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Highlights

Modelling Segregation Phenomena in Large Industrial Silos: A Cellular Automa-
ton Approach

Susantha Dissanayake, Hamid Salehi, Stefan Zigan, Tong Deng, Michael Bradley

Segregation is a prevalent issue in wood pellet handling.

o A Cellular Automaton model was developed to simulate segregation within silos.

Model predictions were validated against data from laboratory and industrial silos.

e The model demonstrated strong correlation with experimental observations.
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Abstract

Segregation presents a significant challenge in the handling of bulk materials across various
industries, including the handling of wood pellets. Wood pellets, which degrade over time,
develop a wide particle size distribution, leading to increased segregation during handling. This
can result in fines and dust spikes in silo discharge streams, negatively affecting operational
efficiency and safety. Accurate prediction of segregation during silo filling and discharging is
critical for ensuring safe handling and efficient operations.

To address these challenges, this study develops and validates a Cellular Automata (CA)
model to simulate segregation in wood pellet silos. The CA approach provides computational
efficiency while capturing the essential physics of particle behaviour. The model was initially
calibrated through laboratory experiments and subsequently validated against data from a 2D
glass-walled silo. Following successful validation, a 3D CA model was developed and tested
against industrial-scale wood pellet silos. The model demonstrated an accurate prediction
of segregation patterns and fines content in discharge streams, offering a valuable tool for
optimising silo operations and mitigating associated risks.

Keywords: Segregation/ Cellular Automata/ Bulk Materials /Fines Spikes

1. Introduction

Power generation industries are increasingly shifting towards renewable source of energies
instead of fossil fuels. In the second quarter of 2024, renewable energy sources accounted
for 46.4% of the total electricity generated in the UK [1]. Biomass is a common form of
renewable solid fuel used in power generation [2]. It includes firewood, crops, agricultural and
forestry residues, and waste [3]. These types of fuels are carbon neutral, meaning biomass
emits negligible greenhouse gases over its life cycle. As such, it presents a good alternative
for reaching global energy and environmental goals [4, 5] Many coal-fired power stations have
been converted to biomass powered power plants in recent years [2, 6], with wood pellets being
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a typical type of biomass used in these facilities. Wood pellets offer several advantages as an
energy source. They are easily stored and transported, and their free-flowing nature simplifies
discharge from storage units (where no excessively high fines content). Additionally, wood
pellets boast high energy density and efficient pneumatic conveying capabilities. Compared
to other fuels, they produce relatively low emissions [7].

Handling and processing wood pellets pose significant challenges, primarily due to particle
degradation, which leads to fines and dust formation. This degradation results in a wide
“particle size distribution” (PSD) and the phenomenon of segregation when wood pellets are
loaded into silos. [8, 9]. Segregation can occur for two main reasons: (¢) Differences in particle
physical properties: This includes factors such as particle diameter, length, shape, and weight
and (i¢) Differences in particle dynamics: This includes factors such as the velocity of the
carrier air in a pneumatic conveying system, the free-fall height of the particles when filling
silos, and the vibration of the silos [10].

Due to the segregation effect, silo discharging can often evidence large variations in fines
content over time compared to the input composition of the bulk wood pellets. This creates
several issues, such as the occurrence of “saltation” (formation of dunes) during the process of
pneumatic conveying [11]. Additionally, there is a potential for the mixture of dust particles
with air to escape from the processes, thereby increasing the risk of fires and dust explosions
[12, 13] as well as posing health and environmental hazards [14, 15, 16, 17]. Furthermore, the
variations in feed streams into the furnaces can result in inefficient burning [18]. Subsequently,
the presence of unburned carbon poses challenges in terms of disposal and results in the
inefficient utilisation of valuable fuel resources [19]. Consequently, there is an increase in the
operational costs associated with cleaning and maintenance.

Predicting fines content in pellet streams is essential to mitigating associated challenges. While
existing mathematical modelling offers a potential solution for predicting silo segregation.
However, the complexity of mechanistic models, often involving differential and partial
differential equations, or higher order derivatives renders them computationally demanding
[20, 21, 22, 23]. While computational fluid dynamics, discrete element modelling and
other numerical methods are increasingly capable on high-performance computing systems
[23, 24], industrial-scale silos on the order of tens of thousands of tonnes of materials often
require prohibitively large computational resources, motivating more macroscopic modelling
alternatives [25, 26, 27].

To overcome these limitations, this study explores the use of Cellular Automata (CA)
modelling to simulate segregation in wood pellet silos. The CA approach, which neglects flow
characteristics and focuses on particle kinematics [28, 29|, offers a computationally efficient
alternative to traditional mechanistic models. Although widely applied in fields such as
computer science and biology, CA modelling has had limited applications in bulk material
handling [28, 30]. Tejchman [31] simulated flow pattern in silos, while Castro et al. [32]
conducted a study to analyse fine migration using cellular automata. The ability of the CA
model to simulate complex systems without relying on intricate mathematical formulations
makes it a promising tool for large-scale simulations, including segregation predictions [28].
This research aims to develop and validate two-dimensional (2D) CA models for simulating



segregation during silo filling and discharging, using laboratory experiments for calibration.
Following successful validation, the model will be extended to three dimensions (3D) and tested
against industrial-scale wood pellet silos. By providing accurate predictions of segregation
patterns, this study seeks to offer a robust tool for optimising silo operations and enhancing
the efficiency of wood pellet handling systems.

2. Method of the CA Modelling

Segregation has several different mechanisms, each with its unique characteristics [33]. The
significant primary segregation mechanism that dominates particle heap formation must be
clearly recognised before segregation modelling. When silos are filled from the top, particulate
materials form a heap, as shown in Figure 1. This figure illustrates half of a particle heap.

Particle flow

Figure 1: Sieve/Percolation segregation

Coarse particles are placed on the heap, pack loosely while generating much bigger voids.
Particles collide on the apex of the heap tend to slide down the sloping particle bed. During
this sliding fines and dust permeate through voids created by coarse particles as shown in the
Figure 1. As a result of this segregation mechanism, a higher level of fines is arrested closer
to the centre of the heap, whereas larger particles are loosely packed and accumulated at the
periphery of the heap [33, 34]. This segregation mechanism is known as “sieve/percolation
segregation,” and it is equally dominant in silo filling and discharging.

After identifying the primary segregation mechanism, a rule set was developed for the CA
models to mimic sieve/percolation segregation behaviours. These rules were implemented
on a grid with a finite number of cells. This study focused on examining the composition of
particulate materials within a cell, particularly the differential transfer of coarse and fines
particles between cells.

The contents of each cell were determined by considering the values of neighbouring cells
from the previous time step. Neighbouring cells were defined as those in close proximity to a
given cell, following definitions from previous studies [35, 36].

However, adapting CA modelling to bulk solids handling requires careful consideration of the



neighbourhood structure. In conventional CA models, all potential neighbouring cells are
considered when calculating a value of a cell in the next time step. In contrast, in bulk solids
flow within a heap, these influences are more limited and directional. This is because bulk
material movement during heaping and discharge is driven solely by gravity, occurring either
vertically or diagonally downward at the angle of repose. Pellets and particles cannot move
upward or horizontally. Consequently, the direct use of previously established neighbourhood
configurations, such as the von Neumann and Moore neighbourhoods [35, 36], are unsuitable
for modelling bulk solids handling.

Thus, the authors established a neighbourhood arrangement for bulk solids modelling. A
similar neighbourhood arrangement was used by Castro et al. [32], and a comparable cell
migration rule was applied by Kozicki et al. [29]. Figure 2a and Figure 2b shows the revised
neighbourhood structure for 2D and 3D CA modelling respectively.

(a) 2D neighbourhood arrangement (b) 3D neighbourhood arrangement

Figure 2: Modified neighbourhood arrangement in the CA modelling.

As shown in Figure 2, only the blue cells affect the properties of the red cell. This means
that the cells directly above the red cell, along with one cell to the right and left in the
upper (blue) layer, can transport materials into the red cell in the 2D arrangement (Figure
2a). In other words, the top layer of cells around the selected cell constitutes the important
neighbourhood in bulk material handling. In the 3D models, the number of neighbours could
be considered either five (Figure 2b), or possibly nine if the “corner” cells in the top layer are
included.

The model rules, derived from empirical observations of particle movement, were formulated
using arithmetic calculations to assess the impact of neighbouring entities. A numbering
system (from 0 to 10) was introduced to represent the fines quantity; particle size distribution
(PSD) in each cell. Cells with no particles were labelled as “0”, cells filled with just coarse
material (clean pellets) were labelled as “17, and cells filled with particles and filled all spaces
with fines (saturated fines) were labelled as “10”. Cells could have intermediate numbers,
such as “5”, which indicates that it had filled with coarse materials yet had a “4” degrees of
fines.

Through calibration, these integer levels can be mapped onto the measured percentage of
fines, enabling the accurate determination of real-world fines content in each cell. The set of
rules for silo filling and discharging were following the same principle.



2.1. The 2D CA Model for Silo Filling

In this CA modelling, the set of rules was divided into two parts: (i) Movement of cell
bulk contents and (i) Transfer of fines across cells.
A flat-bottom silo was modelled as a 2D grid of cells with a designated inlet and outlet. During
filling, cells were introduced at the top (cell “A” shown in Figure 3) and moved downward to
occupy empty spaces as illustrated in Figure 3. Each cell represented a homogeneous mixture
of particles with assigned fines content.

—— Flirst cell created at the top opening

< Empty cell underneath the first cell

Figure 3: Cell flow in the simulation domain

These motions will continue until the cell “A” reaches the bottom of the gird (Figure 4a).

(a) (b) (c) (d) (e) ()
Figure 4: Cell flow in simulation domain

To simulate particle packing, cells were allowed to move diagonally downward when
possible, forming a triangular heap structure as illustrated in Figure 4 b,c,d,e and f. The
direction of diagonal movement could be random or user-defined. According to the set of
rules, particles arrange themselves into a triangular heap structure. The shape of the heap
expands as additional cells are introduced at the top, with their diagonal movement playing
a defining role.

Subsequent to establishing cell movement rules, a set of rules governing fines transfer between
cells was developed. Fines content within a cell remained constant during vertical movement.
However, diagonal movement facilitated fines transfer.

The fines transfer mechanism developed in this CA model simplifies the complex percolation
phenomena occurring in granular materials. Specifically, the model assumes that fines can
move into lower-level cells unless these cells are saturated (i.e., fines number = 10). If the cell



beneath is not saturated, fines are transferred until either the cell beneath becomes saturated
or the source cell is depleted. Cells without fines (i.e., fines number = 1) do not contribute to
fines transfer. As a result, this simplified approach, combined with the cell movement rules,
produces a triangular heap with varying fines content, reflecting segregation patterns during
filling.

This assumption does not explicitly capture pore-scale effects such as void networks [37],
bridging, or group-trapping [38, 39]. According to Duran [40], free percolation occurs only
when the fine-to-coarse size ratio is below 0.15. The predictive accuracy of the CA model
depends on both this size ratio and the proportion of fines present. When fines exceed a
critical threshold (typically 15% of the coarse particle size), they are more likely to become
trapped, limiting their mobility. Additionally, a broad size distribution may introduce effects
such as cohesive clustering or air entrainment, which are not explicitly addressed by the
current form of the CA model.

Industrial wood pellets, typically cylindrical in shape with a length of 6 mm are large enough
to facilitate percolation [41]. Unlike spherical or irregular granular materials, cylindrical
pellets exhibit anisotropic flow properties due to their tendency to align along preferred
orientations [42]. In the development of the CA model, cell movement is governed by bulk
segregation trends rather than individual particle orientations. Although anisotropic effects
are not explicitly captured at the particle level, the calibration process ensures that model
predictions align with observed segregation patterns, incorporating the macroscopic impact
of pellet shape.

In Appendix 1 show the filling algorithm.

2.2. The 2D CA Model for Silo Discharging

The silo discharge model consisted of two main components: cell movement and inter-
cellular fines transfer, similar to the filling model. Discharge initiated with the opening of
the silo outlet. Cells were removed from the bottom outlet, creating an empty space that
can propagate upward as cells repositioned to fill the voids, a process known as upward
void propagation. Fines content remained unchanged during these vertical movements. This
upward movement of empty spaces formed a channel above the outlet. Figure 5 illustrates
the channel above the outlet after several discharge cycles.

Flow channel above the outlet

Figure 5: Flow channel created during material discharge



When a channel reached the silo top, the top right cell filled the void, and the left cell
occupied the vacated space. This process initiated a funnel-shaped flow pattern that continued
until discharge ceased as shown in Figure 6. To replicate realistic flow behaviour, this study
employed rectangular cells with an adjustable aspect ratio, allowing user to calibrate the
angle of repose to match experimental measurements.

Angle of repose

Figure 6: Flow stop at the angle of repose

Fines transfer during discharge followed the same rules established for the filling process:
fines were transferred to unsaturated cells during diagonal movements. To facilitate simula-
tions, algorithms were developed for both filling and discharging processes (see Algorithm 2
for detailed pseudocode).

2.3. Method of Converting the 2D CA Models into 3D Models

The 2D CA models were extended to 3D models using a modified four-cell neighbourhood
arrangement (Figure 2b). A cuboidal grid was initially created to represent 3D simulation
domain, however to accurately represent cylindrical silo geometries, fixed cells were introduced
to confine the simulation domain. This approach allowed for the creation of various silo
shapes within the cuboidal framework. A cylindrical shape, for instance, was generated by
inscribing a circle within the x and y plane of the cuboid, defined by Equation 1.

v +22—rr=0 (1)

Values of y and z in the equation is y and z coordinates. r is the radius of the circular
plan view, i.e. radius of the silo. Subfigure (a) in Figure 7 shows the identified cells covered
by the equation in 1. Black cells represent fixed cells which correspond to the cylinder wall.
The numbers on the x-axis align with each other in the plan view.
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Figure 7: Combined subfigures showing cell identification in the cuboid matrix.

Cells within the circular area were assigned a specific number, while those outside were
designated as inactive ‘border cells’ with a unique identifier. This pattern was replicated
throughout the grid’s height. Figure 7 subfigure (b) illustrates the layered structure of the
3D cuboidal grid. For clarity, only the top and bottom layers are shown. This method can
be adapted to create other shapes as required [43].

2.4. Convergence test to explore minimum domain size needed for 3D model

To optimise computational efficiency, a convergence study was conducted to determine the
minimum required number of cells. Cuboidal grids with varying volumes, while maintaining
the aspect ratio of a real 30,000-tonne wood pellet silo, were simulated. The silo shape was
approximated as a cylinder inscribed within a 3D cuboid matrix. By analysing the normalised
discharge streams from these simulations, an optimal cell count was established. Table 1
presents the grid dimensions used in this analysis, where the volume progression refers to the
ratio of domain volumes used to test convergence.



Table 1: Round shaped domain sizes used for convergence test.

Width | Depth | Height | Cells available for filling | Volume progression
11 11 25 2225 1.0
13 13 30 3630 1.6
16 16 37 7659 3.4
17 17 39 8307 3.7
18 18 41 10455 4.7
19 19 43 11223 5.0
20 20 46 14674 6.6
21 21 48 15600 7.0
22 22 50 18950 8.5
23 23 53 20405 9.2
27 27 62 33790 15.2

Results for the convergence testing are discussed in section 3.4.2.
After that, the 2D CA models were converted into 3D CA models. The algorithms of the 3D
models were shown in the appendix (Algorithm 3 and 4).

2.5. Computing techniques

To assess the CA models, computer based simulations were conducted. A 2D grid,
representing a cross-sectional slice of a silo, was implemented in the model. Initially, a
low-resolution grid was employed to facilitate visualisation of cellular details. Users could
adjust height and width parameters to achieve desired resolution levels.

The 3D grid accurately represented the entire cylindrical silo. Initially, inflow cells were
assigned a consistent fines content. Python, along with the PyCharm IDE !, was used to solve
the models. Graphical representations were generated using imshow from the Matplotlib
library 2. While square cells are depicted here, rectangular cells can be implemented to reflect
the material’s angle of repose. Cells exiting the domain were tracked, stored in arrays, and
visualised using Python’s plotting functionalities.

Simulations were conducted on a standard Apple Mac mini computer equipped with a 3.2
GHz 6-core processor highlighting the model’s ability to run on readily available hardware.
Following simulations, the CA models were validated and calibrated through laboratory
experiments. Subsequently, the 3D models were tested against data from industrial silos.

2.6. Calibration of the segregation model

A Bench Scale Segregation Tester (BSST) (Figure 8) was employed to calibrate the 2D
CA filling models. Prior research by Abou-Chakra [44] demonstrated the BSST’s ability to
accurately simulate segregation patterns across various scales, from kilograms to thousands
of tonnes. The BSST, with a capacity of 810 kg, comprised a feeding hopper, a bed with

Thttps://www.jetbrains.com/pycharm/
Zhttps:/ /matplotlib.org/stable/gallery /index.html



adjustable tilt, five bed separators, and a stainless-steel hopper. The length of the BSST bed
is 1.2 m, and the width is 21 e¢m. The bed, surfaced with sandpaper to provide roughness
on pellet sliding. BSST could be inclined to match the wood pellet angle of repose. Pellets
rolled down the inclined bed, mimicking the behaviour of particles within a wood pellet heap.

Feeding hopper

g Feeding hopper holder

Particle bed
(1) Top

(2)
(3) Middle

Bed holder mechanism

(4)
7 (5) Bottom

Collector bin

el

Figure 8: Bench Scale Segregation Tester (BSST)

Wood pellet samples, typically 30-40 mm in length and 6-8 mm in diameter at manufacture,
were collected and subsequently subjected to sieve analysis to determine their particle size
distribution. Particles smaller than 500 um were classified as dust, while those between 500
pm and 3.15 mm round (mmR) were considered fines. As the models simulate cumulative
fines and dust, all particles passing through the 3.15 mm round (mmR) sieve were used for
calibration.

The angle of repose for wood pellets was determined through a standard pour test [45].
The BSST bed angle was subsequently adjusted to match this value. The feeding hopper
was positioned at a height of 15 ¢m above the bed to ensure a free flow of particles while
minimising bouncing effects. A well-mixed batch of wood pellets was carefully loaded into
the hopper to prevent segregation in hopper filling. Gradual hopper opening allowed pellets
to flow onto the bed, where they distributed evenly due to the matched angle of repose. A
10 e¢m thick pellet layer formed on the bed. Finally, the contents of each BSST bed section
were collected and sieved to quantify fines concentration. Those values were used to compute
a calibration curve, presented in Section 3.2. It was utilised to establish a quantitative
relationship between the model’s fines content scale (1-10) and the experimentally measured
fines percentage range. This curve enabled the translation of model predictions into real-
world fines content values. A linear calibration approach was employed in this study and
the calibration factor was iteratively adjusted to optimise the agreement between model
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predictions and experimental data from the BSST. Through this process, the model was
successfully calibrated to accurately replicate experimental outcomes. The calibration curve
was then used to align discharge model predictions with actual fines percentages.

2.7. Validation against 2D model in laboratory

A glass-panelled 2D silo (Figure 9) was specifically designed and constructed for the
calibration and validation of the 2D CA model. Dimensions of 57 ¢m in height, 53 ¢m in
width, and 6 ¢m in depth were chosen. This silo facilitated visual observation of the discharge
process. The 6 ¢cm depth was deliberately chosen to minimise particle movement along the
z-axis and prevent jamming. The silo had a capacity of 8-10 kg of wood pellets and featured
interchangeable discharge openings ranging from 4 cm to 8 c¢m.

To reduce particle bouncing during the filling process, a feeding tube was strategically
positioned at the silo’s center. Wood pellets were introduced into the silo through a funnel
located at the opposite end of the tube, ensuring a controlled and smooth filling process.

Funnel

=, Feeding pipe

—— Top opening

<~ Wooden frame

- Perspex front panel

X

) .
~——— Opening mechanism

Bottom opening

Figure 9: 2D silo design

A wood pellet batch was sieved through a 3.15 mmR sieve to separate fines from clean
pellets. Subsequently, 880 g of clean pellets and 120 g of fines were mixed and carefully
loaded into the feeding tube to avoid segregation. Once filled, the tube was slowly lifted
and refilled as needed. After filling, the silo outlet was opened, and the discharged pellets
were collected and sieved to determine fines content. This experiment determined the fines
levels and their distribution pattern, providing data for the validation of the discharge model.
The model-predicted discharge outcomes were then calibrated using the calibration curve
discussed earlier and compared with the experimental results.
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2.8. Method of the 3D Model Analysis Against Industrial Silos

Two concrete silos, each with a diameter of 36.5 m, height of 56.5 m, and a capacity of
approximately 30,000 tonnes, were selected at Immingham Port, England, for validation of
the 3D model. The silos feature a flat bottom design and were loaded centrally from the top
to maintain symmetrical distribution, thereby minimising uneven stress on the side walls.
Silo 2 and Silo 3 were designated based on their location within the silo array shown in Figure
10.

Figure 10: Silos at Immingham port?

Silo 2 initially contained 8900 tonnes of pellets with unknown fines content, while Silo 3

began empty at the drained angle of repose. The ship discharge line was equipped with an
automatic sampling unit that collected a 1-tonne sample for every 2,340 tonnes of material
unloaded. These samples were analysed in-house to determine fines content, providing detailed
inflow fines data at consistent 2,340-tonne intervals during the ship unloading and silo filling
process. Silo 2 reached a final fill level of 14,625 tonnes, while Silo 3 attained 15,568 tonnes.
Similar automatic sampling was employed for discharge stream analysis.
Inflow pellet fines content fluctuated due to ship cargo segregation. A linear calibration curve
was drawn using the experimental data shown in Table 10 and Table 10 in the Appendix.
This calibration curve was applied to align inflow fines percentage with model inputs. Model-
predicted discharge data was then compared with experimental measurements for validation
purposes.

3. Results and Discussion

This section presents the simulation and model validation exercise for both the 2D and
the 3D CA models.

3.1. Results for the 2D CA Filling and Discharging Models Validations

Figure 11 presents simulation results for the 2D CA model. The 20 x 21 cell grid (total
420 cells) was filled with 310 cells, each initially containing a fines level of “3” (out of a
maximum of 10). Dark brown cells indicate higher fines content, while light brown cells

12



represent fines-free areas (value of 1). The background is shaded in light gray to enhance the
clarity of the images.

2D Silo Filling

0.0 ]
10

2.5 1
9
5.0 1 g
7.5 1 7
L6

10.0
s
12.5 4
15.0 r3
L2

17.5
!

00 25 50 75 100 125 150 17.5 20.0
Figure 11: Simulation of filling of 2D silo

Figure 11 illustrates a clear segregation pattern, with fines concentrating at the silo center
and diminishing towards the walls. Preliminary simulations demonstrated the computational
efficiency of the 2D CA model, significantly outperforming other modelling techniques [24]. A
100 x 51 cell domain required seven minutes, while a 20 x 21 domain shown in the Figure 11
took less than three seconds on a standard desktop computer, achieving the study’s primary
objective of rapid simulation.

3.2. Calibration of the CA model

Figure 12 presents the input material analysis conducted in the Wolfson Centre laboratory,
revealing 1.6% dust and 12.5% fines, totalling 14% fines content. A batch of wood pellets
was received from Drax Power, and a sample with a high fines content was selected
to enhance segregation for observation purpose during the experiment. In this step, the
fine-to-coarse size ratio defined by Duran [40] was considered to ensure the free flow of particles.

13



100 ‘

l0Fines content in input
85.9
= 80| 8
2
A=
k=
% 60 [ 8
<
=
)
P 40| |
=
b}
5
& 200 12,5 |
]
00— T T
P < 500 pym 3.15 mmR P > 3.15 mmR

Figure 12: Characterisation of input pellets

The wood pellet angle of repose was measured as approximately 33 degrees. The BSST bed
angle was adjusted accordingly, and a test was conducted. Subsequent analysis determined
the fines content in different BSST segments, as shown in Figure 13.

Wood Pellets analysis in BSST

100.00
90.00
80.00
70.00

60.00
50.00 1(Top)
40.00

% Wood pellets

30.00
20.00
10.00

2
3 (Middle)
4
5 (Bottom)

Coarse Fines and dust

0.00

Figure 13: Results of BSST analysis

Figure 13 clearly illustrates a concentration gradient of fines within the BSST, with a
significantly higher proportion accumulating at the top. Approximately 27.4% of fines were
recovered from the BSST top, while 7.3% were found at the bottom. Negligible fines loss,
estimated at around 0.2%, occurred during the experimental process.

Table 2 summarises the extreme fines content values obtained from the BSST analysis. These

14



data points, representing maximum and minimum fines concentrations, served as the basis
for model calibration. In this study,

o Coarse pellets were assigned a value of “1”
o Empty cells were designated as “0”

+ The maximum fines content value (27.64%) corresponded to a model predicted outcome
of “10™.

o The minimum fines content value (7.38%) was assigned a value of “1”, representing the
lower end of the scale.

This numerical representation formed the basis of the calibration curve used in the 2D filling
model.

Table 2: Calibration data for 2D filling model

Fines in BSST | Model predicted
outcomes
Maximum fines | 27.64 10
Minimum fines | 7.38
Coarse pellets 1
Empty cell 0

Figure 14 shows the calibration curve drawn using the information given in the Table 2.

= Calibration curve for 2D filling model
é T T T T T T T T <1
e 25| Calibration curve .
—
o)
o 20 .
2
& 15f .
2
2 10} |
&
~— 5 [ |
4}
E OL‘ | | | | | | | |

1 2 4 1
- 3 5 6 7 8 9 10

Model predicted fines

Figure 14: Calibration curve for 2D filling model

The results of the simulation were calibrated using the linear equation derived from
the calibration curve (Figure 14). The CA model requires calibration to map its internal

15



integer scale (1-10) to real-world fines percentages. A linear calibration curve was applied
consistently throughout this study.

Table 3 compares the average fines content from four experimental trials with the calibrated
model predictions.

Table 3: Calibrated data for 2D filling model

Experimental Fines | Original Model Pre- | Calibrated Model
Content (%) dictions (%) Predictions (%)
27.64 9.90 27.33

17.66 7.00 18.43

9.8 4.80 11.67

7.90 3.30 7.06

7.38 1.50 1.54

A plot of the calibrated model-predicted outcomes versus the experimental data is shown
in Figure 15. The error bars for the four experiments are also displayed in the figure.
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Figure 15: Calibration of simulation data with experimental data

Figure 15 demonstrates a strong correlation between the calibrated model predictions and
the experimental data points. The inclusion of error bars provides a clearer representation of
variability within the experimental data, reinforcing the reliability of the observed trends.
The model assumes unrestricted movement of fine particles between cells based on the
fine-to-coarse size ratio threshold suggested by Duran [40], while disregarding the cohesive
nature of wood pellets, particularly when the fines content exceeds 0.15 [46]. The slight
discrepancy between the experimental fines content and the calibrated model predictions
suggests potential resistance to fine particle transport in real-world conditions.

Despite this, the overall agreement between model predictions and experimental data, while

16



accounting for the variability indicated by the error bars is promising given the model’s
simplicity. Thus, the model remains a valuable tool for predicting fines segregation patterns
during wood pellet heap formation.

3.3. Discharge model validation

The 2D CA discharge model was simulated, and the results are visualised in Figure 16.
The simulation completed in under three seconds. As illustrated in Figure 16, the model
accurately predicts the complete discharge of fines through the outlet, with the remaining
material forming a stable angle of repose composed majority of clean pellets.

2D Silo Discharge
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17.5 4
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Figure 16: Simulation of discharge of 2D silo

To validate the 2D CA discharge model, a pellet stream was collected from the outlet of
a glass-walled 2D silo. During the discharge 11 equal portions of samples were withdrawn
from the silo. Each portion was sieved to quantify its fines content, and the model-predicted
fines were calibrated accordingly. The test was conducted four times, and the average fines
content was calculated for analysis. The errors in the data set are plotted.
Table 4 shows the averaged experimental results, model predicted outcomes, and the calibrated
model predicted outcomes.
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Table 4: Calibrated data for 2D CA discharging model

Sample Number | Experiment Simulation Data
Data
1 11.34 11.50
2 19.18 20.10
3 22.35 22.50
4 24.87 24.13
5 19.46 19.69
6 15.58 15.00
7 12.43 14.38
8 10.00 10.88
9 10.34 10.01
10 12.37 12.88
11 11.85 11.38

The plot of the experimental data versus the calibrated model predicted outcomes had
shown in Figure 17.
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Figure 17: The experimental data versus the calibrated model predicted outcomes

Figure 17 demonstrates the strong predictive capability of the developed models for fines
content in the discharge process. While a slight discrepancy between model predictions and
experimental data is observed, a t — test was performed to assess its statistical significance.
Table 5 presents the calculated values for both experimental and model-predicted data. Table
5 summarises the mean difference and standard deviation between the two datasets. The
calculated t — value is 0.0903. Comparing this to the critical ¢ — value of 2.086 (obtained
from the ¢ — table for a significance level of 0.05 and 20 degrees of freedom), we conclude
that the observed difference is not statistically significant.
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Table 5: T-test results

Parameter Value
Mean (Experiment) 15.43
Mean (Simulation) 15.68

Standard Deviation (Experiment) | 5.20
Standard Deviation (Simulation) | 5.05

Degrees of Freedom 20
Critical t-value (o = 0.05) 2.09
t-Statistic -0.11

As the calculated t — value is smaller than the critical ¢ — value, the null hypothesis is
accepted. This indicates no statistically significant difference between the experimental and
model-predicted outcomes. The high correlation between the calibrated model predictions
and experimental data, as evidenced by the t — value, is crucial for identifying fines spikes
during discharge. By Figure 17, it is possible to predict fluctuations in fines content during
the discharge process, facilitating the development of strategies to manage these peaks.

3.4. Progressing Towards 3D Model Validation

Having established the validity and accuracy of the 2D CA model through rigorous
laboratory testing, the focus now shifts to validating its three-dimensional counterpart. The
following section presents the results of applying the 3D CA model to simulate wood pellet
segregation in industrial-scale silos.

3.4.1. Creating cylindrical domain

This section explores the creation of cylindrical shaped domains and the determination of
optimal cell numbers for 3D modelling. Figure 18 illustrates the plan view of a cylindrical
domain, where black cells represent fixed boundaries, and white spaces indicate active cells
for filling and discharging operations.
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Figure 18: Cross section of a round cylindrical domain0
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3.4.2. Optimum domain size/number of cells for 3D CA models

Figure 19 presents the results of a convergence study to determine the optimal number
of cells required for accurate simulations. The discharge data arrays have different lengths;
therefore, they were normalised for comparison. The x-axis shows the normalised discharge,
while the y-axis represents the model-predicted fines contents.
Subfigure 19a in top left side summarises, six domains with varying dimensions from 11x25
to 19x43. Subfigure 19b, in top right side includes an additional five larger domains size
varying from 20x46 to 27x62. Figure 19¢ highlights the domains exhibiting convergence.
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Figure 19: Convergence test for different size domains

Smaller size domains showed in Figure 19 (e.g., 11x25) inconsistent results, indicating
insufficient resolution for reliable predictions. However, according to the Figure 19, domains
with dimensions of 19x43, 20x46, and 21 x48 demonstrated convergence, where the predicted
fines distributions remained stable despite further increases in domain size. Larger domains
generally converged as well, though the largest domain (27x62) exhibited cyclical oscillations,
likely due to numerical resonance effects.

To balance computational efficiency and accuracy, we selected a domain size of 21x48 (15,600
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cells), which demonstrated convergence and achieved stable predictions. This domain required
approximately 3 hours of simulation time, compared to 12 hours for the largest domain
(27x62). Averaging the results across convergent domains (19x43 to 27x62) yielded outcomes
similar to those of the 21 x48 domain, confirming its adequacy for the study.

3.5. Results of the 3D CA Model Validations

The 3D models underwent validation using the same methodology as the 2D CA models.
Linear calibration curves were employed to determine the integer values corresponding to the
actual weight percentage of inflow fines content. The data used to compute this calibration
curve is provided in Table 10 in the Appendix.

Table 6: Experimental and calibrated data for silo 2 filling

Sample mid | Actual Fines | Calibrated in-
point (wt.%) flow fines levels
(wt.%)
1170 10.4 10
3510 9.2 9
2850 7.5 7
8190 5.8 6
10530 5.3 6
12870 4.6 )

The “Sample mid point” listed in Table 6 refers to the midpoint of a single sublot, which
corresponds to 2340 tonnes.

3.6. Silo 3 filling and emptying

Silo 2 initially contained 8,900 tonnes of pellets with an unknown fines content. To isolate
the impact of known material, the model was pre-filled with 8 900 cells, each assigned a
fines level of 3 to represent the existing materials. Due to the first-in, last-out nature of
flat-bottom silos, the unknown material is discharged at the end of the process. To mitigate
this, the user stopped withdrawal before the unknown material is released.
Subsequently, cells with known fines content, delivered from ship were introduced into the
silo. The simulation recovered 14,200 cells, matching the actual filling amount. Figure 20
presents simulation results, with dark brown areas indicating fine accumulation and light
brown representing coarse particles.
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Experimental data from Immingham Silo 2 was converted into model-equivalent integer
values using the calibration curve and plotted alongside the model predicted outcome. Table 7
summarises the sampling point, actual fines content, and calibrated values. Discharge sampling
posed significant logistical challenges due to shifting schedules and changing personnel
responsibilities. As a result, sampling was conducted on an opportunistic basis, relying on
the engineer’s reminders to ensure data collection. The first sample was taken after 1650
tonnes had been withdrawn from the ship.

Table 7: Experimental data for Silo 2 discharge

Sample point | Fines (wt.%) | Calibrated fines level (wt.%)
1650 19.1 10.00
4950 12.8 7.03
9900 13.4 7.31
11550 13.6 7.41

Figure 21 shows the model predicted outcomes as a solid line. The experimental data
points are shown as red dots.
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Figure 21: Silo 2 Validation with experiment data.

This predictions followed the measured fines discharge fairly closely, so the model was
considered to be validated for this case. In this case, the models produced its outcomes in 3
hours and 45 minutes.

3.7. Silo 3 filling and emptying

The 3D CA model was validated against data from Immingham Silo 3 using the same
methodology as for Silo 2. However, the varying fines content in the Silo 3 feedstock provided
an opportunity to test the model under different operating conditions. Inflow fines content
was analysed and used to construct a calibration curve (Table 11 in Appendix). Model input
integers were derived from this calibration curve, as summarised in Table 8.

Table 8: Experimental data for Silo 3 filling

Sample Mid | Actual Fines | Calibrated inflow
point (wt.%) fines levels (inte-
gers)

15210 4.7 4

17550 2.9 3

19890 2.3 3

22230 3.4 3

24570 12.8 10

26910 7.8 6

29250 7.5 6
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A total of 15,568 tonnes of wood pellets were loaded into Silo 3. Importantly, the filling
process began at the drained angle of repose, necessitating a non-empty initial state for the
simulation grid. Model simulations produced predicted outcomes, while experimental data
points were converted into model-equivalent integer values using the calibration curve (Table

9).

Table 9: Experimental data for Silo 3 discharge

Sample point Actual fines Calibrated data
1650 26 10.00

6600 15.9 6.50

11500 9.5 4.29

13200 8.8 4.05

Model-predicted fines content was plotted against experimental data points in Figure 22.
The solid line represents the model’s output, while red stars indicate experimental data.
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Figure 22: Silo 3 Validation with experiment data

The 3D CA models accurately predicted distinct fines patterns in the discharge from both
silos, demonstrating successful validation. Silo 3, which received a higher fines concentration
towards the end of filling, exhibited elevated fines levels during the initial discharge phase due
to core-flow discharge. Conversely, Silo 2, with early fines enrichment, displayed increased
fines content in the latter part of discharge.

Figures 21 and Figure 22 illustrate the model’s ability to capture the essential features of
fines variation in both silos, despite limited plant data. The clear distinction between the two
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patterns strongly supports the use of 3D CA models for predicting segregation in industrial
silos.

While this study primarily focuses on wood pellets, the methodology presented in this work
is based on general principles of granular flow and cellular automata (CA) modelling. These
principles can, in theory, be extended to other types of bulk materials.

However, the specific parameters, such as particle size distribution, density, and cohesion,
would need to be considered for each material type, as these factors can significantly influence
the movement behaviour. For instance, materials with a higher degree of cohesion or a wider
range of particle sizes, such as powders or irregularly shaped materials, may require additional
modifications to the movement criteria or calibration process.

These variations may necessitate adjustments to the assumptions made in the current model,
such as the representation of pore-scale effects [37, 38] or the handling of bridging and
trapping phenomena. As for developing a general method for constructing movement criteria,
this remains a challenging yet promising area of research. While it is possible to develop a
more generalised framework, it would need to account for the diverse behaviours observed
in different bulk materials. Future work could explore how material-specific factors such as
particle shape, surface roughness, and moisture content could be incorporated into a more
universal set of movement rules. This could potentially allow for a broader application of the
CA model across various types of granular materials.

4. Conclusion

This study successfully validated the accuracy of both 2D and 3D cellular automaton
(CA) models in simulating silo filling and discharging processes. Through a combination
of laboratory experiments and industrial-scale testing, the models demonstrated a strong
ability to predict free-surface segregation within silos, with a 95% confidence level agreement
between model-predicted and experimental results.

The CA approach’s reliance on simple, logical rules and mathematical calculations offers
significant adaptability and flexibility, especially when compared to more complex models.
The models effectively handle varying fines content without requiring fundamental changes,
showcasing their potential for addressing a wide range of bulk material handling challenges
beyond silo segregation. Notably, the CA models can handle multiple inlets, outlets, and
variable fines content in inflow streams without requiring modifications to the underlying
rules.

Furthermore, the CA method’s macroscopic perspective allows for larger simulation domains
compared to particle-based methods, leading to significantly reduced computational costs.
This efficiency, coupled with the model’s accuracy, positions CA as a valuable tool for indus-
trial applications.

Although the current models focus on a single primary segregation mechanism and exclude
cohesive or collision-driven segregation, their successful validation opens the door for appli-
cations in optimising silo design, operations, and safety, particularly in industries such as
biomass storage and food processing. The model’s capabilities allow for the integration with
real-time monitoring systems to enhance operational efficiency and material flow management.
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Additionally, incorporating advanced rules to account for multi-mechanism segregation and
flow channels could further improve the accuracy and applicability of the CA models.
Future work could greatly benefit from integrating multi-field coupling with the CA model,
particularly through the combination of CA with Computational Fluid Dynamics (CFD)
to model gas-solid interactions. This would help better capture the dynamic behaviour of
particles in environments where gas flow influences the movement and segregation of particles.
Gas-solid two-phase flow, for example, is known to significantly affect the flow and packing
behaviour of powders in industrial silos, which could provide a more accurate representation
of particle dynamics in such systems.
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5. Appendix

Algorithm 1 Pseudo code/Algorithm for 2D filling model

max_ fines = maximum fines in a cell (Cell number=10)
min_fines = minimum fines in a cell (Cell number =1)

count=0
while count<filling cycles, do
for each cell in height and width, do
if cell > 0 and cell underneath =0, then
cell moves to the empty cell underneath
end if
if cell > 0 and the cell underneath > 0 and , cell left =0 or cell right t= 0, then
selected cell move to the empty cell underneath
end if
if cell < max_ fines then
transfer fines from left or right cell:
fines _transferred = min(fines in left cell, fines in right cell)
cell += fines _transferred
end if
if cell > max_fines then
transfer excess fines to adjacent cells:
fines transferred = cell - max_fines
cell= max_ fines
else
no fines transfer
end if
end for
count+=1
end while
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Algorithm 2 Pseudo code/Algorithm for 2D discharge model

max_ fines=maximum fines in a cell (Cell number =10)
min_fines=minimum fines in a cell (Cell number =1)

count=0
while count<discharge cycles, do
for each cell in height and width, do
if cell = 0 and cell above it # 0, then
cell moves to the empty cell
end if
if cell = 0 and the cell above = 0 and , cell left or cell right # 0, then
selected cell move to the empty cell underneath
end if
if cell < max_fines then
transfer fines from left or right cell:
fines_ transferred = min(fines in left cell, fines in right cell)
cell += fines_ transferred
end if
if cell > max_ fines then
transfer excess fines to adjacent cells:
fines_ transferred = cell- max_ fines
cell= max_ fines
else
no fines transfer
end if
end for
count+=1
end while

Algorithm 3 Pseudo code/Algorithm for 3D silo filling model

max_ fines =maximum fines in a cell (cell number =10)
min_fines =minimum fines in a cell (cell number =1)
border= (any number > max_ fines)

count=0
while count<Filling cycles, do
for each cells in height, width, and depth, do
if any cell > 0 and cell underneath = 0, then
Cell moves to the empty cell
end if
if cell > 0 and the cell underneath > 0 and cell north, east, south or west to the cell underneath =0, and # border
then
selected cell move to the empty cell underneath
end if
if cell < max_fines then
transfer fines from north, east, south, or west cells:
fines_ transferred = min(fines in north, east, south or west cell )
cell += fines_ transferred
end if
if cell> max_ fines then
transfer fines from north, east, south, or west cells:
fines_ transferred = cell -max_ fines
cell = max_ fines
else
no fines transfer
end if
end for
count+=1
end while
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Algorithm 4 Pseudo code/Algorithm for 3D silo discharge model

max_ fines =maximum fines in a cell (Cell number =10)
min_fines =minimum fines in a cell (Cell number =1)
border= (any number > max_ fines)
count=0
while count<discharge cycles, do
for each cells in height, width, and depth, do
if any cell = 0 and cell above it # 0, then
cell moves to the empty cell
end if
if cell = 0 and the cell above = 0 and cell north, east, south or west # 0 and cell # border then
selected cell move to the empty cell underneath
end if
if cell < max_ fines then
transfer fines from north, east, south, or west cells:
fines transferred = min(fines in north, east, south or west cell)
cell += fines transferred
end if
if cell> max_ fines then
transfer fines from north, east, south, or west cells:
fines transferred = cell -max_ fines
cell = max_ fines
else
no fines transfer
end if
end for
count+=1
end while

Table 10: Calibration data for the Silo 2 filling

Silo 2 filling | Model predicted
outcomes
Maximum fines | 10.4 10
Minimum fines | 4.6
Coarse pellets 1
Empty cell 0

Table 11: Calibration data for the Silo 3 filling

Silo 3 filling | Model predicted
outcomes
Maximum fines | 12.8 10
Minimum fines | 2.3
Coarse pellets 1
Clean cell
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