Interfaces:
Cloneable, Serializable

public class SimpleCeM2
extends JpCell

SimpleCell represents a single cell in the solution domain.

Author:
Thorsten Ludewig

Field Summary
FlcwVars U

All flow vars the so called U-vector

Page

218

Fields inherited from class hpcc.just.domainJgCell

finiteVolume, NUMBER OF_FACES

Constructor Summary
SimpleCell2 ()

Creates a new instance of SimpleCell

Page

278

Method Summary
Object getData ()

This method
for this cell.

must return an object containing all boundary exchange information

Page

278

217

Appendix: JUSTSolver Java API

setData (Object datavoid
278

This method sets all information from a boundary exchange.

Methods inherited from class hpcc.just.domain.J^CeH

aetData, aetFaceVector . qetFaceVectors ,
setFaceVector , setFiniteVolume

aetFiniteVolume, setData,

Field Detail

u

public FlowVars u

All flow vars the so called U-vector

Constructor Detail

SimpleCell2

public SimpleCell2()

Creates a new instance of SimpleCell

Method Detail

getData

public Object getData()

This method must return an object containing all boundary exchange information for
this cell.
Overrides:

aetData in ClaSS JpCell

Returns:
the exchange information

setData

public void setData (Object data)

This method sets all information from a boundary exchange.
Overrides:

setData in ClaSS JpCell

Parameters:
data - the neighboring cell information

218

Appendix: JUSTSolver Sources

D JUSTSOLVER Template - Laplace 3D - Source Code

D.1 FlowVars.java
' *

* FlowVars.java

Created on October 8, 2006, 3:04 PM

* To change this template, choose Tools \ Template Manager

* and open the template in the editor.
* /

package Iaplacesolver3d;

//---- JDK imports ---------

import Java.io.Serializable;

* This class contains all fields/variables that are stored in one cell and

* where transported to the neighbour cells. In the Laplace 3D sample it

* contains one field only named "mach". This type of data structure in general

* is called the U-vector.
* Qauthor Thorsten Ludewig
*/

public class FlowVars implements Serializable

• * *
* Default constructor for FlowVars.

public FlowVars

1 + +

This constructor creates a copy of the given FlowVars object

@param vars The FlowVars object to copy
*

public FlowVars(FlowVars vars

this.mach = vars.mach;

.--- methods

/

* Add the values of the given flow vars to the current vars

* @param u The flow vars to add on
*/

public void add(FlowVars u)

{
mach += ((FlowVars) u).mach;

219

Appendix: JUSTSolver Sources

/ * *
* Clone the current FlowVars object, (make a copy of it)
* @return An instance of the cloned FlowVars object
* /

public Object clone()

return new FlowVars(this);

* Divide all fields containing by the FlowVars object by the given divisor
* @param d The divisor
*/

public void div(double d)

mach /= d;

* Multiply all fields containing by the FlowVars object by the given
* multiplicator.
* @param d The multiplicator
* /

public void mul(double d)
{
mach *= d;

--- set methods

* Set all fields of the current FlowVars object to the same values of the
* given FlowVars object.
* @param u The FlowVars object to set from
*/

public void set (FlowVars u)
{
mach = u.mach;

/ * *
* Set all fields zero
*/

public void setZero()
{
mach = 0.0;

•--- methods

* Substract from the current FlowVars object fields the corresponding fields
* of the given FlowVars object.
* @param u The FlowVars object
*/

public void sub(FlowVars u)

mach -= u.mach;

220

Appendix: JUSTSolver Sources

---- fields ---

* A simple flow var field. It it named "mach" but it is a
* simple double number with no relation to a real Mach number,
*/

public double mach;

D.2 GlobalVars.java

/*
* GlobalVars.java
*
* Created on November 23, 2006, 12:26 PM
*
*/

package Iaplacesolver3d;

/**

* This global class is to compute the norm/residual. It it implemented as a

* singleton pattern.
* @author Thorsten Ludewig
+ r

public class GlobalVars
{

/** Field description */
private final static GlobalVars singleton = new GlobalVars();

•--- constructors

/** Creates a new instance of GlobalVars *,

private GlobalVars()
{
norm = Double.MAXVALUE;

•--- get methods

/**
* Return the current norm/residual
* @return the current norm/residual
*/

public static double getNorm()

{
return singleton.norm;

•--- set methods

* To initialize the GlobalVars object correct it needs to know the total
* number of block for the complete computation.
* @param number number of blocks

221

Appendix: JUSTSolver Sources

public static void setNumberOfBlocks(int number
{
singleton._setNumberOfBlocks(number);

•--- methods

* Write the norm from a block to the global norm.

* @param norm norm from the block
* @param iteration iteration the block has finished
* /

public static void writeNorm (double norm, int iteration)

{
singleton. _writeNorm (norm, iteration) ;

}

/ * *

* Method description

@param number
*

private synchronized void _setNumberOf Blocks (int number)

{
numberOf Blocks = number;
counter = number;
norm = 0.0;
System. out . println ("+++ GlobalVars . setNumberOf Blocks (" + number + ")");

* Method description

@param norm
@param iteration

private synchronized void _writeNorm (double norm, int iteration)

{
if (counter ! = -1)
{
this. norm += norm;
counter--;

if (counter == 0)
{
norm /= numberOf Blocks ;
counter = numberOf Blocks ;
System. out .println ("iteration = " + iteration + " norm = " + norm) ;

--- fields

/** Field description */
private int counter = -1;

/** Field description */

222

Appendix: JUSTSolver Sources

private double norm;

/** Field description */
private int numberOfBlocks;

D.3 LaplaceSolvertD.java

LaplaceSolver3D.java

Created on September 27, 2006, 10:14 PM

* To change this template, choose Tools
* and open the template in the editor.
*k /

package Iaplacesolver3d;

//---- non-JDK imports ------------------

Template Manager

import hpcc.just.domain.JpBoundaryCondition;
import hpcc.just.domain.JpCell;
import hpcc.just.domain.JpDomain;
import hpcc.just.domain.structured.JpBlock;
import hpcc.just.share.JpMultiblockSolver;
import hpcc.just.share.JpSolverException;

//---- JDK imports ---------

import java.io.Serializable;

•--- classes

/**
* A sample implementation of a 3D Laplace solver.
*

* The execution sequence is:
* <pre>

1. Constructor: creates an instance of the solver
2. initSolver: initialize the solver with references to the framework

3. setXX: setting all solver parameters from the startup.properties file

4. postlnitialization: computing/setting free stream conditions

5. solve: loop until simulation is finished
6. finalizeSolver: after simulation is finished
7. getOutputVars: for creating an output file

* </pre>
* @author Thorsten Ludewig
*/

public class LaplaceSolverBD implements JpMultiblockSolver, Serializable

Creates a new instance of LaplaceSolver3D
* /

public LaplaceSolverBD

223

Appendix: JUSTSolver Sources

---- methods

* This method will be executed after all computation is done,
* /

public void finalizeSolver()
{
System.out.println("*** finalizeSolver() block #"

+ this.block.getBlockNumber());
}

//~--- get methods ---

* For the interactive steering a client application could use this method to
* order specific data from the solver. In this case it always
* returns <i>null<i>.
* @param i A tag specified by the developer of a solver
* @return the ordered data object
* /

public Object getDataObject(int i)
{
return null;

}

/ * *
* Returns an array with all face boundary conditions for this block.
* In this sample it is not needed.
* @return null
* /

public JpBoundaryCondition[] getFaces()
{
return null;

* getOutputVars must return an object with public fields
* containing all vars for the solution output e.g TecPlot
* output.
*
* @param i is index for GRID I
* @param j is index for GRID J
* @param k is index for GRID K
ir
* @return the flow field vars object
*/

public Object getOutputVars(int i, int j, int k)

{
FlowVars vars = (FlowVars) cells[i][j][k].getData();

vars.add((FlowVars) cells[i][j + 1][k] .getData ());
vars.add((FlowVars) cells[i][j][k + 1].getData());
vars.add((FlowVars} cells[i][j + l][k + 1].getData());
vars.add((FlowVars) cells[i + 1][j][k] .getData());
vars.add((FlowVars) cellsfi + l][j + 1][k].getData());
vars.add((FlowVars) cells[i + 1][j][k + 1].getData());
vars.add((FlowVars) cellsfi + l][j + l][k + l].getData()
vars.mul(0.125);

224

Appendix: JUSTSolver Sources

return vars;

--- methods

* Initialize the solver with the references to the framework
* @param block reference to the block
* @param nodeld the unique node id
*/

public void initSolver(JpDomain block, int nodeld)
{
this.block = (JpBlock) block;
this.cells = this.block.getCells();
this.numberOfHaloCells = this.block.getNumberOfHaloCells();
this.numberOfCells = (this.block.getGridl(} - 1)

* (this.block.getGridJ() - 1)
* (this.block.getGridK() - 1);

I = cells.length;
J = cells[0].length;
K = cells[0][0].length;
le = cells.length - numberOfHaloCells;
Je = cells [0] .length - numberOfHaloCells;
Ke = cells [0] [0] .length - numberOfHaloCells;

if (this.block.getBlockNumber()
{
GlobalVars.setNumberOfBlocks(this.block.getBlockArray().length);

/
* Is responsible for computing/setting free stream conditions
V

public void post Initialization()

try

((SimpleBoundaryHandler) this.block.getBoundaryHandler())
.setSimpleSolver3D(this);

freeStreamConditions = new FlowVars();
freeStreamConditions.mach = this.machNumber;

//
// set free stream values over the hole solution domain

for (int i = 0; i < I; i + +)

for (int j =0; j < J; j++)

for (int k = 0; k < K; k++)

((SimpleCell2) cells[i][j][k]).u.set(freeStreamConditions);

freeStreamConditions.mach = this.machNumber;

225

Appendix: JUSTSolver Sources

catch (Exception e)
{
e.printStackTrace() ;
System.exit(0};

•--- set methods

* For the interactive steering a client application could use this method to
* set specific data at the solver.
* @param i A tag specified by the developer of a solver
* @param object data object
* /

public void setDataObject(int i, Object object

* Sets the Mach number (solver parameter). It is called by the framework
* during the processing of the startup.properties file.
* @param machNumber the Mach number
*/

public void setMachNumber(double machNumber)

this.machNumber = machNumber;

Sets the maximum number of iteration (solver parameter).
It is called by the framework during the processing of the
startup.properties file.
@param maxlteration maximum number of iterations

/

public void setMaxIterations(int maxlteration)

this.maxlteration = maxlteration;

--- methods

/

* The ,,main'' method of the solver. It will be executed until the return
* value is <code>false</code>.
* @param cur rent Iteration the current iteration
* @return break condition
* @throws JpSolverException Throws an unexpected solver exception

public boolean solve(int current Iteration) throws JpSolverException

double avgNorm = 0.0;
double norm;

for (int i = numberOfHaloCells; i < le; i++)

for (int j = numberOfHaloCells; j < Je; j++)

for (int k = numberOfHaloCells; k < Ke; k++)

226

Appendix: JUSTSolver Sources

norm= ((SimpleCell2) cells [i][j][k]). u .mach;
((SimpleCell2) cells [i][j][k]). u . mach -

(((SimpleCell2) cells[i - 1] [j] [k]) . u .mach
+ ((SimpleCell2) cells[i + 1] [j] [k]) . u .mach
+ ((SimpleCell2) cells[i][j - 1] [k]) . u .mach
+ ((SimpleCell2) cells[i][j + 1] [k]) . u .mach
+ ((SimpleCell2) cells [i][j][k - l]).u.mach
+ ((SimpleCell2) cells [i][j][k + l]).u.mach) / 6.0;

norm = Math . abs (norm - ((SimpleCell2) cells [i][j][k]). u .mach) ;
avgNorm += norm;

avgNorm /= numberOf Cells ;
GlobalVars . writeNorm (avgNorm, current Iteration) ;

return current Iteration < maxlterat ion; // break condition

--- fields

/** Field description *
private int I ;

/** Field description *
private int le;

/** Field description *
private int J;

/** Field description *
private int Je;

/** Field description *
private int K;

/ * * Field description *,
private int Ke;

/** Field description */
private JpBlock block;

/** Field description */
private JpCell[][][] cells;

* The free stream condition information
*/

public FlowVars freeStreamConditions;

/**
* The Mach number
*/

public double machNumber;

/** Field description */
private int maxlteration;

/** Field description */
private int numberOfCells;

227

Appendix: JUSTSolver Sources

/** Field description */
private int numberOfHaloCells;

D.4 Main.Java
package Iaplacesolver3d;

/**
* This Main class is only a wrapper for hpcc.just.app.cli.Main and a shortcut
* for running from an IDE (Integrated Development Environment).
* It is normally not necessary.
* @author Thorsten Ludewig
* @version 1.0
* @see hpcc.just.app.cli.Main
*/

public class Main

/**
* The main method to start with the JVM
* @param args the command line arguments
*/

public static void main(String[] args}

System.out.println("*** LaplaceSolver3D ***");

try

.// Starting the real main method
hpcc.just.app.cli.Main.main(args);

catch (Exception e)

e.printStackTrace();
System.exit(0);

D.5 SimpleBoundaryConditions.java

/*
SimpleBoundaryConditions.Java

Created on September 27, 2006, 11:30 PM

* To change this template, choose Tools \ Template Manager
* and open the template in the editor.

228

Appendix: JUSTSolver Sources

package laplacesolverBd;

//---- non-JDK imports --

import hpcc .math . JpVector ;

//---- classes --

/**
* This class is implementing the different boundary conditions.
* ^author Thorsten Ludewig
* /

public abstract class SimpleBoundaryCondition
{
/** Field description */
private final static SimpleBoundaryCondition singleton =

new SimpleBoundaryCondition ()
{
public void compute (SimpleCell2 cell, SimpleCell2 neighbor,

LaplaceSolverBD solver, JpVector normal)

/** Field description */
private static _Inflow bclnflow;

/** Field description */
private static ^Outflow bcOutflow;

/** Field description */
private static _Wall bcWall;

//---- static initializers

static

bclnflow = new _Inflow();
bcWall = new _Wall();
bcOutflow = new 0utflow();

--- methods

/
* This method computes the specific boundary condition. Because it is
* abstract it must be filled out by a child class.
* @param cell The current cell
* @param neighbor the neighbour cell
* Qparam solver the solver
* @param normal the cell face normal vector
* /

public abstract void compute(SimpleCell2 cell, SimpleCell2 neighbor,
LaplaceSolver3D solver, JpVector normal);

--- get methods

* This method is called by the boundary handler the result is an object for
* the given type of the boundary condition.
* @param conditionName A String representing a boundary condition type/name

229

Appendix: JUSTSolver Sources

* @return An object computing the specified boundary condition

public static SimpleBoundaryCondition getBoundaryCondition
String conditionName)

{
SimpleBoundaryCondition be = singleton;

if ("inflow".equals(conditionName)}
{
be = bclnflow;

}
else if ("wall".equals(conditionName))
{
be = bcWall;

}
else if ("outflow".equals(conditionName))
{
be = bcOutflow;

}

return be;

* Implementation for the inflow boundary condition. It sets the free stream
* conditions on the givens cell.
* @author Thorsten Ludewig
*/

class _Inflow extends SimpleBoundaryCondition
{
/**

* This method computes the specific boundary condition. Because it is
* abstract it must be filled out by a child class.
* @param cell The current cell
* Qparam neighbor the neigbour cell
* @param solver the solver
* @param normal the cell face normal vector
*/

public void compute(SimpleCell2 cell, SimpleCell2 neighbor,
LaplaceSolverSD solver, JpVector normal)

{
cell.u.set(solver.freeStreamConditions);

/**
* Implementation for the outflow boundary condition.

* @author Thorsten Ludewig
*/

class _0utflow extends SimpleBoundaryCondition

{
/**

* This method computes the specific boundary condition. Because it is
* abstract it must be filled out by a child class.
* @param cell The current cell
* @param neighbor the neigbour cell

230

Appendix: JUSTSolver Sources

@param solver the solver
Qparam normal the cell face normal vector

public void compute(SimpleCell2 cell, SimpleCell2 neighbor,
LaplaceSolverBD solver, JpVector normal

{
cell.u.set(neighbor.u);

* Implementation for the wall boundary condition. In this case (Laplace with
* Dirichlet boundary conditions) it sets the flow var to zero at the given
* cell.
* @author Thorsten Ludewig
*/

class _Wall extends SimpleBoundaryCondition

* This method computes the specific boundary condition. Because it is
* abstract it must be filled out by a child class.
* @param cell The current cell
* @param neighbor the neigbour cell
* @param solver the solver
* @param normal the cell face normal vector
*/

public void compute(SimpleCell2 cell, SimpleCell2 neighbor,
LaplaceSolver3D solver, JpVector normal)

cell.u.setZero();

// cell.u.set (neighbor.u);

D. 6 SimpleBoundaryHandler.Java

/*
* SimpleBoundaryHandler.Java

* Created on September 28, 2006, 9:48 AM

* To change this template, choose Tools
* and open the template in the editor.
* /

package Iaplacesolver3d;

//---- non-JDK imports ------------------

Template Manager

import hpcc.just.domain.JpBoundaryCondition;
import hpcc.just.domain.JpCell;
import hpcc.just.domain.JpFace;
import hpcc.just.domain.structured.JpBlock;

231

Appendix: JUSTSolver Sources

^lasses --

' * *

The SimpleBoundaryHandler class is responsible for setting the boundary
* conditions.
@author Thorsten Ludewi

* /

public class SimpleBoundaryHandler
implements hpcc.just.domain.JpBoundaryHandler

* Creates a new instance of SimpleBoundaryHandler

public SimpleBoundaryHandler()

//---- methods --

/**

* Initialization of this class will be executed by the JUSTGrid framework

* Qparam jpBlock the parent block reference

public void init(JpBlock jpBlock)

{
System.out.println("Init BoundaryHandler for block "

+ jpBlock.getBlockNumber()};
block = jpBlock;

---- set methods

* Sets the face boundary condition information for this block

* Qparam jpBoundaryCondition the boundary conditions
*/

public void set Faces(JpBoundaryCondition[] jpBoundaryCondition)

System.out.println("» setFaces BoundaryHandler ");

* Sets the reference to the Laplace solver.

* Qparam solver the parent solver
+ /
/

public void setSimpleSolver3D(LaplaceSolver3D solver)

this.solver = solver;
this.cells = this.block.getCells();
I = cells.length;
J = cells [0] .length;
K = cells[0] [0] .length;
this.numberOfHaloCells = this.block.getNumberOfHaloCells();

//---- methods --

/* +
* Before every single compute iteration this method will be executed by the

232

Appendix: JUSTSolver Sources

* JUSTGrid framework. For this sample the type is not necessary.
* @param type The type of the boundary update.
*/

public void updateBoundaryconditions(int type)

// System.out.println ("» updateBoundaryconditions BoundaryHandler ");
try

for (int face = 1; face <= this.block.NUMBER_OF_FACES; face++)

String boundaryCondition =
this .block.getFace(face).getFacePart(l).getBoundaryCondition();

SimpleBoundaryCondition be =
SimpleBoundaryCondition.getBoundaryCondition(boundaryCondition);

switch (face)

case 1 : // K-min
for (int i = 0; i < I; i++)

for (int j = 0; j < J; j++)

for (int h = 0; h < numberOfHaloCells; h++)

be.compute((SimpleCell2) cells[i][j][h],
(SimpleCell2) cells[i][j] [h + 1} , solver,
cells [i] [j] [h] .getFaceVector(JpFace.K_MAX)) ;

i

break ;

case 2 : // J-min
for (int i = 0; i < I; i++)
{
for (int k = 0; k < K; k++)
{
for (int h = 0; h < numberOf HaloCells ; h++)
{

be. compute ((SimpleCell2) cells [i] [h] [k],
(SimpleCell2) cells[i][h + l][k], solver,
cells [i] [h] [k] . get Face Vector (JpFace . J_MAX

break ;

case 3 : // I-min
for (int j = 0; j < J; j++)
{
for (int k = 0; k < K; k++)
{
for (int h = 0 ; h < numberOf HaloCells ; h++)

{
be. compute ((SimpleCell2) eel Is [h] [j] [k],

(SimpleCell2) cells[h + l][j][k], solver,
cells [h] [j] [k] . get Face Vector (JpFace . I_MAX

233

Appendix: JUSTSolver Sources

break;

case 4 : // I-max
for (int j = 0; j < J; j++)

for (int k = 0; k < K; k++)

for (int h = 0; h < numberOfHaloCells; h++)

be.compute(
(SimpleCell2) cellsfl - 1 - h][j][k],
(SimpleCell2) cellsfl - 2 - h][j][k], solver,
cellsfl - 1 - h][j][k].getFaceVector(JpFace.I MINI

break ;

se 5 : // J-max
for (int i = 0; i < I; i++

for (int k = 0; k < K;
{
for (int h = 0; h < numberOf HaloCells ; h++

be.compute(
(SimpleCell2) cells[i][J - I - h][k],
(SimpleCell2) cells[i][J - 2 - h][k], solver,
cellsfl][J - 1 - h][k].getFaceVector(JpFace.J_MIN));

break ;

case 6 : // K-Max
for (int i = 0; i < I; i++)
{
for (int j = 0; j < J; j++)
{
for (int h = 0; h < numberOf HaloCells ; h++)

{
be . compute (

(SimpleCell2) cells [i][j] [K - 1 - h],
(SimpleCell2) cells [i][j] [K - 2 - h], solver,
cells [i] [j] [K - I - h] .getFaceVector (JpFace. KJMIW;

break ;

default :
System. err .println ("Unknown face") ;
System. exit (0) ;

234

Appendix: JUSTSolver Sources

catch (Exception e)
{
e.printStackTrace

•--- fields

/** Field description */
private int I;

/** Field description */
private int J;

/* * Field description */
private int K;

/** Field description */
private JpBlock block;

/** Field description */
private JpCell[][][] cells;

/** Field description */
private int numberOfHaloCells;

/** Field description */
private LaplaceSolver3D solver;

D. 7 SimpleCelljava
/ *

* SimpleCell.java
if

* Created on September 27, 2006, 9:51 PM

*- To change this template, choose Tools \ Template Manager
* and open the template in the editor.

V
package Iaplacesolver3d;

* SimpleCell represents a single cell in the solution domain.

* @author Thorsten Ludeuig
*/

public class SimpleCell2 extends hpcc.just.domain.JpCell

/

* Creates a new instance of SimpleCell
*/

public SimpleCell2(}

235

Appendix: JUSTSolver Sources

u = new FlowVars () ;

--- get methods

* This method must return an object containing all boundary exchange
* information for this cell.
* @return the exchange information
* /

public Object getData
{
return u. clone ();

•--- set methods

* This method sets all information from a boundary exchange.
* @param data the neighbouring cell information
+ /

public void setData (Ob j ect data)
{
u = (FlowVars) data;

--- fields

* All flow vars the so called U-vector
* /

public FlowVars u;
}

236

Appendix: JUSTSolver Sources

D.8 JUSTGRiD source code statistics

JUSTGrid framework

GRXMonoblock 2D
GRXMonoblock 3D
GRX2D
GRX3D

Showme 3D (\A/T)
ControlCenter
CLI

Samples
Tests

Solrer Euler 3D
Sol\Asr Laplace 3D

Sum

lines of code files
21281 98

7817 45
5232 35
4276! 18
5512 26

10735 70
1674 6
795 3

10169 43
7034 33

1429 8
1003 7

76957 392

packages
28

35
15
7
8

8
1
1

12
9

1
1

126

methods
565

362
236
115
144

313
51
20

421
247

46
40

2560

237

Appendix: JUSTCube

E JUSTCube

/ \
/ \

GO >^ N)

,*
0 1 -*

2 7 11 7 2
max max

JUSTCUBE
2005 b\ Thorstcn Ludcwig. tlu/ hpcc-spacc dc

K (2 } K J (1) J
max \ «J;H /»//; l, / max

J K
nan mm

1 I 00 I • 3*J mm V V nun ^

/ 0 ^ _x

a

1 '

O M/W f%

7 e

OTM/

^

W/M/ / \ JO7!#

1 "'7 3
Illustration 9. 1: JUSTCube this cube illustrates all indices, direction*
JUSTGrid

/ \
1 Iima 2 \

K , 5) A
nun \ / ^/a.r

JMt

0 ^ 3 /w »WW ** /

\ /

> and rotation bases used with

239

Bibliography
TRIOO: Tristram, Clair, Supercomputing Resurrected, MIT Technology Review,2003

HPPR: Heinz-Otto Peitgen, Peter H. Richter, The Beauty of Fractals. Images of Complex

Dynamical Systems, 1986,Springer, Berlin,978-3540158516

SHA01: Shang J.S., Resent Research in Magneto-aerodynamics, Progress in Aerospace,2001

SHA02: Shang J.S., Shared Knowledge in Computational Fluid dynamics, electromagnetics,

and Magneto-aerodynamics, Progress in Aerospace,2002

BAT01: Batten, N. Clarke, C. Lambert and D. Causon, On the choice of wave Speeds for the

HLLC Rieman Solver, Sci. Phys,1988

TRR01: M. Torrilhon, Exact Solver and Uniqueness Conditions for Riemann Problem of Ideal

Magnetohydrodynamics, Eidgenoessische Technishe Hochshule,2002

PBU01: Pamela Walatka, Pieter Buning, Larry Pierce, Patricia Elson, PLOT3D User's Guide,

1990, NASA, NASA TM 101067

GRP01: Program Development Company, Home page, 2006, www. gridpro. com

HAU01: Mauser, J., Ludewig, Th., Gollnick, T, Winkelmann, R., Williams, R., D., Muylaert, J.,

Spel, M., A Pure Java Parallel Flow Solver,37th AIAA Aerospace Sciences Meeting and

Exhibit.Reno, Nevada, USA,January, 11-14,1999,AIAA-1999-0549

TPL01: Tecplot Inc., Home Page, 2006, www. tecplot. com

HAU02: Hauser,J., Ludewig, T, Williams, Roy D., Winkelmann, R., Gollnick, T, Brunett, S.,

Muylaert, J., NASA Panel Java Soundbytes,5th National Symposium on Large-Scale

Analysis, Design and Intelligent Synthesis Environments,Williamsburg, VA,

USA.October, 12-15,1999,

HAU03: Hauser,J., Ludewig, T, Williams, Roy D., Winkelmann, R., Gollnick, T, Brunett, S.,

Muylaert, J., A Test Suite for High Performance Parallel Java,5th National Symposium

on Large-Scale Analysis, Design and Intelligent Synthesis Environments,Williamsburg,

VA, USA,October, 12-15,1999,

HAU04: Mauser,J., Ludewig, T, Williams, Roy D., Winkelmann, R., Gollnick, T, Brunett, S.,

Muylaert, J., A Test Suite for High Performance Parallel Java, Advances in Engineering

Software,2000

HAU05: Mauser, J., Ludewig, T, Gollnick, T, Williams, Roy D., Javagrid: An Innovative Software

for HPCC.A Paper for Computational Fluid Dynamics Conference.Swansea,

UK,September,2001,

241

HAU06: Mauser, J., Ludewig, T., Paap, H.-G., Muylaert, J.-M., Numerical Modeling of

Divergence Constraints for MHD Equations on Curvilinear Grids,Proceedings of

MASCOT 07, 7th Meeting on applied scientific computing and tools,Roma, Italy, 13-14

September,2007,ISSN 1098-870X

LUD01: Ludewig, T., Mauser, J., Gollnick, T., Paap, H.-G, JUST GRID: A Pure Java HPCC Grid

Architecture for Multi-Physics Solvers using Complex Geometries,42nd AIAA

Aerospace Science Meeting and Exhibit,Reno, Nevada, USA,January, 5-8,2004, AIAA-

2004-1091

LUD02: Ludewig, T, Mauser, J., Gollnick, T, Dai, W., Paap, H., A Java Based High

Performance Solver for Hierachical Parallel Computer Architectures,43rd AIAA

Aerospace Science Meeting and Exhibit.Reno, Nevada, USA,January, 11-

13,2005,AIAA-2005-1383

LUD03: Ludewig, T, Papadopulus, P., Hauser, J., Gollnick, T, Dai, W., Muylaert, J.-M., Paap,

H., JUSTGrid A Pure Java HPCC Grid Architecture for Multi-Physics Solvers

Performance and efficiency results from various Java solvers.,45th AIAA Aerospace

Science Meeting and Exhibit,Reno, Nevada, USA,January, 8-11,2007,AIAA-2007-1112

TOR01: E., R, Toro, Rienmann Solvers and Numerical Methods for Fluids Dynamics,

1999,Springer,

FOS01: Foster, lan, The Grid: Computing without Bounds, Scientific American, Scientific

American,2003

FOS02: Foster, lan, The Grid: Blueprint fora new Computing Infrastructure, Morgan

Kaufmann,1999

GIN01: Ginsberg, M., Hauser, J., Moreira, J.E., Morgan, R., Parsons, J.C., Wielenga, T.J.,

Future Directions and Challenges for Java Implementations of Numeric-Intensive

Industrial Applications, Elsevier,2000

HOR01: Horstman, Cay S., Cornell, G., Core JAVA, Volume l-Fundamentals, 2000,Prentice

Hall,

HOR02: Horstman, Cay S., Cornell, G., Core JAVA, Volume Il-Advanced Features,

2000,Prentice Hall,

MOR01: Moreira, J.E., S. P. Midkiff, M. Gupta, A Comparison of Java, C/C++, and Fortran for

Numerical Computing, IBM ,2002,IBM Research Report RC 21255

MOR02: Moreira, J.E., S. P. Midkiff, M. Gupta, From Flop to Megaflop: Java for Technical

Computing, IBM ,2002,IBM Research Report RC 21166

242

SCI01: Scientific Computing World, The Need for Software, Scientific Computing World,2000

WIN01: Wmkelmann, R., Mauser J., Williams R.D, Strategies for Parallel and Numerical
Scalability of CFD Codes, Comp. Meth. Appl. Mech. Engng., NH-Elsevier,1999

TTH01: G. Toth, The Divergence B = 0 Constraint in Shock-Capturing Magnetohydrodynamics
Codes, Journal of Computational Physics,2000

243

Alphabetical Index
Brio-Wu...... ..•••••••••••••••••••••••••••••••-••••-••••••••••--•••-•••••••••• 7 ' 123

CFD.............................5, 7, 12p. r 21, 25p., 40, 47, 60p., 63, 111, 113, 116, 121, 129, 152, 241, 243

Client.....................6, 11, 28, 34, 48pp., 54, 57pp., 71, 78, 142, 185, 191, 196, 209p., 212, 224, 226

Communication.....^, 6, 10, 26pp., 34, 40, 42, 49, 51, 55, 111, 116, 118, 121, 147, 153, 169, 172p.,

175

Concurrent...^^ 153

Distributed...^ 5, 10, 32pp., 50, 148

Dynamic linking.. 5, 34

Fortran.. 6, 27p., 31p., 51, 70, 242

GRX..
GRXMonoblock...8, 14, 126
GRX2D...

GRX3D...11, 13,66, 115

Java APIs...
Java 3D... 3, 9, 66p., 71, 108, 149, 154

Media Framework.. 9, 63, 149, 155

MHD..................................6p., 12pp., 21, 25, 40, 81pp., 91p., 95, 97, 100p., 123pp., 141, 148, 242

Brio-Wu..7, 123
Riemann..7, 12pp., 85p., 88, 91, 100, 124p., 148, 241

Multiphysics..6, 26, 47, 71, 81, 147

Parallel......3, 5, 7p., 10p., 14, 21, 27pp., 40, 42, 47, 59p., 99, 107, 116, 118, 121, 128pp., 133, 136,
139, 144p., 147,241pp.

Portability... 5,26,33

Quantum Mechanics.. 48

Riemann...7, 12pp., 85p., 88, 91, 100, 124p., 148, 241

RMI - Remote Method Invocation........5, 9, 12, 19, 25, 28, 32pp., 47, 50p., 57, 72, 74, 76, 89, 97p.,

100p., 128, 147, 149, 153p.

Server...........6, 10p., 14, 28, 34, 47pp., 58pp., 117, 127p., 131, 133, 139, 142pp., 185, 187pp., 195

Solver...--.---........................
Euler....................6pp., 11pp., 62, 64, 72, 85, 113, 116, 121p., 130pp., 136, 139, 141p., 144, 148
Laplace.......7, 9, 12p., 15, 111p., 115, 117pp., 148p., 157, 187, 191, 203p., 207pp., 213pp., 219,

245

221,223, 228pp., 235
Solver. .1, 6p., 9, 11pp., 25p., 28, 34, 40, 47pp., 51pp., 57p., 62, 64pp., 70pp., 76, 78pp., 85, 91,

111pp., 115pp., 121p., 125, 129, 131, 133, 139, 141p., 144, 147pp, 151, 157, 175, 177, 182,

185, 187pp., 203p., 207pp., 219, 221, 223pp., 228pp., 241p.

Synchronization..5p., 10, 28, 31, 34, 38, 40pp., 46, 54, 116, 118, 128

Threads..

Many-to-Many...-..^, 10, 36p.

..-........................-.....-..........................5, 36

...-.......................5, 10, 36p.

States... 10

Synchronization... 5, 38,40, 128

Thread.............................3, 5, 8pp., 14p., 27p., 30p., 33pp., 116, 127pp., 132, 134, 148p., 153p.

246

