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ABSTRACT

The objective of this work is to investigate how the development of a

solidifying microstructure can be altered by the consideration of

structural mechanical behaviour. To this end a bespoke structural

mechanics code utilising a staggered grid finite volume method was

developed and verified before being coupled to pre-existing

solidification models.

Concurrently resolving the physical processes of structural

mechanics and microstructure solidification within a combined

modelling framework required considerations of how to identify the

solid structure, how to keep track of the extant deformation and

investigation of how the calculated deformations can alter both the

growth orientation and physical position of a solidifying dendrite.

Once fully coupled, this numerical method was used to generate

results which demonstrate physical mechanisms which could not be

simulated using models which neglect the concurrent interactions

between microstructure solidification and structural mechanics.

The importance of this behaviour is highlighted in the literature,

with there being a wide selection of practical experiments which

showcase how developing dendritic microstructures are
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fundamentally altered due to structural mechanical phenomena.

Given that the macroscopic material properties of manufactured

alloys are highly dependent on the morphology of the underlying

microstructure, if the understanding of these phenomena can be

improved there is potential for materials with more desirable

properties to ultimately be produced. This provides the motivation

for this work, as while the interdependence between structural

mechanics and microstructure solidification is known of in industry,

it remains an under-explored field with no numerical models

currently existing which can capture these behaviours on a scale

relevant to industrial processes.
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Chapter 1

INTRODUCTION

Discoveries in metallurgy seem to be intrinsically linked with the advance of

western civilisation. This relationship between human development and their

command over the material resources available to them is such that to this day

it is common to refer to the ‘bronze’ and ‘iron’ ages when identifying periods

of history spanning millennia. Considering the current focus on the digital in

modern life it can be easy to overlook the many advancements occurring in the

manufacture of metal parts, even as they remain ubiquitous to myriad activities

in modern life. With this in mind, it would seem a reasonable prediction that

the creation of metal alloys with superior material properties will remain a key

component of human technological development for the foreseeable future.

The microstructures of metal alloys are comprised of crystalline structures

called dendrites (from the Greek ‘dendron’ meaning tree) which form as the

liquid metal solidifies. How these dendrites grow and interact have a significant

impact on the material properties of solidified metal parts, often being highly

dependent on the morphology of final state of their underlying microstructure.
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1. INTRODUCTION

In some extreme situations, the microstructural development can even lead to

the formation of casting defects which render parts unusable.

If industry was able to correctly refine the processes employed in the

creation of metal parts, whether casting, welding or 3D printing, the parts

produced could be better tailored to their requirements by altering properties

such as the strength, ductility or resistance to impact. Furthermore, adjusting

the underlying microstructure of parts to be more effective at the macroscopic

scale such as this can potentially provide further benefits to the components

such as increasing the functional lifespan or lowering the weight while retaining

strength.

These are not new observations, with there being large bodies of existing

research exploring how solidification processes can be refined to create more

desirable alloys. Despite this, one aspect of the process that remains poorly

understood is how the growth behaviour of a solidifying microstructure can be

altered by structural mechanical behaviour such as deformation and the

accumulation of stress. Industrial processes are certainly aware mechanical

behaviour is a factor, with cases from many practical experiments indicating

this interaction has had a significant impact upon the final microstructure.

Nevertheless, the physical relationships underpinning this process remain poorly

understood and largely unexplored due to the technically difficult, time

consuming and expensive nature of performing practical experiments.

Advances in computer power mean that the numerical modelling of

microstructures can now be performed at a scale relevant to some industrial

applications, which can provide further insight into physical processes that

would be difficult to attain with practical experiments alone. As such, while
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1. INTRODUCTION

numerical modelling has been utilised to explore many key mechanisms relating

to the microstructure solidification process, the paucity of extant numerical

models capable of doing this concurrently with structural mechanics has left the

simulation of this key mechanism a largely underdeveloped topic of research.

1.1 Thesis Overview

The work contained in this thesis describes the development of a numerical

model which can couple together and concurrently solve both microstructure

solidification and structural mechanics. This allows simulation of behaviours

observed in practical experiments where the growth of dendrites is altered by

stress accumulation an accumulation causing dendrites to change orientation

and deform as they are growing. Given there is a lack of any existing numerical

modelling capable of resolving a coupled solidification-structural mechanics

scenario such as this at any scale of interest to industrial processes, it was

considered the most practicable course to develop a bespoke structural

mechanics solver (SMS) which could be coupled with the existing multi-physics

code the ThermoElectric Solidification Algorithm (TESA) developed at

Greenwich University by the Computational Science and Engineering Group

(CSEG). In creating the SMS specifically for integration with TESA, it allowed

for a more effective and intimate coupling than would be the case if attempting

to use an existing commercial code for this purpose.

Structural mechanics can impact solidification in a number of ways, with

cases of large deformations, impacts and even fracturing observed

experimentally. However, due to the lack of existing numerical work in this field
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and the requirement to develop a new model, it seemed prudent to focus on

only the most fundamental mechanical behaviour and verify that this approach

can be implemented effectively while ascertaining if this process has a

meaningful impact on microstructural development.

Consequently, the SMS uses a linear elastic material model to examine

scenarios where ‘small’ deformations cause changes to dendrite orientation,

where these small alterations to orientation can accumulate and cause

significant changes to growth behaviour. The coupled solver is used to generate

results which explore some of these scenarios, providing insight into the

fundamental mechanisms dictated by this effect and highlighting the need for

further research on this topic.

1.2 Thesis Contributions

Both microstructure solidification and structural mechanics are topics which

have been actively researched for decades, with a wide selection of models

already existing which can be potentially applied to either phenomena.

However, the combination of these two phenomena so they can act concurrently

upon the same structure is a relatively unexplored area of research which

necessitated the construction of a bespoke structural mechanics solver capable

of being effectively coupled to the existing microstructure solidification code

TESA.

The objective of this work is to implement this novel coupled solver to allow

an examination of fundamental mechanisms which could not be captured using

existing modelling. This provides the motivation for the work contained within

4



1. INTRODUCTION

this thesis, where the subsequent chapters will endeavour to answer the

following questions:

What is the most effective way to couple the separate structural

mechanics and microstructure solidification models within a single

interdependent process?

Can numerical modelling of concurrent microstructure solidification

and structural mechanics predict the fundamental behaviours

observed in practical experiments?

1.3 Thesis Outline

Chapter 1 provides context for the thesis by introducing the research topic of

coupling microstructure solidification to concurrently occurring structural

mechanical behaviour. An overview of the thesis is provided along with the

research questions the thesis sets out to answer. A brief outline of the thesis

chapters is also given.

Chapter 2 provides a review of the relevant literature currently available on

this topic. This starts by providing a summary of practical experiments where

structural mechanics can be seen to significantly impact the development of

microstructure solidification. Then an exploration is provided of existing

research which has addressed the topic of numerically modelling structural

mechanics and microstructure solidification within the same simulation. This
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identifies that while structural mechanics is often a consideration in

solidification modelling, there is vanishingly little research where the models

operate concurrently to have an impact on one another, with even fewer cases

where this modelling occurs on a microstructure level. Finally, research

exploring the viability of modelling structural mechanics as a finite volume

method process is examined and contrasted with potential approaches utilising

the finite element method.

Chapter 3 outlines the process of the creation and validation of the structural

mechanics solver. The theory and assumptions underlining the linear elastic

material model used are outlined and justified, demonstrating how the stress

based formulation of the equilibrium equations can be converted to a displacement

formulation. The requirement for a variable material property formulation of

the equations is discussed, with this form of the equilibrium equations being

discretised into a staggered grid finite volume method numerical scheme. How

the stress within the structure can be obtained from the displacement outputs

is outlined and the boundary conditions this solver will use are described in

detail. It is demonstrated how thermal strains are incorporated in the equilibrium

equations, and how this alters the numerical scheme. This issue of identifying the

structure within the larger problem domain is introduced and various important

aspects to implementing this solver as a numerical scheme are discussed. Finally,

the solver is verified by comparing the behaviour and accuracy against 7 test

cases testing the key functionality of the solver against results obtained from a

commercial code and an analytic solution.

Chapter 4 describes how the SMS is coupled to the existing multi-physics

microstructure solidification code TESA. This starts out by providing a brief
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summary of the existing TESA solvers, how they relate to one another and how

the SMS fits into this framework. The solidification models which have been used

in this research are also described in more detail. The method which allows the

quasi-stationary SMS to account for existing deformation is explained. Finally,

multi-scale modelling and parallel computing were introduced in the context of

the solver to act as performance enhancements implemented to improve solution

times.

Chapter 5 introduces deformation driven orientation changes as the primary

method employed for using structural mechanics to influence solidification. This

describes how the Cellular Automata method uses Euler angles to describe the

orientations which dictate the growth behaviour of the dendrites modelled,

explaining that it will be a requirement to alter the solver so that local

orientations for each cell are used to allow different parts of the same dendrite

to grow at differing orientations. The method to obtain a change in a structures

orientation based on the deformations obtained from the SMS is outlined.

Finally this method is verified in a test case being compared against an analytic

solution.

Chapter 6 describes the methods used to explore solid structure advection,

which was examined in depth as a potential method for using structural mechanics

to influence microstructure solidification. The utility in having a method to

physically move a dendrite through the problem domain is introduced, which

is a necessity for large deformation, while also having applications in related

topics of research. Advection of a binary structure is explored, outlining the

limitations of basic advection in this context and introducing flux limiters and

Volume of Fluid methods as a means to mitigate these shortcomings. These same
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considerations are made for the heterogeneous structure of the dendrites produced

by the CA method which posses internal concentration patterns which need to be

maintained. For this reason, along with other concerns, the difficulties presented

in attempting to model structure advection alongside solidification within the

current framework are explored. Finally, the degree to which solid advection

behaviour has been implemented in the current version of the research is defined

and justified within the wider context of the model assumptions.

Chapter 7 presents a wide selection of cases modelled using the coupled SMS

with microstructure solidification. These cases have been chosen as they

highlight fundamental behaviours which can be captured but which would be

missed using any existing solidification modelling. This starts by examining

thin sample cases under different modelling conditions where the orientation

change is effectively two dimensional. This is expanded to full three-dimensional

models where dendrites can bend out of pane and rotate. Finally, a small

parametric study is ran to highlight the complexity of coupled structural

mechanics and solidification which renders simple approximations ineffective,

necessitating the modelling approaches presented in this research.

Chapter 8 contains the conclusions which can be drawn from the work

presented in this thesis along with a discussion of potential avenues for future

work which would expand upon this research.

Appendix A provides the full process of discretising the linear elasticity

equilibrium equation to a staggered grid finite volume method numerical

scheme. This was only shown for the u displacement as the process is identical

for the three equilibrium equations.

Appendix B supplements the validation cases shown in chapter 3 by showing
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30 verification cases (including the 7 from chapter 3 which are repeated for

context) accompanied with a brief assessment where the fundamental

mechanical behaviour and the numerical accuracy of the SMS is validated.

Appendix C lists publications by the thesis author which have been based

upon this research along with any prizes or awards the work has received.
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Chapter 2

LITERATURE REVIEW

2.1 Overview

This chapter will provide a review of the existing relevant research. This review

will focus on three areas: observations and explanations of structural mechanical

behaviour found in practical microstructure solidification experiments, existing

solidification models which consider the impact of structural mechanics and the

use of the Finite Volume method for modelling structural mechanics.

2.2 Structural Mechanical Behaviour Observed

in Microstructure Growth

Structural mechanical behaviour has been widely observed in practical

experiments as one of the many factors which can impact microstructural

development during the casting process of metal alloys. This makes it a factor

of interest in industry as the final composition of the dendritic microstructure

has been widely observed to have a significant impact on the macroscopic
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material properties, with primary spacing being found to be intrinsically linked

with the mechanical properties of a structure [1] and the crystallographic

orientation of the dendrites being found to change the anisotropic behaviour [2]

and make the material more resistant to scratches and deformation [3].

Consequently, mechanical effects are generally taken into consideration when

producing parts to ensure a good grain structure forms, which generally means

encouraging a finer grain structure as this improves many important structural

properties. This is due to fine grained structures being less susceptible to a

crystallographic defect known as dislocation which changes the arrangement of

atoms along the grain boundaries, as described by the Hall-Petch relationship

which demonstrates an increase in yield strength as the gain sizes become smaller.

Causing a finer grain structure is often the aim of production processes also far

more actively utilise mechanical behaviour such as pulling [4], stirring [5] and

macroscopic deformation [6]. This can even go so far as inducing cavitation [7] to

cause the fragmentation of dendrite arms and encourage Columnar to Equiaxed

(CTE) transition to occur, which significantly changes the growth behaviour and

generally leads to a structure having material properties with reinforced tensile

strength and hardness.

Structural mechanical effects have also been observed in a wide variety of

casting methods as a key factor to consider when attempting to prevent the

formation of casting defects. When examining the process of aluminium twin

roll casting Westengen and Nes (1984) [8] found structural inhomogeneities and

defects could be induced by the deformation imparted on the solidifying metal

while passing through the twin rollers.

The process of making single crystal superalloys is now widely employed for
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fabricating parts such as turbine blades which must possess high tensile

strength even at high temperature despite having a complex structure. Single

crystal structures represent the opposite extreme to the fine-grained structures

mentioned prior, with the lack of grain boundaries in fact lowering the yield

strength when compared to an otherwise identical fine-grained structure, as

would be expected from the Hall-Petch relationship (though directional

solidification is often exploited to give the single crystal strong anisotropic

material properties which can mitigate this in practice). Nevertheless, the lack

of grain boundaries causes these single crystal structures to be highly resistant

to creep and thermal shock when compared to other grain morphologies,

making them ideal for working under the extreme temperature conditions

turbine blades must constantly endure. However, the process of making single

crystal superalloys is prone to the formation of misaligned grains, often referred

to as a ‘stray grain’ defect, which unsurprisingly ruin these beneficial properties

and generally require the part with the defect to be scrapped.

Zhou (2011) [9] examines the formation of stray grains using a bi-crystal

superalloy, where the converging and diverging grain boundaries encourage the

formation of stray grains as seen in figure 2.1, concluding that a likely cause is the

deformation and detachment of secondary arms rather than the initial nucleation

of the grain. It was further observed by Yang et al. (2014) [10] that even in cases

where no large local deformations occur, a gradual change in dendrite orientation

can encourage the growth of stray grains.
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Slivers are a similar defect where a misoriented grain extends through the

microstructure as a thin strip such as can be observed in figure 2.2. One

mechanism for this was proposed by Xu (2020) [11] where macro and micro

scale stresses caused brittle dendrite fragmentation, generally occurring near the

mould wall, where one of these misaligned fragments is able to develop into a

sliver which can span the structure. Huang et al. (2020) [12] also noted a high

incidence of slivers at the mould wall, but posited deformation driven by

thermal contraction as the root cause of the defect for the case being examined.

Slivers were also found to arise as a secondary consequence of the formation

of freckle defects as was highlighted by Han et al. (2021) [13], where thermal

stress accumulating at the freckle channel caused mechanical deformation of

surrounding dendrites which then developed into slivers.

Figure 2.2: Sliver Defect from Xu et al. (2020) [11]. Licensed for reproduction
under Creative Commons.
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Defects have been seen occurring due to the interaction of dendrites with the

dendrite wall as highlighted in two papers by Bogdanowicz et al. (2019) [14, 15]

and continued by Krawczyk et al. (2021) [16], where the wall caused the dendrite

to deflect and form low angle grain boundaries which act as a preferential site for

the accumulation of residual strain and additional defects.

When examining a 3D printed metal superalloy, Li et al. (2015) [17] observed

dendritic deformation to be a factor in the formation of both high (harming

resistance to creep and thermal fatigue) and low angle grain boundary defects,

becoming regions of high residual strains and encouraging the formation of further

structural inhomogeneity defects.

Reviewing experimental results has indicated that there are three main

structural behaviours which impact upon the development of a microstructure:

deformation of dendrites, changes to dendrite orientation and fragmentation of

dendrites. Though it must be noted that the distinction being drawn between

these cases is often inter-related and can be somewhat imprecise, as deformation

will almost always cause a corresponding change in the orientation of the

dendrite and may be observed prior to fragmentation. However, visible

deformation does not seem to be a pre-requisite for either a notable orientation

change or a fragmentation even to occur.

Small deformations in the region of 1◦-10◦ were claimed by Doherty (2003)

[18] to be a ubiquitous feature within conventionally solidified grains. A proposed

solution for the significant orientation change observed by Billia et al. (2004) was

the accumulated gravity driven bending moments and torque in the thin neck of

the dendrite. A similar conclusion was drawn by Reinhart et al. (2008) [19] when

observing an in situ example of a secondary arm bending under gravity (figure
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2.3), claiming that the stresses in the solid neck attaching secondary arms to the

primary trunk can accumulate until visible bending occurs.

A more extreme example of this behaviour was later captured by Reinhart et

al. (2014) [20] where multiple examples of dendrites bending under by gravity

could be observed (figure 2.4), making the analogy that the dendrite arms behaved

similarly to a cantilever beam.

Figure 2.3: Dendrite arm rotating under gravity from Reinhart et al. (2008) [19].
Licensed for reproduction under Creative Commons.
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(a) Misorientation (b) Deforming and fragmenting

Figure 2.4: Gravity driven mechanical dendrite behaviour from Reinhart et al.
(2014) [20]. Licensed for reproduction under Creative Commons.
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As previously noted, it is almost certain that any significant deformation

will also change the crystallographic orientation of the dendrite. The orientation

of a dendrite can have a significant impact on many behaviours dictating the

development of a dendritic system beyond simply defining the angle at which it

preferentially grows, such as changing the behaviour of primary dendrite arm

spacing [21], side-branching [22] and competitive growth [23, 24]. As such,

mechanical effects which cause a dendrite to change orientation can have a large

impact on the development of the microstructure, even in cases where little to

no visible deformation occurs.

A local orientation change such as this was observed in experiments performed

by Aveson et al. (2012, 2014) [25, 26], where the mechanism posited was that

elastic deformation could occur at the solidifying tip of a dendrite which behaves

like a cantilever beam, which would then become locked in as the solidification

front advanced.

A very clear example of this localised behaviour was later presented by

Aveson et al. (2019) [27], where it can be observed in figure 2.5a that a dendrite

received a sharp change in orientation, purportedly driven by gravity. Growth

then continues straight along the new bearing with no further orientation

changes, allowing it to outcompete a neighbouring dendrite. A less extreme

example of local orientations from this paper can also be observed in figure

2.5b, believed to be caused by thermal contraction.

Sun et al. (2019) [28] highlighted the local nature of orientation changes

within entire grain systems, as the orientation of dendrites within a grain was

found to change across the length of a convergent boundary of dendrite arms,

with dendrites attaining a significantly different orientation when comparing one
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end of the grain to the other (figure 2.6). Hallensleben et al. (2019) [29] also

observed sudden bending events occurring part way through a long dendrite arm

2.8a.

However, in the same paper it was noted that misaligned dendrites found in

the microstructure were more generally cases featuring continuous bending across

the length of the domain 2.8b. Continuous bending was observed by Sun et al.

(2018) [30] where deformation is driving a monotonic orientation change in a long

dendrite arm (again likened to a cantilever beam) as it grows through a single

crystal casting (figure 2.7), with the microstructural development seeming to be

dominated by this orientation change rather than any visible deformation.

A similar phenomenon was described by Hu et al. (2019) [31], where in figure

2.9 a 7.6◦ orientation change of a dendrite can be observed gradually occurring

as it crosses the microstructure of a single crystal superalloy.
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(a) Localised misorientation from gravity

(b) Localised misorientations from thermal contraction

Figure 2.5: Dendrites showing misorientation from Aveson (2019) et al. [27].
Licensed for reproduction under Creative Commons.
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Figure 2.6: Dendritic system becoming misorientated along the convergent
boundary of dendrite arms from Sun et al. (2019) [28]. Licensed for reproduction
under Creative Commons.

Figure 2.7: Long dendrite arm crossing microstructure becoming misorientated
from Sun et al. (2018) [30]. Licensed for reproduction under Creative Commons.
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(a) Morphological misorientations

(b) Stress based misorientations

Figure 2.8: Dendrites showing misorientation from Hallensleben et al. (2019)
[29]. Licensed for reproduction under Creative Commons.
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Figure 2.9: Long dendrite arm crossing microstructure becoming misorientated
from Hu et al. (2019) [31]. Reproduced from Springer Nature under licence
number 5091500230555.
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The fragmentation of dendrite arms has been found to occur under a variety

of different solidification conditions. The deformation of dendrites observed by

Reinhart et al. [20] culminated in a dendrite fracturing due to gravity and falling

to the bottom of the sample (figure 2.4b). Gravity driven fragmentation was

also observed by Gibbs et al. (2016) [32], demonstrating that fragmentation may

not always be easy to identify, as fragmented arms may remain trapped in the

solidifying dendritic system and be unable to float away.

Fragmentation can also occur after a system has finished growing, such as

in the case of the cumulative shrinkage stress observed by Zhou (2011) [33] to

break up a dendritic network. However, structural mechanics can also be a source

of fragmentation without any observable deformation occurring, as observed by

Ananiev et al. (2009) [34] where the accumulated elastic energy in the neck of a

dendrite arm may induce sudden remelting, causing the arm to detach.

An issue with attempting to describe the interactions between structural

mechanics and solidification is the inherent interdependence between different

physical phenomena, often meaning there may be no single factor which can be

solely attributed as the cause of the final composition of a microstructure. A

case of fragmentation was described by Mathiesen et al. (2006) [35] which does

not consider structural mechanics as a factor in arm detachment, despite finding

very different fragmentation behaviour depending on the direction of gravity

relative to the growth direction.

While there are certainly numerous cases where fragmentation is purely a

factor of temperature or concentration instabilities causing remelting, it cannot

be established if the arm simply separated as the region of fragmentation liquefies,

or if the structure being weakened by the ongoing remelting actually mechanically
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fails before the remelting is complete.

This interdependence also makes the observed behaviours very problem

specific, where an examination of magnetic field induced fragmentation by Li et

al. (2012) [36] concludes the magnetic field induced a torque which was

breaking dendrites, whereas Liotti et al. (2014) [37] claimed that direct

mechanical action from the Lorentz force was not a primary cause of

fragmentation for their sample, being primarily driven by the movement of

inter-dendritic liquid which caused remelting.

This problem dependence is particularly troublesome in the somewhat

contentious case of ascertaining the structural effects of fluid flow during

solidification. A model developed by Pilling et al. (1996) [38] concluded that

inter-dendritic flow could not cause bending or fragmentation by itself, though

Dahle et al. (1999) [39] posits that under the right solidification conditions this

could occur in processes where the flow rate is very high.

Dragnevski et al. (2002) [40] concludes that the likelihood of mechanical

damage from fluid flow is remote, though concedes it may be a possibility for fine

dendrites under high flow velocities. Later modelling would seem to go against

this, with Hanlon et al. (2006) [41] suggesting that convective velocities may be

strong enough to bend primary arms and Kashina et al. (2011) [42] finding the

influence of fluid flow to be more dominant than gravity in the stress build-up of

the neck of a dendrite.

Even if the fluid flow is not sufficient to cause visible bending, Xu et al.

(2018) [43] observed that stress caused by fluid flow may lead to remelting and

fragmentation. Certainly fluid flow can cause morphological changes to the

growth orientation as the solute concentration is changed to induce growth into
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the flow, even if that leads to growth deflecting from the starting orientation

[44], but it is not clear what effect forces imparted by the fluid flow or gravity

on the now lopsided dendrites may have on the continuing orientation changes.

Experimental results using a on a solidifying Gallium 25%wt. Indium alloy

undertaken by N. Shevchenko and S. Eckert from Helmholz-Zentrum Dresden-

Rossendorf (HZDR) help to further highlight this complexity, where in figure 2.10

the development of a long dendrite arm deforming and accruing misorientations,

which eventually dominate the impact of any observable deformation.

Further results using a similar problem setup were published by Soar et al.

(2021) [45] and can be seen in figure 2.11, wherein irregular observable

misorientations can be observed throughout the system of dendrites. Whether

the key driver of these misorientations were gravity, pressure from the flow

velocities, remelting weakening the root of the dendrites, morphological

orientation changes induced by the flow or a combination of all of these factors

is unclear, with more work into the interdependence between these physical

processes being required.

25



2. LITERATURE REVIEW

(a) Bending Dendrite t=2s (b) Bending Dendrite t=202s

(c) Bending Dendrite t=402s (d) Bending Dendrite t=602s

Figure 2.10: Solidification of a Ga-25 wt.%In alloy showing a large misorientation.
Images courtesy of N. Shevchenko and S. Eckert at HZDR.
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(a) Converging Grain Boundary (b) Diverging Grain Boundary

Figure 2.1: Stray grain formation from Zhou (2011) [9]. Reproduced from
Springer Nature under licence number 5091500996151.

(a) Dendritic system grown partway
through the domain

(b) Dendritic system grown across the
domain

Figure 2.11: Solidification of a Ga-25 wt.%In alloy showing multiple misoriented
dendrites. Images courtesy of N. Shevchenko and S. Eckert at HZDR and
published by Soar et al. (2021) [45].
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Many of the key examples described have been summarised in table 2.1,

where the source of the experiment and a reference to the image (if considered

relevant enough to reproduce in this chapter) is provided. The observed

maximum misorientation has been provided as well as the ‘rate’ of orientation

change if the experiment showed a slowly misorientating long dendrite arm,

where a ‘local’ change indicated a sudden deformation causing the change.

These observations come with the caveat that due to the complex nature of

the process, there can be instances where both gradual and localised orientation

changes can contribute to the final orientation angle. When orientation numbers

have been provided by the author, they were used, but for some cases estimates

of misorientation were made based on the provided figures. Finally the table

also contains the material used in the experiment along with the cause of the

orientation change as proposed by the authors.
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Paper Image Misorientation Material Proposed
CauseMax Rate/mm

1 Aveson et al.
(2014) [26] − 20◦ Local Ni-based

superalloy
Thermal
contraction

2 Aveson et al.
(2019) [27] 2.5a 5◦ Local Ni-based

superalloy Gravity

3 Aveson et al.
(2019) [27] 2.5b 3.5◦ Local Ni-based

superalloy
Thermal
contraction

4 Billia et al.
(2004) [46] − 3.5◦ Local Al-73

wt.%Cu alloy

Gravity,
shear stress
and collisions

5 Doherty (2003)
[18] − 10◦ Local Multiple Thermal

contraction

6 Hallensleben et
al. (2019) [29] 2.8a 1.7◦ 0.07◦ Ni-based

superalloy
Contraction
or convection

7 Hallensleben et
al. (2019) [29] 2.8b 1.59◦ Local Ni-based

superalloy

Morphological
chemical
interactions

8 Hu et al.
(2019) [31] 2.9 7.6◦ 0.07◦ Ni-based

superalloy
Thermal
contraction

9 Reinhart et al.
(2008) [19] 2.3 3◦ Local Al-3.5

wt.%Ni alloy
Gravity and
shear stress

10 Reinhart et al.
(2014) [20] 2.4a 9◦ Local Al-7 wt.%Si

alloy

Gravity and
wall
interaction

11 Shevchenko, N
and Eckert, S 2.10 20◦ 2.3◦ Ga-25

wt.%In alloy

Gravity, fluid
flow and
remelting

12 Shevchenko, N
and Eckert, S 2.11 10◦ 1◦ Ga-25

wt.%In alloy

Gravity, fluid
flow and
remelting

13 Strickland et al.
(2021) [47] − 8◦ 0.1◦ Ni-based

superalloy
Macro-
segregation

14 Sun et al.
(2018) [30] 2.7 33.5◦ 1.6◦ Ni-based

superalloy
Contraction
at mould wall

15 Sun et al.
(2019) [28] 2.6 20.8◦ Local Ni-based

superalloy
Contraction
at mould wall

Table 2.1: Mechanical orientation changes observed in experiments.
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2.3 Existing Solidification Models Considering

Structural Mechanical Effects

Numerically modelling the evolution of dendritic microstructures has been a

wide field of research for decades, generating many industrially relevant insights

for large industrial partners such as Rolls-Royce plc, Cannon-Muskegon and

Alcoa. Funding from these parties alone have supported cutting edge dendritic

microstructure modelling work in fields such as grain selector design [48],

preventing casting defects in single crystal castings [49–51], controlling the

dendrite arm spacing in the melt pools of direct deposition laser welding [52]

and predicting the stress accumulation within twin roll cast strips of Aluminium

[53].

Despite the observations of mechanical effects being widespread in

experimental results, structural mechanics is an often neglected factor in the

numerical modelling of dendritic growth. This particularly seems to be the case

when considering the interdependent behaviour where structural mechanics

changes dendrite growth in real time as solidification is ongoing, potentially

rendering models unable to predict the key mechanisms observed in

experiments.

This was identified by Asta et al. (2009) [54] as one of the key open

questions requiring further research in their review of the field, with the

relationship between strain and the misorientation of dendrites still being

identified as an area of research needing focus over a decade later by Strickland

et al. (2020) [1] in a review of directional dendritic growth and primary arm

spacing.

This is not to say that the impact of stresses and deformation on cast metal

alloys is an unknown factor to modellers, with there indeed being a wide range of
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work addressing the topic to some degree, but as of yet it almost all falls short of

modelling microstructure solidification concurrently with structural mechanics.

Often the models operate at a macroscopic scale and will not allow the

mechanical effects to impact the solidification process, such as Gandin et al.

(2002) who created a model for predicting the yield stress of a cast metal alloy.

This can often take the form of applying a structural mechanics model to post

process an already solidified part, as can be observed in the work of Thorborg,

Klinkhammer and Heitzer (2012) [55] where the temperature driven stresses

were predicted in a 3D cast iron part.

A similar task was undertaken by Palumbo et al. (2015) [56], where post

processing was again applied to a 3D representation of a sand-cast stainless steel

part to find the heat driven residual stresses. There are also examples of this being

applied to the deformation of semi-solid material, such as the level-set based finite

element model developed by Sun et al. (2017) [57], which is functionally a post

processing of a structure in the process of solidifying.

While there have been examinations of how the stresses change transiently

in a solidifying system, the structural mechanics being applied often remains

post processing to observe how the stresses change as the structure develops.

Seetharamu et al. (2001) [58] used a finite element macroscopic model of an

solidifying ingot to find how the heat driven stresses change over time.

Similar experiments were undertaken by Srinivasan et al. (2016) [59] again

exploring a macroscopic problem which was post processed at various growth

stages to find the temperature driven stresses, concluding that the stress, thermal

field and deformation are interlinked and have a clear impact on the quality of

the final ingot produced.

Moj et al. (2017) [60] proposed a micro-macro modelling of solidifying steel,

where the thermal forces drove both the micro-scale phase transition and macro-
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scale mechanical deformation, but this deformation only occurred after the phase

transition from liquid to solid, meaning it had no effects on future solidification.

While still being technically a macroscopic scale model Fackeldey, Ludwig

and Sahm (2002) [61] presented a method considering the mechanical

interaction between the casting and mould which coupled solidification to the

temperatures, stresses and the microstructure composition. However, in this

case the microstructure was characterised by parameters describing the primary

and secondary arm spacing and the eutectic fraction, as opposed to truly

modelling the dendrites comprising the microstructure.

While solidification modelling which considers structural mechanics often

works at the macroscopic level, there have been examples looking into the

structural behaviour of microstructures. Uehara, Fukui and Ohno (2008) [62]

present a phase field simulation of dendritic solidification where a finite element

method was used to obtain a stress profile which evolved as the system solidified

(figure 2.12). However, while the authors did highlight a relationship between

stress dependence and phase transformation, that aspect was ultimately

neglected for the sake of simplicity, leaving this as another case of transient post

processing.

Structural post processing of a single growing dendrite can be found in the

work undertaken by Takaki and Kashima (2011) [63] and Kashima et al. (2011)

[42], where the impact of convection and gravity on the stress variation in the

narrow neck of a single growing dendrite was evaluated (figure 2.13).
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Figure 2.12: Variation of (a) phase field, (b) temperature and (c) equivalent
stress during cooling process. Demonstrating stress being calculated during
microstructure solidification by Uehara, Fukui and Ohno (2008) [62]. Reproduced
from Springer Nature under licence number 5093760693894.

Figure 2.13: Equivalent stress distributions due to gravity for differently shaped
dendrites by Takaki and Kashima (2011) [63]. Reproduced from Springer Nature
under licence number 5093760526071.

An example of a truly coupled approach considering the interdependence of
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solidification and structural mechanics was developed by Yamaguchi and

Beckermann (2013, 2014) [64–66], where a phase field model was coupled to a

structural mechanics solver while also considering the impact deformation has

on the crystallographic orientation as the system develops (figure 2.14).

However, there were several shortcomings identified by the author which

could make this model impracticable for modelling many situations, most

notably that the approach was currently only able to simulate a pure substance

and that the only way to impose structural effects on the system was to apply

fixed displacements at the domain boundaries of the simulation.

Another example of a fully coupled microstructure solidification system can

be found in the thesis of Victor (2018) [67] which coupled phase field

solidification to multiple plasticity models to explore different deformation

processes on the developing microstructure, but as the unique microstructure of

the Ni-base superalloy being modelled is comprised of dislocated globular

crystals, the approach undertaken does not seem appropriate for the modelling

of dendritic systems.
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Figure 2.14: Predicted phase field (left column), von Mises stress (center left
column), equivalent plastic strain (center right column), and crystallo- graphic
orientation angle relative to an arbitrary coordinate system (right column)
contours for elasto-perfectly plastic compression of a single dendrite growing
into an undercooled melt. Example of a coupled microstructure solidification
with concurrent structural effects by Yamaguchi and Beckermann (2014) [66].
Reproduced from Springer Nature under licence number 5093760308304.
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2.4 Using Finite Volume Methods for

Structural Mechanics in a Multi-Physics

Framework

When solving Structural Mechanics (SM) problems of a given level of complexity

it is generally taken for granted that the Finite Element Method (FEM) or one

of its expanded forms will be the most appropriate choice of model. The FEM is

a method of numerically solving differential equations which operates by fitting a

mesh to the structure being analysed, with the corners of these mesh cells being

the nodes solved to obtain a solution. Fitting a mesh which closely matches the

structure being modelled can be a very effective way of solving SM problems for

complex structures.

However, this process of meshing the structure can present a problem in the

framework of coupled solidification with SM, where after every change to the

structure by solidification it would require re-meshing to continue providing

accurate results, which has potential to become a highly computationally

expensive part of the modelling process. This problem has been mitigated for

some cases of a developing microstructure by resolving SM on a fixed grid fitted

to the entire domain, updating the material properties of the nodes as the

system develops [62] or by electing to use a Cartesian mesh to simplify the

process [42, 63]. However, as making compromises such as these can work

against some of the inherent strength of the FEM, it was natural to consider

other approaches to resolve structural mechanics in a multi-physics framework.

Consequently, the viability of applying the Finite Volume Method (FVM)

to this problem was examined. The FVM is another expansion of the Finite

Difference Method that likewise has a long history of use, being used to solve

PDEs by representing the problem domain as a collection of volumes with a node
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in the centre where the values are calculated. This method is usually applied

to Computational Fluid Dynamics (CFD) problems as the formulation provides

better mass conservation in general, however this is merely a convention, with

it being possible to apply the FEM to CFD problems and the FVM to to SM

problems. The adoption of FEM for CFD is currently a more common transition,

with commercial packages such as COMSOL Multiphysics using the FEM for

their CFD solver, though FVM solvers initially intended for use in CFD such as

OpenFOAM have also been successfully implemented to solve SM problems [68].

While often overlooked, the FVM has been applied to SM problems for around

three decades as was examined by Cardiff and Demirdžić (2021) [69] in their

comprehensive review of developments in the field. It has been long indicated

by many of these studies that a comparable level of accuracy for FEM solutions

can be attained using the FVM, such as was presented by Oñate, Cervera and

Zienkiewicz (1994) [70] where for a simple 2D structure under constant loads both

the FEM and FVM produce the same results. A two-dimensional vertex based

FVM approach presented by Taylor, Bailey and Cross (1995) [71] also make note

of the comparable solution accuracy and computational efficiency of the FVM

while highlighting its beneficial qualities when considered within the framework

of an integrated multi-physics solver.

This work was expanded into a three-dimensional formulation used in the

multi-physics solver PHYSICA which continued to demonstrate high accuracy

was attainable with a FVM approach [72–75]. The case for the use of the FVM

to solve SM was further supported by Oliveira and Rente (1999) [76] who

showed that on an unstructured grid both transient and stationary problems

provide results for the FVM which are comparable to the analytic solution, an

observation that was supported further by later research undertaken by

Cavalcante and Pindera (2012) [77, 78] who developed a generalised 2D scheme
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for the finite volume method which was found to be in good agreement with

analytic solutions. Overall, there seems to be a significant body of research

supporting the notion that when correctly applied the FVM is of comparable

accuracy and efficiency to other approaches for solving SM problems, indicating

this should not be a principal cause for choosing between these modelling

approaches.

The FVM has been widely used for multi-physics problems more generally

where the shape and movement of solid structures is being considered, even if

structural mechanics is not itself being solved and driving these movements. For

example, the technique presented by Udaykumar, Mittal and Rampunggoon

(2002) [79] uses the FVM to model the flow behaviour around general

solidification fronts as well as representing standard fluid-structure interactions.

However, when solving multi-physics problems a key consideration must be how

models are to be coupled so that data can easily pass between them. While it is

certainly possible to couple models using different numerical schemes together,

as identified by Yates (2011) [80] in his own review of the literature for

fluid-structure interaction, simulating the problem efficiently can be aided by

utilising the same numerical method for both the fluid and solid equations.

The advantages of coupling when using a single mesh for fluid-structure

interactions had also been highlighted by Slone et al. (2004) [75], with a further

example being the research of Xia and Lin (2008) [81], which used the FVM to

solve both the fluid and solid material, finding it to be a viable alternative to

the FEM. This could also be observed in cases where a higher number of

physical phenomena require solving on the mesh, as it was for the welding

problems examined by Taylor et al. (2002) [73], which employed the same FVM

mesh to solve phase change, heat transfer, weld pool dynamics and structural

mechanics, finding results comparable to reference solutions.
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2.5 Summary

This chapter has contained a summary research conducted by other authors

that was relevant to the focus of this thesis. A review was made of experimental

results which demonstrate cases where structural mechanical behaviour had

seemingly changed the development of the microstructure to a significant

degree, demonstrating that this is an active concern in industry and area in

need of further research. Numerical models related to this topic were then

appraised, demonstrating that while this field has been active, with many

modelling approaches being applied on a macro and micro level, they all fall

short of being able to model microstructure solidification at an industrially

relevant size where the growth behaviour is influenced by concurrently solved

structural mechanics. To demonstrate why the Finite Volume method was

chosen to solve structural mechanics for this research, examples demonstrating

the comparable accuracy with the Finite Element method were provided along

with examples of how the Finite Volume method had been successfully applied

in previous multi-physics models.
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Chapter 3

CREATING A STRUCTURAL

MECHANICS SOLVER

3.1 Overview

In this chapter a bespoke Structural Mechanics Solver (SMS) capable of being

intimately coupled with an existing solidification model is introduced. This

process starts by introducing the theory underpinning the linear elastic material

model chosen for the solver. The process of identifying structures within the

domain is examined and a variable material property approach is introduced to

account for the generally heterogeneous nature of the growing dendrites. The

discretisation of this approach into a Staggered Grid Finite Volume Method

(SGFVM) is presented along with how stress and strain outputs, boundary

conditions and thermoelastic behaviour are being accounted for. Considerations

for the algorithmic implementation of this approach are then discussed. Finally,

the accuracy of the model is verified against test cases replicated in COMSOL

and analytic solutions derived using Euler-Bernoulli beam theory.
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3.2 Material Model: Linear Elasticity

3.2.1 Theory

Structural Mechanics (SM) is the study of how structures deform and accumulate

stresses due to external forces. A key decision when numerically modelling a SM

problem is the choice of material model, as this dictates not only how the structure

behaves but also under what conditions the model will be valid.

The material model ultimately selected was linear elastic, a foundational

material model that has been in use for hundreds of years, with a geometry

dependent version of linear elasticity being traceable back to Robert Hooke in

the late 17th century, with many textbooks such as the one written by

Timoshenko and Goodier (1951) [82] providing comprehensive explorations of

the concepts described in this section.

Linear elasticity is itself a simplification of the non-linear theory of elasticity,

which is reached by making the following assumptions about the problem:

• The deformations are ‘small’ (infinitesimal strains). See section 3.2.2.

• There is a linear relationship between the stress and strain.

• The results of the problem do not demonstrate yielding (plastic behaviour).

While it is clear that these simplifying assumptions cannot be held to be

true for all solidification incorporating SM problems which could be explored,

with there being examples observed in practical experiments where dendrites

demonstrate clear plastic behaviour when bending. This can sometimes reach

the point of dendrites breaking and falling, which certainly cannot be accurately

represented within a linear elastic framework.

There are undoubtedly many scenarios where these assumptions would make

utilising linear elasticity a questionable choice to represent the structure, however
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any chosen numerical modelling will necessarily have simplifying assumptions

which can make their application questionable for the modelling certain cases, no

matter how complex that material model may be.

Consequently, due to the paucity of existing work coupling SM to

microstructure solidification there remains an abundance of scenarios which can

appropriately be examined which satisfy the assumptions of linear elasticity,

with it making intuitive sense to begin this line of research with the

implementation of a fundamental material model such as this to see what

mechanisms can still be observed under these modelling restrictions. More

complex material models will remain open as a possible expansion for future

research if these simplifying assumptions become a limiting factor.

The choice of utilising a linear elastic material model was also supported by

examples from both practical experiments [26, 30, 34] and numerical modelling

[63, 65] which have likened the behaviour of columnar dendrites to that of a

cantilever beam fixed at one end. With the behaviour of these beams being

described by the Euler-Bernoulli or Timoshenko beam theory analytic solutions,

both themselves simplifications of linear elasticity, a diverse selection of other

research on the mechanical behaviour of dendrites have been ultimately assuming

linear elasticity for the behaviour of single dendrite arms.

The governing equations describing a linear elastic material which any

numerical modelling must satisfy are as follows:

1. The Equation of motion, for a 3D material:

ρ
∂2u

∂t2 = ∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ Fx (3.1)

ρ
∂2v

∂t2 = ∂σy

∂y
+ ∂τyx

∂x
+ ∂τyz

∂z
+ Fy (3.2)
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ρ
∂2w

∂t2 = ∂σz

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
+ Fz (3.3)

where u, v, and w are the displacements in the x, y and z directions respectively;

ρ is the density of the material; σ and τ are normal and shear stresses respectively;

and F is a body force in the indicated direction.

2. The strain-displacement relationship:

εx = ∂u

∂x
; εy = ∂v

∂y
; εz = ∂w

∂z
(3.4)

γxy = γyx = 1
2

(
∂u

∂y
+ ∂v

∂x

)

γxz = γzx = 1
2

(
∂u

∂z
+ ∂w

∂x

)

γyz = γzy = 1
2

(
∂v

∂z
+ ∂w

∂y

) (3.5)

where ε and γ are the normal and shear strains respectively.

3. The constitutive equation described by Hooke’s Law which states the linear

relationship between stress and strain tensors:

σ = Cϵ (3.6)

Where C is the elasticity tensor which maps the linear relationships between

σ and ϵ which are respectively the stress and strain tensors for the material. The

precise nature of this linear relationship between stress and strain under Hooke’s

law will be expanded upon in section 3.2.4.

3.2.2 ‘Small’ Deformations

Of the three fundamental assumptions for a linear elastic material, the

assumptions of ‘small’ deformations is the most difficult to define and
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satisfactorily prove to be satisfied. The assumption of ‘small’ deformations is a

mathematical simplification where the deformations (and corresponding strains)

obtained from solving SM for a structure are taken to be so much smaller than

any relevant dimension of the structure that it can be considered to not have

moved spatially. However, in practice establishing what size of deformation is

sufficiently ‘small’ enough to satisfy this assumption is not so straight forward,

with conventions seeming to change in different disciplines as to what can be

treated as an acceptable limit.

There can be no set limit on the magnitude of the deformation as the

deformations only need to be ‘small’ in comparison to the size of the structure,

which in some scenarios could lead to seemingly non-negligible deformations

being considered acceptably ‘small’. With this in mind, in the context of this

research a ‘small’ deformation has been taken to be deformations on the order

of 1% or less of the longest dimension of the deforming structure.

It may be observed that this condition may potentially be hard to maintain

in the framework of solidifying dendrites, as the deformations would be expected

to grow in magnitude as the dendrite grows in length. If a dendrite is assumed

to behave roughly analogously to a cantilever beam, as has been assumed widely

both in practical experiments and numerical modelling, then it would be assumed

that the deformation w would increase along with the length L following some

power law w(Ln), with n > 1. While this may imply a harsh restraint on the

problems that can be examined, elements of both the modelling setup and the

physical realities of alloy microstructure solidification do mitigate this constraint.

First of all, from a numerical standpoint, the quasi-stationary approach

ultimately implemented (section 3.2.3) means that structural mechanics can be

resolved as often as required to ensure that deformations occurring since

structural mechanics was last resolved remain sufficiently small to satisfy linear
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elasticity.

Furthermore, from a physical perspective in many alloy solidification

scenarios (see section 4.3 for more information on the solidification models being

used in this research) there is in fact an intrinsic problem dependent upper limit

on the length L introduced by the different melting temperatures of the

elements used in the alloy [83].The dendrites themselves form due to the

morphological instabilities occurring at the solid-liquid interface, where these

perturbations become amplified until the tips and depressions become the tree

like dendrites. This happens due to the properties of the different elements used

in the alloy (as well as the temperature conditions), where the solidifying

dendrite will be primarily composed of whichever element solidifies at the higher

temperature, with much of the solute being rejected into the liquid. This solute

rejection then suppresses growth in the depressions comprising the

inter-dendritic region as the liquid here becomes solute enriched while the tips

of the dendrites are free to continue solidifying. However, once the temperature

in these regions become sufficiently low, the solute enriched liquid will also

solidify once the eutectic temperature is reached. A eutectic mixture is one

formed by a specific composition of two or more materials which all change

phase at a specific temperature, the composition and temperature where this

occurs is known as the eutectic point. If the composition of the alloy does not

allow this immediate transition in phase to occur for both components, you will

have both solid and liquid phases existing at the same temperature (as we are

seeing in our cases of dendritic solidification), however once the eutectic

temperature is reached all components of the alloy will solidify, as indicated in

figure 3.1. Consequently, any part of a dendritic network in a region below the

eutectic temperature becomes fully solid, with a correspondingly higher Young’s

Modulus than the semi-solid dendrites which continue to grow in the region
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above this temperature. This leads to comparatively insignificant deformation

occurring in this fully solid region which allows the length L to only refer to the

length of the structure ahead of this phase, allowing it to become in effect a

problem dependent fixed constant.

While it is certainly possible to find cases where the eutectic temperature is

sufficiently low that dendrites can grow which experience deformations which

would invalidate linear elastic assumptions, say for a vanishing thermal

gradient, these problems will be outside of the current intended application of

the model, with the expansion of the model to accurately handle larger

deformations certainly being a potential avenue of future work.

(a) Characteristic length L at t0. (b) Characteristic length L at t0 + ∆t.

Figure 3.1: Limit on L due to eutectic formation.

3.2.3 Quasi-Stationary Approach

With microstructure solidification being an inherently transient process, there

will of course be a correspondingly transient element to any observed structural
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mechanical behaviour. This would seemingly imply that the best way to model

structural mechanics is also as the transient process described in the equilibrium

equations for linear elasticity 3.1 - 3.3. However, capturing this transient

behaviour while the volume of the structure continuously changes due to

solidification proved to be a non-trivial matter, which led to a quasi-stationary

approach being considered wherein SM would be called at successive intervals to

obtain a stationary solution, being separated by a problem dependent time

interval to allow a small amount of solidification to occur.

It was also considered that even if treated transiently, for the problems being

examined SM would generally be converging to a stationary solution orders of

magnitude faster than the time steps generally used for solidification. This would

mean that any transient structural behaviour being modelled will ultimately have

no impact on the solidification process and increase the computational load of

the modelling while having no tangible benefit in demonstrating the structural

mechanical influence on solidification.

In order to demonstrate this a test was performed on a simplified transient

2D version of the code, wherein a solidification process was mimicked by taking

a small cantilever beam structure and solving it transiently until the solution has

converged. After convergence, a new column of volumes is added to the end of

the structure, force is applied to these volumes and the system is then solved to

stationary convergence again. The typical cell size employed by the solidification

code of ∆x = 10µm was taken, with this test running to grow a 3 × 20 volume

structure to a 52 × 20 volume structure one column of volumes at a time under

a constant body force.

A snapshot of these convergence times is provided in table 3.1, showing the

time it has taken for structures to converge to a steady state after a new column

of volumes are added to the structure.
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Volumes (x × y) Time to reach steady state (µs)
10 × 20 10.04
20 × 20 10.60
30 × 20 12.53
40 × 20 13.27
50 × 20 15.06

Table 3.1: Times to reach steady state

Comparing these results against the characteristic time to solidify one cell -

between 0.1s and 10s, the convergence time for the structures examined in this

test are shorter by multiple orders of magnitude. This seems to support the notion

that SM can be treated as a stationary process for the purposes of defining how

it interacts with the solidification code, as based on these findings it will always

have long converged to a steady state within a solidification time step even if

treated as a transient process.

This is not necessarily a definite conclusion to the question of transient

structural behaviour in this line of research, as it is certainly the case that for

large plastic deformations and fracturing that there may be complex and time

dependent behaviour that this approach could not account for, while accounting

for yielding would require an updated formulation to correctly account for

deformation which cannot be undone. However, these scenarios described are

already outside of the scope of modelling under the assumptions of linear

elasticity and hence represent an avenue of future research. While the test

performed here is hardly a perfect analogy for true solidification, given the

length of the beam is increased by adding entire new volumes rather than

gradually increasing solid contents in the cells, the inaccuracies caused by this

simplified approach should only serve to increase the convergence time for any

structural behaviour over what would be expected from a truly solidifying

structure.
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Considering this information, SM was treated as a stationary process to be

solved at a problem dependent interval, acting as a quasi-stationary process

within the framework of a coupled microstructure solidification process, where

the implementation of transient structural behaviour only would add

complications without benefiting the quality of the solutions obtained. The

implications this choice has on the development of the SMS is that structural

problems being solved are elastostatic, allowing the equations 3.1 - 3.3 to be

simplified to the following stationary form of the linear elastic equilibrium

equations:

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ Fx = 0 (3.7)

∂σy

∂y
+ ∂τyx

∂x
+ ∂τyz

∂z
+ Fy = 0 (3.8)

∂σz

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
+ Fz = 0 (3.9)

3.2.4 Displacement Formulation

The stationary equilibrium equations 3.7 - 3.9 describe the structural behaviour

by balancing the stresses which arise in a structure experiencing external forces.

However, while the internal stresses of the structure are certainly of interest when

modelling microstructure solidification, when considering how structural effects

will impact solidification behaviour the primary area of interest is how the shape

has deformed and the crystallographic orientation has changed.

Obtaining the displacement values required from solutions showing the

stresses is a relatively straightforward task, but being the primary output of

interest it was considered beneficial to use the displacement formulation of

linear elasticity.
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These equations can be obtained by first combining the full 3D linear stress-

strain relationship described by Hooke’s law as summarised in equation 3.6, with

the strain-displacement relationship shown in equations 3.4 and 3.5.

This allows the following relationships between the stress components of the

equilibrium equations and the displacements in u, v and w to be described:

σx = 2µεx + λ (εx + εy + εz) = 2µ
∂u

∂x
+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
(3.10)

σy = 2µεy + λ (εx + εy + εz) = 2µ
∂v

∂y
+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
(3.11)

σz = 2µεz + λ (εx + εy + εz) = 2µ
∂w

∂z
+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
(3.12)

τxy = τyx = µγxy = µ

(
∂u

∂y
+ ∂v

∂x

)
(3.13)

τxz = τzx = µγxz = µ

(
∂u

∂z
+ ∂w

∂x

)
(3.14)

τyz = τzy = µγyz = µ

(
∂v

∂z
+ ∂w

∂y

)
(3.15)

Where λ and µ are the two Lamé constants defined as the following

combinations of the Young’s Modulus (E) and Poisson’s Ratio (η):

λ = ηE

(1 + η) (1 − 2η) (3.16)

µ = E

2 (1 + η) (3.17)

These stress-displacement relationships can then be substituted back into

the equilibrium equations 3.7, 3.8 and 3.9 and simplified (only showing the full
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expansion for displacement in x for brevity):

∂

∂x

(
2µ

∂u

∂x
+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

))

+ ∂

∂y

(
µ

(
∂u

∂y
+ ∂v

∂x

))
+ ∂

∂z

(
µ

(
∂u

∂z
+ ∂w

∂x

))
+ Fx = 0

(3.18)

2µ
∂2u

∂2x
+λ

∂2u

∂2x
+λ

∂2v

∂x∂y
+λ

∂2w

∂x∂z
+µ

∂2v

∂x∂y
+µ

∂2u

∂2y
+µ

∂2w

∂x∂z
+µ

∂2u

∂2z
+Fx = 0 (3.19)

which is often collected together in the form:

(λ + µ)
(

∂2u

∂x2 + ∂2v

∂x∂y
+ ∂2w

∂x∂z

)
+ µ

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
+ Fx = 0 (3.20)

Using the same principles the corresponding equations for the displacements

in y and z can be obtained:

(λ + µ)
(

∂2v

∂y2 + ∂2u

∂y∂x
+ ∂2w

∂y∂z

)
+ µ

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
+ Fy = 0 (3.21)

(λ + µ)
(

∂2w

∂z2 + ∂2u

∂z∂x
+ ∂2v

∂z∂y

)
+ µ

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
+ Fz = 0 (3.22)

Equations 3.20, 3.21 and 3.22 are the three Partial Differential Equations that

must be simultaneously solved to find how much a linear elastic structure deforms

under applied external forces.

3.3 Variable Material Properties

A dendrite, as the name suggests, often has a broadly tree like morphology where

spaces exist between the secondary arms (figure 3.2a). Ensuring that these spaces

are interpreted as existing by the SMS is critical to ensure the structural behaviour

is accurate to a genuine dendritic system.
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However, for grid resolutions that would otherwise be reasonable for modelling

microstructure solidification, these spaces can often be too minor to be correctly

represented as having physical spaces between arms, with a region of secondary

arms often being identified a continuous region where the concentration rises

and falls to match the secondary arms. If this structure was identified as a

homogeneous solid, rather than the tree like structure expected, the SMS will

instead consider the structure to be in effect a solid cone which will be far less

susceptible to deformation (figure 3.2b).

While it would be theoretically possible to lower the grid size further, allowing

these spaces to become more pronounced so that the model will truly represent

the liquid filled spaces between the arms, this would increase the computational

load on both solidification and structural mechanics to a degree that would make

this impracticable for many problems.

(a) Dendrite with spaces
between arms.

(b) Dendrite arms fused,
limiting deformation.

(c) Flexible material for
inter-arm regions.

Figure 3.2: Approaches to representing a dendritic shape in the SMS.

This is further complicated by the morphology of the dendritic systems being

examined, with alloys generally not being homogeneous in the manner shown

in figure 3.2. Often the concentration of the alloy varies inside the dendritic

structure, leading to a heterogeneous dendrite morphology more comparable to

the example shown in figure 3.3, with the solid fraction gradually diminishing
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as it approaches the interface. These variations can also have an effect on the

mechanical behaviour of the dendrite, potentially causing the tip and developing

secondary arms to be be more susceptible to deformation than the core of the

primary arm.

Figure 3.3: Heterogeneous dendrite.

These concerns lead to the inclusion of variable material properties for each

computational cell of the structure, allowing the susceptibility to deformation to

vary across the structure based on the solid fraction at that location. This allows

the previously described tree like morphology to be represented even on lower grid

resolutions by allowing there to be bars of much lower resistance to bending to

be represented between the secondary arms, or any other region where dendrites

are effectively touching due to the grid resolution (figure 3.2c). Considering the

formation of the eutectic discussed in section 3.2.2, this approach could also

accommodate modelling the deformation of both semi-solid and fully solidified

sections regions of the dendritic network within the same problem domain.

Implementing this complicates the equilibrium equations for structural

mechanics slightly, as now the Lamé Parameters themselves become variables as

opposed to constants, with potentially different values at each location in the

equation (only showing u for brevity):
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∂

∂x

(
2µ

∂u

∂x
+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

))

+ ∂

∂y

(
µ

(
∂u

∂y
+ ∂v

∂x

))
+ ∂

∂z

(
µ

(
∂u

∂z
+ ∂w

∂x

))
+ Fx = 0

(3.23)

As such the material property information cannot be taken outside of the

differential terms and collected together to form the elegant equilibrium

equations 3.20, 3.21 and 3.22, as the material properties must be accounted for

as a spatial variable requiring differencing along with the displacements during

the discretisation process. This leaves the following set of equilibrium equations

for a linear elastic material with variable material properties:

2 ∂

∂x
µ

∂u

∂x
+ ∂

∂x
λ

∂u

∂x
+ ∂

∂y
µ

∂u

∂y
+ ∂

∂z
µ

∂u

∂z

+ ∂

∂x
λ

∂v

∂y
+ ∂

∂y
µ

∂v

∂x
+ ∂

∂x
λ

∂w

∂z
+ ∂

∂z
µ

∂w

∂x
+ Fx = 0

(3.24)

2 ∂

∂y
µ

∂v

∂y
+ ∂

∂y
λ

∂v

∂y
+ ∂

∂x
µ

∂v

∂x
+ ∂

∂z
µ

∂v

∂z

+ ∂

∂y
λ

∂u

∂x
+ ∂

∂x
µ

∂u

∂y
+ ∂

∂y
λ

∂w

∂z
+ ∂

∂z
µ

∂w

∂y
+ Fy = 0

(3.25)

2 ∂

∂z
µ

∂w

∂z
+ ∂

∂z
λ

∂w

∂z
+ ∂

∂x
µ

∂w

∂x
+ ∂

∂z
µ

∂w

∂z

+ ∂

∂w
λ

∂u

∂x
+ ∂

∂x
µ

∂u

∂w
+ ∂

∂z
λ

∂v

∂y
+ ∂

∂y
µ

∂v

∂z
+ Fz = 0

(3.26)

3.4 Staggered Grid Finite Volume Method

(SGFVM)

As discussed in 2.4, a FVM framework was chosen as it provides intrinsic benefits

when trying to couple structural mechanics with a solidification process, which

was then further expanded into a SGFVM approach [84] where the material

properties are stored in the centre of the volumes but displacement/velocity values
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are stored at the cell faces.

This approach is quite unusual within the under-explored field of using the

FVM for structural mechanics, however SGFVM have been successfully applied

to structural mechanics problems in the past [85]. While it is relatively

straightforward to interpolate values from the cell centres to cell faces or visa

versa, this staggered formation does simplify matters as the values are now

generally at the most useful spatial location.

An example of how these staggered displacements would be found on the

structure can be seen in figure 3.4a, with a slice through the 3D structure in

figure 3.4b showing the location where the cell centred material properties are

stored.

(a) Staggered displacement locations
on 3D volumes.

(b) x-y slice showing material
properties stored in cell centre.

Figure 3.4: Finite volumes using staggered displacements.

For the purposes of developing the SMS, this means that there are three 3D

grids of displacements, each staggered in their respective dimensions so they have

the correct number of points to line up with the faces of the volumes comprising

the domain. In figure 3.5 a slice has been taken through the structure showing
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the x-y axis demonstrating the relationship between the u and v displacement

grids. It has been simplified into 2D for ease of visual clarity, though in reality

there is a third grid of the w displacements going into and out of the page from

this slice.

(a) u displacement grid. (b) v displacement grid. (c) Overlaid Grids

Figure 3.5: Relationship between staggered u and v grids.

Considering the three overlaid displacement grids and the equilibrium

equations 3.24 - 3.26, the cross terms relating these three grids together can be

observed in each equation, meaning that for a three-dimensional linear elasticity

problem these three staggered grids must all be solved simultaneously, as

changes on one grid will effect the solution on the the other two.

This SGFVM approach was used to obtain an iterative numerical scheme to

calculate the displacements corresponding to the stationary solution of a linear

elastic structure experiencing external forces. The full discretisation approach

used to obtain this method can be found in Appendix A, arriving at the following

set of equations:
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up = 1
−AP

(ANun + ASus + AEue + AW uw + AHuh + ALul + Sx)

AP = 8µp + 2λp; AE = 2µE + λE; AW = 2µW + λW

AN = µN ; AS = µS; AH = µH ; AL = µL

Sx = µN(vne − vnw) − µS(vse − vsw) + µH(whe − whw) − µL(wle − wlw) +

λE(vne − vse + whe − wle) + λW (vnw − vsw + whw − wlw) + ∆x2Fx

(3.27)
vp = 1

−AP

(ANvn + ASvs + AEve + AW vw + AHvh + ALvl + Sy)

AP = 8µp + 2λp; AN = 2µN + λN ; AS = 2µS + λS

AE = µE; AW = µW ; AH = µH ; AL = µL

Sy = µE(ven − ves) − µW (vwn − vws) + µH(whn − whs) − µL(wln − wls) +

λN(ven − vwn + whn − wln) + λS(ves − vws + whs − wls) + ∆x2Fy

(3.28)
wp = 1

−AP

(ANwn + ASws + AEwe + AW ww + AHwh + ALwl + Sz)

AP = 8µp + 2λp; AH = 2µH + λH ; AL = 2µL + λL

AE = µE; AW = µW ; AN = µN ; AS = µS

Sz = µE(veh − vel) − µW (vwh − vwl) + µN(wnh − wnl) − µS(wsh − wsl) +

λH(veh − vwh + wnh − wsh) + λL(vel − vwl + wnl − wsl) + ∆x2Fw

(3.29)

These equations define the displacement at a generic point P on their

corresponding staggered grids, with the spatial references e, w, n, s, h, l

representing a half grid step in the East, West, North, South, High and Low

directions relative to that point P respectively, with the capitalised references

E, W, N, S, H, L indicating an entire grid step in the corresponding direction.

For clarity in the scheme, the source term S has been separated from the
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main scheme, indicating the influence of the displacements from the other grids

brought in by the cross terms and body forces on the differencing scheme. It

must also be stressed that due to the nature of the staggered grids, the point P

and corresponding directions being referenced for each displacement equations are

relative to a generic internal point within their corresponding staggered grid and

does not represent the same point within the structure. It is in fact impossible

for the u, v and w displacements to ever occupy the same spatial locations due

to the way in which the grids overlap.

The annotated grids in figure 3.6 should further highlight this relationship and

the relative spatial labelling being used in the differencing scheme, highlighting

the surrounding displacements which are used to obtain the new value at point

P (again only in 2D slices for visual clarity, so w displacements and any volumes

in the High and Low directions have been neglected).

(a) Information required to obtain uP . (b) Information required to obtain vP .

Figure 3.6: Annotated u and v grids.
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3.5 Stress & Strain Outputs

While the SMS obtains the solution in the form of the displacements due to

these being considered the most relevant output to interact with the

solidification process, that does not mean that the stress and strain within the

structure are of no interest. The concurrent modelling of structural mechanics

alongside solidification provides an opportunity to observe where stresses

accumulate within a solidifying structure in real time in a novel manner

impossible in most modelling frameworks.

At the current stage the stresses and strains are essentially post processed

quantities extracted from the displacements to allow observation of how stress

accumulates over time, potentially suggesting mechanisms for the build up and

locations where fractures may occur. These stresses do not currently have any

direct bearing on the development of the solidification process, this being a

potential expansion for future work considering the suggestions that stress

accumulation can lead to remelting and fragmentation even if no observable

deformation has occurred [34, 43].

The elements of the strain at the point P in the cell centre can be easily

obtained by taking the strain relationship equations for the normal (equation

3.4) and shear (equation 3.5) strains, discretising them and substituting in the

obtained displacement values:

εx(P ) = ue − uw

∆x
; εy(P ) = vn − vs

∆x
; εz(P ) = wh − wl

∆x

γxy(P ) = γyx(P ) = 1
2∆x

(un − us + ve − vw)

γxz(P ) = γzx(P ) = 1
2∆x

(uh − ul + we − ww)

γyz(P ) = γzy(P ) = 1
2∆x

(vh − vl + wn − ws)

(3.30)

These can then be substituted into the stress-strain relationship equations for
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linear elasticity in equations 3.10 - 3.15 to obtain the normal and shear stress

components of the structure at each point. However, it can often be useful to

have this stress information summarised in a single output which can provide

a clearer idea of which regions of the structure experience high levels of stress

of any kind without having to simultaneously compare all the normal and shear

stress outputs.

For this reason, the quantity which will usually be used to demonstrate the

stress within the structure will be the Von Mises Stress [86], which describes

the yield strength of a material by combining the previously defined stress terms

using the following formula:

σV M =
√

1
2
[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2

]
+ 3

(
τ 2

xy + τ 2
yz + τ 2

xz

)
(3.31)

3.6 Boundary Conditions

There are a wide collection of potential boundary conditions which must be

considered by the SMS to allow it to function for the largest selection of

modelling scenarios as possible. The boundary conditions described in the

following subsections may be applied to either the edges of the structure within

the domain, the boundaries of the modelling domain itself or in some cases

both.

3.6.1 Fixed Displacements

Fixed displacements are Dirichlet boundary conditions that can be applied at

both the domain boundary or the surface of a structure within the domain. This

means that any given nodes with a fixed displacement defined will maintain this
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value no matter what else happens to the structure in the solver. The way that

this is generally applied in the problems being examined is to represent structures

connected to a surface using a fixed condition of u = v = w = 0 at the domain

boundaries, so that any parts of the structure coming into contact with this

boundary become fixed at that location (see boundary 2 in figure 3.7).

However, while not used for any of the realistic modelling scenarios currently

being examined, functionality for varying Dirichlet conditions along the domain

boundaries or the surface of the internal structure was implemented in the event

it would later be required. For example, if a fixed displacement was identified

from some other physical process these can be defined across the surface of the

structure, with potential to all be the same or vary as required by the problem

(see boundary 1 in figure 3.7).

Figure 3.7: Fixed displacement boundaries.

3.6.2 Fixed Stress & Free Surfaces

Fixed stress surfaces (and the subset of ‘free’ surfaces) are a Neumann boundary

condition which can be applied on both the domain boundaries and the internal

faces of the structure to represent the force (or lack of force) acting at that

location. What this means for the equations governing the structural behaviour
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is that the normal and shear stresses are a fixed value S.

Using the stress-strain relations from Hooke’s Law and the

strain-displacement relationship, these boundaries can be be converted into the

displacement formulation being used elsewhere in the SMS. At each boundary

there is one normal and two shear stress conditions that must be satisfied on

the three displacement grids, being positive or negative depending on which side

of the structure (relative to the direction of the axis) the boundary is on.

How these fixed stress boundaries vary can be observed in figure 3.8a, which

will be expanded into a deformation formulation to interact with the rest of the

solver, which for brevity will only be replicated below for the boundary at face

1, but the same process would be applied at all faces:

Fx = σx = 2µεx + λ (εx + εy + εz) = 2µ
∂u

∂x
+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= Sx (3.32)

Fy = τxy = µγxy = µ

(
∂u

∂y
+ ∂v

∂x

)
= Sy (3.33)

Fz = τxz = µγxz = µ

(
∂u

∂z
+ ∂w

∂x

)
= Sz (3.34)

The forces acting on the faces can vary, so there is no need for different faces to

have the same fixed stress defined, and there does not have to be any relationship

between the defined normal and shear stresses acting upon a face. The behaviour

at these boundaries have been implemented such that all stress elements for a

boundary can vary spatially, a crucial requirement for the implementation of

surface forces created by other physics, such as a varying pressure field being

imparted on the face of a structure by fluid flow.

However, while it is important for the SMS to be able to interpret surface

forces acting upon a structures, in practice the setup of this boundary most often
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used is Sx = Sy = Sz = 0, making this a ‘free’ surface which allows the structure

to move unimpeded, only being limited by the elastic behaviour balancing the

displacements in u, v and w.

Having these conditions act on the domain boundaries is also

computationally useful, as while it may be desirable for a boundary to restrict

any further solidification growth, using a ‘free’ surface would allow the domain

boundary to impart no physical limitation on the structural movement.

(a) Fixed stress boundaries. (b) Free Surface Boundaries.

Figure 3.8: Types of Neumann boundary.

3.6.3 Slip Domain Boundary

The slip boundary condition is a combination of fixed displacements and fixed

strains with different rules for the different displacement grids. While generally

making the most sense to be applied at domain boundaries, it could theoretically

be applied at an internal structure boundary also. The combination of these

conditions can be useful for mimicking the behaviour at a wall more accurately,

as can be seen in figure 3.9.

If a structure touches a wall, it makes sense that movement into the wall will

be prevented (so in this case a fixed displacement u = 0), but setting the entire
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domain boundary to be fixed in all displacements does not make much physical

sense, as the structure would immediately fuse with the wall and stop moving

once there is a point of contact. By also including free surfaces for displacements

in directions parallel on the Cartesian grid to the boundary (Sy = Sz = 0 for this

example), this allows the structure to continue to move freely in ways that do

cause further interaction with the wall.

While clearly not an ideal physical representation of interaction with a wall at

the boundary due to it limiting perpendicular movement away from the wall along

with lacking any friction to limit parallel movement (though if a sensible value

for this could be found and represented as a fixed strain, this could potentially be

added rather than the ‘free’ surface indicated in this example). Nevertheless, slip

boundaries can allow for more sensible behaviour at the domain boundaries than

a surface which is either entirely fixed displacements or fixed stresses for many

modelling scenarios.

Figure 3.9: Slip boundary.

3.6.4 Symmetry Domain Boundary

The symmetry condition is a purely domain boundary, which represents a

mirroring of the structure and behaviour across the defined symmetry
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boundary. In practice for the SMS this simply means that the values within this

boundary are identical to their neighbouring cells within the domain.

This boundary can be computationally useful as it allows larger cases to be

modelled where only a subsection of the domain needs modelling, with the

symmetry condition making the results on the other side of the boundary a

reflection of any calculated values.

Unfortunately, the kind of structural phenomena being examined in the later

modelling cases often makes symmetry in the solutions unreasonable to assume

at any given boundary, however it is certainly a useful tool to have access to for

situations where it can be justifiably used.

Figure 3.10: Symmetry domain boundary.

3.6.5 Periodic Domain Boundary

The periodic boundary condition is a purely domain boundary where two domain

faces are linked such that they are considered to be physically next to one another,

allowing continuous movement between the linked boundaries. The example of

this concept shown in figure 3.11 has taken the High and Low boundaries to be

periodic, but problems could be set up where East-West or North-South are the

paired periodic domains.
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Within a solidification context, these boundaries can be a useful tool in

simulating a slice taken of a continuous solidifying system, where the region

being simulated can be considered as being so far from any fixed boundaries

that the solidification behaviour acts continuously, meaning that only this small

slice requires modelling. This domain boundary was relatively easy to

incorporate within the SMS, with displacements within the domain boundaries

needing to correspond with the first layer of information in from the domain at

the paired boundary, allowing the solution to develop across the boundary as a

continuous structure.

Figure 3.11: Periodic domain boundary.

3.7 Thermal Effects

As identified in section 2.2 of the literature review, many experimental

observations of deformation and misorientation of dendrites were attributed to

strain caused by thermal expansion. This is of course problem-dependent as

many scenarios exist which can be effectively treated as temperature

independent, where any impact from thermal expansion is insignificant.

However, given the number of experimental cases attributing deformation to
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thermal effects the incorporation of thermal effects into the SMS was an obvious

expansion which would expand the modelling scenarios that could be accurately

represented.

To incorporate thermal strains in the SMS, the strain-displacement

relationship for the normal strains (the shear strains remain unchanged) has to

be expanded to account for these non-elastic thermal strains:

ε = εe + εth (3.35)

Where the thermal strains change the relationship to the following:

εx = ∂u

∂x
− α∆T ; εy = ∂v

∂y
− α∆T ; εz = ∂w

∂z
− α∆T (3.36)

Where α is the coefficient of thermal expansion for the material and ∆T is the

change in temperature at the current time compared to the reference temperature

defined for the assumed to be isotropic material.

This update to the strains correspondingly changes the displacement form of

the normal stresses after these new values have been substituted in (this will be

considering σx and the u displacement equation only going forward for brevity,

but the same process has to be taken to update the v and w equations):

σx = 2µεx + λ (εx + εy + εz)

= 2µ(∂u

∂x
− α∆T ) + λ

(
(∂u

∂x
− α∆T ) + (∂v

∂y
− α∆T ) + (∂w

∂z
− α∆T )

)

= 2µ
∂u

∂x
+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
− (2µ + 3λ)α∆T

= 2µ
∂u

∂x
+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
− Γα∆T

(3.37)
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Where Γ is being defined as the thermal modulus, which can be simplified in

terms of E and η to become:

Γ = 2µ + 3λ = 2( E

2(1 + η)) + 3( ηE

(1 + η)(1 − 2η)) = E

(1 − 2η) (3.38)

Incorporating this additional thermal term in the numerical scheme by using

the updated definitions of σx, σy and σz into the stationary equilibrium equations

3.7 - 3.9 does not in fact change the numerical scheme a great deal, with the only

change to the FVM equations 3.27 - 3.29 being the incorporation of the thermal

term into the source term (where Se is the existing elastic source term defined in

the equations which include the cross terms and body force):

Sx =Sxe + Sxt = Sxe − ∆x2 ∂

∂x
Γα∆T

Sy =Sye + Syt = Sye − ∆x2 ∂

∂y
Γα∆T

Sz =Sze + Szt = Sze − ∆x2 ∂

∂z
Γα∆T

(3.39)

That the thermal behaviour can be incorporated in the source term in this

manner serves to make it quite straightforward to activate or deactivate thermal

strains as required on a problem by problem basis.

3.8 Structure Identification

One crucial concern for the development of the SMS was deciding how the

solidifying dendrites would be identified and interpreted as structures by the

solver. While initial tests of the solver simply took the entire domain as the

structure, with the domain boundaries simultaneously acting as a boundary for

the structure, this would clearly be insufficient for the microstructure

solidification problems the solver was being created to interface with.
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The solidification methods being used in this research generate a solid fraction

profile, where each computational cell has a value between 0 and 1 to indicate the

proportion of each cell now comprised of solid material. Using this as an input,

an edge detection algorithm was written which performs a sweep through the

domain identifying which cells are solid (or solidifying), liquid or at a boundary

based on the state of the cells surrounding it.

The most obvious way of defining the problem would be as a collection of

volumes matching the solid cells identified in the solid fraction profile, so that the

problem domain being solved by the SMS would simply be any individual dendrite

structures as can be seen in figure 3.12a, however implementing this presents some

problems. The SMS requires at least one cell separating any opposing boundaries

(e.g. East-West, North-South, High-Low) on the growing structure, but when

simulating solidification of a dendrite it is likely that parts of a dendrite may

reach a thickness of a single cell at some points, especially at the tips of the

dendrite arms. This means that to account for this for a closely fitted domain,

parts of the structure would either have to be ignored or fictitious cells added to

satisfy these modelling constraints.

However, the implementation of a variable material property framework

previously discussed in 3.3 allows a more flexible approach to the question of

structural identification to be taken. Now the liquid in the domain can also be

solved by the SMS by treating it as a ‘solid’ with a nominal Young’s Modulus

value many orders of magnitude below that used by the true solid structure so

that the liquid offers no measurable resistance to the movement of the structure.

While unconventional, this approach is not unique, with Uehara, Fukui and

Ohno [62] taking a similar approach within a FEM framework, where the entire

domain was solved throughout the solidification process, changing the material

properties at the computational nodes from a ‘liquid’ (also represented as a
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solid with a very low Young’s Modulus) to those of a solidifying metal as the

solidification progressed. The entire domain could also be solved in this manner

using the SMS, as indicated in the example in figure 3.12b where the blue

region is to solved as ‘liquid’.

While this means that no concessions have to be made to accurately model

the dendrite, an obvious problem arises when the structure is very small relative

to the domain as the propagation and convergence of the deformation into the

entire ‘liquid’ region has potential to greatly increase the solution time. While the

deformations in the ‘liquid’ region may be of use as flow fields when coupled to

other physical processes, if only modelling structural mechanics and solidification

the solution in the liquid will be unused and hence adds to the computational

load without improving the solution.

Consequently, a middle ground between solving a closely fitted structure and

solving the entire domain was desirable. This was first done by generating a box

around any structures to be solved, as indicated in figure 3.12c, so that in theory

only a relatively small region of ‘liquid’ would be solved around the structure.

However, as the box is drawn based on the furthest identified solid material in any

direction, there are potential ways a microstructure may develop which could end

up capturing needlessly large ‘liquid’ regions. In particular, if there are multiple

dendrites at opposite ends of the samples a box drawing approach such as this

can lead to almost the entire domain being solved from the start, as in figure

3.12d.

For this reason, a locus method was implemented to define an acceptable

‘liquid’ region to be solved, where by counting outwards from the solid material

a region analogous to a larger and smoother version of the dendrite morphology

would be captured and defined as the ‘liquid’ region of the structure needing to

be solved, as indicated in figure 3.12c.
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It is true that this locus structure will have more complex boundary conditions

than a simple box, so in cases where the box and locus region encompasses a

comparable amount of ‘liquid’, it may be possible that the solution using a box

will converge slightly faster. However, even in this unusual scenario the locus

boundaries would be continuous enough that the solution will be obtained at a

comparable speed, while being significantly faster than the box drawing approach

in situations where the box would capture large regions of ‘liquid’.
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(a) Structure fitted domain. (b) Entire problem domain.

(c) Single dendrite fitted box domain. (d) Multi-dendrite fitted box domain.

(e) Locus fitted domain.

Figure 3.12: Domain identification for SMS.
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3.9 Algorithm Overview

This section includes some brief points regarding how the SGFVM outlined in

section 3.4 was implemented as an numerical algorithm which converges to find

the steady state displacement solution of a three-dimensional structure

experiencing external forces.

3.9.1 Stopping Criteria

The first stopping criterion implemented was based on the largest normalised

change in displacements between successive time steps being less than a given

tolerance (tol). This value is chosen prior to the code being run, but is generally

taken as a small number close to the machine precision of the data type of the

displacement variables being used to prevent under-converged solutions. Where

U , V and W are the matrices containing the displacements in x, y and z directions

the stopping criteria for the algorithm at step t are defined as follows:

∥Ut − Ut−1∥
∥Ut∥

< tol & ∥Vt − Vt−1∥
∥Vt∥

< tol & ∥Wt − Wt−1∥
∥Wt∥

< tol (3.40)

where ∥.∥ is a maximum norm

∥A∥ = maxi,j,k{|a1,1,1|, ..., |an,n,n|}

However, while usually sufficient, implementing this stopping criteria on very

large cases showed that as the rate of change in displacements became very small

this method would sometimes register solutions as being converged too soon, no

matter how small the tolerance value used as the relative change was identified as

being smaller than machine precision, though if allowed to continue these changes

could accumulate to a displacement profile with significantly larger values. This
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led to residual based convergence criteria being implemented, which checks to see

how close the solution at the current time is to balancing the forces acting on the

structure, which can be summarised as follows:

Resu < tol & Resv < tol & Resw < tol (3.41)

where, for iteration t

Resu = ANut
n + ASut

s + AEut
e + AW ut

w + AHut
h + ALut

l + St
x − AP ut−1

p

Resv = ANvt
n + ASvt

s + AEvt
e + AW vt

w + AHvt
h + ALvt

l + St
y − AP vt−1

p

Resw = ANwt
n + ASwt

s + AEwt
e + AW wt

w + AHwt
h + ALwt

l + St
z − AP wt−1

p

(3.42)

3.9.2 Numerical Scheme

This scheme is currently being solved as a Gauss-Seidel method utilising a

Successive Over Relaxation (SOR) approach, which solves point by point to

calculate the displacement profiles using the relaxation parameter ω which can

be raised or lowered to increase convergence speed or stability as required.

While they can be identical, each displacement grid in fact has it’s own ω

variable, allowing them to vary between the grids if required to reach a solution.
Furthermore a basic framework for ω has been implemented to allow the

relaxation parameter for each grid to increase or decrease (within set limits)
based on the evolution of the stopping criteria. Due to the nature of the problem
requiring all grids to be solved simultaneously, each overall step taken by the
model requires a separate iteration to update the entire u, v or w grid, with the
most recently calculated values for any displacements between the three grids
always being used to calculate the current point, as dictated by the Gauss Seidel
method. The incorporation of the relaxation term updates the numerical scheme

74



3. CREATING A STRUCTURAL MECHANICS SOLVER

as follows:

ui
p = (1 − ω)ui−1

p + ω

AP
(AN ui−1

n + ASui−1
s + AEui−1

e + AW ui−1
w + AHui−1

h + ALui−1
l + Si−1

x )

vi
p = (1 − ω)vi−1

p + ω

AP
(AN vi−1

n + ASvi−1
s + AEvi−1

e + AW vi−1
w + AHvi−1

h + ALvi−1
l + Si−1

y )

wi
p = (1 − ω)wi−1

p + ω

AP
(AN wi−1

n + ASwi−1
s + AEwi−1

e + AW wi−1
w + AHwi−1

h + ALwi−1
l + Si−1

z )
(3.43)

3.9.3 Numerical Order of Iterative Scheme

The SGFVM defined in section 3.4 is accurate to O(∆x2), as demonstrated in

the derivation in Appendix A. However, the discretisation of the fixed Stress

(and therefore ‘free’ surface) boundary conditions described in section 3.6 are

currently only discretised at O(∆x). This is primarily due to complications with

parallel programming (section 4.5.2) and shape of the structure (section 3.8), as

the second order boundary conditions require information up to two cells away

from the boundary in question.

This means that boundary conditions near a processor boundary may

require more information than is present in the processor boundary, while some

structures may attain such a thin profile that there would not be enough cells

comprising the structure to accommodate these second order boundaries. Early

in development these second order boundaries were implemented, which allowed

an investigation to be undertaken to establish how first order boundaries

compared in both behaviour and numerical accuracy.

An example of this can be seen in figure 3.13 where a 2D box was fixed to

the floor and compressed, which was modelled using the SMS with first order

boundaries, second order boundaries and in COMSOL. The displacement

profiles generated by COMSOL have been provided with an annotated black

line at the eastern edge, indicating the position of the plotted slice of

accompanying comparative data.
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(a) u displacement COMSOL profile. (b) v displacement COMSOL profile.

(c) u displacement comparison. (d) v displacement comparison.

Figure 3.13: Accuracy of 1st and 2nd order SMS boundaries against COMSOL.

Considering these plots, it appears that whilst the first order boundaries

undoubtedly have a poorer match to the COMSOL solution than the second

order boundaries, the first order boundaries nevertheless still provides a close

match both in behaviour and absolute values with the other solutions, still

being within a 5% interval of the COMSOL values. Furthermore, this could be

considered a worst case scenario for accuracy, with a domain exactly fitting the

structure and a relatively low grid density of 14 × 14 volumes being used.

Consequently, while there are potential measures which could be undertaken

to address the complications of implementing second order boundaries, such as

the creation of new MPI processes and special logic which only applies boundary
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conditions which are appropriate for the structure morphology, only the first order

boundaries have been implemented in the parallel code and all following results

presented in this Thesis will also be using first order boundaries.

Based on the investigations of this setup, the accuracy of numerical schemes

utilising first order boundaries seem to be acceptably high for the problems

being examined, however the implementation of higher order boundary

conditions remains a potential avenue to expand the solver if the current

accuracy ever becomes a limiting factor.

3.9.4 Algorithm Description

Here the process the solver undertakes to solve Structural Mechanics problems is

briefly outlined at a high level:

• A matrix of Solid Fraction values generated by solidification is provided,

which is used to identify the structural domain to be solved (see section

3.8).

• While the stopping criteria (see section 3.9.1) are unsatisfied, the following

steps will continue running:

1. For the u displacements, the algorithm performs a point by point sweep

of the domain.

2. If a point is identified as part of the structure, depending on the

composition of the surrounding cells either the differencing scheme

for an internal node (see equation (3.43)) or an appropriate boundary

condition is applied to obtain a new value for the displacement at

that location, using the v and w values obtained in the prior iteration

for their contributions to the source term.
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3. For the v displacements, the algorithm performs a point by point sweep

of the domain.

4. If a point is identified as part of the structure, depending on the

composition of the surrounding cells either the differencing scheme

for an internal node (see equation (3.43)) or an appropriate boundary

condition is applied to obtain a new value for the displacement at

that location, using the u values obtained from this current iteration

and w values obtained in the prior iteration for their contributions to

the source term.

5. For the w displacements, the algorithm performs a point by point

sweep of the domain.

6. If a point is identified as part of the structure, depending on the

composition of the surrounding cells either the differencing scheme

for an internal node (see equation (3.43)) or an appropriate boundary

condition is applied to obtain a new value for the displacement at

that location, using the u and v values obtained from this current

iteration for their contributions to the source term.

7. Increment iteration number, storing current u, v and w values for use

in the following iteration and return to Step 1.

3.10 Model Verification

In this section, the accuracy of the results obtained by the SMS are investigated

by examining a selection of idealised modelling scenarios. In these scenarios, the

SMS is run to obtain the displacements u,v and w which are compared to the

displacements obtained by solving an identical problem setup using the

commercial multiphysics software COMSOL as well as analytic solutions when
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appropriate. As COMSOL is a commercial program used widely in both

academia and industry to generate accurate multiphysics modelling, it has been

reasoned that if the SMS generates comparable results to COMSOL it can be

taken that the results generated are of an acceptable level of accuracy to

realistically represent the underlying structural mechanics behaviour.

The different verification cases examined cannot be truly exhaustive, as all

the possible permutations of boundary conditions, forces and shapes would be

impractical to both obtain and to sensibly present here. Instead the aim will

be to focus on enough distinct cases to demonstrate that for a wide range of

setups, the SMS is demonstrating the expected structural mechanical behaviour

with values obtained at acceptable levels of accuracy.

In this section, 7 verification cases have been selected to highlight some of the

key functionality of the SMS. A more thorough examination testing 30 verification

cases can be found in Appendix B.

When presenting the results for comparing the relative accuracy of the SMS

vs COMSOL and analytic solutions, as the fundamental behaviour was found to

match in all cases, direct visual comparisons with COMSOL plots are not very

enlightening for ascertaining the relative accuracy. Therefore, rather than

duplicating almost identical displacement plots from the SMS and COMSOL,

for each case a plot showing the behaviour of the displacements generated by

the SMS only has been provided along with a chart plotting a line of

displacement data which has been extracted from the results generated by the

SMS, by COMSOL (using a comparably dense FEM mesh) and a beam theory

analytic solution when applicable. Dotted lines have also been plotted on these

charts to indicate an interval of ±10% from the COMSOL solution to make it

easier to appreciate the relative accuracy of the SMS results to COMSOL.

Where appropriate to do so, the location of this extracted line of data has been
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indicated on the 3D displacement plots with a black dotted line.

3.10.1 Material Properties & General Problem Setup

Every case examined will have any unique aspects of their own setup outlined,

but in order to avoid unnecessary repetition, a general problem setup will be

outlined which can be taken as true for all of the verification cases being presented

unless explicitly stated otherwise. All structures will have the following structural

material properties:

E = 10 GPa

η = 0.3

ρ = 7020 kg/m3

These values have not been chosen to represent any specific material but are

similar to those of softer metals such as solid Gallium and Indium. However, for

the purpose of verification, so long as the same values are used in both the SMS

and COMSOL to generate the results, the choice of material properties is largely

arbitrary.

Unless otherwise noted, the body force being used in any of these examinations

will be analogous to the magnitude of the gravity force that would act on this

structure: Fb = ρg = 9.8 × 7020 N/m3, although the direction of this force will

vary depending on the case being examined. Likewise, for simplicity unless stated

otherwise any facial forces will be taken to be the same as the body force, but

only being applied on the volume faces: Ff = 9.8 × 7020 N/m2, where again the

direction of the force will vary and be stated in the verification case.
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Due to the nature of the SMS, the structure being used in the verification

cases will exist in a larger domain that does not contain any structure that the

code will act upon. The boundary conditions will differ from case to case (as

will be explicitly noted), but in general the domain boundaries will be Dirichlet

conditions with fixed displacements of u = 0, v = 0, w = 0; with the boundaries

of the structure being free surface Neumann boundaries of du
dx

= 0, dv
dy

= 0, dw
dz

= 0

as demonstrated in figure 3.14. This setup means that in general when fixed

boundaries are required the structure will touch a domain boundary, and when a

Neumann boundary is required that boundary of the structure will be free within

the domain.

As discussed earlier in sections 3.8, the SMS has an edge detection that allows

for close and accurate fitting of a structure as well as having the option of solving

large parts of the domain including the solid structure and large amounts of the

surrounding liquid. For these test cases the problems were set up so that the edge

detection accurately fits the structure, as due to the use of first order boundary

conditions as described in section 3.9.3, solving a closely fitted structure should

represent a worst case scenario for the accuracy of the SMS due to these lower

order regions being located within the structure rather than in a remote region of

the ‘liquid’ which should have little if any meaningful impact on the displacements

within the solid.

While generally not using closely fitted SMS domains in the results presented

in Chapter 7, for verification it seemed prudent to present this potential worst

case accuracy as there may be reasons to use closely fitted problem domains in

the future, and even when fitting larger domains including the liquid it is possible

for first order boundaries to occur within the structure.
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Figure 3.14: General problem setup.

Grid Independence

In order to ascertain what grid resolution should be used to generate these model

results, the scenario described in section 3.10.2 was repeated with the grid size

∆x halved each time, comparing these results with the same scenario modelled in

COMSOL. When an increased grid resolution fails to generate a more accurate

solution it can be assumed that grid independence has been achieved and the

corresponding value of ∆x can be used for the other results for the verification

family. What is important is not the actual value of ∆x, as this will always

very depending on the scale of the problem being worked on, but rather how this

value relates to the size of the structure being solved and thereby the number of

computational cells the structure will be broken down into.

Results comparing the maximum displacement of a 10m × 10m × 10m block

under gravity using different grid sizes can be observed in table 3.2, comparing the

value at a point in the middle of the top face of the cube. Lines running bottom

to top of the structure to compare the overall behaviour have been extracted

and plotted in figure 3.15 as well extracting slices of the w displacements for
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each grid size as presented in figure 3.16. As can be observed from the attached

slices showing the results in section 3.10.2, at this point on the structure the u

and v displacements are very close to zero with w being the largest displacement

dominating this scenario, so the w displacement will be used as the metric for

reaching grid independence.

x y z ∆x w(max) µm

COMSOL -338

10 10 10 1 -309

20 20 20 0.5 -324

40 40 40 0.25 -331

80 80 80 0.125 -333

160 160 160 0.0625 -331

Table 3.2: Maximum displacements observed at different grid densities.

The displacements being observed stop changing significantly between ∆x =

0.25 and ∆x = 0.125, however choosing an appropriate grid spacing is problem

dependent. As such, while a grid spacing of ∆x = 0.25 may be appropriate for

a relatively simple case such as tested here, a structure with a more complex

geometry or force may require a finer grid to capture the expected behaviour

accurately. This was observed to be the case for some of the more complicated

tests, where ∆x = 0.25 captured the underlying behaviour, but not to a great

deal of accuracy. As such, for the Cases 1,2 and 7 ∆x = 0.25 was used and for

Cases 3-6 ∆x = 0.125, which should allow the test cases presented to obtain a

solution with the best compromise between accuracy and computation time given

the problem setups.
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Figure 3.15: Plotted model w displacements.
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(a) ∆x = 1 (b) ∆x = 0.5

(c) ∆x = 0.25 (d) ∆x = 0.125

(e) ∆x = 0.0625 (f) COMSOL w slice.

Figure 3.16: w displacement grid size comparison.
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3.10.2 Block Under Body Force

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of regular 3D structure under a body force load. A block was fixed

at the face touching the floor and compressed by a negative body force in the z

direction. The data comparisons indicate a close match in accuracy between the

SMS and COMSOL for this scenario.

(a) SMS u profile. (b) SMS v profile. (c) SMS w profile.

(d) u slice. (e) v slice. (f) w slice.

Figure 3.17: Case 1 - Floor fixed block under negative body force in z.
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3.10.3 Block Under Facial Force

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of regular 3D structure with a force load applied to the face of a

structure. A block was fixed at the face touching the floor and stretched by a

positive facial force in the z direction. The data comparisons indicate a close

match in accuracy between the SMS and COMSOL for this scenario.

(a) SMS u profile. (b) SMS v profile. (c) SMS w profile.

(d) u slice. (e) v slice. (f) w slice.

Figure 3.18: Case 2 - Floor fixed block under positive facial force in z on High
face.
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3.10.4 Block With Triangular Face Under Body Force

This case was chosen to show the SMS can accurately solve structures with

diagonal edges, as due to the nature of the SMS any parts not perfectly aligned

with the axis will be approximated using cubic volumes. Fixed faces were

defined for the West, South and Low faces of a cubic structure missing a corner

was uniformly compressed by a negative body force applied in the z direction.

The comparisons indicate that while matching the general behaviour observed

in COMSOL, the accuracy of the values are not as close as was observed in the

two simpler cases, with the values being within a 10% interval for u and w but

the v profile providing a less accurate match. While this does demonstrate the

fundamental behaviour is captured by the SMS for diagonal faces/edges, it

seems to indicate that when modelling these structures the values are less

accurate when compared to COMSOL.

(a) SMS u profile. (b) SMS v profile. (c) SMS w profile.

(d) u slice. (e) v slice. (f) w slice.

Figure 3.19: Case 3 - Floor & wall fixed block with triangular corner under
negative body force in z.
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3.10.5 Hemispherical Structure Under Body Force

This case was chosen to demonstrate the SMS can obtain accurate

displacements for more complex structures with curved faces and/or edges. As

in the prior case any parts of the structure not in line with the axis require

approximation using cubic volumes, which for this structure would encompass

the entire rounded surface. An extreme case such as this should indicate if the

approach used to approximate the structure is appropriate for more complex

geometries. The hemispherical structure was fixed by the flat face and subjected

to a uniformly compressive negative body force in the z direction. The data

comparisons indicate another good match with COMSOL for the general

behaviour of the structure, with the values for u and v matching very closely.

However, while still within the 10% interval, the w displacement is clearly under

predicted when compared to COMSOL.

(a) SMS u profile. (b) SMS v profile. (c) SMS w profile.

(d) u slice. (e) v slice. (f) w slice.

Figure 3.20: Case 4 - Floor fixed hemispherical structure under negative body
force in z.
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3.10.6 Cantilever Beam With Point Load - Beam Theory

Analytic Solution

There were multiple reasons for examining a cantilevered beam as a test case.

Firstly, so far the cases have all had comparable ratios of height:length:width, so

a beam structure will indicate how well the SMS can simulate the behaviour of

structures where this ratio is less balanced, such as the beam where the length

is far greater than the thickness of the structure. Furthermore, a beam affixed

to a wall subjected to a force perpendicular to the beam provides an example

of a shearing force, where the previous verification cases have only tested forces

which were normal to the fixed faces of the structure. However, the key benefit of

examining this scenario is that it provides an opportunity to validate the accuracy

of the SMS against an analytic solution as well as COMSOL.

The Euler-Bernoulli beam theory provides a simplification of the theory of

linear elasticity that can be used to obtain the load carrying capacity and

deflection of a beam by treating it as a 1D problem with an analytic solution.

Beam theory has existed for centuries and correspondingly there is a large

amount of existing research and applications utilising it. There are many works

which provide a detailed explanation and derivation of this theory, such as [87],

but for the purposes of this verification case the key principle is that the

deflection (w) of a stationary beam with length L, second moment of area I for

the beam cross section and a point load of F applied to the end can be defined

as the following problem:

EI
∂4w

∂x4 = 0; wx=0 = 0; ∂w

∂x x=0
= 0; ∂2w

∂x2 x=L
= 0; −EI

∂3lw

∂x3 x=L
= F (3.44)

Which can be solved to yield the following analytic solution for the deflection
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at any point along the beam:

w(x) = F

6EI
(3Lx2 − x3) (3.45)

The following Euler-Bernoulli assumptions, in addition to the basic

assumptions of linear elasticity, are required for these analytic results to be held

accurate:

• The beam cross section does not significantly deform under the load and

can be assumed to be rigid.

• The cross section of the beam remains planar and normal to the beam

during deformation.

To test this verification case, a cantilever beam with the dimensions 4m×4m×

20m was fixed to the wall at one end and had a negative facial (or ‘point’ for the

1D beam theory model) force in z, representing a case where a fixed cantilever

beam has a weight applied to the face of it’s free end.

As beam theory is a 1D approximation, only the deflection w is provided,

so while the SMS and COMSOL solutions did provide u and v displacement

profiles, these have been omitted to focus on the beam theory comparison. The

data comparisons confirm that there is a very close match in values between all

three models - beam theory, SMS and COMSOL.
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(a) SMS w profile.

(b) w value COMSOL and beam theory comparison.

Figure 3.21: Case 5 - 4 × 4 × 20 cantilever beam with point load.
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3.10.7 Cantilever Beam With Distributed Load

This case was chosen to demonstrate that the SMS can model a cantilever beam

under a uniform body force (or distributed load), where all of the other benefits

of examining a beam structure such as this as were outlined in section 3.10.6

continue to hold true here.

This verification case is identical in setup and assumptions to those outlined

in section 3.10.6, with the exception of the definition of the force, which is now

distributed along the beam rather than being a point load at the beam end.

Beam theory can also be used to obtain an analytic solution for this problem,

describing the deflection (w) of a stationary under a uniformly distributed load

of F applied along the length of the beam with the equation:

w(x) = F

24EI
(6L2x2 − 4Lx3 + x4) (3.46)

Again, due to beam theory being a 1D approximation only the deflection w

has been provided. The data comparisons confirm that for this case there is also

a very close match in values between all three models - beam theory, SMS and

COMSOL.
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(a) SMS w profile.

(b) w value COMSOL and beam theory comparison.

Figure 3.22: Case 6 - 4 × 4 × 20 cantilever beam with distributed load.
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3.10.8 Thermal Expansion of Block Under a Fixed

Temperature Change

This case was chosen to demonstrate that the SMS can simulate a linear elastic

structure undergoing thermal expansion, as described in section 3.7.

Exploring thermal expansion requires some additional material properties and

elements of problem setup to be defined. The coefficient of thermal expansion

α = 32.1 µm/K was used, arbitrarily taking the value for Indium. The reference

temperature for this structure was taken to be 300 K, with this case modelling

a scenario where the temperature was uniformly raised to 400 K. The data

comparisons indicate a close match in accuracy between the SMS and COMSOL

for this scenario.

(a) SMS u profile. (b) SMS v profile. (c) SMS w profile.

(d) u slice. (e) v slice. (f) w slice.

Figure 3.23: Case 7 - Floor fixed block structure experiencing thermoelastic
expansion under temperature increase.
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3.10.9 Verification Conclusions

Examining the verification cases presented in this section and in Appendix B,

the SMS has consistently demonstrated the correct underlying structural

mechanical behaviours which match those observed in the corresponding

COMSOL simulations which were performed. This indicates that experimental

results obtained using the SMS can be taken as indicative of how a linear elastic

material would truly act. The actual values obtained were also usually in very

close agreement with the COMSOL solutions for a variety of different scenarios,

however it was found that having to represent more complex edges, faces and

structures in general with the cubic volumes did lower the accuracy of the spot

values taken.

Despite this, even in the worst cases the values were of the same order and

comparable behaviour to the COMSOL cases, with the implementation of higher

order boundary conditions (see section 3.9.3) or increasing the grid density (see

section 3.10.1) being possible avenues to explore if the accuracy of the solutions

becomes an issue in practice.

For cases modelling the behaviour of beams, the analytic solution provided

by the Euler-Bernoulli beam theory was also found to be in good agreement with

the modelled 3D beam deflection obtained from the SMS, providing the beam

theory assumptions continued to hold true for the case being modelled.

Thermal expansion was also examined, showing a good match with

COMSOL for uniform temperature increases and temperature gradients,

meaning that thermally driven structural behaviour can also be accurately

examined by the SMS.
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3.11 Summary

This section outlines the theory of linear elasticity, explaining the inherent

assumptions and limitations of this material model. The justification was given

for utilising a quasi-stationary approach for the solver when used in the context

of coupling with solidification. The approach for obtaining the displacement

formulation of the equilibrium equations was described, which were then

expanded into a formulation which accepted variable material properties. These

equations were then discretised into a staggered grid finite volume method and

the boundary conditions for this system were described. The process of

including thermal expansion, structure identification within a larger domain,

obtaining stress outputs as well as providing a brief overview of the algorithmic

implementation. Finally, a selection of verification cases were run to ascertain

the accuracy of the SMS, which found it to be in good agreement with both

commercial structural mechanic codes and relevant analytic solutions.
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Chapter 4

COUPLING STRUCTURAL

MECHANICS TO

SOLIDIFICATION

4.1 Overview

This chapter contains a selection of smaller, more loosely related sections which

were important aspects to the process of coupling structural mechanics and

solidification, yet were not significant enough to warrant an entire chapter of

their own. First a brief overview of the existing TESA code which the SMS has

been designed to integrate with was given, providing a summary of the other

solvers it utilises. More detail is then given on the solidification models which

have been used during the course of this research. A description is given of how

existing deformation is accounted for over time given the quasi-stationary

nature of the SMS. Finally, enhancements to improve the performance of the

solver are presented in the form of multi-scale modelling and parallel computing.
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4.2 TESA Solvers

The ThermoElectric Solidification Algorithm (TESA) is a bespoke code which

has been in constant developed for nearly a decade by the Computation Science

and Engineering Group (CSEG). This code has been designed such that

multi-physics problems including solidification, fluid flow and thermoelectric

magnetohydrodynamics (TEMHD) can be resolved in a single coupled model

where these processes can influence each other. This framework has been used

to examine complex multi-physics problems such as TEMHD effects on crystal

growth [88, 89] and the formation of freckle defects [90], utilising parallel

computing [91] (see section 4.5.2) to run large scale simulations where both

micro- and macro- scale phenomena and their interactions can be

simultaneously examined. One of the key requirements of the structural

mechanics solver described in chapter 3 was that it would be able to coalesce

with this prior research so that the SMS can potentially be added as a module

included in TESA, able to be turned on and off according to the requirements of

the scenario being modelled.

With the SMS completed and integrated into TESA there will be five solvers

comprising the code, all weakly coupled so that each aspect is solved separately

with relevant quantities being updated and passed between the solvers as

required. The relationship between these solvers has been summarised in figure

4.1, where structural mechanics, solidification and diffusive transport are the

core solvers which are being run for the research in this thesis. However, future

work could explore how fluid flow and magnetic forces interact with these

structural behaviours, including potentially providing extra inputs for the forces

driving the structural mechanics solutions.

Further information about the solvers and their relationship as depicted in

figure 4.1 are summarised below:
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• Solidification - using Cellular Automata (CA) method, see section 4.3.2 for

further details.

• Structural Mechanics - using a staggered grid Finite Volume Method to

obtain displacements, see Chapter 3 for more details. These displacements

can influence solidification by changing the orientation of the dendrite

(Chapter 5) and/or physically moving the structure by driving an

advection process (Chapter 6).

• External forces - these include any forces driving structural mechanical

behaviour, which could be a predefined force such as gravity which is

unrelated to any other TESA processes, but could also include

dynamically generated forces from the other modules.

• Transport - using the Finite Difference Method to alter the concentration

distribution based off of diffusion and any inputted flow velocities, where

this change in concentration will impact the solidification behaviour.

• Fluid Flow [91] - using the Lattice Boltzmann method to calculate flow

velocities. This could potentially be used to generate forces from the

pressure to drive deformation and stress build up in the structural

mechanics module.

• Thermoelectrics [88, 89] - using a staggered Finite Difference Method to

obtain the current which can be used to calculate a Lorentz force to drive

fluid flow. The Lorentz force could also potentially be used to drive

deformation and stress build up in the structural mechanics module.
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Figure 4.1: Flow chart of relationship between TESA modules

4.3 Solidification Modelling

The solidification behaviour of metal alloys is a complex process where the

system is governed by many factors [83] and is undoubtedly an intrinsic aspect

of this research. However, the primary focus of the work being presented is on

the integration of structural mechanics with existing solidification models which

have been essentially fully developed prior to this work being commenced.

Consequently, only a brief summary of the theory behind the solidification

processes will be provided alongside an explanation of how the solidification

models were utilised. It should also be noted that due to the approach used to

couple solidification to structural mechanics, while these models are the only

models that have been tested, there is potential to couple the SMS to other

solidification models if future research required it.

At the most fundamental level, a liquid metal solidifies as it is cooled,

preferentially nucleating around any impurities in the mixture or spontaneously

101



4. COUPLING STRUCTURAL MECHANICS TO
SOLIDIFICATION

in the melt should it become sufficiently cooled. Once a nucleation event has

occurred, the solidification front progresses as an interface forming crystalline

structures known as dendrites. The speed and growth behaviour of this process

largely depends on the temperature and composition of the alloy. This can be

observed in the phase diagrams describing the relationship between the phases,

concentration and temperature for two component alloys.

A further important consideration in these relationships is the temperature

where the eutectic phase forms, which is the lowest temperature where melting

can occur, hence meaning any part of a dendritic system at this temperature or

cooler must be fully solid, while any part above this temperature will still be

solidifying. Furthermore, the shape of these dendritic structures relates to an

underlying crystallographic lattice, the most fundamental of which being the

cubic lattice where if unconstrained the dendrite will grow in 6 orthogonal

directions. An unconstrained dendrite growing in this manner is known as an

equiaxed dendrite and can be thought of as a dendrite nucleated within the

liquid which is free to grow in all directions, leading to a dendrite with 4-fold

symmetry in the absence of any other phenomena which could interfere with the

growth, such as fluid flow, temperature gradients or contact with a mould wall.

However, for this research equiaxed dendrites are generally not appropriate

for structural mechanical consideration as, due to being free floating, external

forces impart no stress to the structure. Under a strong fluid flow, an equiaxed

dendrite would simply move through the liquid rather than deform, only possibly

experiencing deformation if they came into contact with other dendrites or the

mould wall. While certainly a related area and a potential avenue of future

work, modelling the movement and impact of equiaxed dendrites in this manner

is beyond the current scope of this research.

For this reason, this research is more concerned with directional
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solidification leading to the formation of columnar dendrites. This occurs where

the solidification starts at one end of the casting, generally with the nucleation

happening on the mould wall, the dendritic front then advances towards the

other side of the casting mould. This manner of solidification development is

more germane to the fundamental questions of the relationship between

structural mechanics and microstructure solidification as these columnar

dendrites possess an anchor point where they attach to the mould wall due to

their nucleation conditions. Consequently, when subjected to external forces

columnar dendrites must build up stress and deform, unlike the free to move

equiaxed dendrites.

4.3.1 The Enthalpy Method

For the initial tests of coupling structural mechanics with microstructure

solidification, an enthalpy based method for undercooled growth as described by

Voller [92] was used. This method was attractive for these initial explorations of

the topic as it was believed that as a 2D method which generated binary

dendrites would be a more straightforward test of the core concepts of the

research than a full coupling with the more complicated implementation of CA

method being used in the main TESA solver.

The method implemented is essentially identical to the method presented in

the paper by Voller, so only the key principles will be reproduced in brief here.

The order parameter f is used to formulate an enthalpy-based method for

representing a diffuse interface, where f represents a liquid fraction taking f = 1

as fully liquid and f = 0 as fully solid.

Governing equations for this approach relate f to the volumetric enthalpy H,

defining H as the sum of the sensible heat:
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H = cpT + fL (4.1)

where cp is the specific heat, T is the temperature and L is the latent heat of the

volume. With the conservation of enthalpy being given by

∂H

∂t
= ∇. (K∇T ) (4.2)

At the interface, the temperature is undercooled, defining the interface

temperature as:

T i = Tm − Γ (θ)
L

Tmκ (4.3)

where κ is the curvature, Tm is the melting temperature and the surface stiffness

is defined via a fourfold symmetry model. Where Voller then takes a numerical

approach to convert these equations into a dimensionless system, discretised onto

a Cartesian grid.

Examples of a developing equiaxed and columnar dendrite using the

Enthalpy method can be observed in figure 4.2 and 4.3 respectively. The

homogeneous nature of the dendrites produced by the enthalpy method can be

seen here, with values very sharply changing from fully solid to fully liquid, with

only the boundary cells containing any intermediate values.

Figure 4.2: Enthalpy method equiaxed dendrite.
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Figure 4.3: Enthalpy method columnar dendrite.

This solidification approach was used for the initial examinations of coupling

solidification with structural mechanics, both by means of solid material advection

and orientation changes, being the solidification model in use for work presented

in a conference paper by Soar et al. (2020) [93]. However, while this solidification

model possessed attributes allowing it to be relatively effectively coupled with

solid advection (see Chapter 6 for more details on the strengths and weaknesses

of this model for this approach), examinations of how the model responded to

orientation changes (see Chapter 5) highlighted the strong grid anisotropy of the

enthalpy method.

This causes the solidification to lock onto discrete orientations with

potentially large observable changes in growth behaviour as it switches between

these preferential growth angles, which became unacceptable as it became

clearer that potentially subtle changes to dendrite orientation can have large

potential effects on the development of a dendritic system.

Furthermore, the highly undercooled systems this method was designed to

model are not generally applicable to the industrial cases where structural

behaviour has most often been observed. These issues, as well as a desire to

move the simulations into 3D (where this implementation of the Enthalpy was

2D) and to couple the SMS with the main TESA process halted any further
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work being done with the Enthalpy method.

4.3.2 The Cellular Automata (CA) Method

The finite difference decentred octahedral Cellular Automata (CA) method

employed by TESA is based on the open source µMatIC code developed in

Imperial College by Professor Peter Lee and his colleagues [94–97]. The CA

method was extracted, refactored and implemented in TESA, a process that

was extensively documented and explained in the Thesis of M. Alexandrakis

[98], being further explained and summarised in more recent research papers

presented by Dr Andrew Kao and his colleagues [90, 91]. Being so widely

documented elsewhere and implemented before the commencement of this

research, only the core governing equations and principles which underpin the

method will be reproduced here.

This method uses a continuous phase variable ϕ to represent the solidification

process, where ϕ = 1 is fully solid, ϕ = 0 is fully liquid and any intermediate

values represent a solidifying cell. When modelling the solidification of a metal

alloy, the relationship between the concentration of solute in the solid (Cs) and

liquid (Cl) is governed by:

Cs = kCl (4.4)

where k is the partitioning coefficient of solute, which can correspondingly be

defined as k = Cl

Cs
. Phase change and the partitioning of solute is then governed

by the transient process

Cl (1 − k) ∂ϕs

∂t
= −∇ · (De∇Cl) + [1 − (1 − k) ϕs]

∂Cl

∂t
(4.5)

where t is the time, De = (1 − ϕs) Dl + ϕsDs is the equivalent mass diffusivity
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coefficient which defines the linear relationship in ϕ between the diffusion

coefficient of the solid (Ds) and liquid (Dl). The equilibrium interface

temperature T i is given by

T i = T0 + ml (Cl − C0) (4.6)

where ml is the liquid slope, C0 is the initial concentration and T0 is the liquidus

temperature at C0.

Finally, the equivalent concentration Ce = (1 − ϕs) Cl + ϕsCs is defined as the

linear relationship in ϕ between the solid and liquid concentration, which is the

concentration quantity taken by the transport solver to resolve diffusive and/or

convective transport within the problem domain, which can be parsed back into

the CA method to undergo further solidification.

An equiaxed dendrite simulated using the CA method can be seen in figure

4.4, which by contrasting it with the enthalpy example in figure 4.2 highlights

some key differences between the dendrites provided by this approach. The

overall morphology of the dendrite interface is different, with the dendrites

generated having a more diffuse boundary and clear internal patterns of higher

and lower solid fraction, whereas the enthalpy method produces dendrites with

a step function interface.

Figure 4.4: CA method equiaxed dendrite.
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It is notable that these dendrites are rather broad and lacking in secondary

dendrite arms branching from the main trunk, this is due to the orientation of

the dendrites being modelled. The orientation of a dendrite has a large impact on

how it develops, with the case where the dendrite is aligned exactly orthogonal

to the axis having the particular distinct morphology observed so far.

However, the CA method lacks the rather severe grid anisotropy which the

enthalpy method presents, and can be given a pre-defined collection of Euler

angles to describe the orientation of the dendrite. The stark difference these

changes in orientation can make have been highlighted in figure 4.5, where (a)

provides an example of a 0◦ dendrite and (b) shows a columnar dendrite growing

at an angle of 25◦.

(a) (b)

Figure 4.5: CA method Columnar dendrite. (a) 0◦ dendrite. (b) 25◦ dendrite.

The 0◦ dendrite is largely a special case which highlights the grid anisotropy

still existing within the CA method, with the dendritic microstructure generally

observed in experiments looking more broadly similar to the dendrite in (b)

with many secondary arms competing to establish their spacing from the start.

Secondary arm growth and competition does occur for 0◦ dendrites, with the

perturbation visible at the dendrite interface in the final image in (a) being the
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start of this process, however due to the grid anisotropy this process takes

significantly longer to begin and can lead to a quite distinct microstructure.

These dendrites have been presented as 2D slices to highlight their internal

variations in solid fraction, but they have in fact been modelled in 3D. This is

another advantage over the enthalpy method which was previously being used,

with 3D solutions being better able to represent the true solidification behaviour.

Figure 4.6: CA method 3D Columnar dendrite.

Figure 4.6 provides an example of the 3D structure of a growing columnar 0◦

dendrite, while figure 4.7 provides a comparison between growing equiaxed

dendrites with set crystallographic orientation of (a) 0◦ and (b) random 3D

rotation. Even at the early stages of growth this highlights the vastly different

morphology which occurs, with a much less homogeneous structure and

secondary arms forming.

For the reasons outlined, the CA method is the solidification model that has

been used for much of the later development and to produce the results presented

in Chapter 7.
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(a)

(b)

Figure 4.7: CA method 3D equiaxed dendrites. (a) 0◦ dendrite. (b) Randomly
rotated dendrite.

4.4 Accounting for Existing Deformation

When creating the structural mechanics solver, one of the key considerations was

how to keep track of how the shape has deformed as it continues to grow. Given

the derivation of the linear elasticity equations in Chapter 3, we can see these

equations can be solved in a transient and stationary manner, so this choice had

to be made on the basis of what would best synergise with the coupling process.

Considering that solidification and the other physical modules act in a

transient manner, it would seem intuitive that solid mechanics should be

similarly treated as a transient process, updating the solution for the

displacement as the shape solidifies and changes. However, a transient approach

does offer complications in representing the behaviour of a solidifying structure
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being resolved on a fixed Cartesian grid. As structural mechanics is solved, it

generates a displacement profile which describes how the structure will deform

from its original position which can then be used to drive solid advection

process to move structures through the grid and/or to change the local growth

orientation.

In the case of solid advection, keeping track of existing deformation is not

a straightforward process as after the structure has ‘moved’, the deformation at

the new position should be 0. Nonetheless, there will still be strains inside the

structure which must be accounted for when solving subsequent time steps to

limit unrealistic deformation. There is a similar problem with the orientation

tracking being derived from the change in deformation at each time step. Given

that a transient solution would be providing the absolute deformation of the

structure, an older time step would need to be retained in order to obtain the

local orientation changes which occur at each step.

For these reasons, it was decided that it would be preferable to solve successive

stationary solutions to resolve the deformation at each time step. This is done by

keeping track of the forces acting upon each volume of the structure, using the

concept that for a structure growing under a constant body force, the force can

only affect each cell of the structure once. In figure 4.8 an exaggerated example of

this process can be observed where (a) the structure is subjected to a structural

force; (b) these deformations are applied to moving the shape through the grid and

changing the orientation before being reset; (c) the solidification solver will then

run to generate more structure; (d) at the next call of the structural mechanics

solver, the force will be calculated for the entire structure, but any force already

applied will be removed so that the force will only act on cells which are newly

solidified. This will deform the shape more and the process continues.
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(a) Body force applied. (b) Reset displacements on structure.

(c) Solidification creates more mass. (d) Body force applied to new growth only.

Figure 4.8: Procedure for applying force to growing structures.

This approach relies on the force being stored locally for each cell, where the

applied body force (ABF ) value actually being used by the SMS at a given time

step for each cell can be thought of as the following equation:

ABFt(i, j, k) = BFt(i, j, k) − BFt−1(i, j, k) (4.7)
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With this approach, under a constant body force only newly solidified cells

would have a force applied to them, but this is equally able to account for

situations where the force changes, potentially applying forces in an opposing

direction to the previous time step and undoing any deformation that occurred.

The structural mechanics equations are still solved for the whole structure, so

there will be a displacement profile generated for every solid cell, but the only

forces driving these new displacements are found in parts of the structure where

the force has changed since the prior time step.

In order to appraise how accurately this quasi-stationary approach can capture

the transient accumulation of deformation in a growing structure, a test case

tracking the deformation of a growing beam was constructed for comparison with

a Beam Theory analytic solution for a cantilever beam under a distributed load

(see 3.10.7). For the test, a beam with the following properties was used:

Dimensions = 20 × 20 × 120

E = 10 GPa

∆x = 10 µm

ρ = 7020 kg/m3

Force = ρg N/m3

To represent a growing structure, a 20 × 20 × 20 block was fixed to a wall in

the manner of a cantilevered beam, this was then grown in 5 volume increments

until it reached the final length of 120 volumes, applying force to the new growth

and solving structural mechanics after each growth event before adding this to

the existing deformation to obtain the overall deformation of the beam at that

point in time, as can be observed in the selection of time steps shown in figure

4.9.
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Figure 4.9: Deformation of a growing beam.
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This is an idealised case where the beam simply grows by a fixed amount

along the x axis, calculating the change in deformation to allow the beam to

reach a stationary solution rather than directional solidification where the growth

behaviour of the dendrites can be changed to create a different structure. As such,

the final deformation profile obtained from this growing beam should match the

case where a beam of length 120 was deformed from an initial state where it

experiences no force, thereby matching the beam theory solution for the same

beam.

This comparison has been demonstrated in figure 5.10, where the local

deformations observed running through the centre of the grown beam at full

length have been plotted alongside the predicted deformations from beam

theory. While the grown beam does demonstrate a slight under prediction, it

has a comparable values and behaviour to the beam theory solution. This would

seem to indicate that this approach of applying successive deformations as the

structure grows will provide a reasonable approximation to the true deformation

behaviour a growing structure would experience.
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Figure 4.10: Final deformation of a grown beam.
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4.5 Solver Performance Enhancements

As the SMS is currently using a point-by-point Gauss Seidel approach, there

can be potential issues with the solution speed of large scale problems. This

section will address the enhancements which have been implemented in order to

reduce both the computational and real world time required to solve these larger

problems.

4.5.1 Multi-Scale Modelling with Trilinear Interpolation

As mentioned prior, the problems being solved by TESA can include modelling

multiple different numerical processes, structural mechanics and solidification for

the simplest cases being examined, but this can be expanded to include other

elements such as fluid flow and electromagnetism. One of the advantages of

solving all these phenomena on a Cartesian grid means that any information can

be easily passed between the solvers.

However, having all these grids linked in this way means that the grid

resolution must be as fine as the most sensitive part of the solver requires,

which can potentially lead to parts of the solver being solved at a much finer

resolution than is required to get an accurate answer, costing computing power

and real time unnecessarily. For this reason, grid multi-scaling was introduced

for the structural mechanics, allowing structural mechanics to be solved at a

coarser scale than the solidification solver.

In the current setup, this takes the solid fraction existing on a fine grid for

solidification and aggregates these cells to obtain an average value for a

corresponding cell on a coarser grid. This allows a smaller problem to be solved

by the SMS, significantly shortening the solution time.
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Figure 4.11: Overlaid 4 × 4 cells showing a multi-scaling of 2 (blue cells) and 4
(red Cell).

Figure 4.11 presents a 2D example of how this multi-scaling process relates

different grid sizes, demonstrating how a 4 × 4 selection of cells on a fine grid be

aggregated into 2 × 2 cells using a 2 cell multi-scaling, or a single cell using a 4

cell multi-scaling. The 2 and 4 cell scaling shown here is only an example, as odd

numbered scaling and scaling going to higher numbers could also theoretically be

used, providing the domain size was divisible by the scaling value.

This has been presented in 2D for ease of demonstration, but the solver in

fact considers the 3D volumes when performing this process, which means the

gains in computation time are even greater as by taking a 4 × 4 × 4 group of

computational cells on the fine grid, by applying multi-scaling you would reduce

the cells from 64 to 8 for a scale factor of 2 and to a single cell for a scale factor
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of 4.

This process of multi-scaling is generalised using the following pseudo-code to

obtain a node on the coarse Volume Grid Vc (dimensions nx
s

× ny
s

× nz
s

) from a fine

volume grid Vf (dimensions nx × ny × nz) using a given scaling value S (where

nx, ny and nz must all be divisible by S):

for i = 1 : nx, j = 1 : ny, k = 1 : nz

Vc(i, j, k) = 1
S3

 S∑
ui

S∑
vj

S∑
wk

Vf ((i − 1) ∗ S + ui, (j − 1) ∗ S + vj, (k − 1) ∗ S + wk)


Once the coarse gird is obtained, this can be used as the input for the SMS,

which should now solve significantly faster. But once this coarse problem has

been resolved, the displacements obtained will also be at a coarse resolution,

meaning that they must be converted back to a finer grid so that they can act as

inputs to other processes impacting the solidification behaviour.

The most straightforward approach would be to simply take the value of the

coarse grid for all of the volumes it covers on the fine grid, as can be seen in

figure 4.12, and can be conceptualised by the following pseudo-code describing

the propagation of the coarse grid values onto the fine nodes:

for i = 1 : nx

S
, j = 1 : ny

S
, k = 1 : nz

S

for l = 0 : S − 1

Vs(i + l, j + l, k + l) = Vc(i, j, k)
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Figure 4.12: Copying coarse cell value into constituent fine cells.

However, this will provide blocky solutions, where the results for the structure

will be made by groups of S × S × S volumes of the same value. This may be

acceptable for some applications, but especially if higher S values are used, this

will fail to capture the realistic gradients of change that will be occurring at a

finer resolution.

For this reason, it was decided to implement Trilinear Interpolation method,

such as the one described by P. Bourke [99]. For the implementation in the case

of the displacements, first on the coarse grid the displacements are interpolated

to the corners of the volume as demonstrated in figure 4.13a (using a 2D example

for visual clarity). Having these values at the corners of the volume allows the

Trilinear Interpolation algorithm to obtain a value for any point inside of the

volume where the value obtained considers how close the given point inside of the

structure is to the corners, weighting the value accordingly, as demonstrated in

figure 4.13b (again in 2D for visual clarity).
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(a) Interpolates cell centre values to cell
vertices.

(b) Cell centre values on fine grid obtained
using trilinear interpolation.

Figure 4.13: 2D trilinear interpolation example.

Once these corner values have been found, any point within the volume can be

obtained by considering a cubic lattice where values at the vertexes can be used

to obtain the target of the trilinear interpolation at the generic point C(x, y, z)

inside the volume (see figure 4.14). The distance between this point and the

preceding coordinate in that plane can then be derived as follows:

xd = x − x0

x1 − x0
(4.8)

yd = y − y0

y1 − y0
(4.9)

zd = z − z0

z1 − z0
(4.10)

where x0 is the x-coordinate at the face of the volume below the location of x,

with x1 being the location of the face above. The same principles applying to y0,

y1, z0 and z1; see figure 4.14d. Initially, locations corresponding to a point along

the edges of the volume at x position are interpolated, giving:
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C(x,y0,z0) = C(x0,y0,z0) ∗ (1 − xd) + C(x1,y0,z0) ∗ xd (4.11)

C(x,y0,z1) = C(x0,y0,z0) ∗ (1 − xd) + C(x1,y0,z1) ∗ xd (4.12)

C(x,y1,z0) = C(x0,y1,z0) ∗ (1 − xd) + C(x1,y1,z0) ∗ xd (4.13)

C(x,y1,z1) = C(x0,y1,z1) ∗ (1 − xd) + C(x1,y1,z1) ∗ xd (4.14)

which can then be interpolated along the y axis in a similar way to obtain two

further points:

C(x,y,z0) = C(x,y0,z0) ∗ (1 − yd) + C(x,y1,z0) ∗ yd (4.15)

C(x,y,z1) = C(x,y0,z1) ∗ (1 − yd) + C(x,y1,z1) ∗ yd (4.16)

finally allowing these two points to be interpolated along the z axis to obtain the

desired point C(x,y,z):

C(x,y,z) = C(x,y,z0) ∗ (1 − zd) + C(x,y,z1) ∗ zd (4.17)

This presented approach is a general method for finding any location within

the volume, but for this implementation the trilinear interpolation has been used

to obtain the value at the cell centres of the volumes on the fine grid to provide

a smoother representation of the displacement behaviour.
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(a) Vertex points and target point. (b) Interpolate x points.

(c) Interpolate y points. (d) Interpolate z for target point.

Figure 4.14: 3D trilinear interpolation process.

Using multi-scaling methods such as these will have implication for the

accuracy of the displacements obtained, and hence any other metrics being

derived from them. This impact is hard to measure in an absolute way however,

as the degree to which the accuracy of the solution is reduced will be very

problem specific, depending on how much lower than grid independence the fine

grid is than the structural mechanics solver needs, as well as considering how

much detail in the structure will be lost by aggregating the solid fraction onto a

coarser grid and if this will have a significant effect on the mechanical
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behaviour.

However, to provide a general idea of the impact of this approach for an

idealised case, a cantilever beam was modelled using a selection of increasingly

coarser multi-scaling grids (all sizes cannot be used as the structure has to be

divisible by the coarse grid for an accurate solution for a structure with a sharp

interface such as the beam being modelled). The displacement profiles generated

by these models are not easy to visually distinguish, so for comparison a line

running through the middle of the beam has been plotted in figure 4.15, which

demonstrates that even for significantly coarser grids the SMS is still providing

results of comparable accuracy and behaviour to both COMSOL and the SMS

solution using the fine grid, while being considerably quicker to converge due to

the smaller problem size.

To demonstrate the impact of trilinear interpolation, figure 4.15a shows the

raw values of the multi-scaled solutions where significant discontinuities are

caused due to simply copying the coarse value directly into all constituent cells

on the fine grid. The smoother results obtained by applying the previously

outlined trilinear interpolation process to these values can be observed in figure

4.15b.
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(a) Raw multi-scaled solutions.

(b) Solutions after trilinear interpolation.

Figure 4.15: Accuracy comparisons for a beam using multi-scaled SMS vs
COMSOL.
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4.5.2 Parallel Programming

As previously mentioned in Section 4.2, TESA has been designed to utilise

parallel computing to solve problems using potentially billions of cells. This

allows problems to be examined which would take a prohibitive amount of real

time to obtain using a serial computing setup. The parallel libraries have been

developed and implemented to the existing elements of TESA prior to the

commencement of this research, the details of this process, along with

benchmarks for the performance of the parallel libraries can be found in existing

published work [91, 98].

However, to ensure that the structural mechanics code does not act as a

performance bottleneck when it becomes necessary to run large cases it was

considered necessary to apply these principles to the structural mechanics

solver. Consequently, this section will briefly outline how the parallel libraries

were implemented for the SMS, as while existing parallel libraries were adopted

for this task, there were complications unique to the SMS that required

addressing.

The parallelisation process utilises a domain decomposition method to split

the problem into sub-domains which can be solved by individual processors, only

being limited by the number of processor cores available and if the geometry of

the problem allows it to be split into equally sized sub-domains. In figure 4.16

an indicative example is shown of a domain being split in four subdomains which

can then be solved simultaneously on four processors, where each processor has

a domain comprised of computational cells and a one cell border of ‘halo region’

cells surrounding the domain to represent the boundaries where data is passed

into the solver, but no computation occurs.

For the domain boundaries, this information will be defined elsewhere based

on the boundary conditions used for the problem. For the inter-core boundaries,
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the parallel libraries must be used to pass information between the cores (as

highlighted by the coloured cells and arrows) which will be updated with each

iteration of the solver, allowing the solution to propagate across all cores being

employed so that it can converge to the same solution as would be observed if

computed in serial. While the diagram is for a 2D problem, these principles can be

scaled up for use with any number of processors potentially dividing the domain

in all three dimensions, so long as the size of the domain in each dimension is

divisible by the number of processors being used to split up and solve it.

Figure 4.16: Boundary behaviour for a 2D system of four parallel processors.

A zoomed in example of how this works across a single boundary can be seen

in figure 4.17a, where the halo-region containing the boundary information for

each processor will be populated by the last computational cell in the domain of

the other processor.
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However, some slight changes had to be made to this for the SMS as this

uses a staggered grid, meaning that while a cell centred domain was being used

for most other variables, the displacements have one extra computational cell

in the direction of staggering when compared to the cell centred quantities. To

account for this, as demonstrated in figure 4.17b, each processor has been given

an extra cell in the direction of staggering, these cells are ignored by the parallel

libraries and the SMS on every processor except for the furthest processor(s) in

the staggered direction, meaning that the number of cells being used to perform

calculations matches the amount that would be required in serial.

The implementation of these parallel libraries with the SMS has allowed large

scale problems to be run on Greenwich’s HPC using hundreds of processor cores,

but even on a single work station using the parallel libraries to split the problem

between all processor cores in this manner can obtain solutions in significantly

faster times than if run in serial.

(a) Cell centred parallel boundary. (b) Staggered parallel boundary.

Figure 4.17: Comparison of cell centred and cell staggered parallel boundaries.

4.5.3 Enhancement Speed Impact

Quantifying the improvements in solution speed gained by using the solver

enhancements discussed in this section is not a straightforward task for a

coupled, multi-physics solver such as TESA. Parallel computing is seldom 100%

efficient due to time taken in communication between the nodes and while

multi-scale modelling can have a huge impact on reducing the solution time,
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this is often limited by the level of accuracy required by the solutions.

Kao et al. [91] provides a summary of the parallel performance of the CA

method on domain sizes of up to a billion cells. The parallel efficiency was found

to vary between 60 − 70%, where 100% efficiency would mean that in real time

the problem ran as many times faster as there are parallel nodes (so for example,

a problem using 400 nodes would run 400 times faster than if only 1 node was

used at 100% efficiency). It is also mentioned that multi-scale modelling is being

employed for modelling the fluid flow, using a grid size four times larger than the

one the CA method uses for solidification. This means that even when utilising

64 times fewer cells to model fluid flow than the rest of the solver, fluid flow still

takes 1/3 of the total simulation time.

Aside from highlighting the necessity of using variable length scales in a more

general sense, this is more directly pertinent to the SMS as a 4-1 grid scaling is

also being applied to structural mechanics for the cases presented in Chapter 7 to

improve the solution time. Having both structural mechanics and fluid flow solved

using the same grid scaling may also prove to be helpful in future work where

bother processes are run for the same problem, as resolving both at the same

length scale which would allow them to interact without having to interpolate

solver outputs.

A full performance study to assess the efficiency of the SMS on the parallel

libraries would be a very time consuming task to do properly while being of

questionable benefit to the research. This is because the libraries had already

been created prior to this project, have already been tested for the other models

and there are future plans to improve the SMS to use more efficient methods than

the currently applied point-by-point Gauss-Seidel method, which would render

any insight from the study moot.

However, to provide a indication of the impact these solver enhancements
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have had on the solution speed of the SMS, a speed test was performed on a

simple problem where the entire 96×96×96 (884736) volume domain was a solid

fixed at all boundaries and subjected to a constant body force. The converged

displacement profiles for this problem can be observed in figure 4.18.

Figure 4.18: Displacement profiles for test case used to test timing.

This problem was solved using an increasing number of processor cores and

grid sizes, including the interactions between applying different numbers of cores

and grid sizes concurrently. The time in seconds to run the SMS to convergence

for this problem under for all these cases have been summarised in table 4.1.

This data clearly highlights the massive impact multi-scale modelling can have

on solution time, as even on a single processor, the problem is nearly 150 times
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faster using a 4-1 scaling factor (13824 cells) and is still over 25 times faster for

a 2-1 scaling (110592 cells).

Multi-scale modelling can clearly be highly impactful in shrinking the

problem and thereby lowering the computational complexity to allow for

solutions to be obtained faster by potentially orders of magnitude. However, for

many more complex problems there is a strict limit to how much the scaling can

be increased before the answers obtained are effectively useless due to the

behaviour of interest being too precise to capture on coarse grid resolutions. As

such, while in theory the grid could be scaled such that any problem could be

solved quickly, in reality to actually capture complex phenomena in reasonable

times using parallel programming to share the computational load between

many computers is a more practical solution. Looking at the parallel timings in

table 4.1, it can be seen that even at 1-1 grid scaling, the problem can be solved

in significantly less real time when run using multiple cores.

There are clear inefficiencies due to processor communications, with the case

with 2 cores not quite being 2 times faster, and so on as the number of cores being

applied increases. It is notable that while still significantly faster in real time, the

16 core job is far less efficient than the other cases being only 78% efficient while

for the other cases the efficiency was above 90%. This is likely due to the way the

domain had to split up to facilitate running on 16 cores leading to domains with

surface areas which exacerbate communication inefficiencies, which highlights a

common concern of choosing the best dimensions for domain decomposition to

maximise efficiency.

For the cases including both multi-scaling and multiple cores the efficiency

seems to grow even lower due to the progressively smaller domain sizes where the

number of cells at the surface of the domain becomes relatively large compared

to the total number of cells, which increases the relative amount of time spent on
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communications between domains. Regardless, by applying 16 cores and a 4-1

scaling to this problem, the initial solution time of nearly 25 minutes can now be

reduced to a single second, truly highlighting the power of these enhancements

in shortening the real time required to obtain solutions.

Cores
Grid Scaling

1 2 4

1 1493 59 10

2 781 41 6

4 379 22 3

8 199 12 2

16 119 7 1

Table 4.1: Timing data in seconds comparing real time improvements from
parallel computing and multi-scale modelling.

4.6 Summary

In this chapter a summary was provided for the TESA framework which the

SMS was specifically designed for integration with. This gave a brief description

of the individual solvers and how they relate to one another, which was

expanded in the following section to describe the applied solidification models in

greater detail. The novel process of how existing deformation is accounted for

by the SMS was described. Finally, the processes of multi-scale modelling and

parallel programming were introduced, where it was explained how these solver

enhancements were implemented to allow for faster solution times to be

attained.
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Chapter 5

STRUCTURAL CHANGES TO

DENDRITE ORIENTATION

5.1 Overview

This section discusses the dendrite orientation methodology used by the CA

method and how local orientations were implemented such that they could be

updated by the outputs from the SMS. The requirement for a local definition of

dendrite orientation is introduced, explaining the relationship between intrinsic

Euler angle orientation and CA method growth. A method is then implemented

to allow for the changing of these angles using the displacement outputs from

structural mechanics, with the accuracy of this approach assessed theoretically

then verified using an idealised test case.

5.2 Local Orientation Tracking

In the Cellular Automata (CA) method (see section 4.3.2), a dendrite has a

fourfold symmetry that will cause it to grow into a symmetrical crystal. In
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previous work undertaken with TESA, in order to replicate experimental results

dendrite grains would be seeded with a starting orientation1 estimated from

analysing the experimental results and using Euler angle transformations to

determine the preferential growth of the solidification.

By pre-seeding an orientation in this manner, dendrites growing at any given

orientation can be obtained, with approaches such as this being employed in

almost all of the papers discussed in section 2.3 which were concerned with

dendritic orientation in numerical modelling. However, dendrites with

pre-seeded orientations will remain fixed at this orientation throughout the

simulation, so experimental results such as those presented as motivation in

section 2.2 demonstrating dendritic growth where the orientation changes as the

structure develops cannot be replicated by this modelling.

In order to address this shortcoming, the approach has been expanded so

that rather than having a single orientation for each grain, the orientations are

instead localised – with each computational volume used by the structure having

a unique orientation variable. This allows the orientation of the dendrite to vary

as it grows and even allow individual arms growing from a grain to develop and

grow in entirely different orientation to the main body of the starting dendrite.

For the CA method, intrinsic Euler angles are required in the form of a ZXZ

rotation matrix. Intrinsic rotations are able to describe any given orientation in

3 dimensional space by using a combination of 3 rotations about the axis relative

to the moving body, that is to say that the reference axes are moved with each

rotation. As implied by the name, a ZXZ Euler Angle matrix rotates around

the Z axis, the new X axis then finally the new Z axis to describe a rotation

in 3D space. This principle of intrinsic rotations is demonstrated in figure 5.1,
1In some of the diagrams and examples of behaviour presented in this section, values in

degrees (◦) may be used to aid clarity when understanding the observed behaviour, but within
the code itself radian values are used.
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demonstrating a generic ZXZ rotation on the axis and the corresponding volume,

with the arrow at the top of the cube indicating the current orientation of the

volume.

(a) Rz1 rotation. (b) Rx rotation.

(c) Rz2 rotation. (d) Final orientation.

Figure 5.1: Intrinsic rotation example.

Prior to the implementation of the localised orientations, the fixed orientation
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of a dendrite was attached to a given grain number. However, now each volume

has its own orientation, this local orientation needs to be tracked and passed on to

any new volumes the dendrite seeds as it grows, allowing new growth to continue

developing in the correct direction. This behaviour has been integrated into the

CA method, so that whenever a new volume is seeded by solidifying material that

volume will inherit the orientation of the volume which seeded it.

When considering structural mechanical behaviour in this context, the need

for local orientation becomes clear, as if you consider a long dendrite which

experiences a significant force at the tip, that may cause a relatively large

change in the local orientation at this location while barely changing the

orientation further down the arm of the dendrite (or indeed in any secondary

arms growing from these regions). Even though no further force may be

applied, having localised orientation ensures that any further growth will retain

a memory of the previous orientation changes as new volumes are seeded and

growth continues.

5.3 Displacement Driven Orientation Change

For the localised orientation approach to work, a framework for using the

displacements to change the orientation of a volume needed to be developed. As

the objective of this was to make a generic and local process, it was imperative

for this approach to be able to function without using only information which

could be obtained from the surrounding volumes.

A process was developed to take the input of the u, v and w displacements

and from these generate a collection of ZXZ rotation matrices for every volume

comprising the structure.

By considering the case of a single volume, due to the nature of the
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staggered grid, there exists a deformation at each face of the volume. However,

by considering these displacements in figure 5.2, it can be seen that by applying

these deformations to the volume it would only be deformed, not rotated.

Figure 5.2: Displacements normal to cube faces.

However, by considering the deformations of the surrounding volumes, it is

trivial to interpolate the displacements so that there are values for all three

displacements located at each face, as shown in figure 5.3 (though this example

only shows a 2D example with two displacements for visual clarity). Due to the

way the staggered grids line up, the interpolation process finds a point in the

middle of four staggered displacement nodes, providing each volume face with

tangential displacements as indicated in figure 5.4.
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(a) 2D staggered grid. (b) Interpolated displacements.

Figure 5.3: Method of interpolating displacements on all faces of a volume.

Figure 5.4: Displacements tangential to volume faces.

Now that the displacements along each axis have been obtained at each face,

it can be considered how this movement at the face of the volumes will change the

overall orientation of the volume. This has been done by treating the cubic volume
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as a sphere with a diameter of ∆x, then the three rotations around the fixed x,

y and z axis can be established by considering the 2D cases of a ∆x diameter

circles being rotated around their respective axis as shown for a rotation around

the z axis in figure 5.5.

Figure 5.5: Obtaining ∆θ from interpolated displacements.

The angle ∆θ is obtained by taking the average of the combined displacements

to describe the amount this imagined circle has rotated around the axis from it’s

original position, which is here being displayed as a straight line from the central
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point to the East face of the volume. But this is simply a convention, as due to

the fourfold symmetry the same behaviour could be demonstrated using a line

drawn from the centre to any of the volume faces. Note, the angle here is defined

as ∆θ as it is a change in orientation from whatever the current orientation may

be, with the current value of θ having no impact on the calculation of ∆θ.

This change in orientation can be obtained using the geometrical formula for

the length of a circle arc, again considering figure 5.5, the length of the arc A is

described by taking the average of the displacements acting to rotate the volume:

A = 1
4(ve − vw − un + us) (5.1)

r∆θ = A (5.2)

1
2∆x∆θ = 1

4(ve − vw − un + us) (5.3)

∆θ = 1
2∆x

(ve − vw − un + us) (5.4)

Having obtained this angle to describe the change in volume orientation it

is useful to make a note of the behaviour of the four-fold symmetry governing

dendrite development in the CA method. Within this framework there is only

a meaningful range of 90◦(±45◦) around the default orientation corresponding

to the fixed axis, as seen in figure 5.6a. This is because the four-fold growth

symmetry of the crystals means that for any given orientation there are three

complementary orientations (in the range 0-360◦) at which the structure will

grow identically as indicated in figure 5.6b. For example, a rotation of +50

degrees from the starting orientation is identical to a rotation of –40◦ or +140◦
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(or any other corresponding rotation satisfying the symmetry). This simplifies

the problem to an extent, as the solidification method will accept any of these

symmetrical rotations as an input and behave correctly.

(a) 90◦ Region of Orientation Change (b) Fourfold Symmetry Relations

Figure 5.6: Orientation changes with four-fold symmetry.

This allows orientation change to accumulate to large values without requiring

any special treatment, though for the case of bending linear elastic dendrites

orientation change of this scale this should not often occur in many of the cases

being examined in this research. However, in the case of a twisting dendrite (see

case 7.8), where a dendrite arm grows long enough under a torsional force it is

not unreasonable that it may accumulate large changes in orientation as it twists

across the domain.

Furthermore, this behaviour could prove essential for cases of tumbling

dendrites which have been highlighted as a potential area for future work (see

the rotating dendrite in figure 6.18 in Chapter 6 for a more limited example of a
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dendrite spinning in place), as these falling dendrites may spin round their axis

many times as they move through the domain to accumulate a rotation which

may be very large when measured from their initial position. In these scenarios,

even if the total orientation change accumulates to hundreds or even thousands

of degrees, the solidification process will simply consider this rotation in relation

to how much it varies ±45 from the fixed axis and grow accordingly.

In this manner, by considering the three 2D rotations about each axis the

overall rotation of the volume in 3D space can be defined. However, these three

rotations are not the intrinsic Euler Angle rotations about relative axes that the

CA method requires, these are extrinsic rotations about fixed axes. A

demonstration of how extrinsic rotations can be used to rotate a structure in

three-dimensional space can be seen in figure 5.7, to be compared with rotations

using intrinsic rotations shown earlier in figure 5.1. Nevertheless, any given 3D

orientation can be described as a combination of three rotations, whether

intrinsic or extrinsic.
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(a) Rx rotation. (b) Ry rotation.

(c) Rz rotation. (d) Final rotation.

Figure 5.7: Extrinsic rotation example.

A process using the methods outlined by Eberly (2008) [100] was used to

construct 3D rotation matrices using these extrinsic rotation angles and then

extract intrinsic Euler angles was implemented. For this, the extrinsic rotations
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were combined into a 3D rotation matrix which maps ZYX1 extrinsic rotations

around the fixed axes.

A 3D rotation matrix describing the combination of the three successive ZYX

extrinsic rotations Rz(θz), Ry(θy) and Rx(θx) can be obtained as follows:

R = Rz(θz)Ry(θy)Rx(θx) =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 = (5.5)


cos(θx) cos(θz) cos(θz) sin(θx) sin(θy) − cos(θx) sin(θz) cos(θx) cos(θz) sin(θy) + sin(θx) sin(θz)

cos(θy) sin(θz) sin(θx) sin(θy) sin(θz) + cos(θx) cos(θz) cos(θx) sin(θy) sin(θz) − cos(θz) sin(θx)

− sin(θy) cos(θy) sin(θx) cos(θx) cos(θy)


Then from this rotation matrix, the ZXZ Euler angles required by the CA

method can be extracted using the following process written in pseudo-code:
1The choice of ZYX rotation matrix is arbitrary, as the combination of these extrinsic

rotations in any order would generate a valid rotation matrix for this process
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if (r33 < 1)

if (r33 > −1)

θz1 = atan2(r13, −r23)

θx = acos(r33)

θz2 = atan2(r31, r32)

else if (r33 = −1)

θz1 = −atan2(−r12, r11)

θx = π

θz2 = 0

end if

else if (r33 = 1)

θz1 = atan2(−r12, r11)

θx = 0

θz2 = 0

end if

(5.6)

As the shape grows and deforms further the angle of orientation can

accumulate and change, consequently it was necessary to store the orientation

information for each volume. The most straightforward way found to do this

was to store the extrinsic rotations about the ZY X axis, which could be

updated by calculated ∆θ values to account for changes in rotation angle before

being converted at any time to the intrinsic Euler Angle form required by the

CA method.
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5.4 Displacement Driven Orientation Change

Verification

The review of the literature indicates that using the displacements obtained from

structural mechanics to drive a change in a structure’s orientation is a novel

approach, as such it was necessary to confirm that this provides an acceptably

accurate approximation of orientation change in a growing structure as caused

by the application of concurrent structural mechanics.

This was first done theoretically, by simplifying the problem to consider a

cantilevered beam as described by the Euler-Bernoulli beam theory (see section

3.10.6) and considering the relationship between the deformation and orientation

change of a beam (see chapter 9 of ‘Mechanics of Materials’ by J. Geere [101] for

more details).

If a beam of length L is subjected to a force causing a deflection w, as can

be seen in figure 5.8a this allows the angle of rotation for the entire beam to be

described using the tangent trigonometric identity as:

θ = tan−1(w

L
) (5.7)

To relate this back to solidification this means that if a beam grew to length

L at the angle θ, the tip of that beam would be in the same location as if the

beam grew at angle θ = 0 to length L and was deformed by w. However, while

we are able to assume that both the grown and deformed beam are essentially

identical in length due to the infinitesimal deformations implied by beam theory,

in the exaggerated example in the figure the morphological differences between

the straight grown beam and bent deformed beam are obvious. The problem this

causes has been highlighted in figure 5.8b where the obtained angle θ is not the
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angle of orientation at the tip of the deformed dendrite. Meaning that while the

deformation can be accounted for by growth at a given angle, any further growth

will be incorrectly aligned.

Behaviour such as this highlights why it is important for the orientation of

the dendrites to be stored locally for each volume rather than having a fixed

orientation for the entire structure. Considering the bent beam in figure 5.8c,

much as the local deformation w(x) varies depending upon location along the

beam, there is a varying local orientation θ(x) along the length of the beam that

can be conceptualised as the angle between the x axis and the tangent of the

deflection curve at that point. Here the beam has only been split at x = L and

x = L+∆x, where the distance between L and L+∆x has been made significant

for clarity.

In reality the beam can be subdivided into any number of points with

corresponding orientations, where as the subdivision causes ∆x to shrink, the

difference between successive orientations ∆θ will correspondingly also shrink.

These local orientations can be obtained using the slope of the deformation

curve, which is by definition the first derivative d
dx

w(x) of the deformation w,

and as shown in figure 5.8d where for a section of the deformation curve the

angle of rotation can be defined as:

d

dx
w(x) = w(L + ∆x) − w(L)

(L + ∆x) − L
= ∆w

∆x
= tan(θ(x)) (5.8)

where due to the small deformation assumptions being used by linear elasticity,

the angle of rotation will be correspondingly small. This means that tan(θ) ≈ θ,

allowing the equation to be further simplified to:

θ(x) = ∆w

∆x
(5.9)
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which is in fact a 1D version of the equation 5.4 formulated earlier to describe

the orientation change from displacements.

Using this approach, the local orientation along the length of a deformed

beam can be calculated from the local displacements, allowing the physical

deformation to be accounted for by a change in orientation as demonstrated in

figure 5.8a, but by subdividing the beam into increments of ∆x any growth

using the approximation of θ(x) will match the true behaviour of the deformed

beam increasingly closely as ∆x grows smaller, with it having an approximately

correct tip orientation for any future growth.

(a) (b)

(c) (d)

Figure 5.8: Obtaining the local angle of a deformed beam.

However, while in theory this approach should be able to account for all

deformation from changes in orientation (providing the deformations obtained

satisfy linear elasticity), in practice it will always under predict the change in

orientation to some degree. One reason for this is that there will always be
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some loss when reconstructing the tangent for a local orientation as in figure

5.8d, where the deflection curve will not quite match the hypotenuse of the right

angled triangle formed by ∆x and ∆w.

Nevertheless, any loss in accuracy from this effect should be miniscule as for

any reasonable value of ∆x the small deformations and small values of θ(x) cause

this hypotenuse to be practically the same as ∆x. A potentially more significant

factor causing under prediction is the manner in which these orientation changes

are applied to the structure.

In the theoretical model, the observed deformations w(x) can be accounted

for by growth at the varying orientation θ(x). However, in the way they are being

applied in the SMS, the orientation change for a deformation step is calculated

then added to the existing orientation of the structure, only influencing future

growth, meaning that while the structure is now correctly orientated, the physical

movement of the structure has not been accounted for.

Any impact from this can be mitigated by having an appropriately small

time step between solving structural mechanics so that any deformation being

neglected this way is insignificant. A further justification for overlooking this

physical movement can be found in definitions of ‘small’ deformations described

earlier in section 3.2.2, where the deformation is assumed to be so small that

the structure is physically in the same location, essentially meaning that any

deformations obtained whose physical movement cannot be safely overlooked

would mean that the solution is in violation of linear elasticity.

In order to appraise how these issues may effect accuracy in practice, the test

case which was used to assess the accuracy of the method used to account for

existing deformation given the quasi-stationary approach as described in section

4.4 was again used (everything stated about the problem setup in this section

holds true for this example, though some information will be repeated for clarity).
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These results can easily be repurposed to compare how the orientation of a

growing beam changes based on the methods described in this chapter, comparing

these values against the expected orientation given by a beam theory analytic

solution. For this test, both the SMS and beam theory are used to calculate the

orientation change of a deforming beam with the following properties:

Dimensions = 20 × 20 × 120

E = 10 GPa

∆x = 10 µm

ρ = 7020 kg/m3

Force = ρg N/m3

The beam theory approximations for a beam with distributed load (see 3.10.7)

were used to obtain the displacements along the length of the beam, from which

the local orientations were calculated using the approximation in equation 5.9.

To validate this approach of using successive deformations as a structure grows

to update the change in orientation, a 20 × 20 × 20 block was fixed to a wall in

the manner of a cantilevered beam which was then grown in 5 volume increments

until it reached the final length of 120 volumes, solving structural mechanics after

each growth event and updating the orientation of the beam correspondingly, as

can be observed in the selection of time steps shown in figure 5.9.
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Figure 5.9: Changing orientation of a growing beam.
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This is an idealised case where the beam simply grows by a fixed amount

along the x axis, calculating the change in deformation to allow the beam to

reach a stationary solution rather than directional solidification where the growth

behaviour of the dendrites can be changed to create a different structure. As such,

the final deformations (and hence orientation change) obtained from this growing

beam should match the case where a beam of length 120 was deformed from a

starting state experiencing no forces, thereby matching the beam theory solution

for the same beam.

Section 4.4 found a good agreement between the observed deformation of the

fully grown beam for both the SMS and beam theory, where the same would be

expected for the derived orientation values. A comparison of these aggregated

final orientation values can be seen in figure 5.10, where the local orientations

observed running through the centre of the grown beam at full length have been

plotted alongside the predicted orientation from beam theory. While the grown

beam does demonstrate a clear under prediction, it has a comparable values

and behaviour to the beam theory solution, seemingly indicating this approach

provides a realistic approximation of the true orientation change occurring in a

growing structure. In addition, as the fivefold volume increment being used here

represents a much larger structural mechanics time step than would generally

be considered desirable for a microstructure solidification problem, these larger

intervals between solutions potentially exacerbate the previously outlined issues

which can lead to an under prediction of the orientation.
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Figure 5.10: Final orientation along a grown beam.

5.5 Summary

A novel approach to obtaining local orientation changes throughout a structure

was developed, where the displacements obtained from the structural mechanics

code are used to continuously update the orientation of each volume as the

structure grows and changes in shape. This represents a two-way coupled

process, as the orientation of a volume will influence the preferential growth

direction of a dendrite, where any new mass from this growth will cause

displacements that will further change the orientation. The theoretical validity

of this approach was explored as well as performing verification of an idealised
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modelling case against an analytic solution obtained using the Euler Bernoulli

beam theory, finding the accuracy of this approach to be comparable to the

predictions of the analytic solution.
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Chapter 6

DENDRITE ADVECTION

6.1 Overview

This section discusses the implementation of advection processes to move

dendrites through the problem domain. The utility of transporting dendrites

through the domain is introduced both within the context of structural

mechanics and more widely in the context of microstructure solidification. The

process of modelling advection is described and implemented for a homogeneous

structure using different approaches, with the most effectual implemented to

work concurrently with a solidification model. How these principles can be

applied to the advection of a heterogeneous structure is then discussed, in

particular highlighting the difficulties of modelling significant advection

concurrently with solidification using the CA method. Finally, the current level

of implementation of dendrite advection within the wider context of the

research will be summarised.
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6.2 Transporting Dendrite Structures

The ability to move a dendritic structure through the problem domain has a direct

application in modelling structural mechanical effects. The most obvious utility of

this will be to account for the impact of deformation, where a deformed structure

will be physically moving through the problem domain. This is easily expanded

to related phenomena that could be potentially modelled in the wider scope of

TESA but cannot currently be considered, such as fractures causing dendrite arms

to break off and fall/float away, modelling the columnar to equiaxed transition

and dendrites demonstrating significant transient movement.

Free moving dendrites can settle during solidification to cause

macrosegregation, which can cause many defects in the material such as

non-uniform material properties, impacting, material size and production rates

[102] and as such this is an area of great interest to people modelling the

solidification process [103]. It was initially conceived that accounting for

dendrite deformation as an transport process would be the main driver of

structural mechanical influence on the dendritic structure, however changes to

dendrite orientation (Chapter 5) proved to be sufficient to account for the

structural impact in cases where linear elasticity assumptions hold true.

Regardless, as an argument can be made that even for these small

deformations the inclusion of advection would lead to a more physically

accurate representation of the deformation process than orientation on it’s own

(see section 6.6) and that the implementation of a robust solid transport

method will be a requirement for many expansions of the research, the work

done on the topic will be presented in the rest of this chapter.

When representing the interface, either between two liquids or a solid-liquid

interface, two broad families of methods can be classified: surface methods and

volume methods [104]. The surface methods explicitly describe the location of a
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sharp interface either with particles, functions acting over the entire domain or by

attaching a body fitted mesh to the separate phases. Conversely, volume methods

mark within each volume how much of each phase is present in each cell, meaning

that the exact location of the interface is not known and has to be interpreted from

these markers in each volume. While there are many examples of solidification

problems utilising surface methods such as the phase field method [105, 106],

level-set method [107] and sharp interface methods [108, 109]. Yamaguchi and

Beckerman (2013) [65] went further than this, and in fact implemented a phase

field advection process, allowing the compressed dendrites to move through the

computational domain.

Given the solidification models being employed in this research represent

structures as a collection of solid fraction values for each volume, while it would

be theoretically possible to interpret this information in a manner compatible

with surface methods, it would seem more natural to embrace the volumetric

interface definition intrinsic to the solidification processes and apply volume

methods to the goal of transporting growing dendrites through the domain.

Furthermore, aside from the complication of converting between a solid

fraction and a sharp interface method, issues encountered later (see section 6.5)

would potentially make these approaches less viable due to the important

internal morphologies of alloy dendrites generated using the CA method, which

would present problems if implementing surface methods that are generally used

only for homogeneous dendrites.

6.3 Advection of a Homogeneous Structure

When first investigating methods to transport a solidifying structure, the

solidification model being used was that of the enthalpy method (see 4.3.1),
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where the dendrites generally only have a single cell interface and hence form a

homogeneous structure. As such, this was the framework where the solid

transport of a dendrite was first considered.

Before considering coupling transport to solidification, it was important to test

the functionality of the transport process in isolation so that the behaviour and

accuracy could be appraised without the confounding factor of the solidification.

The method of transporting the solid material first conceived of was an advection

process which could be driven by displacement or velocity fields as the problem

required. Relating this process back to a finite volume formulation, this can be

thought of the flux into and out of a volume such that for a 3D problem the

transient change in solid fraction for a given volume is:

∂f

∂t
= ∆t

∆x
(Flw − Fle + Fls − Fln + Fll − Flh) (6.1)

Where the Fl is the flux out of the indicated face of the volume (with the

underscored standing for the following in the order presented: west, east, south,

north, low and high). This will be the fundamental form of all the advection

processes examined, though the definitions of the flux values will change

depending on the method. In figure 6.1, for added clarity a grid has been

provided showing a volume f at a generic point P indicating which

displacements and volumes are used to calculate the flux for this volume.

However, it should be noted that the advection processes can also work in

three dimensions, so there are also potentially faces and volumes going into and

out of the page in the high and low directions that may be referenced in the given

formulas.
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Figure 6.1: Grid used for solid advection process.

6.3.1 Basic Advection

Where the advection equation for the Solid Fraction (f) under a constant velocity

u can be defined for a multi dimensional problem as follows:

∂f

∂t
+ u · ∆f = 0 (6.2)

Which for the 2D cases under initial consideration simplifies to the following:

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
= 0 (6.3)

This process could then intuitively be discretised is by using a forwards

difference in time and central differences in space to obtain the equation:

f t+1
P − f t

P

∆t
+ O(∆t) = −u

f t
E − f t

W

2∆x
− v

f t
N − f t

S

2∆y
+ O(∆t, ∆x2, ∆y2) (6.4)
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Which, using the fact that for a uniform Cartesian grid ∆x = ∆y can be

rearranged to obtain the following scheme describing a change in Solid Fraction

for a given volume:

f t+1
P = f t

P − ∆t

2∆x
(u(f t

E − f t
W ) + v(f t

N − f t
S)) + O(∆t, ∆x2) (6.5)

However, stability analysis shows that the error continuously grows, making

the scheme unconditionally unstable. With an obvious solution to this instability

being to make it upwind in space like so (assuming both u and v are positive):

f t+1
P = f t

P − ∆t

∆x
(u(f t

E − f t
P ) + v(f t

N − f t
P )) + O(∆t, ∆x) (6.6)

However, upwinding in this fashion carries complications, as the direction

of flow must first be identified to establish what the appropriate direction for

upwinding is at a given location (hence why the above only holds for positive u

and v).

As such for a generalised 3D upwind scheme, the differencing scheme can still

be defined as a collection of the fluxes:

f t+1
P = f t

P + ∆t

∆x
(Flw − Fle + Fls − Fln + Fll − Flh) (6.7)

but the fluxes will have to check the flow direction by appraising

displacements/velocities at the faces (V ) the like so:
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V > 0 V < 0

Flw : uwf t
W or uwf t

P

Fle : uef
t
P or uef

t
E

Fls : vsf
t
S or vsf

t
P

Fln : vnf t
P or vnf t

N

Fll : wlf
t
L or wlf

t
P

Flh : whf t
P or whf t

H

(6.8)

Once implemented, another shortcoming of a basic advection algorithm using

upwinding is that the shape of of structure is lost over time due to diffusion. The

reason that this occurs can be easily understood by considering the example of

1D flow in shown in figure 6.2, where the amount of solid fraction being moved

by the velocity field becomes progressively thinner at the front and back of the

structure being advected. This is because the solid fraction is only a marker value

which does not intrinsically inform the advection process there is a structure to

be maintained, so without updating the flux definitions to preserve the structure

in some manner this value of f will continue to diffuse.
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Figure 6.2: Standard 1D advection.

A 2D example of this diffusive behaviour can be observed in figure 6.3, where

a homogeneous square has been advected from the bottom left to top right corner

of a domain using upwinded advection. This diffusion will clearly be unacceptable
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for retaining a dendritic structure moving through a domain, especially one that

has a clear discontinuous boundary such as generated by the Enthalpy Method.

(a) (b) (c)

Figure 6.3: Homogeneous square advected using upwind method.

6.3.2 Flux Limited Advection

Flux Limited Advection [110] is an expansion of the advection equation which

alters the flux terms to limit diffusion by attempting to maintain any significant

discontinuities. This is done by updating the generic advection equation 6.7 to

use the following expanded flux terms:

Flw = 1
2uw

[
(1 + θw)f t

W + (1 − θw)f t
P

]
+ 1

2abs (uw)
(

1 − abs (uw) ∆t

∆x

)
Φ(rw)

(
f t

P − f t
W

)
Fle = 1

2ue

[
(1 + θe)f t

P + (1 − θe)f t
E

]
+ 1

2abs (ue)
(

1 − abs (ue) ∆t

∆x

)
Φ(re)

(
f t

E − f t
P

)
Fls = 1

2us

[
(1 + θs)f t

S + (1 − θs)f t
P

]
+ 1

2abs (us)
(

1 − abs (us) ∆t

∆x

)
Φ(rs)

(
f t

P − f t
S

)
Fln = 1

2un

[
(1 + θn)f t

P + (1 − θn)f t
N

]
+ 1

2abs (un)
(

1 − abs (un) ∆t

∆x

)
Φ(rn)

(
f t

N − f t
P

)
Fll = 1

2ul

[
(1 + θl)f t

L + (1 − θl)f t
P

]
+ 1

2abs (ul)
(

1 − abs (ul) ∆t

∆x

)
Φ(rl)

(
f t

P − f t
L

)
Flh = 1

2uh

[
(1 + θh)f t

P + (1 − θh)f t
H

]
+ 1

2abs (uh)
(

1 − abs (uh) ∆t

∆x

)
Φ(rh)

(
f t

H − f t
P

)

(6.9)
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where the flux terms now have three new terms requiring consideration: the flip

flop parameter θp, a measure of the smoothness of the solutions at that location

r and the flux limiter function Φ.

The flip flop parameter is a function that allows for the direction of the velocity

to be accounted for in a single expression, which is required due to the flux limited

advection varying depending on the direction of the flow, as discussed for basic

upwinding. The flip flop parameter at generic facial point p with the velocity Vp

at that face can be defined as:

θp = θ(Vp) =


+1, for Vp > 0

−1, for Vp < 0
(6.10)

The smoothness of the solution is then defined as r, which in this case is being

taken as a ratio of consecutive gradients and has been defined as follows (though

other definitions exist):

rw = fP − fE

fW − fP

re = fP − fW

fE − fP

rs = fP − fN

fS − fP

rn = fP − fS

fN − fP

rl = fP − fH

fL − fP

rh = fP − fL

fH − fP

(6.11)

The flux limiter function Φ then uses r in the chosen flux limiter scheme,

which essentially uses this smoothness function to ascertain if the location is at

a discontinuity that should be preserved. There are many different flux limiter

functions that can be used in this scheme, easily switched between thanks to the
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way the flux is now defined. A selection of popular limiters have the following

definitions:

Upwind : ϕ(r) = 0

Lax − Wendroff : ϕ(r) = 1

Beam − Warming : ϕ(r) = r

Minmod : ϕ(r) = max(0, min(1, r))

V an − Leer : ϕ(r) = r + |r|
1 + |r|

MUSCL : ϕ(r) = max(0, min(2r, 0.5 ∗ (r + 1), 2))

Superbee : ϕ(r) = max(0, min(1, 2r), min(2, r))

(6.12)

Where it can be observed that if ϕ is set to 0 the flux terms in equation 6.9

simplify back to the upwind equations. Having tested all of these flux limiters

and researched their theoretical accuracy, the Superbee limiter was selected as the

most appropriate to be used for advecting dendrites. This is because the Superbee

is a high resolution non-linear scheme that is the least diffusive of the popular

limiters (and hence the most likely to preserve discontinuities). The Superbee can

be seen working in figure 6.4, where a square structure has been advected from

the bottom left to the top right corner of a domain. When contrasted with the

upwind solution in figure 6.3, the Superbee has clearly preserved the structures

shape and edges with far greater clarity.
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(a) (b) (c)

Figure 6.4: Homogeneous square advected using Superbee method.

A consideration when implementing an advection process with more than

one dimension is whether unsplit advection should be implemented. The

processes described so far using the generic flux formulation in equation 6.7 is a

case of unsplit advection, meaning that the the fluxes in x, y and z are all

resolved simultaneously. This can cause a bias in the advected solution as the

fluxes ignore the influence of each other for that given time step, essentially

meaning that material will only be fluxed into cells parallel to each axis, though

in reality there would be an influence from the cells at the corners as both

contributors and recipients of fluxed material (see figure 6.5 for a collection of

examples demonstrating this). As such, split methods are generally preferred,

where the fluxes in each direction are resolved separately, updating a temporary

value of f until the flux in all directions is accounted for. A flux split form of

equation 6.7 can be defined as follows:

fu∗
P = f t

P + ∆t

∆x
(Flw − Fle)

f v∗
P = fu∗

P + ∆t

∆x
(Fls − Fln)

f t+1
P = f v∗

P + ∆t

∆x
(Fll − Flh)

(6.13)
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(a) Unsplit flow into cell. (b) Split flow into cell.

(c) Split x flux full cell. (d) Split y flux full cell. (e) Unsplit flux full cell.

(f) Split x flux partial cell. (g) Split y flux partial cell. (h) Unsplit flux partial cell.

Figure 6.5: Split vs unsplit advection examples.

An example of split vs unsplit advection of an equiaxed dendrite can be seen in

figure 6.6, where the split advection maintains the symmetry of the dendrite when
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compared the unsplit case which demonstrates a clear bias in the morphology.

As such, split advection methods will be utilised going forward.

Figure 6.6: Split (left) vs unsplit (right) advection.

While these flux limited advection methods do perform well at transporting

a structure across the domain while maintaining the fundamental shape of the

structure, even for the Superbee there is some clear blurring at the boundary

which could lead to issues for solidification methods such as the enthalpy method

which require a 1 cell boundary for the solid fraction.

6.3.3 Volume of Fluid Methods

In order to have access to an advection method other than flux limiters which

would be capable of maintaining a sharp boundary, another family of methods

know as the Volume of Fluid (VoF) methods [111] were examined. These follow

a donor-acceptor approach which preserves hard discontinuities by treating the

quantity being advected as a marker function that can only take values of 0 or 1.

For a homogeneous structure such as those examined so far, the fractional cell can
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be conceptualised in two ways: first as a semi solid cell that is undertaking phase

change or second as a measure of how much of the cell contains fully solidified

material, with this second case being the way in which the solid fraction is treated

for VoF methods.

Interface reconstruction then becomes an important consideration for how to

interpret the collection of solid fraction values as a single solid shape, as this

reconstructed shape is used by the VoF methods to update the flux terms so

that material only moves between cells when it is appropriate for the

reconstructed interface to do so. This is easily conceptualised in 1D, as can be

seen in figure 6.7 (which should be contrasted with the behaviour observed in

the upwind advection example in figure 6.2) where the f value is reconstructed

into a single solid structure before advection, where the maintainence of this

sharp boundary will prevent unwanted diffusion as a cell must be entirely filled

before advection can move material into the neighbouring cell.
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Figure 6.7: VOF 1D advection.

While straightforward in principle, the implementation of the interface

reconstruction can become increasingly complicated depending on the accuracy

of the reconstruction required. Possibly the most fundamental interface
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restoration approaches is the Simple Line Interface Calculation (SLIC) [112],

which reconstructs the interface so that it is always parallel to one of the axes.

The axis that it is parallel to is chosen based on the solid fraction of the

surrounding cells such that new cells should not have any new material

advected until it is appropriate. Operating as a split advection method as

previously described, the structure will be preferentially reconstructed

differently for each flux direction to minimise any flux which would lead to

diffusion. This can be seen in figure 6.9, where a SLIC reconstruction has been

performed for an x sweep and a y sweep for different interfaces. In all of these

cases it can be seen how when a cell is surrounded by solid material on two or

less sides, it will reconstruct to be perpendicular to the sweep direction to

prevent advection into new cells.

However, for a cell bordered on three sides it will reconstruct so that the

interface always points towards the empty cell. In the case where a cell is

surrounded on all sides, the cell will again always reconstruct in the sweep

direction, selecting whichever neighbouring cell that has the highest solid

fraction to be the side of the cell the solid material will occupy.
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(a) VoF Example 1 (b) x reconstruction (c) y reconstruction

(d) VoF Example 2 (e) x reconstruction (f) y reconstruction

(g) VoF Example 3 (h) x reconstruction (i) y reconstruction

Figure 6.8: SLIC reconstruction examples.

To describe advection using a SLIC reconstruction, the equation 6.7 has to

changed to the following form:
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fu∗
P = f t

P + (Flw − Fle)

f v∗
P = fu∗

P + (Fls − Fln)

f t+1
P = f v∗

P + (Fll − Flh)

(6.14)

Where the flux terms now include the time and space steps due to VOF

advection potentially describing a flux that includes neither of these terms under

some conditions where the cells either overflow or empty. The logic to describe

these flux terms, while simple in concept, is quite lengthy. Consequently only the

definitions for the fluxes Fe and Fw in the x direction have been provided in the

following equation 6.15. The definitions in the y and z directions use identical

in logic, but with the East-West references being replaced with North-South or

High-Low to match the flux terms being calculated. To aid comprehension, figure

6.9 has been provided to show the 6 different flux conditions (note, a full cell where

f = 1 is always identified as a ‘parallel’ reconstruction) that may arise from a

SLIC reconstruction used by Fw.
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Flw =



min

(
∆t

∆x
uw, fW

)
, for uw > 0 and East Reconstruction for fW

max

(
∆t

∆x
uw − (1 − fW ), 0

)
, for uw > 0 and West Reconstruction for fW

∆t

∆x
uwfW , for uw > 0 and Parallel Reconstruction for fW

min

(
∆t

∆x
uw, fP

)
, for uw < 0 and West Reconstruction for fP

max

(
∆t

∆x
uw − (1 − fP ), 0

)
, for uw < 0 and East Reconstruction forfP

∆t

∆x
uwfP , for uw < 0 and Parallel Reconstruction forfP

Fle =



min

(
∆t

∆x
ue, fP

)
, for ue > 0 and East Reconstruction forfP

max

(
∆t

∆x
ue − (1 − fP ), 0

)
, for ue > 0 and West Reconstruction forfP

∆t

∆x
uefP , for ue > 0 and Parallel Reconstruction forfP

min

(
∆t

∆x
ue, fE

)
, for ue < 0 and West Reconstruction forfE

max

(
∆t

∆x
ue − (1 − fE), 0

)
, for ue < 0 and East Reconstruction forfE

∆t

∆x
uefE , for ue < 0 and Parallel Reconstruction forfE

(6.15)
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Figure 6.9: Six SLIC reconstruction cases used by Fw in equation 6.15.

A VoF method using a SLIC reconstruction was applied to advecting a

grown dendrite from the bottom left to the top right of a 2D domain, as can be

seen in figure 6.10. Here it is obvious that the VoF method has done a good job

of maintaining a sharp interface all around the structure, however the SLIC

reconstruction has quite quickly flattened all of the edges, leaving a structure

that is shaped more like a cross than a dendrite with flat faces at the end of the

dendrite arms rather than tapering to a point.
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(a) (b) (c)

Figure 6.10: Homogeneous dendrite advected using VOF with a SLIC
reconstruction.

Due to the importance of the arm and tip morphology in solidification, for a

VoF method to be appropriate it would require a more accurate interface

reconstruction than the SLIC approach can offer. To this end, the Weighted

Linear Interface Calculation (WLIC) [113], also known as the Simplified Volume

of Fluid (SVOF) [114], is a method which accounts for the interface by

calculating the surface normal based on the 3 × 3 cells surrounding the cell

being reconstructed. These surface normals are then used as an input into a

weighting function which is used in new flux terms so that both the x and y

reconstructions can contribute to a more accurate flux.

While not a substitute in accuracy for the higher order interface

reconstructions that exist, it nevertheless allows for representation of far more

complex boundaries than the SLIC reconstruction while being comparatively

easy to implement.

Young’s method was used to construct the surface normal as in the

implementation by Marek et al [114], though there are other definitions that

could be used. The calculated the x and y normal components for a 2D problem

are as follows:
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Nx = −(fNE + fSE − fNW − fSW + 2(fE − fW ))

Ny = −(fNW + fNE − fSW − fSE + 2(fN − fS))
(6.16)

These surface normals can then be used to calculate the weighting function

at that location, there are several options for this weighting function mentioned

in the literature [113–115], but the one seeming to produce the best results was

the following:

ΩP
x = 1 − 2

π
acos

(
abs(Nx)
N2

x + N2
y

)

ΩP
y = 1 − 2

π
acos

(
abs(Ny)
N2

x + N2
y

) (6.17)

Which can then be used to define the flux, again for brevity only the Fw and

Fe terms have been provided due to the identical logic applying for the other

flux terms, simply replacing the ΩP
x with ΩP

y , Nx with Ny, and the East-West

references with North-South. And likewise with z terms is expanding the scheme

into 3D. The logic defining the flux in a WLIC scheme is as follows:
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Flw =



ΩW
x min

(
uw

∆t

∆x
, fW

)
+ (1 − ΩW

x )uwfW
∆t

∆x
, for uw > 0 and NW

x < 0

ΩW
x max

(
uw

∆t

∆x
− (1 − fW ), 0

)
+ (1 − ΩW

x )uwfW
∆t

∆x
, for uw > 0 and NW

x > 0

uwfW
∆t

∆x
, for uw > 0 and NW

x = 0

ΩP
x min

(
uw

∆t

∆x
, fP

)
+ (1 − ΩP

x )uwfP
∆t

∆x
, for uw < 0 and NP

x < 0

ΩP
x max

(
uw

∆t

∆x
− (1 − fP ), 0

)
+ (1 − ΩP

x )uwfP
∆t

∆x
, for uw < 0 and NP

x > 0

uwfP
∆t

∆x
, for uw < 0 and NP

x = 0

Fle =



ΩP
x min

(
ue

∆t

∆x
, fP

)
+ (1 − ΩP

x )uefP
∆t

∆x
, for ue > 0 and NP

x < 0

ΩP
x max

(
ue

∆t

∆x
− (1 − fP ), 0

)
+ (1 − ΩP

x )uefP
∆t

∆x
, for ue > 0 and NP

x > 0

uefP
∆t

∆x
, for ue > 0 and nPx = 0

ΩE
x min

(
ue

∆t

∆x
, fE

)
+ (1 − ΩE

x )uefE
∆t

∆x
, for ue < 0 and NE

x < 0

ΩE
x max

(
ue

∆t

∆x
− (1 − fE), 0

)
+ (1 − ΩE

x )uefE
∆t

∆x
, for ue < 0 and NE

x > 0

uefE
∆t

∆x
, for ue < 0 and NE

x = 0
(6.18)

An example of a dendrite advected across a domain using WLIC advection

can be seen in figure 6.11, which demonstrates smoother surfaces than the SLIC

reconstruction, with the dendrite tips becoming rounder rather than flattened.

While certainly an improvement over the SLIC reconstruction for maintaining a

realistic dendrite structure, this WLIC reconstruction still seems to lose some key

definition of the structure when advected over long distances.

If examining homogeneous dendrites transported over large distances with

complicated movement, such as is the case for tumbling dendrites, then a more

accurate interface reconstruction scheme may be required for the VoF

advection. Some noted higher order interface reconstruction methods are the
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Piecewise-Linear Interface Calculation (PLIC) [116], FLAIR [117] and methods

of reconstruction using a least-squares fit [118] to name but a few. However, to

test advection coupled to concurrent solidification, the WLIC reconstruction

was deemed sufficiently effective for advecting a dendrite over short distances,

allowing the validity of the approach to be appraised before implementing these

more complex methods.

(a) (b) (c)

Figure 6.11: Homogeneous dendrite advected using VOF with a WLIC
reconstruction.

6.3.4 Concurrent Advection with Solidification

Solidification using the Enthalpy method was tested to run concurrently with

displacement driven advection of the solid fraction. This was linked with

structural mechanical deformation driven by gravity and presented in a

conference paper for MCWASP in 2020 [93], with figure 6.12 replicated from

this paper, showing the compression and stretching of dendrites growing with

the opposition and support of a body force.
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Figure 6.12: Dendrite growth behaviour under external forces showing thermal
field T from Soar et al. [93]. (a) positive force opposing growth direction (b) no
force (c) negative force in growth direction.

While this was a promising combination of structural mechanics,

solidification and advection, it remained the case that the deformations were

very small comparative to the growth rate and it was unknown how forces

perpendicular to the growth would impact the growth behaviour after advection

had been undertaken. To test the impact of the advection and orientation

changes separately, a growing dendrite moving under a fixed velocity was

considered, as this uniform advection should not lead to any changes in dendrite

orientation as it grows. An extreme example of these tests can be seen in figure

6.13, where a columnar dendrite is being advected at rates of approximately

double the growth velocity to see if sensible growth behaviour can be

maintained.

Despite physically moving, if the reconstruction and advection work

perfectly then the dendrite growth should behave as if it is not being advected
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at all with only the position changing, meaning that (g) and (h) in figure 6.13

should have dendrites with identical morphologies. While clearly not identical,

with the advected dendrite in (h) having a slight lean into the direction of

advection and altered base morphology, it has still developed into a similarly

shaped dendrite of comparable length and width. Considering the extreme

advection and fairly fundamental VoF interface reconstruction approach used,

results such as these indicate the feasibility of modelling a homogeneous

dendrite growing while undergoing significant advection using an approach such

as this.

However, at this stage in the research the issues caused by the grid

anisotropy of the Enthalpy method as discussed in section 4.3.1 became

apparent. Consequently, it became clear that in order to model the desired

deformation behaviour in a manner which accurately accounts for the

orientation another solidification model would have to be used, which proved to

have numerous implications for the advection modelling going forward.
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(a) t = 0 (b) t = 100

(c) t = 200 (d) t = 300

(e) t = 400 (f) t = 500

(g) t = 600 (h) No Advection

Figure 6.13: Columnar dendrite under constant advection growing using enthalpy
method.
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6.4 Advection of a Heterogeneous Structure

With the adoption of the CA Method (see section 4.3.2) as the solidification

model, the methodology behind the growth of the dendrites offers new

complications when coupling it to an advection process, with the most obvious

being the change in morphology. While the dendrites grown using the Enthalpy

method are homogeneous, with a sharp interface between the solid and liquid

material, the CA method produces dendrites with varying solid fraction based

on the concentration.

This variable solid fraction meant that VoF methods would no longer be an

appropriate approach for the advection of the dendrites, as they would quickly

aggregate the diffuse solid fraction structure into a structure with a hard boundary

and f = 1 at all points, which would not be compatible with further growth

using the CA method.For this reason flux limited methods were examined again

to see how well they could behave for an already slightly diffuse structure, as the

slightly blurred boundary that led to flux limiters being abandoned for use with

the Enthalpy method will no longer necessarily be a problem with a CA method

implementation.

This line of enquiry started by using the CA method to grow a 3D equiaxed

dendrite to a meaningful size and advecting it from the low bottom left to the

high top right corner of the domain using advection with a Superbee flux limiter,

as can be observed in figure 6.14. While the fine definition on the outside of the

dendrite is clearly lost through this process, the structure remains unmistakably

an equiaxed dendrite in form, demonstrating potential for concurrent coupling of

these processes.
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(a) (b) (c)

Figure 6.14: Advection of a 3D dendrite using the Superbee flux limiter.

6.5 Complications of Coupling Significant

Advection with Solidification

A major complication of combining significant advection with the CA method

is the number of variables used by the solidification process which also need

to be kept lined up with the solid fraction. Other than the solid fraction, the

equivalent concentration and liquidus concentration (see section 4.3.2 for details

of how these concentration variables are defined and used by the CA method) also

require advection to keep them in the correct position relative to the solid fraction

and each other, as can be seen in figure 6.15. Under the same velocity fields these

different variables remain well aligned, however each variable advected in this

manner adds to the computation time for the coupled process. Furthermore, in

examining the solid fraction and equivalent concentration it becomes clear that

even the Superbee method is not preserving internal structures and dendrite tips

to the sharpness which would be required for solidification to continue seamlessly

after advection.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.15: Variables needing advection for CA method. (a)-(c) solid fraction,
(d)-(f) equivalent concentration, (g)-(i) liquidus concentration.

For this reason, a sub-grid method was investigated for the advection

process, allowing it to be resolved on a denser grid than the one solidification

was occurring on by using the interpolation methods described in section 4.5.1

to populate the denser sub-grid. The solid fraction of a grown dendrite advected

using this method can be seen in figure 6.16. While still not perfectly matching
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the dendrite before advection in morphology, this example does provide a vastly

superior match for the arm tips, edges and interior concentration structures.

These results certainly show a greater promise for allowing solidification to

continue smoothly after advection.

(a) (b) (c)

Figure 6.16: Advection using higher grid density.

To enable solidification to continue after advection has occurred, information

about the dendrite orientation also needs to be advected to stay in the correct

relative position. To judge how well this process worked tests were undertaken

where the dendrite was allowed to grow, was advected a significant distance, then

solidification was allowed to resume, with three cases of this process presented in

figure 6.17.

For the first case (images (a) - (c)), a dendrite fixed at an orientation with

the arms growing perpendicular to the axis shows some clear artefacts where it

tries to regrow, seeming to almost re-nucleate at the tip of the arms before

continuing. However, 0◦ dendrites generated by the CA method have a rather

unique morphology, taking longer to grow secondary arms than at other

orientations, so it seems possible that this sensitive system could not directly

continue due to the slight changes to the dendrite morphology that unavoidably

occur even with the sub-grid method. Consequently, for the second case (images
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(d) - (f)), a dendrite at 45◦ was used for the experiment, which develops dense

secondary dendrite arms along the length of the primary arms.

Evidence of the process restarting can certainly be observed in some unusual

secondary arm growth, however it is certainly far less noticeable to the degree it

may not even be noteworthy at all in a system with an element of

randomness/noise in the cell seeding process. The final case (images (g) - (i)) is

most relevant to the wider research as a columnar dendrite has been subjected

to a large body force, which has generated displacement value resulting in

significant deformation. Note that the deformations used in this case (and any

further cases in this chapter using calculated deformations) use the linear

elasticity model described elsewhere for the SMS development, as such any

deformations relatively large enough to be of use for tests such as this cannot be

considered physically accurate as the ‘small’ deformation condition of linear

elasticity has been violated.

However, as these cases are merely proof of concepts for the advection process,

the values generated by the deformation process are largely irrelevant, simply

demonstrating that the SMS and the advection solver can communicate to allow

for large physical deformation of structures. Looking at the regrowth in this case

there is again some slightly odd behaviour in the secondary arms around where

the growth continues, but this remains relatively minor.

Another possibility as to the source of this instability upon the resumption

of solidification could be the grid anisotropy still present within the CA method,

as the tip of the dendrite along with some of the internal structure try to only

occupy a single cell. This means that if the advection does not leave the structure

perfectly lined up within new grid locations, instabilities may be caused by this

grid anisotropy forcing the newly seeded cells back to being perfectly lined up to

the grid.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.17: Regrowth after significant advection for a 0◦ equiaxed dendrite (a −
c), a 45◦ equiaxed dendrite (d−f) and a columnar dendrite starting at 10◦ (g−i).

Trying to implement cases closely coupling solidification with structural

mechanics and deformation driven advection highlighted a major complication

in the sub-grid approach being adopted. The sub-grid approach requires

significant advection to occur on the sub-grid before going back to the main

grid, with the benefit of going to the sub-grid lessening with every movement
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between the grids as the discontinuities being preserved on the fine grid become

amalgamated and blurred. This means that while a structure can be advected a

large distance on the sub-grid and retain a very close approximation to the

initial structure on the main grid, if the advected quantity has to be regularly

returned to the main grid while advecting the same distance, this will effectively

leave the solution no more well defined than a regular Superbee advection

process working on the main grid.

An example of this effect can be seen in figure 6.18, where a dendrite has

been rotated 360◦ by a fixed rotational velocity field, where the fundamental

morphological characteristics have been maintained throughout the rotation.

However, this is because the structure could remain on the sub-grid for the

entirety of this rotation.

In a case where the solid fraction was returned to the main grid after every

iteration as can be seen in (f), the lack of definition is comparable to the

Superbee solution operating on the main grid in figure 6.15. This makes the

implementation of large advections using this sub-grid method quite sensitive

and problem dependent, as to preserve structure integrity the sub-grid

advection should be called as little as possible to provide the cleanest structure.

If taken to extremes this could lead to unrealistic, dislocated changes in the

dendrites position which would not be a realistic representation of what would

be physically occurring when growth and movement should be occurring

simultaneously.
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(a) 0◦ (b) 90◦ (c) 180◦

(d) 270◦ (e) 360◦ (f) 360◦ No Sub-grid

Figure 6.18: Rotating dendrite.

To demonstrate this further, figure 6.19 presents an equiaxed dendrite

constantly growing as it advects through the domain with the same time steps

for both processes. While it does manage to continue growing in a somewhat

sensible way for an equiaxed dendrite, it becomes clear that the advection is not

able to maintain the resolution to keep all of the secondary arms separate as it

advects and grows, leading to a fairly continuous region of an intermediate solid

fraction where there should be separate arms.
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(a) (b) (c)

(d) (e)

Figure 6.19: Growing equiaxed dendrite advecting using Superbee.

A case more indicative of how these large deformation driven advections

could be coupled with solidification can be seen in figure 6.20, which presents a

somewhat extreme situation where structural mechanics and advection are only

applied once for every 1000 solidification steps. This demonstrates that the

dendrite can deform significantly and change orientation yet still continue

growing in a sensible manner. However, this also highlights the aforementioned

weakness of the sub-grid approach as to ensure the morphological integrity of

the dendrite is maintained during advection, step sizes causing notable

discontinuities have had to be used. For situations such as a dendrite arm

breaking off and falling, where the movement is so fast compared to the

solidification rate that no meaningful solidification can occur, the sub-gridded

flux limiter approach could account for these large and relatively instantaneous
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movements well.

While this method shows promise as a means to combine large deformation

driven advection with solidification, this has proven to not be a straightforward

process as this implementation of the CA method was never designed to account

for physically moving dendrites, leading to the many complications discussed in

this chapter. Possibly increasing the grid density of the solidification process

would create dendrites with enough detail to be preserved using Superbee

advection, but utilising grid sizes of greater density than the ones used for these

tests would greatly limit the size of the problems which could be modelled.

For some use cases the examples of growth with advection demonstrated here

may prove to be sufficiently accurate, even when the advected solutions are not

preserving the symmetry and the expected secondary arm behaviour which can

observed in dendrites modelled without advection. In reality, dendrites are never

perfectly symmetrical and the growth of secondary arms can often be a more

stochastic process than is generally indicated in these modelling results (as for

repeatability of results any stochastic behaviour is being neglected).

Considering this, while there are clear changes to the structure and

solidification development due to the impact of the advection, it may be the

case that in some modelling situations the inaccuracy introduced by advection

may in fact be at a comparable level to that of intrinsic factors being overlooked

elsewhere in the modelling.

Furthermore, outside of the specific application of dendrite advection driven

by displacement or velocity, the sub-grid approach and the advection software in

general has a wider potential for application to simulating other physical processes

germane to this field where many of the complications highlighted in this specific

use case would not apply.

Nevertheless, an improved advection process remains a potential avenue of
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future work, as solutions could only be enhanced by using an advection process

capable of being called more regularly at the same grid size used for solidification

without the blurring and lack of internal definition observed in the flux limited

Superbee method occurring.

(a) (b) (c)

(d) (e)

Figure 6.20: Concurrent solidification with significant deformation.

6.6 Currently Implemented Advection

Further work on advection driven processes ultimately stalled due to the

discoveries outlined in Chapter 5 of how small deformations can theoretically be

accounted for entirely by the change in orientation. Due to the assumptions of

‘small’ deformations constraining Linear Elasticity, large deformation driven

advection such as the cases presented in this chapter should never occur, as if

they did these results could not be considered reliably accurate due to violating
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the assumptions of a linear elastic material. In order to obtain a large advection

such as those investigated, either a new material model capable of large

deformation would have to be implemented or large velocities would have to be

obtained from one of the other physical processes modelled in TESA.

While both of these are potential expansions being considered to expand the

research (see section 8.2 for future work), they remain secondary to the primary

goal of exploring the impact of small deformations on the dendrite growth,

though this does not necessarily mean that solid advection has no place within

this framework. Whilst in theory for small deformations the orientation change

can account for the movement, in practice the orientations calculated and

applied to cells actually lag a time step behind where they should be to fully

account for the deformation. That is to say, the calculated orientation would

only account for the deformation that has already taken place, but not

necessarily going forward.

To theoretically account for all deformation using orientation changes, the

dendrite would have to be growing at an orientation which could only be

calculated after growth had occurred, while for obvious reasons in reality the

calculated orientations can only apply to subsequent growth. If the structural

mechanics and solidification are closely coupled, this distinction should be

largely insignificant, but it remains the case there is movement within the

structure not being accounted for.

One possible answer to this would be an advection process which could use

these deformations to move small quantities of the solute between the cells,

allowing the influence of these overlooked deformations to be accounted for in

the microstructure. As it currently works the advection process is more than

capable of accounting for this, with the concerns about interface reconstruction

maintaining internal morphology not being applicable for such relatively small
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advections and the flux limited Superbee advection being sufficient to prevent

the dendrite from diffusing into the surrounding environs and unrealistically

seeding cells. On the other hand, the inclusion of these small advections would

not computationally insignificant, while generally not having a meaningful

impact on the development of the microstructure if the orientations are updated

with sufficient regularity. Furthermore, the assumption of ‘small’

strains/deformations dictate that the structure should be treated as occupying

the same position in space after the deformation has occurred, meaning that

accounting for these small deformations in this manner is arguably violating

these linear elasticity assumptions.

Considering these factors, at present the described small advection behaviour

has been implemented such that it can be turned off, or on, as the problem

requires, but is currently often neglected for large scale cases due to the minor

impact it has on the solutions when compared to the computational time added

to obtain said solutions.

6.7 Summary

The theory behind and current implementation of advection driven by either

displacements generated by the SMS or velocity field generated elsewhere in

TESA are discussed in this chapter. Flux limited advection and Volume of Fluid

methods are introduced and discussed in the context of advecting structures of

different consistencies and morphologies. These advection techniques were then

applied to solidification problems, demonstrating the difficulties but also the

potential viability of these methods for large advection concurrent with

solidification. Finally, it was described how advection was being applied in the

context of the small deformations which are the primary focus of this research.
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Chapter 7

MODELLING CASES

7.1 Overview

This chapter will present a selection of modelling cases which have been chosen to

highlight behaviours and mechanisms which can only be captured by modelling

concurrent structural mechanics and microstructure solidification. Starting by

explaining the context of these cases as well as the standard problem setup, the

initial cases presented are all using a thin sample setup with the first showing

orientation change of a single columnar dendrite under a gravity like body force.

The subsequent case demonstrates the potential influence of thermal strains on

a growing dendrite. The ability to account for transient forces is shown by a

sinusoidally changing force before presenting some large scale solutions obtained

using parallel computing. The remaining cases show truly 3D dendrites, where all

dimensions are significant, demonstrating how a single dendrite can be bent out

of plane as well as showcasing how the model handles a rotational force. Finally, a

small parametric study is performed to examine the impact of forces of increasing

magnitudes on a single growing dendrite to demonstrate the non-linear nature of

this process and emphasise the importance of this field of research.
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7.2 Context and Problem Setup

The cases being presented in this section have been primarily selected to

highlight the unique behaviours which can only be modelled using coupled

microstructure solidification and structural mechanics rather than trying to

obtain a realistic match to experimental test cases (though some realistic cases

will be shown). While there are numerous examples of dendrites bending and

becoming misorientated as outlined in chapter 2, many involve deformation

outside of the linear elasticity assumptions, lack experimental details the

modelling would require or would require other physics to be modelled for a

realistic chance of a close match. In particular, due to fluid flow not being

implemented at this stage, for many cases there are a number of missing factors

which would influence the solidification and complement the structural effects

such as remelting, changed solute transport and additional pressure forces from

the flow. While the force could be increased to represent the pressure and

weakened base of the structure caused by remelting (though quantifying the

increase in force that would account for these factors, even loosely, would be a

difficult task), this would still be entirely neglecting the changing solidification

behaviour.

While there are differences in the problem setup that will be highlighted for

each case, there are many aspects which they share and will be outlined here.

The cases in section 7.3 - 7.6 are all modelling ‘thin sample’ cases as can be seen

in figure 7.1. This means that one of the dimensions has far fewer computational

cells in one of the axis directions than in the other two (for all of these cases this

is in the x axis using only 20 cells). This means that while the structure is truly

three-dimensional, and is being solved as such, the behaviour will be similar to a

two dimensional case under plane stress, with the displacements in u and rotations

calculated around the y or z axis generally being insignificant. Many practical
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experiments use a thin sample to facilitate easier visual observation, and similarly

the thin sample cases have been chosen for these cases as they make it easier to

observe the modelled behaviours. The other cases in sections 7.7 - 7.9 are ‘fully

3D’ in the sense that they have a significant number of computational cells in all

directions, allowing complex phenomena to arise which could not be captured in

2D simulations. The boundary conditions (see section 3.6) are generally the same

across comparable cases, where any exceptions will be noted. For thin sample

cases, the East and West faces are slip conditions where u = 0, the South face

has all displacements fixed, the North face is free and the High and Low faces are

periodic. For the fully 3D cases the Low face is fixed, the High face is free and

all other faces are periodic.

Figure 7.1: Thin sample 3D view.

Outside of the problem domain, all relevant variables related to the material
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properties and problem setup have been summarised in table 7.1, as

representative of experiments to solidify Ga − 25wt%In alloys, this being a

material used in previous work published using this model [45]. The only

pertinent information which has not been included in the table is the Young’s

Modulus and force definitions being used, as these related quantities (increasing

the force or decreasing the Young’s Modulus by the same factor leads to

identical deformations being obtained) are defined differently for many cases

presented, generally to exaggerate and highlight the structural effects so they

can be easily observed and discussed even when solidification is only occurring

over a relatively a small domain. Thermal expansion has been neglected for all

cases except for those which explore this behaviour. This has been done as for

most cases the temperature variations at the micro-scale are small, so if

realistically modelled would often have little to no impact on the structural

development. However, if the relevant variables were increased for the sake of

demonstrating their impact, this would cause results to develop in a way which

would distract from any behaviour being driven by external forces.

Finally, it must be reiterated that these results are being modelled under the

assumptions laid out in this section as well as the earlier defined linear elastic

assumptions, with the primary aim being to highlight the functionality of the

model and consequently should generally not be taken as indicative of the actual

behaviour of deforming dendrites from a Ga − 25wt%In alloy. The linear elastic

assumptions mean that the presented stress profiles are particularly questionable,

as it is very likely that there is a significant degree of plasticity within the semi-

solid dendrites being considered which would likely significantly lower the internal

stresses of the structure.
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7.3 Thin Sample Fixed Force

The case presented in figure 7.2 shows a single seed growing into a columnar

dendrite in a 400 × 160 × 20 cell domain, where the orientation significantly

changes as a constant body force is applied in the z direction at each structural

mechanics time step. This is defined as Fz = −∆ρg N/m3, where ∆ρ is the

density difference within a cell and g is the gravitational acceleration. In order

to obtain a notable orientation change over such a small domain a rather low

Young’s Modulus of E = 10000 Pa was used. The seed had an initial orientation

of θx = 5◦, so that secondary arms should start growing early on in the simulation.

Looking at the results in figure 7.2 showing the changing solid fraction over

time, it can be seen that by (a) there was no visible evidence of orientation change,

which by (b) had been changed to almost negate the starting seed orientation,

while by (c) the orientation is now growing at a visibly negative inclination. This

is highlighted further in (d) which shows how there is wide local variation in

the orientations of the structure from the initial orientation it was seeded with.

For the final state of the dendrite this shows the misorientation growing along

Property Variable Value Unit
Density Ga ρGa 6095 kgm−3

Density In ρIn 7020 kgm−3

Poisson’s Ratio υ 0.3 −
Liquidus Slope ml −2.9375 K%wt.−1

Partition Coefficient k 0.5 −
Liquid Mass Diffusivity Dl 2 × 10−9 m2s−1

Solid Mass Diffusivity Ds 1 × 10−12 m2s−1

Cooling Rate Q 0.01 Ks−1

Thermal Gradient G 1 Kmm−1

Cell Size ∆x 10 µm
Time step ∆t 5 ms

Table 7.1: Properties used for problem setup.
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the length of the dendrite, having the largest change at the tip in a manner

somewhat analogous with the claims that a columnar dendrite will behave like

a cantilever beam. Some small positive changes in orientation can be seen in

the secondary arms growing off of the wall, caused by the elastic nature of the

material causing these arms to bend upwards to balance the deformation of the

main arm. The image in (e) shows the Von Mises Stress which had accumulated

within the dendrite, highlighting that the highest regions of stress are generally

where secondary arms attach to the main arm or interact with each other. Finally,

in (f) a result showing the state of a dendrite grown without a force acting upon

it is shown for the sake of comparison.

This case was chosen to demonstrate that the key mechanism of a dendrite

becoming misoriented over time due to external forces can be captured, where

significant changes in microstructure development can be observed.

(a) t = 60000

(b) t = 100000

(c) t = 140000

(d) Orientation Change

(e) Von Mises Stress

(f) No Force

Figure 7.2: Thin sample dendrite growing under a constant body force.
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7.4 Growth Under Thermal Strain

The case presented in figure 7.3 shows a single seed growing into a columnar

dendrite in a 400 × 320 × 20 cell domain, where the orientation is significantly

changed by thermal expansion occurring as the dendrite solidifies. In order to

present a clear case where thermal stress is the only driver of deformation, a

slightly different problem setup was chosen where the thermal gradient was

fixed (so cooling rate Q = 0 Ks−1) and to account for thermal expansion a

coefficient of thermal expansion α = 3.1 × 10−4 K−1 was used, where the

reference temperature for expansion was taken to be Tref = 295.1675 K, which

is the constant temperature running north to south through the centre of the

domain. Again a Young’s Modulus of E = 10000 Pa was used to exaggerate the

orientation change over such a short distance. The seed had an initial

orientation of θx = 0◦, so that the columnar dendrite would grow straight along

this centre line absent of any structural mechanical intervention.

Looking at the results, in (a) the final state of the simulation can be seen,

where the structure has deformed into the cool region below the reference

temperature, with the fixed temperature gradient being found in plot (b). The

orientation of the dendrite can be observed in plot (c), again showing the largest

misorientation at the tip of the dendrite. Finally, in plot (d) the Von Mises

Stress driven by the thermal expansion can be observed, which as would be

expected is most significant in the regions where the expansion or compression

of the dendrite would be most constrained.

This behaviour corresponds with what would intuitively be expected, where

the thermal gradient around the reference temperature means that anything

growing in the upper half of the domain wants to expand, while any material in

the lower half wishes to contract. The combination of these influences is

consistent with the bend into the cold region being observed. This case was
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chosen to demonstrate that the thermal expansion structural mechanics

behaviour described in section 3.7 functions correctly when fully coupled with

microstructure solidification and can have a notable impact on the development

of the microstructure under the correct conditions.

(a) Solid fraction (b) Temperature Gradient

(c) Dendrite orientation (d) Von Mises Stress

Figure 7.3: Dendrite growing under thermal strain.
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7.5 Sinusoidally Changing Force

The case presented in figure 7.4 shows a single seed growing into a columnar

dendrite in a 400 × 160 × 20 cell domain, where the orientation of the dendrite

changes significantly over time due to a body force which changes sinusoidally over

time. This time dependent force was defined as Fz(t) = − sin(βt) × ∆ρg N/m3,

where β = 5 × 10−3 is a variable to change the frequency of the sine wave, chosen

somewhat arbitrarily to allow multiple distinct waves to be visible, g is three

times the usual value of Earth’s gravitational constant and a Young’s Modulus of

E = 10000 Pa was used to allow significant orientation changes to happen over

the relatively short domain. The seed had an initial orientation of θx = 0◦, so

that there is no existing bias in the preferred growth direction before the force is

applied.

The results show the development of the (a) solid fraction and (b)

orientation, where the sinusoidal nature of the force becomes more obvious as

the solution develops, with the ‘amplitude’ increasing due to the deformations

growing larger as the dendrite increases in length. Graphs extracting

information at the tip of the dendrite showing how the force, tip location along

the y axis, total orientation and observed deformation for the time step change

throughout the simulation can be observed in figure 7.5. In particular, figure

7.5e scales all of these variables so they can be compared on a single plot. This

demonstrates that while the displacement largely matches movements in the

force as would be expected, the orientation change lags behind so that it has a

turning point when the force is close to zero. The tip location then itself lags

behind the orientation, this time having a turning point when the orientation

approaches zero, which actually causes it to moves in opposition to the force.

However, when considering the process of coupled solidification, these lagged

behaviours make intuitive sense. If it is not altered by further deformation the
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dendrite orientation will maintain its value in perpetuity, so even after the force

has reached it’s peak amplitude and begun to decrease in size, these will still

result in correspondingly signed deformations which will continue to increase

the magnitude of the orientation, albeit at a decreasing rate. Only after the

force approaches zero will the increase in orientation stop, and correspondingly

only when the force begins acting in a direction opposing the current growth

orientation will the orientation finally begin to diminish in magnitude. A

similar relationship exists between the orientation and the tip location, where

the tip location of the dendrite will continue to increase in magnitude due to

the dendrite continuing to grow away from the starting location even if the

orientation stops changing. Consequently the same relationship can be observed

where the tip location only stops changing when the orientation approaches

zero, and the tip will only being moving counter to it’s current bearing when

the orientation has changed sign. These plots seem to indicate that once the lag

is accounted for, the tip location, orientation and deformation all demonstrate a

similar increase in peak amplitude with each wave period. However, the increase

in amplitude does not seem to be consistent with each cycle, which is likely a

consequence of the changing morphology of the dendrite giving it significantly

different deformation behaviour over time, which is passed on to the

deformation dependant orientation and tip location quantities.

This case was chosen to demonstrate that the method of accounting for

existing deformation outlined in section 4.4 is also capable of accounting for

transient forces which may negate or even reverse previous deformation.
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(a) Solid Fraction (b) Dendrite Orientation

Figure 7.4: Dendrite growing under sinusoidal force.
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(a) Sinusoidal force (b) Change in tip location

(c) Dendrite orientation (d) Time step displacement

(e) Scaled Variable Comparisons.

Figure 7.5: Variable comparisons over time for dendrite under sinusoidal force.
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7.6 HPC Thin Sample Cases

This section will showcase some examples of large scale thin sample modelling

run on the HPC facility at Greenwich University, allowing much larger problem

sizes to be solved thanks to the use of parallel programming.

The work in figure 7.6 was presented in the paper “Predicting Concurrent

Structural Mechanical Mechanisms During Microstructure Evolution” by Soar et

al. (2021) [45]. This took a 6400 × 1600 × 1 cell domain, with Fz = −∆ρg where

g is 3 times terrestrial gravity and a Young’s Modulus of E = 30MPa was used.

This Young’s Modulus is taken as the lower bound for a semi solid alloy within

the Eutectic region, as determined from the compressibility of constrained liquid

Indium and Gallium [119]. This is in fact a 2D problem, obtained before 3D was

fully implemented, however the behaviour should be similar to a thin sample 3D

case. The grains were seeded with an initial orientation of θx = 20◦, so that they

would grow at a noticeable orientation before structural mechanics grows large

enough to noticeably counteract it.

In part (a) of the image the deformations are too small to cause any notable

orientation change, becoming small but visible in (b), by (c) the starting

orientation of 20◦ is almost entirely counteracted and by the final step taken in

(d) the orientation changes have accumulated to such a degree that the starting

positive orientation is entirely counteracted and the orientation at the tip is now

clearly negative. Part (e) of the image shows the orientation changes

throughout the sample, with the misorientation growing larger towards the tip,

though areas where secondary arms interact also demonstrate local

misorientation. Part (f) shows accumulated v displacement within the dendritic

structure, where the highest deformation can generally be found somewhere in

the centre of the dendrites, fading out towards the tip and root. While these

deformations may at first appear counter intuitive, attaining the largest
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accumulated deformation within a structure requires balancing the magnitude

of individual deformations against the total accumulated deformation. The

region satisfying this is usually at the centre as the tip of the dendrite has only

experienced a few deformation events, even if their magnitude is relatively large,

while conversely the root of the dendrite has been experiencing deformation

events for the entire simulation, but these are of a consistently small magnitude

compared to the constantly increasing deformations occurring at the tip. Part

(g) shows the Von Mises stress within the microstructure, demonstrating that

the main regions of stress are pivot points where primary arms or stable parts of

the microstructure are fixed or where secondary arms impinge upon each other.

Finally, part (h) shows the contrasting case where the solidification occurred

without any force being applied, allowing it to grow along the starting

orientation unimpeded. This case was chosen to demonstrate that significant

structural mechanical effects can be captured by this model using realistic

conditions in a domain size comparable to those used in practical experiments.
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Figure 7.6: Large scale thin sample solutions from Soar et al. [45].

A further, preliminary case from this paper can be seen in figure 7.7, which

has the same setup except for some grains having their deformation and hence

orientation fixed, while other grains are free to deform. This is analogous to the

situation where a dendrite may have fused to or otherwise be somehow

constrained by some imperfection on the thin sample wall. This leads to

examples of converging/diverging grains due to the continuous nature of the

modelling, where in this case the deforming grain was ultimately trapped by the

fixed grain. However, grain competition being a complicated phenomenon,

under slightly different conditions the deforming grain could have out competed

the fixed one, leading to the formation of a stray grain.

210



7. MODELLING CASES

Figure 7.7: Converging grain example from Soar et al. [45].

Similar cases were later modelled in 3D (though still thin sample), one of which

has been presented in figure 7.8. This case was chosen as it demonstrates some

interesting behaviour which differentiates it from the 2D case, despite having

smaller deformations. Part (a) shows the concentration within the structure

rather than solid fraction, for easier comparison with the prior HPC case. Part (b)

shows the same behaviour with the deformations, having a maximum in the centre

of the dendrite. The orientations which can be seen in (c) highlight the interesting

behaviour due to secondary arms interacting with one another, the tips of two

primary dendrites have been bent away from each other, which if the simulation

could continue, would eventually lead to the formation of a new primary arm

between them. The Von Mises Stress in (d) shows stress accumulating throughout

the dendritic structure except for the tips which are still relatively free to move,

with there being a high region of stress which quickly diminishes at the point

where the arms start to noticeably diverge.
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(a) Equivalent Solute Concentration (b) Deformation

(c) Orientation (d) Von Mises Stress

Figure 7.8: Large thin sample dendritic system.

7.7 3D Dendrites

The cases in this section were chosen to highlight some behaviours only observable

in fully 3D environments, without the constraint of the thin length in one direction

as in the prior thin sample cases.

The first case in figure 7.9 takes a single dendrite growing from the floor of

a sample and applies two body forces simultaneously to cause it to deform out

of plane. For this the forces were taken as Fx = Fy = −∆ρg N/m3, where g is

equivalent to terrestrial gravity and a Young’s Modulus of E = 10000 Pa was

used. From applying two forces in this way, significant orientation change around

both the x and y axis can be observed, causing the dendrite to grow into one of

the corners of the domain.
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Figure 7.9: Dendrite bending out of plane.

The case in figure 7.10 takes a domain where 50 dendrites were seeded in

random locations and with random orientations between ±20◦, to highlight that

within this complex framework of competing dendrites, the SMS is able to

correctly identify and obtain displacements for the structures, which each have

their own distinct orientations which still can change within a single dendrite.

For this a force of Fz = −∆ρg N/m3, where g is equivalent to five times

terrestrial gravity and a Young’s Modulus of E = 10000 Pa was used. While,

ultimately, the same two dendrites managed to outcompete the others in both

cases, clear differences in dendrite orientation can be observed throughout the

sample. In larger samples, or even just a different random distribution, the

impact from the structural mechanical changes could easily influence which

dendrites will out compete one another.
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Figure 7.10: Forest of dendrites showing orientation components in pairs to
compare behaviour without (left) and with (right) force applied.

7.8 Rotational Force

This case presents a single dendrite growing upwards through a rotational force.

To represent this, at the centre of the dendrite the force acting upon the structure

is zero, but the forces Fx and Fy increase in magnitude as they approaches the

domain boundaries to ±∆ρg N/m3, where g is five times terrestrial gravity and

a Young’s Modulus of E = 10000 Pa is used. This imparts a counter clockwise

rotational force upon the structure as it grows. Under these conditions this

dendrite can be observed in (a)-(c) to form a clear spiral, with the secondary

arms preferentially growing counter clockwise as they grow. Part (d) shows how

the rotation around the y axis varies along the length of the dendrite, with the

tip of the dendrite having experienced approximately an entire 360◦ rotation in

the course of the simulation.
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(a) (b) (c) (d)

Figure 7.11: Rotational force acting upon a dendrite.

7.9 Parametric Study

The final case chosen to be presented in this section is a parametric study

examining the changing behaviour of a single dendrite growing under increasing

body forces. For this study a seed with an initial orientation of θ = 20◦ was

placed on the east wall of a 200 × 200 × 1200 cell domain with a thermal

gradient across the 1200 cells which cools after the simulation starts. Periodic

boundaries were used so that rather than modelling a single dendrite growing in

a solid ‘box’, the modelling instead represents a three-dimensional region being

taken out of an infinite field of identically seeded dendrites. While this certainly

still presents an idealised scenario, it should serve to highlight the impact of

interaction on deformation and orientation which would occur in situations
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where multiple dendrites are growing. This periodic approach also allows the

mass and secondary arm length of the different cases to remain comparable

between the cases, where a bending dendrite in a solid ‘box’ could become top

or bottom heavy as it develops and is limited in growth by interaction with the

wall.

Five cases will be taken for this parametric study where for a structure with

a Young’s modulus of E = 10000 Pa when fully solidified the only variable

changed is the body force, with body forces of 100 N/m3, 1000 N/m3,

2500 N/m3, 5000 N/m3 and 10000 N/m3 being examined. Going forward, the

cases using these forces will be identified by the multiple of force used relative

to the initial case, making the cases examined in the study 1, 10, 25, 50 and 100

respectively. Each case has been run for 250000 time steps where ∆t = 0.005

seconds, so that the final state presented is at a point 1250 seconds after initial

seeding.

The final state after 250000 steps can be seen for all cases in figure 7.12.

This shows that for cases 1 and 10 little to no visible orientation change has

occurred, though for case 10 the orientation change has accumulated to cause a

notably different location and orientation for the tip of the dendrite, along with

various small changes in the secondary arm development. Case 25 now clearly

shows the changed orientation, with the dendrite tip almost flattening off so

that the total orientation is approaching 0◦. Case 50 exaggerates the orientation

change further, with the initial orientation not just being matched but almost

entirely reversed. Case 100 has become difficult to directly compare to the other

cases as is demonstrates misorientation so great that the tip of the main

dendrite arm was approaching an orientation parallel with the force direction,

seemingly only being stopped due to being outcompeted by a secondary arm. If

the simulation continued one of these now competing secondary arms would
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become the new primary dendrite, leading to a vastly different overall

microstructure. One observation about the different microstructures is that as

larger forces are used, the length of the dendrite from base to tip becomes

smaller. While the difference between cases 50 and 100 from the prior three

cases is the most obvious, on close inspection this holds true for the first three

cases also. It is not entirely clear why this is the case, with more research into

the growth of curving dendrites under different conditions being required to

establish if this is realistic. If the curving dendrites were to be somehow

straightened then the distance covered would be more comparable, but would

still be lagging behind the tip distance attained by case 1.

217



7. MODELLING CASES

Figure 7.12: Dendrite structures for cases 1, 10, 25, 50 and 100 in descending
order at final time step t = 250000, colour indicating length of microstructure in
µm.

However, it is not just the final state of the microstructure that is of interest,

but rather how the microstructure, orientation change and deformation develops

over time to reach this final state and if there are any patterns to be observed.

To this end, the microstructure and orientation change over time can be observed

in figures 7.13 - 7.17, which will be referenced later to provide possible context
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and explanations for observed behaviour differences between the cases.

Figure 7.13: Case 1 microstructure and orientation change (θ◦) development at
t = 50000, 100000, 150000, 200000, 250000.
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Figure 7.14: Case 10 microstructure and orientation change (θ◦) development at
t = 50000, 100000, 150000, 200000, 250000.
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Figure 7.15: Case 25 microstructure and orientation change (θ◦) development at
t = 50000, 100000, 150000, 200000, 250000.

221



7. MODELLING CASES

Figure 7.16: Case 50 microstructure and orientation change (θ◦) development at
t = 50000, 100000, 150000, 200000, 250000.

222



7. MODELLING CASES

Figure 7.17: Case 100 microstructure and orientation change (θ◦) development
at t = 50000, 100000, 150000, 200000, 250000.

The first structural behaviour to assess is the change in orientation (all of

the values specify how much the dendrites’ orientation has been altered from

the initial orientation it was seeded with, rather than the overall orientation of

the dendrite). Looking at these figures, it can be seen that at the most basic

level, for all cases the orientation profiles develop in a similar manner to earlier

cases presented in this chapter, with the tip being the point of highest
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orientation change, which increases in magnitude as the dendrite grows longer.

Furthermore, the secondary arms show some relatively large local

misorientation due to interaction with other secondary arms, though as by the

point of contact the arms are generally constrained and unable to grow further

this rarely has a meaningful effect on further microstructural development.

To aid in the interpretation of the orientation behaviour, a table of the

maximum orientation change values found in figures 7.13 - 7.17 can be found in

table 7.2. For easier visual interpretation of the orientation change behaviour,

graphs showing more granular maximum orientation change values throughout

the simulation have been plotted in figure 7.18. This includes the raw values to

show the absolute difference in values in 7.18a; these values have been

normalised to all run from 0 to −1 in 7.18b to allow the relative rates of change

to be compared; finally in 7.18c the ‘scaled’ orientation change values have been

presented as an alternative method of comparing the relative rates of

orientation change. ‘Scaled’ in this context means that the final orientation

value has been divided by the force multiplier being used for that case, which

will bring the values to the same order as in case 1 and if the relationship

between body force increase and orientation change was linear should lead to all

of the lines behaving identically.
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t
Case

1 10 25 50 100

50000 -0.0364 -0.367 -0.905 -1.85 -3.64

100000 -0.132 -1.39 -3.54 -7.38 -14.4

150000 -0.256 -2.79 -7.33 -17.6 -32.3

200000 -0.383 -4.14 -12.0 -26.9 -60.1

250000 -0.507 -5.49 -18.5 -34.0 -78.1

Table 7.2: Comparison of orientation change (θ◦) values.

Using a combination of these outputs some patterns in the development of

the orientation change become clear. Up until step t = 100000 the relationship

between force and orientation change appears to be essentially linear, with the

observed orientation change for case 100 being approximately 100 times larger

than the orientation observed for case 1, likewise with the intermediate cases.

This almost linear relationship remains until the final step for cases 1 and 10, with

almost identical behaviour and values (when adjusted for the force multiplier),

however for the other three cases both the behaviour and values begin diverging

quite significantly from what would be expected if there was a linear relationship

between the force and orientation change. The likely cause for this disparity is the

impact of the orientation on the growth behaviour of the microstructures, where

the dendrites up to step 100000 are all relatively similar across the five cases due

to the relatively small orientation changes (likewise this is why cases 1 and 10 are

similar throughout the simulation), but after this point the cases experiencing

large forces begin to have radically different microstructural development and

hence structural behaviour.

Looking at the plots in figure 7.18 in more detail also serves to highlight

interesting relationships between the force and orientation change over time. The
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change in orientation for all five cases seem to approximately follow a power

law of θ(t) = −4 × 10−11t1.91 for the first 100000 steps (see figure 7.19a), but

after this point the behaviour stops following this power law distribution and

begin to vary drastically between cases. For cases 1 and 10 after this point

orientation change becomes essentially linear, the likely cause of this change being

the transition from a largely freely deforming dendrite (loosely analogous to a

freely deforming cantilever beam) to having any movement limited by interaction

with surrounding dendrites. This means that a relatively consistent section near

the tip of the dendrite before the secondary arms are able to interact remains free

to deform throughout the rest of the simulation. The behaviour observed in cases

25, 50 and 100 after step 100000 is more complicated, with signifiant behavioural

differences between the cases. There is no fixed pattern shown in the behaviour

of the cases from this point onwards, with the rate of orientation change both

increasing and decreasing at seemingly unrelated time steps. While in absolute

terms the orientation change is always larger for cases with larger forces being

applied, by considering the normalised and scaled solutions it can be observed

that in relative terms the largest force does not always have the largest (scaled)

orientation change. In particular, when considering the scaled solutions case 50

has the largest relative orientation change between t = 125000 to 175000, yet by

the end of the solution it has a relative orientation change lower than case 25.

This all seems to further highlight the fact that predicting orientation change

for a structure becomes increasingly difficult once structural mechanics starts to

influence the growth behaviour and interaction with other dendrites begins.
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(a) Real values.

(b) Normalised values.

(c) Scaled values.

Figure 7.18: Case comparison plots for largest observed orientation change θ at
time step. 227
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(a) First 100000 steps.

(b) Full simulation.

Figure 7.19: Scaled orientation change θ comparing all cases and showing fitted
power law of θ(t) = −4 × 10−11t1.91.

Similar conclusions can be drawn when examining the accumulated

displacements w being observed between the different cases (the u and v

displacements have been neglected due to being significantly smaller in

magnitude and hence far less impactful on the microstructural development).

The profile of these displacements at the final time step can be observed in

figure 7.20, where the phenomenon of the largest deformation region occurring
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in the centre of the dendrite as was described in section 7.6 can again be

observed. As with the orientation, table 7.3 contains the largest accumulated

orientation value for every case at 50000 time step intervals and plots of more

frequent data observations giving the raw, normalised and scaled relationships

can be found in figure 7.21.

Figure 7.20: Accumulated w displacements (µm) for all cases at final time step
t = 250000.
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For these displacements it can be observed that, much like with the

orientations, the relative values for all cases up to 100000 are similar, and cases

1 and 10 are quite similar throughout. However, there is an unmistakable

divergence in the values as the forces and time steps increase that was far less

apparent in the orientation data. This divergence in the relative displacements

can be highlighted by considering the final time step for case 1 and 100, where

the accumulated displacements for case 100 are in fact nearly 350 times larger

than the displacements observed for case 1, where a linear relationship would

anticipate them to be only 100 times larger.

t
Case

1 10 25 50 100

50000 -0.0612 -0.604 -1.50 -3.17 -6.66

100000 -0.503 -5.49 -13.8 -32.7 -65.1

150000 -0.998 -11.6 -32.9 -130 -200

200000 -1.39 -18.9 -57.6 -230 -504

250000 -2.00 -27.0 -144.467 -282 -687

Table 7.3: Comparison of maximum accumulated deformation (µm) values.

Despite these changes in magnitude, when considering the normalised and

scaled values in figure 7.21, the behaviour of the deformations over time does

match that of those previously described for the orientations for each case, with

the behaviour simply being exaggerated due to the larger relative values. This

serves to highlight that the displacements are also affected by the changes in

growth behaviour and structure interaction, with a clear relationship between

the displacements and orientations in behaviour.
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(a) Real values.

(b) Normalised values.

(c) Scaled values.

Figure 7.21: Case comparison plots for largest observed cumulative w
displacement at time step. 231
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The time step displacements are the displacements calculated by the SMS

for a single time step (to be contrasted with the cumulative displacements

previously examined, which combine all extant time step displacements) have

been plotted in figure 7.22. The time step displacement profiles and a table of

values has not been provided for the parameter due to it having high variability

depending on the state of the system at a given time step, so only by

considering the overall evolution of a large number of time step displacements

occurring throughout the simulation can anything useful be inferred.

Considering cases 1 and 10, these time step displacements appear to support

the earlier observations by demonstrating some similar behaviours to the other

parameters throughout the simulation, starting with the displacements

increasing geometrically until around step t = 100000 to correspond with the

power law behaviour observed in the orientation changes in figure 7.19, after

which both level off to a very gradual, approximately linear increase. For case

25, after a steady increase broadly corresponding to that observed in cases 1

and 10, there is then a very sharp increase in time step displacements between

approximately t = 175000 and 210000 (attaining the highest observed scaled

displacement), at which point it then begins sharply decreasing again until the

end of the simulation. It seems probable that this was caused by a period of

growth where the tip was able to attain a relatively long length and weight

without being constrained by the interaction of secondary arms, however this

clearly became constrained again around step 210000, causing the large

curtailment in the magnitude of the observed displacements. For case 50, this

further highlights that there was a sharp increase in displacements between

t = 100000 and 140000, at which point it sharply fell again until 190000, where

the displacements then levelled off. This would seem to be a similar case of the

altered growth behaviour allowing a relatively large length near the tip to
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remain free for a short period, before the secondary arm interaction begins

curtailing this effect to reach a relative equilibrium where even as the

microstructure keeps growing, the displacements remain relatively constant due

to the ‘free’ length of dendrite near the tip remaining broadly the same. For

case 100 the time step displacements seem to increase until step t = 180000, at

which point they decrease by a comparable rate until the simulation ends. This

decrease in displacements is so precipitous that even in absolute values it is

approaching the values observed in cases 25 and 50. The reason for this notable

decline in displacements becomes clear when considering the final two time

steps presented in figure 7.17, where the tip goes from having relative freedom

to deform to experiencing secondary arm interaction along the dendrite’s entire

length, eventually becoming trapped by the end of the simulation. At this

stage, rather than being a dendrite with a free tip which can deform, the

microstructure has instead become essentially a continuous block, with a

consequently significantly smaller capability for deformation. This would again

seem to highlight the complex nature of microstructural development where

structural mechanics is being considered.
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(a) Real values.

(b) Normalised values.

(c) Scaled values.

Figure 7.22: Case comparison plots for largest observed single time step w
displacement. 234
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Finally, the Von Mises stress for the final time step can be viewed in figure 7.23

where the exponentially distributed key values indicate the relationship between

force and stress is not linear, however the general stress accumulation behaviour

appears to be consistent throughout the cases. For all cases, the centre of the main

trunk of the dendrite is largely a low stress region, with the regions of highest

stress always being observed in interacting arms, in particular where the tips

come into contact. Overall, this shows that while the internal stress of a dendrite

will increase as it experiences larger forces, the precise regions of the relative high

and low stresses are largely dependent on precise mechanical interactions.

235



7. MODELLING CASES

Figure 7.23: Von Mises stress σvm(Pa) for all cases at final time step t = 250000.

Many papers in the literature treat a columnar dendrite as a structure

analogous to a cantilever beam when trying to estimate the deformation or

stress accumulation within the dendrite, which is often a reasonable assumption

for post processing a single dendrite. However, this study highlights that this

assumption quickly falls down in more realistic scenarios where structural

mechanics is being concurrently solved such that it influences the growth
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behaviour of the microstructure. Even in cases where any changes in orientation

are fairly small (as in cases 1 and 10), the approximate behaviour of a

deforming cantilever beam will not hold true if there is interaction with the

secondary arms limiting the freedom of the dendrite to deform like a beam. For

the cases experiencing larger forces (cases 25, 50 and 100), aside from sharing

this issue with secondary dendrite interaction, it will ultimately grow into a

structure with a curved morphology so distinct from a beam that any attempt

to compare it with a cantilever beam becomes increasingly dubious.

For the initial stages of the simulation there seems to be an approximately

linear relationship between the increase in force and the increase in observed

displacement and orientation changes, which would be the expected behaviour

for identical beams of any length experiencing increasing forces. While this

seems to hold mostly true for the entirety of cases 1 and 10, for the other cases

this relationship fails at some point during the simulation, again due to the

morphology becoming increasingly less beam like and due to the secondary arm

interaction.

Overall, this parametric study highlights the importance of this research, as

simply by increasing the force on otherwise identical modelling cases,

significantly different microstructural development can be observed which could

not be predicted using previously existing methods.

7.10 Summary

This chapter began by providing the modelling context and basic setup of the

cases being presented. Thin sample cases were presented to demonstrate that

the coupled SMS with microstructure solidification can model a single dendrite

changing orientation over time. This further explored thin sample cases where
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thermal strains change the growth orientation, transient forces were applied

which counteracts itself over time and large scale cases were run using parallel

computing which are representative of realistic cases. Fully three-dimensional

cases were then presented, showing how multiple orientations can be changed to

cause the dendrite to bend out of plane, how a forest of dendrites can be

modelled using the SMS and how the application of a constant rotational force

can generate a dendrite which grows in a spiral. Finally, a parametric study was

undertaken which highlights how significantly different microstructures can be

attained simply by increasing the body force the system is grown under. This

has overall demonstrated a wide variety of modelling cases, mechanisms and

behaviours which can only be modelled using the current coupled modelling

setup developed by this research.

238



Chapter 8

CONCLUSION & FUTURE

WORK

8.1 Conclusions

The aim of this research was to develop a structural mechanics model which

could be coupled to an existing microstructure solidification code, allowing

mechanisms caused by these concurrent physical processes to be captured by

numerical modelling for the first time. Two key research questions were defined

at the start of this thesis, the first being:

What is the most effective way to couple the separate structural

mechanics and microstructure solidification models within a single

interdependent process?

In order to answer this, the solidification and structural mechanics models to

be used had to be defined. For solidification modelling, the existing CA method

solidification code in use by TESA was chosen, being a proven framework for
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generating accurate solutions for large problems thanks to the parallel computing

framework it utilises. For the structural mechanical behaviour, a linear elastic

material model was chosen as a fundamental model which would be relatively

straightforward implement. While the material model comes with assumptions

limiting the mechanical behaviour it can represent, it nevertheless allows for the

exploration of a wide variety of new modelling scenarios considering the nascent

stage of any current research to examine the influence of structural mechanics

on solidifying dendritic microstructures. The numerical method chosen to solve

the linear elasticity equations was a staggered grid Finite Volume method, which

was chosen over the more commonly applied Finite Element methods due to

the greater suitability of Finite Volume approaches for coupling to an evolving

microstructure.

With the SMS developed and verified for accuracy for purely structural

mechanics problems as shown in Chapter 3, the main topic of coupling with a

solidification process could finally be approached. Given the quasi-stationary

nature of the SMS, an approach had to be developed which would account for

any existing deformation when solving structural mechanics at a new time step.

This was done by keeping track of how the forces acting on the structure change

over time as it solidifies, so that only ‘new’ forces acting upon the structure were

accounted for at any given time step. With this complication resolved, the main

thrust of this research question could finally be addressed in the examination of

the most effective approach for allowing structural mechanics to influence the

behaviour of the microstructure solidification. The key influences identified in

the literature where structural mechanics alters the solidification process was

crystallographic orientation change, changes in the structures position caused

by deformation and the accumulation of stress causing parts of the structure to

fragment. Fragmentation, or any other mechanism causing parts of the dendrite

240



8. CONCLUSION & FUTURE WORK

to become unattached were deemed outside of the scope of the research at this

point, requiring significant additional work to model the movement of any

unattached parts of the structure as well as being unlikely to occur within

modelling scenarios which satisfy the linear elasticity assumptions. Nevertheless,

this model is capable of predicting the regions of the microstructure where the

maximum stress arises, which could be used to identify the locations and

mechanisms which could cause such fragmentation events.

Using the deformations obtained from structural mechanics to change the

position of structures is undoubtedly an important interaction between

structural mechanics and solidification, being examined in depth during

Chapter 6 of this thesis by using the obtained deformations to drive an

advection process which moves the solidifying structure through the fixed grid.

While the work done in this area shows great promise, incorporating it within a

solidification process proved more complicated than expected, with the CA

method being very sensitive to the internal structures or edges of the dendrite

being blurred to any degree, which could make the resumption of solidification

after the solid advection behave in an undesirable manner. Furthermore, it

became apparent that due to the linear elastic material model, expanding these

modelling assumptions to the rest of the system means that the small

deformations being modelled could be justifiably overlooked with regards to

physically changing the location of the structure. Even if solid advection was

implemented for these small deformations, only small amounts of material

should pass between the volumes each time structural mechanics is resolved.

For these reasons, while the work undertaken on representing the movement

and deformation of solid structures as an advection process is fundamental for

many of the proposed expansions of this research, given the assumptions

underpinning the current modelling the impact of structural mechanics could be
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entirely represented by changes to the crystallographic orientation as

demonstrated in Chapter 5. To do this, the local orientation of each volume

comprising the structure was altered by allowing the deformations at each face

to compete and ultimately calculate how much each volume will ‘rotate’ around

the x, y and z axis, in an approach justified both theoretically and verified

against analytic solutions. As the CA method being used to describe the

solidification already describes the growth orientation of the dendrites as three

Euler angle rotations, it was relatively straightforward to update these Euler

angles locally with the rotations caused by structural mechanics. With the

growth orientation changed the dendrite will grow at an altered angle, changing

the distribution of new growth across the structure and thereby where new force

will be applied the next time structural mechanics is solved. In this manner the

structural mechanics and solidification are interdependent, with structural

mechanics changing the growth behaviour of the solidification process and the

solidification process dictating where new force is applied in structural

mechanics.

Can numerical modelling of concurrent microstructure solidification

and structural mechanics predict the fundamental behaviours

observed in practical experiments?

To highlight the novel functionality of coupling structural mechanics with

microstructure solidification, a selection of cases were presented in Chapter 7 to

explore distinct modelling scenarios. It was demonstrated that a single dendrite

arm growing under a constant body force analogous to gravity would slowly

accumulate orientation changes, a situation observed numerous times in

literature where a long dendrite arms slowly becomes misoriented across the
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domain but has no visually identifiable point where a large deformation has

occurred [29–31]. It was also demonstrated that the solver could account for

deformation caused by thermal expansion, as this was widely identified as a

potential cause for dendrite deformation and misorientation within the

literature [18, 26–31]. A case was presented where the force changes in both

magnitude and sign over time, demonstrating the solver could account for

situations with a non constant force which could allow for the modelling of more

complex cases where an observed change in orientation shrinks or even reverses

along the length of a dendrite at least once [26, 29].

Large scale cases using a HPC were shown, demonstrating that system of

dendrites can demonstrate these misorientation behaviours under realistic

conditions and at sizes comparable to real life experiments. The large and

complex dendritic systems on display in these HPC cases also demonstrate the

ability of the SMS to identify and resolve the displacements for complex

collections of structures. However, these cases described so far all were set up as

thin sample cases such that one of the dimensions could almost be ignored, so a

fully 3D case where all dimensions are significantly thick was shown, where a

large number or randomly placed and oriented dendrites could still be identified

and have their displacements calculated by the SMS. Subsequently, the

capability for modelling cases where significant forces act in multiple directions

was shown, where more complex bending leads to growth at an orientation

which does not line up directly with any of the axis. In particular a single

columnar dendrite bending out of plane was shown along with a further case

where a rotational force leads to a dendrite growing in a spiral. Finally, a small

parametric study was performed which highlighted the significant morphological

change a dendritic system could undergo simply by increasing the force it grows

under.
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While exaggerated to allow for easy visual examination, these cases

demonstrate the ability to account for complex three-dimensional orientation

changes which is crucial for capturing the mechanisms which lead to defects

such as stray grains and slivers. Considering these cases presented, the fully

coupled model demonstrates the ability to simulate a wide variety of behaviours

observed in existing practical experiments which could not be captured using

any currently existing microstructure solidification modelling.

8.2 Future Work

This work has demonstrated the fundamental mechanism that small

deformations can change the orientation of growing dendrites in such a manner

that the microstructural development changes significantly, this has been

demonstrated in a manner consistent with experimental observations. However,

many of the experimental results where structural mechanical effects have been

observed are either post processed examples of fully solidified structures or

otherwise lack many details which would be required for accurate recreation

using the coupled code. For this reason, it would be desirable to arrange

practical experiments specifically designed to examine the mechanically driven

misorientation of dendrites, this would allow modelling to be performed where

the setup can fully match that of the experiment, allowing the accuracy of the

modelled behaviour to be truly validated against experimental results.

However, before this would likely be possible there are desirable expansions

to the model which would ideally be implemented. Fully coupling the SMS with

the fluid flow and/or TEMHD modules would likely be necessary to accurately

match the experimental results as both processes have been observed to have a

significant impact on microstructure development. The inclusion of fluid flow
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can greatly alter the distribution of solute within an experiments, changing the

solidification behaviour, possibly causing remelting as well as potentially

imparting significant force from the flow velocities. TEMHD is less ubiquitous

as a factor in solidification experiments, but including magnetic forces in the

experiment can induce changes to the fluid flow, with the changes that entails

to the development, as well as potentially directly applying a Lorentz force

which may contribute to the deformation of the solidifying structure. A related,

but as yet unexplored aspect of coupled structural mechanics with

microstructure solidification would be the field of contact problems where

dendrites grow into one another in a manner which will directly exert force

between the interacting dendrite. Due to the manner in which the SMS has

been created, special considerations would have to be made in how best to

prevent dendrites from fusing together when interpreting the structure solved by

the SMS, and instead allow dendrites which are brought into contact to impart

appropriate forces upon one another.

The inclusion of fluid flow behaviour would lead to systems where significant

remelting of dendrites becomes possible, which leaves a potential for dendrite arms

to become detached from the rest of the structure. In this scenario, it would be

imperative that the SMS is able to identify any unattached structure and ignore

this for the purpose of solving structural mechanics. How the detached solid

material behaves may change depending on the problem, in some cases it may be

sufficient to leave it in the detached location and allow growth to continue and

possibly reattach the structure. But in order to model more complex phenomena

such as detached structures floating away to trigger the columnar to equiaxed

transition or falling and interacting with other parts of the microstructure, a

solid body mechanics solver would be required to calculate how the structure will

be moved through the domain by the fluid flow. This would also likely require
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further development of the advection processes outlined in Chapter 6 to be better

able to handle the transport of dendrites over potentially large regions of the

domain without the observed loss of definition for the internal concentration and

tip sharpness.

Other methods of detachment than remelting could also be examined, such

as can be observed in the experiment by Reinhart et al (2014) [20] where an

arm bends and fragments under gravity. However, there is some debate over the

mechanism which causes the arms to detach in this manner, with some observed

fracturing events being attributed to mechanical brittle fracturing whilst others

claim the stress build-up causes rapid remelting to occur, with a combination of

both of these mechanisms also being a possibility.

While there are a large number of scenarios which are yet to be explored

where the deformations are ‘small’ and the structural mechanical changes can

be accounted for entirely by orientation change, expanding the material model

from linear elasticity to a model which allows for large deformations and plastic

behaviour would greatly expand the structural mechanics scenarios which could

be modelled. In any case, this would again likely require an improved advection

process to allow the underlying morphology of the dendrite to be maintained as

it is deformed over a significant distance.

Finally, an obvious algorithmic improvement would be to replace the

point-by-point method currently in use, as this makes structural mechanics an

obvious bottleneck in the solution speed for larger problems. Re-writing the

algorithm to use a more efficient method such as a Tri-Diagonal Matrix Solver

(TDMA) approach would greatly improve the solution speed of the SMS, saving

computational time and making the modelling of larger cases a more realistic

possibility.
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Appendix A

Staggered Grid Solver

Discretisation

This appendix will cover demonstrate the steps required to discretise the

equilibrium equations 3.24 - 3.26 to obtain the staggered grid finite volume

method presented in equations 3.27 - 3.29 for a structure with variable material

properties.

This process will only be shown for the u displacements acting along the x

axis for the sake of brevity, as an identical process is used to discretise the v and

w equations. Grids showing the locations of the displacements and material

properties being used in this discretisation can be seen in figure A.1 to aid

understanding of the process. It should be noted that this diagram is a 2D slice

of the 3D structure in the x-y plane, so there are also displacement and material

property nodes in the z plane which cannot be seen in the diagrams but are

utilised in the equations.
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(a) Displacement reference locations. (b) Material Property Locations.

Figure A.1: 2D slice showing information used to obtain u displacement.

Starting with the equilibrium equation for u:

2 ∂
∂x

µ∂u
∂x

1 +
∂

∂x
λ∂u

∂x

2 +
∂

∂y
µ∂u

∂y

3 +
∂
∂z

µ∂u
∂z

4 +
∂

∂x
λ∂v

∂y

5 +
∂

∂y
µ ∂v

∂x

6 +
∂

∂x
λ∂w

∂z

7 +
∂
∂z

µ∂w
∂x

8 +Fx = 0

(A.1)

Due to the variable material properties, none of these terms can be helpfully

collected together before discretisation, so have been labelled 1 - 8 and will be

discretised individually for clarity before being replaced back into this main

equation. Central differences are used for all differencing in the scheme, which

leads to the overall scheme for a central node being O(∆x2) accurate for the

case being examined using a Cartesian grid where ∆x = ∆y = ∆z . Sections 1 -

4 are the terms relating to the primary u deformations, which can be discretised

like so:
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1 : 2 ∂
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(A.2)

While the sections 5 - 8 are the from the cross terms accounting for the

impact of the v and w displacements, which can be discretised like so:
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(A.3)

Taking these 8 sections, substituting them back into equation A.1 and

multiplying through with ∆x2 (where ∆x = ∆y = ∆z due to the Cartesian grid

being used), allows a discretised version of the full equation to be collected

together in the form:

− 4µpup − 2λpup − 2µpup − 2µpup =

2µEue + 2µW uw + λEue + λW uw + µNun + µSus + µHuh + µLul + Sx

(A.4)

− (2λp + 8µp)up =

(2µE + λE)ue + (2µW + λW )uw + µNun + µSus + µHuh + µLul + Sx

(A.5)

−AP up = ANun + ASus + AEue + AW uw + AHuh + ALul + Sx (A.6)

Where Sx is the source term from the influence of the v and w grids and the
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body force being defined as:

Sx = µN(vne − vnw) − µS(vse − vsw) + µH(whe − whw) − µL(wle − wlw)+

λE(vne − vse + whe − wle) + λW (vnw − vsw + whw − wlw) + ∆x2Fx

(A.7)

Which can then be rearranged into the the final form presented in section 3.4

to calculate the displacement up:

−AP up = ANun + ASus + AEue + AW uw + AHuh + ALul + Sx

up = 1
−AP

(ANun + ASus + AEue + AW uw + AHuh + ALul + Sx)
(A.8)
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Structural Mechanics Solver

Validation

This appendix acts as a supplement to the model verification presented in

section 3.10, presenting the full 30 verification cases which were examined

(including the 7 cases already presented in that section to allow for easier

comparison with the other cases). All of the information provided Section 3.10

about problem setup, the presentation of results and numerical grid

independence applies to all the cases being presented here. Cases 1-14, 27-30

use a ∆x = 0.25 grid and cases 15-26 use a ∆x = 0.125 grid.

Case 1 - Floor fixed block under negative body force in z (figure B.1).

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of regular 3D structure under a body force load. The body force

applied was negative in the z direction, representing a case where the block is

fixed to the floor and compressed. The data comparisons indicate a close match

in accuracy between the SMS and COMSOL for this scenario.
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Case 2 - Floor fixed block under positive body force in z (figure B.2).

This case was chosen to demonstrate that reversing the sign of the force would

create a reflected solution and have no impact on the accuracy. The body force

applied was positive in the z direction, representing a case where the block is

fixed to the floor and uniformly stretched. The data comparisons indicate a

close match in accuracy between the SMS and COMSOL for this scenario and

are indeed the exact reverse of Case 1. As such, there will be no repeat any

further cases where the only difference is the sign of the force.

Case 3 - Floor fixed block under positive body force in y (figure B.3).

This case was chosen to demonstrate that the SMS could accurately capture the

behaviour of a shear body force running parallel to the fixed face. The body

force applied was positive in the y direction, representing a case where the block

is fixed to the floor and uniformly pushed throughout the structure going

South-North. The data comparisons indicate a close match in accuracy between

the SMS and COMSOL for this scenario.

Case 4 - Floor fixed block under positive body force in x (figure B.4).

This case was chosen to round out the prior tests and confirm that the SMS

could also correctly model a shearing force in the x direction. The body force

applied was positive in the x direction, representing a case where the block is

fixed to the floor and uniformly pushed throughout the structure going

West-East. The data comparisons indicate a close match in accuracy between

the SMS and COMSOL for this scenario.

Case 5 - Floor fixed block under positive body force in x and y (figure

B.5).

270



APPENDIX B

This case was chosen to demonstrate if the SMS is cable of resolving problems

including multiple body forces. The body forces applied was positive in the x

and y directions, representing a case where the block is fixed to the floor and

uniformly pushed throughout the structure going West-East and South-North.

Whilst clearly capturing the general structural behaviour well, these represent

the poorest match in value with the COMSOL solutions so far, with the w value

in particular being nearly 10% off of the COMSOL values. This may indicate

that for a case with complex force conditions like this, a greater grid density or

higher order boundaries may be required if a very close value match is desired.

Case 6 - Floor fixed block under positive body force in x and negative

force in y (figure B.6).

This case was chosen to demonstrate that when having multiple body forces,

the sign of the forces changing will no effect the accuracy of the solution. The

body forces applied was positive in x and negative in y, representing a case

where the block is fixed to the floor and uniformly pushed throughout the

structure going West-East and North-South. As expected, this is just a mirror

of the previous case for some displacements, with the accuracy and behaviour

matching that which was observed in case 5.

Case 7 - Floor fixed block under positive body force in x, y and z

(figure B.7).

This case was chosen to demonstrate that the SMS was capable of resolving

problems with body forces acting in all three directions. The body forces

applied was positive in x, y and z, representing a case where the block is fixed

to the floor and uniformly pushed throughout the structure going West-East,

South-North and Low-High. The data comparisons indicate a close match in
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accuracy between the SMS and COMSOL for this scenario.

Case 8 - Floor fixed block under positive facial force in w on High

face (figure B.8).

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of regular 3D structure under a facial force load. The facial force

applied was positive in the z direction, representing a case where the block is

fixed to the floor and stretched by the top face. The data comparisons indicate

a close match in accuracy between the SMS and COMSOL for this scenario.

Case 9 - Floor fixed block under positive facial force in y on High face

(figure B.9).

This case was chosen to demonstrate that the SMS could accurately capture the

behaviour of a shear facial body force running parallel to the fixed face. The

body force applied was positive in the y direction, representing a case where the

block is fixed to the floor and is pushed by a uniform force in South-North

applied to the high face. The data comparisons indicate a close match in

accuracy between the SMS and COMSOL for this scenario, however the u

displacements (which for this case are relatively small compared to the v and w

displacements) do seem to deviate slightly as their magnitude increases, though

still by less than 10% from of the COMSOL values.

Case 10 - Floor fixed block under rotational facial forces (figure

B.10).

This case was chosen to demonstrate how well the SMS would model some of

the more complex scenarios that could be achieved with facially applied forces,

such as apply forces that will attempt to rotate the structure around the z
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axis.This was done by applying a positive force in u on the North face, negative

in u on the South face, positive in v on the East face and negative in v on the

West face. This would represent a situation where a block is fixed to the ground

and rotated anticlockwise by applying uniform forces to the faces of the

structure. The data comparisons indicate a close match in accuracy between the

SMS and COMSOL for this scenario, however the w displacements (which for

this case are relatively small compared to the v and w displacements), while

clearly following the correct behaviour, do deviate quite significantly from the

COMSOL values, going outside of the 10% intervals plotted. This may indicate

that for a case with complex force conditions like this, a greater grid density or

higher order boundaries may be required if a very close value match is desired

for all displacements.

Case 11 - Floor fixed block under opposing facial forces (figure B.11).

This case was chosen as another example to demonstrate how well the SMS

would model some of the more complex scenarios that could be achieved with

facially applied forces, in this came compressing the block between opposing

facial forces. This was done by applying a positive force in u on the West face

and negative in u on the East face. This would represent a situation where a

block is fixed to the ground and compressed between two equl but opposite

uniform forces applied to opposite faces on the side of the structure. The

behaviour is well matched to what would be expected, with the compression in

u causing the structure to deform outwards in y and w due to the Poisson

effect, with the data comparisons indicating a close match in accuracy between

the SMS and COMSOL for this scenario.

Case 12 - Floor fixed block under body force in x and facial force in w
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on side face (figure B.12).

This case was chosen to demonstrate that the SMS was capable of accurately

resolving problem including both body forces and facial forces. The body force

applied was positive in the x direction and the facial force was positive in the z

plane and applied to the West face, representing a case where the block is fixed

to the floor uniformly pushed throughout the structure in one direction while

one of the faces is uniformly pulled upwards. The data comparisons indicate a

close match in accuracy between the SMS and COMSOL for this scenario.

Case 13 - Floor & wall fixed block under body force in z (figure

B.13).

This case was chosen to demonstrate that the SMS can accurately model

scenarios where more than one face of the structure is fixed. Here the West,

South and Low faces are fixed while a positive body force in z is applied to the

structure, representing a case where a block fixed at three faces is uniformly

pulled upwards. Aside from a discontinuity near the wall where the

displacements approach zero, data comparisons indicate a close match in

accuracy between the SMS and COMSOL for this scenario.

Case 14 - Floor block with fixed displacement (figure B.14).

This case was chosen to demonstrate that the SMS can accurately model

scenarios where one of the faces is moved by a fixed displacement. While not

currently being used in experiments, the ability to set a fixed displacement is

still key functionality for a structural mechanics solver, and it is certainly

possible in future research that it may be required to parse fixed displacements

when trying to model the behaviour of a multi-physics system. Here the top

face of the fixed cube was moved downwards by 1 cm. The data comparisons
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indicate a close match in accuracy between the SMS and COMSOL for this

scenario.

Case 15 - 4 × 4 × 10 cantilever beam with point load (figure B.15).

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of a structure where some sides are longer than others, modelling a

cantilever beams also allows for comparisons to be made with the analytic

solution given by Euler-Bernoulli beam theory (see section 3.10.6 for more

details on the beam theory model being used). To test this verification case, a

cantilever beam with the dimensions 4m × 4m × 10m was fixed to the wall at

one end and had a negative facial (or ‘point’ for the 1D beam theory model)

force in z, representing a case where a fixed cantilever beam has a weight

applied at it’s free end. As beam theory is a 1D approximation, only the

deflection w is provided, so while the SMS and COMSOL solutions did provide

u and v displacement profiles, these have been omitted to focus on the beam

theory comparison. The data comparisons confirm that for this case there is

also a very close match in values between the SMS and COMSOL, however the

beam theory, while still quite close in behaviour, is noticeably lower than the

other models. This is because the beam structure being modelled does not

actually satisfy the assumptions of beam theory, as for such a squat ‘beam’ the

Poisson effect will still have a significant effect on limiting the w displacement.

Case 16 - 4 × 4 × 20 cantilever beam with point load (figure B.16).

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of longer cantilever beam under a point load which will satisfy the

beam theory assumptions, allowing for comparisons to be made with the

analytic solution given by Euler-Bernoulli beam theory (see section 3.10.6 for
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more details on the beam theory model being used). To test this verification

case, a cantilever beam with the dimensions 4m × 4m × 20m was fixed to the

wall at one end and had a negative facial (or ‘point’ for the 1D beam theory

model) force in z, representing a case where a fixed cantilever beam has a

weight applied at the free end. As beam theory is a 1D approximation, only the

deflection w is provided, so while the SMS and COMSOL solutions did provide

u and v displacement profiles, these have been omitted to focus on the beam

theory comparison. The data comparisons confirm that for this case there is

also a very close match in values between all three models - beam theory, SMS

and COMSOL.

Case 17 - 4 × 4 × 40 cantilever beam with point load (figure B.17).

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of a significantly longer cantilever beam under a point load where the

length is ten times the size of the cross section, allowing for comparisons to be

made with the analytic solution given by Euler-Bernoulli beam theory (see

section 3.10.6 for more details on the beam theory model being used). To test

this verification case, a cantilever beam with the dimensions 4m × 4m × 40m

was fixed to the wall at one end and had a negative facial (or ‘point’ for the 1D

beam theory model) force in z, representing a case where a fixed cantilever

beam has a weight applied at the free end. As beam theory is a 1D

approximation, only the deflection w is provided, so while the SMS and

COMSOL solutions did provide u and v displacement profiles, these have been

omitted to focus on the beam theory comparison. The data comparisons

confirm that for this case there is also a good match between all three models,

with COMSOL and beam theory being almost identical, however the SMS

solution does seem to under predict slightly by comparison, though still well
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within the margin of error.

Case 18 - 4 × 4 × 10 cantilever beam with distributed load (figure

B.18).

This case was chosen to demonstrate that the SMS is also capable of modelling

a cantilever beam under a uniform body force (or ‘distributed load’), modelling

a cantilever beams also allows for comparisons to be made with the analytic

solution given by Euler-Bernoulli beam theory (see section 3.10.7 for more

details on the beam theory model being used). To test this verification case, a

cantilever beam with the dimensions 4m × 4m × 10m was fixed to the wall at

one end and had a negative body force (or ‘distributed load’ for the 1D beam

theory model) force in z applied, representing a case where a cantilever beam

fixed at one end and free at the other has a weight uniformly applied across its

length. As beam theory is a 1D approximation, only the deflection w is

provided, so while the SMS and COMSOL solutions did provide u and v

displacement profiles, these have been omitted to focus on the beam theory

comparison. The data comparisons confirm that for this case there is also a very

close match in values between the SMS and COMSOL, however the beam

theory, while still quite close in behaviour, is noticeably lower than the other

models. This is because the beam structure being modelled does not actually

satisfy the assumptions of beam theory, as for such a squat ‘beam’ the Poisson

effect will still have a significant effect on limiting the w displacement.

Case 19 - 4 × 4 × 20 cantilever beam With distributed load (figure

B.19).

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of longer cantilever beam under a distributed load which will satisfy
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the beam theory assumptions, allowing for comparisons to be made with the

analytic solution given by Euler-Bernoulli beam theory (see section 3.10.7 for

more details on the beam theory model being used). To test this verification

case, a cantilever beam with the dimensions 4m × 4m × 20m was fixed to the

wall at one end and had a negative body force (or ‘distributed load’ for the 1D

beam theory model) force in z applied, representing a case where a cantilever

beam fixed at one end and free at the other has a weight uniformly applied

across its length. As beam theory is a 1D approximation, only the deflection w

is provided, so while the SMS and COMSOL solutions did provide u and v

displacement profiles, these have been omitted to focus on the beam theory

comparison. The data comparisons confirm that for this case there is also a very

close match in values between all three models - beam theory, SMS and

COMSOL.

Case 20 - 4 × 4 × 40 cantilever beam with distributed load (figure

B.20).

This case was chosen to demonstrate that the SMS can accurately model the

behaviour of a significantly longer cantilever beam under a distributed load

where the length is ten times the size of the cross section, allowing for

comparisons to be made with the analytic solution given by Euler-Bernoulli

beam theory (see section 3.10.7 for more details on the beam theory model

being used). To test this verification case, a cantilever beam with the

dimensions 4m × 4m × 40m was fixed to the wall at one end and had a negative

facial (or ‘point’ for the 1D beam theory model) force in z, representing a case

where a fixed cantilever beam has a weight applied at it’s free end. As beam

theory is a 1D approximation, only the deflection w is provided, so while the

SMS and COMSOL solutions did provide u and v displacement profiles, these
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have been omitted to focus on the beam theory comparison. The data

comparisons confirm that for this case there is also a good match between all

three models, with COMSOL and beam theory being almost identical, however

the SMS solution does seem to under predict slightly by comparison, though

still well within the margin of error.

Case 21 - Floor fixed block with diagonal edge under negative body

force in z (figure B.21).

This case was chosen to demonstrate that the SMS can simulate the behaviour

of structures with diagonal edges being subjected to body forces, as due to the

nature of the SMS any parts which are not perfectly aligned with the axis will

be approximated by cubic volumes. For this case, the South and Low faces of

the structure were fixed and a body force negative in the z direction was

applied to the structure, representing a case where a cube with a diagonal face

added at one edge is fixed at two faces and uniformly compressed. The data

comparisons indicate that this case does still match the general behaviour

observed in COMSOL, however the SMS data is outside of the 10% interval for

the u and v displacements. While this result does demonstrate that the

fundamental behaviour is being captured by the SMS for diagonal faces/edges,

these results seem to demonstrate significantly lower accuracy when compared

to COMSOL with the current modelling setup.

Case 22 - Floor fixed block with diagonal edge with facial force

applied to diagonal edge (figure B.22).

This case was chosen to examine what would happen when the force on a

structure was applied only to the diagonal face being approximated by cubic

volumes. For this case, the South and Low faces of the structure were fixed and
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a facial force negative in y and z was applied to the diagonal face at the edge,

representing a case where a cube with a diagonal face added at one edge is fixed

at two faces and compressed by force exerted onto this edge. The data

comparisons indicate that this case does still match the general behaviour

observed in COMSOL, however the SMS data is all outside of the 10% interval

for the majority of the data for all displacements. While this result does

demonstrate that the fundamental behaviour is being captured by the SMS for

diagonal faces/edges, these results seem to demonstrate significantly lower

accuracy when compared to COMSOL with the current modelling setup.

Case 23 - Floor & wall fixed block with triangular corner under

negative body force in z (figure B.23).

This case was chosen to demonstrate what happens with a more complex

diagonal edge. For this case, the West, South and Low faces of the structure

were fixed and a body force negative in the z direction was applied to the

structure, representing a case where a cube presenting a triangular face at one

corner is fixed at three faces and uniformly compressed. The data comparisons

indicate that this case does still match the general behaviour observed in

COMSOL, in fact seeming to match the COMSOL values between than the

prior two diagonal test cases (possibly as the diagonal face comprises less of the

surface area in this case). The values are still within a 10% interval for u and w

but the v profile offers a less accurate match.

Case 24 - Floor fixed block with curved edge under negative body

force in z (figure B.24).

This case was chosen to demonstrate that the SMS can simulate the behaviour

of structures with rounded edges being subjected to body forces, as due to the
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nature of the SMS any parts which are not perfectly aligned with the axis will

be approximated by cubic volumes, making curved edges and surfaces a

potential cause of inaccuracy. For this case, the South and Low faces of the

structure were fixed and a body force negative in the z direction was applied to

the structure, representing a case where a cube with a curved face added at one

edge is fixed at two faces and uniformly compressed. The data comparisons

indicate that this case does still match the general behaviour observed in

COMSOL, however the SMS data is outside of the 10% interval for the u and v

displacements.

Case 25 - Floor fixed block with concave round corner under negative

body force in z (figure B.25).

This case was chosen to demonstrate that the SMS can simulate the behaviour

of structures with a concave rounded face. For this case, the west, south and

low faces of the structure were fixed and a body force negative in the z direction

was applied to the structure, representing a case where a cube presenting a

concave round face at one corner is fixed at three faces and uniformly

compressed. The data comparisons indicate that this case does still match the

general behaviour observed in COMSOL, in fact seeming to match the

COMSOL values better than the prior curved test case (possibly as the curved

face comprises less of the surface area in this case). The values are still within a

10% interval for u and w but the v profile offers a less accurate match.

Case 26 - Floor fixed hemispherical structure under negative body

force in z (figure B.26).

This case was chosen to demonstrate that the SMS is capable of resolving

displacements on more complex structures which have curved faces and/or
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edges. As indicated in the prior cases, any parts of the structure not in line with

the axis will require approximation using cubic volumes, which means for an

entirely rounded structure like this the entire surface is being approximated in

this manner. The solution of an extreme case such as this should indicate if the

approach being used to approximate the structure is appropriate for more

complex geometries. For this case a hemispherical structure was fixed at the flat

face and subjected to a negative body force in the z direction, representing a

case where a half sphere is subjected to uniform compression. The data

comparisons indicate another good match with COMSOL for the general

behaviour of the structure, with the values for u and v matching very closely.

However, while still within the 10% interval, the w displacement is clearly under

predicted.

Case 27 - Floor fixed block structure under uniform temperature

increase causing thermoelastic expansion (figure B.27).

This case was chosen to demonstrate that the SMS can simulate linear elastic

structural undergoing thermal expansion under a uniform temperature increase.

Exploring thermal expansion requires some additional material properties and

elements of problem setup to be defined. The coefficient of thermal expansion

α = 32.1 µm/K was used for the material, arbitrarily taking the value for

Indium. The reference temperature for this structure was taken to be 300 K,

with this case modelling a situation where the temperature was uniformly raised

to 400 K. The data comparisons indicate a close match in accuracy between the

SMS and COMSOL for this scenario.

Case 28 - Floor fixed block structure under increasing temperature

gradient causing thermoelastic expansion (figure B.28).

This case was chosen to demonstrate that the SMS can simulate linear elastic

structural undergoing thermal expansion under an increasing temperature
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gradient. The same material properties and reference temperature were used as

in case 27, with a temperature gradient uniformly rising from 300 K at the low

face of the domain to 400 K at the high face. The data comparisons indicate

another good match with COMSOL for the general behaviour of the structure,

with the values for u and v matching quite closely, with some slight deviation at

the tips, though still within the 10% interval, the w displacement matches less

well, with sections outside of the interval. This may be due to a minor mismatch

in representing the thermal gradient between the COMSOl and the SMS.

Case 29 - Floor fixed block structure under decreasing temperature

gradient causing thermoelastic contraction (figure B.29).

This case was chosen to demonstrate that the SMS can simulate linear elastic

structural undergoing thermal contraction under an decreasing temperature

gradient. The same material properties and reference temperature were used as

in case 27, with a temperature gradient uniformly rising from 200 K at the low

face of the domain to 300 K at the high face. The data comparisons indicate a

close match in accuracy between the SMS and COMSOL for this scenario.

Case 30 - Floor fixed block structure under temperature gradient

causing thermoelastic expansion & contraction (figure B.30).

This case was chosen to demonstrate that the SMS can simulate linear elastic

structural undergoing thermal expansion and contraction at the same time due

to a temperature gradient which crosses the reference temperature.The same

material properties and reference temperature were used as in case 27, with a

temperature gradient uniformly rising from 250 K at the south face of the

domain to 350 K at the north face. The data comparisons indicate another

good match with COMSOL for the general behaviour of the structure, however

the values obtained can approach and occasionally cross the 10% intervals

plotted. This accuracy loss may be exacerbated due to a minor mismatch
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between the thermal gradient used in COMSOL and the SMS.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.1: Case 1 - Floor fixed block under negative body force in z.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.2: Case 2 - Floor fixed block under positive body force in z.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.3: Case 3 - Floor fixed block under positive body force in y.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.4: Case 4 - Floor fixed block under positive body force in x.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.5: Case 5 - Floor fixed block under positive body force in x and y.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.6: Case 6 - Floor fixed block under positive body force in x and negative
force in y.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.7: Case 7 - Floor fixed block under positive body force in x, y and z.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.8: Case 8 - Floor fixed block under positive facial force in z on high
face.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.9: Case 9 - Floor fixed block under positive facial force in y on high
face.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.10: Block Validation 10 – Floor block under rotational facial forces.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.11: Case 11 - Floor fixed block under opposing facial forces.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.12: Case 12 - Floor fixed block under positive body force in x and a
facial force in z on side face.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.13: Case 13 - Floor & wall fixed block under body force in z.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.14: Case 14 - Floor block with fixed displacement.
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(a) SMS w profile.

(b) w value COMSOL And Beam Theory comparison.

Figure B.15: Case 15 - 4 × 4 × 10 cantilever beam with point load.
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(a) SMS w profile.

(b) w value COMSOL And Beam Theory comparison.

Figure B.16: Case 16 - 4 × 4 × 20 cantilever beam with point load.
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(a) SMS w profile.

(b) w value COMSOL And Beam Theory comparison.

Figure B.17: Case 17 - 4 × 4 × 40 cantilever beam with point load.
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(a) SMS w profile.

(b) w value COMSOL And Beam Theory comparison.

Figure B.18: Case 18 - 4 × 4 × 10 cantilever beam with distributed load.
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(a) SMS w profile.

(b) w value COMSOL And Beam Theory comparison.

Figure B.19: Case 19 - 4 × 4 × 20 cantilever beam with distributed load.
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(a) SMS w profile.

(b) w value COMSOL And Beam Theory comparison.

Figure B.20: Case 20 - 4 × 4 × 40 cantilever beam with distributed load.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.21: Case 21 - Floor fixed block with diagonal edge under negative body
force in z.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.22: Case 22 - Floor fixed block with diagonal edge with facial force
applied to diagonal edge.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.23: Case 23 - Floor & wall fixed block with triangular corner under
negative body force in z.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.24: Case 24 - Floor fixed block with curved edge under negative body
force in z.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.25: Case 25 - Floor fixed block with concave corner under negative body
force in z.

309



APPENDIX B

(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.26: Case 26 - Floor fixed hemispherical structure under negative body
force in z.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.27: Case 27 - Floor fixed block structure under uniform temperature
increase causing thermoelastic expansion.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.28: Case 28 - Floor fixed block structure under increasing temperature
gradient causing thermoelastic expansion.

312



APPENDIX B

(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.29: Case 29 - Floor fixed block structure under decreasing temperature
gradient causing thermoelastic contraction.
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(a) SMS u profile. (b) u value COMSOL comparison.

(c) SMS v profile. (d) v value COMSOL comparison.

(e) SMS w profile. (f) w value COMSOL comparison.

Figure B.30: Case 30 - Floor fixed block structure under temperature gradient
causing thermoelastic expansion & contraction.
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• Faculty winner of PGR poster competition - University of Greenwich
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• People’s choice winner for faculty Three Minute Thesis (3MT) competition

- University of Greenwich (April 2019)

• Faculty winner of PGR poster competition - University of Greenwich
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• Faculty winner of Three Minute Thesis (3MT) competition - University of
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316


	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	FIGURES
	TABLES
	NOMENCLATURE
	1 INTRODUCTION
	1.1 Thesis Overview
	1.2 Thesis Contributions
	1.3 Thesis Outline

	2 LITERATURE REVIEW
	2.1 Overview
	2.2 Structural Mechanical Behaviour Observed in Microstructure Growth
	2.3 Existing Solidification Models Considering Structural Mechanical Effects
	2.4 Using Finite Volume Methods for Structural Mechanics in a Multi-Physics Framework
	2.5 Summary

	3 CREATING A STRUCTURAL MECHANICS SOLVER
	3.1 Overview
	3.2 Material Model: Linear Elasticity
	3.2.1 Theory
	3.2.2 `Small' Deformations
	3.2.3 Quasi-Stationary Approach
	3.2.4 Displacement Formulation

	3.3 Variable Material Properties
	3.4 Staggered Grid Finite Volume Method (SGFVM)
	3.5 Stress & Strain Outputs
	3.6 Boundary Conditions
	3.6.1 Fixed Displacements
	3.6.2 Fixed Stress & Free Surfaces
	3.6.3 Slip Domain Boundary
	3.6.4 Symmetry Domain Boundary
	3.6.5 Periodic Domain Boundary

	3.7 Thermal Effects
	3.8 Structure Identification
	3.9 Algorithm Overview
	3.9.1 Stopping Criteria
	3.9.2 Numerical Scheme
	3.9.3 Numerical Order of Iterative Scheme
	3.9.4 Algorithm Description

	3.10 Model Verification
	3.10.1 Material Properties & General Problem Setup
	3.10.2 Block Under Body Force
	3.10.3 Block Under Facial Force
	3.10.4 Block With Triangular Face Under Body Force
	3.10.5 Hemispherical Structure Under Body Force
	3.10.6 Cantilever Beam With Point Load - Beam Theory Analytic Solution
	3.10.7 Cantilever Beam With Distributed Load
	3.10.8 Thermal Expansion of Block Under a Fixed Temperature Change
	3.10.9 Verification Conclusions

	3.11 Summary

	4 COUPLING STRUCTURAL MECHANICS TO SOLIDIFICATION
	4.1 Overview
	4.2 TESA Solvers
	4.3 Solidification Modelling
	4.3.1 The Enthalpy Method
	4.3.2 The Cellular Automata (CA) Method

	4.4 Accounting for Existing Deformation
	4.5 Solver Performance Enhancements
	4.5.1 Multi-Scale Modelling with Trilinear Interpolation
	4.5.2 Parallel Programming
	4.5.3 Enhancement Speed Impact

	4.6 Summary

	5 STRUCTURAL CHANGES TO DENDRITE ORIENTATION
	5.1 Overview
	5.2 Local Orientation Tracking
	5.3 Displacement Driven Orientation Change
	5.4 Displacement Driven Orientation Change Verification
	5.5 Summary

	6 DENDRITE ADVECTION
	6.1 Overview
	6.2 Transporting Dendrite Structures
	6.3 Advection of a Homogeneous Structure
	6.3.1 Basic Advection
	6.3.2 Flux Limited Advection
	6.3.3 Volume of Fluid Methods
	6.3.4 Concurrent Advection with Solidification

	6.4 Advection of a Heterogeneous Structure
	6.5 Complications of Coupling Significant Advection with Solidification
	6.6 Currently Implemented Advection
	6.7 Summary

	7 MODELLING CASES
	7.1 Overview
	7.2 Context and Problem Setup
	7.3 Thin Sample Fixed Force
	7.4 Growth Under Thermal Strain
	7.5 Sinusoidally Changing Force
	7.6 HPC Thin Sample Cases
	7.7 3D Dendrites
	7.8 Rotational Force
	7.9 Parametric Study
	7.10 Summary

	8 CONCLUSION & FUTURE WORK
	8.1 Conclusions
	8.2 Future Work

	REFERENCES
	A Staggered Grid Solver Discretisation
	B Structural Mechanics Solver Validation
	C Dissemination
	C.1 Publications
	C.2 Prizes & Awards


