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Highlights 

 Wrinkling analysis of a stiff shallow film mounted on a cylindrically curved 

compliant substrate with emphasis to square checkerboard and hexagonal 

modes is conducted. 

 The stability of the bilayer has been explored within the framework of the 

general theory of thin shallow shells for the film and the general linear theory of 

solids for the substrate.   

 The primary goal of the analysis is to highlight the role of the curvature induced 

anisotropy to the geometrical parameters of the checkerboard and hexagonal 

modes, i.e. the wavelengths and the amplitudes. 

 Employing the energy minimization approach semi-analytical expressions for 

the wavelength and the amplitude for both wrinkling modes in the principal 

directions of the bilayer are presented  

 The results have been validated against existing findings in the open literature 

with very good agreement 
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Abstract

A thin film mounted on a compliant substrate under biaxial compressive

strains wrinkles in different patterns such as cylindrical, checkerboard, her-

ringbone and hexagonal. In this paper, we provide a thorough analysis of

the checkerboard and hexagonal wrinkling modes which have been well doc-

umented experimentally and numerically. Particular attention is paid to the

role of the curvature-induced anisotropy in the geometrical characteristic of

these particular surface wrinkling modes, i.e. the wavelengths in the two prin-

cipal directions as well as the corresponding amplitudes. The film is assumed

to be much stiffer than the substrate and the bilayer system is cylindrically

curved and is acted upon biaxial compressive strains. The film is modelled

as a shallow shell with finite rotations while the substrate is simulated as a

linear three-dimensional elastic solid. Utilising the minimization of the total

energy of the system semi-analytical expressions for the critical values of the

∗Corresponding author: a.kordolemis@gre.ac.uk
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wavelengths and the corresponding amplitudes associated with the onset of

the checkerboard and hexagonal mode are provided. The obtained results

has been found to be in a very good agreement compared to experimental

and numerical findings of other studies. It is shown that the presence of the

initial curvature in the bilayer delays the critical strain and the wrinkling

amplitudes significantly for both modes, compared to the flat system, and

moreover explains the inward buckling of the hexagonal mode which has been

observed experimentally.

Keywords: thin film, compliant substrate, wrinkling, square checkerboard,

hexagonal, curvature, perturbation method

1. Introduction

In recent years, the study of ordered buckling structures has been in the

epicentre of fervent research efforts of the engineering mechanics commu-

nity due to its importance in the design and manufacturing of novel, high-

end technological applications. Early studies on the subject started with

the analysis of sandwich panels, (Allen, 1969), while ever since the ordered

buckling analysis has been employed to investigate a wide range of natural

and advanced synthetic systems, like swelling hydrogels (Hong et al, 2008),

(Zhang et al, 2011), and human skin wrinkling, (Dagdeviren et al, 2015). In

practical engineering terms, soft electronic devices are very thin multilayered

components with high stiffness, attached onto the skin which, in general, is

thicker and with much lower stiffness. Thus, the instability analysis of the

thin film/substrate bilayer and the associated wrinkling patterns it is reason-

able to be investigated mechanically by employing the model of a stiff thin
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film mounted on a much thicker compliant substrate.

It has been recognised that the general loading of the bilayer, i.e. film

bonded in the substrate, is biaxial strain in the two principal directions of

the system. Thus, upon the strain reaches a critical value the bilayer will ex-

perience surface wrinkling which manifests itself through different patterns,

like cylindrical, checkerboard, herringbone, labyrinths, etc. The source of the

biaxial strain varies depending on the nature of the system, thus it can origi-

nate from differential thermal expansion between the film and the substrate,

swelling of the soft substrate and ultraviolet-ozone (UVO) oxidation process

on the thin film, to name but few.

Recently, many theoretical and experimental efforts have been made to-

ward the understanding of the mechanisms that lead to the onset of different

wrinkling patterns of these particular kind of bilayers. In their pioneering

work in the field, (Bowden et al, 1998), studied the spontaneous generation of

complex patterns for a vapour deposited thin film on a thermally expanded

polymer substrate and the critical stress for the one dimensional cylindrical

wrinkling mode presented in a closed form expression. Surface wrinkling in-

stabilities of thin films bonded on compliant substrates have been studied

numerically (Nikravesh et al, 2019; Nikravesh et al, 2019; Nikravesh et al,

2020), analytically (Yin et al, 2018; Cheng et al, 2014; Huang et al, 2015;

Huang et al, 2016; Song et al, 2008; Cao et al, 2012; Huang et al, 2004; Huang

et al, 2005, Huang, 2005, Huang and Suo, 2002) and experimentally (Jiang

et al, 2008; Choi et al, 2007). All the above studies are focusing on the anal-

ysis of flat bilayer systems. However, in nature and in many engineering

applications the film/substrate bilayer is not flat but curved.
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In their seminar work, (Cai etal, 2011), investigated a bilayer under equib-

iaxial compressive stress states experimentally and provided a theoretical

framework employing an analytical upper bound while they performed full

numerical analysis for various wrinkling patterns, i.e. cylindrical, checker-

board, herringbone, triangular and hexagonal. Discrepancies between the

theoretical analysis and the experimental observations have been attributed

to the initial spherical curvature of the system. Surface wrinkling of closed

cross-section cylindrical shells supported by a soft core subjected to axial

compression combining computational and experimental methods has been

the epicentre of many research efforts (Zhao et al, 2014; Cao et al, 2012; Zhao

and Zhao, 2017; Chen and Yin, 2010). In an attempt to provide a deeper

understanding of the intriguing wrinkling patterns of the thin film bilayer

several studies have focused on the modelling of the substrate as a spherical

space (Cao et al, 2008; Hao et al, 2024; Zhao et al, 2020; Breid and Crosby,

2013).

The aim of the present study is to investigate in depth the checkerboard

and hexagonal wrinkling modes of the film/substrate system and highlight

the role of the curvature-induced anisotropy in the geometric characteristics

of the surface wrinkling, i.e. the wavelengths in the two principal curvature

directions and their amplitudes. In doing so, the initial configuration of

the curved bilayer is considered as an open cylindrical cross-section which

differentiates notably the analysis compared to the axisymmetric closed cross-

section cylinder and the spherical configurations which have been investigated

earlier in other studies. Within this context, semi-analytical expressions for

the wavelengths and amplitudes for the squared checkerboard and hexagonal

4
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modes are provided in a comprehensive way. Therefore, the role of every

single parameter of the multi-parametric model becomes apparent which can

help in the design process. To the best of our knowledge, similar analysis

has not been performed so far and is presented in the open literature for the

first time in this study.

The paper is structured as follows. In section 2, the theoretical buckling

analysis framework is presented for both the film and the substrate and the

corresponding energy expressions are established. The displacement com-

ponents, the accompanied wavelengths and amplitude of the bilayer for the

square checkerboard wrinkling mode are presented in Section 3, while the

analysis of the hexagonal mode is included in Section 4. In both cases, the

analysis initiates with the solution of the flat bilayer which consequently is

used as the basis in the perturbation method employed in the analysis of the

curved bilayer. In Section 5 the results are presented and discussed in detail

while in Section 6 there is a closure summarising the findings of the study.

2. Buckling analysis under biaxial strain

The buckling analysis of the bilayer under biaxial in-plane strains which

provides the displacement components and the associated energies of both

the thin film and the compliant substrate has been performed analytically in

Part I of our study which can be found in our companion paper (Kordolemis

and Giannakopoulos, 2024). Here, where necessary, we will be referring to

elements of this companion paper by adding the letter ”I” as superscript.

5
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2.1. Thin curved film

Consider a curved thin film mounted on a compliant substrate of infi-

nite thickness as shown in Fig.1I. The non-linear membrane strains, the

in-plane stresses, the membrane forces, the equilibrium equations as well as

the expressions for the bending and membrane energy are provided explicitly

through Eqs.(2.1)I - (2.18)I.

2.2. Compliant curved substrate

The substrate is modelled as a semi-infinite, linear three-dimensional half

space. The strains, the stresses, the equilibrium equations and the associated

energy are given analytically through Eqs.(2.19)I - (2.26)I.

3. Square checkerboard mode

In this section we study the stability of the curved film-substrate system

and the wavenumbers k1, k2 in the principal curvature directions along with

the wrinkling amplitude, A0, are calculated through the minimization of the

total energy of the system.

3.1. Curved Thin film

For the case of the two dimensional square checkerboard buckling mode,

we assume that the out of plane displacement w(x, y) of the thin curved film

is periodic in both directions and it is given from

wf (x, y) = A0 cos (k1 x) cos (k2 y) (3.1)

Back substitution into Eqs.(2.1)I - (2.6)I and finally in equilibrium Eqs.(2.13)I,

(2.14)I, results into a system of coupled equations with respect to the in-plane

6
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displacements which can be solved to yield:

ucurved
f (x, y) =

A2
0 k1
16

[
2 cos2 (k2 y)− νf

(
k2
k1

)2
]
sin (2 k1 x)

− A0

(k R)

k1
k

[
νf

(
k1
k

)2

−
(
k2
k

)2
]
sin (k1 x) cos (k2 y) (3.2)

vcurvedf (x, y) =
A2

0 k2
16

[
2 cos2 (k1 x)− νf

(
k1
k2

)2 ]
sin (2 k2 y)

− A0

(k R)

k2
k

[(
k2
k

)2

+ (νf + 2)

(
k1
k

)2
]
sin (k2 y) cos (k1 x)

(3.3)

Note that from Eq.(3.3) it can be concluded that the term containing the

initial curvature of the film always decreases the magnitude of the displace-

ment component in the x direction. In contrast, Eq.(3.2) suggests that the

contribution of the curvature term is not clear a priori because the sign of

the second term depends on the value of the wavelenghts, Poisson’s ratio and

the sign of the curvature itself. In the special case of a flat film, R → ∞,

we obtain the expressions for the in-plane displacement components, uf , vf

as given in (Song et al, 2008).

The bending energy density of the thin film is given by Eq.(2.17)I, which

in view of Eq.(3.1), after integration over one period, is written as:

U curved
b(f) =

Ēf

96
A2

0 t
3
f k

4 (3.4)

The membrane energy density of the film is given by integration oover a

7
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period of Eq.(2.18)I as:

U curved
m(f) =

Ēf tf
256

{
128

[(
ε0xx

)2
+
(
ε0yy

)2
+ 2 νf ε

0
xx ε

0
yy

]

+ 32A2
0 k

2
2

[[
1 + νf

(
k1
k2

)2 ]
ε0yy +

[(
k1
k2

)2

+ νf

]
ε0xx

]

+ A4
0 k

4
2

[
(
3− ν2

f

) [(k1
k2

)4

+ 1

]
+ 4 νf

(
k1
k2

)2
]
+ 32

(
1− ν2

f

) A2
0

R2

(
k1
k

)4
}

(3.5)

Note that the expression of the membrane energy of the film is a function

of 1/R2 alone which in turn implies that the membrane energy remains the

same for both convex and concave thin films of the same curvature. For the

special case of a flat film, i.e. R → ∞, the above lead to the expression

presented in (Song et al, 2008) .

3.2. Curved substrate

In this section the displacement components of the linear elastic curved

substrate are analysed. The wavelength of the wrinkling is much smaller than

the radius of the curvature so as the ratio δ = 1/R
√
(k2

1 + k2
2) is considered

to be a small enough quantity. Therefore, the displacement components of

the substrate can be expanded as a power series of this small quantity as:

us (x, y, z) = A0

[
u(0)
s (x, y, z) + δ u(1)

s (x, y, z) + δ2 u(2)
s (x, y, z) +O

(
δ3 u(3)

s (x, y, z)
)

(3.6)

vs (x, y, z) = A0

[
v(0)s (x, y, z) + δ v(1)s (x, y, z) + δ2 v(2)s (x, y, z) +O

(
δ2 v(2)s (x, y, z)

) ]

(3.7)

8
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[
w(0)

s (x, y, z) + δ w(1)
s (x, y, z) + δ2w(2)

s (x, y, z) +O
(
δ3w(3)

s (x, y, z

(3.8)

where u(0)
s (x, y, z) = uflat

s (x, y, z)/A0, v
(0)
s (x, y, z) = vflats (x, y, z)/A0, w

(0)
s (x, y, z) =

wflat
s (x, y, z)/A0 and u

(i)
s , v

(i)
s , w

(i)
s , i = 1, 2, ... are non-dimensional coefficients

to be determined through the perturbation method, while O is the Landau’s

notation indicating that cubic and higher order terms are truncated. The

boundary conditions denote that the in-plane shear stresses on the interface

of the bilayer (z = 0) vanish, all the displacement components far away from

the interface (z = −∞) are zero, while the out of plane displacement at the

interface must follow a sinusoidal pattern. Thus, they read:

σxz|z=0 =

(
∂us

∂z
+

∂ws

∂x

)∣∣∣∣
z=0

= 0, σyz|z=0 =

(
∂vs
∂z

+
∂ws

∂y

)∣∣∣∣
z=0

= 0,

ws|z=0 = A0 cos (k1 x) cos (k2 y) , us|z=−∞ = vs|z=−∞ = ws|z=−∞ = 0

(3.9)

Feeding Eqs.(3.6)-(3.8) into equilibrium equations, Eqs.(2.22)I - (2.24)I, after

equating like powers of the small parameter δ, yields the analytical expres-

sions of the non-dimensional coefficients, u(i)
s , v

(i)
s , w

(i)
s , as:

uflat
s (x, y, z) =

(1− 2 νs + k z)

2 (1− νs)
A0

(
k1
k

)
ez k sin (k1 x) cos (k2 y) (3.10)

vflats (x, y, z) =
(1− 2 νs + k z)

2 (1− νs)
A0

(
k2
k

)
ez k cos (k1 x) sin (k2 y) (3.11)

wflat
s (x, y, z) =

(2− 2νs − k z)

2 (1− νs)
A0 e

z k cos (k1 x) cos (k2 y) (3.12)

9
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s (x, y, z) =
2 (A1 k z +A2) + 1

2 (νs − 1) (2 νs − 1)

(
k1
k

)
ez k sin (k1 x) cos (k2 y) (3.13)

v(1)s (x, y, z) =
A3 k z +A4

(νs − 1) (2 νs − 1)

(
k2
k

)
ez k cos (k1 x) sin (k2 y) (3.14)

w(1)
s (x, y, z) =

A5 k z +A6

4 k R (νs − 1)2
ez k cos (k1 x) cos (k2 y) (3.15)

u(2)
s (x, y, z) =

A7 k z +A8

4 (νs − 1)2 (2 νs − 1)2 (k R)2

(
k1
k

)
ez k sin (k1 x) cos (k2 y)

(3.16)

v(2)s (x, y, z) =
A9 k z +A10

4 (νs − 1)2 (2 νs − 1)2 (k R)2

(
k2
k

)
ez k cos (k1 x) sin (k2 y)

(3.17)

w(2)
s (x, y, z) =

A11 k z +A12

8 (νs − 1)3 (2 νs − 1) (k R)2
ez k cos (k1 x) cos (k2 y) (3.18)

where the nondimensional auxiliary parameters Ai, i = 1, 2, ...12 depend on

the substrate’s Poisson ratio νs, the curvature R and the wavenumbers k1, k2

in the two principal directions of the bilayer, i.e.

Ai = Ai (k1, k2, νs, R) (3.19)

Their analytical closed form expressions are provided through Eqs.(A.1)-

(A.12) in the Supporting Information (SI). Note that the series expansion of

the substrate’s displacement components in Eqs.(3.6)-(3.8) include the first

three terms of the non-dimensional coefficients, u(i)
s , v

(i)
s , w

(i)
s , which retains

10
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only up to quadratic terms of the curvature. However, it has been verified

that for k R > 100 and so, these terms are very small compared to the

retained ones. Thus, the strain energy for the substrate, Us, over one period

is readily calculated. The analytical expression is appended in the Supporting

Information, i.e., Eq. (A.13).

Note that the expression of the substrate’s energy includes terms up to the

6th order in terms of the curvature despite of the fact that the displacement

field used in the derivation includes quadratic terms. Thus, it would be

expected up to 8th order terms to appear in the final energy expression.

However, it has been verified that these terms are very small compare to the

preceding ones which in turn means the series converges rapidly without the

need to include them in the calculations.

The minimization of the total energy of the thin film-substrate system

provides the three equations for k1, k2, A0, i.e.

∂Utotal

∂A0

= 0 (3.20)

∂Utotal

∂k1
= 0 (3.21)

∂Utotal

∂k2
= 0 (3.22)

where the non-dimensional parameters are given as:

ξ0 =
A0

tf
, ξ1 = k1 tf , ξ2 = k2 tf , ξR =

tf
R

(3.23)

It can be easily verified that the special case where ξR = 0 regenerates the

system of equations for the flat case. Eqs.(3.20)-(3.22) form a highly nonlin-

ear system of ξ0, ξ1, ξ2 which does not admit an analytical solution. However,

11
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it can be solved numerically. In doing so, Eq.(3.20) is solved with respect

to ξ0 and then it is substituted into Eqs.(3.21),(3.22). Thus, the resulting

equations include only the two remaining unknowns, i.e ξ1, ξ2 in the form:

fA

(
ξ1, ξ2;

Ēs

Ēf

, νs, νf , ε
0
xx, ε

0
yy, ξR

)
= 0 (3.24)

fB

(
ξ1, ξ2;

Ēs

Ēf

, νs, νf , ε
0
xx, ε

0
yy, ξR

)
= 0 (3.25)

The above equations are plotted in Figs.3-5 for various values of the curvature

of the bilayer. Once the values of ξ1, ξ2 are determined from the above set

of equations then the wrinkling amplitude ξ0 can be readily calculated from

Eq.(3.20) by back substitution ending up in an expression of the form:

ξ0 = fc

(
Ēs

Ēf

, νs, νf , ε
0
xx, ε

0
yy, ξR

)
(3.26)

The variation of the amplitude in the non-dimensional form ξ0 for different

values of the curvature is depicted on Fig.7.

4. Hexagonal mode

In this section the hexagonal wrinkling mode is examined. Following

the methodology of Section 3, the flat bilayer is analysed by calculating the

displacement components of the thin film and the semi-infinite substrate.

The results are then used as a perturbation basis in the study of the curved

bilayer.

4.1. Flat film

The displacement field of the flat film in the z− direction is assumed to

be (Zhao et al, 2020):

w (x, y) = A0 cos (k x) +B0 cos

(
k x

2

)
cos

(
η k y

2

)
(4.1)

12
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Feeding the above expression for w(x, y) into equilibrium equations Eqs.(2.13)I,

(2.14)I, considering R → ∞, and solving the resulting system of equations,

we obtain analytical expressions for the in-plane displacements of the the flat

film as:

uflat
f,hex(x, y) =

k

32

{
B2

0

[
cos(η k y) + 1− νf η

2
]
sin (k x) + 4A2

0 sin (2 k x)

+16A0B0 cos

(
η k y

2

)[
η4 − 2 (1 + νf ) η

2 − 1

(η2 + 1)2
sin

(
k x

2

)

+
η4 + 6 (1− νf ) η

2 + 27

(η2 + 9)2
sin

(
3 k x

2

)]}
(4.2)

vflatf,hex(x, y) = B2
0 k

[
1 + cos (k x)

]
η2 − νf

32 η
sin (η k y)

+ A0B0 η k

[
(1− νf η

2)

(η2 + 1)2
cos

(
k x

2

)
+

(9− νf η
2)

(η2 + 9)2
cos

(
3 k x

2

)]
sin

(
η k y

2

)

(4.3)

The bending energy of the film for the hexagonal wrinkling mode over one

period, in view of Eq.(2.17)I, is calculated as:

Uflat
b(f),hex = Ēf t

3
f k

4

[
A2

0

48
+

B2
0 (1 + η2)

2

1536

]
(4.4)

The membrane energy of the thin film, over one period, is calculated through

Eq.(2.18)I as:

Uflat
m(f),hex =

Ēf tf
32

{
(A0 k)

4 + 8 (A0 k)
2 (ε0xx + νf ε

0
yy

)
+ 16

[(
ε0xx

)2
+ 2 νf ε

0
xx ε

0
yy +

+ (A0 k)
2 (B0 k)

2

[(
ν2
f − 1

) [9 (2 η2 + 9)

(η2 + 9)2
+

(2 η2 + 1)

(η2 + 1)2

]
+

1

4

[
νf

(
η2 − 8 νf

)
+ 9

]]

13
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(B0 k)
4

128

[ (
3− ν2

f

) (
η4 + 1

)
+ 4 η2 νf

]
+ (B0 k)

2 [ε0xx + η2
(
ε0yy + νf ε

0
xx

)
+ νf ε

0
yy

(4.5)

4.2. Flat substrate

The displacement components of the substrate are assumed to have the

form:

uflat
s,hex(x, y, z) = q1(z) sin (k x) + q2(z) sin

(
k x

2

)
cos

(
k y η

2

)
(4.6)

vflats,hex(x, y, z) = q3(z) cos

(
k x

2

)
sin

(
k y η

2

)
(4.7)

wflat
s,hex(x, y, z) = q4(z) cos (k x) + q5(z) cos

(
k x

2

)
cos

(
k y η

2

)
(4.8)

where q1(z), q2(z), q3(z), q4(z), q5(z) are functions of the depth coordinate z

of the substrate which after substitution of the above expressions in the

equilibrium equations, Eqs.(2.22)I - (2.24)I, can be calculated analytically.

Finally, the analytical expressions of the displacement components of the the

flat substrate take the form:

uflat
s,hex(x, y, z) =

1

4 (1− νs)

{
2 (1− 2 νs + k z) A0 e

k z sin(k x)

+
2 (1− 2 νs) + k

√
η2 + 1 z√

η2 + 1
B0 e

mz sin

(
k x

2

)
cos

(
η k y

2

)}

(4.9)

vflats,hex(x, y, z) =
2 (1− 2 νs) + k

√
η2 + 1 z

4 (1− νs)
√
η2 + 1

B0 η emz cos

(
k x

2

)
sin

(
η k y

2

)

(4.10)
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s,hex(x, y, z) =

[
k z

2 (νs − 1)
+ 1

]
A0 e

k z cos (k x)

+

[
k
√

η2 + 1 z

4 (νs − 1)
+ 1

]
B0 e

mz cos

(
k x

2

)
cos

(
η k y

2

)
(4.11)

where m =
(
k
√

1 + η2
)
/2. The strain energy of the substrate, over one

period, is calculated as:

Uflat
s,hex =

Ēs k

8

[
A2

0 +B2
0

√
1 + η2

4

]
(4.12)

Minimization of the total energy of the bilayer system, Uflat
tot,hex = Uflat

b(f),hex +

Uflat
m(f),hex+Uflat

s,hex, with respect to the amplitudes A0, B0 and the wavenumbers

k, η provides:
∂Uflat

tot,hex

∂A0

= 0 (4.13)

∂Uflat
tot,hex

∂B0

= 0 (4.14)

∂Uflat
tot,hex

∂k
= 0 (4.15)

∂Uflat
tot,hex

∂η
= 0 (4.16)

where the non-dimensional parameters are defined as:

ξk = k tf , ξR =
tf
R
, ξA =

A0

tf
, ξB =

B0

tf
(4.17)

Multiplying Eq.(4.13) by ∂F2(η)/∂η and subtract the resulting equation

from Eq.(4.16) we obtain:

ξ2B =
1

6 ξ3k

[
F2(η)F2

′(η)− 2F1
′(η)

]
{

− 4F2
′(η)

[
6
Ēs

Ēf

+ 12 ξk
(
ε0xx + νf ε

0
yy

)
+ ξ3k

]

+ η

[
12√
η2 + 1

Ēs

Ēf

+ 24 ξk
(
νf ε

0
xx + ε0yy

)
+
(
η2 + 1

)
ξ3k

]}
(4.18)
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where

F1(η) =
1

128

[ (
η4 + 1

) (
3− ν2

f

)
+ 4 η2 νf

]

F2(η) =

[
2 η2 + 1

(η2 + 1)2
+

9 (2 η2 + 9)

(η2 + 9)2

] (
ν2
f − 1

)
+

1

4

[
νf

(
η2 − 8 νf

)
+ 9

]

∂F1(η)

∂η
= F1

′(η),
∂F2(η)

∂η
= F2

′(η)

(4.19)

Solving Eq.(4.13) with respect to ξ2A provides:

ξ2A = − 2

ξ3k

[
Ēs

Ēf

+ 2 ξk
(
ε0xx + νf ε

0
yy

)
]
− 1

2
ξ2B F2(η)−

1

3
(4.20)

Note again that the applied load is compressive, i.e. ε0xx, ε
0
yy < 0. Plugging

the above expressions for ξA, ξB into Eqs.(4.15),(4.16) we end up with two

equations with respect to ξk, η, i.e.

GA

(
ξk, η;

Ēs

Ēf

, νs, νf , ε
0
xx, ε

0
yy, ξR

)
= 0 (4.21)

GB

(
ξk, η;

Ēs

Ēf

, νs, νf , ε
0
xx, ε

0
yy, ξR

)
= 0 (4.22)

The above system of highly non-linear equations in terms of ξk, η, does not

admit an analytical solution in terms of ξk, η, however it can be solved numer-

ically. The results are presented in Figs. 9(d),11(d). Once the wavenumbers

are specified then the amplitudes ξA, ξB are calculated through Eqs.(4.18),

(4.20) and the associated numerical results for a range of concve and convex

bilayers are shown in Figs.10,13.

4.3. Curved substrate

The wavelength of the wrinkling is much smaller than the radius of the

curvature and the ratio δ = 1/k R
√
(1 + η2) is considered to be a small
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enough quantity. Therefore, the displacement components of the substrate

can be expanded as a power series of this small quantity as:

us (x, y, z) = A0

[
u(0)
s (x, y, z) + δ u(1)

s (x, y, z) + δ2 u(2)
s (x, y, z) + ...

]
(4.23)

vs (x, y, z) = A0

[
v(0)s (x, y, z) + δ v(1)s (x, y, z) + δ2 v(2)s (x, y, z) + ...

]
(4.24)

ws (x, y, z) = A0

[
w(0)

s (x, y, z) + δ w(1)
s (x, y, z) + δ2w(2)

s (x, y, z) + ...
]

(4.25)

where u(0)
s (x, y, z) = uflat

s,hex(x, y, z)/A0, v
(0)
s (x, y, z) = vflats,hex(x, y, z)/A0, w

(0)
s (x, y, z)

wflat
s,hex(x, y, z)/A0 and u

(i)
s , v

(i)
s , w

(i)
s , i = 1, 2, ... are non-dimensional coeffi-

cients determined through the perturbation method as:

u(1)
s (x, y, z) =

1

4 (1− νs) (1− 2 νs) k

{
(B3 + B4 k z) k e

k z sin (k x)

+
B0 k

A0

(B1 + B2 k z) e
mz sin

(
k x

2

)
cos

(
k y η

2

)}
(4.26)

u(2)
s (x, y, z) =

1

(1− 2 νs)
2 (νs − 1)2

{
(B13 + B14 k z) e

k z sin (k x)

+ (B11 + B12 k z)
B0

4A0

emz sin

(
k x

2

)
cos

(
k y η

2

)}
(4.27)

v(1)s (x, y, z) =
B5 + B6 k z

4 (1− νs) (1− 2 νs)
η
B0

A0

emz cos

(
k x

2

)
sin

(
k y η

2

)
(4.28)

v(2)s (x, y, z) =
B15 + B16 k z

4 (1− νs)
2 (1− 2 νs)

2 η
B0

A0

emz cos

(
k x

2

)
sin

(
k y η

2

)

(4.29)
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s (x, y, z) =
B7 + B8 k z

4 (1− νs)
2

B0

A0

emz cos

(
k x

2

)
cos

(
k y η

2

)

+
B9 + B10 k z

4 (1− νs)
2 ekz cos (k x) (4.30)

w(2)
s (x, y, z) =

B17 + B18 k z

4 (νs − 1)3 (2 νs − 1)

B0

A0

emz cos

(
k x

2

)
cos

(
k y η

2

)
(4.31)

where

Bi = Bi (k, η, R, νs) , i = 1, 2, ...18, (4.32)

are non-dimensional parameters and their analytical expressions are provided

in Supporting Information (SI) by Eqs. (B.1)-(B.18).

The energy of the curved substrate is calculated as:

U curved
s,hex = Ēs tf

(
ξ2A G1 + ξ2B G2

)
(4.33)

where

Gi = Gi (ξk, η, νs, ξR) , i = 1, 2, (4.34)

with

G1 =
1

8 (η2 + 1)2 ξ5k

[
(
η2 + 1

)
ξ5k ξR

[
β1

(
η2 + 1

)
+ 2

√
η2 + 1

]

+ ξk ξ
5
R

[
β11 + β12 η

2 + β13

√
η2 + 1

]

+ ξ2k ξ
4
R

[√
η2 + 1

(
β10 η

2 + β9

)
+ β7 + β8 η

2
]

+ ξ3k ξ
3
R

[
β4

(
η2 + 1

)
+
√
η2 + 1

(
β5 η

2 + β6

)]
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(
η2 + 1

)
ξ4k ξ

2
R

[
β2

√
η2 + 1 + β3

(
η2 + 1

)
+ 3

]

+ ξ6R

(
β14 + β15 η

2 + β16

√
η2 + 1

)
+
(
η2 + 1

)2
ξ6k

]
(4.35)

and

G2 =
1

32 (η2 + 1)11/2 ξ5k

[
4
(
η2 + 1

)9/2
ξ5k ξR

[
β17

(
η2 + 1

)
+ β18

]

+ 4
(
η2 + 1

)4
ξ4k ξ

2
R

(
β19 + β20η

2
)

+
(
η2 + 1

)6
ξ6k + 4

(
η2 + 1

)5/2
ξ3k ξ

3
R

(
β21 + β22η

2 + β23η
4
)

+ 4
(
η2 + 1

)2
ξ2k ξ

4
R

(
β24 + β25η

2 + β26η
4
)

+ 4
(
η2 + 1

)3/2
ξk ξ

5
R

(
β27 + β28η

2 + β29η
4
)

+ 4 ξ6R
(
β30 + β31η

2 + β32η
4 + β33η

6
)
]

(4.36)

In the above expressions of G1,G2 the variables βi = βi (νs) , i = 1.2, ...33, are

functions of substrate’s Poisson ratio only and their analytical expressions

are provided in Eqs.(B.19)-(B.22) in Supporting Information (SI). Note that

for ξR → 0 the energy of the flat substrate as given in Eq.(4.12) is recovered.

4.4. Curved film

Feeding the expression of w(x, y) from Eq.(4.1) into equilibrium equations

Eqs.(2.13)I, (2.14)I and solving the resulting system of equations we obtain:

ucurved
f,hex (x, y, z) =

{
− A0 νf

k R
+

B2
0 k

32

[
cos (k y η) + 1− η2 νf

]}
sin(k x)
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B0

2 k

{[
4 (η2 − νf )

(η2 + 1)2 R
+

A0 k
2 [η4 − 1− 2 η2 (νf + 1)]

(η2 + 1)2

]
sin

(
k x

2

)

+A0 k
2 [η

4 − 6 η2 (νf − 1) + 27]

(η2 + 9)2
sin

(
3 k x

2

)}
cos

(
k y η

2

)
+

1

8
A2

0 k sin(2 k x)

(4.37)

vcurvedf,hex (x, y, z) = B2
0 k

η2
[
1 + cos(k x)

]
− νf

32 η
sin (k y η)

+B0 η

[
A0 k (9− η2 νf )

(η2 + 9)2
cos

(
3 k x

2

)

+

[
A0 k (1− η2 νf )−

2(η2+νf+2)
k R

]

(η2 + 1)2
cos

(
k x

2

)]
sin

(
k y η

2

)
(4.38)

The bending energy of the curved film for the hexagonal wrinkling mode over

one period, in view of Eq.(2.17)I, is calculated as:

U curved
b(f),hex = Ēf tf

[
ξ2A G3 + ξ2B G4

]
(4.39)

where

G3 =
ξ4k
48

, G4 =
(η2 + 1)

2
ξ4k

1536
(4.40)

Eq.(4.39) reveals that the bending energy in the curved film is the same

with the bending energy provided in Eq.(4.4), as expected, because there

is no direct involvement of the curvature in the displacement component

w(x, y, z). For the special case where B0 = 0 the energy of the 1D bilayer is

retrieved, (Kordolemis and Giannakopoulos, 2024). The membrane energy is
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calculated over a period through Eq.(2.18)I as:

U curved
m(f),hex = Ēf tf

[
ξ2B

[
G12 + ξ2B G6 + ξA (ξA G7 + G8)

]

+ G9

[(
ε0xx

)2
+
(
ε0yy

)2
+ 2 νf ε0xx ε

0
yy

]
+ ξ2A G11 + ξ4A G5

]
(4.41)

where

G5 =
ξ4k
32

G6 = −
η4

(
ν2
f − 3

)
− 4 η2 νf + ν2

f − 3

4096
ξ4k

G7 =
ξ4k
32

{[
2 η2 + 1

(η2 + 1)2
+

9 (2 η2 + 9)

(η2 + 9)2

] (
ν2
f − 1

)
+

1

4

[
νf

(
η2 − 8 νf

)
+ 9

]}

G8 =
η2

32

[
4

(η2 + 1)2
+

1

2

] (
1− ν2

f

)
ξ2k ξR

G9 =
1

2

G10 = G11 ξ
2
A + G12 ξ

2
B

G11 =
1

4

[
ξ2k

(
ε0xx + νf ε

0
yy

)
−
(
ν2
f − 1

)
ξ2R

]

G12 =
1

32

[
ξ2k

[
ε0xx

(
η2 νf + 1

)
+ ε0yy

(
η2 + νf

) ]
−

4
(
ν2
f − 1

)

(η2 + 1)2
ξ2R

]

(4.42)

Minimization of the total energy, U curved
tot,hex = U curved

b(f),hex + U curved
m(f),hex + U curved

s,hex ,

of the bilayer with respect to the wavenumbers k, η and the two amplitudes

A0, B0, which is equivalent to minimizing with respect to the non-dimensional

counterparts ξA, ξB, ξk, η, provides:

∂U curved
tot,hex

∂ξA
= 2 ξA

(
Ēs

Ēf

G1 + ξ2B G7 + G11 + G3 + 2 ξ2A G5

)
+ ξ2B G8 = 0 (4.43)

21



Journal Pre-proof

− 9G2
7 G2

8

]3
]1/3
Jo
ur

na
l P

re
-p

ro
of

∂U curved
tot,hex

∂ξB
=

Ēs

Ēf

G2 + G12 + G4 + 2 ξ2B G6 + ξA (ξA G7 + G8) = 0 (4.44)

∂U curved
tot,hex

∂ξk
=

Ēs

Ēf

(
ξ2A G1,ξk + ξ2B G2,ξk

)
+ ξ2A

(
G11,ξk + G3,ξk + ξ2A G5,ξk

)

+ ξ2B

[
G4,ξk + G12,ξk + ξ2B G6,ξk + ξA (ξA G7,ξk + G8,ξk)

]
= 0 (4.45)

∂U curved
tot,hex

∂η
= ξ2B

[
Ēs

Ēf

G2,η + G12,η + G4,η + ξ2B G6,η + ξA (ξA G7,η + G8,η)

]

+
Ēs

Ēf

ξ2A G1,η = 0 (4.46)

where the following notation has been adopted for differentiation:

(...) ,ξk =
∂ (...)

∂ξk
, (...) ,η =

∂ (...)

∂η
(4.47)

The above system of Eqs.(4.43)-(4.46) is highly non-linear in terms of ξA, ξB, ξk, η

and cannot be solved analytically. However, it can be solved numerically. In

doing so, we solve Eq.(4.43) with respect to ξ2B and we substitute the resulting

expression to Eq.(4.44) to obtain:

ξ2B = − 1

2G6

[
Ēs

Ēf

G2 + G12 + G4 + ξA (ξA G7 + G8)

]
(4.48)

ξA =
3S1 G7 G8 + 31/3 S2

1 − 32/3 S2

6S1P3

(4.49)

where

S1 =

[
36G6 G8

[
P3 (2P1 G5 − P2 G7) + P4

]

+
1

6

√
46656G2

6 G2
8

[
P3 (2P1 G5 − P2 G7) + P4

]2
+ 4

[
6P3 (4P2 G6 − 2P1 G7 − G2

8)

(4.50)
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(
4G5 G6 − G2

7

) [
2G6

(
Ēs

Ēf

G1 + G11 + G3

)
− G7

(
Ēs

Ēf

G2 + G12 + G4

)]

− G2
8

(
8G5 G6 + G2

7

)
(4.51)

with

P1 =
Ēs

Ēf

G2 + G12 + G4, P2 =
Ēs

Ēf

G1 + G11 + G3,

P3 = 4G5 G6 − G2
7 , P4 = G5 G7 G2

8 (4.52)

Note that the amplitudes ξA, ξB given in Eqs.(4.48),(4.49) respectively, are

functions of the wavenumbers ξk, η only. Thus, plugging these expressions

back to Eqs.(4.45),(4.46) we end up with two equations with the only un-

knowns the wavenumbers ξk, η, i.e.:

GC

(
ξk, η;

Ēs

Ēf

, νs, νf , ε
0
xx, ε

0
yy, ξR

)
= 0 (4.53)

GD

(
ξk, η;

Ēs

Ēf

, νs, νf , ε
0
xx, ε

0
yy, ξR

)
= 0 (4.54)

The above system of equations is highly non-linear in ξk, η and can be solved

numerically. The solutions for various values of the curvature are shown in

Figs.12,14. After the specification of the wavenumbers ξk, η the calculation

of the amplitudes ξA, ξB is straightforward, as shown in Figs.13,15.

5. Results and discussion

In this section numerical results regarding the three geometrical vari-

ables of the checkerboard wrinkling mode, i.e. ξ1, ξ2 ξ0, and the four geo-

metrical parameters of the hexagonal wrinkling mode, i.e.ξk, η ξA, ξB, for the
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film/substrate system are presented. Specific attention is paid on the de-

pendence of those variables to the magnitude of the curvature, (ξR), while

conclusions are drawn regarding the convexity, ξR > 0, and concavity, ξR < 0,

of the bilayer. Therefore, the dependency of the wrinkling modes’ character-

istics on Poisson’s ratios is not presented explicitly in the following discussion

but the interested reader can readily extract it from the analytical set up of

the equations. For the numerical analysis the thin film is assumed to be

made from silicon, (Si), while the substrate is made by polydimethylsiloxane

(PDMS). The mechanical properties of these two materials are well docu-

mented in experimental studies, (Bietsch and Michel, 2000) and the numeri-

cal values used in our analysis, along with the film thickness tf , are presented

in Table.3. Note that the reduced moduli for the film and the substrate are

calculated as: Ēf = Ef/
(
1− ν2

f

)
and Ēs = Ef/ (1− ν2

s ), respectively.

In Figs.3 -5 the graphical specification of the wavelengths ξ1, ξ2 for the

checkerboard wrinkling mode for various magnitudes of concave bilayers

(ξR > 0) is presented. Similar plots can be extracted for convex bilayers

as well and the differences in the critical compressive strain are shown in

Table. 4. The red lines denote the solution, i.e. the pairs of ξ1, ξ2, that sat-

isfy Eq.(3.24), while the black lines denote the solution of Eq.(3.25). Solid,

dashed and dashed-dot lines are referring to different levels of biaxially strain

loading. The intersection points of the two curve sets, are unique for a pre-

defined value of the biaxial strain and they are highlighted through a data

tip label on each plot. As expected, the pair of the wavenumbers ξ1, ξ2 that

satisfies simultaneously Eqs.(3.24),(3.25) is independent of the applied strain

load ε0xx, ε
0
yy in the two principal directions of the system x, y, respectively.
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However, for the case of finite deformations it has been shown that there is

a dependency between the wavenumbers and the applied strain, (Jiang et al,

2007).

The insets in Figs.3-5 denote the change of the wavelengths λ1, λ2 of the

checkerboard mode with respect to the magnitude of the curvature. Upon the

calculation of the wavenumbers, ξ1 (= k1 tf ) , ξ2 (= k2 tf ), the corresponding

wavelengths λ1, λ2 are calculated through λi = 2 π/ki, i = 1, 2. The insets

are referring to the projected area of the bilayer in the xy plane and the

dimensions are λ1 × λ2 depicting one period of the checkerboard in both

directions. Figs.3(a) − (c) show the change of the wavelengths within the

same projected area along one period due to the variation of the curvature.

The flat bilayer acts as the baseline to demonstrate the role of the curvature

in the change of the wavelengths. It can be seen that there is a significant

decrease of both wavelengths due to the presence of the curvature. This

observation is true not only for equibiaxial compressive strain of the bilayer,

as shown in Figs.4 and 5, but in occasions where the biaxial strain loading

is not symmetric in the two principal directions. In particular, comparing

Fig.4(a) referring to concave bilayer with ξR = 1/25 there is a tenfold decrease

of the wavenumbers of the checkerboard mode compared to the flat bilayer

which indicates the curvature increases significantly the wrinkling waviness

of the bilayer. Interestingly, despite the fact the strain is equibiaxial the

decrease of the wavelength λ2, along the y− direction is higher compared to

the decrease of wavelength λ1, in the transverse x− direction.

In Fig.6 the variation of the wavenumbers ξ1, ξ2 for various values of

the moduli mismatch Ēs/Ēf for the checkerboard mode is shown. For the

25



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

calculations the value of the compressive equibiaxial strain load was taken

equal to 5% for illustrative reasons because as it was shown in Figs.3-5 the

values of the wavenumbers are independent of the loading. As it can be seen,

for both the flat and the curved bilayer (either concave or convex) the higher

the value of the moduli mismatch the higher the corresponding wavenumbers

ξ1, ξ2 and in turn the lower the associated wavelengths, λ1, λ2. Also, for

relative high values of the moduli mismatch, i.e. Ēs/Ēf = 1.5 × 10−2 and

above the wavenumbers ξ1, ξ2 seems to be almost equal to each other either

the bilayer is curved or not.

The analysis shows that the wavelengths λ1, λ2 are equal to each other

only in the case of the flat bilayer under equibiaxial compressive strain, as

demonstrated in other studies (Song et al, 2008) . However, when the cur-

vature comes in the analysis the wavelengths are no longer equal to each

other even under equibiaxial strain loading conditions. Upon the calculation

of the wavenumbers ξ1, ξ2 from Figs.3-5, their values are substituted back

to Eq.(3.20) and a closed form expression for the wrinkling amplitude ξ0 is

obtained in the form of Eq.(3.26), as a function of the material properties of

the bilayer and the curvature.

Fig.7 shows the variation of the wrinkling amplitude, ξ0, against various

values of the curvature of the bilayer for equibiaxial strain loading, Fig.7(a),

and for strain loading ratios of 2 and 1/2 in the two principal directions, Figs.

7(b),(c) respectively. Fig.7(d) is referring to uniaxial compression along the

x− direction and the critical strain values on this plot are included in Table

5 where the results are compared with the findings of other studies. It can be

seen that the magnitude of the curvature reduces significantly the wrinkling
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amplitude with respect to the flat bilayer by a factor of 15 for ξR = ±1/25

compared to the flat bilayer for a strain loading up to 3%. The analysis

shows that the convex bilayer (ξR < 0) is experiencing higher values in the

amplitude ξ0 compared to the concave bilayer within the range of 10%−14%

for |ξR| = 1/25 and |ξR| = 1/100, respectively. The intersection points of the

curves with the horizontal axis of strain loading denote the critical values of

strain load for different values of ξR. These values are presented explicitly in

Table.4 for convex and concave bilayer. It can be easily verified that the non-

dimensional wavelength ξ0 for the flat bilayer under equibiaxial compressive

strain can be calculated as a function of the critical load of the checkerboard

mode through the simple closed form expression

ξflat0 =

√
8

(3− νf ) (1 + νf )

√
ε0yy

εcritical
− 1 = 1.52

√
ε0yy

εcritical
− 1, for νf = 0.27,

(5.1)

For the case of the curved bilayer under equibiaxial compressive strain the

non-dimensional wrinkling amplitude can be calculated numerically through

a similar expression:

ξR0 = 1.05

√
ε0yy

εcritical
− 1, for

∣∣∣∣
1

100

∣∣∣∣ ≤ ξR ≤
∣∣∣∣
1

25

∣∣∣∣ and νf = 0.27. (5.2)

A direct comparison of Eqs.(5.1),(5.2) demonstrates that for the particu-

lar value of νf = 0.27 there is a considerable decrease of 30% in the wrinkling

amplitude for the specified range of the bilayer’s curvature.

The variation of the ratio of the total energy in the buckled state, Ubuck
tot

over the total energy in the unbuckled state, Uunbuck
tot = Ēf tf

[
(ε0xx)

2
+ νf

(
ε0yy

)2],
is presented in Fig.8(a). It is shown that the energy in the buckled state for
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a curved substrate is considerably higher compared to the energy of the flat

bilayer. Similar to the case of the wrinkling amplitude, the convexity of the

system suggests a slight decrease of the energy in the buckled state compared

to the energy of the concave layer. Fig.8(b) presents the variation of the three

different components of the system, i.e. bending Ub(f) and membrane Um(f)

energy of the film and the energy of the substrate, Us, for equibiaxial load-

ing. For both cases of flat and curved bilayer it appears that the membrane

energy of the thin film provides the higher contribution in the buckled state.

For the flat bilayer the contribution of the substrate is higher compared to

the bending energy of the film however this contribution reverses when the

curvature is introduced. Furthermore, the convexity of the bilayer reduces

slightly the membrane energy of the film and the energy of the substrate.

In Figs.9,11 the calculation of the wavenumbers ξk, η for the hexagonal

wrinkling mode lines are presented for various values of the curvature for

the case on convex (ξR < 0) and concave (ξR > 0) bilayers. The red and

black lines in the figures correspond to the solutions of Eqs.(4.53), (4.54),

respectively. The intersection points of the curves for different curvatures

constitute the solution of the system of the two equations and are marked

with a data tip label. Note that the marked values are independent of the

equibiaxial strain which is kept within the theoretical small strain and mod-

erate rotation elastic regime, i.e. 1 − 5%. Note that for the case of the flat

bilayer more than one solution of the system has been found as denoted in

Figs. 9(d),11(d), by the points a, b, c, d. From all these pairs the solution that

minimises the total energy of the system is that at point a which essentially

corresponds to, η =
√
3 and ξk =

(
3 Ēs/Ēf

)1/3
= 0.0355, in agreement with
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what has been conjectured in other studies,(Cai et al, 2011).

Furthermore, Fig.10 reveals that for the flat bilayer the amplitude ξB

is twice as much as the amplitude ξB, for convex bilayers. However, this

analogy between the amplitudes breaks off for concave bilayers, as can be seen

in Fig.13(b). It is noteworthy that the hexagonal mode is highly sensitive

to the applied load, especially for the case of concave bilayers. Fig.13(a)

demonstrates that the amplitude ξA becomes negative showing a preference

of the film to buckle inward to the substrate. This conclusion verifies the

experimental findings presented in other studies,(Cai et al, 2011).

The variation of the wavenumbers ξk, η for the hexagonal mode for various

vlaues of the moduli mismatch Ēs/Ēf is depicted in Fig.12. In particular,

Figs.12(a), (b), show that for concave bilayers the value of the wavenumber η

seems to be locked to 1.793 while the wavenumber in the transverse direction

ξk is increasing along the value of the moduli mismatch. Fig.12(c) reveals

a reversed pattern for concave bilayers because while η remains roughly un-

changed for all curvatures, ξk is decreasing with increasing values of the

moduli mismatch.

In Fig.14(a) the variation of the ratio of the total energy in the buck-

led state over the total energy in the unbuckled state is presented for the

hexagonal mode. Note that for the case of the concave bilayer the onset of

the wrinkling initiation is delayed significantly compared to that of a convex

bilayer. Fig.14(b) shows the contribution of the film and substrate energies

to the overall energy of the system. Fig.15 shows the variation of the ratio of

the total energy in the buckled state over the energy on the unbuckled state

for the cylindrical, squared checkerboard and the hexagonal wrinkling mode
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for various convexities and concavities of the bilayer. It can be seen that the

checkerboard mode is the most favourable due to the lowest energy followed

by the hexagonal and the cylindrical modes respectively. The presence of the

initial curvature in the bilayer does not alter the sequence of the buckling

modes but translates the values of all the corresponding energies into higher

levels, compared to the flat case denoted with solid lines, indicating a delay

in the onset of wrinkling.

(Zhao et al, 2020) investigated the effects of surface curvature on the

wrinkling pattern evolution in soft materials and they have shown that for

the case of the square checkerboard mode the critical wavenumber and the

accompanied critical strain may be calculated through the analytical expres-

sions:

ξ2c = 0, ξ1c = ϕ ξ01 , with ξ01 =

(
3 Ēs

Ēf

)1/3

(5.3)

while the critical strain is provided as:

εcheckerboardcritical =
2ϕ2 + ϕ−1

3
ε0c , with ε0c =

1

4

(
3 Ēs

Ēf

)2/3

(5.4)

The parameter ϕ is determined by the equation

ϕ4 − ϕ− 3Ω2
2 = 0 (5.5)

where Ω2 is dimensional curvature that determines the critical buckling of a

sphere system and is provided by (Cai et al, 2011) as:

Ω2 = 2
√
1− ν2

f ξR

(
Ēf

3Ēs

)2/3

(5.6)

Table.5 shows that the critical strain of the checkerboard mode evaluated in

the present study for various positive values of the curvature, see Fig.11(d),
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is in a very good agreement with the critical strain values provided through

Eq.(5.4).

In the post-bifurcation analysis, (Zhao et al, 2020), have shown that the

sinusoidal mode evolves to the hexagonal mode if the modulus ratio reaches

a critical value which is calculated numerically and verified experimentally

for various curvatures. (Xu and Potier-Ferry, 2016) investigated the post-

buckling behaviour of core-shell cylinders beyond the first bifurcation em-

ploying a 3D finite element model and provided a closed form expression for

the transition from the sinusoidal to the hexagonal wrinkling mode as:

Cs =
Es

Ef

(
1

ξR

)3/2

< 0.70 (5.7)

for Cs > 0.90 the axisymmetric mode prevails while for values in between,

i.e. 0.70 < Cs < 0.90, the preferred pattern remains unclear due to the high

sensitivity in the numerical results. (Zhao etal, 2021) studied the effect of the

sign of Gauss curvature and curvature anisotropy on the wrinkling patterns

of the bilayer and calculated numerically that the critical curvature for the

transition from the sinusoidal to the hexagonal mode is Ω2 = 0.94.

6. Closure

In this paper, we provide a thorough wrinkling analysis of cylindrically

curved thin film attached on a curved substrate under biaxial strain, focus-

ing on the onset of the checkerboard and hexagonal buckling modes. The

geometrical parameters of the buckling modes are specified semi-analytically

and special attention has been paid on the role of the curvature-induced

anisotropy in the elastic analysis. The film has been analysed by employing
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the shallow shell theory and the substrate as a three-dimensional semi-infinite

solid where the displacement components have been specified through the

perturbation method. We show that the critical strain is increasing due to

the curvature and the wrinkling amplitude is decreasing substantially. The

analysis suggests that, energetically, the checkerboard wrinkling mode is more

favourable compared to the one-dimensional and the hexagonal mode, see Fig

15. Finally, the convexity and concavity of the bilayer is discussed in detail

for both wrinkling modes and it is shown that convex bilayers are favoured in

the checkerboard mode while for hexagonal modes concavity favours buckling

inward the substrate as has been observed in experiments.
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List of Table captions

Table 1. Variation of the parameters αi (νs) for different values of substrate’s Pois-
son’s ratio.

Table 2. Variation of the parameters βi (νs) for different values of substrate’s Pois-
son’s ratio.

Table 3. Numerical values used in the numerical analysis for the thin film, quantities
with subscript f , and the substrate, quantities with subscript s.

Table 4. Compressive critical load, as (%), of the checkerboard mode for various
ratios of the loading in the two principal directions x, y of the bilayer. The values within
the parenthesis are referring to the critical load of a convex bilayer, i.e. ξR < 0.

Table 5. Numerical values of the critical strain (%) for the squared checkerboard
mode for various values of the curvature (ξR > 0). The values from Table.1. have been
used for the calculations.

List of Figure captions

Figure 1. (a) Stereoscopic view and (b) top view of the square checkerboard mode
wrinkling and the accompanied geometrical quantities, i.e. the wavelengths λ1, λ2 in x, y
direction respectively and the wrinkling amplitude A0.

Figure 2. (a) Stereoscopic view and (b) top view of the hexagonal wrinkling mode
and the accompanied geometrical quantities, i.e. the wavelengths λ1 = 4π/k η, λ2 = 4π/k
in x, y direction, respectively, and the wrinkling amplitudes A0, B0.

Figure 3. Graphical calculation of the wavenumbers ξ1, ξ2 for the squared checker-
board mode. Calculations are referring to equibiaxial compression

(
ε0xx = ε0yy = εeq

)
of a

concave (ξR > 0) thin film-substrate system. The numerical values used for the curvature
are: (a) ξR = +1/25, (b) ξR = +1/50, (c) ξR = +1/100, (d) ξR = 0 (flat). The insets
represent the evolution of the the wrinkling as the curvature is changing.

Figure 4. Graphical calculation of the wavenumbers ξ1, ξ2 for the checkerboard mode.
Calculations are referring to higher compression of the concave (ξR > 0)bilayer in the
x− direction, i.e. ε0xx = 2 ε0yy. The numerical values used for the curvature are: (a)
ξR = +1/25, (b) ξR = +1/50, (c) ξR = +1/100, (d) ξR = 0 (flat).

Figure 5. Graphical calculation of the wavenumbers ξ1, ξ2 for the checkerboard mode.
Calculations are referring to higher compression of the concave (ξR > 0) bilayer in the
y− direction, i.e. ε0yy = 2 ε0xx. The numerical values used for the curvature are: (a)
ξR = +1/25, (b) ξR = +1/50, (c) ξR = +1/100, (d) ξR = 0 (flat).

Figure 6. Variation of the wavenumbers ξk, η for the checkerboard wrinkling mode for
different values of the moduli mismatch Ēs/Ēf . Calculations are referring to 5% equibiax-
ial compression but the values marked on the figures are independent of the applied strain.
The numerical values used for the curvature are: (a) ξR = +1/25, (b) ξR = +1/100, (c)
1



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

ξR = −1/25, (d) ξR = 0 (flat).

Figure 7. Numerical calculation of the amplitude ξ0 for various values of curvature
for the checkerboard mode. The intersection points of the curves with the horizontal axis
of equibiaxial strains denote the critical load for different values of ξR. (a) equibiaxial
loading, i.e. ε0xx = ε0yy = εeq and (b) ε0xx = 2 ε0yy, (c) ε0xx = 1/2 ε0yy,(d) uniaxial loading
along the x− direction, i.e., ε0yy = 0.

Figure 8. (a) Variation of the ratio of the total energy in the buckled state, Ubuck
tot ,

over the total energy in the unbuckled state, Uunbuck
tot for the checkerboard mode. (b)

Variation of the ratios of the substrate Us, the film bending Ub(f), and the film membrane
Um(f) energies to the total energy in the unbuckled state. Calculations are referring to
equibiaxial compression (negative strain) of the bilayer.

Figure 9. Graphical calculation of the wavenumbers ξk, η for the hexagonal wrinkling
mode. Calculations are referring to equibiaxial compression

(
ε0xx = ε0yy = εeq

)
of a convex

(ξR < 0) thin film-substrate system. The numerical values used for the curvature are: (a)
ξR = +1/25, (b) ξR = +1/50, (c) ξR = +1/100, (d) ξR = 0 (flat).

Figure 10. Numerical calculation of the amplitudes ξA, ξB for the hexagonal mode
for various values of the negative curvature of the bilayer. Calculations are referring to
equibiaxial compression

(
ε0xx = ε0yy = εeq < 0

)
.

Figure 11. Graphical calculation of the wavenumbers ξk, η for the hexagonal wrin-
kling mode. Calculations are referring to equibiaxial compression

(
ε0xx = ε0yy = εeq

)
of a

convex (ξR < 0) thin film-substrate system. The numerical values used for the curvature
are: (a) ξR = +1/25, (b) ξR = +1/50, (c) ξR = +1/100, (d) ξR = 0 (flat). Note the change
of scale in the abscissa in the flat bilayer.

Figure 12. Variation of the wavenumbers ξk, η for the hexagonal wrinkling mode for
different values of the moduli mismatch Ēs/Ēf . Calculations are referring to 5% equibiax-
ial compression but the values marked on the figures are independent of the applied strain.
The numerical values used for the curvature are: (a) ξR = −1/25, (b) ξR = −1/100, (c)
ξR = +1/25, (d) ξR = 0 (flat).

Figure 13. Numerical calculation of the amplitudes ξA, ξB for the hexagonal mode
for various values of the positive curvature of the bilayer. Calculations are referring to
equibiaxial compression

(
ε0xx = ε0yy = εeq < 0

)
.

Figure 14. (a) Variation of the ratio of the total energy in the buckled state, Ubuck
tot ,

over the total energy in the unbuckled state, Uunbuck
tot for the hexagonal mode. (b) Vari-

ation of the ratios of the substrate Us, the film bending Ub(f), and the film membrane
Um(f) energies to the total energy in the unbuckled state. Calculations are referring to
equibiaxial compression (negative strain) of the bilayer.

Figure 15. Variation of the ratio of the total energy in the buckled state, Ubuck
tot , over

the total energy in the unbuckled state, Uunbuck
tot , for the 1D, checkerboard and hexagonal

wrinkling modes, for (a) concave (ξR > 0) and (b) convex (ξR < 0) bilayer.
2
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αi (νs) νs = −1/3 νs = −1/4 νs = 0 νs = 1/4 νs = 1/3 νs = 0.48

α1 0.0755 0.0875 0.125 0.1666 0.1822 0.2138
α2 0.1640 0.1625 0.1562 0.1458 0.1406 0.1274
α3 0.2278 0.2438 0.2890 0.3342 0.3619 1.1629
α4 0.4046 0.3866 0.3242 0.2534 0.2428 0.9879
α5 0.3393 0.34834 0.3281 0.2065 0.3098 87.56
α6 0.8696 0.8410 0.7851 1.0925 1.8421 106.01
α7 1.2249 1.2062 1.125 1.2939 2.1412 193.57
α8 618.3 568.3 376 1363.8 6797.1 6.9× 106

α9 3710.6 3898.9 5265 13595.3 29961.8 8.1× 106

α10 3613.8 3641.1 4284 12098.1 32393.2 1.5× 107

α11 1128 899.5 208 6150.7 41436.9 2.3× 108

α12 8629.2 9347.6 14403 50812 144838 2.6× 108

α13 4505.2 4611.3 7016 42068 161423 5× 108

α14 5311.8 3990.2 416 57665.1 484432 1.8× 1010

α15 39424 42426.7 67539 341109 1.3× 106 2.1× 1010

α16 56894.4 60041 97939 651015 3× 106 6.1× 1010

α17 21122.8 19609.8 27424 361559 2.1× 106 5.8× 1010
1
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βi (νs) νs = 1/3 νs = 0.48 βi (νs) νs = 1/3 νs = 0.48

β1 0.9166 1.4215 β18 1/3 0.6915
β2 0.0833 -0.7782 β19 3.5 16.7459
β3 2.7083 16.385 β20 2.5729 15.4013
β4 -11.3125 -182.544 β21 9.1145 1490.82
β5 14.2708 1581.59 β22 48.3073 3284.61
β6 16.2708 1583.59 β23 39.3646 1793.87
β7 122.518 108816 β24 107.487 108627
β8 121.518 108815 β25 511.357 234999
β9 -16.3125 -231.984 β26 472.085 126982
β10 -4.0833 -48.0185 β27 610.129 3.72× 106

β11 -54.4167 -6498.78 β28 2371.2 7.91× 106

β12 -43.0208 -6317.02 β29 2124.14 4.2× 106

β13 701.868 3.73× 106 β30 1714.5 7.37× 107

β14 2082.97 7.42× 107 β31 7233.39 2.29× 108

β15 4.2812 96.4161 β32 9747.39 2.37× 108

β16 -190.656 -309132 β33 4169.55 8.21× 107

β17 0.625 0.5192
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tf [nm] νf [−] νs[−] Ef [MPa] Es[MPa] Ēs/Ēf [−]

100 0.27 0.48 130000 1.65 1.53× 10−5
1
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Critical compressive strain load (%)

ξR ε0yy
(
= ε0xx

)
ε0yy

(
= 0.5 ε0xx

)
ε0yy

(
= 2 ε0xx

)

0 (flat) − 0.0249 − 0.0157 − 0.0315
±1/100 − 0.273 (−0.234) − 0.198 (−0.180) − 0.296 (−0.240)
±1/50 − 0.597 (−0.511) − 0.428 (−0.377) − 0.668 (−0.546)
±1/25 − 1.359 (−1.170) − 0.952 (−0.835) − 1.523 (−1.265)
1
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ξR Present study Ref.[35]

1/25 −2.48 −2.22

1/50 −1.18 −1.11

1/100 −0.571 −0.560

0 (flat) −0.0335 −0.0316
1
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